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ABSTRACT 

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code 

for proteins) that regulate the expression of target genes. MiRNAs can act as tumor 

suppressor genes or oncogenes in human cancers. Moreover, a large fraction of genomic 

ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is 

altered in human cancers. Bioinformatics studies are emerging as important tools to 

identify associations between miRNAs/ncRNAs and CAGRs (Cancer Associated 

Genomic Regions). ncRNA profiling, the use of highly parallel devices like microarrays for 

expression, public resources like mapping, expression, functional databases, and 

prediction algorithms have allowed the identification of specific signatures associated with 

diagnosis, prognosis and response to treatment of human tumors. 
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SUMMARY 

The massive production of biological data by means of highly parallel devices like 

microarrays for gene expression has paved the way to new possible approaches in 

molecular genetics. Among them the possibility of inferring biological answers by 

querying large sets of expression data. Based on this principle was implemented TOM, a 

web-based resource for the efficient extraction of candidate genes for hereditary 

diseases. The algorithm uses the information stored in public resources, including 

mapping, expression and functional databases to select one or more candidate genes. 

This approach allows the geneticist to bypass the costly and time consuming tracing of 

genetic markers through entire families and might improve the chance of identifying 

disease genes, particularly for rare diseases. Results were obtained on known 

benchmark and on hereditary predisposition to familial thyroid cancer.  

After TOM project, the efforts were focused on miRNAs study. MiRNAs are small, 

ncRNAs that can contribute to cancer development and progression by acting as 

oncogenes or tumor suppressor genes. MiRNAs and UCRs are frequently located at 

fragile sites and genomic regions affected in various cancers, named cancer associated 

genomic regions (CAGRs). Bionformatics studies are important tools to identify 

associations and correlations between miRNAs/ncRNAs and CAGRs. An algorithm was 

implemented to calculate statistically significant Spearman correlations between UCRs 

and miRNAs and it supported biological experiments proving that certain UCRs whose 

expression may be regulated by miRNAs abnormally expressed in human chronic 

lymphocytic leukaemia (CLL).  

Moreover, miRNAs microarray profiling was performed to study and support the 

hypothesis of a possible miRNA hypermethylaton profile characteristic of human 

metastasis. A pharmacological and genomic approach was used to reveal aberrant 

epigenetic silencing program by treating lymph node metastatic cancer cells with a DNA 

demethylating agent followed by hybridization to an expression microarray. Among the 

miRNAs that were reactivated upon drug treatment, miR-148a, miR-34b/c, and miR-9 

were found to undergo specific hypermethylation –associated silencing in cancer cells 

compared with normal tissues. The findings indicate that DNA methylation-associated 

silencing of tumor suppressor miRNAs contributes to the development of human cancer 

metastasis. The miRNAs microarray profiling contributed to support those results. 
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INTRODUCTION 

Ceaseless advances in biotechnology, along with the growing experience cumulated 

by researchers in recent years, has allowed a continuous and faster blooming of the 

number of genomes being sequenced and, most importantly, annotated. The consequent 

necessities of storing, retrieving, sharing and, in particular, understanding this vast 

amount of data led to the creation of genome databases, an open source of genetic 

information for scientists worldwide. Whereas the genomic era opened the doors to the 

very existence of such large and comprehensive (omic) data repositories, the strongest 

urgency of the post-genomic era is now to interrelate various sources of biomedical 

information. Several parallel efforts are currently underway to achieve a better 

understanding of the human genome. These actions are turned to the extraction of high-

throughput information from global approaches such as the International HapMap Project 

(The International HapMap Consortium, 2005) for identification of single nucleotide 

polymorphisms or the prosecution of the ENCODE [Encyclopedia Of DNA Elements 

(ENCODE Consortium, 2004)] for the identification of all functional elements in the 

genome sequence. Therefore the integration of various existing and upcoming efforts is 

going to be a key element for the full comprehension of the cellular machinery. We 

focused on two of the many fields that will strongly benefit from such an integration: the 

study of hereditary diseases and the study of cancer. Often more than one gene is 

involved in life threatening misfunctioning of cellular functions. To characterize such 

diseases the identification of all the responsible genes is eventually a crucial requirement. 

This process usually involves costly, time consuming and difficult tracing of large family 

lineages to follow the line of transmission of genes and thus to define the linkage areas 

where genes responsible for the disease could be located. Computational technologies 

can appropriately be employed to integrate available data and can, in principle, be used 

to save on the expensive process of candidate genes selection. 

Furthermore, with the advent of high-throughput technologies for the global 

measurement of miRNAs, these post-transcriptional regulatory molecules are emerging 

as a new class of cancer biomarkers. Numerous studies have explored associations 

between miRNAs and cancer features (for a view see Jeffrey 2008). 

Discovered in Caenorhabditis elegans in 1993 and formally named in 2001 (Ruvkun 

2001), miRNAs have been identified in every plant and animal species examined. They 

are a class of noncoding RNAs, 18–25 nucleotides in length, that plays key roles in the 

regulation of fundamental cellular processes such as differentiation, proliferation, 
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apoptosis and metabolic homeostasis. The functions and targets of most miRNAs await 

discovery. However, specific miRNAs show expression variation across different stages 

of organism development, in tissue-specific cell patterning and asymmetry during 

organogenesis, and in oncogenesis (Garzon et al., 2006). Figure 1 shows the miRNAs 

biogenesis. 

 

Figure 1. In the nucleus, a primary miRNA (pri-miRNA) is transcribed from DNA by the RNA 

polymerase II (Pol II) or Pol III enzyme. The long pri-miRNA transcript( 0.5–7kb) folds into a single or 

a cluster of multiple hairpin structure(s). The pri-miRNA is then cleaved by a microprocessor complex 

composed of the enzyme Drosha, a nuclear RNase III and the RNA binding protein cofactor Pasha 

(also known as DGCR8). The shorter stem-loop structure ( 60–70 nucleotides), now termed 

precursor miRNA (pre-miRNA), is transported across the nuclear membrane by Exportin 5. In the 

cytoplasm, the pre-miRNA is further processed by a second RNase enzyme, Dicer. The hairpin loop is 

cropped off the double-stranded RNA, leaving a short miRNA duplex that is unwound by a helicase, 

cleaved into a mature miRNA ( 18–25 nucleotides), and incorporated into an RNA-induced silencing 

complex (RISC), with an Argonaute protein as the catalytic component. The miRNA-RISC complex 

negatively regulates post-transcriptional gene expression by hybridizing to complimentary sequences 

in the 3' untranslated region (UTR) of a target mRNA and inhibiting protein translation or degrading 

the mRNA itself. (Figure from Jeffrey SS, Nat Biotechnol. 26:400-401, (2008)) 

Here I present several algorithms and web applications (TOM, Fun&Co and GebbaLab), 

implemented by me and my collaborators, to extract knowledge related to hereditary 

diseases and cancer, from public microarray messengerRNA and annotation data sets, 

and miRNAs microarray cancer studies. I report also several works which into my 

statistical analysis and bioinformatics procedures helped to quantify, confirm and 

visualize hypotheses and results, such as: improve the quality of DNA microarrays, 

ultraconserved regions encoding ncRNAs are altered in human leukemias and 

carcinomas, miRNA DNA methylation signature for human cancer metastasis and 

miRNAs involved in colorectal cancer (CRC). 
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DNA microarrays 

A DNA microarray is a multiplex technology used in molecular biology and in 

medicine. It consists of an arrayed series of thousands of microscopic spots of DNA 

oligonucleotides, called features, each containing picomoles of a specific DNA sequence. 

This can be a short section of a gene or other DNA element that are used as probes to 

hybridize a cDNA or cRNA sample (called target) under high-stringency conditions. 

Probe-target hybridization is usually detected and quantified by fluorescence-based 

detection of fluorophore-labeled targets to determine relative abundance of nucleic acid 

sequences in the target. 

In standard microarrays, the probes are attached to a solid surface by a covalent bond to 

a chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide or others). The 

solid surface can be glass or a silicon chip, in which case they are commonly known as 

gene chip. Other microarray platforms, such as Illumina, use microscopic beads, instead 

of the large solid support. DNA arrays are different from other types of microarray only in 

that they either measure DNA or use DNA as part of its detection system. 

DNA microarrays can be used to measure changes in expression levels, to detect single 

nucleotide polymorphisms (SNPs), in genotyping or in resquencing mutant genomes. 

Microarrays also differ in fabrication, workings, accuracy, efficiency, and cost. Additional 

factors for microarray experiments are the experimental design and the methods of 

analyzing the data. Arrays of DNA can be spatially arranged, as in the commonly known 

gene chip (also called genome chip, DNA chip or gene array), or can be specific DNA 

sequences labelled such that they can be independently identified in solution. The 

traditional solid-phase array is a collection of microscopic DNA spots attached to a solid 

surface, such as glass, plastic or silicon biochip. The affixed DNA segments are known as 

probes . Thousands of them can be placed in known locations on a single DNA 

microarray. 

DNA microarrays can be used to detect DNA (as in comparative genomic 

hybridization), or detect RNA (most commonly as cDNA after reverse transcription) that 

may or may not be translated into proteins. The process of measuring gene expression 

via cDNA is called expression analysis or expression profiling. 

Since an array can contain tens of thousands of probes, a microarray experiment can 

accomplish that many genetic tests in parallel. Therefore arrays have dramatically 

accelerated many types of investigation (Table 1). 
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Table 1 Microarray Applications 

Technology or 

Application 

Synopsis 

Gene expression 
profiling 

In an mRNA or gene expression profiling experiment the expression 
levels of thousands of genes are simultaneously monitored to study the 
effects of certain treatments, diseases, and developmental stages on 
gene expression. For example, microarray-based gene expression 
profiling can be used to identify genes whose expression is changed in 
response to pathogens or other organisms by comparing gene 
expression in infected to that in uninfected cells or tissues. 

Comparative genomic 
hybridization 

Assessing genome content in different cells or closely related 
organisms. 

Chromatin 
immunoprecipitation 
on Chip 

DNA sequences bound to a particular protein can be isolated by 
immunoprecipitating that protein (ChIP), these fragments can be then 
hybridized to a microarray (such as a tiling array) allowing the 
determination of protein binding site occupancy throughout the genome. 
Example protein to immunoprecipitate are histone modifications 
(H3K27me3, H3K4me2, H3K9me3, etc), Polycomb-group protein 
(PRC2:Suz12, PRC1:YY1) and trithorax-group protein (Ash1) to study 
the epigenetic landscape or RNA Polymerase II to study the transcription 
lanscape. 

SNP detection Identifying single nucleotide polymorphism among alleles within or 
between populations. Several applications of microarrays make use of 
SNP detection, including Genotyping, forensic analysis, measuring 
predisposition to disease, identifying drug-candidates, evaluating 
germline mutations in individuals or somatic mutations in cancers, 
assessing loss of heterozygosity, or genetic linkage analysis. 

Alternative splicing 
detection 

An exon junction array design uses probes specific to the expected 
or potential splice sites of predicted exons for a gene. It is of 
intermediate density, or coverage, to a typical gene expression array 
(with 1-3 probes per gene) and a genomic tiling array (with hundreds or 
thousands of probes per gene). It is used to assay the expression of 
alternative splice forms of a gene. Exon arrays have a different design, 
employing probes designed to detect each individual exon for known or 
predicted genes, and can be used for detecting different splicing 
isoforms. 

Tiling array Genome tiling arrays consist of overlapping probes designed to 
densely represent a genomic region of interest, sometimes as large as 
an entire human chromosome. The purpose is to empirically detect 
expression of transcripts or alternatively splice forms which may not 
have been previously known or predicted. 

 

 



 5

DNA microarray- two colors 

DNA microarrays allow for rapid measurement and visualisation of differential 

expression between genes at the whole genome scale. The major steps involved in this 

process are: 

i. Microarray production process 

ii. Target preparation 

iii. Hybridization 

iv. Slide scanning 

v. Data analysis 

vi. Expression profile clustering 

Microarray production process 

DNA fragments amplified by PCR technique are spotted on a microscopic glass slide 

coated with polylysine prior to spotting process. The polylysine coating goal is to ensure 

DNA fixation through electrostatic interactions. Slide preparation is achieved by blocking 

the polylysine not fixed to DNA in order to avoid target binding. Prior to hybridisation, 

DNA is denatured to obtained a single strand DNA on the microarray, this will allow the 

probe to bind to the complementary strand from the target.  

Target preparation 

RNA are extracted from cultures/samples from which we want to compare expression 

level. Messengers RNA are then transformed in cDNA by reverse transcription. On this 

stage, DNA from the first culture with a green dye, whereas DNA from the second culture 

is labelled with a red dye. 

Hybridisation 

Green labelled cDNA and red labelled ones are mixed together (call the target) and 

put on the matrix of spotted single strand DNA (call the probe). The chip is then incubated 

one night at 60 degrees. At this temperature, a DNA strand that encounter the 

complementary strand and match together to create a double strand DNA. The 

fluorescent DNA will then hybridise on the spotted ones (Figure 2). 
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Figure 2 Hybridization. (Figure from http://transcriptome.ens.fr/sgdb/presentation/principle.php). 

Slide scanning 

A laser excites each spot and the fluorescent emission gather through a photo-

multiplicator (PMT) coupled to a confocal microscope. We obtained two images where 

grey scales represent fluorescent intensities read. If we replace grey scales by green 

scales for the first image and red scales for the second one, we obtained by 

superimposing the two images one image composed of spots going from green ones 

(where only DNA from the first condition is fixed) to red (where only DNA from the second 

condition is fixed) passing through the yellow colour (where DNA from the two conditions 

are fixed on equal amount).  

Data analysis 

We have now two microarray images from which we have to calculate the number of 

DNA molecules in each experimental condition. To do so, we measure the signal amount 

in the green dye emission wavelength and the signal amount in the red dye emission 

wavelength. Then we normalise these amount according to various parameters (yeast 

amount in each culture condition, emission power of each dye, …). We suppose that the 

amount of fluorescent DNA fixed is proportional to the mRNA amount present in each cell 

at the beginning and we calculate the red/green fluorescence ratio. If this ratio is greater 

than 1 (red on the image), the gene expression is greater in the second experimental 

condition, if this ration is smaller than 1 (green on the image), the gene expression is 

greater in the first condition as shown in Figure 3. 
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Figure 3 Two Color microarray, scatter plot of differentially expressed genes. (Figure from 

http://transcriptome.ens.fr/sgdb/presentation/principle.php). 

Expression profile clustering 

Then we can try to gather genes that share the same expression profile on several 

experiments. This clustering can be done gradually as for phylogenetic analysis, which 

consist in calculating similarity criteria between expression profiles and gather the most 

similar ones. We can also use more complex techniques as principal component analysis 

or neuronal networks. 

DNA microarrays – one color - Affymetrix© 

The GeneChip high-density oligonucleotide arrays are fabricated by using in-situ 

synthesis of short oligonucleotide sequences on a small glass chip using light directed 

synthesis. This technique allows for the precise construction of a highly ordered matrix of 

DNA oligomers on the chip. 

Design overview 

In the GeneChip system a known gene or potentially expressed sequence is 

represented on the chip by 11-20 unique oligomeric probes, each 25 bases in length. The 

group of probes corresponding to a given gene or small group of highly similar genes is 

known as the probe set and generally spans a region of about 600 bases, known as the 

target sequence. Many copies of each oligomer are synthesized in discrete features (or 

cells) on the GeneChip array. In addition, for each oligomer on the array there is a 

matched oligomer, synthesized in an adjacent cell that is identical with the exception of a 
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mismatched base at the central position (i.e. base 13). These are designated Perfect 

Match (PM) and Mismatch (MM) probes, respectively. The MM probes serves as a control 

for non-specific hybridization. 

GeneChip Array Fabrication 

Probe arrays are manufactured by Affymetrix's proprietary, light-directed chemical 

synthesis process, which combines solid-phase chemical synthesis with photolithographic 

fabrication techniques employed in the semiconductor industry. Using a series of 

photolithographic masks to define chip exposure sites, followed by specific chemical 

synthesis steps, the process constructs high-density arrays of oligonucleotides, with each 

probe in a predefined position in the array. Multiple probe arrays are synthesized 

simultaneously on a large glass wafer. This parallel process enhances reproducibility and 

helps achieve economies of scale. The wafers are then diced, and individual probe arrays 

are packaged in injection-molded plastic cartridges, which protect them from the 

environment and serve as chambers for hybridization. 

Data Overview 

Affymetrix GeneChip experiments are managed using GCOS. GCOS interfaces with 

equipment to run a probe array experiment and is also used to generate preliminary 

analysis data from an experiment. The next section covers the basics of files generated by 

GCOS and also explains some of the most widely used variables generated by GCOS. 

MAS File Types 

The next section covers the basics of files generated by GCOS and also explains 

some of the most widely used variables generated by GCOS. 

• Experiment File *.EXP: This file contains the parameters of the experiment such as 

Probe Array Type, Experiment Name, Equipment parameters, Sample Description, 

and others. This file is not used for analysis, but is required to open other GCOS files 

for the designated chip experiment. 

• Image Data File *.DAT: This is an image file generated by the scanner from the 

Probe Array after processing on the Fluidics Station. This file can be viewed in GCOS 

to assess the quality of scanning event or exported as a *.TIFF image. It is used in 

GCOS to generate the *.CEL file. 

