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Introduction

This thesis presents preliminary measurements of decays of B mesons in charmless final

states, by using a data sample of 365 millions of BB̄ pairs collected by the BABAR detector

at the PEP-II Asymmetric B Factory, located at the Stanford Linear Accelerator Center.

Recently many three-body B decay modes have been observed with branching ra-

tios of order 10−5. As an example B̄0 → KSKSKS ((6.9 ± 0.8) × 10−6), B0 →
K+π−π0 ((34.9± 2.1)× 10−6), B0 → K0π+π− ((43.0± 2.3)× 10−6) and B− → π+π−π−

((16.2± 1.2)× 10−6).

The three-body meson decays are more complicated than two-body decays as they

receive resonant and non-resonant contributions. They are generally dominated by inter-

mediate vector and scalar resonances, namely, they proceed via quasi-two-body decays

containing a resonance state and a pseudoscalar meson. Indeed, most of the quasi-two-

body B decays are extracted from the analysis of three-body B decays using the Dalitz

plot technique, in order to study the properties of various resonances. The non-resonant

contribution is usually believed to be a small fraction of the total three-body decay rate.

The study of charmless hadronic B decays can make important contributions to the

understanding of models of hadronic decays.

The Dalitz plot analysis of three-body B decays provides a nice methodology for ex-

tracting information on the unitary triangle in the standard model and can help the

understanding of CP violation. Studies of charmless three-body decays in B → Kππ

system combined with theoretical assumption, allow to put constraints on γ angle of the

Cabibbo-Kobayashi-Maskawa matrix.

This is the first study of the charmless decay of the charged B meson into three-body

v
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final state K0
S π

+ π0.

This thesis is organized as follows. The theory of the three-body charmless decays is

reviewed in Chapter 1, together with a brief reminder of CP violation. Chapter 2 presents

an overview of the BABAR detector used to collect the data studied in the analysis. The

experimental techniques used to reconstruct events and identify particles are presented in

Chapter 3. The studies performed on the Monte Carlo in order to discriminate the signal

from the backgrounds are collected in Chapter 4. In Chapter 5 the steps done to validate

the fitter are discussed, and the final fit on the data is presented. Chapter 6 presents the

evaluation of systematic uncertainties. In Chapter 7 we show the results for branching

ratios and CP asymmetries for the three-body decay under study.

The results presented in this thesis are preliminary and show the potential capabil-

ities that can be obtained with the BABAR dataset. The current measurements exhibit

a discrepancy between some fit results and the actual data, which is possibly due to

backgrounds being not correctly estimated and/or parametrized. Further studies are

under way in order to understand these discrepancies and solve them. The results shown

in these thesis have not been internally reviewed by the BABAR collaboration; therefore,

they should not be regarded as official BABAR results.



Chapter 1

Theory Overview

1.1 CP violation

1.1.1 CP symmetry in quantum mechanics

Discrete symmetries

Classical physics is invariant for symmetries of left-right inversion (parity) and for reversal

of the time.

The symmetry under parity corresponds to the physical invariance of two coordinate

systems with opposite sign of the space coordinates (like two rotated systems, looking each

other in a mirror). A right-handed system under parity becomes left-handed. Thus the

parity transformation has the same effects of a mirror reflection, and can be demonstrated

that all the physics equation are invariant under this kind of transformation.

The time reversal consists of changing the sign of the time coordinate t.

For each symmetry there is a transformation, that can be associated to an operator

(in this case P and T ). If an operator working on a function, has for result the same

function with just an overall phase, this means that the function is invariant under that

transformation, therefore the function owns a symmetry.

The symmetry under transformation of charge conjugation is not present in classical

physics, represented by the operator C. This symmetry, where exists, means that a so-

called “antiparticle” with the opposite charge is present for each particle; this result can

be assumed only in relativistic quantum mechanics, where to each particle field, can be

associated a field with opposite charge quantum number: the antiparticle.

1



2 CHAPTER 1. THEORY OVERVIEW

In particle physics, described by the Standard Model, the electromagnetic and strong

interactions preserve P, C and T, one by one, while the weak interactions violate P and

C separately. However, the composite transformation CPT is a symmetry preserved in

all the universe, that means in each lagrangian field theory experimentally tested.

The parity violation in weak interactions was suggested for the first time in 1956 by

Lee and Yang [2], before the experimental evidences coming from studies of pseudoscalar

quantities (first of all the particle helicity). Historical experiments of great importance

in testing the weak intaction were done by Garwin et al. and Wu et al. in 1957 [4],

Goldhaber et al. in 1958 [5] who measured the neutrino helicity.

In weak interactions C and P are both violated at the same time, so at the end the

symmetry under CP was considered preserved.

A first clear evidence of CP violation comes in 1964 [6] in the K0
L decay, who was seen

to be not symmetric in the two C-conjugated decay modes, as was expected consider-

ing the neutral K0
L the antiparticle of itself. Therefore the K0

L is not eigenstate of CP

transformation.

CP violation has a great theoretical importance:

• the barionic asymmetry (there is much more matter than antimatter in the observed

universe), could only be generated from an initial situation in which the amount

of matter and antimatter were equal, balance that has evolved after CP violating

processed [7];

• elementary particles can have an electric dipole moment, who violates both P and T

symmetries. In the case of T violation, CPT has to be conserved, so a CP violation

is necessary at the end of the game.

In quantum mechanics the transformations P, T and C, are associated to operators

P , T and C respectively. Operators like T are written by exponentiation of transforma-

tion generators. A different approach should be used for P and C operators, who don’t

correspond to continuous transformations, since are transformation associated to finite

quantum numbers. P and C operators can by defined only by not taking into account

the weak interaction, since it is necessary to commute with the hamiltonian operator H,
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that generate the time translactions; operators can commute only when their relative

transformations correspond to symmetries not violated in the theory described by the

hamiltonian. Both P and C symmetries are not good symmetries of Nature, their oper-

ators can be defined only switching off the weak interaction, since they do not commute

with the hamiltonian of the weak interaction.

P and C are unitary. They correspond to discrete transformations, therefore they can

be associated to their eigenstates, that means multiplicative quantum numbers (at the

opposite side, for the continuum transformation, quantum numbers are additive).

T is antiunitary. T can have two different eigenvalues, therefore it cannot be associated

to any quantum number. To be very precise is not correct to say that T is conserved

(nothing is conserved), but is just valid the invariance under T.

We can improperly say that CPT is conserved (“CPT theorem” that is kind of preju-

dice). CPT conservation means that a CP violation has to be connected to a T violation.

The violations or conservations of some symmetries are related to the theory (the hamil-

tonian) and not to the single observables.

Strong and weak phases

The presence of complex phases in the transition amplitude is closely related to the CP

violation. Only the phases that are rephasing-invariant may have a physical meaning,

and in particular lead to CP violation. Those phases are in general the relative phases of

the various coherent contributions to a particular transition amplitude.

Three kind of phases may arise in transition amplitudes:

• weak or odd phase: is defined to be one which has opposite signs in the transition

amplitude for a process and in the transition amplitude for its CP-conjugate process;

• strong or even phase: has the same sign in the transition amplitude for its CP-

conjugate process;

• spurious phase: is a conventional relative phase between the amplitude and the

amplitude of the CP-conjugate process.
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Given CP conjugated states i and ī, f and f̄ , g and ḡ, where for example

CP|f〉 = eiξf |f̄〉 (1.1)

with arbitrary phase ξf considered equal to 1, CP violation is possible when the transition

amplitudes are the sum of two or more transition amplitudes with different strong or weak

phases, like

〈f |T |i〉 = A1e
i(δ1+φ1) + A2e

i(δ2+φ2) (1.2)

where the CP-conjugate amplitude is

〈f̄ |T |̄i〉 = A1e
i(δ1−φ1+θ) + A2e

i(δ2−φ2+θ) (1.3)

where T is the transition matrix, A1 and A2 the modules of the transition amplitudes,

and δ1 6= δ2 (CP strong phases), φ1 6= φ2 (CP weak phases) and θ the common spurious

phase. The asymmetry between the two amplitudes is

|〈f |T |i〉|2 − |〈f̄ |T |̄i〉|2
|〈f |T |i〉|2 + |〈f̄ |T |̄i〉|2 (1.4)

It is possible to have CP violation even in absence of strong phases or amplitudes

interference, for quantities like this

〈f |T |i〉〈g|T |̄i〉 − nfng〈g|T |i〉〈f |T |̄i〉 = 2iA1A2e
i(δ1+δ2+θ) sin(φ1 − φ2) (1.5)

where there is a relationship between the two final states f and g, like for physical states

that are a superposition of two CP eigenstates.

In any case, due to CPT invariance, the total decay width of i and ī has to be equal

∑

f

|〈f |T |i〉|2 =
∑

f

|〈f̄ |T |̄i〉|2 (1.6)

therefore it is necessary to study CP violation using partial decay channels of the particles,

since it is precluded the observation of CP-violating difference between the total decay

width of a particle and its antiparticle.

Neutral meson system

The neutral mesons, interesting for the study of CP violation, decay mostly through weak

interactions. Let’s consider a generic neutral meson (that can be the a D0, K0, B0
d or B0

s )

P 0 with antiparticle P̄ 0, and common mass m0, for which
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• |P 0〉 and |P̄ 0〉 are eigenstates of strong and electromagnetic interactions with mass

m0, so they are flavor eigenstates1;

• as consequence of the weak interaction, described by the non vanishing HW , the two

states oscillate between themselves before decaying.

At a certain time t it is possible to have a state that is a superposition of initial states

and final states |ni〉, where the two |P 0〉 and |P̄ 0〉 may decay

a(t)|P 0〉+ b(t)|P̄ 0〉+
∑

n

ci(t)|ni〉 (1.7)

where ci(t = 0) = 0 are the amplitudes of the final states.

In the Wigner-Weisskopf [8] approximation, taking into account the interaction HW

|ψ(t)〉 ' ψ1(t)|P 0〉+ ψ2(t)|P̄ 0〉 (1.8)

where the wave function satisfies an equation equivalent to the Schrödinger equation

i
d

dt

(
ψ1

ψ2

)
=

(
R11 R12

R21 R22

)(
ψ1

ψ2

)
(1.9)

where

R = M− i

2
Γ (1.10)

with
M = 1

2
(R + R†),

Γ = i(R−R†)
(1.11)

The matrices M e Γ are hermitian, while the matrix R is anti-hermitian. The weak

interaction is considered like a small perturbation with respect to the strong and electro-

magnetic interactions; in second-order perturbation theory the matrices M e Γ, by sums

over intermediate states n, are

Mij = m0δij + 〈i|HW |j〉+
∑

n

P
〈i|HW |n〉〈n|HW |j〉

m0 − En

, (1.12)

Γij = 2π
∑

n

δ(m0 − En)〈i|HW |n〉〈n|HW |j〉 (1.13)

1States with a defined quark content, that are eigenstate of an effective hamiltonian that describes the strong interaction
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where the operator P projects out the principal part and En are the energies of the states.

From the second order expansion the box Feynman diagrams came out. The mass matrix

has first and second order terms, therefore virtual states connect the real states.

It follows that
d

dt
(|ψ1|2 + |ψ2|2) = −(ψ∗1ψ

∗
1)Γ

(
ψ1

ψ2

)
(1.14)

where the left-hand side of the equation (1.14) must be negative (since the mesons decay),

hence the Γ is positive definite.

The eigenstates of R are complex, since the matrix is not-hermitian, so they can be

defined as
µH = mH − i

2
ΓH ,

µL = mL − i
2
ΓL

(1.15)

Then we define
∆m = mH −mL > 0,

∆Γ = ΓH − ΓL,
∆µ = µH − µL

(1.16)

from which we can obtain

∆m = 2|M12| (1.17)

These eigenstates and eigenvectors correspond to particles with different masses m and

timelifes (or decay width) Γ; hence is possible to label them taking into account one of

that two characteristics: in this case they are labelled with H and L, for the heavy and

for the light respectively, having in mind the mass differences. This decision is suitable

for the B0 − B̄0 system, where the two mass eigenstates have a relevant mass difference

with respect to the lifetimes difference. For the system K0 − K̄0, is better to take into

account the lifetimes, being the filetime of one particle really longer in comparison with

the other one (using thus labels L and S for the long-lived and short-lived respectively).

As already considered, under a CP transformation

CP|P 0〉 = eiξ|P̄ 0〉,
CP|P̄ 0〉 = e−iξ|P 0〉 (1.18)

with arbitrary phase ξ. Hence is possible to define the two CP eigenstates as

|P±〉 =
1√
2
(|P 0〉 ± eiξ|P̄ 0〉) (1.19)
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We have a CP invariance for a theory described by an hamiltonian for the weak inter-

action HW , if

(CP)HW (CP)† = HW (1.20)

which implies that Γ11 = Γ22 and analogously M11 = M22. Since

M21 = e2iξM12,
Γ21 = e2iξΓ12

(1.21)

we get |R11| = |R22|.
It is convenient to introduce the CP-violating parameters

δ =
|R12| − |R21|
|R12|+ |R21| ,

θ =
R22 −R11

∆µ

(1.22)

The eigenstates R, that are the mass eigenvectors (eigenvectors of the weak interac-

tion), can be defined as follows

|PH〉 = pH |P 0〉+ qH |P̄ 0〉,
|PL〉 = pL|P 0〉 − qL|P̄ 0〉 (1.23)

Unlike |P 0〉 and |P̄ 0〉, the mass eigenstates evolve as a function of time, according to

the equation (1.9).
|PH(t)〉 = e−iµH t|PH〉,
|PL(t)〉 = e−iµLt|PL〉. (1.24)

Due to the weak interaction, described by HW , these states evolve like an exponential

function with defined masses mH and mL, and defined decay width ΓH and ΓL, according

to eq. (1.15). The probability to observe P 0 or P̄ 0 is proportional to e−Γt. Starting with

a flavor eigenstate like P 0 (that can be written in terms of mass eigenstates) produced by

the strong interaction, it evolves during the time, displaying the possibility to observe a

flavor eigenstate of the second kind like P̄ 0.

The phase between |PH〉 and |PL〉 is not defined, and it is present in the product

〈PH |PL〉, which gives

|〈PH |PL〉|2 =
(1 + δ2)|1− θ2| − (1− δ2)(1− |θ|2)
(1 + δ2)|1− θ2|+ (1− δ2)(1 + |θ|2) (1.25)

therefore from CP invariance, that oblige to have the parameters δ = θ = 0, it follows that

〈PH |PL〉 = 0. Imposing a convention for the phases of |PH〉 and |PL〉 like for eq. (1.23),

we have 〈PH |PL〉 = δ, that is real.
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Since CP violation is small, assuming that CPT conserved (so qH/pH = qL/pL = q/p)

gives
|PH〉 = (1 + ε)|P 0〉+ (1− ε)|P̄ 0〉 ' |P+〉,
|PL〉 = (1 + ε)|P 0〉 − (1− ε)|P̄ 0〉 ' |P−〉 (1.26)

where the parameter

ε =
p− q

p+ q
(1.27)

allows to quantify the CP violation. In presence of CP violation the mass eigenstates are

not orthogonal, and are not equal to the CP eigenstates.

Classification of CP violation

If CP is conserved
M∗

12 = e2iξM12,
Γ∗12 = e2iξΓ12,
q

p
= ±eiξ

(1.28)

and the CP eigenstates are equal to the mass eigenstates

CP|PH〉 = ±|PH〉,
CP|PL〉 = ∓|PL〉 (1.29)

where the sign ambiguity can be solved only by experiments. The condition to have CP

invariance is ∣∣∣∣
q

p

∣∣∣∣ = 1 (1.30)

The CP transformation acts on a final state f in this straightforward way

CP|f〉 = eiξf |f̄〉,
CP|f̄〉 = e−iξf |f〉 (1.31)

so for the decay amplitudes, taking into account equation (1.18), we have

Āf = ei(ξf−ξ)Af ,
Af̄ = ei(ξf+ξ)Āf

(1.32)

hence, avoiding the arbitrary phases ξ and ξf , to have CP invariance we need to satisfy

the conditions
|Af | = |Āf̄ |,
|Af̄ | = |Āf | (1.33)

hence the decay rate of P 0 → f and P̄ 0 → f̄ must be equal.
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At the end from equations 1.28 and 1.32 follows that

arg

(
p2

q2
Af Ā

∗
fAf̄ Ā

∗̄
f

)
= 0 (1.34)

There are tree species of CP violation:

• indirect CP violation: CP violation in the mixing between the flavor eigenstates,

when 1.30 does not hold;

• direct CP violation: CP violation in the decay amplitudes, when 1.33 does not hold;

• interference CP violation: CP violation in the phase mismatch between the mixing

parameters (p, q) and the decay amplitudes, when 1.34 does not hold.

To summarize, CP violation arises always from an interference between phases, phases of

the elements M12 and Γ12 (indirect), phases of two decay amplitudes (direct), or phase of

p/q and the phases of the decay amplitudes (interference).

1.1.2 CP violation in the Standard Model

The charged current term of the electro-weak lagrangian (mediated by the W± boson),

written for the mass eigenstates of just one quark family, is

Lq
W =

g√
2
(W+

µ ūLγ
µV dL +W−

µ d̄Lγ
µV †uL) (1.35)

where V is an element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [11] [12]. For

three quark families

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.36)

It is a unitary matrix2, with 4 independent parameters and one phase that, as observed

for the first time by Kobayashi and Maskawa, generates CP violation [12]. There is not

an analog matrix for the neutral currents, since flavor changing neutral currents do not

exists at the tree level.

There is CP violation in the Standard Model, if, and only if, any of the rephasing-

invariant functions of the CKM matrix is not real.
2V †V = V V † = 1.
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Unitarity Triangle

Taking into account the unitarity conditions of the CKM matrix, the following relations

hold

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0,

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0.

(1.37)

these are sums of three complex quantities, that can be represented in the complex plane

as sides of a triangle; the lenghts of the sides are invariant, so the triangle does not modify

its shape under a rephasing of all the phases.

From experimental measurements of Vij, the triangles coming out from the first two

equations of 1.37 have a side much shorter than other two, these triangles are connected

to CP violation in the K and Bs system respectively.

The most interesting triangle, related with the physics of the Bd meson, is the third

one built from the orthogonality condition between the first and the second columns of

the matrix. It is the so called “Unitarity Triangle”[13].

Choosing a convention for the phases and rescaling the triangle by dividing each side

by |VcdV
∗
cb|, we obtain the triangle of Figure 1.1. The inner angles of the triangle are

Figure 1.1: Unitarity triangle rescaled.
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α = arg

(
− VtdV

∗
tb

VudV ∗
ub

)
,

β = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
,

γ = arg

(
−VudV

∗
cb

VcdV ∗
cb

)
.

(1.38)

Wolfenstein parametrization

The first parametrization of the CKM matrix was put forward by Kobayashi and Maskawa

using the three Euler angles, writing the matrix like a product of three rotations.

In 1983 it was realized that the bottom quark b decays predominantly to the charm

quark c, so |Vcb| À |Vub|; then it was noticed by Wolfenstein that |Vcb| ∼ |V 2
us|, and [14] a

parametrization in which unitarity only holds approximately was introduced, writing

V =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 +O(λ4) (1.39)

involving the parameters λ, A, ρ and η, where λ = sin θC ' 0.22 is small and serves as

an expansion parameter, that is a function of the Cabibbo angle θC , A ' 0.82 and η

rapresent the CP violation phase. We have CP violation if η 6= 0, that means a triangle

area not equal to zero.

In the Wolfenstein parametrization the CKM matrix elements satisfy these relations

VudV
∗
ub

|VcdVcb| = ρ+ iη,

VcdV
∗
cb

|VcdVcb| = −1,

VtdV
∗
tb

|VcdVcb| = 1− ρ− iη.

(1.40)

1.2 The B+ → KSπ
+π0 decay

1.2.1 Experimental and theoretical status

The B+ → KSπ
+π0 decay3 proceeds via quasi-2-body channels, B+ → K∗+π0,

B+ → K∗0π+ and B+ → ρ+K0
S, or via the non resonant 3-body decay. The K∗ and

ρ resonances decay into Kπ and ππ final states respectively. Many resonances overlap in
3unless otherwise stated, charge conjugate modes are implied
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Figure 1.2: Trees (left column) and penguins (right column) Feynman diagrams, where the first row are
the colour suppressed and the second row the colour favoured diagrams.

Mode PDG avg. [40] BABAR ref. Belle ref. CLEO ref. New avg.

K∗(892)0π+ 10.9± 1.8 10.8± 0.6+1.1
−1.3 [15] 9.7± 0.6+0.8

−0.9 [16] 7.6+3.5−3.0± 1.6 [17] 10.0± 0.8

K∗(892)+π0 6.9± 2.4 6.9± 2.0± 1.3 [18] 7.1+11.4
−7.1 ± 1.0 [17] 6.9± 2.3

K∗0 (1430)0π+ 47± 5 32.0± 1.2+10.8
−6.0 [15] 51.6± 1.7+7.0

−7.4 [16] 45.2+6.2
−6.3

K∗2 (1430)0π+ < 6.9 5.6± 1.2+1.8
−0.8 [15] < 6.9 [19] 5.6+2.2

−1.4
K∗(1410)0π+ < 45 < 45 [19] < 45
K∗0 (1680)0π+ < 12 < 15 [20] < 12 [19] < 12

K0π+π0 (N.R.) < 66 < 66 [21] < 66

K0
Sρ

+ 8.0± 1.5 8.0+1.4
−1.3 ± 0.6 [22] < 48 [23] 8.0+1.5

−1.4

Table 1.1: Compilation of the B0 → K0
Sπ

+π0 results. Snapshot of December 2008. B+ Branching
Fractions (decays with kaons) (×106). (UL 90% CL).

phase space, therefore is required an amplitude (Dalitz plot) analysis of the 3-body final

states (see section 1.3). Measurements existing up to now are included in table 1.1. While

all final states can be reached via colour allowed penguin diagram and annihilation dia-

grams, the B+ → K∗+π0 can also proceed through color allowed and color suppressed tree

and penguin graphs (Figure 1.2) with CKM factors λ4 and λ2 respectively. The gluonic

penguin processes are favored by color and CKM. The electroweak penguin transitions

might be sizeable as well.

The most important decays channel that contribute to the final 3-body state are listed

in table 1.2.1 together with the branching fraction prediction; table 1.1 shows the corre-

spondingly measured branching fractions.

The charmless decays B → Kππ are dominated by b → s penguin transition. Under
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Mode Model ref. B.F. prediction
ρ(770)±K0 QCDF [24] 10.27±1.96

global fit [25] 6.08±0.79
HMChPT [26] 1.3 +3.0

−0.9

K∗(892)±π0 QCDF [24] 5.25±0.83
global fit [25] 7.00±4.49
HMChPT [26] 1.5+0.3

−0.3

FSI [27] 12.4+1.5
−0.8

K∗(892)0π± QCDF [24] 8.90±1.59
global fit [25] 10.64±0.82
HMChPT [26] 1.5+0.4

−0.3

FSI [27] 22.5+2.8
−0.9

K∗(1430)±π0 HMChPT [26] 5.5+1.6
−1.4

K∗(1430)0π± HMChPT [26] 5.2+1.6
−1.4

K0π±π0 HMChPT [26] 10.0+7.1
−3.7

Table 1.2: Theoretical predictions (×106) for various models of the signal model of the Dalitz analysis,
together with a global fit. The models listed are: QCD factorization (QCDF), heavy meson chiral
perturbation theory (HMChPT) and final-state interaction (FSI).

the factorization approach [26], the decay amplitude consists of three distinct factorizable

terms: the current-induced process, the transition process and the annihilation process.

Recently, Belle has measured the direct CP violations B− → Kπ decay [28] that for

the charge B is

ACP (B− → K−π0) =
Γ(B− → K−π0)− Γ(B+ → K+π0)

Γ(B− → K−π0) + Γ(B+ → K+π0)
= +0.07± 0.03± 0.01, (1.41)

and the average of the current experimental data of BABAR , Belle, CLEO and CDF by

the Heavy Flavor Averanging Group (HFAG) [29] is

ACP (B− → K−π0) = 0.050± 0.025 (1.42)

A difference is observed between direct CP violations in charged and neutral modes, that

by the HFAG average is

∆A = ACP (B− → K−π0)− ACP (B̄0 → K−π+) = 0.147± 0.028 (1.43)

at 5σ level; however, recent calculations based on the QCD factorization approach

(QCDF), the perturbative QCD approach (pQCD) and the soft-collinear effective theory
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(SCET), predicted that ACP (B− → K−π0) and ACP (B̄0 → K−π+) are close to each other.

The mismatch between theory and experiment is maybe due to the limited understanding

of the strong dynamics in B decays, but equally possibly due to new physics effects.

Even recent theoretical estimations within the QCDF framework give ACP (B− →
K−π0) = −0.109± 0.008 [24], very close to ACP (B̄0 → K−π+), but still in sharp contrast

to experimental data. So it is very hard to accommodate the measured large difference ∆A

in the SM with the available approaches for hadron-dynamics in B decays, even varying

the value of the effective gluon mass that enter in the models. This could be an indication

of new sources of CP violation beyond the SM. Using a set of FCNC effective NP operators

(b → suū and b → sdd̄) the results are more consistent with the experimental data for

ACP (B− → K−π0).

1.2.2 Constraints on γ angle from B → Kππ modes

The current methods to measure γ rely on the interference between the colour-allowed

B− → D0K− and the colour-suppressed B− → D̄0K− decay modes resulting in direct

CP violation. They are theoretically very clean, as only tree amplitudes are involved,

but their sensitivity to γ is governed by the rather small relative magnitude of the two

amplitudes, denoted rB: 0.05 . rB . 0.3, depending on the D meson decay channel. As

a consequence, γ is the most poorly determined angle of the unitarity triangle, (78± 12)◦

using only direct determinations (c.f. β = (22.0± 0.8)◦ with the full fit) [30]. Therefore,

any independent determinations of the angle γ should be exploited in order to reduce the

statistical uncertainty. Although a first proposal on using the charmless three-body decays

B → Kππ to extract the unitarity triangle angle γ via isospin relations was made in 2002

[31], the more recent ideas in [32] [33] are both far more accurate in their estimations of

the theoretical uncertainties of their methods, and more convenient experimentally.

The paper by Ciuchini, Pierini and Silvestrini [33] exploits the use of the phase-

extraction capabilities of the Dalitz plot analysis technique, similarly to what Lipkin-

Nir-Quinn-Synder proposed to measure α in B0 → ρπ → π+π−π0 [34]. They start by

relating the ratio of the amplitudes for the decays B+ → K∗+π0 and B+ → K∗0π+ and

their CP conjugates to γ through isospin, and then cleverly take advantage of the Dalitz
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plot to determine the phase difference between the two B flavours.

Isospin ensures that amplitudes with the same topology are approximately equal for

the two modes. Neglecting for simplicity the electro-weak penguin contribution, it is

possible to write the amplitudes using isospin symmetry, in terms of Renormalization

Group Invariant complex parameters, and obtain for our channel (factorizing out their

CKM elements and grouping them accordingly):

√
2A(K∗+π0) = V ∗

tbVtsP1 − V ∗
ubVus(E1 + E2 + A1 − PGIM

1 ), (1.44)

A(K∗0π+) = −V ∗
tbVtsP1 + V ∗

ubVus(A1 − PGIM
1 ), (1.45)

where unitary triangle relations have been used to separate the penguin amplitude into

CKM-favoured (P1) and CKM-suppressed (PGIM
1 ) contributions; A1 is the disconnected

annihilation and E1 (E2) the connected (disconnected) emission topologies. Recalling that

the amplitude for the C-conjugate B− process is obtained simply by complex-conjugating

the CKM factors, we can use the previous isospin relations to cancel out the penguin

terms:

A+ = A(K∗0π+) +
√

2A(K∗+π0) (1.46)

= −V ∗
ubVus(E1 + E2), (1.47)

A− = A(K̄∗0π−) +
√

2A(K∗−π0) (1.48)

= −VubV
∗
us(E1 + E2), (1.49)

whose ratio is

R∓ =
A−

A+
=
VubV

∗
us

V ∗
ubVus

= e−2iγ (1.50)

that provides a clean determination of the weak phase γ.

A± can be extracted from the 3-body decay chains B± → K∗±(→ KSπ
±)π0 and B± →

K∗0(→ K0π0)π± entering the KSπ
±π0 Dalitz plot. Electric charge forbids the extraction

of the relative phase of the two Dalitz plots amplitudes A(K∗±π0) and A(K∗0π±) in a

straightforward way. One possibility is to use the penguin-dominated channel K∗0π+ to

fix the phase difference between the amplitudes in the two Dalitz plots. In this way an

independent, albeit more uncertain, determination of γ can be obtained from R∓. In any
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case the determination of γ is not as theoretically clean as the one obtained from the

neutral B decays, using similar isospin relations that bring to a ratio

R0 =
Ā0

A0
=
VubV

∗
us

V ∗
ubVus

= e−2iγ (1.51)

where

A0 = A(K∗+π−) +
√

2A(K∗0π0) (1.52)

Ā0 = A(K∗−π+) +
√

2A(K̄∗0π0). (1.53)

In the above discussion, the so-called electroweak penguins (obtained by exchanging

the gluon in the penguin diagrams by a photon) have been ignored. These result in

isospin-breaking effects due, among other things, to the different electric charges of the u

and d quarks, and precision measurements must take these into account. By considering

the full (weak, strong and electromagnetic) effective Hamiltonian for the transition, the

authors of [11] give the following final expression:

R∓ = e−i(2γ+arg(1+kEW )) × (1 + ∆) (1.54)

where ∆ is the theoretically bound (. 0.05) and kEW is

kEW =
3

2

CEW
+

C+

(
1 +

1− λ2

λ2(ρ̄− iη̄) +O(λ2)

)
(1.55)

with CEW
+ and C+ being, respectively, the coefficients of the electroweak and normal QCD

4-quark operators in the effective theory. The experimental results for both R0 and R∓

can be translated into allowed regions in the ρ̄− η̄ plane.

