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Chapter 1 

Introduction 

 

1.1 Circular Data Analysis 

 

In many fields of study the measurements are directions. These measurements can 

be angles as in the case of measurement of wind direction or can be observations on 

a sphere as for example, on the surface of the earth with each point being identified 

with a latitude-longitude pair. These kinds of data are often termed as directional 

data. Directional data in two or three dimensions arise quite frequently in many 

natural, physical and social sciences like Biology, Medicine, Ecology, Geology, 

Meteorology, Image Analysis, Political Science, Finance, Demography etc. A 

biologist may be interested in measuring the direction of flight of a bird (see Schmidt-

Koenig, 1965 and Batschelet, 1981) or the orientation of an animal. In medical 

applications circadian rhythms are often analysed as they control characteristics like 

sleep-wake cycles, hormonal pulsatility, body temperature, mental alertness, 

reproductive cycles etc. Because of the periodic nature of biological rhythm data it 

can be put into the frame work of circular data analysis (see Proschan and Follmann, 

1997). Medical professionals have shown keen interests in topics such as 

chronobiology, chronotherapy, and the study of the biological clock (see Morgan, 

1990 and Hrushesky, 1994). Jammalamadaka et al. (1986) discuss an interesting 

medical application where the angle of knee flexion was measured to assess the 

recovery of orthopaedic patients. Recently, Gavin et al (2003) discuss that circular 

data can be used to analyse cervical orthoses in flexion and extension. In geology 

significant interest is shown in the study of paleocurrents to infer the direction of flow 

of rivers in the past (see Sengupta and Rao, 1967). Ginsberg (1986) and Wallin 

(1986) discuss the application of angular data in ecological and behavioural studies 

of animal orientation and habitat selection and also in ecological field studies (see 

Cain,1989). Apart from wind direction, other types of circular data arising in 

meteorology include the time of day at which thunderstorms occurs and the times of 

year at which heavy rains occur (see Mardia and Jupp, 2000). Nikolaidis and Pitas 
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(1994, 1995) discuss how angular data can be used in vector direction estimation in 

the area of colour image processing and image sequence processing and the 

detection of edges on the hue colour component which can be useful in cases like 

colour object recognition, colour image segmentation etc. Gill and Hangartner (2010) 

discuss the application of circular data in political science in which they develop a 

circular regression model for domestic terrorism in which political nature of entities 

like attacking groups, target groups etc. is an important factor. Also they studied in 

the context of German Bundestag elections how parties make direction decisions, in 

a two dimensional ideological space, relative to each other in response to social and 

political pressure from the electorate. Recently, SenGupta (2011) discuss how 

circular data can be used to analyse high volatile financial data. In demography, 

circular data arises in the studies like geographic marital patterns (Coleman and 

Haskey, 1986), occupational relocation in the same city (Clark and Burt, 1980), and 

settlement trends (Upton, 1986b). Spherical data arises in the study of 

paleomagnetism, study of astronomical objects, image analysis, signal processing 

etc. More examples of applications of circular and spherical data analysis can be 

found in Fisher (1993), Fisher, et.al (1987), Jammalamadaka & SenGupta (2001) 

and Mardia & Jupp (2000). 

 

Two dimensional directions can be represented as angles measured with respect to 

some suitably chosen “zero direction” that is, the starting point and a “sense of 

rotation” that is, whether clockwise or anti-clockwise. Since a direction has no 

magnitude, these can be conveniently represented as points on the circumference of 

a unit circle centered at origin or as unit vectors connecting the origin to these points. 

Because of this circular representation, observations on such two dimensional 

directions are called circular data. They are commonly summarized as locations on a 

unit circle or as angles over a π° 2  or  360   radians range, with the end-points of 

each range corresponding to a specified location on the circle. The numerical 

representation of a two dimensional direction as an angle or a unit vector is not 

unique since the angular value depends on the choice of zero direction and the 

sense of rotation. For example, 60 degree by a mathematician who takes East as 

zero direction and anti-clockwise as positive direction comes out to be 30 degree to 

a geologist who takes North as zero direction and clockwise as the positive direction. 
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Therefore it is important to make sure that our conclusions are a function of given 

observations and do not depend on the arbitrary choice of origin and sense of 

rotation. Directional data analysis is substantially different from the standard “linear” 

statistical analysis of univariate or multivariate data.  

 

For circular data the arithmetic mean as well as standard deviation is not useful as 

they suffer from their strong dependence on the choice of zero direction and the 

sense of rotation. This emphasizes the fact that in circular data one has to look at 

measures which are invariant under the choices of origin and sense of rotation. An 

appropriate and meaningful measure of the mean direction for a set of directions is 

obtained by treating the data as unit vectors and using the direction of their resultant 

vector. In circular data analysis the basic statistics of interests for inference purposes 

are the sums of sines and cosines, and the resultant length given by 

∑∑
==

θ=θ=
n

1i

i

n

1i

i sinS  ,cosC , and 22 SCR += , where s
,

iθ  are independently and 

identically distributed random variables from some model. The mean direction of a 

set of angular observations, say, n21 ,.....,, θθθ  is given by 







=θ

C

S
arctan *

0 , where S 

and C are defined earlier and *arctan  is the quadrant - specific inverse of the tangent 

function which is defined as   

                       
















<≥π+








<π+








>=π

≥>








=








0S0Cif2
C

S
arctan

0Cif
C

S
arctan

0S0Cif2

0S0Cif
C

S
arctan

C

S
arctan*                        ... (1.1) 

(see Jammalamadaka & SenGupta, 2001, p.13). When both C=0 and S=0, a circular 

mean cannot be defined which indicates that the data is spread evenly or uniformly 

over the circle, with no concentration towards any direction. It should also be noted 

that circular mean direction is rotationally invariant. The length of the resultant vector 

22 SC R +=  is a useful measure for unimodal data of how concentrated the data is 
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towards the circular mean direction. A right analogue of the usual sample variance 

can be obtained by using appropriate circular distance. A popular measure for 

sample circular dispersion is RnDv −=  (see Jammalamadaka & SenGupta, 2001, 

p.14). It measures the dispersion of the sample relative to the center through the 

sample mean direction. If R is close to 0 then dispersion is large whereas the values 

of R close to n imply that the observations have small dispersion or more 

concentration towards the center.  

 

A circular random variable is a map T: →ΩΘ  from a suitable probability space Ω  to 

the circle T. The basic quantity characterizing the distribution of X is the probability 

for X to take values in a certain subset of the circle i.e. in an arc [ ]21,αα  

with T, 21 ∈αα . A circular distribution is a probability distribution whose total 

probability is concentrated on the circumference of a unit circle. The probability 

density function ( )θf  of a circular random variable θ has the following basic 

properties: 

( )

( )

( ) ( ) . periodic) is  f i.e ( k integerany  for  k2ff 3)

 and  1df )2

0f  )1
2

0

π+θ=θ

=θθ

≥θ

∫
π

 

The popular circular distributions include Circular Normal (CN), Wrapped Normal 

(WN), Wrapped Cauchy (WC), Circular Uniform (CU), Cardiod etc. Circular normal 

(or von-Mises) distribution is most popular circular distribution for applied work. This 

distribution was introduced as a statistical model by von-Mises (1918) and was 

discussed earlier by Langevin (1905), in the context of physics. The CN distribution 

has been extensively studied and inference techniques for this distribution are well 

developed. This is the model of choice for circular data in most applied problems. A 

circular random variable Θ  is said to have a von-Mises or CN distribution with mean 

direction µ and concentration κ if it has the probability density function (p.d.f): 

                  

( )
( )

( ) 0 and 20  where20,e
I 2

1
,;f cos

0

>κπ<µ≤π<θ≤
κπ

=κµθ µ−θκ .    ... (1.2) 
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 where ( )κ0I  is the modified Bessel function of the first kind and order zero and is 

given by ( )
2r2

0r

2

0

cos

0
!r

1

2
de

2

1
I 















 κ
=θ

π
=κ ∑∫

∞

=

π
θκ  . This distribution is symmetric about µ  

and is unimodal. We will denote this distribution as ( )κµ,CN . If 0=κ then ( )κµ,CN  

can be approximated by the circular uniform distribution which has no preferred 

direction and when 2≥κ , ( )κµ,CN  can be approximated by the ( )ρµ,WN , which is a 

symmetric unimodal distribution obtained by wrapping a ( )2,N σµ  distribution around 

the circle. Similarly, ( )κµ,CN  can closely be approximated by the ( )( )κµ A,WC (see 

Mardia and Jupp, 2000, p.38). Another interesting property of ( )κµ,CN  distribution is 

that, for sufficiently large κ , the CN distribution can be approximated by a linear 

normal distribution. The trigonometric moments of the circular normal distribution can 

be obtained by the relation ( ) µκ=ϕ ip

pp eA , where p is an integer and 

( ) ( ) ( )κκ=κ −1

0pp I I A .  The length ρ of the first trigonometric moment is given by 

( ) ( ) ( )κκ=κ −1
01 I I A . By virtue of symmetry of the CN density, the central trigonometric 

moments are ( ) µκ=α pcosAp

*

p . The function ( )κA  has many interesting properties 

like: 

1) ( ) 1A0 ≤κ≤    

2) ( ) ( ) ∞→κ→κ→κ→κ  as 1A and 0 as 0A  and 

3) ( ) ( ) ( ) ( ) 0A
A

1
A

A 2 ≥







κ−

κ

κ
−=

κ∂

κ∂
≡κ′ ,  

i.e. ( )κA  is a strictly increasing function of κ so that κ̂ , may be obtained as a unique 

solution of ( ) ( ) ( )κκ=κ −1

01 I I A . The maximum likelihood estimate of the parameters µ  

and κ  are given by  ( ) ( ) ( )κκ=κθ=







=µ −1

010
* I I A  and 

C

S
arctanˆ  . The maximum 

likelihood estimate of µ  remains the same whether or not κ  is known. On the other 

hand, the maximum likelihood estimate of κ  is different when µ  is known. In this 

case, maximum likelihood estimate of κ  is given by  
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0 V, 
n

V
Aˆ 1 >








=κ − ( )∑

=

µ−θ=
n

1i

icos V where  

(see Jammalamadaka & SenGupta, 2001, p.86-88). Clearly, 0 Vfor  0ˆ ≤=κ . 

One of the well-known probability distributions on the circle is the wrapped normal 

distribution obtained by wrapping the normal distribution with parameters µ  and 2σ  

on to the unit circle having the p.d.f 

( ) 10 ,20 ,20 ,)(pcos)(21
π 2

1
 , ;f

1p

p2

<ρ<π<µ≤π<θ≤








µ−θρ+=ρµθ ∑
∞

=

             ... (1.3) 

This distribution is symmetric about µ  and is unimodal with mode at µ . We will 

denote this distribution as ( )ρµ  ,WN . The parameter µ  is called the mean direction 

and the parameter ρ  is called the concentration parameter. The parameters of the 

wrapped normal distribution ),(WN ρµ  arise naturally when wrapping ),(N 2σµ  onto 

the circle where ( )2exp 2σ−=ρ  (Mardia and Jupp, 2000, p.50). This distribution is a 

member of the wrapped stable family of distributions (see Mardia and Jupp, 2000, p. 

52). Excellent surveys on the sampling distributions – samples being drawn from a 

von-Mises (or circular normal) distribution- of circular statistics is given in Mardia and 

Jupp (2000) and Jammalamadaka & SenGupta (2001). 

 

1.2 Statistical Functionals 

 

A statistical functional ( )FT  is a mapping defined on a space of distribution functions 

with image space ℜ (or a set of categories or higher dimensional Euclidean space) 

and domain includes all empirical distribution functions. Many quantities of interests 

to statisticians can be expressed as statistical functional ( )FT  where F  is the 

distribution of the data. The natural estimate of ( )FT  is often ( )nFT  where nF  is the 

sample distribution function. Many commonly used statistics give rise to statistical 

functionals in the following way:  Suppose ( )n21nn X ..., ,X ,XTT =  is a statistic which 
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can be expressed as a functional T of the empirical distribution function nF i.e. 

( )nn FTT =  where T does not depend upon the sample size n. The following examples 

of some commonly used statistical functionals arise in the above manner. The 

sample mean functional ( ) ∫
ℜ

= nn xdFFT , the sample variance functional 

( ) ( )( )∫
ℜ

−= n

2

nn dFFTxFV , the median functional ( )












≥= ∫
∞−

q

nn5.0 5.0dF:qinfFQ . The 

corresponding population versions can be obtained by replacing nF  with F to get 

( ) ∫
ℜ

= xdFFT , ( ) ( )( )∫
ℜ

−= dFFTxFV
2

, and ( )












≥= ∫
∞−

q

5.0 5.0dF:qinfFQ  respectively. The 

idea of statistical functional can be extended to a directional set up as follows. Given 

a random sample of size n from ( )κµ,CN  and ( )ρµ  ,WN  distributions, the parameter 

µ  is estimated as ( )CSarctanˆ *=µ  where arctan* is the quadrant - specific inverse of 

the tangent function defined by (1.1). The corresponding functional form is 










θ

θ

)(cosE

)(sinE
arctan

F

F*

 

where F is the underlying distribution. The parameter ρ  is 

estimated as 22 SCˆ +=ρ  and the functional form of the estimator is 

)(sinE)(cosE 2
F

2
F θ+θ . The parameter κ  is estimated as ( )ρ=κ − ˆAˆ 1  and the 

corresponding functional form of the estimator is ( ))(sinE)(cosEA 2
F

2
F

1 θ+θ− . Some 

excellent accounts on statistical functionals can be found in von Mises (1947), 

Serfling (2002), and Wasserman (2006). In this thesis we have used the functional 

form of the estimators to study their robustness.  

 

1.3 Robustness with Circular Data 

 

The problem of robustness probably goes back to the prehistory of statistics; it has 

only been in recent decades that attempts have been made to formalize the problem 

beyond limited ad hoc measures towards robustness theory. It was Tukey (1960) 

who demonstrated the drastic non robustness of the mean and also investigated 



8 

 

some useful alternatives. His work made robust estimation a general research area.  

The first attempts towards a comprehensive theory of robustness are by Huber 

(1964, 1965, and 1968) and Hampel (1968). Huber’s (1964) paper formed the basis 

for a theory of robust estimation. According to Huber (1981) it is desired that any 

statistical procedure should be robust in the sense that small deviations from the 

model assumptions should affect the performance only slightly.  Another approach to 

robust statistics is the infinitesimal approach. In showing how an estimator responds 

to the introduction of a new observation, Hampel (1974) introduced the concept of 

influence curve (IC) or influence function (IF). It allows us to assess the relative 

influence of individual observations towards the value of an estimate or test 

statistics. It also allows us an immediate and simple, heuristic assessment of the 

asymptotic properties of an estimate. All statistical methods rely on a number of 

assumptions either explicit or implicit. In reality, it often happens that one or more of 

these assumptions fails to hold. One common phenomenon seen while analysing 

many datasets is the presence of one or a few observations in the dataset which are 

very different from the rest. These observations are termed as outliers and it is 

expected that a good statistical procedure would not be adversely affected by these 

small number of ‘deviant’ observations. Such statistical procedures are termed as 

robust procedures.  

 

Robust inference includes both robust estimation and robust testing.  Robustness of 

estimates has been extensively studied in the literature. The main approaches 

towards robust estimation include influence function approach due to Hampel and 

Huber’s minimax approach. Some well known class of robust estimates for location 

and scale are M-estimates, R-estimates, L-estimates etc.  The second aspect of 

robust inference is robust testing. The purpose of robust testing is twofold: i) 

robustness of validity i.e. the level of a test should be stable under small, arbitrary 

departures from the null hypothesis and ii) robustness of efficiency i.e the test still 

should have a good power under small arbitrary departures from specified 

alternatives. Unfortunately many classical tests do not satisfy these criteria. For 

example, the F-test for comparing two variances is not robust. The classical t-test 

and F-test for linear models are relatively robust with respect to level, but they lack 

robustness of efficiency (see Huber and Ronchetti, 2009, pp.297-298). Huber (1965) 
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defined the censored probability ratio test and showed that this test is robust in a well 

defined minimax sense. But this approach hold for fixed sample size and a given 

neighbourhood, it is difficult to generalize for more complex models. A feasible 

alternative is the infinitesimal approach in which the influence of contamination on 

the level and on the power is examined asymptotically by means of quantities like 

level influence function (LIF) and power influence function (PIF). Excellent surveys 

on robust inference can be found in Huber (1981), Hampel et al. (1986), Staudte and 

Sheather (1990), Marona, Martin and Yohai (2006). 

 

The statistical procedures for analyzing circular data are significantly different from 

those for linear data (see Mardia and Jupp, 2000 and Fisher, 1993). The outlier 

problem in the directional data set up is somewhat different from that in the linear 

case. In linear data, sample mean and median are the estimates of population mean 

and median. Since sample mean is more sensitive to outliers it is non robust. In 

directional data analysis one might expect fewer outlier problems to arise, because 

on the circle there is only restricted room for an observation to out lie. According to 

Jammalamadaka and SenGupta (2001), how far an observation is from the mean in 

directional set up, should be judged by using appropriate “circular distance”. Due to 

bounded support of angular data, outliers can be detected only when the 

observations are sufficiently concentrated around a particular point. The angular 

deviation given by ( ) α−θ−π−π=αθ ii ,arc  between a data point and the 

population sample mean or median direction can be used to identify whether the 

observation is outlying or not. The robustness properties of statistical procedures for 

circular data have not been studied as thoroughly as those for linear data. 

Practically, in the applications of the circular normal distribution the parameters µ  

and κ need to be estimated from the data and hence, it is important to study the 

robustness of these estimators to outliers. 

 

Several tests for mean direction and concentration parameter have been developed 

in the literature for both κ  known and unknown cases. When κ is known one has the 

choice of using the likelihood ratio test based on the test statistic ( )CRn2w −κ= , or 
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an unbiased conditional likelihood test based on w , or a score test based on the test 

statistic ( ) 21 SAnt κκ= −  where ∑
=

− θ=
n

1i

i
1 cosnC , ∑

=

− θ=
n

1i

i
1 sinnS  and 22 SCR += . In 

the latter case, both the tests based on w  and t  can be modified by replacing κ by 

its estimated value κ̂ (see Mardia and Jupp, 2000, pp.119-123). The likelihood ratio 

test for concentration parameter κ of circular normal distribution assuming unknown 

mean direction has been discussed by Mardia and Jupp, (2000) and a test based on 

a complete sufficient statistic has been discussed by Jammalamadaka and 

SenGupta (2001). But the robustness aspects of these tests have not been explored 

in the literature. 

 

The Ph.D thesis entitled “Robustness of Estimators and Tests with Directional Data” 

contains nine chapters.  

 

In chapter 2 we give the literature review. Here we briefly discuss various methods 

and techniques that are available in the literature in the areas of circular data and 

robust estimation and robust testing.  

 

In chapter 3 we discuss the SB-robustness of directional mean for the circular 

normal distribution. A paper entitled “SB-robustness of Directional Mean for Circular 

Distributions” based on this chapter has been published in Journal of Statistical 

Planning and Inference, 141, 1269-1276, March 2011 co-authored with Laha, A.K. 

 

In chapter 4 we discuss the SB-robustness of concentration parameter for the 

circular normal distribution. A paper entitled “SB-robust Estimator for the 

Concentration Parameter of Circular Normal Distribution” based on this chapter has 

been published in Statistical Papers July 2010 co-authored with Laha, A.K. This 

paper is available online. The link is given in the reference.  
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In chapter 5 we have developed robust tests for the directional mean of circular 

normal distribution using breakdown function approach. A paper entitled 

“Robustness of Tests for Directional Mean” based on this chapter is communicated 

for publication co-authored with Laha, A.K. 

 

In chapter 6 we introduced robust tests for the concentration parameter of circular 

normal distribution. 

 

In chapter 7 we discuss SB-robustness of parameters of the wrapped normal 

distribution. A paper entitled “SB-robust Estimators of the Parameters of the 

Wrapped Normal Distribution” based on this chapter is communicated for publication 

co-authored with Laha, A.K. & Ghosh, D.K. 

 

In chapter 8 we conclude and discuss some scope of further work on this topic. 

In chapter 9 we give the references that are used to complete the thesis. 

. 
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Chapter 2 

Literature Review 

 

2.1 Directional Data 

 

The standard texts on directional data are Mardia (1972) and Fisher (1993). 

Batschelet (1981) gives a less mathematical account of applications of circular data 

to the analysis of biological data. Fisher, Lewis and Embleton (1987) give an account 

of methods for the analysis of spherical data. Mardia & Jupp (2000) discuss both two 

and three dimensional data. Jammalamadaka and SenGupta (2001) give a 

comprehensive account of circular data analysis. 

 

2.2 Outliers in Directional Data  

 

In practice, the observed directions may contain one or more data points which 

appear to be peculiar, not representative or inconsistent relative to the main part of 

data. This is commonly referred to as the outlier (a.k.a. slippage, discordancy or 

spuriousity) problem. In directional data analysis one might expect fewer outlier 

problems to arise, because on the circle there is only restricted room for an 

observation to be an outlier. How far an observation is from the mean in directional 

set up should be judged by using appropriate “circular distance”. Thus, unlike in the 

linear case, outliers here need not be too large or too small, but could be in the 

“central” part of the data. When the data follows a rather broad distribution on the 

circle, a small amount of contamination would not be noticed and would have little 

effect on estimates of location or spread (Lenth 1981). An excellent survey on 

outliers was provided by Barnett & Lewis (1994) (see Chapter 11). 
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Collett (1980) discusses a method of identifying surprising observations in a sample 

of directional data and describe possible tests of discordancy. According to him an 

outlier is an observation say, kθ  such that { } ki   max ξ=ξ , where *
ii    θ−π−π=ξ  is the 

angular deviation of iθ  from the sample mean direction θ  

and ( ) n,1,2, i , 2 mod   i
*
i K=πθ−θ=θ . He proposed four statistics namely L, C, D, and M 

for assessing the possible discordancy of a single angular outlier of which L and C 

are defined with particular reference to a von-Mises model and the other two could 

be used for other models. SenGupta and Laha (2001) treated outliers in circular data 

due to “slip” in recording and considered slippage problem as a problem of outlier 

detection. 

 

2.3 Robustness of Estimators with Directional Data 

 

The word “robustness” is used in statistics to convey the notion that the estimator is 

insensitive to different things like a) small deviations from the distributional 

assumptions or b) gross errors. A minor error in the mathematical model should 

cause only a small error in the final conclusions. But unfortunately, this does not 

always hold. Most of the common statistical methods are excessively sensitive to 

minor deviations from the theoretical assumptions. 

 

Huber (1964) introduced a flexible class of estimators called M-estimators as a 

generalization of MLEs. He introduced the “gross error model” 

( ) ( ) ( ) ( )θ−ε+θ−ε−=θ− xHxG1xF  assuming that a known fraction ( )10 <ε≤ε  of the 

data may consist of gross errors with an arbitrary unknown distribution 

( )θ−xH instead of having a strict parametric model ( )θ−xG  for known G. His idea is 

to optimize the worst that can happen over the neighbourhood of the model, as 

measured by the asymptotic variance of the estimator.  
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Hampel (1968, 1974) introduced the concept of influence curve or influence function. 

It allows us to assess the relative influence of individual observations towards the 

value of an estimate or test statistics. The influence curve (IC) or influence function 

(IF) of the functional T  at the underlying distribution F  is defined as 

                               ( ) ( ){ } ( )[ ]
ε

FTεδF ε1T
limF,T;xIF x

0

−+−
=

→ε
                                     … (2.1) 

where xδ denote the degenerate distribution assigning probability one to the point x . 

The gross error sensitivity (g.e.s.) of the estimator T at F is defined as (Hampel, 

1974) 

                                   ( ) ( )[ ]F,T ;xIFsup F,T
x

=γ                                                      … (2.2) 

If ( )F,Tγ  is finite then the estimator is said to be bias-robust (or B-robust) at 

F (Rousseeuw, 1981). It gives the maximum asymptotic bias under the gross error 

model. If the influence function is bounded or the g.e.s has finite lower bound then 

the estimator is robust. Hampel (1968, 1971) introduced the concept of breakdown 

point of sequence of estimators generalizing an idea of Hodges (1967). When ℜ=Θ  

the breakdown point is defined as:  

( ) { }( ){ }∞→→≤⇒ε<π≤ε=ε εε  n  as  1r|T|G  G F,  that such r exist there :1sup n

*  

where ( )G ,Fπ  is the Prohorov distance (for definition see Hampel et.al, 1986) of two 

probability distributions G  and  F  belongs to set of all distributions ( )χℑ , and χ is the 

sample space such that ℜ⊂χ . It should be noted that Prohorov distance can be 

replaced by the Levy distance or the bounded Lipschitz metric, or even by the total 

variation distance or the Kolmogorov distance or even by the gross error model (for 

definitions see Huber, 1981).  

 

Wehrly and Shine (1981) showed that for a unimodal symmetric circular distribution 

F, the directional mean (a.k.a. circular mean) of F defined as 








θ

θ

)(cosE

)(sinE
arctan

F

F*  

where *arctan  is the quadrant - specific inverse of the tangent function which is 
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defined by (1.1) is B-robust, in the sense that it has bounded sensitivity to fixed 

amounts of contamination. They derived the influence function of the circular mean 

as ( ) ( ) 10 , sinF T, ;IF 0
1 ≤ρ<µ−θρ=θ −  where ρ  is the concentration parameter. For 

any value of ρ , the influence curve and its first derivative are bounded by 1−ρ± . 

Thus, the circular mean has a bounded sensitivity to fixed amounts of contamination 

and to local shifts. Lenth (1981) discussed M-estimators for directional data and 

studied their performance through simulation. He adapted the established technique 

for robust estimation of location parameter for use in directional data. He argued that 

a periodic version of any of the commonly used ψ  functions can be used to define a 

comparable estimator of angular location and also the proposed estimators appear 

to perform at efficiency levels similar to those of ordinary M-estimators in the linear 

case. He defines the circular M-estimator µ̂  of directional location as a solution to 

( )( ) minimum ;ˆt
n

1i

i =κµ−θρ∑
=

, where ( )κµ−θ ;ˆt i  is a periodic function that in some 

sense “standardizes” the values of ( µ−θ ˆi ) according to the concentration parameter 

κ .  

 

Ko and Guttorp (1988) argued that the notion of robustness based on finiteness of 

g.e.s. needs to be modified when we deal with bounded parameter spaces because 

g.e.s. commonly approximates the maximum bias and this is bounded on a bounded 

parameter space. They introduced the notion of standardized influence function (SIF) 

and standardized gross error sensitivity (s.g.e.s). The SIF of a functional T  with 

respect to a functionalS  is defined as  

                                        ( ) ( )
( )

( ) 0FS  ,
FS

F,T;xIF
S,F,T;xSIF ≠= .                             … (2.3) 

where F  is the underlying distribution and the s.g.e.s of T  with respect to the 

functional S  at the family of distributions ℑ  is defined as  

                                       ( ) ( )[ ]S,F,T ;xSIFsupsup S,,T
x

*

ℑ

=ℑγ                                … (2.4) 
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If ( )S,,T* ℑγ  is finite then the estimator is said to be standardized bias robust (or SB-

robust) at the family of distributions ℑ . Usually the functional S  is taken to be a 

suitable dispersion measure and hence the notion of SB-robustness depends on the 

choice of the dispersion measure used. They also give a set of desirable conditions 

that a measure of dispersion S  on a (q-1)-dimensional sphere qΩ  
on qℜ  should 

satisfy. Let X  and Y be two random unit vectors with unimodal distributions G and F  

with modal vectors ( ) ( )YT and XT  respectively. A real-valued functional S is called a 

dispersion on 
qΩ  in Ko and Guttorp (1988) if  

( ) ( ) ( )( ) ( )( )
( )

( ) ( )
( )  .   on  point  fixed a isc   if , 0S  c)

.  matrix   orthogonal  an  for  X  Yif , GS  FS  b)

.   onmetric  a is  ,d       where

XT,Xd  than largerally stochastic is  YT,Yd   wheneverGS  FS  a)

qc

q
..

