
 

         Saurashtra University 
     Re – Accredited Grade ‘B’ by NAAC 
     (CGPA 2.93) 

 
 
 
 
Manek, Viren B., 2011,  “An Advance Study of Coveriance Structure”,  thesis 
PhD, Saurashtra University 

  
http://etheses.saurashtrauniversity.edu/id/914 
  
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author. 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given.  
 
 
 
 
 
 
 
 

Saurashtra University Theses Service 
http://etheses.saurashtrauniversity.edu 

repository@sauuni.ernet.in 
 

© The Author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Etheses - A Saurashtra University Library Service

https://core.ac.uk/display/11822282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

“AN ADVANCE STUDY OF COVARIANCE 
STRUCTURE” 

 
 
 
 

A Thesis submitted to the  
Saurashtra University  

for the Degree of Doctor of Philosophy  
in 

Statistics 
 
 
 

By 
VIREN B. MANEK 

 
 

Under the Guidance of 
Dr. G.C.BHIMANI 
Professor of Statistics 

Department of Statistics 
Saurashtra University 

Rajkot – 360005 
Gujarat ( India ) 

 
 
 
 

May - 2011 



i 

 
 

ACKNOWLEDGEMENT 
 
 

  
 I would like to thank my guide Dr. G. C. Bhimani for his thoughtful guidance and 

support. Besides being an excellent guide he has been a great mentor who has helped me 

develop my self – confidence and always encouraged me to push my boundaries and take 

on new challenges in life. 

 I appreciatively acknowledge the rendered by Dr. D. K. Ghosh, Professor & 

Head, Department of Satistics and other faculty of the deparment for being a constant 

source of inspiration. 

 Ths thesis is dedicated to my parents, son and family members. My parents & 

family members integrity, humility, love and compassion for all has left an indelible 

impression in my life. I am eternally grateful for their constant encouragement and for 

setting. 

 I express thanks to all colleagues for their co – operation. 

 Microsoft Office 2007 was used to prepare this thesis and all calculation were 

done with the statistical software. This thesis contains much of thesis effort not in term of 

paragraphs or tables, rather their understanding and support all the way. 

 
 

 
Viren B. Manek     



ii 

 

 
CERTIFICATE 

 
 

 

This is to certify that the Thesis entitled “An Advance Study Of 

Covariance Structure” submitted by Mr. Viren B. Manek for the award of 

the Degree of Doctor of Philosophy in Statistics is a bonafide research 

work done independently by my guidance. 

 

 

( Dr. G. C. Bhimani ) 
Professor of Statistics 

Department of Statistics 
Saurashtra University 

Rajkot – 360005 



iii 

DECLARATION 
 
 

I hereby declared that the research work on  “An Advance Study Of 

Covariance Structure” is carried out by me and results of this work have 

not submitted at any other university for the award of the Degree of Doctor 

of Philosophy in Statistics. 

 
 
 

( Viren B. Manek) 
Ph.D. Student 

Department of Statistics 
Saurashtra University 

Rajkot – 360005 
 
 
 



iv 

Contents 
 

 Title Page No. 

Declaration  I 

Certificate  ii 

Acknowledgement iii

Contents  Iv 

Ch - 1 Introduction 1

Ch - 2 Some remarks on estimating a covariance structure from a sample 

correlation matrix 6

 2.1  Introduction 6 

 2.2  Covariance Structure Analysis For Categorical Dependent Variables 8 

 2.3  An Application Of The General Theory: The Common Factor 

Model  

 2.4 Estimating A Covariance Structure Model From A Sample  

      Correlation Matrix Of Continuous Variables 

 2.5. Conclusions  

Ch - 3 The Model-Size Effect On Traditional  And Modified Tests Of   

Covariance Structures 

 3.1  Introduction  

 3.2  Test Statistics And Their Asymptotic Distribution  

  Satorra–Bentler Statistics  

  Bartlett-Corrected Statistics  

  Swain-Corrected Statistics  

 3.3  Expectations Of Finite Sample Behavior  

  Likelihood Ratio Statistic  

  Scaled Satorra–Bentler Statistic  

  Adjusted Satorra–Bentler Statistic  

  Bartlett-Corrected Statistics  

  Swain-Corrected Statistics  



v 

 Title Page No. 

  Summary  

 3.4  Monte Carlo Design  

  Sample Size Conditions  

  Population Models And Model Size  

  Number Of Replications  

  Data Generation And Model Estimation  

  Statistics  

 3.5  Findings And Recommendations  

 3.6  Discussion  

 3.7  Limitations And Future Work  

 3.8  Conclusion  

Ch - 4 Modelling Covariance Structure In The Analysis Of Repeated 

Measures Data  

 4.1. Introduction  

 4.2. Example Data Set  

 4.3. Linear Mixed Model For Repeated Measures  

 4.4. Covariance Structures For Repeated Measures  

  Simple (Sim)  

  Compound Symmetric (Cs)  

  Autoregressive, Order 1 (Ar(1))  

  Autoregressive With Random Effect For Patient (Ar(1)+Re)  

  Toeplitz (Toep)  

 4.5. Using The Mixed Procedure To Fit Linear Mixed Models  

  Simple  

  Compound Symmetric  

  Autoregressive, Order 1  

  Autoregressive With Random Effect For Patient  

  Toeplitz  

  Unstructured  



vi 

 Title Page No. 

 4.6. Comparison Of Fits Of Covariance Structures  

 4.7. Effects Of Covariance Structure On Tests Of Fixed Effects,  

       Estimates Of Fixed Effects And Standard Errors Of Estimates 

 4.8. Modelling Polynomial Trends Over Time  

 4.9. Summary And Conclusions  

 Appendix  

Ch-5 Covariance Models for Latent Structure in Longitudinal Data  

 1.1 Data  

 5.2 Alternative Modeling Philosophies  

  Population-Average Analysis  

  Individual- Specific Analysis  

  Latent Curve Models  

  Latent Class Models  

  Discussion  

 5.3 A Hybrid Model  

  The Proto-Spline Model Class  

  Extensions  

  Link To Mixed Effects Models  

 5.4 Illustration  

 5.5 Application And Comparison Of Models  

  Random Quadratics  

  Single Latent Curve Proto-Spline  

  Double Latent Curve Model  

  Comparing Variance Partitions  

  Discussion Of findings  

 5.6 Conclusion  

 A Appendix 

  



vii 

 Title Page No. 

Ch-6 Alternatives To Traditional Model Comparison Strategies  

For Covariance Structure Models 

 6.1 Introduction  

 6.2 Covariance Structure Modeling  

 6.3 The Importance Of CSM To Ecological Research  

 6.4 The Importance Of Adopting A Model Comparison Perspective  

 6.5 Concluding Remarks  

 6.6 Model Selection And Model Complexity  

 6.7 Applying MDI In Practice  

 6.8 Summary  

 6.9 Limitations  

 6.10 Discussion  

References   

 
 



 - 1 -

 

 

 
 
 
 
 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Chapter – 1 
Introduction 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 



 - 2 -

Chapter – 1 
Introduction 

 

This article examines the adjustment of normal theory methods for the 

analysis of covariance structures to make them applicable under the class of 

elliptical distributions. It is shown that if the model satisfies a mild scale 

invariance condition and the data have an elliptical distribution, the asymptotic 

covariance matrix of sample covariances has a structure that results in the retention 

of many of the asymptotic properties of normal theory methods. If a scale 

adjustment is applied, the likelihood ratio tests of fit have the usual asymptotic chi-

squared distributions. Difference tests retain their property of asymptotic 

independence, and maximum likelihood estimators retain their relative asymptotic 

efficiency within the class of estimators based on the sample covariance matrix. 

An adjustment to the asymptotic covariance matrix of normal theory maximum 

likelihood estimators for elliptical distributions is provided. This adjustment is 

particularly simple in models for patterned covariance or correlation matrices. 

These results apply not only to normal theory maximum likelihood methods but 

also to a class of minimum discrepancy methods. Similar results also apply when 

certain robust estimators of the covariance matrix are employed. 

A considerable part of classical multivariate analysis is devoted to 

hypotheses concerning the population covariance matrix, Z. The associated 

statistical inference is well developed under the assumption that the sample is 

drawn from a normally distributed population (e.g., Muirhead 1982). These normal 

theory methods can, however, be sensitive to deviations from normality and, in 
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particular, to the kurtosis of data distributions. Multivariate distributions that are 

convenient for investigating the sensitivity of normal theory methods to kurtosis 

are the elliptical distributions (Chmielewski 1981; Devlin, Gnanadesikan, and 

Kettenring 1976; Muirhead 1982, sec. 1.5). The elliptical class of distributions 

incorporates a single additional kurtosis parameter, K, and contains the 

multivariate normal distribution as a special case with      K = 0. 

Elliptical distributions have been employed in two general approaches 

yielding somewhat different results. In one, an N x p data matrix is regarded as 

being distributed according to an Np-dimensional elliptical distribution. Elements 

in different rows of the data matrix are regarded as uncorrelated but not 

independent if K # 0. Under these conditions certain normal theory likelihood ratio 

tests remain valid without correction (Anderson, Fang, and Hsu 1986; 

Chmielewski 1980). 

The present article will adopt the other approach where rows of the data 

matrix are regarded as being independently and identically distributed according to 

a p-variate elliptical distribution. Under these assumptions a number of situations 

were found (Muirhead 1982; Muirhead and Waternaux 1980) where normal theory 

likelihood ratio tests retain their asymptotic chi-squared distribution if divided by a 

correction factor dependent on kurtosis. Tyler (1983) gave a class of null 

hypotheses defined by equality constraints on elements of Z where these scale 

corrections for the likelihood ratio test are applicable. A class of structural models 

Z = Z(8), where scale corrections for likelihood ratio goodness-of-fit tests are 

applicable and normal theory maximum likelihood parameter estimators retain 
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their relative asymptotic efficiency within a certain class of estimators, was given 

in Browne (1982, 1984). Tyler (1982, 1983) also showed that correction factors 

can be found when the usual sample covariance matrix is replaced by an 

alternative estimator from the class of Mestimators (Maronna 1976) or by an 

estimator of Z that is a maximum likelihood estimator under the assumption of 

some specific elliptical distribution.  

The present article unifies and extends the findings of Tyler (1982, 1983) 

and Browne (1982, 1984). This is done by showing that their two superficially 

different sets of conditions on Z both imply a property of the model that justifies 

scale corrections to the test statistic. We consider a class of minimum discrepancy 

test statistics, which includes the previously considered normal theory likelihood 

ratio statistic, and show that similar scale corrections also apply to difference tests 

with constrained alternative hypotheses. A new test statistic that does not require a 

scale correction for the kurtosis of an elliptical distribution is also obtained. The 

result concerning robustness of the asymptotic efficiency of maximum likelihood 

estimators given by Browne (1982, 1984) is extended to other discrepancy 

functions based on the wider class of covariance matrix estimates considered by 

Tyler (1982, 1983). In addition, we provide a new correction factor of rank 1to the 

asymptotic covariance matrix of estimators that is more direct and simpler to apply 

than the correction factor given in Browne (1982, 1984). 
A general approach to the analysis of covariance structures is considered, 

in which the variances and covariances or correlations of the observed variables 

are directly expressed  in terms of the parameters of interest. The statistical 
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problems of identification, estimation and testing of such covariance or correlation 

structures are discussed.  

Several different types of covariance structures are considered as special 

cases of the general model. These include models for sets of congeneric tests, 

models for confirmatory and exploratory factor analysis, models for estimation of 

variance and covariance components, regression models with measurement errors, 

path analysis models, simplex and circumplex models. Many of the different types 

of covariance structures are illustrated by means of real data. 

The search for structure in correlated psychological variables has been one 

of the main objectives in psychometrics for several decades. Traditionally this 

search was done by using factor analysis to detect and assess latent sources of 

variation and covariation in observed measurements. Seldom do these 

measurements represent pure psychological traits or functions. Rather, as 

Thurstone [1947] assumed in his multiple factor model, each measure depends on 

a limited number of traits or functions and one tries to identify, and ultimately 

estimate, the components of the observed measurements associated with different 

traits or functions. 

In factor analysis the correlation matrix is subjected to a suitable method 

for estimation of the factor space, the solution rotated to obtain projections of the 

test vectors on certain reference vectors, called factors, and, by examining the 

contents of the tests which have large projections on a particular reference vector, 

a trait or function is inferred to be common to these psychological tests. The trait 

or function, treated as an explanatory variable is then named and considered to be 
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a source of one of the components of covariation or correlation in the tests 

analyzed. Individual differences in this component can then be estimated as so 

called factor scores. 
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Chapter – 2 
Some remarks on estimating a covariance structure 

from a sample correlation matrix 
 

2.1  Introduction 

In covariance structure analysis, one wishes to model the variances and 

covariances of the observed variables. That is, one assumes that the population 

covariance matrix ∑  of the observed variables depends on a parameter vector θ , 

say ∑  (θ ), whereas no structure is imposed on the population mean vector µ . 

The objective is then to estimate the parameter vector θ  from a sample covariance 

matrix. In contrast, in correlation structure analysis, one wishes to model the 

correlations among the observed variables. Thus, in this case it is the population 

correlation matrix P which is assumed to depend on a parameter vector θ , say 

P(θ ), whereas, as before, no structure is imposed on the population mean vector 

µ . Correlation structure analysis is often chosen when the observed variables have 

different and arbitrary scales. In this case, researchers may feel that it is more 

meaningful to transform the observed variables to standard deviation scales. In 

contrast, when all observed variables are on the same scale, researchers may feel 

that it is more appropriate to fit a covariance structure. 

It is not the aim of this paper to elaborate on when to perform covariance 

vs. correlation structure analysis. Rather, this paper aims at discussing the case in 

which a researcher wishes to estimate a covariance structure but s/he is unable to 

do so from a sample covariance matrix because only a sample correlation matrix is 

available for analysis. Estimating a covariance structure from a sample correlation 
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matrix is not a trivial matter. Cudeck  thoroughly reviewed this topic pointing out 

that doing this may result in (a) fitting a different model that the one intended, (b) 

incorrect !2 and other goodness-of-fit measures, and (c) incorrect standard errors. 

Given these problems, one should estimate a covariance structure from a sample 

covariance matrix if at all possible. However, in some cases is not possible. For 

instance 

a)  When all observed variables are categorical. Although covariance structure 

analysis was originally developed as a technique for continuous variables, 

over the last fifteen years the most popular software packages for structural 

equation modeling (LISREL: Jöreskog & Sörbom, MPLUS: Muthén & 

Muthén, EQS: Bentler,) have incorporated routines for performing 

covariance structure analysis for categorical dependent variables as well by 

assuming that these arise by discretizing a multivariate normal distribution 

according to a set of thresholds. Nevertheless, when all the observed 

variables are categorical, then the parameters of the underlying covariance 

structure can not be estimated from a sample covariance matrix, as only the 

correlation matrix of the underlying normal variates (a matrix of 

tetrachoric/polychoric correlations) may be estimated. 

b)  When all observed variables are continuous but only a correlation matrix of 

is available (e.g., when one is interested in estimating a covariance 

structure from a published correlation matrix). Since in this case only the 

correlation matrix is available, estimation must proceed under multivariate 

normal assumptions. 
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Clearly, the first instance will be encountered more frequently than the 

second, and correspondingly, it will be the main focus of the present research. The 

standard procedure to fit a covariance structure to categorical observed variables 

when no restrictions are imposed on the thresholds consists in estimating each 

sample threshold and polychoric correlation separately from the first and second 

order marginals of the observed contingency table. Then, the parameters of the 

underlying covariance structure are estimated from the sample 

tetrachoric/polychoric correlations alone using a weighted least squares 

discrepancy function. By using this approach, one can estimate the covariance 

model parameters, obtain asymptotically correct goodness-of-fit measures and 

standard errors for the parameter estimates. But, as we shall show, if and only if 

the covariance structure being fitted is scale invariant. If this procedure is used to 

estimate a covariance structure that is not scale invariant, then one ends up fitting a 

different (and more restricted) covariance structure than the one intended. We shall 

also show that to fit covariance structure that is not scale invariant to categorical 

observed variables one must use in the final stage of the estimation procedure a 

weighted least squares discrepancy function using both the sample thresholds and 

tetrachoric/polychoric correlations. To illustrate our discussion, we shall provide a 

numerical example in which we fit scale invariant and non-scale invariant factor 

models to the well known LSAT 6 dataset (Bock & Lieberman). 

Next, we shall discuss how to fit a covariance structure model to a sample 

correlation matrix of continuous variables. Covariance structure models can be 

estimated from a sample correlation matrix by minimizing a normal theory 
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generalized least squares function of the sample correlations under normality 

assumption (Jennrich, Browne & Shapiro). However, this is actually not needed. 

One can estimate any covariance structure from a sample correlation matrix by 

minimizing a normal theory discrepancy function for sample covariances. This is 

convenient, because to our knowledge discrepancy functions for sample 

correlations have not been implemented in standard software packages such as 

LISREL, EQS or MPLUS. Unfortunately, no standard software package can 

currently estimate a non-scale invariant covariance structure from a sample 

correlation matrix. To illustrate our discussion of the continuous case we shall use 

some data originally published by Jöreskog and also considered by Cudeck. 

Because determining whether a model is scale invariant is critical in 

applications in which a covariance structure is estimated from a sample correlation 

matrix, we provide in an appendix computer algebra code in Mathematica 

(Wolfram) that may be employed to determine whether a covariance structure 

model is scale invariant using results from Bekker, Merckens and Wansbeek. Also, 

because when estimating a covariance structure from a sample correlation matrix 

not all covariance structure parameters may be identified we provide in another 

appendix Mathematica computer algebra code to be used to investigate the 

identification of the model parameters. 
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2.2  Covariance structure analysis for categorical dependent   

        variables 

Let  and suppose that each variable has been 

categorized using 

 

where                              That is, for notational ease, we assume that all variables yi 

have the same number of categories, k. Our objective is to estimate the q-

dimensional parameter vector θ  from the observed categorical variables y. 

According to this model, the probability of observing any categorical 

pattern is yc 

 

 

where  denotes a n-variate normal density and the intervals of the area of  

integration 

 

Because the underlying variables y* are normal, the pattern probabilities 

(2) are unchanged when we standardize each yi* by subtracting its mean and 

dividing it by its standard deviation using 
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where Diag(• ) denotes a square matrix whose non-diagonal elements have 

been set to 0. Denoting by σ ii(θ ) a diagonal element of ∑  ( θ ), the diagonal 

elements of Dθ  are of the type 

 

 

As a result of (3), z* has mean zero and correlation structure 

 

i.e., P(θ ) has ones along its diagonal. Furthermore, defining 

 

when we change the variable of integration in (2) using (3) we find that at                 

, 

.                  . Thus, (2) can be equivalently written as 

 

with intervals of integration                                        where  

Now, because (2) and (7) are equivalent, we see that only the correlation 

structure (5) can be identified (estimated) from categorical data. There is an 

additional identification problem in (6), namely, that the µ 's can not be separately 

estimated from the α 's. The easiest way to solve this identification problem is to 

assume in applications that µ = 0. We shall do so in the remainder of this paper. 

Note, however, that if we were to generate data according to this model with ≠µ  

0, we would be estimating  

rather than 
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ϑ

∑

 

We shall now introduce some notation. Let  

                                                             where from (6) and the identification 

restriction  µ  = 0,  

    

 

                 Furthermore, let  

where p(  ) is  obtained by stacking the lower diagonal elements of P(ϑ ) excluding 

the diagonal onto a column vector. Note that in fact % depends only on the 

covariance structure parameters θ , 

As pointed out in the introduction, standard software programs such as 

EQS, LISREL and MPLUS estimate θ  using several stages (see Jöreskog, 1994; 

Lee, Poon & Bentler, 1995; Muthén, 1978, 1984, 1993; Muthén, du Toit & Spisic, 

in press; Muthén & Satorra, 1995). First, the sample thresholds ' are estimated 

from the first order marginals of the contingency table. Then, the polychoric 

correlations p are estimated from second order marginals of the contingency table 

given the estimated sample thresholds. 

Consider now the estimation of ϑ  from the parameters estimated in the 

first two  stages,                          Before estimating the model parameters in the last 

stage using (9),however, we must investigate its identification. Most often, when 

estimating ϑ  from  κ  ,  θ   will not be identified even if the covariance structure 

model        (θ ) is identified. Denoting by θ * the subset of identified parameters in  
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θ , a general approach to estimate the identified model parameters  

         from  κ  is by minimizing 

 

where .W is a matrix converging in probability to W, a non-negative definite 

matrix, and from (5) and (8) 

 

To use this general approach we need to be able to model simultaneously 

the thresholds and tetrachoric/polychoric correlations. In addition, we need to be 

able to enforce the complex non-linear constraints (4). MPLUS (Muthén & 

Muthén, 1998) can be used to do the former, but not the latter. LISREL (Jöreskog 

& Sörbom, 1993) and EQS (Bentler, 1995) only have capabilities for modeling 

tetrachoric/polychoric correlations. 

Letting Ξ  be a consistent estimate of the asymptotic covariance matrix of 

κ , then, obvious choices of .W in (9) are W Ξ -1 (WLS: Muthén, 1978), W = diag 

(Ξ )-1  (DWLS: Muthén, du Toit & Spisic, in press), and W = I (ULS: Muthén, 

1993). WLS estimation has asymptotically optimal properties (i.e., minimum 

variance) among the class of estimators (9). However, it has been found repeatedly 

in simulation studies (e.g., Muthén & Kaplan, 1992; Muthén, 1993; Reboussin & 

Liang, 1998) that unless the model is very small and the sample size very large 

WLS has an unacceptable small sample behavior. Furthermore, ULS and DWLS 

behave well in small samples (Muthén, 1993; Muthén et al., in press), the 

difference between the two being negligible (Maydeu-Olivares, in press). 
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Suppose now that the covariance structure ∑ (θ ) is scale invariant. A 

covariance structure is scale invariant (e.g., Browne & Shapiro, 1991) if for any 

parameter vector θ  belonging to the parameter space Θ  and a diagonal matrix Dδ  

with non-zero and distinct elements δ i, one can find a parameter vector θ  

belonging to Θ  such that 

 

Since (8) is a special case of (11), when a covariance structure ∑ (θ ) is 

scale invariant (a) one can always find a parameter vector θ  satisfying P(θ ) = 

∑ (θ ), and (b) exactly n elements of θ  will not be identified because θ  must 

satisfy the constraint (Cudeck, 1989: p. 319) 

 

Thus, when a covariance structure ∑ (θ ) is scale invariant one can always  

find a subset of identified parameters in θ  , say θ * , such that (12) is satisfied.  

Then, letting  

 

is equivalent to (10), where ∑ (θ *) has ones along its diagonal and has the same 

functional form as the original covariance structure ∑ (θ *). 

Thus, when ∑ (θ ) is scale invariant it is always possible to reparameterize 

ϑ * as ϑ~ *, where the latter is greatly preferable from a computationally point of 

view. On the one hand, when the thresholds and polychoric correlations are 

parameterized as a function of ϑ~ * one takes rid of the non-linear constraints (4). 

On the other hand, as there is a one to one relationship between the parameter 
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vector α~  and T, and as p depends only on θ~ * , one may estimate the 

(reparameterized) covariance structure parameters θ~ * from the estimated 

tetrachoric/polychoric correlations p only by minimizing 

 

In Appendix 1 we show, following Muthén (1978, p. 554), that when  is 

estimated using (14) with ,diag, and   a consistent estimate of the asymptotic 

covariance matrix of  , one obtains the same parameter estimates for than when (9) 

is minimized with respect to  with, diag  respectively. Furthermore, However, the 

estimates for will be the same if ULS or DWLS is employed, but not when WLS is 

employed. LISREL (Jöreskog & Sörbom, 1993), MPLUS (Muthén & Muthén, 

1998) and EQS (Bentler, 1995) all have capabilities for estimating a covariance 

structure from categorical data using a sequential procedure with (14) in the last 

stage. 

In sum, scale invariance of  is a sufficient condition to estimate the 

parameter vector  only from the sample polychoric correlations. It is a necessary 

condition as well.  

Often times, we can turn  into a correlation structure by enforcing Diag. In 

so doing we are fitting to the data the model on the left hand side of (11). When  is 

not scale invariance, then the models on the left and right hand side of (11) are not 

equivalent and the model on the left hand side of (11) is a restrictive version of the 

model on the right hand side of (11). Hence, when is not scale invariant and we 

turn it into a correlation structure by enforcing Diag, we are actually fitting to the 

data at hand a different and more restrictive model than the one intended. 
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Because when is scale invariant considerable computational gains are 

obtained in performing covariance structure analysis when all the observed 

variables are categorical, it becomes critical in applications to be able to assess 

whether  is scale invariant. In Appendix 2 we provide computer algebra code in 

Mathematica (Wolfram, 1999) that will enable researchers to determine whether is 

locally scale invariant.  

We shall now apply this general theory to a particular class of covariance  

structures.  

 

3.  An application of the general theory: The common factor 

 model 

Consider the class of covariance structures implied by the common factor 

model, 

 

Where is a diagonal matrix. We shall assume that enough restrictions have 

been imposed on the model so that the covariance structure  is identified and that 

for identification purposes. The threshold and correlation structure implied by this 

model are by (8) and (5) 

 

where diag. We shall now consider how to estimate the parameter vector 

from the estimated thresholds and polychoric correlations. One way of estimating 

any member of this class is to introduce enough restrictions in so that (16) is 
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identified. The identified parameters,, are then estimated from . simultaneously 

with  using (9). 

Consider now the subset of models of (15) that are scale invariant. For 

these models 

 

is equivalent to (16) where 

 

To identify (17) and fulfill (12) we may simply let 

 

Substituting (19) in (17), we obtain 

 

Thus, in this case, one can estimate  in the last stage of the estimation 

procedure simply using (14). When the number of categories k and the number of 

items n are large this is greatly preferable from a computational viewpoint than to 

estimate all the identified parameters in  using (9) with (16). 

We shall now consider the results of estimating a covariance structure that 

is not scale invariant by introducing the constraints (19) to identify the model. 

When we use (20) with (19) we are effectively postulating that y* , rather than y*  , 

has the parametric structure . When the model is scale invariant this has no effect 

as y* and y*  have the same structure. However, when the model is not scale 

invariant y*  and  y*  have different structures and thus fitting the model to y*  

rather than to y*  results in fitting a  more restrictive model. Another way to put it 
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is to say that applying (19) with (20) implies 13 fitting  to the standardized 

variables z*, rather than to the unstandardized variables y*.   

