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CHAPTER 1 

 

INTRODUCTION 

 

1.1   History of Life-testing and Reliability 

 

Reliability theory in nineteenth century was primarily used as a tool to help 

maritime and life insurance companies figure profitable rates to charge their 

customers apart from the mainstream of probability and statistics. In today’s 

technological world nearly everyone depends upon the continued functioning 

of a wide array of complex machinery and equipment for their everyday 

health, safety, mobility and economic welfare. We expect our cars, 

computers, electrical appliances, lights, televisions etc. to function whenever 

we need them day after day, year after year. When they fail the results can be 

disastrous which lead to injury, loss of life and/or costly lawsuits.  

 

Moreover, repeated failure leads to annoyance, inconvenience and a 

lasting customer dissatisfaction that can play havoc with the company’s 

market position. It takes a longtime for a company to build up a reputation for 

reliability and only a short time to be branded as “unreliable” after shipping a 

flawed product. Continual assessment of new product, reliability and ongoing 
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control of the reliability of everything shipped are vital requirements in today’s 

competitive business arena. 

 The everyday usage term “quality of a product” is taken for granted to 

mean its inherent degree of excellence. In industry, this is made more precise 

by defining quality to be “conformance to requirements at the start of use”. 

Assuming that the product specifications adequately capture customer 

requirements, the quality level can now be precisely measured by the fraction 

of units that meet specifications after a week of operation? Or after a month 

or at the end of a one-year warranty period? That is where “reliability” steps 

in. Quality is a snapshot at the start of life and reliability is a motion picture of 

day-by-day operation. The quality level might be described by a single 

fraction defective. To describe reliability fallout a probability model that 

describes the fraction fallout over time is needed. This is known as life 

distribution model.  A life distribution does find its frequent application in the 

engineering and biomedical sciences. 

  

The times to the occurrences of events, which are of interest for some 

population of individuals, are termed as “life times”. Some times the events of 

interest are deaths of individual or may be a survival time measured from 

some particular starting point. In some instances “life time” is used in a 

figurative sense. Mathematically, one can think of “life time” as merely 

meaning “non-negative valued variable”. For e.g. manufactured items such as 

mechanical or electronic components are often subjected to life tests in order 
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to obtain information on their endurance. This involves subjecting items in 

operation, often in a laboratory setting and observing them until they fail. In 

such situation it is common to refer to life times as “failure times”, since when 

an item ceases operating satisfactorily, it is said to have “failed”. 

   

The theoretical population models that are used to describe unit life times 

are known as lifetime distribution models. The population is generally 

considered to be all of the possible unit life times that could be manufactured 

based on a particular design, choice of materials and manufacturing process. 

A random sample of size n from this population is the collection of failure 

times observed for a randomly selected group of n units. A lifetime distribution 

model can be any probability density function f (t) defined over the range of 

time from t = 0 to t = ∞ . The corresponding cumulative distribution function F 

(t) is a very useful function as it gives the probability that a randomly selected 

unit will fail by time t. The data, to which statistical methods are applied in 

order that parameters of interest can be estimated in their reliability context, 

usually result from life tests. A typical life test is one in which prototypes of the 

item or organism of interest is subjected to stresses and environmental 

conditions demonstrate the intended operating conditions. During the test 

successive times to failures are noted. Since the failures occur in order, the 

theory of order statistics plays an important role in the analysis of the life test 

data. 

 



  4

  

Literature related to statistical methods used in the analysis of life test 

data lies scattered in a number of professional journals and books. Reliability 

studies frequently involve testing of items (say n in number) that are designed 

to last for long periods of time. In such studies, constraints in the form of 

truncation and / or censoring would be deemed essential as means of 

obtaining information within reasonable time limitations; while there are 

several means of censorship (see Gajjar and Khatri (1969)) two types are 

commonly used. These are referred as Type-I and Type-II censorships.   

Type-I censorship or censoring occurs when the researcher sets a time limit 

on terminating the life test, even though some of the test items remain 

operational. Type-II censoring occurs when the life test is terminated at the 

particular (the rth, say r < n) failure. In Type-I censoring the number of failures 

and all the failure times are random variables, the number of failures being 

considered fixed. Type-II censoring has the advantage of providing more or 

less uniform amount of information in repeated sampling with the 

disadvantage that the length of testing time varies from test to test. Type-I 

censoring provides a constant length of testing time in repeated sampling with 

amount of information varying from test to test. One advantage of Type-I 

censoring is that it simplifies the problem of test scheduling in a production 

process where information from periodic production of lots has to be obtained 

at regular intervals. 
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1.2    PRE-WORK  

 

There is an extensive body of literature concerning properties of several 

estimators that are proposed for estimating parameters of probability models 

commonly used in reliability studies under Type-II censoring. Though some 

work in the area of reliability and life testing has been done under Type-I 

censoring but it is not as extensive as that under Type-II censoring. The early 

work concerning estimation of parameters from continuous life time 

distributions such as Normal, Exponential, Weibull, Extreme Value 

distributions and discrete life time distribution particularly Geometric 

distribution based on single stage Type-I and Type-II censoring was initiated 

by Gupta(1952), Epstein and Sobel (1953, 1954), Lieblein and Zelen (1956), 

Bartholomew (1957, 1963), Cohen (1965), Tiku (1967) and others. Recently, 

rather extensively the work has been studied by Yaqub and Khan (1981), 

Patel and Gajjar (1990), Cohen (1991), Balakrishnan and Cohen (1991). 

These authors have all considered lifetime studies in industrial as well as 

actuarial (human life time) contexts, in parametric and non-parametric cases. 

 

 In several situations, the initial censoring results only in withdrawal of a 

portion of the surviving items. Those which remain on test continue under 

further observation until an ultimate failure or until a subsequent stage of 

censoring is performed. For sufficiently large samples censoring is done 
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through several stages. This leads to progressive censoring of Type-I or 

Type-II. Progressive censoring can be adopted for several reasons. 

Progressively censored sample arise, for instance, when certain items must 

be withdrawn from a life test prior to failure for use as test objects in related 

experimentation. They may also result from a compromise between the need 

for more rapid testing and the desire to include at least some extreme life 

spans in the sample data. When the test facilities are limited and when 

prolonged life tests are cost-prohibitive, the early censoring of a substantial 

number of items from the test frees facilities for other tests while items which 

are allowed to continue on test until subsequent failures provide information 

on extreme sample values. 

  

Cohen (1963) considered Type-I progressively censored samples in case 

of Normal and Exponential distributions and obtained maximum likelihood 

estimates of the parameters of these distributions with the assumption that 

the parameters remain the same at each stage of censoring. But there are 

situations where it might be reasonable to assume that the parameters of a 

distribution under consideration might change at each stage of censoring. The 

justification of this reasoning likes in the fact that the surviving items entering 

the subsequent stage are checked and overhauled eliminating or repairing 

minor defects wherever possible. It may be noted that due to different 

parameters at different stages of censoring it leads to estimating parameters 

from truncated censored distributions. Srivastava (1967), Gajjar and Khatri 
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(1969), Patel and Gajjar (1979) and Patel (1991) have considered Type-I 

progressively censored and group-censored samples from Exponential, 

Weibull, Inverse Gaussian, Log-normal, Power series and Logistic 

distributions with different parameters at different stages of censoring and 

obtained maximum likelihood estimates of the parameters. The maximum 

likelihood estimates or estimating equations obtained by Gupta (1952) and 

Cohen (1963) can be deduced as special cases from these results. 

 

1.3   PRESENT WORK 

 

In order to obtain information about the reliability or warranty period of 

manufactured items such as electrical or electronics, components are often 

put on life tests and life times are observed periodically. A model is specified 

to represent the distribution of life times and statistical inferences are made 

on the basis of this model. The lifetime models may be discrete or continuous. 

The widely-used continuous lifetime models are Exponential, Weibull, 

Rayleigh, Lognormal distributions etc, whereas Geometric distribution, a 

discrete analogue of Exponential distribution, is used as discrete lifetime 

failure model.    

 

In life testing experiments, usually the items are checked by destroying 

them and/or are very costly. This limits the number of items we can test. In 

these situations the life test may be terminated at the pre-determined number 
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of failures. For instance, we may put N items on the test and terminate the 

experiment when a pre-assigned number of items, say r (< N) have failed. 

The samples obtained from such an experiment are called right Type-II 

censored samples. Another way to get censored data is to observe largest 

lifetimes. The lifetimes of first (N-s) components are missing; such a 

censoring is called left Type-II censoring. Moreover, if left and right Type-II 

censoring situations arise together, this is known as doubly Type-II censoring 

scheme. 

 

Estimation based on classical inferences has been found to be extremely 

useful for a variety of problems. This thesis is concerned with the problem of 

estimation under progressive Type-I and Type-II, and progressive Type-I 

interval censoring schemes.  

 

Suppose an item with failure rate X follows the distribution F(X|θ) with 

density function f(X|θ) for θ is a vector valued parameter in a real parameter 

space Ω. Suppose X has the distribution function F(X|θi) in the time interval 

(Ni-1,Ni] for i=1,2,…,k (k>1) with N0 = 0 and Nk = ∞ . 

 

Let n items are placed on a life test without replacement and let ni be the 

number of items that withdrawn from the test immediately after the censoring 

time Ni-1, i=2,3,…,k so that (k)
(k) kr n n= − ; where (k)n denotes the number of 

item entering the kth   stage of an experiment. Also, let (i) (i) (i)
1 2 ni

X X ... X≤ ≤ ≤ be 
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the times of failure for i=1,2,…,k (k>1) then the likelihood function for k-stage 

Type-I progressive censoring without replacement is given by 

( ) ( )
k

( )

i=1 1 1 1
L 1 .

rn iki
i

i j i i
j

f x F Nα
= =

⎧ ⎫⎪ ⎪ ⎡ ⎤−⎨ ⎬ ⎣ ⎦
⎪ ⎪⎩ ⎭

∏ ∏ ∏  

 

Taking X as non-negative integer valued random variable and Ni’s can be 

chosen to be non-negative integers, a problem of estimating parameters at 

different stages of censoring can be considered. The method of maximum 

likelihood can be employed to estimate the properties of different types of 

estimators like MLE, shrinkage estimator, minimum mean square error 

estimator, and almost unbiased estimator can be investigated. Patel and 

Patel (2003, 2005a, 2005b, 2005c, 2006) have consider estimation of 

parameters of geometric life time distribution under progressive Type-I and 

Type-II censoring with mixture as well as competing risk models. 

 

A generalization of Type-II censoring is progressive Type-II censoring. 

According to Balakrishnan and Aggrawala (2000) under progressive Type-II 

censoring scheme a total of n units are placed on a life test, only m are 

completely observed until failure. At the time of first failure, R1 of the n-1 

surviving units are randomly withdrawn from the test. At the time of next 

failure R2 of the n-2- R1 surviving units are censored, and so on. Finally, at the 

time of nth failure all the remaining Rm = n-m-ΣRi surviving units are censored. 
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Again a more generalization of such progressive Type-II censoring 

scheme is discussed by Lawless (1982). In this scheme, the first n1 failures in 

a sample of n items are observed. Then r1 of the remaining n-n1 working 

items are withdrawn from the experiment, leaving n- n1- r1 on the test. When 

further n2 items have failed r2 of the still working items are withdrawn and so 

on. Finally, the experiment is terminated at the end of nk
th failure. 

 

Let (i) (i) (i)
1 2 ni

X ,  X ,  ... , X are the failure times during the ith stage of censoring         

i= 1, 2,…,k and (1) (2) (k)
n n n1 2 k

X ,  X ,  ... , X are the censoring times for k-stage 

respectively.  

 

Then the likelihood function for k-stage Type-II progressive censoring without 

replacement is given by 

 

( ) ( ) ( )
( )k

( ) ( )
( )

i=1 1 1 1

!L= 1 .
!

rn ii ki
i i

i j i ni i
ji

n f x F x
n r = =

⎧ ⎫⎪ ⎪ ⎡ ⎤−⎨ ⎬ ⎣ ⎦− ⎪ ⎪⎩ ⎭
∏ ∏ ∏  

 

where f (.) and F(.) are composite probability density function and cumulative 

distribution function of life time random variable respectively.  

 

Using the method of maximum likelihood estimation of the parameters 

expected waiting time of the test, expected total time of the test, sample size 
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to minimize the total cost of the test can be considered for discrete or 

continuous lifetimes models. Patel and Patel (2007) have used progressive 

Type-II censored sample for geometric life time model. Gajjar and Patel 

(2008) have considered estimation for a mixture of exponential distribution 

based on progressive Type-II censored sample. 

 

In this thesis the length biased exponential distribution, reciprocal 

exponential distribution, generalized half logistic distribution are used as life 

time models. The thesis may be divided into three categories viz: 

 

(1) Estimation of the parameters under Type-I and Type-II progressive 

censoring scheme when samples are drawn from 

(a) Length biased exponential distribution 

(b) Reciprocal exponential distribution 

(c) Generalized half logistic distribution 

 

(2) Estimation of the parameters under progressive interval Type-I 

censoring scheme when samples are drawn from 

(a) Reciprocal exponential distribution 

 

(3) Bayesian estimation for parameters for 

(a) Length biased exponential distribution 

(b) Type-II generalized half logistic distribution 
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Detail index is given in chapter-1 

 

Chapter-2 deals with the study of some basic results and 

characterizations of Length Biased Exponential distribution. Length Based 

sampling was introduced by Cox (1962) (see Patil 2002). It has various 

applications in biomedical area such as family history and disease, survival and 

intermediate events and latency period of AIDS due to blood transfusion (Gupta 

and Akman 1995). Patil and Rao (1978) wrote an article on “The study of human 

families and wildlife populations” The most common forms of all weight function 

useful in scientific and statistical literature are some basic theorems for weighted 

distribution and size-biased. As special case they arrived at a conclusion that the 

length biased version of some discrete distribution arises as mixture of the length 

biased version of these distributions. 