Ω=δ

ΓΓ==

Ω

≤

     ... (2.5) 

Using a particular choice of dispersion measure they shows that if ),(CNF~ κµ=Θ  

the directional mean 








Θ

Θ
=

)(cosE

)(sinE
arctan)F(T

F

F*  and the concentration parameter 

( ) A)F(K F
1 ρ= −  are not SB-robust at the family of distributions }0:),(CN{ >κκµ=ℑ  

where ( ) ( ) ( )κAsinEcosEρ 2
F

2
FF =Θ+Θ= .   

 

He & Simpson (1992) introduced distance based breakdown function for general 

parametric family of distributions{ }Θ∈µµ ,F , as: 

( ) ( ){ } ( )µµ=δδ∈δδ≥µµε=δε
Θ∈µ

µ  ,dsup   with) 0,[ for   ,d : inf 0

**

0

**  

where ( )( ){ }G some for GF 1T:0inf* µ=ε+ε−>ε=εµ (see He, Simpson and 

Portnoy(1990)) and ( )FT  is a Fisher consistent estimating functional for µ  i.e. 

( ) Θ∈µµ=µ any  for FT . The corresponding breakdown point, breakdown slope and 

the g.e.s with respect to any distance measure defined by them respectively are:  

( ){ }) ,0[:sup *** δ∈δδε=ε , 
( )








δ

δε
=β

→δ

*

0

* lim  and 
( ) ( ){ }










ε
=γ ε

→ε

+ x,

0x
GE

FT , FTd
suplimsup   
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where ( ) xx, F1F ∆ε+ε−=ε and x∆  is the distribution of a point mass at x. They defined 

the notion of SB-robustness by standardising with respect to the Kullback-Leibler 

distance and conclude that an estimate is SB-robust if its Kullback-Leibler-

standardized breakdown slope is bounded away from 0 uniformly in ( )∞∈κ  ,0 .This 

standardisation includes both the dispersed case 0→κ and the concentrated 

case ∞→κ . With the above notion of SB-robustness, they showed that for von-

Mises distributions both the directional median and symmetrically trimmed mean on 

the circle are SB-robust for any 0>α  where α  is the trimming proportion. 

 

Ko (1992) developed a simple robust estimator of the concentration parameter of the 

von Mises distribution on the q-dimensional unit sphere which for 2q =  gives an 

estimator for the concentration parameter κ  on the circle defined as 

2

0

1

m
med

)75.0(
)F(K 














θ−Θ

Φ
=

−

where Φ  is the c.d.f. of standard normal distribution which  is 

analogous to the estimator based on median absolute deviation in case of linear 

data. He proved that with a reasonable choice of dispersion functional this estimator 

is SB-robust at the family of distributions }0:),(CN{ >κκµ=ℑ  for the concentration 

parameter κ . Oteino (2002) proposed that the circular analogue of Hodges-

Lehmann estimator (i.e. the circular median of the pair wise circular means) provides 

an alternative estimate of preferred direction. The new measure of preferred 

direction is a robust compromise between circular mean and circular median which is 

asymptotically more efficient than the circular median and its asymptotic efficiency 

relative to the circular mean is quite comparable. He showed that, for a von-Mises 

distribution with 2≥κ , the influence function of the circular Hodges-Lehmann 

estimator is bounded and hence is a robust estimator for the preferred direction. 

Also, he showed that, for a von-Mises distribution with 2≥κ , the circular Hodges-

Lehmann estimator say, ( )c

n,n

c

n,1n

c

2,1

c

1,1

c

HL ,,,, median circular ˆ θθθθ=θ −K  is approximately 

distributed as 








π

κ
θ

n3
 ,ˆVM c

HL , c

j,iθ is the pair wise circular mean of observations 

ji  and θθ  defined as  nji , 
coscos

sinsin
tan  

ji

ji1c

j,i ≤≤


























θ+θ

θ+θ
=θ − .  
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2.4 Robustness of Tests with Directional Data 

 

Huber’s second approach to robust statistics is via robustified likelihood ratio test 

(LRT). In the classical LRT, a single observation (a gross error) can carry the test 

statistic to infinity in either direction. Huber (1965) defined the censored probability 

ratio test and showed that this test is robust in a well defined minimax sense.  Huber 

(1968) describes how robust testing method can be used to derive robust confidence 

intervals and point estimates of location. Heritier and Ronchetti (1994) developed 

robust tests for testing hypotheses in a general parametric model and study their 

properties. They derived robust versions of Wald, score and LRTs based on general 

M-estimators.  

 

He, Simpson, and Portnoy (1990) introduced in the context of linear data the concept 

of breakdown robustness of tests. They developed the idea of power and level 

breakdown functions of a test statistic and gives a unified analysis that combines 

both local (influence function) and global (breakdown point) stability. These 

breakdown functions are invariant to one-to-one transformation. Let n21  ,..., , θθθ be 

independent observations from a distribution )( F Θ∈θθ , and suppose we desire to 

test 0θ:H against 0θ:H 10 ≠=  in a location model { }Rθθ),(xF(x)F 0θ ∈−= . Given a 

distribution F, and let ( ) xε εδε)F(1FG +−= .  Then the Level Breakdown Function 

(LBF) of a test functional T is defined as 

                                 ( ) ( )( ) ( ){ } xsome for  FTFGT:0infT 0
**

θεθ =>ε=ε                      ... (2.6) 

and the Power Breakdown Function (PBF) of T is defined as 

                               ( ) ( )( ) ( ){ } xsome for  FTFGT:0infT 0
* =>ε=ε θεθ .                       ... (2.7) 

The level breakdown point (LBP) is defined as ( )**** sup θ
θ

ε=ε  and the power 

breakdown point (PBP) is defined as ( )** sup θ
θ

ε=ε . The LBF of T at θ ( ( )T**
θε= ) gives 

the least proportion of contamination of 0F  by some value x which makes the value 
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of the functional evaluated at this contaminated distribution equal to that of the 

functional evaluated at θF . In such situations we will say that level breakdown of T 

has occurred. Similarly, the PBF of T at θ ( ( )T*
θε= ) gives the least proportion of 

contamination of θF  by some value x which makes the value of the functional 

evaluated at this contaminated distribution equal to that of the functional evaluated at 

0F . In such a situation we will say that power breakdown of T has occurred. To 

interpret the LBP intuitively suppose that the level of contamination ( η ) is less than 

LBP. Then we can conclude that there exist θ  for which level breakdown does not 

occur. Similar interpretation can be given for the PBP.   

 

Lambert (1981) introduced influence functions for testing by using Hampel’s 

influence function to transformed p-values which describes the effect of an 

observation and an underlying distribution on the behaviour of a test. She also 

discusses the relationship between the influence function of the p-value and the 

influence function of the test statistic. Lambert (1982) introduced the idea of 

qualitative robustness of tests and showed that in the normal set-up the z-test and 

Student’s t-test are not qualitatively robust whereas the sign, Wilcoxon, Huber 

censored likelihood and normal scores test are qualitatively robust.  Her definition of 

qualitative robustness can be applied to both conditional and unconditional tests.  

 

Markatou and He (1994) introduced three classes of testing procedures - drop in 

dispersion, Wald type, and score type tests- based on one step high breakdown 

point bounded influence estimators for testing sub hypotheses in linear models. They 

showed that these tests have bounded influence functions.  Perez (1993) discusses 

an interesting notion of robustness for one-tailed tests for the location for a specific 

class of distributions using the tail-ordering of distributions within this class. Reider 

(1978) looked at the maximum size and minimum power of a test evaluated 

asymptotically over certain neighbourhoods in order to obtain quantitative results 

about the influence of outliers on tests. Rousseeuw and Ronchetti (1979, 1981) 

introduced the notion of influence function for tests which incorporates estimators 
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that are not Fisher consistent. They modify Hampel’s influence function and defined 

the influence function for testing as follows: 

( ) ( )
( ){ } ( )

ε

−εδ+ε−
== θθ

→ε
θθ

FUF1U
limF U, ;xIFF T, ;xIF x

0
test

 

where ( ) ( )( ) θ=ξ= θ
−

θ FTFU 1  and xδ  is the probability measure which puts mass 1 in 

the point x. They also examine the asymptotic influence of contamination on the level 

and power of a test and introduced the concept of level influence function (LIF) and 

power influence function (PIF) having the following definition.  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ε+ε+β=ε

ε+ε+α=ε

∫

∫
θ

θ

ozdGF T, ;zPIFpower

 and  ozdGF T, ;zLIFlevel

0

0

0

0

  , where 

( )
( )( ) ( )

( )( )
( )

( )( ) ( )
( )( ) 2

1

0

1

2
1

0

1

0

0

0

0

0

0

F,TV

F T, ;zIFE1
F T, ;zIFP  ,  

F,TV

F T, ;zIF1
F T, ;zLIF

θ

θ
−

θ

θ

θ
−

θ

δ−α−Φφ
=

α−Φφ
= ,

00   and  βα are respectively the asymptotic level and power, ( )0
1 1 α−Φ −  is the 01 α−  

quantile of the standard normal distribution Φ  and φ is its density, 
( )( )
( )

0
F,TV

E
1

2

0

θ
−

θξ′
=  is 

the Pitman’s efficacy of the test,  ( ) ( )θ=θξ FT  and ( ) ( ) ( )∫ θθθ = zdFF,T;zIFF,TV
000

2
 is 

the asymptotic variance of T . The LIF and PIF actually describe the influence of a 

small amount of contamination at some point z on the asymptotic level and power of 

the test. Ronchetti (1997) gives an excellent survey on robustness and influence 

functions. Ylvisaker (1977) introduced the twin concepts of resistance to acceptance 

and resistance to rejection of a test to quantitatively measure the robustness of a test 

in the presence of outliers. He defines test resistance as one minus the fraction of 

observations that determine the test decision regardless the value of the other 

observations in the sample.  

 

Stephens (1962) developed different exact and approximate tests for direction for 

circular distributions. He has proposed several approximate tests for polar vectors 

and test for randomness and discussed the accuracy of these tests in details. 

Stephens (1969) introduced tests for the modal vector and the concentration 
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parameter of the von-Mises distribution on the circle. He developed exact tests for 

the following hypotheses: 00 :H κ=κ  whether the modal vector is known or not and 

AA:H 00 =  when κ  is known where 0A  is the modal vector based on R , the 

resultant length of a sample of vectors and on X, the component of R on 0A  when 

this is known or hypothesized. He proposed new 2χ  approximations for the 

percentage points of R and of X discussed the accuracy of these approximations. 

Upton (1973) developed some single sample tests for the von-Mises distribution. He 

introduced three tests for specified direction and two tests for specified distribution 

based on likelihood ratio. Watson and Williams (1956) developed some significance 

tests on the circle and sphere based on the fundamental property of sufficient 

statistics for direction and homogeneity. Robustness of these tests in the context of 

directional data has not been explored in the literature and is a part of subject matter 

of this thesis (see chapters 5 and 6). 
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Chapter 3 

Robust Estimator for Mean Direction of Circular Normal 

Distribution 

 

3.1 Introduction 

 

In this chapter we study the robustness of the directional mean (a.k.a. circular mean) 

for different families of circular distributions. A circular random variable Θ  is said to 

have a von-Mises or CN distribution with mean direction µ and concentration κ if it 

has the probability density function (p.d.f): 

( )
( )

( ) 0 and 20  where20,e
I2

1
,;f cos

0

>κπ<µ≤π<θ≤
κπ

=κµθ µ−θκ  

 where ( )κ0I  is the modified Bessel function of the first kind and order zero. We show 

that the directional mean is robust in the sense of finite standardized gross error 

sensitivity (SB-robust) for the following families- (1) mixture of two circular normal 

distributions, (2) mixture of wrapped normal and circular normal distributions, and (3) 

mixture of two wrapped normal distributions. We also show that the directional mean 

is not SB-robust for the family of all circular normal distributions with varying 

concentration parameter. We define the circular trimmed mean (for definition see 

section 3.3) and prove that it is SB-robust for this family. In general the property of 

SB-robustness of an estimator at a family of probability distributions is dependent on 

the choice of the dispersion measure. An estimator T may be SB-robust at the family 

of distributions ℑ  for one choice of dispersion measure while it may not be SB-

robust at the family of distributions ℑ  for another choice of dispersion measure. For 

example, for the family of distributions }0m:),(CN{ >κ>κµ=ℑ  Ko and Guttorp 

(1988) uses )(A1 κ− as the dispersion measure whereas He and Simpson (1992) 

suggests using 2

1

))(A(
−

κκ as the dispersion measure. It can be easily seen that the 
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directional mean is SB-robust at the family of distributions ℑ  when the measure of 

dispersion is 2

1

))(A(
−

κκ  and not SB-robust at the family of distributions ℑ  when the 

measure of dispersion is )(A1 κ− . We introduce the concept of equivalent 

dispersion measures and prove that if an estimator is SB-robust for one dispersion 

measure then it is SB- robust for equivalent dispersion measures. The anomaly 

shown above occurs due to the fact that )(A1 κ−  and 2

1

))(A(
−

κκ  are not equivalent 

measures of dispersion for the family of distributions ℑ . In this chapter we have 

developed four lemmas and five theorems on the robust estimator for mean direction 

of circular normal distribution.  

 

The organization of this chapter is as follows: In Section 3.2 we discuss the SB-

robustness of the directional mean and show that the directional mean is not SB-

robust at the family of all circular normal distributions with varying 0>κ . However, 

we find that the directional mean is SB-robust at some mixture families- namely 

mixture of two circular normal distributions with differing concentration parameters, 

mixture of a circular normal and a wrapped normal distribution, and mixture of two 

wrapped normal distributions with differing mean resulting length (for definition and 

properties of wrapped normal distribution see Mardia and Jupp, 2000 pp. 50-51).   In 

Section 3.3, we give the definition of circular −γ trimmed mean and show that it is 

SB-robust for the family of circular normal distributions with varying 0>κ . In Section 

3.4, we define the notion of equivalent measures of dispersion for a family of circular 

distributions and study equivalence of different dispersion measures. In Section 3.5, 

we compare the performance of the three dispersion measures used in Section 3.4. 

 

Definition 1: Let { }Θ∈µ=ℑ µ  :F  be a family of distributions on the unit circle 

where )2 ,0[ π=Θ  and µ  is the central direction. Suppose ( )FT  is an estimator for µ , 

i.e. ( ) µ=FT  for any Θ∈µ .  The circular distance between the directions θ  and µ  

which is denoted by ),(d µθ  is defined as 
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( ) ( ) ( )[ ]

.  ,    ),(d0  , ||||           

 µθπ2, µθmin   θ,µd

Θ∈µθ∀π≤µθ≤µ−θ−π−π=

−−−=
               … (3.1) 

The circular distance between two angles is defined as the shorter of the two arc 

lengths on a unit circle between the two points on it which represent these two 

angles. This measure of dispersion can be considered in some ways a natural 

measure of dispersion on the circle. 

 

3.2 SB-robustness of the Directional Mean 

 

Let θ  be a circular random variable having cumulative distribution function (c.d.f) F  

and let ( )  10 ,F 1G x <ε<εδ+ε−=ε . The directional meanµ  of the circular distribution 

F is defined implicitly as the solution of  
( )
( )θcosE

θsinE
 tan

F

F=µ . The estimating functional 

of µ  is ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
= . Ko and Guttorp (1988) proves that the directional 

mean is B-robust but not SB-robust at the family of distributions }0:),(CN{ >κκµ=ℑ  

when the measure of dispersion is ( )ρ−= 1)F(S  where )(sinE)(cosE 22 θ+θ=ρ . 

In Theorem 3.1 below we show that the directional mean has the same properties 

when the dispersion measure is )),(d(E)F(S F µθ= .  

 

Theorem 3.1: The directional mean ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
=  is B-robust but not 

SB-robust at the family of distributions }0:),(CN{ >κκµ=ℑ  when the measure of 

dispersion is )),(d(E)F(S F µθ=  where  ℑ∈F .   

The following Lemma 1 and Lemma 2 were used to prove the above theorem. 

 

Lemma 1: Suppose θ  is a circular random variable such that µθ ~F~ where F is a 
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 unimodal circular distribution with mode µ~ . Then ))~,(d(E)F(S F µθ=  is a measure of 

dispersion on the unit circle.  

 

Proof:  

Let µθ  and  be any two angles on the unit circle. Using the definition (3.1) we have  

( )( ) ( )  dF,d ,dEF ∫ µθ=µθ , where F  is the cumulative distribution function on the circle.  

Now define ( ) ( )( ) ( )( )( )XT,XdE  XTXE FS FF =−−π−π= . Here we show that 

)F(S satisfies the set of conditions (2.5) given in chapter 2. 

a) To prove ( ) ( )GSFS ≤ . 

 Let ( ) ( )( )( ) ( ) ( )( )( )uYT,YdP  uG  and  uXT,XdP  uF ** ≤=≤=  be the distribution functions          

 of ( )( ) ( )( )YT,Yd  and  XT,Xd  respectively.  

Then it is sufficient to prove that ( )( )( ) ( )( )( )YT,YdE XT,XdE GF ≤  whenever 

( ) ( )uF uG ** ≥ . Since ( )( ) XT,Xd and ( )( )YT,Yd  is non-negative we have, 

( )( )( ) ( )( )( ) ( )( )( )( ) ( )( )  du uF1  du uXT,XdP1  du uXT,XdP    XT,XdE
0

*

00

F ∫∫∫
πππ

−=≤−=>=  

and  

( )( )( ) ( )( )( ) ( )( )( )( ) ( )( )du uG1  du uYT,YdP1  du uYT,YdP  YT,YdE
0

*

00

G ∫∫∫
πππ

−=≤−=>= . 

Since ( ) ( )uFuG ** > implies that  

( )( ) ( )( ) ( )( ) ( )( )

( )( )( ) ( )( )( )
( ) ( ). GSFS                                    

YTY,dE  XTX,dE                                     

 du uG1  du uF1  uG1  uF1

GF

0

*

0

***

≤⇒

≤⇒

−≤−⇒−≤− ∫∫
ππ
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b) To prove ( ) ( )GSFS = . 

In
2Ω , we have ( ) ( ) ( )TT

µsinµ,cos  X and Tαsinα,cos  , X 
θcosθsin

θsin-θcos
 Γ ==








= . 

 Therefore 
( )
( )







+

+
==

αθsin

αθcos
  ΓXY  and ( )

( )
( )







+

+
=

µθsin

µθcos
  YT . 

But ( ) ( )( )( ) .µαπ π XX,Td E FS F −−−== Now, 

( ) ( )( )( ) ( ) ( )

( )
( ) ( ). GSFS

FS          

µαππ          

µθαθπ πYY,Td E GS F

=⇒

=

−−−=

+−+−−==

 

c) To prove ( ) 0  S c =δ , if c  is a fixed point on qΩ . 

 Since c is a fixed point on 2Ω , by taking ( ) ( ) ( ) 0 ccππE  S ,c  XT  X Fc =−−−=δ== . 

 Hence the lemma. 

 

Lemma 2: Let ( )κµθ  ,CN~ . Then ( ) µρ=θ coscosEF , ( ) µρ=θ sinsinEF  and  

( )
( )∑

∞

=

+

+
−=

0n
2

1n2

1n2

κA

π

4

2

π
)F(S .  

 

Proof:  

By definition, we have  

( )
( )

( )

( )
( )

( )
( ) .de )cos(

I 2

cos
                 

de )cos(
I 2

1
 de cos

I 2

1
cosE

2

0

cos

0

2

0

cos

0

2

0

cos

0

F

θµ−θ
κπ

µ
=

θµ+µ−θ
κπ

=θθ
κπ

=θ

∫

∫∫
π

µ−θκ

π
µ−θκ

π
µ−θκ
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But we know that ( ) ( ) ... 3, 2, 1,  p   I de )(pcos
2

1
p

2

0

cos =∀κ=θµ−θ
π ∫

π
µ−θκ . Then we get  

( ) ( ) µκ=θ cosAcosEF  where for ( )κµ  ,CN , we have ( ) ( ) ( ) ρ=κκ=κ −
1

1
0 I IA . Hence, 

( ) µρ=θ coscosEF .                                                       

Similarly, ( )
( )

( )

( )
( ) θµ−θ

κπ

µ
=θθ

κπ
=θ ∫∫

π
µ−θκ

π
µ−θκ de )sin(

I 2

sin
 de sin

I 2

1
sinE

2

0

cos

0

2

0

cos

0

F . 

Since, ( ) ( ) ... 3, 2, 1,  p   I de )(psin
2

1
p

2

0

cos =∀κ=θµ−θ
π ∫

π
µ−θκ we have ( ) ( ) µκ=θ sinAsinEF . 

Hence, ( ) µρ=θ sinsinEF .                                                         

By Lemma 1 )),(d(E)F(S F µθ=  is a dispersion measure on the circle where ),(d µθ  is 

defined by (3.1). Note that the expected circular distance )),(d(E)F(S F µθ=  does not 

depend onµ . Hence we can without loss of generality assume 0=µ  for computing 

)F(S . Now (3.1) can be written as: 

( )




π>θθ−π

π≤θθ
=

   if)2(

   if 
θ,µd . 

Hence, ( )
( )

( ) 







+=θ= ∫∫

π2

π

θcosκ

π

0

θcosκ

0

F dθ eπ-θ2dθθ e
κπ I2

1
)(dE)F(S . 

By making the substitution λ=θ−π )2(  and using ( ) ( )∑
∞

=

θκ +=
1p

p0

cos pθcosκI2κI  e   

(Abramowitz & Stegun, 1965, p.376, 9.6.34) )F(S can be written as  

                            
( )

( ) ( ) 







λλλ+λλ= ∑ ∫∫

∞

=

ππ

d pcosκI2d κI
κπ I

1
)F(S

1p 0

p

0

0

0

.                 … (3.2) 

Using integration by parts and simplifying (3.2) we get  

( )
( )∑

∞

= 





 −π

+
ππ−

+
π

=
1p

2p

0 p

1pcos

p

psin
κI

κπ I

2

2
)F(S . 
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Since p   0psin ∀=π , ( ) ( ) ( ) 0p   κI κI κA  and ..... 5, 3, 1,  p   1pcos 1
0pp >∀==∀−=π − , we 

have  

                                                
( )

( )∑
∞

=

+

+
−=

0n
2

1n2

1n2

κA

π

4

2

π
)F(S  .                                  … (3.3) 

Hence the lemma.  

 

Proof of the theorem: 

 Let ℑ∈F , ( )   10 ,F1G x ≤ε≤εδ+ε−=ε and ( )( )xεδF ε1T  µ +−=ε , π<≤ 2x0 . Then we 

have, 

( )
( )

( ){ }( )

( ){ }( )

( ) ( )
( ) ( )

   .
εcosxθ cosEε1

εsinxθ sinEε1
            

cosθE

sinθE
  

cosθE

sinθE
 tanµ

F

F

εδFε1T

εδFε1T

G

G

ε

x

x

ε

ε

+−

+−
=

==
+−

+−

 

Dividing both numerator and denominator by ( )θcosEF  and using Lemma 2 we get 

( )
( )

( )
( ) 








+µ−

+µ−
=⇒

+µ−

+µ−
=µ εε

xcosεcosε1ρ

xsinεsinε1ρ
arctan µ   

xcosεcosε1ρ

xsinεsinε1ρ
tan * . 

 Consider ( ) 








+

−
=−

ε

ε

→
ε

→ µtanµtan1

µtanµtan

ε

1
lim  µµtan

ε

1
lim

0ε0ε
. 

Substituting the value of  εµtan  and simplifying, we get  

( ) ( )








ε+

−
≅−ε )(o

ρ

µxsinε
arctan µµ *    where 0

)(o
lim

0
=

ε

ε
→ε

. 

Using the Taylor series expansion of ( )ttan 1−  and applying limit as 0→ε  we get the 

influence function of the directional mean as 

                               ( ) ( ) ( )
ρ

µ−
=−= ε

→ε

xsin
µµ

ε

1
limF,T;xIF

0
 ; 0ρ > .                        … (3.4) 

Now, the gross error sensitivity (g.e.s.) of the estimator T at F is given by 
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( ) ∞<
ρ

µ−
==γ

π<≤

)xsin(
F,T;xIFsup)F,T(

2x0

. 

Hence, we see that the directional mean is B-robust.  

Now by using (3.3) and (3.4) we get the SIF of the functional T as:            

          ( ) ( )
( )

( )
( )

( )

0 ;  

1n2

κA

π

4

2

π

µxsin
    

FS

F,T ;xIF
  x;T,F,SSIF

0n
2

1n2

>ρ









+
−ρ

−
==

∑
∞

=

+

.                    … (3.5) 

Using (3.5), the s.g.e.s of T at F is given by: 

( ) ( )[ ]

( ) ( )
( )

( )( )

( ) ( )
( )

( )

( ) ( )
( )

. 
21n2

A4
   and  1A , as cesin  ,                  

 1µxsinsup ,  
1n2

κA

π

4

2

π
κAsup                 

. µxsinsup
1n2

κA

π

4

2

π
κAsup                 

x;T,F,SSIFsupsup   ,ST,

0n
2

1n2

2x0

1

0n
2

1n2

0κ

π2x0

1

0n
2

1n2

0κ

2x00κ

*

∑

∑

∑

∞

=

+

π<≤

−
∞

=

+

>

<≤

−
∞

=

+

>

π<≤>

π
→

+

κ

π
→κ∞→κ∞=

=−




































+
−=














−























+
−=

=ℑγ

 

Hence the theorem. 

 

Now we explore the properties of the directional mean for some mixture families of 

distributions. 

In Theorem 3.2 we prove that the directional mean is SB-robust for the following 

families of distributions-  

(i) }M ,m0 ,10:),(CN)1(),(CN{ 21211 <κκ<<<α≤κµα−+κµα=ℑ (mixture of two 

circular normal distributions)   

(ii) }M,m0 ,10:),(CN)1())(A,(WN{ 21212 <κκ<<<α≤κµα−+κµα=ℑ (mixture of 

wrapped normal and circular normal distributions)  and 



30 

 

(iii) }M ,m0 ,10:),(WN)1(),(WN{ 21213 <ρρ<<<α≤ρµα−+ρµα=ℑ (mixture of  two 

wrapped normal distributions) where ( ) ( ) ( )   .κI κ I κA 1

01

−=  

The parameters of the wrapped normal distribution in (ii) above are chosen as µ  and 

)(A κ since for large κ , ),(CN κµ distribution is well approximated by ))(A,(WN κµ  

(Mardia and Jupp, 2000 p. 38). The parameters of the wrapped normal distribution 

),(WN ρµ  arise naturally when wrapping ),(N 2σµ  onto the circle where 

( )2exp 2σ−=ρ  (Mardia and Jupp, 2000, p.50). 

