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Preface 

 
 Mixed oxide high Tc superconductors and Colossal Magnetoresistive 

manganites are correlated insulators which exhibit varieties of novel correlations 

in association with spin, orbital and charge degrees of freedom and continue to 

attract the attention of scientific community owing to their potential for 

technological applications such as hybrid HTSC/CMR devices, magnetic memory 

read heads and temperature and field sensor, etc. The low temperature neutron 

diffraction studies and structural Bond Valence Sum calculations carried out 

during the present investigations are important from fundamental understanding 

of structure-property correlation in mixed oxide superconductors. The structural, 

electronic and magnetotransport properties of some doped manganites were 

investigated on thin films synthesized using PLD & CSD techniques. Swift heavy 

ion irradiation induced suppression of resistivity in LBMO manganite films is the 

unique feature observed as a result of the present work.  All the bulk materials in 

the present work were synthesized using solid state reaction route and novel 

chemical solution deposition at Department of Physics, Saurashtra University, 

Rajkot, India. Most of the experimental work has been performed in collaboration 

with Tata Institute of Fundamental Research TIFR, BARC, Mumbai, India and 

IUAC, New Delhi.  
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1.1 Introduction   

The perovskites and perovskite related structures exhibit several interesting 

features of fundamental as well as technological interest. The crystal structure of 

perovskite family of compounds is similar to that of the mineral perovskite, CaTiO3. The 

two classes of materials crystallizing in perovskite structure are: ionic materials having the 

ideal chemical formula ABX3 (A – larger cation, B – smaller cation and X – anion) and 

alloys having the general formula McXMf (X – interstitial atom, Mc and Mf - metal atoms). 

Of these two classes, the ABX3 type is more important from application point of view. The 

prerequisite for a stable ABX3 perovskite is the existence of stable, polar, octahedral-site 

building blocks which requires that, B-cation to prefer octahedral coordination and an 

effective charge on it. Since, any A-cation must occupy the relatively large cationic 

interstice, created by corner-shared octahedra; the second prerequisite is an appropriate 

size of A-cation. Depending on the size of A-cations, the A-X and B-X bond lengths are 

optimized leading to a stable ABX3 perovskite structure. Perovskite structure is very 

common among compounds comprising minerals, fluorites, oxides and alloys. In addition 

to the stoichiometric ABO3 (X = O), perovskite compounds in mixed oxide systems as                      

A1-xA′xBO3 and AB1-xB′xO3, it is also possible to form perovskite superstructures of the 

type AA′B2O6 or A2BB′O6 and perovskite intergrowth family (AA′)n+1BnO3n+1 of  

compounds. Further, it is ability of the perovskite to accommodate the cation or oxygen 

deficiency, and hence the large class of defect perovskite phases is governed in many ionic 

systems and alloys [1].   

1.1.1 General concepts and properties 

The ability of the ABO3 structure, to tolerate/tune wide range of mismatch between 

the mean equilibrium 〈A-O〉 and 〈B-O〉 bond lengths, where A-site and/or B-site are 

occupied by various cations with same or different valency, leads to the existence of large 

number and variety of stoichiometric perovskites. The general crystal structure of ideal 

ABO3 perovskite is a primitive cubic, with the A-cation occupying the center of the cube, 

B-cation at the corner and the anion, commonly oxygen, at the center of the edges. The 

octahedrally coordinated B-cation and A cation having twelve coordination stabilizes the 

structure as shown in fig. 1.1.  
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Figure 1.1: Crystal structure of ideal ABO3 perovskite unit cell. Corner shared BO6/2 

polyhedra are shown at the corner of the unit cell. 

The most striking feature of the ABO3 perovskite containing the correlated 

electronic systems is the electronic band structure which is determined by the 

hybridization of core 3d orbitals with the oxygen (ligand) 2p orbitals. The stoichiometric 

A3+B3+O3 perovskite structures are mostly correlated insulators: band insulator, Mott-

Hubbard or charge transfer insulators depending upon the charge excitations across the 

gap at the lower (filled) and upper (empty) Hubbard bands as can be seen from fig.1.2,  

which illustrates the metal-insulator phase diagram for them [2]. It can be observed from 

fig.1.2, that the perovskite structures, with less than half filled d-shell are Mott-Hubbard 

insulators whereas the more than half filled d-shell are charge transfer insulators. 

 

Figure 1.2: Schematic metal-insulator Phase diagram for filling control (FC) and 

bandwidth control (BC) 3d transition metal oxides with perovskite structure  

[reproduced from Ref. 2]. 

A-site 

B-site 

Oxygen 
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Figure 1.3:  Schematic illustration of energy levels for (a) a Mott-Hubbard insulator and 

(b) a charge-transfer insulator generated by the d-site interaction effect. 

Figure 1.3 shows the schematic energy level diagram for Mott-Hubbard and charge 

transfer insulators. Charge transfer gap becomes narrower for the end members of 3d 

series and hence the LaNiO3 and LaCuO3 have metallic character. However, the situation 

becomes more complex for the middle 3d members those may be Mott-Hubbard or charge 

transfer insulators depending on the magnitude of the on site Hund’s coupling energy and 

the dominating pairing energy. Also, it can be noted from fig.1.2 that, YBO3 shows 

stronger electron correlation than LaBO3 because of reduced bandwidth (W) due to B-O-B 

bending in the distorted perovskite structure. Partial substitution of trivalent cation at              

A-site by a divalent cation results into a composition with a general formula (A1-xA′x)BO3 

(A = La, Pr, Nd, Y, etc; A′ = Ca2+, Sr2+, etc) leads to x amount of fractional B valency  

which drives the parent insulating system to metallic. However, in certain cases, the 

compounds remain insulating for large ratio of the on-site Coulombic interactions U and 

bandwidth (W) [2].  

The general electronic structure and physical properties of perovskite related 

structures are governed by the following key energy terms, namely, 

i) On-site (U) and intersite (V) Coulombic interactions, 

ii) Hund’s coupling energy (JH) which defines the transfer integral (tij) which in turn 

modify one electron bandwidth (W), 

iii) Charge transfer energy (∆) arising due to the crystal field splitting of transition 

metal 3d orbital in the presence of oxygen ligand 2p orbitals and  

iv) Electron-phonon interaction term coming due to the orbital ordering and/or Jahn-

Teller (JT) distortion (δJT) [3].  
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For U < ∆, charge excitations across that gap are realized by d-d Coulomb 

interaction (Udd) of the type (d
n)i + (d

n)j → (d
n-1)i + (d

n+1)j, where i and j denotes the 

transition metal sites, at a cost energy Udd. While for U > ∆, p-d charge transfer excitations 

are realized by p6(dn) → p5(dn+1) at a cost energy (Upd), which is the energy required to  

transfer an electron from the filled ligand p orbitals to the empty metal d orbitals [4]. For 

3d transition metal oxides, the values of Udd and Upd are as large as 4-8 eV [5,6].  

The crystal field effects have to be considered while talking about the perovskite 

structured transition metal oxides, since the transition metal 3d orbitals are degenerate in 

presence of oxygen ligand 2p orbitals. The octahedral crystal field splits (∆ ~ 10Dq) the 

five 3d (3dxy, 3dyz, 3dzx, 223
3

rz
d

−
and 223

yx
d

−
) orbitals into three t2g (3dxy, 3dyz, 3dzx) 

(directed into the plane) localized and two eg ( 223
3

rz
d

−
and 223

yx
d

−
) (directed towards the 

axes) itinerant orbitals. Figure 1.4 shows the crystal field splitting for cubic and tetragonal 

symmetry along with the representative interactions of 223
3

rz
d

−
 and 223

yx
d

−
 orbitals with 

ligand 2p orbitals forming σ bonding which belongs to eg symmetry and interactions of 

3dxy orbital with ligand 2p orbital forming π bonding belonging to t2g symmetry. If the 

splitting ∆ between t2g and eg is smaller than the Hund’s rule coupling (JH > 0), high spin 

states are realized as in Mn3+(3d4) and Fe3+(3d5), while for the opposite case,  ∆ > JH,  low  

 

Figure 1.4: Schematic representation of cubic crystal field splitting of 3d transition metal 

ions with central ion and ligand ion relevant orbitals corresponding to eg and 

t2g symmetry.  
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spin states are enforced as in Co3+(3d6). From the experiments, the value of octahedral 

crystal field splitting (∆), in manganites is ~ 1-2 eV whereas the on site Hund’s coupling 

(JH) energy lies in the range ~ 2 eV [7,8].   

This orbital degeneracy of t2g and eg is further lifted by Jahn Teller (JT) distortion 

since a nonlinear molecule with orbitally degenerate electronic states must undergo a 

distortion to get rid of the degeneracy and to lower the energy and symmetry [8]. It occurs 

in a metal ion having an odd number of electrons in the eg level having magnitude ~ 0.5-

1.5 eV and the system with such a electronic configuration exhibiting this effect are                

Mn3+(3d4) and Cu2+(3d9). The JT splitting for Cu2+( t2g
6+eg

3) is shown in fig.1.5, which 

distorts the octohedral symmetry of the parent compound by creating the four short                     

(in ab-plane) and two long (c-elongation) Cu-O bonds when  2

3 223
rz

d
−
 is fully occupied and 

1
223

yx
d

−
 is half filled. 

 

 

 

 

 

 

 

 

 

 Figure 1.5: Schematic representation of Jahn Teller effect in Cu2+ (3d9) system   

The JT effect arises because the energy gained due to this splitting of degeneracy, 

which is linear in distortion and at a cost of lattice elastic energy and by the restriction that 

if undistorted structure has a centre of symmetry, the distorted structure will also have a 

centre of symmetry. The phenomenon is termed static if the degeneracy of eg level is 

removed by the splitting as in LaMnO3 [9]. The JT effect is termed dynamic when 

structure oscillates among all tetragonal structure and at any instant its like distorted but 

on its time average appears undistorted. In Cu2+, JT distortion exclusively assumes four 
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fold, five fold or six fold coordination whereas in high spin state of Mn3+ (3d4), JT 

distortion reveals in an octahedral geometry.  

The ideal perovskite with cubic symmetry is not very common. The distorted 

perovskite posses reduced symmetry which is important for the exhibition of physical 

properties such as ferroelectricity, antiferromagnetism, ferromagnetism, 

superconductivity, thermal conductivity, metal-insulator transition in these compounds 

having potential applications. The crystallographic distortions can be lifted by five factors 

namely: i) tolerance factor, ii) average A-site cationic radius, iii) size variance, iv) carrier 

density/doping and v) Jahn Teller (JT) distortion.  Each factor has been described, in brief, 

in the following section of this chapter. These factors are found to control the structural, 

electronic and magnetic properties of mixed oxide perovskites and have proved to be 

efficient handle for optimizing the materials properties for their desired applications.  

I. Tolerance factor (t) 

Goldschimdt tolerance factor is the geometric ratio of the d〈A-O〉 and d〈B-O〉 bond 

distances and can be determined using,    

OBd

OAd

rr

rr
t

OB

OA

−

−
=

+><

+><
=

2)(2

)(   

where <rA>, <rB> and rO are the average A-site, B-site cation and anion ionic radii (purely 

ionic bonding is assumed) respectively. Also, it turns out that, the vertex sharing stacking 

of the cubic perovskite structures are stabilized for the t values between 0.89 < t < 1, 

where structure changes to rhomobedral for 0.96 < t < 1 and orthorhombic for t < 0.96 

which sets the critical limites of <rA> and <rB> cationic radii. For A
3+B3+O3 compounds 

these are rA > 0.90Ǻ and rB > 0.51Ǻ. Figure 1.6 shows the general <rA>-<rB> phase 

diagram for A3+B3+O3 compounds based on ionic size consideration [10]. 

The 〈A-O〉 and 〈B-O〉 are the equilibrium bond lengths between rare earth cations 

and transition metal cations and oxygens respectively, which have different thermal 

expansion and compressibilities and hence t = t(T, P) is unity for only a single temperature 

value at a given pressure. The structure is ideally cubic when t is unity with B-O-B bond 

angle 180◦. Accommodation of a t < 1 or t > 1 makes the system strained and drives it 

towards the lower symmetry space group, away from its ideal cubic symmetry.  
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Figure 1.6: The general <rA>-<rB> phase diagram forA
3+B3+O3 compounds based on ionic 

size consideration. [reproduced from Ref. 10] 

For instance, t < 1, turns into the 〈B-O〉 bond under compression and 〈A-O〉 bond 

under tension, and decreases the space group symmetry from cubic by accompanying a 

cooperative rotation of the corner-shared BO6/2 octahedra so as to reduce the B–O–B bond 

angle from 180◦ to (180◦−φ). As t is reduced from t = 1, rotations about the [001] axis give 

tetragonal I4/mcm symmetry; these rotations are followed at smaller t by rotations about 

[111] to give rhombohedral R3c symmetry and then about [110] to give orthorhombic 

Pbnm (or Pnma) symmetry. The bending angle φ increases with decreasing t, changing 

discontinuously on going from one cooperative rotation to another as shown in fig.1.7 

[11]. For t > 1, hexagonal face sharing staking of octahedron is dominated instead of the 

cubic vertex sharing staking of octahedron which is the case for t < 1.  

 

Figure 1.7: Cooperative BO3 rotations giving (a) tetragonal (projection on (001)) of BO3 

array (b) rhombohedral and (c) orthorhombic (Pbnm axes) symmetry. Note: 

Pbnm axes a, b, c, becomes c, a, b, in Pnma.  

    A         B  Oxygen  
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II. Average A-site cationic radius <rA>  

Average A-site cationic radius <rA> can be determined using the following formula,   

<rA> = ∑
i

iirx  

where, ri is the ionic radii of i
th cation. The variation of <rA> at A-site cation in ABO3 has 

a similar effect as an external pressure which enhances the B-O-B transfer integral through 

a change in B-O-B bond angle and a measure of the degree of radial distortion of the BO6 

octahedra [12]. There is a linear relationship found between TC and <rA>, those have an 

inverse correlation with MR [13]. The quantity, <rA> is also characterized the one electron 

bandwidth (w) as, 

5.3

)]([2
1cos

OBd

BOB
w

−

−−−
≅

π
. 

A smaller change in average <rA>, gives rise to the structural distortion at B-O-B 

bond angle up to a large extent and hence bending of B-O-B bond angle which in turn 

tilting the BO6/2 octahedra for t <1 and narrowing the eg electron bandwidth and thereby 

affecting the matrix elements for the electronic transport [14].   

III. Size variance (σ
2
)  

This factor is related to ionic mismatch due to the doping of divalent alkali, 

alkaline earth cations or trivalent rare earth cations at A-site, first introduced by 

Rodriguez-Martinez and P. Attfield and has been described as, 

 ∑ ><−= 222
Aii rrxσ  

where, xi is the fractional occupancies of the different i cations of ri radii. Size variance is 

attributed to displacements of the oxygen atoms due to the A site disorder, as shown by the 

simple model in fig.1.8 [15]. This shows that σ provides a measure of the oxygen 

displacements Q due to A cation size disorder and that (rA
0 - <rA>) is the complementary 

measure of displacements due to <rA>  being less than the ideal value rA
0 . 

The analogous effect of increasing σ2 have been extensively investigated for 

A0.7A′0.3MnO3 [A = La
3+, Pr3+, Sm3+, Pm3+ and Nd3+ and A′ = Ca, Sr and Ba] at fixed 

carrier concentration x = 0.3 and <rA> which shows the linear reduction in TP with σ
2 [16].  
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Figure 1.8: Model for local oxygen displacements in AMnO3 perovskites. A fragment of 

ideal cubic structure with A cations of radii rA
0 is shown schematically in (a) 

and as spherical ions in (b). Cation size disorder in (c) gives rise to random 

oxygen displacements Q = σ and a reduction in the A site radius in (d) leads 

to ordered oxygen displacements Q = rA
0 - rA. 

Recently, similar kind of correlations have been established between superconducting 

transition Tc and σ
2 for A1.85A′0.15CuO4 (A = La-Eu and A′ = Ca, Sr and Ba) [17].  

Increasingly, the structural disorder creates local oxygen displacements and hence the 

structural fluctuations at B-O-B angle and B-O distance, which results into carrier 

localization due to the Jahn-Teller distortion of BO6 octahedra and thereby affecting the 

electrical transport, TP and Tc in manganites and HTSC.  

IV. Carrier density 

Doping determines the carrier concentration and sign of the charge carriers (i.e. 

positively charged holes or negatively charged electrons) into (A′O)m•(ACuO3-δ)n and              

A1-xA′xMnO3 (A = Rare earth cation, A′ =  divalent or trivalent smaller cation; n = 1, m=1) 

type of layered cuprates and mixed valent manganite systems respectively. Carrier density 

decides the fluctuated valence of the transition metal cations i.e. Cu1+/Cu2+ or Cu2+/Cu3+ in 

cuprates and Mn3+/Mn4+ in manganites which are responsible for charge transfer 

mechanism in former whereas the ferromagnetic Zener Double Exchange (ZDE) in the 

later [18,19].   



 

Introduction to HTSC and CMRIntroduction to HTSC and CMRIntroduction to HTSC and CMRIntroduction to HTSC and CMR 

I - 10 

At a fixed amount of doping, perovskite oxide/compounds exhibit very rich phase 

diagram as a function of temperature, magnetic field, external and internal chemical 

pressure, etc. which in turn governs their physical properties.  

V. Jahn Teller (JT) distortion  

This effect is extremely important in modifying the electronic and magnetic 

transport properties of perovskites, by possible displacements of oxygen anions along the 

direction of B-O-B bonding in (001) basal planes of corner shared B-sites; these sites may 

be octahedral, square pyramidal or square coplanar. As a result, the electronic properties 

are strongly anisotropic [20].   

Physical properties of the perovskite structures, stoichiometric manganites and 

layered high Tc cuprates depend to a great extent upon five parameters described above 

and their effects on structural, transport and magnetotransport properties of La-based 

HTSC and manganite samples have been discussed in detail in the chapters 3, 4 and 5 of 

the present work. 

1.2 High temperature superconductors 

1.2.1 History and developments  

The phenomenon of superconductivity was discovered by a Dutch physicist 

Kamerlingh Onnes at Leiden in 1911, in which material undergoes an abrupt transition 

from normal state of electrical resistivity to zero resistivity as it is cooled below to a 

certain superconducting transition temperature (Tc) under critical field (Hc) having critical 

current density (Jc) [21]. Superconductivity occurs in a wide range of materials, including 

metallic elements of the periodic table, binary and ternary alloys, intermetallics, organic 

compounds, borocarbides, chalcogenides and heavily-doped semiconductors having low 

Tc < 25K. All these materials are called as classical/conventional superconductors, as the 

superconductivity in them is caused by a force of attraction between certain conduction 

electrons arising from the exchange of phonons, which causes the conduction electrons to 

exhibit a superfluid phase composed of correlated pairs/cooper pairs of electrons which 

has been explained by the BCS theory of superconductivity [22]. As long as the 

superconductor is cooled to very low temperatures, the Cooper pairs stay intact, due to the 

reduced molecular motion. As the superconductor gains heat energy the vibrations in the 

lattice become more violent and break the pairs and superconductivity vanishes. There 
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exist another class of unconventional superconductors containing copper oxygen layers 

and chains, belonging to perovskites, exhibiting quite higher Tc (>77K) as compared to 

conventional superconductors, known as high temperature superconductors (HTSC). Even 

after twenty years of the discovery of high temperature superconductivity, there is lack of 

complete unified recognized theory to understand the quantum mechanical phenomenon of 

high temperature superconductors and hence remains a novel field of research attraction 

[23]. Superconductors have strong application potential in transmission lines, power 

generators and storage, superconducting maglev trains, MRI, SQUID, biomedical, military 

applications and to develop the superconducting X-ray detectors, cameras and optical 

devices. Synthesis of superconducting nanoroads and understanding of their properties is a 

challanging task.  

1.2.2 Properties of high Tc cuprates  

Discovery of high temperature superconductivity in 1987 by Bednorz and Muller 

in La-based cuprate La2-xAxCuO4 (La-214, Tc ~ 40K) superconductor followed by the 

discovery of Y1Ba2Cu3O7-δ (Y-123, Tc ~ 90K) (YBCO) by P. Chu and Wu renewed the 

considerable interest in perovskite related structures exhibiting superconducting transition 

(Tc) above LN2 temperature and into the realm of practical applications [24,25]. The Tc 

increased above 100K in Bi-Ca-Sr-Cu-O (~110K), Tl-Ca-Ba-Cu-O (~125K) and in              

Hg-Ca-Ba-Cu-O (~138K) systems [26-28]. A considerable interest in the study of these 

fascinating oxides has been largely attributed to the tunability of properties by elemental 

substitution for increasing superconducting Tc or Jc or Hc. 

The high temperature cuprate superconductors exhibit Tc at the crossover from 

localized to itinerant electronic behavior as a function of either the d-electron bandwidth 

and/or valence state of the transition-metal ion. It has been argued that the origin of high 

temperature superconductivity in cuprate superconductors is characterized by the 

phenomenon of Quantum Critical Point and identified by the electron-phonon 

hybridization associated with cooperative bond length fluctuations and ordering of 

correlated pairs into the CuO2 layer [20]. The cuprates are type-II superconductors where 

the superconductivity is quenched progressively by an external magnetic field and dose 

not occur globally at a critical field Hc as in type–I superconductors. Figure 1.9 (a) shows 

the resistance versus Temperature plots for YBCO whereas its magnetic behavior as a 

function of temperature and applied magnetic field is shown in fig.1.9(b).                               
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Figure 1.9(a): Resistivity (Ohms) versus Temperature (K) plots for YBa2Cu3Oz (Y-123). 

 

 

 

 

 

 

 

Figure 1.9(b): Magnetic field versus Temperature (K) plots for YBa2Cu3Oz (Y-123). 

 

Figure 1.9(c):Phase diagram of critical temperature (Tc), critical field (Hc) and critical 

current density (Jc) below which high temperature superconductivity exist. 
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Thus, the superconducting state is defined by three very important factors: critical 

temperature (Tc), critical field (Hc) and critical current density (Jc). Each of these 

parameters is very much dependent on the other two properties present. The phase 

diagram in fig.1.9(c) demonstrates relationship between Tc, Hc, and Jc. Considering all 

three parameters, the plot represents a critical surface and moving toward the origin, the 

material is superconducting whereas regions outside this surface the material is normal or 

in a lossy mixed state. Higher Hc and Jc values depend upon two important parameters 

which influence energy minimization, penetration depth (λ) and coherence length (ξ). The 

λ is the characteristic length of the fall off of a magnetic field due to surface currents. 

Coherence length is a measure of the shortest distance over which superconductivity may 

be established. In layered cuprates the values of ξ┴ ~ 3Å and ξ// ~ 10Å whereas in 

conventional superconductors its value is ~ 1000Å [29].    

Tetragonal structure of parent La-214 compound is the simplest example of 

intergrowth structure of the Ruddlesden-Popper phases AO·(AMO3)n [Fig.1.10(a)] [30]. 

However, an orthorhombic distortion about a [110] axis introduced by a cooperative 

rotation of the CuO6 for t2D < 1 [arrows in Fig. 1.10(a)]. Further, both the high spin Cu(II) 

and low-spin Cu(III) are also stable in square-pyramidal or square-coplanar sites, which 

allows the layered copper oxides to accommodate a large family of structures. By 

accompanying the A-site cation (La3+, Ba2+, Sr2+, Pb2+, etc) with relatively smaller size 

cations (Y3+ or Ca2+) may leave it stable in eight fold coordination, rather an ideal twelve 

fold coordination causing the loss of oxygen and thus forms A′ layer instead of AO layers  

when placed between two CuO2 layers. With this kind of atomic arrangements, CuO2 layer 

is in square pyramidal coordination with AO layer at one end and A′ layer at the other; and 

square coplanar when two adjacent A' layers. It is also possible to place more A′ layers in 

between two AO layers. A large promising array of p-type superconductors thus can be 

designated by placing such A′ layers on traversing c-axis and can be presented by,  

  AO · CuO2 · AO         (1.2a) 

Φ · AO · CuO2 · AO · Φ        (1.2b) 

Φ · AO · CuO2 · A′ · CuO2 · AO · Φ       (1.2c) 

Φ · AO · CuO2 · A′ · CuO2 · A′ · CuO2 · AO · Φ     (1.2d) 

Φ · AO · CuO2 · A′ · CuO2 · A′ · CuO2 · A′ · CuO2 · AO · Φ   (1.2e) 

[Φ is the representative layers between two AO layers]  
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Figure 1.10(a): Structures of (a) tetragonal (T) and (b) orthorhombic (O) La2CuO4. The 

arrows represent the direction of tilting of the CuO6 octahedra. 

Figure 1.10(b): Structures of (a) tetragonal YBa2Cu3O6 and (b) ideal orthorhombic 

YBa2Cu3O7. 

In this representative, La-214 is given by (1.2a), Y-123 by (1.2c), Bi-2212 by (1.2c) Tl-21, 

Tl-2212 and Tl-2223 by [1.2(b) – 1.2(d)] and Hg-1223 by (1.2d) respectively [20].    

 The YBa2Cu3O6+x (YBCO) structure of representation (1.2c) is shown in      

fig.1.10 (b). The Y3+ ions occupy the A′ layer and the Cu(III)/Cu(II) of the CuO2 sheets are  

in square pyramidal oxygen coordination. The two BaO layers are bridged by linearly 

coordinated Cu(I) in the parent  tetragonal compound YBa2Cu3O6; oxidation occurs by 

introducing oxygen into the layer of bridging copper to form chains of corner-shared 

square-coplanar Cu(III)/Cu(II). The Cu(III)/Cu(II) redox band of the Φ = CuOx chains 
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overlap in CuO2 sheets and the chain segments are, therefore, commonly referred to as a 

charge-reservoir layer [31]. 

 In summary, the layered copper oxides have been found to exhibit a remarkable 

ability to oxidize layers containing CuO2 sheets in a variety of ways without changing the 

oxygen coordination of the Cu atoms of a sheet even though the Cu atoms of a given sheet 

may occupy octahedral, square-pyramidal or square-coplanar sites. Where the oxygen 

coordination or its orientation varies from Cu to Cu in a CuO2 sheet, superconductivity is 

suppressed by the resulting perturbation of the two-dimensional (2D) periodic potential. 

The presence of two different A or A′ cations in adjacent layers perturbs the periodic 

potential to a lesser extent; it lowers the critical temperature Tc without completely 

suppressing superconductivity. The superconductivity in the copper oxides occurs in the 

CuO2 sheets and appears to be a 2D phenomenon although coupling along the c-axis also 

occurs. This anisotropic character of the copper oxide superconductor has made 

processing of these oxides for technical applications a difficult task. The formal number of 

Cu(III)/Cu atom (i.e. number of positive charge carriers per Cu atom) in a CuO2 sheet that 

gives the highest value of Tc for a given p-type system is always in the range 0.15–0.18; at  

this state of oxidation, the superconductors all appear to be single phase below Tc. 

Although a given system may have a large range of oxidation states at higher 

temperatures, the superconductive phases are all confined to a narrow range of oxidation 

states of the CuO2 sheets. The superconductive phase is thus seen to be a 

thermodynamically distinguishable phase that is stabilized at low temperatures at a 

crossover from localized to itinerant electronic behavior [32].    

1.2.3 Applications  

Transportation 

Superconductors have variety of applications - the most obvious being as very 

efficient conductors; if the national grid were made of superconductors rather than 

aluminium, then the savings would be enormous - there would be no need to transform the 

electricity to a higher voltage (this lowers the current, which reduces energy loss to heat) 

and then step it down again. Superconducting magnets are also more efficient in 

generating electricity than conventional copper wire generators - in fact, a 

superconducting generator about half the size of a copper wire generator is about 99% 

efficient; typical generators are around 50% efficient.   
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Magnetic Levitation 

So-called 'MagLev' trains such as the Yamanashi MLX01 train have been under 

development in Japan for the past two decades - the train floats above the track using 

superconducting magnets; this eliminates friction and energy loss as heat, allowing the 

train to reach very high speeds.  