 

A lot of work has been done by Khatree (1989) to derive relationship 

between original distributions and their length biased versions. A very useful 

result giving a relationship between original random variable X and its length 

biased version Y when X is either inverse Gaussian or Gamma distribution. He 

also proved that length biased random variable Y can be written as a linear 

combination of the original random variable X and a chi-square random variable 

Z and inversely the original random variable can be characterized through this 

relationship.  
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Several authors such as Patil et al. (1986), Jain et al. (1989), Gupta and 

Kirmani (1990) and recently by Olyede and George (2002) treated relationships 

in the perspective of reliability. In these works the survival function, the failure 

rate, and the mean residual life function of the length-biased distribution were 

expressed in relation with the original distribution. 

 

If a random variable X follows any distribution with probability density 

function f(x) then the probability density function of length biased distribution of X 

is defined as ( )( )
( )

xf xg x
E X

= . 

 

We have considered estimation related to parameters of the length biased 

exponential distribution based on progressively Type-II censored samples. 

Maximum likelihood estimators as well as approximate Bayes estimators of the 

parameters are developed. A simulation study is considered for different patterns 

of censoring. The results based on this chapter are published by Bhimani, Arora 

and Patel (2008). 

  

Chapter -3 is considered with the estimation of parameters of reciprocal 

exponential distribution based on progressive interval Type-I censored samples. 

Maximum likelihood estimator along with its asymptotic variance is derived and 

compared for different censoring patterns. Confidence interval estimation is 
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considered based on bootstrap and r - level likelihood ratio, under the three 

censoring patterns. Non parametric as well as parametric estimate of the survival 

function are obtained with their asymptotic variances. Using the method 

suggested by Kendall and Anderson (1971) expected duration of life test is 

derived and computed for different choice of time intervals.  

  

In most applications, the data may be interval-censored. By interval-

censored data, we mean that a random variable of interest is known only to lie in 

an interval, instead of being observed exactly. In such cases, the only information 

we have for each individual is that their event time falls in an interval, but the 

exact time is unknown.  

 

Generally statistician faces lot of problem in the analysis of time-to-event 

data such as failure time data, incubation time data etc. Such data arises in lot of 

fields such as medicine, engineering, economics. For example doctor may be 

interested to know the time of convergence to AIDS for HIV positive individual, 

the time to the death for cancer patients, lifetime of a device etc. The analysis of 

time-to-event later becomes more complicated on account of censoring. 

 

Interval censoring also known as group censoring arises when 

observations occur in some interval of time a and b. Such data occurs in variety 

of circumstances but generally it is encountered in medical studies where 

patients are only monitored at regular intervals (e.g. weekly or quarterly 
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checkup). Thus, the exact time of occurrence of some changed response may 

only be known to have some time between two visits. 

 

Samuelson and Kongerud (1994); Kokasa et al (1993); Farrington (1996); 

Odell et al (1992), Sun (1997); Lindsey and Ryan (1998) and Scallan (1999) 

have discussed application of interval censoring in clinical, medical, biomedical 

and engineering studies. Rao (1998) gave standard methods for analyzing 

interval censored data and discussed efficiencies of estimators derived from 

censoring over conventional Type-I and Type-II censoring schemes. 

  

Estimation related to the parameters of reciprocal exponential distribution 

is discussed for progressively Type-II censored samples. A maximum likelihood 

estimator for the parameters is developed. A simulation study is considered for 

different pattern of censoring. These results are presented in Chapter-4. 

  

Chapter-5 deals with progressive Type-II censored sample for a Type-II 

generalized half logistic distribution. Classical inference is carried out using 

simulation of such a censored sample. Maximum likelihood estimator as well as 

approximate Bayes estimator of the parameter along with their asymptotic 

variances and MSE’s are derived and compared for different censoring patterns. 

Confidence interval estimation is considered based on bootstrap and r- level 

likelihood ratio under the three censoring patterns. 
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Half logistic model obtained as the distribution of the absolute standard 

logistic variate is probability model considered by Balakrishnan (1985). 

Balakrishnan and Puthenpura (1986) obtained best linear unbiased estimator of 

location and scale parameters of the half logistic distribution through linear 

functions of order statistics. Balakrishnan and Wong (1991) obtained 

approximate maximum likelihood estimates for the location and scale parameters 

of the half logistic distribution with Type-II Right-Censoring. Olapade (2003) 

proved some theorems that characterized the half logistic distribution. The half 

logistic distribution has not received much attention from researchers in terms of 

generalization. A generalized version of half logistic distribution namely Type-I 

and Type–II generalized half logistic distributions are considered by Ramakrishna 

(2008). 

 

In chapter-6 we have discussed the maximum likelihood estimators of the 

generalized half logistic distribution under Type-I progressive censoring with 

changing failure rates is considered. The numerical evaluation of their relative 

performance is made for selected values of n and p. MLE and its asymptotic 

variance are obtained using a simulation study based on 1000 random samples. 

Further results including total expected waiting time are obtained in case of 

interval censoring schemes also. 
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CHAPTER 2* 

 

Estimation under Progressive Type-II censoring for Length 

Biased Exponential Distribution 

 

2.1  INTRODUCTION 

 Reliability studies frequently involve testing of items that are designed to 

last for a long period of time. In such studies constraints are in the form of 

truncation and / or censoring would be deemed essential as a mean of obtaining 

information within reasonable time limitations.  

 

While there are several types of censorship, two are of common usage. 

These are commonly referred to as Type-I and Type-II censoring. Type-I 

censoring occurs when the researcher sets a time limit on terminating the life test 

even though some of the test items remain operational.  

 

* A paper on the basis of this chapter is published in the journal IAPQR 

Transactions, Vol. 33(2), page no. 83-94, 2008. 
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Type-II censoring occurs when the life test is terminated at the particular (say, r < 

n) failure. 

 

Progressive Type-II censoring defined by Cohen (1963) is as follows. 

Before conducting a life test the experimenter fixes a sample size n, a number of 

complete observation m and a censoring scheme (R1, R2, ……… Rm),                 

n = im R+∑  .  The n units are placed on a life test. Immediately after the first 

failure, R1 surviving units are randomly chosen and removed from the 

experiment. Then after second failure, R2 units are withdrawn and so on. The 

procedure is continued until all Rm remaining units are removed after the mth 

failure. 

 

If   R1 = R2 = …………= Rm = 0, then n = m which corresponds to a 

complete sample. If  R1 = R2 = …………=  Rm-1  = 0   then Rm = n – m corresponds 

to conventional Type-II right censoring scheme. 

 

Balakrishnan and Aggarwala (2000) provided a comprehensive reference 

on progressive censoring, its application and techniques for analyzing data from 

progressive Type-II censoring schemes. 
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2.2 Length Biased Exponential Distribution 

Consider a group of subjects who experience some event (say, the onset 

of disease) at times [x.sub.i], followed by some other event (say, death) at 

endpoints [x.sub.y]. In epidemiology studies it is often the aim to estimate the 

distribution of the intervals from initiation to the endpoints or to compare the 

distributions of these survival times for two or more well-defined groups. When it 

is possible to follow all subjects in a group prospectively, standard techniques of 

survival analysis are applicable. Frequently, however, subjects are identified to 

have experienced initiation through a cross-sectional study at some fixed time 

point; hence those who have survived to that time are recruited into the study, 

whereas those who have not will not be included in this initial recruitment phase, 

and indeed will not even be identified.  

Thereafter, the group of recruited subjects is followed until a second time 

point, corresponding to the end of the study. Of course, some of these subjects 

will have censored failure times for various reasons, including their survival until 

the end of the study. We assume that for every subject included, an initiation 

date is recorded. Therefore, the data on each subject include the dates of onset 

and failure/censoring (as well as censoring indicators) for those subjects who 

have been recruited.  
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The intervals from initiation to failure/censoring are well known to be 

"length biased," which means that those time intervals actually observed tend to 

be longer than those arising from the true underlying failure (censoring 

distributions). The phenomenon of length bias was systematically studied by 

McFadden (1962), Blumenthal (1967), and later by Cox (1969) in the context of 

estimating the distribution of fiber lengths in a fabric.  

Length biased sampling has various applications in biomedical area such 

as family history and disease, survival and intermediate events and latency 

period of AIDS due to blood transfusion (Gupta and Akman 1995). Patil and Rao 

(1978) wrote an article on “The study of human families and wildlife populations” 

They arrived at a conclusion that the length biased version of some discrete 

distribution arises as a mixture of the length biased version of these distributions. 

 

A lot of work has been done by Khatree (1989) to derive relationship 

between original distributions and their length biased versions. A very useful 

result giving a relationship between original random variable X and its length 

biased version Y when X is either inverse Gaussian or Gamma distribution. He 

also proved that length biased random variable Y can be written as a linear 

combination of the original random variable X and a chi-square random variable 

Z and inversely the original random variable can be characterized through this 

relationship.  

 



  21

Several authors such as Patil et al. (1986), Jain et al. (1989), Gupta and 

Kirmani (1990) and recently by Olyede and George (2002) treated relationships 

in the perspective of reliability. In these works the survival function, the failure 

rate, and the mean residual life function of the length-biased distribution were 

expressed in relation with the original distribution. 

 

If a random variable X follows any distribution with probability density 

function f(x) then the probability density function of length biased distribution of X 

is defined as xf(x)g(x)=
E(X)

. 

 

 

2.3 Maximum Likelihood Estimation 

The probability density function and cumulative density function of a length 

biased exponential distribution with parameter θ  is given by, 

-x
θx 1( ) e ,  0,  θ 0.

θ θ
g x x= > >         (2.3.1) 

and 

-x -x
θ θxG(x) = 1- e +e .

θ
⎡ ⎤
⎢ ⎥
⎣ ⎦                                                                 (2.3.2)

  

 

     



  22

If n item are put on test, then the likelihood function under Progressive Type-II 

censoring scheme as discussed in the section 2.1 is given by, 

 

 

[ ]
iRm

i i
1 i = 1

L  =  c o n s t a n t  g ( x |θ ) 1 - G ( x |θ ) .
m

i =
∏ ∏

     

 

 Using (2.3.1) and (2.3.2) the likelihood function becomes 

 

i
i i i

R-x -x -xm m
i iθ θ θ
2

i= 1 i= 1

x xL  =  c o n s ta n t  e e + e .
θ θ

⎡ ⎤
⎢ ⎥
⎣ ⎦

∏ ∏
 

(2.3.3) 

 

The log likelihood function is given by 

 

i-xm m
i iθ

i
1 i=1 i= 1

m m
i i i

i i
1 i=1 i=1

x xln  L  =  ln  c ln x 2m lnθ + R ln e + 1 .
θ θ

x (1+ R ) x       ln ln x 2m lnθ - + R ln + 1 .
θ θ

m

i
i

m

i

c

=

=

⎧ ⎫⎛ ⎞+ − − ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭
⎛ ⎞= + − ⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑
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Differentiating ln L with respect to θ  and equating to zero we obtain 

 

m m
i i i i

2 2
ii= 1 i= 1

x ( 1 + R ) R x2 m- + + - = 0 .xθ θ θ+ 1
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑
                  

          (2.3.4) 

 

Hence we obtain the mle θ̂  as  

m

i i
i= 1

m
i i

i= 1 i

x (1 + R )
θ̂ .

x R2 m + ˆx + θ

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑

∑
              (2.3.5) 

      

Solving the equation (2.3.5) by any iterative method like Newton-Raphson for                 

θ̂ , maximum likelihood estimate of θ  can be obtained. 

 

Now again differentiating (2.3.4) we get 
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( )
( )( )

2 m m
i i ii i

2 2 3 2
i= 1 i= 1 i

x R x + 2 θx (1 + R )ln 2 m -2 -
θ θ θ x + θ

L
θ

∂
=

∂ ∑ ∑  

 

 

 

 

Hence observed asymptotic variance of θ̂  is given by (Due to Cohen1963) 

                    

2

2
ˆθ=θ

1ˆV(θ) .
ln
θ

L
−

=
∂
∂

 

 

2.4 Bayes Estimate 

 

Since last three decades lot of work has been developed in the field of 

reliability using Bayesian approach. Under certain limitations, the maximum 

likelihood estimators have a number of desirable properties and are extensively 

used in preference to other classical estimators. A Bayesian, however, interprets 

probability as a person’s degree of belief in a certain proposition based on prior 

knowledge (or current knowledge) about parameter θ and this degree of belief is 

successively revised or updated as new information is accumulated about the 

proposition.  
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In Bayesian framework the parameter is justifiably regarded as a random 

variable and the data once obtained, is given or fixed. Also it is realistic to 

assume that life parameter is stochastically dynamic. Martz and Waller (1982) 

have done lot of work regarding Bayes estimation in the field of life testing and 

reliability. 

 

In this section the Bayesian approach is used to derive estimate of the 

parameterθ , assuming we are in the situation where very less is known about a 

prior about the values ofθ .   

 

Prior distribution is an essential component of Bayesian inference. There 

is no single answer to the question, “What should be the right prior?” For much of 

the time the prior information is subjective and is based on a person’s own 

experience and judgement. Different types of priors like non-informative prior, 

uniform prior, Jeffreys’ prior, Hartigan’s prior, natural conjugate prior, minimal 

informative prior and Dirichlet’s prior are used in Bayesian inference.  