That model was tested using the B0 → K+π−π+ and B0 → KSπ
+π− decays to fix

the relative phase of neutral B decays, but the determination of the UT parameters can

be improved with the experimental measurements of R∓K∗π and R∓K∗(1430)π, for which the

Dalitz decay B± → KSπ
±π0 will be worthwile.

That model can be sensitive to new physics, since is reasonable to assume that new

physics effects only enter at the loop level. There are three possible scenarios:

• the new physics could affect the coefficients of QCD penguin operators, therefore the

analysis of R0 is unaffected, while the phase of new physics would modify the R∓
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equation (1.54), producing a discrepancy between the constraints on the UT obtained

from R0 and R∓;

• the new physics modifies the electro-weak penguin coefficients, leading to a modifi-

cation of kEW , so the constraint on the UT obtained using the SM value for kEW

could be inconsistent with the SM UT fit result;

• the new physics could produce contributions to electro-weak penguin operators

or give raise to new operators that cannot be eliminated, and one would observe

|R0,∓| 6= 1.

The second paper, due to Gronau, Pirjol, Soni and Zupan [32], extends the previous

work and thoroughly studies the isospin structure of all the amplitudes and effective field

theory operators involved in the decay. These also involve a more detailed evaluation

of the electroweak penguin amplitudes, thus providing similar formulae for more general

cases.

1.3 Three-body decays

1.3.1 Introduction

The aim of the present work is to study the structures arising in the three-body decay

B+ → K0
Sπ

+π−. In this section we explore some of the consequences of the kinematics of

the decay and discuss the parametrization employed. The general features of the decay

of a particle can be discussed based on elementary concepts of quantum mechanics. The

transitions of an initial state into a final state is an application of the standard time-

independent perturbation theory:

cfi =
〈ψf |Vint|ψi〉
Ei − Ef

(1.56)

which is the amplitude cfi to find a system, whose initial state is i, in a final state f when

an interaction potential Vint connecting them is introduced, where ψi and ψf describe the

initial and final states in the absence of the interaction and Ei and Ef are their energies.

The transition can happend directly, 〈ψf |Vint|ψi〉 ≡ Vfi 6= 0, or it may involve intermediate
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“virtual” states j, also called resonances, in which case the transition amplitude can be

approximated by:

cfi =
∑

j 6=i,f

(
VfiVji

(Ef − Ei)(Ej − E − i)
− VfiVff

(Ef − Ei)2

)
. (1.57)

Both equations display a similar form, involving the vertex factors Vjk and the propagators

(Ej − Ek)
−1. The former represents the “strength” with which the interaction connects

the two states, while the latter is related to the overlap of the two states:

〈E ′|E〉 =

∫
dt〈E ′|t〉〈t|E〉 =

∫
dteiE′te−iEt ∝ 1

E ′ − E
. (1.58)

If the final state is degenerate, the probability to observe the transition has to be summed

over all the states sharing the same quantum numbers:

cfi =

∫
cfi(Ef )ρ(Ef )dEf (1.59)

where ρ(Ef ) is the density of final states or phase space factor.

In the following subsections we discuss in detail the peculiarities of the densities of

states for three-body decays, the vertex factors and the propagators.

1.3.2 Kinematics of the three-body decays

In the decay of the pseudo-scalar B meson, with mass mB into three more pseudo-scalar

particles with masses m1,m2,m3 and with four-momenta pB, p1, p2, p3, there are several

kinematical constraints that reduce to two the number of degrees of freedom needed to

specify the final state. Defining the invariant mass squared of a pair of particles as

m2
ij ≡ (pi + pj)

2 we get

m2
12 +m2

23 +m2
31 = m2

B +m2
1 +m2

2 +m2
3 (1.60)

so that one of the m2
ijis linearly dependent on the other two. Furthermore, in the B rest

frame,

m2
ij = (pB − pk)

2 = m2
B +M2

k − 2mnEk (1.61)

= (pi + pj)
2 = m2

i +m2
j + 2EiEj − 2|~pi||~pj| cos θij (1.62)
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where the last equation indicates that the angles between the momenta of the final state

particle are known once their energies are determined. The two equations (1.61) and

(1.62) imply that the knowledge of two quantities, customarily chosen from among the

m2
ij, are sufficient to specify the state of the system, up to its overall orientation.

A Dalitz plot [35] [36] is produced when a two-dimensional scatter plot is made in two of

the m2
ij variables, say m2

13 ≡ x and m2
23 ≡ y. For a given value of m2

jk the maximum of

m2
ij is attained when the particle i and j are flying back-to-back, and the minimum when

they are at rest in the ij center-of-mass system, i.e. their directions are parallel.

Similarly, for events close to the edges of the Dalitz plot, one of the m2
ij takes a small value

while the other two have rather large values, whereas in the center the invariant masses

of the three pairs of particles take approximately the same values. This implies that in

the latter case, the directions of the three particles are distributed quite isotropically, and

that they carry similar energies, whereas in the former case, one of the particles in the

final state is back to back to the other two, which move in parallel, giving the event a

strong directionality. It is also worth noting that, for an event lying near the corners of

the Dalitz plot, one of the particles is slow, as can be seen from (1.62).

Now it is possible to discuss the phase space factor. The summation should be done

over all momenta in the final state, but application of the kinematical constraints noted

before should enable us to write is as a function of only two of the energies or squared

invariant masses:

ρ(m2
13,m

2
23)dm

2
13dm

2
23 =

d3p1d
3p2d

3p3

E1E2E3

δ(p1 + p2 + p3 − pB) (1.63)

where the energies in the denominator of the right-hand side have been introduced to

ensure the Lorentz invariance. Integration over p3 yields

d3p1d
3p2

E1E2E3

δ(E1 + E2 + E3 −mB) =
p2

1dp1dΩ1p
2
2dΩ1−2

E1E2E3

δ(E1 + E2 + E3 −mB) (1.64)

where Ω1 and Ω1−2 are the solid angles for the direction of ~p1, and for the direction of ~p2
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with respect to ~p1. Since the B is a scalar, the angles should be integrated over, giving

p2
1dp1(4π)p2

2dp2(2πd cos θ1−2)

E1E2E3

δ(
3∑

i=1

Ei −mB) = 8π2dE1dE2p1p2d cos θ1−2

E3

δ(
3∑

i=1

Ei −mB).

(1.65)

Noting

E2
3 = p2

1 + p2
2 + 2p1p2 cos θ1−2 +m2

3 =⇒ E3dE3 = p1p2d cos θ1−2, (1.66)

substituting it and integrating the δ-function gives

∫
8π2dE1dE2dE3δ(E1 + E2 + E3 −mB) = 8π2dE1dE2 =

4π2

m2
B

dm2
23dm

2
13. (1.67)

Therefore, the density of final states is constant when expressed in terms of the m2
ij

variables. In other words, the decay rate (the probability of decay per unit time) has the

form

dΓ ∝ |M|2dm2
13dm

2
23 (1.68)

where M encodes all the dynamical information about the decay, containing the vertex

factors and the propagators.

We observe that, according to eq. (1.68), a constant term |M|2 results in a uniform

distribution over the Dalitz plot, and that any departure is due to dynamical effects, i.e.

a non-trivial |M|2.

1.3.3 The isobar model

The isobar model [37] [38] approximates M as a sum of terms with individual couplings

and propagators, each representing a resonance in one pair of particles:

M(m2
13,m

2
23) =

N∑
j=1

cjFj(m
2
13,m

2
23) (1.69)

where N is the number of intermediate states considered, cj are the complex amplitudes

describing the coupling of the B meson to the particular resonant final state (i.e. the

vertex factors) and Fj(m
2
13,m

2
23) are the propagators, that are products of several terms:

Fj(m
2
13,m

2
23) = Rj(m)×BB

L (|~p|r)×Bres
L (|~q|r)× ZL

j (~p, ~q), (1.70)
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where the different terms are: first, the mass-dependent part of the propagator, second

and third, factors that account for the difficulty of slow decay products to conserve the

angular momentum due to the spin of the resonance and last, the term that describes

the angular distribution. ~p and ~q are the momenta of the bachelor particle and one of

the daughters respectively, r is the effective range. The conventions adopted for these are

described in detail in the following sections, a good reference being [39]. World averages

[40] are used for the parameters characterizing each resonant state (e.g. mass, width).

A Dalitz or amplitude analysis aims to extract the complex couplings cj from the data,

when a given model for the resonant structure has been proposed. Note that, since the

decay rate depends onM (1.68), eq. (1.69) implies that bilinear terms in Fj(m
2
13,m

2
23) will

appear in the model of the distribution over the Dalitz plot. These terms, proportional

to F ∗j Fk, represent, and are sensitive to, the interference between two resonances j and k,

thus allowing for the relative phase between cj and ck to be determined.

In charged decays to CP eigenstates, one expects the same resonances to be present

in the B+ and the B− decays in the same amounts, up to direct CP violanting effects.

Therefore a parametrization of the complex coupling cj and c̄j appearing in the B+ and

B− amplitudes (A, Ā, respectively) that reflects that fact is preferred instead of using for

example separate magnitudes and phases for each flavor.

A Dalitz analysis extracts all non-trivial information from the data; no physically

meaningful aspect of the decay is left unmodelled. Therefore the CP asymmetry must be

parametrized in terms of the cj.

ACPj
=
|c̄j|2 − |cj|2
|c̄j|2 + |cj|2 . (1.71)

The relative weight of a given resonance in the decay is usually quoted in terms of the

isobar fit fraction:

FFj =

∫∫
DP
|cjFj(m

2
13,m

2
23)|2dm2

13dm
2
23∫∫

DP
|∑j cjFj(m2

13,m
2
23)|2dm2

13dm
2
23

, (1.72)

where the DP integration domain means the integral must be calculated over the whole

phase space.

The approximation in eq. 1.69 neglects rescattering of the final state particles and is
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known to lead to unitary violation whenever the overlapping of two resonances is sizable.

One alternative is the use of the so-called K-matrix, too complex to be used in the present

analysis. The main source of systematic uncertainties in the model is the term Rj from

eq. 1.70, since its precise function form in not well known for some components as the

higher K∗ resonances.

1.3.4 Mass term description

In this section the mass term distributions (or lineshape distributions) used to parametrize

the resonances accounted in the nominal signal model of the decay studied in this analysis

are presented. The parameters used for the different intermediate states are included in

Table 1.3.

Breit-Wigner distribution:

The most common parametrization of the mass term is the Breit-Wigner formula, that

arises for the overlap between a state of energy E and a resonant state with mass mR and

decay width ΓR, and therefore gives the amplitude for a system in the first state to be in

the second state:

〈E|R〉 =

∫
dteiEte−t(imR+Γr/2) ∝ 1

(E −mR)− iΓ/2
(1.73)

Relativistic Breit-Wigner distribution:

An obvious improvement is making the Breit-Wigner equation relativistic [41]:

Rj(m) =
1

(m2
R −m2)− imRΓ(m)

, (1.74)

in which the variation of the width with the energy is taken into account via

Γ(m) = ΓR

(
q

q0

)2L+1 (mR

m

)
B2

L(|~q|r) (1.75)

where L is the angular momentum quantum number of the resonance, BL are the barrier

factors, r is the radius of the barrier factors and ~q is the momentum of one of the daughters

in the resonance rest frame and q0 = q(m = mR). The Relativistic Breit-Wigner is used

for the resonances K∗(892)±,0.
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Gournaris-Sakurai distribution:

The Gournaris-Sakurai formula is a parametrization of the P -wave scattering amplitude

for a broad resonance decaying to two pions [42]:

Rj(m) =
1 + dΓR/mR

m2
R + f(m)−m2 − imRΓ(m)

(1.76)

where d = f(0)/(ΓRmR) is a constant [43] and Γ(m) is the same of the relativistic Breit-

Wigner distribution (1.75), and where

f(m) = ΓR
m2

R

q3
R

[
q2

(
h(m)− h(mR)

)
+

(
m2 −m2

R

)
q2
0

dh

dm

∣∣∣
mR

]
. (1.77)

and

h(m) =
2

π

q

m
ln

(
m+ 2q

2mπ

)
. (1.78)

The Gournaris-Sakurai distribution is used for the ρ(770)±.

LASS distribution:

For the Kπ S-wave resonances, which dominate for resonance masses mKπ below

1.8 GeV/c2, an effective-range parametrization was used to describe the slowly increasing

phase as a function of the Kπ mass. The parametrization as in the LASS experiment [44]

tuned for B decays is:

Rj(m) =
m

q cot δB − iq
+ e2iδB

mRΓR
mR

q0

(m2
R −m2)− imRΓR

q
m

mR

q0

, (1.79)

where

cot δB =
1

aq
+

1

2
rq. (1.80)

a is the scattering length and r the effective range of the resonance. The LASS distribution

is used for the K∗
0(1430)±,0 resonances.

1.3.5 Barrier factors

The Blatt-Weisskopf barrier or penetration factors [45] (the BL terms in eq. (1.70)) are

motivated by the consideration of the Schrödinger equation in spherical polar coordinates.

An effective potential, dubbed “centrifugal barrier”, arises from the vanishing of the
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Intermediate state Lineshape Parameters
Nominal model

Non resonant Constant

ρ+(770) GS r = 5.3+0.9
−0.7 (GeV/c)−1

K∗(892)+ RBW r = 3.6± 0.6 ( GeV/c)−1

K∗(892)0 RBW r = 3.6± 0.6 ( GeV/c)−1

K∗
0 (1430)+ LASS mR = 1412± 3 MeV/c2

K∗
0 (1430)0 ΓR = 294± 6 MeV

a = 2.07± 0.10 ( GeV/c)−1

r = 3.32± 0.34 ( GeV/c)−1

Additional resonances

ρ(1450) GS mR = 1439 MeV/c2

ΓR = 550 MeV
ρ(1700) GS mR = 1795 MeV/c2

ΓR = 278 MeV
K∗

2 (1430)+,0 RBW
K∗(1680)+,0 RBW

Table 1.3: The nominal model for the decay B+ → Kπ+π0 comprises a nonresonant part and five
intermediate states. The resonances masses and widths as well as the barrier range parameters r are
from PDG2008 [40], except for the LASS shape [44]. We use the same LASS parameters for both neutral
and charged Kπ systems. Additional resonances that may contribute are included in extended models
which we study to estimate the systematic uncertainties.

wavefunction at the origin when the orbital angular momentum is non-zero, both in the

decay of the B meson to a J 6= 0 resonance and in the subsequent decay of the resonance

to two pseudoscalar particles. Physically, it means that particles emitted very close to the

center need too large momenta to account for all the angular momentum of the resonance.

A correction is thus needed to the usual Breit-Wigner lineshapes, that can be derived from

the transmission coefficients for the centrifugal potential.

Empirically, an effective radius r is needed to describe the shape of the barrier correctly.
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The factors are:

BL=0(z) = 1, (1.81)

BL=1(z) =

√
1 + z2

0

1 + z2
, (1.82)

BL=2(z) =

√
z4
0 + 3z2

0 + 9

z4 + 3z2 + 9
, (1.83)

where z = (|~q|r)2 and z0 is the value that z takes when ~q is evaluated at the resonance

pole mass.

1.3.6 Angular dependence and helicity angles

It can be argued that the distribution of decays through a scalar resonance will uniformly

populate the band of mass associated to the intermediate state, since the lack of spin

means there is no preferred direction for the daughters of the resonance. For a vector

intermediate state, however, a privileged direction exists, and their distribution is not

obvious. It can be calculated though, by evaluating the propagator for B → R → abc,

where R is the resonance of a given spin J . The vectorial nature of the intermediate state

(J = 1) is accounted for by the sum over its helicity states λ [39]:

∑

λ

〈ab|Rλ〉〈cRλ|B〉. (1.84)

The first factor represents the probability of finding the decay daughters a and b in a

given state of relative motion:

〈ab|R〉 ∼ (pa − pb)ν . (1.85)

The second factor can be regarded as the probability of B turning into c by emitting a

vector particle R. Since the emission of hard particles (large momentum) is suppressed,

states with the momenta of c and B as parallel as possible are favoured

〈cR|B〉 ∼ (pB + pc)µ. (1.86)
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Finally, using standard techniques of quantum field theory, the sum over the helicity states

can be performed, giving

Z1 = (pB + pc)µ

(
−gµν +

pµ
Rp

ν
R

m2
ab

)
(pa − pb)ν (1.87)

=
(
m2

bc −m2
ac

)
+

(m2
B −m2

c)(m
2
a −m2

b)

n2
ab

(1.88)

= −2~p · ~q (1.89)

= −2|~p||~q|cosθac (1.90)

where ~p and ~q are, respectively, the momenta of c and a in the resonance rest frame. The

angle θ is the helicity angle of the resonances. For completeness, the expression for tensor

resonances (J = 2) is

Z2 =
4

3

[
3(~p · ~q)2 − (|~p||~q|)2

]
. (1.91)

The formulae for Zj used here are known as Zemach tensors [46].

1.3.7 Square Dalitz plot

Charmless B decays proceed mostly through low mass resonances, such as ρ0(770),

K∗(892) and K∗
0(1430). That implies that the most populated areas of the Dalitz plot

are close to the edges, where the resonances recoil against energetic bachelor particles.

Furthermore, the combinatorial nature of background events means that their density

also peaks around the edges. Clearly, the binning of the histograms used to characterize

the two dimensional distributions will be problematic, as fine binning is needed around

the edges, and coarse binning around the center. Instead of using variable binning, we

introduce another set of variables to parametrize the final state phase space. All input

histograms will be expressed in terms of these variables:

m′ =
1

π
arccos

(
2

m−mmin

mmax −mmin

− 1

)
, (1.92)

θ′ =
1

π
θ, (1.93)

where m and θ are respectively the invariant mass and the helicity angle of the K0
sπ

0

system; mmax = mB −mπ+ and mmin = mK0
s

+mπ0 are the kinematic limits of m. The
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range of both the new variables is between 0 and 1. The effect of the transformations in

(1.92) and (1.93) is a magnification of the areas of interest, as can be seen in Figure 1.3.
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Figure 1.3: Nominal (left) and square (right) Dalitz plot for Monte Carlo model of the 3-body decay.

The calculation of the jacobian J

dm2
K0

s π+dm2
K0

s π0 → |detJ |dm′dθ′. (1.94)

is necessary to transform from one set of variables to another one.





Chapter 2

The BABAR Experiment

The BABAR experiment at PEP-II B factory [47, 48] has been optimized for CP violation

studies and searches for rare B meson decays. The PEP-II B factory is an high luminos-

ity (L & 3 × 1033cm−2s−1) e+e− collider operated at the center-of-mass (CM) energy of

10.58 GeV, on the Υ(4S) resonance. This resonance decays almost exclusively (> 96%)

in a B0B̄0 or a B+B−pair with equal probabilities, giving a clean environment charac-

terized by a good signal-to-noise ratio (σbb̄/σtot ≈ 0.28) and low track multiplicity per

event (≈ 11). In addition, events reconstruction and background rejection benefit by the

kinematic constraint on the momentum and energy, of each B, in the CM frame.

From December 2007 until February 2008, PEP-II operated at the resonance of Υ(3S),

taking 30 fb−1 of data. In the very last period, just before the final shutdown, a scan of

other Υ resonances, up to Υ(5S), was performed. Data taking ended in April 2008 with

a total recorded luminosity of 531 fb−1.

In PEP-II, the electron beam of 9 GeV collides head-on with the positron beam of

3.1 GeV resulting in a Lorentz boost for the Υ(4S) of βγ = 0.56 in the laboratory frame.

The asymmetry of the machine is motivated by the need of separating the decay

vertexes of the two B mesons, a crucial point for the determination of the CP asymmetries.

The boost allows the separation and reconstruction of the decay vertexes of both B

mesons, the determination of their relative decay length measured in the center-of-mass

frame, the difference of their decaying time and thus the measurement of time dependent

asymmetries. Nevertheless other stringent requirements on the detector are placed in

order to measure the very small branching ratios of B mesons to CP eigenstates:

29
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- large and uniform acceptance down to small polar angles relative to the boost direc-

tion;

- excellent reconstruction efficiency down to 60 MeV/c for charged particles and

20 MeV for photons;

- very good momentum resolution to separate small signals from background;

- excellent energy and angular resolution to detect photons coming from π0 and η

decays, and from radiative decays in the range from 20 MeV to 4 GeV;

- very good vertex resolution, both transverse and parallel to the beam direction;

- efficient electron and muon identification, with low misidentification probabilities for

hadrons. This feature is crucial for tagging the B flavor, for the reconstruction of

charmonium states and also important for the study of decays involving leptons;

- efficient and accurate identification of hadrons over a wide range of momenta for B

flavor-tagging and for the reconstruction of exclusive states;

- low-noise electronics and a reliable, high bandwidth, data-acquisition and control

system;

- detailed monitoring and automated calibration;

- an on-line computing and network system that can control, process and store the

expected high volume of data;

- detector components that can tolerate significant radiation doses and operate reliably

under high background conditions.

2.1 The PEP-II Asymmetric Collider

The PEP-II B factory is part of the accelerator complex at SLAC, shown in Figure 2.1.

The electron beam is produced by the electron gun near the beginning of the two-mile

long linear accelerator (the “linac”). The gun consists of a thermally heated cathode

filament held under high voltage. Large numbers of electrons are “boiled off” the cathode,
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accelerated by the electric field, collected into bunches, and ejected out of the gun into the

linac. The electron bunches are accelerated in the linac with synchronized radio-frequency

(RF) electromagnetic pulses generated in RF cavities through which the beam passes by a

series of 50 Megawatt klystron tubes (klystrons generate the pulses with their own lower

energy electron beams passing through resonant cavities). The steering, bending, and

focusing of the beam is carried out with magnets throughout the acceleration cycle.

Figure 2.1: A schematic depiction of the B factory accelerator complex ad SLAC.

After acceleration to an energy of approximately 1 GeV, the electron beam is directed to

a damping ring, where the beam is stored for some time. As it circulates in the ring, it loses

energy through synchrotron radiation and is continuously re-accelerated by RF cavities.

The radiation and careful re-acceleration has the effect of reducing the emittance, or

spatial and momentum spread of the beam, a necessary step in high-luminosity collisions.

The “damped” beam is then re-directed to the linac and accelerated to 8.9 GeV.

Half of the generated electron bunches are used for the generation of the positron

beam. They are accelerated to approximately 30 GeV, extracted from the linac and

directed onto a tungsten target, producing electromagnetic showers that contain large

numbers of electron-positron pairs. The positrons are separated electromagnetically from

the electrons, collected into bunches, accelerated, and sent through the return line to

the source end of the linac. The positron beam is then accelerated and shaped like the

electron beam through the linac and its own damping ring, culminating in an energy of

3.1 GeV.

After reaching their respective collision energies, the electron and positron beams are
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extracted from the linac, and directed to the PEP-II storage rings, the High-Energy

Ring (HER) for electrons and Low-Energy Ring (LER) for the positrons, both housed

in the same tunnel of 2.2 km circumference. As they circulate, the are focused further

by a complex of magnets and accelerated by RF cavities to compensate the synchrotron-

radiation losses. In the interaction region IR-2 (one of twelve such regions), where the

BABAR detector is located, they are brought to a collision after a final-focus system

squeezes the beams to the smallest possible emittance. During data taking, each ring

contains about 1600 circulating bunches colliding every 5 ns. The collisions are then

analyzed by the BABAR detector. About 10% of the time the beams are collided at an

energy 40 MeV below the Υ(4S) resonance for calibration of the backgrounds, as no B

mesons are produced then since this energy is below the bb̄ threshold. As data is collected,

the collision and other losses reduce the currents in the rings, necessitating re-injection

of electron and positron bunches. Initially in the life of the B factory from 1999-2002,

data was taken for about an hour or two while the currents diminished, and then addi-

tional current was injected into the rings for a few minutes. Data could not be taken

during injection due to the large backgrounds in the detector and the resulting danger to

instrumentation. (The detector would have to be put into a “safe” but non-operational

state during injection, with, for example, all high-voltage components ramped down to

a lower, safer potential). Starting in 2003, a new scheme for injection, called “trickle”

injection, was developed, wherein new bunches are continuously injected at a rate large

enough to replenish beam losses but low enough to not damage the detector. This has

allowed more efficient operation of the B-factory with 30% more integrated luminosity

for a given highest instantaneous luminosity.

The PEP-II collider was designed for an instantaneous luminosity of 3× 1033 cm−2s−1,

but has reached values of 1.2 × 1034 cm−2s−1 due to improvements in the RF cavities,

beam-shaping cavities and magnet systems. The increased luminosity comes from larger

beam currents (up to 3 A in the LER and 2 A in the HER) and reduced emittance.

With these specifications and trickle injection, the machine generates hundreds of pb−1

of integrated luminosity daily during normal operations and has integrated hundreds of

fb−1 throughout its operating lifetime. Figure 2.2 shows the total integrated and recorded



2.1. THE PEP-II ASYMMETRIC COLLIDER 33

luminosity.
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Figure 2.2: PEP-II delivered and BABAR recorded total (red line) integrated luminosity in the data taking
period of 1999-2008 (Run1-Run7). The recorded luminosities for the other Υ resonances and for the off
peak data are also shown.

2.1.1 PEP-II Backgrounds

Different factors should be taken into account when trying to set an acceptable background

that allows a smooth and safe BABAR detector operation. Main constraints are:

- Radiation levels in EMC and SVT sub-detectors;

- Current tolerated by DCH;

- L1 trigger rate;

- Other subsystems occupancy.

Simulations, data analysis and dedicated measurements of the various background sources,

on their impact on data taking and on detector performance have contributed to form
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a detailed knowledge of different background-related underlying phenomena and made

possible their tuning and reduction. PEP-II main background sources [49] are:

• synchrotron radiation in the proximity of the interaction region. A strong source

of background (many kW of power) is due to the beam deflections in the inter-

action region. This component is limited by channeling the radiation out of the

BABAR acceptance with a proper design of the interaction region and the beam orbits,

and placing absorbing masks before the detector components.

• interaction between beam particles and residual gas in either ring can have two dif-

ferent origins: beam-gas bremsstrahlung and Coulomb scattering. Both these two

types of interaction causes an escape of the beam particle from their orbit. This

background represents the primary source of radiation damage for the inner vertex

detector and the principal background for the other detector components.

• electromagnetic showers generated by beam-beam collisions. These showers are due

to energy degraded e+ and e− produced by radiative Bhabha scattering and hitting

the beam pipe within a few meters of the IP. This background is proportional to the

luminosity of the machine.

2.2 The BABAR Detector

The BABAR detector is a large, multi-purpose hermetic detector with several components.

BABAR operated from October 1999 until April 2008, recording a total of 596 millions of

BB̄ pairs.

As shown in Figure 2.3 the detector consists of two endcaps and a cylindrical barrel

hugging the beam pipe along the z direction and roughly symmetric in the azimuth φ. The

right-handed coordinate system is defined with the z axis pointing in the e− direction, x

pointing horizontally away from the center of PEP-II rings, and y pointing upwards. The

geometrical center is offset from the beam-beam interaction point towards polar angles

to maximize the geometric acceptance for the boosted Υ(4S) decays.

The sub-detectors are arranged in layers of increasing distance from the beam pipe.

The silicon vertex tracker (SVT), the innermost detector, is used for vertexing particle
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36 CHAPTER 2. THE BABAR EXPERIMENT

decays and is the main source of information on the polar angle of charged particles.

The Drift Chamber (DCH) is the main device for measuring charged-particle momenta

with good resolution through gaseous wire-chamber technology. A Detector of Internally

Reflected Čerenkov Light (DRC) is used to separate pions from kaons, while a crystal Elec-

tromagnetic Calorimeter (EMC) is used for energy measurement of photons and electrons

and for electron identification. These components are placed within a 1.5 Tesla solenoidal

magnet that provides the magnetic bending of charged particles needed to measure their

momenta. Outside the magnet is the Instrumental Return Flux (IFR), which is used for the

identification of muons and long-lived neutral hadrons. The detector signals are processed

through detector electronics, and examined by a trigger system that selects physically in-

teresting collision data to be stored. Various online and offline reconstruction procedures

are employed to convert the data into a format amenable to analysis for the study of

relevant B decays and other processes.

2.2.1 Silicon Vertex Tracker (SVT)

The SVT consists of five layers of double-sided silicon sensors segmented in both the z

and φ directions, designed to measure accurately the positions and decay vertexes of B

mesons and other particles. This measurement is most accurate at small distances from

the interaction point, as the trajectory of the particles farther away is affected by multiple

scattering within the detector. Thus, the first three layers are located as close to the

beam pipe as possible. The outer two layers are closer to the Drift Chamber to facilitate

matching of SVT tracks with DCH tracks. They also provide pattern recognition in track

reconstruction, and the only tracking information for charged particles with transverse

momenta below 120 MeV/c, as these may not reach the Drift Chamber. The SVT covers

90% of the solid angle in the CM frame. Figure 2.4 shows schematic views of the SVT.

The silicon sensors are 300 µm-thick high-resistivity n-type silicon wafers, with n+ and

p+ strips running orthogonally on opposite sides. As high-energy particles pass through

the sensor they displace orbital electrons, producing conducting electrons and positive

holes that then migrate under the influence of an applied depletion voltage. The resulting

electrical signal is read-off from the strips, amplified and discriminated with respect to a
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Figure 2.4: Schematic view of the SVT: longitudinal section (left) and transverse section (right).

signal threshold by front-end electronics. The time over threshold of the signal is related

to the charge of the signal and is read out by the data acquisition system for triggered

events. The position resolution is in the 10 µm-50 µm range, depending on the orientation

of the strip (φ or z) and the layer number.