Magnetic Resonance Imaging (MRI) 

MRI is a technique developed in the 1940s that allows doctors to see what is 

happening inside the body without directly performing surgery. The development of 

superconductors has improved the field of MRI as the superconducting magnet can be 

smaller and more efficient than an equivalent conventional magnet.  

Synchrotrons and Cyclotrons (Particle Colliders) 

Particle Colliders like CERN's Large Hadron Collider (LHC) are similar to very 

large running tracks that are used to accelerate particles (i.e. electrons, positrons, hadrons 

and more) to speeds approaching the speed of light before they collide with one another or 

other atoms, usually to split them (this was how many sub-nuclear particles such as τ and 

neutrinos were discovered). By cycling the particles using magnetic fields, continually the 

speed of the particle is increased. The first project to use superconducting magnets was the 

proton-antiproton collider at Fermilab. 

Superconducting Quantum Interference Devices (SQUID) 

Superconducting Quantum Interference Device (SQUID based on the principle of 

quantum mechanical phenomenon of Josephson Effect, uses the tunneling of correlated 

electron pairs between superconductors separated by an insulating barrier having thickness 

~ 10 to 20Ǻ. By using this device it is possible to detect very small changes in fields with 

sensitivity ~10-14 T. When a flux line penetrates this loop, it generates current in the loop 

which is lower than Jc and finally produces voltage across the two Josephson junctions 

which makes it possible to detect the magnetic field. Looking ahead to HTSCs, a SQUID 

operating at 77 K could be expected but with the noise about 20 times greater.  

Fast Electronic Switches 

Type II superconductors can be used as very fast electronic switches (as they have 

no moving parts), due to the way in which a magnetic field can penetrate into the 
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superconductor - this has allowed Japanese researchers to build a 4-bit computer 

microchip (compared to today's 32-bit and 64-bit processors) operating at about 500 times 

the speed of current processors, where heat output is currently a major problem with 

typical speeds approaching the 1GHz mark.  

An article in Superconductor Week focuses upon the efforts of NASA, DARPA 

and others to build a 'petaflop' (a thousand-trillion floating point operations per second - 

compared to today's 'teraflop' (1 trillion Flops per sec) using superconductor technology. 

Military applications 

Superconductors have also found widespread applications in the military. HTSC 

SQUIDS are being used by the U.S. navy to detect mines and submarines. Significantly 

smaller motors are being built for military ships using superconducting wire and "tape". 

American Superconductor unveiled a 5000-horsepower motor made with superconducting 

wire and expects to deliver an even larger 36.5MW HTS ship propulsion motor. 

In addition to reduce power requirement, size and weight,  the newest application 

for HTS cables is in the degaussing of naval vessels which eliminates residual magnetic 

fields that might otherwise give away a ship's presence.   

The size of the low frequency longer antennas can be reduced by employing the 

use of superconducting tape. The Electronic Materials and Devices Research Group at 

University of Birmingham (UK) is credited with creating the first superconducting 

microwave antenna. Applications engineers suggest that superconducting carbon 

nanotubes might be an ideal nano-antenna for high-gigahertz and terahertz frequencies, 

once a method of achieving zero "on tube" contact resistance is perfected.  

     The most ignominious military use of superconductors may come with the 

deployment of "E-bombs". These are devices that make use of strong, superconductor-

derived magnetic fields to create a fast, high-intensity electro-magnetic pulse (EMP) to 

disable an enemy's electronic equipment.  

Other emerging applications 

Among emerging technologies is a stabilizing momentum wheel (gyroscope) for 

earth-orbiting satellites that employs the "flux-pinning" properties of imperfect 

superconductors to reduce friction to near zero. Superconducting x-ray detectors and ultra-
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fast, superconducting light detectors are being developed due to their inherent ability to 

detect extremely weak amounts of energy. Already Scientists at the European Space 

Agency (ESA) have developed what's being called the S-Cam, an optical camera of 

phenomenal sensitivity. And, superconductors may even play a role in Internet 

communications soon since internet traffic is increasing exponentially, superconductor 

technology is being called upon to meet this super need. 

1.3 Colossal Magnetoresistance (CMR) manganites 

1.3.1 Introduction 

The discovery of negative colossal magnetoresistance (CMR) (~ 99 %) in mixed 

valent manganites of the type A1-xA′xMnO3 (A = trivalent rare earth cation, A′ = divalent 

alkali or alkaline earth cation) initiated the renewed interest of researchers working in the 

field of perovskite materials. This new class of ABO3 type compounds posses several 

interesting and interrelated properties. The magnetic properties of these correlated 

perovskites are closely related to the electronic ones which are relatively easy to measure. 

Magnetoresistance (MR) is defined as the change of resistance of the material on the 

application of external applied field and has been formulated as, 

   100%
0

0 ×
−

=
ρ

ρρ HMR  

where ρ0 and ρH are the resistivities without and with applied field. MR is positive for the 

metals and metallic alloys having very small value ~ 1% while it is negative for the 

magnetic and semiconducting multilayers having value ~ 20-50 %, such a large negative 

MR is termed as “Giant Magnetoresistance” (GMR). Magnetic multilayers of certain kind 

as Fe/Cr and Cu/Co coupled antiferromagnetically shows such a large GMR which have 

their strong potential for device fabrication [33-35]. In manganites, negative MR is as 

large as 100 % and hence termed “Colossal Magnetoresistance” (CMR). The discovery of 

large negative CMR in A1-xA′xMnO3 manganites thin films by Von Helmolt et al [36], 

Charara et al [37] and Jin et al [38] almost simultaneously, renewed a considerable interest 

of scientific community in these compounds. Owing to the CMR effect, manganites have a 

strong application potential in magnetic memory read heads, bolometric and magnetic 

field sensors and in HTSC-CMR hybrid heterostructure devices [39].   
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Several materials, metals, metallic alloys, semiconductors, magnetic materials and 

their multilayers exhibit MR properties but the origin of MR effect in these materials 

phenomenologically differs from one to another. Depending upon its origin, MR can be 

broadly classified as: Anisotropic Magnetoresistance (AMR), Granular or Tunneling 

Magnetoresistance (TMR), Giant Magnetoresistance (GMR) and Colossal 

Magnetoresistance (CMR). 

Anisotropic Magnetoresistance (AMR) 

Anisotropic magnetoresistance has its origin in the change in resistivity because of 

the change of direction of applied magnetic field (H) to that of the applied current may be 

applied in parallel or perpendicular to the direction of current [40]. AMR is a measure of 

magnetic field induced anisotropy in resistivity of different current vectors (aligned 

parallel or perpendicular). The resistivity increases when H is parallel to the current 

whereas the resistivity decreases when H is perpendicular to the direction of current.     

Granular and tunneling magnetoresistance (TMR) 

The granular magnetoresistance has its origin in spin polarized conduction of carriers 

at grain boundaries which act as a insulating barriers for charge carriers [41]. The 

application of magnetic field suppresses this spin dependent scattering process of carriers 

at insulating grain boundaries and the resulting magnetoresistance is called granular 

magnetoresistance. This form of MR is also evident in artificially grown magnetic tunnel 

junctions where the junction boundary act as insulating barrier for carrying the conduction 

current and resulting MR is tunneling magnetoresistance (TMR) [42]. 

Giant magnetoresistance (GMR) 

Giant Magnetoresistance effect arises from spin dependent transmission of the 

conduction electrons between two ferromagnetic layers through the thin nonmagnetic 

spacer layers [33]. The MR effect is obtained in antiferromagnetically coupled magnetic 

multi layers/superlattices (Fe/Cr, Cu/Co etc.) by aligning the magnetizations of adjacent 

ferromagnetic layers with an external field. Owing to large amount of MR ~ 20–50 %, 

name ‘Giant magnetoresistance’ (GMR) was given to emphasize the strength of MR in 

these materials. 
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Colossal magnetoresistance (CMR) 

The discovery of MR, as large as ~100%, in La2/3Ba1/3MnO3 manganite thin films 

around room temperature with many interesting inter related phenomena, led the scientists 

to coin a new term called “colossal magneto resistance (CMR)”. Unlike the other forms of 

MR discussed above, the CMR is an intrinsic phenomenon. The origin of CMR can be 

attributed to two intrinsic effects: i) reduction in spin disorder at Mn-O-Mn bonds by an 

externally applied magnetic field and ii) reduction in scattering of charge carriers at grain 

boundaries. The former dominates around the electronic transition (TP) whereas the later 

effects of grain boundaries seem to be dominating at substantially low temperatures 

(below TP) [38]. In addition to CMR properties, manganites exhibit several interesting and 

interrelated structural and physical properties which are extremely important from basic 

research as well as application point of view.   

1.3.2 Properties of CMR manganites  

Mixed valent manganites of the type A1-xA′xMnO3 exhibits varieties of fascinating 

properties which are governed by the different change transport and hopping mechanisms 

as discussed in brief in section 1.1.1. In addition to the large negative MR (~ 99%), they 

exhibit metal-insulator transition (TP), paramagnetic-ferromagnetic transition (TC), charge 

and orbital ordering (CO, OO) etc. Phase diagrams of various CMR manganites have been 

extensively studied and are found to depend on the doping, temperature, pressure, 

magnetic field and average cationic radii which modifies the structural, electrical and 

magnetic phase transitions in these materials (for the detailed review see Ref. 7, 43). In 

manganites, the metallic conductivity in ferromagnetic region, below TC and TP, is 

governed by the ferromagnetic Zener-Double Exchange (ZDE) mechanism which leads to 

the hopping of charge carrier from Mn3+(3d4) to Mn4+(3d3) via oxygen 2p orbital.    

Zener Double Exchange (ZDE) 

Double exchange (DE) was proposed by the Zener in order to understand 

ferromagnetic metallic state in manganites mediated by the spin polarized conduction of 

charge carriers from one Mn-site to the next [44]. The effective hopping of an electron 

from one Mn3+ (3d4, t2g
3, S = 3/2)-site to central oxygen and simultaneously from oxygen 

to Mn4+ (3d3, t2g
3eg

1, S = 2) is referred to as Zener Double Exchange (ZDE). ZDE 

mechanism involves the hybridization of ligand oxygen    2p   and   manganese 3d orbitals      
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Figure 1.11: (a) Sketch of ZDE mechanism which involves two Mn ions and one O ion.  

(b) The mobility of eg electrons improves if the localized spins are polarized. 

and is strongly governed by the on site Hund’s rule coupling between t2g and eg states, 

which are the lowest energy states when spins of t2g and eg electrons are aligned parallel 

and favors hopping of an electron from one Mn site to the next via oxygen. This 

hopping/transfer process is proportional to the cos(θ/2), where θ being the angle between 

the nearest neighbor spins and can be given by [45], 

2cos0
θttij =   

When the θ = 0, hopping is maximum while, if θ = 1 corresponds to an antiferromagnetic 

background and the hopping cancels.  

 The ZDE mechanism explicitly explains the metallic conductivity and 

ferromagnetism and thereby the insulator–metal transition and paramagnetic-

ferromagnetic phase transitions in manganites. ZDE is strongly affected by the distortion 

at Mn-O-Mn bond angle and or the Mn-Mn transfer integral and hence the effects of local 

structural distortion including lattice and electron-lattice interactions have to be 

considered. However, recent investigations suggest ZDE is not adequate for understanding 

the novel transport properties of manganites and overall effect can be realized based on the 

considerations of local symmetry as well as local lattice distortions. 

Tolerance factor and Carrier Density  

The structural, electronic and magnetotransport properties of manganites further 

depend upon two major factors, namely, the tolerance factor and the Mn3+/Mn4+ ratio 

(carrier concentration) which have been discussed in detail in section 1.1.1. Depending on 
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one electron bandwidth, manganites are broadly classified into three categories: i) low 

bandwidth ii) intermediate bandwidth and iii) large bandwidth system. Figure 1.12 shows 

the general phase diagram of temperature versus tolerance factor for the fixed carrier 

density x = 0.3 for divalent doped manganite, A0.7A′0.3MnO3 compounds. The decrease in t 

decreases the hopping integral/amplitude systematically that drives the system from large 

to low bandwidth system with enhanced MR and lower TP and TC [46].   

 

Figure 1.12: Structural and magnetic phase diagram of temperature versus tolerance 

factor for fixed carried density x = 0.3 for hole-doped CMR manganites 

A0.7A′0.3MnO3: TC, Curie temperature; Ts, the O to R transition 

temperature.  

 

Figure 1.13: A magnetic phase diagram of La1-xCaxMnO3 [reproduced from Ref. 47].   

A typical magnetic phase diagram of low bandwidth system La1-xCaxMnO3 (LCMO), 

established by Schiffer et al [47] is shown in fig. 1.13. The end members of the 

compounds, LaMnO3 and CaMnO3 are A-type and G-type antiferromagnetic (AFM) 
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insulators respectively. For x < 0.18, the system is canted AFM and FM insulators and 

becomes FM metallic for doping range of 0.18 < x < 0.5 for which the compounds exhibit 

large CMR effect. In 0.48 < x < 0.52 compositions, the FM metallic state transforms to 

charge-ordered antiferromagnetic ground state at a certain critical temperature. The AFM 

state in this range is of CE-type. When x > 0.52, a long-range C-type AFM order sets in.  

1.3.3 CMR Thin films and applications 

Hole doped manganese oxides La0.7A′0.3MnO3 (A′ = Ca
2+, Sr2+, Ba2+, etc) exhibits 

remarkable variation in resistivity (MR ~ 99%) as a function of applied magnetic field and 

temperature which makes these compounds as strong candidates for applications in 

bolometers, magnetic field sensors, magnetoresistive read heads, magnetic memory 

devices [39], requiring high quality materials in thin film forms. For the development of 

oxide thin films and heterostructures, basic synthesis plays an important role. The 

structural, surface morphology, electronic and magnetic properties of mixed oxide 

manganites are extremely sensitive to the synthesis conditions and method used. Further, 

the physical and microstructural properties of manganite thin films are considerably 

affected by two key factors, namely, i) substrate material mismatch (in plane) and ii) 

thickness induced strain (out of plane) (for detailed review see ref. 48). The details of the 

manganite thin film synthesis using Pulsed Laser Deposition and Chemical synthesis will 

be discussed in the chapter 2 of this thesis. Some of applications of manganite thin films 

are listed below.  

Spin Valve and Magnetic recording technology  

The nonvolatile magnetic memory heads requires spin polarized read heads which 

can exhibit MR~20-30% in few hundreds of Oe magnetic field near room temperature 

(RT). Thin films of La0.7Sr0.3MnO3 (LSMO) and La0.7Ba0.3MnO3 (LBMO) manganite 

compounds exhibits electronic (TIM) and magnetic transition (TC) above the RT and  

optimum CMR effect at these temperature but under high magnetic fields (~ 8 - 9 T) – far 

higher than the required low field applications. The intrinsic factor has been explored fully 

and it is unanimously concluded that, the MR decreases with increase in insulator-metal 

transition (TIM) temperature and near RT the occurrence of low MR at high magnetic 

fields restricts the application of these materials. However, the effect of extrinsic factor 

has not been widely explored and there is a tremendous scope to enhance the low field MR 
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by exploiting grain boundary mechanism. To get low field MR, the GB region can be 

effectively enhanced by decreasing the grain size or by improved techniques of synthesis 

such as sol-gel method for bulk synthesis, single crystalline and polycrystalline thin films 

using CSD, PLD and MBE etc. or by engineering the artificial grain interfaces.   

Temperature sensors 

In manganites, the temperature coefficient of resistance                                             

[TCR % = 1/R ×dR/dT×100] shows remarkable variations with temperature for the wide 

temperature range, and it is positive and negative in metallic (below TP) and in 

semiconducting [above TP] regions which makes the use of them as temperature 

bolometric sensors. Commercially available temperature sensors exhibit TCR values ~ 4% 

whereas the manganites exhibit TCR and values as high as ~ 10-20% but operates at lower 

temperatures [49]. 

Magnetic field sensors  

Owing to the CMR effect in a film and principle of spin valve structure, 

manganites can be used as magnetic field sensors. The Field coefficient of Resistance 

[FCR% = 1/R×dR/dH×100] of the manganites is as high as 10-25% but at relatively higher 

applied fields.    

HTSC and CMR heterostructure Devices 

Since the properties of the CMR materials are quite spectacular at reduced 

temperatures, i.e. below 100 K, there may be some advantages in integrating them with 

HTS devices. The CMR-HTSC spin injection device is the thought of one such device 

where the spin polarized electrons from the manganite layers are injected into the HTSC 

channel layers and the I-V characteristics as a function of gate current are studied.  

 A CMR-based sensor can be used as a flux to voltage converter owing to the large 

MR at fields of the order of 0.2 T which can provide a flux to voltage transformer at these 

temperatures [50].  

Electric Field Effect Devices 

The double exchange ferromagnetism in manganites can be switched at “room 

temperature” by an electric field of a “few volts” on the basis of a p-n junction where 

control of carrier concentration is easily achieved by designing specific interfacial 
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electronic band structures. The “band gap engineering” can offer large changes in both 

electrical and magnetic properties resulting from an electric field of a few volts or 

exposure to light, which is an advanced concept as compared to the insulative-gate FET. 

FETs based on CMR channels show some interesting characteristics depending on the 

dielectric layer on top, as to whether it is a paraelectric layer, such as STO, electron doped 

STO, or a ferroelectric layer, such as PZT [51]. 

1.4 Introduction to Swift Heavy Ion (SHI) Irradiation studies  

Swift Heavy Ion (SHI) irradiation is an efficient tool for creation of point defects, 

vacancies, columnar defects and localized strain in the materials (mainly in thin films) 

which in turn affects their crystallographic, surface and physical properties [52,53]. SHI 

irradiation on manganite thin films mostly evolves detrimental effects on structural and 

transport properties; for instance, the irradiation results in enhancement of resistivity, 

suppression of TP, etc [54]. Though the deteriorated properties of the irradiated films have 

adverse effect with respect to their applications as data storage devices, their application 

possibilities improve as uncooled bolometers, magnetic field sensors, etc. [49,55]. 

While passing through the material, accelerated energetic charged particles losses 

their energies mainly by two ways, first by the electronic energy loss [(Se)= dEe/dx] which 

is the inelastic collision of charged particles with atomic electrons of the material while 

the second is nuclear energy loss [(Sn)= dEn/dx] which is the elastic scattering of the 

charged particles from the atomic nuclei. For the high energetic charge [~ MeV], 

electronic energy loss is dominated. In the irradiation experiments, the selection of highly 

energetic ions has been made because of the fact that due to their larger mass these ions 

can easily pass through the entire thickness of the film and create columnar tracks before 

striking the substrate. This results in a uniform distribution of strain in the film which is 

not the case with low energy ion implantation [56]. In manganites, the irradiations studies 

have two fold interests, 

I. The grain boundaries in manganites have a major contribution to MR. SHI with 108Ag, 

may help in modification of grain interfaces and creation of disorder at Mn-O-Mn 

bonds for tailoring these materials with large CMR at moderate magnetic fields. 

II. The study of modifications in the thickness and lattice  mismatch dependent strain in 

the manganites thin films by the irradiation of swift heavy ions.  
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 Motivation for the present work 

The present work coalesce both the aspects of research, basic as well as applied, 

firstly by the synthesis of ceramic perovskite structured oxides of HTSC and CMR 

manganites in bulk and thin film forms to understand novel structure-property correlations 

in them and to evaluate some of them for potential applications. The important part of the 

work carried out is on the structural understanding of La-2125 type mixed oxide cuprates 

using highly reliable Neutron diffraction (ND) studies in the temperature range 300-12K. 

The structural studies have been then parameterized using Rietveld refinement method. 

The novel idea of Bond Valence Sum (BVS) calculation is applied to correlate the bond 

lengths, obtained from Rietveld refinement of ND data, to the actual oxidation states of 

different cations at various crystallographic sites, of particular interest in Cu-I and Cu-II 

layers, which in turn decides the average oxygen content in these cuprate superconductors 

and hence can be useful to understand the superconductivity mechanism in theses mixed 

oxide compounds.  

Second aspect of the present work is the study of perovskite structured CMR 

manganites, particularly in epitaxial thin film forms owing to their strong application 

potentiality as uncooled bolometers and magnetic field sensors. It has been interesting to 

study the role of structural disorder at A-site on electrical resistivity and MR behavior in 

manganite thin films. In addition to this, the present study investigates lattice effects due 

to the substrate material mismatch and film thickness on structural, morphological and 

transport properties of manganite thin films. Efforts have been made to carry out the 

detailed investigations on the thin films prepared by chemical solution deposition and their 

effects on grain morphology, resistivity and MR behavior.  

Finally, the role of swift heavy ion (SHI) irradiation on electrical and 

magnetotransport properties of the manganite thin films has been studied. SHI irradiation 

causes considerable suppression in resistivity and enhancement in TP and MR in the 

chemically synthesized thin films, properties entirely opposite to the reported resistivity 

and MR behavior of PLD grown irradiated manganite films. This has been attributed to the 

irradiation induced enhanced grain morphology and reduction in surface roughness which 

results into the substantial decrease in low temperature, low field and high field MR.  
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Chapter-wise details of the all the chapters comprising thesis are given below: 

Chapter – 2 describes various experimental characterization tools and techniques 

employed during the present work for carrying out the structural, morphological and 

electrical and magnetotransport measurements. The details of various sample synthesis 

methods used in the present work have been given for bulk and thin films sample 

preparation. The methods employed for the structural analysis of the ND data namely 

Rietveld refinement, Bond Valence Sum (BVS) calculation are described in detail.    

Chapter – 3 deals with ND studies on mixed oxide La2-xDyxCa2xBa2Cu4+2xOz              

(La-2125) (x =0.3,0.5) superconductors at various temperatures in the ranges 300-12K, 

carried out during the present work, to investigate the structure of La-2125 

superconductors and to evaluate the changes in the unit cell parameters, cell volume, 

occupancies and bond lengths fluctuations of different cations at different crystallographic 

sites as a function of temperature, particularly around the superconducting transition Tc. 

Further, to determine the actual valence/oxidation states of various cations, especially in 

Cu-I and Cu-II layers, Bond Valence Sum (BVS) calculation has been done, which in turn, 

determine the actual oxygen content. Finally, comparison has been made on the 

stoichiometric valence obtained from ND data and global valence from BVS to determine 

the strain present into the system.   

Chapter – 4 presents the studies on La0.5Pr0.2Ba0.3MnO3 (LPBMO) manganite thin 

films prepared using the Pulsed Laser Deposition (PLD) technique on STO single 

crystalline substrates. The resistivity vs. temperature behavior of the polycrystalline 

LPBMO bulk exhibits anomalous low temperature resistivity minimum at ~ 40K in the 

metallic regime. To verify this, thin films of LPBMO have been grown on single 

crystalline STO substrates and the studies on thickness dependent strain (bulk effect), 

lattice effects due to the sample-substrate mismatch on the structural, electrical and 

magnetotransport have been carried out. The low temperature resistivity minima behavior  

does not melt on application of magnetic field instead becomes slightly broadened. The 

origin of such a behavior has been investigated by carrying out detailed SHI irradiation 

study on LPBMO thin films, and the results are discussed in this chapter.  

Chapter – 5 deals with the studies on novel chemical synthesis for La0.7R0.3MnO3                

(LRMO) (R = Ca, Sr and Ba) manganites thin films using spin coating unit. The chemical 
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solution deposition (CSD) technique is relatively simple, cost effective and low 

temperature synthesis method. The effect of synthesis parameters such as annealing time 

and annealing temperature on structure, morphology and electrical transport have been 

studied in detail. Interesting results has been obtained from the SHI irradiation studies of 

the LRMO thin films. SHI irradiation effects on chemically synthesized thin films are 

quite different than those reported on PLD grown LRMO films. Irradiation induced 

enhancement of surface morphology decreases the low temperature MR that leads to 

resistivity suppression thereby improving the temperature and magnetic field sensitivity of 

the films. 
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2.1 Synthesis methods for bulk and thin films 

The synthesis of material is the first and foremost important step during the 

experimental research in condensed matter physics and materials science. The quality of 

bulk as well as thin films depends to a great extent on the synthesis method used. In 

addition, the proper selection of synthesis parameters helps to achieve desired properties in 

the samples to be characterized. There are various methods available for the synthesis of 

polycrystalline bulk and single crystalline epitaxial thin films of mixed oxide materials. 

Out of them, Solid State Reaction (SSR) or ceramic method is commonly used for the 

preparation of bulk samples while Pulsed Laser Deposition (PLD) is an efficient technique 

for the thin film growth. Also, many chemical methods for the preparation of mixed oxide 

materials with improved physical properties have been reported such as coprecipitation, 

sol-gel, alkali-flux, citrate methods, etc. For the synthesis of single crystalline manganite 

thin films using chemical route, spin-coating method known as Chemical Solution 

deposition (CSD) is often used which gives good quality manganite thin films on various 

substrates. During the present work, the polycrystalline bulk samples and epitaxial thin 

films of high Tc superconductors (HTSC) and Colossal Magnetoresistive (CMR) 

manganites were prepared using standard solid state reaction, PLD and CSD methods in 

order to study their physical properties in the bulk as well as single crystalline thin film 

forms. 

2.1.1. Solid State Reaction (SSR) route   

All the bulk polycrystalline samples under present study were synthesized using 

solid state reaction method as per the steps shown in the flowchart [Fig. 2.1]. There are 

two factors namely, thermodynamic and kinetic factors which are important in solid state 

reactions, the former determines the possibilities of any chemical reaction to occur by the 

free energy considerations which are involved while the later determines the rate at which 

the reaction occurs [1,2]. The atoms diffuse through the material to form a stable 

compound of minimum free energy. Different compounds or phases might have the lowest 

free energy at various temperatures or pressures or the composition of the gas atmosphere 

might affect the reaction. The general steps involved in solid state reaction method for 

synthesizing high temperature superconductors are described below.  
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1. All starting materials are high purity powders of carbonates, oxides, nitrides, etc. They 

are preheated for appropriate time and temperature. Powders are weighed for desired 

composition.  

2. In the solid state reaction, for the reaction to take place homogeneously, it is very 

important to mix and grind the powders thoroughly for long duration to obtain 

homogeneous distribution in required proportions of the desired stoichiometric 

compound. 

3. The proper grinding of mixed powders using pestle-mortar decreases the particle size 

as much as possible. This is necessary for obtaining close contact among the atoms so 

the right material is formed. 

4. This powdered mixture is then heated in air for the first time. During the first 

calcination, CO2 is liberated from the mixture. 

5. After the first heating, further number of heatings in atmospheric conditions, are 

required to obtain phase purity and to release the remaining CO2, if any. 

6. Before final sintering of samples, the obtained fine black powder is pressed into 

cylindrical pellets   

7. The pellets are sintered in a furnace in air at certain temperature to obtain the desired 

structural phase. The furnace is turned off and the samples are left inside to cool down 

to at least 300° C. After sintering process, the diameter of pellets may decrease. 

8. Annealing: After sintering the samples have oxygen content slightly less than the 

required stoichiometry in oxide superconductors. To reach the optimum oxygen 

content, the samples have to be annealed, preferably in flowing oxygen. Since most of 

physical properties of oxide superconductors are rather sensitive to oxygen content and 

ordering, the conditions set during the oxygen annealing are important. For appropriate 

oxygen content, the sintered pellets are usually kept for oxygen annealing at a certain 

temperature for a period of time and then cooled down slowly to ambient temperature. 
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Figure 2.1: Schematic illustration of sample preparation by Solid State Reaction route. 