Again, when  is scale invariant, it is irrelevant whether one imposes this 

structure on z* or on y*. But when it is not scale invariant, however, the 

covariance structures of z* and y* have different parametric forms. Thus, when  is 

not scale invariant, imposing this structure on z* will always results in poorer fit 

that imposing the same structure on y*. To illustrate the present discussion, 

consider a n-variate normal distribution y* with mean zero that have been 

dichotomized via a threshold relationship (1). Note that since we are considering 

dichotomous variables, there is only one set of thresholds. The following four 

covariance structures for y* will be considered 

 

where all matrices are diagonal with elements . The covariance structures 

(21) and (22) correspond to the well-known one factor and tau-equivalent models, 

respectively. Using the computer algebra code provided in Appendix 2, one may 

easily verify that (21) is scale invariant, whereas (22), (23), and (24) are not scale 

invariant.  
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By (16), the threshold and correlation structures corresponding to models 

(21) to (24) have elements 

 

 

 

After introducing suitable (if any) identification constraints, any of these 

threshold and correlation structures can be estimated employing (9). In Appendix 3 

we provide computer algebra code in Mathematica (Wolfram, 1999) that will 

enable users to determine whether these threshold and correlation structures are 

locally identified using results of Bekker, Merckens and Wansbeek (1994).  

We shall first consider the one factor model (25). Using the code in 

Appendix 3 we find that n constraints need to be introduced in this model for this 

structure to be identified. The constraint identifies the model. One set of identified 

parameters is therefore 
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Now, because the one factor model is scale invariant using (19) and (20) we can 

reparameterize it as 

 

with diag  The parameterization (30) is considerably more convenient than (29) 

because the parameters of the covariance structure can be estimated in the third 

stage as a correlation structure problem using (14) rather than as a threshold and 

correlation structure problem using (9). Furthermore, the non-linear restrictions in 

(30) are considerably simpler than in (29). The relationship between the 

parameterizations (29) and (30) is given by 

 

Consider now the tau-equivalent model (26). Using computer algebra we find that just one 

constraint needs to be introduced in this model to identify it. The constraint identifies the 

model. Alternatively, the constraint  also identifies the model. If we use  

 to identify the model, (26) becomes 

 

which is identical to (27). But if we substitute 

 

into (30), we also see that (27) is equivalent to (30). Thus, the covariance 

structures (21), (22) and (23) are equivalent when only categorical data is 

observed. This is a remarkable result. We shall now consider the results of 

applying (20) with (19) to a covariance structure that is not scale invariant, such as 
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the tau-equivalent covariance structure (22), in order to estimate it as a correlation 

structure only via (14). In this case, letting . we would estimate a threshold and 

correlation structure with elements 

 

Clearly, (30) and (34) are not equivalent models. Thus, applying (20) with (19) to 

estimate a covariance structure that is not scale invariant from a sample correlation 

matrix results in estimating a different, more restrictive, model than the one 

intended. To what covariance structure for y* corresponds the threshold and 

correlation structure (34)? Consider the covariance structure (24). It can be readily 

verified by substituting 

 

into (34) that (34) and (28) are equivalent, and therefore that by fitting (34) we are 

actually estimating the covariance structure (24).  

We shall now provide a numerical example to illustrate our discussion. The 

covariance structures (21) to (24) will be fitted to a small binary dataset. We chose 

the well studied LSAT 6 dataset (Bock & Lieberman, 1970) for this example. This 

dataset consists of 1000 observations on 5 binary variables. 

The following table summarizes the covariance structures fitted, the 

parameterization employed in their threshold and correlation structure, and how 

they were estimated in the last stage of the sequential procedure employed. 
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To estimate these models, the elements of and their asymptotic covariance matrix , 

were estimated as in Muthén (1978). Parameter estimates, their asymptotic 

standard errors and goodness of fit tests for the structural restrictions  were 

obtained employing DWLS in the third stage as in Muthén, du Toit and Spisic (in 

press). 

 The parameter estimates and standard errors for these models are shown in                   

Table 1. 

------------------------------------ 

Insert Table 1 about here 

------------------------------------ 

The so called models {A, B, C} are equivalent (they are just reparameterizatios of 

each other) and so are models {D, E}. The Satorra-Bentler's scaled statistic for 

assessing the structural restrictions imposed on the threshold and correlation 

structures by models {A, B, C} is Ts = 4.741, 5 d.f., p = 0.448, and for models {D, 

E} is Ts = 5.269, 9 d.f., p = 0.810. A nested test (Satorra and Bentler, 1999) 

reveals that the less restricted models {A, B, C} do not fit significantly better these 

data than the more restricted ones: Tdif = 0.856, 4 d.f., p = 0.931. Furthermore, one 

can verify in Table 1 the equivalencies among the models: Parameter estimates for 
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models A and B are related by (31), for models B and C by (33), and for models D 

and E are by (35). 

 

4.  Estimating a covariance structure model from a sample 

 correlation matrix of continuous variables 

When a covariance structure  is to be estimated from a sample correlation 

matrix one must obtain the population correlation structure associated with the 

covariance structure. We saw in previous sections that there are two ways to do 

this: By using scaling constraints 

 

 

were one can employ (37) if and only if is scale invariant, whereas (36) can be 

used to estimate a covariance structure from a sample correlation regardless of 

whether  is scale invariant or not. The application of (37) to estimate a covariance 

structure that is not scale invariant results in estimating a different and more 

restrictive covariance structure than intended. In any case, not all the parameters in 

" can be estimated, and the same number of  identification constraints must be 

imposed if one uses (36) or (37) to estimate a scale invariant covariance structure. 

To identify (37) one simply needs to enforce Diag, whereas identifying (36) is 

more complex and we provide computer algebra code in Appendix 3 to do so.  

In sum, because in general estimating a covariance structure from a sample 

correlation matrix (a) requires enforcing complex constraints among the 

covariance structure parameters, and (b) not all the parameters of the covariance 
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structure can be estimated, one should not estimate a covariance structure from a 

correlation matrix unless one is forced to do so because only the sample 

correlation matrix is available. When only the sample correlation matrix among 

the observed continuous variables is available, then estimation must proceed under 

multivariate normal assumptions.  

One can estimate the identified subset of  by minimizing a normal theory 

(NT) generalized least squares (GLS) discrepancy function for sample correlations 

(Jennrich, 1970; Browne & Shapiro, 1990). To our knowledge this discrepancy 

function has not been implemented in any standard software package for 

covariance structure analysis. Fortunately, it is not needed to employ a NT 

discrepancy function for sample correlations to correctly estimate a covariance 

structure from sample correlations. One may simply employ a NT discrepancy 

function for sample covariances provided (a) the degrees of freedom are correctly 

computed as  n n q' where q* is the number of identified parameters, and (b) one 

imposes the constraints among the identified parameters  is employed, or Diag if 

(37) is employed. 

Both LISREL and MPLUS can be used to fit scale invariant covariance 

structures to a sample correlation matrix by using (37) enforcing Diag and a NT 

discrepancy function for sample covariances. To our knowledge, the current 

version of EQS can not enforce constraints DiagI and hence, it can not be used to 

correctly estimate a covariance structure from a sample correlation matrix of 

continuous variables. Neither LISREL, MPLUS, nor EQS can enforce the complex 

non-linear constraints implied by (36), and hence, these programs can not be used 
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to estimate a non-scale invariant covariance structure from a sample correlation 

matrix. To illustrate our present discussion numerically, we shall use a sample 

covariance matrix considered by Cudeck (1989) and originally published in 

Jöreskog (1978). The sample covariance matrix and its corresponding correlation 

matrix are given in Table 2. 

------------------------------------ 

Insert Table 2 about here 

------------------------------------ 

Consider a factor analysis covariance structure  . with the following constraints: 

 

Model B is not. Both models are identified if estimated from sample covariances. 

The following table summarizes the various submodels to be fitted. 
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Estimation in all cases was performed by minimizing a maximum likelihood 

discrepancy function for sample covariances. The resulting parameter estimates, 

standard errors and goodness of fit tests are shown in Table 3. 

------------------------------------ 

Insert Table 3 about here 

------------------------------------ 

Consider first Model A. To fit this model from sample correlations, we obtain its 

associated correlation structure using (36). Because the covariance structure is 

scale invariant, when estimating it from a sample correlation matrix exactly n 

elements in can not be estimated. Using the methods given in Appendix 3, we find 

that the constraint I identifies the model. This is submodel A1. Because Model A 

is scale invariant when estimating it from sample covariances or correlations we 

obtain the same (a) goodness of fit, (b) parameter estimates and standard errors for 

scale free parameters (in this case for <) –see  

Cudeck (1989). However, we obtain different parameter estimates for the 

elements of - in A and A1 because these parameters are not scale free. In this 

example, because we have both the sample covariance and correlation matrices we 

can obtain the same parameter estimates  or using correlations than covariances if 

instead of fixing  I when estimating the model from correlations, we fix these 

values at the values estimated using covariances. This is submodel A1 

Note that the standard errors for non-scale free parameters estimated from 

correlations are larger. Finally, because Model A is scale invariant, we can 

alternatively use the reparameterization approach (37) to fit it from sample 
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correlations and estimate the reparameterized matrices of factor loadings (18) and 

uniquenesses (19).  

Consider now Model B. Because it is not scale invariant, in can only be 

estimated from correlations using scaling constraints. Using the methods given in 

Appendix 3, we find that two constraints need to be introduced in the parameter 

vector to estimate it from sample correlations. The constraints '1 % 1,'2 % 1 

identify the model. This is model B1. The goodness of fit of models B and B1 are 

different because model B1 is a constrained version of model B. In fact, B1 is 

equivalent to models A1 and A2. That is, although Models A and B are distinct 

covariance structures, they have equivalent associated correlation structures. 

 

5.  Conclusions 

When fitting a covariance structure from a sample correlation matrix one 

must consider the population correlation structure associated with it under the null 

hypothesis This is obtained by pre and post-multiplying the covariance structure 

specified by the null hypothesis by a model-based diagonal matrix. That is, this 

diagonal matrix consists of the inverse of the square root of the diagonal of the 

covariance structure under consideration. As a result, in general, estimating a  

covariance structure from a sample correlation matrix requires estimating 

complicated non-linear functions of the covariance structure parameters. 

However, it is well known (see for instance Cudeck, 1989) that if the 

covariance structure is scale invariant then one can find a reparameterization of 

this correlation structure that has the same functional form as the covariance 
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structure specified by the null hypothesis. This reparameterization approach to 

estimate covariance structures is greatly preferable from a computational point of 

view, but it is only possible with scale invariant models.   

Furthermore, the goodness of fit indices obtained when estimating a 

covariance structure from sample correlations and from a sample covariances will 

be the same only if the covariance structure is scale invariant because not all the 

parameters of the covariance structure can be estimated from sample correlations. 

Hence the substantive conclusions a researcher may reach if s/he estimates a 

covariance structure that is NOT scale invariant from sample covariances or 

correlations may be different. Hence, assessing whether a covariance structure is 

scale invariant is critical in estimating it from a sample correlation matrix.   

When all the observed variables are categorical these problems can not be 

avoided, as in this case one can only estimate a matrix of sample 

tetrachoric/polychoric correlations. Furthermore, we have shown that in this case 

the common practice of estimating the covariance structure parameters from a 

matrix of sample tetrachoric/polychoric correlations when no restrictions are 

imposed on the thresholds is admissible only if the covariance structure specified 

by the null hypothesis is scale invariant. Otherwise, one estimates a covariance 

structure that is more restrictive than that specified by the null hypothesis. We 

have also shown that to correctly estimate a covariance structure that is not scale 

invariant from categorical observed variables, one has to do so jointly from the 

sample thresholds and tetrachoric/polychoric correlations.  
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Proof of the equivalence of (9) and (14) for scale invariant models 

 

Now, since there is a one-to-one relationship between  and , from the first order 

condition for minimizing (14) 

 

and substituting this into (40), we obtain 

 

where the last equality follows from a well-known result for the inverse of a 

partitioned matrix (e.g., Mardia, Kent & Bibby, p. 459). 

Hence, since 1 2  , when the covariance structure parameters  are estimated 

by minimizing F2 the resulting parameter estimates and their standard errors will 

equal those obtained had these been estimated by minimizing F1. If one is 

interested in estimating the threshold parameters after minimizing F2, from (41) 

one may use  
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Assessing local scale invariance using computer algebra  

Assessing whether  is scale invariant amounts to verifying if we can find an 

alternative parameter vector  such that (11) is satisfied,  under the additional 

conditions that (a)  and  belong to the same parameter space  and (b) the elements 

of the diagonal matrix  are non-zero and distinct elements. Most often  I  a non-

linear function of . In that case, it is very difficult to solve the system of non-linear 

equations (11) unless the model is small, even with the aid of software systems 

capable of performing symbolic computations, such as Mathematica (Wolfram, 

1999). 

Note, however, that  is nested within. Thus assessing scale invariance 

amounts to assessing whether two nested models are equivalent. To do so, we 

may apply a result due to Bekker et al. (1994: Section 2.8) by which, under 

appropriate regularity conditions, and  are locally equivalent (and hence will be 

scale invariant) if and only if 

 

where n is the number of observed variables, and vecs(*) denotes a column vector 

obtained by stacking the lower triangular elements of a matrix, including the 

diagonal, into a column vector. Condition (44) can be very easily verified using a 

software package with symbolic computational capabilities, often for large models. 

Consider the covariance structure models A and B described in Section 4. We shall 

now provide some very simple Mathematica code to assess whether these models 

are scale invariant using (44). The code consists of four parts.  

We first need the following function definitions  
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T[matrix_List] := Transpose[matrix] 

L[matrix_List] := Length[matrix] 

Diag[matrix_List] := Table[If[i == j, matrix[[i, j]], 0], {i, L[matrix]}, {j, 

L[matrix]}] (45) 

VecLow[matrix_List] := Flatten[MapIndexed[Take[#1, First[#2] - 1] &, matrix]] 

VecLowDiag[matrix_List] := Flatten[MapIndexed[Take[#1, First[#2]] &, matrix]] 

VecDiag[matrix_List] := Table[matrix[[i, i]], {i, Length[matrix]}] 

 where VecDiag(*), VecLow(*), and VecLowDiag(*) vectorize the 

diagonal, below the diagonal, and below and diagonal elements of a matrix, 

respectively. Diag(*) simply sets the off-diagonal elements of a matrix equal to 

zero. The second block of the program simply constructs !("). For model A, this 

would simply be  

n = 4; 

la = {{l1,0},{l2,0},{0,l3},{0,l4}}; 

phi = {{1,r},{r,1}}; (46) 

psi = DiagonalMatrix[Table[ToExpression["ps" <> ToString[i]], {i, n}]] 

sigma = la . phi . T[la] + psi:  

 The third block of the program constructs vecs . The latter is accomplished 

by vectorizing  and , putting them together and dropping constants and repeated 

parameters. 

omega=VecLowDiag[sigma];   

Print["This is the parameter vector theta"] (47)  
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theta=Cases[Union[Flatten[la],VecLowDiag[phi],VecDiag[psi]],_Symbol] Finally, 

the fourth block constructs and informs the user of whether  is (locally) scale 

invariant or not by verifying  where F"E  denotes a basis for the nullspace of the 

Jacobian matrix E. 

j =Outer[D,omega,theta]; 

lnu1=L[NullSpace[j]]; 

d=DiagonalMatrix[Table[ToExpression["d"<>ToString[i]],{i,n}]]; 

j2 =Outer[D,VecLowDiag[d . sigma . d],Join[theta,VecDiag[d]]]; (48) 

lnu2=L[NullSpace[j2]]; 

 If[lnu1 + n == lnu2,Print["The covariance structure is scale 

invariant"],Print["The covariance structure is NOT scale invariant Using (45), 

(46), (47) and (48) one may readily verify model A is scale invariant but model B 

is not. 

 

Assessing local model identification using computer algebra 

Following Bekker et al. (1994) a necessary and sufficient condition (under 

appropriate regularity conditions) for the local identification of  in the parametric 

structure . is that the Jacobian matrix  be of full column rank. This condition may 

be verified by  nstructing a basis for the nullspace of E, say F , such that FE0 % 0 , 

and checking that F is an empty set. Whenever the model is not identified, the 

number of constraints we need to introduce in the parameter vector  will be given 

by the rank of F . Furthermore, a zero column in F indicates an identified 

parameter.  
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We shall now provide some very simple Mathematica code to assess 

whether a threshold and correlation structure is locally identified using these 

results. We shall apply it to investigate the identification of the tau-equivalent 

covariance structure (22) for binary data. The code consists of four blocks.  

The first block is simply (45). The second block constructs the threshold 

and correlation structure of the model of interest. In this case, it would be  

In this example, the program reports that none of the parameters is 

identified, and that one constraint must be introduced in the model to identified. At 

this point, one can check whether the estimated F is actually a basis of the 

nullspace of E verifying that Simplify yields a zero matrix, or print F using 

MatrixForm[nu], which in this example yields, Finally, one can fix one of the non-

identified parameters, say G = 1, and re-run the program to verify that the model is 

identified for any number of observed variables n. A word of caution. Because of 

the non-linear constraints (4), finding a basis for the nullspace in these models 

requires considerable computer resources unless the model is small. 
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Chapter - 3 
The Model-Size Effect on Traditional  and   
ModifiedTests of  Covariance Structures 

 

3.1 Introduction. 

In the practice of structural equation modeling (SEM) one can observe that 

an increasing number of large models are estimated; that is, models with lots of 

indicators and latent variables, and consequently in most cases many degrees of 

freedom. This may raise a number of problems. First, it is not always possible and 

it is often too expensive to get large sample sizes needed to estimate such big 

models. Second, the distribution of the large number of observed variables 

involved can rarely be approximated by a multivariate normal density. Third, the 

combination of large models, relatively small sample sizes, and non normal data 

appears to be accountable for the inflated Type I error rates of the traditional 

maximum likelihood ratio test statistic, TML, for global model fit (see, e.g., 

Hoogland, 1999). The apparent consequence—which can be verified from the 

literature—is that in applied SEM, researchers increasingly rely on alternative fit 

measures rather than TML. Decisions and conclusions regarding model fit are 

frequently based on more popular statistics and fit indexes, applying partly 

subjective cutoff criteria. A brief outline of the goals of our study follows. 

It is argued that the effect of model size, measured by the number of 

degrees of freedom d (cf. Kenny & McCoach, 2003), and its interaction with 

sample size requires more attention in applied research, because (a) the model-size 

effect makes investigators more reluctant to report p values of model fit statistics 
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in their studies—even if of no single use—and (b) other popular statistics (e.g., the 

Tucker–Lewis index [TLI], and the root mean square error of approximation 

[RMSEA]) are affected by the inflated values of TML as well. Because relatively 

little is known about the effects of model size on familiar model test statistics, the 

first aim of our study is to quantify the impact of large model size on the finite 

sampling distribution of TML in SEM. In general, for the evaluation of model-size 

effects on model test statistics Type I error rates are of specific, although not of 

single importance.  

Although not very obvious at first glance, a family of chi-square 

corrections introduced by Satorra and Bentler (1988, 1994) might be one 

promising approach to handle the model-size effect. Two of them are the scaled 

(mean-corrected) statistic, TSC, and the adjusted (mean- and variance-corrected) 

statistic, TAD (Satorra & Bentler, 1994, p. 407f), based on theoretical work by 

Bartlett (1937) and Satterthwaite (1941), respectively, and a classical paper by Box 

(1954). It is well known that these corrections have first and foremost been 

developed to make TML robust against effects of nonnormality. It should be 

noted, however, that Satorra and Bentler (2001) suggested (in their abstract) that 

their corrections might also work for small samples and large models, relative to 

distribution-free estimation methods, that is. In addition, the studies by Fouladi 

(2000) and Nevitt and Hancock (2004) provided empirical evidence that, relative 

to TML, these corrections might also improve small-sample performance even 

when the normality assumption is not violated at all. As large models need large 

sample sizes for the asymptotic properties of test statistics to hold (Muthén, 1993, 
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p. 228), it is reasonable to assume that these statistics will also perform well in 

large models. Unfortunately, little is known about the finite-sample behavior of 

TSC and TAD in large models and about the interaction of sample-size and model-

size  effects. Therefore, our second aim is to check whether it is beneficial 

(focusing on Type I error rates as well as on complete distribution functions) to 

favorTSC or TAD over TML for the test of large models even under conditions of 

multivariate normality. In this study we do not consider analyses of nonnormal 

data because, as a baseline, a detailed investigation of the effect of increasing d 

under the normality assumption is needed first. Once more, we included the 

Satorra–Bentler statistics in our research design, not because of their wellknown 

performance for the non normal case (e.g., Hu, Bentler, & Kano, 1992), but 

because they seem to be promising for correcting model-size effects under 

normality conditions as well.  

Another straightforward approach to attack the problem of model size is to 

compute the corresponding Bartlett corrections of the three model fit statistics, 

TMLb, TSCb, and TADb, as proposed by Fouladi (2000) and more recently by 

Nevitt and Hancock (2004). Although Bartlett (1950) developed his type of 

corrections for exploratory factor modeling, these researchers found an acceptable 

performance under conditions of small sample size for general SEM as well. 

Because of the dependency of sample-size requirements on model size, as 

mentioned earlier, it is expected that these corrections might also work in large 

models. Because their behavior in large models is not precisely known, it is 

investigated whether these statistics turn out to be adequate corrections of model-
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size effects. Hence, our third aim is to investigate the Type I error rates produced 

by TMLb, TSCb, and TADb, and to compare them to those of TML, TSC , and 

TAD, respectively, in large models under conditions of multivariate normality.  

A less well-known correction of TML has been developed by Swain 

(1975). According to Browne (1982), this approach “seem[s] to result in an 

improvement of the approximation of the chi-squared distribution” (p. 98). With 

the exception of the Monte Carlo study by Fouladi (2000), to our knowledge the 

finite-sample behavior of this statistic is undocumented. Fouladi found a good 

performance of the statistic, especially for small sample sizes. For similar reasons 

as for the Bartlett corrections, it could be claimed that the corresponding Swain 

corrections TMLs , TSCs , and TADs might yield better Type I error rates 

compared to those of TML, TSC, and TAD. Therefore, the fourth aim of this study 

is to investigate the performance of the Swain corrections in large models under 

multivariate normality.  

In summary, the purpose of our study is (a) to investigate the bias in Type I 

error rates produced by TML; (b) to compare the results of TML with those of 

TSC and TAD; (c) to evaluate the performance of TMLb, TSCb, and TADb; and 

(d) to check whether the behavior of TMLs , TSCs , and TADs is appropriate for 

testing covariance structure models with many degrees of freedom when 

multivariate normality assumptions hold.  

Before we turn to the next section, it is emphasized that a careful 

investigation of TML, TSC, and TAD in large models was demanded by several 

researchers (e.g., Hoogland, 1999; Kenny & McCoach, 2003; Muthén, 1993, p. 
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228; Muthén & Satorra, 1995). To our present knowledge, no systematic Monte 

Carlo study of the behavior of chi-square statistics in very large models exists, 

although the investigation of such models “will probably result in findings that are 

more disappointing regarding the chi-square statistic” (Hoogland, 1999, p. 51). As 

indicated before, an exception is a study on some fit measures (RMSEA, TLI, and 

the comparative fit index [CFI]) by Kenny and McCoach (2003). Two remarks on 

this first investigation of the behavior of fit statistics in large models can be made. 

First, the study aimed at two measures (CFI and TLI) with rather subjective cutoff 

criteria for model fit evaluation, not at the regular chi-square statistic for overall 

model fit. Second, in applied research, model decision criteria for the RMSEA are 

mainly based on practical experience (Browne & Cudeck, 1992, p. 239), which is 

not undisputable: Jöreskog (2005) favored a p value for the test of close fit 

associated with the RMSEA of at least 0.50.  

The article is structured as follows. First, the test statistics under study are 

defined and the corresponding asymptotic theory is presented briefly. Second, 

research hypotheses are developed based on findings of previous simulation 

studies; that is, expectations regarding the behavior of the test statistics under 

study are formulated. Third, based on results from a Monte Carlo research design, 

the expectations are tested and consequences for applied research are deduced. The 

practical implications of our findings are further exemplified by correcting the fit 

of a large structural equation model that was published recently. Finally, some 

limitations of this study and directions of future research are briefly mentioned. 
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3.2   TEST STATISTICS AND THEIR ASYMPTOTIC 

       DISTRIBUTION 

In this section, all test statistics under study are defined and the asymptotic 

theory underlying their distribution is summarized. 

Likelihood Ratio Statistic 

Consider p random variables z (p x 1) with an empirical sample covariance 

matrix S(p x p) based on N = n + 1 independent observations, and a population 

model of underlying relations among these variables with covariance structure 

∑ (θ ) (p x p), where ∑ (t x 1) is the vector of independent model parameters to be 

estimated. If the observed variables z follow a multivariate normal distribution, the 

sample covariance matrix S based on independently and identically distributed 

observations has a Wishart distribution (Anderson, 1958). The maximization of the 

corresponding log-likelihood function, conditional on the sample covariance 

matrix S, is equivalent to minimizing the function 

  

which is a discrepancy function as defined by Browne (1984, p. 64); log denotes 

the natural logarithm here. The parameter vector θ , defining the minimum of FML 

[S;. ∑ (θ )], contains the so-called maximum likelihood estimates of θ . 

Asymptotically, as N goes to infinity, the maximum likelihood estimates are 

normally distributed with expectation vector E. (θ )= θ , and asymptotic 

covariance matrix acov(θ ,θ )=I-1(θ ), the inverted Fisher information matrix of 

order (t x t), which can be estimated (cf. Bollen, 1989, p. 109), yielding estimates 
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of the standard errors of the t parameter estimates as well as estimated covariances 

between those parameter estimates.  

Let ∑ (p x p) denote the population covariance matrix of the p observed 

variables z, ∑ (θ j)  the population covariance matrix implied by a postulated 

model Mj , and let c be an “irrelevant constant” (Bollen, 1989, p. 263). One can 

then test the null hypothesis H0 :∑ = ∑ (θ o); that is, that the postulated model 

holds, with the corresponding log-likelihood function, evaluated at θ o=θ o, 

 

              

 It can then be shown that under H0, the distribution of the likelihood ratio 

statistic, defined as             

 

converges with increasing sample size  1 to a chi-square distribution with 2-t degrees of freedom 

(Wilks, 1938); the likelihood criterionoe  L0=L1 in Equation 4 was introduced by Neyman and 

Pearson (1928).From Equations 1 and 4 it follows that the likelihood ratio test statistic, TML, is by 

definition n times the minimum of the maximum likelihood discrepancy function evaluated . 

Hence, the likelihood ratio test statistic can beused to test whether the proposed model is 

implausible at a given level of significance. In practice, the behavior of this statistic depends, of 

course, on its robustness against violations of underlying assumptions (independent observations, 

multivariate normality with covariance structure , and a large sample size, mainly).  
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Satorra–Bentler Statistics 

Because non normal data are very common in practice, Satorra and Bentler 

(1988, 1994) introduced two corrections to a family of model test statistics, aimed 

to yield distributional behavior that more closely follows the chi-square reference 

distribution that is used in structural equation model testing. Relative to 

distribution-free methods, these statistics can be useful when the sample size is 

small or the estimated model is large (Satorra & Bentler, 2001, p. 507). The 

corrections can, in principle, be applied to a family of test statistics, including the 

normal theory weighted least square model test statistic, TWLSN, as it is used in 

the LISREL program (see Jöreskog, Sörbom, Du Toit, & Du Toit, 2001, Appendix 

A). In this study, we only apply it to TML.  