 

Theorem 3.2: The directional mean ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
= is SB-robust for the 

families: 

(a) }M ,m0 ,10:),(CN)1(),(CN{ 21211 <κκ<<<α≤κµα−+κµα=ℑ  

(b) }M,m0 ,10:),(CN)1())(A,(WN{ 21212 <κκ<<<α≤κµα−+κµα=ℑ  and  

(c) }M ,m0 ,10:),(WN)1(),(WN{ 21213 <ρρ<<<α≤ρµα−+ρµα=ℑ  

when the measure of dispersion is )),(d(E)F(S F µθ=  where  ℑ∈F . 

The following Lemma 3 is used prove the above theorem. 

 

Lemma 3:  

(a) Let ),(CN)1(),(CNH 21 κµα−+κµα=α . Then ( ) ( ) ( )( ) µ−+= cos κAα1κα A β 211  and 

( )
( )

( ) ( )
( ) 








+
−−+









+
−= ∑∑

∞

=

+
∞

=

+
α

0n
2

21n2

0n
2

11n2

1n2

κA

π

4

2

π
α1

1n2

κA

π

4

2

π
 α)H(S . 

(b) Let ),(CN)1())(A,(WNH 21 κµα−+κµα=α . Then ( ) ( ) ( )( ) µ−+= cos κAα1κα A β 212  

and 
( )( )

( )
( ) ( )

( ) 







+
−−+













+
−= ∑∑

∞

=

+
∞

=

+

α

0n
2

21n2

0n
2

)1n2(

1

1n2

κA

π

4

2

π
α1

1n2

κA

π

4

2

π
 α)H(S

2

. 
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(c) Let ),(WN)1(),(WNH 21 ρµα−+ρµα=α . Then ( )( ) µρ−+ρ= cos α1α  β 213  and 

( )
( )

( ) ( )
( ) 











+

ρ
−−+













+

ρ
−= ∑∑

∞

=

+∞

=

+

α

0n
2

)1n2(

2

0n
2

)1n2(

1

1n2π

4

2

π
α1

1n2π

4

2

π
 α)H(S

22

. 

 

Proof:   

(a) By definition, we have ( ) ( ) ( ) ( )θα−+θα==
α

cosE1cosEθcosEβ
21 FFH1 . But under 

the distribution ,) ,(CN iκµ  we have  

( ) 2 1,i ,cos )(Ade cos
)(I 2

1
)(cosE i

2

0

cos

i0

F
i

i
=µκ=θθ

κπ
=θ ∫

π
µ−θκ . 

Hence, ( ) ( ) ( ) ( )( ) µ−+== cos κAα1κα A θcosEβ 21H1 α
.                                     … (3.6) 

Note that the expected circular distance )),(d(E)H(S H µθ=
αα  does not depend onµ .  

Hence we can without loss of generality assume 0=µ  for computing )H(S α . Now,  

))(d(E)1())(d(E))(d( E)H(S
21 FFH θα−+θα=θ=

αα .                                               … (3.7) 

Using (3.3) of Lemma 2, we get 2 1,i  all for  
)1n2(

)(A4

2
))(d(E

0n
2

i1n2
Fi

=
+

κ

π
−

π
=θ ∑

∞

=

+ . Thus, 

from (3.7) we get      

          
( )

( )
( ) ( )

( ) 







+
−−+









+
−= ∑∑

∞

=

+
∞

=

+
α

0n
2

21n2

0n
2

11n2

1n2

κA

π

4

2

π
α1

1n2

κA

π

4

2

π
 α)H(S .                   … (3.8)  

 

(b) By definition we have ( ) ( ) ( ) ( )θα−+θα==
α

cosE1cosEθcosEβ
21 FFH2  .  But under 

the distribution )) A(,(WN 1κµ  we have  
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( )( ) ( )

( )( ) ( )

( ) ( ) ( )( ) ( )

( )

  . cos )(A                 

nm for

nm for0
dncosmcos  since   , cos

2

cosA
                 

dpcoscosA
1

dcoscos
A

                 

dpcoscosA
1

                 

dpcosA21 cos
 2

1
)(cosE

1

2

0

2

0

21

2p

2

0

p

1

2

0

1

1p

2

0

p

1

2

0 1p

p

1F

2

2

2

1

µκ=





=π

≠
=θθθθ

π

µκ
=

θµ−θθκ
π

+θµ−θθ
π

κ
=

θµ−θθκ
π

=

θ








µ−θκ+θ
π

=θ

∫∫

∑ ∫∫

∑ ∫

∫ ∑

ππ

∞

=

ππ

∞

=

π

π ∞

=

 

For ) ,(CN 2κµ distribution, by using part (a) we have µκ=θ cos )(A)(cosE 2F2
. 

Therefore, ( ) ( ) ( ) ( )( ) µ−+== cos κAα1κα A θcosEβ 21H2 α
.                                … (3.9) 

Under the distribution )) A(,(WN 1κµ  and making the substitution ( ) λ=θ−π2  we have  

( ) ( ) ( )( )

( )( )

( )( )

( )( )

( )( )
( )

. ... 3, 1,p   1pcos and  p   0psin  since  , 
1n2

A4

2
              

p

1pcos

p

psin
A

2

2
               

pcosA
2

2
               

dpcosA21
 

1
               

dpcosA21 --
 2

1
)(dE

0n
2

)1n2(

1

1p
2

p

1

1p 0

p

1

0 1p

p

1

2

0 1p

p

1F

2

2

2

2

2

1

∑

∑

∑ ∫

∫ ∑

∫ ∑

∞

=

+

∞

=

∞

=

π

π ∞

=

π ∞

=

=∀−=π∀=π
+

κ

π
+

π
=







 −π

+
ππ

κ
π

+
π

=

θθκ
π

+
π

=

θ








θκ+θ
π

=

θ








θκ+θππ
π

=θ

 

Hence using (3.7) we get  

( )( )
( )

( ) ( )
( )

.
1n2

κA

π

4

2

π
α1

1n2

κA

π

4

2

π
 α)H(S

0n
2

21n2

0n
2

)1n2(

1

2









+
−−+













+
−= ∑∑

∞

=

+
∞

=

+

α                       ... (3.10) 

 

(c) By definition we have ( ) ( ) ( ) ( )θα−+θα==
α

cosE1cosEθcosEβ
21 FFH3 . But under 

the distribution 2 1,  i   where) ,(WN i =ρµ  we have  



33 

 

( ) ( )

( ) ( )

( ) ( ) ( )

. 2 1,i    wherecos                  

nm for

nm for0
dncosmcos  since    cos

2

cos
                 

dpcoscos
1

dcoscos                 

dpcoscos
1

                 

dpcos21 cos
 2

1
)(cosE

i

2

0

2

0

2i

2p

2

0

p

i

2

0

i

1p

2

0

p

i

2

0 1p

p

iF

2

2

2

i

=µρ=





=π

≠
=θθθθ

π

µρ
=

θµ−θθρ
π

+θµ−θθ
π

ρ
=

θµ−θθρ
π

=

θ








µ−θρ+θ
π

=θ

∫∫

∑ ∫∫

∑ ∫

∫ ∑

ππ

∞

=

ππ

∞

=

π

π ∞

=

 

Therefore, ( ) ( )( ) µρ−+ρ== cos α1α  θcosEβ 21H3 α
.                                       … (3.11) 

Under the distribution 2 1, i   where) ,(WN i =ρµ  and making the substitution 

( ) λ=θ−π2  we have  

( ) ( ) ( )

( )

( )

( )

( )
( )

. ... 3, 1,p   1pcos and  p   0psin  since   ,
1n2

4

2
              

p

1pcos

p

psin2

2
               

pcos
2

2
               

dpcos21
 

1
               

dpcos21 --
 2

1
)(dE

0n
2

)1n2(

i

1p
2

p

i

1p 0

p

i

0 1p

p

i

2

0 1p

p

iF

2

2

2

2

2

i

∑

∑

∑ ∫

∫ ∑

∫ ∑

∞

=

+

∞

=

∞

=

π

π ∞

=

π ∞

=

=∀−=π∀=π
+

ρ

π
+

π
=







 −π

+
ππ

ρ
π

+
π

=

θθρ
π

+
π

=

θ








θρ+θ
π

=

θ








θρ+θππ
π

=θ

 

Hence using (3.7) we get  

( )
( )

( ) ( )
( ) 











+

ρ
−−+













+

ρ
−= ∑∑

∞

=

+∞

=

+

α

0n
2

)1n2(

2

0n
2

)1n2(

1

1n2π

4

2

π
α1

1n2π

4

2

π
 α)H(S

22

.                          … (3.12) 

Hence the lemma. 

 

Proof of the theorem:  

(a) Let 1H ℑ∈α  where ),(CN)1(),(CNH 21 κµα−+κµα=α .  
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By doing similar computations as in the proof of Theorem 3.1 it can be shown that  

( ) ( )
 )(o

µsec β

µxsinε
arctan*µµ

1

*









ε+
−

≅−  where ( )θcosEβ H1 α
= . 

Hence ( ) ( )
2

π3
 ,

2

π
µ  ; 

µsecβ

µxsin
H,T;xIF

1

≠
−

=α .                                                      ... (3.13) 

Using lemma 3(a) and (3.13) we get 

( ) ( ) ( ) ( ) ( )( )( )
( )

( )
( ) ( )

( )

( )
(3.14) ...                                 . 

2

π3
 ,

2

π
µ  ;

 sec  α 

)µxsin(
                        

 
2

π3
 ,

2

π
µ  ;

1n2

κA

π

4

2

π
α1

1n2

κA

π

4

2

π
α

µseccosκAα1κα Aµxsin
S,H,T;xSIF

32
2

1

0n
2

21n2

0n
2

11n2

11

21

≠
µλ+αλ+λ

−
=

≠























+
−−+









+
−

µ−+−
=

∑∑
∞

=

+
∞

=

+

−−

α

 

where ( )3,2,1i s'i =λ  are constants involving 2 1  and κκ . 

 

Note that the numerator of (3.14) is a bounded function of x and the denominator of 

(3.14) is a product of two linear functions of α  which are both non-zero in the closed 

interval [0, 1]. Since the denominator is positive and a continuous function of α  in 

the closed interval [0, 1], it is bounded away from zero in [0, 1]. Hence, 

       ( ) ( ) .   
secλαλαλ

)xsin(
supsup  ,ST,γ

32
2

12x0
Mm0

,1α0
1

* ∞<








µ++

µ−
=ℑ

π<≤
<κ<<

<≤

                         … (3.15) 

This proves that the directional mean is SB-robust at the family of distributions 1ℑ . 

 

(b) Let 2H ℑ∈α  where ),(CN)1())(A,(WNH 21 κµα−+κµα=α . By doing similar 

computations as in the proof of Theorem 3.1 it can be shown that  

( ) ( )
 )(o

µsec β

µxsinε
arctanµµ

2

**









ε+
−

≅−  where ( )θcosEβ H2 α
= . 
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Hence, ( ) ( )
2

π3
 ,

2

π
µ  ; 

µsecβ

µxsin
H,T;xIF

2

≠
−

=α .                                                     ... (3.16) 

Thus using lemma 3(b) and (3.16) we get,  

( ) ( ) ( ) ( )( )( )

( )
( ) ( )

( )

( )
(3.17) ...                                   . 

2

π3
 ,

2

π
µ  ;

 sec  α 

)µxsin(
                        

 
2

π3
 ,

2

π
µ   ; 

1n2

κA

π

4

2

π
α1

1n2

))(A(

π

4

2

π
α

µseccosκAα1κα A)xsin(
S,H,T;xSIF

32

2

1

0n
2

21n2

0n
2

)1n2(

1

11

21

2

≠
µν+αν+ν

−
=

≠























+
−−+













+

κ
−

µ−+µ−
=

∑∑
∞

=

+
∞

=

+

−−

α

where ( )3,2,1i s'i =ν  are constants involving 2 1  and κκ . 

 

Note that the numerator of (3.17) is a bounded function of x and the denominator of 

(3.17) is a product of two linear functions of α  which are both non-zero in the closed 

interval [0, 1]. Since the denominator is positive and a continuous function of α  in 

the closed interval [0, 1], it is bounded away from zero in [0, 1]. Hence, 

( ) ( ) .   
secαα

)xsin(
supsup  S , T,γ

32

2

12x0
Mm0

,1α0
2

* ∞<








µν+ν+ν

µ−
=ℑ

π<≤
<κ<<

<≤

                              … (3.18) 

This proves that the directional mean is SB-robust at the family of distributions 2ℑ . 

 

(c) Let 3H ℑ∈α  where ),(WN)1(),(WNH 21 ρµα−+ρµα=α . By doing similar 

computations as in the proof of Theorem 3.1 it can be shown that  

( ) ( )
 )(o

µsec β

µxsinε
arctanµµ

3

**









ε+
−

≅−  where ( )θcosEβ H3 α
= . 

Hence, ( ) ( )
2

π3
 ,

2

π
µ  ; 

µsecβ

µxsin
H,T;xIF

3

≠
−

=α .                                                     ... (3.19) 

Thus by using lemma 3(c) and (3.19) we get,  
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( )
( )
( )

( ) ( )
( )

( )
(3.20) ...                                  . 

2

π3
 ,

2

π
µ  ;

 sec  α 

)µxsin(
                      

 
2

π3
 ,

2

π
µ   ;

1n2π

4

2

π
α1

1n2π

4

2

π
α

sec)cos))1()((xsin(
 ,Sx;T,HSIF

32

2

1

0n
2

)1n2(

2

0n
2

)1n2(

1

11

21
α 22

≠
µδ+αδ+δ

−
=

≠



























+

ρ
−−+













+

ρ
−

µµρα−+αρµ−
=

∑∑
∞

=

+∞

=

+

−−

 

where ( )3,2,1i s'i =δ  are constants involving 2 1   and ρρ . 

 

Note that the numerator of (3.20) is a bounded function of x and the denominator of 

(3.20) is a product of two linear functions of α  which are both non-zero in the closed 

interval [0, 1]. Since the denominator is positive and a continuous function of α  in 

the closed interval [0, 1], it is bounded away from zero in [0, 1]. Hence, 

       ( ) ( ) .   
secαα

)xsin(
supsup  S , T,γ

32

2

12x0
Mm0

,1α0
3

* ∞<








µν+ν+ν

µ−
=ℑ

π<≤
<κ<<

<≤

                       … (3.21) 

This proves that the directional mean is SB-robust at the family 3ℑ . 

Hence the theorem. 

 

3.3 Robustness of the Circular Trimmed Mean  

 

We have seen in Theorem 3.1 that directional mean is B-robust but not SB-robust. In 

this section we give a definition of γ -circular trimmed mean and prove that it is SB-

robust for the family of distributions }0:),(CN{ >κκµ=ℑ (Theorem 3.3). 

 

Definition 2: Suppose θ  is a circular random variable with p.d.f ( )θf  and 

5.0γ0 <≤  is fixed. Let α , β  be two points on the unit circle satisfying   

( )  and,   γ2-1  dθθf)i(
α

β

∫ =  
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( )

 direction. iseanticlockw the in traversed  at ending and  from startingarc  the

 of length the is ),(d  where,γ2-1  dθθf satisfying  , all for ),(d),(d (ii) 111

φξ

ξφ=νµνµ≤βα ∫
µ

ν
 

Then the circular γ - trimmed mean ( γ -CTM) is defined as  

                                 
( )

( )












−
= ∫

α

β

iθ

γ  dθθfe
γ21

1
arg  µ                                         … (3.22) 

where γ is the trimming proportion. 

 

Theorem 3.3: Let 5.0γ0 <≤ . The γ -CTM ( γµ ) is SB-robust at the family of 

distributions }0:),(CN{ >κκµ=ℑ  when the measure of dispersion is 

)),(d(E)F(S F , µθ= γ  where  ℑ∈F .   

The following Lemma 4 is used to prove above theorem. 

 

Lemma 4: Suppose ( )κµθ  ,CN~ . Then ( )
( ) ( ) 




















−
+

+
κ+=ρ ∑

∞

=

µ−µ+

µγ
2p

 ,1p ,1p

p ,1
1p

S

1p

S
ASc  and 

( )
( )

( ) ( )
( )



















 −

++
−

= ∑
∞

=1p
2

0p,0 p,

p

2

p

1C

p

Sκα
κA4κα

γ21π2

1
  FS  where F is the c.d.f of 

( )κµ  ,CN , ( )[ ])α( psinS ,p ν−ρ=ν  
, ( )[ ] )κα( pcos  C ,p ν−=ν and ( )( )1

21cosc
−

γ−πµ= . 

 

Proof: 

Note that βα,  depend on κ  and in what follows we will make this dependence 

explicit by writing them as )(κα  and )(κβ respectively. Then by definition, we have,  

( )

( )

( )

θθ
γ−κπ

=θ=ρ ∫
κα

κβ

µθκ
γγ de cos

)21)((I 2

1
)(cosE -cos

0

F, . 

Let ( ) υ=µ−θ . Then 
( )

1

01

0

cos

1 )]21)((I [2c    wherede coscos c2 −

µ−κα

υκ
γ γ−κπ=υυµ=ρ ∫ . 
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Now using ( ) ( )∑
∞

=

υκ υ+=
1p

p0

cos pcosκI2κI  e   we get 

             ( ) ( )
( )( )












υυυκ+υυκµ=ρ ∫ ∫∑

µ−κα µ−κα∞

=
γ  dpcoscosI2d cosIcos c2

0 01p

p01 .           … (3.23) 

But using ( ) { }υυ−υυ−=υυυ
−

∫ sinpcospsincosp1pdpcoscos
1

2  and simplifying we 

get 
( )

( ) ( )







−
+

+
=υυυ

µ−µ+
µ−κα

∫ 1p

S

1p

S

2

1
dpcoscos

,1p,1p

0

. Hence from (3.23) we get 

                                
( )

( )
( ) ( ) 




















−
+

+
+

−

µ
= ∑

∞

=

µ−µ+

µ
2p

,1p,1p

p,1γ
1p

S

1p

S
κAS

γ21π

cos
   ρ .             ... (3.24)                                           

Since )),(d(E)F(S F , µθ= γ  does not depend onµ , we can without loss of generality 

assume µ=0 for computing S(F). Using the substitution ( ) λ=− θπ2  we have, 

( ) ( )
( ) ( )

( )

( )
( )

( )

( ) ( )

( )

. de 
κIγ21π

1
           

 dθe θπ2dθe θ 
κIγ21π2

1
)d(E FS

κα

0

 κcos

0

κα

κβ

θ κcos

κα

0

θ κcos

0

F,

∫

∫∫

λλ
−

=












−+

−
=θ=

λ

γ

 

Now using the identity ( ) ( )∑
∞

=

λκ λ+=
1p

p0

cos pcosκI2κI  e   and simplifying we get 

( )
( ) ( )

( ) ( )
( )( )

( )
( ) ( ) ( ) ( )[ ] ( )[ ]

. 
p

1κpα cos

p

κpα sinκα
κA4κα

γ21π2

1
          

dpcosI 2d I
κIγ21π

1
FS

1p
2p

2

κα

0 1p 0

p0

0
















 −

++
−

=












λλλκ+λλκ

−
=

∑

∫ ∑ ∫

∞

=

∞

=

κα

 

Thus, ( )
( )

( ) ( )
( )

. 
p

1C

p

Sκα
κA4κα

γ21π2

1
    FS

1p
2

0p,0p,

p

2















 −

++
−

= ∑
∞

=

                            … (3.25) 

Hence the lemma. 
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Proof of the theorem:   

Let  ℑ∈F  and ( )
( )
( )













=

γ

γ

γ
θcosE

θsinE
arctan  FT

F,

F,*  be the estimating functional for γµ . 

Define ( ){ }xγ,γ εδF ε1 T µ +−=ε . Then,  

                   

( ) ( ) ( )

( ) ( ) ( )











∉











−

∈











+−

=µ

∫

∫
εγ

β,αxif        ;         dθθfeε1arg

β,αxif ;       ε edθθfeε1arg

α

β

iθ

α

β

ixiθ

,
                    … (3.26) 

where ),( αβ is the arc starting at β  and ending at α  traversed in the anticlockwise 

direction. The above relation (3.26) can be written as: 

( ){ } ( )
( ){ } ( )




∉θε−+θ−

∈ε+θε−+ε+θ−
=µ

γγ

γγ

εγ
β,αxif                                   ))(sinE)1(( i)(cosEε1 arg

β,αxif        )xsin)(sinE)1(( ixcos)(cosEε1 arg

F,F,

F,F,

, . 

Therefore, 

( )
( )

( )

( )







∉

∈












+−

+−

=µ⇒













αβ∉
θ

θ

αβ∈
ε+θε−

ε+θε−

=µ

εγ

γ

γ

γ

γ

εγ

β,αxif                                                       µ

β,αxif        
 xcosεε1ρ

 xsinεµtanε1ρ
arctan*

            

) ,(  xif 
)(cosE

)(sinE

) ,(  xif
xcos)(cosE)1(

xsin)(sinE)1(

tan

γ

γ

γγ

,

F,

F,

F,

F,

,

 

where ( )θcos E ρ F,γ γ= . Thus, as in Theorem 3.1 we can show that  

                 ( )
( )

( )
( )









∈
−

∉

=
β,αx if

µsec ρ

µxsin
β,αx if0

,Fx; TIF

γγ

γγ                                                … (3.27) 

   where 0 and  
2

3
,

2
>ρ

ππ
≠µ γγ . Hence by using Lemma 4 and (3.27) we get  
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          ( ) ( ) ( )( )



 ∈

=
ρ

µ
=

γ

γ

otherwise0

κ,ακβif x1
 )x(I   where

)F(S

)x(I )-sin(x
 , F, S x; TSIF γ  .    … (3.28) 

We can show that s.g.e.s is bounded with respect to the dispersion functional S  at F  

by directly looking at the integrals of S(F) and γρ  for both 0κ →  and ∞→κ  as 

follows. We know that, as 1)(I ,0 0 →κ→κ  and the circular normal distribution tends 

to circular uniform distribution with density function ( ) ( ) π<θ≤π=θ
−

20 ,2f
1

.Therefore,  

( )

( )

( ) )21(0
2

)21(
de

I

1
lim

2

1

0

)cos(

0
0

γ−π=α⇒
γ−

=θ
κπ ∫

κα

µ−θκ

→κ
. Since ( )  2)( π=κβ+κα , we have 

( ) )21(0 γ+π=β . Hence,   

0.50  ,
)21(

)]2-(1sin[
d cos)]21(2[ lim

)0(

0

1

0
<γ≤

γ−π

γπ
=θθγ−π=ρ ∫

α

−
γ

→κ
. 

Now as 0→κ , and letting ( ) λ=θ−π2 , we get, 

∫
α

→κ

γ−π
=λλ

γ−π
=

)0(

0
0 2

)21(
d

)21(

1
)F(Slim . 

Also we note that the numerator of the expression on the right hand side of (3.28) is 

bounded. Hence,   

                    ( ) ∞<ℑ
π<≤→κ

 , S , x; TSIFsuplim γ
2x00

.                                                        … (3.29) 

Hill(1976) proved that when 0=µ and κ  is large, ( )κα  can be expanded 

asymptotically as 

( ) K+
++

+
+

+=
κ κ640

χ45χ20χ3

κ κ24

χ3χ

κ

χ
  κα

2

353

 

where ( )γ1 Φχ 1- −= . Using the fact ),0(CN~)2(mod),(CN~ κπµ−θ⇒κµθ we get 

( ) µ→κα  as ∞→κ . By symmetry of the circular normal distribution about µ  we can 

also conclude that ( ) µ→β κ  as ∞→κ . Thus for any ,2x0  ,x π<≤µ≠  there exists an 

M >0, such that if ))(α),((M, xκ κκβ∉> . Therefore,  
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                     ( ) 0 , F, S x; TSIFsuplim γ
2x0

=
π<≤∞→κ

.                                                        … (3.30) 

Thus, using (3.29) and (3.30), we can conclude that  

( ) ( )[ ] ∞<=ℑ
π<≤>

 , F, S x; TSIFsup sup  , S, Tγ γ
2x00κ

γ

* . 

Hence the theorem.  

 

3.4 Equivalent Measures of Dispersion 

 

The notion of SB-robustness heavily depends on the choice of the dispersion 

measure used. Thus an estimator T may be SB-robust at the family of distributions ℑ  

for one choice of dispersion measure while it may not be SB-robust at the family of 

distributions ℑ  for another choice of dispersion measure.  For example, the 

directional mean is SB-robust for µ  at the family of distributions 

{ } 0);,(CN >κκµ=ℑ for the dispersion measure 2

1

))(A()F(S
−

κκ=  (He and Simpson, 

1992) but is not SB-Robust at the family of distributions ℑ  for the dispersion 

measure 2

1

))(A1()F(S κ−= (Ko and Guttorp, 1988) and also for the dispersion 

measure )),(d(E)F(S F µθ= (see Theorem 3.1 above).  In this section we study this 

aspect of SB-robustness in some detail.  

 

We begin with the definition of equivalent measures of dispersion:  

Definition 3: Suppose 1S and 2S  are two dispersion measures defined on the 

family of distributions ℑ . Then 1S and 2S  are said to be equivalent measures of 

dispersion for the family of distributions ℑ  if ( )FRsup
F ℑ∈

and ( )FRsup 1

F

−

ℑ∈

 are both finite, 

where ( ) ( ) ( )FSFSFR 1

21

−=  .  
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We shall use the notation 21 S~S
ℑ

 to denote that S1 and S2 are equivalent measures 

of dispersion for the family of distributions ℑ . Theorem 3.4 below is a consequence 

of the above definition and we prove that 
ℑ

~ is an equivalence relation on the class of 

all dispersion measures for the family of distributions ℑ  and the property of SB-

robustness of the estimator is preserved when equivalent measures of dispersion for 

the family of distributions ℑ  are considered. 

 

Theorem 3.4: (a) 
ℑ

~  is an equivalence relation on the class of all dispersion 

measures for the family of distributions ℑ . 

b) Suppose 1S and 2S  are two equivalent measures of dispersion for the family of 

distributions ℑ . Suppose that the estimating functional T is SB-robust at the family of 

distributions ℑ  when the measure of dispersion is 2S .Then, T is also SB-robust at 

the family of distributions ℑ  when the measure of dispersion is 1S . 

 

Proof: 

 a) Let Ψ denote the set of all dispersion measures for the family of distributions ℑ . 

It immediately follows from the above definition that 
ℑ

~  is reflexive and symmetric. To 

prove 
ℑ

~ is transitive suppose that Ψ∈321 S ,S ,S , 21 S~S
ℑ

 and 32 S~S
ℑ

. Let 

( ) ( ) ( ) .3  ,2  ,1j,i ,  ji  ;   FSFSFR 1
jiij =<∀= −  Note that ( ) ( ) ( )FR FRFR 231213 = .  

Thus, ( ) ( ) ( )[ ] ( ) ( ) ∞<≤=
ℑℑℑℑ

FRsup FRsupFR  FRsupFRsup 2312231213 , since both ( )FR12  

and ( )FR23  are non negative. Therefore, 31 S~S
ℑ

 proving 
ℑ

~  is transitive. 

b) From the definition of SIF it follows that ( ) ( ) ( )2
1

1 S,F,T;xSIF FRS,F,T;xSIF  −= . 

Then, 

( ) ( )[ ] ( ) [ ])S,F,T;x(SIF supFRsup S,F,T ;xSIFsupsup S,,T 2
x

1

1
x

1

* −

ℑℑ

==ℑγ . 
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Since ( ) [ ])S,F,T;x(SIF supS,F,T 2
x

2 =λ , we have ( ) ( ) ( )2
1

1
* S,F,T FRsup  S , ,T λ=ℑγ −

ℑ

. 

