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Chapter-0 Introduction

0.1 Introduction

The important and worth knowing results of General Topology

(Point-Set Topology) viz. metrization theorems, Tychonoff theo-

rem and Extension theorems were known by 1940. Inspite of this,

serious research continues to this date in this innocent branch of

Pure mathematics. It is also observed that deeper results and gen-

eralizations in point-set topology soon settles on the thin bound-

ary of mathematics, foundational logic and descriptive set-theory.

Consequently they become out of reach of mathematicians.

The axiom of first countability appears as an important condition

in the following well-known results,

“Every first countable Hausdorff topological group is metrizable” [3], [10]

Similar result,

“A first countable Hausdorff topological vector space is metrizable” [11]

is a well-known result.

0.2 Review of Literature

The following deep and elegant topological characterization of Q

is not very well-known among mathematicians.
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Chapter-0 Introduction

“Every countable, first countable, regular space without iso-

lated points is homeomorphic to Q” [15]

In an attempt of understanding this axiom well and of course

a natural mathematical instinct of generalizing it to strengthen

known results has provided several notions which generalize this

axiom in several different ways. e.g. [5], [6], [17]. Of these gener-

alizations we restrict our attention to only Fréchet-Urysohn spaces

and sequential spaces [1], [3], [5], [6], [17]. Our main focus is on

construction of such spaces (mainly countable spaces). We also

note here that introduction to each chapter contains the review of

literature relevant to the topic of the chapter in the disguised form.

0.3 Chapter wise Summary

The work presented in this thesis is divided into seven chapters.

Chapter-1 contains three examples (Here we denote them as X1, X2,

X3) of countable spaces with exactly one nonisolated point [16].

We give alternative descriptions of these examples. Also we char-

acterize them topologically. As an application of these results, we

give examples of spaces (X, τ1) and (X, τ2) which are homeomor-

phic, however τ2 is strictly finer than τ1.

2



Chapter-0 Introduction

Chapter-2 is about a well-known example (Here we denote it as

X4) which is known as sequential fan[16]. We give alternative de-

scriptions of it and characterize it topologically.

In Chapter-3 we consider three topological spaces (Here we de-

note them as X5, X6, X7) which can be constructed just like se-

quential fan [16]. Here we prove that X5 and X6 are not home-

omorphic to X4. Also we prove that X5 and X6 are not homeo-

morphic and X7 is homeomorphic to X6.

Chapter-4 is concerned with filters on N [18], [20]. We define fil-

ters on N and using these filters we construct countable spaces

with exactly one nonisolated point. Our main task in this chapter

is to prove these spaces are nonhomeomorphic.

Chapter-5 is about a well-known example Fω, which was con-

structed by S. P. Franklin and M. Rajagopalan [4]. We give our con-

struction of the space Fω which is a countable, Fréchet-Urysohn,

homogeneous, regular but a non first countable space. At the end

of this chapter we give an alternative answer to the question - if

Fω supports a compatible group structure - asked by S. P. Franklin

and M. Rajagopalan [4].

3



Chapter-0 Introduction

Chapter-6 is concerned with Ψ-spaces which were first introduced

by J. R. Isbell [7]. Here we construct a space using Ψ-space no-

tions which is not homeomorphic to the sequential fan though it

is a countable, Fréchet-Urysohn space with unique limit point. In

fact this space is not homeomorphic to any one of the examples

X1, X2, X3, X4, X5, X6.

Chapter-7 contains some concluding remarks.
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Chapter-1 Spaces with unique nonisolated point and their topological characterizations

1.1 Introduction

In this chapter we shall discuss three examples of countable topo-

logical spaces with exactly one nonisolated point[16]. Also we

shall give alternative descriptions of theses examples and charac-

terize them. At the end of this chapter, as an application of these

results we shall give examples of spaces (X, τ1) and (X, τ2) which

are homeomorphic, however τ2 is strictly finer than τ1.

1.2 Example 1 (The Space X1)

X1 = { 1
n |n ∈ N} ∪ {0} as a subspace of R. This is an example of a

countable, compact, T1-space, with exactly one nonisolated point.

1.2.1 Alternative intrinsic description of X1

As before, let X1 = { 1
n |n ∈ N} ∪ {0}. Without any reference of R,

we may define a topology τ1 as follows:

1. Any subset of X1 not containing 0 is open.

2. Suppose 0 ∈ O ⊆ X1, then O is open if and only if O contains

all but finitely many points of X1.

It is easy to verify that τ1 is a topology on X1.

5



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Theorem 1.2.1. (X1, τ1) is a countable, compact, T1-space, with exactly

one nonisolated point (limit point).

Proof:

(1) Clearly, X1 is countable and 0 is its unique nonisolated point.

(2) X1 is compact:

Let A = {Oα|α ∈ J} be any open cover of X1. Then there

exists β ∈ J such that 0 ∈ Oβ. Since Oβ is open and 0 ∈ Oβ, Oβ

contains all but finitely many points of X1, say, 1
n1

, ..., 1
nk

. For

each i,∃Oαi
∈ A such that 1

ni
∈ Oαi

. Thus {Oβ, Oα1
, ..., Oαk

} is

a finite subcover of X1. This shows that X1 is compact.

(3) X1 is a T1-space:

Let x, y be two distinct points of X1. If x, y are both non-zero

then {x} and {y} are required open sets. If one of them is zero,

we may assume without loss of generality that x = 0, then we

may consider {y} and X1\{y} as required open sets. Hence X1

is a T1-space.

Remark 1.2.1.

1. Actually one observes that any such space is Hausdorff. That

is, if X is any T1-space with exactly one nonisolated point

6



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

then X is also Hausdorff.

2. (X1, τ1) as defined above and X1 as a subspace of R are the

same topological spaces.

Yet another such example:

Let X be any countable discrete space. Note that any two count-

able discrete spaces are homeomorphic. Consider X∗ = X ∪ {∞},

the one point compactification of X . Then X∗ also is an example

of a countable, compact, T1-space with unique nonisolated point

∞.

1.2.2 Characterization of X1

Theorem 1.2.2. Let X be any countable, compact, T1-space with exactly

one nonisolated point (note that such a space is metrizable). Then X is

homeomorphic to X1.

Proof:

Since X is countable, we can write X = {x0, x1, x2, ...}, where x0 is

the nonisolated point of X . Clearly, any subset of X not containing

x0 is open in X .

Claim: If U is an open set containing x0, then U must contain all

but finitely many points of X , that is, X\U is finite.

7



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Suppose X\U is infinite. Then A = {U} ∪
{
{xk}|xk /∈ U

}
is an

open cover of X that has no finite subcover which contradicts the

compactness of X . This proves our claim.

Now consider the mapping f : X → X1 given by

f(xn) =
1

n
, n = 1, 2, ...

f(x0) = 0

Clearly, f is one-one and onto.

Claim: f is continuous.

Let U be any open set in X1. If 0 /∈ U, then x0 /∈ f−1(U), so that

f−1(U) is open in X . If 0 ∈ U, then U contains all but finitely

many points of X1. Since f is one-one, f−1(U) also contains all but

finitely many points of X, i.e. X\f−1(U) is a finite set. Therefore

X\f−1(U) is closed because X is a T1 space and hence f−1(U) is

open in X . This shows that f is continuous.

Claim: f is open (i.e. here f−1 is continuous).

Let U be any open set in X . If x0 /∈ U then 0 /∈ f(U), hence it is

open in X1. If x0 ∈ U , then U contains all but finitely many points

of X . Therefore f(U) also contains all but finitely many points of

X1 and 0 ∈ f(U). Hence f(U) is open in X1. This proves our claim.

Thus f is a homeomorphism and therefore X and X1 are homeo-

morphic.

8



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

This theorem shows that X1 is the unique example of a countable,

compact, metrizable space with exactly one nonisolated point, up

to homeomorphic spaces.

1.3 Example 2 (The Space X2)

X2 = {0, 1, 1
2 ,

1
3 , ...} ∪ N = X1 ∪ N as a subspace of R. This is an

example of a countable, locally compact, noncompact, T1-space

with exactly one nonisolated point.

1.3.1 Alternative intrinsic description of X2

As before, let X2 = X1 ∪ N = {0, 1, 1
2 ,

1
3 , ...} ∪ N. Without any

reference of R, we may define a topology τ2 on X2 as follows:

1. Any subset of X2 not containing 0 is open.

2. Suppose 0 ∈ O ⊆ X2, then O is open in X2 if and only if O

contains all but finitely many points of X1.

Theorem 1.3.1. (X2, τ2) is a countable, locally compact, noncompact,

T1-space with exactly one nonisolated point.

Proof:

(1) X2 is countable because X1 and N are countable. Clearly, 0 is

the unique nonisolated point of X2 .

9



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

(2) X2 is locally compact:

Let us first characterize the compact subsets of X2. Let C be

any compact subset of X2.

If 0 /∈ C, then we assert that C is finite. Suppose that C is

infinite, then A =
{
{x}|x ∈ C

}
is an open cover of C that

has no finite subcover, which contradicts the compactness of

C. This proves our assertion.

If 0 ∈ C, then we assert that C ∩ N is finite. Suppose that

C ∩N is infinite, then A = {X1} ∪
{
{x}|x ∈ C ∩N

}
is an open

cover of C by sets open in X2 that has no finite subcover, which

contradicts the compactness of C. This proves our assertion.

Now we show that X2 is locally compact. Let x be any point

of X2. If x = 0 then X1 is a compact open subset of X2 which

contains 0. If x 6= 0 then {x} itself is compact open subset of

X2 which contains x. Thus X2 is locally compact.

(3) X2 is not compact:

A =
{
{x}|x ∈ N

}
∪ {X1} is an open cover of X2 that has no

finite subcover. Therefore X2 is not compact.

(4) X2 is a T1-space:

Let x, y ∈ X2 and let x 6= y. If x and y both nonzero then {x}

10



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

and {y} are required open sets. If one of them is zero, we may

assume without loss of generality that x = 0, then we may

consider {y} and X2\{y} as required open sets. Hence X2 is

T1-space.

1.3.2 Characterization of X2

Remark 1.3.1. (X2, τ2) defined above and X2 as a subspace of R

are the same topological spaces.

Theorem 1.3.2. Let X be any countable, locally compact, noncompact,

T1-space with exactly one nonisolated point (note that such a space is

metrizable). Then X is homeomorphic to X2.

Proof: Let x0 denote the nonisolated point of X . Clearly, any sub-

set of X not containing x0 is open in X . Since X is locally compact,

there exists a compact subset C containing x0, which contains an

open set V of x0. As x0 is the nonisolated point, V contains in-

finitely many points of X and therefore C is infinite. Also X\C is

infinite otherwise X is compact. Since X is countable, C and X\C

are countable, so we can write C and X\C as follows:

C = {x0, x1, x2, x3, ...}

X\C = {y1, y2, y3, ...}

11



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Observe that C and X\C are clopen subsets of X .

Claim: Suppose x0 ∈ U ⊆ X, then U is open in X if and only if U

contains all but finitely many points of C.

Suppose that U is open in X containing x0. We want to show that

U contains all but finitely many points of C. If C\U is infinite then

A = {U} ∪
{
{x}|x ∈ C\U

}
is an open cover of C by sets open in

X . Clearly, A has no finite subcollection that covers C, therefore C

is not compact. Which is a contradiction to the fact C is compact.

Therefore our supposition is false and we conclude that U contains

all but finitely many points of C.

Conversely, suppose that U contains all but finitely many points

of C. We want to show that U is open in X . If (X\C)∩U = φ, then

X\U = (C\U) ∪ (X\C). Since C\U is finite and X is a T1 space,

C\U is closed in X . Also X\C is closed in X . Therefore, in this

case X\U is closed and hence U is oepn in X .

If (X\C) ∩ U 6= φ, then X\U = (C\U) ∪ ((X\C)\U). Since C\U

and (X\C)\U both are closed in X, X\U is closed in X . Hence U

is open in X .

Now we show that X and X2 are homeomorphic.

12



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Define a mapping f : X −→ X2 as follows:

f(x0) = 0

f(xn) =
1

n
, n = 1, 2, ...

f(yn) = n, n = 1, 2, ...

Claim: f is a homeomorphism.

(1) Clearly, f is one-one and onto.

(2) f is continuous.

Let U be any open set of X2. If 0 /∈ U , then x0 /∈ f−1(U), so

that f−1(U) is open in X . If 0 ∈ U , then x0 ∈ f−1(U). Since U

contains all but finitely many points of X1, f−1(U) contains all

but finitely many points of C. Therefore f−1(U) is open in X

by above claim. This shows that f is continuous.

(3) f is open.

Let U be any open set of X . If x0 /∈ U , then 0 /∈ f(U) and

hence f(U) is open in X2. If x0 ∈ U , then 0 ∈ f(U). Because

U contains all but finitely many points of C, f(U) contains all

but finitely many points of X1. Therefore f(U) is open in X2.

This shows that f is open.

From (1), (2) and (3), f is a homeomorphism.

13



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

This theorem shows that X2 is the unique example of a countable,

locally compact, noncompact, metrizable space with exactly one

nonisolated point, upto homeomorphic spaces.

1.4 Example 3 (The Space X3)

X3 = {0} ∪ { 1
m + 1

n |m, n ∈ N and n > m(m − 1)} as a subspace of

R.

Let 1
m + 1

n ∈ X3 then 1
m + 1

n = 1
m + 1

m(m−1)+k , for some k ∈ N.

Since { 1
m + 1

n} =
( 1

m + 1
m(m−1)+k+1 ,

1
m + 1

m(m−1)+k−1

)
∩X3, { 1

m + 1
n} is

open in X3.