The mean-corrected, scaled statistic (Satorra & Bentler, 1988, 1994, p. 

407) is defined as 

                     

where matrix A is a slightly complicated function of a matrix of first-order 

derivatives of the ML-discrepancy function to the parameters to be estimated and 

an estimate of the asymptotic covariance matrix of sample covariances (cf. 

Muthén, 2004, Equation 105). If the distribution of z is elliptical, the scaling factor 

d=tr.A in Equation 5 provides an estimate of the common relative kurtosis of z 

(Satorra & Bentler, 1994, p. 407), which implies a correction for non normality. 

As usual, the test statistic TSC is evaluated as having (approximately) a 

chisquare distribution with  C 1/=2  t degrees of freedom. For certain distributions 
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of the observed variables, for example, elliptical ones, the asymptotic distribution 

of TSC is exactly chi-square with d degrees of freedom. In principle, however, the 

correction of TML involves a scaling to the correct mean, so that for general 

distributions asymptotically the first moment of the distribution of TSC is matched 

to the number of degrees of freedom d. Under conditions of multivariate 

normality, TSC has asymptotically an exact chi-square distribution with d degrees 

of freedom, because a multivariate normal density is also elliptical.  

Furthermore, Satorra and Bentler (1988, 1994, p. 408) used a procedure 

developed by Satterthwaite (1941, 1946) to correct not only for the mean but for 

the variance of TML as well. This is possible by an adjustment of the number of 

degrees of freedom to d0, which is the integer closest to a function of the matrix A 

(cf. Muthén, 2004, Equation 110): by definition 

                                

                                 

 It should be noted that the value of d0 may vary from sample to sample. 

Substituting d0 for d in Equation 5, we get (cf. Muthén, 2004, Equation 108): 

which is the adjusted chi-square test statistic; adjusted for mean and variance that 

is. Again, for general distributions of observed variables, TAD has asymptotically 

not an exact chi-square distribution with d0 degrees of freedom, but it matches the 

first- and second-order moment of that distribution (Satorra & Bentler, 1994, p. 

408). For multivariate normal observations, TAD has asymptotically an exact chi-

square distribution with d0 degrees of freedom.  
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It should be stressed that if distributional assumptions or conditions for 

asymptotic robustness hold, both corrections of TML discussed in this section are 

“automatically inactive (asymptotically)” (Satorra & Bentler, 1994, p. 414). 

Notice, however, the adverb in parentheses: asymptotically. It has to be 

reemphasized, that TML also follows a chi-square distribution only asymptotically 

 

.Bartlett-Corrected Statistics 

For exploratory factor analysis models (more specifically, for principal 

components models) Bartlett (1950, 1954) developed a correction of the chi-square 

test statistic for small sample sizes. In general, Bartlett’s correction consists of 

multiplying , where oe is the likelihood ratio criterion of Neyman and Pearson 

(1928), by a scale factor that results in a statistic having the same moments as ¦2, 

ignoring quantities of order n2 (cf. Lawley, 1956). As pointed out by Lawley 

(1956), this scaling device was first employed by Bartlett (1937).  

From Equation 9, it can be seen that Bartlett’s correction for unrestricted 

factor models is a function of the number of latent variables k, the number of 

observed variables p, and the sample size N D n C 1. Fouladi (2000) and Nevitt 

and Hancock (2004) studied the Bartlett correction for the analysis of general 

structural equation models, and applied it to the three model test statistics 

discussed so far, TML, TSC, and TAD. The corresponding Bartlett corrections for 

these statistics are defined as respectively, 
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 where 

 

It follows from Equations 8 and 9 that asymptotically the distribution of the 

Bartlett-corrected statistics matches the asymptotic distributions of TML, TSC, 

and TAD, respectively. The specific form of Equation 9 was derived by Bartlett 

(1950, Equation 3) from expansion of a moment generating function. 

Independently, Box (1949) derived approximations of chi-square statistics for tests 

on correlation matrices identical to those of  Bartlett.  

 

Swain-Corrected Statistics 

As we have emphasized, the Bartlett correction in Equation 9 is the 

appropriate small-sample correction for exploratory or unrestricted factor models 

only. For general covariance structure models, Bartlett’s correction is strictly 

speaking not appropriate. In fact, for each class of models a specific multiplier or 

correction factor would be needed. Because this is quite troublesome for applied 

researchers, Swain (1975) developed four small-sample corrections of TML for 

general covariance structure models. We only study the one that seemed most 

promising among those four; see also Browne (1982, p. 98), who claimed that 

Swain used “heuristic arguments” in proposing these correction factors. It should 

be noted in advance that Swain (1975) is very cautious about the applicability of 

the corrections he proposed: “For any particular model the worth of the forms 

suggested [correction factors of the form 1 � k1=n C O.n�2/, where k1 is a 
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function of p and d] would, of course, have to be carefully evaluated before routine 

application” (p. 78). 

From their basic derivations it is clear that both Bartlett and Swain 

corrections should be considered as multiplying or scale factors of nFMLOES;†. 

O™0/�, not as multipliers of just the discrepancy function FMLOES;†. O™0/�. 

Hence, it would be improper to suggest that these corrections can or should be 

interpreted as a modification of just the sample size. 

  For the special case of maximum likelihood estimation of structural 

equation models that are invariant under a constant scaling factor (cf. Browne, 

1982, p. 77), the most promising small-sample correction of TML introduced by 

Swain (1975) is defined as 

 

where 

      

p is the number of observed variables, d is the number of degrees of freedom,  is 

the sample size, as before. Equations 10 and 11 correspond to Swain’s (1975) 

Equations 4.14 and 4.10. The Swain corrections for the three test statistics TML, 

TSC, and TAD are now, respectively, defined as 
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From Equation 10 it can be seen that Swain’s correction is a function of p, 

d, and N. Because, Equations 10 and 11 can also be written as a function of t 

instead of d, along with p and N, of course (cf. Browne, 1982, p. 98). 

It follows from Equations 10 and 12 that asymptotically the distributions of 

the Swain-corrected statistics match those of TML, TSC, and TAD, respectively 

 

3.3   EXPECTATIONS OF FINITE SAMPLE BEHAVIOR 

In this section we discuss the expected finite sample performance of the 

nine statistics for global model fit in large models, TML, TSC, TAD, TMLb, 

TSCb, TADb, TMLs , TSCs , and TADs , as defined previously. Statistical theory 

does not yield clear guidelines as to the choice among these statistics, nor does it 

help unequivocally to come up with proper, theory-based expectations about the 

issue under investigation (cf. Bentler & Yuan, 1999). In our case, the design of the 

study has two main factors, model size and sample size: The number of latent 

variables in the factor models ranges from 4 to 16, with three indicators for each 

latent variable, and the sample sizes are 200, 400, and 800 (details of the design 

are reported in the next section). In general it can be expected that the behavior of 

the model test statistics will improve with increasing sample size (consistent 

estimators, the functioning of asymptotic theory) for any given model size. 

Generally, it is also expected that the statistics will show improved  

behavior with decreasing model size for a given sample size. There exists 

empirical evidence and arguments for this claim. First, the results of a meta-

analysis by Hoogland (1999, section 3.3) show that the performance of the chi-
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square model statistics improves with a decreasing number of degrees of freedom 

d. Second, there are several rules of thumb in the literature indicating that one 

might need a specific minimal number of observations for each observed variable 

or for each model parameter to be estimated. Such recommendations suggest that 

if the number of observed or latent variables increases, more observations are 

needed to obtain proper estimates. As to the comparison of the test statistics under 

study, statistical theory is not providing solid predictions for their finite sample 

behavior, but in most cases it is possible to contrive expectations about the results 

of our investigations from the findings of previous simulation studies. 

 

Likelihood Ratio Statistic 

Under conditions of multivariate normality, for test statistic TML 

Hoogland (1999) found a trend to an overrejection of true models for N < 400, and 

this tendency increased as models got larger. This finding is supported by other 

simulation studies with various designs (Curran, Bollen, Paxton, Kirby, & Chen, 

2002; Hau & Marsh, 2004; Kenny & McCoach, 2003; Marsh, Hau, Balla, & 

Grayson, 1998). We therefore expect that the empirical rejection rates will be 

inflated more or less seriously for very large models. 

 

Scaled Satorra–Bentler Statistic 

The studies by Hu, Bentler, and Kano (1992), Curran, West, and Finch 

(1996), Bentler and Yuan (1999), Hoogland (1999), Nevitt and Hancock (2001), 

and Hau and Marsh (2004) revealed that the test statistic TSC produces even 
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higher rejection rates than TML when multivariate normal variables are analyzed, 

and this liberal tendency increased with model size as well. Therefore, we expect 

that TSC will perform worse than TML in large models under conditions of 

normality. The explanation for this expected tendency could very well be that TSC 

requires the estimation of the asymptotic covariance matrix of sample covariances, 

which involves estimation of fourth-order moments and the computation of the 

inverse of often huge matrices. 

 

Adjusted Satorra–Bentler Statistic 

There is not a great deal of information about the finite sample behavior of 

TAD in the literature. In a recent Monte Carlo investigation, Asparouhov (2005) 

found the adjusted chi-square statistic to have excellent Type I error rates 

compared to TML and TSC. Fouladi (2000) conducted an extensive simulation 

study with 12 different test statistics and found TAD to outperform all other 

statistics with respect to Type I error rate “under more general non normal 

distributional conditions" (p. 400; cf. p. 371, Table 1). She concluded that TAD 

“shows the most rapid convergence to the nominal level and as such can be used 

with smaller samples than the other procedures” (p. 401). We therefore expect that 

TAD will outperform TML and TSC in large models. 

 

Bartlett-Corrected Statistics  

Fouladi (1999, 2000) and Nevitt and Hancock (2004) examined the 

performance of Bartlett corrections in the context of SEM. The results of Nevitt 
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and Hancock, in particular, indicate that TMLb, TSCb, and TADb tend to 

underestimate the nominal levels when N decreases and when d increases. Based 

on this finding, it is reasonable to expect that the Bartlett corrections will clearly 

underestimate the nominal error levels, when the model to be analyzed is larger 

than the models studied by Nevitt and Hancock (2004), which ranged between d D 

85 and d D 196. 

 

Swain-Corrected Statistics  

To our knowledge, the only study on the Swain correction is the Monte 

Carlo investigation by Fouladi (2000). For the analysis of covariance structures, 

she found that “the normal theory procedures with the best small sample Type I 

error control under conditions of extremely mild distributional non normalitywere  

the 0-factor Bartlett rescaling or Swain rescaling of the standard ML covariance 

structure analysis test statistic" (p. 400). Unfortunately, she only investigated very 

small models with no more than 12 variables. However, as discussed earlier in the 

introductory section, it seems legitimate to expect an improved performance of the 

Swain statistics compared to TML in large models because of its favorable small-

sample properties. 

 

Summary  

In summary, it is expected that TAD will perform better than TML, and 

that TML will be more accurate than TSC for large models under conditions of 

multivariate normality. We do not have much information about the Bartlett and 
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the Swain statistics, but it seems reasonable to expect an improved performance 

compared to TML when the number of degrees of freedom increases. 

Although we formulated expectations based on empirical findings from the 

literature mainly, our study has a partly explorative character. Where appropriate, 

published results are revalidated by our investigations, but we seek to elaborate 

and to generalize them to large structural equation models. 

 

3.4  MONTE CARLO DESIGN 

Sample Size Conditions 

Sample sizes of 200, 400, and 800 are used. It can be problematic to 

investigate sample sizes of N < 200 because it is well known that estimates of 

parameters and standard errors may be biased seriously. Also, non convergence 

problems and Heywood cases are more likely to occur for such small sample sizes 

(Boomsma, 1982, pp. 171, 1985; Boomsma & Hoogland, 2001). In practice, 

getting more observations than 800 is not always possible or too expensive. 

 

Population Models and Model Size 

Most Monte Carlo studies reported in the literature examined very small 

population models; see, for example, Asparouhov (2005) and Fouladi (2000). As 

for the factor models in Hoogland’s (1999) meta-analysis, d ranged from 2 to 98. 

For our study, it was decided to restrict the population models to confirmatory 

factor analysis (CFA) models, because in practice these measurement models are 

most widely applied. 
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In general, a factor model without an intercept term is defined as  DŸ•, 

where is a vector of observed variables, ƒ .  matrix of factor loadings on k common 

factors Ÿ1; Ÿ2; : : : ; Ÿk, and • .p_1/ a vector with unique scores (measurement 

error), where uncorrelated with Ÿ. Under the usual assumptions, the population 

covariance matrix of z has the form where is a diagonal matrix with unique score 

or error variances. 

To study a variety of model sizes, the number of factors k was set at 4, 6, 8, 

10, 12, 14, and 16. Each factor has three indicators, so the number of observed 

variables p ranges from 12 to 48. To achieve identifiable models, the variance of 

each latent construct was fixed to the value of one. Furthermore, the population 

factor loadings were set to 0.70 and the error variance to 0.51 for each indicator. 

The correlation between each pair of factors was set to 0.30. Table 1 gives an 

overview of characteristics of the seven factor models. 

 

Number of Replications 

A total number of NR D 1,200 replications was used. Although 300 

replications would have been a “reasonable trade off between precision, and the 

amount of information to be handled" (Hoogland, 1999, p. 59), it was decided to 

use four times as many replications to lower the standard error of percentages 

presented in Tables 2, 3, and 4 (see next section). For example, under the null 

hypothesis that the nominal value of a 5% significance level holds, the standard 

error of the percentages reported in the cells of these tables equals 0.629%, where 

it would have been twice as large if only 300 replications had been used. 
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Data Generation and Model Estimation 

Multinormal variables were generated to isolate the effect of model size 

(and sample size) on the test statistics, and to set a normal baseline for comparison 

with non normal data in future research. The population covariance matrix of these 

normal variables is defined by the population factor structure of the models under 

study: †.™j /, j D 1; 2; : : : ; 7. Both the generation of the sample data and the 

estimation of the models was performed using the Mplus software program 

(Version 3.11; Muthén & Muthén, 2004). The seed values for the pseudo-random 

draws of samples from the multivariate normal population distributions for each 

cell in the design are listed in Table 1. The starting values for the model parameter 

estimates were fixed at their population values. The factor models were estimated 

using the primary estimation setting of maximum likelihood (ML) in Mplus. For 
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the mean-adjusted and mean- and variance-adjusted estimation of the chi-square 

statistic, the estimation option in Mplus was MLM and MLMV, respectively, 

which are both maximum likelihood procedures. For the statistical analyses of the 

generated model estimates, R software (Version 2.1.1) was used (see, e.g., 

Venables & Smith, 2005). 

 

Statistics 

The sampling distributions of the nine test statistics based on the 1,200 

replications were observed. First, the empirical rejection rates on the 5% Type I 

error level were inspected. A tolerable rejection rate is defined here as one that 

falls in the two-sided 99% adjusted Wald confidence interval estimate, calculated 

as [3.5, 6.8]; see Agresti and Coull (1998). If the observed rejection rate falls 

outside this interval, it is concluded that the population rejection rate differs from 

0.05; that is, rejecting the null hypothesis that the population rejection rate equals 

0.05, using a 1% significance level. A 99% interval estimate was chosen because 

of the large number of replications, hence slightly reducing the power of the test 

compared to a 95% interval estimate. 

Second, by means of a one-sample Kolmogorov–Smirnov test (e.g., 

Birnbaum, 1952) it was tested at a 1% significance level whether the empirical 

sampling distributions of the fit statistics follow the proper theoretical chi-square 

distribution. Because the value of the number of degrees of freedom for ADbased 

test statistics varies over sample covariance matrices, the rounded mean value over 

1,200 replications was used as the number of degrees of freedom of the theoretical 
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chi-square distribution. In Tables 2 through 7, this rounded mean value is shown in 

brackets in column 12; in all cases it was equal to the median value of d0. In 

addition, selected PP and QQ plots (percentile-percentile and quantile-quantile 

plots), were used to illustrate the findings, so as to provide a visual reply to the 

question: How do the deviations from the theoretical chisquare distributions look? 

Information about the discrepancies between empirical and theoretical 

distributions of test statistics, by means of both Kolmogorov–Smirnov tests and PP 

and QQ plots, is reported here for two reasons. First, 5% Type I error rates are 

quite arbitrary; sometimes 1% or 10% significance levels might be preferred. 

Second, in applied research p values of estimated model fit statistics are reported 

quite often, especially if in favor of the postulated model. If we had confined 

ourselves to rejection rate behavior at a 5% significance level, not only would it be 

difficult to generalize results to other significance levels, but also, and more 

important, no information about the empirical distribution function of the statistics 

as compared to the theoretical chi-square distribution would have 

been obtained. 

In the statistical analyses, all 1,200 replications were used for all cells in 

the design, because no convergence problems and no improper solutions occurred 

in model estimation. 

 

3.5   FINDINGS AND RECOMMENDATIONS 

In this section, we first focus on the empirical rejection rates of the nine 

test statistics for model fit and compare them with the rejection rates predicted by 
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asymptotic theory. Second, the sampling distributions of the test statistics are 

compared to the theoretical chi-square distributions by means of a one-sample 

Kolmogorov–Smirnov test. Third, the findings are further visualized by means of 

PP and QQ plots of the empirical sampling distributions of the test statistics. 

Finally, based on the results of these analyses, recommendations are formulated 

for the use of appropriate model test statistics in applied research when large 

models are at stake. In addition, the implications of our findings are briefly 

illustrated by correcting the fit of a recently published applied model. 

 

Type I Error Rates 

The empirical rejection rates were computed across the 1,200 replications. 

The differences of these rejection rates to the nominal 5% value are summarized in 

Table 2 (N D 200), Table 3 (N D 400), and Table 4 (N D 800). Values larger than 

zero indicate that the population model is rejected too frequently, whereas values 

smaller than zero indicate that the corresponding statistic is too conservative. The 

boldfaced numbers in these tables indicate acceptable rejection rates, for nominal ’ 

D 0:05 defined as O’ 2 OE0:035; 0:068�, implying that acceptable difference 

rates in the tables are within the range 1:5%;C1:8%. 

Likelihood ratio statistic. The quantile bias of this statistic reduces with 

increasing sample size and decreasing model size. It can be seen that TML 

performs extremely badly. In fact, the rejection rate is not acceptable for all model 

sizes for a sample size of N D 200 and N D 400. This latter finding is in line with 

research findings of Boomsma (1983, Table 4.4.16, Model 4CM), who analyzed a 
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very similar model. The amount of  this bias is considerable: For the largest model 

with d D 960 and N D 200 the progressive bias is 70.7%. Furthermore, the 

performance is not even acceptable for N D 800 when models with six or more 

factors are analyzed. 

As a consequence of these findings, it is not recommendable to employ 

TML for the test of large models. Although the effect of increasing degrees of 

freedom has been reported frequently, the amount of the bias detected here is quite 

alarming. The effect of increasing degrees of freedom seems to be comparable to 

the effect of testing models with non normal variables. Curran et al. (1996), for 

example, reported empirical rejection rates of 48% for the nominal 5% Type I 

error rate when severely non normal variables (univariate kurtoses of 21.0 and 

skewnesses of 3.0) were analyzed (Curran et al., 1996, p. 22, Table 1). The 

rejection rate bias in our study is similar to the bias reported by these authors. 

Therefore, one could argue that, in both theoretical and applied research, 

theissue of model size should deserve similar attention as the robustness against 

non normality.  

Scaled Satorra–Bentler statistic. Like for TML, the finite sample bias of 

the test statistic TSC reduces with increasing sample size and decreasing model 

size. As expected, and therefore consistent with the results of simulation studies 

mentioned earlier, the performance of TSC is slightly worse compared to that of 

TML. For nearly all investigated sample sizes, the rejection rates are not 

acceptable. For N D 200 and 16 factors, the bias in the empirical rejection rates is 
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76.4%. It follows that the use of TSC is no option for the evaluation of large 

models. 
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 Adjusted Satorra–Bentler statistic. For TAD with N D 200, there is a slight 

tendency of a reduced finite sample bias when model size decreases, but this 

tendency is much weaker compared to that of TML and TSC. For N D 400 and N 

D 800, TAD slightly underestimates nominal Type I error levels when the model 

size increases. Overall, however, the results indicate that TAD clearly outperforms 

TML and TSC for all models under study. The rejection rates on the 5% error level 

are nearly perfect for N D 200 and models with up to 14 factors. Therefore, our 

study revalidates the finding of Fouladi (2000) that test statistic TAD has excellent 

Type I error control. The reason for the good performance of TAD seems to be 

Satterthwaite’s (1941, 1946) variance correction, which adjust the tail of the 

distribution of TML adequately.  

In general, our expectations with respect to the behavior of the mean- and 

variance-adjusted test statistic TAD are not refuted. Recall that Fouladi 

(2000)found that TAD outperforms 12 other statistics with respect to Type I error 

control under various distributional conditions and for different models. Therefore, 

TAD seems to be relatively robust against model size, small sample size, and 

nonnormality. Nevitt and Hancock (2004) seem to be disinclined to recommend 

this statistic, because it slightly underestimates the nominal Type I error rates 

when non normal variables are analyzed. Their conclusions challenge those of 

Fouladi (2000); more research on this issue is therefore necessary. Nevertheless, 

after inspection of the empirical rejection rates, it seems legitimate to use TAD 

with approximately normal data, but a more final judgment will be postponed after 

inspection of the Kolmogorov–Smirnov test results.  
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Bartlett-corrected statistics. All Bartlett statistics underestimate the 

nominal rejection rates with increasing model size. Where most statistics are 

progressive (i.e., the null hypothesis is rejected too often, or the rejection rates are 

too high) for N D 200, the Bartlett corrections show a conservative trend (i.e., the 

null hypothesis is “conserved” too often, the rejection rates are too low). This is 

consistent with our expectation based on the results of  Nevitt and Hancock 

(2004). Compared to TAD, the statistics TMLb, TSCb, and TADb are slightly 

more influenced by model size. Interestingly, TSCb performs better than TMLb. It 

seems that the progressive tendency of TSC dominates for smaller model sizes, 

whereas a general conservative effect of the Bartlett corrections dominates when 

the models get larger. Based on the empirical rejection rate performance only, we 

are slightly hesitant to recommend the use of Bartlett statistics, because these 

statistics are too conservative and do not reveal an adequate Type I error control, at 

least not for large models and small sample sizes.  

Swain-corrected statistics.  The results indicate that TMLs is less affected 

by model size compared to TMLb. The statistic TMLs has appropriate rejection 

rates for N D 200 up to 10 factors. Compared to all other statistics, TMLs is less 

influenced by the model-size effect, especially when the sample size is 400 or 800. 

TSCs performs equally well compared to TSCb. TADs is clearly too conservative. 

Thus, it seems legitimate to use TMLs in applied research, but again, a more final 

judgment will be formulated after looking at the results of the Kolmogorov–

Smirnov test.  
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Intermediate conclusion. To summarize the results presented so far, we 

conclude that (a) TMLs , (b) TAD, and (c) TSCs or TSCb in that order yield the 

best 5% Type I error control in large models. 

 

Kolmogorov–Smirnov Tests 

To check whether the empirical sampling distributions of the test statistics, 

FNR.x/, deviate significantly from their reference chi-square distribution,F with d 

degrees of freedom, the one-sample Kolmogorov–Smirnov test statistic DNR  

supxOE was computed. The DNR values are presented in Table 5 (N D 200), 

Table 6 (N = 400), and Table 7 (N = 800). In the evaluation of test results we 

applied a two-sided 1% significance level. In our case, with NR D 1,200 

replications, the critical value of the DNR statistic at that 1% level equals 

1:63=p1,200 = 0:047 (Massey, 1951). Nonsignificant DNR values, indicating 

closeness of fit, are boldfaced in the tables. 

For the smallest sample size N D 200, TMLs clearly outperforms all other 

statistics for large models. Although significant deviations for the larger models 

are reported, the relatively good performance of TMLs compared to the other 

statistics under study is obvious. The statistic TAD does not perform well, 

although it produced Type I error rates close to those of TMLs . When the sample 

size increases to N = 400, TSCb is the second best statistic. For N = 800, TMLs 

and TSCs are the best performing statistics regarding their expected distributional 

match. 
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PP Plots and QQ Plots 

Graphical comparisons of the sampling distributions of the statistics to 

their reference chi-square distributions are provided to visualize information from 

Tables 2 through 7. Both PP plots and QQ plots are shown because PP plots are 

more sensitive to deviations in the middle of a distribution, whereas QQ plots are 

more sensitive to deviations in its tails (Gnanadesikan, 1977). The plots for TML 

(Figures 1 and 2) are included because TML serves here as the reference statistic 
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to illustrate the potential benefits of using TMLs (Figures 3 and 4). In addition, 

Figures 5 and 6 demonstrate the extremely bad distributional 

 

 

 

performance of TAD: The 5% Type I error rate is approximately correct but the 

overall behavior is clearly deviant. The plots for the smallest model (d = 48) and 

the largest model (d = 960) are shown for the worst case scenario where N = 200. 
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When comparing Figures 1 and 2 to Figures 3 and 4, the disastrous results 

for TML clearly emerge. Overall, TMLs has a very close approximation to the 

reference chi-square distribution. Therefore, we reconfirm our recommendation to 

use this correction of TML in applied research when large structural equation 

models are analyzed. 
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Final Conclusion 

In summary, the best performing statistic with respect to Type I error 

control and the approximation of the reference chi-square distribution is TMLs . 

Therefore, we recommend using this statistic when many (approximately) multi 

normal distributed variables are under study in SEM. From Equations 10 through 

12 it can be seen that the correction will have only a very small effect on the 

chisquare value for smaller models or larger sample sizes. From that perspective it 

would make sense to apply the correction quite generally 

 

Software 

A Retrospective View on Applied Research In the following we briefly 

discuss the consequences of our results for past applied research using large 

covariance structure models. Even if the estimated models in those applications 

were specified correctly, with variables having nearly normal distributions, we 

suspect that the fit of most models was underestimated. Two strategies might have 

been used when small p values of the chi-square model fit statistics occurred. First, 

the chi-square statistic for global model fit might be neglected completely and 

refuge might be taken to other fit statistics (e.g., the RMSEA) or fit indexes (e.g., 

the TLI, the CFI, and the standardized root mean square residual, SRMR). Apart 

from the RMSEA, which is asymptotically based on a non central chi-square 

distribution, research on the distribution of the latter statistics is still at its 

beginning (e.g., Hu & Bentler, 1999; Ogasawara, 2001). The sampling The 

calculation of TMLs is quite easy once the value of TML is available, because 
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Swain’s correction factor is a simple function of known values of p, N, and d or t . 