Again since 1S and 2S  are two equivalent measures of dispersion for the family of 

distributions ℑ  we have ( ) ∞<=−

ℑ

kFRsup 1 .  Then,  

( ) ( ) ( )  .  F   S,F,TsupkS,F,TFRsup 22

1 ℑ∈∀λ≤λ
ℑ

−

ℑ

 

Since T is SB-robust at the family of distributions ℑ  when the measure of dispersion 

is 2S  implies ( ) ( ) ∞<ℑγ≤ℑγ 2

*

1

* S,,T kS,,T . 

Hence the theorem. 

 

In Theorem 3.5 we prove the equivalence of dispersion measures discussed in Ko 

and Guttorp (1988), He and Simpson (1992) and Lemma 1 above for the families of  

distributions  { }m);,0(CN* >κκ=ℑ  and { }0 );,0(CN
~

>κκ=ℑ . 

 

Theorem 3.5: (a) Consider the family of distributions { }m);,0(CN* >κκ=ℑ  and 

define for *F ℑ∈ , ( )κ−= A1)F(S1 , ( )( )0,dE)F(S F2 θ= and ( )( ) 2

1

3 A)F(S
−

κκ= .Then 

21 S,S and 3S are equivalent measures of dispersion for the family of distributions *ℑ .  

(b) Now consider the family of ditributions { }0 );,0(CN
~

>κκ=ℑ .Then the following are 

true: (1) 2

~

1 S~S
ℑ

     (2)  3

~

2 S~S
ℑ

/     (3)   3

~

1 S~S
ℑ

/ . 

 

Proof: Part (a) 

(a) Let ( ) ( ) A1h)F(S1 κ−=κ= , ( )
( )

( ) θθ−π−π
κπ

=κ= θκ
π

∫ de 
I 2

1
g)F(S cos

2

00

2  and 

( ) ( )
( )κ

κ
=κ=

g

h
r)F(R . We know that for large κ , ( )κA  can be expanded asymptotically 

as 
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                                         ( ) ( )3

32
o

8

1

8

1

2

1
1A −κ−

κ
−

κ
−

κ
−=κ                           ... (3.31) 

(See Mardia & Jupp, 2000, p.40). Using (3.31) we get, 

                                         ( ) ( )3

2
o

8

1

8

1

2

11
h −κ+

κ
+

κ
+

κ
=κ .                        … (3.32) 

The ),0(CN κ  density ( )θf  can be expanded around the standard normal density )(φ  

as ( ) ( ) ( ) ( )








+

κ

−α−α−α
+

κ

−α
+αφ=α .......

5760

3153085

24

3
1f

2

4684

 where κθ=α  (Hill, 

1976). Using this ( )κg  reduces to: 

                        ( ) ( ) ( ) ( ) α







κ+

κ

−α
+αφα

κ
=κ −

κπ

∫ do
24

3
1 

1
g 2

4

0

.                              … (3.33) 

 Therefore, using (3.32) and (3.33) ( )κr  can be written as 

( ) ( )
( )

( )

( ) ( ) ( ) α







κ+

κ

−α
+αφα

κ+
κ

+
κ

+

=
κ

κ
=κ

−
κπ

−

∫ do
24

3
1 

o
8

1

8

1

2

1

g

h
r

2
4

0

3

2

. 

Then, a simple calculation shows that ( ) π=κ
∞→κ
rlim . Hence,  ( ) ( ) ∞<κ=

>κℑ

rsupFRsup
m*

 

and ( ) ∞<−

ℑ

FRsup 1

*

. Thus, 21 S~S

∗ℑ

. 

Now, let ( ) ( )( )0,dEh)F(S F2 θ=κ=  and ( ) ( )( ) 2

1
 

3 Ag)F(S
−

κκ=κ= . Using the asymptotic 

expansions of ( )κA  for large κ and the density ( )θf , we get: 

( )
( ) ( ) ( )

( )4

32

2
4

0

o
8

1

8

1

2

1
1

do
24

3
1 

r
−

−
κπ

κ−−
κ

−
κ

−
κ

−

α







κ+

κ

−α
+αφα

=κ
∫

. 
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A simple calculation shows ( )
π

=κ
∞→κ 2

1
rlim . Hence, ( ) ( ) ∞<κ=

>κℑ

rsupFRsup
m*

 and 

( ) ∞<−

ℑ

FRsup 1

*

.  Hence 32 S~S
*ℑ

. Since 
*

~
ℑ

 is an equivalence relation (Theorem 

5.1above) we have 31 S~S
*ℑ

. 

 

Part (b) 

1) Let )g( ),(h κκ and )(r κ  be as defined in the proof of part (a) above. By simple  

calculations we have ( ) π=κ
∞→κ
rlim  and ( )

π
=κ

→κ

2
rlim

0
. Thus ( )κ

>κ

rsup
0

 and ( )κ−

>κ

1

0

rsup are 

both finite implying that 2

~

1 S~S
ℑ

. 

2) Now as  ,0→κ  ( )
2

h
π

→κ  and ( ) ∞→κg . Therefore, ( ) 0rsup
0

=κ
>κ

but ( ) ∞=κ−

>κ

1

0

rsup . 

Hence, 3

~

2 S~S
ℑ

/ . 

3) Suppose 3

~

1 S~S
ℑ

. Since 2

~

1 S~S
ℑ

 and 
ℑ
~

~  is an equivalence relation we have 3

~

2 S~S
ℑ

 

which is a contradiction to the fact that 3

~

2 S~S
ℑ

/  shown above. Hence, 3

~

1 S~S
ℑ

/ .  

Hence the theorem. 

 

3.5 Comparison of Different Dispersion Measures 

 

We have numerically evaluated the three dispersion measures 1S , 2S  and 3S  for 

different values of κ  which are tabulated in Table 1.  A graphical comparison of the 

above three measures of dispersion is also provided in Figure 1. Figure 1 given 

below is based on Table 1. 
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Table1: Comparison of dispersion measures. 

κ  ( )κA  ( )( ) 21
A1 κ−  ( )( ) 21

A
−

κκ  ( )( )θdEF  

0.25 0.12 0.94 5.68 1.41 

0.50 0.24 0.87 2.87 1.26 

0.75 0.35 0.81 1.95 1.12 

1.00 0.45 0.74 1.50 1.00 

2.00 0.70 0.55 0.85 0.67 

3.00 0.80 0.45 0.65 0.51 

4.00 0.86 0.37 0.54 0.43 

5.00 0.89 0.33 0.47 0.38 

6.00 0.91 0.30 0.43 0.34 

7.00 0.93 0.27 0.39 0.31 

8.00 0.94 0.25 0.37 0.29 

9.00 0.94 0.24 0.34 0.27 

10.00 0.95 0.23 0.32 0.26 

12.00 0.96 0.21 0.30 0.23 

14.00 0.96 0.19 0.27 0.22 

16.00 0.97 0.18 0.25 0.20 

18.00 0.97 0.17 0.24 0.19 

20.00 0.97 0.16 0.23 0.18 

25.00 0.98 0.14 0.20 0.16 

30.00 0.98 0.13 0.18 0.15 

40.00 0.99 0.11 0.16 0.13 

50.00 0.99 0.10 0.14 0.11 

60.00 0.99 0.09 0.13 0.10 

70.00 0.99 0.08 0.12 0.10 

80.00 0.99 0.08 0.11 0.09 

90.00 0.99 0.07 0.11 0.08 

100.00 1.00 0.07 0.10 0.08 



47 

 

 

Figure 1: Comparison of the three measures of dispersion: )(A1S1 κ−= (KG-Disp), 

))(d(ES F2 θ= (LM-Disp) and 2

1
 

3 ))(A(S
−

κκ= (HS-Disp). 

 

From Figure 1 it can be seen that the three measures behave similarly for large κ , 

but for values of κ close to 0 the behaviour of the dispersion measure 3S  is very 

different from that of 1S  and 2S  which can also be observed from the above Table 1. 

This intuitively explains why the directional mean is SB-robust at the family of 

distributions }0:),(CN{ >κκµ=ℑ  when the measure of dispersion is 2

1

))(A(
−

κκ  and 

not SB-robust at the family of distributions ℑ  when the measure of dispersion 

is )(A1 κ−  or ( )( )µθ,dEF . 
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Chapter 4 

Robust Estimator for Concentration Parameter of Circular Normal 

Distribution 

 

4.1 Introduction 

 

In this chapter we discuss robust estimation of the concentration parameter (κ) of the 

circular normal (CN) distribution. A circular random variable Θ  is said to have a von-

Mises or CN distribution with mean direction µ and concentration κ if it has the 

probability density function (p.d.f): 

( )
( )

( ) 0  and  20    where20 ,e
I 2

1
,;f cos

0

>κπ<µ≤π<θ≤
κπ

=κµθ µ−θκ  

 where ( )κ0I  is the modified Bessel function of the first kind and order zero. It is 

known that the m.l.e of the concentration parameter is not B-robust at the family of 

all circular normal distributions with fixed mean direction (µ) and varying κ > 0. We 

show that the usual estimator ( ) A)F(K F
1 ρ= − of the concentration parameter is not 

SB-robust with respect to the dispersion measure )),(d(E)F(S F µθ=  where 

( ) ( ) ( )κAsinθEcosθEρ 2
F

2
FF =+=  and ( ) ( ) ( )κIκIκA 1

1
0
−= . We next show that 

[ ]),(d(Eg)F(T F

1 µθ= −  is B-robust but is not SB-robust estimator of κ . We propose a 

new estimator (see Section 4.3 for definition) for κ and show that it is B-robust and 

SB-robust at the family of distributions ( ){ }Mm : ,CN ≤κ≤κµ  where m and M are two 

arbitrary constants. We also obtained the limiting cases of the dispersion measures  

)),(d(E)F(S F, µθ= γ  as both 0.5  and  0 →γ→γ  which are given in the form of Lemma 

4.  

 

Ko (1992) suggested that a reasonable choice of )F(S is the inverse of Fisher 

information or equivalently the Cramer-Rao lower bound for the standard error of the 
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estimating functional T. For ( )κ ,CNF µ=  the inverse of the Fisher information for the 

concentration parameter κ  is ( )( ) 21
κA

−′ . In Lemma 5 we show that this choice of 

)F(S is not a good one as it is not a dispersion measure. Thus, the claim that the 

estimator ( )FmΚ  (see chapter 2, p. 17) is SB-robust at the family of distributions ℑ  is 

not appropriate though the result is technically not wrong since the definition of SB-

robustness does not require the functional S to be a dispersion measure. In this 

chapter we have developed five lemmas and three theorems on the robust estimator 

for concentration parameter of circular normal distribution. 

 

This chapter is organised as follows. In Section 4.2 we discuss the robustness of two 

estimators of κ and in Section 4.3 we propose a new SB-robust estimator for κ .  

 

4.2 Robustness of the Estimator for the Concentration Parameter  

 

As mentioned in chapter 1 Ko and Guttorp (1988) has shown that the traditional 

estimator for κ ,  )(A F

1 ρ− ,  is not SB-robust at the family of distributions 

}0:),(CN{ >κκµ=ℑ  with respect to the dispersion measure 21

F )1()F(S ρ−= . In 

Theorem 4.1 below we show that )(A F
1 ρ− ,  is not SB-robust at the family of 

distributions ℑ  with respect to the dispersion measure  )),(d(E)F(S F µθ=  where 

( )µ ,θd  is defined by (3.1) in chapter 3. 

 

Theorem 4.1: Suppose ( )κ µ,CN~Θ  where 0κ >  and µ  is the mean direction. 

Then ( ) ( )F
1 ρAFT −=  is an estimating functional for  κ  which is not SB-robust at the 

family of distributions }0:),(CN{ >κκµ=ℑ  with respect to  ( ) ( )( )µθ= ,dEFS F  where 

ℑ∈F . 
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Proof:   

Since ( )κ µ,CN~Θ  and µ  is the mean direction, we can write 

( ) ( ) ( )sinθiEcosθEθdFeµ FF

iθ +== ∫  and 

( ) ( ) ( ) ( )
( )κI

κI
κAsinθEcosθEρ

0

12

F

2

FF ==+= . 

Let ( )F T  be an estimating function for  κ . Then we can write ( ) ( )F
1 ρAFTκ −==  . 

Let ( ){ }xε εδFε1Tκ +−= . Then we can write: 

                           ( ) ( )( )θ+θ= δ+ε−δ+ε−
− sinEcosEAκ 2

F)1(
2

F)1(
1

ε xx
                              ... (4.1) 

Using Lemma 2 in chapter 3, (4.1) reduces to  

( )( ) ( )( )( )1µxcosρ2ρεµxcosρερ2ρAκ F

2

F

2

FF

2

F

1

ε +−−+−−−= − . 

Now, by L’Hôpital’s rule we have ( ) ( )ε
0ε

ε

0ε
κ

dε

d
lim

ε

κκ
limFT,x;IF

→→
=







 −
= .               ... (4.2) 

Using ( ) ( )( )[ ] 111 yAAyA
−−− ′=

′
 and ( ) ( ) ( )κAκκA1κA 12 −−−=′ , we get from (4.2) 

           ( ) ( ) ( ) ( )( )
( )( ) 









−−

−−
==

−

−

→
F

2
FF

1

FF
1

ε
0ε ρρ1ρA

ρµxcos ρA
κ

dε

d
limFT,x;IF .                                   ... (4.3) 

By Lemma 1 in chapter 3, ( ) ( )( )µθ= ,dEFS F  is a dispersion measure on the circle 

where ( )κ µ,CN~Θ  and again by using Lemma 2 in chapter 3 we get, 

                        ( ) ( )
( )∑

∞

=

+

+
−=

0n
2

1n2

1n2

κA

π

4

2

π
 FS   where ( )

( )
( )

0p  
κI

κI
κA

0

p

p >∀= .               ... (4.4) 

Hence by using (4.3) and (4.4) the standardized influence function (SIF) of T with 

respect to the dispersion functional S is given by 
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( )
( ) ( )( ) ( )

( )
( ) ( ){ }





















−−









+
−−−

=
−

−
∞

=

+− ∑

FF
12

F

1

0n
2

1n2
FF

1

ρρAρ1

1n2

κA

π

4

2

π
ρµxcos ρA

SF,T,x;SIF . 

and the s.g.e.s of T is given by ( ) ( )[ ]S,F,T;xSIFsupsupS,,T
x0

*

>κ

=ℑγ . 

Now as ∞→κ , both ( ) ,1 κA →  ( ) nevery  for  1 κA 1n2 →+  so that 
( )

( ) 2

π

1n2

κA

π

4

0n
2

1n2 →
+

∑
∞

=

+  

and hence ( ) 0FS →  and hence ( )S,,T* ℑγ  is not finite which implies that 

standardized influence function is not bounded.  

Hence the theorem. 

 

Without loss of generality, let us assume ( )κ µ,CN~Θ . In Theorem 4.2 below we 

propose a new estimator of κ , ( ) ( )( )[ ]θdEgFT F
1−=  where ( ) ( )( )θdE  κg F=  and show 

that this new estimator also is not SB-robust with respect to the dispersion measure 

( ) ( )( )θ= dEFS F . 

 

Theorem 4.2: Let ( )κ µ,CN~Θ . Define ( ) -θππ  θd −=  and ( ) ( )( )θdE  κg F= .  Then 

( ) ( )( )[ ]θdEgFT F
1−=  is B-robust but is not SB-robust for κ at the family of distributions 

}0:),0(CN{ >κκ=ℑ  with respect to ( ) ( )( )θ= dEFS F  where ℑ∈F . 

The following Lemma 1 is used to prove the above theorem. 

 

Lemma 1: Let ( )κ µ,CN~Θ  and define ( ) ( )( )θdE  κg F=  where ( ) -θππ  θd −= . Then  

( ) ( )
( )

( )
( )

( ) ( )κgκA 
1n2

κA
 

1n2

κA

π

2

π

1
  κg

0n 1n
2

n2

2

2n2 −






















+
+

+
+−=′ ∑ ∑

∞

=

∞

=

+ . 
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Proof:  

Since ( ) ( ) ( )( )µθ=κ= ,dEg FS F  does not depend onµ  we can without loss of generality 

assume 0=µ  for computing )(g κ . Hence ( ) ( )( )θdE  κg F= . Now for ( )κ 0,CN~Θ , by  

Lemma 2 in chapter 3 we have, 

( )
( )

( ) ( )
( )∑∫

∞

=

+

+
−=−−=

0n
2

1n2θcosκ

π2

00 1n2

κA

π

4

2

π
dθeθππ

κπI2

1
κg . 

Differentiating with respect to κ  we get          

( )
( ) ( ) ( ) ( )

( )( )

( )
( ) ( ) ( ). κgκ A- dθecosθ |θπ|π

κπI2

1
         

κI

dθe |θπ|πκIdθecosθ |θπ|πκI

 
π2

1
 κg

κcosθ
π2

00

2

0

κcosθ
π2

0

1
κcosθ

π2

0

0

∫

∫∫

−−=




















−−−−−

=′

 

By making the substitution λ=θ−π )2(  and using ( ) ( )∑
∞

=

θκ +=
1p

p0
cos pθcosκI2κI  e   

(Abramowitz & Stegun, 1965, p.376, 9.6.34) )(g κ′ can be written as  

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ){ } ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )
( )

( ) ( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( ) ( ). κgκA 
1n2

κA
 

1n2

κA

π

2

π

1
       

p   1cosp  since  ,gA
1n2

κI

1n2

κI
2κI

κπ I

1
       

p   0sinp  since , gA
1p

11pcos

1p

11pcos
κIκI

κπ I

1
       

gAd1pcosκId1pcosκIκI
κπ I

1
        

gAd )1pcos(1pcosκIκI
κπ I

1
        

gAd pcoscosκI2dcos κI
κπ I

1
)(g

0n 1n
2

n2

2

2n2

0n 1n
2

n2

2

2n2
0

0

2p
22p0

0

1p 02p

p

0

p0

0

1p 0

p0

0

1p 0

p

0

0

0

−























+
+

+
+−=

∀−=πκκ−




















+
+

+
−−=

∀=πκκ−




















−

−π−
+

+

−π+
+−=

κκ−







λλ−λ+λλ+λ+−=

κκ−







λλ−+λ+λ+−=

κκ−







λλλλ+λλλ=κ′

∑ ∑

∑ ∑

∑

∑ ∫∑∫

∑ ∫

∑ ∫∫

∞

=

∞

=

+

∞

=

∞

=

+

∞

=

∞

=

π∞

=

π

∞

=

π

∞

=

ππ

Hence the lemma. 
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Proof of the theorem:  

Let ( ){ }xε εδFε1Tκ +−= . Then, we can write 

( ){ } ( ) ( ){ } ( )[ ]
( ) ( ) ( )( )[ ]. κgxdεκgg                                  

xεdθdEε1g εδFε1Tκ 

1

F
1

xε

−+=

+−=+−=
−

−

 

Using the Taylor series expansion of  g 1− around the point ( )κg , we have  

                     

( )( ) ( ) ( )( )
( )( )( )

( )

( ) ( )( )
( )

( ). εO
κg

κgxdε
κ     

εO
κggg

κgxdε
κgg κ

2

2

1

1
ε

+
′

−
+=

+
′

−
+=

−

−

                                               … (4.5) 

From (4.2) we get,  

( ) ( ) ( )
( )

( ) 0κg ; 
κg

κgxd

ε

κκ
limFT,x;IF ε

0ε
≠′









′

−
=







 −
=

→
. 

Note that as ∞→κ , ( ) ( ) ( ) 1 κA  , 1 κA  ,1 κA n22n2 →→→ + , for every n. Thus from 

Lemma 1 we get ( ) 0κg →  and hence for large values of κ , ( ) 0κg <′ . Since 

( ) ( ) ∞<=γ  |F,T ;xIF|sup F,T
x

, we have ( )( )[ ] θdEg F
1− is B-robust for the concentration 

parameter κ at the family of distributions ℑ . Now let ( ) ( )( )θdEFS F= . Since as 

∞→κ , ( ) 0κg →  and ( ) 0κg <′ , we get the s.g.e.s ( ) S,,T* ℑγ is not finite and hence 

( )( )[ ] θdEg F
1− is not SB-robust for the concentration parameter κ at the family of 

distributions ℑ . 

Hence the theorem. 

 

4.3 A New SB-robust Estimator for the Concentration Parameter 

 

In Theorem 4.1 we see that the usual estimator for the concentration parameter for 

κ is not SB-robust at the family of distributions }0:),(CN{ >κκµ=ℑ . In this section 

we propose a new estimator for the concentration parameter κ . 
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Definition 1: Let ),;(f κµθ  be the p.d.f. of ),(CN κµ distribution and )(  and )( κβκα be 

symmetrically placed around µ  such that ∫
κα

κβ

γ−=θκµθ
)(

)(

21d),;(f  where γ  is the 

trimming proportion such that [ )0.5  ,0∈γ . Define,  

∫
κα

κβ

γ θκµθµθ=µθ=κ
)(

)(

F,

* d),;(f),(d)),(d(E)(g . 

Then the new estimator for the concentration parameter κ  is defined as  

                                      [ ])),(d(Eg)F(T F,

1* µθ= γ

−

γ .                                           ... (4.6) 

 

Without loss of generality we assume 0=µ . Since the circular normal distribution is 

symmetric about 0=µ   we have )(2)( κα−π=κβ . Then ( ) ( )( )[ ]θdEgFT F,

1*
γ

−

γ =  where 

( ) ( )dF θd21)(g
)(

)(

1*

∫
κα

κβ

−
γ−=κ , γ  is the trimming proportion such that [ )0.5  ,0∈γ  and 

( )κα  and )(κβ  are such that ( ) 1Fd21
)(

)(

1
=γ− ∫

κα

κβ

−
. In Theorem 4.3 below, we prove that  

( )FTγ  is SB-robust at the family of distributions }Mκm0:),0(CN{ ≤≤<κ=ℑ  with 

respect to the dispersion measure ( )( )θ= γ dE )F(S F, . In Lemma 4 we discuss the 

limiting cases of )F(S  as both 0.5  and  0 →γ→γ and in Lemma 5 we show that the 

choice of ( ) 21))(A(FS −κ′=  is not a good one as it is not a dispersion measure. 

 

Theorem 4.3: Let ( )κ 0,CN~Θ . Define ( )  θπ-π  θd −= and ( ) ( )( )θdE  κg F,
*

γ= . 

Then ( ) ( )( )[ ]θdEgFT F,

1*
γ

−

γ =  is SB-robust at the family of distributions  

}Mκm0:),0(CN{ ≤≤<κ=ℑ  with respect to the dispersion measure 

( )( ) ( ) dF θd)21(dE )F(S
)(

)(

1
F, ∫

κα

κβ

−
γ γ−=θ= . 
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The following Lemma 2 and Lemma 3 were used to prove the above theorem.  

Lemma 2: Let ( )κ µ,CN~Θ  and define ( ) ( )( )θdE  κg F,
*

γ=  where ( ) -θππ  θd −= . 

Then ( ) ( ) ( ) ( )

( ) ( )
( ) ( )κgκA

κIγ21π

eκακα
  κg *

0

κκcosα
* −

−

′
=

′
. 

 

Proof: 

Since ( ) ( ) ( )( )µθ=κ= γ ,dEg FS F ,
*  does not depend onµ  we can without loss of 

generality assume 0=µ  for computing )(g* κ . Hence ( ) ( )( )θdE  κg F,
*

γ= . Using the 

substitution ( ) λ=− θπ2 we have  

( )
( )

( ) ( )
( )

( )

( ) ( )

( )

( )
( )

( ) ( )

( )

 . de 
κIγ21π

1
         

dθe  θπ2dθe θ
κIγ21π2

1
   θdFθd

γ21

1
   κg

κα

0

 κcos

0

κcosθ
π2

κβ

κα

0

κcosθ

0

κ

κ

**

∫

∫∫∫

λλ
−

=












−+

−
=

−
=

λ

α

β
 

Using Leibnitz rule for differentiation of a definite integral whose limits are functions 

of the variable with respect to which differentiation is being performed we get: 

( )
( ) ( )( )

( ) ( ) ( ) ( ){ }
( )

( )










 ′













−′
−

=
′

∫ κIdθe θκαeκακI
κIγ21π2

1
  κg 0

κα

0

κcosθκκcosα
02

0

* . 

But since  ( ) ( )κIκI 10 =
′

 and ( ) ( )
( )κI

κI
κA

0

1= , we have 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )κgκA

κIγ21π

eκακα
  κg *

0

κκcosα
* −

−

′
=

′
. 

Hence the lemma. 

 

Lemma 3: Suppose 21 κκ > . If x and y are such that F1(x) =F2(y) = 0.5 – γ then x<y 

where F1 and F2 are the distribution functions under ( )1 µ,CN κ  and ( )2 µ,CN κ . 
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Proof:  

Case1: 2πyx,0 << . 

If 2πθ0 << , then we have θκθκ > coscos 21 ee . Now suppose y < x. Then 

( ) ( )γ0.5γ0.5  dede   dede
y

0

cos
x

0

cos

y

0

cos

y

0

cos 2121 −>−⇒θ>θ⇒θ>θ ∫∫∫∫
θκθκθκθκ  

which is a contradiction and hence xy ≥ . If y = x, ( ) ( )γ0.5γ0.5 −>−  again a 

contradiction and hence x < y. 

 

Case2: πx2πy0 or 2πyx, <<<<> . 

If 2πθ0 << , then we have θκθκ > coscos 21 ee . This implies that: 

( ) ( )γ0.5γ0.5  dede   dede
y

0

cos
x

0

cos

y

0

cos

y

0

cos 2121 −>−⇒θ>θ⇒θ>θ ∫∫∫∫
θκθκθκθκ . 

Again a contradiction and hence x2πy << cannot happen. 

 

Case3: yx > . 

In this case we can write: 

 dθedθeLLCC

dθeCLdθeC

dθedθedθe

  and    dθedθedθe

x

2

θcos

y

2

θcos

21

y

2

θcos

2

x

2

θcos

1

y

2

θcos

2

0

θcos

y

0

θcos

x

2

θcos

2

0

θcos
x

0

θcos

12

21

222

111

∫∫

∫∫

∫∫∫

∫∫∫

π

κ

π

κ

π

κ

π

κ

π

κ

π

κκ

π

κ

π

κκ

−=−⇒














+=+⇒

+=

+=
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( ) ( ) ( ) ( )

( ) ( )
( ) (4.7) ...                                                  yh

κI

t
dθe

κI

1

dθe
κI

1
dθe

κI

1

κI

t
dθe

κI

1

dθedθedθeLt

10

x

y

θcos

10

y

2

θcos

20

y

2

θcos

1010

x

y

θcos

10

x

y

θcos

y

2

θcos

y

2

θcos

1

211

112

+=
−

⇒

−+=
−

⇒












+−=⇒

∫

∫∫∫

∫∫∫

κ

π

κ

π

κκ

κ

π

κ

π

κ

 

where 21 LCCt −= , 
( )
( )20

10

κI

κI
L =  , ∫

π

κ=
2

0

θcos

1 dθeC 1  and ∫
π

κ=
2

0

θcos

2 dθeC 2 . 