The SVT is water-cooled and monitored for temperature, humidity and position vari-

ations. Local and global position alignment is performed frequently in the offline re-

construction software. As the SVT has to withstand a lifetime integrated radiation dose

of 2 Mrad, the sensors have a high threshold for radiation damage. Nevertheless, they

are easily damaged by high instantaneous or integrated doses and an extensive system of

radiation monitoring with PIN and diamond diodes can abort the beams if dangerous level

develop. Up to 2007 the monitoring systems have prevented any significant damage from

occurring and the SVT has performed extremely well, with an average track reconstruction

efficiency of 97%.

2.2.2 Drift Chamber (DCH)

The Drift Chamber is the main tracking device. It supplies high precision tracking for

charged particles with transverse momenta pT above ≈ 120 MeV/c, and provides also

particle identification by measuring track ionization losses as function of position (dE/dx),

in particular for tracks with momenta less than 700 MeV/c.

The inner wall of the Drift Chamber is placed close to the SVT outer wall to facilitate

track-matching between the two devices. The chamber is 2.8 m long and consists of 40

cylindrical layers of 12 mm by 19 mm hexagonal cells, each consisting of six field wires
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at the corners and one field wire in the center as shown in Figure 2.5 and Figure 2.6.

The field wires are grounded, while the sense wire is held at high voltage, typically

Figure 2.5: Longitudinal section of the DCH. Dimensions are in mm. The chamber center has an offset
of 370 mm from the interaction point (IP).
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Figure 2.6: Layout of the four innermost super-layers.
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around 1900 V. The space around the wires is filled with gas mixture containing 80%

helium and 20% isobutane. High-energy particles ionize the gas as they traverse it, and

the liberated electrons are then accelerated toward the sense wires, ionizing additional

electrons, which are in turn accelerated themselves and result in the formation of a gas

avalanche of electric charge. The avalanche collects on the sense wire with drift times

of 10-500 ns and the charge and timing information of the signal is read-off through

electronic circuits AC-coupled to the wire. The gain relative to the charge of primary

ionization is about 5 × 104. The grounded field wires produce a uniform electric field in

the cell with evenly distributed isochrones, or contours of equal drift time, as shown in

Figure 2.7. “Stereo” wires in 24 of the 40 layers are placed at small angles with respect to

the z direction in order to provide longitudinal information. The chamber has a typical

position resolution of 140 µm.
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Field

Guard
 1-2001


8583A16

Figure 2.7: Isochrones in a typical DCH cell.

Isobutane has large molecules with rotational degrees of freedom that can absorb elec-

trical energy, and its presence in the gas mixture limits the growth of the avalanche in

order to protect the chamber from damaging levels of accumulated charge. The choice

of the gas mixture is motivated by considerations of aging and avalanche size as well as

minimizing multiple scattering in the chamber, which is accomplished by choosing helium

as the primary gas component and aluminum as the lightweight material for the multiple

field wires. The gas is circulated to flush out any degraded component, with one full

volume of fresh gas (5.2 m3) added every 36 h. In addition, the water content of the gas is



40 CHAPTER 2. THE BABAR EXPERIMENT

maintained by a water bubbler at 3500±200 ppm and oxygen is removed with a catalytic

filter, both measures designed to prevent Malter-effect discharges in the gas that would

degrade the performance and aging behavior of the chamber.

The DCH has demonstrated excellent performance throughout the life of BABAR with

track-reconstruction efficiencies at the 95% level. This includes the effect of discon-

necting a fraction of the wires in superlayers 5 and 6 that were damaged during the

commissioning phase. The dE/dx response, with a resolution of about 7%, is shown

in Figure 2.8, and a new calibration in 2006 has improved the PID potential of this

capability for high-energy tracks. The achieved resolution on transverse momentum is

σpT
/ pT = (0.13 ± 0.01)% × pT +(0.45±0.03)% where pT is given in units of GeV/c.
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Figure 2.8: dE/dx in the DCH as a function of track momentum for different particles: protons, kaons,
pions, muons and electrons.

2.2.3 Čerenkov Light Detector (DRC)

The DIRC (Detector of Internally Reflected Čerenkov ) is the main PID sub-detector at

BABAR , providing π−K separation of 2.5σ or more over the momentum range 700 MeV/c -

4.2 GeV/c. It is thin and light, minimizing the size and the impact on performance of

the EMC that is located outside the DRC in the radial direction. Čerenkov devices detect

light radiated by particles that move faster than the speed of light in a given medium,
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with the Čerenkov angle θC of the radiated photons given by

cos(θC) =
1

nβ
=

c

nv
, (2.1)

where n is the index of refraction of the medium and v is the particle’s velocity. For a

given momentum, particles of different mass will have different velocities, differentiating

particle-mass hypotheses for a track and thus different PID hypotheses.

The DRC consists of 144 bars made of fused silica running along the z direction, with

dimensions of 17 mm by 35 mm and 4.9 m in length. The silica serves as the Čerenkov

radiator, with the high index of refraction of n = 1.437 and as a waveguide, with a

low attenuation length. A charged particle passing through radiates Čerenkov photons,

which then propagate to the longitudinal end of the bar, trapped within by total internal

reflections at the flat boundaries of the bar. Each reflection preserves the original Čerenkov

angle. At the end of the bars, the photons pass through a standoff box filled with purified

water that has a similar refractive index of n = 1.346, so that refraction at the silica-

water boundary is minimized. The water must be highly transparent as the photons

pass through about one meter of water in the standoff box, so it is filtered, de-gassed,

de-ionized, exposed to UV radiation to prevent the growth of bacteria, and treated with

a reverse-osmosis unit.

The rear surface of the standoff box is instrumented with 12 sectors of 896 photo-

multiplier tubes (PMTs) each, which collect the photons, convert them to electrons with

photo-cathodes and amplify the signal using the gas-avalanche principle. As the standoff

box is located outside the solenoid magnet, it is possible to limit the magnetic field in its

volume to about 1 Gauss with a bucking coil that counteracts the field of the solenoid.

Thus, conventional PMTs, which do not tolerate high magnetic fields, can be used. To

limit the number of PMTs, there is only one standoff box, located at the backward end

of the detector to exploit the forward boost environment of the collisions. The forward

ends of the silica bars have mirrors perpendicular to the axis of the bars, so that forward-

pointing photons are reflected and reach the backward end of the bars as well. The

detector is depicted schematically in Figure 2.9. The total photon detection efficiency is

at the 5% level, with the average number of detected photons ranging from 20 at normal
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Figure 2.9: DRC scheme: radiation area and imaging region.

track incidence to 65 at large polar angles.

As the Čerenkov angle of the emitted photons is preserved, it can be reconstructed

from the PMT signals, the timing information and the track momentum vectors obtained

by matching the signal with tracks from the DCH and SVT. The resolution on the single-

photon Čerenkov angle θC,γ is 10.2 mrad, while the resolution that can be obtained for a

track from all its radiated photons is

θC,track =
θC,γ√
Nγ

(2.2)

where Nγ is the number of detected photons. This yields typical track angular resolutions

of 3 mrad.

The DRC is intrinsically a three-dimensional imaging device, giving the position and

arrival time of the PMT signals. The three-dimensional vector pointing from the center

of the bar end to the center of the PMT is computed and then is extrapolated (using

Snell’s law) into the radiator bar in order to extract, given the direction of the charged

particle, the Čerenkov angle. Timing information is used to suppress background hits

and to correctly identify the track emitting the photons. Figure 2.10 shows light rings

reconstructed by the DRC.
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Figure 2.10: Čerenkov light ring reconstruction using the DRC.

2.2.4 Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter has been designed to measure with excellent resolution

the energy and angular distribution of electromagnetic showers with an energy in the

range from 20 MeV (for photons from decays of slow π0 or η0) to 4 GeV (for photons and

electron from weak processes). An efficient and pure selection of electrons is necessary

for B flavor tagging via semileptonic decays, for the reconstruction of vector mesons like

J/ψ, or of several exclusive final states of B and D mesons. Furthermore QED processes

like e+e− → e+e−(γ) and e+e− → γγ need to be efficiently detected because they are

useful for calibration and luminosity determination.

The EMC (Figure 2.11) is made of 6580 CsI Tallium activated crystals (Figure 2.12)

The transverse segmentation is at the scale of Molière radius to optimize the angular

resolution while limiting the number of crystals and readout channels. The crystals serve

as radiators for the traversing electrons and photons, with a short radiation length of

1.85 cm. The crystal scintillate under the influence of the showers and the light is passed

through total internal reflection to the outer face of the crystal, where it is read out by
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Figure 2.11: EMC longitudinal section (top-half only, dimension in mm) showing how the 56 crystal rings
are placed. Detector has an axial symmetry along z axis.

Figure 2.12: EMC crystal scheme.
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silicon PIN diodes. As these diodes are well suited for operation in the high magnetic

fields in the EMC, part of the motivation for the crystal choice was that the frequency

spectrum of CsI(Tl) is detected by silicon PIN sensors with the high quantum efficiency

of 85%. The EMC is cooled by water and Flourinert coolant and monitored for changes

in the environmental and radiation conditions and for changes in the light response of

individual crystals.

The energy response of the EMC is calibrated using low-energy photons from a radioac-

tive source and high-energy photons from radiative e+e− Bhabha events. As electromag-

netic showers spread throughout several crystals, a reconstruction algorithm is used to

associate activated crystals into clusters and either to identify them as photon candidates

or to match individual maxima of deposited energy to extrapolated tracks from the DCH-

SVT tracker. Additional PID is obtained from the spatial shape of the shower. The energy

and angular resolutions are determined to be

σE

E
=

(2.32± 0.30)%
4
√
E(GeV)

⊕ (1.85± 0.12)%, (2.3)

σθ = σφ =
(3.87± 0.07) mrad√

E(GeV)
⊕ (0.00± 0.04) mrad. (2.4)

In both cases, the first term is due to fluctuations in the number of photons and to

electronic noise of the photon detector and electronics, while the second term arises from

the non-uniformity of light collection, leakage and absorption due to materials between

and in front of the crystals and calibration uncertainties. Figure 2.13 shows the agreement

between data and simulation of the angular resolution of the EMC and its π0 reconstruction

performance.

2.2.5 Instrumented Flux Return (IFR)

The IFR is the primary muon detector at BABAR and is also used for the identification of

long-lived neutral hadrons (primarily K0
L). The IFR is divided into a hexagonal barrel,

which covers 50% of the solid-angle in the CM frame, and two endcaps (Figure 2.14).

Originally it consisted of layers of steel of varying thickness interspersed with Resistive
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Figure 2.13: Left: angular resolution in the EMC as function of photon energy. The solid curve is a fit to
Eq. 2.4. Right: the reconstructed diphoton peak at the π0 mass region.

Figure 2.14: Overview of the original IFR Barrel sectors and forward and backward end-doors.
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Plate Chambers (RPCs), 19 layers in the barrel and 18 in each endcap1. The steel serves

as a flux return for the solenoidal magnet as well as a hadron absorber, limiting pion

contamination in the muon ID. RPCs were chosen as they were believed to be a reliable,

inexpensive option to cover the 2000 m2 of instrumented area in this outermost region of

BABAR with the desired acceptance, efficiency and background rejection for muons down

to momenta of 1 GeV/c.

The RPCs detect high energy particles through gas-avalanche formation in high electric

field. The chambers consist of 2 mm-thin bakelite sheets kept 2 mm apart by an array

of spacers located every 10 cm (Figure 2.15). The space between is filled with a non-

Figure 2.15: Planar RPC section with HV connection scheme.

flammable gas mixture of 56.7% argon, 38.8% freon 134a and 4.5% isobutane, while the

sheets are held at a potential of 7600V. The inside surface of the bakelite is smoothed with

a linseed-oil coating so that the electric field is uniform, thus preventing discharges in the

gas and large dark currents. The RPCs operate in streamer mode, wherein the avalanche

grows into a streamer, a mild, controlled form of electrical discharge in the gas. The

streamer charge is read out in both φ and z directions by aluminum strips located outside

and capacitively coupled to the chamber. The streamer is kept from producing electrical

breakdown of the gas by the quenching action of the freon and isobutane molecules, as

described for the DCH.
1Additional cylindrical RPCs were placed just outside the solenoid magnet to improve the matching between IFR and

EMC showers
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In streamer mode, the gas gain is at the 108 level. The factor 10-1000 increase in gain

over avalanche mode greatly simplifies the readout electronics. Moreover, the charge of

the streamer is independent of the primary-ionization charge, resulting in an effectively

digital signal with high efficiency. Initially, the RPCs performed over 90% efficiency as

expected geometrically from inactive space in the detector, resulting in a muon detection

efficiency of 90% for a pion misidentification rate of 6–8% in the momentum range of

1.5 < p < 3.0 GeV/c, as shown in Figure 2.16.

Figure 2.16: Initial muon-identification performance of BABAR RPCs.

Shortly after the start of data-taking with BABAR in 1999, the performance of the

RPCs started to deteriorate rapidly. Numerous chambers began drawing dark currents

and developing large areas of low efficiency. The overall efficiency of RPCs started to

drop and the number of non-functional chambers (with efficiency less than 10%) rose

dramatically (Figure 2.17), deteriorating muon ID. The problem was traced to insufficient

curing and R&D of the linseed-oil coating and to the high temperature at which the

RPCs were operated initially. Uncured oil droplets would form columns under the action

of the strong electric field and the high temperature (up to 37 C), bridging the bakelite

gap and resulting in large currents and dead space. Various remediation measures were

attempted, including flowing oxygen through the chambers to cure the oil and introducing

water cooling of the IFR, but they did not solve the problem. Extrapolating the efficiency

trend showed a clear path towards losing muon ID capability at BABAR within a couple

of years of operations, so an upgrade of the IFR detector was deemed necessary by the
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Figure 2.17: Deterioration with time of the average RPC efficiency (red). The green dots show the
fraction of RPCs with efficiency lower than 10%; the blue squares the deterioration of the RPC with
efficiency higher than 10%.

collaboration.

The forward endcap was retrofitted with new improved RPCs in 2002. The new cham-

bers were screened much more stringently with QC tests and had a much thinner linseed-

oil coating that was properly cured and tested. They have performed well since then.

The backward endcap was not retrofitted, as its acceptance in the CM frame is small.

In the barrel, the collaboration decided to upgrade the detector with Limited Streamer

Tube (LST) technology. The RPCs were removed and replaced by 12 layers of LSTs and

6 layers of brass to improve hadron absorption. (The last layer of RPCs is inaccessible,

so the old chambers there were disconnected from all utilities but kept in place). Since

the author was partially involved in this upgrade, this project will be described in more

detail than the other components of the detector.

The LSTs consist of a PVC comb of eight 15 mm by 17 mm cells about 3.5 m in length,

encased in a PVC sleeve, with a 100 µm gold-plated beryllium-copper wire running down

the center of each cell (Figure 2.18). The cells in the comb are covered with graphite,
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Figure 2.18: The mechanical structure of BABAR LSTs, with 8 cells.

which is grounded, while the wires are held at 5500 V and held in place by wire holders

located every 50 cm. The gas mixture consists of 3.5% argon, 8% isobutane, and 88.5%

carbon dioxide. Like the RPCs, the LSTs are operated in streamer mode. The signal

is read off directly from the wires through AC-coupled electronics with a granularity of

two wires per channel in the φ direction, and from strips running perpendicular to the

tubes and capacitively coupled to the wires, the strip pitch is 35 mm). After mechanical

assembly, the tubes were conditioned under progressively higher applied voltages to burn

off dirt accumulated during construction. Only tubes that could hold the operational

voltage without drawing excessive currents were accepted.

One of the crucial performance characteristics of the LSTs was the “singles’-rate”, or

counting-rate, plateau. As the streamer signals are effectively digital, given a constant

incident flux of particles, the chamber should show a counting-rate plateau over a range

of applied voltage where the charge of every streamer is above the read-out threshold

(Figure 2.19). The width of this plateau provides the operational tolerance of the applied

HV: minimizes fluctuations of the gas gain, and therefore of the efficiency, due to pressure

or voltage fluctuations. Defects in the surface of the graphite or dirt accumulated on the

wire can result in large discharges in the tube (including the Malter effect) that raise the

singles’ rate and spoil the plateau (Figure 2.19 right). In addition, a short plateau is an

indication of poor aging behavior. Thus, the quality of the plateau is a powerful QC test.

The LSTs were constructed at PolHiTech, an Italian company located in Carsoli, out-

side Rome. The construction and QC procedures outlined above were conducted under
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Figure 2.19: Left: a singles’ rate plateau seen versus applied voltage for several LSTs. Right: defects in
the chamber can spoil the plateau.

the supervision of BABAR personnel. After all QC tests, the tubes were held under high

voltage for a month to verify that no premature aging behavior occurred. Thereafter,

they were assembled into modules of two to three tubes at Princeton University and The

Ohio State University and then shipped to SLAC for the installation, which occurred in

two stages: two sextants of the hexagonal barrel in summer 2004 and the remaining four

sextants in fall 2006. QC procedures were performed at every step to make sure that only

the best tubes were installed in the detector.

The project involved the manufacture of 1500 LSTs including contingency, with more

than 1200 installed in the detector. It also implied the design and fabrication of custom

read-out electronics (done by INFN Ferrara in Italy), HV power supplies (The Ohio State

University) and gas system (SLAC). The project was completed successfully, safely and

ahead of schedule. After installation, the tubes have performed very well since 2005 in two

sextants and since the beginning of 2007 in all sextants, with failure rate below 0.5% for

both the tubes and z-strips. The efficiencies of all layers are at the geometrically expected

level of 90%. Regular testing of singles’-rates with cosmic rays has shown a continuous

excellent behavior of LSTs and long single’s-rate plateaus (Figure 2.20). Figure 2.21 shows

efficiency maps for all the six barrel sextants instrumented with LSTs.
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Figure 2.20: Singles’ rate measurements with cosmic rays for some of the installed LST modules.

Figure 2.21: Efficiency map: each rectangle represents one sextant.
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2.2.6 Trigger System (TRG) and Data Acquisition (DAQ)

The basic requirements for the trigger system is the selection of events of interest with a

high, stable and well-understood efficiency while rejecting background events and keeping

the total event rate under 1 kHz. At design luminosity, beam-induced background rates

are typically about 20 kHz each for one or more tracks in the Drift Chamber with pT >

120 MeV/c or at least one EMC cluster with E > 100 MeV.

The total trigger efficiency is required to exceed 99% for all BB̄ events and at least

95% for continuum events. Less stringent requirements apply to other event types, e.g.

τ+τ− events should have a 90-95% trigger efficiency, depending on the specific τ± decay

channels.

The BABAR trigger system is implemented as a two-level hierarchy. The Level 1 (L1) is

hardware based, consisting in several dedicated microprocessor systems that analyze data

from the front-end electronics (FEEs) of the DCH, EMC and IFR to form primitive physics

objects used to make the trigger decision. These include tracks of minimum transverse

momentum that penetrate to a particular depth into the DCH and energy clusters in

the EMC above set thresholds. The selections are optimized to maintain nearly perfect

BB̄ efficiency while removing most of the beam-induced backgrounds in the process of

reducing the data collection rate from about 20 kHz to a few kHz, which can be processed

by the next trigger level. Some “prescaled” events of random beam-beam crossing and

special event types are also collected for efficiency, diagnostic and background studies.

The trigger decision is made and communicated within the 12.8 µs buffer limit of the

FEEs. The L1 trigger has greater than 99.5% efficiency for BB̄ processes.

After an L1 accept decision, the L1 output is passed on to the Level 3 (L3) trigger,

which consist of software based algorithms run on a farm of PCs. The L3 triggers also

has access to the complete event data and refines the L1 decision with more sophisticated

selections, such as requirements on a track’s distance of closest approach to the interaction

point or the total invariant mass of an event. It maintains the BB̄ selection efficiency at

more than 99% while reducing the data rate to about 200 Hz. Each event corresponds to

about 30 kB of detector information.
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An event that results in an L3 accept decision is processed by the data-acquisition

electronics and event-building software. In this process, charged tracks are reconstructed

from DCH and SVT information and extrapolated to the outer part of the detector, in-

corporating knowledge of the distribution of material in the detector and the magnetic

field. The momentum of tracks is measured from the sagitta in the curves of the tracks.

PID is refined with DRC, EMC and IFR as well as with attempts to match objects in those

sub-detectors with tracks in the DCH. Fundamental physical objects reconstructed in the

detector are also used to assemble candidates for composite particles. Lists of particle

candidates as well as the original digitized data is stored on tape in collections that are

retrieved later for high-level analysis by individual groups of users.

Throughout event reconstruction various calibrations such as alignment constants and

energy-scale adjustments in the EMC are applied to detector information to refine recon-

struction performance. Calibration information is updated frequently during data taking

to keep it consistent with running conditions. Data-quality scripts monitor detector be-

havior and various physics processes to verify that the collected data is not compromised

by deviations from expected behavior of the detector or accelerator. A parallel system

based on the EPICS slow-control environment is used to monitor and control the detec-

tor elements for all subsystems. Detector, accelerator and environmental conditions are

recorded in another “ambient” database. The entire data-taking process is supervised

at all times by at least two BABAR shifters on the detector side and several accelerator

operators on the PEP-II side.
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The analysis method

3.1 Monte Carlo

Simulated data, usually referred to as Monte Carlo data, or simply MC, are essential

to understand detector effects (e.g. efficiency, misreconstruction of signal), backgrounds

and any systematic effects that could afflict our analysis procedure. The simulation of the

physics mechanisms that operate in e+e− collisions within BABAR ’s energy regime and the

way that their products interact with the detector and are handled by the reconstruction

software does not need to be perfect in order to make a measurement. However, the more

detailed and faithful it is, the more effective we are at discarding any systematic problems

in the data analysis, e.g. efficiency evaluations.

Often, it is most useful to be able to trace the behaviour of single particles within

an event through the whole process, and for this reason information about each of them

is carried along all the phases of simulation, from the production, to the later stages of

track-fitting, cluster-matching and vertexing. The comparison between the reconstructed

information about the event and its generator-level counterpart (truth-matching) can be

realized in a variety of ways. In BABAR , the approach adopted consists of assessing the

fidelity of the reconstructed data only after the full reconstruction has been completed,

without any such assessment in the intermediate stages, e.g. after the track-finding.

The EvtGen package [50] is responsible for the physics simulation, providing an accu-

rate representation of subtle phenomena such as mixing and interference (necessary for

the correct modelling of CP-violation) or the angular distributions of the decay products

55
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in non-trivial situations like pseudoscalar-to-vector-vector decays, for instance. The vast

majority of B decays are generated by EvtGen, with the remaining generic B decays to

hadronic final states (for which there is no specific model) and the continuum events

(e+e− → qq̄, q = u, d, s, c) being produced via an interface to JETSET [51]. Charm-

less 3-body decays are modelled in detail by EvtGen using the Isobar approximation

(Section 1.3.3) with the lineshapes and angular dependencies described in Sections 1.3.4

and 1.3.6. The output of this stage is a list of particles, the 4-vectors specifying their

kinematics, and the (potentially displaced) vertexes for the products of the decays.

The simulation of the interaction of these decay products with the detector as they

propagate through it is carried out by software based on GEANT4 [52], and requires a

detailed model of the instrument, both in geometric and material terms. Processes like

rescattering or photon conversions, for instance, as well as a detailed account of the energy

lost and deposited by the particles in the different parts of the detector (e.g. the gas that

fills the Drift Chamber, or a crystal in the calorimeter) are the concern at this stage. Each

of these interactions with the detector is recorded as a “gHit”.

In the following stage, these “gHits” are used to simulate the data read out from

the electronics of the detector, the trigger and the data acquisition system. Typical

electronic noise and machine backgrounds characterizing a certain period of running of

the experiment are then added. These are obtained by recording the detector’s state at

regular intervals (∼ 1 Hz) during normal operations, and, due to their essentially random

nature, they are unlikely to represent any physics event.

Finally, the simulated detector’s electronic output is run through the same version of

BABAR ’s reconstruction software that is used on real data.

A related, widely used term, is toy MC, by which we refer to events simulated with the

highly simplified model employed in the analysis to extract the relevant physics quantities

from signal and background. Only a few of the relevant variables are usually taken into

account and many of their possible correlations are neglected. Detector response effects

are also often ignored, or modelled in a highly abstract manner, avoiding all the details

of the passage of the particles through the detector and the reconstruction software.
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3.2 Reconstruction

The reconstruction of events is performed in two stages. The first one, known as Offline

Prompt Reconstruction, consists of finding and reconstructing tracks and calorimeter

clusters from hits in the Drift Chamber and the Silicon Vertex Tracker, and crystals

with energy deposits in the Electromagnetic Calorimeter, respectively. Čerenkov photons

and dE/dx information are also processed at this stage and abstracted into “particle

identification selectors”. The second part of the process deals with the reconstruction

of composites, objects that are not directly observed in the detector but can be inferred

from the properties and correlations of their decay products, the best example being a B

meson. “Candidates” for composites are formed from combinations of tracks and neutral

objects, allowing the important vertexing of the B meson.

3.2.1 Tracking algorithms

Due to the axial magnetic field in which the inner parts of the detector are immersed,

charged tracks follow helices and are described by five parameters, which we take to be

defined at the point of closest approach (POCA) to the z-axis:

• d0, the distance in the xy plane to the z-axis,

• z0, the coordinate along the z-axis,

• φ0, the azimuthal angle of the POCA,

• λ, the dip angle of the track with respect to the transverse (xy) plane. It is related

to the cylindrical polar angle θ via θ = π/2− λ,

• ω, the (signed) curvature of the track, whose sign and magnitude are related, re-

spectively, to the charge of the associated particle and its transverse momentum,

ω ∝ 1/pt.

The tracks are fitted using a Kalman filter technique [53], that essentially fits each vertex

independently, and iteratively and recursively propagates the changes in the parameters

to the neighbouring vertexes. Although the result is a global fit, the local character of
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each step of the algorithm allows corrections to be made that model the fine detail of the

material distribution of the detector, the slight inhomogeneities of the magnetic field or

the energy loss of low momentum tracks.

The algorithm starts from the DCH hits found by the Level 3 Trigger to form a track,

and further hits are added if they are observed to be consistent with that track. Once

the process is finished, the remaining hits in the DCH are searched for tracks that may

not have originated at the beamspot (like K0
S or Λ, that live long enough to have their

decay vertexes outside the SVT), or may not be energetic enough to traverse the whole

chamber. Afterwards, SVT hits are examined and added to the existing DCH tracks if

possible, and are otherwise searched to locate any low momentum, SVT-only tracks.

The reconstructed tracks are then classified and stored in lists according to different

selection criteria.

In the present analysis, the KS candidates are required to meet the conditions of the

KsDefault list, that means the following conditions:

• a charged track;

• mass inside the window 472.67 MeV, 522.67 MeV];

• POCAMass inside the window [0.45 GeV, 0.55 GeV].

The π± candidates are required to have the GoodTracksVeryLoose requirements:

• a charged track;

• 0 GeV < pT < 10 GeV;

• maximum DOCA1 in xy plane equal to 1.5 cm;

• DOCA with z axis less than 10 cm.

The π0 candidates are required to met the the pi0LooseMass conditions:

• built from two photons;

• mass windows of [90.0 MeV, 165.0 MeV];

• constraint on the vertex.
1Distance of closest approach
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3.2.2 Calorimeter algorithms

The interactions of particles in the Electromagnetic Calorimeter typically result in show-

ers, with the deposited energy spreading over neighbouring crystals. Each group of crys-

tals, known as a cluster, might be due to the impact or passage of more than one particle

and hence present energy distributions with several maxima. The aim of the calorimeter

reconstruction routines is to locate and extract the right shape of the clusters, and to

identify and correctly assign the energy to all the maxima within them.

The algorithm first looks for crystals with energies greater than 10 MeV, that will

be used as ‘seeds’ for cluster formation. Surrounding crystals containing above 1 MeV

themselves, or being neighbors of other crystals with more than 3 MeV are added to the

cluster. Local maxima are found by standard methods, and are assigned a fraction of the

energy of each crystal in the cluster that depends on the ratio of the distance from the

crystal to the maximum, and the Molière radius.

Finally, tracks are projected onto the calorimeter, and if their position and entrance

angle are consistent with one of the maxima, they are linked and considered as a single

particle in the following reconstruction routines. The remaining maxima are assumed to

be neutral objects and placed in lists of neutral particles like pi0LooseMass.

3.2.3 Particle identification

There are five common types of charged, long-lived particles that can be tracked in the

BABAR detector: electrons, muons, pions, kaons and protons. Their correct identification

is paramount for the physics goals of a B Factory, and this can be achieved thanks

to the different ways in which those particles interact with each part of the detector.

Information from all the sub-detectors (SVT, DCH, EMC, DIRC and IFR) is gathered to

form probability density functions (see chapter 4) that represent the likelihood of a track

belonging to a certain species. Since electrons and muons can often be separated easily

from the other types of particles by their behaviour in the Electromagnetic Calorimeter

and the Instrumented Flux Return, respectively, and protons are quite scarce, we will

focus on the kaon-pion separation.
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The likelihood for kaon and pion hypotheses is constructed as the product of the PDFs

from the SVT, the DCH and the DIRC for the given particle hypothesis, where the first

two contribute with measurements of the rate of energy loss (dE/dx) and the last one,

with an estimation of the angle with respect to the track at which photons are emitted

in the quartz bars of the DIRC. For both the DCH and the SVT, the measured energy

loss of each track is compared with the Bethe-Bloch [40] expectation by forming the pull

(see Section 3.4.3), which is parametrized with a gaussian for the DCH, and a gaussian

with asymmetric widths for the SVT. The DIRC suffers from long non-gaussian tails that

prevent the use of a similar method, so a binned likelihood is calculated instead with the

help of MC. This likelihood depends on the angle of the Čerenkov photons with respect

to the track, and also on the number of photons, since the latter is a function of the

momentum and type of the particle, and it helps to improve the identification of low

momentum tracks.