The p values for the test statistic TMLs are also easily computed with computer 

software, for example with the function pchisq(x,d), where x D TMLs , and d is 

the number of degrees of freedom, from freely available R software (cf. Venables 

& Smith, 2005, section 8.1). Although this is a small effort in practice (the R-

function swain for the calculation of TMLs and its corresponding p value can be 

downloaded from http://www.gmw.rug.nl/_boomsma), we would recommend 

implementing the Swain correction in standard SEM software. 

 

Example 

To illustrate the effects of using TMLs, the value of TML was corrected in 

a recently published article. Ramaswami and Singh (2003) estimated a 

confirmatory factor model with N = 154, k = 13, p = 51, d = 1,147, and t = 179. 

They reported TML = 1,307 with a p value of 0.0007, which would lead to a 

rejection of the model if a formal test was applied at significance levels of 5% or 

10%, say. When the Swain correction is applied, the value of TMLs equals 1,146 

with a relatively large increase of the p value to 0.5034. Hence, the model is 

certainly not rejected when this Swain-corrected test of exact fit is performed. Of 

course, chi-square dependent statistics like the RMSEA are also affected by the 

model-size effect: The RMSEA test statistic for close fit would drop from 

0.0302 (Ramaswami and Singh reported 0.0320) to 0.0000 when using TMLs. 
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3.6  DISCUSSION 

A Retrospective View on Applied Research 

In the following we briefly discuss the consequences of our results for past 

applied research using large covariance structure models. Even if the estimated 

models in those applications were specified correctly, with variables having nearly 

normal distributions, we suspect that the fit of most models was underestimated. 

Two strategies might have been used when small p values of the chi-square model 

fit statistics occurred.  

First, the chi-square statistic for global model fit might be neglected 

completely and refuge might be taken to other fit statistics (e.g., the RMSEA) or fit 

indexes (e.g., the TLI, the CFI, and the standardized root mean square residual, 

SRMR). Apart from the RMSEA, which is asymptotically based on a noncentral 

chi-square distribution, research on the distribution of the latter statistics is still at 

its beginning (e.g., Hu & Bentler, 1999; Ogasawara, 2001). The sampling 

distribution of most fit indexes is just unknown. Researchers therefore rely on 

certain cut-off values for such indexes, that have been recommended in the 

literature (e.g., Hu & Bentler, 1999). These cut-off values are partly arbitrary, and 

moreover, the blindfolded use of such “golden rules” has proven to be inaccurate 

under circumstances (Kaplan, 1988; Marsh, Hau, & Wen, 2004; Saris, Den 

Ronden, & Satorra, 1987). More important, however, is the fact that most fit 

statistics and indexes are also affected by the inflated TML, because they are a 

function of this statistic when maximum likelihood estimation is applied. Given 

the results of our study, it would make sense to substitute TMLs for TML when 
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calculating these fit statistics and fit indexes. For incremental fit indexes it is not 

clear whether the fit statistic for the independence model needs to be adjusted 

similarly; these are issues in need of further research (for first results see Herzog & 

Boomsma, 2006). 

Second, in applied (exploratory) SEM, modification indexes (Sörbom, 

1989) are often used extensively, as a last resort in the search for models that 

cannot be rejected. In many cases, restrictions on covariances among measurement 

errors are removed without interpreting their meaning, or explaining why such 

covariances make sense from a theoretical point of view in the first place. This 

seems to become a common practice, although Jöreskog (1993, p. 297) and many 

others explicitly criticized this kind of pseudo-theory testing. Given our research 

findings, the reliability of such model explorations, with TML as its basis, must be 

questioned even further when at least 12 observed variables are analyzed with 

sample sizes of up to N = 800. 

The results of our study also suggest that it is not unlikely that there may 

have been many studies in the past where correctly specified large models were 

not published, because the models were rejected due to the inflated TML. Such 

phenomena, also labeled “file drawer” problems (e.g., Scargle, 2000), clearly 

attenuate scientific progress. 

 

The N:t Ratio Criterion 

The robustness of model test statistics against model size is not 

unimportant, as our study shows. An obvious overall remedy to avoid the problem 
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of inflated values of test statistics is to increase sample size N relative to the 

number of degrees of freedom d, or to increase N relative to the number of 

parameters to be estimated t , because t can in principle be interpreted as a measure 

of model size as well. Certain rules of thumb regarding an adequate sample size 

relative to the number of parameters t , the N: t ratio, can be found in the literature. 

Bentler (1995), for example, recommended a ratio of at least 5:1 when TML is 

used and the assumption of multivariate normality holds. Although such rules of 

thumb are not without criticism (e.g., Jackson, 2003), we could evaluate our results 

also in terms of the N: t ratio, that is, the relative sample adequacy. The last 

column of Tables 2 through 7 shows the value of this ratio. We can now compare 

our results with earlier N: t recommendations and try to formulate general 

guidelines in terms of relative sample adequacy for proper behavior of model test 

statistics. One should realize, however, that the N: t ratio is a simplifying rule of 

thumb regarding only two of the many factors that matter in a research design. 

Our results clearly show that Bentler’s 5:1 rule of thumb is not sufficient 

for the sampling distribution of TML to be approximately chi-square. Even for our 

smallest model and our largest sample size (d = 48, t = 30, N D = 800), with a N: t 

ratio of 26.7:1, the Kolmogorov–Smirnov test for TML indicates a significant 

deviation from the chi-square reference distribution (see Table 7). For our second 

smallest model (d = 120, t = 51, and N D = 800), a N: t ratio of 15.7:1 is not large 

enough for proper Type I error behavior of TML at the 5% significance level (see 

Table 4). Also, in contrast to Fouladi (2000, p. 401), we would not conclude that 

TAD can be applied under conditions of small N: t ratios. The results in Table 7 
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show that a ratio of 26.7:1 is insufficient for proper behavior of TAD in 

moderately large models when inspecting its sampling distribution as a whole, not 

just its 5% Type I error rates. 

Earlier we discussed evidence that the Bartlett statistics suffer from an 

increasingly conservative trend when model size increases. This effect may be due 

to the fact that these corrections were originally developed for exploratory factor 

analyses and not for general covariance structure analyses. For TSCb, this effect is 

masked by the slightly more liberal tendency of TSC compared to TML. Thus, for 

the models under study here, we do not observe and cannot conclude, unlike Nevitt 

and Hancock (2004), that the Bartlett corrections “frequently delivered acceptable 

Type I error rates at N: t _ 2:1”  

The most salient conclusion of our study is that overall the Swain-corrected 

statistic TMLs performs best. The results in Tables 2 through 7 validate the 

(strong) conclusion that for the models under study, apart from single smallsample 

fluctuations, TMLs is robust against large model size if N: t 2:1 under conditions 

of normality. As will be indicated in the next section, more research is needed to 

investigate the interaction of nonnormality and model size. 

However, although it seems convenient for applied researchers to have 

rules of thumb like N: t (or N: p ratios for that matter) it would be unwise to follow 

these guidelines blindly; compare the sincere warnings of Marsh et al. (1998) and 

Boomsma and Hoogland (2001, p. 142f). First, the mild requirement that for the 

use of TMLs the N: t ratio should be at least 2:1 should certainly not be interpreted 

as an encouragement to always stay away from large models, or to use a small 
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number of indicators per factor, which, as a start, would increase the occurrence of 

non convergent and improper solutions. Second, easy formulated rules of thumb 

regarding the N: t ratio also should not overshadow sample size requirements 

related to the stability of parameter estimates or the size of estimated standard 

errors of parameter estimates, and considerations as to the power of model test 

statistics, either locally or globally. 

 

3.7   Limitations and Future Work  

• It is well known that non normality has an inflating effect on chi-square 

model fit statistics (cf. Boomsma, 1983). It should be investigated how 

well the test statistics, and in particular the Swain-corrected scaled Satorra– 

Bentler statistic, behave in large models under conditions of non normality.   

• This study was confined to factor models. It seems necessary to expand the 

scope of structural equation models under investigation to a broader range. 

For these other types of models a main question is also whether and to 

which extent Bartlett adjustments are effective in comparison with Swain’s 

correction  

• Another issue concerns the specific value of 0.70 of the factor loadings that 

was used in our study. According to the research by Hoogland (1999), the 

rejection rates are more accurate for smaller factor loadings. Maybe the 

same pattern will be observed for the test statistics from our study as well. 

• The test statistic TMLs deserves additional attention from a statistical 

power perspective. After assessing the Type I error rates, future studies 
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should also focus on the power of this corrected test statistic in comparison 

with a few other promising ones. Emphasis would then turn more to Type 

II error rates (cf. Nevitt & Hancock, 2004). 

• As mentioned earlier, the effect of the proposed corrections of TML on 

other fit statistics and indexes, like the RMSEA, the TLI, and the CFI, 

requires further attention. It needs to be investigated to which extent other 

fit measures are affected by corrected global test statistics (for first results 

see Herzog & Boomsma, 2006). The SRMR, in our view a fit measure that 

needs to be inspected in all circumstances, certainly is not. 

• This simulation study emphasized the importance of investigating the finite 

sample behavior of statistics in large models. The disastrous results for 

TML and TSC may raise questions regarding the generalizations made in 

many previous simulation studies. One direction of further investigation 

could be to revisit those studies, and to check whether reported findings 

generalize to larger models. 

• Wakaki, Eguchi, and Fujikoshi (1999) derived a (relatively complex) 

Bartlett adjustment factor for the test of general covariance structures. In a 

first simulation study, this correction significantly improved the 

performance of TML (Kensuke, Takahiro, & Kazuo, 2005). Therefore, it 

would be of interest to compare its performance with that of the statistics 

presented here. 

• Within the framework of Bayesian estimation of structural equation 

models, Lee and Song (2004) made a comparison with the classical, 
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frequentist use of TML, and found that the Bayesian posterior predictive p 

values are less biased compared to the maximum likelihood p values under 

conditions of small sample sizes (cf. Scheines, Hoijtink, & Boomsma, 

1999). They also found that the posterior predictive p values are not 

accurate when non normal variables are analyzed. A comparison of the 

performance of the Bayesian approach to that of TMLs for large models 

would be intriguing 

 

3.8   CONCLUSION 

Some years ago, Kaplan (1988) came to the conclusion that the chi-square 

model statistic “should be taken seriously as a means of formally testing model 

specification" (p. 85). For large models, it has been shown here that researchers 

should seriously consider corrected model test statistics if such a formal approach 

of model testing is being taken. Otherwise, biased inference might be an 

undesirable consequence. If this problem is acknowledged, and proper corrections 

are indeed applied, there are enough obstacles to clean inference left (cf. Jöreskog, 

1993). 
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Chapter - 4 
Modeling covariance structure in the analysis of 

repeated measures data 
 

1.  INTRODUCTION 

Statistical linear mixed models state that observed data consist of two parts, 

fixed effects and random effects. Fixed effects define the expected values of the 

observations, and random effects define the variance and covariances of the 

observations. In typical comparative experiments with repeated measures, subjects 

are randomly assigned to treatment groups, and observations are made at multiple 

time points on each subject. Basically, there are two fixed effect factors, treatment 

and time. Random effects result from variation between subjects and from 

variation within subjects Measures on the same subject at different  times almost 

always are correlated, with measures taken close together in time being more 

highly correlated than measures taken far apart in time. Observations on different  

subjects are often assumed independent, although the validity of this assumption 

depends on the study design. Mixed linear models are used with repeated measures 

data to accommodate the fixed effects of treatment and time and the covariation 

between observations on the same subject at different times. Cnaan et al. [1] 

extensively discussed the use of the general linear mixed model for analysis of 

repeated measures and longitudinal data. They presented two example analyses, 

one using BMDP 5V [2] and the other using PROC MIXED of the SAS System 

[3]. Although Cnaan et al. discussed statistical analyses in the context of 
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unbalanced data sets, their description of modelling covariance structure also 

applies to balanced data sets. 

The objectives of repeated measures studies usually are to make inferences 

about the expected values of the observations, that is, about the means of the 

populations from which subjects are sampled. This is done in terms of treatment 

and time effects in the model. For example, it might be of interest to test or 

estimate difference between treatment means at particular times, or difference 

between means at deferent times for the same treatment. These are inferences 

about the fixed effects in the model. 

Implementation of mixed models ordinarily occurs in stages. Deferent data 

analysts may use deferent sequences of stages. Ideally, deferent data sets would be 

used to choose model form and to estimate parameters, but this is usually not 

possible in practice. Here we present the more realistic situation of choosing model 

form using data to be analysed. We prefer a four stage approach, which is similar 

to recommendations of others, such as Diggle [4] and Bollinger [5]. 

The first stage is to model the mean structure in sufficient generality to 

ensure unbiasedness of the _xed eject estimates. This usually entails a saturated 

parameter specification for fixed effects, often in the form of effects for treatment, 

time, treatment-by-time interaction, and other relevant covariables. The second 

stage is to specify a model for the covariance structure of the data. This involves 

modelling variation between subjects, and also covariation between measures at 

deferent times on the same subject. In the third stage, generalized least squares 

methods are used to _t the mean portion of the model. In the fourth stage the fixed 
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effects portion may be made more parsimonious, such as by fitting polynomial 

curves over time. Then, statistical inferences are drawn based on fitting this final 

model.  

 In the present paper, we illustrate the four-stage process, but the major 

focus is on the second stage, modelling the covariance structure. If the true 

underlying covariance structure were known, the generalized least squares mixed 

effects estimates would be the best linear unbiased estimates (BLUE). When it is 

unknown, our goal is to estimate it as closely as possible, thus providing more 

efficient estimates of the fixed effects parameters. The MIXED procedure in the 

SASJ system [3] provides a rich selection of covariance structures from which to 

choose. In addition to selecting a covariance structure, we examine the effects of 

choice of covariance structure on tests of fixed effects, estimates of differences 

between treatment means, and on standard errors of the differences between 

means. 

 

2.  EXAMPLE DATA SET 

A pharmaceutical example experiment will be used to illustrate the 

methodology. Objectives of the study were to compare effects of two drugs (A and 

B) and a placebo (P) on a  
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MODELLING COVARIANCE STRUCTURE FOR REPEATED 

MEASURES DATA 

 

 

 

 

 

 

 

 

 

measure of respiratory ability, called FEV1. Twenty-four patients were assigned to 

each of the three treatment groups, and FEV1 was measured at baseline  

(immediately prior to administration of the drugs), and at hourly intervals 

thereafter for eight hours. Data were analysed using PROC MIXED of the SAS 

System, using baseline FEV1 as a co-variable. An SAS data set, named 

FEV1UN1, contained data with variables DRUG, PATIENT, HR (hour), 

BASEFEV1 and FEV1. Data for individual patients are plotted versus HR in 

Figure 1 for the three treatment groups. The drug curves appear to follow a classic 

pharmacokinetic pattern and thus might be analysed using a non-linear mean 

model. However, we will restrict our attention to models of the mean function 

which are linear in the parameters. Estimates of between-patient variances within 

drug group at each hour are printed  
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 Figure 2. FEV1 repeated measures means for each drug. in the diagonal of 

the matrix of Table I. It appears from these plots and variance estimates that 

variances between patients within drug groups are approximately equal across 

times. Therefore, an assumption of equal variances seems reasonable. 

Treatment means are plotted versus HR in Figure 2. The graph shows that 

means for the three treatment groups are essentially the same at HR =0 (baseline). 

At HR =1 the mean for drug B is larger than the mean for drug A, and both of the 

drug means are much larger than the placebo mean. Means for drugs A and B 

continue to be larger than the placebo means for subsequent hours, but the 

magnitudes of the differences decrease sharply with time. It is of interest to 

estimate differences between the treatment group means at various times, and to 

estimate differences between means for the same treatment at different times. 

Co-variances and correlations are printed above and below the diagonal, 

respectively, of the matrix in Table I. The correlations between FEV1 at HR =1 

and later times are in the first column of the matrix. Correlations generally 

decrease from 0.893 between FEV1 at HR =1 and HR =2 down to 0.642 between 

FEV1 at HR =1 and HR =8. Similar decreases are found between FEV1 at HR =2 

and later times, between FEV1 at HR =3 and later times etc. In short, correlations 

between pairs of FEV1 measurements decrease with the number of hours between 

the times at which the measurements were obtained. This is a common 

phenomenon with repeated measures data. Moreover, magnitudes of correlations 

between FEV1 repeated measures are similar for pairs of hours with the same 

interval between hours. Scatter plots of FEV1 for each hour versus FEV1 at each 
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other hour are presented in Figure 3. These are similar to the `draftsman's' plots as 

described by Dawson et al. [6]. The trends of decreasing correlations with 

increasing interval between measurement times is apparent in the plots. That is, 

points are more tightly packed in plots for two measures close in time than for 

measures far apart in time. 

As a consequence of the patterns of correlations, a standard analysis of 

variance as prescribed in Milliken and Johnson [7] is likely not appropriate for this 

data set. Thus, another type of analysis must be used. 

MODELLING COVARIANCE STRUCTURE FOR REPEATED 

MEASURES DATA 
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3.  LINEAR MIXED MODEL FOR REPEATED MEASURES 

In this section we develop the general linear mixed model to a minimally 

sufficient level that will allow the reader to effectively begin using PROC MIXED 

of the SAS System. The development here is consistent and somewhat overlapping 

with that of Cnann et al. [2], but is needed for completeness. We assume a 

completely randomized design for patients in g treatment groups, with ni subjects 

assigned to group i. Thus, we assume data on different subjects are independent. 

For simplicity, we assume there are t measurements at the same equally spaced 

times on each subject. We choose to work in this nicely balanced situation so that 

we can illustrate the basic issues of modelling covariance structure without 

complications introduced by unbalanced data.  

Let Yijk denote the value of the response measured at time k on subject j in 

group i; i=1,…., g, j=1,…., ni, and k =1,…., t. Throughout this paper, we assume 

all random effects are normally distributed. The fixed effect portion of the general 

linear mixed model specifies the expected value of Yijk to be E(Yijk)= µijk . The 

expected value, µink , usually is modelled as a function of treatment, time, and 

other fixed effects covariates. The random effect portion of the model specifies the 

covariance structure of the observations. We assume that observations on different 

subjects are independent, which is legitimate as a result of the completely 

randomized design. Thus, cov(Yijk; Yi’j’l)=0 if i´≠i´ or j ≠j´. Also, we assume that 

variances and covariances of measures on a single subject are the same within each 

of the groups. However, we allow for the possibility that variances are not  
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homogeneous at all times, and that covariance between observations at different 

times on the same subject are not the same at all pairs of times. A general 

covariance structure is denoted as cov(Yijk; Yijl)=σk,l, where σk,l is the covariance 

between measures at times k and l on the same subject, and σk,k =σ2
k denotes the 

variance at time k. This is sometimes called `unstructured' covariance, because 

there are no mathematical structural conditions on the variances and covariances. 

 

 

where  is the vector of means and εij =( 

εij1,εij2,….., εij t)´ is the vector of errors, respectively, for subject j in group i. 

Matrix representations of the expectation and variance of Yij are E(Yij)=µij and 

V(Yij)=Vij , where Vij is the t ×t matrix with σk,l in row k, column l. We assume 

that Vij is the same for all subjects (that is, for all i and j), but we continue to use 

the subscripts ij to emphasize that we are referring to the covariance matrix for a 

single subject. 

 We represent the vector of data for all subjects as Y=(Y´11,…..,Y´ 

1n,Y´21,….,Y´ 2n,…..,Y´g1,….., Y´gn) ´, and similarly for the vectors of expected 

values and errors to get E(Y)=µ=( µ´11,……,µ1n, µ´21,…, µ´2n,….., µ´g1, ….., µ´gn)´ 

and ε =(ε´11, ….. , ε´1n; ε´21,…… , ε´2n,……, ε´g1,……, ε´gn) ´. Then we have the 

model 
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where diag{Vij} refers to a block-diagonal matrix with Vij in each block. 

A univariate linear mixed model for the FEV1 repeated measures data is 

 where µ is a constant common to all observations, λ is a fixed coefficient 

on the covariate xij =BASEFEV1 for patient j in drug group i, αi is a parameter 

corres ponding to drug i,τk is a  parameter corresponding to hour k, and (ατ)ik is an 

interaction parameter  corresponding to drug i and hour k; dij is a normally 

distributed random variable  with mean zero and variance σ2d cor- responding to 

patient j in drug group i, and  eijk is a normally distributed random variable with 

me an zero and variance, independent of dij , corresponding to patient j in drug 

group i at hour k. Then 

 

 

 

 

 

 

where X is a matrix of known coefficients of the 

fixed effect parameters  the vector of fixed effect 

parameters, Z is a matrix of coefficients 

(zeros and ones) of the random patient effects dij ;U is the vector of random effects 

dij , and e is the vector of the errors eijk. In relation to model  
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Model (4) for the FEV1 data is a special case of the general linear mixed 

model 

 

 

in which no restrictions are necessarily imposed on the structures of G=V(U) and 

R=V(e). We assume only that U and e are independent, and obtain Equation (6) 

expresses the structure of V(Y) as a function of G and R. In many repeated 

measures applications, ZGZ0 represents the between-patient portion of the 

covariance structure, and R rep-resents the within-patient portion. By way of 

notation, sub-matrices of X;Z;R and e corresponding to subject j in drug group i 

will be denoted by Xij ;Zij ;Rij and eij , respectively. 

More details on implementation of the model for statistical inference are 

presented in the 

 

In order to apply the general linear mixed model (5) using PROC MIXED 

in the SAS System, the user must specify the three parts of the model  

and e. Specifying X_ is done in the same manner as with PROC GLM, and 

presents no new challenges to PROC MIXED users who are familiar with GLM. 

However, specifying ZU and e entails de_ning covariance structures, which may 

be less familiar concepts. Several covariance structures are discussed in Section 4. 
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4.  COVARIANCE STRUCTURES FOR REPEATED MEASURES 

Modelling covariance structure refers to representing V(Y) in (6) as a 

function of a relatively small number of parameters. Functional specification of the 

covariance structure for the mixed model is done through G and R of (5), often 

only in terms of Rij . We present six covariance structures that will be fitted to the 

FEV1 data. Since observations on different patients are assumed independent, the 

structure refers to the covariance pattern of measurements on the same subject. For 

most of these structures, the covariance between two observations on the same 

subject depends only on the length of the time interval between measurements 

(called the lag), and the variance is constant over time. We assume the repeated 

measurements are equally spaced so we may define the lag for the observations 

Yijk and Yijl to be the absolute value of k − l, that is |k − l|. For these structures, the 

covariance can be characterized in terms of the variance and the correlations 

expressed as a function of the lag. We generically denote the correlation function 

corrXXX(lag), where XXX is an abbreviation for the name of a covariance 

structure. 

 

4.1.  Simple (SIM) 

  

 

Simple structure specifies that the observations are independent, even on 

the same patient, and have homogeneous variance V(Yijk)= σ2 SIM. The correlation 

function is corrSIM(lag)=0. Simple structure is not realistic for most repeated 
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measures data because it specifies that observations on the same patient are 

independent. In terms of model (5), G=0 and Rij = σ2 
SIMI, where I is an identity 

matrix. For the model (3), simple structure would be obtained with dij =0 

(equivalently, 

 

 

4.2.  Compound Symmetric (CS) 

  

 

Compound symmetric structure specifies that observations 

on the same patient have homogeneous covariance and 

homogeneous variance V(Yijk)=_2 CS; b + _2 CS;w. The correlation function is 

  

 

Notice that the correlation does not depend on the value of lag, in the sense 

that the correlations between two observations are equal for all pairs of 

observations on the same subject. Compound symmetric structure is sometimes 

called `variance components' structure, because the two parameters and 

 represent between-subjects and within-subjects variances, respectively. This 

mix of between- and within-subject variances logically motivates the form of 

V(Yij) in many situations and implies a non-negative correlation between pairs of 

within-subject observations. It can be specified in one of two ways through G and 

R in (5). One way is to define and . In terms of the univariate 
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model (3), we would have , 

The other way to specify compound symmetric 

structure is to define G=0, and define Rij to be compound symmetric; for example, 

, where J is a matrix of ones. In terms of the 

univariate model (3), we would have for k 

≠l, and V(eijk)=  The second formulation using only the R 

matrix is more general, since it can be defined with negative within-subject 

correlation as well.  

 

4.3. Autoregressive, order 1 (AR(1)) 

  

 

Thus, observations on the same patient far apart in time would be 

essentially independent, which may not be realistic. Autoregressive structure is 

de_ned in model (5) entirely in terms of R, with G=0. The element in row k, 

column l of Rij is denoted to be  σ2AR(1) ρ|k−l| AR(1). In terms of the univariate model 

(3), we would have σ2d =0, and cov(eijk,eijl)= σ2AR(1) ρ|k−l| 
AR(1). 

 

4.4.  Autoregressive with random e_ect for patient (AR(1)+RE) 
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Autoregressive with random effect for patient covariance structure 

specifies homogeneous variance The correlation fun  Autoregressive 

plus random effects structure specifies that covariance between observations on 

the same patient comes from two sources. First, any two observations share a 

common contribution simply because they are on the same 

subject. This is the  portion of the covariance, and results from defining a random 

e_ect for patients. Second, the covariance between observations decreases 

exponentially with lag, but decreases only to  This is the autoregressive 

contribution to the covariance  In terms of model (5), 

AR(1)+RE is represented with  and autoregressive Rij 

. In terms of the univariate model (3), we would have   

and cov(eijk; eijl)=  The AR(1)+RE covariance structure 

actually results from a special case of the model proposed by Diggle [4].  

 

4.5.  Toeplitz (TOEP) 

cov(Yijk; Yijl)= σTOEP, |k−l|, V(Yijk)= σ2
TOEP 

Toeplitz structure, sometimes called `banded', specifies that covariance 

depends only on lag, but not as a mathematical function with a smaller number of 

parameters. The correlation function is corr(lag)= σTOEP |lag|= σ2
TOEP. In terms of 

model (5), TOEP structure is given with G=0. The elements of the main diagonal 

of R are _2 TOEP. All elements in a sub-diagonal |k−l|=lag are σTOEP  |k−l|, 

where k is the row number and l is the column number. 
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4.6. Unstructured (UN) 

  

 

The `unstructured' structure specifies no patterns in the covariance matrix, 

and is completely general, but the generality brings the disadvantage of having a 

very large number of parameters. In terms of model (5), it is given with G=0 and a 

completely general Rij . 

 

5.  USING THE MIXED PROCEDURE TO FIT LINEAR MIXED 

 MODELS 

We now turn to PROC MIXED for analyses of the FEV1 data which _t the 

mean model (3) and accommodate structures defined on the covariance matrix. We 

assume the reader has some familiarity with the SAS System, and knows how to 

construct SAS data sets and call SAS procedures. 

