
 

         Saurashtra University 
     Re – Accredited Grade ‘B’ by NAAC 
     (CGPA 2.93) 

 
 
 
 
Thaker, Chetan M., 2005,  “Studies on the Magneto-transport properties of 
perovskite based Colossal Magneto Resistance (CMR)”,  thesis PhD, Saurashtra 
University 

  
http://etheses.saurashtrauniversity.edu/id/862 
  
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author. 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given.  
 
 
 
 
 
 
 
 

Saurashtra University Theses Service 
http://etheses.saurashtrauniversity.edu 

repository@sauuni.ernet.in 
 

© The Author

http://etheses.saurashtrauniversity.edu/id/862
http://etheses.saurashtrauniversity.edu/


Studies on the MagnetoStudies on the MagnetoStudies on the MagnetoStudies on the Magneto----transport properties of transport properties of transport properties of transport properties of 
perovskite based Colossal Magneto Resistance (CMR) perovskite based Colossal Magneto Resistance (CMR) perovskite based Colossal Magneto Resistance (CMR) perovskite based Colossal Magneto Resistance (CMR) 

materialsmaterialsmaterialsmaterials    
    
    
    

THESIS THESIS THESIS THESIS     
 

 

Submitted to 

Saurashtra University, Rajkot, IndiaSaurashtra University, Rajkot, IndiaSaurashtra University, Rajkot, IndiaSaurashtra University, Rajkot, India    
 

 

For the Degree of 
 

Doctor of Philosophy 
 

in Science 

in the subject of Physics 

 

By 
 

Chetan M. ThakerChetan M. ThakerChetan M. ThakerChetan M. Thaker    
 

Under the supervision of 

 

Dr. D. G. Kuberkar  
Associate Professor 

Department of Physics 
Saurashtra University 

Rajkot, India 
 

 

October 2005 
 



 

STATEMENT UNDER O. Ph. D. 7 OF THE SAURASHTRA UNIVERSITY 
 

 

This is certified that the work presented in the thesis is my own work, 

carried out under the supervision of Dr. D. G. Kuberkar and leads to some 

important contributions in Physics supported by necessary references. 

 
 
 

Chetan M. Thaker 
(Research Student) 

 
 

This is to certify that the work submitted for Ph.D. degree in Physics 

to Saurashtra University, Rajkot by Mr. Chetan M. Thaker has been the 

result of more than three years of work under my supervision and is a good 

contribution in the field of Solid State Physics and Materials Science. 

 
 
 

 
Dr. D. G. Kuberkar 
(Research Guide) 

Associate Professor 
Department of Physics 
Saurashtra University 

Rajkot 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to  

My Family  

 consisting of broad spectrum of teachers, friends                     consisting of broad spectrum of teachers, friends                     consisting of broad spectrum of teachers, friends                     consisting of broad spectrum of teachers, friends                     

& well& well& well& well----wisherswisherswisherswishers    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Acknowledgements 
 

 “Right knowledge is the supreme purifier, the greatest secret of all the Vedas and gods” 

Shri Adi Sankaracharya 

 

It gives me immense pleasure to express my deep sense of regards to my research 

guide Dr. D. G. KUBERKAR for his valuable guidance throughout the path of my research. 

Working with him, has indeed helped me to mature, both, as a student and a humanbeing. 

 It also gives me a great pleasure to express my bottomless regards to Prof. S. I. Patil, 

Department of Physics, Pune and his group members Dr. K. P. Adhi, Dr. Arun Banporkar,               

Dr. Limaye and research students Mr. Mandar Sahastrabudhe, Mr. Pankaj Sagdeo and              

Mr. S. Sadakale. I shall never forget their humbleness during the time of earthquake crisis by 

providing me research facilities and academic guidance.  

 My sincere regards to present and past Heads  of the Department of Physics, 

Saurashtra University for providing me the departmental facilities. I also wish to extend my 

acknowledgements to all the faculty members of the Department for their moral support. 

  Specially, I am thankful to Dr. J. A. Bhalodia and Dr. N. A. Shah of this department 

for providing me moral support during this work. 

 I am sincerely thankful to Prof. S. K. Malik, DCMP & MS, T I F R, Mumbai for 

extending PPMS experimental facility and to Prof. S. K. Date, NCL, Pune for the 

experimental help and giving his valuable time for technical discussions during my visit to his 

laboratory. 

  I am thankful to Principal and staff members of M. D. Science College, Porbandar 

and Principal, Dr. A.V. Doshi and the staff members of M. V. M. Sc. &H. Sc. College, Rajkot. 

I specially extend my deep regards to the  trustees of my college. 

Now, it is time to remember my research colleagues, Dr. Sudhindra Rayprol,                   

Dr. Krushna Mavani and especially Dr. D. S. Rana for the enjoyable moments like a family 

during my research. I could gain subject knowledge by the way of fruitful interactions with 

them. I also express my deep feelings for Mr. Jaysukh Markna, Ms. Rohini Parmar who have 

taken care of painstaking computational work.  Also I thank Prashant, Piyush, Rujuta and 

Jayesh for providing me friendly atmosphere during the time of work. I would like to 

remember my friends Bharat Kataria, Suresh Dalsania and Dhiren Pandya. I remember all 

the Ph.D. students of the Department of Chemistry especially my student friends Niral Mehta 

(Pappu), Bhavin Thanki (Tom) and Dushyant Purohit who have helped me for the iodometric 

titration measurements. 

 My acknowledgements are also due for Mrs. Preeti D. Kuberkar and Ms. Madhura 

Kuberkar for the homely reception and hospitality given to me during my stay at Rajkot..  



 I feel short of words when I put on record the efforts of my family members in 

supporting me throughout these years with all the hardships they have faced for me. My 

heartfelt regards to my parents Mr. M. K.Thaker, Mrs. Bhagulata M.Thaker, G. K. Thaker 

and Mrs. Rekha G. Thaker. I pay tribute to my beloved late grandfather and late 

grandmother. I wish to thank my brother in law Mr. Yashawant and Mr. Milan. I also thank to 

my mother in law Ms. Vijyaben Jani for the hospitality during the time of research. 

 Last but not least, I have no words to express my feelings for my wife MEERA and my 

beloved son UTSAV at the time of this submission who understood me through out my 

research career. 

 
 
 
 
 

Chetan M. Thaker 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

I thankfully acknowledge University Grants Commission (UGC), New 

Delhi, India for providing me Teacher fellowship during April 2000 - March 

2002 under the UGC - FIP IX plan program. 

 

 

 

October, 2005October, 2005October, 2005October, 2005                        Chetan M. ThakerChetan M. ThakerChetan M. ThakerChetan M. Thaker    

 
 
 
 
 
 
 

 

 

 

    



Abstract 

 

The discovery of phenomenon of magneto resistance (MR) which is measure of 

resistivity drop when subjected to magnetic field and its potentiality in application in 

magnetic memory devices has spurred an interest in scientific community to synthesize 

new materials exhibiting large magneto resistance. The studies on property of MR in 

metals, semiconductors and alloys became field of interest. The discovery of “giant 

magneto resistance” observed in artificially grown alternate ferromagnetic and non-

magnetic metallic layers such as Fe/Cr, Cu/Cr as high as 75% under larger fields triggered 

the new era of research for still better materials. The next breakthrough in MR materials 

came with the observance of MR effect in rare earth manganite oxides. In 1993, R. Von 

Helmolt et. al discovered that La2/3Ba1/3MnO3 exhibit huge magneto resistance around 

room temperature with many interesting inter related phenomena. The strength of MR in 

many similar polycrystalline compounds as high as 90% under a few Tesla led the 

scientists to coin a new term called “colossal magneto resistance (CMR)”.  The strength of 

CMR effect in the metallic oxides induced interest in researchers to exploit these 

compounds for the possible application. Unlike artificially grown metallic multilayers 

where extrinsic factors such as the interface between the two layers, roughness and grain 

structure govern the magneto resistance, these compounds have ionic size dependent 

intrinsic property responsible for colossal magneto resistance. This intrinsic factor in this 

ABO3 type of perovskite, with limits on the size of A and B site cations for occurrence of 

CMR effect, can be controlled by the compositional changes in the compound. The 

interplay with size of the cations to alter the MR properties of the manganite perovskites 

evolved plenty of scope in further research in related materials.  

The basic manganite oxide ReMnO3 where Re = La, Pr, Nd is a paramagnetic 

insulator at all the temperatures. It, however, exhibits paramagnetic to antiferromagnetic 

transition around 150 K.  The optimum divalent cation doping at A site drives the 

resulting material to exhibit properties such as coincident insulator – metal (I-M) 



transition and paramagnetic – ferromagnetic (PM-FM) transition. The maximum CMR 

effect occurs around this coincident transition temperature. Re and Mn ions exist in +3 

oxidation state in ReMnO3 perovskite. The divalent Ca2+, Sr2+, Ba2+ and Pb2+ cations 

substitution at A site drives Mn at B site to exist in mixed valent (Mn3+/Mn4+) state which 

is responsible for most of the transport and magnetic properties of the perovskite. Due this 

mixed valent state of Mn, these compounds are also called as mixed valent manganite 

oxides. The conduction in these oxides is explained by a phenomenon discovered by C. 

Zener in 1951 called as “Zener-Double Exchange (ZDE)”. All the transport mechanisms 

such as ZDE occur through Mn – O – Mn network, where as A cation is not directly 

involved in any conduction mechanism. The Mn4+ valence state is formed due to 

substitution of same amount divalent cation at A-site. The 3d shell of Mn has non- 

degenerate spin up and spin down states. Four of the 5d spin up orbitals is filled while all 

the spin down orbitals are vacant in Mn3+ ion.  The crystal field of oxygen lifts the 

degeneracy of the 5d orbitals and results in splitting into lower energy 3 t2g and higher 

energy 2 eg orbitals. The 2 eg orbitals are further split into two energy levels called Jahn – 

Teller splitting that cause orbital ordering of MnO6 octahedra along the planes where last 

filled electron lies just at the fermi level. The hole doping removes Jahn – Teller distortion 

along the planes. At Mn3+ - O2- – Mn4+ coupling, the last eg electron in Mn3+ feels a net 

energy difference and it becomes delocalized via O2-
 to Mn4+. This process of Zener 

Double exchange accounts for both the metallic and ferromagnetic character of the 

material below a certain temperature called transition temperature. The phenomenon of 

ZDE is possible only if the spins of the alternate manganese ions are aligned parallel.   

The electrical and magnetic transitions start appearing only after a certain amount 

of Mn4+ has been created and disappears at excess doping of divalent cation. The best 

transport and magnetic properties appear for Re1-xAxMnO3; x = 0.33 substituted system. 

The maximum magnetic disorder occurs at transition temperature, so the application of 

magnetic field forces the parallel alignment of spins causing huge drop in resistivity to 

favor ZDE and hence maximum CMR effect. The lattice electron coupling or the polaron 

formation localizes the eg electron to show insulating behavior above Tc. The A site cation 



radius distorts the structure of the perovskite that controls the buckling of the Mn-O 

bonds. The smaller size cation buckles Mn-O-Mn bond angle from its ideal 180-degree 

geometry.  The various inter-related phenomena can be summarized as follows. The 

divalent doping in orbital ordered ReMnO3 perovskite removes the distortion of the MnO6 

octahedra, the lattice electron coupling above transition temperature makes the manganite 

system paramagnetic insulator, competition between ZDE and super-exchange results in 

peak resistivity, ZDE below Tc explains the ferromagnetic metallic character, the charge 

ordering at half doped system makes the system antiferromagnetic insulator at second 

order transition and the maximum CMR effect at magnetically disordered region near the 

transition temperature. 