Theorem 1.4.1. The space X3 is a countable, non-locally-compact, sec-

ond countable, metrizable with exactly one nonisolated point.

Proof:

(1) Clearly, X3 is countable and 0 is its unique nonisolated point.

(2) X3 is not locally compact.

Suppose that there exists a compact subset C and an open set

O in X3 such that 0 ∈ O ⊆ C. Then there exists a basis element

(a, b) ∩X3 of X3 such that 0 ∈ (a, b) ∩X3 ⊆ O.

Since 1
m goes to 0, there exists a positive integer M such that

1
m ∈ (a, b), ∀ m ≥ M . Choose m > M then 1

m ∈ (a, b).

14



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

∴ K = { 1
m + 1

n |n ∈ N, n > m(m− 1)} ⊆ O.

K̄X3 = K̄R ∩X3

=

(
K ∪

{ 1

m

})
∩X3

(
∵ K̄R = K ∪

{ 1

m

})
= K.

(Here K̄X3 and K̄R denotes the closure of K in X3 and closure

of K in R respectively.)

Thus, K is a closed subset of a compact set C. Therefore K

is compact. But K as a subspace of X3 is discrete therefore K

is not compact. So we have a contradiction. Hence X3 is not

locally compact.

(3) X3 is second countable and metrizable.

The space X3 being a subspace of R is second countable and

metrizable.

1.4.1 Alternative descriptions of X3

1. Alternative description of X3:

Y = {( 1
m , 1

n)|m,n ∈ N} ∪ {(0, 0)} as a subspace of R2.

Since
{
( 1

m , 1
n)

}
=

(
( 1

m+1 ,
1

m−1) × ( 1
n+1 ,

1
n−1)

)
∩ Y,

{
( 1

m , 1
n)

}
is open

in Y .

15



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Theorem 1.4.2. The space Y is a countable, non-locally-compact, second

countable, metrizable space with exactly one nonisolated point.

Proof:

(1) Clearly, Y is countable and (0, 0) is its unique nonisolated point.

(2) Y is not locally compact.

Suppose that there exists a compact subset C of Y and an open

set U in Y such that (0, 0) ∈ U ⊆ C. Then there exists a basis

element B = ((a, b)× (c, d)) ∩ Y of Y such that (0, 0) ∈ B ⊆ U .

Choose a point ( 1
M , 0) ∈ (a, b)× (c, d).

Since the sequence {( 1
M , 1

n)} converges to ( 1
M , 0), there exists a

positive integer N0 such that ( 1
M , 1

n) ∈ (a, b) × (c, d) for every

n ≥ N0.

∴ K = {( 1
M , 1

n)|n ∈ N, n ≥ N0} ⊆ U.

Now K̄Y = K
(
∵ K̄Y = K̄R2 ∩ Y and K̄R2

= K ∪ {( 1
M , 0)}

)
Thus K is a closed subset of a compact set C. Therefore K is

compact. But K as a subspace of Y is discrete and hence K is

not compact. Which is a contradiction. Thus Y is not locally

compact.

(3) Y is second countable and metrizable.

We know that every subspace of a second countable space is

16



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

second countable. Therefore Y as a subspace of R2 is second

countable. Also as a subspace of R2, Y is metrizable.

2. Alternative description of X3:

Let us put E = Q; the set of rational numbers. The topology on

E = Q is defined as follows:

1. Any subset of E = Q not containing 0 is open.

2. Suppose 0 ∈ O ⊆ E = Q, then O is open if and only if there

exists ε > 0 such that 0 ∈ (−ε, ε) ∩Q ⊆ O.

Thus we are considering on the rationals the enlarged topology

from the usual topology by declaring all rationals other than zero

as open.

Theorem 1.4.3. The space E = Q is a countable, non-locally-compact,

regular, second countable, metrizable space with exactly one nonisolated

point.

Proof:

(1) Obviously, E = Q is countable and 0 is its unique nonisolated

point.

(2) E is not locally compact:

Suppose there exists a compact subset C of E = Q and an open

17



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

set O of E = Q such that 0 ∈ O ⊆ C. Then there exists ε > 0

such that 0 ∈ (−ε, ε) ∩ Q ⊆ O. Choose an irrational number i

in (−ε, ε). Then there exist a sequence (rn) of nonzero rationals

such that (rn) converges to i.

Put A = {rn|n = 1, 2, ...}. Clearly, A is an infinite set. Since

there is a δ > 0 such that ((−δ, δ) ∩Q) ∩ A = φ, 0 /∈ ĀE. There-

fore ĀE = A. Thus A is a closed subset of a compact set C and

hence A is compact. But since A as a subspace of E = Q is dis-

crete, A cannot be compact. Which is a contradiction. Hence

E = Q is not locally compact.

(3) E is second countable:

Let B = {{x}|x ∈ Q, x 6= 0} ∪ {(a, b) ∩Q|a, b ∈ Q, 0 ∈ (a, b)}.

Then B is a countable collection of open sets of E.

Claim: B is a basis.

Let O be any open set of E.

If 0 6= x ∈ O, then ∃{x} ∈ B such that x ∈ {x} ⊆ O.

If 0 ∈ O, then ∃ε > 0 such that 0 ∈ (−ε, ε) ∩ Q ⊆ O. Now

−ε < 0 < ε, ∃ a, b ∈ Q such that −ε < a < 0 < b < ε and hence

(a, b)∩Q ⊆ (−ε, ε)∩Q ⊆ O. Thus we have B = (a, b)∩Q in B

such that 0 ∈ B ⊆ O. Hence B is a basis for E = Q. Thus E is
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second countable.

(4) E is regular:

Let A be any closed subset of E and x be a point of E such that

x /∈ A. If x 6= 0, then {x} and E\{x} are required disjoint open

sets containing x and A respectively. If x = 0 then E\A and A

are required disjoint open sets containing x and A respectively.

(5) E is metrizable:

Because E is regular and second countable, E is metrizable.

3. Alternative description of X3:

Let W = N∪{0} =

( ∞⋃
m=1

Am

)
∪{0}, where |Am| = ℵ0, N =

∞⋃
m=1

Am,

and Am ∩ An = φ if m 6= n.

The topology on W is described in the following way:

(i) Any subset of W not containing 0 is open.

(ii) If 0 ∈ O ⊆ W, then O is open if and only if O contains all but

finitely many full Ams.

Theorem 1.4.4. The space W is a countable, non-locally-compact, regu-

lar, second countable metrizable space with exactly one nonisolated point.

Proof:

(1) Clearly, W is countable and 0 is its unique nonisolated point.
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(2) W is not locally compact:

Claim: If C is a compact subset of W, then C contains only

finitely many points from each Am.

Suppose there exists at least one Am such that C∩Am is infinite.

Then A = {W\Am} ∪
{
{x}/x ∈ C ∩ Am

}
is an open cover of

C by sets open in W that has no finite subcover which is a

contradiction to the fact that C is compact. This proves our

claim.

Now we prove W is not locally compact. Suppose that W is

a locally compact space then there exists a compact subset C

of W and an open set O of W such that 0 ∈ O ⊆ C. Since O

is an open set containing 0, O contains all but finitely many

full Ams. On the other hand, C being a compact subset of W,

by above discussion it will contain only finitely many points

from each Am. Therefore O cannot be contained in C. Thus W

is not a locally compact space.

(3) W is regular:

Let x ∈ W and let A be any closed subset of W with x /∈ A.

If x 6= 0, then {x} and W\{x} are required disjoint open sets

containing x and A respectively. If x = 0, then W\A and A
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are required disjoint open sets containing x and A respectively.

Thus we conclude that W is regular.

(4) W is second countable:

Let B =
{
{x}|x ∈ N

}
∪

{
{0} ∪Bk / Bk =

∞⋃
m=k

Am, k ∈ N
}

.

Clearly, B is a countable collection of open sets of W .

Claim: B is a basis for the topology on W .

Let V be any open set in W and let x ∈ V . If x 6= 0, then there

exists B = {x} in B such that x ∈ B ⊆ V . If x = 0, then V

contains all but finitely many full Ams, say, A1, A2, ..., Ak. Then

there exists B = {0} ∪Bk+1 in B such that x ∈ B ⊆ V . Thus B

is a basis for the topology on W . Hence W is second countable.

(5) W is metrizable:

Since W is regular and second countable, W is metrizable.

1.4.2 Characterization of X3

Theorem 1.4.5. Let X be any countable, non-locally-compact, metriz-

able space having exactly one nonisolated point, then X is homeomorphic

to X3.

Proof: Here we prove X is homeomorphic to W (W is the alterna-

tive description of X3).

21



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Since X is countable, we can write X = {x0, x1, ..xn, ...}, where x0

is the nonisolated point. Clearly, any subset of X not containing

x0 is open in X . Since X is not locally compact, X is not compact.

Then there exists an open cover A1 = {Oα|α ∈ J} of X such that

A1 has no finite subcover. Since A1 is an open cover of X, there

exists β ∈ J such that x0 ∈ Oβ. Since X is not locally compact,

Oβ cannot be compact. Also Oβ contains infinitely many points

of X as x0 is the nonisolated point of X . Furthermore, X\Oβ is

infinite otherwise A1 has a finite subcover. Moreover, X\Oβ can-

not be covered by finite number of Oαs otherwise A1 has a finite

subcover. Now X is a metrizable space and Oβ is open in X con-

taining x0, then there exists ε1 > 0, ε1 < 1 such that B(x0, ε1) ⊆ Oβ

and d(x0, x1) > ε1. As X\Oβ is infinite, X\B(x0, ε1) is infinite. Ob-

serve that B(x0, ε1) is clopen. Also observe that B(x0, ε1) cannot

be compact as X is not locally compact. Put B1 = X\B(x0, ε1).

Since B(x0, ε1) is not compact, there exists an open cover

A2 = {Gα|α ∈ J} of B(x0, ε1) by sets open in X that has no fi-

nite subcover. There exists δ ∈ J such that x0 ∈ Gδ. As Gδ is open,

∃ ε2 > 0, ε2 < 1
2 , such that ε2 < ε1, ε2 < d(x0, x2), B(x0, ε2) ⊆ Gδ,

B(x0, ε2) ⊆ B(x0, ε1). B(x0, ε1) is not compact, therefore
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B(x0, ε1)\B(x0, ε2) is infinite. Observe that B(x0, ε2) is clopen but

not compact.

Put B2 = B(x0, ε1)\B(x0, ε2).

Claim: B1 ∩B2 = φ.

Suppose xj ∈ B1 ∩B2 for some j.

⇒ xj ∈ B1 and xj ∈ B2.

xj ∈ B1 ⇒ xj /∈ B(x0, ε1). (∵ B1 = X\B(x0, ε1) )

and xj ∈ B2 ⇒ xj ∈ B(x0, ε1).

- a contradiction.

This proves our claim.

Continuing in this way, we have B(x0, εn−1), 0 < εn−1 < 1
n−1 , which

is clopen but not compact. Therefore, there exists an open cover

An−1 = {Uα|α ∈ J} of B(x0, εn−1) by sets open in X that has

no finite subcover. Since An−1 is an open cover of B(x0, εn−1),

∃ k ∈ J such that x0 ∈ Uk. Then ∃ εn > 0, εn < 1
n such that εn < εn−1

and B(x0, εn) ⊆ Uk. Clearly, B(x0, εn) ⊆ B(x0, εn−1). Observe that

B(x0, εn) is clopen but not compact and B(x0, εn−1)\B(x0, εn) is in-

finite. Put Bn = B(x0, εn−1)\B(x0, εn)

Claim: X =

( ∞⋃
n=1

Bn

)
∪ {x0}.

Let x ∈ X(x 6= x0), then x = xj for some j.
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Since x 6= x0, 0 < d(x0, xj) < ∞.

If d(x0, xj) ≥ ε1, then xj /∈ B(x0, ε1).

Therefore, xj ∈ X\B(x0, ε1) = B1.

If d(x0, xj) < ε1, then there exists unique m such that

εm ≤ d(x0, xj) < εm−1

(∵ ε1 > ε2 > ε3 > ... and lim
n−→∞

εn = 0).

∴ xj ∈ B(x0, εm−1) but xj /∈ B(x0, εm).

∴ xj ∈ B(x0, εm−1)\B(x0, εm) = Bm.

∴ X ⊆
( ∞⋃

n=1
Bn

)
∪ {x0}.

Claim: Bm ∩Bn = φ, if m 6= n.

Assume m < n.

We have, Bm = B(x0, εm−1)\B(x0, εm)

and Bn = B(x0, εn−1)\B(x0, εn)

. Suppose that xj ∈ Bm ∩Bn.

Then xj ∈ Bm and xj ∈ Bn.

xj ∈ Bm ⇒ xj ∈ B(x0, εm−1) but xj /∈ B(x0, εm)

⇒ xj /∈ B(x0, εk) ∀k ≥ m (∵ εk < εm,∀k ≥ m)

In particular xj /∈ B(x0, εn−1) (∵ m < n, m ≤ n− 1)

xj ∈ Bn ⇒ xj ∈ B(x0, εn−1)

- a contradiction.
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Thus we get,

X =

( ∞⋃
n=1

Bn

)
∪ {x0}, where each Bn is countable and Bns are

pairwise disjoint.

Claim: Suppose x0 ∈ U ⊆ X , then U is open in X if and only if

there exists a positive integer N such that ∀n ≥ N, B(x0, εn) ⊆ U .