The general linear mixed model (5) may be fit by using the MODEL, 

CLASS, RANDOM and REPEATED statements in the MIXED procedure. The 

MODEL statement consists of an equation which specifies the response variable 

on the left side of the equal sign and terms on the right side to specify the fixed 

effects portion of the model, X . Readers familiar with the GLM procedure in 

SAS will recognize the RANDOM and REPEATED statements as being available 

in GLM, but their purposes are quite different in MIXED. The RANDOM 

statement in MIXED is used to specify the random effects portion, ZU, including 

the structure of V(U)=G. The REPEATED statement in MIXED is used to specify 
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the structure of V(e)=R. Also, the MODEL statement in MIXED contains only 

fixed effects, but in GLM it contains both fixed and random effects. The CLASS 

statement, however, has a similar purpose in MIXED as in GLM, which is to 

specify classification variables, that is, variables for which indicator variables are 

needed in either X or Z. The CLASS statement in MIXED also is used to identify 

grouping variables, for example, variables that delineate the submatrices of block 

diagonal G or R. 

In the FEV1 data, PATIENT and DRUG are clearly classification 

variables, and must be listed in the CLASS statement. The variable HR (hour) 

could be treated as either a continuous or a classification variable. In the first stage 

of implementing the linear mixed model, the mean structure E(Y)=X  usually 

should be fully parameterized, as emphasized by Diggle [4]. Underspecifying the 

mean structure can result in biased estimates of the variance and covariance 

parameters, and thus lead to an incorrect assessment of covariance structure. 

Therefore, unless there are a very large number of levels of the repeated measures 

factor, we usually specify the repeated measures factor as a classification variable. 

Thus, we include the variable HR in the CLASS statement  class drug patient hr; 

On the right side of the MODEL statement, we list terms to specify the 

mean structure (3) model fev1=basefev1 drug hr drug _ hr Executing the 

statements proc mixed data=fev1uni; class drug patient hr;  (7) model fev1= 

basefev1 drug hr drug _ hr; would provide an ordinary least squares _t of the 

model (3). Results would be equivalent to those obtained by executing the CLASS 

and MODEL statements in (7) using PROC GLM. All tests of hypotheses, 
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standard errors, and con_dence intervals for estimable functions would be 

computed with an implicit assumption that V(Y)= σ2I, that is, that G=0 and that 

R= σ2I. 

Specifying the MODEL statement in (7) is basically stage 1 of our four-

stage process. Stage 2 is to select an appropriate covariance structure. The 

covariance structures described in  Section 3 may be implemented in PROC 

MIXED by using RANDOM and=or REPEATED statements in conjunction with 

the statements (7). These statements cause PROC MIXED to compute Residual 

Maximum Likelihood (REML, also known as restricted maximum likelihood) 

or Maximum Likelihood (ML) (Searle et al. reference [8], chapter 6) estimates of 

covariance parameters for the specified structures. 

 Several options are available with the REPEATED and RANDOM 

statements, and would be specified following a slash (=). Following is a list of 

some of the options, and a brief description 
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We now present statements to produce each of the covariance structures of 

Section 3. Basic output from these statements would include a table of estimates of 

parameters in the specified covariance structure and a table of tests of fixed 

effects, similar to an analysis of variance table. In each of the REPEATED 

statements, there is a designation `SUBJECT=PATIENT (DRUG)'. This specifies 

that R is a block diagonal matrix with a sub-matrix for each patient. In this 

example, it is necessary to designate PATIENT (DRUG) because patients are 

numbered 1{24 in each drug. If patients were numbered 1{72, with no common 

numberings in different drugs, it would be sufficient to designate only `PATIENT'. 

The options R and RCORR are used with the REPEATED statement and V and 

VCORR are used with the RANDOM statement to request printing of covariance 

and correlation matrices. 

 

5.1 Simple 

This is the default structure when no RANDOM or REPEATED statement 

is used, as in statements (7), or when no TYPE option is specified in a RANDOM 

or REPEATED statement. It can be specified explicitly with a REPEATED 

statement using a TYPE option: 

 proc mixed data=fev1uni; 

 class drug patient hr;  

 model fev1=basefev1 drug hr drug * hr; (8) 

 repeated/type=vc subject=patient(drug) r corr;  
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Note that in SAS version 6.12, the option `simple' can replace `vc' in the 

REPEATED statement. 

 

5.2.  Compound Symmetric 

 As noted in the previous section, compound symmetric covariance 

structure can be specified two different 

ways using G or R. Correspondingly, it can be implemented two different ways in 

the MIXED procedure, which would give identical results for non-negative within-

subject correlation, except for labelling. The first way, setting is implemented with 

the RANDOM statement: 

The RANDOM statement defines and the absence of a REPEATED 

statement (by default) defines The second way, setting G=0 and 

Rij = is implemented with a REPEATED statement using a 

SUBJECT and TYPE options.  The following statements would specify compound 

symmetric structure for each individual patient, and print the Rij submatrix for one 

patient in both covariance and correlation forms: 

The PROC MIXED output from statements (10) is shown in Figure 4, so that the 

reader can relate it to the parts we summarize in tables. 
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5.3.  Autoregressive, order 1 

 This covariance structure would be specified for each patient using a 

REPEATED statement: 

 

5.4.  Autoregressive with random effect for patient 

This covariance structure involves both G and R, and therefore requires 

both a RANDOM and a REPEATED statement: 

 

 

 

The RANDOM statement defines and the REPEATED statement 

defines Rij to be autoregressive, with parameters  

Notice that we have no R and RCORR options in the 

REPEATED statement in (12). Covariance and correlation estimates that would be 

printed by R and RCORR options in (12) would not be directly comparable with 

the other covariance's and correlations for other structures that are defined by 

REPEATED statements without a RANDOM statement. Covariance and 

correlation estimates that would be printed by R and RCORR options in the 

REPEATED statement in (12) would pertain only to the R matrix. Estimates for 

AR(1)+RE structure which are comparable to covariances and correlations for 

other structures must be based on covariances of the observation vector Y, that is, 
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on V(Y)=ZGZ’ + R. This could be printed by using V and VCORR options in the 

RANDOM statement in (12). However, the entire ZGZ’ + R matrix, of dimension 

576×576, would be printed. Alternatively, the statements (13) could be used, 

which are the same as (12) except for the RANDOM statement, but would print 

only ZijGZ’ ij + Rij , of dimension 8×8. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Basic PROC MIXED output for compound symmetric  

covariance structure. 
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Executing statements (13) results in the covariance and corresponding 

correlation estimates for AR(1)+RE structure shown in Table II. The RANDOM 

statement in (13) defense ZU in (5) equivalent to the RANDOM statement in (12), 

but from an `individual subject' perspective rather than a `sample of subjects' 

perspective. The RANDOM statement in (12) basically defines column soft Z as 

indicator variables for different patients. The RANDOM statement in (13), with 

the `int/sub=patient(drug)' designation, defines a set of ones as `intercept' 

coefficients for each patient. 
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The covariance and correlation matrices resulting from statements (8), (10), 

(11), (13) and (14) are summarized in Table II. Rather than printing the entire 

matrices, covariances and correlations are displayed as a function of lag for SIM, 

CS, AR(1), AR(1)+RE and TOEP structures. Covariances and correlations 

resulting from (15) are printed in Table I. 
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6.  COMPARISON OF FITS OF COVARIANCE 

 STRUCTURES 

We discuss covariance and correlation estimates in Table II for the 

structured covariances in comparison with those in Table I for the unstructured 

covariances. First, simple and compound symmetric estimates in Table II clearly 

do not reflect the trends in Table I. Autoregressive estimates in Table II show the 

general trend of correlations decreasing with length of time interval, but the values 

of the correlations in the autoregressive structure are too small, especially for long 

intervals. Thus, none of SIM, CS or AR(1) structures appears to adequately model 

the correlation pattern of the data. The AR(1)+RE correlations in Table II show 

good agreement with TOEP estimates in Table II and UN estimates in Table I. 

Generally, we prefer a covariance model which provides a good _t to the UN 

estimates, and has a small number of parameters. On this principle, AR(1)+RE is 

preferable. 

The correlogram (Cressie, reference [9], p. 67) is a graphical device for 

assessing correlation structure. It is basically a plot of the correlation function. 

Correlation plots are shown in Figure 5 based on estimates assuming UN, CS, 

AR(1), AR(1)+RE and TOEP structures. Plots for CS, AR(1), AR(1)+RE and 

TOEP may be considered correlogram estimates assuming these structures. Of 

these correlations which are a function only of lag, the TOEP structure is the most 

general, and thus is used as the reference type in Figure 5. These plots clearly 

show that the plot of the AR(1)+RE structure agrees with TOEP and is superior to 

the plots of CS and AR(1). 
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Akaike's information criterion (AIC) [10] and Schwarz's Bayesian criterion 

(SBC) [11] are indices of relative goodness-of-_t and may be used to compare 

models with the same fixed effects but different covariance structures. Both of 

these criteria apply rather generally for purposes of model selection and hypothesis 

testing. For instance, Kass and Wassermann [12] have shown that the SBC 

provides an approximate Bayes factor in large samples. Formulae for their 

computation are 

 

 

 

 

 

 

  

 

 

 

 

 where L(ο ˆ) is the maximized log-likelihood or restricted log-likelihood 

(REML), q is the number of parameters in the covariance matrix, p is the number 

of fixed effect parameters and N*  is the total number of `observations' (N for ML 

and N − p for REML, where N is the number of subjects). 



 - 105 -

Models with large AIC or SBC values indicate a better fit. However, it is 

important to note that the SBC criterion penalizes models more severely for the 

number of estimated parameters than does AIC. Hence the two criteria will not 

always agree on the choice of `best' model. Since our objective is parsimonious 

modelling of the covariance structure, we will rely more on the SBC than the AIC 

criterion. 

 AIC and SBC values for the six covariance structures are shown in Table 

III. `Unstructured', has the largest AIC, but AR(1)+RE, `autoregressive with 

random effect for patient', has the largest SBC. Toeplitz ranks second in both AIC 

and SBC. The discrepancy between AIC and SBC for the UN structure reflects the 

penalty for the large number of parameters in the UN covariance matrix. Based on 

inspection of the correlation estimates in Tables I and III, the graphs of Figure 5, 

and the relative values of SBC, we conclude that AR(1)+RE, `autoregressive with 

random effect for patient', is the best choice of covariance structure. 

 

7.  EFFECTS OF COVARIANCE STRUCTURE ON TESTS 

 OF FIXED EFFECTS, ESTIMATES OF FIXED EFFECTS 

 AND STANDARD ERRORS OF ESTIMATES 

In Section 6 we compared the correlation and covariance matrices 

produced by five choices of covariance structure. In this section we examine the 

effects of choices of covariance structure on tests and estimates of fixed effects. 

First, we examine the table of tests for fixed effects specified in the MODEL 

statements. Then we select a set of 15 comparisons among means and use the ES- 
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TIMATE statement to illustrate effects of covariance structure on estimates of 

linear combinations of fixed effects. 

Table IV contains values of F tests for fixed effects that are computed by 

the MIXED procedure for each of the covariance structures specified in (8), (10), 

(11), (13), (14) and (15). The F values differ substantially for SIM, CS and AR(1) 

structures. These are the structures that did not provide good fits in Section 6. 

Failure of SIM to recognize between-patient variation results in the excessively 

large F values for BASEFEV1 and DRUG, which are between patient effects. 

Using CS structure produces essentially the same results that would be obtained by 

using a univariate split-plot type analysis of variance (Milliken and Johnson, 

reference [7], chapter 26). It results in excessively large F values for HR and 

DRUG_ HR. This is a well-known phenomenon of 

 

performing univariate analysis of variance when CS (actually, Hyunh{Feldt [13]) 

assumptions are not met. It is basically the reason for making the so-called 

Hyunh{Feldt [13] and Greenhouse {Geisser [14] adjustments to ANOVA p-values 

as done by the REPEATED statement in PROC GLM [15]. F values for tests of 

HR and DRUG_HR using AR(1) structure are excessively small due to the fact 

that AR(1) underestimates covariances between observations far apart in time, and 
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thereby overestimates variances of differences between these observations. Results 

of F tests based on AR(1)+RE, TOEP and UN covariance are similar for all fixed 

effects. All of these structures are adequate for modelling the covariance, and 

therefore produce valid estimates of error. 

Now, we investigate effects of covariance structure on 15 linear 

combinations of fixed effects, which are comparisons of means. The first seven 

comparisons are differences between hour 1 and subsequent hours in drug A; these 

are within-subject comparisons. In terms of the univariate model (2), they are 

estimates of 

 

for k =2; : : : ; 8. 

The next eight comparisons are differences between drugs A and B at 

hours 1 to 8; these are between-subject comparisons at particular times. In terms of 

the univariate model (3), they are estimates of 

 

for k =1; : : : ; 8. 

The ESTIMATE statement in the MIXED procedure can be used to 

compute estimates of linear combinations of fixed effect parameters. It is used for 

this purpose in essentially the same manner as with the GLM procedure. With 

MIXED, the ESTIMATE statement can be used for the more general purpose of 

computing estimates of linear combinations of fixed and random effectes, known 

as Best Linear Unbiased Predictors (BLUPs) [16]. 
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The following ESTIMATE statements in (18) can be run in conjunction 

with the PROC MIXED statements (7)-(15) to obtain estimates of the differences 

(16). Coeffcients following `hr' in (18) specify coeffcients of Tk parameters in 

(16), and coeffcients following `drug * hr' in (18) specify coeffcients of (α T)ik 

parameters in (16): 

estimate `hr1{hr2-drgA' hr 1 −1 0 0 0 0 0 0 drug _ hr 1 −1 0 0 0 0 0 0; 

estimate `hr1{hr3-drgA' hr 1 0 −1 0 0 0 0 0 drug _ hr 1 0 −1 0 0 0 0 0; 

 

estimate `hr1{hr4-drgA' hr 1 0 0 −1 0 0 0 0 drug _hr 1 0 0 −1 0 0 0 0; 

estimate `hr1{hr8-drgA' hr 1 0 0 0 −1 0 0 0 drug _hr 1 0 0 0 −1 0 0 0; 

estimate `hr1{hr5-drgA' hr 1 0 0 0 0 − 1 0 0 drug _hr 1 0 0 0 0 −1 0 0;       

estimate `hr1{hr6-drgA' hr 1 0 0 0 0 0 − 1 0 drug _hr 1 0 0 0 0 0 −1 0; 

estimate `hr1{hr7-drgA' hr 1 0 0 0 0 0 0 − 1 drug _hr 1 0 0 0 0 0 0 − 1; 

Results from running these ESTIMATE statements with each of the six 

covariance structures in (18) appear in Table V. The estimates obtained from (18) 

are simply differences between the two drug A means for each pair of hours, that 

is, the estimate labelled `hr1-hrk drgA' is  , or in terms of the model 

(2),  

Because the covariable BASEFEV1 is a subject-level covariate, it cancels in this 
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comparison. Consequently, the estimates are all the same for any covariance 

structure due to the equivalence of generalized least squares (GLS) and ordinary 

least squares (OLS) in this setting. This will not happen in all cases, such as when 

the data are unbalanced, when the covariate is time-varying, or when polynomial 

trends are used to model time effects. In this example, the data are balanced and 

hour is treated as a discrete factor. See Puntanen and Styan [17] for general 

conditions when GLS estimates are equal to OLS estimates. 

Even though all estimates of differences from statements (18) are equal, 

each of the six co-variance structures results in a different standard error estimate 

(Table V). Note that the `simple' standard error estimates are always larger than 

those from the mixed model. The general expression for the variance of the 

standard error estimate is 

 

Where  For structured covariances,  will be a 

function of  k,l, and a small number of parameters. 

Standard error estimates printed by PROC MIXED are square roots of (19), 

with _k; l expressions replaced by their respective estimates, assuming a particular 

covariance structure. We now discuss effects of the assumed covariance structure 

on the standard error estimates. 

Structure number 1, `simple', treats the data as if all observations are 

independent with the same variance. This results in equal standard error estimates 

of 
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for all differences between time means in the same drug. These are incorrect 

because SIM structure clearly is inappropriate for two reasons. First, the SIM 

structure does not accommodate between- patient variation, and second, it does not 

recognize that measures close together in time are more highly correlated than 

measures far apart in time. 

Structure number 2, `compound symmetric', acknowledges variation as 

coming from two sources, between- and within-patient. This results in standard 

error estimates of 

 

being functions only of the within-patient varience component estimate. However, 

compound sym-metry does not accommodate different standard errors of 

differences between times as being de- pendent on the length of the time interval. 

Consequently, the standard error estimates based on the compound symmetric 

structure also are invalid. 

Structure number 3, `autoregressive', results in standard errors of estimates 

of differences between times which depend on the length of the time interval. For 

example, the standard error estimate for the difference between hours 1 and 8 

(lag=7) is 
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and similarly for other lags. The standard error estimates are 0.121 for the 

difference between hours 1 and 8 etc., down to 0.056 for the difference between 

hours 1 and 2. If the autoregressive structure were correct, then these estimates of 

standard errors should be in good agreement with those produced by TOEP 

covariance. The TOEP standard error estimates range from 0.095 for the difference 

between hours 1 and 8 down to 0.056 for the difference between hours 1 and 2. 

Thus the autoregressive estimates are too large by approximately 30 per cent for 

long time intervals (for example, hours 1 to 8). This is because the autoregressive 

structure underestimates the correlation between observations far apart in time by 

forcing the correlation to decrease exponentially toward zero. 

Next, we examine the standard errors provided by structure 4, 

`autoregressive with random effect for patient'. The standard error estimate for the 

difference between hours 1 and 8 (lag = 7) is 

 

and similarly for other lags. We see that these standard error estimates generally 

provide good agreement with the TOEP and UN standard error estimates. These 

three structures (TOEP, UN and AR(1)+RE) are all potential candidates, because 

they accommodate between-subject variance and decreasing correlation as the lag 

increases. The intuitive advantage of the AR(1)+RE estimates over the TOEP and 

UN estimates in this setting is that the standard errors of the AR(1)+RE estimates 

follow a smooth trend as a function of lag, whereas the TOEP and UN standard 

error estimates are more erratic, particularly so for the UN estimates. In all three 
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strucutres, the standard errors for the larger time lags are larger than those for the 

smaller lags, reacting the pattern seen in the data. 

The following ESTIMATE statements can be run in conjunction with 

PROC MIXED statements (7){(15) to obtain estimates of the differences between 

drugs A and B at each hour, defined  

 

In (17): 
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Results appear in Table VI. These estimates are the same for structures SIM and 

CS. They are simply differences between ordinary least squares means, adjusted 

for the covariable BASEFEV1. However, a simple expression for the variance of 

the estimates is not easily available. The standard errors differ for the two 

covariance structures, because simple structure does not recognize between-patient 

variation. 

Estimates of drug differences for the four covariance structures other than 

`Simple' and `Com-pound symmetric' are all numerically different, though similar. 

Also, standard errors of the drug differences are not the same for covariance 

structures AR(1), AR(1)+RE, TOEP and UN, but the standard errors for the 

AR(1)+RE and TOEP structure are constant over the hours. This is de-sirable, 

because data variance are homogeneous over hours, and the adjustment for the 

covariable BASEFEV1 would be the same at each hour. However, the standard 

errors of drug differences for UN covariance vacillate between 0.137 and 0.158, a 

range of approximately 16 per cent. The standard errors are not constant because 

UN does not assume homogeneous variances. In the present example, it is 

reasonable to assume homogeneous variances, and this should be exploited. Not 

doing so results in variable and inefficient standard error estimates. 

 The purpose of this section was to illustrate the practical effects of 

choosing a covariance structure. The results show that SIM, CS and AR(1) 

covariance structures are inadequate for the example data. These structure models 

basically provide ill-fitting estimates of the true covariance matrix of the data. In 

turn, the ill-fitting estimates of data covariance result in poor estimates of standard 
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errors of certain differences between means, even if estimates of differences 

between means are equal across covariance structures. The structures AR(1)+RE, 

TOEP and UN are adequate, in the sense that they provide good fits to the data 

covariance. (This is always true of UN because there are no constraints to impose 

lack of fit.) These adequate structures incorporate the two essential features of the 

data covariance. One, observations on the same patient are correlated, and two, 

observations on the same patient taken close in time are more highly correlated 

than observations taken far apart in time. As a result, standard error estimates 

based on assumptions of AR(1)+RE, TOEP or UN covariance structures are valid, 

but because UN imposes no constraints or patterns, the standard error estimates are 

somewhat unstable. 

 

8.  MODELLING POLYNOMIAL TRENDS OVER TIME 

Previous analyses have treated hour as a classification variable and not 

modelled FEV1 trends as a continuous function of hour. In Section 6, we fitted six 

covariance structures to the FEV1 data, and determined that AR(1)+RE provided 

the best _t. In Section 7, we examined effects of covariance structure on estimates 

of fixed effect parameters and standard errors. In this section, we treat hour as a 

continuous variable and model hour effects in polynomials to refine the fixed 

effects portion of the model. Then we use the polynomial model to compute 

estimates of differences analogous to those in Section 7. 

Statements (21) fit the general linear mixed model using AR(1)+RE 

covariance structure to model random effects and third degree polynomials to 
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model fixed effects of drug and hour. A previous analysis (not shown) that fitted 

fourth degree polynomials using PROC MIXED showed no significant evidence of 

fourth degree terms. 

proc mixed data=fev1uni; class drug patient; 

model fev1=basefev1 drug drug * hr drug * hr * hr drug * hr * hr * 

hr/htype=1 3 

solution noint;                                                                            (21) 

random patient(drug); 

repeated/type=ar(1) sub=patient(drug); 

The MODEL statement in (21) is specified so that parameter estimates obtained 

from the SOLUTION option directly provide the coefficients of the third degree 

polynomials for each drug. The fitted polynomial equations, after inserting the 

overall average value of 2.6493 for BASEFEV1, are 

  A: FEV1=3:6187 − 0:1475 HR + 0:0034 HR2 + 0:0004 HR3 

B: FEV1=3:5793 + 0:1806 HR − 0:0802 HR2 + 0:0061 HR3 

P: FEV1=2:7355 + 0:1214 HR − 0:0289 HR2 + 0:0017 HR3 
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Figure 6. Plots of polynomial trends over hours for each drug. 

The polynomial curves for the drugs are plotted in Figure 6. 

Estimates of differences between hour 1 and subsequent hours in drug A 

based on the fitted polynomials may be obtained from the ESTIMATE statements 

(22): 

 

Results from statements (22) appear in Table VII. 

We see that standard errors of differences between hour 1 and subsequent 

hours in drug A using AR(1)+RE covariance and polynomial trends for hour are 

smaller than corresponding standard errors in Table V using AR(1)+RE covariance 

and hour as a classification variable. This is due to the use of the polynomial 

model which exploits the continuous trend over hours. If the polynomial model 

yields very different results, one would conclude it does not adequately represent 

the trend over time. 
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Results from statements (23) appear in Table VII. 

Standard errors for differences between drug A and drug B at hours 1 and 8 

using the polynomial model are similar to standard errors for these differences 

using the model with hour as a classification variable. The standard errors of 
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differences between drugs A and B at intermediate hours are less than the standard 

errors for respective differences using hour as a classification variable. Again, this 

is a phenomenon related to using regression models, and has very little to do with 

the covariance structure. It demonstrates that there is considerable advantage to 

refining the fixed effects portion of the model. We believe, however, that refining 

the fixed effects portion of the model should be done after arriving at a satisfactory 

covariance structure using a saturated fixed effects model. 

 

9.  SUMMARY AND CONCLUSIONS 

One of the primary distinguishing features of analysis of repeated measures 

data is the need to accommodate the covariation of the measures on the same 

sampling unit. Modern statistical software enables the user to incorporate the 

covariance structure into the statistical model. This should be done at a stage prior 

to the inferential stage of the analysis. Choice of covariance structure can utilize 

graphical techniques, numerical comparisons of covariance estimates, and indices 

of goodness-of-_t. After covariance is satisfactorily modelled, the estimated 

covariance matrix is used to compute generalized least squares estimates of fixed 

effects of treatments and time. 

In most repeated measures settings there are two aspects to the covariance 

structure. First is the covariance structure induced by the subject experimental 

design, that is, the manner in which subjects are assigned to treatment groups. The 

design typically induces covariance due to contribution of random effects. In the 

example of this paper, the design was completely randomized which results in 
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covariance of observations on the same subject due to between-subject variation. If 

the design were randomized blocks, then there would be additional covariance due 

to block variation. When using SAS PROC MIXED, the covariance structure 

induced by the subject experimental design is usually specified in the RANDOM 

statement. Second is the covariance structure induced by the phenomenon that 

measures close in time are more highly correlated than measures far apart in time. 

In many cases this can be described by a mathematical function of time lag 

between measures. This aspect of covariance structure must be modelled using the 

REPEATED statement in PROC MIXED. 

Estimates of fixed effects, such as differences between treatment means, 

may be the same for different covariance structures, but standard errors of these 

estimates can still be substantially different. Thus, it is important to model the 

covariance structure even in conditions when estimates of fixed effects do not 

depend on the covariance structure. Likewise, tests of significance may depend on 

covariance structure even when estimates of fixed effects do not. 

The example in the present paper has equal numbers of subjects per 

treatment and no missing data for any subject. Having equal numbers of subjects 

per treatment is not particularly important as far as implementation of data analysis 

is concerned using mixed model technology. However, missing data within 

subjects can present serious problems depending on the amount, cause and pattern 

of missing data. In some cases, missing data can cause non-estimability of fixed 

effect parameters. This would occur in the extreme situation of all subjects in a 

particular treatment having missing data at the same time point. Missing data can 
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also result in unstable estimates of variance and covariance parameters, though 

non-estimability is unlikely. The analyst must also address the underlying causes 

of missing data to assess the potential for introducing bias into the estimates. If the 

treatment is so toxic as to cause elimination of study subjects, ignoring that cause 

of missingness would lead to erroneous conclusions about the efficacy of the 

treatment. For more information on this topic, the reader is referred to Little and 

Rubin [18], who describe different severity levels of missingness and modelling 

approaches to address it. 

Unequal spacing of observation times presents no conceptual problems in 

data analysis, but computation may be more complex. In terms of PROC MIXED, 

the user may have to resort to the class of covariance structures for spatial data to 

implement autoregressive covariance. See Littell et al. [15] for illustration. 

Using regression curves to model mean response as functions of time can 

greatly decrease standard errors of estimators of treatment means and differences 

between treatment means at particular times. This is true in any modelling 

situation involving a continuous variable, and is not related particularly to repeated 

measures data. This was demonstrated in Section 8 using polynomials to model 

FEV1 trends over time. In an actual data analysis application, pharmacokinetic 

models could be used instead. Such models usually are non-linear in the 

parameters, and thus PROC MIXED could not be used in its usual form. However, 

the NLINMIX macro or the new NLMIXED procedure could be used. 
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The general linear mixed model specifies that the data vector Y is represented by 

the equation… 

   

Where  Thus 

    

We assume that U and e are independent, and obtain 

   

Thus, the general linear mixed model specifies that the data vector Y has a 

multivariate normal distribution with mean vector  and covariance metrix 

 

Generalized least squares theory (Graybill, Reference [19], Chapter 6) 

states that the best linear unbiased estimate of  β is given by  

           

and the covariance matrix of the sampling distribution of b is 

         

The BLUE of a linear combination  and its variance is  

More generally, the BLUE of a set of linear combinations  and its 

sampling distribution covariance matrix is  Thus, the sampling 

distribution of  is multivariate normal with mean vector  and 

covariance matrix  Inference procedures for the general linear 

mixed model are based on these principles. However, the estimate 

 and its covariance matrix  both are 
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functions, of  and in most all cases V will contain unknown 

parameters. Thus, an estimate of V must be used in its place.  