SYNTHEISIS   

SOLID STATE REACTION METHOD 

STOCHIOMETRIC QUANTITIES

La2O3, Dy2O3, Nd2O3 
Pr6O11 

All Powders are 99.99% Pure Aldrich / Fluka / Strem make 

Dry Mixed in Powder form in Agate Mortar 

First 
Heating 

930 0C – 940 0C / 24 hrs 
[Powder form Calcination] 

Grounding thoroughly 

Second 
Heating 

930 0C – 940 0C / 24 hrs 
[Powder form Calcination] 

Ground, Sieved, Pelletized (2-3 ton pressure, 10mm die) 

940 0C – 9500C [Sintering] 

Oxygen Annealing at 500 0C for 24 hrs: Oxygen flow 1bubble/sec 

Cooling in Oxygen @ 1 0C/min up to 100 0C 

Product: Single Phase La-2125 type High Tc Sample 

BaCO3, CaCO3 CuO, MoO3 

Third 
Heating 
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The solid state reaction method has proved to be the most suitable for synthesizing 

reproducible samples of mixed oxide high temperature superconductors and manganites. 

The similar steps can be followed for synthesis of manganites by solid state reaction route.  

Oxygen annealing is not important for manganites as these materials posses good stability 

of oxygen stoichiometry. However, care must be taken, to control either temperature or 

atmosphere, if the components have variable oxidation states and certain oxidation state is 

desired in the product phase.                 

2.1.2. Pulsed Laser Deposition (PLD) 

PLD is an efficient method to synthesize thin films by utilizing the technique of 

laser ablation. This method for thin film synthesis is applicable to many materials; in 

particular it is versatile method to ceramic materials [3]. Today, PLD is one of the fastest 

growing thin-film processes for synthesizing multi-components films. This process 

transports elements from one location (target material) to another (substrate) by supplying 

energy to elements from a laser source. Ideally, such a process coats the surface with a 

pure film of the correct composition.  

Principle of PLD 

High power pulsed laser beam is focused inside a vacuum chamber to evaporate 

matter from a target surface such that the stoichiometry of the material is preserved in the 

interaction. As a result, a dynamic supersonic jet of plasma (plume) is ejected normal to 

the target surface. The dynamic plasma plume expands away from the target with a strong 

forward directed velocity distribution of the different particles and is transported over 

large distances due to quasi free expansion processes and shock wave propagation in the 

presence of some background gas [4]. The dynamic interactions in the plume can be 

modelled using a shock wave model that leads to a quantitative scaling law, PD3 = 

constant, relating the two prominent parameters, i.e. the pressure P and the                           

target-to-substrate distance D. In the case of oxide films, oxygen is the most common 

background gas. For pressures in the range of 100–400mTorr, the ablated atoms and ions, 

which attain high kinetic energies (few 10 eV) in the vicinity of the target, are thermalized 

due the scattering at a particular target-to-substrate distance that is called the ‘plume 

range’ (L) and finally, condensed on the substrate placed opposite to the target. The plume 
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range, L, defines two distinct regions in the D–P diagram for the morphology and the 

microstructure and appears as a relevant deposition parameter for the growth of single 

crystal films with low roughness and large grains by the PLD technique [5]. Further, in 

most materials, the ultraviolet radiation is absorbed by only the outermost layers of the 

target up to a depth of ~ 1000 Å. The extremely short laser pulses, each lasting less than 

50 ns, cause the temperature of the surface to rise rapidly to thousands of degrees Celsius, 

but the bottom of the target remains virtually unheated, close to room temperature. Such 

un-equilibrium heating produces a flash of evaporated elements that deposit on the 

substrate, producing a film with composition identical to that of the target surface. Rapid 

deposition of the energetic ablation species helps to raise the substrate surface 

temperature. In this respect PLD tends to demand a lower substrate temperature for 

crystalline film growth. Figure 2.2 shows the schematic diagram of PLD apparatus along 

with target holder, substrate holder, focusing lens, etc, which involves evaporation of a 

solid target material in an Ultra High Vacuum (UHV) chamber by means of short and high 

energy laser pulses. 

 

Figure 2.2: A schematic representation of PLD apparatus. 

Conventional arrangement for PLD for the synthesis of thin solid films is 

characterized by the following features: 

1 Focused laser beam is directed to the target to ablate the material.  

2 The target holder is rotated along an axis or (x, y) - scanned in the focal plane of the 

laser beam to achieve a stationary ablation rate. The vacuum chamber is made of 

stainless. Chamber is evacuated down to 10-6 bar by using a turbo pump.  
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3 Well polished substrate located at a typical separation from the target is stationary or 

rotated for homogenization of the deposited material. To form a film with required 

stoichiometry, film growth regimes and the temperature of the substrate may be 

selected between room temperature and 1000o C. 

4 A gas supply is often provided to produce desired chemical reactions during film 

growth. 

Each stage in PLD is critical to the formation of thin films with epitaxial 

crystalline structure, stoichiometry and smooth surface. 

The manganite thin films synthesized in the present work were prepared by PLD 

technique. The details of deposition condition and parameters used for PLD method used 

are discussed in Chapter 4.  

2.1.3. Chemical Solution Deposition (CSD) 

The advanced chemical liquid phase synthesis methods consisting of novel 

coprecipitation and sol-gel processing involves the simultaneous occurrence of nucleation, 

growth, coarsening and/or agglomeration processes and is the most preferable alternative 

for the preparation of oxide nanomaterials and thin films. The method offers high degree 

of homogenization together with the small particle size and thereby speeds up the reaction 

rate and much lower reaction temperature are sufficient for the reaction to occur. Further, 

chemical route is relatively simple, cost effective and requires only low synthesis 

temperature as compared to vacuum deposition techniques. The precipitation of oxides, 

from both aqueous and nonaqueous solutions can generally be broken into two categories: 

those which produce an oxide directly and those which produce what is best termed a 

precursor that must be subjected to further processing (drying, calcination, etc). In either 

case, monodispersed nanoparticles of oxides, like those of metals, frequently require a 

capping ligand or other surface bound stabilizer to prevent agglomeration of the particles. 

In the cases where calcination or annealing of the samples is necessary, some 

agglomeration will be unavoidable. The products of coprecipitation reactions, particularly 

those performed at or near room temperature are usually amorphous. It is extremely 

difficult to experimentally determine whether the as-prepared precursor is a single phase 

solid solution or a multiphase, nearly-homogeneous mixture of the constituent metal 
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hydroxides, carbonates and/or oxides that react to form a single phase mixed metal oxide 

when heated. Figure 2.3 illustrates the general steps involved in sol-gel processing [6].  

 

Figure 2.3: Schematic steps involved in the sol-gel synthesis of crystalline. 

Chemical Solution Deposition (CSD) technique has been used to prepare 

La0.7R0.3MnO3 (R = Ca, Sr and Ba) manganite thin films. The mixing, stirring and heating 

of appropriate stoichiometric quantities of the metal acetates in distilled water and acetic 

acid resulted in a clear solution of the constituents used for deposition. Deposition of thin 

films using automated spin coater was then followed by calcination ~ 350°C and annealing 

at 1000°C in an oxygen environment. The more detailed CSD processing has been given 

in Chapter 5, section. 5.1.    

2.2. Structural  

It is very essential to study structural properties of any material in order to verify 

single phase structure before carrying out further studies on the material. Structural 

properties are closely related to the chemical characteristics of the atoms in the material 

and thus form the basics on which detailed physical understanding is built. There are 

various techniques known to explore the science related to structure of a material. These 

are used to ascertain single phase samples and detect deviations from the main structure as 

well as extracting the actual structure. The different techniques have different advantages 

and disadvantages and thus complement each other. To study the crystalline formation of a 

material, two techniques are widely used: i) X-Ray diffraction measurements and                        

ii) Neutron diffraction measurements.   



 

ExperimentalExperimentalExperimentalExperimental techniques of Characterizationtechniques of Characterizationtechniques of Characterizationtechniques of Characterization    
 

II-8 

2.2.1. X-ray Diffraction (XRD)  

X-ray diffraction (XRD) method offers varieties of information concerning the 

physical and electronic structure of crystalline and noncrystalline materials in a different 

conditions and environments [7]. The wavelength of x-rays (λ ~ 0.5-2.5Ǻ) is of the order 

of the inter-atomic distances and hence get diffracted when interacts with a crystalline 

substance (phase). The x-ray diffraction pattern of a pure substance is, therefore, like a 

fingerprint of the substance. While passing through a crystal, x-rays are diffracted by 

atoms at specific angles depending on the x-ray wavelength, the crystal orientation and the 

structure of the crystal. X-rays are predominantly diffracted by electrons and analysis of 

the diffraction angles produces an electron density map of the crystal. Crystalline materials 

can be described by their unit cell. This is the smallest unit describing the material. In the 

material this unit cell is then repeated over and over in all directions. This will result in 

planes of atoms at certain intervals. The diffraction method is based on this fact of 

repetition and on Bragg’s law which gives a relation between the distance from one atomic 

plane to the next, d, and the angle, θ, in which constructive interference of a reflected 

monochromatic beam is seen. The Bragg’s law follows the equation given below.  
  

 2dhkl×sinθhkl = n λ, [Fig. 2.4]    

where  d = inter planar distance, n = order of reflection (Integer value), λ = wave length of 

x-rays, θ = angle between incident/reflected beam and particular crystal planes 

under consideration. 

 

Figure 2.4: Diffraction of X-rays by a crystal planes (Bragg’s law). 
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Bragg law is consequence of the periodicity of the lattice. Reflection (or 

diffraction) occurs from planes set at angle, θ, with respect to the incident beam and 

generates a reflected beam at an angle, 2θ, from the incident beam. The possible d-spacing 

defined by the indices h, k, l are determined by the shape of the unit cell. Therefore the 

possible 2θ values where we can have reflections are determined by the unit cell 

dimensions. Notice that the law does not refer to the composition of the basis atoms 

associated with every lattice point. However, the composition of the basis determines the 

relative intensities of the various orders of diffraction from a given set of parallel planes. 

Therefore, the intensities depend on what kind of atoms we have and where in the unit cell 

they are located. Planes going through areas with high electron density will reflect 

strongly, planes with low electron density will give weak intensities. A typical powder 

diffraction spectrum consists of a plot of reflected intensities versus the detector angle 2θ. 

The detailed description of XRD is given in references [7,8]. 

Structural characterization of thin films (thickness ~100-1000Å) by XRD requires 

that the scattered intensity contribution from the bulk substrate be minimized. This is 

achieved by reducing the angle of incidence [Glancing incidence geometry, Fig. 2.5 (b)] 

so that the effective distance traversed in the film (t/Sinθ) is enhanced. 

 

Figure 2.5: Glancing incidence x-rays diffraction geometry for thin films. 

The structure and phase purity of bulk as well as thin film samples were examined 

by the powder x-ray Diffractometer using Cu-Kα x-ray radiation of wavelength 1.5418Å at 

room temperature (RT). Crystal structure refinements were carried out by performing 

FULPROOF based Rietveld refinement program.  
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2.2.2. Neutron Diffraction (ND) 

The utility of neutron scattering methods in investigation of atomic scale structure 

arises from the close match of the wavelengths of this probe to typical interatomic 

distances (a few Ảangstroms) [7]. Neutron powder diffraction (ND) is complementary 

technique to x-ray diffraction and electron diffraction. The greater penetration depth of 

neutrons, the fact that the neutron-nucleus interaction is point scattering process implying 

no variation of nuclear scattering length with scattering angle, the independence of 

scattering cross-section from number of electrons (Z) of an elements, and therefore the 

stronger interaction of neutrons with “light” atoms such as hydrogen and oxygen and its 

isotopes specificity as well as its interaction with magnetic moment of unpaired electrons 

make neutrons a unique and indispensable probe for condensed matter physics and 

chemistry. A major drawback of neutron scattering is that it can presently only be done at 

large facilities (reactors and spallation source), whereas laboratory based x-ray scattering 

equipment provides same flux much more conveniently. Because the neutron sources are 

very much weaker than x-ray source, the large sample size is essential.  

 The neutron powder diffraction measurements on La-based high temperature 

superconductors were carried out using wave length (λ = 1.249Å) at TT1013 Powder 

Neutron Diffractometer at Dhruva (100MW), BARC (India). Research reactors are typical 

source of the neutrons. Neutrons in reactor possess too high energies which are 

thermalized with a moderator consisting of heavy water. The thermal neutrons have a 

kinetic energies extending over a considerable range (continuous Maxwellian 

distribution), but a monochromatic beam of neutrons with a single energy can be obtained 

by diffraction from a single crystal and this diffracted beam can be used in diffraction 

experiments [9]. Figure 2.6 shows the schematic illustration of monochromatic neutron 

beam from the reactor. A layout of typical neutron powder Diffractometer is shown in 

fig.2.7. The neutrons of wavelength 1.249Å, passing through a Germanium (331) 

monochromator with flux ~ 5 x 105n/cm2/sec at the sample were focused on the powder 

sample, kept in vanadium can and cooled to desired temperature using a closed cycle 

refrigerator (CCR). Diffracted beams were collected by the Position Sensitive Detector 

(PSD) which can scan 2θ = 3˚- 140˚. The typical parameters of neutron powder 

Diffractometer at DHRUVA are summarized in Table 2.1. 
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Figure 2.6: Schematic illustration of monochromatic neutron beam from the reactor. 

 

Figure 2.7: Schematic layout of a typical powder diffractometer.  

Table 2.1: powder neutron Diffractometer (Instrument parameters) at DHRUVA. 

Powder Neutron Diffractometer (Instrument parameters) at DHRUVA 

Beam hole No. TT1013 
Monochromator  Ge (331) 
Incident wavelength (λ) 1.249Ǻ 
Range of scattering angle (2θ) 3° < 2θ < 140° 
Flux at sample 8 × 105 n/cm2/sec 
sinθ / λ  9.45 Ǻ-1  
Sample size 10 mm dia, 40 mm high 
Detector (1D-PSD) 5 (overlapping) 
Resolution (∆d/d) 0.8% 

Neutrons in              

the reactor 

Monochromatic crystal  

Monochromatic 

nλ = 2d sinθθθθ    

θθθθ

θθθθ 

 

Monochromatic neutron beam 

1.249  ǺǺǺǺ 
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The planes in the polycrystalline sample act as grating to the neutron beams, and 

diffract them. In order to determine crystal structure, it is necessary to record the full 

diffraction pattern. The diffracted intensities from the sample are measured by neutron 

detector (D). Both the sample table and the detector arms are rotated in predetermined 

step. The sample and the detector move in coupled θ - 2θ mode, in angular steps                   

say ~ 2θ = 0.05°. The span of 2θ scan is over 3° - 140° for the sample studied. Neutron 

counts were recorded at each step for a fixed amount of monitor counts. Suitable 

collimation for in-pile before monochromator (α0), monochromator to sample table (α1) 

and sample table to detector d(α) is provided by a mild steel collimators with slits. The 

collimators used for the present study from the in-pile to the detector end (D) were 0.5°, 

0.7°, 0.5° of arc.  

Neutrons being a neutral particle, its detection are based on a range of nuclear 

reactions, which produced energetic charged particles, the most important once are, 
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Gas counters are filled with 42He gas or BF3 gas enriched in 
10
5B were employed for 

neutron detection. For the present experimental set-up, the diffracted neutrons are 

collected by the Position Sensitive Detector (PSD), which is filled with helium gas. For 

every neutron falling on the PSD, the reaction (a) takes place, and eventually, the intensity 

is observed. One incoming neutron interacts with the molecule of Helium gas, and breaks 

it into one tritium and one proton. Protons are charged particles, which ionizes the helium 

gas thus producing ions. These ions are recorded, as pulses by the “cathode – anode setup” 

kept under high potential. The whole cathode length is distributed or sliced into 1024 

channels in the Dhruva reactor setup. The counts (pulses i.e., the number of ions falling on 

the cathode) at each channel are recorded. The multi-channel analyzer (MCA) records the 

data from each channel and using a discriminator separates out the neutron pulses from the 

background pulses (which occur due to gamma ray etc,). The data from MCA is fed into 

the computer from where the intensity vs. channel spectrum can be analyzed and recorded. 

Using appropriate calibration constants, the channels are converted into corresponding 

angles. The data collected was analyzed using FULLPROF and/or WINPLOTR based 

Rietveld refinement suites as described below [10].  
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Rietveld Analysis 

 There are six factors affecting the relative intensities of the diffraction lines on a 

powder pattern, namely, i) polarization factor, ii) structure factor, iii) multiplicity factor, 

iv) Lorentz factor, v) absorption factor and vi) temperature factor. A very important 

technique for analysis of powder diffraction data is the whole pattern fitting method 

proposed by Rietveld (1969) [11]. The Rietveld method is an extremely powerful tool for 

the structural analysis of virtually all types of crystalline materials not available as single 

crystals. The method makes use of the fact that the peak shapes of Bragg reflections can be 

described analytically and the variations of their width (FWHM) with the scattering angle 

2θ. The analysis can be divided into number of separate steps. While some of these steps 

rely on the correct completion of the previous one(s), they generally constitute 

independent task to be completed by experimental and depending on the issue to be 

addressed by any particular experiment, one, several or all of these tasks will be 

encountered [12].  

The parameters refined in the Rietveld method fall into mainly three classes: peak-

shape function, profile parameters and atomic and structural parameters. The peak shapes 

observed are function of both the sample (e.g. domain size, stress/train, defects) and the 

instrument (e.g. radiation source, geometry, slit sizes) and they vary as a function of 2θ. 

The profile parameters include the lattice parameters and those describing the shape and 

width of Bragg peaks (changes in FWHM and peak asymmetry as a function of 2θ, 2θ 

correction, unit cell parameters). In particular, the peak widths are smooth function of the 

scattering angle 2θ. It uses only five parameters (usually called U, V, W, X and Y) to 

describe the shape of all peaks in powder pattern. The structural parameters describe the 

underlying atomic model include the positions, types and occupancies of the atoms in the 

structural model and isotropic or anisotropic thermal parameters. The changes in the 

positional parameters cause changes in structure factor magnitudes and therefore in 

relative peak intensities, whereas atomic displacements (thermal) parameters have the 

effect of emphasizing the high angle region (smaller thermal parameters) or                    

de-emphasizing it (larger thermal parameters). The scale, the occupancy parameters and 

the thermal parameters are highly correlated with one another and are more sensitive to the 

background correction than are the positional parameters. Thermal parameter refinement 
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with neutron data is more reliable and even anisotropic refinement is sometimes possible. 

Occupancy parameters are correspondingly difficult to refine and chemical constraints 

should be applied whenever possible [13].    

Once the structure is known and a suitable starting model is found, the Rietveld 

method allows the least-squares refinement [chi-square (χ2) minimization] of an atomic 

model (crystal structure parameters) combined with an appropriate peak shape function, 

i.e., a simulated powder pattern, directly against the measured powder pattern without 

extracting structure factor or integrated intensities. With a complete structural model and 

good starting values of background contribution, the unit cell parameters and the profile 

parameters, the Rietveld refinement of structural parameters can begin. A refinement of 

structure of medium complexity can require hundred cycles, while structure of high 

complexity may easily require several hundreds. The progress of a refinement can be seen 

from the resultant profile fit and the values of the reliability factors or R-values. The 

structure should be refined to convergence. All parameters (profile and structural) should 

be refined simultaneously to obtain correct estimated standard deviations (e.s.d.) can be 

given numerically in terms of reliability factors or R-values [14].  

The weighted –profile R value, Rwp, is defined as, 

 

 

 Ideally, the final Rwp, should approach the statistically expected R value, Rexp, 

  

 where, N is the number of observations and P the number of parameters. Rexp 

reflects the quality of data. Thus, the ratio between the two (goodness of fit),  
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An R value is observed and calculated structure factors, Fhkl, can also be calculated 

by distributing the intensities of the overlapping reflections according to the structural 

model, 

   

 Similarly, the Bragg-intensity R value can be given as, 

  

 R values are useful indicators for the evalution of refinement, especially in the case 

of small improvements to the model, but they should not be overinterpreted. The most 

important criteria for judging the quality of a Rietveld refinement are i) the fit of the 

calculated pattern to the observed data and ii) the chemical sence of structural model. 

2.3. Surface Morphology  

Morphological studies are important for understanding the growth and packing 

density of grains in thin films or polycrystalline bulk materials. There are various 

techniques known to explore the science related to surface and morphology of a material 

are, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) or Scanning 

Probe microscopy (SPM) [7].  

2.3.1.  Atomic Force Microscopy (AFM) 

The atomic force microscope (AFM) probes a sample with a sharp tip (a couple of 

microns long and often less than 100 Å in diameter) which is located at the free end of a 

cantilever (100 to 200 µm long). AFM is operated by measuring the attractive or repulsive 

forces between a tip and the sample [15]. The force most commonly associated with 

atomic force microscopy are interatomic force called the Van der Waals force. The three 

commonly used AFM modes can be described as contact mode (left), non-contact mode 

(middle) and tapping mode (right) [Fig.2.8] [16].   

                    



 

ExperimentalExperimentalExperimentalExperimental techniques of Characterizationtechniques of Characterizationtechniques of Characterizationtechniques of Characterization    
 

II-16 

 

Figure 2.7: Schematic representation of working of AFM and mode of AFM operation in 

inter-atomic force vs. distance curve. 

 

 

 

 

 

Figure 2.8: Various AFM modes of working:  Contact Mode (left), Non-contact Mode 

(middle) and Tapping Mode (right). (Courtesy of website: 

http://www.chembio.uoguelph.ca/educmat/chm729/afm/moredet.htm updated 

on 24.04.1997)  

Contact Mode 

The contact mode where the tip scans the sample in close contact with the surface 

is the common mode used in the AFM. The force on the tip is repulsive with a mean value 

of 10 -9 N. This force is set by pushing the cantilever against the sample surface with a 

piezoelectric positioning element. In contact mode AFM, the deflection of the cantilever is 

sensed and compared in a DC feedback amplifier to certain desired value of deflection. If 

the measured deflection is different from the desired value, the feedback amplifier applies 

a voltage to the piezo to raise or lower the sample relative to the cantilever to restore the 

desired value of deflection. The voltage that the feedback amplifier applies to the piezo is 

a measure of the height of features on the sample surface. It is displayed as a function of 

the lateral position of the sample.   
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Non-contact Mode 

A new era in imaging was opened when microscopists introduced a system for 

implementing the non-contact mode which is used in situations where tip contact might 

alter the sample in subtle ways. In this mode the tip hovers 50-150Ǻ above the sample 

surface. Attractive Van der Waals forces acting between the tip and the sample are 

detected, and topographic images are constructed by scanning the tip above the surface. 

Unfortunately the attractive forces from the sample are substantially weaker than the 

forces used by contact mode. Therefore the tip must be given a small oscillation so that 

AC detection methods can be used to detect the small forces between the tip and the 

sample by measuring the change in amplitude, phase or frequency of the oscillating 

cantilever in response to force gradients from the sample. For highest resolution, it is 

necessary to measure force gradients from Van der Waals forces which may extend only a 

nanometer from the sample surface.   

Tapping Mode 

Tapping mode is a key advance in AFM. This potent technique allows high 

resolution topographic imaging of sample surfaces that are easily damaged, loosely hold to 

their substrate, or difficult to image by other AFM techniques. With the Tapping Mode 

technique, very soft and fragile samples can be imaged successfully. Also, incorporated 

with Phase Imaging, the tapping mode AFM can be used to analyze the components of the 

membrane. Tapping mode overcomes problems associated with friction, adhesion, 

electrostatic forces and other difficulties that an plague conventional AFM scanning 

methods by alternately placing the tip in contact with the surface to provide high 

resolution and then lifting the tip off the surface to avoid dragging the tip across the 

surface. Tapping mode imaging is implemented in ambient air by oscillating the cantilever 

assembly at or near the cantilever's resonant frequency using a piezoelectric crystal. The 

piezo motion causes the cantilever to oscillate with a high amplitude (typically greater 

than 20nm) when the tip is not in contact with the surface. When the tip passes over a 

bump in the surface, the cantilever has less room to oscillate and the amplitude of 

oscillation decreases. Conversely, when the tip passes over a depression, the cantilever has 

more room to oscillate and the amplitude increases (approaching the maximum free air 

amplitude). The oscillation amplitude of the tip is measured by the detector and input to 
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the controller electronics. The digital feedback loop then adjusts the tip-sample separation 

to maintain constant amplitude and force on the sample. 

Table 2.2: Resolution of AFM/STM. 

Lateral  Vertical Technique 

Resolution Range Resolution Range 

Sample 

Considerations  

Additional 

Capabilities 

AFM/STM < 0.1 nm  100 um < 0.1 nm  7 um  Air or Liquid 
< 25 mm diam. 
< 10 mm high  

Lateral force, 
nano-scale 
indentation 

2.4. Electrical and magnetotransport 

2.4.1. Resistance (RT) & Magnetoresistance (MR) measurements 

RT and Magneto RT measurements  

Electrical resistance measurements are rather easy and straight forward to be 

accomplished which provides more useful information about the sample. The normal state 

of the material is probed and the resistive transition (superconducting transition, Tc in 

HTSC and Metal-Insulator transition, TP, in manganites) gives us an easily accessible and 

accurate value of the critical temperature as well as information of the quality of the 

sample.   

A low contact resistance is desirable due to the small resistance of the samples. To 

fulfill this requirement, standard four-probe method was used for measuring resistance of 

the samples [17]. 

The samples were cut in a rectangular bar shape using a diamond saw. For the 

electrical contacts silver paint has been used. The silver is applied at the ends for current 

contacts. Thin copper wires were connected with silver paint as shown in fig.2.9 and the 

whole assembly was put onto a sample holder where the wires were connected with leads 

to the measurement instruments.   

 

Figure 2.9: Schematic diagram of four probe geometry used for resistivity measurements. 
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For the purpose of electrical measurements (RT and Magneto RT), rectangular bar 

shape samples were measured in cryostat by Helium cooler in the temperature range                

5-350K and at constant applied fields of 1, 5 and 9T using Quantum Design Physical 

Property Measurement System (PPMS) [Fig. 2.10]. The resistance versus temperature 

measurements were recorded by using DC four contact geometry in applied fields in the 

range 0-9 T. 

 

Figure 2.10: PPMS probe and sample chamber geometry (courtesy for Quantum Design). 

Magnetoresistance (MR) measurements 

To study the magnetoresistive properties of manganite thin films and bulk, 

magnetoresistance (MR) versus applied magnetic field (H) isotherms of the samples were 

recorded using the standard four probe method as explained above in the presence of an 

external magnetic field using PPMS (Quantum Design). At a constant temperature, 

resistance was measured as a function of applied field (MR vs. H isotherms) in the range 

of RT to 5K. Mainly, manganite films studied in the present work were characterized by 

using this technique.  
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2.4.2. Current vs. Voltage (I-V) characteristics 

Current-voltage (I-V) characteristics were studied at zero external field and at 

various temperatures in (82-300K) are determined by applying dc current and measuring 

the voltage developed in a four point contact geometry as describe in above section 2.4.1. 

The applied current (I) vs. voltage (V) plots were measured in current-in-plane (CIP) 

geometry. The maximum current applied to the film was 1mA. I-V measurements were 

recorded for forward and reverse applied current.  

2.4.3. Thermoelectric power (TEP) 

Thermo Electric Power (TEP) for any given sample works on the principle of 

Seebeck Effect [18]. The potential difference (∆V) across the two junctions of dissimilar 

metals governs when two junctions are held at different temperatures as shown in fig.2.11.   

 

 

 

Figure 2.11: Schematic view of Seebeck effect. 