Once the likelihoods for the different particle hypotheses have been calculated, cuts on

their values are applied, and the track is entered into different lists according to the criteria

satisfied: VeryLoose, Loose, Tight and VeryTight for pions, and NotPion, VeryLoose,

Loose, Tight and VeryTight in the case of kaons.

3.2.4 Vertexing of candidates

Candidates for composite particles are first formed from all the possible combinations of

tracks and neutral objects matching the decay daughters of the particle. These candidates

are then required to meet some kinematical criteria, and are subsequently vertexed. For

instance, in the reconstruction of the charmless decays B+ → K0
Sπ

+π0, any intermediate

state like K∗(892)+ or ρ+, is governed by the strong force and have such short lifetimes

that their decay daughters may be assumed to originate from the B meson. Hence, there

can only be candidates for the K0
S and the B mesons.

Once a kinematical candidate has been found, its decay vertex is calculated by means

of a geometric fit, in which the tracks of the daughters are required to emerge from a

common vertex. Such is the task of the TreeFitter package, which performs a global fit

to the whole decay chain by applying the Kalman filter technique. First, the K0
S is built
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from the two oppositely charged decay pions, imposing mass and beam constraints, and a

K0
S vertex is determined by using TreeFitter. Then, the B candidate is fitted by adding

the π+ and the π0 to the K0
S, applying momentum, mass and energy constraints.

3.3 Discriminating variables

The small branching fractions of charmless B decay modes like the one studied in this

thesis (B(B+ → K0
Sπ

+π−) ∼ 10−6) and the high cross sections for the undesired processes

e+e− → qq̄ (q = u, d, s, c, where σudsc ∼ 3.2× σbb̄), make the use of background-rejecting

variables unavoidable. By making use of the differences between the distributions of signal

and background events in these variables, statistical separation of the two species can be

attained. These differences can be taken advantage of in two ways. If the densities of

events for the two types peak at different points of the range in the variable considered,

a“cut” on the variable may be imposed, rejecting all events that lie on one side of the

cut value, and enriching the sample with signal events. The other approach consists of

accepting all events, and assigning each of them a weight or probability of belonging to

each species based on their value for the discriminating variable.

In the present analysis, a mixed strategy has been followed: loose cuts are applied

on the three discriminating variables, mES, ∆E and on the output of a neural network

(see below), but their distributions are also used in the fit to help determine the number

of events of each species. We now proceed to describe in detail the variables mentioned

above.

3.3.1 Kinematic variables

Two kinematic variables, largely uncorrelated [54], are defined to help discriminate signal

and background: the energy-substituted mass, mES, and the energy difference, the dif-

ference between the reconstructed center-of-mass energy of the B candidate and half the
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total center-of-mass energy, ∆E:

mES =

√(
s/2 + ~pi · ~pB

Ei

)2

− ~p2
B, (3.1)

∆E = E∗
B −

√
s

2
, (3.2)

where ~pB is the momentum of the B candidate,
√
s denotes the center-of-mass-energy and

Figure 3.1: Example of mES and ∆E distributions for signal events.

(Ei, ~pi) = pi is the four-momentum of the initial state (the electron-positron system). The

mass of the B candidate calculated from the kinematic constraints, mES, is used rather

than simply
√
E2

B − ~p2
B. The reason is that the candidate is formed from a number of

tracks and neutral objects whose energies are not as accurately measured as are the beam

conditions. Therefore, a great improvement in the mass resolution is achieved by using
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our knowledge of the initial kinematics. Since the electron and the positron annihilate

creating a BB̄ pair, and the masses of the particle and of the antiparticle are equal:

p2
B = p2

B̄
= (pi − pB)2 = p2

i + p2
B − 2pipB

0 = p2
i − 2pipB

s/2 = −EiEB + ~pi · ~pB

mB =
√
E2

B − ~p2
B =

√(
s/2+~pi·~pB

Ei

)2

− ~p2
B = mES.

(3.3)

Thus, for signal events, mES yields the mass of the B meson and shows a clean peak. For

continuum events, composed of light quarks, the only way of reaching the B rest mass

is by artificially associating random tracks. As a consequence, their distribution displays

the slowly varying shape that one could expect from their combinatorial nature. In this

analysis a variable m′
ES is used instead of mES, where:

m′
ES = mES

√
s0

s
(3.4)

that is the energy-substituted mass is rescaled by the actual center-of-mass energy s0.

The idea behind ∆E is different and complementary to that of mES. Whereas the

latter is by construction independent of the mass hypotheses for each of the tracks, ∆E

depends strongly on them. If, for example, a kaon is misidentified as a pion, its energy√
~p2

measured +m2
hypothesis, and consequently that of the B candidate, will be smaller and

the event will be shifted towards negative values of ∆E. In contrast, the distribution

for signal events peaks at zero as expected, making ∆E especially helpful in isolating

backgrounds from misreconstructed B decays.

3.3.2 Event-shape variables

Event-shape variables, also known as topological variables, aim to exploit the angular

correlations among the decay products in BB̄ and qq̄ events to further help the separation

of the two species. In qq̄ events (e+e− → qq̄, q = u, d, s, c), known as continuum, the

small amount of energy invested in the rest masses of the quarks means that most of the

available center-of-mass energy will be carried as kinetic energy. This, in turn, implies that

the event will have a two-jet-like structure, roughly following a (1 + cos2 θ) dependence,

where θ is the cent re-of-mass angle of a jet with respect to the beam axis. This is as
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predicted by lowest order Feynman diagrams for the quantum electrodynamical (QED)

process of annihilation of an electron-positron system to produce a fermion-antifermion

pair. Indeed, since the typical energy scale for strong interactions is far smaller than the

available kinetic energy, ΛQCD ¿ mB−mqq̄, hadronization and other QCD effects are not

expected to alter greatly the expected QED angular dependence.

The e+e− → Υ(4S) → BB̄ process, in contrast, is characterized by the decay of

the vector resonance Υ(4S) into two pseudo-scalars, resulting in a sin2 θ distribution,

where θ is the angle between the momentum of one of the B mesons and the beam

axis. Furthermore, the reaction is barely allowed kinematically, with very little of the

cent re-of-mass energy converting into kinetic energy of the B mesons. Their average

momenta, ∼ 340 MeV/c, are in fact smaller than the typical momenta of their daughters,

∼ 1-2 GeV/c, which means that the decay products of a bottom meson will not be boosted

enough to follow the flight direction of their parent. Hence the angular distribution of

the decay products will be poorly preserved. Since the B mesons are pseudo-scalars, they

decay isotropically and the distributions of their daughters in the Υ(4S) cent re-of-mass

frame will be approximately spherical.

We will now describe a few variables that put to good use the differences explained

above. In the definitions that follow, it is useful to distinguish between the reconstructed B

side of the event, and the Rest Of the Event (ROE), that comprises all tracks, composites

and neutral objects that do not make up the B candidate.

Angle between the B momentum and the beam axis

As noted before, the distribution of the B momentum direction with respect to the beam

axis for BB̄ events has a parabolic shape, sin2 θBmom = 1 − cos2 θBmom . For continuum

events, in contrast, kinematically appropriate B candidates can only be formed from

random combinations of tracks (often referred to as combinatorial background) and as a

consequence, cos2 θBmom will also take random values. Hence, the distribution is expected

to be uniform (see Figure 3.3).
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Thrust Axis variables

The thrust axis of a collection of particles is defined as the direction in which the sum of

the projections of the momenta of the particles is maximized:

thrust axis n̂ : max
∑

i

|n̂ · ~pi| (3.5)

where the i index runs over all the particles in the collection, and |n̂| = 1. Given the

spherical nature of B decays, the thrust axis of a true B candidate is essentially random.

For continuum events, however, which are strongly collimated, the above definition ensures

that the thrust axis approximates the direction along which the pair of quarks was emitted,

even when the tracks are selected artificially to form a kinematical B candidate.

Several variables can be defined employing the thrust axis, such as the cosine of the

angle between the thrust axis of the B candidate and the z axis, cos θBthrust
(Figure 3.3),

or the cosine of the angle between the thrust axes of the B candidate and the rest of the

event.

Sphericity

As with thrust, sphericity provides a good separation of qq̄ events and and events without

that jet structure. Sphericity is a measure of the sum of the squares of transverse momenta

for each track with respect to the event axis [63]. Defined over the interval (0,1), with

highly directional events having low sphericity, and isotropic events corresponding to

sphericity equal to 1. Sphericity is defined as

S =
3

2
(λ2 + λ3), (3.6)

where λ2 and λ3 are the two larger eigenvalues of the diagonalized sphericity tensor

Sαβ =

∑
i p

α
i p

β
i∑

i ~p
2
i

(3.7)

where α, β = 1, 2, 3 corresponds to the x, y, z component respectively.

The ROE and Legendre polynomials

We can take further advantage of the marked differences in the angular distributions of

the momentum flow in signal events (∝ sin2 θ) and continuum events (∝ 1 + cos2 θ) to
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refine the selection criteria. Since our analysis explores the whole allowed phase space of

a three-body decay, we cannot make use of the signal-side angular information on that

aspect without biasing our sample, but we can exploit the fact that the other B in the

event behaves statistically, but independently, in the same way. Furthermore, a good

way of characterizing the angular correlations of the rest of the event is to calculate the

components of the momentum distribution in the basis formed by the Legendre polyno-

mials. Indeed, a calculation of the expectation values of the Legendre polynomials for the

signal and background momentum distributions enables us to identify the order of the

polynomials with the largest separation power. These turn out to be the zeroth and the

second order, whose expectation values are non-zero and different. The remaining orders

have vanishing expectation values. They are defined as follows:

L0 =
ROE∑

i

pi, (3.8)

L1 =
ROE∑

i

pi cos θi, (3.9)

L2 =
ROE∑

i

1

2
(3 cos2 θi − 1), (3.10)

where pi and θi are the momentum and the angle with respect to the beam axis of the

i-th track or neutral object in the rest of the event.

It should be noted that the intrinsic symmetry inherent to continuum events, due

to their jet-like structure, leads to correlations between the values of their ROE and

signal-side quantities. Since the signal side state is completely characterized by giving

its Dalitz-plot coordinates, correlations between these and some discriminating variables,

such as the Legendre polynomials evaluated from the ROE, should be expected for these

events.

Tagging variable

Algorithms are used to determine (“to tag”) the flavor of the B meson candidates. This

is achieved by examining the decay products of the meson when it decays into a flavor-

specific state.
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The BABAR tagging algorithm [55] first removes from the event the tracks and neutral

objects belonging to the fully reconstructed B meson. The remnants are analyzed by a

Neural Network, which assigns to the event an overall (signed) probability, the magnitude

representing the confidence in the estimation, and the sign indicating the flavor of the

meson. The inputs to the Neural Network are themselves the results of other NNs, which

are optimized to find any of nine distinct processes that would uniquely identify the flavor

of their parent B meson, and are hence known as “sub-taggers”.

The variable used in this analysis containing the tagging output is called Not4Tag.

3.3.3 Neural network

A multivariate analyzer technique is adopted, in order to define a single variable to be

used the selection and in the fit. The event-shape variables L0, L2, thrust of the ROE,

cos θBmom , cos θBthrust
, the sphericity of the ROE, together with a tagging configuration

(Not4Tag multiplied by the charge of the pion) are used to build a Neural Network,

taking advantage of the TMVA package [56].

Comparison between the Neural Network and a Fisher discriminant were also made,

and the performance of the Neural Network was seen to be slightly better to that of the

Fisher (see Figure 3.2).

Figure 3.2: NN and Fisher comparison: efficiency versus rejection power.



68 CHAPTER 3. THE ANALYSIS METHOD

Figure 3.4 shows the Neural Network distribution for the signal events and for the qq̄

events.
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Figure 3.3: (Top) L0, L2, thrust of the ROE, (Bottom) cos θBmom , cos θBthrust , tagging configuration
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Figure 3.4: signal events (blue), qq̄ events (red), misreconstructed signal events (gray).
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3.4 Maximum Likelihood Fits

Maximum likelihood fitting is a powerful method to estimate the parameters that charac-

terize a given statistical distribution from a data sample representing it. A more complete

discussion can be found in [57] and [58].

The distribution taken by the outcomes of a sampling experiment (i.e. the values of a

random variable x) can usually be described by a functional form P(x;~a) whose shape is

determined by some parameters ~a. If the function P(x;~a) is normalized, it is said to be a

Probability Density Function (PDF) for x. Given a set of N measurements of the random

variable, the problem consists of having the best possible estimations for the values of

the parameters ~a that characterize the PDF. The estimations provided by the maximum

likelihood method are attained by seeking the values of ~a that maximize the so-called

likelihood function:

L(~a) =
N∏

i=1

P(xi;~a) (3.11)

Intuitively, the likelihood function represents the probability of drawing the N measure-

ments of the random variable given a certain set of values for the parameters ~a, so opti-

mizing this probability should yield the parameter values that best describe the sample.

In the simple case in which the data follow gaussian distributions, it can be proved that

the methods of maximum likelihood and the time-honored least squares are equivalent.

The former, though, is not limited to binned distributions.

The PDFs can be quite complicated, reflecting several hypotheses for the source of the

measurement (e.g. whether it is signal or background), or the fact that the outcome of

the experiment requires several random variables to be described:

P(i;~a) =
M∑

j=1

Pj(xi, yi;~a) =
M∑

j=1

Q(xi;~aQ)R(yi;~aR) (3.12)

where M is the number of hypotheses, xi and yi are the outcomes of the i-th experiment

and in the last equality it has been assumed that the two random variables are uncorrelated

and, therefore, that their joint PDF P can be written as a product of their individual

PDFs Q and R.
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A crucial point to the maximum likelihood method is the assumption that the PDFs

are normalized. If this were not the case, the results would be distorted or meaningless,

since changes to the parameters could increase the normalization without increasing the

probability, leading the optimization process to converge on incorrect values, or even

pushing the global maximum to infinity. Therefore, recalculation of the norms of the

PDFs is often necessary on each iteration of the fit.

Eq. 3.11 is not usually applied in that form, but with a slight modification to ease its

computation. Taking logarithms, it can be rewritten as

` = − logL = −
N∑

i=1

logP(xi;~a), (3.13)

where the sum of logarithms is far more manageable in terms of machine precision than

the previous product. The minus sign has been introduced so that the optimization of

the likelihood function is performed by minimizing `. In our likelihood fitting package,

derived from RhoPiTools package [59], this is carried out numerically via an interface to

Minuit [60] [61] through ROOT [62].

3.4.1 Extended Maximum Likelihood Fits

In particle physics, the number of events observed in an experiment is often unknown a

priori and can be considered to be one of the outcomes of the measurement. In that case,

the likelihood function must be appropriately modified to include the probability, given

by the Poisson distribution, of having N occurrences when ν is the expected value:

L(ν,~a) =
e−ννN

N !

N∏
i=1

P(xi;~a) =
e−ν

N !

N∏
i=1

νP(xi;~a), (3.14)

which, dropping constant factors, is generalized for M species or hypotheses by

L(~n,~a) = e−
PM

k=1 nk

N∏
i=1

(
M∑

j=1

njPj(xi;~a)

)
, (3.15)

where nj is the number of events for the hypothesis j.
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3.4.2 Error estimation

There are several ways of calculating the errors on the estimations of parameters returned

by a maximum likelihood fit, each of them involving different assumptions. Usually, the

standard deviation σ, calculated as the square-root of the variance, is taken as the error on

a parameter. In the large sample limit, the covariance matrix, and hence the errors, can

be computed by inverting the matrix of the second derivatives of the likelihood function

with respect to the parameters evaluated at the maximum:

(
V −1

)
ij

= −∂
2 logL
∂ai∂aj

∣∣∣∣∣
~a=~a0

(3.16)

where ~a0 are the values returned by the fit.

Another method consists of defining the errors σi by the points a0
i ± σi in which the

logarithm of the likelihood drops by 1/2:

`(a0
i ± σi) = `(a0

i ) +
1

2
= `max +

1

2
. (3.17)

This prescription is inspired by the fact that, when the second derivatives of the likelihood

can be considered constant in the range given by a0
i ± σi, the shape of the function at

the minimum is well approximated by a gaussian, as can easily be seen by making a

Taylor expansion of `. The definition of the error then reduces to that of the width of the

gaussian.

Finally, an assumption-free procedure consists of generating a large sample of MC

experiments using the values returned from the fit, fitting them again, and calculating

the standard deviation of the results for the estimated parameter.

3.4.3 Toy Monte Carlo

A good way to identify and assess potential problems in the maximum likelihood fit is

to generate a large number of MC experiments with given PDFs, and fit them using the

same PDFs, in line with the procedure described at the end of the previous section. This

simple check enables us to evaluate any bias due to low statistics, a defective likelihood

or a mistake in the calculations, and to correct it in the latter cases. This toy MC (see

Section 5.2) is generated using Von Neumann’s acceptance-rejection method [58] with
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our fitting package, and should result in gaussian distributions around the true value.

Furthermore, the so-called pull distribution can be constructed by evaluating

pull =
atrue

i − afit
i

σfit
i

, (3.18)

where the numerator is referred to as the “residual”. These pull distributions should be

gaussian in shape, centred around zero, and with a unit width.

3.4.4 Extraction of physical parameters

The signal model is built in terms of amplitudes and phases. The physical parameters we

are interested in are partial yields and CP asymmetries. These parameters are non-trivial

functions of the fit parameters.

In order to estimate their mean values and errors out of the fit result, we use a Lagrange

Multiplier approach [66]: call Xi (i = 1, N) the N parameters estimated in the fit, and

f(Xi) the physical parameter one is interested in (i.e. a CP asymmetry). Then one defines

a χ2 function as

χ2(f) =
∑
i,j

(
Xi −Xfit

i

) C−1
ij

(
Xj −Xfit

j

)
+

(
f − F (Xi)

σf

)2

, (3.19)

where Xfit
i are the fitted values, C is the fit covariance matrix. The first term in the

R.H.S. is such that χ2 will be minimum (in fact, zero) when the fit parameters Xi are

equal to those obtained from the fit. The second term is a penality defined to ensure

that, for a given value of the test parameter f , the χ2 function will be minimal for the

best possible agreement between the f value and the function F (Xi). One can then scan

different values of the parameter f and fit the Xi parameters to evaluate the variation of

χ2(f). The “error” σf is an (arbitrary) small parameter, typically adapted to the scan

step size.

The (unnormalised) likelihood distribution for the parameter f will be given by L(f) =

exp
(−1

2
χ2

)
, and the confidence level by CL(f) = PROB(χ2, 1). One can then infer the

1−σ (2−σ) intervals by looking for the f values for which CL = 32% (5%), and they take

correctly into account the (potentially) non-trivial correlations between the fit parameters

and the physical quantity one is interested in.



Chapter 4

The analysis

The next three chapters discuss the analysis of B+ → K0
Sπ

+π0 in detail. This chapter

shows the construction of the likelihood, and develops the methodology. A careful exam-

ination of all the species of events and ways of characterizing them is made, as well as of

all the variables used to differentiate them.

Chapter 5 presents the tests performed to ensure that the complex fit is handled

correctly, describes how the for the Dalitz structure is explored. Chapter 6 shows the

evaluation of systematic uncertainties. Chapter 7 finally comments on the results ob-

tained.

4.1 Overview

A Dalitz or amplitude analysis aims to extract the relative magnitudes and phases of struc-

tures contributing to a three-body decay. In this analysis, this is achieved by performing

an unbinned extended maximum likelihood fit to the data sample.

The analysis was performed on an integrated luminosity of 347.47 fb−1, which translates

into a data sample of 364.8 × 106 BB̄ pairs. A further 36.60 fb−1 of off-peak data were

used for background characterization purposes.

Events are selected if the candidates found in them satisfy a number of deliberately

moderately loose kinematic and event-shape requirements. Essentially, they are demanded

to have a mass close to that of the B meson, decay in a rather isotropic way, and pass

some loose PID requirements (Section 4.3).

73



74 CHAPTER 4. THE ANALYSIS

The efficiency of these selection criteria and of the reconstruction process is modelled

carefully, as it varies over the Dalitz plot and thus distorts the observed shapes of any

structures.

Another reconstruction effect, the migration of the recorded position of badly recon-

structed signal events over the Dalitz plot, is examined in Section 4.4. Its importance

grows in the corners, where the resonances overlap and hence where most of the sensitivity

to the relative phases between resonances lie. In an attempt to partially recover the lost

information, simulated signal events are used to characterize the misreconstruction and

statistically track down their point of origin.

There are background events in addition to signal in our sample, and they need to be

accounted for. To that end, a detailed study of the number of background events and their

distributions in the Dalitz plot and all other variables has been carried out (Section 4.5,

Section 4.6). Two types of background are considered:

• Continuum events. They are by far the most numerous, in fact outweighing the signal

due to the loose selection criteria. These are, however, very different kinematically

from signal, and an effective separation between the two is attained with the help of

the Neural Network described in Section 3.3.3.

• BB̄ background. By this generic name we refer to true BB̄ events where a B meson

decaying to different channels from K0
Sπ

+π0 is misreconstructed as signal. This

background is expected to be only a fraction of signal, but it shares many of the

characteristics of signal, their distributions peaking close to or at the same point

as that of true B+ → K0
Sπ

+π0 events. A careful modelling is needed, and BB̄

background events are further split into 8 categories.

As mentioned above, to maximize our ability to separate background events from

signal, and hence reduce the statistical uncertainty of our measurements, background

discriminating variables are used. Rather than a harsh cut that optimizes the signal

significance in the sample (like Nsignal/
√
Nsignal +Nbackground), loose selection requirements

were applied with the idea of separating signal and background on a statistical basis by

including the variables in the fit.
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The specific and generic B-decay and qq̄ continuum Monte Carlo (MC) samples that

were used to characterize signal and background are listed in Table 4.1.

4.2 Dependence of the discriminating variables on the Dalitz-
plot coordinates

As mentioned in Section 3.4, the joint PDF for two uncorrelated variables can easily be

constructed as the product of their individual PDFs. If the variables are correlated, the

joint PDF does not factorize, and a more complicated dependence has to be considered.

For signal, any dependence of m′
ES on the Dalitz plot position was found to be negli-

gible, instead ∆E exhibits a strong dependence, that is mitigated by using the corrected

variable

∆E ′ =
2∆E − (∆Emax + ∆Emin)

∆Emax −∆Emin

(4.1)

with ∆Emin = −0.25+0.005×m2
K0

Sπ+
and ∆Emax = 0.15+0.002×m2

K0
Sπ+

, that follows the

π0 momentum dependent offset and resolution in ∆E over the Dalitz plot (Figure 4.1).
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Figure 4.1: Dalitz plot maps of the average of ∆E before (left) and after (right) the correction is applied.

4.3 Event selection

The selection criteria are applied to the data in several stages. In a first stage B candidates

are formed by requiring that they decay to final state particles belonging to lists described

in Section 3.2.1. Next, they are asked to pass three very basic cuts:

• mES > 5.2 GeV,
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Sample events (×103) L (fb−1)
Monte Carlo

nominal signal model:
B+ → KSπ

+π0N.R. 3518 11699631
B+ → K∗+(892)π0 1 159015
B+ → K∗0(892)π+ 175 80511
B+ → K∗

0 (1430)+/0π0/+ 175 16408
B+ → ρ+K0

S 175
B+ → Ksπ

+π0 3165
extra resonances:
B+ → ρ+(1450)K0

S

B+ → ρ+(1710)K0
S

B+ → K∗+
2 (1430)π0

B+ → K∗0
2 (1430)π+

B+ → K∗+(1680)π0

B+ → K∗0(1680)π+

backgrounds:
B0B

0
567264 540.3

B+B− 574668 547.3
D̄0π+; D̄0 → K0

Sπ
0 (control) 350 215997

B+ → K0
Sπ

+ 350
B0 → π−π+ 1754
B0 → K0

Sπ
0, B0

b → X 3518
B+ → K0

SK
∗+,K∗+ → K+π0 175

B+ → K+K∗0,K∗0 → K0
Sπ

0 175
B+ → D̄0K+ 350
B+ → D0π+ 350
B+ → D̄0ρ+ 1754
B+ → D̄∗0π+, D̄∗0 → D̄0γ, 350
B+ → D̄∗0π+, D̄∗0 → D̄0π0, 350
B+ → Ds(Ds → K0

Sπ
+)π0 208

B+ → Dp(Dp → π+π0)K0
S 208

qq̄ (q = u, d, s) 767138 367.1
cc̄ 778374 598.7

Real data

on-peak 5250840 347.5
off-peak 496241 36.6

Table 4.1: Data samples. For Monte Carlo samples, we give the total number of simulated events
without any selection cut and the equivalent integrated luminosity. In a specific Monte Carlo event
the B decays to the specified final state and the B decays inclusively. All D̄0 (resp. K0

S) mesons in a
specific channel decay to K0

Sπ
0 (resp. π+π−). N.R. means non-resonant. The signal Dalitz model is

a complete nominal model with the amplitudes and phases specified in Table 5.1. The B-background
B+ → D̄0π+(D̄0 → K0

Sπ
0) (control sample) which has the same final state as the signal is classified as

background because it is not a charmless decay.
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• 4.99 GeV < E∗ < 5.59 GeV,

• -0.45 GeV < ∆E < 0.45 GeV.

In the second stage, additional cuts are used to select signal events and reject back-

ground from continuum and other Bdecays. We impose no restriction to the Dalitz plot

variables in their range for signal events which have been correctly reconstructed (Truth

Matched, TM) simulated signal events. No optimization is done: the cuts are chosen very

loose by inspecting distributions in the signal region and the sidebands defined in the

(m′
ES, ∆E) plane by:

• m′
ES < 5.27 GeV/c2 and m′

ES > 5.29 GeV/c2 (Grand Sideband),

• |∆E ′| > 1 (∆E Sideband),

• both of above cuts (Total Sideband).

In the following stage, the PID likelihoods for the tracks, some quality related variables

for the KS, the π+ and the π0 are calculated.

For the KS candidate:

• the mass requirement is tightened to |mK0
S
−mPDG

K0
S
| < 10 MeV/c2, where mPDG

K0
S

=

497.614 MeV/c2;

• the cosine of the angle between the momentum of the K0
S and the line that joins its

decay vertex with that of the B candidate, cos(αK0
S
), must be greater than 0.995;

• the lifetime significance, τK0
S
/σ(τK0

S
), where τK0

S
the measured K0

S proper time, is

required to be greater than 5.0, thus rejecting combinatorial background.

For the π+ candidate :

• the transverse momentum of the track, pT has to be greater than 0.1 GeV/c2;

• the track is requested to have more than 12 hits in the Drift Chamber;

• the π+ candidate has to fail PID requirements for electrons, muons, kaons and pro-

tons.
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For the π0 candidate:

• it must be made of two photons each with 0.01 < LAT < 0.6, where LAT is the

lateral energy distribution of the photons;

• for each Eγ,LAT > 50 MeV;

• the invariant mass mγγ has to be within 0.11 GeV/c2 < mγγ < 0.16 GeV/c2.

An acceptable B+ → KSπ
+π0 candidate must obey:

• |∆t| < 10 ps, where ∆t is the time difference computed from the difference in z-axis

between its vertex and the vertex of the rest of the events;

• σ∆t < 5 ps;

• 5.27 GeV < m′
ES < 5.29 GeV;

• |∆E ′| < 1,

where the last two cuts define the Signal region. A few remarks are that:

• the neutral correction are applied for all kinematical calculations;

• no two-body veto is applied; this means that the abundant B+ → D̄0(→ K0
Sπ

0)π+

decay is kept and used a data control data,

Last but not least a cut is applied on the Neural Network variable at 0.8 (see Figure 3.3.3).

Plots showing the cuts on signal and background MC, are in Figure 4.2.

The efficiency of each of these cuts, as well as the overall efficiency, have been evaluated

from resonant and non-resonant MC, and are shown in Table 4.3.

4.3.1 Multiple candidates

When an event with multiple candidates passes the full selection, the best candidate is

chosen to be the one with the smallest χ2(mK0
S
,mπ0):

χ2 = ((mCAND
π0 −mPDG

π0 )/σmπ0 ))
2 + ((mCAND

K0
S

−mPDG
K0

S
)/σm

K0
S

))2. (4.2)
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Eγ1 Eγ2

τK0
S
/σ(τK0

S
)

cos(αK0
S
) ∆E′

∆t

σ∆t LATγ1 LATγ2

mES mK0
S

mπ0

tracks

Figure 4.2: Distributions of discriminating variables for B+ → K0
Sπ

+π0 candidates for signal and back-
ground events. Blue/dashed line: all candidates reconstructed in the signal region in the purely non-
resonant signal Monte Carlo. Red shaded histogram: truth-matched candidates only. Black/solid line:
all candidates from on-peak data reconstructed in the sidebands (background distributions). For all
variables except mES and ∆E, the Total Sideband is used, for mES the ∆E Sideband is used and for
∆E, the Grand Sideband is used.
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Cut applied N.R. K∗0π+ K0
Sρ

+ K∗+π0

Skim Efficiency 52.6% 59.5% 52.4% 55.5%
Preselection 71.4% 65.6% 68.4% 61.0%
pT > 0.1 GeV/c 100.0% 100.0% 100.0% 100.0%
12 hits in DCH 98.8% 100.0% 100.0% 100.0%
−1.0 < ∆E′ < 1.0 84.3% 88.3% 91.0% 93.2%
5.27 < m′

ES < 5.29 GeV/c2 88.2% 85.1% 86.0% 85.7%
0.01 < LATγ < 0.6 96.5% 93.6% 94.6% 98.0%
Eγ,LAB > 50 MeV 97.8% 94.7% 95.6% 98.9%
0.11 <mπ0 < 0.16 GeV 98.6% 97.7% 97.8% 98.9%
|mK0

S
−mPDG

K0
S
| < 10MeV 93.6% 93.1% 94.1% 91.6%

cos(αK0
S
) > 0.995 96.9% 96.8% 98.1% 95.4%

τK0
S
/σ(τK0

S
) > 5 97.5% 97.6% 98.3% 97.5%

|∆t| < 10 ps 97.9% 98.4% 97.6% 96.8%
σ∆t < 5 ps 98.2% 98.5% 98.2% 98.1%
electron PID veto 99.9% 100.0% 99.9% 99.7%
muon PID veto 97.9% 97.0% 98.4% 99.0%
kaon PID veto 98.4% 97.7% 98.4% 98.6%
proton PID veto 98.8% 98.4% 98.9% 99.3%
sub-total efficiency 20.7% 20.2% 20.6% 20.3%
NN > 0.8 62.2% 59.4% 59.4% 60.7%
total efficiency 12.9% 12.0% 12.2% 12.3%
SCF fraction 7.2% 33.2% 34.2% 16.8%

Table 4.2: Summary of selection efficiency for signal modes in the Monte Carlo. The efficiency of a given
cut is relative to the sample selected with all previous cuts applied. The cut on NN is applied after
selection of the best candidate. Some of the selected events are mismeasured as explained in Section 4.4,
their fractions in the selected samples are given at the bottom of the table.
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The chosen χ2 method has the advantage to increase the signal efficiency in corners of the

Dalitz plot (where the interference occur) and to enrich the reconstructed sample in the

actual signal decays. For multi-candidate events (Figure 4.3) which on average comprise
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Figure 4.3: Candidate multiplicity for selected events (non-resonant and resonant modes).

respectively 2.98 candidates per event for the signal Dalitz model and 2.46 for the non

resonant MC, the true decay combination is reconstructed in 37% (respectively 50.4%) of

the cases.