Suppose that U is open in X containing x0. Then ∃ε > 0, such

that B(x0, ε) ⊆ U . Since ε > 0, ∃ a positive integer N such that

∀n ≥ N, 1
n < ε. Here εn < 1

n , therefore εn −→ 0 as n −→ ∞. So

B(x0, εn) ⊆ B(x0,
1
n) ⊆ B(x0, ε) ⊆ U ∀n ≥ N .

Conversely, suppose that for a fixed positive integer N,

B(xo, εn) ⊆ U for every n ≥ N .

Then U = B(x0, εN) ∪

 ⋃
x∈U

x/∈B(x0,εN )

{x}

.

Therefore, U as a union of open sets in X, U is open in X .

This proves our claim.

Equivalently, we can see that if x0 ∈ U , then U is open in X if and

only if ∃ +ve integer N such that ∀n > N,Bn ⊆ U .

Finally, we prove that X is homeomorphic to W .

25



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Define f : X −→ W as follows:

f(x0) = 0

f(Bn) = An

(any one-to-one correspondence between Bn and An)

(1) clearly f is one-one and onto.

(2) f is continuous.

Let U be any open set in W . If 0 /∈ U , then x0 /∈ f−1(U), so

that f−1(U) is open in X . If 0 ∈ U , then x0 ∈ f−1(U). Since U

contains all but finitely many full Ais, f−1(U) contains all but

finitely many full Bis. Therefore f−1(U) is open in X . Thus f

is continuous.

(3) f is open.

Let U be any open set in X . If x0 /∈ U , then 0 /∈ f(U), so that

f(U) is open in W . If x0 ∈ U , then 0 ∈ f(U). Since x0 ∈ U

and U is open, ∃ +ve integer N such that ∀n > N, Bn ⊆ U .

Therefore f(U) contains all An for every n > N . So f(U) is

open in W .

From (1), (2) and (3), f is a homeomorphism.

This theorem shows that X3 is the unique example of a countable,

non-locally-compact, metrizable space having exactly one noniso-

lated point.
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1.5 Application

Finally, we end this chapter with the following application of the

results that we have proved.

Considerations of the following application arose when we were

confronted with the problem of showing that the lower limit topol-

ogy on R is not homeomorphic to the standard topology on R.

The fact that the lower-limit topology on R is strictly finer than

the standard topology on R, is not the valid argument. The valid

argument is by showing some topological property that is enjoyed

by the lower limit topology (viz. in this case the second countable

[9]). To logically convince the student one has to give an example

on a set X topologies τ1 and τ2, where τ2 is strictly finer than τ1 but

(X, τ1) and (X, τ2) are homeomorphic.

Let X = A ∪B ∪ C ∪ {x0}

where A, B, C are countably infinite disjoint sets and

x0 /∈ A ∪B ∪ C.

Define a topology τ1 on X as follows:

(1) Each subset of X not containing x0 is in τ1.

(2) Suppose x0 ∈ O ⊆ X , then O is in τ1 iff O contains all but

finitely many points of A ∪B.

27



Chapter-1 Spaces with unique nonisolated point and their topological characterizations

Define a topology τ2 on X as follows:

(1) Each subset of X not containing x0 is in τ2.

(2) Suppose x0 ∈ O ⊆ X , then O is in τ2 iff O contains all but

finitely many points of A.

First we check that τ1 is a topology on X .

(1) Clearly, φ, X ∈ τ1.

(2) Let {Oα|α ∈ J} be subcollection of τ1.

Put O =
⋃

α∈J

Oα. To prove O ∈ τ1

Suppose that for at least one β, Oβ contains x0, then O contains

x0. Therefore O contains all but finitely many points of A ∪ B

as Oβ is open containing x0. Thus O ∈ τ1. Suppose that no Oα

contains x0 then x0 /∈ O and hence it is in τ1.

(3) Let O1, O2, ..., Ok are nonempty members of τ1. We have to

show that O =
k⋂

i=1
Oi is in τ1. If x0 ∈ O, then x0 ∈ Oi,

i = 1, 2, ..., k. Since each Oi contains all but finitely many

points of A∪B, O contains all but finitely many points of A∪B.

Therefore O ∈ τ1. If x0 /∈
k⋂

i=1
Oi = O, then by definition of τ1,

O ∈ τ1.
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From (1), (2) and (3), we conclude that τ1 is a topology on X .

Similarly one can prove that τ2 is also topology on X .

Claim: τ2 is strictly finer than τ1.

Let O ∈ τ1. If x0 /∈ O then by definition of τ2, O ∈ τ2. If x0 ∈ O,

then O contains all but finitely many points of A ∪ B and hence it

contains all but finitely many points of A. This shows that O ∈ τ2.

Thus τ2 is finer than τ1. On the other hand, let O = A ∪ {x0} then

O ∈ τ2 but O /∈ τ1. Thus τ2 is strictly finer than τ1.

Claim: (X, τ1) and (X, τ2) are homeomorphic.

One can easily prove that (X, τ1) and (X, τ2) are countable, lo-

cally compact but not compact spaces with exactly one noniso-

lated point.

Therefore (X, τ1) and (X, τ2) are homeomorphic.(
∵ (X, τ1) and (X, τ2) both are homeomorphic to X2

)
.
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Chapter-2 Topological Characterization of Sequential Fan

2.1 Introduction

Here we are going to discuss some alternative descriptions of se-

quential fan [16]. Also we shall characterize the sequential fan.

2.2 Definitions

Definition 2.2.1. A space X is said to have a countable basis at x if

there is a countable collection B of neighborhoods of x (open sets

containing x) such that each neighborhood of x contains at least

one of the elements of B. A space that has a countable basis at

each of its points is said to satisfy the first countability axiom, or to

be first countable.

Note that every metrizable space satisfies this axiom [9].

The most useful fact concerning spaces that satisfy this axiom is

the fact that in such a space, convergent sequences are adequate to

detect limit points of sets and to check continuity of functions[9].

Definition 2.2.2. A topological space X is called a Fréchet-Urysohn

space (or Fréchet space) if for every A ⊆ X and every x ∈ Ā there

exists a sequence (xn) of points of A converging to x.

Note that every metric space is Fréchet-Urysohn. More generally,

any first countable space is Fréchet-Urysohn.
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Definition 2.2.3. A topological space X is said to be hemicompact if

X has a countable cover C of compact subspaces such that if K is

a compact subset of X then there exists a C ∈ C for which K ⊆ C.

2.3 Sequential fan

Consider countably many disjoint copies of a convergent sequence

(i.e. copies of {1/n : n ∈ N} ∪ {0} as subsets of real line) and

identify the limit points, denote this new identified point by 0 and

the resulting space by the set X4. New space X4 is called sequential

fan.

Some authors have used different notations for sequential fan. For

example, F was used by S.P.Franklin and M. Rajagopalan [4], S(w)

by Shou Lin [8], and Sω by Yoshio Tanaka [19].

We also want to warn the reader, that notation Sω was also used for

a space that was constructed by A. V. Arhangel’skii and

S. P. Franklin [1], which has the following properties:

(i) Countable

(ii) Sequential

(iii) Zero-dimensional

(iv) Homogeneous

(v) Hausdorff space

(vi) Sequential order is ω1 (the first uncountable ordinal)
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And so clearly it is different from the sequential fan.

The quotient topology on X4 is described in the following way :

1. Any subset of X4 not containing 0 is open.

2. Suppose 0 ∈ U ⊆ X4, then U is open if and only if U contains

all but finitely many points of each copy of the convergent

sequence.

We can write sequential fan X4 as a set in the following way :

X4 =

( ∞⋃
j=1

Cj

)
∪ {0},

where Cj is the set of points of convergent sequence. (That is,

Cj = {xj
i |i = 1, 2, ...}). So we can visualize the sequential fan as in

the following picture.

X4

[Note that sequential fan X4 is not a subspace of R2]
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Lemma 2.3.1. Sequential fan X4 is not first countable.

Proof: As above

X4 =

( ∞⋃
j=1

Cj

)
∪ {0}

Let {Oi} be any countable neighborhood base of X4 at a point 0,

where

Oi =

(
∞⋃

j=1
Oij

)
∪ {0}, Oij ⊆ Cj, Cj\Oij is finite for each j.

For each i, choose a point xi of Oii and set Vi = Oii\{xi}.

Then V =

(⋃
Vi

)
∪ {0} is an open set containing 0.

Since Oii 6⊆ Vi, Oi 6⊆ V for each i.

This proves that sequential fan is not first countable.

Lemma 2.3.2. Sequential fan X4 is a Fréchet-Urysohn space.

Proof: Let A be any subset of X4 . Let x be a limit point of A, then

x must be 0 (Otherwise {x} would be open in X4 and therefore

{x} ∩ A does not contain any point of A other than x, so x cannot

be a limit point of A).

Claim: If 0 is a limit point of A, then there exists a copy Ck such

that A contains infinitely many points of Ck.

Suppose that A contains only finitely many points of each Cj. Then

U = (X4\A) ∪ {0} is an open set containing 0 and it does not con-

tain any point of A. Therefore 0 cannot be a limit point of A. Which

33



Chapter-2 Topological Characterization of Sequential Fan

contradicts our supposition. This proves our claim.

Put the points of Ck ∩ A in a form of a sequence (xn). Let U

be any open set containing 0. Then U contains all but finitely

many points of each Cj. Therefore ∃ +ve integer N such that

∀n ≥ N, xn ∈ U . Thus (xn) converges to 0. This shows that se-

quential fan is Fréchet-Urysohn.

Lemma 2.3.3. Sequential fan X4 is hemicompact.

Proof: Let us first characterize the compact subsets of X4.

Claim : If K is a compact subset of X4 not containing 0, then K

must be finite.

Suppose K is infinite and 0 /∈ K. Then A = {{x}|x ∈ K} is an

open cover of K that has no finite subcover. Thus K must be fi-

nite.

Claim: If 0 ∈ K, then K is compact iff K intersects finitely many

Cjs.

Suppose that K is compact. We have to show that K intersects

finitely many Cjs. Suppose there is an infinite subset D of N such

that K ∩ Ci 6= φ,∀i ∈ D. Set B = {xi|xi ∈ K ∩ Ci,∀i ∈ D}. Then

U = X4\B is open in X4 and A = {U} ∪ {{x}|x ∈ B} is an open

cover of K by sets open in X4 that has no finite subcover. Which
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contradicts the compactness of K. Therefore our supposition is

false and we conclude that K intersects finitely many Cjs.

Conversely, suppose that K intersects finitely many Cjs. We want

to show that K is compact. Suppose A = {Oα}α∈J is any open

cover of K by sets open in X4. Since 0 ∈ K, ∃β ∈ J such that

0 ∈ Oβ. Oβ contains all but finitely many points of each Cj as Oβ

is open in X4. Since K intersects finitely many Cjs, Oβ contains all

but finitely many points of K, say, x1, x2, ..., xn.

For each xi, ∃Oαi
∈ A such that xi ∈ Oαi

. Thus {Oα1
, ...., Oαn

, Oβ}

is a finite subcover of K. Hence K is compact.

Now we show that X4 is hemicompact.

Set Ki = (C1 ∪ C2 ∪ ... ∪ Ci) ∪ {0}. By above discussion Ki is com-

pact. Then B = {Ki|i = 1, 2, ...} is a countable collection of com-

pact subsets of X4. Let 0 6= x ∈ X4, then x ∈ Ci for some i. So

x ∈ Ki. Thus X4 =
∞⋃
i=1

Ki (Note that 0 ∈ Ki for each i). Therefore

B is a countable cover of X4. Now suppose that K is any compact

subset of X4. Then K is either finite or infinite by above discus-

sion. In both the cases K intersects finitely many Cjs, therefore

K ⊆ Ki for some i. This shows that X4 is a hemicompact space.
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Lemma 2.3.4. Sequential fan X4 is a T1 - space.

Proof: Let x and y be two distinct points of X4. If x and y both are

nonzero then {x} and {y} are required open sets. If one of them

is zero, then we may assume without loss of generality that x = 0

and y 6= 0. In this case we may consider {y} and X4\{y} as open

sets containing y and x respectively. Thus X4 is a T1 - space.

Lemma 2.3.5. Sequential fan X4 is a non-locally-compact space.

Proof: In the proof of Lemma 2.3.4, we have characterized com-

pact subsets of the sequential fan. By this lemma any compact

subset C of X4 intersects finitely many Cjs. Therefore we cannot

find an open set O containing 0 such that 0 ∈ O ⊆ C.

2.4 Alternative descriptions of sequential fan

1. Alternative description of sequential fan:

Let Y = N× N ∪ {0}

=

( ∞⋃
j=1

Aj

)
∪ {0},

where Aj = {j} × N and here we call it column of Y .

The topology on Y is described as follows:

1. Any subset of Y not containing 0 is open.
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2. Suppose 0 ∈ U ⊆ Y , then U is open in Y if and only if U

contains all but finitely many points of each Aj.

Remark 2.4.1. The proofs of the properties of the alternative de-

scriptions of sequential fan X4, are almost similar to the proofs of

these properties for X4. But we are giving them, with the under-

standing that not every one will be at home with all the descrip-

tions.

Theorem 2.4.1. The space Y is a countable, T1, Fréchet-Urysohn, hemi-

compact, non first countable , non-locally-compact having exactly one

limit point.

Proof:

(1) Clearly, Y is countable and 0 is its unique limit point.