• Cell Intensity File *.CEL: This binary file is the result of low level analysis performed 

from the *.DAT image file. It is exported from GCOS and is often used as the base file 
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for further analysis. 

• Probe Array Results File *.CHP: This binary file is a gene level summarization of the 

CEL file using the Affymetrix’ MAS 5.0 or PLIER algorithms. It is exported from GCOS. 

It can also be used as the base file for further analysis; however one needs to know 

the settings of key parameters (alpha1, alpha2, tau, target signal etc.). There are 

many other algorithms that have been adopted by the community other than MAS 5.0 

and PLIER, hence the reason why CEL files are often preferred over CHP files by 

Investigators for analysis.  

• Report File *.RPT: The report file is generated from the chip file. This expression 

report summarizes information about expression analysis settings and probe set 

hybridization intensity data. 

• MAGE-ML *.XML: This file contains information related the microarray experiment 

(one per experiment). This information can include biologically relevant information, 

array details, fluidics protocol details and the analysis settings. It also records the file 

hierarchy of an experiment.  

GCOS uses a statistical algorithm to calculate signals and make significance calls for 

the data: MAS (MAS 5.0 computes local background in each of 16 squares, and then 

subtracts a weighted combination of these background estimates from each probe 

intensity). 

MAS Analysis Metrics 

• Signal: a measure of the abundance of transcript 

• Detection: the call that indicates whether the transcript is detected (P present), 

undetected ( A, absent), or at the limit of detection (M, marginal). 

• Detection p-value: p-value that indicates the significance of the detection call. 

• Signal Log Ratio: the change in expression level of a transcript between a 

baseline and an experiment array. This change is expressed as the log2 ratio.  

Each probe set on a GeneChip array has a unique name known as the Probe set ID.  

Affymetrix has upgraded their MicroArray Suite (MAS) software several times. MAS 

4.0 was the standard until January 2002 and is still cited in published papers. MAS 4 

calculates a weighted average of the probe-pair differences (PM – MM) for each probe 

pair representing a gene. MAS 5.0 improves in two important ways. First the intensities 

are transformed to a logarithmic scale before the average is taken; this equalizes the 
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contribution of different probes. Secondly an estimate of background based on MM 

replaces MM itself in the difference PM-MM; this estimate is itself a weighted average of 

log probe pair differences: log(PMj/MMj).  

Normalization 

Biologists have long experience coping with systematic variation between 

experimental conditions (technical variation) that is unrelated to the biological 

differences. Normalization is the attempt to compensate for systematic technical 

differences between chips, to see more clearly the systematic biological differences 

between samples. For example, differences in treatment of two samples, especially in 

labelling and in hybridization, bias the relative measures on any two chips.  

Normalization by Scaling and its Limitations 

The simplest approach to normalizing Affymetrix data is to re-scale each chip in an 

experiment to equalize the average (or total) signal intensity across all chips. The 

reasoning behind this is that there should be with equal weights of RNA for all the 

samples; if the sizes of the RNA molecules are comparable, the number of RNA 

molecules should also be the roughly the same in each sample. Consequently, nearly the 

same number of labeled molecules from each sample should hybridise to the arrays and, 

if all other conditions were equal, the total hybridisation intensities summed over all 

elements in the arrays should be the same for each sample.  

To do better, we examine in detail the relationships among replicate chips (chips 

hybridized to the same sample). Figure 4a shows a scatter plot of probes from one pair 

of chips; there is clearly a non-linear relation among probes. Figure 4b shows plots of 

probe distributions from a number of replicate chips on a log scale; these distributions 

have very different shapes; on a log scale, applying a scaling transform to a chip, shifts 

its distribution curve to the right or left, but doesn't change its shape. 
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Figure 4. a) Plot of probe signals from two Affymetrix chips hybridized with identical mRNA samples. 

The black straight line represents equality, while the blue curve is a spline fit through the scatter plot. 

B) Density curves of global signal intensities. The plots show the overall signal density distribution 

of all probe sets represented on the HG-U133 Plus 2.0 microarray. Data from each microarray 

analysis is represented by a separate line. The plot is useful to visualize whether there are 

differences in the overall signal distributions of the experiments. (Figure from 

http://www.bea.ki.se/staff/reimers/Web.Pages/Affymetrix.Normalization.htm). 

Quantile Normalization  

Is a non-parametric procedure normalizing to a synthetic chip (Bolstad et al., 2003). It 

is a kind of normalization that works across arrays as well as within arrays. It turns out 

that quantile normalization works quite well at reducing variance between arrays, while 

compensating the intensity-dependent dye bias, as well as does lowess 

normalization.This method assumes that the distribution of gene abundances is nearly 

the same in all samples. The pooled distribution of probes on all chips are taken. Then to 

normalize each chip the algorithm compute for each value, the quantile of that value in 

the distribution of probe intensities; then it transform the original value to that quantile's 

value on the reference chip. In a formula, the transform is 

xnorm = Fi
-1(Fref(x)) , 

where Fi is the distribution function of chip i, and Fref is the distribution function of the 

reference chip. 
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Figure 5. Schematic representation of quantile normalization: the value x, which is the α-th quantile 

of all probes on chip 1, is mapped to the value y, which is the α quantile of the reference distribution 

F2. (Figure from http://www.bea.ki.se/staff/reimers/Web.Pages/Affymetrix.Normalization.htm). 

 

Proportional Variance – RMA (Robust Multichip Average) 

This is largely the work of Terry Speed's group at Berkeley, especially Ben Bolstad, 

and Rafael Irizarry (Irizarry et al., 2003). They work only with PM values, and ignore MM 

entirely. They take a log transform of equation () and find:  

 

With errors proportional to intensity in the original scale, the errors on the log scale 

have constant variance. After background subtraction and normalization they fit:  

 

where nlog is their terminology for 'normalize and then take logarithm'. They fit this 

model by iteratively re-weighted least squares, or by median polish. Code is available in 

the affy package on BioConductor, together with quantile normalization 

(http://www.bioconductor.org/packages/bioc/).  
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Figure 6. Raw Data Box Plot (left), the same intensity box plot using normalized data (right). The 

normalization remove effects seen in large proportions of the data (in this case a time effect is 

obvious) while still preserving effects seen in small proportions of the data. (Figure from 

http://bioinf.wehi.edu.au/affylmGUI/R/library/affylmGUI/doc/estrogen/estrogen.html). 

GCRMA 

Another proposed background correction method is GC-RMA (Wu et al., 2003). This 

method is based upon sequence information, such as GC content, for each probe and 

stochastic models for binding affinities. GC-RMA is a modified version of RMA that models 

intensity of probe level data as a function of GC-content. We expect to see higher intensity 

values for probes that are GC rich due to increased binding.  

Exploratory Analysis 

Pattern-Finding 

Exploratory analysis aims to find patterns in the data that aren’t predicted by the 

experimenter’s current knowledge or pre-conceptions. Some typical goals are to identify 

groups of genes expression patterns across samples are closely related; or to find 

unknown subgroups among samples. A useful first step in all analyses is to identify 

outliers among samples – those that appear suspiciously far from others in their group. 

To address these questions, researchers have turned to methods such as cluster 

analysis, and principal components analysis. 

Clustering 

Suppose that we want to find groups of similar genes or similar samples, how do we 

go about it? Clustering depends on the idea that differences between gene expression 
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profiles are like distances; however the user must make choices to compute a single 

measure of distance from many individual differences. Different procedures emphasize 

different types of similarities, and give different resulting clusters. Four choices we have to 

make are: 

i. what scale to use: original scale, log scale, or another transform,  

ii. whether to use all genes or to make a selection of genes,  

iii. what metric (distance measure) to use to combine the scaled values of the 

selected genes,  

iv. what clustering algorithm to use.  

Scale  

Differences measured on the linear scale will be strongly influenced by the one 

hundred or so highly expressed genes, and only moderately affected by the hundreds of 

moderate abundance genes; the thousands of low abundance genes will contribute little. 

Often the high-abundance genes are 'housekeeping' genes; these may or may not be 

diagnostic for the kinds of differences being sought. On the other hand, the log scale will 

amplify the noise among genes with low expression levels. If low-abundance genes are 

included then they should be down-weighted. The most useful measure of a single gene 

difference is the difference between two samples, relative to that gene's variability within 

experimental groups: this is like a t-score for difference between two individuals.  

Gene Selection 

It would be wise not to place much emphasis on genes whose values are uncertain. 

These are usually those with low signals in relation to noise, or which fail spot-level 

quality control. If the estimation software provides a measure of confidence in each gene 

estimate, this can be used to weight the contribution to distance of that gene overall. It's 

not wise to simply omit (that is, set to 0) distances which are not known accurately, but it 

is wise to down-weight relative distances if several are probably in error. A simple general 

rule is that genes whose signal falls within the background noise range are probably 

contributing just noise to your clustering (and any other global procedure); discard them. 

Metrics 

Usually, cluster programs give us a menu of distance measures: Euclidean, 

Manhattan distances, and some relational measures: correlation, and sometimes relative 

distance, and mutual information. The names describe how differences are combined: 
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Euclidean is straight-line distance: (root of sum of squares, as in geometry), Manhattan is 

sum of linear distances (like navigating in Manhattan). The correlation distance measure 

is actually 1-r, where r is the correlation coefficient. Probably a more useful version is 1 – 

|r|; negative correlation is as informative as positive correlation. We do get different 

results depending on the algorithm we use, as shown below (Figure 7) for a study with 10 

samples: two normal samples and two groups of tumor samples. 

 

Figure 7 Clustering of the same data set using four different distance measures. (Figure from 

http://discover.nci.nih.gov/microarrayAnalysis/Exploratory.Analysis.jsp). 

Principal Components and Multi-dimensional scaling 

Several other good multivariate techniques can help with exploratory analysis. Many 

authors suggest principal components analysis (PCA) or singular value decomposition to 

find coherent patterns of genes, or ‘metagenes’, that discriminate groups. These 

techniques with a long history in the statistical arsenal rely on the idea that most variation 

in a data set can be explained by a smaller number of transformed variables; they each 

form linear combinations of the data, which represent most of the variation, and in 

principle these approaches, are well-suited for this purpose. These multivariate 

approaches are more useful for exploring relations among samples, and particularly for a 
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diagnostic look at samples before formal statistical tests (see Figure 8). 

 

 

Figure 8 shows a GeneSpring© PCA plot of two groups in a comparative study; the control group is in 

red; treated samples are quite distinct from untreated and each other. (Figure obtained using 16 

samples of treated and untreated samples). 

Statistical Tests 

The Purposes of Statistical Tests 

Microarray studies often aim to identify genes that are differentially regulated across 

different classes of samples; examples are: finding the genes affected by a treatment, or 

finding marker genes that discriminate diseased from healthy subjects.  

Microarray data is often used as a guide to further, more precise studies of gene 

expression by qt-PCR or other methods. Then the goal of the statistical analysis is 

heuristic: to provide the experimenter with an ordered list of good candidate genes to 

follow up. Sometimes the experimenter plans to publish microarray results as evidence 

for changes in gene abundance; in this case it is important to state the correct degree of 

evidence: the ‘p-value’. Being many genes actually tested in parallel singles p-values are 

wrong in the context of testing thousands of genes. A better way to specify the confidence 

of microarray results is the ‘false discovery rate’. 

Transforms 

Often the first step is transforming the values to log scale, and doing all subsequent 

steps on the log-transformed values. Although taking logarithms is common practice, and 
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helpful in several ways, there are other options. The main justification for transforms in 

statistics is to better detect differences between groups whose within-group variances are 

very different. Most commonly the within-group variances are higher in those groups 

where the mean is also higher. A different kind of variation, the measurement error in 

expression level estimates, grows with the mean level. If the measurement error is 

proportional to the mean, then the log-transformed values will have consistent variance 

for all genes. For both reasons many researchers argue that gene expression measures 

should be analyzed on a logarithmic scale.  

Comparison of Two Groups of Samples 

The simplest and most common experimental set-up is to compare two groups: for 

example, Treatment vs. Control, or Mutant vs. Wild type.  

The long-time standard test statistic for comparing two groups is the t-statistic: 

t = (xi,1 – xi,2) / si, 

where xi,1 is the mean value of gene i in group 1, xi,2 is the mean in group 2, and si is 

the (non-pooled) within-groups standard error (SE) for gene i. 

Another approach to detecting more of the differentially expressed genes is to use a 

more precise estimate of the variation between individuals, for each gene, in tests of that 

gene. If a good deal of prior data exist on the tissue and strain used in the wild-type (or 

control) group, measured on the same microarray platform – and this is sometimes the 

case now – then it is defensible to pool the estimates of wild-type variation from each of 

the prior studies, and use this as the denominator in the t-scores. The t-scores should 

then be compared to the t-distribution on a number of degrees of freedom, equal to that 

used in computing the pooled standard error. A variant of this approach may be used in a 

study where many groups are compared in parallel. The within-group variances for each 

gene may be pooled across the different groups to obtain a more accurate estimate of 

variation. This presumes that treatments applied to different groups affect mostly the 

mean expression levels, and not the variation among individuals. Of course one should 

test that the discrepancies in variance estimates are not too large for many of the genes 

that are selected as differentially expressed. This may be done by computing the ratios of 

variances between groups (F-ratios), and comparing to an F-distribution. 
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Permutation Tests 

Permutation testing is an approach that is widely applicable and copes with 

distributions that are far from Normal; this approach is particularly useful for microarray 

studies because it can be easily adapted to estimate significance levels for many genes 

in parallel. Some recent software packages, notably SAM (Significance Analysis of 

Microarray, http://www-stat.stanford.edu/~tibs/SAM/), implement permutation testing in a 

menu-driven interface.  

The meaning of a p-value from a permutation procedure differs from the meaning of a 

model-based p-value. The model-based p-value is the probability of the test statistic, 

assuming that the gene levels in both the treatment and control groups follow the model 

(eg. a Normal distribution). A permutation-based p-value tells how rare that test statistic 

is, among all the random partitions of the actual samples into pseudo-treatment and 

pseudo-control groups. The steps in a permutation-based computation of the significance 

level of a test statistic are as follows: 

i. Choose a test statistic, eg. a t-score for a comparison of two groups,  

ii. Compute the test statistic for the gene of interest,  

iii. Permute the labels on samples at random, and re-compute the test statistic for 

the rearranged labels; repeat for a large number (perhaps 1,000) 

permutations, and finally,  

iv. Compute the fraction of cases in which the test statistics from iii) exceed the 

real test statistic from ii).  

Volcano Plot 

However one chooses to compute the significance values (p-values) of the genes, it is 

interesting to compare the size of the fold change to the statistical significance level. The 

‘volcano plot’ arrange genes along dimensions of biological and statistical significance. 

The first (horizontal) dimension is the fold change between the two groups (on a log 

scale, so that up and down regulation appear symmetric), and the second (vertical) axis 

represents the p-value for a t-test of differences between samples (most conveniently on 

a negative log scale – so smaller p-values appear higher up). The first axis indicates 

biological impact of the change; the second indicates the statistical evidence, or reliability 

of the change. In this way we can then make judgements about the most promising 
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candidates for follow-up studies, by trading off both these criteria by eye (Figure 9).  

 

Figure 9. A volcano plot. Siaplaying entities satisfying p_value cutoff and Fold Change cut-off. 

(Figure obtained using 16 samples of treated and untreated samples). 

Genome-Wide Comparisons, Corrected P-Values, and False Discovery Rates 

P-Values and False Discovery Rates 

Most scientific papers quote p-values, however few papers discuss their meaning. In 

order to understand what the problem is with quoting p-values for massively parallel 

comparisons, we need to be precise. Let’s consider, for example, a t-test of differences 

between two samples. If there is no systematic (real, reproducible) difference between 

groups, nevertheless the t-score for differences between groups is never exactly 0. 

Common sense cannot decide whether a particular value provides strong evidence for a 

real difference. The natural question to ask is: how often a random sampling of a single 

group would produce a t value as far from 0 as the t we observed. When you declare an 

effect is significant at 5%, you say you are willing to let one false positive sneak in, 

roughly every twenty tests. We don’t accept this for critical decisions; we won’t long 

continue to cross the street, if we do so on a 95% confidence that there is a break in 

traffic. We may call this the false positive rate (FPR); the FPR of a procedure is the 

fraction of truly unchanged genes which appear as (false) positives. 

If the aim of the microarray study is to select a few genes for more precise study, then 

the goal is an ordered list of genes, most of which are really different (true positives). 

Another way to say this is that the expected number of false positives is some reasonable 
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fraction (for example less than .3) of the genes selected. This goal leads naturally to 

specifying the false discovery rate (FDR) for a list, rather than significance level (FPR). 

The FDR is the expected fraction of false positives in a list of genes selected following a 

particular statistical procedure.  

Multiple Testing P-Values and False Positives 

Suppose you compare two groups of samples drawn from the same larger group, 

using a chip with 10,000 genes on it. On average 500 genes will appear ‘significantly 

different’ at a 5% threshold. For these genes, the variation between samples will be large 

relative to the variation within groups due to random, but uneven allocation of the 

expression values to the treatment and control groups. Therefore the p-value appropriate 

to a single test situation is inappropriate to presenting evidence for a set of changed 

genes. 

Statisticians have devised several procedures for adjusting p-values to correct for the 

multiple comparisons problem. The oldest is the Bonferroni correction; this is available as 

an option in many microarray software packages. The corrected p-value, pi* for gene i is 

set to: pi* = Npi, if Npi < 1, or 1, if Npi > 1; where pi is the p-value for a single test of gene 

i, and N is the number of genes being tested (which may be less than the number of 

genes on the array).  