 As stated earlier, A site cation does not involve in any conduction mechanism but 

has its ionic size effect on the transport and magnetic properties. A parameter called as 

“Goldschimdt tolerance factor” relates the different site ionic radii to the transition 

temperature. It is given as 

   t = (<rA> + rO) / √2(<rB>+rO)  

Where, 

 <rA> = average A site cation radius 

 <rB> = average B site cation radius 

   rO    =  radius of oxygen anion 

 t is 1 for ideal cubic structure perovskites. Electrical and magnetic transition occur 

for 0.90<t<1, where structural transitions from cubic to rhombohedral to monoclinic to 

orthorhombic occur as t approaches from 1 to 0.90. Since doping at B site directly 

impedes the conduction process, it is very sensitive to unlike cation and only a small 

amount of substitution is sufficient to alter the transport properties of manganites. 

Comparatively, the doping at A site can be done more flexibly in large range of doping 

concentrations. The isovalent light rare earth substitutional studies have been done by 

various researchers to study the effect of cation size mismatch and average A site cation 

radius effect on the electronic and magnetic transitions. Only some light rare earth like La, 

Pr, Nd and Sm based manganite systems show the CMR properties whereas heavy rare 



earth like Gd, Ho, Dy etc. due to smaller ionic radii results in the buckling of Mn – O 

bonds significantly such that eg band itinerant electron gets localized permanently to their 

parent atoms. However, these heavy rare earth metals have been replaced partially with A 

site cation with a fixed carrier density. 

 Depending upon the transition temperatures and related CMR effect, the manganite 

systems have been classified as low bandwidth, intermediate bandwidth and large 

bandwidth manganite systems.  The system such as Pr1-xCaxMnO3 in which ferromagnetic 

metallic state is not stabilized and a ferromagnetic insulating state exists in the range 

between x = 0.15 – 0.30 are classified as low bandwidth manganite systems. This system 

represents a stable charge-ordered state in a broad density region between x = 0.30 – 0.75. 

These manganites exhibit I-M transition when subjected to magnetic field, pressure and 

when exposed to X-rays. Since there is large buckling at Mn-O bond due to smaller size 

of Pr, the application of even weaker magnetic field results in significant amount of CMR 

effect. The manganite like La0.7Sr0.3MnO3 shows the transition temperature well above the 

room temperature around 370 K, so labeled as large bandwidth manganite system. It is 

believed that, in this compound the hopping amplitude for electrons in eg band is larger 

than in other manganites as a consequence of the sizes of the ions involved in chemical 

compositions. Large bandwidth systems have spins almost parallel at the Mn-O couplings, 

so the application of magnetic field does not produce any significant change in resistivity 

in already magnetically ordered region. The drawback of large bandwidth system is that, 

the large transition temperature is coupled to small CMR effect that has restricted these 

materials from application point of view. The third type of manganite system that has 

characteristics of both the low and large bandwidth systems and in which the research is 

being carried out by a sizeable fraction of researchers is called as intermediate bandwidth 

manganite system. La1-xCaxMnO3 is a typical example of such a system. This compound 

represents the presence of robust ferromagnetic metallic state. It has also features that 

represent deviation from double-exchange behavior, including the existence of charge 

ordered and orbital ordered state. Recently the work is also being focused on intermediate 



to low bandwidth materials since these are the ones that exhibit the largest CMR effect, 

which is associated with the presence of charge ordering tendencies.  

 Along with the hole-doped manganite systems, efforts have been put to investigate 

the possibility of obtaining colossal magneto resistance in electron-doped manganites. The 

compounds like La0.7Ce0.3MnO3 have been found to exhibit several interesting transport 

and magnetic properties that made the scientific community to synthesize and characterize 

more electron doped systems. In hole doped systems when average charge on A site is 

reduced the manganese ions go in a mixture of Mn3+/Mn4+ valence states. On the other 

hand, in electron-doped systems the average charge on A site is increased by aliovalent 

cation doping at rare earth site. The increased charge on A site will be able to drive the 

manganese ions in a mixture of Mn3+/Mn2+ states. Mn 2+ valence state of manganese is, 

like Mn4+ valence state, a non Jahn – Teller ion. The process of Zener Double Exchange 

should operate between two adjacent Mn3+ and Mn2+ ions in the same way as it operates 

between Mn3+ and Mn4+ ions. One would, therefore, expect electron-doped manganites to 

exhibit metal – insulator transition and ferromagnetism associated with colossal magneto 

resistance. 

 Keeping in mind the role of A-site cation doping in modifying the structural, 

transport and magnetic properties of intermediate bandwidth system like L1-

2xPrxCaxMnO3, an attempt is made to investigate above mentioned properties of this 

system in the context of variation in magnetic and electrical transition temperatures and 

magneto resistance using X-ray diffraction, resistivity, magnetization, and magneto 

resistance studies. Also, during the course of present work, the effect of substitution of 

divalent cations like Ca, Sr and Ba at A site is studied in the light of change in structural, 

transport, magneto transport and magnetic behavior of the system under investigation. 

Present work also comprise of research efforts carried out on the possible role of electron 

doping at A site due to higher valence cations like Ce4+, Th4+ and Mo6+ etc. in modifying 

and observing the CMR effect in Re1-xAxMnO3; A = Th and Mo.    

 



Contents of the thesis – An overview 
 

The first chapter of the thesis deals with the introduction to the subject, historical 

development of the manganite oxides, the definition of colossal magneto resistance, 

various phenomena and mechanisms governing mixed valent manganite oxides. Second 

chapter comprise of the synthesis, characterization techniques and tool used to study CMR 

materials. Chapter 3 is focused on the study of simultaneous doping of Pr and Ca in 

LaMnO3 perovskite. The simultaneous doping of Pr and Ca are interesting to study the 

effect of carrier density and cation size on the transport, magneto transport and magnetic 

properties of the system. Chapter 4 deals with effect of larger size divalent cation like Sr 

and Ba doping on transition temperatures and CMR effect in carrier concentration 

optimized compositions. Chapter 5 describes the results pf the studies on the different 

electron doped systems. More than +1 aliovalent cation substitution induces the transport 

and magnetic properties of the CMR materials in the resulting system. It also includes a 

section that deals with the doping of Th4+ at Re3+ site that makes it an electron-doped 

system in LaMnO3 perovskite. In nutshell, this chapter focuses on our effort to establish 

an electron-doped system exhibiting CMR properties. 

 Following is a brief discussion of the different manganite systems studied 

during the course of present doctoral work. 

 

Chapter 1-2 Introduces to manganite and synthesis and characterization techniques, 

experimental tools used in the present work. 

Chapter 3 is devoted to the Pr-Ca doped La1-2xPrxCaxMnO3 (x = 0.00 – 0.30)  manganite 

system. 

 The effect of divalent cations like Ca2+, Sr2+, Ba2+ etc is well studied, as different 

concentrations of divalent cation are responsible for the amount of charge carrier density. 

It is established that 33% percent hole doped system shows the best transport and 

magnetic properties. The cation sizes of Ca2+ and La3+ are comparable, so the different 

amount of divalent cation, Ca2+
, doping shows only the effect of carrier density. The 

simultaneous substitution of Pr – Ca is aimed to elucidate simultaneously the effect of 

cation size and carrier density on the transport and magnetic properties of the resulting 



system. Pr being smaller cation reduces the average size of the A site cation and has 

inherent property of mixed phase formation. Due to reduced average ionic size, the system 

lies between intermediate and low bandwidth manganites. The CMR effect will be 

interesting factor as nearly low bandwidth manganite category shows maximum MR% at 

relatively weaker fields. 

Chapter 4 Devoted to the bandwidth modification by Sr2+ and Ba2+ substitution in 

La0.5Pr0.2Ca0.3MnO3 manganite.    

 Sr2+ and Ba2+ being larger size cations, modify the bandwidth of the parent 

manganite. The substitution of these cations increase the eg band electron hopping 

amplitude and hence enhance the transition temperatures along with structural 

transformations. The substitution of these cations is aimed at reviving the transition 

temperature up to room temperature. The La0.5Pr0.2Ca0.3MnO3 manganite exhibits 

transition temperature around 135K with large CMR effect under relatively weaker fields. 

This composition shows 47% of CMR effect under just 1 Tesla field. This huge CMR 

effect prompted us to modify the bandwidth by larger size cation substitution and its 

possible effect on the electronic transitions and magnetic properties. Since only a small 

amount of Sr2+ doping may increase the transition temperature significantly, it becomes 

imperative to observe the relation between the Tc, CMR effect and magnetization in the 

applied fields. Similar to the effect of Sr2+ substitution, substitution of Ba2+ at A site will 

help us to under stand whether the average A site cation radius plays a prominent role or 

the individual effect of cations dominate in defining the electrical and magnetic transition 

temperatures. 

Chapter 5 is devoted to electron doped manganite systems.   

 There have been lots of efforts to establish electron-doped systems, exhibiting the 

properties similar to hole doped systems but the success is partially achieved.   La1-

xCexMnO3 electron doped system is the one, which has been widely studied to exhibit 

most of the inter-related properties, like that in hole doped systems. We synthesized 

Y0.8Mo0.2MnO3 and investigated the effect of more than +1 aliovalent cation substitution 

on the structural and electronic behavior. The synthesis of thorium-doped manganite with 



stoichiometric compositions Re1-xThxMnO3; Re = La, Nd further reflects our efforts to still 

find a scope to establish the electron doped systems. The drawback in all the electron-

doped systems is limitation in purity of structural phase formation. Still these systems 

have exhibited some interesting properties to be discussed in detail in thesis.      

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    



 

 

SCOPE FOR THE FUTURE WORK 

 

The structural, transport and magnetotransport measurements on Pr-Ca doped LPCMO 

and Pr-Ca/Ba/Sr doped LPCMO, LPCSMO and LPCBMO systems of manganites have 

revealed several interesting properties of these compounds from the fundamental 

understanding of the cause of CMR behavior, structure-property correlation and the 

application potentiality of some of them based on the observation of pronounced MR behavior 

in relatively low applied magnetic fields. Also, the results of the studies on obtaining single 

phase electron doped manganite system have lead to explore the possibility of synthesizing 

them using Chemical Solution Deposition (CSD) technique. 

 

From the point of view of future scope of fundamental work on the similar manganite 

systems, it would be interesting to perform temperature dependant Neutron Diffraction (ND) 

measurements and its magnetic refinement for understanding the nature and cause of 

magnetic phase transitions exhibited by these materials. In addition, one should try to study 

the effect of Swift Heavy Ion (SHI) irradiation on the modifications in microstructural and 

magnetotransport behavior of doped manganites.  

 

From application point of view, it would be interesting to grow the multilayered thin 

film structures of the type LPSMO/Al2O3/LPSMO, to increase the MR, TCR and FCR 

property of these compounds. 

 

 At the end, it can be mentioned that, the interesting results obtained during the course 

of present work will lead to further useful investigations in the manganite research. 
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Introduction to Magneto resistance materials 

Introduction to Magneto resistance materials 

1.1 Magnetism based technology 

The most promising MRAM consist of memory cells based on magnetic tunnel 

junctions (MTJ). The underlying physical principle differs from that of GMR. In an MTJ, 

two ferromagnetic layers are separated by an insulating tunnel barrier. Under a small-

applied voltage, electronic current can pass perpendicularly through the device by 

tunneling across the insulating barrier (in contrast with all other devices mentioned above 

for which the current flow is horizontal). The ease with which the current can tunnel 

depends on the relative magnetization of the two ferromagnetic layers. When the 

magnetizations in the two layers point in the same direction, there is a high probability that 

electrons can tunnel and the resistance of the memory is low while in the case of opposite 

directions, the resistance of the memory is high. 

1.1.1 Magnetic recording technology 

However the GMR head works in a nutshell (without getting into quantum physics 

that would make your brain melt-and mine.  ) When the head passes over a magnetic field 

of one polarity (say, a "0" on the disk), the free layer has its electrons turn to be aligned 

with those of the pinned layer; this creates a lower resistance in the entire head structure. 