 

To avoid the complexity involved in solving Bayes estimates. Here we 

consider prior distribution of θ  as exponential distribution with meanβ . 

             That is   
( )

θ-
β1π θ = e ,  θ>0,  β>0.

β         (2.4.1)        
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Using the likelihood function given in (2.3.3) and the prior defined in (2.4.1), the 

posterior distribution of θ is given by: 

 

( ) ( )h θ|x α Lπ θ  

                

m
ii i i

i=1

Rx θx xm m- -- -θ βi i θ θ
2m

i=1 i=1
 

x x 1α e  e +e e
θ βθ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∏ ∏  

 

m
i ii i

i=1

x Rθ x x- +m m - -θ βi i θ θ
2m

i=1 i=1
. 

x xα e  e +e
θβθ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∏ ∏               (2.4.2) 

             

      Now under squared error loss function, the Bayes estimator of θ  can be 

obtained as

 

                       

                                 

       

m
i i

i i
i=1

*

x Rθ x x- +m m - -θ βi i θ θ
2m

i=1 i=10

θ = E(θ |x)

x x    = c θ   e  e +e dθ
βθ θ

⎛ ⎞
∞ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ⎛ ⎞

⎜ ⎟
⎝ ⎠

∏ ∏∫  

         
 

where c is normalizing constant. Here it is not possible to get *θ in closed form, 

so we refer to numerical integration to find a solution. Lindley (1980) gave an 

alternative method to approximate the integrals that occur in Bayesian statistics. 

According to Lindley (1980), the Bayes estimator *θ  is approximated as   

 



  27

( )* 2 4
2 1 1 3 1

ˆθ = θ

1 1ˆθ =  E (θ |x ) θ + u + 2 u ρ σ + l u σ .
2 2

≈
      

  (2.4.3)
 

   

 

 

 

 

 where 

1
θu 1
θ

d
d

= =  

2

2 2

θu 0
θ
∂

= =
∂

 

( ) θρ lnπ θ  -lnβ-
β

= =  

1
ρ -1ρ  = 
θ β

d
d

=  

 

( )

2

2 2

3

3 3

- 12
2

l n

θ

θ
σ = - .

l L
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ll

l

=

∂
=

∂
∂

=
∂
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2.5 Simulation Study       

 

In this section we consider a simulation study to observe behavior of ML 

and Bayes estimate of θ  under different censoring patterns. Here we generate 

8000 random samples of size 15, 25 and 50 from length biased distribution 

defined in (2.3.1) forθ = 0.2, 0.8 and 1. To generate a sample (x) under 

progressive Type-II censoring with m = 5 we have used the following method as 

discussed by Aggarwala and Balakrishnan (2002). 

 

Step 1:- Generate iU , where iU  is a set of random number i = 1, 2, 3, 4, 5 

Step 2:- i iZ = -ln (1-U )  

Step 3:- 1 2 i
i i-1

1
j

j=1

Z Z ZY = + +...............+
n n-R -1 n- R -i+1∑

 

Step 4:- i iG ( x ) = 1 -e x p ( -Y )  

 

i.e.  

i i-x -x
i θ θ

i
x1- e +e =1-exp(-Y )
θ

⎡ ⎤
⎢ ⎥
⎣ ⎦

             

 

By solving the equation in Step 4 we will get the values of xi. On the basis of 

simulated samples ML estimates of θ , as given (2.3.5) along with its asymptotic 

variance are demonstrated in Table-1, where as Table-2 represents Bayes 
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estimates of θ , as given in (2.4.3) with its simulated variance for the three 

censoring patterns. 

 

Here we have considered the following three censoring patterns for simulation. 

 

n = 15 n= 25 n = 50 

R1: (3, 3, 2, 0, 2) R1: (3, 3, 2, 0, 12) R1: (3, 3, 2, 0, 37) 

R2 : (1, 2, 3, 3, 1) R2 : (1, 2, 3, 3, 11) R2 : (1, 2, 3, 3, 36) 

R3 : (0, 0, 0, 0, 10) R3 : (0, 0, 0, 0, 20) R3 : (0, 0, 0, 0, 45) 
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For n=15, for 8000 iterations. 

 

Table-1 Estimator of θunder Maximum Likelihood Estimation 

 

  θ̂  

arithmetic 

mean 

Minθ  Maxθ  Asy ( )ˆV θ  Sim ( )ˆV θ  

 

θ= 0.2 

R1 0.566 0.1495 5.6925 0.1489 0.0411 

R2 0.5457 0.1614 8.1831 0.0906 0.0379 

R3 0.3082 0.0917 0.7361 0.0072 0.009 

 

θ  =0.8 

R1 2.4793 0.5718 13.8227 2.8925 0.7022 

R2 2.3761 0.5012 6.4057 1.6432 0.6356 

R3 1.3184 0.2759 20.9738 0.138 0.1707 

 

θ  = 1 

R1 3.0341 0.6918 7.6316 4.163 1.8975 

R2 2.9665 0.5518 47.5621 2.7197 1.0741 

R3 1.6836 0.412 26.7325 0.2268 1.0526 
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Table-2 Estimator of θunder Bayesian Analysis 

 

  β=3  β=6  β=10  

  *θ  

arithmetic 

mean 

*SimV(θ )
 

*θ  

arithmetic 

mean 

*SimV(θ ) *θ  

arithmetic 

mean 

*SimV(θ )

 

θ= 0.2 

R1 0.1683 0.4887 0.1931 0.4782 0.203 0.4751 

R2 0.3992 0.043 0.4143 0.0486 0.4203 0.0542 

R3 0.3084 0.0095 0.3096 0.0097 0.3101 0.0098 

 

θ =0.8 

R1 2.1406 0.725 2.6225 0.8511 2.8154 1.0436 

R2 2.2728 0.6483 2.5465 0.6783 2.6561 0.6941 

R3 1.355 0.1729 1.378 0.2054 1.3872 0.2227 

 

θ = 1 

R1 2.563 1.8237 3.2566 2.1097 3.5342 2.4257 

R2 2.6834 1.6742 3.1365 1.4811 3.3179 1.2338 

R3 1.721 1.2644 1.7588 0.3238 1.7739 0.3595 
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For n=25, for 8000 iterations.  

 

Table-3 Estimator of θ  under Maximum Likelihood Estimation 

 

  θ̂  

arithmetic 

mean 

Minθ  Maxθ  Asy ( )ˆV θ  Sim ( )ˆV θ  

 

θ = 0.2 

R1 0.4736 0.1261 2.4111 0.0223 0.0239 

R2 0.4629 0.1527 1.1386 0.0188 0.0202 

R3 0.2862 0.1012 0.7749 0.0035 0.007 

 

θ =0.8 

R1 2.056 0.5121 31.6839 0.4376 0.6438 

R2 1.9946 0.516 34.1653 0.3696 0.5664 

R3 1.1905 0.3176 11.1648 0.0617 0.1592 

 

θ = 1 

R1 2.608 0.5089 14.1227 0.6835 1.6775 

R2 2.5394 0.6083 43.7947 0.6129 0.9857 

R3 1.5437 0.4084 32.6237 0.1106 0.7625 
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Table-4 Estimator of θunder Bayesian Analysis 

 

  β=3  β=6  β=10  

  *θ  

arithmetic 

mean 

*SimV(θ )
 

*θ  

arithmetic 

mean 

*θ  

arithmetic 

mean 

*SimV(θ )
 

*θ  

arithmetic 

mean 

 

θ= 0.2 

R1 0.4449 0.023 0.4486 0.0238 0.4501 0.0232 

R2 0.4396 0.02 0.4427 0.0206 0.444 0.0208 

R3 0.2851 0.007 0.2857 0.007 0.286 0.007 

 

θ =0.8 

R1 2.0163 0.3742 2.0893 0.4713 2.1184 0.5309 

R2 1.9653 0.3304 2.0269 0.4564 2.0516 0.5254 

R3 1.2023 0.1556 1.2125 0.1535 1.2167 0.1567 

 

θ = 1 

R1 2.5318 0.5354 2.6457 0.6598 2.6913 0.614 

R2 2.4703 0.5166 2.5724 0.6266 2.6133 0.5941 

R3 1.5537 0.2474 1.5721 0.3101 1.5795 0.3419 
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For n=50, for 8000 iterations. 

 

Table-6 Estimator of θ  under Maximum Likelihood Estimation 

 

  θ̂arithmetic 

mean 

Minθ  Maxθ  Asy ( )ˆV θ  Sim ( )ˆV θ  

 

θ = 0.2 

R1 0.4135 0.1352 1.032 0.0071 0.0161 

R2 0.4063 0.1314 1.029 0.0064 0.014 

R3 0.2654 0.0812 0.642 0.0017 0.0058 

 

θ =0.8 

R1 1.7522 0.4264 4.5736 0.1296 0.2864 

R2 1.7103 0.4021 33.2933 0.1198 0.425 

R3 1.0881 0.2614 23.1429 0.0291 0.1493 

 

θ = 1 

R1 2.2318 0.6165 34.6223 0.2127 0.8761 

R2 2.1906 0.6222 57.393 0.2089 0.8393 

R3 1.4055 0.3517 43.7734 0.0546 0.4856 
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Table-7 Estimator of θunder Bayesian Analysis 

 

  β=3  β=6  β=10  

  *θ  

arithmetic 

mean 

*SimV(θ )
 

*θ  

arithmetic 

mean 

*θ  

arithmetic 

mean 

*SimV(θ )
 

*θ  

arithmetic 

mean 

 

θ= 0.2 

R1 0.4066 0.015 0.4078 0.0152 0.4083 0.0153 

R2 0.4007 0.0132 0.4018 0.0133 0.4022 0.0134 

R3 0.2649 0.0058 0.2652 0.0058 0.2653 0.0058 

 

θ =0.8 

R1 1.7414 0.2742 1.763 0.2858 1.7717 0.2862 

R2 1.7004 0.3302 1.7204 0.1878 1.7283 0.1117 

R3 1.0903 0.1347 1.0951 0.1446 1.097 0.1087 

 

θ = 1 

R1 2.2088 0.4801 2.2442 0.543 2.2584 0.5703 

R2 2.1657 0.4623 2.2005 0.4695 2.2145 0.4865 

R3 1.4056 0.2238 1.4147 0.3053 1.4184 0.2435 
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2.6 Conclusions and Suggestions:- 

1) For a small sample size (n = 15) *ˆSim V(θ)< Sim V(θ )  i.e. the MLE is better 

than the Bayes estimator for a given θ and β in the case of all the three 

censoring schemes. 

2) For any sample size (n= 15, n=25, n=50) simulated variance of MLE and 

Bayes estimator decreases in case of all the three censoring schemes. 

3) For the fixed values of θ and β simulated variance of MLE and Bayes 

estimator decreases according to the selection of the censoring schemes 

R1, R2 and R3 respectively. 

4) As n increases ˆS im  V (θ)  as well as *S im  V (θ ) decreases for fixed 

values of θ and β for the three censoring schemes. 
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CHAPTER 3 

 

Estimation under Progressive Interval Type-I Censoring for 

Reciprocal Exponential Distribution 

 

 

3.1 INTRODUCTION 

 

In most applications, the data may be interval-censored. By interval-

censored data, we mean that a random variable of interest is known only to lie in 

an interval, instead of being observed exactly. In such cases, the only information 

we have for each individual is that their event time falls in an interval, but the 

exact time is unknown.  

 

Generally statistician faces lot of problem in the analysis of time-to-event data 

such as failure time data, incubation time data etc. Such data arises in lot of 

fields such as medicine, engineering, economics. For example doctor may be 

interested to know the time of convergence to AIDS for HIV positive individual, 
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the time to the death for cancer patients, lifetime of a device etc. The analysis to 

time-to-event later becomes more complicated on account of censoring. 

 

Interval censoring also known as group censoring arises when observations 

occur in some interval of time a and b. Such data occurs in variety of 

circumstances but generally it is encountered in medical studies where patients 

are only monitored at regular intervals (e.g. weekly or quarterly checkup). Thus, 

the exact time of occurrence of some changed response may only be known to 

have some time between two visits. 

 

Samuelson and Kongerud (1994); Kokasa et al (1993); Farrington (1996); 

Odell et al (1992), Sun (1997); Lindsey and Ryan (1998) and Scallan (1999) 

have discussed application of interval censoring in clinical, medical, biomedical 

and engineering studies. Rao (1998) gave standard methods for analyzing 

interval censored data and discussed efficiencies of estimators derived from 

censoring over conventional Type-I and Type-II censoring schemes. 

 

In many life test studies, it is common that the lifetimes of test units may not 

be recorded exactly. An experimenter may terminate the life test before all n 

products fail in order to save time or cost. Hence, the test is said to be censored 

in which data collected are the exact failure times on those functional (none 

failed) units. Moreover, some of the test units may have to be removed at 

different stage(s) of censoring related study for various other reasons; which 
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leads to progressive censoring. For example some products are withdrawn for 

more thorough inspection or are saved so that it can be used as test specimens 

in other studies, or patients who for some reasons do not turn up in a clinical 

study would also result in progressive removal. 

 

According to the current trend Type-I and Type-II progressive censoring 

schemes are becoming quite popular for analyzing highly reliable data. Cohen 

(1963) had introduced progressive   Type-II censoring. Mahmond et al (2006) 

considered progressive Type-II censoring samples for many continuous life time 

models. Balakrishnan and Aggarwala (2000) give an insight on this method and 

the applications of this scheme. 