Calculating Permutation-Based Corrected P-values 

To calculate corrected p-values, first calculate single-step p-values for all genes: p1, 

…, pN. Then order the p-values: p(1), …, p(N), from least to greatest. Next permute the 

sample labels at random, and compute the test statistics for all genes between the two 

(randomized) groups. For each position k, keep track of how often you get at least one p-

value more significant than p(k), from gene k, or from any of the genes further down on the 

list: k+1, k+2, …, N. After all permutations, compute the fraction of permutations with at 

least one apparently more significant p-value less than p(k). This is the corrected p-value 

for gene k. Although this procedure is complicated, it is much more powerful than the 

other corrections: that is, the procedure gives a much smaller corrected p-value for each 

gene than the Bonferroni procedure, and therefore a bigger list of significant genes at any 

corrected significance level (specified risk of false positives). This is known as the 

Westfall–Young correction. 
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Several Groups – Analysis of Variance 

Many current microarray studies compare more than two groups. Sometimes the 

question is to determine differences among three or more cell lines, or strains of 

experimental animal. Another common design compares the effect of a particular 

treatment (often a ligand for a receptor), on cell lines (or animals) with wild-type and 

mutant versions of the receptor. Usually the experimenter wants to know which genes are 

actively regulated during treatment in both cell lines, or wants some criterion for selecting 

those that are differentially regulated among groups. These questions belong in the 

tradition of analysis of variance (ANOVA). Generally, all of the procedures that were 

discussed above in the context of two-sample comparisons, carry over to analogues in 

ANOVA. 
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Microarray databases 

There are many public databases for microarray data. The databases meant to be 

central repositories, among them, the most known:  

i. ArrayExpress at EBI (http://www.ebi.ac.uk/arrayexpress/) 

ii. GEO (Gene Expression Omnibus) at NCBI (http://www.ncbi.nlm.nih.gov/geo/) 

They are not only public archives of microarray data but also enforcing standards to 

maintain data quality, providing powerful search methods to facilitate finding particular 

data, and providing analytical tools to facilitate comparison and/or visualization of large 

data. According to the publication about GEO (Barrett et al., 2005), “These data include 

single and multiple channel microarray-based experiments measuring the abundance of 

mRNA, genomic DNA and protein molecules. Data generated by innovative applications 

of microarray technology are also accepted, e.g. chromatin immunoprecipitation (ChIP-

chips) for identifying protein-binding DNA regions and tiling arrays for genome annotation. 

Data from non-array-based highthroughput functional genomics and proteomics 

technologies are also archived, including serial analysis of gene expression (SAGE), and 

mass spectrometry peptide profiling.” So, it is not only microarray data. 

Let’s look at GEO (Figure 10). 

 

Figure 10 ncbi/GEO query interface. (Figure obtaine from http://www.ncbi.nlm.nih.gov/geo/). 

We see we can make queries to get data of our interest or browse through them. The 

data sets are called GEO-DataSets. It is an experiment-centric view (organized according 
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to each experiment). If, for example, we search for “Human[Organism] AND microRNAs” 

we obtain several records. Note that there are ‘GDS…’ records lines, ‘GSE…’ records, 

and a ‘GPL…’ record. Each GDS (dataset) record is the entire set of data from one 

experiment and comes with various tools to play. GSE (series) records explain the 

experiment, including RNA samples used. GPL (platform) records are descriptions of 

microarray platforms. We can also see ‘GSM…’ in GDS and GSE records. GSM (sample) 

records contain data from each sample used in the experiment. 

 

List of several useful microarray data and not only: 

• ArrayExpress—a public database of microarray experiments and gene expression 

profiles 

• The Stanford Microarray Database 

• Microarray retriever: a web-based tool for searching and large scale retrieval of 

public microarray data 

• OligoArrayDb: pangenomic oligonucleotide microarray probe sets database 

• CEBS—Chemical Effects in Biological Systems: a public data repository 

integrating study design and toxicity data with microarray and proteomics data 

• Gene Aging Nexus: a web database and data mining platform for microarray data 

on aging 

• ChipInfo: software for extracting gene annotation and gene ontology information 

for microarray analysis 

• ITTACA: a new database for integrated tumor transcriptome array and clinical 

data analysis 

• BarleyBase—an expression profiling database for plant genomics 

• ArrayXPath: mapping and visualizing microarray gene-expression data with 

integrated biological pathway resources using Scalable Vector Graphics 

• NASCArrays: a repository for microarray data generated by NASC’s 

transcriptomics service 

• CanGEM: mining gene copy number changes in cancer 

• CleanEx: a database of heterogeneous gene expression data based on a 

consistent gene nomenclature 

• GEPAS: a web-based resource for microarray gene expression data analysis 

• NetAffx: Affymetrix probesets and annotations 

The term microarray database is usually used to describe a repository containing 

microarray gene expression data. The key features of a microarray database are to store 
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the measurement data, manage a searchable index, and make the data available to other 

applications for analysis and interpretation (either directly, or via user downloads). 

Microarray databases can fall into two distinct classes: 

i. A peer reviewed, public repository that adheres to academic or industry standards 

and is designed to be used by many analysis applications and groups. A good 

example of this is the Gene Expression Omnibus (GEO) from NCBI or 

ArrayExpress from EBI. 

ii. A specialized repository associated primarily with the brand of a particular entity 

(lab, company, university, consortium, group), an application suite, a topic, or an 

analysis method, whether it is commercial, non-profit, or academic. These 

databases may be characterized by:  

• A subscription or license may be needed to gain full access, 

• The content may come primarily from a specific group (e.g. SMD, or 

UPSC-BASE), 

• There may be limits on how who can use the data, and for what 

purpose, 

• Special permission may be required to submit new data, or there may 

be no obvious process at all, 

• Only certain applications may be equipped to use the data, often also 

associated with the same entity (for example, caArray at NCI is 

specialized for the caBIG), 

• Further processing or reformatting of the data may be required for 

standard applications or analysis, 

• They claim to address the 'urgent need' to have a standard, centralized 

repository for microarray data. (See YMD, last updated in 2003, for 

example), 

• There is a claim to an incremental improvement over one of the public 

repositories, 

• A meta-analysis application, which incorporates studies from one or 

more public databases (e.g. Gemma primarily uses GEO studies; 

NextBio uses various sources) 

 

Some of the most known public, curated microarray databases are reported in Table 

2. 
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Table 2 Microarray Databases 

Database   Scope   Web site 

Gene Expression 

Omnibus - NCBI 

any curated MIAME compliant 

molecular abundance study 

http://www.ncbi.nlm.nih.gov/geo/ 

Stanford Microarray 

database 

stores raw and normalized data 

from microarray experiments, 

and provides data retrieval, 

analysis and visualization 

http://genome-www5.stanford.edu/ 

Genevestigator 

database 

Manually curated microarray 

data for expression meta-

analysis 

https://www.genevestigator.ethz.ch/gv/index.js

p 

ArrayExpress at EBI Any curated MIAME or 

MINSEQE compliant 

transcriptomics data 

http://www.ebi.ac.uk/microarray-as/ae/ 

UPenn RAD 

database 

MIAMI compliant public and 

private studies, associated with 

ArrayExpress 

http://www.cbil.upenn.edu/RAD/php/index.php 

UNC Microarray 

database 

microarray data storage, 

retrieval, analysis, and 

visualization 

https://genome.unc.edu/ 

MUSC database repository for DNA 

microarray data generated by 

MUSC investigators 

http://proteogenomics.musc.edu/ma/musc_ma

db.php?page=home&act=manage 

caArray at NCI Cancer data, prepared for 

analysis on caBIG 

https://array.nci.nih.gov/caarray/home.action 

UPSC-BASE data generated by microarray 

analysis within Umeå Plant 

Science Centre (UPSC). 

https://www.upscbase.db.umu.se/ 
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MicroRNAs 

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code 

for proteins) that regulate the expression of target genes at the posttranscriptional or 

posttranslational level. Many miRNAs have conserved sequences between distantly 

related organisms, suggesting that these molecules participate in essential 

developmental and physiologic processes. miRNAs can act as tumor suppressor genes 

or oncogenes in human cancers. Mutations, deletions, or amplifications have been found 

in human cancers and shown to alter expression levels of mature and/or precursor 

miRNA transcripts. Moreover, a large fraction of genomic ultraconserved regions (UCRs) 

encode a particular set of ncRNAs whose expression is altered in human cancers.  

In genetics, miRNAs are single-stranded RNA molecules of about 21–23 nucleotides 

in length, which regulate gene expression. miRNAs are encoded by genes from whose 

DNA they are transcribed but miRNAs are not translated into protein (non-coding RNA); 

instead each primary transcript (a pri-miRNA) is processed into a short stem-loop 

structure called a pre-miRNA and finally into a functional miRNA.  

Mature miRNA molecules are partially complementary to one or more messenger 

RNA (mRNA) molecules, and their main function is to down-regulate gene expression. 

They were first described in 1993 by Lee and colleagues in the Victor Ambros lab (Lee et 

al., 1993), yet the term microRNA was only introduced in 2001 in a set of three articles in 

Science (Ruvkun , 2001). 

Microarrays for miRNA 

The microRNAs expression study had in the past years large difficulties due to their 

small dimensions and the insufficient sensibility of the methods used, like the Northern 

blot, the cloning and the arrays on membrane revealed with a radioactive. The application 

of the technology of the microarrays to the analysis of the profile of expression of miRNA 

offered meaningful advantages like a greater sensibility and elevated comparative 

abilities. In the laboratory of Prof. Croce (OSUCCC, Ohio State University, Liu et al., 

2008) has been developd a microarray (or chip) for the study of the alterations in the 

expression of all the miRNA known in the human cancer and it has been established as a 

reproductable detection method (Liu et Al, 2004). The levels of miRNA are obtained for 

quantification of the intensities of mark them with appropriate software as GenePix 

(Figure 11).  
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Figure 11. Phases of miRNA microarray experiment. (Figure from paper VII). 

MiRNA and cancer 

Several miRNAs has been found to have links with some types of cancer. 

Recent studies demonstrated that in cancer the levels of some miRNA are altered 

(Volinia et al., 2006; Lu et al., 2005). Some miRNA, as miR-21 and miR-155 are 

overexpressed in solid tumors and in the leukaemias. In figure 12 6 solid tumors are 

represented (columns), and in every line the microRNA associated to the solid tumors. 

The figure is a graphical rapresentation of the obtained result by using approximately 500 

biopsies. A red square represents an overexpression of the microRNAs in tumor; a green 

represents downregulation of the miRNA in tumor. For example, miR-21 is 

overwxpressed in all and the 6 considered tumors (breast, lung, colon, pancreas, prostate 

and stomach). 

 

Figura 12. Fold changes (cancer vs. normal) of the miRNAs present in the signatures of at least 50% 

of the solid tumors. The tree displays the log2 transformation of the average fold changes (cancer 

over normal). The mean was computed over all samples from the same tissue or tumor histotype. 

Arrays were mean centered and normalized by using GENE CLUSTER 2.0. Average linkage clustering 

was performed by using uncentered correlation metric. (Figure from Volinia S et al., Proc Natl Acad 

Sci U S A., 103:2257-2261, (2006)). 
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The discovery of the association miRNA-cancer although revealed of a strong 

correlation, has not been enougth to establish a cause-effect connection. After, the 

responsibility of the microRNA in the insorgence of the cancer has been demonstrated in 

transgenic mouse with miR-155 (Costinean et al., 2006). In such mice in fact the insertion 

of additional copies of miR-155 provokes a high grade lymphoma with correspondent 

splenomegaly (Figure 13). 

 

Figura 13. Transgenic mice, 6 months old, presented an enlarged abdomen and important 

splenomegaly. (A) Transgenic mice, 6 months old, had a considerably enlarged abdomen compared 

with wild-type mice, due to the clinically evident splenomegaly. (B) Spleens of the mice shown in A. 

The transgenic spleen is enlarged due to expansion of leukemic_lymphoma cells. (Figure from 

Costinean et al., Proc Natl Acad Sci U S A. 103:7024-7029, (2006)). 

Moreover, for many genetic diseases, even if studied for a long time and for which the 

chromosomic region of linkage is well known, the gene- disease has not yet has 

discovered. For this group of genetic diseases has been hypotized a role of not 

conventional genes" , like miRNAs. 

MiRNAs as cancer players – a balance between miRNA targets repression 

and miRNA expression regulation. 

The classical models of tumorigenesis postulate alterations in protein coding 

oncogenes and tumor suppressor genes. MiRNAs are also contributors to oncogenesis, 

functioning as tumor suppressors, as is the case of miR-15a and miR-16-1 (Cimmino et 

al., 2005) or let-7 family (Johnson et al., 2007)) or as oncogenes, as is the case of miR-

155 (Volinia et al., 2006), miR17-92 cluster (He L et al., 2005) or miR-21 (Chan et al., 

2005) (Volinia et al., 2006)).  
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Relatively minor variations in the levels of expression of a miRNAs or mutations 

that affect moderately the conformation of miRNA::mRNA pairing could have important 

consequences for the cell because of the large number of targets of each miRNA. 

“Traditional teaching” suggests that miRNA binds to target messenger RNA by imperfect 

complementarity, causing either mRNA degradation, or translation inhibition (Mathonnet 

et al. 2007). Recently, a deviation from the above point of view on miRNA function was 

found: the miR-369-3 can up-regulate translation tumor necrosis factor alpha (TNFa) after 

binding the 3’ untranslated region of TNFa, suggesting an additional level of complexity 

on miRNA function (Vasudevan et al., 2007).  

A growing list of publications proved that miRNAs play a critical role in cancer 

initiation and progression, and that miRNA alterations are ubiquitous in human cancers. 

Consequently, events activating or inactivating miRNAs were viewed to cooperate with 

protein coding genes (PCGs) abnormalities in human tumorigenesis (Calin and Croce, 

2006). For example, recently it was shown by Nagel and colleagues that miR-135a and 

miR-135b directly target the 3' untranslated region of APC, suppress its expression, and 

induce downstream Wnt pathway activity (Nagel et al, 2008). Inactivation of the 

adenomatous polyposis coli (APC) gene is a major initiating event in colorectal 

tumorigenesis. Thus, these results uncover a miRNA-mediated mechanism for the control 

of APC expression and Wnt pathway activity, and suggest its contribution to colorectal 

cancer pathogenesis. 

Much less was known about the upstream regulation of miRNA in cancer cells 

until recently, when a series of publications demonstrated that the TP53 tumor 

suppressor regulates the transcription of the miR-34 family (for a review see He X et al., 

2007), and that the miR-34 family subsequently mediates induction of apoptosis, cell 

cycle arrest, and senescence. Using quantitative RT-PCR analysis, it was demonstrated 

that miR-34a was highly up-regulated in a human colon cancer cell line, HCT 116, treated 

with a DNA-damaging agent, adriamycin (Tazawa et al., 2007). Furthermore, it was 

shown that widespread miRNA repression by Myc contributes to tumorigenesis in general 

(Chang et al., 2008), and to repression of the miR17-92 cluster in particular. MiRNAs from 

this cluster modulate tumor formation and function as oncogenes by influencing the 

translation of E2F1 mRNA (O’Donnell et al., 2005). 

MicroRNAs and Colorectal Cancer 

Cancer is a complex genetic disease caused by the accumulation of mutations, 

which lead to deregulation of gene expression and uncontrolled cell proliferation. Given 

the wide impact of miRNAs on gene expression, it is not surprising that a number of 
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miRNAs have been implicated in cancer (Bueno et al., 2008). CRC accounts for 13% of 

all cancers and is the second most common cause of cancer death in the Western world 

(Aaltonen and Hamilton, 2000, Greenlee and et. 2001, Parkin et al, 2005). Early detection 

provides a significant survival advantage, and many efforts are focused on improving 

detection rates and screening utilization. Currently, surgery is the only curative approach 

for early stage adenocarcinomas, with chemotherapy providing a modest incremental 

survival benefit at the cost of additional toxicities (Rodriguez-Bigas et al., 2006)(Kopetz et 

al,, 2008). Therefore, the identification of improved diagnostic and prognostic markers as 

well as new therapeutic options for CRC patients is of great and immediate interest. 
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Cancer-associated genomic regions (CAGRs) and noncoding 

RNAs 

MiRNAs and UCRs are frequently located at fragile sites and genomic regions affected in 

various cancers, named cancer-associated genomic regions (CAGRs). Bioinformatics 

studies are emerging as important tools to identify associations and/or correlations 

between miRNAs/ncRNAs and CAGRs. ncRNA profiling has allowed the identification of 

specific signatures associated with diagnosis, prognosis, and response to treatment of 

human tumors. Several abnormalities could contribute to the alteration of miRNA 

expression profiles in each kind of tumor and in each kind of tissue. Here we focused on 

the miRNAs and ncRNAs as genes affecting cancer risk, and we provided an updated 

catalog of miRNAs and UCRs located at fragile sites or at cancer susceptibility loci. These 

types of studies are the first step toward discoveries leading to novel approaches for 

cancer therapies.  