4.4 Treatment of Self Cross Feed

Misreconstructed signal events, also called Self-Cross-Feed (SCF), are a non negligible part

of the data sample. A simulated signal event is classified as truth matched (TM) if the

two pions and the K0
S of the selected candidate are matched with the right particles at the

generator level. In addition to this, we require that the mothers of the matched generator

level particles are the expected ones (depending on the specific signal MC mode). While

the TM events with a TM candidates are accurately reconstructed, the (SCF) events

migrate, i.e. in the Dalitz plot their reconstructed location is far from their generated

location. Figure 4.4 shows that the generated locations of the SCF events are where there

are soft particles which are easily mismeasured, in particular in the kinematical corners

of the Dalitz plot.

For most non-TM events, we have access to the full Monte Carlo truth information
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Figure 4.4: Location of the generated SCF events in the Dalitz plot; from left to right: the K0
S-SCF

cluster in the soft K0
S corner, the π0-SCF in the soft π0 corner, and the True-SCF in all three soft particle

corners.

(the Lund-Ids1) for all 3 candidates in the selected combination. However, a few events

miss at least one Lund-Id, and are therefore undecidable. An algorithm has been devised

to classify them. Fig. 4.5 can help follow the steps. We make the following distinction

among the non-TM events:

• True-SCF : all the Lund-Id are available and at least one does not refer to a particle

from the generated signal event.

• K0
S-(resp. π0)-SCF : the Lund-Id sequence is incomplete for the K0

S (resp. for the π0

or for both the K0
S and the π0).

Two categories are enough as it never happens that the π+ Lund-Id is missing.

Further studies show that the misreconstruction of the composite particles is

- either γ, γ-SCF, a random association of particles from the same or from different

B ancestors (combinatorial γ ray),

- π, π-SCF, a random association of particles from the same or from different B

ancestors (charged pion pairing),

- or Quasi-K0
S or Quasi-π0, a Lund-Id sequence which includes an extra soft par-

ticle (e.g. from a merged EMC cluster),

Figure 4.6 shows the migration both in the nominal and square Dalitz plot for all

category of events, by using arrows from the generated to the reconstructed positions

1Each particle is identified with a number, and all the decay chain information are present.
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Figure 4.5: Signal components organigram.

in the Dalitz plot. In this figure, classic-SCF denotes inclusively all the events where 2

selected particles come from the signal B-meson.

We use the migration features to finalize two mutually exclusive signal event cate-

gories, the TM and the SCF operational categories. They are shown in light/green (resp.

dark/red) on the organigram of Figure 4.5.

As expected, the TM events do not migrate. The K0
S-SCF events do not show much

migration either. When we later use a 40×40 grid to quantify the migration, these re-

main confined within one bin. Hence these two classes of events are grouped into the

TM category. It also is convenient to merge these events as the K0
S-SCF mES and ∆E

distributions are very similar to those of the (TM) radiative events (Figure 4.7).

The selection efficiency (Table 4.3) split into the TM and SCF categories is shown over

the Dalitz plot in Figure 4.8.
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Figure 4.6: Arrows Dalitz plot (left: normal, right: square) for TM and SCF categories (True, Classic,
π0 and KS).
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Figure 4.7: mES (left) and ∆E′ (right) distributions for KS-SCF (red), radiative events (blue) and TM
events (black) from the soft KS corner.
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Figure 4.8: Square Dalitz plot distributions of the efficiency for TM (left) and SCF (right) events from
the non resonant Monte Carlo. Their sum is the global efficiency ε(m′

ES , θ
′).
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4.5 Continuum Background

As stated before, in any charmless analysis, the main source of background comes from

e+e− → qq̄ events (q = u, s, c, d). In order to reduce this contamination, we use the

different topology of the events: due to the small portion of available phase space, final

state particles in a BB̄ event are isotropically distributed, while e+e− → qq̄ events have

a typical jet-like structure. Many variables can be defined to quantify that difference in

event shape. Since all of them use the same starting information (particle’s flight direction

in the Υ(4S) rest frame), they have to be correlated. Because of this, a Multivariate

Analyzer technique is usually adopted, in order to define a single variable to be used in

selection and fit.

The study pursued to use a Neural Network built with the TMVA tool to reject many of

the continuum events, as explained in Section 3.3.3.

Studies performed on fast parametrized Monte Carlo toy studies show that, when

applying no cut on NN, the fit gives biased results, the signal being drowned in the

continuum background. Hence we apply a final cut NN > 0.8 in the event selection as

already stated. This requirement is applied after the best candidate in the event is chosen,

and it was verified that this procedure is not impaired by any correlation between NN

and the two variables (mK0
S

and mπ0) being used to select the best candidate. How the

efficiency and purity of the selected sample depend on the cut is summarized in Table 4.3

and Table 4.4.

Sample no cut NN > 0.2 NN > 0.4 NN > 0.6 NN > 0.8
TM efficiency 94.8% 88.0% 78.8% 63.3%
SCF efficiency 92.6% 83.7% 72.4% 54.7%
Continuum efficiency 36.0% 19.1% 10.1% 3.8%
Signal / Continuum ratio 0.010 0.026 0.046 0.077 0.163

Table 4.3: Efficiencies for each component for different values of cuts applied on NN . The signal effi-
ciencies are evaluated by using the signal Dalitz model.

In order to use NN as a fit observable, we apply a mapping NN → NN ′ to smooth

the peaks shown in Figure 3.4 and obtain gaussian-like distributions. The method [64],



4.5. CONTINUUM BACKGROUND 87

Sample no cut on NN NN > 0.2 NN > 0.4 NN > 0.6 NN > 0.8
N.R. 8.27% 8.08% 7.90% 7.64% 7.19%
signal model 22.83% 22.23% 21.65% 20.86% 19.48%

Table 4.4: Fraction of SCF depending on cut applied on NN , evaluated on different Monte Carlo samples.

uses the reciprocal function of the sigmoid function2:

NN ′ = log

(
NN−NNmin

NNmax−NNmin

1− NN−NNmin

NNmax−NNmin

)
= log

(
NN −NNmin

NNmax −NN

)
(4.3)

with NNmin = 0.2, low enough to keep a sufficient number of offpeak events to build a

PDF and NNmax = 1.03, above the highest value seen in data and MC. We study the

correlations that need to be controlled. The input variables to the Neural Network were

chosen to avoid correlations with the Dalitz variables for signal events. In contrast, some

of them are correlated with the Dalitz plot for the continuum background events and NN ′

depends on the variable

∆Dalitz ≡ min

(√
m2

K0
Sπ+ −m2

K0
Sπ+,min

,
√
m2

K0
Sπ0 −m2

K0
Sπ0,min

,
√
m2

π+π0 −m2
π+π0,min

)
.

(4.4)

The Dalitz plot maps of ∆Dalitz are shown on Figure 4.9, and the correlation of NN and

NN ′ with ∆Dalitz on Figure 4.10.
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Figure 4.9: ∆Dalitz plots. Left: classic Dalitz plot. Right: square Dalitz plot.

2f(x) = log(x/(1− x))
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Figure 4.10: NN and NN ′ versus ∆Dalitz Continuum plots.

4.6 BB̄ background

Since no invariant mass cuts (“vetoes”) are being applied on the Dalitz plot, and because

of the presence of a π0, the decay B+ → K0
Sπ

+π0 suffers from large cross-feed from other

charmed and charmless B decays. Some of these B background modes have unknown

branching fractions. Moreover, they can exhibit CP-violating asymmetries. We study the

cross-feed from other Bdecays using MC simulation.

The strategy followed in this analysis aims at classifying B-background events in a small

number of classes which exhibit similar behavior in the distributions of the variables being

used in the fit.

We classify the B background modes according to their multplicity (two-, three- and

four-body final states), and to the reason of misreconstructing the decay. Separate PDFs

are built for each of these classes. The features of these PDFs differ significantly due to

the rather different decay kinematics of the modes included in each of background classes.

4.6.1 Determination of B background modes

B background modes are identified by means of the study of B+B− and BB̄ generic

Monte Carlo samples (respectively 574.7×106 and 567.3×106, of generated events). The

result of the study is presented in Tables 4.5 and 4.6. The branching fractions have been

taken from either the PDG [40], HFAG [29] or the generation values in the BABAR Monte

Carlo [50]. In the latter case the numerical value of the uncertainty on the branching
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fraction is taken to be the same as that of the central value.

Decay mode Efficiency Branching fraction Expected number of events
D̄0π+ (1.432± 0.016)× 10−3 (4.84± 0.15)× 10−3 2655± 92
D̄∗0π+ (3.8± 0.09)× 10−4 (5.19± 0.26)× 10−3 759± 42
D̄0ρ+ (9.3± 0.3)× 10−5 (1.34± 0.18)× 10−2 477± 66
D̄∗0ρ+ (9.9± 0.9)× 10−6 (9.8± 1.7)× 10−3 37± 7
D̄0K+ (1.32± 0.17)× 10−4 (4.02± 0.21)× 10−4 20± 3
D̄∗0K+ (1.7± 0.6)× 10−5 (4.16± 0.33)× 10−4 2.7± 1.0
D̄0νµµ

+ (9.7± 1.9)× 10−7 (2.15± 0.22)× 10−2 8.0± 1.8
D̄∗0νµµ+ (1.6± 0.5)× 10−7 (5.29± 0.19)× 10−2 3.1± 1.0
D̄∗00 π+ (2.5± 0.5)× 10−5 (6.1± 1.9)× 10−4 5.8± 2.1
D̄∗02 π+ (8.7± 3.0)× 10−6 (3.4± 0.8)× 10−4 1.1± 0.5
Dsπ

0 (9.6± 2.0)× 10−4 (1.6± 0.5)× 10−5 5.9± 2.2
D̄0π+π0 (1.0± 0.4)× 10−5 (5.0± 5.0)× 10−4 2.0± 0.8
Xsuγ (3.3± 0.3)× 10−4 (3.55± 0.29)× 10−4 45± 6
K∗+γ (2.20± 0.22)× 10−3 (4.03± 0.26)× 10−5 34± 4
K0π+ (2.25± 0.29)× 10−3 (2.31± 0.10)× 10−5 20± 3
a+
1 K

0 (3.4± 0.5)× 10−3 (3.49± 3.49)× 10−5 45± 45
a+
1 π

0 (6.3± 1.2)× 10−4 (2.64± 2.64)× 10−5 6.4± 6.4
a0
1π

+ (2.8± 0.8)× 10−4 (2.04± 0.58)× 10−5 2.2± 0.8
a+
1 D̄

0 (1.7± 0.4)× 10−6 (4.0± 4.0)× 10−3 2.6± 2.6
K∗+f0 (1.6± 0.4)× 10−3 (5.2± 1.3)× 10−6 3.2± 1.0
K∗

0 (1430)+K̄0 (7.4± 1.8)× 10−3 (2.0± 2.0)× 10−6 5.7± 5.7
K∗+K̄0 (5.2± 1.2)× 10−3 (3.0± 3.0)× 10−6 6± 6
K+π0 (8.7± 2.7)× 10−3 (1.0± 1.0)× 10−6 3.3± 3.3
K0ρ+π0 (2.6± 0.5)× 10−3 (1.0± 1.0)× 10−5 10± 10
K∗0ρ+ (1.9± 0.4)× 10−3 (9.2± 1.6)× 10−6 6.7± 1.9
K∗+ρ0 (9.5± 2.9)× 10−4 (6.1± 6.1)× 10−6 2.2± 2.2
π+π0π0 (7.7± 1.6)× 10−4 (2.6± 2.6)× 10−5 7.7± 7.7
K∗0π+π0 (1.5± 0.4)× 10−3 (1.0± 1.0)× 10−5 5.7± 5.7
ρ+ρ0 (7.5± 2.1)× 10−4 (1.82± 0.20)× 10−5 5.3± 1.6
ρ+π0 (7.3± 2.3)× 10−4 (1.09± 0.15)× 10−5 3.0± 1.0
K0π+π0π0 (1.04± 0.30)× 10−3 (1.0± 1.0)× 10−5 4.0± 4.0
K0K̄0K+ (1.1± 0.4)× 10−4 (4.60± 0.52)× 10−5 1.9± 0.8
Small contribution modes - - 133.0
TOTAL EXPECTED 4331.2

Table 4.5: Background modes found in B+B− Monte Carlo (574.7×106 of generated events).

For each event, the true B mesons that give birth to each of the reconstructed daughters

are looked for. These may not be the same for the three particles that make up the B

candidate. The decay mode of the B meson that contributes the highest number of

reconstructed daughters to the B candidate is taken to be the decay channel that causes

this particular background event. Down in the tables we have the “Small contribution
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Decay mode Efficiency Branching fraction Expected number of events
D−ρ+ (1.71± 0.04)× 10−4 (7.5± 1.2)× 10−3 490± 80
D∗−ρ+ (7.7± 1.0)× 10−6 (6.8± 0.9)× 10−3 20± 4
D̄0ρ0 (1.3± 0.2)× 10−4 (2.9± 1.1)× 10−4 15± 6
D−π+ (3.87± 0.11)× 10−4 (2.68± 0.13)× 10−3 397± 23
D∗−π+ (1.84± 0.08)× 10−4 (2.62± 0.13)× 10−3 185± 12
D∗−0 π+ (3.1± 1.2)× 10−5 (2.0± 2.0)× 10−4 2.4± 2.4
D̄0π0 (4.7± 0.4)× 10−4 (2.61± 0.24)× 10−4 46.8± 5.7
D̄∗0π0 (1.57± 0.22)× 10−4 (1.7± 0.4)× 10−4 10.2± 2.8
ηcK

0
S (8.5± 1.1)× 10−5 (5.0± 1.0)× 10−4 16.3± 3.9

ηc(2S)K0
S (5.1± 1.4)× 10−5 (2.4± 2.4)× 10−4 4.7± 4.7

J/ψK0
S (6.2± 1.1)× 10−5 (4.36± 0.17)× 10−4 10.4± 1.9

χc0K
0
S (6.3± 2.0)× 10−5 (1.4± 1.4)× 10−4 3.4± 3.4

χc1K
0
S (4.6± 1.3)× 10−5 (1.95± 0.20)× 10−4 3.4± 1.1

D−νµµ+ (4.7± 1.4)× 10−7 (2.08± 0.18)× 10−2 3.7± 1.2
D∗−νµµ+ (1.4± 0.5)× 10−7 (5.29± 0.19)× 10−2 3.1± 1.0
D∗−0 νµµ

+ (2.6± 0.7)× 10−6 (4.5± 4.5)× 10−3 4.4± 4.4
D∗−0 νee

+ (4.5± 0.9)× 10−6 (4.5± 4.5)× 10−3 7.8± 7.8
D∗−2 π+ (1.2± 0.3)× 10−5 (9.0± 9.0)× 10−4 4.1± 4.1
D−π+π0 (1.4± 0.5)× 10−5 (5.0± 5.0)× 10−4 2.7± 2.7
D−K+ (4.0± 1.3)× 10−5 (2.0± 0.6)× 10−4 3.0± 1.4
D̄0K̄0 (2.0± 0.6)× 10−4 (5.2± 0.7)× 10−5 4.0± 1.4
η′K0

S (2.15± 0.24)× 10−3 (3.25± 0.16)× 10−5 26.7± 3.3
f0K

0
S (8.1± 1.1)× 10−3 (5.8± 0.9)× 10−6 18.0± 3.7

ρ0K0
S (4.6± 0.4)× 10−2 (2.7± 0.5)× 10−6 48± 10

K∗+ρ− (4.5± 0.4)× 10−3 (1.2± 1.2)× 10−5 20± 20
K∗

0 (1430)+ρ− (1.28± 0.24)× 10−3 (2.0± 2.0)× 10−5 9.8± 9.8
K∗0ρ0 (1.2± 0.3)× 10−3 (5.6± 1.6)× 10−6 2.7± 1.0
ρ+K0π− (1.9± 0.4)× 10−3 (1.0± 1.0)× 10−5 7.1± 7.1
ρ−K0π+ (1.4± 0.4)× 10−3 (1.0± 1.0)× 10−5 5.4± 5.4
ρ0K0π0 (2.6± 0.7)× 10−3 (5.0± 5.0)× 10−6 5.1± 5.1
ρ+ρ− (2.6± 0.9)× 10−4 (2.42± 0.31)× 10−5 2.5± 0.9
a0
1K

0 (7.0± 0.8)× 10−3 (7.0± 7.0)× 10−6 18.7± 18.7
a+
1 π

− (2.4± 0.5)× 10−4 (3.17± 0.37)× 10−5 2.9± 0.7
a+
1 D

− (1.8± 0.4)× 10−6 (6.0± 3.3)× 10−3 4.1± 2.5
K0π0 (6.1± 0.7)× 10−3 (9.9± 0.6)× 10−6 23.1± 2.9
K∗+π− (8.5± 0.8)× 10−3 (9.8± 1.1)× 10−6 32± 5
K0π+π− (2.44± 0.29)× 10−3 (3.1± 1.0)× 10−6 2.9± 1.0
K∗0π0 (5.2± 1.6)× 10−3 (0.4± 1.3)× 10−7 0.8± 0.8
K∗+π−π0 (1.4± 0.4)× 10−3 (1.0± 1.0)× 10−5 5.4± 5.4
K∗0K̄0 (1.8± 0.7)× 10−3 (1.9± 1.9)× 10−6 1.3± 1.3
K0K̄0π0 (1.3± 0.8)× 10−3 (2.0± 2.0)× 10−6 1.0± 1.0
φK0

S (3.1± 0.8)× 10−3 (4.2± 0.5)× 10−6 5.1± 1.4
K0

SK
0
S (2.8± 0.6)× 10−2 (4.8± 1.0)× 10−7 5.1± 1.6

π+π−π0 (6.2± 1.5)× 10−4 (2.4± 2.4)× 10−5 5.7± 5.7
Xsdγ (7.1± 1.4)× 10−5 (3.55± 0.29)× 10−4 9.6± 2.1
Small contribution modes - - 147.5
TOTAL EXPECTED 1651.6

Table 4.6: Background modes found in B0B̄0 Monte Carlo (567.3×106 of generated events).
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Decay mode Category #1 Category #2 Category #3 Category #4 Category #5 Category #6 Category #7

D̄0π+ 0 0 198 (2.4%) 7 (0%) 1 (0% ) 309 (3.8% ) 270 (3.3% )
D̄∗0π+ 817 (40.5% ) 0 24 (1.2%) 4 (0.2% ) 660 (32.7%) 164 (8.1%) 349 (17.3%)

D̄0ρ+ 745 (52% ) 0 27 (2% ) 0 0 435 (30% ) 225 (16% )
D̄∗0ρ+ 13 (12% ) 0 2 (2% ) 0 0 81 (72% ) 16 (14% )

D̄0K+ 0 0 0 0 50 (81% ) 4 (6% ) 8 (13% )

D̄0νµµ
+ 12 (48% ) 0 0 0 0 6 (24% ) 7 (28% )

Xsuγ 0 0 9 ( 7.5% ) 4 (3% ) 0 106 (89% ) 0

K∗+γ 0 0 0 12 (12% ) 0 90 (88% ) 0

K0π+ 0 0 0 26 (42% ) 0 36 (58% ) 0

a+
1 K

0 0 0 16 (41% ) 0 0 23 (59% ) 0

a+
1 π

0 0 0 4 (14% ) 0 0 24 (86% ) 0

D−ρ+ 0 959 (64.3% ) 112 (7.5% ) 0 0 419 (28.2% ) 0

D∗−ρ+ 0 3 (5% ) 15 (25% ) 0 0 40 (68% ) 1 (1% )
D̄0ρ0 37 (84% ) 0 0 0 0 4 (9% ) 3 (7% )
D−π+ 0 0 452 (36.8% ) 0 0 776 (63.2% ) 0

D∗−π+ 363 (62% ) 0 36 (6% ) 0 0 106 (18% ) 81 (14% )
D̄0π0 0 0 80 (52% ) 0 0 72 (47% ) 2 (1% )
D̄∗0π0 0 0 8 (17% ) 0 0 40 (83% ) 0
ηcK

0
S 0 0 52 (90% ) 0 0 6 (10% ) 0

J/ψK0
S 0 0 30 (97% ) 0 0 1 (3% ) 0

η′K0
S 1 (1% ) 0 35 (45% ) 0 0 41 (53% ) 1 (1% )

f0K
0
S 0 0 11 (20% ) 0 0 44 (80% ) 0

ρ0K0
S 0 0 70 (51.0% ) 0 0 63 (46% ) 3 (2% )

K∗+ρ− 0 0 64 (63% ) 0 0 37 (37% ) 0
a0
1K

0 0 0 58 (73% ) 0 0 21 (27% ) 0
K0π0 0 0 8 (10% ) 75 (90% ) 0 0 0

K∗+π− 0 0 26 (21% ) 0 0 100 (79% ) 0
Xsdγ 0 0 8 (32% ) 0 0 17 (68% ) 0

Table 4.7: Main B background modes followed by the number of events of each of them being used in
the making of the PDFs of a given category. Between parentheses, the percentage of that mode that goes
into each category.
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modes”: events in which the Monte Carlo truth information is insufficient to reconstruct

the decay chain, together with channel with less than 10 events contributing.

Except for the mode B+ → D̄0 (→ KSπ
0)π+, which is modelled with exclusive MC,

the PDFs for the rest of the Bbackground are built from the generics samples. After

removing the events from the D mode mentioned above, and the signal events (ρ+K0
S ,

K∗(892)+π0, K∗(892)0π+, K∗
0(1430)+π0, K∗

0(1430)0π+ and K0
Sπ

+π0 non-resonant) from

the generics samples, the remaining events are classified in different categories, according

to whether the reconstructed event shares the kinematical characteristics of a D decay,

and to whether all reconstructed particles in the B candidate come from the same B

meson or not.

The fractions of events from the most important B background modes that go in each

category are presented in Table 4.7. The categories themselves are:

• Category #0 : B+ → D̄0π+ events where the D decays in K0
Sπ

0.

• Category #1 : the 3 reconstructed daughters come from the same B meson, that has

more actual daughters than the 3 forming the B candidate. The event involves a

D̄0, D̄∗0 or D∗−. This category is mostly made up by events from ρ+D̄0, D̄∗0π+ and

D∗−π+.

• Category #2 : as in category #1, except that D+ decays are involved. Mostly B0 →
ρ+D− decays.

• Category #3 : the 3 reconstructed daughters come from the same B meson, that has

more actual daughters than the 3 forming the B candidate. Contrary to the previous

categories, distributions don’t show narrow peaks around the D mass. This category

is mostly made up by Bdecays into D−π+, D̄0π0, D̄0π+, ρ+D−, ρ0K0
S , K∗−ρ+ and

ηcK
0
S decays.

• Category #4 : 2 of the reconstructed daughters come from a charmless Bdecay mode

with two bodies in the final state or a mode with similar kinematics. Mostly made

up by Bdecays into K0π0, K0π+, K∗−γ and Xs,uγ, where Xs,u is an inclusive final

state containing the charm or lighter quarks, respectively.
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• Category #5 : B+ → D̄0h decays where the D doesn’t decay in K0
Sπ

0, and the

3 reconstructed daughters come from the same B. Mostly made up by decays to

D̄∗0π+ and D̄0K+.

• Category #6 : events in which one of the 3 reconstructed daughters comes from the

other B. Mostly made up by events containing a Bdecay into D−π+, D̄0π+, ρ+D−,

ρ+D̄0, D̄∗0π+, Xsuγ, D
∗−π+, K∗−π+, K∗−γ, ρ+D̄∗0 or ρ0K0

S .

• Category #7 : events with a D0 in which the missing D daughters worsen greatly the

resolution about the D mass peak. Mostly made up by events from D̄0π+, D∗0π+,

ρ+D̄0 and D∗−π+.

The distributions of mES, ∆E ′ and NN ′ as well as in the Dalitz plot for categories

from #1 to #7 are shown respectively in Figure 4.11 and Figure 4.12. After proper

normalization, they represent the PDFs used in the fit (Section 4.8) for the B-background

components. Background classes #3 and #6 presents scattered points in the Dalitz

plot and were furthermore smeared with an algorithm averaging among nearest neighbor

points. The Dalitz plot-PDF for class #4 is smoothed using two dimensional histogram.

The expected yields for each background class are reported in Table 4.8.

Category # Expected yield
0 2425
1 726
2 322
3 593
4 46
5 267
6 1266
7 366

Table 4.8: B-backgrounds expected yields by category.

4.7 Control sample

The decay B+ → D̄0π+ (D̄0 → K0
Sπ

0) is both Cabibbo and color allowed. Since the

final state involves the same particles as in the signal case, this mode represents a large

irreducible background. We expect about 3000 such events in the selected sample. This
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B-background mES ∆E NN ′
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Figure 4.11: mES , ∆E and NN ′ plots for the B-backgrounds categories.
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Figure 4.12: Dalitz plot distributions (left: classic; right: square) for the B-backgrounds categories.
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background does not interfere since the D̄0 decays far away with respect to the KS. To

restrict to charmless events only, we could veto this channel by cutting on the K0
Sπ

0

invariant mass around the D̄0 mass. We prefer to keep these events for several reasons.

They can stabilize the fit by providing accurate determinations of PDF parameters from

a kinematically constrained source of events. We therefore include this channel as class

#0 of the B-background. Extreme care is to be taken to model the relative PDFs since

this component is abundant.

4.7.1 D̄0 shape in the Dalitz plot

Figure 4.13 shows how this channel populates the Dalitz plot. The resolution on the D̄0

mass depends on the energy of the π0. It is wider in the soft π0 corner, a place where SCF

prevails (f D̄0

SCF = 10.9% on average) as can be seen on Figure 4.14. The D̄0 invariant mass

peak widens as slices closer to the soft π0 corner (high θ′) are looked at. These features
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Figure 4.13: Dalitz plots for D0. Left: classic Dalitz plot; right: square Dalitz plot.

are accommodated by a PDF summing the TM and SCF contributions. The TM term

is the product of a θ′ PDF by an m′ PDF which is the sum of a gaussian and a Breit

Wigner, both θ′-dependent. The TM θ′ PDF consist of a 6th-order polynomial in θ′. The

SCF PDF is a smoothed histogram (see Figure 4.15 and 4.16).

The other PDFs (for m′
ES, ∆E ′ and NN ′) are those of the signal. They thus can

constrain the fit when some of their parameters are left free to vary. Figure 4.17 shows

that the m′
ES and ∆E ′ D̄0 PDF are the same as the signal, the latter being compared in

the relevant mK0
Sπ0 =mD̄0 region.
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Figure 4.14: D̄0 invariant mass distributions for TM (bottom two rows) and SCF (top two rows) in θ′

slices. Notice the different x-axis scales for the two groups of plots. The slices are, from top left to
bottom right of each group: 0 < θ′ < 0.1, 0.1 < θ′ < 0.2, 0.2 < θ′ < 0.3, 0.3 < θ′ < 0.4, 0.4 < θ′ < 0.5,
0.5 < θ′ < 0.6, 0.6 < θ′ < 0.7, 0.7 < θ′ < 0.8, 0.8 < θ′ < 9.1 and 0.9 < θ′ < 1.
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Figure 4.15: θ′ distributions (points/histogram) and resulting PDFs (lines) for B+ → D̄0π+ TM (left)
and SCF (right) MC events.

4.7.2 B+ → D̄0(→ K0
Sπ

0)π+ used as control sample

To compare the PDFs on data and MC, a specific full Montecarlo sample has been used.

For on-peak data, D̄0 candidates are required to be within 3σ of the D̄0 mass. In addition

we require NN > 0.8 and m2
K0

Sπ+ < 20 GeV/c2 in order to avoid the soft π0 corner of the

Dalitz plot. A 2-dimensional fit in the (m′
ES, ∆E ′) plane is performed, by using a double

gaussian for mES and the sum of a gaussian and a bifurcated gaussian3 for ∆E ′. The

projections of the fit to the MC and data are shown in Figures 4.18 and 4.19.

Table 4.9 show the fitted parameters (the means µ and the widths σ of the double

gaussian, and the bifurcated gaussian) for mES and ∆E ′, and the resulting differences

between MC and on-peak data, in terms of bias and relative ratios. There are some

differences between data and MC.