Usually, elements of G will be functions of one set of parameters, and 

elements of R will be functions of another set. The MIXED procedure estimates 

the parameters of G and R, using by default the REML method, or the ML 

method, if requested by the user. Estimates of the parameters are then inserted into 

G and R in place of the true parameter values to obtain . In turn,  is used in 

place of  V  to compute B and  

Standard errors of estimates of linear combinations are computed as 

 Statistics for tests of fixed effects are computed as 

 In some cases, the distributions of F are, in fact, F 

distributions, and in other cases they are only approximate. Degrees of freedom for 

the numerator of the F statistic are given by the rank of A, but computation of 

degrees of freedom for the denominator is a much more difficult problem. One 

possibility is a generalized Satterthwaite approximation as given by Fai and 

Cornelius [20]. The interested reader is also referred to McLean and Sanders [21] 

for further discussion on approximating degrees of freedom, and to Hulting and 

Harville [22] for some Bayesian and non-Bayesian perspectives on this issue. For 

more information on analysis of repeated measures data, see Diggle et al. [23] and 

Verbeke and Molenberghs [24].  
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Chapter – 5 
Covariance Models for Latent Structure in        

Longitudinal Data 
 

I present several approaches to modeling latent structure in longitudinal 

studies when the covariance itself is the primary focus of the analysis. This is a 

departure from much of the work on longitudinal data analysis, in which attention 

is focused solely on the cross-sectional mean and the influence of covariates on the 

mean. Such analyses are particularly important in policy-related studies, in which 

the heterogeneity of the population is of interest. We describe several traditional 

approaches to this modeling and introduce a flexible, parsimonious class of 

covariance models appropriate to such analyses. This class, while rooted in the 

tradition of mixed effects and random coefficient models, merges several disparate 

modeling philosophies into what we view as a hybrid approach to longitudinal data 

modeling. We discuss the implications of this approach and its alternatives 

especially on model interpretation. We compare several implementations of this 

class to more commonly employed mixed effects models to describe the strengths 

and limitations of each. These alternatives are compared in an application to long-

term trends in wage inequality for young workers. The findings provide additional 

guidance for the model formulation process in both statistical and substantive 

senses. 
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5.1   Introduction and Motivation 

An increasing number of social and behavioral science studies collect 

information from subjects at several points in time. These longitudinal studies 

enable researchers to study changes in the phenomena of interest over the life-

course of the subjects. At each observation time, at least one response, such as 

wages earned or the occurrence of a meaningful event, such as graduation from 

college, is recorded. As with regression, one may collect explanatory covariates in 

the hope that differences in these inputs will be associated with different levels of 

response. Each subject is thus associated with their own time series of responses 

and a corresponding set of potentially time-varying explanatory covariates. Models 

for longitudinal data attempt to relate those individual time series to an overall 

group process. 

The focus on either individual or group processes plays a key role in how 

one models longitudinal data. For example, if we are modeling a continuous 

response, Yi, in terms of explanatory covariates, Xi, then the familiar linear model, 

for individual i, 

 

could be adopted, but Yi and  would be ni-vectors, where ni is the number of 

observations on individual i. Similarly, Xi would be of dimension ni * p, where p 

is the number of explanatory covariates. Note that we are modeling a response 

vector, yet this distinction is not made explicitly with our notation. Alternatively, 

the model may be writte. 
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where the index t identifies a specific element of the response vector Yi. If we 

were to proceed with a classical multiple regression, stacking the responses by 

individual and then by observation within individual, we would obscure an 

important feature of longitudinal data; namely, we know that some set of 

observations come from the same individual. And observations within the same 

individual may be correlated due to unobserved individual characteristics. To see 

this, let us return to the notation in (1), but now 

 

where i is an unobserved scalar trait for subject i, and the residual variation is 

mean zero and uncorrelated with the unobserved process, and 0 for t 6= t0. Since 

we do not observe i, we tend to use (1) when the underlying process is accurately 

described by (2), so the residual variation structure i is really . The unobserved 

trait induces a correlation within individual i, since 

 

and  in general. Note that the unobserved  may not correspond to a single 

measurable characteristic; instead it proxies for all unobserved characteristics. 

There are several different ways to think about the correlation structure in 

longitudinal data. The different perspectives are induced by the nature of the 

unobserved trait and its relationship to the covariates and residual variation. If 

substantive interest is on the effects of the covariates on the response averaged 

over the population then models are usually formulated for the mean response 

averaged over the unobserved traits. Broadly speaking, the correlation structure is 
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modeled as a nuisance parameter, and regression coefficients represent population-

average effects (Liang and Zeger , Zeger and Liang , Prentice ). Alternatively, 

individual differences may be of interest, and can be modeled directly as latent 

variables; for these individual-specific models, regression parameters are to be 

interpreted conditionally on the value of the subject's latent variable. We will 

discuss these different approaches, certain variations thereof, and their 

implications in subsequent sections. Along the way, we will introduce a class of 

models for longitudinal data that merges these two approaches in a new hybrid 

form, which is conceptually linked to principal components and factor analysis. 

First, we introduce the substantive problem that motivates this new formulation. 

In labor market economics, a rise in cross-sectional measures of wage 

inequality that began in the 1970s and has persisted into the 1990s is well-

documented (Levy and Murnane 1992; Danziger and Gottschalk 1993; McMurrer 

and Sawhill 1998). This means that there are greater numbers of workers making 

more and less than ever before. And for many groups of workers, wages have 

remained stagnant over time. This stagnation is due in part to a disproportionate 

growth in the lower tail of the wage distribution. Using data from two young adult 

cohorts in the National Longitudinal Survey (NLS), we find, for example, that 30-

35 year old white men have a mean wage of $17.78 in 1979, while this figure is 

$14.27 per hour for a similarly aged group in 1992 (inflation adjusted, 1999 

dollars). A measure of inequality is the variance in outcomes; the variance of the 

logged wages increased 44% over the same period. 
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This dramatic rise has prompted researchers to look more closely at trends 

in inequality over the life course of a worker. Cross-sectional data can document a 

rise in inequality, but since each cross-section is a random sample from the 

population, one cannot conclude that the same people are making the higher wages 

in each period. Statements such as the rich are getting richer while the poor are 

getting poorer" cannot be definitively made. But longitudinal data can be used to 

address this type of question. To couch this in labor economic terms, we would 

like to examine two competing hypotheses that explain the growth in inequality: 

I. Wages have become more volatile. 

II.       Wages have become more stratified over time, indicating a reduction in                                

          economic mobility. 

The scenarios are illustrated in Figures 1 - 3 below. Figure 1, represents an 

economy in which individual "profiles" fan out over time, but not excessively. 

This is our stylized image of a past economy; in Figures 2 and 3, we changed the 

covariance structure to reflect at least a doubling of process variance, but we do 

this in very different ways. In Figure 2, the structured variation has become more 

stratified, but the residual process is left unchanged. In Figure 3, the structured 

variation is identical to that used in Figure 1, but the residual variance of the 

process has been greatly increased. This last figure may seem exaggerated, but the 

average variation between individuals is actually a bit smaller than in Figure 2. 
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               Figure 1: Stylized wage trajectories for a less stratified economy 

 

                Figure 2: Stylized wage trajectories for a more stratified economy 

 

Based on the figures, the difference between increased stratification 

(Figure 2) and increased Volatility (Figure 3) seems transparent, but in a real 

application, both hypotheses 
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Figure 3: Stylized wage trajectories for a more volatile economy 

 

may be true and the differences may be more subtle. Each possibility has 

adifferent  substantive interpretation, so sorting out the extent to which each 

hypothesis describes the changes in wage structure is very important and will have 

different implications in     terms of policy. 

To investigate the two hypotheses, Bernhardt, et al. (1997), Gottshalk and 

Moffitt (1994), Haider (1996) and Baker (1997) decompose the wage into 

permanent and transient components as follows. Let 

                                    w(t) = p(t) + u(t); ........................................(3) 

where w is the wage, p is its permanent portion, and u is a residual variation term, 

capturing short-term, or transient variation. For a specific worker, p(t) can be 

thought of as their mean wage at time t, with residual variation u(t). Assuming 

independence of p(t) and u(t), we have that 

                                  Var(w(t)) = Var(p(t)) + Var(u(t)); 

and the two hypotheses can be differentiated through this variance decomposition: 

a rise in wage variance must involve a rise in at least one of the two variance 
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components. Greater stratification implies an increase in the first term, while 

greater volatility involves the second. If we had a substantial number of 

observations for each individual, we could estimate p(t) using separate regressions 

for each. The distribution of these predicted curves would represent permanent 

variation, while the residuals represent transient variation. The hypotheses of 

interest describe differences in wage trajectories without any socioeconomic 

controls, so the only explanatory covariates we include in this analysis are 

functions of time. 

This last point warrants further explanation. Socioeconomic variables such 

as level of schooling, parent's education, and industry of employment, capture 

expected returns to individual (supply-side) and employer (demand-side) 

characteristics. For example, there may be changes in the mean return to obtaining 

a high school degree which reflects the value of that set of skills in the labor 

market. Including socioeconomic covariates also controls for compositional shifts 

in the labor market. The growth in a specific sector of the economy could induce 

growing inequality if that sector is typically associated with lower wages. But all 

of these explanations are necessarily focused on the permanent portion of the wage 

trajectory, since volatility is associated with residual, rather than mean effects. The 

first stage in any analysis of wage inequality is the accurate documentation of the 

growth in inequality, and how it is apportioned with regard to permanent and 

transient components. Thus, our focus is first on covariance structure, and not on 

the socioeconomic covariates that might "explain" the structure. 
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In many longitudinal studies, there are a relatively small number of 

observations per individual, so estimating separate regressions to assess wage 

inequality is infeasible. A variance components model (Searle, et al. 1992) using 

(3) can partition the variance into long-term, permanent variation and short-term, 

transitory variation. We note that the distinction between long- and short-term 

trends is fundamentally about economic mobility. The variation between the 

individuals' permanent components is a measure of mobility relative to one's peers, 

and a variance components analysis allows one to evaluate this important 

economic issue. 

In matters with such strong policy implications, proper specification of a 

model that describes the components of variation is crucial. What may be less 

apparent is the role of the covariance structure in such an analysis. If we generalize 

the basic model (2) for longitudinal data to allow for more complex individual 

characteristics, we get the standard mixed effects model (Diggle, Liang and Zeger 

1994),              

                                           

We have introduced a random effects component, Zi in which Zi is an ni_q 

known design matrix, and  is a q-vector of unknown (latent) variables. It is often 

assumed that  are mean zero multivariate Gaussian. Under this assumption, it is 

seen that E(Yi) = Xi_; while E(Yij) = Xi_ + Zi. This distinction is important. The 

latter approach asserts that individuals differ from the population average response 

in a systematic manner, which is dependent on some latent characteristics. In our 

application, the growth in wage inequality and evidence for the two competing 
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hypotheses are features of the latent process, Zi, not the population-average 

process Xi. If  Nq(0;G) and  Nni(0;R), independently, then      

                 

   Note that the Xi_ term is not included. In other words, the covariance 

structure of the responses, rather than the mean structure, captures the nature of 

individual differences, and thus inequality, in the labor market. Strictly speaking, 

the covariance structure captures all extra-mean variation. Since for the mean we 

employ only time as an explanatory covariate, all of the contributions to inequality 

are expressed in the covariance. This establishes a baseline level of inequality that 

we can later use additional covariates (such as education) to explain. 

Models for this covariance structure that can differentiate between 

hypotheses 1 and 2 will be developed in subsequent sections. 

 

Data 

As alluded to above, we will anchor our presentation by using an example 

from labor market economics, where proper modeling of covariance structure is of 

paramount importance. We will be investigating two datasets from the NLS. The 

first, or original cohort, is a representative sample of young men aged 14-21 first 

interviewed in 1966 and interviewed annually for the next fifteen years (with the 

exception of 1972, 1974, 1977 and 1979). The second dataset began with a 

comparable sample of young men in 1979 who have been interviewed yearly since 

then for fifteen additional years. For comparability between cohorts, we selected 

only non-Hispanic whites, with resulting sample sizes of 2,614 and 2,373 
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respectively for the original and recent cohorts. For a detailed description of these 

datasets and their comparability, see Bernhardt, et al. (1997). According to Topel 

and Ward (1992), the first 10 years of a career will account for 66 percent of 

lifetime wage growth for male high school graduates and almost exactly the same 

fraction of lifetime job changes," so it is important to understand trends 

manifesting themselves in this early period. 

In this paper, we present several different ways to model covariance 

structure with the ultimate goal of addressing questions such as those posed in 

hypotheses 1 and 2. One of these methods is novel in the literature, so it is be 

developed in some depth. We begin by discussing several different philosophical 

perspectives to longitudinal data modeling in Section 2. To address hypotheses 

like the ones just presented, we argue that a different modeling philosophy is 

necessary; we develop a hybrid framework with this in mind in Section 3 and 

illustrate it in Section 4. We apply more traditional models to our labor market 

data in Section 5 and discuss the strengths and weaknesses of each approach, 

including the substantive implications of each choice. Section 6 summarizes the 

discussion and suggests future directions of research. 

 

5.2   Alternative Modeling Philosophies 

The choice of modeling framework should depend on the substantive 

question of interest. For example, in many medical applications, one may be 

focused on how a treatment affects the population as a whole. However, if there 

are potentially serious risks involved in treatment, the distribution of outcomes, 
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including information about the extremes, may be of importance. Along with many 

modeling paradigms comes a modeling philosophy, focused on the primary goals 

of the research. We now describe several philosophies in longitudinal data 

modeling. 

 

Population-average analysis 

Population average models focus on describing the population, rather than 

individuals within it. Much as in classical regression, the mean response is 

modeled conditional on the observed covariates. In a linear model, E(Y jX) = X_, 

the parameter _ describes how changes in the components of X affect the overall 

population. With longitudinal data, we have seen that the covariance of the 

responses within an individual influences the response trajectory. For some 

problems, that covariance structure is effectively a nuisance parameter it must be 

included in the model but is of no intrinsic interest in and of itself. Generalized 

Estimating Equations (GEE) is a methodology that produces consistent estimates 

of population-average parameters even when the covariance structure is 

misspecified  (Liang and Zeger 1986, Zeger and Liang 1986, Prentice 1988). This 

technique allows one to pursue the population-average approach to modeling, 

while accounting for the dependencies due to the longitudinal nature of the data. 

Since the covariance is viewed as secondary, the method does not yield a variance 

components analysis, which one might use to address our labor market hypotheses, 

for example. 
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Individual-specific analysis 

Individual-specific effect models consist of two key components: the fixed 

effects, which capture gross differences between individuals based on differences 

in their explanatory covariates; and the random effects, which reflect the influence 

of unobserved covariates. These so-called "unobserved" covariates are just a 

device to capture unexplained but systematic variation in outcomes. Typically 

there is no single covariate, such as "motivation," that would replace the individual 

effects in our model, were we able to measure it. Rather, after controlling for what 

was measured, some systematic differences between individuals are likely to exist 

for a variety of reasons. Because we are looking at longitudinal data, we can verify 

that some differences seem to persist throughout an individual's life course, and 

that these are not simply random disturbances. 

Under model (4), the fixed effects are captured by the Xi_ term, while the 

random effects are modeled via Zi. The  vector is indexed with an i to reflect the 

fact that every individual is expected to have their own value for this “parameter." 

These models are also referred to as random coefficient models (Longford 1993) 

because the coefficient on the Zi terms is allowed to vary. These coefficients 

introduce extra-mean variation into the response in a systematic manner mediated 

by the design matrix Zi. 

We interpret these models conditional on the individual specific effects, so 

we are modeling E(YijXi; Zi;), rather than E(YijXi). Using model (4), the 

interpretation of the fixed effects parameters shifts to the following. Given the 

individual specific effect i, the expected response for individual i is Xi + Zi We are 
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making statements about individuals, not populations; the regression coefficients 

reflect this distinction and should be interpreted in this conditional manner. In the 

standard linear mixed effects model in which all random components are assumed 

Gaussian, the distinction between population average and individual specific 

modeling is more philosophical, as the models and their parameter estimates are 

identical. This is not the case, for a generalized linear mixed model (GLMM, 

McCulloch 1997, Hu, et al. 1998, Crouchley and Davies 1999).  

What may be less immediately apparent about this shift toward an 

individual-specific perspective is that the parameters that define the distribution of 

the effects often represent meaningful components of variation. For example, if  is 

a scalar and Zi is a column of ones, then the individual differences are being 

modeled as shifts in the intercept. This implies that the differences between 

individuals are constant over the life course. The variance of the random effect  is 

an important model parameter. If it is large, then large differences between 

individuals exist and persist throughout the life course; if it is small, they do not. 

The ability to interpret a variance component in terms of a substantive question is 

a key feature of individual-specific modeling.  

Note that not all mixed effects models are oriented toward meaningful 

variance components analyses. Beyond the fixed effects, the variation is modeled 

in the random effects and in the residual variation structure. In model (4), and the 

residual variation structure, R, can be made arbitrarily complex. There is often a 

tension, in terms of modeling, between these two components. ARMA models 

(Box and Jenkins 1976) can capture a substantial portion of the within-individual 
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correlation, but they do so via parameters that do not take on individual-specific 

values. For example, the correlation between observations may be given by , but  

does not vary between individuals. So we know how variation occurs, but we 

cannot directly use it to position a curve above or below the mean trajectory. 

Jones (1990) discusses this model formulation issue by comparing a 

classical random growth curve model to an AR(1) model for that same structure. 

He finds that these two approaches typically compete with each other in terms of 

explaining the variation in the data. We tend to favor models that emphasize 

structured variation in the Zi term, because these provide direct summaries of 

differences between individuals. 

In sum, mixed effects models may be based on an individual-specific 

philosophy, but they are not required to do so. Thus, care must be given in the 

model formulation process as to which philosophical perspective to adopt. 

 

Latent Curve Models 

A related, but philosophically different approach to modeling longitudinal 

trajectories was developed by Meredith and Tisak (1990).2 They outline a 

framework in which each response is a weighted average of a fixed set of curves: 

 

where Yi(t) represents the response for the ith individual, !ik is the 

individual-specific coefffcient associated with the kth latent curve k(t), and i(t) is 

the residual process. The k capture the shape and magnitude of the variation, and 

the !ik allow individuals to differ systematically, much in the same way that 
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random coefficients do in mixed effects models. In the above formulation, the 

mean process will be a specific weighted sum of the latent curves, but it could just 

as well be parameterized separately, as in the fixed effects portion of a mixed 

model. For the remainder of this discussion, we will ignore the mean of the 

process, or assume it is identically zero. 

If the latent curves are known, then the formulation is similar to a mixed 

effects model. If we stack the _k as columns of a design matrix Z(t) = f(t); then we 

can estimate a model: 

                                             

again, ignoring the mean process. But when model (5) was originally presented, it 

was assumed that the latent curves were not known and would be estimated 

directly from the data. With a few additional assumptions, this would be a factor 

analysis, which is a particular decomposition of the covariance into structured and 

residual variation. The former are captured in the factor loadings, while the latter 

are summarized by the specific variances. The large variability inherent in 

covariance estimation prompted researchers to impose smoothness constraints on 

the curves (Rice and Silverman 1991). A basic premise of the new model 2 We 

also refer the reader to Raykov (2000), in which latent curve modeling is 

developed using the Structural Equation Modeling (SEM) approach. SEM 

emphasizes covariance structure in the model formulation that we will propose is 

that smooth latent curves can go a long way toward describing systematic variation 

in longitudinal data. 
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In practice, the latent curve model described above cannot be estimated 

without further assumptions. If the _k are known, then this can be estimated as a 

random growth curve mixed effects model. If they are left completely unspecified, 

we have a factor analysis formulation. Both of these model-based approaches 

avoid some technical problems that arise when an estimate of the full unspecified 

covariance matrix is required.3 Moving beyond these traditional models will 

actually open up a whole new way to think about longitudinal data modeling, and 

we develop this alternative approach at length in Section 3. 

 

Latent Class Models 

So far, we have discussed models for which differences between 

individuals are expressed as an offset from the mean value in shifts that come from 

a continuous distribution. For example, the random coefficients in mixed effects 

models come from a multivariate Gaussian distribution, yielding a wide (actually, 

infinite) variety of outcomes. If the differences "clump" together in a natural way, 

then it might make sense to restrict the variation to a finite set of possibilities, in 

which each represents a clump or cluster of similar outcomes in the population. 

This is the approach taken by latent class analysis (Clogg 1995).4 The analyst 

divides the population into K distinct classes, and typically any variation that 

exists within a class is of secondary interest.5 The model can be represented as: 
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where the random variable Ci captures the latent class membership, and k 

represents the regression coefficient for class k.6 By allowing the regression 

coefficients to take on several different values, a set of distinct trajectories can be 

captured, assuming that the data support them. In formulating such models, one 

typically models membership in one of the K classes as a random process 

following a multinomial distribution, so individuals are members of exactly one 

class. Several features of the population are documented in this approach: the 

shape of the different trajectories, and the probability of membership in each. 

Extensions of this approach by Muthen and Shedden (1999) and Roeder, et al. 

(1999) involve estimating a multinomial “choice" model for class membership. 

For example, we might assume that membership is based on a multinomial logit 

model in which some subset of the explanatory covariates play a role: 

                        

where Xi are explanatory variables influencing membership and _k are scalars (for 

identify- ability, we would x 1 = 0 .  The full model combines this choice model 

with a model for the response, conditional on the class membership and the 

explanatory covariates. 

This modeling philosophy focuses on identifying subgroups in the data 

with similar mean structures. However there are close links to approaches that 

model the covariance. To see this consider the model as the number of latent 

classes increases. If there is only one latent class, then this approach is equivalent 

to regression and is not modeling covariance at all. As the number of classes 

increases more of the co variation in profiles is attributed to the classification. If 
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there are a large number of classes then the co variation in the profiles is largely 

explained by the classification and the within-class variation will be reduced. 

There is a clear tradeoff between mean and covariance modeling as the number of 

classes increases. However, the present latent class models do not attempt to 

identify features shared by the entire population (the features are by definition 

disjoint), and we do not consider them here. 

 

Discussion 

In sum, there are several different ways to think about modeling 

longitudinal data. One can concentrate on the population average and represent the 

covariance structure as a foil. Or, one can model individual differences directly by 

imposing a strict structure on how these differences arise. A relatively general 

framework is to decompose variation into the sum of curves with different 

weights. This could be in the form of a factor analysis, but a model based approach 

to this is preferred over analyses based on the directly estimated covariance matrix. 

In some instances, one can separate the variation into similar clusters, with an 

explicit model for how these are determined by explanatory covariates.  

All of these are good ideas, depending on the substantive issues to be 

addressed. We would use the second and third to explicitly model variation in 

populations that is quite general in form and consider the fourth when natural 

clusters are apparent. 
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5.3   A hybrid model 

The theoretical approaches of Section 2 each have their value and place. In 

our labor economic example, we wish to extract permanent and transient variance 

components. We want the permanent component to reflect features of the whole 

population while still allowing the expression of individual differences. A 

modeling class that identifies a common, population level pattern as distinct from 

short-term effects requires a hybrid modeling philosophy, since both population-

average and individual-specific approaches are being employed. When used to 

address hypotheses 1 and 2, such an approach will provide a highly interpretable 

and novel variance components decomposition. 

 

The proto-spline model class 

In Scott (1998) and Scott and Handcock (2000), we introduced the hybrid 

proto -spline class of heterogeneity models. Motivated by a longitudinal study of 

wage growth, we formulated a class of models that capture long- and short-term 

features of the covariance structure. The models use a latent curve formulation to 

identify long-term patterns of variation, and they yield a meaningful  variance 

components decomposition. The proto-spline class is distinguished by the data-

adaptive manner in which the curves are estimated. We will now describe this 

class in detail.  

The proto-splines class is derived from the model class (5) of Meredith and 

Tisak (1990), 
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 We have added a general mean process and changed the approach to 

modeling !ik as follows. What was formerly an unconstrained individual specific 

weight, we will now view as a random coefficient from some known distribution. 

In addition, we will specify a functional form for the k(t). However, only a 

functional form and not a specific function is necessary for estimation of the proto-

spline class. 

We restrict the _k to be orthonormal.7 This parallels the orthogonality 

employed in principal components analysis and allows us to interpret each curve's 

contribution as mathematically distinct from the others. We assume that the 

random coefficients, wk are independent (for different k), which further uncouples 

the latent curves. This formulation mirrors many psychological and behavioral 

models in which a response is the combination of several orthogonal  shocks to the 

system. For the proto-spline class, the way the orthogonality of the _k is 

maintained is a departure from techniques used in principal component analysis 

and in Rice and Silverman (1991), in that no external constraints are placed on the 

estimation procedure. 

Consider first the case where the stochastic variation can be described by 

one curve, _1 (this is a single latent curve model). We must specify the functional 

form of _1, and this is done by choosing an appropriate functional space.8 For 

example, we can assume that _1 is a cubic spline with knots at four equispaced 

time points. Cubic splines are smooth functions that have a tremendous degree of 



 - 145 -

flexibility in terms of the possible set of shapes that they describe (see Green and 

Silverman 1994 for details). In our theoretical development (Scott and Handcock 

2000), we employed the cubic spline function space because of its smoothness 

features and flexibility, and this is where the “spline" portion of the proto-spline 

class is derived. We are not restricted to the class of cubic splines; for example, we 

can specify that 1 has the form of a jump process, well-described by wavelets 

(Ogden 1996). To keep the discussion on familiar ground, 1 will come from the 

function space of all quadratic curves for most of the remainder of this paper. 

We denote the chosen function space by H, and proceed with the 

specification of the proto-spline model class. Let 1(t); : : : ; T (t) be an orthogonal 

basis for H. Then  H is a specific linear combination of those bases, just as is an 

element of a vector space: 

 

where the j are T non-random parameters that define the curve. If H is smooth, 

then so is (t). Extending this to the response variable, for the full model, we 

have

 

where is a mean zero random coefficient with variance one and Gaussian 

random variables with variance. 