Noncoding RNAs and bioinformatics 

Recent biotechnology advances, along with a growing number of new biological-

computational approaches, have allowed an expansion of the number of genomes being 

sequenced and annotated, as well as facilitated the development of databases to collect 

and analyze large amounts of genetic information. The consequent necessities of 

retrieving, sharing, and, in particular, understanding this vast amount of data led to the 

creation of genome databases, providing an open source of genetic information for 

scientists worldwide. Thus, there is now a strong urgency to integrate various sources of 

biomedical and clinical information.  

One of the many fields that will strongly benefit from such integration is the study of 

noncoding RNAs (ncRNAs) (Barbarotto et al. 2008; Calin and Croce 2006; Esquela-

Kerscher and Slack 2006). The most studied ncRNAs are the miRNAs. Recently, the 

physiologic role of miRNAs during development, differentiation, cell cycle regulation, 

aging, and metabolism has begun to be elucidated (Ambros 2004; Costa 2005; Johnson 

et al. 2007; Mendell 2005). Consequently, miRNA deregulation has been found in many 

different human diseases, including cancer, diabetes, and immuno- or neurodegenerative 

disorders (Perwez Hussain and Harris 2007; Sevignani et al. 2006). Several lines of 

evidence implicate abnormalities in miRNA and ncRNA gene expression with cancer, 

such as (1) the location of ncRNAs at CAGRs, (2) the epigenetic regulation of miRNA 

expression, and (3) abnormalities in miRNA processing genes and proteins. A unique and 

specific miRNA signature is able to distinguish between different normal tissues, and 

more interestingly characterizes different types of cancers (Calin and Croce 2007; Croce 
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2008; Dickins et al. 2005; He H et al. 2007; Scott et al. 2006). The tumor specificity of this 

signature harbors diagnostic, prognostic, and therapeutic implications (Calin and Croce 

2006). Recently, a new class of ncRNAs, called the ultraconserved regions (UCRs), has 

been implicated in human tumorigenesis (Calin et al. 2007). UCRs are a subset of 

conserved sequences that are strictly conserved among orthologous regions of the 

human, rat, and mouse genomes and, because of their noncoding nature, have been 

considered for a long time as the “dark matter” of the human genome (Bejerano et al. 

2004). The identification of regulatory functions of miRNAs on cancer-associated UCRs 

opens new investigational scenarios with theoretical clinical implications (Calin et al. 

2007). Another area highly influenced by the link between ncRNAs and bioinformatics is 

the study of cancer risk. The identification of genes responsible for cancer predisposition 

is a crucial requirement for better diagnosis, but this process usually involves costly, 

time–consuming, and difficult tracing of large family lineages to define the chromosomal 

region where genes responsible for the disease are located. Computational technologies 

can appropriately be employed to integrate available data and can, in principle, be used 

to save on the expensive process of linkage analysis. This approach has been used to 

study miRNAs by integrating existing information, analyzing data, and verifying biological 

results. For example, bioinformatics approaches allow the geneticist to determine that 

miRNAs and/or UCRs are located in fragile sites (Calin et al. 2004), in regions involved in 

cancers (Makunin et al. 2007), or in tumor susceptibility loci (Sevignani et al. 2007).  

Human miRNA genes are frequently located at genomic loci involved 

in cancer 

The first genome-wide link between miRNAs and cancer involved a search for 

correlations between the genomic positions of miRNAs and chromosomal regions that 

exhibited specific cancer-associated abnormalities; this study showed that about half of 

human miRNA genes are located at fragile sites (FRAs) and various types of cancer-

associated genomic regions (CAGRs) (Calin et al. 2004). This bioinformatics analysis was 

performed by establishing a new database that combined the positions of FRAs and 

CAGRs with the positions of known and predicted miRNAs across the human genome. 

When this study was performed (Calin et al. 2004), no powerful bioinformatics tools for 

finding miRNA targets were available, so the genomic proximity approach served as a 

useful screen for such interactions. Table A1 (see Appendix A) presents a complete list 

of miRNAs and UCRs, according to the most recent versions of databases, which are 

located at human FRAs. Table A2 (see Appendix A) shows a list of databases, tools, 
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resources, bioinformatics, and statistical analyses used in the studies presented in this 

review. Table A3 (see Appendix A) presents a glossary of bioinformatics terms.  

The effects of altering the expression of target genes that participate in apoptosis, cell 

cycle, invasion, or angiogenesis, cause the initiation, growth, and/or progression of 

tumors (Figure 14). Genetic alterations of miRNAs may therefore lead to changes in 

protein expression in cancer cells, which accelerate malignant transformation and/or 

enhance tumor growth (Calin et al. 2004; Croce and Calin 2005; Gregory and Shiekhattar 

2005; McManus 2003).  

 

Figure. 14 An example of miRNAs as oncogenes or tumor suppressor genes and their protein-

coding targets in tumorigenesis. The figure shows two examples of how miRNAs affect cancer 

development. The let-7 and miR-16 families are the best studied examples of suppressor miRNAs, 

while miR-21 and miR-373 are examples of oncogenic miRNAs. Targeting such miRNAs located in 

CAGR could be a potential future therapeutic option for cancer patients. The significant confirmed 

targets are included on the right side  (Figure from paper VIII) 
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THESIS OBJECTIVES 

The aim of the thesis was to answer the question whether coding genes and non-coding 

RNAs expression data can be used for the targeted extraction of a shortlist of candidate 

genes, thus saving resources for the following costly and time-consuming genetic 

analysis. Furthermore we wanted to investigate whether coding genes can be candidates 

for cancer and hereditary diseases developing new algorithms and tools using several 

statistical measures and public databases data and information. Several results were 

biologically confirmed or well known in literature. Then, we decided to apply our methods 

to study miRNAs in cancer; specifically to prove that expression data analysis may serve 

as markers of early and late stages in cancer progression. We expect our results to show 

evidences which support the use of miRNA data for cancer development analysis, not 

only by distinguishing classes of patients, but also by identifying markers of early and late 

cancer progression stages. 

Therefore, the aims of the thesis were the followings: 

i. Creation of a web-based tool to provide candidate disease genes 

ii. Implementation of a tool to detect functional differences between tissues 

iii. Development of an algorithm for the identification of associations between OMIM 

diseases and microRNAs 

iv. Statistical validation and support to assess the quality of DNA microarrays, 

correlation between microRNAs and ultraconserved genes expression, 

microRNAs and ultraconserved genes involved in cancer metastasis. 

 

In the following subsections the objectives of this projects are described. 
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MATERIALS AND METHODS 

GebbaLab 

Microarray data infrastructure using GebbaLab based on Alfresco 

technology  

The efficient storage and analysis of microarray data is of considerable interest and 

there is much activity worldwide. In general most researchers adopt a “single workstation 

approach" for data management and analysing expression data. However this method is 

rapidly becoming inconvenient for many reasons: 

• There is no provision for the systematic recording of experimental information  

• Current PCs are not sufficiently powerful for analysing data 

• Comparison with data from other researchers or public repositories is difficult 

� Careful consideration of these points has suggested the following 

criteria for the design of the microarray infrastructure.  

• Users must be given the opportunity to use a wide range of common and user-

friendly tools for data entry and for the different platforms available, e.g. 

Affymetrix, Agilent, Illumina etc. 

• Data should be distributed 

• Data must be recorded in a format which allows interoperability of all the data 

sources 

• User-friendly portals or clients are required to access resources and powerful 

computational facilities to process datasets 

To satisfy these criteria the infrastructure was structured into two distinct 

levels: 

i. The data entry and storage level. 

ii. The application level for running analysis applications. 

The system consists of a “central” node and many “satellite” nodes, each of which 

with its own data store, potentially virtualized. The system has been designed in a 

modular way in order to work even in case of unavailability of the central node. In fact in 

our schema “central" merely indicates a central registry for distributed indexing and 
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querying. Data is stored, analyzed and exchanged through a complex architecture build 

upon Alfresco, an advanced Open Source Enterprise Content Management that provides 

a common web interface and access to distributed data sources. Alfresco also includes 

user authentication and various levels of access privileges, thus allowing many degrees 

of data security and privacy. Our effort have been lead to build upon the Alfresco 

structure many software modules in order to manipulate MAGE-ML files, extract metadata 

from MAGE-MLs, to store and index metadata into the repository for querying microarray 

data according to different search criteria. All the modules are provided through a SOA 

(Service Oriented Architecture) layer among different web applications that allow users to 

choose, through a web portal, the appropriate software from those available that 

transparently invokes algorithms to fetch the data for analysis. High performance servers 

are available for CPU or memory intensive calculations. 

TOM 

The input data to TOM can be constituted by a (list of) gene(s) and one or two 

chromosomal areas of interest. In the One Locus option, while the chromosomal area 

represents the hypothesis to test, the input gene(s) are the queries of the search. For this 

reason almost invariably, but not exclusively, the seed of the search will belong to the 

repository of the Online Mendelian Inheritance in Man (OMIM) database. This repository 

stores a comprehensive collection of genes known to be related to human diseases. 

OMIM is updated daily and stores information (mainly genes) related to disorders 

inherited in a Mendelian manner, where traits are passed from parents to children. Any 

type of gene can be used with this method. Nevertheless, because most of the power in 

our procedure is given by expression data, we named the application TOM 

(Transcriptome of OMIM). 

The three-step filtering algorithm  

We describe here the detailed steps allowing the selection of the final candidate gene 

sets for an hereditary disease (see Figure 15).  
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Figure 15. Global description of the process. The three steps of the algorithm, along with the 

databases and the intermediate and final results are shown in the figure. The output can be used at 

the end of the second step, in the form of co-expressed genes, or refined through the third step where 

the functional analysis (based on GO) is performed. The longest arrow depicts the alternate route to 

the functional analysis. (Figure from paper II). 

The first step is designed to select the list of genes mapped on the chromosomal 

area/s of interest, using genome sequence information. Then, in the second step, TOM 

employs transcriptome data from public repositories. TOM retains here only the genes 

that have related expression variations in the datasets, either among them (Two Loci) or 

to the seeds (One Locus). Formally, this is achieved defining the expression 

neighborhood, i.e. the set of genes encoded in the genomic area of interest that are 

related among them or to the seeds, based on the similarity of their expression. We 

evaluate the P-values of the correlation tests and select the genes whose correlation 

value is significant at a given value of rejection. Evaluation of P-values is performed 

assuming that the correlation values are distributed using Student's t cumulative 

distribution, with a number of degrees of freedom corresponding to the number of 

samples in the microarray experiment. 

Given the high number of correlation tests performed in TOM, P-values are corrected for 

multiple testing by using the false detection rate (FDR), as defined by Ref. (Benjamini. 

and Hochberg. 1995). FDR controls a different probability than that which is controlled 

with the better known P-value. In fact, P-values control the number of false positive over 

the number of truly null tests, while FDR controls the number of false positive over the 
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number of significant tests. Several ways of estimating this number have been proposed, 

we adopted the solution devised by Tom Nichols (see 

http://froi.sourceforge.net/documents/technical/matlab/FDR.html), that rescales the P-

value obtained on a single test multiplying it by a combination of indexes related to the 

total number of tests performed: , where pi represents the i-th of the total 

K single P-values. Correction was performed on a seed by seed basis, this means that 

the genes in the seeds list or in the first chromosomal area are considered independent 

tests. 

Finally, in the third optional step, we further filter candidates, based on their functional 

role(s). To this end we use GO [the more widespread controlled and hierarchically 

structured vocabulary for the description of genes and genes' products characteristics in 

any organism (The Gene Ontology Consortium, 2001)] to better interpret the genes 

selected in the expression neighborhood, and extract genes related to the same 

biological process(es). In particular, we use the hypergeometric distribution  

 

 

to evaluate the probability that in a sample of size n, r items of a given type—a type 

characterizing n1 items in a population of N items—can be selected without replacement 

(Rosner, 2000). This probability statistically validates the proportion of genes in the group 

of candidate genes (enriched for some known function), compared with what would be 

expected by chance alone. The third step can alternatively be performed directly after the 

first step, simply by skipping the transcriptional analysis. This statistically validated triple 

filtering allows the targeted extraction of a shortlist of candidate genes, thus saving 

resources for the following costly and time-consuming genetic analysis. 

Implementation 

The tool core is developed under R and the user interface is developed using Php. 

Users requests are initially stored in a database (MySql), where a batch scheduled task 

retrieves and processes them, while the user interface is waiting. For defining the position 

of the bands, we use the NCBI Map- Viewer (http://www.ncbi.nlm.nih.gov/mapview/). The 

BUILD.35.1 genome data are stored in the TOM database. 
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The stored microarrays can then be searched to retrieve the expression values for the 

correlation analysis by checking the Expression Correlation filtering check box and setting 

the FDR threshold field. Microarray expression values undergo a double filtering process 

on the basis of the calls (flexible filtering) and of a fold-change and absolute filter variation 

over samples (max/min < 3 and max _ min < 100, fixed filtering). This double filtering is 

meant to allow a stringent and constant selection based on the variation of the expression 

profile, while preserving the maximum amount of information, based on the general 

quality of the array. The quality of the array is related to the number of present calls 

available. For this reason, we filtered the array spots based on the assumption that a 

minimum amount of information can be extracted from the arrays. Experiments conducted 

on Affymetrix chips (Human Genome U133A, U95A, U133A and B and U1333plus2 chips 

with detection calls available) were downloaded from the repository of Gene Expression 

Ominbus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and EBI repository ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) using a Perl script to capture the expression values. 

We performed these results loading  40% of the human microarray experiments with 

detection calls available. The functional analysis based on GO identifies distribution and 

can be performed by checking the Validate GO box. We applied the Biobase and GOstats 

bioconductor packages (Gentleman et al., 2004) to perform the functional analysis.  

Fun&Co 

This section describes all the steps used for identifying functional differences between 

different tissues by analyzing a pair of dataset groups, e.g. muscle and heart. 

Dataset selection 

In this first step, the users have to choose between the available GEO datasets the 

ones to use in the Fun&Co analysis. It is also possible to upload users’ owned datasets.  

Gene selection 

Given the two dataset groups, the users have to specify a GO term (named GOmain). 

Fun&Co uses GOmain to filter the probes contained in the datasets, keeping only the 

probes annotated with such GO term or a more specific one (probe annotations are taken 

from the Affymetrix support library).  

Correlation study 

After the gene selection described in the previous section, Fun&Co studies any 

possible pair of probes in the dataset, valuing the correlation coefficient of each pair (for 
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measuring the degree of relationship between two variables, i.e. two probes). Due to the 

nature of the Affymetrix microarrays, it is preferable to use a non-parametric correlation 

coefficient. For this reason, our tool uses Spearman’s correlation.  

False detection rate  

Given the high number of correlation tests performed, P-values can be corrected for 

multiple testing by using the FDR (Benjamini and Hochberg, 1995). FDR controls a 

different probability than the one controlled with the better known P-value. In fact, P-

values control the number of false positive out of the number of truly null tests, while FDR 

controls the number of false positive over the number of significant tests.  

Correlation filtering 

Users can decide when a probe pair correlation is significant or not by choosing a p-

threshold (default is 0.05): if the P-value is less than the p-threshold, then the probes are 

considered correlated. 

Group comparison based on correlation 

The aim of the group comparison was to identify the GO terms that showed a 

significant difference between the two groups. This was performed in three steps. In the 

first step, for each dataset, Fun&Co studied the correlations as described. In the second 

step, for each dataset, the system counted the number of correlated pairs of probesets 

associated to the same GO term. In the last step, for each GO term, the system 

compared the number of correlated probe pairs detected in the two groups under study. 

Comparison between two datasets  

Given two gene expression datasets, named A and B, for each GO term under 

analysis, Fun&Co computed the number of correlated probe pairs found in each dataset 

[named N_couples(A)) and N_couples(B)]. At this point, the system discarded all the GO 

terms that had too few probe pairs in both datasets: a GO term was discarded if its pair 

count is below a user-defined threshold, named Fitnessth,
 in both datasets. This filtering 

was performed in order to avoid results that were not supported by a minimum number of 

found correlations. For each GO term not discarded by Fitnessth, Fun&Co identified if this 

term in the A dataset was over-correlated (under-correlated) with respect to the B dataset. 

In order to identify if a GO term was over-correlated or under-correlated, Fun&Co 

computed the logratio measure: . Then it normalized this value, 

subtracting to it the mean, computed among all the GO terms. By introducing a threshold 
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(t), the GO terms over-correlated (under-correlated) in the Da samples with respect to the 

Db samples were the ones with ( ). 

Dataset group comparison  

Fun&Co may search for functional differences between two groups of datasets (A1, ..., 

An and B1, ..., Bm) rather than simply considering two datasets. This feature requires an 

extension of the analysis approach described.  

Fun&Co performed the extended analysis, combining the results of n x m comparisons 

(each dataset Ai of the first group compared with each dataset Bj from the second group). 

The results of these comparisons were collected in a table named ‘continuous 

comparison’, that had n x m columns (where n is the number of datasets in the first group 

and m is the number of datasets in the second group).  

As described before, Fun&Co considered only the GO terms with at least Fitnessth 

correlated probe pairs in at least one dataset. After computing the normalized logratio, it 

identified the over-correlated GO terms.  

In order to provide synthetic results, Fun&Co built a ‘consensus list’ table, that includes all 

the GO terms over-correlated for at least 50% of comparisons. For each GO term, it 

provided also the group in which this term was over-correlated and the mean of its 

normalized logratio in all performed comparisons. 