4.8 The total likelihood

We perform an unbinned extended maximum likelihood fit to determine the total

B+ → K0
Sπ

+π0 event yield, the magnitudes cj, c̄j and the phases φj, φ̄j of the complex

3an asymmetry gaussian distribution with a single mean and two different left and right widths:

f(x) =

8
<
:

e
− 1

2 ( x−µ
σl

)2

x ≥ µ

e
− 1

2 ( x−µ
σr

)2
x < µ
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Figure 4.16: m′ distributions for TM (top two rows) and SCF (bottom two rows) B+ → D̄0π+ events,
in the same θ′ slices as in Figure 4.14.
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Figure 4.17: m′
ES (left) and ∆E′ (right) PDFs for signal MC in the D̄0 band (red) and in D̄0 MC (blue).

Figure 4.18: mES distribution for signal MC (left) and on-peak data (right); the fit result is superimposed.

Figure 4.19: ∆E′ distribution for signal MC (left) and on-peak data (right); the fir result is superimposed.
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mES

Variable MC Control sample [GeV] On Peak data [GeV] data-MC [MeV] data/MC
µ1 5.27626± 0.00046 5.27381± 0.00275 −2.45
µ2 5.27980± 0.00004 5.27901± 0.00005 −0.79
σ1 0.00320± 0.00014 0.00484± 0.00113 1.51
σ2 0.00255± 0.00002 0.00300± 0.00004 1.18

fraction 0.16863± 0.03050 0.03819± 0.01235 −0.13044
µtot 5.27920 5.27813 −1.07
σtot 0.00401 0.00515 1.28

∆E′

Variable MC Control sample On Peak data data-MC data/MC
µ1 −0.03977± 0.00553 −0.05542± 0.02881 0.01565
µ2 0.18705± 0.00233 0.20448± 0.00937 0.01743
σ1 0.46313± 0.00133 0.51587± 0.00484 1.11
σ2l 0.23261± 0.00203 0.23490± 0.00852 1.01
σ2r 0.18623± 0.00184 0.20314± 0.00810 1.09

fraction 0.23347± 0.00419 0.28748± 0.02010 0.05401
µtot 0.11409 0.12604 0.01195
σtot 0.41474 0.47804 1.15

Table 4.9: Differences between data and signal MC for the fit to D0 control sample in mES and ∆E′.

isobar coefficients of the decay amplitude:

A(m2
K0

Sπ+ ,m
2
K0

Sπ0) =
∑

j

cje
iφjFj(m

2
K0

Sπ+ ,m
2
K0

Sπ0), (4.5)

and similarly for the B− → K0
Sπ

−π0 decay:

A(m2
K0

Sπ− ,m
2
K0

Sπ0) =
∑

j

c̄je
iφ̄jFj(m

2
K0

Sπ− ,m
2
K0

Sπ0) (4.6)

where Fj(m
2
K0

Sπ± ,m
2
K0

Sπ0) is the propagator defined in eq. 1.70. The fit uses the variables

m′
ES, ∆E ′, m′, θ′ and NN ′, to discriminate signal from background.

4.8.1 The likelihood function

The selected on-resonance data sample is assumed to consist of signal, continuum-

background and background due to other B decays. Accordingly the likelihood function

of event i is written:

Li = Lsig
i + Lqq̄

i +
∑

c

LBbkg
c,i , (4.7)
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where the sum over c runs over all the B-background classes listed in Section 4.6. All

background likelihood functions have the same expression:

Lbkg
i = Nbkg 1

2
(1− qπ

i A
bkg)Pbkg

i , (4.8)

where qπ
i is the pion charge in event i, and Abkg is the charge asymmetry.

We consider B+and B−separately to build the signal likelihood function.

N sig = N sig+ +N sig−, (4.9)

Lsig
i = Lsig+

i + Lsig−
i . (4.10)

Each part has two terms, one for the TM and one for the SCF events:

Lsig+
i = LTM+

i + LSCF+
i (4.11)

= N sig+
[
(1− f̄SCF)PTM+

i + f̄SCFPSCF+
i

]
, (4.12)

and similarly for Lsig−
i . The fraction f̄SCF of SCF-events averaged over the Dalitz plot,

assumed to be the same for both flavors, is discussed below. The fit maximizes the

extended likelihood function4:

L = e−Ntot
N∏

i=1

Li, (4.13)

where N is the size of the data sample and N tot = N sig +N qq̄ +
∑

cN
Bbkg
c , is the expected

number of events.

The five-dimensional probability density functions (PDF) P are the products of the

four PDFs of the measured discriminating variables v = {m′,∆E ′, NN ′, (m′, θ′)},

P =
4∏

k=1

P(vk). (4.14)

The correlations among the measurements are handled by building conditional PDFs

where appropriate (between NN’ and the Dalitz variables for the continuum, and between

∆E ′ and the Dalitz variables for TM signal events). Systematic uncertainties account for

the correlations we neglect.

4The canceling factors 1/Ntot in eq. 4.8 and eq. 4.9, and Ntot in eq. 4.13 required for the likelihood functions to be
properly normalized have been omitted for simplicity.
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A total of 37 parameters are varied in the fit (see Section 4.8.5). A summary of the

PDF parametrization is given in Table 4.10. The PDF written in red are the ones for

which a Dalitz plot dependence has been handled.

mES ∆E′ NN Dalitz plot
Signal

TM GG BG+G 2BG+G 6 res. DP model
SCF SH SH 2G+ 2BG 6 res. DP model

Continuum Argus P2 2BG 2D-SH
B-backgrounds TM GG BG+G 2BG+G GG∗P6

including: (same ones as signal) (different than TM)
B± → D0π± SCF SH SH 2G+BG GG∗P6
D0 → Ksπ

0 (same ones as signal) (different than TM)
Other B-backgrounds SH SH SH 2D-SH

Table 4.10: Summary of the PDFs used. The PDFs written in red are Dalitz plot dependent. SH means
smoothed histogram, BG bifurcated gaussian, GG double gaussian, P2 a 2-nd order polynomial function
and P6 a 6-th order polynomial function.

4.8.2 Correlations among observables

The TM Dalitz plot maps of the mean and standard deviations are shown

• of the kinematical variables mES, ∆E (a wider cut than in the selection is used

|∆E| < 250 MeV), mK0
S

and mπ0 ,

• of the shape variables L0, L2, and NN ,

• of the decay time variables ∆t and σ∆t,

are shown in Figure 4.20, 4.21 and 4.22 respectively. A significant correlation between

∆E ′ and the Dalitz plot variables needs to be accounted for in the signal PDF. The shape

variables are not correlated with the Dalitz plot for signal, but we have seen a sizeable

correlation for the continuum background in Figure 4.10 which has to be dealt with when

building the PDF. The time variables show a significant correlation and have not been

used in the fit.

In Figure 4.23 we show the correlations between m′
ES, ∆E ′ and NN . None of them

is high enough to require a specific PDF parameterization. The correlation coefficients of

the fit observables are summarized in Figure 4.24 for TM, SCF and continuum events.
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Figure 4.20: Distributions of the mean (left) and standard deviation (right) across the Dalitz plot for:
mES (first row), ∆E (second row), mKS (third row) and mπ0 (fourth row). TM signal events.
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Figure 4.21: Distributions of mean (left) and standard deviation (right) across the Dalitz plot for: L0

(first row), L2 (second row) and the Neural Network output (third row). TM signal events.

4.8.3 The Dalitz plot PDFs

The B+ and B− Dalitz plots are independent. However, since the backgrounds are similar

(and mostly CP -symmetric), we get a more robust procedure by fitting them simultane-

ously. It is enough to describe only the B+ Dalitz plot PDF5. A change from A to A
gives the B− PDF.

In the next section we show the PDF for each component (signal and background) of

the likelihood function.

5We drop the superscript in P+ in the following.
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Figure 4.22: Distributions of mean (left) and standard deviation (right) across the Dalitz plot for: ∆t
(first row)and σ∆t (second row). TM signal events.

Signal

The signal Dalitz model has been described in Section 1.3. The free parameters are the

magnitudes cj and phases φj defined, in equations 4.5 and 4.6 for all the intermediate

states of the signal model given in the upper part of Table 1.3.

We choose to measure phases relatively to the K∗(892)+π0 final state; the phases

of this and its charge conjugate channel are therefore fixed to zero. The amplitude of

B+ → K∗(892)+π0 is also fixed but not that of B− → K∗(892)−π0 in order to be sensitive

to direct CP -violation.

The normalization of the component signal PDFs:

PTM
i ∝ εi(1− fSCF

i )|detJi||Ai|2, (4.15)

PSCF
i ∝ εif

SCF
i

[|detJi||Ai|2 ⊗RSCF,i

]
, (4.16)

is model dependent, where J is the jacobian matrix of the mapping to the square Dalitz

plot (see Section 1.3.7). The symbol ⊗ stands for a convolution and the R matrix is

described below (eq. 4.21). The normalization requires the computation of the integrals
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Figure 4.23: Profile plots between mES , ∆E′ and NN for TM (top), SCF (middle) and Continuum
(bottom).

(we drop the i index)

∫ 1

0

dm′
∫ 1

0

dθ′ ε(1− fSCF)|detJ |FkF
∗
l , (4.17)

∫ 1

0

dm′
∫ 1

0

dθ′ εfSCF|detJ |FkF
∗
l , (4.18)

and ∫ 1

0

dm′
∫ 1

0

dθ′ ε|detJ |FkF
∗
l , (4.19)

where the notations of eq. 4.5 are used. The integrations over the square Dalitz plot are

performed numerically. The weight

f
SCF

=

∫ 1

0
dm′ ∫ 1

0
dθ′ εfSCF|detJ ||A|2∫ 1

0
dm′ ∫ 1

0
dθ′ ε|detJ ||A|2

(4.20)

in eq. 4.9 ensures that the total signal PDF is normalized. The PDF normalization

depends on the decay dynamics and is computed iteratively. In practice the computation
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Figure 4.24: Tables showing the correlations between variables. Top left: TM events, top right: SCF
events, bottom: continuum events.

of f
SCF

rapidly converges to a value which we fix after a few exploratory fits on the signal

only model. The fit works properly even if we leave the fraction of SCF floating.

Studies in simulation have shown that the experimental resolutions of m′ and θ′ need

not be introduced in the TM signal PDF. In contrast, misreconstructed events often incur

large migrations, when the reconstructed (m′
r, θ

′
r) are far from the true values (m′

t, θ
′
t).

We use the Monte Carlo simulation to compute a normalized two-dimensional resolution

function RSCF(m′
r, θ

′
r;m

′
t, θ

′
t), with

∫ 1

0

dm′
r

∫ 1

0

dθ′rR
SCF(m′

r, θ
′
r;m

′
t, θ

′
t) = 1. (4.21)

RSCF is convolved with the signal model in the expression of PSCF (eq. 4.16). A grid with

40 bins in m′ and 40 bins in θ′ is used to compute the already shown (Figure. 4.8) TM and
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SCF efficiency maps as well as the migration matrix RSCF (a 40× 40× 40× 40 array) in

the Monte Carlo. Each element of the migration matrix is the probability that an event

generated in bin (i, j) is reconstructed in bin (i′, j′); to compute the RSCF all the SCF

events from the signal Dalitz model Monte Carlo have been used.

Backgrounds

After the very tight cut on the NN ′, there were not enough events in the offpeak sample

to build a PDF. Therefore it was decided to use also the onpeak Grand Sideband by

adding it to the offpeak sample, after subtracting the contribution due to B-background.

The latter was estimated by using MC events. We avoided to use the qq̄ MC, since there

are known discrepancies with respect to the offpeak data. The square Dalitz plot was

divided into 4 zones (see Figure 4.25) in order to better parametrize the structures; for

each zone a 2-dimensional smoothed histogram was built. After this step all the 4 zones

were merged together in order to obtain a single 2-dimensional histogram used as PDF

for the continuum. The bottom plots of Figure 4.25 show a good agreement between the

obtained PDF and the data for the m′ and θ′ distributions.

The B background Dalitz PDFs were shown in Figure 4.21 except for the B+ → D̄0π+

(class #0) which is described by the 2-dimensional analytical parametrization explained

in Section 4.7.

4.8.4 The other PDFs

Signal

• TM : the mES PDF for TM-signal events is a double gaussian function. The mean

and the width of the narrower gaussian are free parameters in the fit. The fitted

PDF on the N.R. Monte Carlo is shown on Figure 4.26.

After the transformation ∆E −→ ∆E ′, the residual correlation with the Dalitz plot

(Figure 4.20) needs to be modeled. We parametrize ∆E ′ with the sum of a gaussian

and a bifurcated gaussian whose parameters vary across the Dalitz plane: means and

widths that vary linearly as a function of m2
K0

Sπ+ . A two step fitting procedure is

employed, first, the parameters of the ∆E ′ PDF are obtained in slices of m2
K0

Sπ+ in
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Figure 4.25: Top left: square Dalitz plot for a sample of offpeak and onpeak sideband data, obtained
as described in the text; top right: resulting PDF, obtained by smoothing the previous histogram in
four regions. Bottom: m′ (left) and θ′ (right) projections for qq̄ MC (red), offpeak (green) and onpeak
sideband (blue) data. The black lines corresponds to the PDF derived from the latter two samples.
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Figure 4.26: m′
ES PDF for signal TM events.

the Dalitz plot; then, a linear fit to the m2
K0

Sπ+ dependence is performed with the

results shown in Figure 4.27.

The TM NN ′ distribution is uncorrelated with all fit observables. The sum of a

gaussian distribution plus two bifurcated gaussians adequately fits the non resonant
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Figure 4.27: Distributions of the ∆E′ PDF parameters as a function of m2
K0

Sπ
+ . The PDF is the sum of

a gaussian and a bifurcated gaussian. The plots represent respectively: the mean (top left) and standard
deviation (top middle) of the gaussian, the mean (bottom left) and standard deviations (bottom middle
and bottom right) of the bifurcated gaussian, and the relative fraction (top right) between the two
functions. The distributions are fitted with straight lines.
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MC as shown on Figure 4.28 (left).

NNprime
-10 -8 -6 -4 -2 0 2 4 6 8 10

E
ve

n
ts

 / 
( 

0.
1 

)

0

5000

10000

15000

20000

25000

30000

A RooPlot of "NNprime"

NNprime
-10 -8 -6 -4 -2 0 2 4 6 8 10

E
ve

n
ts

 / 
( 

0.
1 

)

0

5000

10000

15000

20000

25000

30000

A RooPlot of "NNprime"

NNprime
-10 -8 -6 -4 -2 0 2 4 6 8 10

E
ve

n
ts

 / 
( 

1 
)

0

500

1000

1500

2000

2500

A RooPlot of "NNprime"

NNprime
-10 -8 -6 -4 -2 0 2 4 6 8 10

E
ve

n
ts

 / 
( 

1 
)

0

500

1000

1500

2000

2500

A RooPlot of "NNprime"

Figure 4.28: NN ′ PDFs for TM (left) and SCF (right) signal events.

• SCF : we saw in Section 4.4 that different types of events are merged in the SCF

category. We use smoothed histograms built with the signal model MC, shown as

the blue (solid) curves in Figure 4.29.
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Figure 4.29: mES (left) and ∆E′ (right) PDFs for SCF events. The blue PDFs are built on the signal
Dalitz model and subsequently used in the fit. The red PDFs are obtained from the non resonant signal
MC. There are significant differences, since the various types of SCF populate the two models differently.

As for the TM, the SCF NN ′ distribution is uncorrelated with all fit observables.

The SCF NN ′ PDF is the double bifurcated gaussian fitted on the non resonant MC

shown on Figure 4.28 (right).
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Continuum background

Them′
ES and ∆E ′ PDF are respectively an Argus function and a second order polynomial.

They are built by using the offpeak data and the qq̄ MC samples. They are shown on

Figure 4.30
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Figure 4.30: Continuum PDFs. Left: Argus function for m′
ES . Right: Second order polynomial for ∆E′.

Neural Network correction for continuum events

The dependence of the NN across the Dalitz plot, described in Section 4.5, is taken into

account by using a double bifurcated gaussian as a PDF, where all the parameters are

second order polynomial functions of ∆Dalitz. The PDF is built on qq̄ MC (where enough

events are available). Initially a range ∆Dalitz < 2 was considered and linear fits were

performed for the first 6 slices. When the fit was attempted on a full Monte Carlo sample

we found that it was necessary to enlarge the range and use quadratic fits. The results

are shown in Figure 4.31.

B background

The PDF were already described in Section 4.6. The PDFs used for mES, ∆E ′ and NN ′

are smoothed histograms (Figure 4.11). The PDFs used for the square Dalitz plot are

2-dimensional smoothed histograms (Figure 4.12).

4.8.5 The fit parameters

The following parameters are varied in the fit:
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Figure 4.31: Distributions of the NN ′ PDF parameters as a function of ∆Dalitz. The PDF is the sum
of two bifurcated gaussians. The plots represent respectively: the mean (first row left) and standard
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fraction (bottom) between the two functions. The distributions are fitted with 2nd order polynomial.
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• 10 yields for signal (Nsig), continuum (Nqq̄) and for the 8 B background classes;

the signal yield is the sum of the TM and SCF contributions while their relative

proportion is kept fixed;

• 1 CP -asymmetry for the continuum events, ACP ;

• 2 parameters related to narrow particle masses: the mass and mass resolution for

the B;

• 3 parameters of the mES and ∆E ′ PDFs for the continuum events: slope of the Argus

function, slope and intercept of the ∆E ′ polynomial function;

• 21 isobar amplitudes and phases. There are 6 intermediate states (5 resonances and

a non-resonant term) and two Dalitz plots. We fix one reference amplitude, that of

B+ → K∗+(892)π0 and two phases for the latter and its conjugate. Therefore we

end up with 11 magnitudes and 10 phases to be determined by the fit.





Chapter 5

Results

5.1 Decay model

The default decay model is the signal model already mentioned and shown in Table 1.3,

with the amplitudes cj and phases φj of Table 5.1. These parameters are also used to

generate the Monte Carlo nominal model of the B+ → K0
Sπ

+π0 decay, which is needed

to evaluate the efficiencies and to build the PDFs for the signal. The model used is

CP conserving, i.e., it has equal isobar coefficients for the B+ and B− decays. The

interferences are destructive (isobar phase difference within 30 degrees from π radians)

between the KSρ
+ and each of the K∗(892)π channels as well as between the K∗

0(1430)0π+

and each of the K∗(892)π.

Resonance Amplitude c Phase φ FF
ρ(770)± 1.45 151.83 0.238
K∗(892)± 0.747 0.00 0.057
K∗(892)0 1.00 -52.33 0.105
K∗(1430)± 38.3 149.82 0.219
K∗(1430)0 45.86 -76.39 0.315

N.R 15.1 -141.13 0.070

Table 5.1: Amplitude and Phase Parameters. The phases are referenced to that of the B+ → K(892)+π0

component and chosen to lie between ±π. The isobar fit fractions are computed according to eq. 1.72. The
same isobar parameter values are used to model the B+ and the B− decays, hence the CP -asymmetries
are equal to zero by construction.

The expected yields for each component of the signal and of the backgrounds is shown

in Table 5.2.

117
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Component Expected yields
Signal (TM + SCF) 1206

SCF only 239
Continuum 7405
B-background (without D0) 6011
D0 2425

Table 5.2: Expected yields in the analysis by component.

5.2 Pure toys MC tests

A standard procedure to check the correct behaviour of the fit is to generate toy MC (see

Section 3.4.3) according to some given PDFs (“pure toys”), employ the same PDFs to fit

those simulated data, and compare the resulting values with those used to generate the

data by producing pull plots for all the parameters that are estimated by the fit.

5.2.1 High statistics signal-only toys

As a first study, we determine whether the decay model can be fit without intrinsic

degeneracies. To this end we perform scans on high statistics (10 times the data) toy

samples. We perform one-dimensional scans of all the isobar phase angles φ in turn, as

they are the sources of potential degeneracies. All other parameters are frozen to their

default values. 36 scan steps in φ are made to span the [−180◦, +180◦] interval in φ. At

each step, 100 toy samples with 10000 events each are generated. For each toy, we record

the phase φrec where we found the minimum of the negative logarithm of the likelihood

value of the fits, NLL≡ −ln(L) (see Section 3.4). When φrec(φ) is multivalued, there

is a degeneracy. We start with a simple model with two resonances only and add more

resonances up to the full signal model.

Two resonances

Trigonometric ambiguities lead to fit degeneracies. They can be seen on Figure 5.1 (top

left) for a model with the K∗(892)0π+ and the KSρ
+ resonances, where we see that the

wrong solution is picked up for negative phases for the complete model (including SCF).

The degeneracy is stronger for a model with K∗+π0 and K∗(892)0π+ (Figure 5.1 (top
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right)) which do not overlap much in phase space, than for a model with K∗+π0 and

KSρ
+ (Figure 5.1 (bottom)).
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Figure 5.1: Phases resulting from the fit as a function of the generated phase. Two-resonance models:
(Top left) B+ → K∗0π+ and K0

Sρ
+, (Top right) B+ → K∗0π+ and K∗+π0, and (Bottom) B+ → K∗+π0

and K0
Sρ

+.

Three and Four resonances

The results obtained on models with three and four resonances are shown in Figure 5.2

and 5.3. By comparing Figure 5.2 (left) with 5.1 (top right) we see that the maximum

likelihood is obtained for the wrong (φK∗0 − φK∗+) phase difference when the ρ is added

to the model with the two K∗(892) resonances. If we compare it to Figure 5.1 (top left),

we see that the results are similar, wrong in half of the (φK∗0 − φρ+) range. Comparing

Figure 5.2 (right) to Figure 5.1 (bottom) we see the result degrades (the curve is thicker,

the uncertainty on the reconstructed phase is larger) but remains acceptable (the correct

solution is chosen). The Dalitz signal model has a destructive interference in the soft π0
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corner which is hard to be eliminated with only three resonances.

Scans for other models with three resonances including the K∗
0(1430)0,+, are shown on

Figure 5.3. Scans for four-resonance models show that when more components are added,

the degeneracies get removed.
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Figure 5.2: Phases resulting from the fit as a function of the generated phase. Three-resonance models
with B+ → K∗0π+, K∗+π0, and KSρ

+: (Left) scan of the K∗0 phase, (Right) scan of the ρ+ phase.

Nominal model with six resonances

The six resonance nominal model is exempt of intrinsic degeneracies. All the scans pre-

sented in Figure 5.4 indicate that the likelihood function is maximum for the correct phase

angle values. In conclusion, the likelihood function associated to the nominal B decay

model does not present intrinsic degeneracies. With high statistics, the decay model can

be fit.

5.3 Toys and embedded fits with realistic yields

In this section we study samples with the statistics we expect in the real data by per-

forming a toy MC study were we generate and fit with a fit model which includes only

the nominal signal decay model and add components one at a time as follows:

• signal only;

• signal only and B+ → D̄0π+ (D̄0 → K0
Sπ

0);
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Figure 5.3: Phases resulting from the fit as a function of the generated phase. Three-resonance models
with B+ → K∗(892)0π+, K∗(892)0π0, and (Kπ)∗00 (1430) (left) / (Kπ)∗+0 (1430) (right): (Top) scan of
the K∗(892)0 phase, (Bottom) scan of the (Kπ)∗0(1430) phase.
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Figure 5.4: Phases resulting from the fit as a function of the generated phase. Nominal six-resonance
model: (Top left) scan of the K∗(892)0 phase, (Top right) scan of the ρ+ phase, (Middle left) scan of the
(Kπ)∗00 (1430) phase, (Middle right) scan of the (Kπ)∗+0 (1430) phase, (Bottom) scan of the N.R. phase.
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• the latter and the B backgrounds;

• signal and the continuum background;

• the latter and B+ → D̄0π+ (D̄0 → K0
Sπ

0);

• the latter and the B backgrounds.

We refer to the last case as the full toy study.

In each case, we generate 500 samples that are:

• independent by changing the seeds of the random number sequence.

• poissonized: prior to the generation of a sample the input yields are determined from

Poisson distributions with means equal to the expected yields in the data (Table 5.2).

• randomized an appropriate number of times. To randomize means to fit a given

sample starting from enough different input values of the fit parameters to make sure

that the fit converges to the absolute minimum value of the negative loglikelihood

function. Full toy (resp. embedded) fits are randomized 31 (resp. 29) times, in order

to be sure that the fit reaches the absolute NLL minimum.

All fits are performed by keeping fSCF and all PDF shape parameters fixed. We use two

kind of samples:

• pure toys samples to construct pseudo experiments through the generation of events

along the PDFs used in the fit. With pure toys we check the self consistency of the

fit algorithm.

• embedded fit samples where we use fully generated and reconstructed signal events

and toy MC events for backgrounds. With embedded fits we check the quality of the

reconstruction, in particular the reliability of the SCF modeling.

We obtain three distributions for each parameter (isobar amplitudes, isobar phases and

yields): the residual (reconstructed - generated value), the standard deviation, and the pull

(residue/standard deviation) distributions. An example of these plot are in Appendix A.1
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for the embedded fits with the full model (see from Figure A.1 to A.4). Tables showing

the pulls for amplitudes and phases for all toy studies are presented in Appendix A.1.

The detailed results for all the studied validation samples are given in [65]. The fit

machinery works satisfactorily. In the embedded fits for the full fit model, the maximum

deviation of a pull mean from zero is 0.75 standard deviations for the yield of the category

#4 of the B-background. The signal yield is also biased by 0.5 standard deviations σ.

Looking at these results we decided after the toy MC studies to fix the yield of the

B-background in category #1 because it is correlated with the yield of the continuum

background. The pull widths for the yields are between 0.96 and 1.13. The pull widths

for the amplitudes are between 0.8 and 1.01, most differing form 1.00 by less than 10%.

There are no significant biases for the phase angles. The pulls are more scattered and on

the high side between 0.98 and 1.30. The relative uncertainties on the yields are consistent

with Poisson errors and the signal to noise ratio. The phases are measured with precisions

between 17 and 56 degrees. The most difficult to determine are those of the neutral (Kπ)

resonances.

We summarize the outcome of the validation studies by showing in Table 5.3, which also

shows the degradation of the uncertainties on the fit parameters as the fit model gets more

and more complex. In particular, the presence of the continuum background significantly

degrades the precision on the phase measurements, which gets further degraded by the

introduction of B backgrounds.

5.3.1 D0 and fit stability

The stability of the fit with respect to the high B+ → D̄0π+ yield is studied by using

Toy MC with a model incorporating TM only signal and the B+ → D̄0π+ channel and

performing scans of all the analytical parameters of the TM PDFs (see Figure 5.5). We

see that for each parameter the minimum of the NLL is unique, therefore the fitter is

stable with respect to the choice of the PDF parameters.
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Fit Signal Signal+D0 Signal+Cont. Full fit
T E T T E T E

ρ+ (amp) 0.20 0.18 0.18 0.27 0.28 0.27 0.33
ρ− (amp) 0.19 0.18 0.19 0.28 0.29 0.27 0.31
ρ+ (phase) 22.21 17.92 24.74 42.21 38.55 51.09 42.61
ρ− (phase) 23.78 17.35 24.09 43.60 32.74 51.88 39.16
K∗− (amp) 0.13 0.13 0.12 0.20 0.19 0.18 0.18
K∗0 (amp) 0.16 0.14 0.15 0.22 0.21 0.21 0.23
K̄∗0 (amp) 0.16 0.16 0.15 0.21 0.22 0.20 0.24
K∗0 (phase) 31.41 24.25 32.28 51.28 46.14 60.77 59.55
K̄∗0 (phase) 26.14 23.95 32.28 53.59 45.10 64.73 55.49
K∗(1430)+ (amp) 5.60 5.35 5.50 8.08 8.37 7.89 9.43
K̄∗(1430)− (amp) 5.25 5.06 5.07 7.79 7.67 7.81 8.80
K∗(1430)+ (phase) 11.42 10.75 12.29 17.83 16.74 18.78 18.84
K̄∗(1430)− (phase) 11.30 10.84 11.83 17.50 17.80 17.93 17.89
K∗(1430)0 (amp) 6.08 5.61 5.82 8.32 8.63 8.08 9.55
K̄∗(1430)0 (amp) 6.19 5.15 6.05 8.71 8.63 8.94 9.94
K∗(1430)0 (phase) 30.85 22.73 31.14 50.05 45.81 59.36 59.66
K̄∗(1430)0 (phase) 26.15 23.16 31.96 54.38 43.55 64.32 56.92
N.R. (amp) 3.19 3.17 3.22 5.02 4.84 5.23 5.97
N.R. (amp) 3.04 3.06 3.29 4.67 4.87 5.54 5.27
N.R. (phase) 17.79 14.98 18.13 31.20 31.20 36.55 42.64
N.R. (phase) 16.08 16.13 16.84 36.80 29.29 39.10 36.21

Table 5.3: Uncertainties on the fitted parameters (standard deviation of the residues σres) for different
and increasingly complex fit models. For each sample type, we show the toys (T) and the embedded (E)
fit results when applicable.
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Figure 5.5: Likelihood scans on TM part of the D0 parameterization on a TM +D0 pure toy. For each
parameter of the PDFs, we see the NLL values obtained varying the initial value.
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5.4 Test of the fit on fully simulated MC tests

A realistic dataset of simulated events is built, by combining signal, continuum and

B background Monte Carlo samples with an equivalent luminosity equal to the collected

luminosity of the real onpeak data. The signal MC is generated according to the signal

model studied with the pure toys.

14624 events are retained by the selection procedure and submitted to the fitter.

5.4.1 Freezing the nominal fit

With respect to the validation studies, two modifications appear to be necessary to prop-

erly fit the datasized-full MC sample:

• when trying to let free all parameters, unphysical yields for two of the B-background

categories (#1 and #5) show up as well as correlations between them and the signal

and continuum yields. For this reason, the yield for category #1 is kept fixed in the

nominal fit;

• by looking at the projection plots of the discriminant variables, it is necessary to

adjust the shape of the continuum NN PDF.

The fit function depends on 37 parameters listed in Section 4.8.5. Various fit configura-

tions are explored and described in the forthcoming tables which show the result.