 

Aggarwala (2001) introduced progressive Type-I interval censoring scheme 

for exponential life time model. In this type of censoring n units are put on test at 

time 0 and each unit is kept on life test until the unit fails or is censored. All the 

units are observed during pre-set times T1, T2,…, Tm where m is a fixed integer. 

Thus the time axis is partitioned into interval Ii = (Ti-1, Ti] where i = 1, 2,…, m+1 

and T0 = 0, Tm+1 = ∞, Tm is the time at which we will terminate the experiment. Let 

ni denote the number of units which fail in the interval Ii. The values R1, R2… Rm 

may be specified as positive integers or percentages p1, p2… pm      with  pm = 100 

of remaining functional units and the number of units which are functioning at 

time   T1, T2, …,Tm are random variables. 
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In case when R1, R2, …, Rm are pre- specified positive integers, the 

number of units  removed at time Ti is Ri
obs =  min( Ri, no. of units remaining)       

i = 1, 2, …, m-1 and   Rm
obs = all the remaining units at time Tm, when life test 

experiment is terminated. 

 

In this chapter we have considered reciprocal exponential distribution as a 

continuous lifetime model and apply progressively Type-I interval censoring 

without changing the parameters at different stages of censoring.  Section 2 

states the properties and applications of Reciprocal Exponential distribution; in 

Section 3 the method of maximum likelihood estimation is described. Simulation 

of progressive Type-I interval censored samples is carried out in Section 4.  

 

Section 5 deals with interval estimation. Expected duration of the life test 

is discussed in Section 6. Comparison between Non-parametric and Parametric 

estimation of survival function and its confidence interval are considered in 

Section 7. The methods are illustrated using numerical examples for different 

censoring pattern. 
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3.2 Reciprocal Exponential Distribution 

 

A random variable X follows a Reciprocal Exponential distribution if its 

reciprocal 1/X follows an Exponential distribution with scale parameter θ, θ>0. 

 

The probability density function (pdf) and cumulative distribution function (cdf) of 

reciprocal exponential distribution are as follows, 

-θ/x
2
θ

g(x,θ)= e , x>0, θ>0.
x

             

  
       (3.2.1)                            

and 

              

           (3.2.2) 

                                                                                                                   

Reciprocal Exponential distribution is a special case of Inverted Gamma 

distribution, having pdf 
1 β/xβf(x;α,β) =     x 0, α,β 0x eα α

α

− −
≥ ≥   with β = θ 

and α = 1. 

 

The Reciprocal Exponential distribution appears in Bayesian inference in a 

natural way as the posterior distribution of the variance in normal sampling when 

reference or conjugate distributions on the parameters are used. Reciprocal 

Exponential distribution is especially used in reliability applications (see Barlow 

- θ / xG ( x , θ ) = e .
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and Proschan (1981)). It is also hidden among the Pearson curves, specifically 

Pearson V and Vinci (1921) should be credited for his income distribution 

applications. In actuarial literature, Cummis et al. (1990) used the Inverse 

Gamma distribution for approximating the fire loss experiences of a major 

university. The distribution turns out to be one of the best two parameter models; 

in fact the data are approximately modeled by one parameter special case where  

α = 1, an Inverse Exponential distribution. 

 

 

3.3 Maximum Likelihood Estimation 

 

Suppose a progressive Type-I interval censored sample is collected as 

described in Section1, beginning with a random sample of n units having 

probability density distribution function given by (3.2.1). Based on the observed 

data, the likelihood function L is proportional to the expression.  

( ) ( )[ ] ( )[ ]

( ) ( )[ ] ( )[ ]

n R1 1
x 1 x 0 x 1

nim R i
x i x i-1 x i

i=2

L α G T -G T 1-G T × 

       G T -G T 1-G T

       

.∏                    

i
1 i

1 i 1 i i-1 i

nmR R-n θ/T -θ/T -θ/T -θ/T -θ/T

i=2

L α e 1-e e -e 1-e .⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∏
 

 



  43

Here for the sake of simplicity we consider equal length time interval 
 

i i-1

i

i.e. T -T =t

Thus T =it,  i=1,2,........,m  

 

Thus the likelihood function reduces to, 

( )
i

1 i-θ/t -θ/it
1

nmR R
-n θ/t -θ/(i-1)t -θ/i(i-1)t

i=2

L α e 1-e e e -1 1-e .⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦∏     

           (3.3.1)                            

The likelihood equation for estimating θ is obtained by 

ln 0.L
θ

∂
=

∂
 

 

which gives 

 

( )

( )

-θ /t

-θ /t

-θ /it

-θ /it

m
1 1 i

i=2

m m
-θ /i(i-1)ti i

-θ /i(i-1)t
i=2 i=2

-n R n-1+ -e -
t t (i-1)t1-e

n R-1 -1+ e + -e =0.
e -1 ti(i-1) it1-e

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑ ∑
            

              (3.3.2)    
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Under this situation the MLE of θ can be obtained by using any iterative 

procedure like Newton-Raphson and solving the equation (3.3.2). Hence we get 

maximum likelihood estimator of θ, denoted byθ$ .  

 

Now again differentiating (3.3.2) we get, 

( ) ( ) ( )

- -

- -

θ /t θ /it

θ /t θ /it

-θ /i(i-1 )t2 m m
1 i i

2 2 22 2 2 2 -θ /i(i-1 )t2 2 2i= 2 i= 2

-R e R e n elnL = - - .
θ t i (i-1 ) e -1t 1 -e i t 1 -e

∂
∂ ∑ ∑  

 

Hence observed asymptotic variance of θ$  is given by (Due to Cohen 1963). 

2

2
ˆθ=θ

-1ˆV(θ) .
lnL
θ

≈
∂
∂

 

 

3.4 Comparison of censoring patterns via simulation 

 

In this section considering equal interval length, the Reciprocal 

Exponential distribution defined in (3.2) as the lifetime model from which 1000 

samples were generated using the values θ = 3 and 5,   t = 2, m = 5 and sample 

size n = 20 and 50 respectively, under the following censoring patterns. 
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n = 20 n = 50 

S1: (3, 3, 2, 1, n-n1-n2-n3-n4-R1-R2-R3-R4) S1: (12, 10, 8, 6, n-n1-n2-n3-n4-R1-R2-R3-R4) 

S2: (1, 2, 3, 3, n-n1-n2-n3-n4-R1-R2-R3-R4) S2: (6, 8, 10, 12, n-n1-n2-n3-n4-R1-R2-R3-R4) 

S3: (0, 0, 0, 0, n-n1-n2-n3-n4-R1-R2-R3-R4) S3: (0, 0, 0, 0, n-n1-n2-n3-n4-R1-R2-R3-R4) 

 

 

We have used the simulation algorithm given by Aggarwala (2001) to 

generate samples from progressive Type-I intervals censoring scheme. Here we 

have specified the fixed number of units instead of proportion of surviving units to 

be removed at five monitoring and censoring points. The removing units from the 

surviving units at five stages are decreasing in pattern S1 while increasing in 

pattern S2. In pattern S3, a convectional    Type-I interval censoring scheme is 

employed. 

 

 

Steps for Simulation:- 

 

Consider n1~ Binomial (n, G(T1)).  

and  

i i-1 i-1 1n n ,........,R ,.........,R ~ ( ) ( ) ( )
( )

i-1
i i-1

j j
j=1 i-1

G T -G T
Binomial n- n +R , .

1-G T
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑  
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Table-1 gives the summary statistics of the maximum likelihood estimators for 

the three censoring patterns; with its observed asymptotic variance ( )ˆAV θ  and 

simulated variance ( )ˆSV θ , in case of 1000 random samples generated for n = 20 

and 50, θ = 3 and 5, m= 5 and t = 2. Here θ̂  is the average of simulated MLE.  

 

Table-1: Summary Statistics 

For θ = 3, n = 20 

Scheme Min θ̂  Max θ̂  θ̂  ( )ˆAV θ ( )ˆSV θ  

S1 1.6994 8.6723 2.8066 0.5811 0.8779 

S2 1.9003 19.7141 2.9473 0.5757 1.0764 

S3 0.8838 10.5502 2.6735 0.4813 1.0975 

For θ =5, n = 20 

Scheme Min θ̂  Max θ̂  θ̂  ( )ˆAV θ ( )ˆSV θ  

S1 2.099 26.0886 4.5302 1.5908 4.6609 

S2 2.1848 17.8871 4.4387 1.3212 3.5148 

S3 1.707 15.7642 4.3839 1.2028 3.8289 

For θ = 3, n = 50 

Scheme Min θ̂  Max θ̂  θ̂  ( )ˆAV θ ( )ˆSV θ  

S1 2.8121 5.2529 3.4482 0.2431 0.0662 

S2 3.1273 4.7801 3.6856 0.2383 0.0605 
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S3 1.3171 5.2174 2.5494 0.1627 0.3636 

For θ = 5, n = 50 

Scheme Min θ̂  Max θ̂  θ̂  ( )ˆAV θ ( )ˆSV θ  

S1 3.3257 12.6134 4.4603 0.4786 0.6969 

S2 3.563 18.6403 4.6533 0.4549 0.5998 

S3 2.0822 8.446 4.0116 0.3466 0.8636 

 

From results of Table-1 we observe from the asymptotic variance of three 

schemes that the censoring pattern S3 produces the most precise estimate of θ 

followed by S2 and then S1. This is due to the fact that more units are kept in the 

experiment for a longer period of time in S3 followed by S2 and then S1. 

 

3.5 Confidence Interval Estimation 

In this section we consider interval estimation of unknown parameter θ 

using the method of parametric bootstrap confidence interval and the method of 

r-level likelihood. According to Davison and Hinkley (1997) a 100(1-α) % 

parametric bootstrap confidence interval for θ is given by 

2 2

boot boot

ˆ ˆθ θ,ˆ ˆθ (1-α/2) θ (α/2)

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

    (3.5.1)  

where  bootθ̂ (p) is the pth percentile of the simulated sample of 1000 estimates 

simulated using the observed value of θ̂  of the given sample. 
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The shape and magnitude of L(θ) relative to ˆL(θ) over all possible values 

of θ describe the information on θ that is considered in datai, i = 1, 2, …,n this 

suggest importance of the relative likelihood function (RLF), ( )
ˆL(θ)R θ  = 

L(θ)
.    

 

Considering R(θ) ≤ r, where r is the desired level of RLF, it is observed 

that larger values of r will result in wider intervals for variation in θ. The inequality 

R(θ) ≤ r to be solved to construct a r - level likelihood interval for θ. From a graph 

of likelihood     ratio= ˆL(θ)/L(θ) plotted against various values of θ, the r - level 

likelihood interval for θ can be obtained for given level r, by drawing a horizontal 

line at ˆL(θ)/L(θ) = r and the corresponding r - level likelihood interval will contain 

all values of θ below this line.  

 

For bootstrapping, we again have simulated 1000 samples using the value 

of θ̂as a true value of θ and calculated bootθ̂ (p) for p = 0.025 and p = 0.975 for 

all the three censoring patterns and the values are as follows: 
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Table-2: Values of bootθ̂ (p) under the three censoring patterns 

For θ = 3, n = 20 S1 S2 S3 

bootθ̂ (0.025)  1.8149 2.0993 1.1563 

bootθ̂ (0.975)  5.1884 5.0289 4.9493 

For θ = 3, n = 50 S1 S2 S3 

bootθ̂ (0.025)  3.1529 3.4876 1.4108 

bootθ̂ (0.975)  4.3971 4.8167 3.3716 

For θ = 5, n = 20 S1 S2 S3 

bootθ̂ (0.025)  2.3107 2.4725 1.8652 

bootθ̂ (0.975)  8.6723 9.18 7.7237 

For θ = 5, n = 50 S1 S2 S3 

bootθ̂ (0.025)  3.474 3.7621 2.171 

bootθ̂ (0.975)  5.7877 5.7845 5.0382 

 

Using the result given in (3.5.1), parametric bootstrap confidence interval and 

likelihood level r = 5 confidence intervals for θ in case of all the three censoring 

patterns S1, S2 and S3 is given in the Table-3. The advantage of likelihood level 

confidence interval estimation is that it does not require large amounts of 

simulation as required in bootstrapping. 
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Table-3: Values of bootstrap and r-level likelihood interval for different n and θ.  

 Bootstrap Confidence 

Interval 

r-level likelihood interval, 

where r = 5 

For θ = 3, n = 20        S1 

                                  S2 

                                                     S3 

(1.5182, 4.3402) 

(1.7273, 4.1378) 

(1.4442, 6.1814) 

(1.7095, 3.23449) 

(1.7842, 4.7749) 

(2.1459, 5.1862) 

For θ = 3, n = 50         S1 

                                   S2 

                                                    S3 

(2.7041, 3.7712) 

(2.8201, 3.8948) 

(1.9277, 4.6069) 

(2.7195, 3.6354) 

(2.9814, 3.7543) 

(2.0187,4.5518) 

For θ = 5, n = 20        S1 

                                   S2 

                                                    S3 

(2.3665, 8.8816) 

(2.1462, 7.9685) 

(2.4883, 10.3038) 

(2.6709, 8.4437) 

(2.2784, 7.9877) 

(2.5685, 10.1621) 

For θ = 5, n = 50        S1 

                                   S2 

                                                    S3 

(3.4373, 5.7266) 

(3.7433, 5.7556) 

(3.1942, 7.4127) 

(3.3755, 5.4234) 

(3.7842, 5.5793) 

(3.0459, 7.1742) 

 

From Table – 3 we observe that 5- level likelihood gives smaller length 

confidence interval rather than the 95% bootstrap confidence interval.  
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3.6 Expected Duration of Life Test (EDLT) 

 

In case of a life test with m-stage interval Type-I progressive censoring the 

expected duration of the test can be obtained using the method suggested by 

Kendall and Anderson (1971). 