Implementation 

The tool was structured as a web server which manages Fun&Co computations (also 

named job) requested by the users. The web interface was developed using JSP and the 

computation core was developed under JAVA. The user interface allows user registration, 

job submission and results retrieval. Users accounts and job requests werestored in a 

database (MySql).  

Hypersolutes 

Compatible solutes from hyperthermophiles improve the quality of 

DNA microarrays 

Different series of transcriptome analysis using constant human RNAs and variable 

concentrations of hypersolutes were performed. Total RNA from HEK 293 cells was 

extracted by using NucleoSpin® RNA II Kit (Macherey- Nagel, Düren, Germany). 

Different batches of RNA were pooled together after quality assessment by 

spectrophotometric analysis supported by gel electrophoresis and Agilent Bioanalyzer™ 
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(Palo Alto, CA, USA). The RNA Integrity Numbers (RINs) from the Bioanalyzer™ reports 

were all between 9.5 and 10.0. Compatible solutes were from BITOP (Witten, Germany). 

All operations were carried out according to the standard Affymetrix protocol, with the 

sole exception of adding compatible solutes to the hybridization buffer. The fragmented 

cRNA targets were hybridized onto Affymetrix GeneChip® Test3 Arrays (Santa Clara, 

CA, USA). The samples for hybridization were prepared by adding the hypersolute to the 

fragmented cRNAs in DEPC water. PolyA spike-ins were not used. Arrays were scanned 

by using the Affymetrix GeneChip® 3000 scanner. The CEL files were analyzed using the 

Affymetrix GeneChip® Operating Software, and standard array quality parameters such 

as raw Q, background, scaling factor and percent present calls [all defined in the 

Affymetrix GeneChip® Expression Analysis Technical Manual (Affymetrix Technical 

Documentation)], were measured. T-test was used to compare means for independent 

samples. In addition to the standard Affymetrix quality parameters listed above, we 

needed additional statistical measures to test chips quality and to evaluate and validate 

the results. Therefore, we used the Bioconductor package affyPLM 

(http://bioconductor.org/packages/1.9/bioc/vignettes/affyPLM/inst/doc/QualityAssess.

pdf). This package performs quality Affymetrix array tests by a variety of procedures, 

such as pseudo images, standard error evaluation and relative log expression. Chip 

pseudo-images are very useful for detecting potential quality problems. For each 

hybridization we produced a pseudo-image, where areas of low quality were green and 

those of high quality were light grey. Another quality parameter we used was the 

normalized unscaled standard errors (NUSE). The estimated standard error obtained for 

each gene on each array from fitPLM was standardized across arrays so that the median 

standard error for that gene was 1. NUSE statistics (NUSE median and interquartile 

range IQR) were computed for each array. The relative log expression (RLE) was also 

studied. The RLE values were calculated for each probe-set by comparing the expression 

value on each array against the median expression value for that probe-set across all 

arrays. The RLE statistics (RLE median and IQR) were computed for each array. After 

computing NUSE and RLE statistics for each array, the results were resumed by M = 

(median+2*IQR); median represents a measure of central location of the data and IQR 

(inter-quantile range) is defined as the difference between the 75th percentile and the 

25th percentile (i.e. the upper and the lower quantiles). M was used to identify confidence 

limits to evaluate RLEs and NUSEs. The mean of M measures was calculated for each 

group of replicates, and finally M means were normalized by the control mean. PM 

(perfect match) and MM (mismatch) were calculated by using PM and MM affy 

Bioconductor package functions 
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(http://bioconductor.org/packages/1.9/bioc/vignettes/affy/inst/doc/affy.pdf). The PM/MM 

based quality comparisons were performed by calculating the percentage of PM larger 

than MM in each array. 

MicroRNA DNA methylation 

A microRNA DNA methylation signature for human cancer metastasis 

SW620, 11B and IGR37 cell lines treated and associated controls were analyzed using 

microarray technology (triplicates for each sample were performed). The microarray 

dataset was normalized by quantile method 

(http://rss.acs.unt.edu/Rdoc/library/affy/html/normalize.quantiles.html), and a microRNA 

was excluded if less than 20% of expression data values had at least 1.5 fold change 

either directions higher or lower as the microRNA's median value. 

Principal component analysis (PCA, Partek Genomic Suite®™) was performed to classify 

samples. PCA is a statistical method for exploring and making sense of datasets with a 

large number of measurements by reducing them to the few principal components (PCs 

that explain the main patterns) (Reich et al., 2008).  

Unsupervised principal component analysis of normalized and filtered dataset made with 

cell treated lines and controls (Figure 16), was performed using all survived genes and 

showed clear separation between various classes (SW620, 11B, IGR37 cell lines treated 

and controls).  

 

Figure 16, Unsupervised principal component analysis shows differential expression between 11B 

(red and purple), IGR37 (blue and orange) and SW620 (green and turquoise) cell lines, both treated 

and controls cell lines.  
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RESULTS 

GebbaLab Project 

Great progress has been made in recent years in integrating technologies and 

innovations in computer science with those of the life sciences. However, many activities 

in biological and especially clinical research still do not have access to the necessary 

computer technology. Hospitals, for example, often perform outstanding research but lack 

the bioinformatics tools which could fully exploit the activities carried out. The GeBBALab 

(www.gebbalab.it) project is addressing these problems by creating a “virtual laboratory" 

with contributions from both scientific and technological/industrial partners: IOR (Istituti 

Ortopedici Rizzoli), DAMA (Data Mining and Analysis) University of Ferrara, CINECA 

(Consorzio Interunivesitario per il calcolo automatico) and NSI (NIER Soluzioni 

Informatiche). 

The project has identified two key areas: 

i. Microarray data management and analysis 

ii. Integration of patient and clinical data with genomics information 

We concentrate on the GebbaLab (Genetics, Biotechnology and Applied 

Bioinformatics) infrastructure for microarray storage and analysis (GebbaMa), project 

wich into we directly contributed with microarray data analysis experience. 

GebbaLab is a regional project, funded by Regione Emilia Romagna finished on June 

2008. 

GebbaMa 

We implemented a user-oriented, powerful infrastructure for microarray data 

management and analysis. It allows the user to enter data and being distributed avoids 

the limitations of a centralised server. A prototype using Alfresco is already available 

(GebbaMa, http://gebbama.cineca.it/, Figure 17) and microarray researchers are invited 

to contact the authors if they wish to experiment with the system. It has been developed 

as a central node –CINECA- and two satellite nodes –DAMA, University of Ferrara and 

CINECA develop-.Future enhancements to Gebbalab will include analysis applications 

and, crucially, the possibility of integrating patient data.  
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Figure 17. GebbaMa Web Interface. (Figure from www.gebbama.cineca.it). 

TOM Project 

We implemented TOM, a web-based resource for the efficient extraction of candidate 

genes for hereditary diseases, based on the principle that the massive production of 

biological data by highly parallel devices like microarrays paved the possibility of inferring 

biological answers by querying large amounts of expression data. The service requires 

the previous knowledge of at least another gene responsible for the disease and the 

linkage area, or else of two disease associated genetic intervals. The algorithm uses the 

information stored in public resources, including mapping, expression and functional 

databases. Given the queries, TOM will select and list one or more candidate genes. This 

approach allows the geneticist to bypass the costly and time consuming tracing of genetic 

markers through entire families and might improve the chance of identifying disease 

genes, particularly for rare diseases. We presented the tool and the results obtained on 

known benchmark and on hereditary predisposition to familial thyroid cancer. Our 

algorithm is available at http://www-micrel.deis.unibo.it/~tom/. 

We present here some examples of the use of TOM for One Locus and Two Loci 

option. The following section presents results that show the ability of TOM to reproduce 

known genetic information (validation). We present three carefully documented 

benchmark tests whose results are summarized in the table of Figure 18a, and then 
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broaden the validation with the analysis of five more examples. Global results are 

summarized in the rank distribution of Figure 18b that shows how the expected results 

rank in majority of the candidate genes list extracted with TOM. The Discovery section 

shows the results obtained on a Two Loci problem to gain further insight into a poorly 

characterized disease, namely familial thyroid cancer (discovery). 

Validation 

TOM was tested by searching for several genes known to interact with each other 

using the One Locus option of TOM. The aim of this approach was to ensure that the 

system correctly identifies gene–gene interplay. The examples used are reported in 

Figure 18a. Each gene was used as seed against the chromosomal region where the 

known interacting gene maps (ENSEMBL v.35), and vice versa. The examples 

considered for this first run of One Locus option were PKD1 and PKD2, T0MM70A and 

TIMM17A, ANNXA11 and PP1F. PKD1 and PKD2 are genes mutated in polycystic kidney 

disease. In a majority of cases, the gene involved is PKD1, which is located on 

chromosome 16 (16q13.3) and encodes polycystin-1, a large receptor-like integral 

membrane protein. In the remaining (10–15%) cases, the disease is caused by 

mutational changes in another gene (PKD2), which is locatedat chromosome 4 (4q21–23) 

and encodes polcystin-2, a transmembrane protein, which acts as a non-specific 

calciumpermeable channel. Both polycystins function together in a non-redundant 

fashion, through a common pathway, and produce cellular responses that regulate 

proliferation, migration, differentiation and kidney morphogenesis [for a review see Ref. 

(Al-Bhalal and Akhtar 2005)]. TOMM70A and TIM17A are part of the mitochondrial 

complexes, through the outer and inner membrane respectively, for the import inside the 

mitochondria of nuclear-encoded proteins (Rapaport, 2005). Annexin 11 (ANXA11) is 

member of the annexin family, Ca2+-binding, membrane-fusogenic proteins with diverse 

functions. PP1F and RPS19 are two known interacting proteins with Annexin. Annexin 11 

during cell cycle progression translocates from the nucleus to the spindle poles in 

metaphase and to the spindle midzone in anaphase (Tomas et al., 2004). 

We also tested the program for complex traits such as tumor predisposition and 

development. Since several genes are already known to be involved in predisposition to 

tumor, we tested TOM for the major gene for familial breast cancer, BRCA1. Loss of 

function of BRCA1 caused by inherited mutation and tissue-specific somatic mutation 

leads to breast and ovarian cancer. Nearly all BRCA1 germline mutations involve 

truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting 

that transcriptional regulation is a critical function of the wild-type gene. Several 
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microarray analyses have been carried out to identify a peculiar gene expression profile 

characteristic of carriers of BRCA1 mutations, which would have an important impact also 

for diagnostic purpose [for an example see (van’t Veer et . al., 2002)]. It has been shown 

that there is a link between the role of BRCA1 in transcriptional regulation and its role in 

tumor suppression. Previous microarray analyses comparing transcription profiles of 

epithelial cells with low endogenous levels of BRCA1 versus transcription profiles of cells 

with 2 to 4-fold higher induced levels of expression of BRCA1 identified several genes 

with at least a 2-fold increase in expression, such as JAK1, a tyrosine protein kinase with 

a key role in cytokine signal transduction pathway (Welcsh et al., 2002). We thus tested 

whether by using BRCA1 as seed we could identify JAK1, giving as chromosomal 

location chr1p13.3, the region where JAK1 maps. The interaction was correctly identified, 

and also the reciprocal, i.e. JAK1 as seed and the region 17q21.31, where BRCA1 maps. 

We also evaluated Tuberous Sclerosis with TSC1 andTSC2 involved genes, Fanconi 

Anemia with FANCA, FANCG and FANCL genes, Muscular Dystrophy with CAV3, 

CAPN3, TRIM32, SGCB, SGCG and DYSF genes, Myeloproliferative disorders with DTL 

and ZNF198, and finally the Neurotransmitter transport with NAT1 and NET1. We 

evaluated the correlations setting the threshold for FDR < 0.01. For these and previous 

results we ranked the candidate genes by correlation values (preserving the absolute 

values) using TOM automatic sorting of candidates genes based on correlation or 

corrected P-values. The ranking distribution is shown in Figure 18b. 
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Figure 18. (a) The table summarizes the results of the first three examples. In the first four lines 

we record the results for One Locus problems for known interacting proteins. The last three lines 

show One Locus results for BRCA1-JAK1. (b) It shows a rank distribution of the genes known to be 

related to the eight examples discussed in Validation section, adding to the three described above 

five more benchmark examples, notably: Tuberous Sclerosis, Fanconi Anemia, Muscular Dystrophy, 

Myeloproliferative disorders and Neurotransmitter transport. The expected genes rank in majority 

within the first 20% of the list of candidate genes identified by TOM. (Figure from paper II). 

Discovery—thyroid cancer 

The TOM resource analyzes at the same time two different regions of interest and 

identifies the genes that are highly correlated and map to both regions. This approach 

proves very useful for genetic disorders in which a single gene has not yet been identified 

but genome scans provided regions of association on different chromosomes. We could 

hypothesize that genes with similar behavior might have a complementary effect on 

disease development. We tested our hypothesis on the familial form of nonmedullary 
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thyroid carcinoma. Papillary thyroid carcinoma and follicular thyroid carcinoma are the 

most common forms of thyroid cancer accounting for between 80 and 90% of thyroid 

cancer patients. This disorder is associated with some of the highest familial risks among 

all cancer sites, with reported risks to first-degree relatives between 5- and 10-fold. 

Consequently, familial non-medullary thyroid cancer (fNMTC) has been recognized as a 

distinct clinicalentity, characterized by a higher degree of aggressiveness and mortality 

with respect to its sporadic counterpart (Alsanea and Clark, 2001). Transmission of 

susceptibility for fNMTC is compatible with an autosomal dominant mode of inheritance 

and incomplete penetrance. In collaboration with the International Consortium for the 

Genetics of fNMTC, two predisposing loci were previously mapped. The first one, TCO 

(Thyroid tumor with Cell Oxyphilia, MIM#603386), was mapped to the 19p13.2 region 

(Canzian et al., 1998) and confirmed in additional families. Oxiphilic thyroid tumors are a 

particular form of thyroid neoplasia, characterized by cells with mitochondrial proliferation 

and hyperplasia, (oxyphilic or Huerthle cells). The second locus, NMTC1 (non-medullary 

thyroid carcinoma1), was mapped to chr2q21 and was associated with the follicular 

variant of PTC (fvPTC-MIM# 606240) (McKay et. al., 2001). Evidence foran interaction 

between the two loci has been provided in a subset of fNMTC, and a two-locus mode of 

inheritance is consistent with stratification based on both the histological variants of 

oxyphilia and fvPTC (McKay et al., 2004). We thus performed a search using TOM to 

verify whether the genes mapping to the two areas of interest have any degree of 

correlation between them, and they might also be considered as potential candidate 

genes based on their functions. Among these genes, some look promising candidates for 

their biological function, such as UQCRFS1 on chromosome 19q, which is a 

mitochondrial ubiquitinol cytochrome c reductase iron–sulphur subunit and correlates with 

RAB3GAP on chromosome 2q, a Rab3 GTPase-protein involved in cell proliferation 

(correlation 0.626181; P-value < 0.001). This is very interesting since there is evidence of 

interaction between the two loci and the locus on chromosome 19 is associated with a 

mitochondrial phenotype. Thus, these genes could be considered plausible candidate 

genes based on position and function. Experimental studies will be needed to assess the 

presence of mutation/variants in affected individuals and prove an involvement in thyroid 

carcinoma predisposition. The advantage of using TOM here was to reduce the number 

of genes that can be selected for a first mutation screening, after having identified two 

regions of significant linkage. 
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Fun&Co Project 

Microarray and other genome-wide technologies allow a global view of gene 

expression that can be used in several ways and whose potential has not been yet fully 

discovered. Functional insight into expression profiles is routinely obtained by using gene 

ontology terms associated to the cellular genes. In this article, we deal with functional 

data mining from expression profiles, proposing a novel approach that studies the 

correlations between genes and their relations to Gene Ontology (GO). We implemented 

this approach in a public web-based application named Fun&Co. By using Fun&Co, the 

user dissects in a pair-wise manner gene expression patterns and links correlated pairs to 

gene ontology terms. The proof of principle for our study was accomplished by dissecting 

molecular pathways in muscles. In particular, we identified specific cellular pathways by 

comparing the three different types of muscle in a pairwise fashion. In fact, we were 

interested in the specific molecular mechanisms regulating the cardiovascular system 

(cardiomyocytes and smooth muscle cells). 

We applied Fun&Co to the molecular study of cardiovascular system and the 

identification of the specific molecular pathways in heart, skeletal and smooth muscles 

(using 317 microarrays) and to reveal functional differences between the three different 

kinds of muscle cells. Availability: Application is online at http://tommy.unife.it. 

We used datasets produced on Affymetrix U133 platforms (U133a,b or U133plus) and 

available from the GEO public data repository.2 In particular, we used for heart 107 

samples from GSE1145 and 70 samples from GSE2240 and for skeletal muscle 79 

samples from GSE3307 and 35 from GSE4667. For the smooth muscle dataset, we 

merged the data from GSE1595, GSE2883 and GSE3356 in a single table, obtaining a 26 

samples dataset. The goal of our model study was that of identifying specific cellular 

pathways by comparing the three types of muscle in a pairwise fashion. In particular, we 

were interested in the specific molecular mechanisms regulating the cardiovascular 

system (cardiomyocytes and smooth muscle cells). 