   

 

 

 

 

 

 

 

Figure 2.12: Schematic view of Thermo Power (TEP) sample holder. 
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During the present studies, TEP measurements on the La-2125 mixed oxide 

superconductors have been carried out under helium atmosphere by differential method at 

a temperature gradient < 2K, in the temperature range of 45-290K using the sample holder 

design as shown in fig.2.12. The sample, with a uniform surface, was clamped between 

two copper blocks that serves as reference samples as well as voltage leads. Si – sensor is 

used to measure and to control the desired temperature and a copper constantan 

thermocouple is used to maintain the temperature difference at the end of the sample. 
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A major breakthrough in the superconductivity research occured with the advent of 

superconductivity in mixed oxide compounds having transition temperature (Tc) relatively 

higher as compared to conventional superconductors. The discovery of superconductivity 

in Ln1Ba2Cu3Oz (Ln-123) (Ln – rare earth trivalent element except Pm, Tb, Tm and Pr) 

having Tc ~ 90K accelerated the research efforts in this field owing to the possibility of 

using these materials in applications at temperatures higher than LN2 temperature [1]. It is 

an established fact that, various properties of mixed oxide superconductors, commonly 

referred as High Temperature Superconductors (HTSC) having copper and oxygen as 

major constituents, can be tailored successfully for desired applications by using variety of 

methods such as, cationic substitutions, oxygen content variations, increasing the number 

of Cu-O layers and chains, etc [2,3]. It is reported that several variants of Ln-123 structure 

exist, which are derived from different non-superconducting compositions [4]. 

Our earlier studies in the field of mixed oxide superconductivity have resulted into 

several interesting structural, transport and magnetic properties of La2-xRxCayBa2Cu4+yOz 

(0.0 < x < 0.5; 0.1; and y = 2x) (R = Nd, Gd, Pr, Er, Dy, etc) (La-2125) cuprate 

superconductors. It is well known that, by the simultaneous addition of CaO and CuO to 

the nonsuperconducting, antiferromagnetic La2Ba2Cu4Oz (La-224) results into a stable 

tetragonal superconducting phase with the stoichiometric composition 

La1.5R0.5Ca1Ba2Cu5Oz (R = Nd, Gd, Pr, Er, Dy, etc) having Tc ~ 78K [5]. We have shown 

that, in these compounds, there exists strong correlation between structure and properties 

which is dependent on the concentration of the mobile holes in the Cu-O2 layers which can 

be varied with the changes in Ca doping concentration. In addition, the detailed neutron 

diffraction (ND) studies, at room temperature (RT), carried out on series of                               

La2-xDyxCayBa2Cu4+yOz (0.0< x <0.5; 0.1 and y = 2x) samples by S. Rayaprol et al [6] of 

our group, have shown that with increasing Ca concentration, the occupancy of Ca ions at 

La-site increases with concomitant displacement of La on to Ba site. This provides the 

necessary holes for the conduction in Cu-O2 planes. Thus Ca substitution helps in ‘turning 

on’ of superconductivity in this system. The presently studied mixed oxide 

superconducting system La2-xDyxCayBa2Cu4+yOz (x = 0.3 and 0.5, y = 2x) (La2125) can be 

normalized to La-123 form using the following relations  
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LaBa2Cu3O7-δ  = (La2Ca1Ba2Cu5Oz) x (3/5)     (La-2125) 

= La1.2Ca0.6Ba1.2Cu5Oz’ (where z’ = 3z/5)  

= (La0.6Ca0.4)(Ba1.2Ca0.2La0.6)Cu3Oz’   (a) 

LaBa2Cu3O7-δ  = (La1.7Dy0.3Ca0.6Ba2Cu4.6Oz) x (3/4.6)   (LD3) 

= La1.11Dy0.2Ca0.4Ba1.3Cu3Oz’ (where z’ = 3z/4.6)  

= (La0.54Dy0.2Ca0.26)(Ba1.3Ca0.13La0.57)Cu3Oz’  (b) 

LaBa2Cu3O7-δ  = (La1.5Dy0.5Ca1Ba2Cu5Oz) x (3/5)    (LD5) 

= La0.9Ca0.6Dy0.3Ba1.2Cu3Oz’ (where z’ = 3z/5)  

=  (La0.3Dy0.3Ca0.4)(Ba1.2Ca0.2La0.6)Cu3Oz’  (c) 

 

During the course of present work, the detailed temperature dependent neutron 

diffraction studies on LD3 and LD5 compositions were carried out in order to understand 

the structural phase transition at  low temperatures, if any, which can be observed from the 

variations in different bond lengths in the crystallographic unit cell of 

La1.7Dy0.3Ca0.6Ba2Cu4.6Oz (LD3) and La1.5Dy0.5Ca1Ba2Cu5Oz (LD5) samples under study.  

The modifications in the interatomic distances, thermal parameters and cell constants as a 

function of temperature can be determined from neutron diffraction measurements at low 

temperatures which also help to determine the average Cu valence at different 

crystallographic sites. Also, the Pauling Bond Valence Sum (BVS) calculations were 

employed to study the changes in mobile charge density which in turn modifies the 

average copper valence in these compounds.  

3.1. Experimental   

Two samples with stoichiometric compositions La1.7Dy0.3Ca0.6Ba2Cu4.6Oz (LD3) 

and La1.5Dy0.5Ca1Ba2Cu5Oz (LD5) were synthesized using standard solid state reaction 

method. Different steps used during the synthesis are as follows  

The high purity starting compounds of La2O3, Dy2O3, CaCO3, BaCO3 and CuO 

were initially homogenized by grinding under acetone. These compounds were then 
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calcined at 9200C for about one day and then thoroughly reground and palletized before 

the reaction proceeds. The sintered pellets were reground and heated again at 9500C for  

24 hrs followed by the nitrogen annealing for 12 hrs at 9500C and then in flowing oxygen 

for 6-10 hrs. The pellets were slowly cooled to RT at the rate of 10C/min. It is observed 

that starting compounds, particularly La2O3, Dy2O3 and carbonates, if pre-heated, gives 

good results. The structural studies using x-ray diffraction (XRD) shows that, samples 

exhibit single phase tetragonal structure having P4/mmm space group. The temperature 

dependence of resistivity measurements were performed on LD3 and LD5 samples using 

d.c. four probe resistivity in order to determine their superconducting transition 

temperatures.  

Neutron Diffraction  

The temperature dependent neutron diffraction (ND) was performed on LD3 and 

LD5 samples weighing ~5g in powder form using the TT1013 Powder Neutron 

Diffractometer at DHRUVA (100MW) neutron source in BARC, Mumbai (India). The 

neutrons of wavelength 1.249Å, passing through a Germanium (331) monochromator with 

flux ~ 5 x 105n/cm2/sec were focused on the powder sample, kept in vanadium can and 

cooled to desired temperature using a closed cycle refrigerator (CCR). Diffracted neutrons 

were collected by the Position Sensitive Detector (PSD) in the 2θ range of 3˚- 140˚. The 

neutron powder diffraction patterns were recorded at 12, 35, 70, 90 and 300K for LD3 and 

at 12, 40, 70, 90 and 300K for LD5 compositions with step size of 0.05˚. Typical data 

collection time was 8h per temperature scan of sample. The choice of temperature was 

such that, we record ND patterns at temperatures below, around and above Tc, so as to see 

the effect of temperature on the structural modifications in the sample.  

 

The neutron diffraction data were analyzed in tetragonal P4/mmm (space group 

No. 123) space group using FULLPROF suite employing Rietveld refinement method 

[7,8]. The background was treated by a polynomial of second order. The peak profiles in 

all cases were described well by a Gaussian function. The neutron scattering amplitudes 

used were b(La) = 0.885, b(Dy) = 0.885, b(Ba) = 0.525, b(Ca) = 0.525, b(Cu) = 0.772 and 

b(O) = 0.580 x 10-12 cm. In the final refinement, all structural, lattice and profile 

parameters were allowed to vary simultaneously until the weighted R factor, Rw, differed 
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by less than 1 part in a thousand in two successive cycles. In addition, some thermal 

parameters refined to unreasonably low values, ruled out the possibility of the structure to 

be noncentrosymmetric. Also, from the careful analysis of thermal and occupancy factors, 

it was immediately clear that, the neutron data were consistent with the model. Rietveld 

fitted profiles for tetragonal LD3 and LD5 samples at different temperatures are shown in 

Figs. 3.1 (a-e) and Figs. 3.2 (a-e). The structural parameters determined from Rietveld 

refinement along with the goodness of the fit (χ2) values and R-factors are tabulated in 

Table 3.1 and Table 3.2 for LD3 and LD5 samples respectively. Figure 3.3 depicts the 

proposed crystallographic unit cell of La-2125 compound. It can be seen from the figure 

that, the structure is equivalent to that of the tetragonal Ln-123. Only the ND study could 

explain the site occupancies of different cations at La and Ba sites. The detailed 

explanation about the temperature dependent ND patterns obtained for LD3 and LD5 

samples along with the discussion about the variations in different derived structural 

parameters such as, thermal parameter (B), site occupancy (N), variation in position Z, 

oxygen content, cell parameters, etc has been given in the pages following the figs. 3.1, 

3.2 and 3.3 and Table 3.1 and 3.2.    
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Figure 3.1(a): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.7Dy0.3Ba2Cu4.6Oz 

(LD3) at 300K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.1(b): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.7Dy0.3Ba2Cu4.6Oz 

(LD3) at 75K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.1(c): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.7Dy0.3Ba2Cu4.6Oz 

(LD3) at 55K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.1(d): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.7Dy0.3Ba2Cu4.6Oz 

(LD3) at 35K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.1(e): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.7Dy0.3Ba2Cu4.6Oz 

(LD3) at 12K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.2(a): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.5Dy0.5Ba2Cu5Oz 

(LD5) at 300K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 

20 40 60 80 100 120

0

500

1000

1500

 Observed
 Calculated
 Difference
 Bragg peak

90 K La
1.5
Dy

0.5
Ca

1
Ba

2
Cu

5
O
z

 

In
te
ns
it
y

2θ (degree)  

Figure 3.2(b): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.5Dy0.5Ba2Cu5Oz 

(LD5) at 90K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.2(c): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.5Dy0.5Ba2Cu5Oz 

(LD5) at 70K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.2(d): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.5Dy0.5Ba2Cu5Oz 

(LD5) at 40K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Figure 3.2(e): Rietveld refinement profile showing the observed (o symbol) and 

calculated (line) neutron powder diffraction data for La1.5Dy0.5Ba2Cu5Oz 

(LD5) at 12K. Tick mark below the diffraction profile mark the position 

of allowed Bragg reflections. The difference between the observed and 

calculated values is given at the bottom. 
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Table 3.1: Structural parameters at various temperatures obtained from Rietveld analysis 

of Neutron diffraction data for LD3. Numbers in parentheses indicate standard 

deviation.  

Temperature 12 K 35 K 55 K 75 K 300 K 

La/Dy/Ca(1d) 
B (Ǻ2) 
NLa 
NDy 
NCa 

 
0.033(55) 
0.540(3) 
0.192(3) 
0.256(3) 

 
0.033(49) 
0.539(3) 
0.195(3) 
0.255(3) 

 
0.105(55) 
0.540(3) 
0.195(3) 
0.255(3) 

 
0.106(53) 
0.538(3) 
0.195(3) 
0.247(3) 

 
0.292(57) 
0.538(3) 
0.196(3) 
0.256(3) 

Ba/Ca/La (2h) 
B (Ǻ2) 
Z (Ǻ) 
NBa 
NLa 
NCa  

 
1.077(85) 
0.1884(4) 
1.342(6) 
0.592(6) 
0.202(6) 

 
1.061(76) 
0.1860(4) 
1.328(6) 
0.587(6) 
0.205(6) 

 
1.033(85) 
0.1875(4) 
1.337(6) 
0.587(6) 
0.205(6) 

 
1.048(87) 
0.1877(4) 
1.337(6) 
0.587(6) 
0.205(6) 

 
0.828(99) 
0.1879(4) 
1.346(6) 
0.586(6) 
0.176(6) 

Cu(1) (1a) 
B (Ǻ2) 
N 

 
0.666(72) 
1.000 

 
0.806(99) 
1.000 

 
0.763(89) 
1.000 

 
0.760(88) 
1.000 

 
0.948(79) 
1.000 

Cu(2) (2g) 
B (Ǻ2) 
Z (Ǻ) 
N 

 
0.109(53) 
0.3518(3) 
2.000 

 
0.136(51) 
0.3518(3) 
2.000 

 
0.181(43) 
0.3519(3) 
2.000 

 
0.201(45) 
0.3514(3) 
2.000 

 
0.287(50) 
0.3525(3) 
2.000 

O(1) (2f) 
B (Ǻ2) 
N 

 
4.874(60) 
1.2510(33) 

 
4.754(55) 
1.2550(35) 

 
4.364(52) 
1.2310(33) 

 
4.588(54) 
1.2380(33) 

 
5.181(61) 
1.2960(46) 

O(2) (2g) 
B (Ǻ2) 
Z (Ǻ) 
N 

 
2.602(52) 
0.1535(7) 
1.8580(36) 

 
2.690(63) 
0.1537(7) 
1.8110(38) 

 
2.521(62) 
0.1545(7) 
1.8740(37) 

 
2.425(55) 
0.1543(7) 
1.8690(36) 

 
2.963(66) 
0.1528(7) 
1.7690(34) 

O(4) (4i) 
B(Ǻ2) 
Z (Ǻ) 
N 

 
0.302(32) 
0.3675(4) 
4.2890(34) 

 
0.502(35) 
0.3667(2) 
4.3310(38) 

 
0.379(31) 
0.3673(2) 
4.2830(35) 

 
0.396(33) 
0.3674(2) 
4.2740(36) 

 
0.624(36) 
0.3675(2) 
4.2770(35) 

a = b (Ǻ) 
c (Ǻ) 

3.8573(2) 
11.6382(9) 

3.8577(7) 
11.6405(5) 

3.8583(6) 
11.6406(3) 

3.8586(3) 
11.6438(4) 

3.8644(2) 
11.6706(4) 

Volume(Ǻ3) 173.163(16) 173.230(22) 173.285(20) 173.357(18) 174.275(22) 
Total Oxygen 
(z’ – in 123) 
(z  –  in 2125) 

 
7.397 
12.1867 

 
7.395 
12.1917 

 
7.388 
12.18 

 
7.381 
12.185 

 
7.342 
12.1034 

R – factors 
χ2 
Rp 
Rwp 
Rexp 
Bragg –R 
Rf - factor 

 
1.18 
4.10 
5.26 
4.83 
9.89 
7.67 

 
1.34 
4.40 
5.63 
4.87 
11.4 
9.74 

 
1.17 
4.17 
5.28 
4.88 
12.0 
11.1 

 
1.19 
4.15 
5.31 
4.87 
10.7 
9.18 

 
1.01 
3.83 
4.93 
4.90 
10.3 
8.54 
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Table 3.2: Structural parameters at various temperatures obtained from Rietveld analysis 

of Neutron diffraction data for LD5. Numbers in parentheses indicate standard 

deviation.   

Temperature 12 K 40 K 70 K 90 K 300 K 

La/Dy/Ca(1d) 
B (Ǻ2) 
NLa 
NDy 
NCa 

 
0.026(44) 
0.304(3) 
0.304(3) 
0.404(3) 

 
0.083(47) 
0.304(3) 
0.304(3) 
0.404(3) 

 
0.068(44) 
0.304(3) 
0.304(3) 
0.404(3) 

 
0.392(43) 
0.310(3) 
0.310(3) 
0.410(3) 

 
0.212(45) 
0.310(3) 
0.310(3) 
0.410(3) 

Ba/Ca/La (2h) 
B (Ǻ2) 
Z (Ǻ) 
NBa 
NLa 
NCa  

 
0.903(81) 
0.1904(4) 
1.231(6) 
0.631(6) 
0.231(6) 

 
0.825(82) 
0.1909(61) 
1.220(6) 
0.620(6) 
0.220(6) 

 
1.215(88) 
0.1916(4) 
1.220(6) 
0.620(6) 
0.220(6) 

 
0.824(78) 
0.1912(63) 
1.220(6) 
0.620(6) 
0.220(6) 

 
0.674(85) 
0.1913(4) 
1.220(6) 
0.620(6) 
0.220(6) 

Cu(1) (1a) 
B (Ǻ2) 
N 

 
0.804(72) 
1.000 

 
0.591(78) 
1.000 

 
1.034(81) 
1.000 

 
0.486(77) 
1.000 

 
0.623(79) 
1.000 

Cu(2) (2g) 
B (Ǻ2) 
Z (Ǻ) 
N 

 
0.116(56) 
0.3533(4) 
2.000 

 
0.089(55) 
0.3531(4) 
2.000 

 
0.195(51) 
0.3527(3) 
2.000 

 
0.231(50) 
0.3528(3) 
2.000 

 
0.242(52) 
0.3533 (3) 
2.000 

O(1) (2f) 
B (Ǻ2) 
N 

 
5.041(60) 
1.3730(33) 

 
4.588(61) 
1.4340(35) 

 
3.711(58) 
1.3570(33) 

 
3.918(62) 
1.3070(33) 

 
6.136(65)  
1.3070(46) 

O(2) (2g) 
B (Ǻ2) 
Z (Ǻ) 
N 

 
3.744(53) 
0.1545(70) 
1.7410(36) 

 
3.018(54) 
0.1551(131) 
1.6010(38) 

 
2.679(57) 
0.1557(7) 
1.6910(37) 

 
2.442(53) 
0.1533(7) 
1.777(36) 

 
3.010(55) 
0.1538(7) 
1.757(34) 

O(4) (4i) 
B(Ǻ2) 
Z (Ǻ) 
N 

 
0.546(33) 
0.3675 (4) 
4.2590(34) 

 
0.445(37) 
0.3692(33) 
4.3060(38) 

 
0.484(36) 
0.36984(2) 
4.2910(35) 

 
0.527(33) 
0.36983(2) 
4.246(36) 

 
0.622(35)  
0.3695(2) 
4.245(35) 

a = b (Ǻ) 
c (Ǻ) 

3.8461(2) 
11.6083(9) 

3.8493(7) 
11.6106(2) 

3.8502(3) 
11.6082(2) 

3.8495(2) 
11.6101(3) 

3.8555(3) 
11.63794(2) 

Volume(Ǻ3) 171.722(16) 172.038(22) 172.084(22) 172.0459(18) 172.998(13) 
Total Oxygen 
(z’ – in 123) 
(z  –  in 2125) 

 
7.373 
12.115 

 
7.341 
12.114 

 
7.339 
12.114 

 
7.33 
12.084 

 
7.309 
12.098 

R – factors 
χ2 
Rp 
Rwp 
Rexp 
Bragg –R 
Rf - factor 

 
1.83 
5.42 
6.85 
5.07 
12.3 
9.36 

 
1.37 
4.56 
5.84 
4.98 
9.41 
5.6 

 
1.34 
4.59 
5.81 
5.03 
8.69 
5.39 

 
1.42 
4.74 
6.05 
5.08 
9.17 
5.88 

 
1.13 
4.24 
5.45 
5.14 
8.32 
5.13 
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Figure 3.3: Structure of La-2125 unit cell isostructural to tetragonal Ln-123 unit cell. 
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From the details of the Rietveld refinement of neutron diffraction data of La-2125 

(LD3 and LD5) compounds, it turns out that, the structural arrangement of La-2125 is 

tetragonal (Space group: P4/mmm; Space group No. 123) which is equivalent to that of the 

tetragonal Ln-123 unit cell as can be seen from fig. 3.3. Due to the difference in the 

scattering factors of La, Dy and Ca, the site occupancy of Dy and Ca at the La site could 

be refined in the La-2125 phase. Results shown in Table 3.1 and 3.2, indicate that, the 

average amount of Dy and Ca in the La site coincide with the nominal composition in           

La-2125 unit having crystallographic position of 1d (½, ½, ½) (CN-8). From the analysis 

of the ND data it is clear that, part of La and Ca occupy the Ba site at  2h (½, ½, ±z)             

(CN-10) position. The copper atom occupies two different crystallographic sites and are 

positioned as Cu1 (CN-6) at 1a (000) and Cu2  (CN-5) at 2g (0, 0, ±z) crystallographic 

positions. In tetragonal geometry of Ln-123, oxygen atoms have three different 

configurations as O1, O2 and O4 which are positioned at 2f (0, ½, 0)/(½, 0, 0), 2g (0, 0, 

±z) and 4i (0,½, ±z)/(½, 0, ±z) respectively. Further, the tetragonal geometry suggests that. 

there is a presence of Cu1-O1 planes instead of the extended Cu-O chains in the La-2125 

compound unlike that of Ln-123 superconductor where the oxygen deficiency (6.6< z < 7) 

in Cu1-O1 layers along the a direction leads orthorhombic structure and superconductivity 

(Tc ~ 90K). The site occupancies obtained from Rietveld analysis of ND data at various 

temperatures for LD3 and LD5 compounds have been tabulated in Table 3.1 and 3.2. 

There is very close agreement between the site occupancy obtained from the Rietveld 

refinement of ND data and the values of the fractional occupancies of LD3 and LD5 

samples as estimated using Eqns.(b) and (c).   

During the procedure of refinements, all possible positional (x, y, z), thermal 

parameters (B) and occupational (N) parameters were varied in addition to cell parameters, 

half width parameters, background parameters, zero angle and scale factor. These 

parameters were varied in separate cycles due to a strong correlation between the thermal 

and occupancy parameters. The occupancy fractions of Ba and La ions at Ba-sties were 

refined assuming that no vacancies are present at these sites. The occupancy fractions of 

La were refined assuming all substituted Dy and Ca ions occupy La-site only (for non-zero 

values of x and y). As a result of refinement, very good fits were obtained at all the five 

temperature scans for both the LD3 and LD5 samples [shown in Fig.3.1 and 3.2 (a-e)] on 
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the basis of standard tetragonal 1-2-3 structural model with the final values of profile            

R-factors (Rp) converging [Table 3.1 and 3.2]. There is no structural transition observed in 

both the samples as a function of temperature and the compounds remain tetragonal with 

space group P4/mmm at all temperatures. With lowering the temperature, the thermal 

parameters show reasonable values for all the atomic sites refined and remain within the 

experimentally allowed error. Unit cell parameters at various temperatures determined 

from the Rietveld refinement of neutron diffraction data of LD3 and LD5 samples are also 

listed in Table 3.1 and 3.2 and their variation with temperature is plotted in fig. 3.4. For 

both the compositions, with the decrease in the temperature, the lattice parameters contract 

leading to the over all decrease in the cell volume. Further, the values of unit cell 

parameters and volume in LD3 sample are higher as compared to LD5 sample because the 

LD5 sample is having higher concentration of Ca2+ having smaller ionic radius which 

occupies La and Ba sites simultaneously resulting in the shrinkage of cell dimensions.  
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Figure 3.4: Unit cell parameters vs. T (K) for LD3 and LD5 samples.  
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Figure 3.5(a): Difference Fourier map for LD3 at 12K. 

 

 
 

Figure 3.5(b): Difference Fourier map for LD5 at 12K. 
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Table 3.3(a): Site occupancy (Occ), site multiplicity (Mult), Wyckoff coordination                

(x/a, y/b, z/c) and atomic densities at 12 for LD3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3(b): Site occupancy (Occ), site multiplicity (Mult), Wyckoff coordination                

(x/a, y/b, z/c) and atomic densities at 12 for LD5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atom x/a y/b z/c Occ Mult Density  

La1 0.5000 0.5000 0.5000 0.0625 1 90.7484 

Dy 0.5000 0.5000 0.5000 0.0625 1 90.7484 

Ca1 0.5000 0.5000 0.5000 0.0625 1 90.7484 

Ba 0.5000 0.5000 0.1884 0.1250 2 44.7953 

La2 0.5000 0.5000 0.1884 0.1250 2 44.7953 

Ca2 0.5000 0.5000 0.1884 0.1250 2 44.7953 

Cu1 0.0000 0.0000 0.0000 0.0625 1 57.7008 

Cu2 0.0000 0.0000 0.3518 0.1250 2 70.0922 

O1 0.0000 0.5000 0.0000 0.1250 2 9.3995 

O2 0.0000 0.0000 0.1535 0.1250 2 23.4735 

O4 0.5000 0.0000 0.3675 0.2500 4 46.8070 

Atom x/a y/b z/c Occ Mult Density  

La1 0.5000 0.5000 0.5000 0.0625 1 90.0324 

Dy 0.5000 0.5000 0.5000 0.0625 1 90.0324 

Ca1 0.5000 0.5000 0.5000 0.0625 1 90.0324 

Ba 0.5000 0.5000 0.1904 0.1250 2 46.3625 

La2 0.5000 0.5000 0.1904 0.1250 2 46.3625 

Ca2 0.5000 0.5000 0.1904 0.1250 2 46.3625 

Cu1 0.0000 0.0000 0.0000 0.0625 1 62.0440 

Cu2 0.0000 0.0000 0.3533 0.1250 2 69.4829 

O1 0.0000 0.5000 0.0000 0.1250 2 5.6948 

O2 0.0000 0.0000 0.1545 0.1250 2 22.2865 

O4 0.5000 0.0000 0.3675 0.2500 4 48.1759 
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In order to locate the atoms at particular crystallographic sites, the difference 

Fourier map was calculated using GFourier program [9] which plots the scattered atomic 

density contours using the difference between Fast Fourier Transform (FFT) of calculated 

and observed structure factors. The calculated difference Fourier maps for LD3 and LD5 

samples at 12K are shown in figs.3.4(a) and (b). The structural information regarding the 

site occupancy, site multiplicity, Wyckoff coordination and atomic densities determined 

from the figs. 3.4(a) and (b) at 12K, are summarized in Table 3.3 (a) and Table 3.3(b) for 

both the LD3 and LD5 samples. The left part of the fig. 3.4 [(a) and (b)] shows the 

scattering densities for the central Ln-site, Ba and Cu2 crystallographic sites whereas the 

right part of the respective figs, show the scattering densities for Cu1, Cu2, O1, O2 and O4 

crystallographic sites. The presence of atomic density for O1-site suggests that, there are 

Cu1-O1 planes instead of extended Cu1-O1 chains in the LD3 and LD5 samples.   

Internal strains concerning the bonds with the apical oxygens are important in the 

doped La-2125 structure derived from La-123 since the apical oxygen site is sensitive to 

size effects, to the presence of excess oxygen on the basal plane and the La/Ba disorder 

[10]. These interatomic distances are also sensitive to the occupancy of the O4 sites which 

may be varied by the La/Ba replacement and the modified values are partially due to the 

variations in the oxygen doping. In order to have more insight in this regard, interatomic 

distances obtained from Rietveld analysis of low temperature ND are listed in Tables 3.4 

(a) and (b) for LD3 and LD5 samples respectively and are plotted as a function of 

temperature for various atomic species in figs. 3.6 (a-e).   
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Table 3.4(a): Interatomic distances (Ǻ) at various temperatures for LD3. Numbers in 

parentheses indicates standard deviations.  

Temperature 12 K 35 K 55 K 75 K 300 K 

r(La-O4) 2.4694(2) 2.4707(2) 2.4714(3) 2.4712(2) 2.4745(3) 
r(La-Ba) 3.6226(5) 3.6359(7) 3.6368(7) 3.6366(5) 3.6424(2) 
r(La-Cu2) 3.2271(2) 3.2271(3) 3.2270(3) 3.2307(2) 3.2294(3) 
r(Ba-Cu1) 3.5021(2) 3.4926(4) 3.4944(4) 3.4957(2) 3.5037(3) 
r(Ba-Cu2) 3.3243(2) 3.3319(5) 3.3322(5) 3.3285(2) 3.3404(4) 
r(Ba-O1) 2.9232(2) 2.9128(5) 2.9122(5) 2.9142(2) 2.9298(3) 
r(Ba-O2) 2.7593(2) 2.7536(3) 2.7535(2) 2.7543(1) 2.7631(2) 
r(Ba-O4) 2.8371(2) 2.8406(6) 2.8432(6) 2.8434(2) 2.8464(4) 
r(Cu1-O1) 1.9287(2) 1.9288(2) 1.9291(3) 1.9293(4) 1.9322(2) 
r(Cu1-O2) 1.7861(3) 1.7850(2) 1.7859(1) 1.7849(3) 1.7831(2) 
r(Cu1-Cu1) 3.8573(2) 3.8577(7) 3.8583(6) 3.8586(3) 3.8644(2) 
r(Cu2-Cu2) 3.4493(5) 3.4488(8) 3.4470(8) 3.4601(4) 3.4424(5) 
r(Cu2-O2) 2.3083(3) 2.3068(3) 2.3190(2) 2.3199(3) 2.3310(2) 
r(Cu2-O4) 1.9373(2) 1.9374(2) 1.9375(4) 1.9382(1) 1.9401(3) 
Cu2-O4-Cu2 169.329(2) 169.731(1) 169.416(2) 169.003(2) 169.632(3) 
Buckling Length 0.88244 0.88259 0.88513 0.8738 0.89524 

Table 3.4(b): Interatomic distances (Ǻ) at various temperatures for LD5. Numbers in 

parentheses indicates standard deviations.  