 

The expected duration of the life test (EDLT) is given by, 

 

EDLT = E [D({ti}, Tm, θ] 

           

( ) ( )

( )

i-1 i-2

j j
j=1 j=1

m-2

j
j=1

m-1
n- R n- Rn

1 1 i 1 i 1 i-1
i=2

n- R
m 1 m-1

=T p + T p +.....+p - p +.....+p

+T 1- p +.....+p ,

⎡ ⎤∑ ∑
⎢ ⎥
⎣ ⎦

⎡ ⎤∑
⎢ ⎥
⎣ ⎦

∑
 

 where  pi = Gi – Gi-1. 

( ) ( ) ( )

( )

i-1 i-2

j j
i i i-1j=1 j=1

m-2

j
m-1 j=1

m-1n n- R n- R-θ/T -θ/T -θ/T
1 i

i=2

n- R-θ/T
m

EDLT=T e + T e - e

+T 1- e .

⎡ ⎤∑ ∑
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤∑
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

 

 

For equal length intervals i.e. (Ti = it, i= 1, 2, ..,m), the EDLT reduces to   
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( )
i-1

j
j=1

n- Rm -1
-θ /it

i=1

ED LT =m t-t 1- e .
∑

⎡ ⎤⎣ ⎦∑                                   (3.6.1) 

 

If the sample size (n = 20) and intervals (m = 5) are fixed for the three censoring 

patterns as  discussed in Section 3 the values of EDLT are calculated for 

different value of time interval t keeping θ fixed as shown in Table-4. In Table-5 

the values are tabulated for different θ keeping t fixed. 

 

Table-4: Expected duration of life test 

n = 20, m = 5, θ = 3 

T S1 S2 S3 

2 5.6701 6.481 7.1192 

3 9.7215 12.6913 14.3452 

4 12.962 18.9565 19.8974 

5 16.2025 24.531 24.9846 

6 19.443 29.7816 29.9975 

7 22.6835 34.8935 34.9996 

8 25.924 39.9455 39.9999 

9 29.1645 44.9709 44.5 

10 32.405 49.9838 49.5 
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Table-5: Expected duration of life test 

 

N = 20, m = 5, t = 2 

θ S1 S2 S3 

0.5 9.9999 9.9991 10 

1 9.9918 9.9272 9.9992 

1.5 9.8394 9.4782 9.9487 

2.5 7.9628 7.0733 8.5574 

3.5 5.1242 4.4972 5.6673 

4 4.069 3.6291 4.4725 

4.5 3.3253 3.033 3.6018 

5 2.8312 2.6449 3.0118 

8.5 2.0264 2.0203 2.0325 

 

 

We observe that as t increase the EDLT increases for all three censoring 

patterns, even EDLT is smaller for scheme S1 than that of scheme S2 followed by 

scheme S3. Also as θ increase EDLT decreases for all the three censoring 

patterns. Here EDLT for fixed t and θ variable is smaller for scheme S2 than that 

of scheme S1 followed by scheme S3. 
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Chapter 4 

 

Estimation under Progressive Type-II censoring for Reciprocal 

Exponential Distribution 

 

4.1 Introduction 

 

The times to the occurrences of events are termed as “lifetimes”.  i.e. the 

actual length of an individual is termed as lifetime. When we buy any item or 

device such as television, computer, electric bulb etc, we expect it to function 

properly for a reasonable period of time, i.e. we would like to know the average 

life or warranty period of an item. Thus reliability function is nothing but the 

survival function of an item. 

 

In a life testing experiment, items are subjected to test and failed times of 

items are observed. From practical point of view it is just not possible to examine 

the sample fully. A complete examination of a sample involves considerable 

amount of time and money. In addition one requires sufficient space for 

conducting the experiment. This further adds to the costs of life-test experiment. 
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Hence on account of time and cost consideration a sample has to be truncated. 

Truncation of the sample is known as censoring. 

 

There are many types of censoring schemes, but Type-I and Type-II 

censoring schemes are generally used. If we terminate the experiment when a 

pre assigned time is observed, such an experiment is known as time censored 

sampling or Type-I censoring. This kind of censoring is used when cost of 

experiment increases heavily with time. In Type-II censoring a life test is 

terminated as soon as fixed number if items (say r) have failed. Such an 

experiment is known as failure censored sampling which is related with very high 

cost sophisticated items such as color television tubes. 

 

Generally Type-I and Type-II censoring schemes do not allow removal of 

units at points other than the terminal point of experiment. A generalized 

censoring scheme, defined by Cohen (1963) which is known as progressive 

Type-II censoring scheme is described below. 

 

Before conducting, a life experiment the experimenter fixes a sample size 

n, a number of complete observation m and a censoring scheme                        

(R1, R2, …… Rm), n = im R+∑  . The n units are placed on a life test. 

Immediately after first failure, R1 surviving units are randomly chosen and 

removed from the experiment. Then after second failure, R2 units are withdrawn 
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and so on. The procedure is continued until all Rm remaining units are removed 

after this mth failure. 

 

 If   R1 = R2 = …………= Rm = 0, then n = m which corresponds to complete 

sample. If R1 = R2 = …………=  Rm-1  = 0   them Rm = n – m corresponds to 

conventional Type-II right censoring scheme. 

 

Balakrishnan and Aggarwala (2000) has provided a comprehensive 

reference in the subject of progressive censoring, its application and techniques 

for analyzing data from the employment of progressive Type-II censoring 

schemes. 

 

In this chapter we have considered reciprocal exponential distribution as a 

continuous lifetime model and apply progressively Type-II censoring without 

changing the parameters at different stages of censoring. In section 2 the method 

of maximum likelihood estimation described. Simulation of progressive Type-II 

censored samples is carried out in section 3. Section 4 deals with confidence 

interval under three different methods. The methods are illustrated using 

numerical examples for different censoring pattern.  
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4.2   Maximum Likelihood Estimation 

The probability density function and cumulative distribution function of a 

reciprocal exponential distribution with parameter θ is given by, 

-θ
x

2

-θ
x

θg (x )= e ,x > 0 , θ> 0
x

G (x )= e .
                  (4.2.1) 

 

 Let n items are kept on test, then the likelihood function under Progressive 

Type–II censoring scheme as discussed in section 1 is given by 

 

[ ]
iRm m

i i
i= 1 i= 1

L =  c o n s ta n t  g (x /θ ) 1 -G (x /θ ) .∏ ∏  

 

Using (4.2.1) the likelihood function becomes 

( )
m

iii = 1 i

1m m- θ Rx - θ / x
m

2 i = 1
i

i = 1

 θL  =  c o n s t a n t  e 1 - e .
x

∑
∏

∏
            

                                                                                                                   (4.2.2) 
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The log likelihood function is given by, 

 

( )i
m m m

-2
i i

i=1 i=1 i=1i

θ /x1ln L=ln c+m lnθ-θ - ln x + R  ln 1-e
x∑ ∑ ∑   

 

Differentiating ln L with respect to θ and equating to zero we obtain, 

 

( )i

i

m m
-θ /xi

-θ /x
i= 1 i= 1i i

Rm 1 -1- + -e = 0 .
θ x 1-e x

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑     (4.2.3) 

 

Hence we obtain the maximum likelihood estimating equation as, 

 

( )
i

i

-θ /xm m
i

-θ /x
i= 1 i= 1i i

mθ̂= .
R e1 -

x x 1 -e∑ ∑
      (4.2.4) 

 

Using any iterative procedure like Newton Raphson method one can solve the 

equation (4.2.4) to obtain maximum likelihood estimator of θ, denoted by θ̂ . 
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Now again differentiating (4.2.3) we get, 

 

( )
i

i

-2 m
i

22 2 2 -i= 1 i

θ /x

θ /x

Rln L -m e- .
θ θ x 1 -e

∂
=

∂ ∑       (4.2.5) 

 

Hence observed asymptotic variance of θ̂  is given by (Due to Cohen 1963) 

 

 

2

2
ˆθ=θ

1ˆV(θ) .
ln
θ

L
−

=
∂
∂         (4.2.6)

 

 

 

4.3  Comparison of censoring patterns via simulation 

 

In this section considering the reciprocal exponential distribution defined in 

(2.1) as a life time model from which 1000 samples were generated using the 

value θ = 3, m = 5, sample size 20 and 50 for each of the following progressive 

Type-II censoring patterns. 

 

            R1 :( 25%, 25%, 50%, 50%, 100%)  (ascending) 

            R2 :( 50%, 50%, 25%, 25%, 100%)   (descending) 

            R3 :( 0, 0, 0, 0, 100%).                        (regular Type-II) 
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Here we have used the simulation algorithm given by Aggarwala (2001) to 

generate samples. Here we have specified the proportion of surviving units to be 

removed at five monitoring and censoring point. The percentages of removing 

units from the surviving units at five stages are increasing in pattern R1 while 

decreasing in pattern R2. In pattern R3, a conventional Type-II censoring scheme 

is employed. 

 

The simulation scheme is as follows:- 

1) Generate Ui, where Ui is a set of random number i= 1, 2, 3, 4, 5 

2) i iZ = -ln (1-U )  

3) 1 2 i
i i -1

1
j

j = 1

ZZ ZY = + + . . . . . . . . . . . . . . .+
n n -R -1 n - R - i+ 1∑

 

4) i iG ( x ) = 1 -e x p ( -Y )  

 

     ( ) ( )i ii.e. exp -θ/x = 1- exp -Y  

 

By solving the equation in step 4 we will get the values of xi. On the basis 

of simulated samples Maximum Likelihood estimates of θ as given in (4.2.4) 

along with its asymptotic variance as given in (4.2.6) with simulated variance are 

demonstrated in   Table-1. 
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For n = 20 the three censoring patterns as discussed earlier the comes out as 

R1 : ( 5, 3, 5, 2, 0)   

R2 : ( 10, 4, 1, 0, 0)    

R3 : ( 0, 0, 0, 0, 15).                         

 

Table-1 gives the summary statistics of the maximum likelihood estimators for 

the three censoring patterns; with its observed asymptotic variance and 

simulated variance, in case of 1000 random samples generated for n = 20, θ = 3, 

m= 5 

 

Table-1 

 

 

 

 

 

 

From the result of Table-1 we observe that the censoring pattern R3 produces the 

most precise estimate of θ followed by R1 and then R2. This is due to the fact that 

more units are kept in the experiment for a longer period of time in R3 followed by 

R1 and then R2. 

 

 

Scheme Min θ̂  Max θ̂  θ̂  Asy ( )ˆV θ  Sim ( )ˆV θ  

R1 1.5945 7.2547 3.3064 0.8109 0.8631 

R2 1.3139 9.481 3.4278 1.0163 1.0735  

R3 1.6171 7.7873 3.3125 0.6656 0.6236 
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For n = 50 the three censoring patterns as discussed earlier comes out as 

R1 :(12, 9, 13, 6, 5)   

R2 :(25, 12, 2, 2, 4)    

R3 :(0, 0, 0, 0, 45).        

 

Table-2 gives the summary statistics of the maximum likelihood estimators 

for the three censoring patterns; with its observed asymptotic variance and 

simulated variance, in case of 1000 random samples generated for n = 50, θ = 3, 

m= 5 

 

Table - 2 

 

 

 

 

 

From the result of Table-2 we observe that the censoring pattern R3 produces the 

most precise estimate of θ followed by R1 and then R2. This is due to the fact that 

more units are kept in the experiment for a longer period of time in R3 followed by 

R1 and then R2. 

Scheme Min θ̂  Max θ̂  θ̂  Asy ( )ˆV θ  Sim ( )ˆV θ  

R1 1.5742 5.5017 3.0504 0.3436 0.3259 

R2 1.3285 5.7127 3.0504 0.4069 0.4103 

R3 1.6867 4.9825 3.0386 0.2837 0.2702 
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This shows that result obtained for small sample is same as the one obtained 

with large sample.   

 

4.4  Confidence Interval Estimation 

 

In this section we consider interval estimation of unknown parameter θ using 

the method of parametric bootstrap confidence interval and the method of r-level 

likelihood. According to Davison and Hinkley (1997) a 100(1-α) % parametric 

bootstrap confidence interval for θ is given by 
2 2

boo t b oo t

ˆ ˆθ θ, .ˆ ˆθ (1 -α /2 ) θ (α /2 )
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

           (4.4.1) 

 

where bootθ̂ (p) is the pth percentile of the simulated sample of 1000 estimates 

simulated using the observed value of θ̂  of the given sample. 

 

Using the likelihood level r, the likelihood inequality can be solved in order 

to construct a likelihood interval for θ. From a graph of likelihood                    

ratio= ˆL(θ)/L(θ) plotted against various values of θ, the likelihood interval for θ 

can be obtained for given level r, by drawing a horizontal line at ˆL(θ)/L(θ) = r and 

the corresponding likelihood interval will contain all values of θ below this line. 

For bootstrapping, we again have simulated 1000 samples using the value of 
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θ̂as a true value of θ and calculated bootθ̂ (p) for p = 0.025 and p = 0.975 to 

obtain the 95% confidence interval in case of all the three censoring patterns and 

the values are as follows: 

 

 R1 R2 R3 

bootθ̂ (0.025)  1.8607 1.9545 2.077 

bootθ̂ (0.975)  5.456 5.872 5.0326 

 

 

 Using the result given in (4.4.1), parametric bootstrap confidence interval for θ in 

case of all the three censoring patterns R1, R2 and R3 is given by             

(1.269692, 4.849047),  (1.414528, 5.635088), (1.042647, 4.394512) respectively 

whereas likelihood level r = 5 confidence intervals of θ for the schemes R1, R2 

and R3 are obtained as (1.7095, 3.23449), (1.7842, 4.7749) and 

(2.14599,5.1862) respectively. The advantage of likelihood level confidence 

interval estimation is that it does not require large amounts of simulation as 

required in bootstrapping. 