When the head passes over a magnetic field of the opposite polarity ("1"), the electrons in 

the free layer rotate so that they are not aligned with those of the pinned layer. This causes 

an increase in the resistance of the overall structure. The resistance changes are caused by 

changes to the spin characteristics of electrons in the free layer, and for this reason, IBM 

has named these structures spin valves. If you imagine a plumbing pipe with a rotatable 

shut-off valve, that's the general concept behind the name. 

1.1.2 Materials exhibiting magnetoresistance 

 The discovery of phenomenon of magnetoresistance (MR), a measure of 

resistivity drop when subjected to the magnetic field and its potentiality in applications in 

magnetic memory devices, has spurred an interest in the scientific community to 

synthesize new materials exhibiting large magnetoresistance, under low fields at room 

temperature. 
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 The colossal magnetoresistance (CMR), as the name implies, is the phenomenon 

of dramatic changes in resistance attained upon application of a magnetic field. Although 

it was discovered nearly half a century ago [1], there has been heightened interest in the 

past few years, not only from a fundamental point of view but also from applications point 

of view.  

 The MR phenomenon was first reported in 1879 by Edwin Hall, known as         

Hall – effect [2] in which it was found that, when a conductor is placed in magnetic field 

(Hx) perpendicular to the direction of current flow (Jy), voltage (Ez) develops across the 

conductor. The field along the conductor Ey is proportional to the current density Jy so 

that, ρ(H) = Ey / Hx. This expression gives the magnetoresistance MR often called as the 

Hall Effect (HE) which describes the magnetotransport phenomenon. 

a. Magnetoresistance in metals and alloys 

 Free electron theory assumed that the resistance of a conductor perpendicular to 

the uniform magnetic field should not depend upon the strength of the field. However it 

does not show any magnetoresistance due to asymmetric nature of Fermi surface. But in 

certain cases like copper, silver and gold a small transverse magnetoresistance can be 

observed, normally less than 1% under few Tesla magnetic fields.  

 In fact, no single feature of the material or theory can explain the entire MR 

phenomenon. In normal metals, the Lorentz force is the cause of deviation of electrons 

trajectories.  

 The situation is drastically different in magnetic metals and alloys. Here the effect 

of Lorentz force is too small with respect of the additional effects that contribute to MR. 

b. Magnetoresistance in semiconductors 

The large MR has been observed in doped magnetic semiconductors, such as        

Cd1-xMnxSe. In these types of materials, MR is maximum when the carrier concentration is 

critical across the metal-insulator boundary because of spin-dependent scattering. 
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c.  Magnetoresistance in alloys 

The mixture of gold and gadolinium such as Au0.05Gd alloy exhibits isotropic 

negative magnetoresistance due to the exchange scattering. But in the case of Au0.98Tb 

alloy, magnetoresistance predominantly arise from quadrupole scattering giving positive 

and negative values for longitudinal and transverse fields, respectively. 

d. Magnetoresistance in magnetic multilayers and oxides 

 The giant magnetoresistance (GMR) was discovered in 1988 by Baibich et al [3] 

in which, the resistance of certain ferromagnetic metals such as Fe and Co drops 

dramatically as a magnetic field is applied. It is described as a giant since it is much larger 

effect than had ever been previously seen in metals. The effect is most usually seen in 

magnetic-nonmagnetic multilayered structures [4]. 

 The colossal magnetoresistance (CMR) is exhibited by manganite oxides and is 

caused by the suppression of spin fluctuation in strong magnetic field, near a magnetic 

transition temperature [5, 6]. Around ordering temperature, negative magnetoresistance 

can reach value much larger even than GMR type materials which is correlated with 

ferromagnetic ordering. An insulator to metal transition is found usually in the manganese 

based perovskites type structure having general formula R1-xAxMnO3 (R: La, Pr, Sm, Nd, 

Rare Earth metal: A= Sr, Ca, Ba, Pb). Magnetism and metallic behavior is based on double 

exchange mechanism will be discussed in detail later in this chapter. 

1.1.3. Giant magnetoresistance (GMR) and Colossal magnetoresistance (CMR) 

a. GMR 

The effect is mostly seen in magnetic multilayered structured, where two magnetic 

layers are closely separated by a thin spacer layer a few nanometer thick [3,4]. It is 

analogous to a polarization experiment. Suppose the first magnetic layer allows electrons 

in only one spin state to pass through it easily and if second magnetic layer is aligned then 

that spin channel can easily pass through the structure and the resistance is low enough. If 

the second magnetic layer is misaligned then spin channel cannot get through the structure 

easily and the electrical resistance is high [7]. 
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The band structure in a ferromagnet is exchange split, so that the density of the 

states is not the same for spin up and down electrons at Fermi level and hence the 

scattering rates are different for electrons with different spins. Actually, these ideas were 

used earlier in 1936 by Sir Nevill Mott to explain the sudden decrease in resistivity of 

ferromagnetic metal as it was cooled through the Curie point.  

b. CMR 

In 1993, R. Von Helmolt et al [5] discovered that La2/3Ba1/3MnO3 exhibit huge 

magnetoresistance around room temperature with many interesting inter related 

phenomena. The strength of MR observed in many similar polycrystalline compounds as 

high as 90% under a few Tesla led the scientists to coin a new term called “colossal 

magneto resistance (CMR)” [5-8]. The observation of CMR effect in the metallic oxides 

induced interest in researchers to exploit these compounds for the possible applications. 

Unlike artificially grown metallic multilayers where extrinsic factors such as the interface 

between the two layers, roughness and grain structure govern the magnetoresistance, these 

compounds have ionic size dependent intrinsic properties responsible for colossal 

magnetoresistance. These intrinsic factors in this ABO3 type of perovskite, with limits on 

the size of A and B site cations for occurrence of CMR effect, can be controlled by the 

compositional changes in the compound [7]. The interplay with size of the cations to alter 

the MR properties of the manganite perovskites evolved plenty of scope in further research 

in related materials.  

The basic manganite oxide ReMnO3 where Re = La, Pr, Nd is a paramagnetic 

insulator at all the temperatures, however, exhibits paramagnetic to antiferromagnetic 

transition around 150 K.  The optimum divalent cation doping at A site drives the resulting 

material to exhibit properties such as coincident insulator – metal (I-M) transition and 

paramagnetic – ferromagnetic (PM-FM) transition. The maximum CMR effect occurs 

around this coincident transition temperature. Re and Mn ions exist in +3 oxidation state in 

ReMnO3 perovskite. The divalent Ca
2+

, Sr
2+

, Ba
2+

 and Pb
2+

 cations substitution at A site 

drives Mn at B site to exist in mixed valent (Mn
3+

/Mn
4+

) state which is responsible for 

most of the transport and magnetic properties of the perovskite. Due this mixed valent 

state of Mn, these compounds are also called as mixed valent manganite oxides. The 

conduction in these oxides is explained by a phenomenon discovered by C. Zener in 1951 
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[9] called as “Zener-Double Exchange (ZDE)”. All the transport mechanisms such as ZDE 

occur through Mn – O – Mn network, where as A cation is not directly involved in any 

conduction mechanism. The Mn
4+

 valence state is formed due to substitution of same 

amount of divalent cation at A-site.  The octahedral crystal field of oxygen octahedra 

(MnO6) lifts the five fold degenerate Mn 3d orbitals into three lower energy t2g (dxy, dyz & 

dzx) and two higher energy eg (dx
2

-y
2
, dz

2
) orbitals. Further, the octahedral crystal field split 

the two eg orbitals into two energy levels which is called Jahn – Teller splitting that cause 

orbital ordering of MnO6 octahedra along the planes where last filled electron lies just at 

the fermi level. The hole doping removes Jahn – Teller distortion along the planes. At                 

Mn
3+

- O
2- 

- Mn
4+

 coupling, the last eg electron in Mn
3+

 feels a net energy difference and it 

becomes delocalized via O
2-

 to Mn
4+

. This process of Zener Double exchange accounts for 

both the metallic and ferromagnetic character of the material below a certain temperature 

called transition temperature [10]. The phenomenon of ZDE is possible only if the spins of 

the alternate manganese ions are aligned parallel.   

The A site cation in ABO3 type perovskite manganite does not involve in any 

conduction mechanism but has its ionic size effect on the transport and magnetic 

properties. A parameter called as “Goldschimdt tolerance factor” relates the different site 

ionic radii to the transition temperature [7, 11]. It is given as 

  t = (<rA> + rO) / √2(<rB> + rO)  

where, <rA> =  average A site cation radius 

 <rB> =  average B site cation radius 

 <rO>  =  radius of oxygen anion 

 The value of tolerance factor (t) is 1 for ideal cubic structure perovskites. 

Electrical and magnetic transition occur for 0.90 < t < 1, where structural transitions from 

cubic to rhombohedral to monoclinic to orthorhombic occur as t approaches from 1 to 

0.90. 
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1.2 Origin of magnetoresistance in manganite perovskite 

1.2.1 The structural and magnetic properties of Re(1-x)AxMnO3 perovskite 

The physics of manganites is very rich. Manganites exhibit a variety of phases 

such as paramagnetic state, ferromagnetic metal or insulator, antiferromagnetism, canted 

antiferromagnetism and charge ordering. Several interesting phenomena including the 

colossal MR are related to the metal-insulator and magnetic transitions between these 

phases. Many properties of CMR materials can be tuned by external parameters such   as  

 

 

 

 

 

 

 

 

 

Figure 1.1  (a)  The cubic perovskite structure. A – larger rare earth cations like La. B    

– smaller cations like Mn, Co. O – Oxygen anion. 

(b) The orthorhombic, rhombohedral and cubic unit cell of perovskite 

structure. Ref [10].  

temperature T, Magnetic field H or by the Chemical Pressure. Many striking electronic 

properties of these systems are due to strong coupling of electrons to the dynamical lattice 

distortions. The lattice is the crystal cell of the perovskite type. 

The manganese oxides forms in the so-called perovskite crystal lattice (Fig. 1.1). It 

is a body centered cubic (bcc) structure with a rare earth atom (for example La) at the 

center (A-site), 8 Mn atoms at the corners (B-site) of the cubic cell and one atom oxygen 

midway between each pair of Mn atoms. Each cubic cell comprises one La atom, One Mn 

The valence of La (and other members of La family such as Pr) is +3, the valance of O in 
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atom (because only 1/8
th

 of each of 8 Mn atoms belongs to the cubic cell) and three O 

atoms (because only 1/4
th

 of each of 12 oxygen atom belongs to the cell). 

This composition is -2 so the valance of Mn should be +3 to fulfill the charge 

neutrality. In other words, an undoped lanthanum manganite (LaMnO3) compound 

corresponds to the ionic composition is La
+3

,Mn
+3

,O3
-2

. The electronic configuration of 

Mn atom is 3d
5
 4s

2
, which means that the ionized Mn

+3
 has 4d-electrons, which are 

responsible for its electronic properties. The Jahn-Teller distortion is taking place at Mn
+3

 

ion and plays significant role in the Metal-Insulator transition and ferromagnetic to 

paramagnetic transition. Jahn-Teller (J-T) effect has been described later in this chapter. If 

we substitute all trivalent rare earth La atoms by a divalent metal such as Ca, we will 

obtain compound such as Ca
+2

Mn
+4

O3 with Mn valence +4. Thus, the Mn ion in the 

CaMnO3 compound will have 3-d electrons. This compound also has the perovskite 

structure. Both the perovskites, LaMnO3 and CaMnO3, are AFM insulator with 

ferromagnetic (FM) n-planes of alternating spin direction [10,11]. For partial substitutions 

of La system such as La1-xAxMnO3 (0<x<1), Mn ions are mixed valent and average 

number of d-electrons at the Mn-site is 4-x. An exciting thing is that, although pure La and 

pure Ca manganites are AFM insulators, the intermediate composition La1-xAxMnO3 

exhibits strong magnetism over a broad range of carrier concentrations and temperatures 

[7,10]. 