Temperature 12 K 40 K 70 K 90 K 300 K 

r(La-O4) 2.4593(2) 2.4510(2) 2.4481(3) 2.4495(3) 2.4537(2) 
r(La-Ba) 3.5735(5) 3.6044(7) 3.6062(7) 3.6189(5) 3.6147(3) 
r(La-Cu2) 3.2098(1) 3.2120(3) 3.2141(3) 3.2169(1) 3.2163(1) 
r(Ba-Cu1) 3.5051(2) 3.5111(4) 3.5172(4) 3.5153(2) 3.5198(2) 
r(Ba-Cu2) 3.3108(2) 3.3093(5) 3.3043(5) 3.3094(4) 3.3150(3) 
r(Ba-O1) 2.9454(1) 2.9240(5) 2.9209(5) 2.9186(2) 2.9320(3) 
r(Ba-O2) 2.7578(2) 2.7505(3) 2.7465(2) 2.7462(1) 2.7534(1) 
r(Ba-O4) 2.8181(2) 2.8270(6) 2.8261(6) 2.8329(5) 2.8319(5) 
r(Cu1-O1) 1.9230(2) 1.9246(3) 1.9251(3) 1.9262(1) 1.9277(3) 
r(Cu1-O2) 1.7937(3) 1.7941(1) 1.7952(2) 1.7921(2) 1.7909(2) 
r(Cu1-Cu1) 3.8458(2)  3.8492(5) 3.8501(4) 3.8495(3) 3.8551(1) 
r(Cu2-Cu2) 3.4096(5) 3.4112(8) 3.4172(8) 3.4223(4) 3.4131(2) 
r(Cu2-O2) 2.3056(3) 2.2994(1) 2.2971(1) 2.3189(3) 2.3214(2) 
r(Cu2-O4) 1.9307(2) 1.9338(7) 1.9362(8) 1.9363(5) 1.9370(5) 
Cu2-O4-Cu2 169.789(2) 168.840(2) 168.290(3) 168.264(2) 168.828(3) 
Buckling Length  0.9424 0.9028 0.8994 0.8986 0.9209 
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Figure 3.6(a): Interatomic distance between r(La-O4), r(La-Cu2) and r(La-Ba) vs. T (K)  

for LD3 and LD5 samples.  
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Figure 3.6(b): Interatomic distance between r(Ba-Cu1) and r(Ba-Cu2) vs. T (K) for               

LD3 and LD5 samples.   

 



 

Neutron Diffraction studies on La-2125 superconductors 

 

III-23 

2.91

2.92

2.93

2.94

2.745

2.750

2.755

2.760

0 100 200 300

2.820

2.825

2.830

2.835

2.840

2.845

r(
B
a-
O
1)

 LD3
 LD5

r(
B
a-
O
4)

r(
B
a-
O
2)

 

 

 T (K)

 

 

Figure 3.6(c):  Interatomic distance between r(Ba-O1), r(Ba-O2) and r(Ba-Cu2) vs. T (K) 

for LD3 and LD5 samples.   
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Figure 3.6(d): Interatomic distance between r(Cu1-O1), r(Cu1-O2), r(Cu2-O2) and                

r(Cu2-Cu4) vs. T (K) for LD3 and LD5 samples.   
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Figure 3.6(e): Bond distance r(Cu2-O2), buckling angle and buckling length vs. T (K) for 

LD3 and LD5 samples.   
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The observed variation in the bond length of LD3 and LD5 samples at various 

temperatures, shown in figs.3.6(a-e) can be explained as follows 

It can be seen from fig. 3.6 that, r(La-O4), r(La-Cu2) and r(La-Ba) bond lengths 

get compressed with the decrease in temperature for both the samples [Fig 3.6(a)] while 

the r(Ba-O1) and r(Ba-O2) bond lengths decreases first and below Tc shows an increasing 

trend as compared to their values at RT [Fig.3.6(c)]. The variation in different Cu-O              

bond lengths has been shown in fig.3.6(d). In Cu1-O1 and Cu2-O4 planes, the r(Cu1-O1) 

and r(Cu2-O4) bond lengths decreases linearly with temperature. This indicates that, the 

ionic size effect and shrinkage is more pronounced in the central perovskite block 

comprising of Cu2-O4-Cu2 in the triple perovskite unit cell. The decrease in the                 

r(Ba-Cu1) and r(Ba-Cu2) bond lengths [Fig 3.6(b)] in the upper and lower perovskite 

blocks containing central Ba-atom can be attributed to the partial substitution of La and Ca 

at Ba site. In addition, La-2125 structure, with increasing Dy3+ and Ca2+ concentration 

substituting at La-site having 1h (1/2,1/2,1/2) position  in the unit cell, results in the 

decrease of   r(Cu2–Cu2) bond length in LD5 sample as compared to LD3 sample which is 

accompanied by the suppression in Cu2-O4-Cu2 buckling angle [Fig.3.6(e)]. Hence, the 

overall effect of this results in the increase in Tc of LD5 sample [Tc ~ 78K]. 
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3.2. Bond Valence Sum (BVS) analysis  

According to the Pauling’s electrostatic valence rule, for an an ionic crystal in a 

stable ionic structure, the charge on an ion is balanced by the sum of electrostatic bond 

strengths to the ions in its coordination polyhedron. The Pauling’s Bond valence sum 

(BVS) relates the bond lengths of the cations to be considered with its average valence 

state using the formula, 

  

     (1) 

where r0 (characteristic value for a given cation-anion pair) and B (0.37Å) are empirical 

parameters and Rij is the interionic distance, where an ion can exist with several different 

oxidation states. The value of R0 will depend on the oxidation state. The idea is that, the 

sum of these empirical bond valences about a given ion should agree with that of oxidation 

state of ion. Any significant discrepancy ~ 30% between the BVS and the true oxidation 

state represents strain in the crystal, and may even indicate that the assumed structure is 

incorrect. The BVS technique has sometimes proved to be a useful tool in checking crystal 

structures [11,12]. In layered cuprates, the hole concentration is distributed at two different 

crystallographic sites of Cu i.e. in CuO2 planes and Cu-O chains between the inter                  

Ba-planes and can be determined by chemical route, Bond Valence Sum (BVS) analysis, 

thermo electric power (TEP) and Hall effect studies. The chemical idometric titration 

gives the values of mobile charge density from the estimation of oxygen content while 

TEP and Hall effect measurements are direct methods for the determination of hole 

concentration. The BVS technique provides the information about the explicit distribution 

of Cu valences in CuO2 planes and Cu-O chains in the mixed oxide superconductors [13].  

 In the present work, BVS calculations were performed based on the low 

temperature ND data obtained on LD3 and LD5 samples. Structural BVS analysis for Cu 

gives the effective Cu valence which is helpful in understanding the role played by holes 

in inducing superconductivity in these samples. For the sake of clarity and better 

understanding, the values of average copper valence calculated from BVS studies and 

those obtained from Rietveld refinement have been compared in the last part of this 

Chapter.  
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 Bond Valence Sum calculation have been performed to determine average copper 

valence in Cu-O planes using Eqn.(1) and Ref.[14]. In oxide superconductors, the copper 

valance varies between 2+/3+ or 2+/1+ and hence it can have fractional value. It is 

reported that, tetragonal superconductors, such as LD3 and LD5 having total oxygen 

content ~7.31 and ~7.33 per formula unit, lies in the ‘over hole doped’ region of high 

temperature superconductors and hence can possess Cu valence between 2+ and  3+. Let 

us assume that the fractional value is given by ξ i.e. the content of Cu+3, then (1- ξ) will be 

Cu2+ content. Hence,   

V avg  = 3ξ  + 2 (1 - ξ) = 2 + ξ                (2) 

ξ = (V2+ - 2) / (V2+ + 1 – V3+)                (3) 

where  ξ is the mixing parameter. V2+ is the BVS for Cu2+ and V3+ is the BVS for Cu3+.               

ξ can be determined as follows:  

1. Calculate copper valence for CuI plane by using r0 (Cu
2+) and then r0 (Cu

3+) in Eqn.(1) 

and  find out ξI using Eqn.(3). 

2.  Follow the same procedure for CuII plane and find out ξII  

Global average can be determined by the following equation,  

  V Global

avg  = (V CuI

avg  + 2 V
CuII

avg ) / 3 = (6 + ξI + 2 ξII) / 3   (4)  

while the stoichiometric average copper valence can be determined from the values of 

oxygen contents and of other stoichiometric ions obtained from ND data using the 

following formula,  

 
tryStoichiome

AvgV   = 3

2 Qz −
;  Q = [(2 – x)(La) + (x)(Dy) + (2x) (Ca) + 2 (Ba)] x  

5

3
 (5) 

where 5
3  is the normalization factor [6]. 
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3.3. Comparative study: Experimental and Theory   

Since the relation between valence and bond lengths is inversely proportional 

[Eqn.(1) and Ref.13], one would expect increase in Cu valence with decreasing bond 

length. In the present case, the decrease in bond length r(Cu2-O4) with decrease in 

temperature [Fig.3.6(d)] and consequently increase in average Cu valence with decrease in 

temperature [Fig.3.7] have been observed in LD3 and LD5 samples. Below Tc,                      

r(Cu2-O4) bond length and average Cu valence remains almost constant in LD3 sample 

while in LD5 sample, there is a decrease in the bond length and a sharp rise in average         

Cu valence suggesting that, the concentration of mobile holes in the superconducting 

region (below Tc) increases appreciably in the LD5 sample. The parameters obtained from 

BVS analysis using Eqns.(1-5) are listed in Tables 3.6(a) and (b).    
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Figure 3.7: Variation of calculated and observed average copper valence with temperature 

for La2-xDyxCa2xBa2Cu4+2xOz (x = 0.3 and 0.5). 

It is reported that, the difference between calculated and observed values of 

average copper valence determines the strain in the lattice [13] and hence this correction 

must be added in Eqn.1 for determination of global average valence. In the present case 

this deviation is ~ 0.01 / 2 = 0.005, which is added to V CuI

avg   and V
CuII

avg  respectively as 

correction. The r.m.s values of these deviations for every temperature is only ~ 0.05 v.u 

(i.e. < 0.1 v.u.) which prove the absence of strain on the bonds and also the absence of any 

structural instabilities in the samples studied.   
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Table 3.6(a): Values of ξI and 
ξ
II, average copper valence obtained from BVS calculation 

and from stoichiometry at different temperatures for LD3. 

Temperature (K) 12 K 35 K 55 K 75 K 300 K 

ξξξξ
I
 0.77 0.77 0.78 0.78 0.75 

ξξξξ
II
 0.25 0.25 0.24 0.24 0.21 

Avg

tryStoichiomeV
 2.431 2.43 2.43 2.421 2.395 

Avg

GlobleV  2.4233 2.423 2.42 2.42 2.39 

Table 3.6(b): Values of ξI and 
ξ
II, average copper valence obtained from BVS calculation 

and from stoichiometry at different temperatures for LD5.   

Temperature (K) 12 K 40 K 70 K 90 K 300 K 

ξξξξ
I
 0.71 0.68 0.72 0.73 0.83 

ξξξξ
II
 0.31 0.29 0.27 0.25 0.18 

Avg

tryStoichiomeV  2.445 2.424 2.423 2.423 2.403 

Avg

GlobleV  2.4433 2.42 2.42 2.417 2.397 
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Conclusions 

The structural studies on the La2-xDyxCayBa2Cu4+yOz (x  = 0.3 and 0.5, y = 2x) 

mixed oxide superconductors using temperature dependent neutron powder diffraction 

measurements and structural Bond Valence Sum (BVS) analysis at various temperatures in 

the range 12-300 K have been carried out. The important conclusions derived from the 

above studies are summarized as follows  

 Temperature dependent ND measurements on LD3 and LD5 samples at various 

temperatures and the Rietveld refinement of ND data reveals that, there is no structural 

transition observed in the samples up to 12K. At low temperatures, there is a unit cell 

contraction in both the samples. The scaling between Tc and r(Cu2-Cu2) bond length and 

buckling angle has been observed. It can be clearly seen that, near Tc, r(Cu2-Cu2) bond 

length and buckling angle are maximum which are found to decrease on either side of Tc 

monotonically.  

Structural Bond Valence Sum calculations performed on low temperature ND data 

at various temperatures on LD3 and LD5 samples show an increase in average Cu valence 

with the decrease in temperature. The 
Global

AvgV saturates around low temperature indicating 

an increase in the mobile charge density in the superconducting state. The values of 

average Cu valence calculated by BVS are slightly different from those of stoichiometric 

valence which can be attributed to the asymmetrical variation of Cu-O bond length. There 

is no observation of structural strain or instability at low temperatures in the La-2125 

mixed oxide superconductors. 
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Owing to the large CMR effect on the application of external applied field, mixed 

valent manganites exhibit Metal-Insulator transition (TP) accompanied by a 

Ferromagnetic-Paramagnetic transition (TC) [1,2]. In this Chapter, a detailed study on 

La0.5Pr0.2Ba0.3MnO3
 (LPBMO) manganite thin films synthesized using Pulsed Laser 

Deposition (PLD) has been made. The study of various physical properties of epitaxial 

manganite thin films is interesting for understanding the clean physics in the absence of 

various defects and polycrystalline grain boundaries and leads to their tailoring for device 

applications. In particular, a negligible low temperature magnetoresistance (MR) observed 

in epitaxial thin films as compared to the polycrystalline bulk samples has prompted the 

research community working in the field of manganites to devise ways to enhance low 

temperature MR in epitaxial thin films. It is well established fact that, the electronic 

transport and MR properties of manganites are governed by the three key factors, namely, 

tolerance factor, carrier density and the cationic size disorder (σ2) [3,4]. Several reports are 

available on the studies of A-site cationic disorder in modifying the structural, transport 

and MR properties in manganite bulk and thin films [5-9]. In this regards, our previous 

studies on the effect of cationic size variance in the polycrystalline LPBMO manganite 

system, derived from the standard La0.7Ba0.3MnO3 by partial replacement of the larger size 

La3+ by smaller Pr3+ resulting into the enhanced A-site cation size-disorder ~0.016Å2, may 

be useful to achieve large MR. In addition to this, the investigations on the LPBMO 

samples have resulted into the observation of characteristic low temperature resistivity 

minima, a very interesting phenomenon, below 50K. In order to understand the cause of 

low temperature resistivity minima and get to know more about it, during the present 

course of work, the studies on epitaxial LPBMO manganite thin films having different 

thicknesses have been carried out. The variation in grain size acts as a probe to investigate 

whether, grain boundary is the cause of low temperature electron localization. The 

structural, morphological, electronic transport and MR properties of epitaxial LPBMO thin 

films deposited on single crystalline SrTiO3 [STO] (l00) substrates using PLD method 

have been determined. The observation of the low temperature minima feature in the 

epitaxial LPBMO thin films, further motivates to study the effect of Swift Heavy Ion 

(SHI) irradiation on the properties of these samples. The results obtained are discussed in 
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light of the modifications in electronic properties; MR and the changes in low temperature 

minima are given in the following section of this Chapter. 

4.1 Synthesis  

Polycrystalline bulk sample of LPBMO was synthesized using conventional solid-

state reaction method. Dried powders of La2O3, Pr6O11, CaCO3, BaCO3 and MnO2 (all > 

99.9% pure) were mixed thoroughly in stoichiometric proportions and heated at 950° C for 

24 hrs. The obtained powder was then palletized and fired twice at 1100° C and 1200
° C for 

48 hours each, with intermediate grindings. Finally, the sample was pressed into 15 mm 

diameter pellet and sintered at 1300°C for 24 hrs and was used for bulk characterization as 

a target material for PLD of thin film deposition. The LPBMO thin films with the 

thicknesses of 500Ǻ, 1000Ǻ and 2000Ǻ were deposited on single crystal STO (100) 

substrates using a KrF excimer laser having wave length of 248nm, energy 3 J/cm2 and 

deposition rate 25nm/s obtained with laser frequency 25 Hz. The substrate-to-target 

distance was kept at 4.2cm with substrate heater temperature at 830°C. The oxygen partial 

pressure was maintained at 400 mTorr. In the deposition chamber, target was typically 

oriented at 450 to the beam so that the ablated species emitted in the plume can fall on to 

the heated substrate.  

The structure of the target and thin film samples was analyzed using x-ray 

diffraction (XRD) and microstructure was studied using atomic force microscopy (AFM) 

measurements. Using d.c. four probe resistivity technique, the electrical resistivity of all 

the films was measured i) as a function of temperature in the range of 5-325K in zero-field 

and in applied fields of 9T and ii) as a function of magnetic field (up to 9T) at various 

temperatures (5 – 300K) using RT and magneto RT measurements. 

4.2 Structural studies  

XRD 

Indexing of XRD patterns of the parent LPBMO bulk target sample reveals that, 

sample crystallizes in a distorted orthorhombic structure (space group: Pnma, no. 62) with 

lattice parameters determined as a=5.512(2) Å, b=7.791(2) Å & c=5.548(2)Å. The XRD 

patterns of the thin film were indexed using the cell parameters of bulk and are found to be 
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single phase and (100) oriented, with nearly the similar lattice parameters as the bulk. 

Figure 4.1 shows a typical Rietveld fitted XRD patterns of the LPBMO bulk and thin film 

samples. The lattice mismatch, δ, along the interface has been calculated using the 

following formula 100% ×
−

=
substrate

filmthinsubstrate

d

dd
δ   is ~ 0.23%, ~0.26% and ~1.09% for the 500Ǻ, 

1000Ǻ and 2000Ǻ films respectively. The positive values of δ-mismatch correspond to the 

tensile strain present in the films. 
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Figure 4.1: A typical Rietveld fitted XRD patterns of LPBMO bulk sample (top) and for 

500Å, 1000Å and 2000 Å LPBMO/STO thin films.  
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Morphology 

 
 

400nm

  
 

    

Figure 4.2: 2µ x 2µ AFM images of (a) 500Å (b) 1000Å and (c) 2000Å LPBMO/STO thin 

films with their respective 3D view.  
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The AFM micrographs of the LPBMO/STO thin films having film thickness 500Ǻ, 

1000Ǻ and 2000Ǻ are shown in fig.4.2. The average surface roughness in all the LPBMO 

thin films is not more than 1nm. The films are smooth exhibiting average grain size in the 

range of 50nm - 70nm.  

4.3 Resistivity and MR measurements 

Figure 4.3(a) shows the electrical resistivity for LPBMO bulk sample as a function 

of temperature in the range 5-300K in zero field and in an applied field of 1T and 5T 

respectively. The bulk sample exhibits insulator-metal transition (TP) at 173 K in 0T. 

Figure 4.3(b) shows the magnified portion of the resistivity at low temperatures to 

visualize the resistivity minima. The temperature dependences of the film resistivity have 

been plotted in fig.4.4(a) –(c) for all the LPBMO thin films. The values of  TP and peak 

resistivity (ρP) are 235K and 6.81 mΩcm for 500Ǻ, 241K and 6.63 mΩcm for 1000Ǻ and 

207K and 3.4 mΩcm for 2000Ǻ respectively. TP values are far higher as compared to their 

polycrystalline bulk counterparts implying good quality of the films. Another important 

feature of the ρ-T behavior of LPBMO thin films is the observation of characteristic low 

temperature resistivity minima around 50K. Figure 4.5 (a)-(c) shows the ρ-T plots in the 

temperature range 5-100K emphasizing the resistivity anomaly around 50K.   
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Figure 4.3: (a) Resistivity versus temperature plot for LPBMO bulk sample and  

                    (b) Magnified portion depicting the low temperature resistivity minimum. 
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Figure 4.4: ρ – T plots for LPBMO/STO (a) 500Å (b) 1000Å and (c) 2000Å thin films.  
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From the figs.4.3(b), 4.4 and 4.5, it is observed that the application of applied 

magnetic filed can not dissolve the low temperature resistivity minima, however, it shifts 

to slightly higher temperature (Tm) with the broadening of minima curvature.  

This phenomenon of low temperature resistivity minima is not a common feature 

reported in manganites. However, there are few reports available on the observation of 

such a behavior in some of the La1-xRxMnO3 (R=Ca, Sr, Ba) polycrystalline bulk and thin 

film samples [10-14]. The resistivity upturn is also observed in many systems having 

larger A-site cation disorder where the structural distortion results into the electron 

localization [12-14]. The interesting phenomenon investigated in the manganites is, the 

existence of a quantum critical point (QCP). QCPs are thought to be crucial in the 

description of certain strongly correlated electron compounds such as non-Fermi liquid 

metals, high TC superconductors, the localization problem, etc. In the case of manganites, 

the possibility of the existence of a QCP has been recently explored theoretically. Such 

studies have been focused on its relevance in the observation of colossal 

magnetoresistance effect [15,16] and in the electron localization [17,18].  

The low temperature resistivity minimum may have its origin in 

1. Grain boundary localization 

2. Kondo effect 

3. Electron-electron (e-e) scattering due to enhanced columbic interactions and weak 

localization 

The e-e scattering term is responsible for resistivity minimum and is given by  

  

    (1) 

The above mentioned equation has two terms, first term is the electron-electron (e-e) 

interaction or Coulombic term which dominates below the resistivity minimum 

temperature (Tm) where, B signifies the columbic interactions resulting in e-e scattering 

while the second term is inelastic scattering power law ρ = ρnT
n dominating at high 

temperature (above Tm).  

n

nT
BT

ρ
σ

ρ +
+

=
2/1

0

1
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In presently studied single crystalline LPBMO thin films, the possibility of Kondo 

effect and grain boundary contribution to low temperature resistivity is ruled out because 

the Kondo effect is observed due to the scattering in nonmagnetic material having 

magnetic impurity while the grain boundary effect is not present in the thin films and has 

been discussed later in discussion on MR behavior. Electron localization effect may be the 

possible cause for the observed resistivity up turn in presently studied LPBMO thin films. 

In order to check the possibility of e-e scattering, the fitting of the above equation has been 

carried out on the ρ-T plots in the temperature range 5-120K. The obtained results of this 

fits are shown in figs.4.3(b) and 4.5 and summarized in Table 4.1 for all the LPBMO bulk 

and films studied. Very low values of the goodness of fits determined by 2χχχχ  implies that 

the resistivity due to e-e scattering agrees nicely with the experimental resistivity data.   

Table 4.1: Values of Tm and various derived parameters from low temperature resistivity 

fits for the LPBMO bulk and films.  

 

 

Sample 
Magnetic 
field (T) 

Tm(K) 
0σσσσ  

( 1−−−−ΩΩΩΩ cm-1) 
B 

( 5.0ΩΩΩΩ cm0.5) 
nρρρρ                      

(ΩΩΩΩ cm/Kn) 
n 2χχχχ  

0  33 3.23416 0.13118 1.404 x 10-6 2.5055 

1  37 3.19871 0.16326 1.636 x 10-6 2.4473 

5  37 3.46138 0.17666 5.439 x 10-6 2.148 

 

500ǺǺǺǺ 

9  45 3.26279 0.24733 4.538 x 10-6 2.1387 

6.83 x 10-7 

0  39 1.18324 0.06053 3.278 x 10-6 2.48522 
1000ǺǺǺǺ 

5  45 1.21245 0.07525 6.721 x 10-6  2.25808  
1.19 x 10-7 

0  41 0.66149 0.17916 3.198 x 10-6 2.60576 

1 45 0.68517 0.18986 4.603 x 10-6 2.49862 

5  53 0.78259 0.22718 4.681 x 10-6 2.37259 
2000ǺǺǺǺ  

9  57 0.86739 0.25093 8.507 x 10-6 2.16702 

40 x 10-6 

0 49 8.41 0.0031 5 2.68 

3 53 3.06 0.0056 5 2.57 Bulk 

5 59 3.67 0.0072 4 2.55 

7 x 10-3 



 

Studies on LPBMO manganite thin films   

 

IV-10 

The above table shows the values of derived fitting parameters for the bulk and all 

thin films studied. It can be seen that, Tm shifts to higher values in higher applied fields. 

For instance, in ~500Ǻ thin film, the Tm increases from 33K at 0T to 45K at 9T which may 

be understood in terms of magnetic field induced suppression of inelastic scattering with 

increasing temperature. This is also evident from the fact the values of inelastic scattering 

exponent (n) decrease with increasing applied field which implies suppression of spin 

fluctuations indicating towards the electron-magnon scattering process. Among the other 

terms, B increases as the field which signifies the depth of minima [12]. The significance 

of terms can be understood as the contribution to Columbic interactions [12] given by the 

equation 

D

k
F

e
B

B

hh







 −−−−==== σσσσππππ 4

3

3

2

2
915.0

2

2

 

where Fσ is the screening constant for the Coulomb interactions and D is the diffusion 

constant.   

Increasing the magnetic field causes the depth of minima to increase which also 

supports the increase in Tm with magnetic field. This signifies that, at low temperatures, 

the e-e scattering term is insensitive to magnetic field whereas the exponent of inelastic 

scattering term suppresses largely with increasing magnetic field. Our results agree quite 

well with the theoretical predictions of increase in Tm with the applied field. However, 

there have been some reports on the decreases of B in higher fields which is beyond the 

scope of this law [13]. We do not observe such anomalous behavior and our experimental 

and reported theoretical predictions agree very well which justifies that electron-electron 

scattering is the possible cause of low temperature resistivity minima. 

Magnetoresistance  

MR vs. H isotherms at various temperatures are shown in fig.4.6 for LPBMO bulk 

and thin films in order to compare the observed MR behavior of bulk with the epitaxial 

thin films. It can be seen that, films possess maximum MR ~ 90% in the vicinity of TP 

(~200K) which decreases with decreasing temperature. The temperature dependence of 

MR can be discussed as follows   
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Figure 4.6: A comparison of MR% vs. applied magnetic field for LPBMO thin films of 

different thicknesses and bulk sample at various temperatures. 
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At low temperature, 5K, LPBMO bulk exhibits low field MR (LFMR) as high as 

30% where as the thin films exhibit almost negligible MR. At this low temperature LFMR 

is attributed to the grain boundary contribution [19,20]. The negligible LFMR in LPBMO 

films suggests the absence of grain boundary contribution to MR which further supports 

our justification that, the low temperature minima does not have its origin at grain 

boundaries. The LPBMO bulk exhibit high field MR (HFMR) ~ 60% whereas the values 

of HFMR are ~ 30%, 20% and 10% for the 500Ǻ, 1000Ǻ and 2000Ǻ LPBMO films 

respectively. At low temperature HFMR is ascribed to the reorientation of disordered spins 

at grain interface which in turn depends on the connectivity between the grains and on the 

stiffness of the aligned blocked spins at the grain surface originating due to the poor 

connectivity between the grains, pinning of Mn spins at the grain surface, etc [21]. At 

intermediate temperature, in the range 100-150K, MR increases subsequently with field 

and becomes maximum at TP owing to the suppression of spin fluctuations at Mn-O-Mn 

bond. At all temperatures, the observed subsequent rise in MR with the film thickness has 

been attributed to the lattice mismatch, δ, which increases with thickness. 

In summary, our measurements on the series of LPBMO bulk and thin films 

indicate the existence of electron localization by Ba doping. These results open new 

perspectives in order to understand better, the electron localization processes in 

manganites and more in general in the systems having large cationic size disorder. 