Now we have to show that the RHS of (4.7) is positive so that the contradiction will 

establish x < y. Also ( )( ) 1

10 κIt
−

 is positive and hence it is sufficient to prove that h(y) is 

a strictly decreasing function. It is obvious from (4.7) that h(0) = 0. Since 

( ) ( )201021 II κ>κ⇒κ>κ  we have  

( ) ( )
( )

( ) ( ) ∫∫∫∫
ππππ

−>⇒
−

>
−

y

2

cosyκ

20

y

2

cosyκ

10

y

2

cosyκ

20

y

2

cosyκ

10

dye
κI

1
dye

κI

1
yhdye

κI

1
dye

κI

1
2122 . 

Since ycos  is negative in ( )π2,π  and for 21 κκ > , ( ) 0ee ycosycos 21 <− κκ , we have  

( )
( )

( ) 0dyee
κI

1
yh

y

2

ycosycos

10

21 <−< ∫
π

κκ . 

Hence the lemma. 

 

Remark 1: Let ( )κα  be defined as F( ( )κα )=0.5 – γ where F is the c.d.f of ( )κ ,0CN  

distribution.  Then from Lemma 3 we conclude that ( ) ( )21 κα<κα  for 21 κ>κ  i.e. 

( )κα  is a decreasing function of κ  and ( ) 0<κα′  .  

 

Proof of the theorem: 

 Let ( )( ) ( )dF θd)21(dE )(g
)(

)(

*1*

F,

*

∫
κα

κβ

−
γ γ−=θ=κ . Then we can write 
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( ) ( )( )[ ] θdEgFT   κ *
F,

1**
γ

−

γ == . Therefore, 

( ){ }
( ) ( )( ) ( )[ ] ( ) ( )( )

( ) ( )( )[ ] ( ) ( )( )

( ) ( ) ( )[ ] ( ) ( )( )
( ) ( )[ ] ( ) ( )( )





∉−

∈+−
=







∉−

∈+−
=+−=

−

−

γ

−

γ

−

γε

κ, ακβx;      κgε1g

 κ, ακβx;       xdcεκgε1g
                                  

 
κ, ακβx;θdEε1g

κ, ακβx ;xdcεθdEε1g
 εδFε1Tκ

*1*

**1*

*

F,

1*

**

F,

1*

x
*

 

where ( )[ ] 1
γ21πc 

−
−= . 

When ( ) ( )( )κ, ακβx ∉ , using Taylor series expansion of ( )κg around g *1* −
 we get                                 

              
( )

( )
( )2

*

*
*

ε εO

κg

κg ε
κ-  κ +

′
= .                                                                         … (4.8) 

From (4.8) the influence function is given by: 

       ( ) ( )

( )
( ) ( )( )κ, ακβx    when

κg

κg
F,Tx;IF

*

*

∉
′

−
=γ .                                                   … (4.9) 

When ( ) ( )( )κ, ακβx ∈ , we have     

                                 
( ) ( )( )

( )
( )2

*

**
*

ε εO

κg

κgxd c ε
κ  κ +

′
−

+= .                                    … (4.10) 

From (4.10), the influence function is given by: 

                  ( ) ( ) ( )

( )
( ) ( )( )κ, ακβx   when

κg

κgxd c
FT,x;IF

*

**

∈
′
−

= .                             … (4.11) 

Combining (4.9) and (4.11), we get  

( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )









∉




 ′
−

∈




 ′
−

= −

−

γ

κ, ακβx;κgκg

κ, ακβx;κgκgxdc 

F,Tx;IF 1

**

1

***

   .                                  … (4.12) 
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Hence, ( ) ( ) ( )

( )

( ) ( )

( )
 

κg

κgκαc 
 ,

κg

κg
sup   F,T ;xIFsup F,T

*

*

*

*

0x 











′
−

′
−

==γ
>κ

γγ .   

Since ( )F,Tγγ  is independent of x, and Mκm0 ≤≤<  we can conclude that 

( )( )[ ] θdEg *
F,

1*
γ

−
is B-robust at the family of distributions ℑ . 

Now let ( )( )θdES(F) F,γ= . Then using (4.12) the standardized influence function 

(SIF) can be written as: 

( )

( ) ( )( )
( ) ( )

( ) ( )( )

( ) ( ) ( )( )











∉






 ′
−

∈
′

−

=
−γ

κ, ακβx;κg

κ, ακβx;

κgκg

κgxdc 

SF,,Tx;IFS
1

*

**

**

. 

Since ( )κg*  is strictly positive and ( )κg*′  is strictly negative and bounded away from 

zero for Mκm0 ≤≤<  by Lemma 2 and remark 1of Lemma 3, we can conclude that 

the s.g.e.s ( ) S,,T* ℑγ γ is finite and hence ( )( )[ ] θdEg *
F,

1*
γ

−
is a SB- robust estimator for 

the concentration parameter of the circular normal distribution. 

Hence the theorem. 

 

The following Lemma 4 gives the limiting cases of the dispersion measures  

)),(d(E)F(S F, µθ= γ  as both 0.5  and  0 →γ→γ . 

Lemma 4: (a) As 5.0→γ , ( )( ) 0θdE F, →γ  and  (b) As ( )( ) ( )( )θ→θ→γ γ dEdE ,0 FF, . 

 

Proof: 

(a) We have ( )( )
( )

( )  de 
)21(I 2

1
θdE cos

)(

)(0

F, θθ−π−π
γ−κπ

= θκ

κα

κβ

γ ∫                           ... (4.13) 
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where )(2)( κα−π=κβ . We write ( )γα=κα κ)(  since for fixed κ , ( )κα  depends on γ  

and we want to make the dependence on γ  explicit. Then we can write:  

( )( ) [ ]

( ) . )x(f  xdx   f(x) x  small for since ,e  
)21(

c 2
               

)k(I  c    wherede 
)21(

c 2
θdE

x

0

2)( cos2

1

0

cos

)(

0

F,

∫

∫

≅γα
γ−

≅

π=θθ
γ−

=

γακ
κ

−θκ

γα

γ

κ

κ

 

Following Hill (1976), when 0=µ and κ  is large, ( )γα κ  can be expanded 

asymptotically as 

                 

( )

.
κ

χ
          

 κ640

45χ20χ3

 κ24

3χ
1

κ

χ
           

κ κ640

χ45χ20χ3

κ κ24

χ3χ

κ

χ
  κα

2

342

2

353

≅









+

++
+

+
+=

+
++

+
+

+=κ

K

K

                               ... (4.14)                

where ( )γ1 Φχ 1- −=  and  (.)Φ is the c.d.f of standard normal distribution. Using the 

relation ( ) )1p2(erf 2p -11 −=Φ −  where (.)erf  is the error function and the asymptotic 

expansion of inverse of the error function (see Carlitz, 1962) given by 









+

π
+

π
+

π
+

π
=− ...x

40320

127
x

480

7
x

12
1x

2
)x(erf 6

3
4

2
21 ,  

we get ( ) 







+γ−

π
+γ−

π
+γ−

π
+γ−

π
=γ−Φ − ...)21(

40320

127
)21(

480

7
)21(

12
1)21( 

2
1 6

3
4

2
21 . 

Now from (4.13) we get,  

( ) 







γ−+γ−

π
+γ−

κ

π
=γα κ ))21((O)21(

12
1)21( 

2

42 . 

Therefore, 

( )( ) 






















γ−+

γ−π
+γ−

κ

π
κ

γ 







γ−+

γ−π
+γ−=

))21((O
12

)21(
1)21( 

2
cos 

4
2

1F,

4
2

e  ))21((O
12

)21(
1)21(c  θdE  
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where  )](I 2[ c 1
01

−κπκ= . Thus, as  0)2-(1 , 5.0 →γ→γ and hence ( )( ) 0dE F , →θγ . 

(b) Note that when ( ) ( ) π−→γβπ→γα→γ κκ   and   ,0 . Hence, from (4.12), we get  

( )( )
( )

( ) ( )( )θdE de 
I 2

1
θdE lim F

cos

2

00

F,
0

=θθ−π−π
κπ

= θκ
π

γ
→γ ∫ . 

 Hence the lemma. 

 

The following Lemma 5 shows that Ko’s choice of S is not a dispersion measure. 

Lemma 5:  Let F~X , T(X) be the modal vector and ( ) ( )µθcosθ,µd 2 −= . Then 

( ) ( )( ))X(T,XdEFS 21

F

−=  is not a dispersion measure on the unit circle. 

 

 Proof:  

Consider a circular random variable θ  on the unit circle (T ) and let F  be the 

distribution function onT . Consider ( ) ( )µθcosθ,µd 2 −=  whereθ  and µ  are any two 

angles on T . Let X  and Y  be two random unit vectors with unimodal distributions F  

and G  with modal vectors ( )XT  and ( )YT  respectively. Further, let 

( ) ( )( ))X(T,XdEFS 21

F

−= . Then ( )FS  is a dispersion onT , if it satisfies the set of 

conditions (2.5) given in chapter 2. 

Note that if cX =  with probability 1 then ( ) ( ) 01)cc(cosES 2
Fc ≠=−=δ  which implies 

that condition c) of (2.5) is violated. Further, condition a) is also violated as shown 

below: 

Let ( ) ( )( )[ ] ( ) ( )( )[ ] uYT,YdP  uG  and  uXT,XdP  uF ** ≤=≤= denotes the cumulative 

distribution functions of ( )( ) ( )( )YT,Yd  and  XT,Xd  respectively. Since ( )( ) XT,Xd and 

( )( )YT,Yd  are both non-negative we have, 
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( ) ( )( )( ) ( )( )[ ]

( )( )[ ]{ } ( )( )  duuF1   duuXT,XdP1        

 duuXT,XdP  XT,XdEFS

21-

0

*

21-

0

21-

0

21

F









−=








≤−=









>==

∫∫

∫

ππ

π
−

 

Similarly,  ( )( )( ) ( )( )
21-

0

*21

G duuG1   YT,YdE 







−= ∫

π
− . Now, whenever 

( )( ) ( )( )

( )( ) ( )( )

( ) ( )GSFS                        

duuG1   duuF1                        

 duuG1 duuF1                        

(u))G-(1   (u))F-(1    (u)F  )u(G

21

0

*

21

0

*

21

0

*

21

0

*

****

≥⇒









−≥








−⇒









−≤








−⇒

≤⇒≤

−
π

−
π

ππ

∫∫

∫∫
 

which is a contradiction to condition a) in the definition of dispersion measure. 

 

Hence the lemma. 

 

Remark 2: If  ( )κ µ,CN~F  then ( ) 21))(A(FS −κ′= . Hence 21))(A( −κ′  is not a 

dispersion measure on the unit circle.  
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Chapter 5 

Robustness of Tests for Mean Direction of Circular Normal 

Distribution  

 

5.1 Introduction 

 

In this chapter we adopt the approach of He, Simpson and Portnoy (1990) to study 

the robustness of three single sample tests (based on different test statistics) for the 

mean direction of circular normal distribution with p.d.f.  

( )
( )

( ) 0  and  20    where20,e
I 2

1
,;f cos

0

>κπ<µ≤π<θ≤
κπ

=κµθ µ−θκ  

 where ( )κ0I  is the modified Bessel function of the first kind and order zero. We study 

the robustness of the following test functionals: )(cosE)F(W FF θ−ρ= (the likelihood 

ratio test statistic (see Mardia and Jupp, 2000, pp. 119-120)), 

( )
( )







θ

θ
=

cosE

sinE
arctan)F(W

F

F*

1  (the directional mean as a test statistic) and 

( )
( )












θ

θ
=

γ

γ

γ
cosE

sinE
arctan)F(W

F,

F,*  (the γ -circular trimmed mean as a test statistic, see 

chapter 3, section 3.3) where γ  is the trimming proportion. We consider the testing 

problem 0µ:H0 =  against 0µ:H1 ≠  and we assume that the parameter κ  is known.  

Note that tests based on the statistics 1W  and γW  can be easily constructed as the 

cut-off points can be easily determined through simulation. We compare the 

robustness of the γ Wand  W,W 1  by studying their LBF and PBF and also their LBP 

and PBP.  In Section 5 we show that γW  has the best robustness property in the 

sense that it has the highest LBP and PBP. Also, the PBF of γW  clearly dominates 

that of   Wand W1 . In this chapter we have developed four lemmas and six theorems 

on the robustness of tests for mean direction of circular normal distribution. 
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The organisation of this chapter is as follows. In Section 5.2 we discuss the 

robustness of likelihood ratio test statistic (W). In Section 5.3 we consider directional 

mean as a test statistics (W1) and discuss its robustness. In Section 5.4 we consider 

circular trimmed mean as a test statistic ( γW ) and its robustness. In Section 5.5 we 

compare the robustness of the three test statistics.   

  

5.2 Robustness of the Likelihood Ratio Test Statistic 

 

Let n21 , ,    , θθθ L  be a random sample from ( )κµ  ,CN  with 0>κ  and known.  

Consider the problem of testing 0:H against   0:H 10 ≠µ=µ . A test statistic for 

testing H0 against H1 is CRW −= (see Mardia and Jupp, 2000, pp. 119-120) 

where 22
n

1i

i

n

1i

i SCR and sin
n

1
S,cos

n

1
C +=θ=θ= ∑∑

==

. This corresponds to the 

functional ( ) ( )θ−ρ= cosEFW FF . Theorem 5.1 below gives the LBF of W. The LBP is 

obtained numerically. 

 

Theorem 5.1: a) The LBF of W is 

 }2x0  some for cyxsiny:0inf{)W( 222** π<≤+=ε+>ε=ε µ where 

xcos)1(y ε+ε−ρ=  and 
2

sin2c 2 µ
ρ= . 

b) The LBP is ))W((sup ****
µ

µ

ε=ε . 

The following Lemma 1 is used to prove the theorem. 

 

Lemma1: Let µF  denote the ( )κµ,CN  distribution then under the assumption that 

0H is true we have ( ) ( ) xcos1cosE
x0)F-(1 ε+ε−ρ=θεδ+ε  and ( ) xsinsinE 

x0)F-(1 ε=θεδ+ε . 
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Proof: 

Using Lemma 2 in chapter 3 for ( )κµ,CN  distribution and under the assumption that 

0H is true we get ( ) ρ=θcosE
0F  and ( ) 0sinE

0F =θ . Therefore, we get 

( ) ( ) ( ) ( )

( ) ( ) ( ) . xsinxcossinE1sinE

 and  xcos1xcoscosE1cosE

0x0

0x0

F)F-(1

F)F-(1

ε=ε+θε−=θ

ε+ε−ρ=ε+θε−=θ

εδ+ε

εδ+ε

 

Hence the lemma. 

 

Proof of the theorem:   

a) Let µF  denote the ( )κµ,CN  distribution and xδ denote the point mass at x. 

Let ( )( )xF1W)F(W εδ+ε−=ε . Consider the functional representations of W  and εW   

given by: 

( ) ( ) ( ) ( ) ( )θ−θ+θ=θ−ρ= cosEsinEcosEcosEFW F
2
F

2
FFF  and 

( ) ( ) ( ) ( ) ( ) ( )θ−θ+θ= εδ+ε−εδ+ε−εδ+ε−ε cosEsinEcosE)F(W
x0x0x0 F1

2
F1

2
F1 . 

Let  ( ) ycosE
x0)F-(1 =θεδ+ε .  Then using Lemma1 we get:  

                         
( ) yxsinyF)1(W 222

x0 −ε+=εδ+ε− .                                      ... (5.1) 

Again, easy computation yields:  

                         ( ) ( ) ( ) ( ) ccosEsinEcosEFW F
2
F

2
F =θ−θ+θ=

µµµµ .                        ... (5.2) 

Now using (2.6) in chapter 2, the LBF of W is given by 

}2x0  some for cyxsiny:0inf{)W( 222** π<≤+=ε+>ε=ε µ  .     … (5.3) 

b) In order to obtain LBP we evaluate (5.3) numerically for different values of κ  with 

varying µ . The following Table 2 shows the values of LBP for different values of 

µκ   and  . Figure 2 given below is based on Table 2. 
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Table 2: LBF for different values of µκ   and   . 

Mu 1=κ  2=κ  4=κ  10=κ  Mu 1=κ  2=κ  4=κ  10=κ  

0.00 0.00 0.00 0.00 0.00 3.25 0.62 0.82 0.93 0.97 

0.25 0.11 0.16 0.19 0.21 3.50 0.61 0.81 0.91 0.96 

0.50 0.20 0.29 0.35 0.37 3.75 0.60 0.79 0.89 0.93 

0.75 0.28 0.40 0.46 0.50 4.00 0.56 0.75 0.85 0.89 

1.00 0.35 0.48 0.55 0.59 4.25 0.53 0.71 0.80 0.84 

1.25 0.40 0.55 0.62 0.65 4.50 0.50 0.66 0.74 0.78 

1.50 0.45 0.60 0.68 0.71 4.75 0.46 0.61 0.69 0.72 

1.75 0.49 0.65 0.74 0.77 5.00 0.41 0.56 0.63 0.66 

2.00 0.53 0.70 0.79 0.83 5.25 0.35 0.49 0.56 0.60 

2.25 0.56 0.75 0.84 0.88 5.50 0.29 0.41 0.48 0.51 

2.50 0.59 0.78 0.88 0.93 5.75 0.21 0.31 0.36 0.39 

2.75 0.61 0.81 0.91 0.96 6.00 0.12 0.18 0.22 0.24 

3.00 0.62 0.82 0.93 0.97 6.25 0.01 0.02 0.03 0.03 

 

 

Figure 2: Variation of )W(**
µε  with µ  and for different values of κ . 

From Figure 2 we see that the LBF of W for higher value of κ dominates that of a 

lower value of κ  Thus, we can say the robustness of W  with respect to level 
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breakdown increases with the value of κ .This is also supported by the LBP values 

for different κ  given in Table 3 given below.  

 

Table 3: LBP values of W for different κ  

Test Functional W 1=κ  2=κ  4=κ  10=κ  

LBP 0.62 0.82 0.93 0.97 

 

Hence the theorem. 

 

In Theorem 5.2 below we give the PBF and the corresponding PBP of W . 

Theorem 5.2: The PBF of W is 
µρ+

µρ
=εµ

sin1

sin
 )W(*

 

and the PBP of W  is 

ρ+

ρ
=ε

1

* . 

 

Proof:  

Let µF  and xδ be as in the proof of Theorem 5.1. Noting that for ( )κµ  ,CN , 

µρ=θ
µ

cos)(cosEF  and µρ=θ
µ

sin)(sinEF  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) )xcoscos)1(()xcos(12)1(                             

cosEsinEcosEF)1(W

222

F1
2

F1
2

F1x xxx

ε+µε−ρ−ε+µ−ε−ρε+ε−ρ=

θ−θ+θ=εδ+ε− εδ+ε−εδ+ε−εδ+ε−µ µµµ

 

and
 
under 0H is true

 
0)F(W 0 = .

 
Now using (2.7) in chapter 2, the PBF of W is given 

by 

{ }π<≤=µερ+ε>ε=εµ 2x0   x,some for 0 )sin-(1sinx:0inf)W(*  .           ... (5.4) 

Note that  0 )sin-(1sinx =µερ+ε has a solution in )2,0[x π∈  if and only if  1<∆   
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where 
( )

ε

µε−ρ−
=∆

sin1
. Now, ε<

µρ+

µρ
⇒<∆

sin1

sin
1 , we get  the PBF of as  

µρ+

µρ
=εµ

sin1

sin
)W(*

  

. Further, the PBP is 
ρ+

ρ
=ε=ε µ

µ 1
))W((sup ** . 

Hence the theorem. 

 

5.3 Robustness of the Directional Mean as a Test Statistic 

We now consider directional mean 
( )
( )







θ

θ
=

cosE

sinE
arctan)F(W

F

F*
1  as a test statistic and 

study its robustness based on its breakdown properties. Theorem 5.3 gives the LBF 

and the corresponding LBP. 

 

Theorem 5.3: The LBF of 1W  is 
µρ+

µρ
=εµ

tan1

tan
 )W( 1

**

 

and the LBP of 1W is 1** =ε . 

Proof:  

Let µF  and xδ be as in the proof of Theorem 5.1. Under 0H is true and noting that 

( ) ρ=θcosE
0F  we have

  
( )










ε+ε−ρ

ε
=









ε+ρε−

ε+µε−ρ
=















ε+θε−

ε+θε−
=















θ

θ
=εδ+ε−

εδ+ε−

εδ+ε−

xcos)1(

xsin
arctan

xcos)1(

xsintan)1(
arctan                               

xcos)(cosE)1(

xsin)(sinE)1(
arctan

)(cosE

)(sinE
arctanF)1(W

*0*

F

F*

F)1(

F)1(*
x01

0

0

x0

x0

 

and ( ) µ=














θ

θ
=

µ

µ

µ
)(cosE

)(sinE
arctanFW

F

F*

1 .Therefore, by definition (1.1) the LBF of 1W is 

given by: 

( )
( )

[ )








π∈µ=








ε+ε−ρ

ε
>ε=εµ 2 0, xsome for  

xcos1

xsin
arctan:0infW *

1
** .             ... (5.5) 
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Since µ=








ε+ε−ρ

ε

xcos)1(

xsin
arctan*  has a solution in )2,0[x π∈  if and only if  1<∆  

where 
( )

ε

µε−ρ
=∆

tan1
. Now ε<

µρ+

µρ
⇒<∆

tan1

tan
1 , we get  the LBF of 1W  as 

µρ+

µρ
=εµ

tan1

tan
 )W( 1

** .  

The LBP of 1W can be easily computed to be 1))W((sup 1

**** =ε=ε µ
µ

. 

Hence the theorem. 

 

 Theorem 5.4 below gives the PBF and the corresponding PBP of 1W . 

Theorem 5.4: The PBF of 1W  is 
µρ+

µρ
=εµ

sin1

sin
 )W( 1

* and the PBP of 1W  is 

ρ+

ρ
=ε

1

* .
  

 

Proof:  

Let µF  and xδ be as in the proof of Theorem 5.1. Again noting that for ( )κµ  ,CN , 

µρ=θ
µ

cos)(cosEF  and µρ=θ
µ

sin)(sinEF  we have  

( ) 








ε+µε−ρ

ε+µε−ρ
=















θ

θ
=εδ+ε−

εδ+ε−

εδ+ε−

µ

µ

µ

xcoscos)1(

xsinsin)1(
arctan

)(cosE

)(sinE
arctanF)1(W *

F)1(

F)1(*
x1

x

x

 

and under 0H is true

 

( ) 0
)(cosE

)(sinE
arctanFW

0

0

F

F*
01 =















θ

θ
= . Now from definition (1.2) the 

PBF of 1W  is given by: 

( ) ( )
( )

[ )








π∈µ=








ε+µε−ρ

ε+µε−ρ
>ε=εµ 2 0,  xsome for  

xcoscos1

xsinsin1
arctan:0infW *

1
* .

    

... (5.6) 
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Since 0
xcoscos)1(

xsinsin)1(
arctan* =









ε+µε−ρ

ε+µε−ρ
 has a solution in )2,0[x π∈  if and only if 

1<∆  where 
( )

ε

µε−ρ−
=∆

sin1
. Now ε<

µρ+

µρ
⇒<∆

sin1

sin
1 , we get  the PBF of W1 

as 
µρ+

µρ
=εµ

sin1

sin
 )W( 1

* .  

Further, the PBP is 
ρ+

ρ
=ε=ε µ

µ 1
))W((sup 1

** . 

Hence the theorem.  

 

5.4 Robustness of the Circular Trimmed Mean as a Test Statistic 

 

We now consider γ - circular trimmed mean (for definition see chapter 3)

 

as a test 

statistic and study its robustness based on its breakdown properties. Theorem 5.5 

gives the LBF and the corresponding LBP. 

 

Theorem 5.5: The LBF of Wγ is  
tan)21()(k

tan)21(
)W(

0,1

0,**

,
µγ−ρ+µ

µγ−ρ
=ε

γ

γ

γγµ   where  

 dF cos)21()(cosE 0
1

F ,,0 0 ∫
η

τ

−
γγ θγ−=θ=ρ , )},(x:)xsup{sin()(k 211 θθ∈µ−=µ ,  0F is the 
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the LBP of Wγ is 1** =ε . 

The following Lemma 2 and Lemma 3 were used to prove the above theorem. 

 

Lemma 2:  Let 
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where 0.50 <γ≤ . 
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Proof: 

Using the above definition we have,  

. )(sinE)(cosE)(cosE)(sinE            
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Similar calculations show that 
1F,F S)(sinE)21(  )(sinE +θγ−=θ µγµ  where                                            

( ) θθθ= ∫ µ df cosC
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1  and ( ) θθθ= ∫ µ df sinS
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Now using the fact that ∫
α
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Hence the lemma. 
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Lemma 3: Let ( )
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or  2x θ≥  where x0F)1(G εδ+ε−=ε , ( )γ−γ<ε 1,min  and 0.50 <γ≤ . 

 

Proof:  

When 1x θ≤ , we have, ( ) ( ) ( ) ∫
θ

λ
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Now by Lemma 1 we have, 
( )

( )
µ=













θ

θ
=

µ

µ

γ

γ

µγ
cosE

sinE
arctan)F(W

F,

F,* . 

But ( )θγ sinE
~

0F,  and ( )θγ cosE
~

0F,  can be simplified as: 

( ) ( ) ( )

( ) ∫

∫∫∫
θ−

λ

−

θ

θ−

θ−

λ

−
θ

λ

−

γ

θγ−=














θ+θγ−=θγ−=θ

2

2

2

22

0

0

1

00

1

0

1

F,

dFsin21                  

dFsin dFsin21 dFsin21sinE
~

 

and  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) . dFcosdFcosA21                   

dFcosdFcos2A21 dFcosdFcos221                   

dFcosdFcos21 dFcos21cosE
~

00

1

00

1

0

0

0

1

00

1

0

1

F,

2

2

2

22

22

2

2

0












θ+θ−κγ−=












θ+θ−κγ−=












θ+θγ−=












θ+θγ−=θγ−=θ

∫∫

∫∫∫∫

∫∫∫

λ

π−

π

θ

−

θ−

λ

π

θ

−
θ−

λ

θ
−

θ−

λ

θ

θ−

−
θ

λ

−

γ

 



73 

 

Therefore, 
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Similar computations shows that µ≠εγ )G(W when 2x θ≥ . 

Hence the lemma. 

 

Proof of the theorem: 

 Let µF  and xδ be as in the proof of Theorem 5.1. Let x0F)1(G εδ+ε−=ε , ),[x ππ−∈  

and 5.00 <γ≤ . Then 
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Note that since is symmetric about 0 we have 21 θ−=θ .  Also we have, 
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Case 1: When 21 x θ<<θ . In this case we have,  
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. Using (5.7) and the fact that 0F is  

symmetric, this integral can be written as 
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Case 3: When 2x θ≥ . In this case we have,  
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Using (5.11), Lemma 2 and Lemma 3, the LBF of γW  is given by 
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Hence the theorem. 
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Theorem 5.6 gives the PBF of γW  and the corresponding PBP is obtained 

numerically. 

Let ( ) ( )γ+µ=µ −1
01 Fc  and ( ) ( )γ−+µ=µ − 1Fc 1

02 . Define 

{ }iseanticlockw traversed  circle unit the of c to carc  the on lies x:xsinsup 21
x

=φµ  and 

{ }iseanticlockw traversed  circle unit the of c to carc  the on lies x:xsininf 21
x
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µF  and xδ be as in the proof of Theorem 5.1. 
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 The following Lemma 4 is used to prove the theorem. 

Lemma 4: Suppose that ( )κθ  ,0CN~ . Then ( ) 0df cosC
0

0 >θθθ= ∫
∗θ

γ  where 

( )ππ−∈θ  , , ( )γ−=θ − 1F 1
0

*  and 5.00 <γ≤ . 