(2) The space Y is not first countable:

Suppose that {Oi}∞i=1 is any countable neighborhood base at

a point 0, where Oi =

(
∞⋃

j=1
Oij

)
∪ {0}, Oij ⊆ Aj, Aj\Oij is fi-

nite for each j. For each i, choose a point xi of Oii and set

Vi = Oii\{xi}. Then V =

( ∞⋃
i=1

Vi

)
∪ {0} is an open set contain-

ing 0. Since Oii 6⊆ Vi, Oi 6⊆ V for each i. This shows that Y is

not first countable.
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(3) Y is a Fréchet-Urysohn space:

Let A be any subset of Y and let x be a limit point of A. Then

x must be 0 (Otherwise {x} would be open in Y and therefore

{x} ∩ A does not contain any point of A other than x, so x

cannot be a limit point of A).

Claim: If 0 is a limit point of A then there exists a column Ak

such that A contains infinitely many points of Ak.

Suppose A contains finitely many points of each column. Set

U = (N × N\A) ∪ {0}. Then U is an open set such that 0 ∈ U

and U ∩ A = φ, which is a contradiction to the fact that 0 is a

limit point of A. This Proves our claim.

Put the points of Ak ∩ A in a form of a sequence (xn). Let U

be any open set containing 0. Then U contains all but finitely

many points of each Aj. Therefore ∃ a positive integer N0 such

that ∀n ≥ N0, xn ∈ U . Thus, (xn) converges to 0. This shows

that Y is Fréchet-Urysohn.

(4) The space Y is hemicompact:

Let us first characterize the compact subsets of Y .
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Claim: If K is a compact subset of Y with 0 /∈ K, then it must

be finite.

Suppose K is infinite with 0 /∈ K. Then A = {{x}|x ∈ K} is an

open cover that has no finite subcover. Which contradicts the

compactness of K. This proves our claim.

Claim: Suppose 0 ∈ K, then K is compact if and only if K in-

tersects finitely many columns.

Suppose there is an infinite subset D of N such that

K ∩ Ai 6= φ,∀i ∈ D. Set B = {xi|xi ∈ K ∩ Ai,∀i ∈ D}. Then

U = Y \B is open in Y and A = {U}∪{{xi}|xi ∈ B} is an open

cover of K by sets open in Y that has no finite subcover. Which

contradicts the compactness of K.

Conversely, suppose that K intersects finitely many columns

of Y . We want to show that K is compact. Let A = {Oα|α ∈ J}

be any open cover of K by sets open in Y . Since 0 ∈ K, ∃ β ∈ J,

3 0 ∈ Oβ. Since K intersects finitely many columns and Oβ

being open, Oβ contains all but finitely many points of K, say,

x1, x2, ..., xn. For each xi, we have Oαi
∈ A such that xi ∈ Oαi

.

Then {Oα1
, ..., Oαn

, Oβ} is a finite subcover of K. Therefore K

is compact. This proves our claim.
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Now we show that Y is hemicompact.

Set Ki = A1 ∪ A2 ∪ .... ∪ Ai ∪ {0}. By above discussion Ki is

compact in Y . Then B = {Ki | i = 1, 2, ...} is a countable col-

lection of compact subsets of Y . Let 0 6= x ∈ Y , then x ∈ Ai for

some i. So, x ∈ Ki. Thus Y =
∞⋃
i=1

Ki (Note that 0 ∈ Ki for each

i). Therefore B is a countable cover of Y . Suppose that K is

any compact subset of Y . Then K is either finite or infinite by

above discussion. In both the cases K intersects finitely many

columns, therefore K ⊆ Ki for some i. This proves that Y is

hemicompact.

(5) The space Y is not locally compact:

As any compact subset C containing 0 intersects finitely many

columns of Y , we cannot find an open set O containing 0 such

that 0 ∈ O ⊆ C.

(6) Y is a T1 - space:

Let x and y be any two distinct points of Y . If x and y both

are nonzero then {x} and {y} are required open sets. If one of

them is zero, we may assume without loss of generality that

x = 0 and y 6= 0. In this case we may consider {y} and Y \{y}

as required open sets. Thus Y is a T1 - space.
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2. Alternative description of sequential fan

Let W = N ∪ {0} =

( ∞⋃
m=1

Am

)
∪ {0}, where {Am|m = 1, 2, ...} is a

partition of N and |Am| = ℵ0.

The topology on W is described in the following way:

1. Any subset of W not containing 0 is open.

2. Suppose 0 ∈ O ⊆ W , then O is open if and only if O contains

all but finitely many points of each Ai.

Theorem 2.4.2. The space W is a countable, T1, Fréchet-Urysohn, hemi-

compact space having exactly one limit point, which is non-first-countable

and non-locally compact.

Proof:

(1) Clearly, W is countable and 0 is its unique limit point.

(2) W is a T1 - space:

Let x and y be two distinct points of W . If x and y are both

nonzero then {x} and {y} are required open sets. If one of

them is zero, then we may assume without loss of generality

that x = 0 and y 6= 0. In this case consider {y} and W\{y} as

required open sets. Thus W is a T1 - space.
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(3) W is not a first countable space:

Suppose {Oi}∞i=1 is any neighborhood base at a point 0, where

Oi =

(
∞⋃

j=1
Oij

)
∪ {0}, Oij ⊆ Aj, Aj\Oij is finite for each j.

For each i, choose a point xi of Oii and set Vi = Oii\{xi}.

Then V =

( ∞⋃
i=1

Vi

)
∪ {0} is an open set containing 0. Since

Oii 6⊆ Vi, Oi 6⊆ V for each i. This proves that W is not first

countable.

(4) W is a Fréchet-Urysohn space:

Let A be any subset of W and let x be a limit point of A, then x

must be 0.

Claim: If 0 is a limit point of A, then there exists some Ak such

that A contains infinitely many points of Ak.

Suppose A contains finitely many points of each Aj.

Set U = (N\A) ∪ {0}. Then U is an open set such that 0 ∈ U

and U ∩ A = φ, which is a contradiction to the fact that 0 is a

limit point of A. Thus our supposition is wrong. This proves

our claim.

Put the points of Ak ∩ A in a form of a sequence (xn). Let U

be any open set containing 0. Then U contains all but finitely

many points of each Aj. Therefore there exists a positive inte-
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ger N0 such that ∀n ≥ N0, xn ∈ U . Thus (xn) converges to 0.

This shows that W is a Fréchet-Urysohn space.

(5) W is a hemicompact space:

Let us first characterize the compact subsets of W .

Claim: If K is a compact subset of W with 0 /∈ K, then it must

be finite.

Suppose K is infinite with 0 /∈ K. Then A = {{x}|x ∈ K} is

an open cover that has no finite subcover. Which contradicts

the compactness of K.

Claim: Suppose that 0 ∈ K ⊆ W , then K is compact if and

only if K intersects finitely many Ajs.

Suppose there is an infinite subset D of N such that

K ∩ Ai 6= φ, ∀i ∈ D. Set B = {xi|xi ∈ K ∩ Ai,∀i ∈ D}.

Then U = W\B is open in W and A = {U} ∪ {{x}|x ∈ B} is

an open cover of K by sets open in W that has no finite sub-

cover. Which is a contradiction to the fact that K is compact.

Thus K intersects finitely many Ajs.

Conversely, suppose that K intersects finitely many Ajs. We

want to show that K is compact. Suppose that A = {Oα}α∈J is

any open cover of K by sets open in W . Since 0 ∈ K , ∃ β ∈ J
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such that 0 ∈ Oβ. Since K intersects finitely many Ajs and Oβ

being open, Oβ contains all but finitely many points of K, say,

x1, x2, ..., xn. For each xi, we have Oαi
∈ A such that xi ∈ Oαi

.

Then {Oα1
, ..., Oαn

, Oβ} is a finite subcover of K. Therefore K

is compact.

Now we show that W is hemicompact.

Set Ki = A1∪A2∪ ...∪Ai∪{0}. By above discussion Ki is com-

pact in W . Then B = {Ki|i = 1, 2, ...} is a countable collection

of compact subsets of W . Let 0 6= x ∈ W , then x ∈ Ai for some

i. Therefore x ∈ Ki. Thus W =
∞⋃
i=1

Ki. (Note that 0 ∈ Ki for

each i.) Therefore B is a countable cover of W . Suppose that

K is any compact subset of W . Then K is either finite or infi-

nite by above discussion. In both the cases K intersects finitely

many Ajs, therefore K ⊆ Ki for some i. This proves that W is

hemicompact.

(6) The space W is non-locally-compact:

As any compact subset C containing 0 intersects finitely many

Ajs, we cannot find an open set O containing 0 such that

0 ∈ O ⊆ C.
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2.5 Topological characterization of sequential fan

Theorem 2.5.1. If X is a countable, hemicompact, non-locally-compact,

T1, Fréchet-Urysohn space having exactly one limit point which is not

first countable, then X is homeomorphic to the sequential fan X4.

Proof:

Let y0 denote the limit point of X . Clearly, any subset of X not

containing y0 is open in X . Since X is a Fréchet-Urysohn space,

there exists a sequence (yn) such that (yn) converges to y0. There-

fore {yn|n ∈ N} ∪ {y0} is a compact subset of X . This shows that

X has at least one compact subset.

Now suppose that B = {Ki ⊆ X|Ki is compact, i = 1, 2, ...} is a

countable cover of X . X is hemicompact, therefore for any com-

pact subset K of X there exist Ki ∈ B such that K ⊆ Ki. Let

C1 = K1, C2 = K1 ∪ K2, ..., Ci = K1 ∪ ... ∪ Ki, .... Then Ci is com-

pact, for each i, because finite union of compact sets is compact.

Thus C = {Ci|i = 1, 2, ...} is a countable cover of X such that

C1 ⊆ C2 ⊆ .... Again X is hemicompact, therefore for any compact

subset K of X , there is Ci in C such that K ⊆ Ci. Also each Ci is

not finite because X is hemicompact and X has at least one infi-

nite compact subset containing y0. Therefore there is at least one Ci
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which is infinite. Suppose Ci1 is the first infinite compact subset in

C . Clearly, Ci1 must contain y0. If Cj\Cj−1 is finite for each j ≥ i1,

then X would be locally compact, a contradiction to the fact that

X is not locally compact. Therefore there exists Cn, n > i1, such

that Cn\Cn−1 is infinite. Call Cn = Ci2. Again by same argument

we get Cm, m > i2 such that Cm\Cm−1 is infinite. Call Cm = Ci3.

Continuing in this way inductively we get Ci4, Ci5, ....

Put D1 = C1 ∪ ... ∪ Ci1

D2 = (Ci2\Ci1) ∪ {y0}

D3 = (Ci3\Ci2) ∪ {y0}

...

Thus we get X =
∞⋃
i=1

Di, where Di ∩Dj = {y0}, for i 6= j and each

Di is infinite and contains y0. Also each Di is compact.

Claim: Suppose y0 ∈ U ⊆ X,N then U is open in X if and only if

U contains all but finitely many points from each Di.

Suppose that U is open in X and that y0 ∈ U . We have to show that

U contains all but finitely many points of each Di. Suppose ∃ Dj

such that Dj\U is infinite . Then A = {U} ∪ {{x}|x ∈ Dj\U} is

an open cover of Dj by sets open in X that has no finite subcover.
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This contradicts the compactness of Dj. Thus our supposition is

false and we conclude that U contains all but finitely many points

of each Di.

Conversely, suppose that U contains all but finitely many points

of each Di. We want to show that U is open. If X\U is finite, then

it is closed because X is T1. If X\U is infinite, then X\U intersects

infinitely many Di. Now suppose that y0 is a limit point of X\U .

Then ∃ a seq (yn) of points of X\U such that (yn) converges to y0.

Put B = {yn|n ∈ N} ∪ {y0}. Clearly, B is compact. Therefore

B ⊆ Cik for some ik. Also B ∩Dij = φ for j ≥ k + 1, which is not

possible, because X\U intersects infinitely many Di. This shows

that y0 cannot be a limit point of X\U . Thus X\U is closed. From

both the cases we conclude that U is open. This proves our claim.

Now define a mapping f : X → X4 by f(y0) = 0, and letting f to

be any bijection between Di\{y0} and Ci so that

f(Di\{y0}) = Ci, ∀i.

Claim: f is a homeomorphism.

(1) Clearly, f is one -one and onto.

(2) f is continuous:

Let U be any open set of X4. If 0 /∈ U , then y0 /∈ f−1(U) and
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hence f−1(U) is open in X . If 0 ∈ U , then U contains all but

finitely many points of each Ci. Then f−1(U) contains all but

finitely many points of each Di and y0 ∈ f−1(U). Thus by

above discussion f−1(U) is open in X .

(3) f is open:

Let U be any open set in X . If y0 /∈ U , then 0 /∈ f(U) and hence

it is open in X4. If y0 ∈ U , then 0 ∈ f(U) and U contains all but

infinitely many points of each Di. Therefore f(U) contains all

but finitely many points of each Ci. Hence f(U) is open in X4.

From (1), (2) and (3), f is a homeomorphism.

This theorem shows that sequential fan is the unique example of

a countable, hemicompact, T1, Fréchet-Urysohn space having ex-

actly one limit point which is non-first countable and non-locally-

compact.
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Chapter-3 Sequential fan like spaces

3.1 Introduction

In this chapter we shall discuss about some topological spaces

which can be constructed like sequential fan. We observe that

some turn out to be new topological spaces (viz. X5 and X6 to

be discussed in this chapter). While one (viz. X7 to be discussed

in this chapter) turns out to be homeomorphic to X6.

The important message that we wish to pass on is that each such

new construction will not necessarily give the new topological

space (i.e. not homeomorphic to the space already discussed).