4.4 SHI irradiation studies on LPBMO films: 

 A comparative study of Pristine and Irradiated films 

To study the Swift Heavy Ion (SHI) irradiation induced modifications in the low 

temperature resistivity minima in samples studied having varying size-disorder at A-site, 

detailed SHI studies have been carried on the LPBMO thin films with varying film 

thickness and SHI irradiation dose. Since the SHI is well known tool for tailoring the 

material properties by the creation of controlled defects as vacancies, columnar defects 

and localized strain on to the materials, it is responsible for the modifications in physical 

properties of materials [22,23].  
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While passing through the materials, accelerated ions loss their energies by mainly 

two kinds of interactions, namely, electronic energy loss [Se = dEe/dx] which dominates at 

higher ion energies (~MeV) and nuclear energy loss [Sn = dEn/dx] dominating at lower ion 

energies (~keV). The possible range of the ions in the materials, Se and Sn, estimated in the 

present case, using the software Stopping Range of Ion in Matter (SRIM) 2003 

programme [24], are ~ 23 µm, 13.3 keV and 36.9 eV respectively. This implies that almost 

all ions can pass through the film thickness and hence the observed irradiation effects can 

be analyzed as consequence of ion induced electronic energy transfer. The reported 

electronic energy threshold, calculated using Szenes thermal spike model, for LCMO is 

~6.6 keV/nm [25] which is far lower than the calculated electron energy loss Se for 

LPBMO. 

SHI irradiation was performed at Inter University Accelerator Centre (IUAC), New 

Delhi, India, using a 15 UD tandem accelerator using 200 MeV Ag+15 ion beam with a 

beam current ~ 0.3 pnA and in ion doses of 5×1010, 5×1011 and 1×1012 ions/cm2. The 

irradiations were performed at an angle of 5°±1° away from the c axis to avoid channeling. 

The ion beam was focused on to a spot of 1mm×1mm and scanned over an area of 

10mm×10mm using magnetic scanner to achieve dose uniformity across the sample area 

which was typically 2.5mm×2.5mm. The structural and microstructural properties of 

irradiated LPBMO thin films were studied by XRD and AFM measurements. Using d.c. 

four probe resistivity technique, the electrical resistivity of all the films was measured i) as 

a function of temperature in the range of 5-325 K in zero-field and in an applied field of          

9 T and ii) as a function of magnetic field (up to 9 Tesla) at various temperatures [PPMS, 

Quantum Design]. 

4.4.1 Structure and morphology 

Structure  

The structure of the pristine and irradiated LPBMO/STO thin films was examined 

using XRD. Figure 4.7 shows the XRD patterns of the thin films indexed using bulk               

cell parameters of LPBMO  showing  an  epitaxial   (h00) growth for the pristine and films  
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Figure 4.7: XRD patterns for pristine and irradiated LPBMO/STO (a) 500Å (b) 1000Å 

and (c) 2000 Å thin films. 
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irradiated with 5 x 1010 ions/cm2 and for 1 x 1012 ions/cm2 Ag ion doses. Irradiation has 

significant effect on the peak intensity and FWHM of thin films. The peak intensity 

decreases and FWHM increases with irradiation. In contrast, in 2000Ǻ films, there is an 

increase in peak intensity and decreasing FWHM with irradiation of 1 x 1012 ions/cm2. 

The calculated lattice mismatch, δ, along the interface are ~ 0.23%, ~0.26% and ~1.09% 

for the 500Ǻ, 1000Ǻ and 2000Ǻ pristine films respectively which become ~ 0.30%, 0.29% 

and 1.25% respectively with 1x 1012 ions/cm2 ion irradiation. The values of lattice 

mismatch are tabulated in Table 4.2. 

The increase of tensile strain along with the suppression in peak intensity and 

increase of FWHM suggests that, the crystallanity of these films is adversely affected by 

the SHI irradiation. 

Table 4.2: The values of lattice mismatch, δ, for the pristine and irradiated LPBMO/STO 

thin films. 

Sample Thickness Irradiation dose Mismatch (δδδδ) 

Pristine ~ 0.23% 

5×1010 ions/cm2 ~ 0.28% 

 

LPBMO/STO 

 

500Ǻ 

 1×1012 ions/cm2 ~ 0.30% 

Pristine ~ 0.26% 

5×1010 ions/cm2 ~0.29% 

 

 
LPBMO/STO 

 

1000Ǻ 

 1×1012 ions/cm2 ~ 0.30% 

Pristine ~1.09% 

5×1010 ions/cm2 ~1.25% LPBMO/STO 2000Ǻ  

1×1012 ions/cm2 ~ 0.89% 
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Surface morphology 
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Figure 4.8(a): 2µ x 2µ AFM images of 500Å pristine (top) and 1×1012 ions/cm2 irradiated 

((bottom) LPBMO/STO thin films with their respective 3D view.  

Pristine    
Surface roughness ~1 nm 
Grain Size ~ 50 nm 

400nm 

1 x 1012 ions/cm2    
Surface roughness ~12 nm 
Grain Size ~ 35 nm 
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400nm

  
 

      
 

400nm

 

Figure 4.8(b): 2µ x 2µ AFM images of 1000Å pristine (top), 7.5×1010 ions/cm2 irradiated 

(middle) and 1×1012 ions/cm2 irradiated (bottom) LPBMO/STO thin films 

with their respective 3D view.  

Pristine    
Surface roughness ~1 nm 
Grain Size ~ 50 nm 

1 x 1012 ions/cm2    
Surface roughness ~13 nm 
Grain Size ~ 30 nm 

5×1010 ions/cm2 
Surface roughness ~14 nm 
Grain Size ~ 45 nm 



 

Studies on LPBMO manganite thin films   

 

IV-18 

    
 

    
 

400nm

        

Figure 4.8(c): 2µ x 2µ AFM images of 2000Å pristine (top), 7.5×1010 ions/cm2 irradiated 

(middle) and 5×1011 ions/cm2 irradiated (bottom) LPBMO/STO thin films 

with their respective 3D view.  

400nm 

Pristine    
Surface roughness ~1 nm 
Grain Size ~ 70 nm 

14nm

5 x 1011 ions/cm2    
Surface roughness ~21 nm 
Grain Size ~ 35 nm 

400nm 

5×1010 ions/cm2 
Surface roughness ~16 nm 
Grain Size ~ 55 nm 
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The AFM micrographs of the pristine and irradiated LPBMO thin films are shown 

in fig.4.8(a)-(c). From the AFM pictures, it can be clearly seen that the surface 

morphologies of the film deteriorates after the irradiation which has been described as 

follows 

The value of average surface roughness ~ 1 nm in all the pristine LPBMO films 

becomes ~12nm and 13nm in 1x1012 ions/cm2 ion irradiated 500Å, 1000Å and 2000Å 

films respectively where as the values of average grain size varies marginally in the range 

35nm-45nm due to 1x1012 ions/cm2 ion irradiation. It is well established fact that, SHI 

irradiation creates the various types of defects while passing through the material. In the 

case of present study, we have observed the formation of the columnar track like defects 

having average column radius ~ 6±1 nm in 2000Å films with irradiation dose of 5 x 1010 

ions/cm2 and 5 x 1011 ions/cm2, which can be clearly seen from fig.4.8(c). In 500Å and 

1000Å thickness films clustering of point defects has been observed [Figs.4.8(a) and (b)]. 

The arrow in fig.4.8(c) indicates the magnified portion of the columnar region observed in 

the AFM micrographs. These effects of SHI may affect the electronic and magnetic 

properties of the thin films studied which in turn may modify the resistivity and decrease 

TP and MR in these films after the irradiation [22,23].  

4.4.2 Resistivity and MR measurements 

 The temperature dependent resistivity behavior of pristine and irradiated LPBMO 

thin films are plotted in fig.4.9 (a), (b), (c) and (d). The values of TP and peak resistivity 

determined from these plots are given in Table 4.2. From figs.4.9 and Table 4.3, it can be 

observed that, TP decreases while the peak resistivity increases with the increase in film 

thickness and subsequent increase in irradiation dose. The subsequent drop in TP along 

with appreciable rise in resistivity with irradiation can be attributed to the observed 

increase of tensile lattice strain which indicates that, the irradiation induced defect 

formation, creates considerable changes in the lattice which accommodates the electronic 

and magnetic anisotropies and are reflected in physical properties of the films.  
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Figure 4.9: ρ – T plots for LPBMO/STO thin films with different thicknesses for 

irradiation dose of (a) Pristine (b) 5 x 1010 ions/cm2 (c) 5 x 1011 and             

(d) 1 x 1012 ions/cm2 ions/cm2 at various temperatures. 
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Table 4.3: The values of TP and ρP for pristine and irradiated LPBMO/STO films.  

 

 

 

Film 

Thickness (ǺǺǺǺ) 
TP (K) ρρρρP (mΩΩΩΩcm) 

500 235 6.8178 

1000 241 6.6325 Pristine 

2000 207 13.4038 

500 234 10.89 

1000 209 11.7074 
5 x 1010 

ions/cm2 

2000 180 40.6720 

500 228 5.5899 

1000 212 10.9807 
5 x 1011 

ions/cm2 

2000 174 43.5611 

500 231 9.0534 

1000 228 12.9867 
1 x 1012 

ions/cm2 

2000 213 46.6747 
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A comparison of the resistivity plots in zero applied filed for the 500Ǻ, 1000Ǻ and 

2000Ǻ film thickness is given in fig 4.9(a), (b), (c) and (d) for Pristine and 5 x 1010 

ions/cm2, 5 x 1011 ions/cm2, 1 x 1012 ions/cm2 films respectively. The TP and resistivity of 

500Ǻ and 1000Ǻ pristine films remain almost same while in 2000Ǻ film, there is an 

appreciable increase in the peak resistivity.  

The irradiation with the ion dose of 5 x 1010 ions/cm2, 5 x 1011 ions/cm2 and  1 x 

1012 ions/cm2 results in an increase in the peak resistivity of all the films appreciably but 

this effect is more prominent in 2000Ǻ film.    

The significant increase in the resistivity with the corresponding decrease in TP, 

can be understood from the change in structure and grain morphology of these films. In 

addition, the observed formation of columnar tracks in 2000Ǻ film leads to the 

amorphization of the grains along the ion path thereby introducing the structural disorder 

which is more prominent at the periphery of the column. This causes a comparative larger 

lattice mismatch and leading to the increase of resistivity and drop in TP.   

Further, it can be observed from fig.4.9 that, low temperature resistivity minima 

becomes more prominent with the increase in irradiation dose. The ρ-T plots depicting 

resistivity minima along with the fits to Eqn.(1), in the temperature range 5-120K for all 

the LPBMO films studied are shown in figs.4.10(a),(b) and (c). The parameters obtained 

from these fits are tabulated in Tables 4.4, 4.5 and 4.6 for the irradiation dose of                

5x1010 ions/cm2, 5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 respectively.   
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Figure 4.10(a): Low temperature resistivity fits to n

nT
BT

ρ
σ

ρ +
+

=
2/1

0

1
 law for               

5 x 1010 ions/cm2 ion irradiated LPBMO/STO films. 
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Table 4.4: Values of Tm and various derived parameters from low temperature resistivity 

fits for the films irradiated with the Ag ion dose: 5 x 1010 ions/cm2 

 

 

 

Sample 
Magnetic 

field (T) 
Tm(K) 

0σσσσ  

( 1−−−−ΩΩΩΩ cm-1) 

B 

( 5.0ΩΩΩΩ cm0.5) 

nρρρρ                      

(ΩΩΩΩ cm/Kn) 
n 2χχχχ  

0 34 1.99546 0.10269 4.9172 x 10-6 2.3500 5.5393-7 

1 35 2.03168 0.09743 3.5422 x 10-6 2.3923 1.3566-6 

3 36 2.11499 0.1019 2.7974 x 10-6 2.4058 1 x 10-6 

5 39 2.19937 0.10324 2.184 x 10-6 142.42 7 x 10-7 

7 41 2.23548 0.11864 4.4177 x 10-6 2.2537 3 x 10-7 

500ǺǺǺǺ 

9 41. 2.18364 0.13287 6.0126 x 10-6 2.1695 1 x 10-7 

0 44 0.76451 0.21542 40 x 10-6 2.5116 3 x 10-5 

1 46 0.79295 0.22812 6.9012 x 10-6 2.3735 2 x 10-5 

3 48 0.88393 0.24917 10 x 10-6 2.2071 5 x 10-6 

5 51 0.9782 0.25849 10 x 10-6 2.1444 1 x 10-6 

7 53 1.03263 0.27304 10 x 10-6 2.0660 1 x 10-6 

1000ǺǺǺǺ 

9 58 0.95323 0.303 20 x 10-6 1.9385 6 x 10-7 

0  41 -0.07212 0.06716 10 x 10-6 2.7826 

1 43 -0.07885 0.07695 30 x 10-6 2.5362 

5 55 -0.0831 0.10047 70 x 10-6 2.2194 

7 57 -0.07015 0.10732 110 x 10-6 2.2537 

2000ǺǺǺǺ 

9 63  2.18364 0.13287 160 x 10-6 2.1695 

14 x 10-4 
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Figure 4.10(b): Low temperature resistivity fits to n

nT
BT

ρ
σ

ρ +
+

=
2/1
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1
 law for               

5 x 1011 ions/cm2 ion irradiated LPBMO/STO films. 
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Table 4.5: Values of Tm and various derived parameters from low temperature resistivity 

fits for the films irradiated with the Ag ion dose: 5 x 1011 ions/cm2 

 

 

Sample 
Magnetic 

field (T) 

 

Tm(K) 
0σσσσ  ( 1−−−−ΩΩΩΩ cm-1) 

B 

( 5.0ΩΩΩΩ cm0.5) 

n
ρρρρ                  

(10-5ΩΩΩΩ cm/Kn) 
n 2χχχχ  

0 35 1.55158 0.07611 2.58x10-6 2.49957 

3 42 1.56872 0.08673 5.053x10-6 2.31592 

5 44 1.59838 0.0915 4.518x10-6 2.29998 

500ǺǺǺǺ 

7 46 1.65821 0.09471 2.99x10-6 2.34696 

6.5 x 10-7 

0 43 0.9193 0.19578 3.907x10-6 2.50753 

1 45 0.94627 0.20516 5.7x10-6 2.407 

3 47 1.02599 0.22634 1x10-5 2.207 

5 49 1.1128 0.23788 1x10-5 2.1423 

1000ǺǺǺǺ 

7 55 1.19119 0.24905 1x10-5 2.0803 

6.957x10-6 

0 52 -0.04893 0.0349 8.462x10-6 2.94915 

1 53 -0.0576 0.04204 0 x 10-61 2.78761 

3 56 -0.07243 0.05705 40 x 10-6 2.4493 

5 59 -0.08163 0.06981 50 x 10-6 2.28203 

2000ǺǺǺǺ 

7 63 -0.08813 0.08168 0 x 10-66 2.16135 

6.04 x 10-3 
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Figure 4.10(c): Low temperature resistivity fits to n

nT
BT

ρ
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ρ +
+

=
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1
 law for               

1 x 1012 ions/cm2 ion irradiated LPBMO/STO films. 
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Table 4.6: Values of Tm and various derived parameters from low temperature resistivity 

fits for the films irradiated with the Ag ion dose: 1 x 1012 ions/cm2 

 

 

 

 

 

 

 

 

Sample 
Magnetic 

field (T) 
Tm(K) 

0σσσσ  

( 1−−−−ΩΩΩΩ cm-1) 

B 

( 5.0ΩΩΩΩ cm0.5) 

n
ρρρρ                      

(ΩΩΩΩ cm/Kn) 
n 2χχχχ  

0 37 2.10324 0.10117 4.917 x 10-7 2.8062 

5 45 2.24367 0.14843 5.054 x 10-6 2.2348 500ǺǺǺǺ 

9 50 2.30841 0.17363 6.347 x 10-6 2.1332 

1  x 10-5 

0 38 1.39106 0.06255 4.957 x 10-6 2.8875 

1 40 1.38033 0.07828 3.109 x 10-7 2.4918 

5 48 1.48193 0.0881 4.26 x 10-6 2.3496 

 

1000ǺǺǺǺ 

9 53 1.51817 0.10562 6.191 x 10-6 2.21548 

7.4 x 10-6 

0 47 0.15164 0.0275 3.256 x 10-6 2.9168 

1 49 0.18495 0.026 7.687 x 10-6 2.6932 

5 53 0.17612 0.04018 60 x 10-6 2.1451 

2000ǺǺǺǺ 

9 57 0.17538 0.0488 90 x 10-6 1.99315 

1.14 x 10-3 
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It is seen that, Tm shifts to higher values with increasing irradiation dose, for e.g. in 

2000Å film, the Tm increases from 41K for pristine to 52 K and 47K for the irradiated 

films [Table 4.1, 4.4, 4.5 and 4.6]. This may be understood in terms of irradiation induced 

suppression of inelastic scattering ρn which decreases with subsequent irradiation doses. 

Among the other terms, the Coulombic interaction coefficient, B, signifies the depth of 

resistivity minima which decreases with successive irradiation dose and is reflected in the 

broadening of the resistivity upturn. 

The fitting of the ρ-T data of 2000Ǻ films irradiated with 5x1010 ions/cm2 and          

5 x 1011 ions/cm2 shows negative 0σσσσ  ( 1−−−−ΩΩΩΩ cm-1) values, the explanation of which needs 

further investigations.   

Magnetoresistance 

The magnetotransport behavior of all the LPBMO/STO films has been studied and 

the MR vs. H isotherms at different temperatures for the 500Ǻ, 1000Ǻ and 2000Ǻ pristine 

and irradiated films are shown in fig.4.11(a), (b) and (c) respectively. The temperature 

dependence of MR behavior is discussed in the following paragraph.  

The observed maximum values of MR at 195K (~ TP) for the 500Ǻ, 1000Ǻ and 

2000Ǻ are tabulated in Table 4.7. It can be observed from the MR vs. H plots that, there is 

no remarkable variation in MR with irradiation dose in all the films studied whereas with 

increasing the film thickness maximum MR is observed for 2000Ǻ film. It has been 

illustrated from the fig.4.11(a), (b) and (c) that, variation in maximum MR (~TP) is 

insensitive to the irradiation but has significant enhancement at low temperatures in 

2000Ǻ films. In addition to this, an appreciable MR at low temperature, 5K, is observed in 

all the films irradiated with 5 x 1010 ions/cm2 and 5 x 1011 ions/cm2 while MR gets 

suppressed with 1 x 1012 ions/cm2 ion dose.   

From the MR vs. H studies, it can be summarized that, the irradiation has no 

remarkable effect for the low thickness films while in higher thickness film it gets 

modified appreciably at low temperatures.    
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Figure 4.11(a): MR vs. H isotherms at various temperatures for pristine and irradiated 500Å 

LPBMO/STO thin films. 
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Figure 4.11(b): MR vs. H isotherms at various temperatures for pristine and irradiated 

1000Å  LPBMO/STO thin films. 
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Figure 4.11(c): MR vs. H isotherms at various temperatures for pristine and irradiated 

2000Å  LPBMO/STO thin films. 
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Table 4.7:  Values of maximum MR (at 9T) observed at 5K, 100K and 195K (~TP) for 

pristine and irradiated LPBMO/STO films      

 

 

 

 

 

 

 

 

 

Thickness  
Temperature 

(K) 
Pristine 

5x1010 

ions/cm2 

5x1011 

ions/cm2 

1x1012 

ions/cm2 

5 9% 10% 12% 16% 

100 25% 29% 30% 30% 500ǺǺǺǺ 

195 77% 75% 70% 78% 

5 22% 25% 24% 14% 

100 38% 45% 44% 30% 1000ǺǺǺǺ 

195 79% 90% 89% 79% 

5 28% 60% 69% 30% 

100 46% 75% 79% 49% 2000ǺǺǺǺ 

195 90% 90% 89% 88% 
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4.4.3. TCR and FCR studies 

For any temperature and field sensing applications, the values of TCR and FCR 

decide its efficiency and usefulness. For this purpose, we have determined the TCR and 

FCR values from resistivity and MR plots which are shown in figs.4.12(a) and (b).  

The variation of TCR with temperature can be seen from fig.4.12(a) for pristine 

and irradiated LPBMO films. The values of TCR are maximum in the temperature range 

of 170-210K. The positive values of maximum TCR are 3%, 2.5% and 1.6% for 500Å, 

1000Å and 2000Å pristine films respectively which become 3%, 2.5% and 2% for ion 

dose of 5 x 1010 ions/cm2, 2%, 2.1% and 1.7% for ion dose of 5 x 1011 ions/cm2 and 3%, 

2.5% and 2% for 1 x 1012 ions/cm2 ion dose respectively. At low temperature (<10K), the 

negative maximum TCR values are ranging between 0 to -1% for all the films except 

2000Å ion irradiated films while the negative maximum TCR around 200K is ~ -1-2% for 

all the films. At very low temperature, 2000Å film exhibits appreciable rise in negative 

TCR ~ - 4.5% for 5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 whereas, it becomes ~ -12% for 

the irradiation dose of 5 x 1011 ions/cm2.  

The variation in FCR with H at 195K is shown in fig.4.12(b) for all the pristine and 

irradiated films. The values of maximum FCR are ~ - 1-2% for 500Å pristine and 

irradiated films. With increment of film thickness from 500Å to 1000Å, the value of FCR 

increases. The values of FCR varies from -3.5% to -1.5% for 1000Å and -0.05%                

to -2.25% for 2000Å pristine and irradiated films.   
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Figure 4.12(a): TCR (%K-1) vs. T(K) plots for pristine and irradiated LPBMO/STO films. 
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Figure 4.12(b): FCR (%T-1) vs. H(T) plots for pristine and irradiated LPBMO/STO films. 
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Conclusions 

In summary, the studies on La0.5Pr0.2Ba0.3MnO3 (LPBMO) manganite thin films on 

single crystalline STO (100) substrates grown using PLD technique are presented in this 

chapter. The important conclusions derived from the above studies are summarized as 

follows   

Firstly, the dependence of structural, microstructural, electronic and 

magnetotransport properties of thickness dependent LPBMO manganite films are 

discussed. The electronic and MR properties reveals that, the TP value decreases along 

with the increase in resistivity with increasing film thickness from 500Ǻ to 2000Ǻ. The 

investigations on LPBMO/STO films resulted into the observation of low temperature 

resistivity minima below 50K, similar to that observed in bulk counterpart which is not 

very common feature in the manganites. Based on our studies, it turns out that, low 

temperature anomalous resistivity behavior is due to the electron-electron localization. 

Some implications and parameters derived from electron-electron localization are, 

� The application of magnetic field do not dissolve the resistivity minima  

� The Tm shifts to slight higher temperature with H with corresponding decrease in 

resistivity and broadening of the minima   

The SHI irradiation with 200 MeV Ag15+ ions does not affect the low temperature 

minima and Tm increases with the increase in irradiation dose. The structural, electronic 

and magnetotransport properties of all the thin films reveal that, the peak resistivity 

increases with the decrease in TP. Also, the effect of irradiation is not very significant on 

the MR behavior of films studied. Further, below 100K, MR shows significant 

enhancement in 2000Ǻ films irradiated with an ion dose of 5 x 1011 ions/cm2 and 5 x 1011 

ions/cm2 which introduces electronic and magnetic anisotropies in these films by the 

creation of columnar defects. However, higher irradiation dose has some relaxation effect 

which is clear from the resistivity and MR behavior. In addition to this, it is observed that, 

irradiation has comparatively less effect on the structure and transport properties of lower 

thickness films as compared to higher thickness films.   
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In this Chapter, the studies on La0.7R0.3MnO3 (LRMO) (R = Ca, Sr and Ba) 

manganite thin films synthesized using novel chemical synthesis method have been 

discussed. Usually high quality epitaxial manganite thin films are grown by vacuum 

deposition techniques like Pulsed Laser Deposition (PLD) [1,2], RF sputtering [3], 

Metallorganic Chemical Vapour Deposition (MOCVD) [4] or Molecular Beam Epitaxy 

(MBE) [5]. The microstructural and physical properties of manganite thin films are 

different from their bulk counterparts and are found to be dependent on the processing 

techniques, growth conditions, environment, post-annealing, substrate and film thickness 

[6,7]. 

Chemical Solution Deposition (CSD), consisting of novel sol-gel route and 

coprecipitation methods using metal organic decomposition (MOD), for preparation of 

homogeneous bulk ceramics and their thin films, has number of advantages over 

conventional vacuum deposition techniques. CSD method is cost-effective, composition 

compatible, yields stochiometrically predefined compounds and provides the varieties of 

alternative precursors to choose, contains wide range of concentration, viscosity and pH, 

easier to set up and handle. The adhesion of the wet films to the substrate optimizes the 

thin film properties grown using CSD method. However, the method does not offer 

particle size control but up to some extent, results in the monodispersed particles. Hence, 

CSD method becomes an alternative for depositing magnetoresistive manganite thin films.  

Several reports are available on processing, structural, morphological, electronic transport 

and magnetoresistance (MR) studies on La0.7Rn0.3MnO3 (Rn = Ca
2+, Sr2+, Ba2+) thin films 

grown using the chemical route [8,9]. However, very few reports are available on the 

studies on varying synthesizing conditions on the microstructure and MR properties of 

CSD grown manganite films [10-12]. In this context, during the course of present work, 

La0.7Sr0.3MnO3 (LSMO) thin films were deposited on LaAlO3 [LAO] (h00) single crystal 

substrates by CSD method and the effect of processing parameters, annealing temperature 

and time on the microstructure, electrical resistivity and magnetotransport properties of 

LSMO films were studied. The obtained results on LSMO films, motivated further, to 

synthesize LRMO (R = Ca and Ba) films using CSD route and to study their structural, 

microstructural, electronic and magnetotransport studies. Finally, the Swift Heavy Ion 

(SHI) irradiation studies on all the films have been carried out which manifest the thin film 
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transport and MR properties for their application possibilities as uncooled bolometers and 

magnetic field sensors. 

5.1  Synthesis 

The high purity Lanthanum acetate hydrate [La(CH3COO)3⋅xH2O], Strontium 

acetate hydrate [Sr(CH3COO)2⋅xH2O] and Manganese acetate hydrate 

[Mn(CH3COO)2⋅xH2O] [all 99.9% pure] were dissolved stochiometrically (0.7 : 0.3 : 1) in 

acetic acid and distilled water (1:1 by volume) followed by the stirring at elevated 

temperature (~80°C, 10 min.) to obtain a clear 0.2-0.6M precursor solution which was  

used for film deposition. Depositions of LSMO films on highly polished LAO (h00) single 

crystal substrates were done using automated spin coater at 6000 rpm for 20 sec followed 

by drying and calcination at 120°C and 350°C for 30 min and final annealing in oxygen in 

the temperature range of 700°C–1000°C. The annealing time was kept as 6h and 12h for 

the LSMO films annealed at 1000°C. Thickness per coating was ~ 800Ả, estimated using 

DESJECT thickness profilometer. The spin coating process was then repeated once to 

obtain the films with desirable film thickness ~ 1500Ả. Figure 5.1 shows the flow diagram 

of the CSD method used for the deposition of LSMO films.  

      

 

 

 

                                                                                    

 

                                                                                           

 

                                                                                             

 

Figure 5.1: Flow diagram of CSD method used for La0.7Sr0.3MnO3 film deposition.  
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 The detailed study on the effect of synthesis parameters on structure, morphology, 

resistivity and MR properties of LSMO thin films synthesized following the above 

mentioned route [Fig. 5.1], is given in sections 5.1.1. and 5.1.2.  

All the LSMO films were characterized by X-ray diffraction (XRD) and atomic 

force microscopy (AFM) measurements for their structural and microstructural properties. 

Using d.c. four probe resistivity technique, the electrical resistivity of all the films was 

measured i) as a function of temperature in the range of 5-425K in zero-field and in 

applied fields of 5T and 8T respectively and ii) as a function of magnetic field (up to 9T) 

at various temperatures (5 – 300K) using RT and magneto RT measurements.  