 



77 

 

Proof:  
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Hence the lemma. 

 

Proof of the theorem:  
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Case 2: When ( ) ( )µ>µ< 21 c xand cx .  
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b) In order to obtain the PBP of γW  we numerically evaluate (5.15) for different 

values of κ . The following Table 4 shows PBP for different values of .  and  κµ Figure 

3 given below is based on Table 4. 

 

Table 4: PBP of γW  for different values of .  and  κµ  

Mu 1=κ  2=κ  4=κ  10=κ  Mu 1=κ  2=κ  4=κ  10=κ  

0.00 0.00 0.00 0.00 0.00 3.25 0.48 0.07 0.11 0.19 

0.25 0.68 0.16 0.26 0.44 3.50 0.75 0.23 0.37 0.64 

0.50 0.80 0.31 0.52 0.93 3.75 0.83 0.37 0.64 1.00 

0.75 0.85 0.45 0.81 1.00 4.00 0.87 0.51 0.97 1.00 

1.00 0.88 0.61 1.00 1.00 4.25 0.90 0.69 1.00 1.00 

1.25 0.91 0.81 1.00 1.00 4.50 0.92 0.93 1.00 1.00 

1.50 0.93 1.00 1.00 1.00 4.75 0.93 1.00 1.00 1.00 

1.75 0.92 0.96 1.00 1.00 5.00 0.91 0.83 1.00 1.00 

2.00 0.90 0.71 1.00 1.00 5.25 0.89 0.62 1.00 1.00 

2.25 0.87 0.53 1.00 1.00 5.50 0.86 0.46 0.84 1.00 

2.50 0.83 0.38 0.67 1.00 5.75 0.81 0.32 0.54 0.98 

2.75 0.76 0.25 0.40 0.69 6.00 0.70 0.18 0.29 0.49 

3.00 0.54 0.10 0.15 0.24 6.25 0.22 0.02 0.03 0.06 

3.14 0.01 0.00 0.00 0.00 6.28 0.03 0.00 0.00 0.01 
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Figure 3: Variation of )W(*

γµε with µ  and for different values of κ . 

From Figure 3 we see that the PBF is periodic about π. It can be seen that as κ  

increases the PBF for values of µ  outside a neighbourhood of 0 and a 

neighbourhood of π is very close to one which is also reflected in Table 5 given 

below. 

Table 5: The PBP values of γW  for different κ  

Test Functional γW  1=κ  2=κ  4=κ  10=κ  

PBF 0.93 1 1 1 

 

Hence the theorem. 

 

5.5 Comparison of Robustness of Different Test Statistics 

 

Here we gives the comparisons between the LBP and PBP of different tests for 

different values of κ . From Table 6 below we can see that the circular trimmed mean 

has higher LBP and PBP for all 10 4, 2, ,1=κ . Hence it appears that the circular 
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trimmed mean is a more robust test statistic compared to likelihood ratio test statistic 

and directional mean as test statistic. 

 

Table 6: Comparison between the LBP and PBP of different tests for different κ . 

LBP for different values of κ  PBP for different values of κ  Test 

Functional 
1=κ  2=κ  4=κ  10=κ  1=κ  2=κ  4=κ  10=κ  

W 0.62 0.82 0.93 0.97 0.31 0.41 0.46 0.49 

W1 1 1 1 1 0.31 0.41 0.46 0.49 

Wᵞ 1 1 1 1 0.93 1 1 1 

 

As pointed out in He, Simpson and Portnoy (1990) a comparison of LBP and PBP 

may not be enough for deciding on the robustness of the test statistics. A more 

detailed comparison can be done by comparing the LBF’s and PBF’s. From Figure 4 

it can be seen that the LBF of γ Wand W1  do not dominate the LBF of W for all values 

of µ. The LBF of the three test statistics take similar values in the neighbourhood of 

zero and then the LBF values of γ Wand W1  becomes larger than that of W. However, 

this trend is not continued.  We see that the LBF values of W are larger than that of  

γ Wand W1  in a zone around π. Thus, we can say that  γ Wand W1  has similar or 

better robustness with respect to level breakdown than W locally around 0.  The 

following Table 7 shows LBFs of the test functionals W, γ Wand W1 for 1=κ . Figure 4 

given below is based on Table 7. 

 

Table 7: LBFs of the test functionals W, γ Wand W1 for 1=κ . 

Mu W W1 Wᵞ Mu W W1 Wᵞ 

0.00 0.00 0.00 0.00 3.50 0.61 0.14 0.16 

0.25 0.11 0.10 0.11 3.75 0.60 0.24 0.26 
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0.50 0.20 0.20 0.22 4.00 0.56 0.34 0.37 

0.75 0.28 0.29 0.32 4.25 0.53 0.47 0.50 

1.00 0.35 0.41 0.44 4.50 0.50 0.67 0.70 

1.25 0.40 0.57 0.60 4.75 0.46 0.92 0.93 

1.50 0.45 0.86 0.88 5.00 0.41 0.60 0.63 

1.75 0.49 0.71 0.74 5.25 0.35 0.43 0.46 

2.00 0.53 0.49 0.52 5.50 0.29 0.31 0.33 

2.25 0.56 0.36 0.38 5.75 0.21 0.21 0.23 

2.50 0.59 0.25 0.27 6.00 0.12 0.11 0.13 

2.75 0.61 0.16 0.17 6.25 0.01 0.01 0.02 

3.00 0.62 0.06 0.07     

3.25 0.62 0.05 0.05     

 

 

Figure 4: Graphical comparison of LBFs of the three test statistics for 1=κ  

 

From Figure 5 (a), (b), (c) and (d) we see that the PBF of γW  clearly dominates that 

of   Wand W1 for 10. and 4 2, 1,  =κ Therefore we can say with reasonable confidence 

that γW has superior power breakdown property in comparisons to  Wand W1 .  

Based on the study of LBFs,  PBFs , LBPs and PBPs, we can conclude that the 

circular trimmed mean as a test statistic has superior robustness properties 

compared to the classical LRT statistic and directional mean as a test statistic. We 

have tabulated the PBFs of the aforesaid test functional for different values of µ  and 
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for fixed κ . Figures 5, 6, 7 and 8 given below are respectively based on Tables 8, 9, 

10, and 11. 

Table 8: PBFs of the test functionals W, γ Wand W1 for 1=κ  

1=κ  

Mu W W1 
γW  Mu W W1 

γW  

0.00 0.00 0.00 0.00 3.25 0.05 0.05 0.48 

0.25 0.10 0.10 0.68 3.50 0.14 0.14 0.75 

0.50 0.18 0.18 0.80 3.75 0.20 0.20 0.83 

0.75 0.23 0.23 0.85 4.00 0.25 0.25 0.87 

1.00 0.27 0.27 0.88 4.25 0.29 0.29 0.90 

1.25 0.30 0.30 0.91 4.50 0.30 0.30 0.92 

1.50 0.31 0.31 0.93 4.75 0.31 0.31 0.93 

1.75 0.31 0.31 0.92 5.00 0.30 0.30 0.91 

2.00 0.29 0.29 0.90 5.25 0.28 0.28 0.89 

2.25 0.26 0.26 0.87 5.50 0.24 0.24 0.86 

2.50 0.21 0.21 0.83 5.75 0.18 0.18 0.81 

2.75 0.15 0.15 0.76 6.00 0.11 0.11 0.70 

3.00 0.06 0.06 0.54 6.25 0.01 0.01 0.22 

3.14 0.00 0.00 0.01 6.28 0.00 0.00 0.03 

 

 

Figure 5: Graphical comparison of PBFs of the three test statistics for 1=κ  
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Table 9: PBFs of the test functionals W, γ Wand W1 for 2=κ  

2=κ  

Mu W W1 
γW  Mu W W1 

γW  

0.00 0.00 0.00 0.00 3.25 0.07 0.05 0.07 

0.25 0.15 0.09 0.16 3.50 0.20 0.12 0.23 

0.50 0.25 0.15 0.31 3.75 0.29 0.16 0.37 

0.75 0.32 0.18 0.45 4.00 0.35 0.19 0.51 

1.00 0.37 0.20 0.61 4.25 0.38 0.21 0.69 

1.25 0.40 0.21 0.81 4.50 0.41 0.22 0.93 

1.50 0.41 0.22 1.00 4.75 0.41 0.22 1.00 

1.75 0.41 0.22 0.96 5.00 0.40 0.21 0.83 

2.00 0.39 0.21 0.71 5.25 0.37 0.20 0.62 

2.25 0.35 0.19 0.53 5.50 0.33 0.18 0.46 

2.50 0.29 0.17 0.38 5.75 0.26 0.15 0.32 

2.75 0.21 0.13 0.25 6.00 0.16 0.10 0.18 

3.00 0.09 0.06 0.10 6.25 0.02 0.02 0.02 

3.14 0.00 0.00 0.00 6.28 0.00 0.00 0.00 

 

 

Figure 6: Graphical comparison of PBFs of the three test statistics for 2=κ  
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Table 10: PBFs of the test functionals W, γ Wand W1 for 4=κ  

4=κ  

Mu W W1 
γW  Mu W W1 

γW  

0.00 0.00 0.00 0.00 3.25 0.09 0.09 0.11 

0.25 0.18 0.18 0.26 3.50 0.23 0.23 0.37 

0.50 0.29 0.29 0.52 3.75 0.33 0.33 0.64 

0.75 0.37 0.37 0.81 4.00 0.40 0.40 0.97 

1.00 0.42 0.42 1.00 4.25 0.44 0.44 1.00 

1.25 0.45 0.45 1.00 4.50 0.46 0.46 1.00 

1.50 0.46 0.46 1.00 4.75 0.46 0.46 1.00 

1.75 0.46 0.46 1.00 5.00 0.45 0.45 1.00 

2.00 0.44 0.44 1.00 5.25 0.43 0.43 1.00 

2.25 0.40 0.40 1.00 5.50 0.38 0.38 0.84 

2.50 0.34 0.34 0.67 5.75 0.31 0.31 0.54 

2.75 0.25 0.25 0.40 6.00 0.19 0.19 0.29 

3.00 0.11 0.11 0.15 6.25 0.03 0.03 0.03 

3.14 0.00 0.00 0.00 6.28 0.00 0.00 0.00 

 

 

Figure 7: Graphical comparison of PBFs of the three test statistics for 4=κ  
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Table 11: PBFs of the test functionals W, γ Wand W1 for 10=κ  

10=κ  

Mu W W1 
γW  Mu W W1 

γW  

0.00 0.00 0.00 0.00 3.25 0.09 0.09 0.19 

0.25 0.19 0.19 0.44 3.50 0.25 0.25 0.64 

0.50 0.31 0.31 0.93 3.75 0.35 0.35 1.00 

0.75 0.39 0.39 1.00 4.00 0.42 0.42 1.00 

1.00 0.44 0.44 1.00 4.25 0.46 0.46 1.00 

1.25 0.47 0.47 1.00 4.50 0.48 0.48 1.00 

1.50 0.49 0.49 1.00 4.75 0.49 0.49 1.00 

1.75 0.48 0.48 1.00 5.00 0.48 0.48 1.00 

2.00 0.46 0.46 1.00 5.25 0.45 0.45 1.00 

2.25 0.42 0.42 1.00 5.50 0.40 0.40 1.00 

2.50 0.36 0.36 1.00 5.75 0.33 0.33 0.98 

2.75 0.27 0.27 0.69 6.00 0.21 0.21 0.49 

3.00 0.12 0.12 0.24 6.25 0.03 0.03 0.06 

3.14 0.00 0.00 0.00 6.28 0.00 0.00 0.01 

 

 

Figure 8: Graphical comparison of PBFs of the three test statistics for 10=κ  

Note: In all the above figures gW  stands for γW . 
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Chapter 6 

Robustness of Tests for Concentration Parameter of Circular 

Normal Distribution 

 

6.1 Introduction 

 

Several tests for concentration parameter κ of circular normal distribution have been 

developed in the literature (see Mardia and Jupp, 2000) but the robustness aspect of 

these tests has not been explored in the literature. In this chapter we study the 

robustness of the following test functionals: )(cosE)F(V F θ= (Jammalamadaka and 

SenGupta, 2001, p.123) and ( ) ( )( )[ ]θ= γγ

−

dEgFV F,
* 1

 (for definition see chapter 4, 

section 4.3) where [ )0.5 ,0∈γ  is the trimming proportion and ( ) ||||θd θ−π−π= . We 

adopt the approach of He, Simpson and Portnoy (1990) to study the robustness of 

two single sample tests for the concentration parameter κ  of the circular normal 

distribution with p.d.f 

                  

( )
( )

( ) 0  and  20    where20,e
I 2

1
,;f cos

0

>κπ<µ≤π<θ≤
κπ

=κµθ µ−θκ  

 where ( )κ0I  is the modified Bessel function of the first kind and order zero. 

Assuming that the parameter µ  is known we consider the testing problem 00 :H κ=κ  

against 01 :H κ≠κ  where 00 >κ .  We compare the robustness of the γ  Vand  V  by 

studying their LBF and PBF and also their LBP and PBP.  In this chapter we have 

developed one theorem on the robustness of tests for concentration parameter of 

circular normal distribution. 

 

The organisation of this chapter is as follows. In Section 6.2 we discuss the 

robustness of the complete sufficient statistic V and the trimmed estimator γV . In 

Section 6.3 we compare the LBFs and PBFs of both γ  Vand  V . 
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6.2 Robustness of the Test for the Concentration Parameter  

 

Let n21 , ,  , θθθ L  be a random sample from ( )κµ  ,CN  with µ  known. Without loss of  

generality we assume 0=µ . Consider the hypothesis testing problem: 00 :H κ=κ  

against  01 :H κ≠κ  where 00 >κ  and fixed. A complete sufficient test statistic for 

testing H0 against H1 is ∑
=

θ=
n

1i

icosV (see Jammalamadaka and SenGupta, 2001, 

p.123). A UMPU test for the two sided alternative is based on V having critical 

region ( ) ( ) α=ν≥+ν≤ν≥ν≤ 201021 VPVP  with Vor V .The corresponding functional 

form of V is ( ) ( )θ= cosEFV F .  

Let 0F  denote the ),0(CN κ  distribution and xδ denote the point mass at 

x, ( ) ( ) ( )
( )

( ) ( ) ( )
( )

  
A1

AA
t t  and  

A1

AA
tt

0

0
22

0

0
11

κ−

κ−κ
=κ=

κ+

κ−κ
=κ=  where ( ) ( )

( )
 

I

I
A

0

1

κ

κ
=κ . Also we 

have  ( ) ( )κ=θ AcosE
0F  under the null. The following Theorem 6.1 below gives the 

LBF and LBP of V. 

 

Theorem 6.1: The LBF of V is ( ) ( )( )0 ,t ,tmax  1,minVε 21
**
κ =  and the LBP of V is 

1** =ε . 

 

 Proof:  

Consider the test functional ( ) ( )θ= cosEFV F  and let x0F)1(G εδ+ε−=ε  is the 

contaminated model under the assumption that 0H is true. Then we have,  

( ) ( )( ) ( ) ( ) xcosA1F1VGV 0x0 ε+κε−=εδ+ε−=ε  and ( ) ( )κ=κ AFV . Using (2.6) in 

chapter 2, the LBF of V is given by 

( ) ( ) ( ) [ ){ }
( ) ( ) ( ) [ ){ }. 2 ,0 xsome for 0xcosAA1:0inf          

2 ,0 xsome for  FVGV:0infV

0

**

π∈=ε+κ−κε−>ε=

π∈=>ε=ε κεκ                ... (6.1) 
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Now ( ) ( ) ( ) 0xcosAA1 0 =ε+κ−κε−  has a solution if and only if 1|| ≤∆  where 

( ) ( ) ( )( )0
1 A1A κε−−κε=∆ − . Solving for ε  we get  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) 








−

−

+

−
≥⇒

−

−
≥

+

−
≥

0

0

0

0

0

0

0

0

κA1

κAκA
  ,  

κA1

κAκA
maxε    

κA1

κAκA
ε  and  

κA1

κAκA
ε . 

Thus the LBF of V is given by ( ) ( )( )0 ,t ,tmax  1,minVε 21
**
κ =  . Further, the LBP of V 

is ( ) 1sup **** =ε=ε µ
µ

. 

Hence the theorem. 

 

Let 0F  denote the ),0(CN κ  distribution and xδ denote the point mass at x, 

( ) ( ) ( )
( )

( ) ( ) ( )
( )κ−

κ−κ
=κ=

κ+

κ−κ
=κ=

A1

AA
t  t  and   

A1

AA
tt 0

44
0

33   where ( ) ( )
( )

 
I

I
A

0

1

κ

κ
=κ . Also we 

have  ( ) ( )κAcosθE
κF = . The following Theorem 6.2 below gives the PBF and PBP of 

V. 

 

Theorem 6.2: The PBF of V is  ( ) ( )( ) 0 ,t ,tmax 1,minVε 43

*

κ =  and the PBP of V is 

1* =ε . 

 

Proof:  

Let xF)1(G εδ+ε−= κε . Then we have, ( ) ( )( ) ( ) ( ) εcosxκAε1εδFε1VGV xκε +−=+−=  

and ( ) ( )00 AFV κ= . Using (2.7) in chapter 2, the PBF of V is given by 

( ) ( ) ( ) [ ){ }
( ) ( ) ( ) [ ){ }. 2 ,0 xsome for 0xcosAA1:0inf          

2 ,0 xsome for  FVGV:0infV

0

0
*

π∈=ε+κ−κε−>ε=

π∈=>ε=ε εκ                ... (6.2) 

Now ( ) ( ) ( ) 0xcosAA1 0 =ε+κ−κε−  has a solution if and only if 1|| 1 ≤∆  where 

( ) ( ) ( )( )κε−−κε=∆ − A1A 0

1

1
. Solving for ε  we get  
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( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) 








−

−

+

−
≥⇒

−

−
≥

+

−
≥

κA1

κAκA
,

κA1

κAκA
 maxε    

κA1

κAκA
ε and  

κA1

κAκA
ε 0000 . 

Thus the PBF of V is given by ( ) ( )( )0 ,t ,tmax 1,minVε 43
*
κ = . Further, the PBP of V is 

given by ( ) 1sup ** =ε=ε µ
µ

. 

Hence the theorem. 

 

We now consider γ - trimmed estimator as a test statistic and study its robustness 

based on its breakdown properties. We define the new estimator as: 

( ) ( )( )[ ]θ= γγ

−

dEgFV F,
*

1

 where ( ) ( ) ( )
( )

( )

dFd21dE
1

F, ∫
κα

κβ

−

γ θγ−=θ  such that ( ) ( ) π=κβ+κα 2  

and ( )θd  defined earlier. Let 0F  denote the ),0(CN κ  distribution and xδ denote the 

point mass at x. Then by using the definitions of LBF and PBF we get  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )( ){ }





κακβ∉κ=κε−>ε

κακβ∈κ=ε+κε−>ε
=ε

γγ

γγ

γκ
  , xsome for  gg1:0inf

 , xsome for  gxdg1:0inf
V

00

*

0

*

00

*

0

*

**    ... (6.3) 

and   

( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )( ){ }





κακβ∉κ=κε−>ε

κακβ∈κ=ε+κε−>ε
=ε

γγ

γγ

γκ
.  , xsome for  gg1:0inf

 , xsome for  gxdg1:0inf
V

000

**

000

**

*    ... (6.4) 

Since both the expressions (6.3) and (6.4) are not in a closed form, we evaluate both 

LBF and PBF numerically for different values of kappa. The findings are summarised 

in the graphs along with the graphs of LBF and PBF of V. 

 

6.3. Comparisons 

A graphical comparison between the two test statistics for different values of κ is 

given below. From the figures 9 and 10 it is seen that the functional V is better than 

γV  in terms of both its power breakdown property and also level breakdown property.  

Thus we may conclude that V has better robustness property than γV . Figures 9 and 
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10 are based on the Tables 12 and 13 respectively. 

Table 12: Combined LBFs of V and γV  for different κ  

κ  V  γV  κ  V  γV  κ  V  γV  κ  V  γV  

0.01 0.31 0.43 0.50 0.14 0.19 1.35 0.20 0.16 3.00 0.66 0.50 

0.02 0.30 0.43 0.55 0.13 0.17 1.40 0.22 0.18 3.25 0.69 0.52 

0.03 0.30 0.42 0.60 0.11 0.15 1.45 0.25 0.20 3.50 0.71 0.54 

0.04 0.29 0.41 0.65 0.10 0.13 1.50 0.27 0.22 3.75 0.73 0.56 

0.05 0.29 0.41 0.70 0.08 0.11 1.55 0.29 0.24 4.00 0.75 0.57 

0.06 0.29 0.4 0.75 0.07 0.09 1.60 0.31 0.26 4.50 0.78 0.61 

0.07 0.28 0.4 0.80 0.05 0.07 1.65 0.33 0.28 5.00 0.81 0.62 

0.08 0.28 0.4 0.85 0.04 0.05 1.70 0.35 0.30 5.50 0.83 0.64 

0.09 0.28 0.39 0.90 0.03 0.03 1.75 0.37 0.30 6.00 0.84 0.66 

0.10 0.27 0.38 0.95 0.01 0.02 1.80 0.39 0.30 6.50 0.85 0.68 

0.15 0.26 0.36 1.00 0.00 0.01 1.85 0.41 0.32 7.00 0.87 0.69 

0.20 0.24 0.33 1.05 0.03 0.02 1.90 0.42 0.33 7.50 0.87 0.70 

0.25 0.22 0.31 1.10 0.06 0.02 1.95 0.44 0.34 8.00 0.88 0.71 

0.30 0.21 0.29 1.15 0.09 0.07 2.00 0.45 0.35 8.50 0.89 0.72 

0.35 0.19 0.26 1.20 0.12 0.10 2.25 0.52 0.40 9.00 0.90 0.72 

0.40 0.17 0.24 1.25 0.15 0.12 2.50 0.58 0.44 9.50 0.90 0.73 

0.45 0.16 0.22 1.30 0.17 0.14 2.75 0.62 0.47 10.00 0.91 0.74 

 

 

Figure 9: Graphical comparisons of LBFs for different values of κ  
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Table 13: Combined PBFs of V and γV  for different κ  

κ   V  γV  κ   V  γV  κ   V  γV  κ   V  γV  

0.01 0.44 0.42 0.50 0.27 0.25 1.35 0.25 0.12 3.00 1.00 0.63 

0.02 0.44 0.42 0.55 0.25 0.23 1.40 0.29 0.13 3.25 1.00 0.69 

0.03 0.44 0.41 0.60 0.22 0.20 1.45 0.33 0.14 3.50 1.00 0.74 

0.04 0.44 0.41 0.65 0.20 0.18 1.50 0.37 0.15 3.75 1.00 0.81 

0.05 0.43 0.41 0.70 0.17 0.16 1.55 0.41 0.17 4.00 1.00 0.86 

0.06 0.43 0.40 0.75 0.15 0.14 1.60 0.46 0.19 4.50 1.00 0.99 

0.07 0.43 0.40 0.80 0.12 0.11 1.65 0.50 0.21 5.00 1.00  

0.08 0.42 0.40 0.85 0.09 0.08 1.70 0.55 0.22 5.50 1.00  

0.09 0.42 0.40 0.90 0.06 0.05 1.75 0.59 0.24 6.00 1.00  

0.10 0.42 0.40 0.95 0.03 0.03 1.80 0.64 0.26 6.50 1.00  

0.15 0.40 0.39 1.00 0.00 0.01 1.85 0.69 0.27 7.00 1.00  

0.20 0.39 0.37 1.05 0.03 0.02 1.90 0.73 0.29 7.50 1.00  

0.25 0.37 0.35 1.10 0.07 0.03 1.95 0.78 0.31 8.00 1.00  

0.30 0.35 0.33 1.15 0.10 0.05 2.00 0.83 0.32 8.50 1.00  

0.35 0.33 0.31 1.20 0.14 0.06 2.25 1.00 0.40 9.00 1.00  

0.40 0.31 0.29 1.25 0.17 0.08 2.50 1.00 0.48 9.50 1.00  

0.45 0.29 0.27 1.30 0.21 0.10 2.75 1.00 0.55 10.00 1.00  

 

 

Figure 10: Graphical comparisons of PBFs for different values of κ  

Note: In all the above figures gV  stands for γV . 
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Chapter 7 

Robust Estimators of Parameters of Wrapped Normal Distribution 

 

7.1 Introduction 

 

In this chapter, we focus on the wrapped normal distribution and discuss SB-

robustness of the directional mean, the −γ circular trimmed mean and the 

concentration parameter at various families of distributions using several different 

dispersion measures. We study the equivalence of different dispersion measures 

with respect to (w.r.t.) wrapped normal family of distributions with p.d.f.  

( ) 10 ,20 ,20 ,)(pcos)(21
π 2

1
 , ;f

1p

p2

<ρ<π<µ≤π<θ≤








µ−θρ+=ρµθ ∑
∞

=  

where ( )2exp 2σ−=ρ . In this chapter we have developed three lemmas, nine 

theorems and five corollaries on the robust estimators of the parameters of wrapped 

the normal distribution. 

 

The organization of the chapter is as follows: In Section 7.2 we study the 

equivalence of different dispersion measures w.r.t. wrapped normal family of 

distributions. In Section 7.3 we discuss the SB-robustness of the directional mean for 

the family of wrapped normal distributions w.r.t. different dispersion measures. In 

Section 7.4 we discuss the SB-robustness of −γ  circular trimmed mean and show 

that it is SB-robust for the family of wrapped normal distributions w.r.t. different 

dispersion measures. In Section 7.5 we discuss the SB-robustness of the usual 

estimator ( ) ( )sinθEcosθEρ 2

F

2

FF +=  of the concentration parameterρ . We introduce 

a new estimator for ρ  namely ))),(d(E(h)F(T F,
1 µθ= γ

−
γ and discuss its SB-robustness.   
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7.2 Equivalent Measures of Dispersion for the Family of Wrapped Normal 

Distributions  

 

The property of SB-robustness of an estimator T at a family of distributions ℑ  is in 

general dependent of the choice of the measure of dispersion. In Section 3.4 of 

chapter 3, the notion of equivalent measures of dispersion for a family of distributions 

ℑ  is introduced and it is shown that the property of SB-robustness of an estimator T 

at a family of distributions ℑ  is preserved when we are working with measures of 

dispersion which are equivalent to one another.  This greatly facilitates the study of 

SB-robustness of an estimator for different measures of dispersion.  In Theorem 7.1 

below we prove the equivalence of some dispersion measures on the circle for the 

families of distributions { }1m0);,0(WN* <ρ<<ρ=ℑ  and { }10 );,0(WN
~

<ρ<ρ=ℑ . 