1.2.2 Zener double-exchange mechanism 

 It has reported that the lattice distortion brings down Tc by use of hole doping at 

Ln-site (A-site). Hence Tc can be tuned by changing hole doping concentration and size of 

ionic radius of divalent cation. Below Tc, the manganites exhibit metal-type conductivity, 

and ferromagnetism around Tc. These behaviors are explained by Zener’s double exchange 

mechanism [9]. The basic mechanism in this process is, the doping of a d-hole from Mn
+4

 

or electron doping from d-shell of Mn
+3

 to Mn
+4

 like Mn
+3

 (d
4
,t2g

3
,eg

1
,S=2) to Mn

+4
 (d

3
, 

t2g
3
,s=3/2) via the oxygen, so that the Mn

+3
 and Mn

+4
 ions change places [9,11]. 
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Mn
+3

  O
+2

  Mn
+4

  ----- Mn
+4

  O
+2

  Mn
+3

 

 

Figure: 1.2   Schematic diagram of Zener Double Exchange mechanism 

This creates the transfer of an electron from the Mn
+3

 site to the Central Oxide ion 

and simultaneously the transfer of an electron from the oxide ion to the Mn
+4

 site. Such a 

transfer is referred to as double-exchange (DE) [7]. 

1.2.3 Various mechanisms and properties of manganite perovskites 

(a)  Jahn-Teller (JT) effect 

 The rare-earth manganites such as LaMnO3, PrMnO3 and NdMnO3, without hole 

doping are insulators at all temperatures as a consequence of crystal field at the cation sites 

in the perovskite structure. In the ideal structure, both A and B sites have cubic point 

symmetry m 3 m [11]. However, in the real distorted structure, the point symmetry is 

much lower. These oxides undergo an antiferromagnetic (AFM) transition with TN ~ 150 

K. The AFM ordering is of A-Type [7,10]. The Jahn-Teller distortion around Mn
+3

 ions is 

related to the insulating nature of the compounds and anisotropic magnetic interaction in 

the structure.  

                  

Figure: 1.3   Schematic diagram of band structure of J-T distortion   
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The structure plays a crucial role in determining the electric transport and magnetic 

transport properties of these oxides. Because when these parent systems are partly 

substituted by divalent ions at Ln site they became hole-doped. The Mn
+4

 content increase 

resulting into decreasing (JT) distortion. 

Figure 1.3 shows band diagram of LaMnO3, shows (JT) distortion splits the 

conduction band and makes the material insulating. 

In the energy level diagram for LaMnO3, the values of Eex, Ecf and EJT from 

density functional calculation are around 1.5 – 2 eV and Fermi energy level lies between 

JT split orbitals. [12,13]. The hole doping reduces JT distortion and makes the material 

metallic for hole doping ≥ 0.18 [14]. The perovskite structure has an orthorhombic 

distortion (b>a>c/√2) and unit cell consisting of 4-formula units can be mapped into Pbnm 

or Pnma Symmetry. 

(b)  Tolerance factor 

It has been clearly shown experimentally that for a fixed hole concentration, the 

properties of manganites strongly depends on a geometrical quantity known as “tolerance 

factor” [14,15], defined by t=dA-o/(√2dMn-o) here A-0 is the distance between A site, 

where the trivalent or divalent non-Mn ions are located, to the nearest oxygen. A ion is at 

the center of a cube with Mn in the vertices and O in between the Mn ions. dMn-o is the 

Mn-O shortest distance. Since for an undistorted cube with a straight Mn-O-Mn link,     

dA-o = √2 and dMn-o=1 in units of the Mn-O distance, the t=1 for the perfect system. 

However, sometimes the A ions are too small to fill the space in the cube centers and for 

this reason the oxygen tend to move toward the center, reducing dA-O. In general dMn-O also 

changes at the same time. For this reason, the tolerance factor becomes less than unity t<1, 

[7, 10] and Mn-O-Mn angle θ becomes smaller than 180o. The hopping amplitude for 

carriers to move from Mn to Mn naturally decreases as θ < 180o. As the tolerance factor 

decrease, the charge localization increases due to the reduction in the mobility of the 

carriers. If the tolerance factor is reduced (t<1) then Mn-Mn distance is also reduced. 

Therefore, it would be expected that having closer Mn-ions result into an increase the 

electron hopping between them. 
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A detailed study on different Ln0.7A0.3MnO3 compounds for a variety of Ln and A 

ions for the dependence of Tc on tolerance factor (t) shows the presence of three dominant 

regimes (1) a paramagnetic insulator at high-temperature, (2) a low temperature 

 

Figure: 1.4 Variation of Tc with tolerance factor (t) and average cation radius <rA> 

ferromagnetic metal at large tolerance factor, and (3) low –temperature charge-ordered 

ferromagnetic insulator at small tolerance factor fig. 1.4 [16]. The properties of doped 

manganites are highly dependent on the tolerance factor (t). 

(c)  Electron-Lattice coupling 

 The structural and electronic properties of the perovskite crystal clearly have an 

important effect on Curie temperature and magnetoresistance. However, interaction 

between the charge carriers and vibrations of the crystal lattice say “phonons” also play a 

crucial and fundamental role in changing the resistance as the temperature falls towards 

the Curie temperature, of particular importance are the vibrations of lighter oxygen ions, 

which push electron towards vacant states in the manganese ion. This strengthens the 

Jahn-Teller effect and induces a local distortion of the lattice. Such a distortion is known 

as a “polaron” and leads to self-trapping of the (it can be a source of the high resistivity) 

charge carriers above the Curie temperature. Below the Curie temperature the self-

trapping disappears because the bandwidth broadens and the electrons are much more 
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mobile [15]. CMR effect is observed over a wide range of compositions of                    

La1-xCaxMnO3(x<0.5), but the when x∼0.2, a local structural distortion occurs from the 

strong electron-lattice polarons which arises from the strong electron-lattice coupling 

[7,11]. But the significant changes in the local structure in the x∼0.3 composition in the 

80-300k range are observed which are attributed to the formation of small polarons due to 

the John-Teller distortion when T>Tc, [17,18] these studies have shown that small 

polarons delocalized as the magnetization increases in the manganite which induces the I-

M transition. 

(d)  Insulator - Metal (I-M) and paramagnetic – ferromagnetic (PM-FM) transition 

 

Figure:1.5(a) & (b) Metal-insulator transition and Paramagnetic-Ferromagnetic transition, 

                                 in La 1-xCaxMnO3.                              

 In addition to various phenomenon described above, (M-I) the metal-insulator and 

paramagnetic to ferromagnetic transition (PM-FM) take place in LaMnO3 perovskite with 

an orthorhombic structure (b>a>c1/2, Pbnm) with small proportion of Mn
+4 

(< 5%), 

becoming antiferromagnetically ordered below TN ~150 K. In LaMnO3 if La
+3

 is 

progressively substituted by a divalent cation, the formula becomes                                 

Ln1-xAxMnO3 (Ln=La,Nd,Sm,Pr and A=Ca,Sr,Ba, Pb..). Systematic investigations show 

that an empirical relationship exists between electrical conductivity and magnetism [9]. 

With increase in x (Mn
+4

 Content), the manganites become ferromagnetic, with well-

defined curie temperatures Tc and around Tc, it exhibits metal-like conductivity as shown 

in fig. 1.5(a) & 1.5(b). The simultaneous observations of I-M and PM-FM transitions are 



  I - 12  

 

Introduction to Magneto resistance materials 

explained by the Zener double exchange mechanism. A metal is in the ferromagnetic 

phase, whose resistivity decreases as the magnetization increases below Tc. So the 

ferromagnetism is always coupled with metallic phase in the system. 

(e)  Role of ionic radii at A-site 

The ionic radii at A-site play an important role in modifying the electrical and 

magnetic transport properties of manganite. 

 

 

 

 

 

 

 

 

Figure: 1.6 Ionic radius at A-site <rA> vs. Tc/Tim 

As divalent cation is introduced at A-site, the ionic radii becomes mixture of       

Ln= rare earth trivalent and A= divalent cation which is named as average A-site ionic 

radius (<rA>). The modification in the tolerance factor ‘t’ alters the transition temperature 

and desired transport properties of manganites can be achieved. The fig. 1.6 shows the 

variation in transition temperature with average ionic radius <rA> of A-site [19,20]. The 

transition temperature is highest when <rA> ∼1.23Å which corresponds to a tolerance 

factor of 0.93. It may be also noticed that increase in <rA> the eg band with increases and 

MR% decreases [21, 22]. 

(f)  Charge and Orbital Ordering 

             The charge order, also known as Wigner Crystallization, is driven by inter atomic 

coulomb interaction. The mobile d electrons can be localized on certain manganese ions to 

form a regular lattice for particular occupancies of the d band, provided that inter 
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electronic coulomb interaction is comparable with the conduction-electron bandwidth W 

[23]. The effect is accentuated by small displacements of the oxygen atoms to 

accommodate the ordered cation lattice. Charge ordering most likely occurs when the 

temperature is low and x is a rational fraction especially x= 1/8 or 3/4. The extra fourth d 

electron may then be delocalized on alternate manganese site in a plane, as shown in       

fig. 1.7 (a). The carriers in mixed-valent manganites may be strongly coupled to local 

lattice distortion [24]. Orbital ordering can occur at certain carrier density when the d 

electrons occupy an asymmetric orbital as shown in fig. 1.7 (b). The driving source is 

partly direct electrostatic repulsion of the charge. Adjacent octahedra stabilize the effect. 

Figure 1.7(c) displays the combined effect of charge and orbital order in mixed valent 

manganites when the doping concentration is x=1/2 . 

 

 Figure 1.7 (a) charge ordering (b) orbital ordering (c) charge and orbital ordering.                                                                                                   

1.2.4 Phase diagrams of LCMO and LSMO 

(a)  Phase diagram of  La1-xCaxMnO3  manganite 

The compound La1-xCaxMnO3 exhibits a variety of phases when the carrier 

concentration (x) and temperature (T) are varied [25-27]. These phases are characterized 

by different magnetic and transport properties. Figure 1.8 shows the phase diagram of   
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La1-xCaxMnO3 manganites. At x=0.0, LaMnO3 is an insulator. The material exhibits a 

magnetic transition from paramagnetic to AFM insulating state at TN = 141 K. For 0.0 < x 

< 0.2, the material remains in an insulating state, but the magnetic order changes in a 

complicated way showing the crossover from canted antiferromagnetism (CAF) to 

ferromagnetic insulator (FI). At x ~ 0.2, the ground state becomes the FM metal. 

In the region of 0.2 < x < 0.5, the compound is FM metal at T<Tc, where Tc is the 

Curie temperature shown by the solid line. For x>0.5 the material first undergoes 

paramagnetic-to-charge ordered (CO) insulator transition when temperature is lowered, 

end the structure becomes AFM and charge-ordered with further cooling. Finally, at x ~1.0 

 

Figure: 1.8  Phase diagram of La1-xCaxMnO3  manganite 

the compound becomes a pure CaMnO3, which exhibits an insulating behavior with the 

AFM ordering at T < TN = 131 K with a different type of AFM ordering than in the pure 

La-manganite [14]. 