3.2 Examples X5, X6 and X7

(1) Let X5 = {0} ∪ N = {0} ∪

(
∞⋃

j=1
Cj

)
∪
( ∞⋃

i=1
Ai

)
where

{Ai, Cj|i = 1, 2, ..., j = 1, 2, ...} is a family of pairwise disjoint

countably infinite sets partitioning the set N. The topology τ5

on X5 is defined as follows:

(a) Any subset of X5 not containing 0 is open.

(b) suppose 0 ∈ U ⊆ X5, then U is open in X5 if and only if U

contains all but finitely many points from each Ci and all

but finitely many Ajs.
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So we can visualize this space in the following picture:

X5

[Note that the space X5 is not a subspace of R2]

(2) Let X6 = {0} ∪ N = {0} ∪

(
∞⋃

j=1
Bj

)
, and Bj =

∞⋃
i=1

Bij where

{Bij|i, j = 1, 2, ...} is a family of pairwise disjoint countably

infinite sets partitioning the set N. The topology τ6 on X6 is

defined as follows:

(a) Any subset of X6 not containing 0 is open.

(b) Suppose 0 ∈ U ⊆ X5, then U is open in X6 if and only if U

contains all but finitely many Bijs from each Bj.
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So we can visualize this space in the following picture:

X6

[Note that the space X6 is not a subspace of R2]

(3) Let X7 = {0} ∪ N

= {0} ∪

(
∞⋃

j=1
Bj

)
∪

(
∞⋃

j=1
Cj

)
Where Bj =

∞⋃
i=1

Bij and {Bij, Cj|i = 1, 2, ..., j = 1, 2, ...} is a

family of pairwise disjoint countably infinite sets partitioning

the set N.

The topology τ7 on X7 is defined as follows :

(i) any subset not containing 0 is open.
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(ii) Suppose 0 ∈ U ⊆ X7, then U is open in X7 if and only if

U contains all but finitely many points from each Cj and

all but finitely many Bijs from each Bj.

So we can visualize this space in the following picture:

X7

[Note that the space X7 is not a subspace of R2]

3.3 Are all these four spaces different ?

Theorem 3.3.1. The spaces X5 and X6 are not homeomorphic to sequen-

tial fan X4.

Proof:

(1) The space X5 is not homeomorphic to sequential fan X4:

Suppose f is a homeomorphism from X5 to X4.

Claim: f(Am) ∩ Ci is finite for all i and for all m.

Suppose f(Ak)∩Cj is infinite for some j and for some k. Then
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the points of this set form a sequence (yn) in X4 which con-

verges to 0 and since f is a homeomorphism we have a se-

quence (xn), where f(xn) = yn and xn ∈ Ak, in X5 must con-

verge to 0. But no sequence in Ak converges to 0, which is a

contradiction. Thus our claim is proved.

Let j1 be the first index such that f(A1) ∩ Cj
1

is nonempty.

Choose a point y1 in f(A1) ∩ Cj
1
. Let j2 be the first index af-

ter j1(i.e. j2 > j1) such that f(A2) ∩ Cj
2

is nonempty. Choose

a point y2 in f(A2) ∩ Cj
2
. Continuing in this way we get a se-

quence (yn) in X4. Since f is onto, corresponding to each yn

there exists xn in An such that f(xn) = yn. Thus we get a se-

quence (xn) in X5.

Claim: The sequence (xn) converges to 0 in X5.

Let U be any open set containing 0 in X5. Then ∃ a positive

integer N such that
⋃

n≥N

An ⊆ U . Thus ∀n ≥ N, xn ∈ U . This

proves our claim.

Since f is a homeomorphism, the sequence (yn) must converge

to f(0) = 0. But U = X4\{y1, y2, ...} is an open set containing

0 in X4 which does not contain any point of the sequence (yn).

So the sequence (yn) cannot converge to 0. Which is a contra-
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diction to the fact that f is a homeomorphism. Thus our sup-

position is false and we conclude that X5 is not homeomorphic

to X4.

(2) The space X6 is not homeomorphic to sequential fan X4:

Suppose f is a homeomorphism from X6 to X4.

Claim: f(Bij) ∩ Ck is finite for all i, j, k.

Suppose that f(Bmn)∩Ct is infinite for some m, for some n and

for some t. Then the points of this set form a sequence (yn) in

X4 which converges to 0 and since f is a homeomorphism we

have a sequence (xn), where f(xn) = yn and xn ∈ Bmn, in X6

must converge to 0. But no sequence in Bmn converges to 0 in

X6, which is a contradiction. This proves our claim.

Let j1 be the first index such that f(B11) ∩ Cj
1

is nonempty.

Choose a point y1 in f(B11) ∩ Cj
1
. Let j2 be the first index after

j1 (i.e. j2 > j1) such that f(B21) ∩ Cj
2

is nonempty. Choose a

point y2 in f(B21) ∩ Cj
2
. Continuing in this way, we get a se-

quence (yn) in X4. Since f is onto, corresponding to each yn

there exists xn in Bn1 such that f(xn) = yn. Thus we get a se-

quence (xn) in X6.

Claim The sequence (xn) converges to 0 in X6.
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Let U be any open set containing 0. Then ∃ a positive integer

N such that
⋃

n≥N

Bn1 ⊆ U . Thus ∀n ≥ N, xn ∈ U and hence (xn)

converges to 0.

Since f is a homeomorphism, the sequence (yn) must converge

to f(0) = 0. But U = X4\{y1, y2, ...} is an open set containing

0 in X4 which does not contain any point of the sequence (yn).

So the sequence (yn) cannot converge to 0. Which is a contra-

diction to the fact that f is a homeomorphism. This shows that

X6 is not homeomorphic to X4.

Theorem 3.3.2. The spaces X5 and X6 are not homeomorphic.

Proof: Suppose that f is a homeomorphism from X5 to X6.

Claim: f(A) 6⊆
n⋃

i=1
Bi for any n, where A =

∞⋃
i=1

Ai.

Suppose f(A) ⊆
k⋃

i=1
Bi for some k. Consider Bk+1. We

assert that f−1(Bi(k+1)) ∩ Cj is finite for all i and for all

j. Suppose f−1(Bm(k+1)) ∩ Ct is infinite for some t and

for some m. Then the points of f−1(Bm(k+1)) ∩ Ct form

a sequence (xn) in Ct which converges to 0 in X5 and

hence whose image sequence (f(xn)) which is a sequence

in Bm(k+1) must converge to 0 in X6. Which is a contra-

diction to the fact that no sequence in Bm(k+1) converges

to 0 in X6. Thus our assertion is proved.
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Let j1 be the first index such that at least one point say x1 in Cj
1

whose image f(x1) lies in B1(k+1). This is possible because

f−1(B1(k+1)) ∩ Cj is finite for all j. Similarly, let j2 be the first in-

dex after j1 (i.e. j2 > j1) such that at least one point say x2 in Cj
2

whose image f(x2) lies in B2(k+1). Inductively, we get a sequence

(xn) in X5 where xn ∈ f−1(Bn(k+1)) ∩ Cjn
(j1 < j2 < ...) and a

sequence f(xn) in X6. The sequence (xn) does not converge to 0 in

X5 because X5\{x1, x2, ...} is an open set containing 0 in X5 which

does not contain any point of sequence (xn). But the sequence

f(xn) converges to 0 in X6 because for any open set U containing 0,

∃ a positive integer N such that ∀n ≥ N,
⋃

n≥N

Bn(k+1) ⊆ U and hence

∀n ≥ N, f(xn) ∈ U . Thus, we get a contradiction to the fact that f

is a homeomorphism. Hence our claim is proved.

Let j1 be the first index such that f(A1) ∩ Bj
1
6= φ. Therefore

f(A1) ∩ Bi
1
j
1
6= φ for some i1 (∵ Bj1 =

∞⋃
i=1

Bij1). Choose a point

y1 ∈ f(A1) ∩ Bi
1
j
1
. Then y1 = f(x1) for some x1 ∈ A1. Put

A1 = A\A1. By the same argument given above we can prove that

f(A1) 6⊆
n⋃

i=1
Bi for any n. Then f(A1) ∩ Bj 6= φ for some j > j1. Let

j2 be the first index after j1 (i.e. j2 > j1) such that f(A1) ∩Bj
2
6= φ.

Therefore f(A1) ∩ Bi
2
j
2
6= φ for some i2 (∵ Bj2 =

∞⋃
i=1

Bij2). Choose
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y2 ∈ f(A1)∩Bi
2
j
2

for some i2. Then for some k, there exists a point

x2 ∈ Ak (k 6= 1) such that f(x2) = y2. Put A2 = A\(
k⋃

i=1
Ai). By the

same argument given above we can prove that f(A2) 6⊆
n⋃

i=1
Bi for

any n. Then f(A2) ∩ Bj 6= φ for some j > j2. Let j3 be the first

index after j2 (i.e. j3 > j2) such that f(A2) ∩ Bj3 6= φ. Therefore

f(A2) ∩ Bi3j3 6= φ for some i3 (∵ Bj3 =
∞⋃
i=1

Bij3). Choose a point

y3 ∈ f(A2) ∩ Bi3j3. Then for some t, where t 6∈ {1, 2, ...k}, there

exists a point x3 ∈ At such that f(x3) = y3. Inductively we get a

sequence (xn) in X5 and a sequence (yn) in X6.

(xn) converges to 0:

Let U be any open set containing 0. Then ∃ a positive integer N

such that
⋃

n≥N

An ⊆ U . Thus ∀n ≥ N, xn ∈ U .

(yn) does not converge to 0:

U = X6\(
∞⋃

n=1
Binjn

) is an open set containing 0 in X6 which does

not contain any point of sequence (yn).

Thus the sequence (xn) converges to 0 in X5 whereas (yn) does not

converge to 0 in X6. Which is a contradiction to the fact that f

is a homeomorphism. Thus our supposition that X5 and X6 are

homeomorphic is wrong. Hence the theorem.
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Theorem 3.3.3. The spaces X7 and X6 are homeomorphic.

Proof: We have

X6 = {0} ∪ N = {0} ∪

( ∞⋃
j=1

Bj

)
,

where Bj =
∞⋃

j=1
Bij and {Bij|i, j = 1, 2, ...} is a family of pairwise

disjoint countably infinite sets partitioning the set N.

And

X7 = {0} ∪ N = {0} ∪

( ∞⋃
j=1

Bj

)
∪

( ∞⋃
j=1

Cj

)

where Bj =
∞⋃
i=1

Bij and {Bij, Cj|i = 1, 2, ..., j = 1, 2, ...} is a family

of pairwise disjoint countably infinite sets partitioning the set N.

Since Bij and Cj are countable we can write Bij and Cj as follows:

Bij = {xi
kj | k = 1, 2, ...} i, j = 1, 2, ...

and Cj = {xj
k | k = 1, 2, ...} j = 1, 2, ...

We define a map f from X7 to X6 as follows:

f(xj
k) = xk

1j

f(xi
kj) = xi

(k+1)j

f(0) = 0

(1) Clearly, f is one-one and onto.

(2) f is continuous:

Let U be any open set in X6. If 0 /∈ U , then 0 /∈ f−1(U). There-
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fore f−1(U) is open in X7. If 0 ∈ U, then U contains all but

finitely many Bij from each Bj, say,

B11, B21, ..., Bα11, B12, B22, ..., Bα22, ..., B1j, B2j, ..., Bαjj, ....

Then f−1(U) contains 0 and all Bij except

B11, ...., Bα11, B12, B22, ..., Bα22, ..., B1j, ..., Bαjj, ... and contain all

points except finitely many from each Cj which are

x1
1, ..., x

1
α1

, x2
1, ..., x

2
α2

, ..., xj
1, ..., x

j
αj

....

Therefore f−1(U) is open in X7. Hence f is continuous.

(3) f is an open map:

Let U be any open set in X7. If 0 /∈ U , then 0 /∈ f(U).

Therefore f(U) is open in X6. If 0 ∈ U , then U contains

all but finitely many Bij from each Bj, say,

B11, ..., Bα11, B12, ..., Bα22, ..., B1j, ..., Bαjj, ... and contains all but

finitely many points from each Cj, say,

x1
1, ..., x

1
β1

, x2
1, ..., x

2
β2

, ..., xj
1, ..., x

j
βj

, .... Without loss of generality

we assume βi ≤ αi. Then f(U) contains all Bij from each Bj

except B11, ..., Bα11, B21, ..., Bα22, ..., B1j, ..., Bαjj, .... Thus f(U)

is open in X6. Hence f is open.

From (1), (2) and (3), f is a homeomorphism. That is, X6 and X7

are homeomorphic.
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Chapter-4 Construction of spaces with unique nonisolated point using filters

4.1 Introduction

In this chapter, we shall define filters on N and use them to con-

struct countable spaces with exactly one nonisolated point. Also

we shall show that these spaces are nonhomeomorphic. We estab-

lish this using the set-theoretic arguments only.

The original ideas of the techniques employed here have its roots

in example [18] which appears here as Y7.

4.2 Definitions

Definition 4.2.1. A filter on a set X is a nonempty collection F of

nonempty subsets of X having the following properties:

(i) If F, G ∈ F , then F ∩G ∈ F .

(ii) If F ∈ F and F ⊆ G, then G ∈ F .

Definition 4.2.2. A filter base on a set X is a nonempty collection

B of nonempty subsets of X with the following property:

(i) If B, C ∈ B, then ∃D ∈ B 3 D ⊆ B ∩ C.

Definition 4.2.3. If B is a filter base, then the filter generated by B

is given by

F = {F ⊆ X | ∃ B ∈ B 3 B ⊆ F}.
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One can easily check that F indeed is a filter.

Definition 4.2.4. A filter F on X is called a fixed filter if
⋂

F 6= φ

and free if
⋂

F = φ.