Our model has two variance components, the variance of  and the residual 

variance, and it is a parametric covariance model that defers specification of the 
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curve 1(t) to the estimation phase. The uncertainty in the form of (t) (until 

estimation) is a distinguishing feature of proto-spline models. Note that the 

parameters  define the shape of , which is fixed. These parameters do not represent 

the variance of a random coefficient, but taken as a whole, they determine the 

magnitude of the random curve  and thus the variance in the process. 

The uncertainty allowed in the proto-spline class deserves further attention. 

In a standard mixed effects model, the random effects design matrix is fixed. 

Systematic variation takes a known form mediated by that design. The proto-spline 

class is a departure from this paradigm because it allows the shape of the design, 

given by  in our example, to be determined from all of the information in the data. 

In this sense, the curve  is a population-average value the whole population 

influences its shape, and it can be considered a population “feature." Individual-

specific differences are directly modeled using the random coefficient !i1. So this 

model is a hybrid between population-average and individual specific philosophies 

and it belongs to the latent curve class of models. 

In fact, the only philosophy not employed here is that of latent class 

modeling. As previously discussed, there is always a tension between modeling the 

covariance and modeling the mean, and since our emphasis is on covariance 

modeling, we do not utilize the latent class modeling philosophy, in which mean 

processes dominate. 
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Extensions 

In this section we extend the development of the single proto-spline model 

in (7)-(10) to the general multiple proto-spline model. We note that the choice of 

our function space implies that  has a nonparametric interpretation, since it is a 

curve lying in a potentially smooth, continuous function space. Note that the 

model is not restricted to the space of any particular functions. Any finite-

dimensional function space (or vector space) can be employed. An advantage to 

the proto-spline class of models is that the bases may be chosen to reflect the form 

expected in the substantive process without knowing which specific version of that 

form is present. If we choose models that result in latent curve estimates with a 

functional interpretation, features such as the derivative become available. 

We define the full proto-spline class by extending the single curve example 

to more than one curve without introducing additional parameters. The main idea 

is to use only a subset of the T bases j to construct each curve k. For this 

development, we let H be a basis for cubic splines with an appropriate set of knots. 

Let  be an indexing function defined on the integers 1; : : : ; T, which selects the 

basis functions used to construct the kth curve. In our simple example, uses all T 

basis functions, so  Tg. We construct latent curves as a deterministically weighted 

sum of the basis functions specified by the indexing function I so 

                                   

In order to insure orthogonality of the k, the index sets given by Ik must be 

disjoint. This restriction implies that once we decide to estimate more than one 

latent curve, the curves are highly constrained elements from the class H, using 



 - 148 -

only a subset of the bases for each. Since in the theoretical development H was 

chosen to be the natural cubic splines, we named the resulting  proto-splines, 

because they are partial versions of a full spline t. This method requires T 

parameters to build all K curves; if we do not normalize the curves, then for 

identfiability the random coefficients !ik are all presumed to have variance one. 

To place this model in the context of those previously developed, we 

examine it for two extreme cases. First, if K = T, then each proto-spline is just a 

rescaled version of the basis function. This is essentially the model proposed in 

Brumback (1996) and Brumback and Rice (1998), although the form of their 

model was chosen to produce cubic spline predictions for individual curves. If K = 

1, then we are estimating a smooth principal component in the presence of noise, 

and it is constrained to be a natural cubic spline. 

A more useful approach is to choose K to be small in relation to T, so that 

for equalized index sets, T=K bases are available for each latent curve. Equations 

(7) and (11) still apply, but the “proto-spline" nature of the curve estimates 

becomes more apparent. This intermediate case is similar to a principal functions 

analysis (Ramsay and Silverman 1997), in which we expect that most of the 

variation in the process is captured in a few of the largest principal functions. We 

are enforcing a small number of these by our choice of K, and we maintain the 

orthogonality requirement by the way the model is constructed. Note that this 

model differs from a principal functions analysis in that we can choose our 

function spaces with substantive features in mind, rather than simple smoothness 

constraints. We then build our model directly around these structures. 
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Link to Mixed Effects models 

The standard mixed effects model can be expressed in the following form: 

 

 A key feature of this model is that Xi(t) and Zi(t) are per specified designs. 

The single latent curve proto-spline model is precisely the above model, with Zi(t) 

= (t) and only  Zi(t) is specified from the data. This illustrates a conceptual 

distinction between proto-spline models and other mixed effects models. 

To explore the conceptual difference, we will consider three random 

quadratic models. For Model I, we assume that we know the exact quadratic curve 

that describes the structured co variation about the mean.  so Zi(t) is a scalar-

valued function describing a particular growth structure. Further, let the random 

effect, , be a Gaussian random variable with unknown variance (the variance is one 

of the model's variance components). For a specific individual, 

 

 Every subject gets some random multiple of the fixed curve t + 1 2 t2. 

For Model II we consider a mixed effects model in which each individual has their 

own quadratic perturbation as follows. Let the elements forming the three columns 

of Zi(t) be given by the vector , and let  be a vector of random coefficients, with a 

multivariate Gaussian distribution. Then for an individual specific curve,  

 

                



 - 150 -

While this is quite flexible, the variance components analysis requires a full 

description of the estimated covariance structure of the random effects, which is 

contained in a 3*3 matrix that includes important covariance as well as variance 

components. We must use all of this information when describing any variance 

partitioning. 

Model I is highly inflexible in that we must impose an exact form for 

growth beyond the mean. However, the variance component for  is highly 

interpretable it is the variance of the coefficient of precisely determined shocks to 

the system, so a larger variance means there is greater dispersion in individual 

growth, and that all structured growth follows the same form. It would be difficult 

to make a similar statement about Model II.  

For Model III we consider a single latent curve proto-spline model, which 

offers the interpretability of the simpler model (I), and the flexibility of the more 

complex model (II).   While this might resemble model II, the vector is common to 

each individual and does not represent individual-specific random effects. Every 

individual curve has the following form: 

 

with the parameters fixed and identical across individuals; this is a 

reparameterization of (10) that keeps the notation consistent. Each of these models 

is different, and we claim that the proto-splines offer an effective compromise 

between the rigidity and flexibility of Models I and II, respectively, while 

remaining highly interpretable from a variance components perspective. 
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To understand the link between proto-splines and other mixed effects 

models it is important to understand their technical distinctions. Scott and 

Handcock (1999) discuss estimation for the proto-spline model and show that there 

is a likelihood-equivalent but non-standard mixed effects model corresponding to 

the proto-spline class. In this section we describe the ways in which the proto-

spline model is non-standard. 

For notational convenience we suppress reference to time in the functions, 

representing j(t) and Zi(t) as j and Zi; respectively. Let Zi = f 1; 2 : : : ; T g be a 

design matrix constructed using the basis functions for the space H. The 

coefficients  are assumed to be ordered so that if there are K different groups used 

in the model, with the kth group given as k = (_k1; : : : ; _knk)T , then the 

coefficients can be stacked into a T*K matrix. The difference between these two 

models can be understood by examining their representations. Our proto-spline 

model class is: 

                  

The likelihood-equivalent mixed effects model is 

                         

The proto-spline formulation (16) has K random effects, while (17) has T. 

In (16), the random effect distribution is completely known (N(0; 1)), while in (17) 

the parameters governing the effects (the k's), must be estimated for us to know the 

structure of the random effects. In (16), the design represents the latent curve  and 

is estimated, while in (17), the design Zi is prespecified. These distinctions are 

convenient ways to interpret the components of the models; they have the same 
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likelihood and set of unknown parameters. In principal, the likelihood equivalence 

means that any software that can estimate a mixed effects model can be used to 

estimate the parameters of the proto-spline class. However, the covariance 

structure associated with model (17) would not be implemented in standard 

statistical software for mixed effects models, such as SAS PROC MIXED. 

While we have some evidence that these are different models, is this really 

the case? Restricting our attention to the single proto-spline model, formulation 

(16) contains a scalar random effect, while the vector defined in (17) contains T 

effects. It is interesting to note that the covariance structure governing  is 

degenerate, since is not positive definite. This does not introduce problems with 

estimation, however, because the degeneracy is removed in the full likelihood, 

once residual variation is included. If one examines the structure more closely, it is 

apparent that each element of the vector  is linearly dependent on each of the 

others, so in essence only one random effect is generated by this covariance 

structure.12 So the likelihood-equivalent model (17) is a non-standard mixed 

effects model, which is equivalent to our proto-spline model, even in terms of the 

observations  that would be generated from it, if we consider the limit of its 

degenerate covariance matrix. 

What this means is that our proto-spline formulation effectively “corrects" 

the degeneracy in (17) by modeling the random effects in a simpler manner, 

without direct reference to the relationships indicated by the latter model's 

covariance structure. The k parameters contained in the  matrix are essential to 

each formulation of the model, but should not be confused with what is actually 
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random in the process. By viewing the design as estimated, rather than 

prespecified, our formulation (16) correctly separates the model into a portion 

driven by population features contained in the k and individual features 

represented. 

In sum, the proto-spline class provides an interpretation for an interesting 

class of nonstandard mixed effect models.13 This interpretation is a 

philosophically distinct, hybrid modeling approach, and thus not only generates 

new knowledge with its use, but also establishes a new way to \allocate" the 

information provided in longitudinal data. The parameters contained in k partition 

the variance as follows: they set the overall level of variation, since this is given by 

the sum of the components' squared values; and they describe the correlation 

structure because they define a shape which relates observations at different points 

in time. This formulation thus captures two things simultaneously in a full 

modeling class| orienting a modeling class to have these philosophical properties is 

to our knowledge novel in the literature.14 By developing this class using 

likelihood-based procedures, a complete set of inferential tools is at the analyst's 

disposal. Scott and Handcock (2000) establish the asymptotic properties of this 

class and discuss inferential techniques. Being able to disorientate between 

population and individual effects is crucial to the formation of comparative 

statements in the policy domain.  
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5.4  Illustration 

For ease of exposition, we illustrate our model class by fitting a single 

latent quadratic curve proto-spline model to longitudinal wage data from the NLS. 

For the fixed effects, Xi(t), we use a simple quadratic in age; this yields Model III 

of Section 3.3. In Figure 4, we display the cross-sectional mean of the process.15 

It provides the center from which the curves deviate. In Figure 5, we superimpose 

4 simulated realizations from the proto-spline model , with the residual process  

suppressed. The fitted curve ^_1 used in that simulation is presented in Figure 6. 

>From this figure, one can see that the growth of wages near the college years of 

18 to 22 sets the extent of growth for the later years as well. The shape of the 

single latent curve describes the long-term trend in variation| strong growth in the 

20s, followed by steady but diminished growth in the 30s. Each realization is 

simply the mean curve plus some random multiple (positive or negative) of the 

latent curve . 

 

                     

Figure 4: Mean curve for single proto-spline model 
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One might be concerned that imposing a quadratic latent curve is overly 

restrictive and essentially forces the decomposition into the shape indicated above. 

However, within the class of quadratic curves there are pure linear and constant 

curves, so if there were no change in the growth rate at early and later ages, then 

we would expect a different fitted latent curve. By forming a single latent curve 

spanning all ages, we are specifying that we want this curve to represent long-term 

structure, within the quadratic class. This is in part how we can model the 

covariance structure for the entire age span even though only segments of the full 

trajectory are observed for a specific individual.16 More  

                     

Figure 5: Curves for random coefficients one and two standard deviation 

from the mean for single proto-spline model. 
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Figure 6: Fitted latent curve for single proto-spline model 

complex spaces may reveal more complicated dependencies, should they exist, and 

they should be considered in the model formulation process. 

In Figure 5, we see that the effect of the single latent curve crosses the 

mean at age 17. The zero value for  near this age corresponds to a negligible 

amount of permanent variance, but even this is not predetermined by our choice of 

basis. If below-mean wages at those ages were to lead to much larger gains later 

on, the “crossover" would be at some later age. Random quadratics do limit us to a 

single change in the direction of growth (positive or negative), while higher order 

polynomials would not. Finally, note an important difference between this model 

and Model II. In Model II, each individual has a uniquely shaped quadratic curve, 

so it may rise quickly and not level o, or it may level o quickly. In our model, 

which is basically Model III, every individual's variation beyond the mean has the 

same shape, given by only the magnitude of that variation is allowed to vary. 
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5.5   Application and comparison of models 

To illustrate how the models differ the in practice, we apply several 

different covariance models to labor market data from NLS. After a preliminary 

analysis, we found that the mean structure in this data resembles a quadratic curve, 

so we set the columns of the fixed effects design matrix to correspond to constant, 

linear and quadratic growth over time.17 More complex mean structures can 

describe the influence of additional covariates on aggregate wage growth; our goal 

in this study is to understand the degree of long-term wage stratification, so the 

overall divergence of these curves over time in comparable samples yields 

important substantive information. Next, we must select a form for the structured 

portion of the variation. For wage data, the structured portion consists of long-

term, or permanent, differences between wage trajectories. 

 We will compare three models. The first is a random quadratic mixed 

effects model similar to Model II and to that used by Bernhardt, et al. (1997) in 

their analyses. The second is a single latent curve proto-spline model, similar to 

Model III, and the third is an extension of proto-spline models that includes a 

second non-orthogonal latent curve. Beyond the structural variation just described, 

the residual variation is modeled simply as independent with constant variance. 

 

Random Quadratics 

The strength of a random quadratic model, such as that given by (14) is the 

flexibility provided by the three random coefficients. Note that the quadratic basis 

we use is an orthogonal zed and normalized version of (1; t; t2), which is also the 
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fixed effects basis. The random coefficients are globally constrained to come from 

a multivariate Gaussian density. This choice yields a broad range of curves of 

various shapes and intensities. This distributional form does, however, require that 

there are no clusters of curves, or other multimodalities. 

We assume that are distributed as N(0;G), where G is a completely 

unspecified 3 *3 covariance matrix defined by six distinct parameters. We  the 

model on data from column is a vector consisting entirely, based on the  

the recent NLS cohort18 using maximum likelihood estimation, and that 

                             

and  0:0719.19 Unfortunately, these results are somewhat hard to interpret. The 

structured portion of the covariance is given by Zi ,T i ; where Zi is the random 

effects design matrix. Since the rows of Zi correspond to the subject's age, this 

matrix product describes individual wage differences at each age and how they 

relate to each other. For example, the diagonal of Zi ,T i represents the structured, 

or permanent, wage variance at each age. These values are plotted against age in 

Figure 7 below. The initially larger variance at the earliest ages indicates some 

initial stratification between individual trajectories that seems to diminish by age 

20, only to increase substantially from that point forward, with a dramatic rise after 

age 32. Had permanent differences in trajectories been limited to an intercept shift, 

this graph would have consisted of a horizontal line some distance above the axis. 

The result above indicates that wages fan out quite dramatically as individuals age, 
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and gives some indication of how the process accelerates. We can infer that the 

trajectory 

 

           Figure 7: Permanent wage variance for random quadratic model 

fans out as a whole because the partition is based on a model employing a 

continuous curve for the permanent portion of the trajectory. 

 

Single latent curve proto-spline 

In this model, we assume that most of the structured variation takes a 

specific form, but we let the exact shape be determined by the data. The explicit 

model is                                       

 

where  is the single latent curve, assumed to lie in the space of quadratic curves, 

and  is the random coefficient for the ith individual. This is the same model as the 

one used for our illustrative example in Section 4. A look at Figure 5 (prior page) 

reveals the strength of this model. A wide range of outcomes are easily represented 
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by the mean plus a random multiple of the single latent curve, Figure 6 (prior 

page) displays this curve for the recent cohort.  

In this figure, the interpretability of this class of longitudinal data models 

becomes apparent. The single latent curve reveals most of what we need to know 

about structured variation. Contrast this to the covariance matrix , which along 

with design matrix Zi provides the equivalent information in a less accessible 

form. The random coefficient on our proto-spline model is standard Gaussian, so 

we have an immediate sense of the range of impact of the single latent curve. 

The restriction to a single latent curve does limit our ability to model more 

complex structured variation. In Figure 8 below, we see that the permanent 

variation, the squared version of , describes a very simple growth structure.20 Two 

features stand out in comparison to random quadratic models: the permanent 

variation starts out lower at the youngest ages and it does not grow as dramatically 

as individuals age. We believe that the initial variation is less important from a 

likelihood perspective, so it is effectively being ignored in the estimation process. 

Had we used a higher order polynomial, we might have discovered persistent 

initial wage differences. If this were the case, we would expect  to begin higher, 

possibly decrease somewhat and then increase again, in a shape similar to the 

permanent variance graph from the random quadratic model. 

 

Double latent curve model 

The limitations of a single curve model prompts us to explore a model with 

two latent curves.  Fitting such a model under the pure proto-spline formulation 
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would require the fitted curves to be orthogonal, and this restricts the function 

spaces in which each may lie. We propose a new model that effectively “reuses" 

the basis for each latent curve. The model, abstractly, is given by 

    

 

                         

            Figure 8: Permanent wage variance for single latent curve model 

where  latent curves. standard Gaussian random coefficients. We construct each 

curve from the same basis. 

                   

with k = 1 or 2, effectively doubling the number of parameters used by the single 

latent curve model. After adding some identifiably constraints to our estimation 

procedure, we were able to _t this more complex model. 

The double latent curve model can best be understood as the combination 

of a common mean process and two independent “shocks" taking some functional 

form. We choose to continue to employ the space of quadratic polynomials for 

ease of exposition. Looking at Figure 9, we find that the fitted curves are quite 

different from each other. These are the forms for the two shocks,  We see that is 
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quite similar to its counterpart in the single latent curve model, although it starts 

out further below the origin. The latter feature will induce greater permanent 

variation at the youngest ages, and then this will subside, as the curve crosses the 

origin between ages 18 and 19 (contrast this to the crossing at age 17 in the single 

curve model). The second curve introduces a whole new feature to the co 

variation. It appears that individuals who start out earning more are penalized as 

they age. This is indicated by  initially positive level of about 0.2 at age 16, which 

sinks to -0.3 by age 37. Of course, negative random coefficients are just as likely 

as positive ones, so this curve could also represent later growth for young workers 

who initially accept lower wages. There is mild evidence that this is capturing an 

“education effect," in which individuals who defer fully entering the labor market 

(and possibly pursue education or training) benefit with larger wage growth in the 

long run. 

Note also the similarities and differences of our fitted model to a principal 

components analysis (PCA). The proto-spline restriction to a smooth function 

space means that short term variability is definitely removed, and each curve 

represents a permanent component of variation. With a model-based approach, we 

can precisely describe how the latent curves are added to the response process. 

This is less immediate with the components in a PCA, because the PC scores have 

no predetermined distributional form. Further, the proto-spline process is well-

defined under the entire age range of interest without either the use of an ad hoc 

procedure or requiring a balanced design. 
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                      Figure 9: Fitted proto-splines for double latent curve model 

The permanent variance partitioning for this model is given in Figure 10, below. 

By 

 

                Figure 10: Permanent wage variance for double latent curve model 

including two curves additively and independently, this model allows for larger 

early and later year variation. The effects are permanent, in that they persist over 

the lifetime of a worker, but their independence points to a subtlety of these 

variance decompositions. Two curves, along with their coefficients describe the 

systematic portion of a trajectory, but the independence of the coefficients severs 

any link between the two. In terms of generating mechanisms, this only makes 

sense if two different features of the wage growth process are being captured, such 
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as an overall growth (often attributed to returns to job tenure and experience) and 

an education effect. 

The above comment also points to a limitation of the random quadratic 

model. Namely, it is hard to describe an underlying process (often thought of as a 

latent characteristic) that is driving the three coefficients forming the curves. It is 

hard to imagine that a social or economic generating mechanism involves 

intercept, slope and acceleration components. The latent curve models provide 

simpler explanations, which is an advantage in this case. 

 

Comparing variance partitions 

While related, these three models provide different variance 

decompositions. We display the permanent variation plots in Figure 11, below, and 

include 95% confidence intervals at each age. We discuss the construction of those 

intervals in Section A.1 of the appendix. Notable differences exist for the youngest 

and oldest ages, with strong agreement in the middle range. The single latent curve 

model does not pick up much structured wage variation at the youngest ages. If 

initial differences in wages persist during the youngest ages, but then diminish, 

then this model will have to choose between the initial and later year effects, and 

since the latter are larger, they tend to dominate. The double proto-spline model 

picks up this extra variation in , and this is reflected in larger permanent variance 

for the younger ages. The random quadratic model picks up more variation in both 

younger and older ages and labels it permanent. We contend that the additional 

flexibility of the random quadratic model allows it to follow the raw data more 
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closely, capturing less rigid forms of variation. This is indirectly confirmed by 

examining the residual variation, which is 0.072 for random quadratics, and 0.078 

and 0.098 for double and single latent curve models, respectively. 

 

 

                  Figure 11: Permanent wage variance for all three models 

Below we present the variance decomposition for each cohort to address an 

important question. While each model partitions the variance differently, do these 

differences have substantive impact? That is, how sensitive are the answers to the 

substantive questions to the choice of model? In our application, the question of 

interest is whether or not the permanent wage variance between the cohorts differs, 

and if so, by how much. Any model we use will only be an approximation, but if 

the answer to our question is consistent across models, we can have more 

confidence in any conclusions we draw.  

In Figures 12 through 14 below, we make a cross-cohort comparison and 

display the model-based permanent variance for each model along with 95% 

confidence intervals at each age. All of the models indicate a significantly larger 

permanent variance in the recent cohort, starting sometime in the mid-twenties. 
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The difference is most dramatic in the random quadratic model and least so in the 

single latent curve model. There is some between-model discrepancy in what 

portion of the variance is permanent at the youngest ages, and in how the cohorts 

differ. Both latent curve models contain a crossover, in which the original 

cohort starts out more stratified until the early twenties, at which point the opposite 

it true. In contrast, the random quadratic model posits that both cohorts are more 

permanently stratified initially and to a comparable extent. If we are interested in 

the absolute magnitude of permanent wage stratification, we must look more 

closely at all of these models and determine which is more justified on substantive 

grounds. If we were concerned about wage stratification at the younger ages, a 

deeper understanding of each model's characteristics is warranted, since these 

models tell three different stories  

 

 

Figure 12: Permanent wage variance for random quadratic model 
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Discussion of findings 

All three of these models indicate a significant increase in permanent wage 

variation in the recent cohort for the older ages. But the magnitude of these 

differences varies greatly between models, and strong differences in the partitions 

exist at the younger ages. 

        

                 Figure 13: Permanent wage variance for single latent curve model 

 

                           

                Figure 14: Permanent wage variance for double latent curve model 
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Since the random quadratic model labeled more variation as permanent, it 

may be over fitting that feature, in some sense. The flexibility of random 

quadratics admits even a U-shaped curve, but is it desirable to use such a shape to 

describe permanent wage gains? U-shaped curves, in which initial and final wages 

are nearly identical, involve a shift in the direction of wage change, from loss to 

gain, so in what sense is this indicative of a permanent, or lasting, trend? We must 

understand how the choice of model is reflected in the variance partition if we 

intend to make an informed assessment of social phenomena. 

Latent curve models stand out as a philosophically mixed approach to 

creating variance partitions. They are highly interpretable, with independent 

components acting as shocks to the process. The shocks may be readily 

interpretable in the context of the generating mechanisms for the social processes 

under study. They offer a handy form of rigidity compared to random quadratic 

models, yet are inherently adaptive to overall patterns of structured variation. The 

hybrid nature of this model class provides a new type of analysis to which results 

from other classes can be compared. Thus, these models can be viewed as 

excellent foils to the classical random quadratic model. 

All three of the models describe the structured portion of variance in such a 

way that ”permanent" is a reasonable label to apply. That is, the model describes 

smooth versions of the curves in space that are reasonable attempts to separate the 

analyst-defined signal from noise; and the signal is non-stochastic, conditional on 

the parameters that describe it. The differences in these definitions allow different 

aspects of variation to be identified. 
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5.6     Conclusion 

We embarked on this analysis to determine how different models for 

covariance affect variance component partitioning. Along the way, we introduced 

a new, hybrid class of latent curve models, proto-splines, that offer an interpretable 

paradigm for describing co variation, which is well-suited to formulating 

substantive questions directly. These models locate population level persistent 

covariance structure and reflect it in the shape and size of latent curves. We view 

proto-splines as covariance function smoothers; they are non-parametric in the 

sense that the estimated curve lies in a function space, yet the model formulation 

provides a straightforward interpretation of the curves that is often missing in other 

non-parametric techniques. In the model formulation, the researcher imposes a 

class of functions to capture substantively meaningful structure. The restriction to 

a particular class of functions forces proto-spline models to be conservative in the 

way they t the data-they are less susceptible to outliers, which in other models may 

influence both prediction and t. This makes them invaluable in comparisons with 

more traditional models; the ways in which they differ point out characteristics of 

each, with the clearly defined behavior of our models acting as a foil for the others. 

In future work, we will consider relaxing the independence assumption for 

the protospline model class. For example, our double latent curve model could 

include a term for the correlation between curves. This extension would open up 

the possibility of very different latent curves, since the independence constraint 

ultimately lowers the likelihood of certain shapes for the fitted curves. Including 
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more complex residual structures, such as age-specific variances, as a check on the 

homogeneous variance assumption could prove useful. 

In many socio-economic processes, there are jump points that are not 

smooth, but have important substantive meaning. Adapting the proto-spline class 

to allows for uncertainty in the timing of the change-point could prove useful. 

Raftery (1994) explores this issue; integrating his approaches with ours is a 

research direction of interest. 

Relaxing the Gaussianality assumption is worth investigating, but we 

would limit this to forms that remain interpretable, such as parametric forms. One 

approach that has been suggested by several researchers is a latent class, or 

mixture formulation (see Clogg 1995, Baneld and Raftery 1993, Muthen and 

Shedden 1999, Roeder 1999, Verbeke and Lesafire 1997, Xu, etal. 1996). Under 

this paradigm described earlier, individuals belong to one latent class, and then 

conditional on class membership they follow a certain structure. An important 

point is that the remaining structure could be flexibly captured in the proto-spline 

models just introduced; most models currently in use do not offer such directly 

interpretable covariance formulations. 

In work in progress, we are examining diagnostics for these models in 

greater detail. Model selection criteria such as AIC (Akaike 1974) and BIC 

(Schwarz 1978) can be applied here. These are discussed in Vonesh and Chinchilli 

(1998) and Pinheiro et al. (1994). Recent extensions to the AIC discussed in 

Simono_ and Tsai (1999) appear to be especially promising in in the context of 

these variance component models. An alternative to model selection is the use of 
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Bayesian model averaging (Hoeting, etal. 1998). A developed set of diagnostic 

techniques will add to our understanding of how each model captures and 

partitions variation. 