 

Now instead of taking 1000 samples we took single sample and computed 

the values for different values of likelihood level for each censoring pattern to 

check the effect it creates on the confidence interval. We found that as the 

likelihood level is increased the confidence interval also increases for the three 
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censoring patterns, i.e. the difference between the lower limit and upper limit 

increases. The result is shown in the table given below. 

 

For n = 20, θ = 3, m = 5 

Likelihood 

level (r ) 

           R1             R2             R3 

3 (2.63635, 5.66161) 

Diff : 3.02526 

(2.72244, 6.0743) 

Diff : 3.35186 

(2.50933, 5.1987) 

Diff : 2.68937 

5 (2.41711, 6.102605) 

Diff : 3.685495 

(2.48913, 6.5807) 

Diff : 4.09157 

(2.30711, 5.57799) 

Diff : 3.27088 

7 (2.29828, 6.36793) 

Diff : 4.06965 

(2.36323, 6.88705) 

Diff : 4.52382 

(2.197025, 5.805) 

Diff : 3.607975 

 

Sprott (1973) has indicated that the distribution 
-1/3ˆφ̂ = θ in small samples is 

much more closely approximated by a normal distribution than the distribution of 

θ̂ . The distribution of φ̂  is approximately normal with mean -1/3φ= θ  and variance 

2dφ ˆˆV(φ) = .Asy(θ)
dθ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus 
ˆθ=θ

φ̂-φ ~N(0,1).
ˆV(φ)

              (4.4.2) 
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 -1/3ˆΦ̂=θ  -8/3ˆ ˆV(θ)= V(θ)
1 θ̂ ×Asy
9

 
ˆ1.96 V(θ)×  

R1 0.6712 0.0037 0.0073 

R2 0.6632 0.0042 0.0082 

R3 0.6708 0.0030 0.0059 

 

Using the result given in (4.4.2), confidence interval for θ (given by Sprott) in 

case of all the three censoring patterns R1, R2 and R3 is given by (1.1404, 

1.1463), (1.1420, 1.1515), and (1.1390, 1.1457) respectively. 
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Chapter 5 

 

Estimation under Progressive Type-II Censoring for Type-II 

Generalized Half Logistic Distribution 

 

5.1 Introduction 

 

Half logistic model obtained as the distribution of the absolute standard 

logistic variate is probability model considered by Balakrishnan (1985). 

Balakrishnan and Puthenpura (1986) obtained best linear unbiased estimator of 

location and scale parameters of the half logistic distribution through linear 

functions of order statistics. Balakrishnan and Wong (1991) obtained 

approximate maximum likelihood estimates for the location and scale parameters 

of the half logistic distribution with Type-II Right-Censoring. Olapade (2003) 

proved some theorems that characterized the half logistic distribution. The half 

logistic distribution has not received much attention from researchers in terms of 

generalization. A generalized version of half logistic distribution namely Type-I 

and Type–II generalized half logistic distributions are considered by Ramakrishna 

(2008) 
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Here we consider Type–II generalized half logistic distribution as a life time 

model with probability density function. 

( )
( )

θ-x

θ+1-x

θ 2e
g(x) = ,      x>0,  

1+e
θ>0.                                                                   (5.1.1) 

and cumulative distribution function 

θ-x

-xG(x) = 1-
2e

1+e
.

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                      (5.1.2) 

 

In this chapter we have considered estimation of the parameter θ  under 

progressive Type-II censoring described in the chapter 4 using Maximum 

likelihood and Bayes estimation under squared error as well as linex loss 

functions. A simulation study is also carried out and confidence interval 

estimation is discussed in the last section. 

 

5.2  Maximum Likelihood Estimation 

If n item are put on test, then the likelihood function under Progressive    

Type-II censoring scheme is given by, 

[ ]
iRm m

i i
i = 1 i = 1

L  =  c g ( x |θ ) 1 - G ( x |θ ) .∏ ∏  
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Using (5.1.1) and (5.1.2) the likelihood function becomes 

 

 

 

( ) ( )

m m m
-θ x θ R -θ R xi i i i

i=1 i=1 i=1

θ+1 θRi

mmθ

m m-x -xi i
i=1 i=1

2L = c  θ e 2 e × .
1+e 1+e

∑ ∑ ∑

∏ ∏

                                               (5.2.1) 

 

where c is constant                                                                                               

 

The log likelihood function is given by 

 

( ) ( )
( )

m m m m m-x -xi ii i i i i
i=1 i=1 i=1 i=1 i=1

m -xi
i=1

lnL = θ m ln2 - x - ln 1 + e + ln2 R - R x - R ln 1 + e

          ln c + mlnθ - ln 1 + e .

⎡ ⎤
∑ ∑ ∑ ∑ ∑⎢ ⎥

⎣ ⎦

∑

 

 

Differentiating ln L with respect to θ  and equating to zero we obtain 

 

 

 

( )
( )

θ-x θRi -xim m
θ+1 -xi-xi=1 i=1i

iθ 2e 2eL = c 
1+e1+e

.∏ ∏

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦
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( ) ( )( )

( ) ( )( )
m

i
i=1

m m
i i

i=1 i=1
m m -xi

i i i
i=1 i=1

i

R  - 

mln -xiln2 x Ri
i=1

x 1+R ln 1+ e 1+R ln2 m ln2.

m0 m  +  - 1+R - + ln2 = 0.
θ

m              = 
θ

ln 1+ e 1+R

 +  - 

L
θ

∑

∑ ∑

∑ ∑

∂
∑

∂
⇒

⇒

=
        (5.2.2)

         

 

 

 

Hence we obtain the mle θ̂  as  

 

( ) ( )( )
m m m-xii i i i

i=1 i=1 i=1

mˆ θ = .
x 1+R + ln 1+ e 1+R  - ln2 R  - m ln2∑ ∑ ∑

                       (5.2.3) 

   

 

Solving the equation (5.2.3) for θ̂ , maximum likelihood estimate of θ  can be 

obtained. 

 

Now again differentiating (5.2.2) we get 

 

2 ˆθ = θ

2

2
m

= -
θ

lnL .
θ

∂

∂
 

 

Hence estimated asymptotic variance of θ̂  is given by (Due to Cohen1963) 
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( )
2

2

2

ˆ-1 θˆV θ  =  = 
mlnL

θ

.
∂

∂

 

       

5.3  Bayes Estimate 

 

Since last three decades lot of work has been developed in the field of 

reliability using Bayesian approach. Also it is realistic to assume that life 

parameter is stochastically dynamic. Martz and Waller (1982) have done lot of 

work regarding Bayes estimation in the field of life testing and reliability. 

 

In this section the Bayesian approach is used to derive estimate of the 

parameterθ , assuming we are in the situation where very less is known about a 

prior about the values ofθ .   

 

To avoid the complexity involved in solving Bayes estimates here we 

consider prior distribution of θ  as exponential distribution with meanβ . 

             That is
   

( )
θ-
β1π θ = e ,   θ>0,  β>0

β                                              (5.3.1)                              
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Using likelihood function given in (5.3.3) and the prior defined in (5.4.1), the     

posterior distribution of the parameterθ is given by  

 

 
( ) ( )h θ|x  α Lπ θ  

            

( ) ( )
m m

- -

i=1 i=1

m
i

i=1

i i

m m
i i i

i=1 i=1

i

-θ x

x x

θ R -θ R x θm -β
θ+1 θR

mθ2  θ e 2 e 1α  ×  × e
β1+e 1+e

∑ ∑ ∑

∏ ∏
 

            

( ) ( )i
mm -

i=1i=1

ii- x

-

θ+1 θRx

m m m
i i i i

i=1 i=1 i=1m
θ m + R θ x + R x  + 1/β 

 θα  × 
1+eβ 1+e

2 e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∏∏  

 

Now under squared error loss function, the Bayes estimator of parameter θ is 

nothing but the posterior mean, which can be obtained as  

 

*
BSθ =E(θ|x)  

    

( ) ( ) i

m

mm θR--0

i=1i=1

m m m
i i i i

i=1 i=1 i=1

ii
θ+1

θ m + R x + R x  + 1/β 

xx

-θ
 θ= c θ  ×  dθ

1+eβ 1+e

2 e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∞

∑ ∑ ∑

∫
∏∏

 

    
( ) ( ) i

m m

i i i
i=1 i=1

i i

m+1
m mθ+1 θR- -0

i=1 i=1

m
i

i=1
- x + R x  + 1/β 

x x

θ m + R θ
 =  c θ   ×  dθ

β 1+e 1+e

2 e

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∞

∑ ∑∑

∫
∏ ∏

        

                      (5.3.2)           
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where c is normalizing constant. Here it is not possible to get *
B Sθ in closed 

form, so we refer to numerical integration to find a solution. Lindley (1980) gave 

an alternative method to approximate the integrals that occur in Bayesian 

statistics. According to Lindley (1980), the Bayes estimator *
B Sθ  is approximated 

as   

          
( )* 2 4

B S 2 1 1 3 1
ˆθ = θ

θ
1 1ˆ= E (θ |x ) θ + u + 2 u ρ σ + l u σ
2 2

≈
   

                 (5.3.3)
 

    where 

     

( )

1

2

2 2

dθu = =1
dθ
θu = =0
θ

θρ=lnπ θ  = -lnβ-
β

∂
∂  
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( )

( )

1

2

2 2 2

3

3 3 3

2
- 12

2

24 2

d ρ - 1ρ =  =  
d θ β

l = l n L
l - ml =  =  

θ θ
l 2 ml =  =    

θ θ
θσ = - l =
m

σ = σ .

∂
∂
∂
∂  

 

 

Bayes Estimation under the Linex Loss Function (LLF) 

 

A symmetric loss function assumes that positive and negative errors are 

equally serious. However, in some estimation problems such assumptions may 

be inappropriate. A positive error may be more serious than a negative error or 

vice-versa. In this situation, asymmetric linex loss function is appropriate. The 

linex loss function is defined as  

 

( ) ( ) ( )
ˆc θ-θ1

1ˆ ˆL θ,θ   k e c θ-θ 1 .
⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭
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For the above linex loss function, the Bayes estimator of parameter θ is given by, 

 

1-*
BL

1

c θ1θ = - ln E(e |x)
c

        (5.3.5) 

      

( ) ( )
1

m m m
i i i i

i=1 i=1 i=1

ii i

m
-c θ*

m m
- -0

i=1 i=1

m + R x + R x  + 1/β 

θ+1 θRx x

θ -θ
 θ c  e   ×  dθ

β 1+e 1+e

2 e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∞

=
∑ ∑ ∑

∫
∏ ∏

 

                      

       

( ) ( )

m m m

i i i i
i=1 i=1 i=1

i
i i

m + R x + R x  + 1/β  
m

*
m mθ+1 θR-x -x0

i=1 i=1

θ  -θ
θ  =  c    ×  dθ

β  1+e 1+e

2 e
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∞ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∫
∏ ∏  

         
 

where *c  is normalizing constant. Here it is not possible to get *
B Lθ in closed 

form, so we refer to numerical integration to find a solution. Again using the 

approximation given by Lindley (1980) the Bayes estimator *
B Lθ  is 

approximated as follows 
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( )1-c θ 2 4

2 1 1 3 1
ˆθ = θ

H e re
1 1 E (e |x ) u + u + 2 u ρ σ + l u σ
2 2

≈
            

                              (5.3.6)  

where 

1

1
1

1

-
-

1 1

c θ2
-2

2 12

c θ
c θ

c θ

deu = = -c e
dθ

u = c e
θ
e−∂ =
∂

 

( )

1

θρ=lnπ θ  =-lnβ-  
β

dρ -1ρ =  = 
dθ β

 

=lnLl  

2

2 2 2

3

3 3 3

-m=  = 
θ θ

2m = 
θ θ

ll

ll

∂
∂
∂=
∂

 

( )

( )

12 2
2

24 2 .

θ /l mσ

σ σ

−= − =

=
              

 

Using equation (5.2.3) in (5.3.6) Bayes estimate of θ under LLF can be 

approximately obtained. 
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5.4   Simulation Study 

 

In this section we consider a simulation study to observe behavior of ML and 

Bayes estimate of θunder different censoring patterns. Here we generate 1000 

random samples of size 40, 80 from generalized half logistic distribution defined 

in (3.1) for θ = 3 and 5.  

 

To generate a sample (x) under progressive Type-II censoring with m = 5 we 

have used the following method as discussed by Aggarwala and Balakrishnan 

(2002).  

 

Step 1:- Generate iU , where iU  is a set of random number i = 1, 2, 3, 4, 5 

Step 2:- i iZ = -ln (1-U )  

Step 3:- 1 2 i
i i-1

1
j

j=1

Z Z Z
Y = + +...............+

n n-R -1 n- R -i+1∑
 

Step 4:- i iG ( x ) = 1 -e x p ( -Y )  

i.e. 