(b)  Phase diagram La1-xSrxMnO3  manganite 

The phase diagram and low-temperature behavior of La1-xSrxMnO3 (LSMO) shows 

that there are some differences in its phase diagram than that of LCMO (Fig. 1.9) mainly 

due to the size difference between Ca and Sr ions, Sr being quite larger in size as 

compared to Ca [28, 29]. As shown in fig. 1.9, there are three distinct ground states, the 

spin-canted insulator, the FM insulator and the FM metal. At high temperatures there 

appears to be two distinct phases, paramagnetic insulator (PI) and paramagnetic metal  
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Figure: 1.9 Phase diagram of La1-xSrxMnO3 

(PM). The vertical lines demarcating these phases are determined by ρ(T) between 

semiconducting (insulating) and metallic behaviour, as shown in figure. The insulator-

metal transition at low temperature is an orthorhombic (x ≤ 0.175) to rhombohedral (x > 

0.175) transition. An important aspect of Sr Substitution is, the inability to obtain single-

phase material for x>0.6. Within the range of phase stability (x < 0.6), however, there is a 

remarkably large variation in transport from good metal for x > 0.3 to insulator for x ≤ 

0.15. It should be noted that, the crossover from metallic to insulating behaviour occurs in 

a very narrow concentration region. At the low end of the substitution a remarkable field-

induced structural transition is observed. 

1.2.5 Literature survey 

 During the last decade, majority of the studies are devoted to understand the 

origin, properties and applications of pure and doped manganites. The parent system 

LaMnO3 is cation deficient compound [30,31]. The defective chemistry creates wide range 

of doping possibilities on both the cationic sites. It has been reported that, the doping 

studies in manganites are not only important from the application point of view but helps 

to understand rich physics underlying them. 

 The studies of doping phenomena in manganites can be divided in to the following 

general types - 
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a. Self doping  

(1) A-site deficient:  Ln1-δMnO3 

(2) B-site deficient : LnMn1-δO3 

(3) A-site, B-site deficient : Ln1-δMn1-δO3 

b. Divalent substitutions at A-site  

       Ln1-xAxMnO3 : A- divalent cation 

c. Transition  metal substitutions at B-site 

       Ln1-xAxMn1-yTyMnO3   : A-divalent cation, T – transition metal ion 

a. Self doped Systems 

 A-site and B-site deficient systems are referred as self doped systems or cation 

deficient systems. The La1-δMnO3 (0.0 ≤ δ ≤ 0.1) compositions are all ferromagnetic and 

show insulator metal (I-M) transition, with the resistivity decreasing with increasing δ.      

LaMn1-δO3 compositions show ferromagnetism and the I-M transition only up to δ =0.005, 

having the resistivity increase with δ [32]. The investigations on La0.90MnO3 compound 

shows CMR properties near room temperature. This phase exhibit ferromagnetic transition 

at TC ~ 230 – 260 K depending on hole density (0.05-0.06). This phase can be indexed in 

rhombohedral structure but powder X-ray and electron diffractions studies show that, it 

exhibits monoclinic symmetry [33]. 

Several studies on the self-doped systems indicate that, there exist four forms of       

La1-δMnO3 system, namely, two orthorhombic, one rhombohedral and one cubic form 

which depends on the oxygen stoichiometry [34-36]. J. Topfer et al showed that, LaMnO3 

system has orthorhombic phase stable over 0.0 ≤ δ ≤ 0.06 and rhombohedral phase, which 

is stable in the range 0.10 ≤ δ ≤ 0.18 [37, 38]. 
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b. Divalent substitution at A-site 

   The Mn based mixed oxide based compounds with divalent substitutions at 

crystallographically distinct A site with stoichiometric formula ABO3 were first studied by 

Jonker and Van Santen [1], who coined the name manganites to this systems. Later on 

Wollan and Koehler [39], investigated La1-xCaxMnO3 compounds using neutron scattering. 

In their study, the antiferomagnetic (AF) and ferromagnetic (FM) phases where 

characterized and reported to have C- and E- type magnetic unit cells in the structure with 

x = 0.5 . 

The renewed surge of interest in manganites, in the 1990, started with the 

experimental observation of large magnetoresistance (MR) effect in Nd0.5Pb0.5MnO3 [40] 

and in La2/3Ba1/3MnO3 [5]. The MR effect in the thin films was found to be as high as 60 

%. The discovery of the so called “Colossal Magnetoresistance” (CMR) effect in the thin 

films of La0.67Ca0.33MnOx [41], showed that, the MR effect was three orders of magnitude 

larger than the typical “giant” MR of superlattice films observed. The report of Xiong et al 

[42] on the studies of  Nd0.7Sr0.3MnOδ thin films showed that, the MR effect was as high 

as 10
6
 %, a truly “Colossal”. Triggered by such numbers, several experimental and 

theoretical studies were carried out on these compounds with x = 0.3 doping due to its 

large TC. However, more recently attention has shifted towards other doping 

concentrations such as x < 0.2 or x > 0.5 where interesting feature of competition between 

various states and phase in manganites have been reported. 

Ca and Sr doping 

Most of the recent work has been focused on Ca
+2

 and Sr
+2

 substitutions at A-site 

since the CMR behavior in these compounds varies as a function of divalent cation size 

and concentration, which is reflected in the difference between the phase diagrams of          

La1-xCaxMnO3 (LCMO) and La1-xSrxMnO3 (LSMO) systems [43-45]. At high 

temperatures, in LCMO, only paramagnetic insulator (PI) phase has been reported while, 

in LSMO, two distinct phases (PI) and paramagnetic metal (PM) have been observed. It 

has been also reported that substitution at Ln-site modifies the phase behavior through size 

effect in (Nd1-ySmy)0.5Sr0.5MnO3 [46,47]. This compound exhibits instability at FM ground 

state. Similar behavior has also been observed in Pr0.5Sr0.5MnO3 and Pr0.7(Sr Ca)0.3MnO3-δ 
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systems [48-50]. The detailed study of low bandwidth Pr1-xCaxMnO3 (PCMO) and other 

properties of the system have been explained by several groups [51-54]. 

Ba doping 

 The literature survey reveals that there exists less amount of work related to                      

Ba
+2 

substitution at A-site, probably due to larger size of Ba
+2 

as compared to Sr
+2

. Thin 

films of La0.67Ba0.33MnO3 were studied by [5]. Von Helmolt et al [55] also studied the 

series La(2-x)/3Ba(1+x)/3Mn1-xCuxOz  having the end members  (x = 0.0 and 1.0) as 

ferromagnetic La2/3Ba1\3MnOz and La1/3Ba2\3CuOz superconductor. In the Mn rich region, 

the perovskite phase is found for x < 0.4. Ju et al [56] studied La 0.67Ba0.33MnOz as a 

function of oxygen content z. It was found that on lowering z from 2.99 to 2.85, ρ 

increased by almost six orders of magnitude uniformly over the temperature range             

0 – 350 K. 

Bi- based Compounds 

The series of compounds with Bi1-xCaxMnOz stoichiometry have been studied by 

several groups [57,58]. Due to stable trivalent state of Bismuth, one would expect similar 

properties as that of La- based compounds. Interestingly, however, no evidence for 

metallicity has been found in polycrystalline samples for 0.3 < x < 0.9 for H = 0. The 

absence of metallic behavior has been ascribed to the high polarizability of Bi
+3

 ion. Bao 

et al [59], reported neutron diffraction on single crystal with x = 0.82 and showed that, 

both, Charge Order (CO) and antiferomagnetic (AF) transition occurs at ~ 7 T field. 

Bismuth doping also has been studied in (Sm, Sr) MnO3 [60]. 

Electron doping 

The electronic and magnetic properties of perovskite manganites depend on several 

correlated factors, inducing mixed valence of Mn in to Mn
+3

/Mn
+4

.In order to create 

valence fluctuations at Mn site in to Mn
+3

/Mn
+2

, several groups have studied the 

substitution of the tetravalent elements at A-site. Recently, number of reports have been 

published which describes the studies on the magnetic, electrical and structural behavior of 

the samples with nominal composition La1-xCexMnO3 [61-66].  
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c. B-site doping 

In order to obtain more information of Zener Double Exchange (ZDE) mechanism, 

which is responsible for the FM and I-M transition in CMR manganites, large amount of 

work has been carried out on studying the effect of doping at B-site in these materials [67-

73]. It is reported that, magnetotransport properties of these materials are sensitive to the 

doping at Mn site. Several groups have studied substitution of bivalent, trivalent or 

tetravalent elements such as Al, Ga, In, Ti, Fe, Sn, Mg,Ga, Co, Ni…doped at Mn site. Xin 

chem. et al reports the doping at B-site in La0.67Ba0.33Mn0.90B0.10O3 (B = Ga, Ni, Fe) 

system. It is seen that there is decrease in ferromagnetism and metallic conductivity 

because of the destruction of the double-exchange interaction. But the MR values are 

higher in the samples [73,74]. It is also reported that, the doping of Cr and Ru at Mn site in 

PCMO system results into high magnetization values and I-M transition which is not 

limited for a narrow composition range in La0.6Ca0.4Mn1-y(Cr/Ru)yO3 system [67]. 

S.B.Ogale et al [75] showed that, partial replacement of Mn by Fe in            

La0.75Ca0.25Mn1-xFexO3 results into small changes in chemical composition, which leads to 

dramatic changes in transport properties and an instability of the low-temperature 

ferromagnetic metallic phase. 

1.3 Applications 

 The CMR materials have good potential for device applications. Several groups 

have attempted to explore the transport properties, specially half metallicity and transition 

from insulating to metallic region in the CMR materials for their applications in various 

devices [76-78]. In brief, the general applications of the CMR materials have been 

discussed as follows. 

1.3.1 CMR materials as Sensor & devices 

(a)   Magnetic Sensor 

Using the CMR effect in thin films, numbers of efforts have been made to fabricate 

magnetic sensors. For magnetic field sensing applications, low field response at or above 

the room temperature, the researchers have used the defects or grain boundary effects in 

microstructure of the manganites [77,78]. The low field sensitivity is due to spin polarized 



  I - 20  

 

Introduction to Magneto resistance materials 

tunneling between two grains [79-81]. The idea of development of heterostructure is more 

prominent, which show low field sensitivity at room temperature [82]. 

The industrial requirements of magnetic sensors using CMR materials should 

follow the following properties. 

1) Operating at or above room temperature. 

2) At least 20% response at a field of ≤ 100 Oe 

3) Temperature independent MR value over 300 ± 50 K. 

4) Acceptable noise values. 

5) The dimensions of film approaching 1000°A or less than that. 

(b) Microwave CMR Sensor 

 At microwave frequencies, significant CMR effect has been observed as compared 

to at low frequency [83]. For the microwave cavity in the anti resonant mode, a very large 

CMR effect is seen ~ 50 % at very low field which suggests the possible microwave 

devices. 

(c) Spin valve devices. 

The spin valve device consists of two ferromagnetic electrodes separated by a 

nonmagnetic conducting layer [84]. In general, the lower electrode has a large coercive 

field than the upper electrode. The entire device structure consists of epitaxial multilayer 

of CMR ferromagnetic electrodes separated by an epitaxial layer of conducting materials. 

However, devices made using this concept have large series resistance, which can not be 

explained on the basis of the resistivity of individual layers and this reduces the observed 

MR. An alternate approach is the trilayer spin tunneling device, where the intermediate 

layer is an epitaxial insulator. This type of device shows large low-field MR, about factor 

of two to five, in a field around 100 Oe at 4.2 K. 

(d) Electric field effect devices 

 The field effect transistor (FET) device structure consists of epitaxial multilayer of 

CMR ferromagnetic layers at the bottom and dielectric layers on the top. This device 
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structure shows some interesting characteristics depending on the dielectric layer on top as 

to whether it is a para-electric layer such as STO, or a ferroelectric PZT [85].  

(e) Bolometric Sensor 

 Due to the large temperature co-efficient of resistance (TCR) in CMR materials, 

their application as bolometer device is possible [86,87]. The CMR materials exhibits I-M 

transition at Tc and sharp drop of the resistance at transition temperature gives large TCR. 

The merit of the bolometric device is the TCR and noise volume. The commercial 

bolometer is based on VOx, having TCR values around 2.5 to 4%. As compared to VOx, 

the TCR values increases from 8 to 18 % in CMR materials. Ravi bathe et al showed 23% 

TCR in LCMO thin film with silver ion implantation [88].  