Definition 4.2.5. Let Y be a subset of X and F be a filter on X .

Then the trace of F on Y is the filter {F ∩ Y |F ∈ F} on Y .

Definition 4.2.6. A filter F is an ultrafilter if there is no strictly

finer filter G than F . Thus the ultrafilters are the maximal filters.

A very well known and useful result about ultrafilter is the fol-

lowing characterization:

A filter F on X is an ultrafilter if and only if for each

E ⊆ X , either E ∈ F or X\E ∈ F .

4.3 Filters on N

Now we describe the following filters on N, which we are going to

use to construct countable spaces with unique nonisolated point.

(1) F1 = {F ⊆ N/N\F is finite}.

Note that the topology of any countable space with unique

nonisolated point can be transfered on the set X = N ∪ {x0},

where x0 /∈ N, in such a way that x0 is the unique nonisolated
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point. Thus, when we are considering countable spaces with

unique nonisolated point, we may assume without loss of gen-

erality that the underlying set is X = N ∪ {x0}. There is a nice

one-to-one correspondence between the filters on N containing

F1 and the traces on N of the neighborhood filters of x0 arising

out of T1-topologies on X . This we capture in the following

theorem.

Theorem 4.3.1. Suppose X = N∪{x0} is a countable T1-space with

unique nonisolated point, then there exists a filter F on N which

contains the filter F1.

Conversely, if there is a filter F on N containing F1, then there

exists a topology on X = N∪{x0} such that X with this topology is

a T1 -space with unique nonisolated point.

Proof:

Suppose X = N ∪ {x0} is a countable T1-space with unique

nonisolated point x0.

Define F = {F ⊆ N/F ∪ {x0}is open in X}.

Let us check that F is a filter on N.

(i) Let F1, F2 ∈ F . Then F1 ∪ {x0} and F2 ∪ {x0} are open in

X . Therefore (F1 ∪ {x0}) ∩ (F2 ∪ {x0}) = (F1 ∩ F2) ∪ {x0}
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is open in X . Hence F1 ∩ F2 ∈ F .

(ii) Let F ∈ F and G ⊆ N such that F ⊆ G.

Since F ∈ F , F ∪ {x0} is open in X .

Now G = F ∪ (G\F )

∴ G∪{x0} = (F ∪{x0})∪(G\F ) (1)

Since F ∪ {x0} and G\F which is a subset of N, are open

in X, G ∪ {x0} is open in X(by(1)). Therefore G ∈ F .

Thus from (i) and (ii) F is a filter on N.

Now it remains to show that F1 ⊆ F .

Let F ∈ F1.

⇒ N\F is finite.

⇒ N\(F ∪ {x0}) is finite.

⇒ N\(F ∪ {x0}) is closed in X . (∵ X is T1)

⇒ F ∪ {x0} is open in X .

⇒ F ∈ F .

Thus, F1 ⊆ F .

Conversely, suppose F is a filter on N such that F1 ⊆ F .

Define τ = P(N) ∪ {U/U = F ∪ {x0}, where F ∈ F} , where

P(N) is a power set of N.

First, let us check that τ is a topology on X = N ∪ {x0}.
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(i) Clearly, φ,X ∈ τ .

(ii) Let {Uα}α∈J be any subcollection of τ .

To prove U =
⋃

α∈J

Uα is in τ .

If all Uα ⊆ N then U =
⋃

α∈J

Uα ⊆ N and hence U ∈ τ .

If at least one β, Uβ = F ∪ {x0} where F ∈ F .

Then U =

 ⋃
α∈J
α 6=β

Uα

 ∪ (F ∪ {x0})

=

(
F ∪ (

⋃
α 6=β

Uα)

)
∪ {x0} ∈ τ

∵ F ⊆ F ∪

 ⋃
α∈J
α 6=β

Uα

 and F ∈ F


Thus U =

⋃
α∈J

Uα ∈ τ .

(iii) Let U1, U2, ..., Un ∈ τ .

If for each i = 1, 2, ..., n, Ui = Fi ∪ {x0}.

Then
n⋂

i=1
Ui =

(
n⋂

i=1
Fi

)
∪ {x0} ∈ τ (∵

⋂
Fi ∈ F ).

If for at least one β, Uβ ⊆ N then
n⋂

i=1
Ui ⊆ N.

Therefore
n⋂

i=1
Ui ∈ τ .

Thus from (i), (ii) and (iii), τ is a topology on X = N ∪ {x0}.

Now we show that (X, τ) is T1.

Let x, y be any two distinct points of X . If both x and y are in N,

then {x} and {y} are required open sets. If one of the points is
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x0, then we may assume without any loss of generality x = x0

and y ∈ N. Now F = N\{y} ∈ F1, because N\F is finite

(N\F = {y}). Since F1 ⊆ F , F ∈ F . Therefore F ∪ {x0}

is open in X . Thus F ∪ {x0} and {y} are required open sets.

Hence X is a T1- space.

Now we construct filters finer than F1.

(2) F2 = {F ⊆ N/O\F is finite}, where O = {x1, x2, ...} is the set

of all odd numbers.

i.e. F2 = {F ⊆ N/∃N 3 xj ∈ F,∀j ≥ N}.

(3) First we write N as:

N =
∞⋃

j=1

Aj, |Aj| = ℵ0, Ai ∩ Aj = φ, for i 6= j.

In other words we are considering a partition {Aj|j = 1, 2, ...}

of N consisting of countably infinite subsets.

Define

F3 = {F ⊆ N/∃N 3 Aj ⊆ F ∀j ≥ N}

(4) As in (3), write N =
∞⋃

j=1
Cj, where

Cj = {xij/i = 1, 2, ...}, Ci ∩ Cj = φ for i 6= j.

Define

F4 = {F ⊆ N/ for each j, ∃Nj 3 xij ∈ F,∀i ≥ Nj}
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That is

F4 =

{
F ⊆ N / F contains all but finitely many points

from each Cj

}
.

(5) Write N =

( ∞⋃
i=1

Ai

)
∪

(
∞⋃

j=1
Cj

)
, where {Ai, Cj/i, j = 1, 2, ...} is

a family of pairwise disjoint countably infinite sets partitioning

the set N and as before Cj = {xij|i = 1, 2, ...}.

Define

F5 =

{
F ⊆ N / ∃N 3 Ai ⊆ F, ∀i ≥ N and

for each j, ∃Nj 3 xij ∈ F,∀i ≥ Nj

}
.

That is

F5 =

{
F ⊆ N / F contains all but finitely many points

from each Cj and all but finitely many full Ai

}
.

(6) Write N =
∞⋃

j=1
Bj, where Bj =

∞⋃
i=1

Bij.

{Bij/i, j = 1, 2, ...} is a family of pairwise disjoint countably

infinite sets partitioning the set N.

Define

F6 =

{
F ⊆ N/for each j ∃ Nj 3 Bij ⊂ F ∀ i ≥ Nj

}

i.e. F6 =

{
F ⊆ N / for each j all but finitely many

Bij are contained in F

}
.
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One can easily check that Fi(i = 1, 2, ..., 6) are filters on N.

(7) Let F7 be any free ultrafilter on N.

Next, let us construct topological spaces Yi(i = 1, 2, ..., 7) using

above filters on N.

4.4 Construction of spaces Yi(i = 1, 2, ..., 7) using

filters on N

Put Yi = N ∪ {Fi}.

The topology τi on Yi(i = 1, 2, .., 7) is defined in the following way:

τi = P(N)∪ {F ∪ {Fi}/F ∈ Fi}, where P(N) is a power set of N.

That is, each subset of N is open in Yi and F ∪ {Fi} is open in Yi if

and only if F ∈ Fi.

It is easy to verify that τi is a topology on Yi(i = 1, 2, ..., 7).

4.5 Are theses spaces different ?

Theorem 4.5.1. The space Yi is not homeomorphic to Yj if i 6= j and

i, j ∈ {1, 2, ..., 7}

Proof:

(1) Y1 is not homeomorphic to Y2:

Suppose f : Y1 = N ∪ {F1} → Y2 = N ∪ {F2} is a homeomor-
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phism. Now O ∪ {F2} is open in Y2(∵ O ∈ F2). Therefore

f−1(O) ∪ {F1} is open in Y1 as f is a homeomorphism and so

f−1(O) ∈ F1. Hence N\f−1(O) is finite. Now N = O ∪ E,

where O is the set of odd number and E is the set of even num-

bers.

⇒ f−1(N) = f−1(O) ∪ f−1(E)

⇒ N = f−1(O) ∪ f−1(E) (1)

Also, O ∩ E = φ

⇒ f−1(O) ∩ f−1(E) = φ (2)

From (1) and (2)

N\f−1(O) = f−1(E)

∴ N\f−1(O) is infinite. (∵ f−1(E) is infinite.)

Which is a contradiction to the fact that N\f−1(O) is finite.

Therefore our supposition that f is a homeomorphism is false

and hence we conclude that Y1 is not homeomorphic to Y2.

(2) Y1 is not homeomorphic to Y3:

Suppose f : Y1 = N ∪ {F1} → Y3 = N ∪ {F3} is a homeomor-

phism. Set F = N\A1. Then F ∪ {F3} is open in Y3(∵ F ∈ F3).

Therefore f−1(F ) ∪ {F1} is open in Y1. Thus f−1(F ) ∈ F1 and

so N\f−1(F ) is finite.
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N\f−1(F ) = N\f−1(N\A1)

= N\(N\f−1(A1))

= f−1(A1)

Since A1 is infinite and f is onto, f−1(A1) is infinite, that is,

N\f−1(F ) is infinite. which is a contradiction to the fact that

N\f−1(F ) is finite. Thus our supposition that f is a homeo-

morphism is false and hence we conclude that Y1 and Y3 are

not homeomorphic.

(3) Y1 is not homeomorphic to Y4:

Suppose f : Y1 = N ∪ {F1} → Y4 = N ∪ {F4} is a homeomor-

phism. Choose yj ∈ Cj for each j and put A = {yj|j = 1, 2, ...}.

Then N\A is in F4 and so (N\A) ∪ {F4} is open in Y4. As f is

a homeomorphism f−1(N\A) ∪ {F1} is open in Y1. Therefore

f−1(N\A) is in F1 and hence N\f−1(N\A) is finite.

N\f−1(N\A) = N\(f−1(N)\f−1(A))

= N\(N\f−1(A))

= f−1(A)

As A is infinite and f is onto, f−1(A) is infinite, that is,

N\f−1(N\A) is infinite. Which is a contradiction to the fact that
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N\f−1(N\A) is finite. Thus our supposition that f is a home-

omorphism is false and hence we conclude that Y1 and Y4 are

not homeomorphic.

(4) Y1 is not homeomorphic to Y5:

Suppose f : Y1 = N ∪ {F1} → Y5 = N ∪ {F5} is a homeomor-

phism. Choose yj ∈ Cj for each j and put A = {yj|j = 1, 2, ...}.

Then N\A is in F5 and so (N\A)∪{F5} is open in Y5. As f is a

homeomorphism f−1(N\A) ∪ {F1} is open in Y1.

Therefore f−1(N\A) is in F1 and hence N\f−1(N\A) is finite.

N\f−1(N\A) = N\(f−1(N)\f−1(A))

= N\(N\f−1(A))

= f−1(A)

Since A is infinite and f is onto, f−1(A) is infinite, that is,

N\f−1(N\A) is infinite. Which is a contradiction to the fact that

N\f−1(N\A) is finite. Thus our supposition that f is a home-

omorphism is false and hence we conclude that Y1 and Y5 are

not homeomorphic.

(5) Y1 is not homeomorphic to Y6:

Suppose f : Y1 = N ∪ {F1} → Y6 = N ∪ {F6} is a homeo-
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morphism. For a fixed i, choose yj ∈ Bij for each j and put

A = {yj|j = 1, 2, ...}. Then N\A is in F6 and so (N\A) ∪ {F6}

is open in Y6. As f is a homeomorphism f−1(N\A) ∪ {F1} is

open in Y1. Therefore f−1(N\A) ∈ F1 and hence N\f−1(N\A)

is finite.

N\f−1(N\A) = f−1(A)

Since A is infinite and f is onto, f−1(A) is infinite, that is,

N\(f−1(N\A)) is infinite. Which is a contradiction to the fact

that N\f−1(N\A) is finite. Thus our supposition that f is a

homeomorphism is false and hence we conclude that Y1 and

Y6 are not homeomorphic.

(For Y1 is not homeomorphic to Y7 , see (16) which follows).

(6) Y2 is not homeomorphic to Y3:

Suppose f : Y2 = N ∪ {F2} → Y3 = N ∪ {F3} is a homeo-

morphism. Now O ∪ {F2} is open in Y2 as O ∈ F2. Therefore

f(O) ∪ {F3} is open in Y3. Then ∃N such that Aj ⊆ f(O),

∀j ≥ N , that is,
∞⋃

j=N

Aj ⊆ f(O). In particular, AN ⊆ f(O) and

so, f−1(AN) ⊆ O.

As AN is infinite and f is onto f−1(AN) is infinite. We also have

∞⋃
j=N+1

Aj ⊆
∞⋃

j=N

Aj ⊆ f(O) and therefore f−1

(
∞⋃

j=N+1
Aj

)
⊆ O.
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Since
∞⋃

j=N+1
Aj ∈ F3,

(
∞⋃

j=N+1
Aj

)
∪ {F3} is open in Y3. Then

f−1

(
∞⋃

j=N+1
Aj

)
∪ {F2} is open in Y2. But then

f−1

(
∞⋃

j=N+1
Aj

)
∈ {F2} and hence O\f−1

(
∞⋃

j=N+1
Aj

)
is finite.