Fun&Co: Approach 

Fun&Co is an application for dissecting and comparing expression profiles at a 

functional level. We developed and applied it to the identification of molecular differences 

in the three skeletal, cardiac and smooth muscles. This study represents both a test 

model and a very important scientific and medical problem. Cardiovascular diseases 

represent one of the most common and serious health issues. Thus, a fine understanding 

of the molecular mechanisms underlying heart physiology is of great importance. We 

used here, the wealth of data generated by a number of laboratories on muscle 
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transcriptomes to identify key functions and processes in human heart, and smooth cells 

when compared to each other and to the skeletal muscle. The rationale is that the specific 

functions and pathways will be of relevant medical importance. By linking the patterns of 

gene-pairs expression to the respective gene function (as provided by the Gene Ontology 

database), we can extract information to better understand genome-wide expression 

profiles and to help scientists in the subsequent design of focused experiments. As a 

proof-ofprinciples, we identified the GO terms which distinguish different tissues. In 

details, the functional correlations comparison aims to highlight changes in gene 

expression correlations, in order to identify relations involved in tissue differentiation. 

Merging these results with the GOannotations, we can immediately select functionally 

relevant biological entities associated to different tissues. We used the Spearman’s 

correlation coefficient (Rosner, 1995) (described in ‘Methods’ section) to evaluate the 

correlation between the mRNA levels of all possible gene pairs. Finally, we linked these 

results with the GO terms and selected the significant functional differences. The 

approach, shown in Figure 19, consists of four steps: (i) gene selection; (ii) correlation 

computation; (iii) dataset comparison and (iv) result synthesis. These steps are described 

in details in the ‘Methods’ section. 
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Figure 19. Process structure of Fun&Co, from the top, we can see the process steps: gene 

filtering, correlation computation, dataset comparison and result synthesis. (Figure from paper IV). 

Our study was aimed to identify specific cellular pathways by comparing the three 

different muscles in a pairwise fashion. So we performed three pairwise comparisons 

between the datasets corresponding to the three tissues. Some GO terms related to 

general functions, processes and components were chosen, to avoid exploring all the 

possible and not relevant GO terms for the muscular tissues (see Table 3). In particular, 

we investigated the response to stimuli and extracellular environments. 

 

 

 



 

53 

Biological process   

Intracellular signaling cascade GO:0007242 

Cell surface receptor linked signal 
transduction 

GO:0007166 

Regulation of signal transduction GO:0009966 

Molecular function   

Kinase activity GO:0016301 

peptide receptor activity GO:0001653 

G-protein coupled receptor activity GO:0004930 

Cellular component   

Extracellular matrix GO:0031012 

Table 3. GO terms investigated (and the branching children) in skeletal and cardiac, and smooth 

muscles. (Table from paper IV). 

For each of these GO terms, we performed all three possible pairwise comparisons 

(heart versus skeletal, heart versus smooth and skeletal versus smooth) applying 

Fun&Co to the datasets presented in Section 1. We used the default P-value (0.05) with 

the FDR adjustment and set Fitnessth = 5 and LogRatioth = 1.. We obtained three 

consensus lists (one for each comparison). The number of significant terms in the 

consensus lists is shown in Figure 20. 

 

Figure 20. Number of terms found in the consensus lists for each pairwise (Figure from paper IV). 

In order to assess the significance of the terms included in the consensus lists, we 

performed a bootstrap test. We randomly re-assigned the association table between the 

probeset ids and the GO terms, and generate 1000 bootstrapped annotation tables.  
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Hypersolutes 

Additional hybridizations with the 3 hypersolutes were performed at 10 and 25 mM 

and repeated at 50 and 150 mM. This plan was set up to investigate the concentration 

effect and to determine the most effective working concentration of hypersolutes in the 

hybridization buffer. Each run was carried out in quadruplicate, in addition to a control test 

(without hypersolute) for each series. Quality assessment by normalized unscaled 

standard errors (NUSE), relative log expression (RLE) and pseudo images was 

performed with Bioconductor package affyPLM. All chips passed the quality control (QC) 

and were included in the following statistical analysis.  

Further QC parameters were assessed by using the Affymetrix proprietary tools. 

Means of raw Q, background, scaling factor and percent present calls values with their 

standard deviations and p values (from t-test) are reported in Table 4 
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Table 4 Hypersolutes improve DNA microarray quality parameters. (Table from paper V). 

 

Compatible solute HECT DGP MG 

Concentration 
(mM) 

10 25 50 150 10 25 50 150 10 25 50 150 

Mean raw Q ± SD 2.1 ± 
0.05 

1.8 ± 0.1 2.6 ± 
0.2 

2.6 ± 
0.2 

2.0 ± 
0.1 

2.0 ± 
0.1 

2.6 ± 0.4 3.2 ± 0.4 1.9 ± 0.1 2.0 ± 
0.1 

2.4 ± 
0.1 

2.5 ± 
0.2 

% raw Q s vs control +3.1 -8.3 +0.8 +4.6 -0.5 +1.0 +4.2 +26.5 -5.7 -0.4 -4.0 -0.8 

p (t-Test s vs 
controls) 

0.15 0.04* 0.45 0.19 0.43 0.38 0.31 0.01* 0.06 0.45 0.22 0.44 

Mean bkg ± SD 69.9 ± 
0.9 

61.0 ± 
3.4 

84.5 ± 
9.2 

89.2 ± 
8.4 

67.2 ± 
1.9 

68.9 ± 
3.8 

91.0± 
14.1 

117. ± 
18.7 

62.2 ± 
4.4 

67.6 ± 
1.2 

81.3 ± 
8.1 

86.8 ± 
6.0 

% bkg s vs control +3.0 -10.2 -4.1 +1.3 -1.0 +1.4 +3.3 +32.8 -8.4 -0.4 -7.7 -1.4 

p (t-Test s vs 
controls) 

0.12 0.01* 0.30 0.43 0.35 0.35 0.37 0.02* 0.04* 0.43 0.16 0.42 

Mean SF ± SD 3.9 ± 0.3 4.2 ± 0.3 2.9 ± 
0.3 

3.2 ± 
0.2 

4.1 ± 
0.1 

4.2 ± 
0.1 

3.4 ± 0.6 2.8 ± 0.4 4.1 ± 0.2 4.0 ± 
0.2 

2.8 ± 
0.1 

3.2 ± 
0.4 

% SF s vs control -8.0 -0.1 -9.6 -0.4 -1.7 -0.7 +7.9 -11.0 -1.5 -4.0 -11.4 -1.0 

p (t-Test s vs 
controls) 

0.04* 0.49 0.17 0.48 0.25 0.40 0.26 0.14 0.33 0.10 0.09 0.46 

Mean %P ± SD 29.8 ± 
0.4 

30.5 ± 
1.1 

30.4 ± 
0.8 

29.6 ± 
0.7 

30.0 ± 
0.8 

30.1 ± 
1.0 

30.5 ± 
1.6 

30.4 ± 
1.1 

29.7 ± 
1.1 

29.7 ± 
0.9 

31.0 ± 
1.0 

30.8 ± 
0.5 

%P s vs control +3.0 +5.3 +1.3 -1.1 +3.6 +3.9 +1.9 +1.3 +2.7 +2.5 +3.6 +2.9 

p (t-Test s vs 
controls) 

0.08 0.04* 0.30 0.33 0.08 0.08 0.29 0.32 0.16 0.17 0.11 0.12 

Affymetrix quality control parameters; raw Q, background (bkg), scaling factor (SF) and percent present calls (%P): mean and standard deviation (SD) among 
replicates; % gain of solute(s) respect to the controls, with relative p values. HECT: hydroxyectoine; DGP: potassium diglycerol-phosphate; MG: potassium 

mannosylglycerate. * p-value < 0.05.
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The graphs of the normalized unscaled standard errors (NUSE) and the relative log 

expression (RLE) are displayed as bar charts in Figure 21 and 22, respectively. In both 

cases, the values were normalized on the corresponding controls (the value 1 on the Y 

axis means 100% of the untreated control), as described in the Methods section. Poor 

quality chips have normalized NUSEs and RLEs higher than 1 (control value), while high 

quality chips have normalized NUSEs and RLEs lower than 1. NUSEs and RLEs for 

almost all 10 and 25 mM compatible solute concentrations were lower than 1, indicating 

improved arrays quality. Only in two cases, 10 mM DGP and HECT, the NUSEs were 

slightly higher than controls. On the other hand, the error indexes for the 50 and 150 mM 

solute concentrations were higher than the controls. The values reported in Figure 2 and 

3 were referred to experiments run at the same site.  

The hybridizations were performed on Affymetrix Gene- Chip Test3 arrays. These 

chips are commonly used for the assessment of target quality and contain probes 

representing a subset of genes from different organisms. The fragmented cRNA used in 

our assays hybridized to the human and the highly conserved probes. The results 

reported above were obtained by analyzing the whole array. In order to exclude solutes-

induced cross-hybridization, we also measured PMs and MMs only for human probes. 

The mean values of PM > MM confirmed the higher quality of hybridizations with10 mM 

DGP, 25 mM HECT and 10 and 25 mM MG (Figure 23). Notice that i.e. 0.80 means 80% 

of PM larger than MM, according to the affy Bioconductor package 

(http://bioconductor.org/packages/1.9/bioc/vignettes/affy/inst/doc/affy.pdf). 

 

Figure 21. Normalized unscaled standard errors (NUSE). NUSE values were normalized on the 

controls (1 = 100% = untreated control). DGP25 (25 mM DGP), HECT25 (25 mM HECT) and MG10 (10 

mM MG) arrays showed improved NUSE with respect to the control arrays. (Figure from paper V). 
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Figure 22. Relative log expression (RLE). RLE values were normalized on the controls (1 = 100% = 

untreated control). Notice that DGP10 (10 mM DGP), DGP25 (25 mM DGP), HECT10 (10 mM HECT), 

HECT25 (25 mM HECT), MG10 (10 mM HECT) and MG25 (25 mM MG) arrays displayed improved RLE 

with respect to the controls. (Figure from paper V). 

P 

 

Figure 23. Percentage of PM > MM. Mean percentage of PM > MM for each hypersolute (as defined 

in the Bioconductor package). DGP10 (10 mM DGP), HECT25 (25 mM HECT), MG10 (10 mM MG) and 

MG25 (25 mM MG) showed higher percentage than control (i.e. 0.80 = 80% of PMs larger than MMs). 

(Figure from paper V). 

OMiR 

Loci for many genetic diseases have long been mapped on the human genome, but 

efforts by researchers to locate causative genes for a particular group of hereditary 

diseases in linkage areas have thus far been unsuccessful. We therefore developed and 

applied a novel approach called OMiR [Online Mendelian Inheritance in Man (OMIM) with 

microRNA (miRNA) associations] to test if miRNAs, which are not usually included in 

studies of candidate genes, were associated with these “orphan” Mendelian diseases. We 

used OMiR’s “location-comparison” approach to explore all OMIM identification number 

and miRNA pairs, chromosome by chromosome, and identify miRNAs that could be 

responsible for previously mapped human genetic diseases that have not yet been 

associated with a gene. We found that some loci for these genetic diseases were close to 

miRNAs more frequently than were some loci for genetic diseases with a known 
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responsible gene, suggesting that miRNAs could be the genes responsible for those 

particular diseases. Furthermore, we found specific miRNAs associated with loci for 

cancer, diabetes and congenital diseases. Our results may improve the ability of 

geneticists to identify disease genes by including miRNAs, as candidates, particularly for 

rare diseases.  

We used OMiR to obtain associations between ‘orphan’ OMIM IDs and miRNAs. Table 5 

shows the significant associations between OMIM IDs and the microRNAs clusters using 

500 bootstrap cycles as validation method. Among the miRNAs identified in % OMIM loci, 

miR-210 was cloned from zebrafish and predicted by computational methods (Lim et al. 

2003). It is among the most overexpressed miRNAs under hypoxia (Kulshreshtha et al., 

2006) and is also overexpressed in solid cancers (Volinia et al., 2006). The sequence of 

human miR-185 was predicted on the basis of homology to a verified mouse miRNA 

(Lagos-Quintana et al., 2003). The mature sequence of miR-483 represents the form 

most commonly cloned in large-scale cloning studies (Landgraf et al., 2007) mir-130b is 

the predicted human homolog of mouse miR-130b cloned from mouse embryonic cells 

(Houbaviy et al., 2003, Weber 2005). The expression of miR-210, miR-185 and miR-130b 

were verified in human BC-1 cells (Cai et al., 2005) and were also found to be related to 

cancer (Lui et al., 2007).  

 

Table 5. Association between DELAY-class OMIM IDs and miRNAs. (Table from paper X). 

OMIM ID and disease name Gene map locus miRNA Cluster name*  

%125852 diabetes mellitus, 
insulin-dependent, 2 

11p15.5 mir-210; mir-483 

%194071 multiple tumor-
associated chromosome region 1; 

MTACR1 
11p15.5 mir-210; mir-483 

%145410 hypertelorism with 
esophageal abnormality and 

hypospadias 
22q11.2 

mir-648; mir-185; mir-649;mir-130b; 

mir-650 

%167870_1 panic disorder 1; 
PAND1 

22q11.2 

mir-648; mir-185; mir-649;mir-130b; 

mir-650 

*Each cluster label consists of all the miRNA IDs in the cluster. 

miRNA Target results 

The miRgen interface provides access to unions and intersections of four target 

prediction programs and experimentally supported targets from TarBase 
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(www.diana.pcbi.upenn.edu/tarbase.html). For each miRNA identified with an OMiR 

assay (miR-210, miR-483, miR-648; miR-185, miR-649; miR-130b and miR-650), we 

queried the database for predicted targets and associated GO terms. After that, we 

extracted from the lists only the GO terms related to the OMIM diseases by using key 

words: serotonin, inositol, neuro, mental, anxia and synapse for panic disorder; diabetes, 

insulin and glucagons for diabetes mellitus; tumor, cancer, myeloid, lymphoid and 

carcinoma for multiple tumor; oncogene, cancer, abnormal, tumor, carcinoma, esophagus 

hypospadia and hypertelorism for esophageal abnormality. We chose tumor-related 

keywords for esophageal abnormality and hypospadia, because several cases have 

shown a link between abnormality and tumor development (Habert et al., 2006), 

Maekawa et al., 2006), Mauduit et al., 2006). The same keywords were used to query the 

GO database and extract all the related GO terms. Finally, we computed the 

hypergeometric distribution to assess the probability of having the same list of terms by 

chance to obtain the lists of terms related to the miRNAs for Table 4 and all values of p < 

0.001 (significant terms). The association with miR-483 is the only one that was not 

significant (p = 0.22).  

CRC and microRNAs 

Colon cancer metastasis  

The involvement of miRNAs in the development of metastases was initially 

reported by Li Ma, Julie Teruya-Feldstein and Robert Weinberg, who proved that miR-10b 

initiates breast cancer (BC) invasion and metastasis (Ma et al., 2007). Few months latter 

it was discovered that another miRNA, miR-335, suppresses metastasis and migration by 

targeting the transcription factor SOX4 and tenascin C, an extracellular matrix component 

with anti-adhesive properties (Tavazoie et al., 2008). At the same time, collaborative work 

between Huang’s and Agami’s groups reported that miR-373 and miR-520c stimulated 

cancer cell migration and invasion and proposed as mechanism the suppression of 

CD44, which encodes a cell surface receptor for the extracellular matrix component 

hyaluronan (Huang et al., 2008). Taken together these landmark studies identify a fine 

balance of non-codingRNAs as stimulators and inhibitors of metastasis, and several 

targets that could potentially represent the molecular link between miRNA deregulation 

and a specific tumor behavior.  

Recently, a miRNA hypermethylation profile characteristic of human metastasis, 

including CRCs suggesting that DNA methylation-associated silencing of tumor 

suppressor miRNAs contributes to the development of human cancer metastasis 
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(Lujambio et al, 2008). The reintroduction of miR-148a and miR-34b and miR-34c in 

cancer cells with epigenetic inactivation inhibited their motility, reduced tumor growth, and 

inhibited metastasis formation in xenograft models, with an associated down-regulation of 

the miRNA oncogenic target genes, such as C-MYC, E2F3, CDK6, and TGIF2. Most 

important, the involvement of these three miRNAs hypermethylation in metastasis 

formation was also suggested in human primary malignancies including colon, lung, 

breast, and head and neck carcinomas and melanomas, because it was significantly 

associated with the appearance of lymph node metastasis. 

Although miRNAs represent the most widely studied of the non-coding RNAs (nc-

RNAs), ther ncRNAs possibly involved in tumorigenesis are the ultraconservated genes 

(UCGs), a subset of genomic sequences that are located in both intra- and intergenic 

regions and are absolutely conserved (100%) between orthologous regions of the human, 

rat, and mouse genomes (Bejerano et al., 2004). Because of the high degree of 

conservation, the UCGs may have fundamental functional importance for the ontogeny 

and phylogeny of mammals and other vertebrates. Just as miRNAs may regulate mRNA 

levels, miRNAs may also CLL, as well as in CRC. Further expanding the involvement of 

UCG in human cancers, we were able to prove an oncogenic function for uc.73(P) in 

colon cancer, as diminution of its over-expression induced apoptosis and had 

antiproliferative effects specifically in colon cancer cells abnormally expressing uc.73(P), 

while no effects was found in cells with normal levels of this gene (Calin et al., 2007).    