(f) Spin Polarized injection devices 

 At low temperatures <100 K, CMR materials show some interesting properties 

and is found to be advantageous to integrate them with HTSC. A heterostructure 

consisting of HTSC/CMR has been used for magnetic flux focused devices [89]. The 

Meissner effect of the superconductor can be used as magnetic lens to enhance the flux 

coupling to a CMR detector thereby enhancing its sensitivity. And spin polarized electrons 

are injected from CMR layer into the superconducting channel [90,91]. 

Motivation for the present work 

The doping at A - site can be done more flexibly in large range of concentrations. 

The isovalent light rare earth substitutional studies have been done by various researchers 

to study the effect of cation size mismatch and average A site cation radius effect on the 

electronic and magnetic transitions. Only some light rare earths like La, Pr, Nd and Sm 

based manganite systems show the CMR properties whereas heavy rare earth like Gd, Ho, 

Dy etc. due to smaller ionic radii results in the buckling of Mn – O bonds significantly 

such that eg band itinerant electron gets localized permanently to their parent atoms.  

     Depending upon the transition temperatures and related CMR effect, the manganite 

systems have been classified as low bandwidth, intermediate bandwidth and large 

bandwidth manganite systems.  The system such as Pr1-xCaxMnO3 in which ferromagnetic 

metallic state is not stabilized and a ferromagnetic insulating state exists in the range 
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between x = 0.15 – 0.4 is classified as low bandwidth manganite system. This system 

represents a stable charge-ordered state in a broad density region between x = 0.30 – 0.75. 

Such manganites exhibit I-M transition when subjected to magnetic field, pressure and 

when exposed to X-rays. Since there is large buckling at Mn-O bond due to smaller size of 

Pr, the application of even weaker magnetic field results in significant amount of CMR 

effect. The manganite like La0.7Sr0.3MnO3 shows the transition temperature well above the 

room temperature around 370K and labeled as large bandwidth manganite system. It is 

believed that, in this compound the hopping amplitude for electrons in eg band is larger 

than in other manganites as a consequence of the sizes of the ions involved in chemical 

compositions. Large bandwidth systems have spins almost parallel at the Mn-O couplings, 

so the application of magnetic field does not produce any significant change in resistivity 

in already magnetically ordered region. The drawback of large bandwidth system is that, 

the large transition temperature is coupled to small CMR effect that has restricted these 

materials from application point of view. The third type of manganite system that has 

characteristics of both, the low and large bandwidth systems and in which the research is 

being carried out by a sizeable fraction of researchers is called as intermediate bandwidth 

manganite system. La1-xCaxMnO3 is a typical example of such a system. This compound 

represents the presence of robust ferromagnetic metallic state. It has also features that 

represent deviation from double-exchange behavior, including the existence of charge 

ordered and orbital ordered state. Recently the work is also being focused on intermediate 

to low bandwidth materials since these are the ones that exhibit the largest CMR effect, 

which is associated with the presence of charge ordering tendencies.  

      Keeping in mind the role of average A-site cation radius (<rA>) and the amount of 

divalent cation doping in modifying the structural, transport and magnetic properties of 

various manganite systems, we have made an attempt to study the simultaneous effect of 

<rA> and carrier density in an intermediate bandwidth system La1-2xPrxCaxMnO3 

(0≤x≤0.3). Also, an optimally doped systems (La0.5Pr0.2)Ca0.3MnO3 has been studied and 

found to exhibit properties of a nearly low-bandwidth systems. We have separately studied 

the effect of modification in bandwidth of this system when Ca
2+

 is replaced by with larger 

cations Sr
2+

 and Ba
2+

. This  results in the interesting properties arising as a result of 

increase in <rA> and size-disorder at A-site. Particularly, the Ba
2+

 substitution induces a 
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local structural distortion and hence, results in phase-segregation. The effect of phase-

segregation in inducing the transport and magnetic anomalies has been discussed in 

subsequent chapters.  

In the course of present work, along with the hole-doped manganite systems, 

efforts have been made to investigate the possibility of obtaining related effects in 

electron-doped manganites. The compounds like La0.7Ce0.3MnO3 have been found to 

exhibit several interesting transport and magnetic properties. In hole-doped systems when 

average charge on A site is reduced, the manganese ions go in a mixture of Mn
3+

/Mn
4+

 

valence states. On the other hand, in electron-doped systems <rA> is increased by 

aliovalent cation doping at rare earth site. The increased charge on A-site will be able to 

drive the manganese ions in a mixture of Mn
3+

/Mn
2+ 

states. Mn
2+

 valence state of 

manganese, like Mn
4+

 valence state, is a non Jahn–Teller ion. The Zener Double Exchange 

should occur between two adjacent Mn
3+

 and Mn
2+

 ions in the same way as it occurs 

between Mn
3+

 and Mn
4+

 ions. One would, therefore, expect electron-doped manganites to 

exhibit ferromagnetic-metallic behavior coupled with a large magnetoresistance.  

The chapter-wise detail of all the subsequent chapters is given below 

Chapter 1 describes the phenomenon of magnetoresistance observed in different 

types of materials with a detailed description about various mechanisms, properties and 

phases present in the perovskite type manganite materials exhibiting large 

magnetoresistance.  

Chapter 2 of the thesis deals with the various experimental techniques and methods 

such as X-ray diffraction (XRD), scanning electron microscopy (SEM), d.c. four-probe 

method for resistivity and magnetoresistance measurements and d.c. and a.c. 

magnetization measurements. Their need and importance as a characterization tool has 

also been discussed.  

Chapter 3 is based on our investigations of effect of simultaneous increase in <rA> 

and carrier density in Pr and Ca substituted antiferromagnetic insulating compound 

LaMnO3. For this purpose, we have studied the structural, transport, magnetic and 

magnetotransport properties of La1-2xPrxCaxMnO3 (0≤x≤0.3) manganite system. 
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Chapter 4 deals with effect of bandwidth modification of La0.5Pr0.2Ca0.3MnO3 

compound by substitution of larger size cations Sr
2+

 and Ba
2+

 for smaller cation Ca
2+

. In 

this chapter, a detailed investigation of structural, transport, magnetic and 

magnetotransport properties of (La0.5Pr0.2)(Ca0.3-xAx)MnO3 (A=Sr
2+

 and Ba
2+

) (0≤x≤0.3) 

has been made. 

Chapter 5 is devoted to the study of the possible role of electron doping at A site 

due to higher valence cations like Ce
4+

, Th
4+

 and Mo
6+

 etc. For this purpose we have 

studied the electron-doped system Re1-xAxMnO3; A = Th and Mo for structural, transport, 

magnetic and magnetotransport properties. 
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Experimental methods and techniques for characterization 

2.1 Synthesis Methods 

The synthesis of good quality material is a key to obtain the desired physical 

properties and single-phase structure. Hence the selection of sample preparation method 

plays an important role. High purity starting materials should be used to avoid the 

introduction of defects into the structure. It is very important to have single-phase 

compound of CMR material for detailed investigations. In order to prepare a single-phase 

sample, the synthesis conditions are also equally important. During synthesis, the 

parameters like temperature, pressure, gas flow and time for the reaction are needed to be 

varied according to the requirements in the sample. The selection of all the parameters has 

to be made to find the conditions, which are best for each sample, and to obtain desired 

phase. Generally, solid state reaction route or ceramic method is preferred for the synthesis 

of mixed valent manganite CMR materials. 

2.1.1 Solid state reaction method 

All the bulk polycrystalline samples under study are synthesized with solid state 

reaction method [1]. The general steps involved in solid-state reaction method for 

synthesizing CMR materials are described below. 

1.  All starting materials are high purity powders of carbonates, oxides, nitrides, etc. 

They are preheated for appropriate time and temperature in order to remove 

moisture in them. Powders are weighed for desired composition.  

2.  In the solid state reaction, for the reaction to take place homogeneously, it is very 

important to mix and grind the powders thoroughly for long duration to obtain 

homogeneous distribution in required proportions of the desired stoichiometric 

compound. 

3.  The proper grinding of mixed powders using pestle-mortar reduces the particle 

size as much as possible. This is necessary for obtaining close contact among the 

atoms.   

4.  This powdered mixture is then heated in air for the first time. This first 

calcination helps to remove the CO2 present in the mixture. 
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5.  After the first heating, further number of heatings in atmosphere, are required to 

obtain phase purity and remove any traces of CO2 present, if any. It is always 

better to increase temperature gradually during the series of heating. 

6.  Before final sintering of samples, fine black powder obtained is pressed into 

cylindrical pellets.  

7.  The pellets are sintered in a furnace in air at elevated temperatures to obtain the 

desired structural phase. The samples are allowed to furnace cool. 

8.  Annealing: After sintering, the samples may have oxygen content slightly less 

than the required stoichiometry in oxide systems. To reach the optimum oxygen 

content, the samples have to be annealed, preferably in flowing oxygen. Since 

most of physical properties of oxides are rather sensitive to oxygen content and 

ordering, the conditions set during the oxygen annealing are important. For 

appropriate oxygen content, the sintered pellets are usually kept for oxygen 

annealing at a desired temperature for a long period of time and then cooled 

down slowly to ambient temperature. 

The solid-state reaction method has proved to be the most suitable to synthesizing 

the reproducible samples of oxide systems. These steps can be followed for synthesis of 

manganites by solid-state reaction route. Oxygen annealing is not required in some cases 

for manganite as these materials posses good stability of oxygen stoichiometry. 

Preparation of CMR materials by solid state reaction 

� Weigh and mix starting material 

� Oxides, carbonates, nitrates etc. decompose by heat ~ 900 °C 

� Grinding and presintering at 1000 °C  & 1100 °C 

� Grinding and long presintering at 1200 °C to 1300 °C 

� Grinding, add binder if necessary 

� Final sintering between 1350 °C to 1400 °C 
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2.2.2 Sol-gel method 

The sol-gel method is known to produce materials from solutions either in bulk, 

films, fibers or powder forms [2]. Concerning the microstructures, the sol-gel method is 

yields mainly porous materials, dense materials like glasses and ceramics, organic-

inorganic hybrids and nanocomposites. 

� Key points of the sol-gel method 

1. Gelatinous materials as a precursor play a role of an anticoagulant of growing 

particles. The preparation of monodispersed particles systematically controlled in 

mean size and shape have been difficult by conventional methods. In this method, 

under the conditions of high ionic strength, growing particles are easily aggregated 

and thus uncontrolled in size and shape. On the other hand, by the sol-gel method, 

network of a gelatinous precursor prevents the particle aggregation. 

2. The supersaturation of the system can be kept at a low level by gradual dissolution 

of the precursor and the separation of the nucleation and growth stage is 

performed. The essential conditions to form monodispersed particles are thus 

achieved. 

3. The solid precursor plays an important role as a reservoir of metal ions and/or 

anions of the product, which makes it possible to produce monodispersed particles 

in large quantities. 

A typical example of the sol-gel method, gel as a precursor, is exemplified below. 

The main steps follwed during this method are given. 

1. Powders, alcohol, required acid and water are taken to prepare solutions. 

Precursors are made with water in one of them and they are mixed radiply. 

Generally, these solutions are made at room temperature. 

2. Finally, the precursors are mixed in molecular ratio and kept for gelation for some 

period of time (generally in days). 

3. This gel is dried at certain temperature for some period of time in air. 

4. This dried powder is ground thoroughly by pestle-mortar and finally heat treatment 

is given to form the compound in a particular shape. 



  II - 4  

 
Experimental methods and techniques for characterization 

2.2 Structural and morphological studies 

It is very essential to study structural properties of any material in order to 

determine the structural phase of the sample before carrying out any other studies on the 

material. Structural properties are closely related to the chemical characteristics of the 

atoms in the material and thus form the basics on which detailed physical understanding is 

built. Similarly, morphological studies are important for understanding the growth and 

packing density of grains in thin films or polycrystalline bulk materials. There are various 

techniques known to explore the structure and morphology of a material. These are used to 

ascertain single phase samples and detect deviations from the main structure as well as 

extracting the actual structure. The different techniques have different advantages and 

disadvantages and thus complement each other. To study the crystalline nature of a 

material, two techniques are widely used: 1) X-Ray diffraction (XRD) measurements and 

2) Neutron diffraction (ND) measurements.  