After the study presented in this section we changed slightly the nominal fit configu-

ration to take into account:

• the actual continuum cross section which in and up to this section was underestimated

because the effect of a cut on mES was overlooked. The correct expected continuum

yield is 8250 events and not 7045 and the total expected yield 15274.

• that the B-background was unduly modeled by unsmoothed histograms taken from

the very same generic BB̄ Monte Carlo that is used to build the full MC sample.

When we fit the data we fix the yields of the B-background categories (# 1, 3, 6 and 7).

Therefore the number of free parameters in the nominal fit configuration is reduced to 33.



128 CHAPTER 5. RESULTS

Nll - minNll
0 1 2 3 4 5 6 7 8 90

10

20

30

40

50

60

70

80

90

Nll - minNll
0 1 2 3 4 5 6 7 8 90

10

20

30

40

50

60

70

80

90

Fit on Full MC

Minimum is at -132493.234

Figure 5.6: Distribution of NLLmin for the fits attempted with randomized input parameters. The origin
is NLLbestfit, i.e. the value associated to the fit on the full Monte Carlo sample that is retained as the
solution.

We also used smeared Dalitz plot PDFs for the B-background categories (#3, 4 and 6)

with broad patterns in (m′, θ′). More details are given in Section 4.6. We have checked

that the final fitter on a corrected full MC sample gives similar results to those we are

about to describe below.

5.4.2 Fit results

The NLL distribution of the randomized1 fit is shown in Figure 5.6. We see a single

solution (only one NLL minimum). We postpone the study of potential multiple solution

of the fit on the real data in case they occur. The value of the NLL corresponding to the

best fit (NLLbestfit) is well within the range covered by the validation fits (Figure 5.7).

The correlation between the fit parameters is given in Figure 5.8. Most of the correlations

are small, except of for some couples of resonances and of phases.

The parameters and their fitted values are collected in Table 5.4. The fit fractions

1the fits are performed randomizing the starting values for the fit parameters.
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Figure 5.7: Distribution of NLLbestfit for the embedded fits. The red arrow indicates the NLLbestfit

value for the fit on the full Monte Carlo sample .

and CP-asymmetries, obtained by using a Lagrange multiplier method (see Table 5.5)

(described in Section 3.4.4) are compared to the initial values of signal Dalitz model in

Table 5.1. The fitting fraction sum up to 1.03, a value which differs from 1.00 because of

the interferences in the Dalitz plot (see eq. 1.71). To show the details of the agreement

of the fit with the simulated data, we show in the following, likelihood ratio plots, Dalitz

mass spectra and the distributions of the discriminating variables m′
ES, ∆E ′ and NN ′.

In all plots, the fitted sample appear as points with error bars. The distributions from

the various components, obtained from one high statistics (1 Million events) toy Monte

Carlo pseudoexperiment are shown as histograms. The various colors show the continuum

(yellow), B background (green), D̄0 background (blue), signal self cross feed (black), and

truth-matched events (red) respectively.
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Figure 5.8: Correlation matrix for the best fit on a data-sized Monte Carlo sample.
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Floating Parameter Gen. Value Final Value Error
Signal yield 1206 1.2145e+03 5.76e+01
Continuum yield 7405 7.2856e+03 1.07e+02
Continuum ACP 0.0 -1.4539e-03 1.39e-02
Category #0 yield 2425.0 2.4591e+03 5.34e+01
Category #2 yield 330.0 3.2065e+02 1.97e+01
Category #3 yield 624.0 6.6958e+02 4.07e+01
Category #4 yield 51.0 5.7403e+01 9.99e+00
Category #5 yield 239.0 2.1942e+02 2.81e+01
Category #6 yield 1317.0 1.2720e+03 6.68e+01
Category #7 yield 357.0 3.5342e+02 3.78e+01
Argus slope -2.0938e+01 -1.5301e+01 6.22e+00
B mass ( MeV/c2) 5.2799e+00 5.2796e+00 6.85e-05
B mass width (MeV/c2) 2.6218e-03 2.5053e-03 5.28e-05
∆E slope ( GeV/c2−1) -1.9221e-01 -1.7754e-01 2.37e-02
∆E intercept 7.6595e-02 3.4709e-02 4.61e-02
K∗(1430)− (amp) 3.830e+01 2.8433e+01 5.37e+00
K∗(1430)+ (amp) 3.830e+01 3.3417e+01 6.70e+00
K̄∗(1430)0 (amp) 4.586e+01 3.7725e+01 6.03e+00
K∗(1430)0 (amp) 4.586e+01 2.8413e+01 5.48e+00
K∗(892)− (amp) 7.470e-01 5.5765e-01 1.31e-01
K̄∗(892)0 (amp) 1.000e+00 7.6787e-01 1.47e-01
K∗(892)0 (amp) 1.000e+00 7.6619e-01 1.42e-01
N.R. (amp) 1.510e+01 1.5427e+01 3.81e+00
N.R. (amp) 1.510e+01 1.1122e+01 6.33e+00
ρ− (amp) 1.450e+00 1.1699e+00 1.86e-01
ρ+ (amp) 1.450e+00 1.0555e+00 1.81e-01
K∗(1430)− (phase) 1.498e+02 -2.2559e+02 1.62e+01
K∗(1430)+ (phase) 1.498e+02 1.3512e+02 2.08e+01
K̄∗(1430)0 (phase) -7.639e+01 -1.1060e+02 3.88e+01
K∗(1430)0 (phase) -7.639e+01 2.5310e+02 6.85e+01
K̄∗(892)0 (phase) -5.233e+01 -8.4295e+01 3.86e+01
K∗(892)0 (phase) -5.233e+01 -4.2189e+01 6.08e+01
N.R. (phase) -1.411e+02 -1.7731e+02 3.00e+01
N.R. (phase) -1.411e+02 2.6987e+02 5.47e+01
ρ− (phase) -2.817e+01 -7.4285e+01 2.89e+01
ρ+ (phase) -2.817e+01 3.2113e+02 3.76e+01

Table 5.4: Result of the fit on the data-sized MC. The fit parameters are compared to their input values
which were chosen to be equal to those of the signal model used in the MC generation.
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Resonance FF ACP
ρ(770)± 0.235981 -0.102498
K∗(892)± 0.075007 0.284282
K∗(892)0 0.103336 -0.00218122
K∗(1430)± 0.241789 0.160129
K∗(1430)0 0.280395 -0.276122
N.R 0.092647 -0.31604

Table 5.5: ACP ’s and FF ’s derived from the datasized full MC fit result.

5.4.3 Likelihood ratios

We define

R ≡ (LTM + LSCF)

LTM + LSCF + Lcontinuum + LB-backgrounds

(5.1)

where L is the likelihood function of an event and it is split between all components (or

groups of components). Since there is no background-free area in the parameter space,

R is never higher than 0.92. The distribution of R for various configurations (linear and

logarithmic scales) are shown on Figure 5.9 to emphasize the regions dominated by signal

and backgrounds.

5.4.4 Discriminant variables projection plots

The m′
ES, ∆E ′ and NN’ distributions presented on Figure 5.10. The left plots show

all events, the right ones show events surviving a cut on R2, tuned to maximize the

signal2

signal+background
, ratio to enrich the sample in signal events. There is good agreement

between the fit model and the input simulated data.

5.4.5 Dalitz plot projection plots

On Figure 5.11 we show in turn the K0
Sπ

+, K0
Sπ

0 and the π+π0 invariant mass spectra.

For each meson pair, we show the full kinematical range, the restricted range between

threshold and 1.6 GeV/c2 to see the range where the resonances are located, without and

with signal enrichment. A zoom on the K0
Sπ

0 mass in the region of the D̄0 is shown on

Figure 5.12.

2R is computed by excluding the plotted variable from the likelihood.
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Figure 5.9: Full MC fit likelihood ratio. The simulated data is shown as point with error bars. The
color code depicts the continuum (yellow), B background (green), D̄0 (blue), signal self cross feed (black),
and truth-matched events (red) respectively. Linear (left) and logarithmic (right) scales for the y axis,
and linear (top) and logarithmic (bottom) scales for the x axis illustrate the regions where the signal
dominates over the background and vice versa.
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Figure 5.10: Full MC fit results. (top) mES , (middle) ∆E′ and (bottom) NN’ distributions. The
simulated data is shown as points with error bars (all available data on the left, after a cut on R
(computed after excluding the plotted variable) to enhance signal on the right). The color code depicts
the continuum (yellow), B background (green), D̄0 (blue), signal self cross feed (black), and truth-matched
events (red) respectively.
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Figure 5.11: Full MC fit results. (Top) K0
Sπ

+ invariant mass all events (left), m ≤ 1.6 GeV/c2 (center)
and for a sample enriched in signal by a cut on R (right). (Middle) the same for the K0

Sπ
0 invariant

mass. (Bottom) the same for the π−π0 invariant mass.
The data are shown as point with error bars. The color code depicts the continuum (yellow), B background
(green), D̄0 (blue), signal self cross feed (black), and truth-match (red) respectively. The D̄0 mass peak
which sticks out of the middle-left plot is shown in detail in Figure 5.12.

5.5 Results on data

5.5.1 Fit result

To look at the real data, we follow a blinding procedure as follows. We try first a CP-

blind fit where we impose the B+and the B−decays to be identical, by using a single set

of isobar amplitudes and phases for both. After inspection of the results, if the projection

plots shows an acceptable goodness of the fit, we unblind the fit for CP quantities.
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Figure 5.12: Full MC fit results. K0
Sπ

0 invariant mass zoomed in the D̄0 mass region. The color code
depicts the continuum (yellow), B background (green), D̄0(blue), signal self cross feed (black), and truth-
matched events (red) respectively.

5.5.2 CP blind fit

The NLL distribution for 100 fits where the starting values of the fit parameters have been

randomly chosen is shown in Figure 5.13. There are two solutions separated by 0.2 units

of NLL. The numerical results are shown in Table 5.6. All the yields are consistent with

expectation. Fixing the highest B-background yields (classes #3 and #6) far away from

the nominal values, does not change dramatically the fitted parameters for signal and

continuum. The fit is thus stable against wrong estimates of the B-background yields.

The correlation tables for the two solutions are very similar, hence we only show that for

solution-1 in Figure 5.14. The projection plots are presented in Figure 5.15 (likelihood

ratio), Figure 5.16 (m′
ES, ∆E ′ and NN ′), Figure 5.17 (Dalitz invariant mass spectra),

and Figure 5.18 (mK0
Sπ0 in detail in the region of the D̄0).

5.5.3 Fit allowing for CP violation (nominal fit)

The NLL distribution for 100 fits obtained by varying the starting values of fit parameters,

is shown in Figure 5.19. There are two solutions separated by half a unit of NLL. The

numerical results are shown in Table 5.7, the FF and ACP parameters in Table 5.8. The

correlation tables for the two solutions are very similar, hence we only show that for
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Solution-1 Solution-2
Floating Parameter Final Value Error Final Value Error
Signal yield 1.2274e+03 7.50e+01 1.2430e+03 7.84e+01
Continuum yield 8.1515e+03 1.17e+02 8.1439e+03 1.20e+02
Continuum ACP -2.8501e-02 1.25e-02 -2.8683e-02 1.25e-02
Category #0 yield 2.5333e+03 5.45e+01 2.5273e+03 5.44e+01
Category #1 yield 726.0 (fixed)
Category #2 yield 3.2075e+02 1.98e+01 3.2256e+02 1.98e+01
Category #3 yield 593.0 (fixed)
Category #4 yield 8.7027e+00 7.37e+00 7.5842e+00 7.23e+00
Category #5 yield 2.3802e+02 2.89e+01 2.3521e+02 2.88e+01
Category #6 yield 1266.0 (fixed)
Category #7 yield 366.0 (fixed)
Argus slope -6.0554e+00 6.40e+00 -5.0001e+00 4.50e+01
B mass ( MeV/c2) 5.2794e+00 7.26e-05 5.2794e+00 7.43e-05
B mass width ( MeV/c2) 2.6831e-03 5.47e-05 2.6893e-03 5.49e-05
∆E slope ( GeV/c2−1) -2.7874e-01 2.47e-02 -2.7992e-01 2.47e-02
∆E intercept 2.0444e-01 5.13e-02 2.0768e-01 5.18e-02
K∗(1430)+ (amp) 4.5268e+01 6.01e+00 3.2433e+01 5.27e+00
K∗(1430)0 (amp) 3.1683e+01 5.13e+00 4.0782e+01 5.35e+00
K∗(892)0 (amp) 8.1385e-01 1.27e-01 7.0753e-01 1.28e-01
N.R. (amp) 1.3384e+01 2.99e+00 1.5210e+01 3.51e+00
ρ+ (amp) 9.5696e-01 1.42e-01 9.4123e-01 1.52e-01
K∗(1430)+ (phase) -3.5157e+02 1.37e+01 -2.0767e+01 1.41e+01
K∗(1430)0 (phase) 1.0760e+02 3.12e+01 -1.3220e+02 3.26e+01
K∗(892)0 (phase) -3.5677e+02 3.40e+01 -2.7536e+02 3.51e+01
N.R. (phase) -1.1063e+02 3.01e+01 1.2694e+02 2.99e+01
ρ+ (phase) -3.4852e+02 2.86e+01 -6.8667e+01 3.48e+01

Table 5.6: Result of the CP-blind fit on data. The two almost degenerate solutions have
NLL1 = −137569.0, and NLL2 = −137568.8.
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Figure 5.13: Spectrum of NLLmin for all the blind fits attempted with randomized input parameters.

solution-1 in Figure 5.20. The projection plots are presented for solution-1 in Figure 5.21

(likelihood ratio), Figure 5.22 (m′
ES, ∆E ′ and NN ′), Figure 5.23 (Dalitz invariant mass

spectra), and Figure 5.24 (mK0
Sπ0 in detail in the region of the D̄0). Similar constructive

interference between the charged K0
Sπ resonances for B+ and B− can be seen in the

signal-enriched projection plots for mK0
Sπ+ separately for helicity angles with positive and

negative cosines Figure 5.25.

5.6 Comments on the data fits

All the fits performed on pure and embedded toys, as well as the fit on the full Monte Carlo

sample, show a good agreement between the fitted distributions and the simulated data.

A proof of consistency is given by the projection plots (from Figure 5.9 to Figure 5.12)

and the pull distributions (Table A.7 and Figure A.4). Moreover, the fit gives negligible

biases on signal parameters even if the expected number of backgrounds events is wrong.

Unfortunately, fitting real data gives some inconsistencies. For the CP-blind fit, by
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Figure 5.14: Correlation matrix for the CP-blind fit (solution-1 ).
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Figure 5.15: Likelihood ratio for the CP-blind fit (solution-1 ). The data are shown as point with error
bars. The color code depicts the continuum (yellow), B background (green), D̄0 (blue), signal self cross
feed (black), and truth-matched events (red) respectively. The various linear and log scales focus on
where the signal dominates over the background and vice versa.
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Figure 5.16: (top) mES , (middle) ∆E′ and (bottom) NN’ distributions for CP-blind fit (solution-1 ).
The data are shown as points with error bars (all the data on the left, after a cut on R (computed
excluding the plotted variable) to enhance signal on the right). The color code depicts the continuum
(yellow), B background (green), D̄0 (blue), signal self cross feed (black), and truth-matched events (red)
respectively.
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Solution-1 Solution-2
Floating Parameter Final Value Error Final Value Error
Signal yield 1252 65 1258 70
Continuum yield 8128 108 8128 112
Continuum ACP -0.028 0.013 -0.028 0.014
Category #0 yield 2532 53 2527 54
Category #2 yield 321 20 322 20
Category #4 yield 7.9 4.8 7.8 6.8
Category #5 yield 237 28 235 28
Argus slope -5.01 1.22 -5.00 1.19
B mass ( MeV/c2) 5279.36 0.075 5279.36 0.073
B mass width (MeV/c2) 2.69 0.054 2.69 0.054
∆E slope (GeV/c2−1) -0.281 0.023 -0.281 0.025
∆E intercept 0.214 0.046 0.214 0.050
K∗(1430)− (amp) 38.9 5.5 39.5 4.9
K∗(1430)+ (amp) 24.4 4.4 24.6 4.6
K̄∗(1430)0 (amp) 35.2 5.0 35.9 4.6
K∗(1430)0 (amp ) 19.1 4.2 33.4 4.4
K∗(892)− (amp) 0.48 0.13 0.49 0.12
K̄∗(892)0 (amp) 0.53 0.13 0.54 0.16
K∗(892)0 (amp) 0.69 0.13 0.65 0.13
N.R. (amp) 7.89 3.34 7.97 3.06
N.R. (amp) 18.8 3.7 15.0 2.7
ρ− (amp) 0.63 0.12 0.64 0.13
ρ+ (amp) 0.73 0.13 0.75 0.13
K∗(1430)− (phase) 4 30 3 26
K∗(1430)+ (phase) -12 13 -16 17
K̄∗(1430)0 (phase) -20 52 -21 47
K∗(1430)0 (phase) 37 31 -133 25
K̄∗(892)0 (phase) -155 60 -154 53
K∗(892)0 (phase) -70 35 80 35
N.R. (phase) -92 52 -93 48
N.R. (phase) 133 13 -135 24.
ρ− (phase) -153 65 -153 54
ρ+ (phase) 94 29 -81 30

Table 5.7: Result of the nominal fit on data. The two almost degenerate solutions have
NLL1 = −137575.3, and NLL2 = −137574.8. The phase angles are expressed in degrees. The K∗+isobar
is the reference i.e. all amplitudes are measured with respect to c(B+ → K∗+π0) = 0.747, and allB+(resp.
B−) phases are differences with respect to φ(B+ → K∗+π0) (resp. φ(B− → K∗−π0)) which are set to
zero.
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Figure 5.17: Distributions for the CP-blind fit (solution-1 ). (Top) K0
Sπ

+ invariant mass all events (left),
m ≤ 1.6 GeV/c2 (center) and for a sample enriched in signal by a cut on R (right). (Middle) the same
for the K0

Sπ
0 invariant mass. (Bottom) the same for the π−π0 invariant mass.

The data are shown as points with error bars. The color code depicts the continuum (yellow), B back-
ground (green), D̄0 (blue), signal self cross feed (black), and truth-matched events (red) respectively.
The D̄0 mass peak which sticks out of the top-left plot is shown in detail in Figure 5.18.

Solution-1 Solution-2
Resonance FF ACP FF ACP
K∗(892)± 0.0838 ± 0.0165 -0.421 ± 0.308 0.0805 ± 0.0147 -0.406 ± 0.281
K∗(892)0 0.0816 ± 0.0348 -0.251 ± 0.324 0.0742 ± 0.0361 -0.180 ± 0.397
N.R. 0.1322 ± 0.0599 -0.702 ± 0.282 0.0867 ± 0.0325 -0.558 ± 0.418
ρ(770)± 0.1104 ± 0.0418 -0.147 ± 0.251 0.1103 ± 0.0391 -0.152 ± 0.273
K∗(1430)± 0.3268 ± 0.0806 0.435 ± 0.159 0.3202 ± 0.0743 0.440 ± 0.145
K∗(1430)0 0.2496 ± 0.0706 0.546 ± 0.183 0.3555 ± 0.0757 0.070 ± 0.137
Total 0.985 ± 0.063 0.020 ± 0.281 1.0274 ± 0.1238 -0.786 ± 0.725

Table 5.8: Fitting fractions and ACP ’s parameters for the two solutions of the nominal fit on data.

looking at the K0
Sπ

+ invariant mass distribution, we see a discrepancy in the K∗(892)+

peak (Figure 5.17, first row) since the data points are under the fitted distributions. This

is probably due to a wrong parametrization of the continuum PDF around the K∗(892)+
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Figure 5.18: K0
Sπ

0 invariant mass zoomed in the D̄0 mass region for the CP-blind fit (solution-1 ). The
color code depicts the continuum (yellow), B background (green), D̄0 (blue), signal self cross feed (black),
and truth-matched events (red) respectively.
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Figure 5.19: Spectrum of NLLmin for nominal 100 fits obtained by randomizing the initialization values
of the fit parameters.
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Figure 5.20: Correlation matrix for the nominal fit (solution-1 ).
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Figure 5.21: Likelihood ratio for the nominal fit (solution-1 ). The data are shown as point with error
bars. The color code depicts the continuum (yellow), B background (green), D̄0 (blue), signal self cross
feed (black), and truth-matched events (red) respectively. The various linear and log scales focus on
where the signal dominates over the background and vice versa.
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Figure 5.22: (top) mES , (middle) ∆E′ and (bottom) NN’ distributions for the nominal fit on data
(solution-1 ). The data are shown as points with error bars (all the data on the left, after a cut on R
(computed excluding the plotted variable) to enhance signal on the right). The color code depicts the
continuum (yellow), B background (green), D̄0(blue), signal self cross feed (black), and truth-matched
events (red) respectively.
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Figure 5.23: Distributions for the nominal fit on data (solution-1 ). (Top) K0
Sπ

+ invariant mass all events
(left), m ≤ 1.6 GeV/c2 (center) and for a sample enriched in signal by a cut on R (right). (Middle) the
same for the K0

Sπ
0 invariant mass. (Bottom) the same for the π−π0 invariant mass.

The data are shown as point with error bars. The color code depicts the continuum (yellow), B background
(green), D̄0 (blue), signal self cross feed (black), and truth-matched events (red) respectively. The D̄0

mass peak which sticks out of the top-left plot is shown in detail in Figure 5.24.

peak. The mES and ∆E ′ distributions have some problems as well (in particular in the

signal enhanced plots of Figure 5.16). The same discrepancies still occur in the solution-1

nominal fit.

Further studies are in progress in order to understand these discrepancies. For instance,

tighter selection criteria should reduce significantly the backgrounds and therefore improve

the fit accuracy, although this could result in increased uncertainties. For the time being,

we complete the analysis and evaluate systematic uncertainties for the current selection

criteria in order to give an estimate of the precision which can be attained with the

BABAR dataset.



5.6. COMMENTS ON THE DATA FITS 149

1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91
0

50

100

150

200

250

300

) Distribution component per component0πSm(K ) Distribution component per component0πSm(K

Figure 5.24: K0
Sπ

0 invariant mass zoomed in the D̄0 mass region for the nominal fit on data (solution-1 ).
The color code depicts the continuum (yellow), B background (green), D̄0 (blue), signal self cross feed
(black), and truth-matched events (red) respectively.
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Figure 5.25: Nominal fit on data (solution-1 ) signal-enriched spectra ofmK0
Sπ

+ in the low-mass resonance
region and different ranges of the helicity angle, θK0

Sπ
+ . (a) 0◦ < θK0

Sπ
+ < 90◦, (b) 90◦ < θK0

Sπ
+ < 180◦.

The data sample is enriched in signal events. An interference between the vector and scalar K∗+ is
apparent through the opposite forward-backward asymmetries below and above the K∗(892).





Chapter 6

Systematics

Several sources of systematic uncertainties affect the fitting fractions, CP-asymmetries,

isobar phases and selection efficiencies.

• Detector related effects, concerning the reconstruction of the particles, estimated in

Section 6.1.

• Signal model uncertainties, estimated in Section 6.2 by varying the isobar contents

of the signal, adding or removing isobar components in the decay amplitudes.

• Fit model uncertainties, estimated by varying the fixed parameters in the PDFs

within the measured uncertainties or conservatively chosen ranges. We consider in

turn, the PDF shape parameters in Section 6.3, the B-background properties (fixed

yields and ACP ) in Section 6.4, and the resonance lineshape parameters (masses,

widths, barrier factors) in Section 6.5. We list in Table A.8, Table A.9, and Ta-

ble A.10 the parameters p of the PDFs which are fixed in the nominal fit together

with the range [p-lo, p-hi]≡ p±δp over which we vary them to determine systematic

uncertainties. The nominal fit is repeated for each p-lo/p-hi value and we record

the deviations of the fitted parameters and the physical measurements which derive

from them. We separately tabulate the deviations for the isobar fractions FF , the

ACP ’s and the phases φ when relevant.

• The uncertainty associated to the distortion of the Dalitz plot PDF distribution

induced by the B meson mass constraint on continuum events is estimated in Sec-

tion 6.6
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• The intrinsic fit bias is covered in Section 6.7.

Table 6.2 presents a summary of all the systematic uncertainties, except the uncertain-

ties related to the detector effects that are in summarized Table 6.1.

6.1 Detector related effects

6.1.1 Charged particle tracking

Any differences between data and Monte Carlo simulation can potentially lead to a distor-

tion in the distribution of the kinematical variables under study, as well as in the efficiency

calculations.

To assign a systematic uncertainty on the charged particle tracking, a common pre-

scription within BABAR measurements has been followed. No correction has been applied

to Monte Carlo tracks, but a systematic uncertainty per track has been assigned.

The BABAR task force for the tracking efficiency [68] recommends a systematic uncer-

tainty of 0.8% per charged track to be applied, which translates into a corresponding

systematic uncertainty due to tracking efficiency being applied to each branching fraction

measurement.

6.1.2 KS reconstruction

Correction factors are needed for the tracking of the KS particles, to correct for different

reconstruction efficiencies in data and Monte Carlo. Corrections are necessary for the

transverse momentum, the polar angle of the track in the laboratory frame and the POCA

of the track in the xy plane.

The reconstruction efficiency in MC and data is determined by using a large semi-

inclusive sample of KS candidates [69]. The data/MC KS reconstruction efficiency cor-

rections are determined with a statistical error of 0.6-1.0%. Further studies indicate that

the systematic uncertainty is about 1.5% which leads to a ∼1.8% total uncertainty on the

corrections of the KS reconstruction efficiency.
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6.1.3 Reconstruction of neutral particles

Differences between data and Monte Carlo simulation in the photon detection efficiency

and resolution, as well as additional energy depositions in the EMC, can impact the dis-

tributions of the kinematic variables used to reconstruct neutral pions in this analysis.

Two different control samples are used to check for disagreements between data and

Monte Carlo simulation in efficiency and energy resolution. The study is performed using

the τ hadronic decays that represent an abundant source of neutral pions. The τ → eνν̄

decay is identified in e+e− → τ+τ− events. The ratio R = N(τ → h±π0ντ )/N(τ →
h±π0π0ντ ) is computed both for data and Monte Carlo as a function of the π0 energy in

order to evaluate possible differences in efficiency. The agreement has been found to be

good and the ratio is compatible with the unity in the full range. A systematic uncertainty

of 3% per neutral pion is assigned, due to uncertainties in the hadronic interactions in the

EMC, to the photon background being not perfectly modeled in the Monte Carlo, and to

the uncertainty in the τ branching fractions in πντ and ρντ final states. The corresponding

systematic uncertainty to each branching fraction measurement is therefore 3%.

The resolution has been studied taking π0s from both τ → h±π0ντ and τ → h±π0π0ντ

decays. The π0 mass is fitted in energy bins and the resolution (corresponding to the σ

of a Gaussian fit) is then compared between data and Monte Carlo. The Monte Carlo

resolution is changed by applying a smearing factor such to be identical to data. Similar

corrections are applied on Monte Carlo to take into account differences in the energy scale

and effects due to energy deposits close to crystal boundaries and to the edges between

the barrel and the endcap of the EMC. These factors are determined as well with control

samples such as µµγ and B → K∗(K+π−)γ decays. All corrections turn out to be small.

Effect systematic error [%]
Charged particle tracking (π+) 0.8
KS reconstruction 1.8
Neutral reconstruction (π0) 3.0
Total error (∆ε) 3.6

Table 6.1: Summary of the relative systematic uncertainties on the branching fractions due the detector
related effects.
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6.2 Extra Resonances in the signal model

Variants of the nominal fit in which one resonance component is removed or one less

significant mode is added result in negative loglikelihood changes by amounts given in

Table A.11 The removal of any component of the signal model result in significantly worse

fits. On the contrary, when other resonances are added, the significance of the fit does not

vary appreciably. Those fits where one adds in turn less significant channels one at a time

to the nominal model give the results gathered in Table A.12. The positive (negative)

systematic uncertainties on branching fractions and asymmetries are the averages of the

positive (negative) variations with respect to the nominal results.

6.3 Shape parameters

Each of the fixed parameters of the mES, ∆E ′, NN ′ and D̄0 mass PDFs, is varied from

p-lo to p-hi. The deviations of the isobar fractions are shown in Table A.13, Table A.14,

Table A.15 and Table A.16 Those of the ACP ’s can be seen in Table A.17, Table A.18,

Table A.19 and Table A.20. The systematic uncertainties on the results are given by the

sum in quadrature of the different effects.

6.4 B-background

All the yields and ACP ’s for all the B-background categories from #1 to #7, are varied

from p-lo to p-hi. The deviations of the isobar fractions are shown in Table A.21,

and those of the ACP ’s in Table A.22. Again, the systematic uncertainty is the sum in

quadrature of the resulting effects.

6.5 Lineshapes

In principle, the uncertainty due to the lineshapes of the subresonant structures should

be estimated by varying the masses, widths and barrier factors within their errors from

the PDG [40]. For this thesis we assume that these systematic uncertainties are small,

as in the B0 → K+π−π0 Dalitz analysis [66], and we neglect them. This assumption is
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probably not well established, so this issue has to be revisited in further studies.

6.6 Continuum Dalitz plot PDF

We use previous analyses as a reference to guess the systematic uncertainty due to inac-

curacies in the parametrization of the Dalitz plot PDF for the continuum. The resulting

uncertainties are reported in Table 6.2.

6.7 Fit Bias

The difference between fitted values and the generation ones, observed in the embedded

fits (Table A.7), is taken as systematic uncertainty due to biases in the fit procedure.

6.8 Systematics Summary

All systematic uncertainties but the detector related ones are reported in Table 6.2, and

used in the next chapter to evaluate the systematic errors on the branching ratios.