5.1.1 Effect of annealing temperature   
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Figure 5.2: XRD patterns of LSMO/LAO films annealed at 700°C, 800ºC and 1000°C. 
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The typical indexed XRD patterns of LSMO films on LAO (h00) single crystal 

substrates annealed at different temperatures are shown in fig.5.2. All the LSMO films are 

epitaxially c-axis (00l) oriented and indexed using bulk LSMO cell parameters                         

[a = 5.471(1)Ǻ, b = 7.771(2)Ǻ and c = 5.5503(1)Ǻ]. The values of lattice mismatch 

between the LSMO films and LAO substrates determined using the formula, 

100% ×
−

=
substrate

filmthinsubstrate

d

dd
δ  are -2.65%, -1.90 % and -1.89 % for the films annealed at 700°C, 

800°C and 1000°C respectively. This suggests a decrease in compressive strain in the 

films with increasing annealing temperature. The intensity of the diffraction peaks 

increases while FWHM value decreases with increasing annealing temperature which 

signifies the considerable improvement in the crystalline structure of the LSMO films with 

annealing temperature.  

Microstructure 

The AFM pictures recorded to study the microstructure of LSMO thin films 

annealed at different temperatures are shown in fig.5.3. The distinct grain structure can be 

observed for the films annealed at various temperatures which shows domain like growth 

composed of faceted grains. Annealing temperature manifests the growth and alignment of 

grains into the domains which can be seen from fig.5.3. In the film annealed at 700°C, 

grains are in preliminary stage and are partially grown. The growth, alignment and size of 

the grains and domains become more significant in 800°C and 1000°C annealed films. The 

observed surface roughness for 700ºC film is ~ 31nm which reduces to 13nm and 16nm 

for the LSMO films annealed at 800°C and 1000°C respectively. The values of average 

grain size obtained from AFM pictures are 50nm, 70nm and 90nm for the films annealed 

at 700°C, 800°C and 1000°C respectively. A significant enhancement in grain size would 

result in a decreased grain boundary region and, consequently, an improved electronic 

transport at the grain boundaries which accounts for reduction of resistivity in CSD grown 

LSMO thin films at higher annealing temperature.  
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Figure 5.3: 2µm x 2µm AFM image of LSMO/LAO films annealed at (a) 700°C (b) 

800°C and (c) 1000°C with their respective surface roughness histogram. The 

two arrowheads define an atomic step. 
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RT & Magneto RT 

All the LSMO thin film samples were characterized for electrical and 

magnetotransport behavior in the temperature range 5-425K. Figure 5.4 shows resistivity 

(ρ) vs. temperature (T) plots for LSMO films in zero-field and in a field of 5T and 8T. All 

the LSMO films exhibit Insulator-Metal transition (TP) at the temperatures higher than 

340K. The values of processing parameters, resistivity at 5K [ρ5K], peak resistivity [ρP] 

and TP in zero applied field, for the films annealed at different temperatures are 

summarized in Table 5.1. Thin films annealed at lower temperatures possess broad I-M 

transition which sharpens with increasing annealing temperature. The electrical resistivity 

decreases along with the enhancement in TP with increasing annealing temperature from 

700°C to 1000°C which is in good agreement with the reports available on the effect of 

annealing temperature on transport properties of manganite thin films [13]. In zero applied 

magnetic field, the peak resistivity suppresses by a factor of ~102, whereas at 5K 

resistivity reduction is ~103 as annealing temperature increases from 700°C to 1000°C 

respectively. Also, it can be seen from the ρ – T curves that, in the temperature range                

5-300K, applied field of 5T and 8T do not modify resistivity behavior from that of the zero 

field resistivity for 1000°C annealed film. Further, the LSMO thin film, annealed at 

700°C, exhibits low temperature resistivity minimum below 50K which disappears in the 

films annealed at 800°C and 1000°C. This low temperature resistivity behavior, in 700°C 

annealed film, can be attributed to the spin disorder scattering consisting of both spin 

polarization and grain boundary tunneling [14, 15]. 

Table 5.1: Values of processing parameters, resistivity at 5K [ρ5K], peak resistivity [ρP] 

and TP for LSMO/LAO thin films in zero applied field.  

Sample 
Annealing 

Temperature 

Annealing 

time 
ρ5K (mΩΩΩΩcm) ρP (mΩΩΩΩcm) TP (K) 

LSMO 700°C 12h 294 1100 341 

LSMO 800°C 12h 67 300 353 

LSMO 1000°C 12h 0.3 9 377 
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Figure 5.4: ρ – T plots for LSMO/LAO films annealed at 700°C, 800°C and 1000°C in                

H  = 0, 5 and 8T fields. 
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Magnetoresistance 

Figure 5.5 shows MR vs. H isotherms at various temperatures for all the LSMO 

thin films annealed at various temperatures. From the plots it can be seen that, all the films 

exhibit maximum MR in the vicinity of TP which decreases with decreasing temperature. 

The temperature dependence of MR has been discussed as follows,  

i) At low temperature of 5K, the films annealed at 700°C and 800°C exhibit low field 

MR (LFMR) ~ 5% (in a field of < 1T). This uncharacteristic MR behavior of an 

oriented film partially resembles the LFMR behavior of polycrystalline samples, the 

origin of which is attributed to the intergrain spin polarized tunneling (SPT) of charge 

carriers that depends upon the alignment of the magnetic moments of the 

ferromagnetic domains [16,17]. It is interesting to note that, at 5K, LFMR of the film 

annealed at 1000°C is almost zero. Also, the high field MR (HFMR) (in a field >1T) at 

5K decreases from ~ 15% for film annealed at 700°C to nearly 5% for the film 

annealed at 1000°C. This points towards the enhancement in connectivity between the 

grains, reduction in pinning of Mn-ion spins at grain boundaries, etc [18,19].  

ii) At intermediate temperatures in the range 100-240K, the film annealed at 700°C shows 

LFMR < 3% while the 800°C and 1000°C annealed films show nearly zero MR. The 

HFMR is nearly 20% for film annealed at 700°C which reduces to 16% and 7%, 

respectively, for the films annealed at 800°C and 1000°C temperatures.    

iii) At room temperature (RT), the LFMR < 3% is observed for all the LSMO films 

annealed at different temperatures. The HFMR observed for the 700°C and 800°C 

annealed film is ~23%, while it is ~16% for 1000°C annealed film. Such an 

enhancement in MR at RT may be attributed to the field induced delocalization of 

charge carriers due to the structural disorder at grain boundaries and at Mn-O-Mn bond 

angles [16,19].  

The above-mentioned results on MR behavior show suppression in MR at low 

temperatures and its enhancement at high temperatures around RT, signifying the 

importance of grain boundary contribution to MR. Such a MR behavior can be understood 

using the two channel model proposed by the De Andres et al [18]. There exists two kinds 

of conduction channels in the samples and all of them are parallel.  
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Figure 5.5: MR vs. H isotherms for LSMO/LAO films annealed at 700°C, 800ºC and 

1000°C.   
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One kind is related to the intrinsic transport properties of the system and is achieved 

through good contacts between grains. The other kind of channels shows energy barriers 

that inhibit metallic conduction at all temperatures due to poor connectivity, disorder, 

and/or contamination at the grain surface that inhibit the metallic conduction. The 

conduction will be effective for the less resistive one because these are parallel channels.  

 

Figure 5.6:  Scheme for the conduction in two granular systems with a poor connectivity 

(left) and a better connectivity (right). Lower part: the equivalent circuits 

with two resistances in parallel: RM (for good channels) and RI (for bad 

channels). The curved arrows in the upper part are related to good channels. 

Moreover, suppression of LFMR indicates further the improvement in crystallographic 

orientation and parallel alignment of magnetic domains. This inference is supported by 

increasing line intensity in XRD patterns [Fig. 5.2] and moderate reduction in surface 

roughness [Fig. 5.3]. Both the observations point towards the better orientation and 

crystalline order of the films annealed at higher temperatures. At low temperatures, HFMR 

arises due to poor connectivity between grains, pinning of Mn spin at grain boundaries, 

etc. [19]. The suppression of HFMR at 5K indicates annealing temperature induced 

enhancement in grain connectivity. Such granular contribution is also evident from the 

MR behavior at TP (> RT). The enhancement in MR at RT with increasing annealing 

temperature implies the improved magnetic order at the grain boundaries thereby allowing 

better electronic transport.  
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5.1.2 Effect of annealing time   
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Figure 5.7: XRD patterns for LSMO/LAO films annealed for 6h and 12h.  

The XRD patterns of LSMO thin films on single crystalline LAO (h00) substrates 

annealed at 1000ºC for 6 and 12 hrs depicting epitaxially c-axis (00l) oriented are shown 

in fig.5.7. It can be seen from the figure that, intensity of diffraction peaks increases 

(almost 10 times) and the value of FWHM decreases with the increasing annealing time 

intervals from 6h to 12h respectively. For instance, the FWHM of (002) peak decreases 

from 0.256º for the film annealed for 6h to 0.121º for the film annealed for 12h. In 

addition to this, the calculated residual microstrain present into the film due to the 

mismatch between single crystal substrate and material is found to decrease from -2.41% 

to -1.89% for the films annealed for 6h and 12h respectively. Thus, there is a substantial 

decrease in compressive strain along with the increase in peak intensity and decrease of 

FWHM, clearly suggesting an improvement in the crystalline structure of the film with 

progressive annealing time intervals.   
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Microstructure 

Figure 5.8 shows the AFM micrographs illustrating the surface morphologies of 

LSMO thin films annealed for 6h and 12h respectively. The typical grain structure has 

been observed for the films annealed for different periods. The values of average surface 

roughness and grain size are 12nm and 80nm respectively for 6h annealed film which 

become 16nm and 90nm for the film annealed for 12h. Although there is very small 

change in the values of surface roughness and grain size, the orientation and alignments of 

the grains and domains improve the connectivity between the grains extensively with 

annealing time intervals. The arrangements of the grains into the domains and domains 

themselves become more ordered which is apparent in 12h annealed film as compared to 

6h annealed film [Fig.5.8].  

RT & Magneto RT  

Both the LSMO thin films were characterized for electrical and magnetotransport 

behavior in the temperature range 5-425K. Figure 5.9 shows ρ-T plots for LSMO films in 

0, 5 and 8T fields respectively. The TP is higher than 350K for both the LSMO thin films. 

Table 5.2 lists the values of processing parameters, resistivity at 5K [ρ5K], peak resistivity 

[ρP] and TP for both the films in zero applied field. The electrical resistivity decreases 

while TP increases with annealing time. In zero applied magnetic field, the peak resistivity 

suppresses by the factor of ~10, while at 5K, resistivity reduction is ~102 as annealing time 

increases from 6h to 12h respectively. Also, it can be seen that, under applied magnetic 

fields of 5 and 8T, the temperature dependence of resistivity is similar to that of the zero 

field resistivity in the temperature range of 5-200K for both the LSMO thin films.  
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Figure 5.8:  2µ x 2µ AFM image of LSMO/LAO films annealed for (a) 6h and (b) 12h 

with their respective surface roughness histogram. The two arrowheads 

define an atomic step.  
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Figure 5.9: ρ – T plots for LSMO/LAO films annealed for 6h and 12h in H = 0, 5 and 8T 

fields. 

Table 5.2: Values of processing parameters, resistivity at 5K [ρ5K], peak resistivity [ρp] 

and TP for LSMO/LAO thin films in zero applied field.  

Sample 
Annealing 

Temperature 

Annealing 

time 
ρ5K (mΩΩΩΩcm) ρP (mΩΩΩΩcm) TP (K) 

LSMO 1000°C 6h 7.1   111 355 

LSMO 1000°C 12h 0.3 9 377 
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Magnetoresistance 

MR vs. H isotherms at various temperatures for 6h and 12h annealed LSMO films 

have been shown in fig.5.10. It can be seen that, films possess maximum MR in the 

vicinity of TP which decreases with decreasing temperature. Temperature dependent MR 

behavior can be discussed as follows,  

i) At low temperature (5K), the film annealed for 6h exhibits LFMR ~4% which can be 

attributed to the intergrain spin polarized tunneling (SPT) [16,17]. LFMR is almost 

negligible for the film annealed for 12h [Fig. 5.10]. The values of HFMR are ~8% and 

4% for the films annealed for 6h and 12h respectively. The reduction in HFMR at low 

temperatures implies reduction in insulating grain boundary regions and hence the 

enhanced connectivity between the ferromagnetic metallic grains [19].  

ii) At intermediate temperatures (100-240K), both the films exhibit negligible LFMR               

(< 2%). The observed values of HFMR in this temperature range are ~8-10% for 6h 

annealed film which reduces to ~ 4-7% for the film annealed for 12h respectively.  

iii) At room temperature (RT), the respective values of LFMR and HFMR are negligible 

and ~15% for the films annealed for 6h and 12h.    

These results signify the importance of grain boundary contribution to MR. At low 

temperatures, the LFMR has its origin in the spin dependent scattering and/or tunneling 

process of charge carriers at grain boundaries that depends on the angle formed by 

magnetic moment of the ferromagnetic grains/domains and is the typical feature of the 

polycrystalline bulk. The reduction of LFMR with increasing annealing time implies the 

improved crystalline structure of an oriented film which is further confirmed from the 

increased diffracted peak intensity [Fig. 5.7]. The HFMR is ascribed to the reorientation of 

disordered spins at grain interface which in turn depends on the connectivity between the 

grains and on the stiffness of the aligned blocked spins at the grain surface [19]. The 

connectivity between the grains is decided by the processing conditions, most commonly, 

annealing temperature and/or time. A significant improvement of the alignment and 

orientations of the grains [Fig. 5.8] would result in a decreased insulating grain boundary 

region with increasing annealed time which is responsible for the substantial reduction in 

HFMR at low temperatures. At RT the enhanced HFMR is attributed to the field induced 

suppression of spin disorder at Mn-O-Mn bond angles.      
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Figure 5.10: MR vs. H isotherms for LSMO/LAO films annealed for 6h and 12h. 
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In conclusion, the structural, microstructural and magnetotransport properties of 

LSMO thin films deposited on LAO single crystal substrates annealed at different 

temperatures and for different time periods have been investigated. It has been observed 

that, both the synthesis factors modify the microstructure, electronic and magnetotransport 

properties of the LSMO thin films grown by CSD method. By properly selecting the 

synthesis conditions, the high quality manganite thin films can be grown with desirable TP 

and MR properties. It has been observed that, the grain size scales with annealing 

temperature and annealing time interval. The film resistivity decreases with the elevation 

of annealing temperature and time which can be correlated to the increasing orientation, 

alignment and size of the grains.   

5.2  Structural, morphological, transport and magnetotransport studies   

In this section, the results obtained from the studies on structural, morphological, 

electronic and magnetotransport properties of La0.7R0.3MnO3 (LRMO) (R = Ca, Sr, Ba) i.e. 

La0.7Ca0.3MnO3 (LCMO), La0.7Sr0.3MnO3 (LSMO) and La0.7Ba0.3MnO3 (LBMO) 

manganite thin films have been given in detail. Various LRMO manganite thin films were 

deposited on LAO (h00) single crystal substrates using CSD route as described in section 

5.1. Deposition of thin films using automated spin coater was then followed by heating 

and annealing at 1000°C in an oxygen environment for 12h.  

All the LRMO films possess film thickness ~ 1500Ǻ, determined using DESJECT 

thickness profilometer. The structural and microstructural properties of LRMO films were 

studied by XRD and AFM measurements. Using d.c. four probe resistivity technique, the 

electrical resistivity of all the films was measured i) as a function of temperature in the 

range of 5-385K in zero field and in an applied field of 9T and ii) as a function of 

magnetic field (up to 9 Tesla) at various temperatures [PPMS, Quantum Design] at TIFR, 

Mumbai. 

Note: In Sections 5.2 and 5.3, the results on XRD, AFM, ρ - T and MR measurements on 

LSMO/LAO film annealed at 1000°C (12h), already given in section 5.1, are given 

again in order to complete the comparative study on LRMO (R = Ca, Sr and Ba) 

films, grown by PLD and CSD routes. 
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5.2.1 XRD studies 
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Figure 5.11: XRD patterns for La0.7R0.3MnO3 (LRMO) (R = Ca, Sr and Ba) films on LAO 

(h00) single crystal substrate. The asterisk (*) denotes BaO impurity phase. 

The indexed XRD patterns of LRMO (R = Ca, Sr, Ba) thin films on LAO (h00) 

single crystal substrates are shown in fig.5.11. All the LRMO films are epitaxially               

c-axis (00l) oriented and crystallizing as single-phase bulk LCMO, LSMO and LBMO. 

The cubic lattice parameters for LCMO, LSMO and LBMO films are found to be 

~3.8597(3)Ǻ, 3.8779(2)Ǻ and 3.9091(3)Ǻ respectively. A small amount (of ~4-5%) of 

BaO secondary phase has been detected in LBMO film which is marked by an asterisk in 

fig.5.11. The calculated values of compressive strain into the films due to the lattice 

mismatch (δ) between the LRMO films and LAO single crystal substrate are -3.34%,                  

-1.89% and -2.88% for LCMO, LSMO and LBMO films respectively. It can be seen from 

these values of lattice mismatch that LCMO/LAO film is more strained as compared to 

LSMO and LBMO films. 

5.2.2 AFM studies  

The surface morphologies of the nanostructured LRMO thin films have been 

studied using AFM micrographs. Figure 5.12.  shows the  topographic  images  of  LCMO,  
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Figure 5.12: 2µm x 2µm AFM images of La0.7R0.3MnO3 (LRMO) (R = Ca, Sr and Ba) 

films (a) LCMO, (b) LSMO and (c) LBMO with their respective surface 

roughness histogram. The two arrowheads define an atomic step. 
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LSMO and LBMO films respectively. The microstructure of LCMO film shows the step 

like grain growth which is characteristic of a highly oriented film where the strain is 

uniformly distributed over the film surface, while the LSMO and LBMO films show the 

island mode of grain growth. The line scan across the image is height vs. distance profile 

shown on the right side of fig.5.12. The estimated step heights are ~1.2nm, 15nm and 

21nm for LCMO, LSMO and LBMO films respectively. The surface roughness analysis 

has been made using mean square average of these steps and the estimated values of 

surface roughness are ~1nm, 16nm and 12nm for LCMO, LSMO and LBMO films 

respectively. The grain size varies from 60 - 90nm in LRMO films.  

5.2.3 Resistivity and MR studies 

The temperature dependence of resistivity has been plotted for all the LRMO/LAO 

films grown by CSD method from 385K to 10K under 0 and 9T fields in fig.5.13. In zero 

applied field, the resistivity values at 10K [ρ10K] and at TP [ρP] are 0.32 mΩcm and                      

60 mΩcm (TP ~ 248K) for LCMO , 1.5 mΩcm and 12.5 mΩcm (TP ~ 362K) for LSMO 

and 31 mΩcm and 110 mΩcm (TP ~ 330K) for LBMO respectively. It is interesting to note 

that, for the CSD grown LRMO films, values of resistivity and TP are in good agreement 

with those reported for LRMO films prepared using PLD [20]. Further, sharpness in the 

electronic transition implies the absence of grain boundary contribution at low 

temperatures in LRMO films.  
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Figure 5.13: ρ – T plots for La0.7R0.3MnO3 (LRMO) (R=Ca, Sr and Ba) films in H = 0 and 

9T fields. 
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Magnetoresistance 

The field dependence of MR measured at various temperatures (10-330K) for 

LRMO/LAO films is plotted in fig.5.14. All the LRMO films exhibit maximum MR in the 

vicinity of TP and MR decreases with decrease in temperature. It is now well established 

fact that, in manganites, MR effect originates due to the two different kinds of reasons. 

Firstly, at very low temperature, LFMR effect mainly arises due to the spin dependent 

scattering process at insulating grain boundaries [16,18] while HFMR is associated with 

the increased connectivity between the grains owing to the reorientation of disordered 

spins at interface at high fields and reduction in pinning of Mn ions at grain surface  

[16,19]. Secondly, at TP, CMR effect is ascribed to the field induced suppression in spin 

disorder at Mn-O-Mn coupling [16]. The low temperature MR behavior of CSD made 

LRMO films appears to be more interesting. At 10K, LCMO and LSMO films show 

almost negligible LFMR and HFMR, while LBMO film exhibits LFMR and HFMR ~ 5% 

and ~15% respectively. However, no steep rise in LFMR behavior has been observed at 

10K with temperature clearly suggesting the absence of low temperature grain boundary 

effect in these highly epitaxial LRMO films. At intermediate temperatures (100-240K), the 

low field and high field MR increases progressively with applied fields and temperatures. 

The MR saturates and becomes maximum at TP which is common behavior for all LRMO 

films.  

Around TP, the subsequent values of maximum LFMR and HFMR are ~ 50% and 

~90% for LCMO (at 240K) and 5% and 47% for LBMO (at 330K) respectively, while 

near around RT (at 330K) LSMO exhibits MR ~5% and 27% corresponding to LFMR and 

HFMR values. The observed appreciable rise in MR at TP in all the LRMO films may be 

attributed to the field induced delocalization of charge carriers due to the structural 

disorder at grain boundaries and at Mn-O-Mn bond angles [16].   

Further, it has been observed from the resistivity and MR studies on LRMO films 

[Fig. 5.13 and 5.14] that, MR decreases while TP enhances as R changes from Ca to Sr. 

The reduction in MR along with TP enhancement can be ascribed to the increase in 

average A-site cationic radius, <rA>, from Ca to Sr, which increases the Mn-O-Mn bond 

angle   towards  the  180º which  in  turn   improves   the  matrix  element   responsible  for 
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Figure 5.14: MR vs. H isotherms for La0.7R0.3MnO3 (LRMO) (R=Ca, Sr and Ba) films. 
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electronic transport and TP and hence large drop in MR [21]. Further increase in <rA> in 

LBMO films exerts a strain in the lattice which affects the Mn-O hybridization causing 

slight reduction in TP and consequent enhancement in MR [21,22].   

5.2.4 I-V studies 

To understand the mechanism of electronic charge transport in LRMO thin films, 

current-voltage (I-V) characteristics at zero external field and at various temperatures in 

(82-300K) were determined by applying dc current and measuring the voltage developed 

in a four point contact geometry [23]. Figure 5.15 (a) shows applied current (I) vs. voltage 

(V) plots for LRMO films measured in current-in-plane (CIP) geometry. The maximum 

current applied to the film was 1mA. I-V measurements show similar behavior for forward 

and reverse applied current and hence I-V characteristics for positive bias current have 

been only displayed in fig.5.15(a). I-V behavior is slightly nonohmic in LBMO film which 

can be best fitted in power law of the form I ∝ Vα, where α = 1 - 2 is temperature and field 

dependent parameter [24]. Nonlinearity increases slightly with temperature which is 

depicted from the fits with α - values increasing marginally from 1.005 to 1.142 for 

LCMO; 1.02 to 1.1 for LSMO and 1.002 to 1.4 for LBMO film from 82K to RT 

respectively. The nonlinear I-V behavior has its origin in electron tunneling process across 

the amorphous insulating grain interfaces [25].  

To elucidate the effect of temperature, differential conductance (dI/dV) were 

calculated for LRMO films and plotted against the voltage (V) at various temperatures 

(82-300K) in fig.5.15(b). The parabolic nature of conductance versus voltage is the 

characteristic feature of electron tunneling process and has significant effect of 

temperature, which modifies its shape and slope. It can be seen from the plots that, 

conductance increases with applied voltages for all the temperatures which is attributed to 

the electron tunneling process suggested by Simmons model described as,  

G(dI/dV) = a + bVn,  

where a is the zero bias conductance, b is the co-efficient which is the function of potential 

barrier and n is the constant whose value predict the kind of electrical transport 

mechanism presents [25-27].  
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Figure 5.15:  (a) Current vs. Voltage characteristics and (b) dI/dV vs. Voltage plots at 

various temperatures (82-300K) for La0.7R0.3MnO3 (LRMO) (R=Ca, Sr and 

Ba) films. Solid lines show the fittings of I-V and conductance.  

Table 5.3 summarizes the obtained values of fitting   parameters. Based on the values of n, 

available from the reports, the possible tunneling mechanisms are: i) n ≥ 0.6, indicates 

tunneling through disordered metallic oxide type; ii) n~1, quasiparticle tunneling via pairs 

of  localized   states;   iii)  n > 1,  suggests   spin-flip   scattering   at   the   grain  boundary  
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Table 5.3: Various fitting parameters of Simmons model fits to the equation                          

G(dI/dV) = a + bVn,  

. Temperature (K) a (mΩΩΩΩ)
-1
 b (V-ΩΩΩΩ)

-1
 n 

82 57.248 372.587 1.10171 

110 41.598 221.123 1.11739  

150 19.084 192.258 1.25751 

200 5.6777 47.5646 1.31539 

LCMO 

300 1.2125 66.7892 1.5964 

82 0.0211 216.92 0.70339 

110 0.0268 46.36 1.18047 

150 0.0277  44.36 1.4509 

200 0.0371 35.73 1.65202 

LSMO 

300 0.00998 4.18 1.67102 

82 0.585 211.512  0.9070 

110 0.481 178.237  0.7968 

150 0.518 147.138 0.981 

200 0.415 91.305 0.768 

LBMO  

300 0.351 14.671  0.52 

dominated and iv) n ~ 2, predicts the direct tunneling of charge carriers [28-30]. The 

values of n > 1 [from Table 5.3] implies the presence of spin flip scattering at the grain 

boundaries in presently studied CSD deposited LCMO and LSMO films whereas n < 1 

suggests the tunneling through disorder grain interface for LBMO film.  

In summary, the high quality LRMO manganite thin films were deposited using 

low cost and simple chemical route. The structural and microstructural properties revealed 

the epitaxial growth of the film along the c-direction having clear grain morphology and 

orientation. The peak resistivity and TP values of the CSD grown LRMO films were 

equivalent to those of the PLD made thin films and have the same MR as the PLD grown 

films over the entire temperature range from 10 to 330K. MR and I-V studies indicate the 

dominant electronic transport in metallic regime via the spin flip scattering in LCMO and 

LSMO films and tunneling through disorder metallic interfaces in LBMO film.  
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5.3 Effect of SHI irradiation on LRMO manganite thin films 

Swift Heavy Ion (SHI) irradiation is an efficient tool for creation of point defects, 

vacancies, columnar defects and localized strain in various materials (mainly thin films) 

which in turn affect their crystallographic, surface and physical properties [31-33]. SHI 

irradiation on manganite thin films mostly leads to detrimental effects on structural and 

transport properties. For instance, the irradiation results in enhancement of resistivity, 

suppression of Tp and MR, etc [31,34]. Though the deteriorated properties of the irradiated 

films have adverse effect with respect to their applications as data storage devices, there is 

an improvement in the application potential of such films in uncooled bolometers, 

magnetic field sensors, etc. [35]. However, till date, all the endeavors to control the 

physical properties of manganites by irradiation have been made on the thin films 

synthesized using either Pulsed Laser Deposition (PLD) or other physical methods. There 

have been no attempts to study the irradiation effects in manganite films synthesized by 

chemical methods. In this context, the results obtained from the studies on the effect of 

SHI irradiation on physical properties of La0.7R0.3MnO3 (LRMO; R = Ca, Sr and Ba) thin 

films prepared using CSD route, have been presented.  