However, the role of UCGs in CRC metastases has not yet been defined.  To 

further evaluate this, we analyzed miRNA and UCG expression in 6 cell lines: 3 non 

metastatic (COLO201, COLO205 and SW620) and 3 metastatic (COLO320, SW480 and 

HT29) for genome wide approach by our array technology. Data were imported into 

Biometric Research Branch (BRB, http://linus.nci.nih.gov/~brb/download.html) and SAM 

analysis was performed. As expected, several miRNAs and UCGs were found to be 

differentially expressed between metastatic and non-metastatic colon cancer cells at a 

statistically significant level.  These ncRNAs were used to perform two supervised 

clusters, one related to human miRNAs and one to UCGs (Figure 24).  
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Figure 24. MicroRNAs and UCGs differentially expressed in metastatic versus non-metastatic 

colon cancer cell lines. Expression of the differentially regulated miRNAs and UCGs across colon 

cancer metastatic and non-metastatic cell lines. SAM analysis was performed to identify differentially 

expressed human microRNAs and UCGs using 0.1 as target proportion of false discoveries, 100 

permutations and 90
th

 percentile. We found 2 miRNAs upregulated in metastatic cell lines, 5 miRNAs 

downregulated in metastatic samples (Figure 1A), 2 UCGs downregulated in metastatic samples and 4 

UCGs upregulated in metastatic cell lines (Figure 1B). MiRNAs and arrays were mean-centered using 

CLUSTER 3.0. Single linkage cluster was performed by using Spearman Correlation measure. (Figure 

from paper XI). 

Finally, a principal component analysis was performed to highlight the power to 

differentiate metastatic from non-metastatic cell lines of the differentially expressed 

ncRNAs (Figure 25).  A principal component analysis is a statistical method for exploring 

and making sense of datasets with a large number of measurements by reducing them to 

the few principal components that explain the main patterns. 
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Figure 25. Principal Component Analysis (PCA). Unsupervised Sample Classification with PCA of 

normalized dataset was performed: Figure 4A reports as miRNAs and Figure 4B as UCGs separate 

metastatic from non-metastatic cell lines, the PCA mapping was 81.1% for miRNAs and 81.8% for 

UCGs and it is possible to see that the two classes of samples are already distinguished. Supervised 

classification using PCA analysis with significantly differentially expressed miRNAs (Figure 4B) and 

UCGs (Figure 4 C) were able to improve the similarity among samples that belong to the same group 

(see the axes scale) and also confer a better distinction between classes. With differentially 

expressed miRNAs the PCA mapping was 98.4% and for UCGs was 96.7%. (Figure from paper XI). 

 

 

 



 

63 

Ultraconserved Regions and MicroRNAs 

 

Noncoding RNA (ncRNA) transcripts are thought to be involved in human 

tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) 

encode a particular set of ncRNAs whose expression is altered in human cancers. 

Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias 

and carcinomas. UCRs are frequently located at fragile sites and genomic regions 

involved in cancers. Certain UCRs whose expression may be regulated by microRNAs 

abnormally expressed in human chronic lymphocytic leukaemia were identified, and was 

proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer 

cells (Calin et al., 2007). Calin and colleagues findings argue that ncRNAs and interaction 

between noncoding genes are involved in tumorigenesis to a greater extent than 

previously thought. Our statistical analysis supported their findings. 

Statistical Analyses for Correlations between Microarray Expression 

of UCRs and miRNAs 

A detailed description is provided in the Discussion session. Briefly, The input data 

was constituted by a list of T-UCRs and by a list of miRNAs (the “seeds”) and the 

corresponding matrix of expression values. We calculated r, the Spearman rank 

coefficient of correlation for each pair of (miR, UC) genes; namely, we evaluate the p 

values of the correlation tests and select the genes whose correlation value is significant 

at a given value of rejection. Given the high number of correlation tests performed, p 

values were corrected for multiple testing by using the false detection rate (FDR), as in n 

this way, p values control the number of false positive over the number of truly null tests, 

while FDR controls the number of false positive over the number of significant tests. 
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DISCUSSION 

TOM has been then improved and extended 

We describe here three main improvements to TOM original algorithm: (i) 

enhancement of the statistical scores that define the associations; (ii) addition of murine 

expression data for more comprehensive analyses; (iii) introduction of advanced flexible 

enrichment analysis. 

Statistical Scores Enhancement 

Besides the p-value for assessing the significance of the correlation between two of 

the n genes profiles in the experiment (enhanced correction for multiple hypotheses for all 

the n–n couples), in this enhanced version another statistic is offered that gives a 

measure of the robustness of the result, here called R. The rationale of this score is the 

same of the enrichment (Zhang et al., 2005), and namely relies on the assumption that 

the more often a gene is found to be related to another gene, the more the association 

between the genes can be assumed to be robust. However, the frequency of positive 

results needs to be normalized on the total number of tests that genes appears to be 

statistically related in a small number of experiments, but corresponding to the total 

number of experiment tested on the same two genes, the result is more relevant than if it 

represents only a fraction of the tests on the same two genes performed. Namely, it is 

defined as: R = |{ x, y}|px, y < |/|{ x, y}|,
 where x and y are the expression profiles of two 

genes, is the correlation score, p the p-value corresponding to ,  the user-defined 

statistical significance threshold.This statistic expands the broadness of the analysis, 

taking into account the robustness of the relationship found, based on its redundancy, 

across different sets of experiments. 

Murine-Human data 

Besides adding more human data, the database has been enriched in terms of murine 

expression data. As for the human data, information is obtained by pre-computed 

correlation among gene expression profiles, for series obtained from the GEO database. 

Once the query is performed on one or tow loci, TOM extracts two lists of candidate 

genes. These two lists represent either the correlating genes on the two loci or the list of 

seeds plus the correlating genes on the single locus. To identify more stringent 

correlations TOM proceeds to another query, based on murine data. The advantage of 
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inserting also the mouse expression data allows to identify new correlations that might be 

not visible by comparing the human data alone. Extensive work has been done in mice in 

order to study human disorders and today technology permits to target virtually any 

mouse candidate gene that has a human homologue (Capecchi, 2005). Using the 

correlations in mice, TOM retrieves the human homologues (from Homologene at NCBI) 

and searches them in the list identified by comparison in human array data. 

Extended Enrichment Analysis 

Finally, we integrated and improved a second tool, FIT (Nardini et al., 2006) to help 

geneticists understand the role of the most significant genes. FIT measures the similarity 

between any list of candidate genes extracted with TOM (test list) and any number of lists 

(reference lists), extracted in the same way, or representing a signature, a pathway, 

obtained from literature, custom defined or annotated in KEGG (Kanehisa and Goto, 

2000) or GenMAPP (Salomonis et al., 2002). This measure of similarity consists of a 

sequence of three statistical tests (enrichment, specificity of the enrichment and fit), for 

the quantification and the ranking of the relationship between any two sets of genes. 

Statistical significance of enrichment (p ) is evaluated by means of the hypergeometric 

distribution (Sokal and Rohlf, 2003). It assesses if the number of relevant items in a set is 

greater than the one that would be obtained by chance. The specificity of the enrichment 

(p ) assesses if the enrichment is specific to the given category. Namely, specificity 

informs the researcher if the meaning, besides being statistically significant, is specific to 

a given set of genes, or if it is shared or distributed with others. In particular it can tell not 

only if the number of items falling in a given category is greater than what could be 

expected by chance, but also if it is unique to a given set of genes. To do so, the 

candidate gene list is represented as a distribution of all its genes across the bins defined 

by the categories (references) we want to compare to (sub-ontologies, pathways, other 

custom sets). The same is also done for any reference list, that is generally represented 

as an ‘impulsive’ distribution (almost all the genes fall in the same bin). The specificity is 

then defined as a significant value of correlation among the distributions profiles. This 

score also helps to disambiguate particular cases with identical enrichment, but different 

distributions of the genes (Nardini et al., 2006). The significance of the final fit score is 

obtained from the Fisher inverse 2 method (Hedges and Olkin, 1985) and is defined as 

p  = –2(log(p ) + log(p )). Globally, this analysis allows to define statistical scores to rank 

and thus help disambiguate the enrichment for the list of candidates genes for meaningful 

sets of known or annotates genes. To delimitate better the genomic area, it is then central 

to compare these same genes to others that might contribute to the same cellular 
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pathway or are part of the same expression set. FIT allows this quantitative automated 

comparison and can list for example the p -values for the enriched comparison analysis 

with all KEGG Pathways. The user can then for example choose to give priority in the 

candidate gene list to the ones that are related to the most enriched function and thus 

make the analysis more efficient. To make this comparison feasible, automated 

approaches are crucial to allow for the high-throughput quantification of these 

comparison. Given these necessities, we expect this approach to provide an integrative 

and efficient tool for enhanced effective hypothesis-driven research. 

Fun&Co 

We investigated the signaling properties of heart, skeletal and smooth muscles. 

Considering ‘cell surface receptor linked signal transduction’ (GO:0007166) as GOmain, 

we noticed that transmembrane receptor protein tyrosine phosphatase and dopamine 

receptors appeared associated to skeletal muscle, while IGF1R is associated to heart. 

Transgenic mice over-expressing IGF1R (Insuline growth factor like 1 receptor) in the 

heart displayed cardiac hypertrophy which was due to an increase in myocyte size, and 

there was no evidence of histopathology. This study suggests that targeting the cardiac 

IGF1R-PI3K(p110alpha) pathway could be a potential therapeutic strategy for the 

treatment of heart failure (Canicio and Kaliman, 2001). For insulin receptor signaling 

pathway, we obtained a P-value of 0.303 in the comparison between heart and skeletal 

muscle and a P-value of 0.207 in the comparison between heart and smooth muscle. 

Performing a similar experiment with GlobalTest, the comparative P-values were 

respectively, 0.508 and 0.226. In skeletal muscle, we noticed the presence of 

transmembrane receptor protein tyrosine phosphatase signaling pathway seems to be 

obvious: protein-tyrosine phosphatases (PTPases) have an important role in the 

regulation of insulin signal transduction, and the skeletal muscle is the major site of tissue 

insulin resistance in obesity and diabetes. The PTPase activity in skeletal muscle from 

non-diabetic obese subjects was increased significantly by 40–70% compared to the level 

in controls (Ahmad et al., 1997). We obtained a P-value of 0.149 in the comparison 

between heart and skeletal muscle and a P-value of 0.379 in the comparison between 

heart and smooth muscle. Performing a similar experiment with GlobalTest, the 

comparative P-values were respectively, 0.297 and 0.918. In ‘intracellular signaling 

cascade’ (GO:007242), the activation of NF-_B-inducing kinase pathway appears to be 

skeletal muscle associated. We obtained a P-value of 0.279 in the comparison between 

cardiac and skeletal muscle. Performing a similar experiment with GlobalTest, the 

comparative p was 0.748. The third and last GO category analyzed, molecular functions, 
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yielded many additional interesting results. The first general GO term analyzed in this 

category was ‘kinase activity’ (GO:0016301). The ephrin receptor activity was the only 

one specific to cardiomyocytes: this protein is involved in cell–cell communication during 

development and in particular EphA3 plays a critical role in heart development (Stephen 

et al., 2007). In striated muscle, which includes both heart and skeletal muscle, the IGF 

receptor activity is listed: this receptor regulates the cell growth and development in 

muscles and other tissues. In heart, IGFs are locally produced and modulates 

cardiomyocyte growth and maturation. Biochemical alteration (expression variation of 

IGFs) may be associated to fetal/neonatal growth abnormalities of rats (Engelmann et al., 

1989). We obtained a P-value of 0.561 in the comparison between skeletal and smooth 

muscle and a P-value of 0.524 in the comparison between heart and smooth muscle. 

Performing a similar experiment with GlobalTest, the comparative P-values were 

respectively, 0.699 and 0.754. In smooth muscle on the other hand, MAP kinase activity 

was apparent in its multiple steps. MAP kinase is part of a signal transduction pathway 

that promotes cell divisions in response to extracellular stimuli. MAP kinase pathway, 

activated by angiotensin II, is involved in hypertensive vascular remodeling, associated 

with cell growth and increased deposition of extracellular matrix, in particular collagen 

(Touyz et al., 2001). Furthermore, the G protein coupled receptors kinase activity, also 

short-listed in smooth muscle cells, mediates, via the MAPK pathways, the mitogenic 

effects of oxidized lowdensity lipoprotein on vascular smooth muscle cells (Yang et al., 

2001). This mechanism is proven to be involved in pathogenesis of atherosclerosis. Other 

kinase activities could be particularly related to the different metabolic pathways of these 

three different muscle tissues. In skeletal muscles, the phosphorylase kinase activity is 

associated with the glycogen metabolism. Glycogen representing an easily available 

source of glucose. The liver and the skeletal muscles are in fact the main tissues that 

stock the glycogen, and the glycogen phosphorylase kinase is the key regulatory enzyme 

in this process. In striated, a range of kinase activities related to glucose metabolism 

(glycolisis and gluconeogenesis) were apparent, e.g. hexokinase and other enzymes, like 

pantothenate kinase, involved in synthetic pathways of acetyl-CoA, the point of 

connection of the main metabolic oxidative pathways (amino acids, fatty acids and 

carbohydrates). In stimulated smooth cells, the concentration of diacylglycerol (DAG) 

rises rapidly, and DAG functions as a second messenger by activating protein kinase C, 

which in turn regulates many cellular responses, including growth and differentiation. The 

attenuation of the DAG signal and phospholipid synthesis, by the conversion of DAG to 

phosphatidic acid (PA), is regulated by DAG kinases (DGKs). PA can also serve as a lipid 

messenger and the net effect of conversion of DAG to PA might vary from cell to cell and 

condition to condition. Diacylglycerol kinase (DGK) phosphorylates the lipid second 
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messenger DAG to phosphatidic acid. DGK-theta is present both in smooth muscle and in 

endothelial cells of the small blood vessels. DGK-theta activity can be increased by 

noradrenaline (NA) and this pathway is thought to have a physiological role in vascular 

smooth-muscle responses (Walker et al., 2001). Guanylate kinase catalyzes the 

phosphorylation of either GMP to GDP or dGMP to dGDP and is an important enzyme in 

nucleotide metabolic pathways. Co-expression of guanylate kinase with thymidine kinase 

enhances pro-drug cell killing in vitro and suppresses vascular smooth muscle cell 

proliferation in vivo (Akyurek et al., 2001). In striated, the inositol trisphosphate 3-kinase 

converts Ins- 1,4,5-P3 to Ins-1,3,4,5-P4, that modulates the entry of Ca2þ from an 

extracellular source. The 3-kinase activity is significantly activated by the 

Ca2þ/calmodulin complex. In some experiments, the IP3 kinase activity was increased in 

SHRSP (stroke-prone spontaneously hypertensive rats) and its activity was markedly 

affected by divalent cations. These data suggest that the accumulations of IP3 and IP4 

after hormonal stimulation play a physiologic role, possibly by alteration of Ca2þ levels in 

cardiac tissue (Kawaguchi et al., 1990). Another GO term that provided interesting results 

was ‘G-Protein coupled receptor activity‘ (GO:0004930). In heart, the thrombin activity 

induces IP3 formation associated to increase in cytosolic calcium, enhanced automaticity 

and prolong repolarization: this can be related to the electrical abnormalities observed in 

ischemia and infarction (Steinberg et al., 1991). In skeletal muscle the prostaglandin 

activity is important: arachidonic acid metabolites, such as prostaglandins (PG), are 

regulatory of vascular tone and can be released from the contracting muscles under the 

influence of dynamic exercise (Karamouzis et al., 2001). This can in turn augment the 

blood flow and allow the incoming of nutrients and oxygen, to support an increasing 

metabolic muscle request. Furthermore, prostaglandin F2 is involved in the multi-step 

process leading to the formation of large multinucleated muscle cells. Therefore, the use 

of prostaglandins might be therapeutic for treatment of muscle loss due to aging, injury 

and disease. And conversely caution should be taken in using drugs that inhibit PG 

production (like e.g. non-steroidal anti inflammatory drugs) which may be deleterious for 

muscle growth (Horsley and Pavlath, 2003). Also in smooth prostaglandins are active, but 

in this case prostaglandin E receptor activity induces relaxation, e.g. in trachea Platelet 

activating factor (PAF) receptor activity is another term specific to skeletal muscle: PAF 

cumulative effects in skeletal muscle reduce protein synthesis during endo-toxic and 

septic shock (Karlstad et al., 2000). In addition, PAF seems to be involved in skeletal 

muscle ischemia-reperfusion injury (IRI): infusion of PAF antagonists into the muscle prior 

to reperfusion can indeed reduce muscle necrosis (Silver et al., 1996). On the basis of 

opioid-stimulated contraction of dispersed gastric smooth muscle cells, it has been 

suggested that these cells possess opioid receptors of three subtypes: kappa, mu and 
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delta. In smooth cells, the disorder of Ca2þ regulation induced by hemorrhagic shock was 

mediated by opioid receptor and alphaadrenoceptor, which may be partly responsible for 

the vascular hyporesponse, and opioid receptor antagonists improved the response of 

resistance arteries to vascular stimulants in decompensatory stage of hemorrhagic shock 

(Kai et al., 2004). Vaso-active intestinal polypeptide receptor is involved in smooth muscle 

relaxation and, in particular, in bladder, stomach and the esophageal sphincter. 

Tachykinin receptor activity in striated is due to its role: takykinin has cardio-acceleratory 

effect (Sliwowska et al., 2001) and probably some coordinated effect on skeletal muscle.  