6.9 Branching ratio uncertainties

The sources of systematic uncertainty on the branching ratio Bi of mode i can be deter-

mined from:

Bi =
FFiNsig

εiNB+B−
(6.1)

where εi is the total efficiency, Nsig the total number of signal events and NB+B− the

numbers of B+B− pairs in the data. Each of the variables on the right hand side is a

source of statistical and systematic uncertainty. The sum of the statistical and systematic

uncertainties on NB+B− is found to be 1.1% [70]. The total systematic uncertainties for

εi and FFi are reported in Tables 6.2 and 6.1.
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∆FF (%) ∆ACP ∆φ (◦)
(Kπ)∗+0 π0 Dalitz plot model +9.4

−4.6
+0.12
0.17

Shape parameters ±1.1 +0.06
−0.05

B background +0.98
−1.13

+0.04
−0.05

Continuum DP PDF ±1.0
Fit bias ±4.8 ±0.07 ±20
Total +10.7

−6.9
+0.16
−0.20 −

(Kπ)∗00 π
+ Dalitz plot model +7.4

−0.9
−0.03
−0.53

Shape parameters +0.69
−0.94

+0.03
−0.05

B background +1.35
−0.36

+0.04
−0.05

Continuum DP PDF ±1.0
Fit bias ±1.9 ±0.02 ±7
Total +7.9

−2.5
+0.06
−0.54 −

K∗+(892)π0 Dalitz plot model ±1.1 +0.07
−0.01

Shape parameters +0.96
−0.84 ±0.02

B background +0.12
−1.98 ±0.01

Continuum DP PDF ±1.0
Fit bias ±0.5 ±0.02
Total +1.8

−2.7
+0.08
−0.03 reference

K∗0(892)π+ Dalitz plot model +0.5
−1.6

+0.11
−0.03

Shape parameters ±1.0 ±0.03
B background +0.19

−0.17
+0.2
−0.03

Continuum DP PDF ±1.0
Fit bias ±1.0 ±0.08 ±13
Total +1.8

−2.4 ±0.09 −
NR Dalitz plot model +2.1

−8.0
+0.21
−0.03

Shape parameters +2.7
−4.1

+0.13
−0.10

B background +1.0
−0.9

+0.03
−0.06

Continuum DP PDF ±1.0
Fit bias ±1.0 ±0.03 ±10
Total +3.8

−10.3
+0.25
−0.13 −

ρ(770)+K0
S Dalitz plot model +0.4

−1.2
0.42
−0.02

Shape parameters ±2.0 ±0.04
B background ±0.14 ±0.03
Continuum PDF ±1.0
Fit bias ±1.5 ±0.09 ±2
Total +2.7

−3.0
+0.43
−0.10 −

Table 6.2: Summary of the (absolute) systematic uncertainties. The systematic uncertainties are equal
for the phases φ and φ. All phases φ are referenced to φK∗+(892)π0 and φ to φK∗−(892)π− .



Chapter 7

Conclusions

7.1 Conclusions

We obtain 1252 ± 65 (statistical error) +18
−13 (systematical error) charmless signal events

from the fit to the data sample (solution-1 in Table 5.7). The inclusive charmless signal

efficiency is estimated to be 12.34% with the observed Dalitz plot structure. We measure

the inclusive charmless branching fraction to be:

B(B+ → KSπ
+π0) = (28.13 ± 1.49 +1.73

−1.46)× 10−6 (7.1)

where the first error is statistical and the second systematical.

The branching ratios for all the decays of the signal model considered, are listed in

Table 7.1.

Mode B.R. [×10−6]
B+ → K∗(892)+ π0 2.34 ± 0.47 +0.51

−0.76

B+ → K∗(892)0 π+ 2.33 ± 1.00 +0.52
−0.70

B+ → KSπ
+π0 N.R. 3.53 ± 1.61 +1.02

−2.75

B+ → KS ρ(770)+ 3.11 ± 1.19 +0.77
−0.85

B+ → K∗(1430)+ π0 9.12 ± 2.30 +3.01
−1.95

B+ → K∗(1430)0 π+ 7.14 ± 2.05 +2.28
−0.76

Table 7.1: Branching ratios obtained from the nominal fit on data including statistical and systematical
uncertainties.

We also obtain 2532 ± 53 events for B+ → D̄0π+, that was our category #0 of

B-background, that correspond to a B(B+ → D̄0(→ KSπ
0) π+) = (56.88± 1.35)× 10−6,

where the error is statistical only.
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The results obtained in this thesis represent a first attempt in measuring branching

fractions and CP asymmetries of the resonant structures involved in the K0
Sπ

+π0 decay,

and show the potential capabilities of the BABAR dataset. Their order of magnitude agrees

with both theoretical expectations and with isospin-conjugate decays.

The current measurements exhibit a discrepancy between some fit results and the actual

data. As shown in Chapter 5, the projection plots for the K0
Sπ

− invariant mass show a

discrepancy in the K∗(892)+ region both in the CP-blind fit and in the nominal one.

Discrepancies are present also in mES and ∆E ′ distributions. This behaviour is possibly

due to backgrounds being not correctly estimated and/or parametrized, in particular the

continuum background.

The above problems might be cured by using tighter requirements for ∆E. Preliminary

studies show that backgrounds can be reduced as much as 50% at the expense of small

signal inefficiencies. Tightening the cut on the Neural Network will also decrease the

amount of continuum events. In any case a better parametrization of the Dalitz plot PDF

for continuum events is necessary, in order to take care of all the complex structures.

In general, simplifying the fit and reducing the number of categories that need to be

parametrized should help in making it more robust and reliable. As stated before, the

results shown in these thesis have not been internally reviewed by the BABAR collaboration;

therefore, they should not be regarded as official BABAR results.



Appendix A

A.1 Toy studies

We build three histograms for each parameter (isobar amplitudes, isobar phases and

yields): the residue (reconstructed - generated value), the standard deviation, and the

pull (residue/standard deviation).

Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.24 1.00 -0.13 1.06
ρ(770)− -0.29 0.98 -0.16 1.07
K∗(892)− -0.10 0.96 none none
K∗(892)0 -0.05 0.99 -0.008 1.21
K̄∗(892)0 -0.06 1.00 -0.08 1.02
K∗(1430)+ -0.08 0.93 0.07 1.02
K∗(1430)− -0.10 0.95 0.06 0.99
K∗(1430)0 -0.22 0.97 -0.11 1.19
K̄∗(1430)0 -0.20 1.00 -0.14 1.07
N.R. -0.11 0.95 -0.25 1.13
N.R. -0.1 1 0.98 -0.21 1.03
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ -0.0001 0.20 -3.81 22.21
ρ(770)− -0.009 0.19 -4.34 23.78
K∗(892)− 0.009 0.13 none none
K∗(892)0 0.02 0.16 0.64 31.41
K̄∗(892)0 0.02 0.16 -1.02 26.14
K∗(1430)+ 0.90 5.60 0.61 11.42
K∗(1430)− 0.73 5.25 0.54 11.30
K∗(1430)0 0.12 6.08 -0.90 30.85
K̄∗(1430)0 0.29 6.19 -2.53 26.15
N.R. 0.05 3.19 -3.66 17.79
N.R 0.07 3.04 -3.10 16.08

Table A.1: Signal only Pure Toys. Pull and residue mean and σ for the amplitudes and phases.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.23 0.91 -0.23 1.08
ρ(770)− -0.30 0.96 -0.25 1.11
K∗(892)− -0.11 0.92 none none
K∗(892)0 -0.06 0.88 -0.05 1.19
K̄∗(892)0 -0.04 0.88 -0.12 1.15
K∗(1430)+ -0.11 0.93 0.09 1.08
K∗(1430)− -0.11 0.93 0.05 1.05
K∗(1430)0 -0.19 0.94 -0.13 1.16
K̄∗(1430)0 -0.25 0.98 -0.16 1.14
N.R. -0.12 0.94 -0.30 1.13
N.R. -0.11 0.97 -0.33 1.06
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ -0.006 0.18 -6.36 24.74
ρ(770)− -0.02 0.19 -6.58 24.09
K∗(892)− 0.008 0.12 none none
K∗(892)0 0.02 0.15 -0.54 32.28
K̄∗(892)0 0.02 0.15 -2.41 32.28
K∗(1430)+ 0.60 5.50 0.86 12.29
K∗(1430)− 0.62 5.07 0.31 11.83
K∗(1430)0 0.07 5.82 -2.84 31.14
K̄∗(1430)0 -0.22 6.05 -4.10 31.96
N.R. 0.05 3.22 -4.77 18.13
N.R. 0.08 3.29 -4.93 16.84
Resonance Pull Residue

µ σ µ σ
Signal yield 0.02 1.00 0.96 35.71
D0 yield -0.04 0.97 -1.17 48.25

Table A.2: Signal + D0 Pure Toys. Pull and residue mean and σ for the amplitudes and phases.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.20 0.91 -0.19 1.13
ρ(770)− -0.24 0.99 -0.33 1.14
K∗(892)− -0.10 0.94 none none
K∗(892)0 -0.02 0.90 0.00 1.27
K̄∗(892)0 -0.02 0.87 -0.16 1.30
K∗(1430)+ -0.03 0.88 -0.009 1.01
K∗(1430)− -0.03 0.89 -0.09 0.99
K∗(1430)0 -0.22 0.96 -0.21 1.24
K̄∗(1430)0 -0.20 0.99 -0.23 1.39
N.R -0.03 0.97 -0.45 1.10
N.R. -0.08 0.93 -0.42 1.11
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ 0.02 0.27 -8.70 42.21
ρ(770)− 0.01 0.28 -13.75 43.60
K∗(892)− 0.01 0.20 none none
K∗(892)0 0.05 0.22 0.91 51.28
K̄∗(892)0 0.04 0.21 -3.43 53.59
K∗(1430)+ 2.32 8.07 -0.99 17.83
K∗(1430)− 2.19 7.79 -2.52 17.50
K∗(1430)0 0.36 8.32 -6.36 50.05
K̄∗(1430)0 0.53 8.71 -6.68 54.38
N.R. 0.44 5.02 -12.56 31.20
N.R. 0.11 4.67 -9.84 36.80
Resonance Pull Residue

µ σ µ σ
Signal yield 0.39 0.95 21.23 50.18
Continuum yield -0.17 0.95 -14.85 90.36
ACP continuum -0.07 0.99 -0.001 0.01

Table A.3: Signal + continuum Pure Toys. Pull and residue mean and σ for the amplitudes, phases and
yields.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.31 1.00 -0.19 1.25
ρ(770)− -0.27 0.96 -0.25 1.23
K∗(892)− -0.18 0.91 none none
K∗(892)0 -0.05 0.88 -0.18 1.30
K̄∗(892)0 -0.06 0.89 -0.17 1.38
K∗(1430)+ -0.01 0.90 -0.03 1.08
K∗(1430)− 0.04 0.90 0.01 0.99
K∗(1430)0 -0.32 0.99 -0.19 1.28
K̄∗(1430)0 -0.36 1.06 -0.22 1.39
N.R. -0.003 0.92 -0.47 1.17
N.R. -0.04 1.03 -0.53 1.21
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ 0.002 0.27 -8.25 51.09
ρ(770)− 0.009 0.27 -10.39 51.88
K∗(892)− 0.001 0.18 none none
K∗(892)0 0.04 0.21 -5.30 60.77
K̄∗(892)0 0.04 0.20 -4.74 64.73
K∗(1430)+ 2.17 7.89 -1.23 18.78
K∗(1430)− 2.50 7.81 -0.90 17.93
K∗(1430)0 -0.36 8.08 -6.73 59.36
K̄∗(1430)0 -0.44 8.94 -8.47 64.32
N.R. 0.62 5.23 -13.34 36.55
N.R. 0.23 5.54 -14.85 39.10
Resonance Pull Residue

µ σ µ σ
Signal yield 0.43 1.00 25.60 57.37
Continuum yield -0.13 0.97 -16.22 125.01
ACP continuum -0.03 1.08 -0.0005 0.02
D0 yield -0.06 1.00 -2.54 51.86
Category #1 -0.006 0.97 0.30 34.85
Category #2 -0.01 1.04 0.20 23.78
Category #3 0.05 0.98 5.44 71.42
Category #4 -0.23 1.14 -2.10 17.60
Category #5 -0.02 0.99 0.16 50.66
Category #6 -0.14 0.99 -18.23 141.45
Category #7 0.02 1.01 3.28 85.85

Table A.4: Full model Pure Toys. Pull and residue mean and σ for the amplitudes, phases and yields.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ 0.01 0.93 0.43 0.97
ρ(770)− 0.03 0.95 0.33 0.97
K∗(892)− -0.05 0.95 none none
K∗(892)0 -0.001 0.89 0.51 1.09
K̄∗(892)0 0.02 0.96 0.49 1.07
K∗(1430)+ -0.03 0.97 0.15 1.06
K∗(1430)− -0.01 0.96 -0.02 1.01
K∗(1430)0 -0.21 0.97 0.25 1.01
K̄∗(1430)0 -0.17 0.96 0.25 1.08
N.R. -0.39 1.00 0.13 0.99
N.R. -0.48 1.06 -0.05 1.09
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ 0.05 0.20 7.30 19.33
ρ(770)− 0.05 0.20 5.46 18.84
K∗(892)− 0.02 0.13 none none
K∗(892)0 0.03 0.15 13.06 26.81
K̄∗(892)0 0.04 0.16 13.31 27.85
K∗(1430)+ 1.27 5.76 1.43 11.68
K∗(1430)− 1.21 5.52 -0.40 11.96
K∗(1430)0 0.05 5.92 6.95 25.47
K̄∗(1430)0 0.32 5.92 6.55 28.14
N.R. -0.80 3.09 2.05 15.82
N.R. -1.03 3.09 -1.32 18.09

Table A.5: Signal only embedded fits. Pull and residue mean and σ for the amplitudes and phases.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.07 0.87 0.04 1.11
ρ(770)− -0.03 0.93 -0.06 0.98
K∗(892)− -0.11 0.95 none none
K∗(892)0 0.01 0.87 0.11 1.25
K̄∗(892)0 0.04 0.89 0.17 1.12
K∗(1430)+ 0.01 0.91 0.02 0.99
K∗(1430)− 0.05 0.86 -0.01 1.04
K∗(1430)0 -0.22 0.95 0.02 1.21
K̄∗(1430)0 -0.14 0.91 0.05 1.15
N.R. -0.07 0.97 -0.14 1.00
N.R. -0.09 0.92 -0.20 1.07
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ 0.06 0.28 -0.57 38.55
ρ(770)− 0.07 0.29 -3.44 32.74
K∗(892)− 0.02 0.19 none none
K∗(892)0 0.05 0.21 5.79 46.14
K̄∗(892)0 0.06 0.22 7.56 45.10
K∗(1430)+ 2.46 8.37 -0.76 16.74
K∗(1430)− 2.52 7.67 -0.74 17.80
K∗(1430)0 0.50 8.63 1.59 45.81
K̄∗(1430)0 1.12 8.63 2.92 43.55
N.R. 0.21 4.84 -4.43 31.20
N.R. 0.08 4.87 -5.69 29.29
Resonance Pull Residue

µ σ µ σ
Signal yield 0.32 0.99 18.03 52.64
Continuum yield -0.26 1.00 -24.37 94.27
ACP continuum 0.02 0.99 0.0003 0.01

Table A.6: Signal+continuum embedded fits. Pull and residue mean and σ for the amplitudes, phases
and yields.
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Resonance Pull Amplitude Pull Phase
µ σ µ σ

ρ(770)+ -0.11 1.04 0.10 1.15
ρ(770)− -0.06 0.99 0.02 1.05
K∗(892)− -0.11 0.91 none none
K∗(892)0 -0.01 0.92 0.21 1.31
K̄∗(892)0 0.04 0.96 0.14 1.18
K∗(1430)+ 0.05 0.97 0.04 1.06
K∗(1430)− 0.08 0.91 -0.006 0.99
K∗(1430)0 -0.31 1.08 0.13 1.31
K̄∗(1430)0 -0.24 1.04 0.04 1.24
N.R. -0.03 1.01 -0.28 1.27
N.R. -0.08 0.93 -0.27 1.16
Resonance Residue Amplitude Residue Phase

µ σ µ σ
ρ(770)+ 0.08 0.33 1.42 42.61
ρ(770)− 0.09 0.31 -1.17 39.16
K∗(892)− 0.03 0.18 none none
K∗(892)0 0.06 0.23 12.34 59.55
K̄∗(892)0 0.07 0.24 7.03 55.49
K∗(1430)+ 3.54 9.43 -0.49 18.84
K∗(1430)− 3.57 8.80 -0.97 17.89
K∗(1430)0 0.46 9.55 6.44 59.66
K̄∗(1430)0 1.14 9.94 1.82 56.92
N.R. 0.71 5.97 -9.88 42.64
N.R. 0.24 5.27 -7.15 36.21
Resonance Pull Residue

µ σ µ σ
Signal yield 0.58 0.98 33.47 56.19
Continuum yield 0.09 1.03 11.10 131.95
ACP continuum 0.06 0.97 0.0008 0.01
D0 yield 0.07 0.97 3.86 51.00
Category #1 -0.009 1.00 0.38 36.00
Category #2 0.02 1.04 1.15 23.59
Category #3 -0.06 1.02 -2.21 74.37
Category #4 -0.87 1.22 -11.40 16.29
Category #5 -0.02 1.03 0.03 52.57
Category #6 -0.32 1.01 -43.62 142.82
Category #7 0.11 1.00 9.76 85.92

Table A.7: Full model Embedded Fits. Pull and residue mean and σ for the amplitudes, phases and
yields.
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Figure A.1: Embedded Fits histograms for the full model fit model. The amplitude pull (left), residue
(middle) and standard deviation (right) histograms are presented.
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Figure A.2: Embedded Fits histograms for the full model fit model. The phase pull (left), residue
(middle) and standard (right) deviation histograms are presented.
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Figure A.3: Embedded Fits histograms for the full model fit model. The yields (part-1) pull (left),
residue (middle) and standard deviation (right) histograms are presented. From top to bottom: signal
yield, continuum yield, ACP , category #0 yield, category #1 yield.
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Figure A.4: Embedded Fits histograms for the full model fit model. The yields (part-2) pull (left),
residue (middle) and standard deviation (right) histograms are presented. From top to bottom: category
#2 yield, category #3 yield, category #4 yield, category #5 yield, category #7 yield, category #7 yield.
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A.2 Systematics

Parameters name nominal value variation

Yields of Bbackground labelled as in Table 4.8
(category #1) BBkg1Nb 726.0
(category #3) BBkg3Nb 593.0
(category #6) BBkg6Nb 1266.0
(category #7) BBkg7Nb 366.0

Yields of Bbackground labelled as in Table 4.8
(category #0, D̄0π+) AcpD0 -0.008 ±0.008

(category #1) AcpBBkg1 0.00 ±0.2
(category #2) AcpBBkg2 0.00 ±0.2
(category #3) AcpBBkg3 0.00 ±0.5
(category #4) AcpBBkg4 0.00 ±0.5
(category #5) AcpBBkg5 0.00 ±0.2
(category #6) AcpBBkg6 0.00 ±0.5
(category #7) AcpBBkg7 0.00 ±0.2

Average SCF fraction
fSCF FracSCF 0.1948 ±0.05

Slopes with mK0
S

π+ of the coefficients of the ∆E′ PDF

DEgfrGSlope -1.80242e-03 ±5.75843e− 04
DEgmeanGSlope 6.49573e-03 ±4.11395e− 04
DEgwidthGSlope -2.39242e-04 ±5.10273e− 04
DEgmeanBGSlope -5.69833e-03 ±1.58900e− 04

DEgwidthBGLSlope -2.22262e-03 ±2.01998e− 04
DEgwidthBGRSlope 1.54990e-03 ±1.21750e− 04

Bmassgmean1 5.27629e+00 ±2.14776e− 04
Bmassgwidth1 3.32923e-03 ±6.28923e− 05

Bmassgfrac 1.92333e-01 ±1.58069e− 02

Table A.8: List of the fixed parameters p of the nominal fit (part-1), their nominal values and their
excursions ±δp used to estimate the systematics.
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Parameters name nominal value variation

Signal NN ′; parameter names starting with Sig (Comb) refer to the TM(SCF) PDFs
SigNnOutgmeanBG1 3.55133e-01 ±1.18852e− 01
SigNnOutgwidth1L 1.31586e+00 ±3.76766e− 02
SigNnOutgwidth1R 2.04224e+00 ±5.78780e− 02
SigNnOutgmeanBG2 3.33897e+00 ±1.77503e− 02
SigNnOutgwidth2L 2.89873e+00 ±1.45264e− 02
SigNnOutgwidth2R 5.23995e-01 ±1.15117e− 02

SigNnOutgmean 2.03401e+00 ±3.62319e− 02
SigNnOutgwidth 1.16952e+00 ±2.33948e− 02
SigNnOutgfrac1 2.78977e-01 ±2.40856e− 02
SigNnOutgfrac2 7.02602e-01 ±6.66352e− 03

CombNnOutgmeanBG1 1.62968e+00 ±5.31113e− 02
CombNnOutgwidth1L 1.80378e+00 ±4.74981e− 02
CombNnOutgwidth1R 1.27862e+00 ±2.50272e− 02
CombNnOutgmeanBG2 3.22324e+00 ±1.08591e− 01
CombNnOutgwidth2L 3.22653e+00 ±9.05983e− 02
CombNnOutgwidth2R 4.87662e-01 ±6.46050e− 02

CombNnOutgfrac1 7.12075e-01 ±3.75946e− 02
Parameters of the PDF of NN ′ in the continuum.
ContNnOutgmeanBG1 -1.19654e+00 ±1.10357e + 00

ContNnOutgmeanBG1Slope 1.23977e-01 ±1.85078e + 00
ContNnOutgmeanBG1Sq 6.07458e-02 ±6.47811e− 01

ContNnOutgwidth1L 1.36699e+00 ±1.10357e + 00
ContNnOutgwidth1LSlope 1.25267e-02 ±1.85078e + 00
ContNnOutgwidth1LSq 5.86307e-02 ±6.47811e− 01
ContNnOutgwidth1R 1.14607e+00 ±1.10357e + 00

ContNnOutgwidth1RSlope -3.07741e-01 ±1.85078e + 00
ContNnOutgwidth1RSq 1.91450e-01 ±6.47811e− 01
ContNnOutgmeanBG2 3.68799e-02 ±1.10357e + 00

ContNnOutgmeanBG2Slope 2.22668e-01 ±1.85078e + 00
ContNnOutgmeanBG2Sq 1.44596e-01 ±6.47811e− 01

ContNnOutgwidth2L 2.62563e+00 ±3.33333e− 01
ContNnOutgwidth2RSlope -6.12642e-02 ±1.85078e + 00
ContNnOutgwidth2RSq -1.69518e-03 ±6.47811e− 01

ContNnOutgfrac1 5.44574e-01 ±3.33333e− 01

Table A.9: List of the fixed parameters p of the nominal fit (part-2), their nominal values and their
excursions ±δp used to estimate the systematics.
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Parameters name nominal value variation

Parameters for the K0
Sπ0 invariant mass for the B+ → D̄0π+ TM events.

DMassgmean1 6.49843e-01 ±7.28453e− 01
DMassgmean2 6.49843e-01 ±7.28453e− 01
DMassgwidth1 3.42583e-03 ±1.18501e + 00
DMassgwidth2 1.11956e-03 ±1.18501e + 00
DMassgfrac1 2.47196e-01 ±3.53553e− 01

DMassgmean1Slope 7.03222e-04 ±1.58006e + 00
DMassgmean2Slope 7.03222e-04 ±1.58006e + 00
DMassgwidth1Slope -1.53522e-02 ±6.82303e + 00
DMassgwidth2Slope 9.15555e-05 ±6.82303e + 00
DMassgwidth1Sq 2.75490e-02 ±8.19038e + 00
DMassgwidth2Sq 2.31165e-03 ±8.19038e + 00

Coefficients of the TM B+ → D̄0π+ helicity polynomial (Section 4.7.1).
A1 130.279
A2 -536.806
A3 4722.037
A4 -11710.63
A5 10875.29
A6 -3480.17

Average SCF fraction for B+ → D̄0π+ events.
combFrac0 0.1094

Parameters for the K0
Sπ0 invariant mass for the B+ → D̄0π+ SCF events.

DMassSCFgmean1 6.50234e-01 ±1.26719e + 00
DMassSCFgmean2 6.79801e-01 ±1.03194e + 00
DMassSCFgwidth1 7.39490e-03 ±1.04269e + 00
DMassSCFgwidth2 8.60310e-02 ±1.03194e + 00
DMassSCFgfrac1 4.63197e-01 ±3.16228e− 01

DMassSCFgmean1Slope 7.06864e-03 ±9.74463e + 00
DMassSCFgmean2Slope -1.13098e-01 ±4.810e + 00
DMassSCFgwidth1Slope -5.45934e-02 ±4.66061e + 00
DMassSCFgwidth2Slope -3.02707e-01 ±4.81080e + 00

DMassSCFgmean1Sq -5.60786e-02 ±2.20204e + 01
DMassSCFgmean2Sq 1.06191e-01 ±4.67882e + 00
DMassSCFgwidth1Sq 1.04101e-01 ±4.28565e + 00
DMassSCFgwidth2Sq 2.74902e-01 ±4.67882e + 00
DMassSCFgmean1Cub 1.02391e-01 ±1.46926e + 01

Table A.10: List of the fixed parameters p of the nominal fit (part-3), their nominal values and their
excusions ±δp used to estimate the systematics.
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Mode ∆LL
Removals

K∗+(892) +27.4
K∗0(892) +18.9
ρ(770)+ +16.5

K∗+(1430) +82.8
K∗0(1430) +51.8
N.R. +19.0

Additions
ρ+(1450) −9.8
ρ+(1700) −11.8
K∗+(1680) −7.7
K∗0(1680) −1.8
K∗+

2 (1430) −6.8
K∗0

2 (1430) −6.8

Table A.11: Change in the negative loglikelihood when one component of the nominal fit is removed or
when an extra component is added. We recall that NLLfit = −135785.8
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Resonance FF ACP

adding ρ(1450)+ : minNll is −137585.1
k-892 0.0745525 ± 0.0124305 -0.359228 ± 0.245006
k-892z 0.0609055 ± 0.0203565 -0.140965 ± 0.320509
non-res 0.0778137 ± 0.0233315 -0.732541 ± 0.289234
rho-770 0.132499 ± 0.0406047 0.268534 ± 0.30139

k0st-1430 0.275454 ± 0.0411021 0.550388 ± 0.131778
k0st-1430z 0.319624 ± 0.0373398 0.0491923 ± 0.147859
rho-1450 0.0810019 ± 0.0377285 -0.305867 ± 0.490625

adding ρ(1700)+ : minNll is −137587.1
k-892 0.0728034 ± 0.0174092 -0.383141 ± 0.356828
k-892z 0.061489 ± 0.0323944 -0.148309 ± 0.391245
non-res 0.0743962 ± 0.0324914 -0.708228 ± 0.359202
rho-770 0.136547 ± 0.0542734 0.0909656 ± 0.301542

k0st-1430 0.280208 ± 0.0783822 0.538025 ± 0.138071
k0st-1430z 0.319863 ± 0.0785238 0.0496117 ± 0.152594
rho-1700 0.067979 ± 0.0360018 -0.143528 ± 0.493515

adding K∗(1680)+ : minNll is −137583.0
k-892 0.0890521 ± 0.0153188 -0.346406 ± 0.252777
k-892z 0.0741537 ± 0.0284257 -0.154479 ± 0.331228
non-res 0.0499781 ± 0.0247612 -0.607742 ± 0.430524
rho-770 0.128397 ± 0.0403876 -0.0530455 ± 0.264701

k0st-1430 0.285705 ± 0.0593621 0.269263 ± 0.196945
k0st-1430z 0.312346 ± 0.0617818 0.0189477 ± 0.165571
kst-1680 0.0593835 ± 0.0268124 -0.210072 ± 0.421273

adding K∗(1680)0 : minNll is −137577.1
k-892 0.0735715 ± 0.0143464 -0.408578 ± 0.297719
k-892z 0.0605907 ± 0.0277182 -0.166129 ± 0.386703
non-res 0.0981159 ± 0.0523025 -0.571336 ± 0.36065
rho-770 0.132403 ± 0.0486726 -0.161635 ± 0.278476

k0st-1430 0.306253 ± 0.0748795 0.480442 ± 0.168709
k0st-1430z 0.339784 ± 0.0801696 0.0672542 ± 0.149685
kst-1680z 0.0169609 ± 0.0197191 0.098054 ± 1.21898

adding K∗
2 (1430)+ : minNll is −137582.1

k-892 0.0671762 ± 0.0129164 -0.350027 ± 0.278946
k-892z 0.0815831 ± 0.0240119 -0.279618 ± 0.303606
non-res 0.083103 ± 0.034225 -0.50128 ± 0.441163
rho-770 0.120897 ± 0.0297025 -0.12474 ± 0.277773

k0st-1430 0.394284 ± 0.0424971 0.121373 ± 0.118355
k0st-1430z 0.255485 ± 0.0377351 0.4414 ± 0.151939
k2st-1430 0.0453833 ± 0.0255308 -0.152192 ± 0.529575

adding K∗
2 (1430)0 : minNll is −137582.1

k-892 0.0758547 ± 0.0135693 -0.41464 ± 0.275023
k-892z 0.0663721 ± 0.0271823 -0.183948 ± 0.33073
non-res 0.150813 ± 0.0577377 -0.593571 ± 0.295639
rho-770 0.131345 ± 0.0467461 -0.15955 ± 0.257454

k0st-1430 0.316638 ± 0.073282 0.449848 ± 0.180037
k0st-1430z 0.236389 ± 0.0798732 0.421175 ± 0.260527
k2st-1430z 0.0548612 ± 0.028942 -0.313114 ± 0.481007

Table A.12: Variants of the nominal fit including resonances in the nominal model. The fractions do not
sum to 100% because of interference.
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