Now AN ∩

(
∞⋃

j=N+1
Aj

)
= φ

⇒ f−1(AN) ∩ f−1

(
∞⋃

j=N+1
Aj

)
= φ

⇒ f−1(AN) ⊆ O\f−1

(
∞⋃

j=N+1
Aj

)
Which is a contradiction to the fact that no subset of a finite set

can be infinite. Thus our supposition that f is a homeomor-

phism is false and hence we conclude that Y2 and Y3 are not

homeomorphic.

(7) Y2 is not homeomorphic to Y4:

Suppose f : Y2 = N ∪ {F2} → Y4 = N ∪ {F4} is a homeo-

morphism. Now O ∪ {F2} is open in Y2 as O ∈ F2. Therefore

f(O) ∪ {F4} is open in Y4 and so f(O) ∈ F4. Then

∃Nj 3 xij ∈ f(O), ∀i ≥ Nj, that is, f(O) contains all but finitely

many points from each Cj. Choose yj ∈ f(O) ∩ Cj for each j

and put A = {yj|j = 1, 2, ...}. Then U =

(
∞⋃

j=1
(f(O) ∩ Cj)

)
\A

is in F4.
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So that, U ∪ {F4} is open in Y4. As f is a homeomorphism,

f−1(U) ∪ {F2} is open in Y2 and hence O\f−1(U) is finite.

We know that U ∩ A = φ

⇒ f−1(U) ∩ f−1(A) = φ

⇒ f−1(A) ⊆ O\f−1(U)

Since A is infinite and f is onto, f−1(A) is infinite. Thus we

have a contradiction to the fact that no subset of a finite set

can be infinite. Thus our supposition that f is a homeomor-

phism is false and therefore we conclude that Y2 and Y4 are not

homeomorphic.

(8) Y2 is not homeomorphic to Y5:

Suppose f : Y2 = N ∪ {F2} → Y5 = N ∪ {F5} is a homeomor-

phism.

Now O ∪ {F2} is open in Y2 as O ∈ F2. Therefore f(O)∪ {F5}

is open in Y5 and so f(O) ∈ F5. Then ∃N 3 Ai ⊆ f(O),∀i ≥ N

and for each j,∃Nj 3 xij ∈ f(O),∀i ≥ Nj.

Choose yj ∈ f(O) ∩ Cj and put A = {yj|j = 1, 2, ...}. By def-

inition of F5, U = Y5\A is in F5, so that U ∪ {F5} is open in

Y5. As f is a homeomorphism, f−1(U)∪{F2} is open in Y2 and

hence O\f−1(U) is finite.
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We know that U ∩ A = φ

⇒ f−1(U) ∩ f−1(A) = φ

⇒ f−1(A) ⊆ O\f−1(U)

Since A is infinite and f is onto, f−1(A) is infinite. Thus we

have a contradiction to the fact that no subset of a finite set

can be infinite. Thus our supposition that f is a homeomor-

phism is false and therefore we conclude that Y2 and Y5 are not

homeomorphic.

(9) Y2 is not homeomorphic to Y6:

Suppose f : Y2 = N ∪ {F2} → Y6 = N ∪ {F6} is a homeo-

morphism. Now O ∪ {F2} is open in Y2 as O ∈ F2. Therefore

f(O) ∪ {F6} is open in Y6 and so f(O) ∈ F6. Then for each

j,∃Nj such that Bij ⊆ f(O) ∀i ≥ Nj. Choose Btj for each j

such that Btj ⊆ f(O), where t > Nj for each j. Put A =
∞⋃

j=1
Btj.

Clearly, A ⊆ f(O). Then U = N\A is in F6 and hence U ∪{F6}

is open in Y6. As f is a homeomorphism,f−1(U)∪{F2} is open

in Y2 and hence O\f−1(U) is finite.

Now U ∩ A = φ

⇒ f−1(U) ∩ f−1(A) = φ

⇒ f−1(A) ⊆ O\f−1(U)
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Since A is infinite and f is onto, f−1(A) is infinite. Thus we

have a contradiction to the fact that no subset of a finite set

can be infinite. Thus our supposition that f is a homeomor-

phism is false and therefore we conclude that Y2 and Y6 are not

homeomorphic.

(10) Y3 is not homeomorphic to Y4:

Suppose f : Y3 = N ∪ {F3} → Y4 = N ∪ {F4} is a homeomor-

phism.

Claim: f(Am) ∩ Cj is finite for each j and for each m.

Suppose f(At) ∩ Ck is infinite for some k and for some t.

Put F = N\f−1(f(At) ∩ Ck)

But F = N\f−1(f(At) ∩ Ck)

=

(
∞⋃

j=1
Aj

)
\{x ∈ At/f(x) ∈ f(At) ∩ Ck}

By definition of F3, F ∈ F3 and so F ∪ {F3} is open in Y3. As

f is a homeomorphism f(F ) ∪ {F4} is open in Y4.

But f(F ) = f
(
N\f−1(f(At) ∩ Ck)

)
= f(N)\(f(At) ∩ Ck)

= N\(f(At) ∩ Ck)

∴ f(F ) /∈ F4 (by definition of F4).

∴ f(F ) ∪ {F4} is not open in Y4.
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Which is a contradiction to the fact that f is a homeomor-

phism. This proves our claim.

Now let j1 be the first index such that f(A1)∩Cj
1

is nonempty.

Choose a point y1 in f(A1) ∩ Cj
1
. Let j2 be the first index af-

ter j1 (i.e. j2 > j1) such that f(A2) ∩ Cj
2

is nonempty. Choose

a point y2 in f(A2) ∩ Cj
2
. Continuing in this way we get a

set A = {y1, y2, ...}. Since f is onto, corresponding to each

yi there exists xi in Ai such that f(xi) = yi. By definition of

F4, N\A ∈ F4. Therefore (N\A) ∪ {F4} is open in Y4. As f

is a homeomorphism, f−1(N\A) ∪ {F3} is open in Y3. But for

each i, xi /∈ f−1(N\A), so that Ai 6⊆ f−1(N\A) for each i. Hence

f−1(N\A) /∈ F3. Therefore f−1(N\A) ∪ {F3} is not open in Y3.

which is a contradiction to the fact that f is a homeomorphism.

Thus we conclude that Y3 and Y4 are not homeomorphic.

(11) Y3 is not homeomorphic to Y5:

Suppose f : Y3 = N ∪ {F3} → Y5 = N ∪ {F5} is a homeomor-

phism.

Claim: f(Am) ∩ Cj is finite for each j and for each m.

Suppose f(At) ∩ Ck is infinite for some k and for some t.

Put F = N\f−1(f(At) ∩ Ck).
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∴ F =

(
∞⋃

j=1
Aj

)
\{x ∈ At/f(x) ∈ f(At) ∩ Ck}

By definition of F3, F ∈ F3 and so F ∪ {F3} is open in Y3.

As f is a homeomorphism, f(F ) ∪ {F5} is open in Y5.

But f(F ) = f
(
N\f−1(f(At) ∩ Ck)

)
= f(N)\(f(At) ∩ Ck)

= N\(f(At) ∩ Ck)

∴ f(F ) /∈ F5 (by definition of F5).

∴ f(F ) ∪ {F5} is not open in Y5.

Which is a contradiction to the fact that f is a homeomor-

phism. Thus our claim is proved.

Now let j1 be the first index such that f(A1)∩Cj
1

is nonempty.

Choose a point y1 in f(A1) ∩ Cj
1
. Let j2 be the first index after

j1 (i.e. j2 > j1) such that f(A2) ∩ Cj
2

is nonempty. Choose a

point y2 in f(A2)∩Cj
2
. Inductively we get a set A = {y1, y2, ...}.

Since f is onto, corresponding to each yi there exists xi in Ai

such that yi = f(xi). By definition of F4, N\A ∈ F5. Therefore

(N\A) ∪ {F5} is open in Y5. As f is a homeomorphism,

f−1(N\A) ∪ {F3} is open in Y3. But for each i, xi /∈ f−1(N\A),

so that Ai 6⊆ f−1(N\A) for each i. Hence f−1(N\A) /∈ F3.
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Therefore f−1(N\A) ∪ {F3} cannot be open in Y3. Which is

a contradiction to the fact that f is a homeomorphism. Thus

we conclude that Y3 and Y5 are not homeomorphic.

(12) Y3 is not homeomorphic to Y6:

Suppose f : Y3 = N ∪ {F3} → Y6 = N ∪ {F6} is a homeomor-

phism.

Claim: For each m and for each j, f(Am) intersects only finitely

many Bij.

Suppose for some t and for some k, there exists an infinite sub-

set D of N such that f(At) ∩ Bnk 6= φ for ∀ n ∈ D. Choose

yn ∈ f(At) ∩ Bnk,∀ n ∈ D. Then we get a sequence (yn) in Y6

which converges to F6. Corresponding to each yn there exist

xn ∈ At such that f(xn) = yn and hence we have a sequence

(xn) must converge to F3. But there is no sequence in At which

converges to F3. Which is a contradiction. Thus our claim is

proved.

Now let j1 be the first index such that f(A1) ∩ Bij1 6= φ for

finitely many i. Choose a point y1 ∈ f(A1) ∩ Bij1 for some

i. Let j2 be the first index after j1 (i.e. j2 > j1) such that

f(A2)∩Bij2 6= φ for finitely many i. Choose y2 ∈ f(A2)∩Bij2 for
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some i. Continuing in this way, we get a set A = {y1, y2, y3, ...}.

Corresponding to each yi there exists xi in Ai such that

f(xi) = yi. Clearly, N\A ∈ F6. Therefore (N\A) ∪ {F6} is

open in Y6 and hence, f−1(N\A) ∪ {F3} is open in Y3 as f is

a homeomorphism. But xi /∈ f−1(N\A) for each i, therefore

Ai 6⊆ f−1(N\A) for each i. So that, f−1(N\A) /∈ F3 and hence

f−1(N\A) ∪ F3 is not open in Y3. which is a contradiction to

the fact that f is a homeomorphism. Thus we conclude that Y3

and Y6 are not homeomorphic.

(13) Y4 is not homeomorphic to Y5:

By similar argument given in (11) (i.e. Y3 is not homeomorphic

to Y5), we can prove Y4 is not homeomorphic to Y5.

(14) Y4 is not homeomorphic to Y6:

By similar argument given in (11) (i.e. Y3 is not homeomorphic

to Y5), we can prove Y4 is not homeomorphic to Y6.

(15) Y5 is not homeomorphic to Y6:

By similar argument given in (11) (i.e. Y3 is not homeomorphic

to Y5), we can prove Y5 is not homeomorphic to Y6.
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(16) Y7 is not homeomorphic to Yi, i = 1, 2, ...6:

This follows from the fact that each of the filter Fi (i = 1, 2, ..., 6)

contains a set F such that F = A∪B, |A| = |B| = ℵ0, A∩B = φ.

But neither A nor B is in Fi, while F7 being an ultrafilter when

H ∈ F7 and H = C ∪D, then either C or D must be in F7.

Remark 4.5.1. Some of the spaces considered here can be shown

to be non-homeomorphic to some other spaces by considering cer-

tain topological properties. But we have not gone into it here. In-

stead we have totally relied on elementary set-theoretic arguments

only.
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Chapter-5 Does Fω support a compatible group structure ?

5.1 Introduction

S. P. Franklin and M. Rajagopalan [4] defined a topological space

Fω, which is an example of a countable, homogeneous, regular,

Fréchet-Urysohn space which is not first countable. They also ask

a question if it supports a compatible group structure making it

into a topological group. Desai [2] answered this question in nega-

tion using the π -weight of the space. We here, are giving another

proof of the same result using the idea of a diagonal sequence [10].

We also give another description of the space Fω. Such questions

and many related problems are discussed recently also by many

e.g. [12],[13],[14].

5.2 Definitions

Definition 5.2.1. A topological space X is called homogeneous if the

status of each point in the space is same. Technically, a space X is

called homogeneous if for each pair of points x and y in X there is a

homeomorphism h : X → X such that h(x) = y.

Definition 5.2.2. A topological space X which is also a group is

called a topological group if the multiplication and the inversion are

continuous functions (i.e. the mapping g1 : X ×X → X given by
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g1(x, y) = xy and the mapping g2 : X → X given by g2(x) = x−1

are continuous).

If G is a group and if there is a topology with respect to which G

becomes a topological group, we say that topology is compatible

with the given group structure of G. Similarly, if X is a topological

space and if there is a group structure on X with respect to which

X becomes a topological group, we say that the group structure is

compatible with the given topology on X .

Note: Every topological group G is a homogeneous space as

h : G → G defined by h(t) = t(x−1y), for each pair of points x, y in

G, is a homeomorphism which maps x to y.

5.3 Diagonal Sequence Condition

Peter J Nyikos stated the following condition [10]. Here we shall

refer to it as the diagonal sequence condition.Thus a topological

space X is said to satisfy the diagonal sequence condition if x ∈ X

and (xm
n )∞n=1 for each positive integer m is a sequence converging

to x, it is possible to choose a sequence
(
m(k)

)∞
k=1 of distinct posi-

tive integers and
(
j(k)

)∞
k=1 of positive integers in such a way that

the diagonal sequence
(

x
m(k)
j(k)

)∞

k=1
converges to x.
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Note: One can check easily that every metric space and more gen-

erally every first countable space satisfies the diagonal sequence

condition.

Also note that the sequential fan X4 does not satisfy the diago-

nal sequence condition. Actually the diagonal sequence condition

fails at the unique nonisolated point of the sequential fan because

of the following reason.