To study morphology of the samples, generally, Atomic Force Microscopy (AFM) 

or Scanning Electron Microscopy (SEM) are widely used experimental techniques. 

Transmission Electron Microscopy (TEM) is a useful tool to obtain cross sectional view of 

the thin films, especially when thin films are irradiated or exhibit defects in the inner 

structure. Thermo Gravimetric Analysis (TGA) and Iodometric titration are generally used 

to determine the oxygen stoichiometry in the materials. 

2.2.1 X-Ray Diffraction (XRD) 

X-Rays are having very small wavelength so that they can pass through most of the 

solid materials. The wavelength of X-rays is of the same order of magnitude as the 

distances between atoms or ions in a molecule or crystal. While passing through a crystal, 

X-rays are diffracted by atoms at specific angles depending on the X-ray wavelength, the 

crystal orientation, and the structure of the crystal. X-rays are predominantly diffracted by 

electrons and analysis of the diffraction angles produces an electron density map of the 

crystal. Crystalline materials can be described by their unit cell. This is the smallest unit 

describing the material. In the material the unit cell is then repeated throughout in all 

directions. This will result in planes of atoms at certain intervals. The diffraction method is 

based on this aspect of repetition and on Bragg’s law which gives a relation between the 

distance from one atomic plane to the next ‘d’ and the angle, θ, at which constructive 
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interference of a reflected monochromatic beam is seen. The Bragg’s law follows the 

equation given below.      

2dsin(θθθθ) = nλλλλ                   [2.1][2.1][2.1][2.1] 

where,  d = interplanar distance, n = order of reflection (Integer value), λλλλ = wavelength of 

X-rays, θ = angle between incident/ reflected beam and particular crystal planes 

under consideration. 

We can see from eqn 2.1 (Bragg’s law) that, we need a beam with single well 

defined wavelength (monochromatic) in order to avoid interference in more than one 

direction for each planar distance. To obtain angles, the detector can be rotated. The 

wavelength of X-rays should be ~ d. Sintered CMR manganite samples contain grains 

with planes distributed in all directions. Scanning in 2θ, the angle between the incident 

beam and the diffracted beam, gives a diffraction pattern with peaks corresponding to the 

different planar distances. Figure 2.1 represents the X-ray diffraction mechanism in 

crystalline solids. 

 

Figure 2.1: Diffraction of X-rays by a crystal planes (Bragg’s law). 

According to fig. 2.1, two noteworthy things are: a) Incident beam, the normal to 

the reflecting plane, and the diffracted beam are always coplanar. b) The angle between 

the diffracted beam and the transmitted beam is always 2θ, which is usually measured 

experimentally. The detailed description of XRD is given in references [3,4]. 

The structural studies for the samples under present study were performed by XRD 

and Rietveld refinement of XRD data. The Rietveld analysis is described below. 
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Rietveld Analysis 

The Rietveld analysis [5,6] is a refinement method for powder diffraction patterns 

to study the nuclear and magnetic structures. To study the magnetic structure, polarized 

neutrons are needed. Once the structure is known, the analysis starts with an 

approximation of the lattice parameters and calculates the diffraction pattern for the 

structure. The structure is described with a large number of parameters, as is the 

experimental set-up. There are nine parameters for the experimental equipment: the 

wavelength, the scale factor, the zero point for 2θ and six parameters for a polynomial 

background. For the typical LaMnO3 (ABO3) type perovskite structure, most of the 

parameters have to be refined. The gradient for the weighted sum of squared difference 

between the calculated intensities and the measured intensities, Rp, can be determined 

relative to these parameters. The gradient is then used to change the parameters and this is 

repeated until a minimum in the Mp function is reached. The definition of Rp and the 

profile factors have been taken from the FULLPROF manual. 

Intensity profile factor Rp is defined as, 

    

              [2.2] 

 

where yi is the observed intensity at angular step i, yci is the corresponding 

calculated intensity. To control the quality of the refinement, several agreement factors 

were calculated. The weighted profile factor Rwp is given by,  

       

       [2.3] 

 

and the expectation profile factor, 

[2.4] 
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The Bragg R- factor, 

    

          [2.5] 

 

and crystallographic Rf  – factor 

 

              [2.6] 

 

and the goodness of fit,  
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Here, Iobs and Icalc are the observed and calculated integrated intensities for the 

different Bragg peaks j and (n - p) is the number of degrees of freedom. n - is the number 

of points in the pattern observed and p- is the number of refined parameters.  

The refinements of the XRD of the samples in the present work were carried out 

using FULLPROF program. The order of refining the parameters was: the scale factor, the 

zero point for 2θ, five of the background parameters, the cell parameters, three of the peak 

shape parameters, the z co-ordinates, the isotropic displacement parameters, the 

occupation numbers, the fourth peak shape parameter, the anisotropic displacement 

parameters and the last background parameter. A few different routes to convergence were 

tried to confirm an optimal result. The R factors are good indicators if a route is not 

converging to a reliable result. Anisotropic displacement parameters at the Mn-O sites led 

to better refinements. 

2.2.2  Neutron diffraction (ND) 

Neutron diffraction has long been of importance for detecting light atoms, like 

hydrogen and oxygen, in the presence of heavy atoms like those of metals. There is a basic 

difference in diffraction of X-rays and neutrons by different materials, which makes 
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neutron diffraction as an essential tool for structural investigations. As discussed in earlier 

section, X-rays are scattered by electrons, and more the electrons present, the stronger is 

the scattering. Neutrons carry no electric charge. They are scattered by the atomic nucleus 

and the scattering amplitude depends therefore on the energy levels in the nuclei, atomic 

number and on properties of individual nuclei, which vary rapidly across the periodic table 

and from one isotope to another. Light atoms can therefore have scattering amplitudes as 

large as or larger than the heavy ones.  This makes it possible to detect reflections from all 

the atoms in the materials. One complication is that some atoms absorb neutrons to a high 

degree and therefore give low scattering amplitude. Samarium is one example and hence 

Sm-123 superconductor cannot be studied by neutron diffraction. Since, while leaving the 

reactor, the neutrons posses too much high energies and short wavelengths for diffraction, 

their energy is lowered with a moderator consisting of water. After this process, the 

thermal neutrons have a wavelength of approximately 1 Å, of the order of the plane 

spacing, which can be used for experimental purpose. 

2.2.3 Scanning Electron Microscopy (SEM) 

SEM uses electrons as probes to form an image of the specimen.  It is one of the most 

powerful and productive methods of microscopy yet invented [i, ii]. The SEM has allowed 

researchers to examine a large variety of specimens. The scanning electron microscope has 

many advantages over traditional microscopes.  The SEM has a large depth of field, which 

allows more of a specimen to be in focus at one time.  The SEM also has much higher 

resolution; so closely spaced specimens can be magnified at much higher levels.  As the 

SEM uses electromagnets rather than lenses, it is much more controlled in the degree of 

magnification.  All of these advantages, as well as the actual strikingly clear images, make 

the scanning electron microscope one of the most useful instruments in research today. 

Scanning Electron Microscope (SEM) has become a valuable tool for examination and 

evaluation of materials, both metallic and non-metallic, as well as assemblies and surfaces. 

This is a non-destructive technique in a way that sample can be extracted as such after 

scanning. The sample to be investigated is placed on a specimen stage inside a vacuum 

enclosure of the SEM station and is incident with a finely focused electron beam that can 

be static or swept in a cyclic fashion over the specimen's surface. The resulting signals that 

are produced when the scanning electron beam impinges on the surface of the sample 
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include both secondary emission electrons as well as backscattered electrons. These 

signals vary as the result of differences in the surface topography as the scanning electron 

beam is swept across the sample surface. 

 Working of SEM 

The SEM produces a largely magnified image by using electrons instead of light to 

form an image.  A beam of electrons is produced at the top of the microscope by an 

electron gun.  The electron beam follows a vertical path through the microscope, which is 

held within vacuum.  The beam travels through electromagnetic fields and lenses, which 

focus the beam down toward the sample.  Once the beam hits the sample, electrons and X-

rays are ejected from the sample. 

Detectors collect these X-rays, backscattered electrons and secondary electrons and 

convert them into a signal that is sent to a screen similar to a television screen.  This 

produces the final image. The secondary emission of electrons (figs. 2.2 and 2.3) from the 

specimen surface is usually confined to an area near the beam impact zone that permits 

images to be obtained at a relatively high resolution. These images as seen on a Cathode 

Ray Tube provide a three dimensional appearance due to the large depth of field of the 

Scanning Electron Microscope (SEM) and the shadow relief effect of the secondary 

electrons contrast. Figure 2.2 represents the schematic diagram of SEM explaining the 

experimental set up. 

A typical SEM has a working magnification range of from 10 to 100,000 

diameters. A resolution can be attainable ~ 100 Angstroms and a focus of 300 times that of 

an optical microscope. The large depth of field available with a SEM makes it possible to 

observe three-dimensional objects. The three-dimensional images produced allow different 

morphological features to be correctly interrelated and correctly analyzed. 

The unique advantage of Scanning Electron Microscopy is that it does not need 

much samples loading activity and also, the thickness of the specimen is not a 

consideration. The surface of the sample may clean and smoothened before it is scanned. 

This helps in achieving better surface morphological and grain size information. 
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Figure 2.2: A diagram showing the working of scanning electron microscope (SEM)           

(Diagram courtesy of Iowa State University SEM Homepage). 

 

Figure 2.3: The outcomes of incident electron beam in a SEM 
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2.3 Electrical and Magnetotransport studies 

The samples under present studies were characterized for their electrical and 

magnetotransport properties using the experimental techniques described below. 

2.3.1 Standard four probe resistivity measurements 

Electrical resistance measurements are rather easy and straightforward to make and 

provide much useful information about the sample. The normal state of the material is 

probed and the transition in the CMR material gives us an easily accessible and accurate 

value of the critical temperature as well as information about the quality of the sample.  

A low contact resistance is desirable due to the small resistance of the samples. 

Hence a standard four-probe technique is used to measure resistance of the samples [9]. 

The samples were cut in a rectangular bar shape using a diamond saw. For the 

electrical contacts silver paste was used. The silver paste is applied at the ends for current 

contacts. Thin copper wires were connected with silver paint as shown in fig. 2.3 and the 

whole assembly was put onto a sample holder where the wires were connected with leads 

to the measuring instruments.  

 

Figure 2.4: Four probe contacts of current and voltage supplies to the sample during the 

resistivity measurements. 

The Kiethley instruments were used for the measurements. Thermal effects are 

automatically compensated during the measurements. 

The samples were cooled down using suitable coolant liquid. The vacuum in the 

sample chamber was created by using rotary vacuum system. The samples were then 

heated in a controlled way by using a heater and the resistance was measured with slowly 

increasing temperature. 
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2.3.2 Magnetoresistive measurements 

To study magneto resistive characteristics of the samples, resistance was measured 

by using the standard four probe method as explained in the previous section, in the 

presence of an external magnetic field in a Quantum Design Physical Properties 

Measurements System (PPMS). At a constant applied field, resistance was measured as a 

function of temperature (magneto R-T) in the range of RT to ~ 5 K. Most of the manganite 

samples studied in the present work were characterized using this technique. 