θ-x

-x i

2e

1+e
1- =1-exp(-Y )⎡ ⎤
⎢ ⎥⎣ ⎦
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By solving the equation in Step 4 we will get the values of xi as  

 

i

i

i i

i i i

i
i

i

i

i

i

i

θ-

-

i

i

i

x

ix

-Y /θ

-x

-x -Y /θ

-x -x -Y /θ

-Y /θ
-x

-Y /θ

-Y /θ

i -Y /θ

-Y /θ

i -Y /θ

-x

2e
1+e

=exp(-Y )

e e = 
21+e

e e = 
1+e - e 2- e  

ee = 
2- e  

e-x  = ln 
2- e  

ex  = -ln 
2- e  

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

On the basis of simulated samples ML estimates of θ , as given (2.5) along 

with its asymptotic variance are demonstrated in Table-1, where as Table-2 

represents Bayes estimates of θ , as given in (3.3) with its simulated variance for 

the three censoring patterns. 

 

Here we have consider the following three censoring patterns 

n = 40 n= 80 

S1: (10, 7, 10, 5, 3) S1: (10, 7, 10, 5, 43) 

S2 : (20, 9, 2, 1, 3) S2 : (20, 9, 2, 1, 43) 

S3 : (0, 0, 0, 0, 35) S3 : (0, 0, 0, 0, 75) 
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Table-1: Summary Statistics 

For θ = 3, n = 40 

Scheme Min θ̂   Max θ̂  θ̂  ( )ˆAV θ  ( )ˆSV θ  

S1 0.8404 17.7134 3.7535 3.6796 4.3119 

S2 0.8404 17.6999 3.7533 3.6801 4.3107 

S3 0.8404 17.6497 3.7529 3.678 4.3054 

For θ =5, n = 40 

Scheme Min θ̂   Max θ̂  θ̂  ( )ˆAV θ  ( )ˆSV θ  

S1 1.4009 29.545 6.2555 10.2211 11.974 

S2 1.4009 29.5648 6.2556 10.2219 11.9774 

S3 1.4007 29.3284 6.2548 10.2155 11.9552 

For θ = 3, n = 80 

Scheme Min θ̂   Max θ̂  θ̂  ( )ˆAV θ  ( )ˆSV θ  

S1 0.8406 17.6712 3.7531 3.6779 4.3082 

S2 0.8404 17.5783 3.7529 3.6788 4.3052 

S3 0.8407 17.667 3.7528 3.6774 4.3033 

For θ = 5, n = 80 

Scheme Min θ̂   Max θ̂  θ̂  ( )ˆAV θ  ( )ˆSV θ  

S1 1.4009 29.4548 6.2553 10.2186 11.9642 

S2 1.4011 29.5436 6.2552 10.2207 11.9763 

S3 1.401 29.3278 6.2542 10.2118 11.9442 



  80

 

From results of Table-1 we observe from the asymptotic variance of three 

schemes that the censoring pattern S3 produces the most precise estimate of θ 

followed by S1 and then S2. This is due to the fact that more units are kept in the 

experiment for a longer period of time in S3 followed by S1 and then S2. 
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Table- 2: Simulated Variance and MSE of MLE and Bayes Estimate under SELF and LLF 

 

 

n = 40, θ = 3, β = 3 

MLE 
Bayes Estimate 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE 

( )BL
ˆSV θ

C = -1 
MSE 

( )BL
ˆSV θ

c = -0.5
MSE 

( )BL
ˆSV θ

c = 0.5 
MSE 

( )BL
ˆSV θ  

c = 1 
MSE 

4.3119 4.8797 1.0928 1.1699 6.0015 8.3375 4.2649 5.5844 1.4388 1.4402 1.9961 2.0162

4.3107 4.8782 1.0927 1.1698 5.9998 8.3352 4.2627 5.5817 1.4383 1.4397 1.9954 2.0155

4.3054 4.8723 1.0923 1.1694 5.9928 8.3267 4.2561 5.5740 1.4359 1.4373 1.9921 2.0123
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n = 40, θ = 3, β = 7 

 

MLE 

Bayes 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE 

( )BL
ˆSV θ

c = -1 
MSE 

( )BL
ˆSV θ

c = -0.5
MSE 

( )BL
ˆSV θ

c = 0.5 
MSE 

( )BL
ˆSV θ  

c = 1 
MSE 

4.3119 4.8797 3.2753 4.2324 6.5136 9.5058 6.4756 9.0187 1.9087 2.0165 2.1250 2.1284

4.3107 4.8782 3.2743 4.2312 6.5118 9.5033 6.4736 9.0160 1.908 2.0158 2.1242 2.1276

4.3054 4.8723 3.2713 4.2276 6.5045 9.4946 6.4656 9.0064 1.9054 2.0130 2.1208 2.1242
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n = 40, θ = 3, β = 12 

 

MLE 

Bayes 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE ( )BL

ˆSV θ

c = -1 

MSE ( )BL
ˆSV θ

c = -0.5

MSE ( )BL
ˆSV θ

c = 0.5 

MSE ( )BL
ˆSV θ  

c = 1 

MSE 

4.3119 4.8797 4.3646 5.7991 6.6331 9.8147 6.8950 9.7952 2.1312 2.3463 2.1799 2.1972

4.3107 4.8782 4.3630 5.7970 6.6314 9.8123 6.8930 9.7925 2.1305 2.3455 2.1791 2.1964

4.3054 4.8723 4.3577 5.7907 6.6240 9.8034 6.8847 9.7825 2.1278 2.3426 2.1757 2.1929

 

 

 

 

 



  84

 

 

 

n = 80, θ = 3, β = 3 

MLE 
Bayes Estimate 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE 

( )BL
ˆSV θ

c = -1 
MSE 

( )BL
ˆSV θ

c = -0.5
MSE 

( )BL
ˆSV θ

c = 0.5 
MSE 

( )BL
ˆSV θ

 c = 1 
MSE 

4.3082 4.8754 1.0937 1.1707 5.9965 8.3313 4.2532 5.5717 1.4370 1.4384 1.9937 2.0138

4.3052 4.8721 1.0932 1.1702 5.9922 8.3261 4.2473 5.5711 1.4358 1.4373 1.9920 2.0122

4.3033 4.8700 1.0929 1.1700 5.9902 8.3238 4.2540 5.5643 1.4351 1.4366 1.9907 2.0109
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n = 80, θ = 3, β = 7 

MLE 
Bayes Estimate 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE 

( )BL
ˆSV θ

c = -1 
MSE 

( )BL
ˆSV θ

c = -0.5
MSE 

( )BL
ˆSV θ

c = 0.5 
MSE 

( )BL
ˆSV θ

 c = 1 
MSE 

4.3082 4.8754 3.2720 4.2285 6.5085 9.4993 6.4696 9.0111 1.9067 2.0143 2.1225 2.1259

4.3052 4.8721 3.2689 4.2267 6.5041 9.4939 6.4646 9.0054 1.9052 2.0128 2.1207 2.1241

4.3033 4.8700 3.2706 4.2250 6.5019 9.4913 6.4627 9.0032 1.9045 2.0120 2.1195 2.1229
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n = 80, θ = 3, β = 12 

MLE 
Bayes Estimate 

SELF LLF 

( )ˆSV θ  MSE ( )BS
ˆSV θ  MSE 

( )BL
ˆSV θ

c = -1 
MSE 

( )BL
ˆSV θ

c = -0.5
MSE 

( )BL
ˆSV θ

c = 0.5 
MSE 

( )BL
ˆSV θ  

c = 1 
MSE 

4.3082 4.8754 4.3590 5.7925 6.6280 9.8092 6.8889 9.7877 2.1291 2.3440 2.1774 2.1947

4.3052 4.8721 4.3545 5.7888 6.6236 9.8030 6.8838 9.7816 2.1275 2.3422 2.1756 2.1928

4.3033 4.8700 4.3560 5.7873 6.6214 9.8001 6.8816 9.7791 2.1269 2.3416 2.1744 2.1916
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From the Table-2 we observe that MSE of MLE as well as Bayes estimators 

becomes smaller in the censoring pattern S3 than S2 followed by S1 for various 

choice of n and β. 

 

5.5   Confidence Interval Estimation 

 

In this section we consider interval estimation of unknown parameter θ using 

the method of parametric bootstrap confidence interval and the method of r-level 

likelihood. According to Davison and Hinkley (1997) a 100(1-α) % parametric 

bootstrap confidence interval for θ is given by 

2 2

boot boot

ˆ ˆθ θ,ˆ ˆθ (1-α/2) θ (α/2)

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

       

                                                                                                  (5.5.1)  

where bootθ̂ (p) is the pth percentile of the simulated sample of 1000 estimates 

simulated using the observed value of θ̂  of the given sample. 

 

The shape and magnitude of L(θ) relative to ˆL(θ) over all possible values 

of θ describe the information on θ that is considered in datai, i = 1, 2, ..., n this 

suggest importance of the relative likelihood function (RLF), ( )
ˆL(θ)R θ  = 

L(θ)
.  

Considering R(θ) ≤ r, where r is the desired level of RLF, it is observed that larger 

values of r will result in wider intervals for variation in θ.  
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The inequality R (θ) ≤ r to be solved to construct a r- level likelihood 

interval for θ. From a graph of likelihood ratio= ˆL(θ)/L(θ)  plotted against various 

values of θ, the r- level likelihood interval for θ can be obtained for given level r, 

by drawing a horizontal line at ˆL(θ)/L(θ) = r and the corresponding r- level 

likelihood interval will contain all values of θ below this line. The advantage of 

likelihood level confidence interval estimation is that it does not require large 

amounts of simulation as required in bootstrapping. 

For bootstrapping, we again have simulated 1000 samples using the value 

of θ̂as a true value of θ and calculated bootθ̂ (p) for p = 0.025 and p = 0.975 for 

all the three censoring patterns and the values are as follows: 
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Table-3: Values of bootθ̂ (p) under the three censoring patterns 

For θ = 0.2, n = 40 S1 S2 S3 

bootθ̂ (0.025)  0.1227 0.1165 0.1232 

bootθ̂ (0.975)   0.7981 0.7880 0.7306 

For θ = 3, n = 40 S1 S2 S3 

bootθ̂ (0.025)  1.8405 1.8483 1.7970 

bootθ̂ (0.975)  13.0324 12.0725 10.9089 

For θ = 0.2, n = 80 S1 S2 S3 

bootθ̂ (0.025)  0.1235 0.122 0.1119 

bootθ̂ (0.975)  0.8467 0.734 0.7607 

For θ = 3, n = 80 S1 S2 S3 

bootθ̂ (0.025)  1.8098 1.8095 1.8952 

bootθ̂ (0.975)  11.4896 11.4475 11.3348 

 

 Using the result given in (5.5.1), parametric bootstrap confidence interval for θ in 

case of all the three censoring patterns S1, S2 and S3 is given by  
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Table-4: Values of bootstrap and r-level likelihood interval for different n and θ.  

 Bootstrap 

Confidence interval 

r-level likelihood 

interval, where r = 5 

For θ = 0.2, n = 40     S1 

                                   S2 

                                                   S3 

(0.0800, 0.5204)   

(0.0739, 0.4998)     

(0.0842, 0.4992)     

(0.0951, 0.4255)      

(0.1027, 0.4258)      

(0.1342, 0.4432)      

For θ = 3, n = 40       S1 

                                  S2 

                                                   S3 

(1.0818, 7.6602)    

(1.1726, 7.6591)     

(1.2774, 7.7548)     

(1.7095, 3.2345)     

(1.7842, 4.7749)     

(2.1460, 5.1862)     

For θ = 0.2, n = 80     S1 

                                  S2 

                                                   S3 

(0.0726, 0.4980)     

(0.0819, 0.4928)     

(0.0764, 0.5195)     

(0.0851, 0.4010)     

(0.0997, 0.4050)     

(0.1199, 0.4289)     

For θ = 3, n = 80        S1 

                                  S2 

                                                   S3 

(1.2306, 7.8125)      

(1.1952, 7.5615)      

(1.3085, 7.8259)      

(1.6956, 3.2388)     

(1.7082, 4.3794)     

(2.1138, 5.1136)     

 

From Table-4 we observe that 5- level likelihood gives smaller length confidence 

interval rather than the 95% bootstrap confidence interval.  
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Chapter 6 

 

Some Results on Maximum Likelihood Estimators of 

Parameters of Generalized Half Logistic Distribution under 

Type-I Progressive Censoring with Changing Failure Rate 

 

6.1 Introduction 

 

In most applications, the data may be interval-censored. By interval-

censored data, we mean that a random variable of interest is known only to lie in 

an interval, instead of being observed exactly. In such cases, the only information 

we have for each individual is that their event time falls in an interval, but the 

exact time is unknown.  

 

Generally statistician faces lot of problem in the analysis of time-to-event 

data such as failure time data, incubation time data etc. Such data arises in lot of 

fields such as medicine, engineering, economics. For example doctor may be 

interested to know the time of convergence to AIDS for HIV positive individual, 

the time to the death for cancer patients, lifetime of a device etc. The analysis to 

time-to-event later becomes more complicated on account of censoring. 
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In many life test studies, it is common that the lifetimes of test units may 

not be recorded exactly. An experimenter may terminate the life test before all n 

products fail in order to save time or cost. Hence, the test is said to be censored 

in which data collected are the exact failure times on those functional (none 

failed) units. Moreover, some of the test units may have to be removed at 

different stage(s) of censoring related study for various other reasons; which 

leads to progressive censoring. For example some products are withdrawn for 

more thorough inspection or are saved so that it can be used as test specimens 

in other studies, or patients who for some reasons do not turn up in a clinical 

study would also result in progressive removal. 

 

According to the current trend Type-I and Type-II progressive censoring 

schemes are becoming quite popular for analyzing highly reliable data. Cohen 

(1963) had introduced progressive Type-II censoring. Mahmond et al (2006) 

considered progressive Type-II censoring samples for many continuous life time 

models. Balakrishnan and Aggarwala (2000) give an insight on this method and 

the applications of this scheme. 