Ultraconserved Regions and MicroRNAs 

The input data were constituted by a list of T-UCRs and by a list of miRNAs (the "seeds") 

and the corresponding matrix of expression values. We calculated r, the Spearman rank 

coefficient of correlation, a non-parametric measure of data trend correlation based on 

rankings, for each pair of (miR, UCR) genes; namely, we evaluate the P-values of the 

correlation tests and selected the genes whose correlation value is significant at a given 

value of rejection. Evaluation of P-values was performed assuming that the correlation 

values are distributed using Student's t cumulative distribution, with a number of degrees 

of freedom corresponding to the number of samples in the microarray experiment. The P-

values measure the 'goodness' of the single correlations (among couples of genes), 

therefore, to understand if the real correlation derives by chance or represents a 

biologically important information, we choose the method of permutations, changing the 

order of the samples for each row (miR or UCR) and calculating the correlations between 

pair of genes (miR, UCR) with different changed samples orders. We repeated the 

samples permutation and computed correlations 100 times, in this way, every real 

correlation has 100 random correlations to compare with. Using all (100 * n° MIR * n° 

UCR) random correlations and real correlations, we recalculated P-values based on 

random correlations ranking and position of the real correlations. Given the high number 

of correlation tests performed, P-values were corrected for multiple testing by using the 

false detection rate (FDR), as defined by (Benjamini and Hochberg, 1995). In this way, P-

values control the number of false positive over the number of truly null tests, while FDR 

controls the number of false positive over the number of significant tests. Several ways of 

estimating this number have been proposed, and we adopted the solution devised by 

Tom Nichols (see http://froi.sourceforge.net/documents/technical/matlab/FDR.html), that 

rescales the P-value obtained on a single test multiplying it by a combination of indexes 

related to the total number of tests performed. Correction was performed on a seed by 

seed basis, meaning that the genes in the seeds list were considered independent tests. 
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This statistically validated tripe filtering allows the targeted extraction of a shortlist of 

candidate genes, thus saving resources for the following costly and time-consuming 

genetic analysis. To build a scatter plot between miR-24-1 and uc.160 expression values 

and between miR-155 and uc.346+(A) expression values, respectively, we plotted a 

regression line by using MatLab function ROBUSTFIT to explain hypotheses of negative 

correlation between these two genes (see Figure 26). 

 

Figure 26 Two scatter plots between expression values of mir-24-1 and uc.160 and of miR-155 and 

uc.346A are presented. The regression line shows the negative correlation between these two genes. 

The name of the corresponding array probes are presented on the Y and X axes. Both probes 

recognize the mature form of the miRNA gene. (Original figure used for paper VI). 
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CONCLUSIONS 

Bioinformatics is an important field that discover and support research.  

Genomic research will continue to benefit from the productive interaction of biologists, 

geneticists, statisticians, and bioinformaticians. Several tools, web-based applications, 

algorithms and data analysis has been described in this thesis, for each one of them we 

report a specific conclusion. 

GebbaMa 

GebbaMA, the virtual laboratory for microarray data, is a web environment web for 

data management.  

The tool, specific for the treatment of microarray data has several functionality like: 

• upload  

• download  

• search of the experiments and annotation of the genetic information, clinics 

and experimental  

• federate search among installations geographically distributed 

The environment has been realized in a user friendly way guaranteeing a high degree 

of personalization in phase of storage: 

• Upload and multiple download of the experiments  

• automatic annotation of the genetic information, clinics and experimental, 

produced in the laboratory  

• automatic control of some annotations (organism, provider of the array, name 

of the array) according to the reference ontologies  

• Possibility to singly manage the experiments or to re-organize them in projects 

• Interoperability among laboratories geographically distributed 

TOM 

We devised and implemented TOM, an algorithm for the identification of candidate 

genes responsible for genetic diseases. We took advantage of the microarray datasets 

available online to exploit novel computational biology approaches to molecular genetics. 

TOM allows a user to seamlessly associate functional and mapping data and to efficiently 

employ them in a quest for novel candidate genes in hereditary diseases. Additional 

selection principles can be implemented to extend TOM, such as declaring a putative 
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pathway for the candidate gene, in the case of poorly characterized diseases. Moreover, 

constant updating TOM with new expression datasets will increase the robustness of the 

assay. Our work represents a novel computational tool for gene hunters and could help to 

integrate and improve the comprehension of the genetic roots and the molecular 

mechanisms of complex life threatening diseases. 

Fun&Co 

Fun&Co is a novel and very efficient way of mining functional differences from a 

number of datasets in a pairwise manner. The application extracts the most significant 

differences from the molecular expression data, as shown in this article on skeletal, heart 

and smooth muscles. The results are highly informative and synthetic. Important, it is 

apparent that as many as a dozen critical points were correctly detected by Fun&Co in 

common with the heart signaling network of Heineke and colleague (Heineke and 

Molkentin, 2006). This finding supports the potential usefulness of this application in the 

high level analysis of transcriptome.  

Hypersolutes 

Low millimolar concentrations of hydroxyectoine, potassium diglycerol phosphate and 

potassium mannosylglycerate reduced DNA microarray background and improved 

hybridization efficiency. The results were highly significant when analyzed by comparing 

different quality control measures: raw Q, background (bkg), scaling factor (SF), percent 

present calls (%P), chips pseudo-images, normalized unscaled standard errors (NUSE) 

and relative log expression (RLE). Twenty five mM DGP, 10 mM HECT and 10 mM MG 

were shown to be the optimal solutes and concentrations. The experiments were carried 

out and confirmed in two different Affymetrix facilities. The application of this finding to 

hybridization protocols could result in a significant improvement of microarray 

experiments, not limited to expression profiling. 

OmiR 

We devised and implemented OMiR, an algorithm to compute and study the associations 

between miRNAs and genetic diseases. We took advantage of the OMIM database to 

retrieve disease information. Additional association options can be implemented to extend 

the reach of OMiR, such as the possibility of using markers known by the user that have 

not yet been published. Moreover, updating OMiR with new OMIM IDs and new miRNAs 

will increase the robustness of the assay. Our work represents a novel way to extract 
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information on the relationships between miRNAs and diseases with OMIM IDs not 

associated with a specific disease gene. 

CAGRs and microRNAs 

The genome-wide correlation studies described are the first steps toward defining a 

link between the role of noncoding RNAs (ncRNAs such as miRNAs and RNAs from 

UCRs) and the development of cancer. Bioinformatics and statistical tools were highly 

utilized to reveal associations between the ncRNAs and CAGRs and/or FRAs. Genome-

wide expression profiling of miRNAs by various techniques has already begun to identify 

new diagnostic and prognostic tools for cancer patients. Several ncRNAs were shown to 

affect tumor development and progression. The implementation of new algorithms and 

tools specifically focused on miRNAs and UCGs will lead to important findings regarding 

ncRNAs as tumor biomarkers and therapeutic targets. Targeting of ncRNAs may thus 

provide an important therapeutic strategy for treatment of human cancer. From a 

therapeutic standpoint, restoration of the expression of a downregulated (or functionally 

deficient) ncRNA or, alternatively, inhibition of an overexpressed ncRNA could reverse 

the tumor phenotype. Knowing the location of such ncRNAs in CAGR could help in 

selecting the best candidates for starting the ncRNA-based gene therapy trials.  

 

.
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APPENDIX A 

Table A1 Table 1 List of human fragile regions (FRAs) containing miRNAs and UCRs. (Table from paper VIII). 

FRA Chr band Clone/BAC/Gene/Marker Start (bp) End (bp) Associated miRNAs Associated UCRs 

FRA1A 1p36 FGR 26322852 29322852 hsa-miR-801   

FRA1C 1p31 W72033 66784394 69784394     

FRA1F 1q21 AA007419 159812139 162812139 hsa-miR-556 uc.38;uc.39;uc.40 

FRA1H 1q42.1 AC096642 216068384 219068384 hsa-miR-194-1;hsa-miR-215   

FRA2G 2q31  AC009475–AC093899 167706756 171680166     

FRA2I 2q33 FZD7 206835577 209842388     

FRA3B 3p14.2 D3S1287 62682121 65682121     

FRA4B 4q12 H23235 53358992 56358992     

FRA4C 4q31.1 ZNF330 140868420 143868420     

FRA5C 5q31.1 AC010238.6 133096692 136096692 hsa-miR-886 uc.173 

FRA5E 5p14 AA701860 51317138 54317138 hsa-miR-581   

FRA6E 6q26 IGF2R; SLC22A3; PLG 159543260 162594328     

FRA6F 6q21 D6S1698–D6S1066 109922552 112922710     

FRA7E 7q21.11   79750000 82750000     

FRA7F 7q22 MUC3; TRIP6; DRA 105722132 108722244 hsa-miR-106b;hsa-miR-25;hsa-miR-93   
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FRA7G 7q31.2 D7S486–D7S522 114182101 117360113   uc.228;uc.229;uc.230;uc.231 

FRA7H 7q32.3 D7S786–D7S649 128564331 132008317 hsa-miR-182;hsa-miR-183;hsa-miR-

29a;hsa-miR-29b-1;hsa-miR-335;hsa-miR-

96 

  

FRA7I 7q35 AC004981, AC004911, 

AC006315 

143130358 146130358     

FRA8B 8q22.1 AC004459 113928640 116928640     

FRA8E 8q24.1 EXT1 117534515 120534515   uc.246 

FRA9D 9q22.1 NTRK2; GAS1 87250511 90250511 hsa-miR-7-1   

FRA9E 9q32–33.1 PAPPA; D9S1866–D9S177 116455904 119704422 hsa-miR-32;hsa-miR-455   

FRA10B 10q25.2 D10S597–D10S88 109720779 114308329   uc.310 

FRA10C 10q21 N72215 71750934 74750934     

FRA10D 10q22.1 AC010163 78241247 81241247     

FRA11A 11q13.3 PC (distal=telom); 

D11S913–ACTN3 

64192922 67587373 hsa-miR-192;hsa-miR-194-2;hsa-miR-612 uc.330 

FRA11B 11q23.3 CBL2 117133133 120133133     

FRA12A 12q13.1 PCBP2(distal toFS) 50645950 53645950 hsa-miR-148b;hsa-miR-196a-2;hsa-miR-

615 

uc.338;uc.339;uc.340;uc.341;uc.3

42;uc.343;uc.344;uc.345 

FRA13C 13q21.2 AL162376 71283245 74283245     

FRA15A 15q22 W58092 59645356 62645356 hsa-miR-190;hsa-miR-422a   

FRA16D 16q23.2 D16S518–D16S3029; 75191052 79303194     
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WWOX 

FRA16E 16p12.1 D16S299 26727578 29727578     

FRA17B 17q23.1 AC004686 53827242 56827242 hsa-miR-21;hsa-miR-301a;hsa-miR-454 uc.418;uc.419 

FRA18A 18q12.2 D18S978 35092257 38092257 hsa-miR-924   

FRA22A 22q13 CSF2RB 

(proximal=centrom) 

34156466 37156466 hsa-miR-658;hsa-miR-659; uc.458 

FRAXA Xq27.31 DXS548 145111238 148111238 hsa-miR-506;hsa-miR-507;hsa-miR-

508;hsa-miR-509-1;hsa-miR-509-2;hsa-

miR-509-3;hsa-miR-510;hsa-miR-513-

1;hsa-miR-513-2;hsa-miR-514-1;hsa-miR-

514-2;hsa-miR-514-3 

  

FRAXB Xp22.3 DXS1130–DXS237 5768190 9058235 hsa-miR-651   

FRAXE Xq28 FMR2 145889831 149139865 hsa-miR-506;hsa-miR-507;hsa-miR-

508;hsa-miR-509-1;hsa-miR-509-2;hsa-

miR-509-3;hsa-miR-510;hsa-miR-513-

1;hsa-miR-513-2;hsa-miR-514-1;hsa-miR-

514-2;hsa-miR-514-3 

  

FRAXF Xq28 FAM11A 147003696 150003696     

a
Clone/BAC/Gene/Markers chromosome positions were determined by using http://www.Ensemble.org (release March 2008) and NCBI website 

(http://www.ncbi.nlm.nih.gov/). We considered by analogy with the length of a FRA that a distance of <2 Mb can define “close” vicinity (Calin et al. 2004); in this way, 

association analysis considered 2 Mb as “close” vicinity. A Perl algorithm was implemented to find the association between FRAs and miRNAs as well as between FRAs and 

UCRs  
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Table A2 List of databases, bioinformatic/statistical analysis, and programs used to study miRNA functions, characteristics, associations, and correlations. 

(Table from paper VIII). 

Reference Database Bioinformatic/statistical 

analysis 

Program used 

Calin et al. 

(2004)  

MiRNA registry (http://www.microrna.sanger.ac.uk/registry/)  Random-effect Poisson 

regression models 

BLAST 

PubMed (http://www.pubmed.com)  IRR (incidence rate ratio) Perl 

GenBank (http://www.ncbi.nlm.nih.gov/Genbank/)    Bioperl Modules 

RNA folding program http://www.bioinfo.rpi.edu/applications/mfold/old/ma)    STATA 7.0 

Homo Sapiens Genome (http://www.ncbi.nlm.nih.gov)      

FRA database (Calin et al. 2004)      

Zhang et al. 

(2006)  

MiRNA Registry (http://www.microrna.sanger.ac.uk/registry/)  Target prediction DIANA-MICRO T 

TARGET SCAN 

MIRANDA 

PICTAR 

Calin et al. 

(2007)  

UCR database (Calin et al. 2007)  ANOVA GeneSping GX 7.3 

    MatLab 6.5 

FRA database (Calin et al. 2004)  SAM (Significance 

Analysis of Microarrays) 

  

CAGR database (Calin et al. 2004)  PAM (Prediction Analysis of   
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Microarrays) 

  Spearman rank correlation   

  FDR (False Discovery Rate)   

  Random-effect Poisson model   

  Binomial regression model   

  Fisher exact test   

Gaur et al. 

(2007)  

Stanford MicroarrayDatabase (http://www.genome-www5.stanford.edu/)  Leave-one-out sensitivity 

analysis 

TM4MeV v4 (Microarray Software Suite - 

http://www.tm4.org/mev.html)  

Sanger MirBase (http://www.microrna.sanger.ac.uk/)  Student’s t-test R (free software environment for statistical 

computing and graphics - http://www.r-

project.org/)  

  Spearman rank correlation   

  Multiscale bootstrapping 

analysis 

  

Makunin et al. 

(2007)  

Retroviral Tagged Cancer Gene Database (http://www.rtcgd.ncifcrf.gov)  Bootstrap analysis UCSC utilities 

miRNA Registry (http://www.microrna.sanger.ac.uk/registry/)    phastCons conservation scores 

Sanger miRBase (http://www.microrna.sanger.ac.uk/)    Microsoft Excel 

UCSC Genome Browser (http://www.genome.ucsc.edu)      

Sevignani 

et al. (2007)  

MUSMIRSUS database 

(http://www.kimmelcancercenter.org/siracusa/musmirsus.htm)  

Random effect Poisson 

regression model 

BLAT 
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Ensembl (http://www.ensembl.org)  IRR (Incidence Rate Ratio) FirstEF (first-exon and promoter 

prediction program for human DNA - 

http://www.rulai.cshl.org/tools/FirstEF/)  

Mouse Genome Informatics Database (http://www.informatics.jax.org)    STATA 7.0 

PubMed (http://www.pubmed.com)      

UCSC Genome Browser (http://www.genome.ucsc.edu)      
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Table A3 Glossary of bioinformatics terms (Table from paper VIII). 

Term Definition 

Agglomerative hierarchical clustering The classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that 

the data in each subset (ideally) share some common trait, often proximity according to some defined distance measure.  

axtAndBed, axtCalcMatrix UCSC utilities that allow calculating genome-genome base-pair identity scores. 

Bootstrap analysis A general-purpose approach to statistical inference, falling within a broader class of resampling methods. 

Circular binary segmentation algorithm A modification of binary segmentation algorithm, used to translate noisy intensity measurements into regions of equal copy 

number.  

FDR (False Discovery Rate) A statistical method used in multiple-hypothesis testing to correct for multiple comparisons. In a list of rejected hypotheses, 

FDR controls the expected proportion of incorrectly rejected null hypotheses.  

hgWiggle, -doStats UCSC utility and flag that allow to fetch wiggle data from database or file. 

Leave-one-out sensitivity analyses Statistical diagnostics performed to investigate the validity and robustness of the meta-analysis applying an approach to 

subsets of the K studies, the leave-one-out method. The steps for the leave-one-out method are as follows:  

Remove the first of the K studies and conduct the meta-analysis on the remaining K − 1 studies 

Remove the second of the K studies and conduct the meta-analysis on the remaining K − 1 studies 

Continue this process until there are K distinct meta-analyses (each with K − 1 studies) 

Permutation-generated reference distribution A type of statistical significance test in which a reference distribution is obtained by calculating all possible values of the test 

statistic under rearrangements of the labels on the observed data points  

Random-effect Poisson regression A form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response 

variable Y has a Poisson distribution and assumes the logarithm of its expected value can be modeled by a linear combination 

of unknown parameters.  
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RefSeq The Reference Sequence (RefSeq) database is an open access, annotated collection of publicly available nucleotide 

sequences (DNA, RNA) and their protein translations. This database is built by National Center for Biotechnology Information 

(NCBI).  

Spearman rank correlation A nonparametric measure of correlation; it assesses how well an arbitrary monotonic function could describe the relationship 

between two variables, without making any assumptions about the frequency distribution of the variables.  

 

 