 

Theorem 7.1:.a) Consider the family of distributions { }1m0);,0(WN* <ρ<<ρ=ℑ  

and define for *F ℑ∈ , ρ−= 1)F(S1 , ( )[ ]0,dE)F(S F2 θ=  , ( )( ) 2

1
1

3 A)F(S
−− ρρ=  and 

( )[ ]0,dE)F(S F ,4 θ= γ . Then 21 S,S , 3S  and 4S are equivalent measures of dispersion 

for the family of distributions *ℑ .  

b) Now consider the family of distributions { }10 );,0(WN
~

<ρ<ρ=ℑ .Then the following 

are true: 

(1) 2

~

1 S~S
ℑ

   (2) 4

~

2 S~S
ℑ

 and   (3)   3

~

2 S~S
ℑ

/  

   

Proof: Part a) 

Let ( )  1h)F(S1 ρ−=ρ= , ( ) ( ) ( ) θ








θρ+θ−π−π
π

=ρ= ∑∫
∞

=

π

dpcos21 
2

1
g)F(S

1p

p
2

0

2

2

 and 

( ) ( )
( )ρ

ρ
=ρ=

g

h
r)F(R .  Using the fact that, as 1→ρ ,  ),0(WN ρ can be well approximated 

by ))(A,0(CN 1 ρ−  (see Jones and Pewsey (2005), Collett and Lewis (1981) and 
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Stephens (1963)) and Hill’s (1976) approximation for the quantile of the circular 

normal distribution we get                             

( )
( ) ( )( ) ( )( )

( )( )( )31

2111
Ao

A8

1

A8

1

2

1

A

1
h

−−

−−−
ρ+

ρ
+

ρ
+

ρ
=ρ   and 

( ) ( ) ( )
( )

( )( ) α







ρ+

ρ

−α
+αφα

ρ
=ρ

−−

−

ρπ

− ∫
−

d)(Ao
)(A24

3
1 

)(A

1
g

21

1

4)(A2

0
1

1

. 

A simple calculation using the fact as ( ) ∞→ρ→ρ -1 A,1  shows that ( ) π=ρ
→ρ

rlim
1

. 

Hence,   ( ) ( ) ∞<ρ=
<ρ<ℑ

rsupFRsup
1m*

 and ( ) ∞<−

ℑ

FRsup 1

*

. Thus, 21 S~S
∗ℑ

. 

Now consider the dispersion measures 32 S and S . Similar computations as above 

show that  

( )
( ) ( ) ( )

( ) 2

1

2
4)(A2

0

3

2

do
24

3
1 

r
)F(S

)F(S

1

−

−

ρπ

ρ

α







κ+

κ

−α
+αφα

=ρ=
∫

−

. 

It is now straightforward to see that ( )
π

=ρ
→ρ 2

1
rlim

1
.  Thus,  ( ) ( ) ∞<ρ=

<ρ<ℑ

rsupFRsup
1m*

 

and ( ) ∞<−

ℑ

FRsup 1

*

.  Hence 32 S~S
*ℑ

. 

Again, consider                

( ) ( )
( )

( )( )

( )

( )

( ) ( )
( )

( )( ) α







ρ+

ρ

−α
+αφα

γ−

α







ρ+

ρ

−α
+αφα

=ρ=
−−

−

ρρα

−−

−

ρπ

∫

∫
−

−

d)(Ao
)(A24

3
1 

21

1

d)(Ao
)(A24

3
1 

)(r
)F(S

)F(S

21

1

4)(A

0

21

1

4)(A

0

4

2

1

1

. 

Now using the facts that as ( ) ∞→ρ→ρ -1 A,1  and ( ) )1(A)( 1-1 γ−Φ→ρρα − , and 

writing χ=γ−Φ − )1(1  we get ( )
1

2

1 2
exp2212)(r lim

−

→ρ 
















 χ−
−γ−=ρ . Thus 42 S~S

*ℑ

. 
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Since 
*

~
ℑ

 is an equivalence relation (Laha and Mahesh (2011)) we can conclude that 

21 S,S , 3S  and 4S are equivalent measures of dispersion for the family of distributions 

*ℑ .  

Part b) 

1) Let 
)F(S

 )F(S
 )F(R

2

1= . Using Hill’s (1976) expansion and the fact that as 0→ρ , 

( ) 0A -1 →ρ ,  it is straightforward to check that 
π

=
→ρ

2
)F(R  lim

0
. Also, π=

→ρ
)F(R lim

1
  

(proved in part a) above). Hence we can conclude that, ( ) ∞<<
ℑ

FRsup0
~

 and 

( ) ∞<−

ℑ

FRsup 1

~
. Thus, 2

~

1 S~S
ℑ

. 

2) Let 
)(g

)(h

)F(S

)F(S
 )F(R)(r

4

2

ρ

ρ
===ρ .  As 0→ρ , ( ) ( )γ−π→ρα 21  and hence 

( ) ( )
4

21
g

γ−
→ρ . Also, as 0→ρ , ( )

2
h

π
→ρ  . Therefore, 

γ−

π
=ρ

→ρ 21

2
)(r lim

0
. Using the fact 

that )(r lim
1

ρ
→ρ

 is finite (proved in part a) above) we conclude that ( ) ∞<ρ<
<ρ<

rsup0
10

 which 

implies, ( ) ∞<ρ−

<ρ<

1

10

rsup . Hence, 4

~

2 S~S
ℑ

. 

3) Let 
)(g

)(h

)F(S

)F(S
 )F(R)(r

3

2

ρ

ρ
===ρ . Now as  ,0→ρ  ( )

2
h

π
→ρ  and ( ) ∞→ρg . Therefore 

( ) 0rsup
10

=ρ
<ρ<

 but ( ) ∞=ρ−

<ρ<

1

10

rsup . Hence, 3

~

2 S~S
ℑ

/ . 

 Hence the theorem. 

 

Theorem 7.2: If an estimator T is SB-robust with respect to the dispersion 

measure ρ−= 1)F(S1 at the family of distributions { }10 );,0(WN
~

<ρ<ρ=ℑ  then it is 

SB-robust with respect to the dispersion measure ( )( ) 2

1
1

3 A)F(S
−− ρρ=  where ℑ∈

~
F . 
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Proof:  

Let ( )  1h)F(S1 ρ−=ρ= , ( ) ( )( ) 2

1
1

3 Ag)F(S
−− ρρ=ρ= .  Using the asymptotic expansion  

of ( )ρ−1A  near unity (see Watson 1983, appendix A.2 with p=2) we get: 

( ) ( ) ( )( )( )3
1o31g ρ−+ρ−ρ−=ρ . 

 Therefore, 
( )
( ) 2

1

g

h
 lim

1
=

ρ

ρ
→ρ

. Now as 0→ρ , ∞→ρ)g( and 1)h( →ρ  
( )
( )

0
g

h
 lim

0
=

ρ

ρ
⇒

→ρ
. 

Since 
)g(

)h(
 

ρ

ρ
 is a continuous function of ρ , 

)g(

)h(
sup

10 ρ

ρ

<ρ<

 is finite. Again since T is SB-

robust at ℑ
~

 with respect to 1S , we have 

( ) ∞<=ℑγ
ℑ

)S F, T, SIF(x; sup supS ,
~

 ,T 1
x

1
* . 

Therefore, we can write, 

( )

( )
( )

( )
( )

( )

∞<









=









=

=ℑγ

ℑ

ℑ

ℑ

                     

S,F,Tg
FS

FS
sup                     

)S F, T, SIF(x;
FS

FS
 sup sup                     

)S F, T, SIF(x; sup supS ,
~

 ,T

1
*

3

1

1

3

1

x

3
x

3
*

 

where )S F, SIF(T,sup)SF,(T,g 1
x

1
* = . 

Hence the theorem. 

 

7.3 SB-robustness of the Directional Mean 

 

Let θ  be a circular random variable having c.d.f. F  and let 

( )  10 ,F 1G x <ε<εδ+ε−=ε . The directional meanµ  of the circular distribution F is 
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defined implicitly as the solution of 
( )
( )θcosE

θsinE
 µtan

F

F= .  The corresponding estimating 

functional of µ  is ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
= . In Theorems 7.3 to 7.5 given below 

establishes the SB-robustness of directional mean for family of wrapped normal 

distribution for different choices of dispersion measures.  

 

Theorem 7.3: The directional mean ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
= is SB-robust at the 

family of distributions { }1Mm0 );,0(WN** <<ρ<<ρ=ℑ  when the measure of 

dispersion is  ρ−= 1)F(S1  where  **F ℑ∈ .   

 

Proof: 

Using the expression of ( )F,T;xIF  given in Wehrly and Shine (1981) we get 

( ) ( ) ( )
10 ;

1

xsin

)F(S

F,T;xIF
S,F,T;xSIF

1

1 <ρ<
ρ−ρ

µ−
== . 

Then,  ( ) { }( ) ∞<




 ρ−ρ=ℑ

−

<<ρ<<

1

1Mm0
1

*** 1  sup,ST,γ .       

 Hence the theorem. 

 

Corollary 1: Since ( )FT is SB-robust at the family of distributions **ℑ  with respect to 

the dispersion measure ( )FS1 , it is also SB-robust at the family of distributions **ℑ  

with respect to the dispersion measures ( )FS2  , ( )FS3 and  ( )FS4  using Theorem 

7.1(a) and noting that *** ℑ⊂ℑ .  
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Theorem 7.4: The directional mean ( ) ( )
( )

 
cosE

sinE
tanarc    FT

F

F*










θ

θ
= is not SB-robust at  

the family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ when the measure of dispersion is  

)),(d(E)F(S F2 µθ=  where  1

~
F ℑ∈ .   

The following Lemma 1 is used to prove the theorem. 

 

Lemma 1: Suppose ( ).  ,WN~ ρµθ Then ( ) µρ=θ coscosEF , ( ) µρ=θ sinsinEF  and 

( ) ( )( )

( )∑
∞

=

+

+

ρ
−=

0n
2

1n2

2
1n2π

4

2

π
FS

2

 . 

 

Proof:   

Since ( )ρµθ  ,WN~ , by definition we have,  

( ) ( ) ( )

( ) ( )

( ) ( )

. cos               

dcos
cos

               

nm for

nm for0
ndcosmcos  since  ,d)(pcoscos               

d)(pcoscosd)(pcoscos               

d)(pcoscos               

 d)(pcos21cos2cosE

2

0

2

2

0

2

0

2

02p

p1
2

0

2

01p

p1

1p

p
2

0

1

F

2

2

2

µρ=

θθ
π

µρ
=





=π

≠
=θθθµ−θθ

π

ρ
=

θµ−θθρπ+θµ−θθ
π

ρ
=

θµ−θθρπ=

θ








µ−θρ+θπ=θ

∫

∫∫

∫∑∫

∫∑

∑∫

π

ππ

π∞

=

−
π

π∞

=

−

∞

=

π
−

 

Similarly we can prove that ( ) µρ=θ sinsinEF . 

Also note that )),(d(E)F(S F2 µθ=  does not depend onµ . Hence we can without loss 

of generality assume µ=0 for computing )F(S2 . Using the substitution λ=θ−π )2( , 

and the fact that p of values odd   1pcos ∀−=π  we have, 
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( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

( )
. 

1n2π

4

2

π
          

p

1pcos
2

2
dpcos21          

dpcos212dE)F(S

0n
2

1n2

1p
2

p

1p

p

0

1

1p

p
2

0

1

F2

2

22

2

∑

∑∑∫

∑∫

∞

=

+

∞

=

∞

=

π
−

∞

=

π
−

+

ρ
−=







 −π

ρ+
π

=θ








θρ+θπ=

θ








θρ+θ−π−ππ=θ=

 

Hence the lemma. 

 

Proof of the theorem:    

Let 1

~
F ℑ∈ , ( )   10 ,F1G x ≤ε≤εδ+ε−=ε and ( )( )xεδF ε1T  µ +−=ε , π<≤ 2x0 . Then we 

have,  

( )
( )

( ){ }( )

( ){ }( )
( ) ( )

( ) ( ) εcosxθ cosEε1

εsinxθ sinEε1
 

cosθE

sinθE
  

cosθE

sinθE
 tanµ

F

F

εδFε1T

εδFε1T

G

G

ε

x

x

ε

ε

+−

+−
===

+−

+−
. 

Dividing both numerator and denominator by ( )θcosEF  and using lemma 1 we get 

( )
( )

( )
( ) 








+µ−

+µ−
=⇒

+µ−

+µ−
=µ εε

xcosεcosε1ρ

xsinεsinε1ρ
arctan µ   

xcosεcosε1ρ

xsinεsinε1ρ
tan * . 

Consider ( ) 








+

−
=−

ε

ε

→
ε

→ µtanµtan1

µtanµtan

ε

1
lim  µµtan

ε

1
lim

0ε0ε
. 

Substituting the value of  εµtan  and simplifying, we get  

( ) ( )








ε+

−
≅−ε )(o

ρ

µxsinε
arctan µµ *    where 0

)(o
lim

0
=

ε

ε
→ε

. 

Using the Taylor’s series expansion of ( )ttan -1  and applying limit as 0→ε  we get 

the influence function of the directional mean as 

                               ( ) ( ) ( )
0  ;  

xsin
µµ

ε

1
limF,T;xIF

0
>ρ

ρ

µ−
=−= ε

→ε
.                        … (7.1) 

Now, the gross error sensitivity (g.e.s) of the estimator T at F is given by 
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( ) ∞<
ρ

µ−
==γ

π<≤

)xsin(
F,T;xIFsup)F,T(

2x0

. 

Hence, we see that the directional mean is B-robust at the family of distributions 1

~
ℑ .  

Again using Lemma 1 and (7.1) we get: 

( ) ( ) ( )( )

( )
10 ;

1n2π

4

2

π
µxsin  x;T,F,SSIF

1

0n
2

1n2

2

2

<ρ<


























+

ρ
−ρ−=

−
∞

=

+

∑ . 

Now the standardized gross error sensitivity (s.g.e.s) of T is given by:  

( ) ( )[ ] ( )( )

( )

( )( )

( )
.

21n2π

4
  ,1 as cesin                    

    
1n2π

4

2

π
sup  x;T,F,SSIFsup  sup ,ST,γ

0n
2

1n2

1

0n
2

1n2

10
2

2x010
2

*

2

2

π
→

+

ρ
→ρ∞=











































+

ρ
−ρ==ℑ

∑

∑

∞

=

+

−
∞

=

+

<ρ<π<≤<ρ<

 

Hence the theorem. 

 

Corollary 2: Since ( )FT is not SB-robust at the family of distributions ℑ
~

 with respect 

to the dispersion measure ( )FS2 , it is also not  SB-robust at the family of distributions 

ℑ
~

 with respect to the dispersion measures ( )FS1  and  ( )FS4  by Theorem 7.1(b).  

 

Theorem 7.5: The directional mean ( ) ( )
( )

 
cosE

sinE
arctan   FT

F

F*










θ

θ
= is not SB-robust at 

the family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ  when the measure of dispersion is  

( )( ) 2

1
1

3 A)F(S
−− ρρ=  where  1

~
F ℑ∈ .   

Proof:  

Using the expression of the influence function given in Wehrly and Shine (1981) we  
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get ( ) ( )
( )

10 ;
A

µxsin
  x;T,F,SSIF

2

1

13 <ρ<








ρ

ρ









ρ

−
=

−

−
. Now using the asymptotic 

expansion of ( )ρ−1A  near unity (Watson 1983, appendix A.2 with p=2) we get 

( )
1  as  0

A

2

1

1
→ρ→









ρ

ρ
−

−
. Since ( ) [ )π∈=− 2 0, x  where1µxsin sup , we have  

( ) ( )[ ] ∞==ℑ
π<≤<ρ<

 x;T,F,SSIFsup  sup ,ST,γ 3
2x010

3
* . 

Hence the theorem. 

 

7.4 Robustness of the Circular Trimmed Mean  

 

We have seen in Theorems 7.4 and 7.5 that the directional mean is not SB-robust at 

the family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ  for all choices of the dispersion 

measures 1,...,4i ),F(Si = . In Theorem 7.6 below we prove that γ -circular trimmed 

mean (for definition see chapter 3, section 3.3) is SB-robust for the family of 

distributions 1

~
ℑ  when the measure of dispersion is )F(S4 . 

 

Theorem 7.6: Let 5.0γ0 <≤ . The γ -CTM ( γµ ) is SB-robust at the family of 

distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ  when the measure of dispersion is 

)),(d(E)F(S F ,4 µθ= γ  where  1

~
F ℑ∈ .   

The following Lemma 2 is used to prove the theorem. 

 

Lemma 2: Suppose ( ).  ,WN~ ρµθ Then  ( )
( ) ( ) 




















−
+

+
ρµ+=ν ∑

∞

=

µ−µ+

γ
2p

 ,1p ,1pp

0 ,1
1p

S

1p

S
cosSc

2
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and ( ) ( ) ( )
( )



















 −

+
ρ

ρ+ρ
γ−

= ∑
∞

=1p
2

0 ,p0 ,pp2
4

p

1C

p

Sα
4α

)21(π2

1
FS

2

 where ( )( )1
21c

−
γ−π= , 

( )[ ])α( psinS  ,p ν−ρ=ν  
and ( )[ ] )α( pcosC  ,p ν−ρ=ν . 

 

Proof:   

Note that βα,  depend on ρ  and in what follows we will make this dependence 

explicit by writing them as )(ρα  and )(ρβ respectively. By definition we have  

( ) ( )( ) ( ) ( )
( )

( )

( )

( )

( )( ) ( ) 







ρ+γ−π=












θµ−θθρ+θθγ−π=θ=ν

∑

∫ ∑ ∫

∞

=

=

ρα

ρβ

∞

=

ρα

ρβ

=

γγ

1p
2

p

1

1

1p

p1

F,

I2I 212      

dpcoscos2dcos 212cosE

2

2

 

where 
( )

( )

∫
ρα

ρβ

θθ= dcosI1  and   ( )
( )

( )

∫
ρα

ρβ

θµ−θθ= dpcoscosI2 . Then clearly ( )ρα= sin2I1 .  

Put ( ) η=µ−θ  so that  dd η=θ and the limits of integration changes to ( ) µ−ρα  and 

( ) µ−ρβ . Noting that θsin  is an odd function and θcos is an even function we get 

( )
( )

( ) ( )

( ) ( )







−
+

+
µ=ηηηµ=ηηµ+η=

µ−µ+
µ−ραµ−ρα

µ−ρβ

∫∫ 1p

S

1p

S
cosdpcoscoscos2dpcoscosI

 ,1p ,1p

0

2 . 

Substituting the values of 21 I  and  I  in the above expression for γν  we get,  

( )
( ) ( ) 




















−
+

+
ρµ+=ν ∑

∞

=

µ−µ+

γ
2p

,1p,1pp

0,1
1p

S

1p

S
cosSc

2

. 

We note that )),(d(E)F(S F2 µθ=  does not depend onµ . Hence we can without loss of 

generality assume µ=0 for computing )F(S2 . Using the substitution λ=θ−π )2( , we 

get    
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( ) ( )( ) ( )[ ] ( )
( )

( )[ ] ( )
( )( )

( )[ ] ( ) ( )
( )

( ) ( )
( )

. 
p

1C

p

Sα
4α

)21(π2

1
          

p

1C

p

S
2

2
21          

dpcos2d21          

dpcos2121 dEFS

1p
2

0,p0,pp2

1p
2

0,p0,pp
2

1

0 1p 0

p1

0 1p

p1

F,4

2

2

2

2



















 −

+
ρ

ρ+ρ
γ−

=




















 −
+

ρα
ρ+

ρα
γ−π=













θθρ+θθγ−π=

θ








θρ+θγ−π=θ=

∑

∑

∫ ∑ ∫

∫ ∑

∞

=

∞

=

−

ρα ∞

=

ρα
−

ρα ∞

=

−

γ

 

Hence the lemma. 

 

Proof of the theorem:   

Let  1

~
F ℑ∈  and ( )

( )
( )











=

γ

γ

γ
θcosE

θsinE
arctan  FT

F,

F,*  be the estimating functional for γµ .  

Define ( ){ }xγ,γ εδF ε1 T µ +−=ε . Then,  

          

( ) ( ) ( )

( ) ( ) ( )











∉











−

∈











+−

=µ

∫

∫
εγ

β,αxif        ;         dθθfeε1arg

β,αxif ;       ε edθθfeε1arg

α

β

iθ

α

β

ixiθ

,
                                    … (7.2) 

where ),( αβ is the arc starting at β  and ending at α  traversed in the anticlockwise 

direction. The above relation (7.2) can be written as: 

( ){ } ( )
( ){ } ( )




∉θε−+θ−

∈ε+θε−+ε+θ−
=µ

γγ

γγ

εγ
β,αxif                                   ))(sinE)1(( i)(cosEε1 arg

β,αxif        )xsin)(sinE)1(( ixcos)(cosEε1 arg

F,F,

F,F,

, . 

Therefore, 













αβ∉
θ

θ

αβ∈
ε+θε−

ε+θε−

=µ

γ

γ

γ

γ

εγ

) ,(  xif 
)(cosE

)(sinE

) ,(  xif
xcos)(cosE)1(

xsin)(sinE)1(

tan

F,

F,

F,

F,

,
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( )
( )

( )

( )







∉

∈












+−ν

+−ν

=µ⇒ εγ

β,αxif                                                       µ

β,αxif        
 xcosεε1

 xsinεµtanε1
arctan

γ

γ

γγ*

,  

where ( )θcos E F ,γ γ=ν . Thus, following the similar steps as in Theorem 3.1 of 

chapter 3, we get 

                               ( )
( )

( )

( )







∉

∈
ν

−

=

β,αx if0

β,αx if
µsec 

µxsin

F ,x; TIF
γγ

γ

γ                                    … (7.3) 

where 
2

3
,

2

ππ
≠µγ .  Now, define  

( ) ( )( )



 ρρ∈

=
otherwise0

,αβif x1
 )x(I .  

Again using Lemma 2, the standardized influence function (SIF) can be written as   

                            ( )
)F(S

)x(I )-sin(x
  , F, Sx; TSIF

4

4γ

γ

γ

ν

µ
=                                           … (7.4) 

We can show that the s.g.e.s is bounded with respect to the dispersion functional S  

at F  by directly looking at the integrals of S(F) and γρ  for both 0→ρ  and 1→ρ   as 

follows:  We know that, as  ,0→ρ  the wrapped normal distribution tends to circular 

uniform distribution with density function ( ) ( ) π<θ≤π=θ
−

20 ,2f
1

.Therefore,  

( ) ( )
( )

( ) )21(0
2

)21(
dpcos21lim

2

1

0 1p

p

0

2

γ−π=α⇒
γ−

=θ








µ−θρ+
π ∫ ∑

κα ∞

=
→ρ

. 

Since ( )  2)( π=ρβ+ρα , we have ( ) )21(0 γ+π=β .  Hence,   

                    0.50  ,
)21(

)]2-(1sin[
d cos)]21([ lim

)0(

0

1

0
<γ≤

γ−π

γπ
=θθγ−π=ρ ∫

α

−
γ

→ρ
.            … (7.5) 

Now as 0→ρ , and letting ( ) λ=θ−π2 , we get,  

                                     ∫
α

→ρ

γ−π
=λλ

γ−π
=

)0(

0
0 2

)21(
d

)21(

1
)F(Slim .                           … (7.6) 
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It is obvious that the numerator of the expression on the right hand side of (7.4) is 

bounded, and hence by using (7.5) and (7.6) we can conclude that:  

                                                 ( ) .   , F, Sx; TSIFsuplim 4γ
2x00

∞<
π<≤→ρ

                             ... (7.7) 

Since ( )ρµ  ,WN distribution can be well approximated by ( ))( A,CN -1 ρµ   as 1→ρ  , 

applying Hill’s (1976) expansion we have  

( )( )
( ) ( ) ( ) ( )( ) ( )

K+
ρρ

++
+

ρρ

+
+

ρ
=ρ

−−−−−

−

121

35

11

3

1

1

AA 640

χ45χ20χ3

A A24

χ3χ

A

χ
  Aα  

where ( )γ1 Φχ 1- −= . Using the fact ),0(WN~)2(mod),(WN~ ρπµ−θ⇒ρµθ  we get 

( ) µ→ρα  as 1→ρ . By symmetry of the wrapped normal distribution about µ  we can 

also conclude that ( ) µ→ρβ  as 1→ρ . Thus for any ,2x0  ,x π<≤µ≠  there exists 

an M >0, such that if ))(α),((M, x1 ρρβ∉>ρ≥ .  

Hence, ( ) 0  , F, Sx; TSIFsuplim 4γ
2x01

=
π<≤→ρ

.                                                                  … (7.8) 

Thus, using (7.7) and (7.8), we can conclude that  

( ) ( )[ ] ∞<=ℑ
π<≤<ρ<

  , F, S x; TSIFsup sup  , S  
~

,  Tγ 4γ
2x010

41γ

* . 

Hence the theorem. 

 

Corollary 3: Since ( )FTγ is SB-robust at the family of distributions 1

~
ℑ  with respect to 

the dispersion measure ( )FS4 , it is also SB-robust at the family of distributions 1

~
ℑ  

with respect to the dispersion measures ( )FS1  and  ( )FS2  by Theorem 7.1(b). Also it 

is SB-robust at the family of distributions 1

~
ℑ  with respect to the dispersion measure 

( )FS3  by Theorem 7.2. 
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7.5 Robustness of the Estimate of the Concentration Parameter 

 

Laha & Mahesh (2010) introduced a new estimator for the concentration parameter 

with reference to circular normal distribution. Here we will investigate the SB-

robustness of the concentration parameter ρ  of the wrapped normal distribution. In 

Theorem 7.7 below we prove that the natural estimator of ρ  is not SB-robust at the 

family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ with respect to the dispersion 

measure ( ) ( )( )µ=  ,θdE FS F2 . 

 

Theorem 7.7: Suppose ( )ρΘ  µ,NW~  where 0 >ρ  and µ  is the mean direction. 

Then ( ) ( ) ( )θ+θ= sinEcosEFT
~ 2

F
2
F  is an estimating functional for ρ  which is not SB-

robust at the family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ  with respect to  

( ) ( )( )µ=  ,θdE FS F2  1

~
F ℑ∈ . 

 

Proof: 

Since ( )κ µ,WN~Θ  and µ  is the mean direction, we can write 

( ) ( ) ( )sinθiEcosθEθdFeµ FF
iθ +== ∫  and ( ) ( )sinθEcosθEρ 2

F

2

FF += . Let ( )FT
~

  be an  

estimating function for ρ such that ( ) ( ) ( )sinθEcosθEρFT
~ 2

F
2
FF +== .  

Let ( )( )xε εδFε1T
~

 +−=ρ . Then we can write using Lemma1,  

( )( ) ( )( )1µxcosρ2ρεµxcosρερ2ρ F
2
F

2
FF

2
Fε +−−+−−−=ρ . 

But ( ) ( )( )F
F

0
ρµxcoslimF,T

~
x;IF −−=









ε

ρ−ρ
= ε

→ε
. Using, (3.4) we get  
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( ) ( )( )

( )( )

( ) 













+

ρ
−

−−
=

∑
∞

=

+

0n
2

1n2

F

F
2

1n2π

4

2

π

ρµxcos
SF,,T

~
x;SIF

2
. 

As 1→ρ , 
( )( )

( ) 2

π

1n2π

4

0n
2

1n2

F

2

→
+

ρ
∑

∞

=

+

 and hence ( ) 0FS2 → . Therefore, ( )21
* S, 

~
,T

~
ℑγ  is not 

finite which implies that standardized influence function is not bounded. Thus ( )FT
~

 is 

not SB-robust at the family of distributions 1

~
ℑ . 

Hence the theorem. 

 

Corollary 4: Since ( )FT
~

is not SB-robust at the family of distributions 1

~
ℑ  with respect 

to the dispersion measure ( )FS2 , it is also not  SB-robust at the family of distributions 

1

~
ℑ  with respect to the dispersion measures ( )FS1  and  ( )FS4  by Theorem 7.1(b).  

 

Theorem 7.8: The functional ( ) ( ) ( )θ+θ= sinEcosEFT
~ 2

F

2

F  for ρ is not SB-robust at 

the family of distributions { }10 );,(WN
~

1 <ρ<ρµ=ℑ  when the measure of dispersion is  

( )( ) 2

1
1

3 A)F(S
−− ρρ=  where  1

~
F ℑ∈ .   