Highly energetic charged particles while traversing through matter losses their 

energy mainly by two ways, first, the electronic energy loss [(Se)= dEe/dx] which is the 

inelastic collisions of charged particles with atomic electrons of the material while the 

second is nuclear energy loss [(Sn)= dEn/dx] which is the elastic scattering of the charged 

particles from the atomic nuclei. For the high energetic charge (~ MeV), electronic energy 

loss is dominated. The values of electronic and nuclear energy loss, calculated using 

Stopping Range of Ion in Matter (SRIM) 2003 programme [36], for the presently studied 

LRMO films are ~12 keV/nm and ~33.6 eV/nm for LCMO, ~13.4 keV/nm and 37 eV/nm 

for LSMO and 13.2 keV/nm and 36.4 eV/nm for LBMO respectively. The projected range 

of SHI energetic ions in LRMO films is ~ 1µm which implies that almost all ions pass 

through the film thickness and hence the observed irradiation effects are to be analyzed as 

consequence of ion induced electronic energy transfer. The reported electronic energy 

threshold, calculated using Szenes thermal spike model, for LCMO is ~6.6 keV/nm [37] 

which is far lower than electronic energy loss (Se) calculated for LRMO films studied, 

implying the possibilities of columnar like defects formation in these films. The selection 
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of highly energetic 200 MeV Ag+15 ions has been made in the present irradiation studies, 

since these ions can easily pass through the entire thickness of the thin film due to their 

higher mass resulting into creation of columnar tracks before striking the substrate. This 

results in a uniform distribution of strain in the film which is not the case with low energy 

ion implantation [34].   

SHI irradiation was performed at Inter University Accelerator Centre (IUAC), New 

Delhi, India, using a 15 UD tandem accelerator using 200 MeV Ag+15 ion beam [38] with 

a beam current ~ 0.3 pnA [39] and in ion doses of 7.5×1010 and 1×1012 ions/cm2. The 

irradiations were performed at an angle of 5°±1° away from the c axis to avoid channeling. 

The ion beam was focused on to a spot of 1mm×1mm and scanned over an area of 

10mm×10mm using magnetic scanner to achieve dose uniformity across the sample area 

which was typically 2.5mm×2.5mm. The structural and microstructural properties of 

irradiated LRMO thin films were studied by XRD and AFM measurements. Using d.c. 

four probe resistivity technique, the electrical resistivity of all the films was measured i) as 

a function of temperature in the range of 5-385 K in zero-field and in an applied field of 9 

T and ii) as a function of magnetic field (up to 9 Tesla) at various temperatures [PPMS, 

Quantum Design]. 

5.3.1 Structural studies  

XRD studies 

Typical indexed XRD patterns of pristine and irradiated LRMO films (R = Ca, Sr 

and Ba) on LAO (h00) single crystal substrates have been shown in figs.5.16 (a), (b) and 

(c). All the LRMO films are epitaxially c-axis (00l) oriented and are indexed using 

respective bulk cell parameters of LCMO, LSMO and LBMO. The values of FWHM for 

(002) peak, δ-mismatch and cubic lattice parameters obtained from XRD analysis of 

pristine and irradiated LRMO films are given in Table 5.4. It can be seen from fig.5.16 

and Table 5.4 that, for LCMO and LSMO films, the intensity of the diffraction peaks 

decreases and the values of FWHM and δ increase monotonically with irradiation dose 

while exactly opposite trend is observed in LBMO films. For instance,                                        

the FWHM of (002) peak of the LCMO and LSMO increases from                                                

0.534° and  0.121° for  pristine  to 0.677° and  0.396° for 1 x 1012 ions/cm2 irradiated film,  
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Figure 5.16: XRD patterns for pristine and irradiated La0.7R0.3MnO3 (LRMO) (R = Ca, Sr 

and Ba (a) LCMO/LAO (b) LSMO/LAO and (c) LBMO/LAO films. The 

asterisk (*) denotes BaO impurity phase. 
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Table 5.4: Values of FWHM, lattice mismatch (δ%) and cubic cell parameter for pristine 

and irradiated LRMO/LAO thin films. 

Sample 
FWHM 

(002) 

Mismatch 

(δδδδ%) 

Cubic lattice 

parameter (Ǻ) 

Pristine 0.534º -3.34 3.8597(3) 

7.5x1010 
ions/cm2 

0.660º -3.36 3.8607(3) 
LCMO 

1x1012 
ions/cm2 

0.677º -3.57 3.8629(3) 

Pristine 0.121º -1.89 3.8779(2) 

7.5x1010 
ions/cm2 

0.392º -2.93 3.8819(2) 
LSMO 

1x1012 
ions/cm2 

0.396º -4.50 3.8859(2) 

Pristine 0.224° -2.88 3.9091(3) 

7.5x1010 
ions/cm2 

0.212° -2.8 3.9051(3) 
LBMO 

1x1012 
ions/cm2 

0.205° -2.7 3.9140(3) 

while its intensity decreases (by factor of 10 in case of LSMO) as compared to that of the 

pristine and film irradiated with 1 x 1012 ions/cm2. Interestingly, the FWHM of (002) peak 

of the LBMO film decreases from 0.224º for pristine to 0.205º for 1×1012 ion/cm2 

irradiated film with subsequent increase in its peak intensity. The substrate-material 

mismatch (δ) values are found to increase on irradiation from -3.34% for pristine to           

-3.36% for 7.5 x 1010 ions/cm2 and -3.57% for 1 x 1012 ions/cm2 irradiated LCMO films 

while -1.89% for pristine to -2.93% and -4.5% for 7.5 x 1010 ions/cm2 and 1 x 1012 

ions/cm2 dose irradiated LSMO films. In contrary to this, for LBMO films, the mismatch, 

δ, decreases from -2.88% for pristine to -2.8% and 2.7% for the films irradiated with 

irradiation dose of 7.5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 respectively. The observed 

variation in the calculated cubic lattice parameters with irradiation has been listed in    

Table 5.4 for all the LRMO films. The significant enhancement in peak intensity and 

reduction in FWHM and δ mismatch, clearly suggest the irradiation induced improvement 

in crystalline order of the LBMO films whereas the crystallinity is adversely affected by 

the irradiation in LCMO and LSMO films. 
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Figure 5.17(a): 2µ x 2µ AFM images of pristine (top), 7.5×1010 ions/cm2 irradiated 

(middle) and 1×1012 ions/cm2 irradiated (bottom) LCMO/LAO films with 

their respective 3D view.  
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Figure 5.17(b): 2µ x 2µ AFM images of pristine (top), 7.5×1010 ions/cm2 irradiated 

(middle) and 1×1012 ions/cm2 irradiated (bottom) LSMO/LAO films with 

their respective 3D view.  
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Figure 5.17(c): 2µ x 2µ AFM images of pristine (top), 7.5×1010 ions/cm2 irradiated 

(middle) and 1×1012 ions/cm2 irradiated (bottom) LBMO/LAO films with 

their respective 3D views.  
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Surface morphologies of various LRMO/LAO pristine and irradiated films studied 

using AFM are shown in figs.5.17(a), (b) and (c). It can be seen from the fig.5.17(a) and 

(b) that, irradiation with 200 MeV Ag+15 ions has adverse effect on the microstructure of 

the LCMO and LSMO thin films, while in case of  LBMO, there is an improvement in the 

microstructure of the films with ion dose [Fig. 5.17(c)].  

The irradiation induced surface modifications in LCMO films can be apparently 

seen from fig.5.17(a). The surface roughness increases from 1nm for pristine to 3.58nm 

and 10nm for the films irradiated with respective ion dose of 7.5×1010 ions/cm2 and 

1×1012 ions/cm2 while, the grain size decreases to 50nm for 7.5×1010 ions/cm2 and 40nm 

for 1×1012 ions/cm2 from their pristine value of 60nm. Also, at some portions, surface 

swelling is observed in irradiated LCMO films which may be presumably due to the 

subsurface clustering of point defects created because of irradiation. This effect becomes 

more prominent with irradiation dose [40].  

The AFM images for the pristine and irradiated LSMO films shown in fig.5.17(b) 

that, demonstrate the deterioration in surface morphology and grain structure due to the 

irradiation with 7.5×1010 and 1×1012 ions/cm2. The observed surface roughness for the 

pristine film is ~16nm which becomes ~20nm for 7.5×1010 ion/cm2 and ~24nm for 1×1012 

ion/cm2 irradiated films. The values of average grain size obtained from AFM pictures are 

90nm, 80nm and 70nm for the pristine and 7.5×1010 and 1×1012 ions/cm2 irradiated films, 

respectively. In case of LSMO film, irradiated with maximum ion dose of 1x1012 ios/cm2, 

columnar defect formation having average radius ~ 5±0.5 nm. The arrow indicates the 

magnified portion of that column area [Fig. 5.17(b)]. 

The microstructures of pristine and irradiated LBMO films are shown in 

fig.5.17(c). Interestingly, in the LBMO films, the value of average grain size increases and 

surface roughness decreases with successive irradiation which is evident from fig.5.17(c). 

The observed surface roughness for the pristine film is ~12nm which reduces to 9nm for 

7.5×1010 ion/cm2 and 8nm for 1×1012 ion/cm2 irradiated films. The values of average grain 

size obtained from AFM pictures are 50nm, 80nm and 70nm for the pristine film and for 

7.5×1010 and 1×1012 ions/cm2 irradiated films, respectively.  
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Apart from a moderate reduction in surface roughness which points towards better 

orientation, an enhancement in grain size with increasing irradiation in LBMO films, 

suggests a dominant possibility of conglomeration of two or more grains to form a bigger 

size grain. This would result in a decreased grain boundary region and, consequently, an 

improved electronic transport at the grain boundaries which accounts for irradiation 

induced reduction of resistivity in CSD grown LBMO thin films. While in LCMO and 

LSMO films, reduction of grain size and enhanced surface roughness along with the 

irradiation induced defects, surface swelling in LCMO and columnar defects in LSMO, 

would introduce the electronic and magnetic anisotropies which in turn leads to the 

considerable increment in resistivity and decrement in TP and MR in these films after the 

irradiation [31,32,40].  

5.3.2 Resistivity and magnetoresistance measurements 

RT and Magneto RT 

The ρ – T measurements on pristine and irradiated LRMO thin films have been 

carried out in 0 and 9T field and are plotted in fig.5.18. The resistivity of LCMO and 

LSMO films is found to increase appreciably on irradiation as compared to their pristine 

counterparts with a concomitant suppression in TP with increasing irradiation dose which 

is consistent with the reports available on irradiation studies of PLD grown manganite thin 

films [31-34]. In LCMO films, in zero applied field, peak resistivity (ρP) increases ~3 

times and ~ 4 times at 10K for maximum irradiation dose of 1 x 1012 ions/cm2, whereas in 

LSMO films, peak resistivity (ρP) increases ~ 10 times and ~ 20 times at 10K for 

maximum irradiation dose of 1 x 1012 ions/cm2 [Table 5.5]. Also, it can be noted that, the 

sharp resistivity drop observed at TP in pristine LSMO film disappears in successively 

irradiated LSMO films. The irradiated LSMO films exhibit broad maxima in ρ-T curves 

around the TP as well as at very low temperatures ≤ 50K.   
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Figure 5.18: ρ – T plots for pristine and irradiated La0.7R0.3MnO3 (LRMO) (R = Ca, Sr 

and Ba) (a) LCMO/LAO (b) LSMO/LAO and (c) LBMO/LAO films. 
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Table 5.5: Values of resistivity at 10K [ρ10K], peak resistivity [ρP] and TP for pristine and 

7.5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 irradiated LRMO/LAO thin films. 

Interestingly, in the LBMO films, irradiation induces a significantly consistent 

suppression in resistivity over the whole temperature range investigated. For instance, the 

resistivity decreases by a factor of 2 and 4, respectively, at 330K and 10K with an ion dose 

of 7.5×1010 ions/cm2, while it decreases by a factor of 3 and 10, respectively, at 330K and 

10K with an ion dose of 1×1012 ions/cm2 [Table 5.5]. Also, it is interesting to note that, for 

the LBMO case, with increasing irradiation, TP remains nearly unaffected as it shifts 

slightly from 330K for pristine to 337K for 1×1012 ions/cm2 irradiated film. This kind of 

irradiation induced suppression of resistivity, with TP remaining unaffected in CSD grown 

LBMO films, is a unique observation vis-à-vis the irradiation induced enhancement of 

resistivity and suppression of TP in LCMO and LSMO thin films grown using either PLD 

or CSD methods.  

Magnetoresistance  

To understand magnetotransport behavior of various pristine and irradiated LRMO 

films, MR vs. H isotherms have been plotted at various temperatures and are shown in 

figs.5.19(a), (b) and (c). All the films exhibit maximum MR in the vicinity of TP which 

decreases with temperature [Fig.5.19]. The temperature dependence of MR behavior of all 

the films is discussed in the following paragraphs. 

 

Sample ρ10K (mΩΩΩΩcm) ρP (mΩΩΩΩcm) TP (K) 

Pristine 0.32 60 248 
LCMO 

1 x 1012 ions/cm2 1.2 200 228 

Pristine 1.5 12.5 362 

7.5 x 1010 ions/cm2 3.7 15 350 LSMO 

1 x 1012 ions/cm2 30 125 300 

Pristine 31 110 330 

7.5 x 1010 ions/cm2 15 55 333 LBMO 

1 x 1012 ions/cm2 0.3 36 337 
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Figure 5.19(a): MR vs. H isotherms for pristine and 1×1012 ions/cm2 irradiated 

LCMO/LAO films 
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Figure 5.19(b): MR vs. H isotherms for pristine and 7.5 x 1010 ions/cm2 irradiated and 

1×1012 ions/cm2 irradiated LSMO/LAO films. 
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Figure 5.19(c): MR vs. H isotherms for pristine and 7.5 x 1010 ions/cm2 irradiated and 

1×1012 ions/cm2 irradiated LBMO/LAO films. 
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Table 5.6: Values of LFMR and HFMR at different temperatures for pristine and                       

7.5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 irradiated LRMO/LAO thin films. 

LCMO 
 

Pristine 1x10
12
 ions/cm

2 

LFMR ( < 1T) Negligible ~ 0.4 % 
10K 

HFMR ( ~ 9T) ~ 1 % ~ 2.5% 

LFMR ( < 1T) ~ 1 % ~ 2 % 
100K 

HFMR ( ~ 9T) ~ 4 % ~ 9 % 

LFMR ( < 1T) ~ 50 % ~ 50 % 
240K 

HFMR ( ~ 9T) ~ 92 % ~ 92 % 

LFMR ( < 1T) Negligible Negligible 
330K 

HFMR ( ~ 9T) ~ 26 % ~ 24 % 

LSMO 
 

Pristine 7.5x10
10
 ions/cm

2
 1x10

12 
ions/cm

2
 

LFMR ( < 1T) Negligible ~ 8 % ~ 20 % 
10K 

HFMR ( ~ 9T) Negligible ~ 18 % ~  55 % 

LFMR ( < 1T) Negligible  ~ 3 % ~ 13 % 
100K 

HFMR ( ~ 9T) ~ 8 % ~ 18 % ~ 50 % 

LFMR ( < 1T) ~ 4 % ~ 4 % ~ 4 % 
240K 

HFMR ( ~ 9T) ~ 17 % ~ 20 % ~ 38 % 

LFMR ( < 1T) ~ 4 % ~ 4 % ~ 4 % 
330K 

HFMR ( ~ 9T) ~ 26 % ~ 24 % ~ 25 % 

LBMO 
 

Pristine 7.5x10
10
 ions/cm

2
 1x10

12
 ions/cm

2
 

LFMR ( < 1T) ~ 5 % ~ 2-3 % Negligible 
10K 

HFMR ( ~ 9T) ~ 15 % ~ 8 % Negligible 

LFMR ( < 1T) ~ 3 % Negligible Negligible 
100K 

HFMR ( ~ 9T) ~ 17 % ~ 10 % ~ 5 % 

LFMR ( < 1T) ~ 3 % Negligible Negligible 
240K 

HFMR ( ~ 9T) ~ 30 % ~ 20 % ~ 10 % 

LFMR ( < 1T) ~ 8 % ~ 12 % ~ 18 % 
330K 

HFMR ( ~ 9T) ~ 48 % ~ 55 % ~ 60 % 
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LCMO 

At a low temperature (10K), the pristine LCMO film exhibits almost negligible 

LFMR (in a field of < 1T) and HFMR ~1%. The values of LFMR and HFMR for the            

1 x 1012 ions/cm2 ion irradiated LCMO film are ~0.4% and 2.5% respectively                        

[Fig. 5.19(a), Table 5.6].   

At intermediate temperature of 100K, the values of LFMR are 1% and 2% while 

HFMR 4% and 9% for pristine and 1 x 1012 ions/cm2 irradiated LCMO films respectively 

[Table 5.6]. In irradiated LCMO films, an appreciable increase of LFMR and HFMR at 

low temperatures (up to 100K) can be attributed to the irradiation induced enhanced 

structural disorder, scattering centers, pinning of Mn spins at the grain surface and 

increased strain field which introduces electronic and magnetic field anisotropies. These 

implications further supported by the XRD data [increases of mismatch and suppression of 

peak intensity with irradiation (Fig.5.16 (a))] and AFM studies [reduction in grain size and 

increase in surface roughness with irradiation (Fig. 5.17 (a))].    

At 240K (~TP), LFMR and HFMR ~50% and 92% are exhibited by pristine and 

irradiated LCMO films which can be attributed to reduction in spin disorder at Mn-O-Mn 

bond angle due to applied field.   

LSMO 

The field dependence of MR in pristine and 7.5 x 1010 ions/cm2 and 1 x 1012 

ions/cm2 ion irradiated LSMO thin films are plotted at different temperatures in 

fig.5.19(b). The observed MR behavior exhibited by pristine LSMO is similar to the one 

for high quality epitaxial films [17,20]. However, the MR vs. H behavior of the films 

irradiated with 7.5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 shows completely different 

features at low temperatures (below 240K). In the temperature range 10-240K, the 

observed MR behavior of irradiated LSMO films is nearly independent of temperature.  

At low temperature (10K), pristine LSMO film exhibits almost negligible LFMR 

and HFMR which becomes unusually large ~8% and 18% for the7.5 x 1010 ions/cm2 and 

~20% and 55% for 1 x 1012 ions/cm2 ion irradiated films [Table 5.6].  The enhancement in 

HFMR seems to be more pronounced for the film irradiated with maximum irradiation 

dose of 1 x 1012 ions/cm2.  
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At intermediate temperature of 100K, the values of LFMR and HFMR are 

negligible and 8% for pristine, 3% and 18% for 7.5 x 1010 ions/cm2 and 13% and 50% for 

1 x 1012 ions/cm2 ion irradiated LSMO films respectively, while at 240K, these values of 

LFMR and HFMR become 4% and 17% for pristine, 4% and 20% for 7.5 x 1010 ions/cm2 

irradiated and 4% and 38% for 1 x 1012 ions/cm2 irradiated film respectively [Table 5.6].   

At 330K, the pristine film exhibits slightly higher HFMR ~26% as compared to 

irradiated LSMO films and there is no effect irradiation dose on the MR behavior                  

[Table 5.6]. 

 To understand the observed unusual low temperature MR behavior of irradiated 

CSD grown LSMO films, it is necessary to account for the effect of swift heavy ions 

interaction with material. When 200 MeV Ag+15 ions pass through the LSMO films, 

calculated electronic and nuclear energy losses ~13.4 keV/nm (Se) and 37 eV/nm (Sn) 

respectively, suggests that, the entire process is dominated by the electronic energy loss. It 

is reported that, for the creation of continuous amorphous columnar tracks in the material, 

the required energy threshold is ~6.7 keV/nm which is much lower than the observed Se. 

This is evident from the observed modifications in the surface morphologies of irradiated 

LSMO films [Fig 5.17 (b)]. Within the regions of defect formed on irradiation, the 

behavior of material is highly chaotic and the physical properties within these regions are 

entirely different from those of the pristine. The possible reason for the enhancement of 

MR at low temperatures (18% for 7.5 x 1010 and 55% for 1 x 1012 ions/cm2 irradiated 

films) may be the strain field developed by the lattice distortions at the peripheries of the 

individual columnar defects. This inference is supported by the appreciable decrease in 

intensity of XRD peaks and the significant enhancement in lattice mismatch for the 

irradiated films [Fig.5.16(b), Table 5.4]. The increase in strain field created on irradiation 

affects the Mn-O hybridization which in turn is responsible for the charge localization at 

low temperatures.  
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LBMO 

Figure 1.19(c) shows the MR vs. H isotherms for pristine and irradiated LBMO 

thin films which can be understood as follows,  

At a low temperature of 10K, the pristine LBMO film exhibits low field LFMR 

~5% (in a field of < 1T). This uncharacteristic MR behavior of an oriented thin film 

partially resembles the LFMR behavior of polycrystalline samples, the origin of which is 

attributed to the intergrain spin polarized tunneling (SPT) of charge carriers [16]. It is 

interesting to note that, the LFMR for the irradiated films at 10K decreases to ~2-3% and 

to zero for respective ion doses of 7.5×1010 ions/cm2 and 1×1012 ions/cm2. Also, the high 

field MR (HFMR) (in a field >1T) at 10K decreases from ~15% for the pristine film to 

nearly zero for the film irradiated with 1×1012 ions/cm2. This points towards irradiation 

induced enhancement in connectivity between the grains, reduction in pinning of Mn-ion 

spins at grain boundaries, etc.  

At an intermediate temperature of 100K, pristine film shows LFMR ~3% which is 

nearly zero in irradiated films while the values of HFMR are17%, 10% and 5% for 

pristine, 7.5 x 1010 ions/cm2 and 1 x 1012 ions/cm2 irradiated films respectively. At 240K, 

the pristine film shows LFMR < 3% and irradiated films show almost negligible MR.                   

The HFMR is nearly 30% for pristine film which reduces to 20% and 10%, respectively, 

for the films irradiated with 7.5×1010 ions/cm2 and 1×1012 ions/cm2.  

In the vicinity of TP, at 330K, the LFMR of ~8%, 12% and 18% is observed for the 

pristine, 7.5×1010 and 1×1012 ions/cm2 irradiated films, respectively. The HFMR observed 

for the pristine film is ~48%, while successive irradiation doses of 7.5×1010 and 1×1012 

ions/cm2 increases the HFMR to ~55% and 60%, respectively. Such an irradiation induced 

enhancement in MR at TP may be attributed to the field induced delocalization of charge 

carriers due to the structural disorder at grain boundaries and at Mn-O-Mn bond angles 

[16,18,19].  

In LBMO films, the above-mentioned results, depicting an irradiation induced 

suppression in MR at low temperatures and an enhancement of MR at high temperatures 

around TP, underline the importance of deteriorating grain boundary contribution to MR. 

Moreover, the irradiation induced suppression of LFMR indicates further the improvement 
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in crystallographic orientation and parallel alignment of magnetic domains. This inference 

is supported by increasing line intensity in XRD patterns [Fig.5.16(c)]. At low 

temperatures, HFMR arises due to poor connectivity between grains, pinning of Mn spin 

at grains boundaries, etc. [18,19]. The suppression of HFMR at 10K indicates irradiation 

induced enhancement in grain connectivity. Such granular contribution is also evident 

from the MR behavior at TP; the enhancement in MR with increasing ion dose at 330K 

implies that the magnetic order at the grain boundaries improves, thus, allowing a better 

electronic transport.  

It is evident from the MR studies on pristine and irradiated LRMO thin films that, 

in LCMO and LSMO films, an enhancement in MR at low temperature is due to the 

increase in structural disorder, scattering, pinning centers and strain fields due to the 

creation of surface swellings and columnar defects introduced by the SHI irradiation. On 

the other hand, in LBMO films, the improved crystallinity and grain morphologies in the 

ion irradiated films results into the considerable reduction in MR at low temperatures and 

enhancement of MR at RT.  

5.3.3 TCR and FCR studies 

To evaluate the effect of irradiation on the application potential of these CSD 

grown films, the temperature and the field sensitivity of resistivity have been calculated. 

These parameters, quantified as the temperature coefficient of resistance [TCR% = 

(1/R×dR/dT)×100] and the field coefficient of resistance [FCR%=(1/R×dR/dH)×100], and 

were determined from ρ - T and ρ - H data and are plotted for all LRMO films in 

figs.5.19(a) and (b) respectively. In the irradiated LCMO and LSMO films, the electronic 

and magnetic anisotropies, induced due to the defects created, result in the reduction of 

temperature and magnetic field sensitivities as compared to their pristine counterparts, 

while in LBMO films, there is a significant net positive enhancement in TCR value (3.5% 

at 330K) and a net increase in the value of negative FCR (3.7% at 330K and <0.5T) at TP 

(330K) (slightly above room temperature).   
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Figure 5.20(a): TCR vs. T plots for pristine and irradiated LRMO/LAO                                   

(R = Ca, Sr and Ba) films.  
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Figure 5.20(b): FCR vs. H plots for pristine and irradiated LRMO/LAO                                  

(R = Ca, Sr and Ba) films.  
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To sum up, the swift ion irradiation effects on microstructural, electronic and 

magnetotransport properties of LRMO films grown by CSD method have been 

investigated. The structural, transport and MR properties of irradiated LBMO films are 

opposite to those observed for the LCMO and LSMO films. Irradiation has deteriorating 

effect on structural and transport properties of LCMO and LSMO films where in there is 

an increase in resistivity with suppression in MR as compared to their pristine 

counterparts. In LBMO films, the SHI irradiation induced suppression in resistivity and 

enhancement of MR, makes them useful for temperature and field sensor application. 

Conclusions    

In summary, the studies on La0.7R0.3MnO3 (LRMO) (R = Ca, Sr and Ba) 

nanostructured manganite thin films synthesized using novel chemical solution deposition 

route have been presented. The important conclusions derived from the above studies are 

summarized as follows  

Firstly, the dependence of structural, microstructural, electronic and 

magnetotransport properties of CSD grown LSMO films on the growth parameters, 

annealing temperature and time have been discussed. Increase in annealing temperature 

and time period resulted in an increase in average grain size from 50nm to 90nm. The 

reduction in film resistivity and enhancement in TP can be correlated to the increase in 

grain size and hence better electronic transport at grain boundaries. It is evident from the 

MR vs. H isotherms of all the LSMO films that, at RT, the LFMR and HFMR increases 

progressively with reduction in grain size.   

Secondly, a comparative study of the various physical properties of CSD grown 

LRMO (R = Ca, Sr and Ba) films in the light of their structural, transport and 

magnetotransport behavior has been made. It is observed that, the CSD method yields 

good quality epitaxial films with reproducible results which are comparable with the 

reported PLD grown LRMO films.    

Finally, the effect of SHI irradiation on the chemically prepared LRMO thin films 

has been explored. Irradiation has adverse effect on the structural, transport and MR 

properties of LCMO and LSMO films while in LBMO films, the SHI irradiation results in 

the suppression in resistivity (consistent with improved crystallinity, microstructure and 
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variations in MR) which opens up new avenue for engineering, the electronic and 

magnetotransport properties of manganites for applications employing swift heavy ion 

irradiation. 
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Scope for the future work 

During the course of present work, an effort has been made to synthesize and 

characterize some new mixed oxide manganites using a novel CSD technique and 

PLD method of film deposition. An interesting phenomenon of low temperature 

resistivity minima has been observed in LPBMO manganites. The effect of SHI 

irradiation of the manganite thin films has been studied in the present work. In 

addition, detailed temperature dependent neutron diffraction studies on the La based 

mixed oxide superconductors of the type La2-xDyXCa2xBa2Cu4+2xOz (x = 0.3, 0.5) 

(La2125) were carried out to understand the effect of bond length variations and 

average Cu valences on the superconductivity in these compounds. 

Some of the aspects related to the present findings on these materials need 

further investigations. To list few of them – 

� It would be interesting to study the effect of Ca & Cu addition on the critical 

current density of La-2125 mixed oxide superconductors, as; these compounds 

possess stable tetragonal structure having more oxygen stability as compared to 

123 superconductors. 

� Also, detailed analysis of the local structure calculations on the La-2125 

samples, based on the Rietveld refined ND data at low temperatures will help to 

throw some light on the fluctuated nature of Cu valence in these compounds. 

� Also, it would be a good effort to synthesize few La(Nd/Gd/Sm)PrBaMO type 

of manganites and study their transport behavior for the observation of low 

temperature minima and to understand the cause for it. 

� Regarding the synthesis of thin films using cost effective and novel CSD route, 

it will prove to be highly useful, if one can deposit the manganite thin films of 

LSMO compounds having transition temperature above RT and comparatively 

higher MR effect in them.  
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