 

 

 

 

 

 

 

 

 

 



 - 172 -

 
 
 
 
 
 
 
 
 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Chapter – 6 
Alternatives to Traditional Model 

Comparison Strategies for Covariance 
Structure Models 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 



 - 173 -

Chapter – 6 
Alternatives to Traditional Model Comparison 

Strategies for Covariance Structure Models 
 

6.1  Introduction 

In this chapter I discuss two related issues relevant to traditional methods 

of comparing alternative covariance structure models (CSM) in the context of 

ecological research. Use of the traditional test of parametrically nested models in 

applications of CSM (the χ2 difference or likelihood ratio [LR] test) suffers from 

several limitations, as discussed by numerous methodologists (MacCallum, 

Browne, & Cai, 2005). Our primary objection is that the traditional approach to 

comparing models is predicated on the assumption that it is possible for two 

models to have identical fit in the population. We argue instead that any method of 

model comparison which assumes that a point hypothesis of equal fit can hold 

exactly in the population (e.g., the LR test) is fundamentally flawed. We discuss 

two alternative approaches to the LR test which avoid the necessity of 

hypothesizing that two models share identical fit in the population. One approach 

concerns framing the hypothesis of interest differently, which naturally leads to 

questions of how to assess statistical power and appropriate sample size. The other 

approach concerns a radical realignment of how researchers approach model 

evaluation, avoiding traditional null hypothesis testing altogether in favor of 

identifying the model that maximizes generalizability. 

Power presents a recurrent problem to those familiar with null hypothesis 

significance testing (NHST). How large should a sample be in order to have 
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adequate probability of rejecting a false null hypothesis? What is the probability of 

rejecting a false null if our sample is of size N? These questions present special 

challenges in the context of CSM because the relative status of null and alternative 

hypotheses are interchanged from their familiar positions — the null hypothesis in 

CSM represents the theory under scrutiny, and power is framed in terms of the 

sample size necessary to reject a false model. Traditional goodness of- fit tests deal 

with the null hypothesis under which the model fits exactly in the population 

(exact fit test). Point hypotheses tested by the exact fit test are likely never true in 

practice, so how should power be conceptualized? We present an alternative 

strategy extending earlier work on power for tests of close fit (rather than exact fit) 

of single models to tests of small difference (rather than no difference) in 

comparisons of nested models. The null hypothesis in a test of small difference 

states that the model fits nearly as well, but not the same, as a less constrained 

model.  

Another alternative to traditional methods of model assessment is to avoid 

the hypothesis-testing framework altogether, instead adopting a model selection 

approach that uses comparative reliability as the criterion for selecting a model as 

superior to its rivals (Weakliem, 2004). Specifically, we argue that the evaluation 

of models against arbitrary benchmarks of fit gets the researcher nowhere — only 

in the context of model comparison can science advance meaningfully (Burnham 

& Anderson, 2004). Maximizing generalizability involves ranking competing 

models against one another in terms of their ability to fit present and future data. 

Adopting this model selection strategy, however, necessitates proper quantification 
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of model complexity — the average ability of a model to fit any given data. Most 

model fit indices include an adjustment for complexity that is a simple function of 

the number of free model parameters. We argue that this adjustment is insufficient; 

the average ability of a model to fit data is not completely governed by the number 

of parameters. Consequently, we present and illustrate the use of a new 

information-theoretic selection criterion that quantifies complexity in a more 

appropriate manner. This, in turn, permits the adoption of an appropriate model 

selection strategy that avoids pitfalls associated with LR tests.  

I begin by providing a review of the traditional representation of the 

covariance structure model (with mean structure), with an emphasis on its 

application to multiple groups. We then describe advantages granted by adopting a 

model comparison perspective in CSM. One way around the problems with 

traditional approaches is to change the hypothesis under scrutiny to a more 

realistic one. In describing this alternative approach, we describe an approach to 

power analysis in CSM involving an extension of recently introduced methods to 

nested model scenarios. Following our discussion of power, we further explore the 

potential value of adopting a model selection approach that avoids hypothesis 

testing — and thus most problems associated with LR tests—altogether. In the 

process, we introduce the topic of model complexity, suggesting and illustrating 

the use of a new selection criterion that permits appropriate model comparison 

even for no nested models. 
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6.2   COVARIANCE STRUCTURE MODELING 

Covariance structure modeling (CSM) is an application of the general 

linear model combining aspects of factor analysis and path analysis. In CSM, the 

model expresses a pattern of relationships among a collection of observed 

(manifest) and unobserved (latent) variables. These relationships are expressed as 

free parameters representing path coefficients, variances, and covariance's , as well 

as other parameters constrained to specific, theory-implied values or to functions 

of other parameters. For simplicity, we restrict attention to the ally model 

(LISREL Submodel 3B; Joreskog & Sorbom, 1996), which involves only four 

parameter matrices, although the points we discuss later apply more broadly. 

 

6.3   The Importance of CSM to Ecological Research 

There are several advantages associated with CSM that make it especially 

appropriate for addressing hypotheses in the context of ecological models. First, 

CSM permits the specification and testing of complex causal and co relational 

hypotheses. Sets of hypotheses can be tested simultaneously by constraining model 

parameters to particular values, or equal to one another within or across multiple 

groups or occasions of measurement, in ways consistent with theoretical 

predictions. Second, by permitting several measured variables to serve as 

indicators of unobserved latent variables, CSM separates meaningful variance 

from variance specific to items, allowing researchers to test structural hypotheses 

relating constructs that are not directly observed. Third, CSM is appropriate for 

testing co relational or causal hypotheses using either (or both) experimental or 



 - 177 -

observational data. One of the central ideas behind ecological modeling is that 

there is much knowledge to be gained by collecting data observed in context that 

would be difficult or impossible to learn under artificial conditions. Finally, CSM 

is a flexible modeling approach that can easily accommodate many novel 

modeling problems. 

 

6.4   The Importance of Adopting a Model Comparison 

 Perspective 

In practice, CSMs are typically evaluated against benchmark criteria of 

good fit. Based on how well a model fits data relative to these criteria, the model is 

0usually said to fit well or poorly in an absolute sense. The reasoning underlying 

this strategy of gauging a model’s potential usefulness is predicated on an 

approach to science termed falsifications, which holds that evidence accumulates 

for theories when their predictions are subjected to, and pass, realistic “risky” tests. 

If a model passes such a test under conditions where it would be expected to fail if 

false (i.e., if it shows good fit), evidence accumulates in favor of the theory whose 

predictions the model represents. If it fails, the model is either rejected or 

modified, with implications for the revision or abandonment of the theory. Ideally, 

a model is subjected to repeated risky tests to give a better idea of its long-term 

performance, but replication is unfortunately rare in the social sciences.  

 An alternative philosophical perspective maintains that the evaluation of 

models in isolation tells us very little, and that the fit of a model to a particular 

data set is nearly uninformative. Rather, science progresses more rapidly if 
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competing theories are compared to one another in terms of their abilities to fit 

existing data and, as we will discuss, their abilities to fit future data arising from 

the same latent process (Lakatos, 1970; MacCallum, 2003). This approach is 

sometimes termed strong inference (Platt, 1964), and involves model comparison 

as a signature feature. We know from the outset that no model can be literally true 

in all of its particulars, unless one is extraordinarily lucky or possesses divinely 

inspired theory-designing skills. But it stands to reason that, given a set of 

alternative models, one of those models probably represents the objectively true 

data-generating process better than other models do. It is the researcher’s task to 

identify this model and use it as the best working hypothesis until an even more 

appropriate model is identified (which, by design, inevitably happens). Every time 

a model is selected as the optimal one from a pool of rivals, evidence accumulates 

in its favor. This process of rejecting alternative explanations and modifying and 

re-testing models against new data continues ad infinitum, permitting scientists to 

constantly update their best working hypotheses about the unobserved processes 

underlying human behavior.  

 Because no model is literally true, there is an obvious logical problem in 

testing the null hypothesis that a model fits data perfectly in the population. Yet, 

this is precisely the hypothesis tested by the popular LR test of model fit. 

Moreover, most fit indices require the researcher to choose arbitrary values to 

represent benchmarks of good fit. A model comparison approach goes far in 

avoiding these problems, although it cannot avoid them altogether. Most damning, 

it is possible to assert apriori that the hypothesis tested with the χ2 statistic — that 
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a model fits exactly in the population or that two models share exactly the same fit 

— is false in virtually every setting (Bentler & Bonett, 1980; Tucker & Lewis, 

1973). A model selection approach avoids the pitfalls inherent in hypothesis 

testing by avoiding such tests altogether.  

 In addition to adhering more closely to scientific ideals and circumventing 

logical problems inherent in testing isolated models, the practice of model 

comparison avoids some problems associated with confirmation bias. 

Confirmation bias reflects the tendency for scientists unconsciously to increase the 

odds of supporting a preferred hypothesis (Greenwald, Pratkanis, Leippe, & 

Baumgardner, 1986). Regardless of why or how much the deck is stacked in favor 

of the researcher’s preferred model in terms of absolute fit, one model is virtually 

guaranteed to outperform its rivals. Model comparison does not entirely eliminate 

confirmation bias, but it certainly has the potential to improve the researcher’s 

objectivity.  

 In the foregoing we have explained that the popular LR test is 

fundamentally flawed in that the hypothesis it tests is rarely or never true in 

practice; thus, persistent and frequent use of the LR test is of questionable utility. 

We have also explained that adopting a model selection approach, in which at least 

two theory-inspired models are compared, has potentially greater scientific 

potential. In the following two broad sections, we outline some practical solutions 

to logical problems imposed by use of the traditional LR tests of model fit in 

ecological research. The first suggested approach emphasizes the utility of 

avoiding the hypothesis that two models have identical fit in favor of a hypothesis 
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that the difference is within tolerable limits. This approach recognizes that no 

model can realistically fit perfectly in the population, and points out that shifting 

the focus to a less stringent hypothesis is more logical, yet has consequences for 

statistical power and identifying the necessary sample size. We describe and 

discuss methods that can be used to address these problems. The second section 

focuses more closely on the model selection perspective just outlined, emphasizing 

that model fit is overrated as a criterion for the success or usefulness of a theory. 

Rather, more attention should be paid to a model’s ability to cross-validate, or 

generalize, relative to competing models. Special attention is devoted to a new 

model selection criterion that considers aspects of model complexity beyond 

simply the number of free parameters. 

 

6.5   Concluding Remarks 

 There are two broad issues that we wish to emphasize to close this section 

on power analysis and specification of the null hypothesis when performing 

comparisons of nested models. The first issue is the choice of pairs of RMSEA 

values. Essentially the results of any application of any of the methods we 

described are contingent on the particular RMSEA values that the user selects. 

Here we can offer only some general principles. For a more thorough discussion of 

this issue we refer the reader to MacCallum et al. (2006). For specifying RMSEA 

values for testing a null hypothesis of a small difference in fit, the user should 

regard the Good-Enough Principle (Serlin & Lapsley, 1985) as the objective, and 

pick RMSEA values for Models A and B that represent a difference so small that 
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the user is willing to ignore it. In the context of power analysis, the relevant 

general principle would be to choose values that represent a difference that the 

investigator would wish to have a high probability of detecting. In practice, users 

will need to rely on guidelines for the use of RMSEA as mentioned earlier 

(Browne & Cudeck, 1993; Steiger, 1994), as well as the characteristics of the 

models under comparison.  

 The second issue has to do with the assumptions involved in our 

developments. All of the methodological developments presented thus far rely on 

well known distribution theory and its assumptions. Specifically, we make 

extensive use of the assumptions that ensure the chi-squared ness of the LR test 

statistic T , for both the central and non central cases. These include multivariate 

normality, the standard set of regularity conditions on the likelihood to carryout 

asymptotic expansions, and the population drift assumption (Steiger et al., 1985). 

As always, however, such assumptions never hold exactly in the real world, so the 

user should always be cautious in the application of these methods in data analysis 

and should watch for potential pitfalls due to assumption violations. MacCallum et 

al. (2006) discuss the consequences of such violations. 

 

6.6  MODEL SELECTION AND MODEL COMPLEXITY 

Model Selection and Generalizability 

 In the preceding section we provide and illustrate methods for comparing 

rival models in terms of a noncentrality-based fit index, RMSEA. We suggest that 

this strategy is appropriate for statistically comparing the fit of rival, 
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parametrically nested models, but the procedure depends in part on the 

researcher’s judgment of appropriate choices for ε∗A and ε∗B, or what, in the 

researcher’s judgment, constitutes the smallest difference in fit that it would be 

interesting to detect. In practice, a model can demonstrate good fit for any number 

of reasons, including a theory’s proximity to the objective truth (or verisimilitude; 

Meehl, 1990), random chance, simply having many free parameters, or by 

possessing a structure allowing parameters to assume values which lead togood 

model fit for many different data patterns—even those generated by other 

processes not considered by the researcher. In other words, models can 

demonstrate close fit to data for reasons other than being “correct,” even if one 

grants that true models are possible to specify (we do not), so good fit should 

represent only one criterion by which we judge a model’s usefulness or quality. 

 Another criterion of model success that has found much support in 

mathematical psychology and the cognitive modeling literature is generalizability 

(or reliability). The idea here is that it is not sufficient for a model to show good fit 

to the data in hand. If a model is to be useful, it should predict other data generated 

by the same latent process, or capture the regularities underlying data consisting of 

signal and noise. If a model is highly complex, refitting the model to new data 

from scratch will not advance our knowledge by much; if a model’s structure is 

complex enough to show good fit to one data set, it may be complex enough to 

show good fit to many other data sets simply by adjusting its parameters. In other 

words, pure goodness of fit represents fit to signal plus 
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fit to noise. However, if model parameters are fixed to values estimated in one 

setting, and the model still demonstrates good fit in a second sample (i.e., if the 

model cross-validates well), the model has gained considerable support. A 

model’s potential to cross-validate well is its generalizability, and it is possible to 

quantify generalizability based only on knowledge of the model’s formant of its fit 

to a given data set. By quantifying a model’s potential to cross validate, 

generalizability avoids problems associated with good fit arising from fitting error 

or from a model’s flexibility. It also does not rely on unsupportable assumptions 

regarding a model’s absolute truth or falsity. Therefore, generalizability is 

arguably a better criterion for model retention than is goodness of fit per se (Pitt & 

Myung, 2002).  

 Earlier we stated that adopting a model selection perspective requires a 

fundamental shift in how researchers approach model evaluation. Traditional 

hypothesis testing based on LR tests results in a dichotomous accept–reject 

decision without quantifying how much confidence one should place in a model, 

or how much relative confidence one should place in each member of a set of rival 

models. In model comparison, on the other hand, no null hypothesis is 

tested(Burnham & Anderson, 2004). The appropriate sample size is not selected 

based on power to reject hypotheses of exact or close fit (obviously, since no such 

hypotheses are tested), but rather to attain acceptable levels of precision of 

parameter estimates. Rather than retaining or discarding models on a strict accept–

reject basis, models are ranked in terms of their generalizability, a notion that 
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combines fit with parsimony, both of which are hallmark characteristics of a good 

model. 

 The model selection approach does not require that any of the rival models 

be correct, or even (counter intuitively) that any of the models fit well in an 

absolute sense. The process is designed in such a way that researchers will 

gravitate toward successively better models after repeated model comparisons. The 

more such comparisons a particular model survives, the better its track record 

becomes, and the more support it accrues. Therefore, it is incumbent upon 

scientists to devise models that are not only superior to competing models, but also 

perform well in an absolute sense. Such models will, in the long run, possess 

higher probabilities of surviving risky tests, facilitate substantive explanation, 

predict future data, and lead to the formulation of novel hypotheses. But, again, the 

model selection strategy we advocate does not require that any of the competing 

models be correct or even close to correct in the absolute sense. 

 

Information-Theoretic Criteria 

 In contrast to model selection methods rooted in Bayesian or frequents 

traditions, much research points to information theory as a likely source for the 

optimal model selection criterion. Selection criteria based on information theory 

seek to locate the one model, out of a pool of rival models, which shows the 

optimal fidelity, or signal-to-noise ratio; this is the model that demonstrates the 

best balance between fit and parsimony. This balance was termed generalizability 

earlier. Several popular model selection criteria were either derived from, or are 
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closely related to, information theory. The most popular such criteria are the 

Akaike information criterion (AIC; Akaike, 1973) and the Bayesian information 

criterion (BIC; Schwartz, 1978). Excellent treatments of AIC and BIC can be 

found elsewhere (e.g., Burnham & Anderson, 2002, 2004; Kuha, 2004).  

 Many information-based criteria may be construed as attempts to estimate 

the Kullback–Leibler (K–L) distance. The K-L distance is the (unknown) 

information lost by representing the true latent process with an approximating 

model (Burnham & Anderson, 2004). Even though we cannot compute the K–L 

distance directly because there is one term in the K–L distance definition that is 

not possible to estimate, we can approximate relative K–L distance in various 

ways by combining knowledge of the data with knowledge of the models under 

scrutiny. Of great importance for model comparison, the ability to approximate 

relative K–L distance permits the ranking of models in terms of their estimated 

verisimilitude, tempered by our uncertainty about the degree of approximation. In 

other words, using information-based criteria, models can be ranked in terms of 

estimated generalizability. 

 

Minimum Description Length and the Normalized Maximum Likelihood  

 Information-based criteria such as AIC and BIC are used with great 

frequency in model comparisons and with increasing frequency in applications of 

CSM. However, they suffer from at least two major drawbacks. First, they employ 

complexity adjustments that are functions only of the number of free model 

parameters. Second, they implicitly require the strong assumption that a correct 
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model exists. We focus instead on a newer criterion that remains relatively 

unknown in the social sciences, yet we feel has great promise for application in 

model selection. This is the principle of minimum description length (MDL: 

Grunwald, 2000; Myung, Navarro, & Pitt, 2005; Rissanen, 1996, 2001; Stine, 

2004). The MDL principle involves construing data as compressible strings, and 

conceiving of models as compression codes. If models are viewed as data 

compression codes, the optimal code would be one that compresses (or simply 

represents) the data with the greatest fidelity. With relevance to the limitations of 

criteria such as AIC and BIC, the MDL principle involves no assumption that a 

true model exists. If one accepts that a model’s proximity to the truth is either 

undefined (i.e., that the notion of a true model is merely a convenience and bears 

no direct relation to reality) or is at any rate impossible to determine, then the 

MDL principle offers a viable alternative to traditional methods of model 

selection. Excellent discussions of the MDL principle can be found in Grunwald 

(2000), Grunwald, Myung, and Pitt (2005), Hansen and Yu (2001), and Markon 

and Krueger (2004). Three quantifications of the MDL principle are normalized 

maximum likelihood (NML), Fisher information approximation (FIA), and 

stochastic information complexity (SIC). NML is quantified as: 

    

 

 

or the likelihood of the data given the model divided by the sum of all such 

likelihoods. FIA is quantified as  
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an approximation to the negative logarithm of NML that makes use of the number 

of free parameters (q) and the determinant of the Fisher information matrix, I(θ). 

SIC, an approximation to FIA that is typically more tractable in practice, is 

quantified as: 

 

 

The Appendix (see Quant.KU.edu) contains more detailed discussion of these 

criteria. NML, FIA, and SIC all represent model fit penalized by the model’s 

average ability to fit any given data. 

 NML is similar in spirit to selection criteria such as AIC and BIC in several 

respects, save that preferable models are associated with higher values of NML but 

with lower values of AIC or BIC.1 All of these criteria can be framed as functions 

of the likelihood value adjusted for model complexity, although the complexity 

correction assumes different forms for different criteria. NML differs from criteria 

like AIC and BIC mainly in that not every parameter is penalized to the same 

extent. NML imposes an adjustment commensurate with the degree to which each 

free parameter increases complexity, as reflected in the model’s general data-

fitting capacity. Consequently, NML does not assume (as do AIC and BIC) that 

each parameter contributes equally to goodness of fit. Therefore, both parametric 

and structural components of complexity are considered. A major additional 

advantage of NML (which it shares with AIC and BIC) is that it does not require 

rival models to be nested. Thus, if two competing theories posit different patterns 
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of constraints, such models can be directly compared using criteria derived from 

information theory. 

 

6.7   Applying MDL in Practice  

 To illustrate how the MDL principle may be employed in practice, we 

present two brief examples from the applied literature. In both examples we 

compute NML; in the second, we supplement NML with computation of SIC 

because original data were available with which to compute the |nI(θ)| term. 

Neither the denominator term in NML (see Equation [A1]) nor the structural 

complexity term in FIA (see Equation [A2]) can be computed directly in the 

context of CSM. Numerical integration techniques are typically applied instead. 

To facilitate computation of NML, we simulated the data space by generating large 

numbers of random uniform correlation matrices (R) using Markov chain Monte 

Carlo (MCMC) methods.2 These matrices were uniform in the sense that all 

possible R matrices had equal apriori probabilities of being generated. All models 

were fit to all simulated matrices, and the likelihoods were averaged to form the 

denominator of the NML formula.3 The numerators were supplied by simply 

noting the likelihood value associated with the converged solution for each model 

applied to real data. 

Example 1. Our second example draws on three covariance structure 

models compared by Larose, Guay, and Boivin (2002). The authors were primarily 

interested in comparing the Cognitive Bias Model and Social Network Model, two 

models proposed to explain variability in a Loneliness latent variable using 
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Attachment Security, Emotional Support, and Social Support. These two models 

(which we denote L1 and L2) are presented in the first two panels of Figure 3.3. 

Based on results indicating that both models fit the data well and were thus viable 

explanations for the observed pattern of effects, the authors devised a third model 

combining features of the first two, dubbed the Cognitive-Network Model (L3 in 

Figure 3.3). 

All three models were found to fit the data well using self-report measures     

(N = 125), and to fit even better using friend-report measures. In both cases, the 

Cognitive-Network Model was found to fit the data significantly better than either 

the Cognitive Bias Model or the Social Network Model. Following procedures 

already described, we reevaluated Larose et al.’s models (fit to self report data) 

using NML. Results are reported in Table 3.2. Because raw data were available in 

their article, we are also able to provide estimates of SIC.  

Contrary to the authors’ findings, both NML and SIC indicate that the 

Cognitive Bias Model performs better than either the Social Networks Model or 

the proposed Cognitive-Network Model in terms of generalizability. Combining 

features of two already well-fitting models does not necessarily grant a scientific 

advantage when the resulting model is more complex than either of its              
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competitors. In this instance, as in the previous example, the chosen model was 

selected primarily because it showed better absolute fit; this better fit was due in 

part to the fact that the Cognitive-Network Model was more complex than its 

competitors. An implication of this finding is that, whereas the Cognitive- 

Network Model may fit the given data set better than the Cognitive Bias Model 

and the Social Networks Model in absolute terms, it has a lower likelihood of 

generalizing well to future data. 

 

6.8   Summary 

Like other information-theoretic selection criteria, MDL does not require 

rival models to be parametrically nested. Nor does its use require the assumption 

that a true model exists. Furthermore, MDL considers more sources of complexity 

than simply a model’s number of parameters. In sum, we feel that the MDL 

principle has great potential for use in model comparisons in CSM. 

 

6.9  Limitations 

  Of course, NML is not a panacea. Three limitations of NML are 

that it is difficult to compute, it relies on the assumptions of maximum likelihood, 

and it involves often arbitrary bounds on the data space. The first limitation will be 

overcome as processor speeds increase and as NML becomes included in standard 

model estimation packages. In the meantime, the more tractable MDL 

approximation, SIC (Rissanen, 1989), can be used if the numerical integration 



 - 193 -

necessary for NML proves too time-intensive. As for the second limitation, it is 

unknown how robust MDL methods are to violations of ML assumptions. This 

would be a fruitful avenue for future research. 

The third limitation is more challenging because it requires the researcher 

to make a subjective decision regarding boundaries on the data space. We 

restricted attention to correlation matrices for simplicity. We recognize that many 

modeling applications require covariance matrices rather than correlation matrices 

(and sometimes also mean vectors). For example, virtually any application in 

which models are fit to multiple groups simultaneously, such as in factorial 

invariance studies, requires the use of covariance matrices. Growth curve 

modeling requires covariance matrices and mean vectors. Lower and upper 

boundaries must be imposed on generated means and variances if such data are 

required, and these choices constitute even more subjective input. It is generally 

agreed that data generated for the purpose of quantifying model complexity should 

be uniformly representative of the data space (Dunn, 2000), yet choices regarding 

the range of data generation may exert great influence on the ranking of competing 

models. It is thus important that reasonable bounds be  investigated to ensure 

reasonable and stable model rankings. A discussion of the implications for 

arbitrary integration ranges can be found in Lanterman (2005). 

 

6.10  DISCUSSION 

We have proposed two alternatives to traditional methods of comparing 

covariance structure models. Both alternatives were suggested in response to 
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limitations of the popular LR test; the most severe limitation is that the hypothesis 

tested by the LR test (that two models have identical fit) is never true in practice, 

so investigating its truth or falsity would seem to be a questionable undertaking 

(MacCallum et al., 2006). The first alternative procedure posits a modified null 

hypothesis such that the difference in fit between two nested models is within 

tolerable limits. The second alternative we discuss is to compare rival (not 

necessarily nested) models in terms of relative generalizability using selection 

indices based on the MDL principle. Both methods encourage a model comparison 

approach to science that is likely to move the field in the direction of successively 

better models. 

There are interesting parallels between the strategies proposed here and a 

framework for model assessment proposed by Linhart and Zucchini (1986) and 

elaborated upon by Cudeck and Henly (1991) in the context of CSM. Because it 

relies on RMSEA to specify null and alternative hypotheses, the first approach 

(using RMSEA to specify hypotheses of close fit) can be seen as way to compare 

nested models in terms of their approximation discrepancy, or lack of fit in the 

population. In other words, this method is a way to gauge models’ relative 

nearness to the objectively true data-generating process, or their relative 

verisimilitudes. The second method of model comparison makes use of the MDL 

principle to facilitate comparison of models in terms of their relative 

generalizabilities, or abilities to predict future data arising from the same 

generating process. This strategy can be seen as a way to compare models (nested 

or non-nested) in terms of their overall discrepancy, tempering information about 
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lack of fit with lack of confidence due to sampling error. When N is large, enough 

information is available to support highly complex models if such models are 

appropriate. When N is small, uncertainty obliges us to conservatively select less 

complex models until more information becomes available (Cudeck & Henly, 

1991). Thus, NML and similar criteria are direct applications of the parsimony 

principle, or Occam’s razor. 

The parallels between the measures of verisimilitude and generalizability 

on one hand, and the Linhart–Zucchini and Cudeck–Henly frameworks on the 

other, perhaps deserve more attention in future research. High verisimilitude and 

high generalizability are both desirable characteristics for models to possess, but 

selecting the most generalizable model does not necessarily imply that    the 

selected model is also closest to the objective truth. Therefore we do not advocate 

choosing one approach or the other, or even limiting attention to these two 

strategies. Rather, we suggest combining these strategies with existing model 

evaluation and selection techniques so that judgments may be based on as much 

information as possible. Regardless of what strategy the researcher chooses, the 

strongest recommendation we can make is that researchers should, whenever 

circumstances permit it, adopt a model selection strategy rather than to evaluate 

single models in isolation. The methods illustrated here are viable alternatives to 

the standard approach, and can be applied easily in many modeling settings 

involving longitudinal and/or ecological data.                      
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