 

Proof:  

We have ( ) ( )( )
( )

10 ;
A

ρµxcos  ,F,ST
~

x;SIF

21

1F3 <ρ<








ρ

ρ
−−=

−

−
. Using the asymptotic 

expansion of ( )ρ−1A  near unity (Watson 1983, appendix A.2 with p=2) we get  

 
( )

0
A

21

1
→









ρ

ρ
−

−
 as 1→ρ .  Thus, ( ) ∞=ℑ 31

* ,S 
~

,T
~

γ . 

Hence the theorem. 
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Next we introduce a new estimator for ρ .  

Definition 1: Let γ  be the trimming proportion such that [ )0.5  ,0∈γ  and ( )ρα , 

)(ρβ are such that 

( )

( )

 direction. iseanticlockw the in traversed  at ending and  from startingarc  the

 of length the is ),(d  where,γ2-1  dθθf satisfying  , all for ),(d))(,)((d   (ii)

 and  ,       γ2-1  dθθf  )i(

111

)(α

)(β

φξ

ξφ=νµνµ≤ρβρα

=

∫

∫
µ

ν

ρ

ρ

Then the new estimator for ρ  is defined as ( ) ( )( )[ ]µ= γ

−

γ θ,dEgFT F,

1*  where 

( ) ( )dF θ,d21)(g
)(

)(

1*

∫
ρα

ρβ

−
µγ−=ρ .  

Without loss of generality we assume 0=µ . Since the wrapped normal distribution is 

symmetric about 0=µ   we have )(2)( ρα−π=ρβ . Then ( ) ( )( )[ ]θdEgFT F,

1*

γ

−

γ =  where 

( ) ( )dF θd21)(g
)(

)(

1*

∫
ρα

ρβ

−
γ−=ρ . In Theorem 7.9 below, we prove that  ( )FTγ  is SB-robust at 

the family of distributions { }1Mm0 );,0(WN** <<ρ<<ρ=ℑ  with respect to the 

dispersion measure ( ) ( )dF θd21 )F(S
)(

)(

1

4 ∫
ρα

ρβ

−
γ−= . 

 

Theorem 7.9: Let ( )ρΘ  0,NW~ , ( ) θπ-π  θd)0,(d * −==θ , and ( ) ( )( )θdE  g F ,

*

γ=ρ . 

Then ( ) ( )( )[ ]θdEgFT *

F ,

1*

γ

−

γ =  is SB-robust at the family of distributions  

{ }1Mm0 );,0(WN** <<ρ<<ρ=ℑ  with respect to the dispersion measure 

( )( )θdE )F(S *
F ,4 γ=  where **F ℑ∈ . 

The following Lemma 3 is used to prove the theorem. 

 

Lemma 3: Let ( )ρΘ  0,NW~  and define ( ) ( )( )θdE  g F ,

*

γ=ρ  where ( ) θπ-π  θd* −= .  
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Then, ( )
( ) ( ) ( ) ( )

( )γ21π

pcos21αα

 g
1p

p)1(

)1(*

2

−









ραρ+ρρ

=ρ

∑
∞

=
 where ( ) ( ).  and  .g (1))1*( α  are the  

derivatives of ( ) ( ).  and  .g* α  respectively. 

 

Proof:   

Since ( ) ( ) ( )( )µθ=ρ= γ ,dEg FS *
F ,

*
4  does not depend onµ  we can without loss of 

generality assume 0=µ  for computing )(g κ . Hence  ( ) ( )( )θdE  g *
F ,

*
γ=ρ . Using the 

substitution ( ) λ=− θπ2 we have  

( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )
( )

( )

( )( ) ( )
( )

∫ ∑

∫ ∫ ∑∑

∑∫

ρα ∞

=

−

ρα π

ρβ

∞

=

∞

=

−

∞

=

π
−

γ

λ








λρ+λγ−π=












θ









θρ+θ−π+θ








θρ+θγ−π=

θ








θρ+θ−π−πγ−π==ρ

0 1p

p1

0

2

1p

p

1p

p1

1p

p
2

0

1*
F ,

*

dpcos2121       

dpcos212dpcos21212         

dpcos21||212θdE)(g

2

22

2

 

Using Leibnitz’s rule for differentiation under the integral sign we get 

( )
( ) ( ) ( ) ( )

( )γ21π

pcos21αα

 g
1p

p)1(

)1(*

2

−









ραρ+ρρ

=ρ

∑
∞

=
. 

Hence the lemma. 

 

Proof of the theorem: 

Let ( ) ( )( ) ( )dF θd
21

1
θdE g

)(

)(

*

F,

*

∫
ρα

ρβ

γ
γ−

==ρ . We can write ( ) ( )( )[ ] θdEgFT   *

F,

1**

F γ

−

γ ==ρ . 

Also let ( ){ }x
* F1T εδ+ε−=ρ γε . Then, 
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( ) ( ) ( )[ ] ( ) ( )( )
( ) ( )[ ] ( ) ( )( )





ρρ∉ρ−

ρρ∈+ρ−
=ρ

−

−

ε
, αβx  ; gε1g

 , αβx  ;  xdcεgε1g
    

*1*

**1*
*  

where ( )[ ] 1
γ21πc 

−
−= . 

Case 1: When ( ) ( )( )ρρ∉ , αβx .  

Using Taylor series expansion of ( )ρ
− *1* g around g  we get                                  

              
( )
( )

( )2

)1(*

*

F

*

ε εO
g

g ε
-  +

ρ

ρ
ρ=ρ .                                                                      … (7.9) 

Thus, from (7.9) we get that the influence function is given by: 

                        ( ) ( )
( )ρ

ρ−
=











ε

ρ−ρ
= ε

→ε
γ )1(*

**
F

*

0 g

g
limF,Tx;IF .                                           … (7.10) 

Case 2: When ( ) ( )( )ρρ∈ , αβx  .    

                                 
( ) ( )( )

( )
( )2

)1(*

**

F

*

ε εO
g

gxd c ε
  +

ρ

ρ−
+ρ=ρ .                                 … (7.11) 

From (7.11), the influence function is given by: 

                  

( ) ( ) ( )
( )ρ

ρ−
=











ε

ρ−ρ
= ε

→ε
γ )1(*

***

F

*

0 g

gxd c
limF,Tx;IF .                                      … (7.12) 

Combining (7.10) and (7.12), we get  

( )

( ) ( )
( )

( ) ( )( )

( )
( )

( ) ( )( )
  

, αβx ,
g

g

, αβx ,
g

gxd c

F,Tx;IF

)1(*

*

)1(*

**












ρρ∉
ρ

ρ−

ρρ∈
ρ

ρ−

=γ .                                                 ... (7.13) 

Now in this case, ( )( ) )(gθdE(F) S **

F,4 ρ== γ . Then using (7.13) the standardized 

influence function (SIF) can be written as: 
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        ( )

( ) ( )( )
( ) ( )

( ) ( )( )

( ) ( ) ( )( )











ρρ∉





ρ

′
−

ρρ∈

ρρ
′

ρ−

=
−γ

, αβx,g

, αβx,

g*g

gxdc 

SF,,Tx;IFS
1

*

**

**

.                                   … (7.14) 

By Lemma 3 we have,  

                         ( )
( ) ( ) ( ) ( )

( )γ21π

pcos21αα

 g
1p

p)1(

)1(*

2

−









ραρ+ρρ

=ρ

∑
∞

=
 .                           … (7.15) 

Since ( )ρ*g  is strictly positive and ( )ρ)1*(g  is strictly negative and bounded away from 

0 for 1Mm0 <<ρ<< , we can conclude that the s.g.e.s ( ) S,,T 4

*** ℑγ γ is finite and 

hence ( )( )[ ] θdEg *

F ,

1*

γ

−
is a SB- robust estimator for the concentration parameter of 

the wrapped normal distribution. 

Hence the theorem. 

 

Corollary 5: Since ( )FTγ  is SB-robust at the family of distributions **ℑ  with respect 

to the dispersion measure ( )FS4 , it is also SB-robust at the family of distributions **ℑ  

with respect to the dispersion measures ( )FS1 , ( )FS2  and ( )FS3  by Theorem 7.1(a).  
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Chapter 8 

Conclusions 

 

8.1 Conclusion 

 

In this thesis entitled “Robustness of estimators and tests with circular data” we first 

studied the SB-robustness of the directional mean at different family of circular 

normal distributions and its mixtures.  

 

We proved that a trimmed version of directional mean is SB-robust at the family of 

circular normal distributions. Also we introduced the concept of equivalent dispersion 

measures and prove that if an estimator is SB-robust for one measure of dispersion 

then it is SB-robust for equivalent dispersion measures. 

 

We proved that the usual estimator of the concentration parameter for circular 

normal distribution is not SB-robust. We introduced a new trimmed estimator for the 

concentration parameter and proved that this new estimator is SB-robust at the 

family of circular normal distributions. 

 

We proved that the trimmed version of the directional mean is a robust test statistic 

in the sense of breakdown properties in comparison with likelihood ratio test statistic 

and the directional mean as a test statistic.  

 

We study the robustness of the tests of the concentration parameter of circular 

normal distribution and proved that the complete sufficient statistic V has better 

robustness property than γV  in the sense of level and power breakdown properties. 
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We studied the SB-robustness of the directional mean with respect to different 

dispersion measures and at different family of wrapped normal distributions. We 

proved that the trimmed version of directional mean is SB-robust at the family of 

wrapped normal distributions. Also we proved that the usual estimator of the 

concentration parameter for wrapped normal distribution is not SB-robust. But a 

trimmed estimator is SB-robust at the family of wrapped normal distributions. 

 

8.2 Scope of Further Work 

 

The results obtained in this thesis can be extended to the case of other circular 

distributions like wrapped Cauchy distribution, Kato and Jones (2010) distribution 

etc. One of the well known distributions on the circle is the wrapped Cauchy 

distribution obtained by wrapping the Cauchy distribution ( )µ ,aC  onto the unit circle. 

The p.d.f of wrapped Cauchy distribution with parameters ρµ  and  is given by 

( ) ( )
( )( )

10  ,2 ,0  ;
cos21

1

2

1
 ,  ;f

2

2

<ρ<π<µθ≤
µ−θρ−ρ+

ρ−

π
=ρµθ  

where µ  is the mean direction and ae−=ρ  is the concentration parameter. The 

corresponding functional form of ρµ  and  are respectively given by 

( ) ( )
( )










θ

θ
=

cosE

sinE
arctanFT

F

F*  and ( ) ( )sinθEcosθEρ 2

F

2

FF +=  where F is the underlying 

distribution.  The robustness of the above functionals can be established using the 

techniques discussed in this thesis.  

 

Kato and Jones (2010) recently proposed a four parameter symmetric family of 

distribution on the circle. As a special case, they derived a three parameter 

symmetric family of distributions with probability density function 

( )
( )

( ) ( )
( ) ( )

π<θ≤
µ−θ−+

×








µ−θ−+

−µ−θ+κ

κπ

−
=θ 20 ;

cosr2r1

1

cosr2r1

r2cosr1
exp

I 2

r1
f

22

2

0

2
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where 1r1-  and  0,  ,20 <<>κπ<µ≤ . This distribution is symmetric about 

π+µµ=θ   and   and is unimodal when 1r0 <≤ . The parameter µ  is the mean 

direction and r  ,κ - the concentration parameters of ( )κµ  ,CN and ( )r ,WC µ  

distributions respectively. The corresponding functional form of the estimator of µ  is 

given by ( ) ( )
( )










θ

θ
=

cosE

sinE
arctanFT

F

F* . The above model includes the von-Mises )0r( = , 

wrapped Cauchy )0( =κ  and uniform distributions ( )  0rκ ==  as special cases. As 

∞→κ , the Kato-Jones distribution tends to ( )
r1

r1
ω    whereω µ,N rr

+

−
= . The 

robustness of the above functional can be established using the techniques 

discussed in this thesis.  

 

The results of this thesis can also be extended to spherical distributions like the 

Fisher-Bingham distribution. Kent (1982) proposed a five parameter distribution on 

the unit sphere { }1xxx:X 2

3

2

2

2

1

3

3 =++ℜ∈=Ω  which he calls the Fisher-Bingham 

distribution with p.d.f  

( ) ( ) ( )( ) ( )( )( ){ }

( )
( )

0 0, ,X ; 

 
21j

2

1
j

I2

XXXexp
Xf 3

0j

2

1
j2

j2

2

1
2j

2

3

2

21
≥β≥κℜ∈








 κ
β

+Γ









+Γ

κπ

γ′−γ′β+γ′κ
=

∑
∞

=

−−

+

 

where ( ) ( ) ( )( )   321 γγγ=Γ  is a 33× orthogonal matrix. The parameters can be 

interpreted as follows: κ  represents the concentration, β  describes the ovalness, 

( )1γ  is the mean direction or pole,  ( )2γ  is the major axis, and ( )3γ  is the minor axis. 

The functional form of the estimate of ( )1γ  is given by 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )3F2F1F

3F2F1F

XEXEXE

XEXEXE
FT

′
=  where F is the underlying distribution. The 

robustness of the above functional can be established using the techniques 

discussed in this thesis.  
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In the real line context one can derive similar results in the case of distributions with 

bounded support like Kumaraswamy distribution. Jones (2009) explored a two 

parameter family of distributions in the open interval ( )1 ,0  (which he called 

Kumaraswamy’s distribution) which has many similarities to the beta distribution and 

a number of advantages in terms of tractability. The corresponding probability 

density function is with p.d.f  

( ) ( ) 1x0 ;x1xxg
11 <<−αβ=

−βα−α , 

where βα   and  are two positive shape parameters. Unlike the Beta distribution, 

Kumaraswamy’s distribution admits a closed form c.d.f. which is given by 

( ) ( ) 1x0 ;x11xG <<−−=
βα . This distribution is unimodal, uniantimodal, increasing, 

decreasing or constant depending on the values of β and α . Some interesting limiting 

distributions namely, Weibull, Generalized exponential, and extreme value 

distributions can be derived from Kumaraswamy distribution with parameters 

βα  and  by letting ∞→β , ∞→α  and both ∞→βα  ,   respectively by using suitable 

normalized transformations. The functional of the mean of Kumaraswamy’s 

distribution is given by ( ) (X)EFT F= where F is the underlying distribution. The 

robustness of the above functional can be established using the techniques 

discussed in this thesis. 

 

 

 

 

 

 

 

 

 



117 

 

Chapter 9 

References 

 

Abramowitz, M. & Stegun, I.A. (1965), Handbook of Mathematical Functions, Dover, 

New York. 

Barnett, V. & Lewis, T. (1994), Outliers in Statistical Data, John Wiley & Sons, 

Chichester. 

Batschelet, E. (1981), Circular Statistics in Biology, Academic Press, London. 

Cain, M.L. (1989), The Analysis of Angular Data in Ecological Field Studies, Ecology, 

70(5), pp. 1540-1543. 

Carlitz, L. (1962), The inverse of the error function, Pacific J. Math. 13, 459-470. 

Clark, W.A., & Burt, J.E. (1980), The Impact of Workplace on Residential Relocation, 

Annals of the Association of American Geographers, 70, 59-67. 

Coleman, D.A., & Haskey, J.C. (1986), Marital Distance and its Geographical 

Orientation in England and Wales 1979, Transactions of the Institute of British 

Geographers, New Series, 11, 337-355. 

Collett, D. (1980), Outliers in Circular Data Analysis, Applied Statistics, 29, 50-57.  

Collett, D. & Lewis, T. (1981), Discriminating between the von-Mises and Wrapped 

normal distributions, Australian Journal of Statistics, 23 (1), 73-79. 

Fisher, N.I. (1993), Statistical Analysis of Circular Data, Cambridge University 

Press,Cambridge. 

Fisher, N.I., Lewis,T. &  Embleton, B.J.J. (1987), Statistical Analysis of Spherical 

Data, Cambridge University Press, Cambridge. 

Gavin, T.M., et al. (2003), Biochemical Analysis of Cervical Orthoses in Flexion and 

Extension: A Comparison of Cervical Collars and Cervical Thoracic Orthoses, 

Jpurnal of Rehabilitation Research and Development, VOl.40, No.6, 527-538. 



118 

 

Gill, J., & Hangartner, D. (2010), Circular Data in Political Science and How to 

Handle It, Political Analysis, Vol.18, No.3, 316-336. 

Ginsberg, H. (1986), Honeybee Orientation behaviour and the Influence of Flower 

Distribution on Foraging Movements, Ecological Entomology, 11, 173-179. 

Hampel, F.R, (1974), The Influence Curve and Its Role in Robust Estimation, Journal 

of the American Statistical Association, 69, 383-393. 

Hampel, F.R. (1968), Contribution to the theory of Robust Estimation, Ph.D thesis, 

University of California, Berkeley. 

Hampel, F.R. (1971), A General Qualitative Definition of Robustness, Annals of 

Mathematical Statistics, 42, 1887-1896. 

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A. (1986), Robust 

Statistics: The Approach Based on Influence Functions, Wiley New York. 

He, X. & Simpson, D.G. & Portnoy S. L. (1990), Breakdown Robustness of Tests, 

The Journal of the American Statistical Association, 85, 410, 446-452, Theory and 

Methods. 

He, X. & Simpson, D.G. (1992), Robust Direction Estimation, The Annals of 

Statistics, 20, No.1, 351-369. 

Heritier, S. & Ronchetti, E. (1994), Robust Bounded Influence Tests in General 

Parametric Models, The Journal of the American Statistical Association, 89, 897-904, 

Theory and Methods. 

Hill, G.W. (1976), New Approximations to the von Mises Distribution, Biometrika, 63, 

3, 673-676. 

Hodges, J.L. Jr. (1967), Efficiency in Normal Samples and Tolerance of Extreme 

Values for some Estimates of Location, Proceedings of  Fifth Berkeley Symposium 

on Mathematical Statistics and Probability, Vol.1, University of California Press, 

Berkeley, Calif., 163-186. 

Huber, P.J. (1964), Robust Estimation of a Location Parameter, Annals of 

Mathematical Statistics, 35, 73-101. 



119 

 

Huber, P.J. (1965), A Robust Version of Probability Ratio Test, Annals of 

Mathematical Statistics, 36, 1753-1758. 

Huber, P.J. (1968), Robust Confidence Limits, Z.Wahrsch. verw.Geb., 10, 269-278. 

Huber, P.J. (1981), Robust Statistics, John Wiley & Sons, New York. 

Huber, P.J., & Ronchetti, E.M. (2009), Robust Statistics-2nd edition, John Wiley & 

Sons, New York. 

Hurshesky, W.J.M., editor (1994), Circadian Cancer Therapy, CRC Press, Boca 

Raton. 

Jammalamadaka, S.R. & SenGupta, A. (2001), Topics in Circular Statistics, World 

Scientific, Singapore. 

Jammalamadaka, S.R., Bhadra, N., Chaturvedi, D., Kutty, T.K., Majumdar, P.P., and 

Poduval, G., (1986), Functional Assessment of Knee and Ankle During Level 

Walking, In Krishnan, T., editor, Data Analysis in Life Science, 21-45, Indian 

Statistical Institute, Calcutta, India. 

Jones, M.C., (2009), Kumarasway’s Distribution: A Beta –Type Distribution with 

Some Tractability advantages, Statistical Methodology, 6, 70-81. 

Jones, M.C. & Pewsey, A. (2005), Discrimination between the von Mises and 

Wrapped Normal Distributions: Just how big the sample size have to be?, Statistics, 

Vol. 69, No. 2, 81-89. 

Kato, S. and  Jones, M.C., (2010), A Family of Distributions on the Circle with Links 

to, and Applications Arising From, Mobius Transformation, Journal of American 

Statistical Association, 105, No.489, 249-262, Theory and Methods. 

Kent, J.T, (1982), The Fisher-Bingham Distribution on the Sphere, J.R. Statist. Soc. 

B, 44, No.1, 71-80. 

Ko, D. & Guttorp, P. (1988), Robustness of Estimators for Directional Data, The 

Annals of Statistics, 16, 609-618. 

Ko, D. (1992), Robust Estimation of the Concentration Parameter of the von-Mises 

Fisher Distribution, The Annals of Statistics, 20, 917-928. 



120 

 

Laha, A.K & Mahesh, K.C. (2010) SB-robust Estimator for the Concentration 

Parameter of Circular Normal Distribution, Statistical Papers (to appear) 

www.springerlink.com/index/Y086661212502670.pdf . 

Laha, A.K & Mahesh, K.C. (2011) SB-robustness of Directional Mean for Circular 

Distributions, Journal of Statistical Planning and Inference, 141, 1269-1276. 

Laha, A.K, Mahesh, K.C & Ghosh, D.K (2011), SB-robust Estimators of the 

Parameters of the Wrapped Normal Distribution (submitted). 

Laha, A.K, Mahesh, K.C (2011), Robustness of Tests for Directional Mean 

(submitted). 

Lambert, D. (1981), Influence Functions for Testing, The Journal of the American 

Statistical Association, 76, 649-657, Theory and Methods. 

Lambert, D. (1982), Qualitative Robustness of Tests, The Journal of the American 

Statistical Association, 77, 352-357, Theory and Methods. 

Langevin, P. (1905), Magnetisme et theorie des electrons, Ann. Chim. Phys., 5, 71-

127. 

Lenth, R.V. (1981), Robust Measures of Location for Directional Data, 

Technometrics, 23, 77-81. 

Mardia, K.V. & Jupp, P.E. (2000), Directional Statistics, John Wiley & Sons, 

Chichester. 

Mardia, K.V. (1972), Statistics of Directional Data, Academic Press, New York. 

Markatou, M. & He, X. (1994), Bounded Influence and High Breakdown Point Testing 

Procedures in Linear Models, The Journal of the American Statistical Association, 

89, 543-549, Theory and Methods. 

Marona, R.A., Martin, R.D., & Yohai, V.J. (2006), Robust Statistics: Theory and 

Methods, Wiley. 

Morgan, E. editor (1990), Chronobiology and Chronomedicine, Peter Lang, 

Frankfurt. 



121 

 

Nikolaidis, N., & Pitas, I. (1994), Application of Directional Statistics in Vector 

Direction Estimation, IEEE International Conference on Acoustics, Speech and 

Signal Processing, ICASSP-94, vol.55, 121-124. 

Nikolaidis, N., & Pitas, I. (1995), Edge Detection Operators for Angular Data, 

Proceedings of International Conference on Image Processing, vol.2, 157-160. 

Otieno,B.S. (2002), An Alternative Estimate of Preferred Direction for Circular Data, 

Ph.D Thesis, Virginia Polytechnic Institute and State University. 

Perez, A.G. (1993), On Robustness for Hypothesis Testing, International Statistical 

Review, 61, 3, 369-385. 

Proschan, M.A., & Follmann, D. A. (1997), A Restricted Test for Circadian Rhythm, 

Journal of the American Statistical Association, VOl.92, No.438, 717-724, Theory 

and Methods. 

Rieder, H. (1978), A Robust Asymptotic Testing Models, The Annals of Statistics, 6, 

1080-1094 

Ronchetti, E. (1997), Robust Inference by Influence Functions, Journal of Statistical 

Planning and Inference, 57, 59-72. 

Rousseeuw, P.J (1981), A new Infinitesimal Approach to Robust Estimation, 

Zeitschrift fuer Wahrscheinlichkeit und Verwandte Gebiete, 56, 127-132. 

Rousseeuw, P.J. & Ronchetti, E. (1979), Influence Curves for Tests, Research report 

21, Fachgruppe fur Statistik, ETH, Zurich. 

Rousseeuw, P.J. & Ronchetti, E. (1981), Influence Curves for General Statistics, J. 

Comput. Appl. Math., 7, 161-166. 

Schmidt-Koenig, K. (1965), Current Problems in Bird Orientation, In D. Lehrman et 

al. (eds), Advances in the Study of Behaviour, 217-278, Academic Press, New York. 

SenGupta, A. (2011), Analysis of High Volatile Financial Data through Circular 

Statistics, presented at 2nd International Conference on Data Analysis, Business 

Analytics and Intelligence, held at IIM-A, January 8-9, 2011. 



122 

 

SenGupta, A & Laha, A.K. (2001), The Slippage Problem for the Circular Normal 

Distrobution, Aust. N.Z.J. Stat. 43 (4), 461-471. 

SenGupta, S. & Rao, J.S. (1966), Statistical Analysis of Crossbedding  Azimuths 

from the Kamthi Formation around Bheemaram, Pranhita-Godavari Valley, Sankhya 

Ser. B. 28, 165-174. 

Serfling, R. J. (2002), Approximation Theorems of Mathematical Statistics, John 

Wiley and Sons.  

Staudte, R.G. & Sheather, S.J. (1990), Robust Estimation and Tests, Wiley New 

York. 

Stephens, M.A. (1962), Exact and Approximate Tests for Directions .I, Biometrika, 

49, 3 and 4, 463-477. 

Stephens, M.A. (1963), Random Walk on a Circle, Biometrika, 50, 3 and 4, 385-390. 

Stephens, M.A. (1969), Tests for the von Mises Distribution, Biometrika, 56, 1, 149-

160. 

Tukey, J.W. (1960), A Survey of Sampling from Contaminated Distribution, In 

contribution to Probability and Statistics, I.Olkin(ed.),  Stanford University Press, 

Stanford,Calif, 448-485. 

Upton, G.J.G. (1973), Single Sample Tests for the von Mises Distribution, 

Biometrika, 60, 1, 87-99. 

Upton, G.J.G. (1986b), Distance and Directional Analyses of Settlement Patterns, 

Economic Geography, 62, 167-179. 

von Mises, R. (1918), Uber die “ ganzzahligkeit” der atomgewichte und verwandte 

fragen, Physikal. Z., 19, 490-500. 

von Mises, R. (1947), On the Asymptotic Distribution of Differentiable Statistical 

Functions, Annals of Mathematical Statistics, 18, 309-348. 

Wallin, H. (1986), Habitat Choice of Some Field-inhabiting Carabid Beetles 

(Cleopatra: Carabidae) Studied by the Recapture of Marked Individuals, Ecological 

Entomology, 11, 457-466. 



123 

 

Wasserman, L. (2006), All of Nonparametric Statistics, Springer. 

Watson, G.S. & Williams, E.J. (1956), On the Construction of Significance Tests on 

the Circle and Sphere, Biometrika, 43, 344-352. 

Watson, G.S. (1983), Statistics on Spheres, Wiley, New York. 

Wehrly, T.E. & Shine, E.P. (1981), Influence Curves of Estimators for Directional 

Data, Biometrika, 68, 334-335. 

Ylvisaker, D. (1979), Test Resistance, The Journal of the American Statistical 

Association, 85, 551-556, Theory and Methods. 

 

 

 

 

 

 

 

 

 

 

 

 


	Title page
	Declaration
	Certificate
	Acknowledgements
	Contents
	Chapter - 1 Introduction
	Chapter - 2 Literature Review
	Chapter - 3 Robust Estimator for Mean Direction of Circular Normal Distribution
	Chapter - 4 Robust Estimator for Concentration Parameter of Circular Normal Distribution
	Chapter - 5 Robustness of Tests for Mean Direction of Circular Normal Distribution
	Chapter - 6 Robustness of Tests for Concentration Parameter of Circular Normal Distribution
	Chapter - 7 Robust Estimators of Parameters of Wrapped Normal Distribution
	Chapter - 8 Conclusions
	Chapter - 9 References