 

In this chapter we have considered Type-I progressive censoring scheme 

to obtain Maximum likelihood estimate of the parameter of the generalized half 

logistic distribution. Here we have also assumed that the parameter changes 



  93

under different stages of censoring. Estimation is also carried out in the case of 

progressive Type-I interval censoring with changing parameters at each stage. 

Under this scheme expected duration of the life test is also derived. 

 

6.2   Generalized Half Logistic Distribution 

Half logistic model obtained as the distribution of the absolute standard 

logistic variate is probability model considered by Balakrishnan (1985). 

Balakrishnan and Puthenpura (1986) obtained best linear unbiased estimator of 

location and scale parameters of the half logistic distribution through linear 

functions of order statistics.  

 

Balakrishnan and Wong (1991) obtained approximate maximum likelihood 

estimates for the location and scale parameters of the half logistic distribution 

with Type-II Right-Censoring. Olapade (2003) proved some theorems that 

characterized the half logistic distribution. The half logistic distribution has not 

received much attention from researchers in terms of generalization. A 

generalized (Type-II) version of logistic distribution is considered and some 

interesting properties of the distribution were derived by Balakrsihnan and 

Hossain (2007). The generalized versions of half logistic distribution namely 

Type-I and Type–II were considered along with point estimation of scale 

parameters and estimation of stress strength reliability based on complete 

sample by Ramakrishna (2008). 
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6.3  Maximum Likelihood Estimation 

Let the life X of an item have the generalized half logistic distribution with 

cdf ( )
θ-x

-x
2eF x,θ  = 1-

1 e

⎡ ⎤
⎢ ⎥
+⎢ ⎥⎣ ⎦

and density function ( )
( )

( )

θ-x

θ+1-x

θ 2e
f x,θ  = ,   x > 0, θ > 0

1 e+
. 

In services certain stores and equipments are subjected to regular check 

up even though they are functioning normally. When such items are placed on 

life test at some stages the items that have not failed are checked up and over-

hauled, repairing the minor defects. This, naturally, changes the life time 

distribution of the items and consequently the failure rate also changes. It has 

been assumed that the times of censoring coincide with the times of regular 

check ups and, thus, are predetermined so that the failure rate changes at the 

time of censoring. 

 

Suppose that the times of censoring are Ti , i = 1, 2, …, k-1 and the 

experiment is finally terminated at Tk, kT = ∞   where Ti < Ti+1 for i = 1, 2, …, k-1. 

Suppose that the parameter θ of the distribution changes at T1, T2, …,Tk. If θi is 

the parameter in the interval [Ti-1, Ti) for  i = 1, 2, …, k-1 with T0 = 0, using the 

lemma given by Patel and Gajjar (1995), the composite density is given by 
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( )

( )
( )

( )

( )
( )
( )

( )
( )

( )
( )
( )

( )
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1

1 1θ 11-x
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k θ θi j-T -T -T2 -Tj-i-1 i-1 j-1 1

θ 2e
f x ,   0  x < T  

1+e

2e /1 e θ 2e
f x ,   T   x < T

f x  = 1+e2e /1 e

2e /1 e2e /1 e θ 2e
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1+2e /1 e 2e /1 e

k

j

+
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∏
=

= ≤
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= ≤

+

⎛ ⎞+⎜ ⎟+ ⎝ ⎠=
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⎝ ⎠

( )
k-1 kθ 12-x

,   T   x < T
e

                                                                                                                  k=3,4,5,........

+

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ≤ = ∞⎪
⎪
⎪
⎪⎩

 

                                                                                                                       (6.3.1) 

The corresponding distribution function is given by,  

( )

( )

( )

( )

θ1-x
1 1-x

θ θ1 2-T -x -x1
2 1 2-T -T -T1 1 1

θθ j1 -T -T-T -x -xj j1
k -T -T -T -T1 j-1 j-1 k-1

2eF x 1 ,0  x < T  
1+e

2e 2e /1 eF x 1 ,T   x < T
F x  = 1 e 2e /1 e

2e 2e /1 e 2e /1 eF x 1
1 e 2e /12e /1 e

⎛ ⎞
= − ≤⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎧ ⎫+⎪ ⎪= − ≤⎜ ⎟ ⎨ ⎬⎜ ⎟+ +⎪ ⎪⎩ ⎭⎝ ⎠

⎧ ⎫⎛ ⎞ + +⎪ ⎪= −⎜ ⎟ ⎨ ⎬⎜ ⎟+ ⎪ ⎪+⎝ ⎠ ⎩ ⎭

θkk-1
k-1 k-Tk-1j =2

,T   x < T
e

                                                                                                                  k=3,4,5,........

∏

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ ⎧ ⎫⎪ ⎪⎪ ≤ = ∞⎨ ⎬⎪ +⎪ ⎪⎩ ⎭⎪
⎪⎩

                                                  (6.3.2)                            

 

Suppose n items are placed on a life test without replacement and that ni be the 

number of items that fail during ith stage and let (i) (i) (i)
1 2 ni

x x .... x≤ ≤ ≤  be the times 

of failure for  i = 1, 2, …, k-1 (k>1). 
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Let ri be the number of items removed or censored from the test 

immediately after time Ti-1, i= 2, 3,…, k. Then the likelihood function from k-stage 

Type-I progressive censoring is given by, 

 

( ) ( )
nk i ( )

i i i
i=1 j=1 1

L  f 1 F T .
k ri i

j i
x∏ ∏ ∏

=

⎧ ⎫⎪ ⎪ ⎡ ⎤⎨ ⎬ ⎣ ⎦
⎪ ⎪⎩ ⎭

∝ −                                                         (6.3.3) 

 

Using (6.3.1) and (6.3.2) it is easy to verify that the likelihood function L can be 

written as, 

 

k
i

i=1
L  L .∏∝  

 

Where in the case of generalized Type-II half logistic distribution 

 

( ) ( ) ( )ni (i) (i)- x θ θ n -ni i ij - T -T -Tθ n i i-1n i-1i ij=ii -Ti-1i
i θ -T -Ti i-1 i(i)n -xi j

1

0

e 1+eθ e eL  .
1+e 1+e

1+e

for i = 2, 3, ..., k, with T  0

j

∑
−

∏
=

⎧ ⎫
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⎨ ⎬ ⎨ ⎬

⎧ ⎫ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎪ ⎪ ⎩ ⎭⎨ ⎬
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∝

=

            

           (6.3.4) 
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where n(1) = n, n(i) = n(i-1) – ni – ri for i = 1, 2, …, k 

 

The log likelihood function is given by 

 

( )

( )( )

( ) ( )

(i)n n xi i(i) j
i i i i ijj=1 j=1

Ti-1 (i)
i i i-1 i i i i i i-1

T Ti-1 i(i) (i)
i i i i

lnL  = lnc +n lnθ x θ θ 1 ln 1

            + n θ T n θ ln 1 θ n -n T T

            +θ n -n ln 1 θ n -n ln 1 .

e

e

e e

−
∑ ∑

−

− −

⎛ ⎞
⎜ ⎟− − + +
⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + − −⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞
+ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

                           (6.3.5) 

 

Differentiating ln L with respect to iθ  and equating to zero we obtain 
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                        (6.3.6) 
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This implies the MLE iθ̂ of iθ as 

 

( )
i

i (i)n n x T Ti i i i-1(i) (i) (i)j
i i i-1jj=1 j=1

nθ̂ .

x ln 1 + n -n T ln 1 n T ln 1e e e
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=

+ + + + − + +

                                                                                                           (6.3.7) 

 

Now again differentiating (6.3.6) we get 

 

2
i

2 2
i i

ln L
θ θ

in∂
= −

∂  

 

Hence observed asymptotic variance of θ̂  is given by (Due to Cohen1963) 

 

 i i

i 2

2
i ˆθ =θ

-1ˆV(θ )= .
lnL
θ

∂
∂
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Illustrative example  

 

Here we generate 1000 random samples under progressive Type-I censoring 

scheme for the distribution given in (3.2). We have considered the following 

parameters. Based on simulated samples MLEs and their asymptotic variances 

are obtained 

 

1 2 3

1 2 3 1 2 3

1 2 3

n = 35, k=3,θ 2,  θ 2.4,  θ 2.8
R =3, R 4,  R 10,T 2,  T 3,  and finally the experiment is terminated at T 4 
n 4,  n 3,  n 5

= = =

= = = = =

= = =            

 

 

   Table1: MLE and its asymptotic variance for the parameters. 

 

Parameters MLE Asymptotic Variance 

θ1 0.0868 0.0019 

θ2 0.1253 0.0052 

θ3 0.3248 0.0211 
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6.4   Estimation based on Interval-Censoring with different parameter at 

each stage 

 

It is often the practice in life testing to examine the life test periodically and 

the number of items that have failed in each stage of censoring (Ti-1, Ti) are 

counted and some fixed number of surviving items are eliminated immediately 

after time Ti for i = 1, 2, …, k being the times of censoring. This kind of 

experimentation stems from economic or practical considerations where it may 

not be appropriate to collect exact failure times of the items on test. Kendell and 

Anderson (1971) have considered the ML estimators of the scale parameterθ  of 

the exponential distribution when items placed on test are subjected to a stress 

condition for a predetermined time T and the test is periodically inspected at time 

ti for i = 1, 2, …, k such that tk = T. Where as Patel and Gajjar (1995) have 

considered estimation in case of exponential life time model for k-stage 

progressive Type-I interval censoring scheme with changing parameters at each 

stage.  
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 Maximum Likelihood Estimation under Interval-Censoring   

 

In this sub-section we consider the ML estimation of the parameters of the 

generalized half logistic distribution based on k-stage Type-I progressively 

interval censored samples under the assumption that the parameterθ  changes at 

each stage of censoring. Under this scheme the likelihood function becomes 

 

( ) ( )( )
niTk ki ri

i i i
i=1 i=1Ti-1

L  f 1 F Tx dx∏ ∏∫
⎧ ⎫⎪ ⎪∝ −⎨ ⎬
⎪ ⎪⎩ ⎭

                                                        (6.4.1) 

 

Using the probability model (6.3.2), the likelihood L given by (6.4.1) can be 

written as  

 

k
i
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L  L .∏∝  
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Hence Li can be rewritten as 

 

( ) ( )
(i)n n -ni i

i i iL  = p 1 p−  

 

The log likelihood function is given by 

 

( ) ( )(i)
i i i i iln L n lnp n -n ln 1-p= +  

 

Differentiating ln L with respect to θ  and equating to zero we obtain 
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The equation (6.4.2) can be rewritten as, 

 

( )

(i)
i

(i)
i

i i

n -nln
ˆ nθ
θ ln 1-p

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=  

 

Differentiating iln L again with respect to iθ we get, 
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Hence the asymptotic variance is given by, 

 

( )i 2
i

2
i
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θ

−
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Table 2:  
( )i

2
i

ˆAsyV θ

θ
 for different values of (i)n  and ip  

 

(i)n  

ip  

10 15 20 30 40 50 80 100 

0.1 0.002096 0.00139 0.00104 0.00069 0.00524 0.00419 0.00026 0.00021 

0.2 0.009651 0.00643 0.00482 0.00321 0.00241 0.00193 0.00120 0.00096 

0.3 0.029566 0.01971 0.01478 0.00985 0.00739 0.00591 0.00369 0.00295 

0.4 0.079404 0.05293 0.03970 0.02646 0.01985 0.01588 0.00992 0.00794 

0.5 0.208137 0.13875 0.10406 0.06937 0.05203 0.04162 0.02601 0.02081 

0.6 0.574839 0.38322 0.28741 0.19161 0.14371 0.11496 0.07185 0.05748 

0.7 1.834136 1.22275 0.91706 0.61137 0.45853 0.36682 0.22926 0.18341 
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0.8 8.033251 5.3555 4.01662 2.67775 2.00831 1.60665 1.00415 0.80332 

0.9 81.07496 54.0499 40.5374 27.0249 20.2687 16.2149 10.1343 8.10749 

0.99 98010.82 65340.5 49005.4 32670.2 24502.7 19602.1 12251.3 9801.08 

 

 

From above table we conclude that for fixed pi as n(i) increases 
( )i

2
i

ˆAsyV θ

θ
 

decreases and for fixed n(i) 
( )i

2
i

ˆAsyV θ

θ
increases with pi. 

 

 

6.5     Expected Duration of the life test (EDLT) 

 

In case of a life test with k-stage interval Type-I progressive censoring the 

expected duration of the test can be obtained using the method suggested by 

Kendall and Anderson (1971). 

 

The expected duration of the life test (EDLT) is given by, 
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EDLT = E [D({ti}, Tk, θ] 
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k 2 1 i+1 i-T -T1 i2

2e 2e
   = T T T 1    T T 1

1+e 1+e

  

.
k

i

∑

−
∑

=

− − − − − −

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
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i i i-1

i-1
n n- R jθ θ1 i-t -t j=1k-1

-t -ti=2

For equal length  in tervals T it,   i.e T T = t , i=1 ,2 ,...,k -1

2e 2e
E D LT = kt-t 1- - t 1-1

1+e 1+e

  

E D LT  reduces to

∑

∑

= −

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

Illustrative example 

 

n = 35, k = 3 

θ 1 = 2, θ 2 = 2.4, θ 3= 2.8 

R1= 3, R2 = 4, R3 = 10 

T1 = 2, T2 = 3,  

And finally the experiment is terminated at T3 = 4 

n1 = 4, n2 = 3, n3 = 5  

 

 

t 2 3 4 5 6 7 8 

EDLT 5.03635 4.132488 4.220808 5.036364 6.005695 7.000873 8.00013
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