One can consider each of the disjoint copies of convergent se-

quence as the sequence (xm
n )∞n=1 for each fixed m. Thus (xm

n )∞n=1

converges to 0 of sequential fan X4. However no diagonal se-

quence
(

x
m(k)
j(k)

)∞

k=1
of (xm

n )∞n=1 can converge to 0 as the complement

U of the range of the set of the diagonal sequence is an open set

containing 0 in X4 which does contain any point of the diagonal

sequence.

Next theorem shows that diagonal sequence condition is heredi-

tary.

Theorem 5.3.1. If X satisfies diagonal sequence condition then each

subspace Y of X satisfies this condition.

Proof:

First we observe that if Y is a subspace of X and if (yn) is a se-
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quence in Y and a ∈ Y, then (yn) converges to a in Y if and only if

(yn) converges to a in X .

Now, let x ∈ Y . Let (xm
n )∞n=1 be a sequence in Y converging to

x for each positive integer m. Since Y is a subspace of X and

the diagonal sequence condition is satisfied for X , there exists a

sequence
(
m(k)

)∞
k=1 of distinct positive integers and a sequence(

j(k)
)∞
k=1 of positive integers in such a way that the diagonal se-

quence
(
x

m(k)
j(k)

)∞
k=1

converges to x in X . Now because of our earlier

observation sequence
(
x

m(k)
j(k)

)∞
k=1

converges to x in Y .

5.4 The Construction of Fω

The original construction of the space Fω in [4] by S. P. Franklin

and M. Rajagopalan is very concise and is aimed for the expert

topologist. In our attempt to overcome certain difficulties in un-

derstanding their construction, we have now come up with totally

different way of looking at Fω. Here is our construction of Fω.

We start with the set :

Fω =
∞⋃

n=0

Nn

= N0 ∪ N ∪ (N× N) ∪ (N× N× N) ∪ ...,

where N0 = {0}
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Let a, b ∈ Fω, then a = (a1, ..., am) and b = (b1, ..., bn). We say that

b ≤ a, if m ≤ n and ai = bi for each i = 1, 2, ...,m. Under this order

relation Fω is a partially ordered set. Now consider the sequential

fan topology on the set N ∪ {0}. Let U ⊆ N such that U ∪ {0} is

open in N ∪ {0} and let

U ∗
p =

{
y ∈ Fω/y ≤ (p, i) for some i ∈ U

}
∪

{
(p, i)/i ∈ U

}
∪ {p}.

Then B =
{
U ∗

p/p ∈ Fω, U ∪{0} is open in N∪{0}
}

is a basis of Fω.

Theorem 5.4.1. Fω has the following properties:

(i) Countable

(ii) Sequential fan X4 is a subspace of Fω (i.e. N ∪ {0} with sequential

fan topology is a subspace of Fω)

(iii) Homogeneous

(iv) Not first countable

(v) Fréchet-Urysohn

(vi) Regular

Proof:

(i), (ii) and (iii) follow from the construction of Fω.
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(iv) If Fω is first countable, then its subspace N∪{0}with sequen-

tial fan topology is also first countable. A contradiction to

the fact that N ∪ {0} with sequential fan topology is not first

countable.

(v) Let A be any subset of Fω. Without any loss of generality, let

us assume that 0 ∈ Ā. Let I(m) = {y ∈ Fω/y < m} and let

B = {m ∈ N/I(m) ∩ A 6= φ} ⊆ N.

Claim: B is infinite.

Suppose B is finite. Then U = (N\B)∪{0} is open in N∪{0}.

And

U ∗
0 = {y ∈ Fω/y < i for some i ∈ U} ∪ U ∪ {0}

is open in Fω containing 0. Clearly U ∗
0 ∩ A = φ. Which is a

contradiction to the fact that 0 ∈ Ā. This proves our claim.

Claim: 0 ∈ B̄ (B̄ is a closure of B in N ∪ {0}).

Suppose 0 /∈ B̄. Then there exists an open set V containing 0

in N ∪ {0} such that V ∩B = φ.

Therefore for each m ∈ V, I(m) ∩ A = φ.

Now,

V ∗
0 = {y ∈ Fω/y < i for some i ∈ V } ∪ V ∪ {0}

is an open set containing 0 in Fω which cannot intersects A.
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Thus we have a contradiction to the fact that 0 ∈ Ā. This

proves our claim.

Since N ∪ {0} has sequential fan topology, there exists a se-

quence (zn) in B such that (zn) converges to 0. As zn ∈ B,

I(zn) ∩ A 6= φ. Form a sequence (xn) in Fω, where

xn ∈ I(zn) ∩ A. Then (xn) converges to 0 in Fω because (zn)

converges to 0 in N ∪ {0}. This shows that Fω is a Fréchet-

Urysohn space.

(vi) Since U ∗
p is clopen for each p ∈ Fω, Fω is regular.

Remark 5.4.1. In the construction of Fω we have used a sequen-

tial fan topology on the set N ∪ {0} and then at each point of Fω

we define the space using the topology of N ∪ {0}. One could

have started with any countable space with unique limit point

and transferring the topology to N∪{0} and then using this space

N ∪ {0} one can construct a space like Fω. It is clear that some of

the properties of Fω constructed with this change will depend on

the space N ∪ {0}.

5.5 Answer to the question

Peter J Nyikos proved the following result in his paper [10]. He

has considered a slightly more general situation, admitting also
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non-Hausdorff spaces. Since we are interested in Hausdorff spaces

only, the proof is little more transparent, so we present it here.

Theorem 5.5.1. Every Fréchet-Urysohn topological group satisfies di-

agonal sequence condition.

Proof:

Let G be a Fréchet-Urysohn topological group. Assume G is Haus-

dorff. Let e denote the identity of a topological group G, it is

enough to concentrate on e. So let for each positive integer m,

(xm
n )∞n=1 be a sequence converging to e. Now for each positive in-

teger k, the sequence
(
x1

k xk
n

)∞
n=1 converges to x1

k, and so the union

A of the ranges of all these sequences has e in its closure. By hy-

pothesis there is a sequence S in A converging to e. Since group

G is Hausdorff, S can only meet each sequence in finitely many

terms, hence must have a subsequence of the form
(
x1

k(i) x
k(i)
n(i)

)∞
i=1

converging to e, with k(i) 6= k(j) when i 6= j. But
(
(x1

k(i))
−1

)∞
i=1

converges to e, and thus
(
(x1

k(i))
−1 x1

k(i) x
k(i)
n(i)

)∞
i=1

=
(
x

k(i)
n(i)

)∞
i=1

con-

verges to e as desired.

Now we are able to provide an alternative answer to the question

asked by S. P. Franklin and M. Rajagopalan [4] .
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Theorem 5.5.2. Fω does not support a compatible group structure.

Proof:

Suppose Fω supports a group structure. Since Fω is Fréchet-

Urysohn Fω must satisfy the diagonal sequence condition. Since

Sequential fan X4 is a subspace of Fω, it must satisfy the diagonal

sequence condition. Which is a contradiction to the fact that se-

quential fan does not satisfy the diagonal sequence condition, as

has already been observed. Hence the theorem.
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Chapter-6 An application of Ψ-spaces

6.1 Introduction

Ψ-spaces were first introduced by J. R. Isbell and were also dis-

cussed by L. Gillman and M. Jerison in their famous book Rings

of Continuous Functions [7]. S. P. Franklin used Ψ-space to give an

example of a compact, Hausdorff, sequential, non Fréchet-

Urysohn space [6]. Here we make use of the Ψ-space to construct a

space which is not homeomorphic to the sequential fan (in fact not

homeomorphic to any one of the examples X1, X2, X3, X4, X5, X6),

though it is a countable, Fréchet-Urysohn space with unique limit

point.

6.2 Definitions

Definition 6.2.1. Two sets A and B are said to be almost disjoint if

their intersection is finite.

Definition 6.2.2. A pairwise almost disjoint family (abbreviated as

p.a.d. family) on a set X is a collection F of infinite subsets of X

such that A ∩ B is finite for any two distinct members A, B in F .

For example, partition of N is a p.a.d. family on N.

A maximal p.a.d. family (abbreviated as MAD family) on a set X

is a p.a.d. family on X properly contained in no p.a.d. family on
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X . For example, F = {O, E}, where O is the set of odd numbers

and E is the set of even numbers, is a maximal p.a.d. family on N.

6.3 Construction of an example

Ψ-space:

Let F be a p.a.d. family of infinite subsets of N. Let {ωF/F ∈ F}

be a new set of distinct points and define Ψ = N ∪ {ωF/F ∈ F}

with the following topology: each subset of N is open; while

U ⊆ Ψ containing ωF is open if and only if U contains all but finitely

many points of F .

Easy application of Zorn’s lemma shows that every such F is con-

tained in a maximal p.a.d. family of infinite subsets of N. The

spaces Ψ for such maximal p.a.d. families were first introduced

by J. R. Isbell and considered in [7]. They appeared in [6] to pro-

vide an example of a compact, Hausdorff, sequential, non Fréchet-

Urysohn space.

Frank Siwiec gave six examples which are countable spaces with

exactly one nonisolated point [16]. Three of them are metrizable

which appear here in Chapter-1 as X1, X2, X3 and in Chapter-4 as

Y1, Y2, Y3. Fourth one is the sequential fan and the other two con-
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tains a copy of sequential fan. These are nonhomeomorphic. Here

we construct an example of a space having exactly one noniso-

lated point which contains no copy of sequential fan and hence it

cannot be homeomorphic to sequential fan or two spaces like se-

quential fan. This space is obtained as a Ψ̃-space out of a definite

Ψ-space.

For our convenience, we shall take Q the set of rational numbers

and a p.a.d. family on Q.

Example:

Let Ψ = Q ∪ {ωF/F ∈ F}, and let Ψ̃ be the quotient space of Ψ by

identifying all ωF to one point, say ω. Our aim is to find a partic-

ular p.a.d. family F on Q such that Ψ̃ and sequential fan are not

homeomorphic. We construct F in the following way.

Consider the unit interval I = [0, 1] of R with usual topology. For

every r ∈ [0, 1], we can choose rational sequences (xr
n) and (yr

n)

such that Ar = {xr
n/n = 1, 2, 3, ...} and Br = {yr

n/n = 1, 2, 3, ...} are

disjoint and both sequences converge to r.

Set G = {Ar/r ∈ [0, 1]} ∪ {Br/r ∈ [0, 1]}, which is an uncount-

able p.a.d. family on Q. Then there exists a maximal p.a.d. family

M on Q such that G ⊆ M . Let F = M \{Br/r ∈ [0, 1]}. Now
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we show that under this family F the quotient space Ψ̃ is not

homeomorphic to sequential fan. Suppose Ψ̃ contains a copy of

the sequential fan. Then there exists F1 (say) in F such that we

have a sequence (x1
n) of points of F1 which converges to some r1

in [0, 1]. Similarly, there exists F2 (say) in F such that we have a

sequence (x2
n) of points of F2 which converges to some r2 in [0, 1].

Continuing in this way, we get, because of compactness of [0, 1],

a sequence (rn) in [0, 1] which will converge to some r0 in [0, 1].

Now we can choose a point zk in (xk
n) for each k such that we have

a diagonal sequence (zk) in Ψ̃ with Gr0
∩ Ar0

= φ, Gr0
∩ Br0

= φ,

where Gr0
= {zk/k = 1, 2, 3, ...} and sequence (zk) converges to

r0. Also Gr0
∩ Ar, Gr0

∩ Br are finite for all r ∈ [0, 1] and therefore

Gr0
∈ F . Thus we get a diagonal sequence converging to ω, a

contradiction to the fact that no diagonal sequence converges in a

sequential fan. Thus Ψ̃ does not contain a copy of sequential fan,

hence Ψ̃ and sequential fan are not homeomorphic.
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Chapter-7 Concluding Remarks

Can there be a countable, Fréchet-Urysohn topological group other

than Q ? As we have noted earlier the answer is yes under certain

set-theoretic assumptions. In the light of this there are number of

directions one can try to contribute something. These directions

are as follows:

(1) Can we get a countable Fréchet-Urysohn topologi-

cal group other than Q without any set-theoretic as-

sumptions ?

(2) Try to evolve processes by which one embeds a

countable space with unique nonisolated point into

a Fréchet-Urysohn homogeneous space. We have al-

ready one such process due to S. P. Franklin and M.

Rajagopalan [4] about which we have dealt with at

length in chapter-5.

(3) Is it possible to think of a condition general than First

countability but stronger than Fréchet-Urysohn prop-

erty which together with countability and homogene-

ity forces the space to be Q ? (Of course we assume

all spaces to be regular.) Affirmative to answer this

will really be a very good result that will generalize
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Sierpiński’s result.

(4) Can we construct countable homogeneous space with

each sequential order < ω1 ? If yes, can they be topo-

logical groups ?

(5) Does the plus topology on Q×Q support a compat-

ible group structure ?

(6) If we use the space Ψ̃ (Chapter-6) as a countable space

with unique nonisolated point instead of a sequen-

tial fan in the construction of Fω, do we get a count-

able homogeneous space which can be made into a

topological group ? In other words, does this count-

able homogeneous space support a compatible group

structure ?

It is our humble submission that the results which we have ob-

tained in this thesis are the byproduct of our constant focus on

above mentioned problems throughout the journey of the Ph.D.

programm. Apart from this it is our hope that some of the ex-

amples that we have constructed can be used in the discussion

related to product of Fréchet-Urysohn spaces, the topic which we

have not touched at all in this thesis.
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