2.4  Magnetic property measurements 

2.4.1  A. c. susceptibility measurements 

As described earlier, if a material exhibits superconductivity then it expels out the 

magnetic flux lines and shows negative of susceptibility (χ), which is defined as ratio of 

magnetization (M) to the applied magnetic field (H). Even very small amount of 

superconductor can display this effect, which can be measured []. Susceptibility is 

measured as a function of temperature for the materials. The samples under present 

investigations were also characterized by this technique to determine the magnetic 

transition temperature. A rectangular bar piece of sample was used for measurements of 

the samples. The piece of sample was weighed and loaded in the sample holder. Then it 

was cooled by using liquid He below its Tc (in the same set up which is used for R-T 

measurements). The sample was then heated in a controlled way and χ was measured by 

using a lock-in-amplifier. 

2.4.2 D.C. magnetization and M-H measurements 

For d. c. magnetization measurements of the samples, SQUID magnetometer or 

Vibrating Sample Magnetometer (VSM) was used. The measurement technique is 

described below along with the principle and working of the magnetometers used. 

2.4.3 SQUID magnetometer 

SQUID magnetometer is the most widely used instrument for magnetic 

characterization in material science. It has been proved as a boon to elucidate many 

interesting results in superconductors, manganites and ferrites [10]. The superconducting 

quantum interference device (SQUID) consists of two superconductors separated by thin 

insulating layers to form two parallel Josephson junctions. The device may be called as a 
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magnetometer to detect incredibly small magnetic fields. The SQUID has as its active 

element one or more Josephson junctions. A Josephson junction is a weak link between 

two superconductors that can support a super current below a critical value Ic. The special 

properties of the Josephson junction cause the impedance of the SQUID loop to be a 

periodic function of the magnetic flux threading the SQUID so that a modulation signal 

supplied to the bias current is used with a lock-in detector to measure the impedance and 

to linearize the voltage-to-flux relationship. The net result is that a SQUID functions as a 

flux-to-voltage converter with unrivaled energy sensitivity. In most practical systems in 

use today, the SQUID is located inside a small cylindrical, superconducting magnetic 

shield in the middle of a liquid helium Dewar, and shown in the fig. 2.6. Superconducting 

pickup coils, typically configured as gradiometers that detect the difference in one 

component of the field between two points, are located at the bottom of the Dewar and the 

sample is placed beneath the magnetometer. The rest of the hardware is designed to 

minimize helium boil off, eliminate rf interference, and to not contribute Johnson noise or 

distort any external a. c. fields [10]. The sensitivity of SQUID is associated with 

measuring changes in magnetic field of one flux quantum as shown in fig. 2.5. 

If a constant biasing current is maintained in the SQUID device, the measured 

voltage oscillates with the changes in phase at the two junctions, which depends upon the 

change in the magnetic flux. The flux change can be evaluated by counting the 

oscillations. It may be noted that the sensitivity of SQUID is 10-14 Tesla, which is 

incredibly large to measure any magnetic signal. 

 

Figure 2.5: Variation of magnetic flux with change in voltage. `   ` 
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Figure 2.6: A schematic diagram of SQUID magnetometer. 

Vibrating Sample Magnetometer 

Vibrating sample magnetometer (VSM) is used to measure the magnetic moment 

of a material [11,12]. A VSM operates on Faraday's Law of Induction. According to 

Faraday’s laws of magnetic induction, an ac voltage is induced which is proportional to 

the rate of change of magnetic flux associated with the circuit and thus to the amount of 

magnetic moment within the sample due to the applied magnetic field. A VSM operates by 

first placing the sample to be studied in a constant magnetic field.  If the sample is 

magnetic, this constant magnetic field will magnetize the sample by aligning the magnetic 

domains or the individual magnetic spins, with the field.  If the constant field is larger, the 

magnetization will also be larger.  The magnetic dipole moment of the sample will create a 

magnetic field around the sample, sometimes called the magnetic stray field. The sample 

is vibrated with a certain frequency in the vertical direction near the detection coil. As the 

sample is moved up and down, this magnetic stray field changes as a function of time and 

can be sensed by a set of pick-up coils. An ac signal is generated at a frequency 

determined by the sample oscillation. This electric field can be measured and can give us 
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information about the changing magnetic field. This current will be proportional to the 

magnetization of the sample.  The greater the magnetization, the greater will be induced 

current.   

Oxford instruments design VSM [13] is used for these measurements with a few 

Tesla superconducting magnet. The material under investigation is mounted in a sample 

holder at the end of a carbon fiber rod and inserted in VSM continuous flow Helium 

Cryostat. The tail of the cryostat lies inside a conventional NbSn superconducting magnet 

capable of sustained fields up to 12 Tesla.  

Once a DC field is applied, the sample is vibrated at a constant frequency of 66 Hz 

with amplitude of about 1.5mm along the vertical axis of the uniform applied field.  Two 

pickup coils, placed above and below the sample, experience a change of the magnetic 

flux due to the motion of the sample and, according to Faraday's law, an emf induced is 

proportional to the rate of that change of flux. This signal, proportional to the 

magnetization of the sample, passes through a two-stage amplification process and is 

monitored by the VSM electronics and recorded on a computer via a standard RS232 

connection. The sample temperature is measured by a AuFe/Chromel thermocouple in 

direct contact with a copper heat exchanger situated below the sample. 

 

Figure 2.7: A Schematic diagram of VSM. 

The temperature control (temperature range: 3.6 - 320 K) is achieved by an Oxford 

Instruments ITC4 temperature controller. A schematic diagram is shown in fig. 2.7. 
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The above mentioned measurement systems are used for d. c. magnetization and  

M versus H measurements of the samples. For d. c. magnetization, a small external field is 

applied and χ is measured as a function of temperature at constant applied field. For M-H 

measurements, magnetization (M in emu /gm) is measured at a constant temperature while 

magnetic filed is varied up to a certain value of positive and negative applied field. 
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3.1 Studies on nearly low bandwidth La1-2xPrxCaxMnO3 manganites. 

The LaMnO3 is the best suitable composition of the material, with the divalent 

doping normally alkaline earths like Ca
+2
, Sr

+2
, Ba

+2
 inducing remarkable electrical and 

magnetic transport properties like, metal-insulator (M-I) transition, paramagnetic to 

ferromagnetic (PM-FM) transition and charge ordering (CO) state with one more magnetic 

FM - AFM transition. The renewed Interest in these materials is due to the observation of 

huge amount of negative resistance exhibited by them under the application of magnetic 

field. They show remarkably half metallic behavior or spin polarized conduction and other 

remarkable features, which opened up the door of fascinating world, named as a                  

mixed valent manganites. In nature, the mixed valent manganites means, the material 

containing Mn
+3
 and Mn

+4
, which promotes the occurrence of the above mentioned 

phenomena [1]. Especially, creation of the Mn
+4
 in the material can be achieved by the 

way of several routes of the doping. Interestingly, reports exit on the creation of Mn
+4
 

without doping at the divalent A-site due to the defect structure of perovskite block has 

attracted the attention of many working in this field [2,3]. 

The interesting feature of undoped LaMnO3 is that, LaMnO3+δ can be prepared 

under oxidizing condition. Although such a LaMnO3+δ perovskite structure cannot accept 

excess oxygen in an interstitial site [3], non-stoichiometric excess oxygen fraction can be 

accommodated as cation vacancy.  It may be either at A-site or B-site or at both the sites 

[4]. This has been described by the defect chemistry of these compounds using either TGA 

measurements or diffraction experiments [4-6]. Accordingly, the composition of 

LaMnO3+δ is generally expressed as La1+δMn1-δO3 or LaMn
+3

1-2δ Mn
+4

2δO3+δ [4]. The 

oxygen defect amount δ produced in proportion of Mn
+4
 in sufficient amount, promotes 

M-I transition and other CMR properties. Several attempts have been made with defect 

structure of LaMnO3 to obtain transition temperature in wide range of temperature 

between RT to low temperature. 

 The defect structure is mainly distinguished by orthorhombic, rhombohedral and 

cubic phase [7, 8]. The orthorhombic phase is stable over 0.10 ≤ δ ≥ 0.18 [4]. There is an 

anomaly with the δ value corresponding to amount of Mn
+4
 showing Mn

+4
 does not 

directly depend on δ [8, 9]. Hence, it can be argued that, the structural behavior of the 
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compound is the most prominent way to explain different CMR properties. Oxidation 

creates small polaron holes that become increasingly trapped at cation vacancies. The 

orthorhombic structure sustains the co-operative J-T distortion while the rhombohedral 

phase suppresses the co-operative J-T distortion so that the hole-pour matrix becomes 

ferromagnetic [9]. With highest δ having appropriate tolerance factor t creates delocalized 

state and introduces double-exchange mechanism. This ferromagnetic coupling competes 

with antiferromagnetic superexchange. [10, 11] 

All the reports are found in favor of use of wet chemical methods to synthesize 

defect structure of LaMnO3 [12]. Earlier report suggests that, conventional solid state 

reaction route does not create sufficient long range ferromagnetic order and insulator -

metal (I-M) transition in undoped LaMnO3 samples [13-15]. 

With an aim to create sufficient long range ferromagnetic order in the undoped LaMnO3 

sample by varying the Mn
+4
 content through Solid state reaction route, in this course of 

present work, we have attempted to synthesize the slightly cation deficient system such as 

La1-2xPrxCaxMnO3 (LPCMO) (x = 0.00, 0.10 & 0.15). The results of the structural, 

transport, magnetotransport and magnetic property measurements on the doped LPCMO 

system have been described in detail in this chapter. The presence of Pr substitution plays 

a crucial role to achieve high negative MR. The results obtained on this system has 

prompted us to carry out more studies on the simultaneous doping of Pr, Ca (x = 0.20, 

0.30) in LPCMO. The cation size plays a vital role to suppress and revive the transition 

temperature. The sensitivity of the material to the cation size is understood to have direct 

impact on Mn-O-Mn bond length that controls the carrier hopping amplitude. Some low 

bandwidth magnetic system like Pr1-xCaxMnO3 (PCMO) are charge ordered at all the 

compositions, but shows ferromagnetism from x = 0.2 - 0.3 [16, 17]. The system shows 

coexisting inhomogeneous metal-insulator (M-I), ferromagnetic (FM) and 

antiferromagnetic (AFM) phases around 100 K. However it exhibits M-I transition under 

magnetic field and when exposed to X- rays [18-21]. The smaller size of Pr reduces the 

Mn-O-Mn bond angle making super-exchange competitive with Zener double exchange.  

 The other manganite system La1-xCaxMnO3 (LCMO) shows prominent transport 

and magnetic transitions for x = 0.18 - 0.50 [22]. Hence, it would be interesting to 

investigate the structural, transport, magnetic and magnetotransport properties of the 
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simultaneous Pr-Ca doped for La in LaMnO3 perovskite. Average A-site cation radius 

<rA> decrases by the simultaneous substitution of smaller cation Pr and Ca, which leads to 

nearly a low bandwidth system. 

Sample Preparation 

The series of samples with stoichiometric compositions La1-2xPrxCaxMnO3            

(x = 0.0, 0.10, 0.15, 0.20 & 0.30) and La0.5Pr0.2Ca0.3MnO3 were synthesized using standard 

solid-state reaction method. The appropriate amounts of pure La2O3, Pr6O11, MnO2, and 

CaCO3 chemicals were thoroughly ground and mixed. The calcinations and sintering, with 

intermittent grindings were done in the temperature range of 900 ºC – 1100 ºC. Samples 

were annealed under the flow of nitrogen for 12 hrs. followed by oxygen annealing for 24 

hrs followed by slow cooling down to room temperature (RT). 

3.1.1   Structural studies  

 The structural studies on all the La1-2xPrxCaxMnO3 (x = 0.0, 0.10, 0.15, 0.20, 0.30) 

samples have been carried out using XRD facility at Department of Physics, University of 

Pune and IUC-DAEF, Indore. The measurement parameters were 2θ ranges 20 º - 80º,  

step size  - 0.02º and step time  1.00 sec. 

 Figs. 3.1, 3.2 and 3.3 shows the XRD patterns for pure LaMnO3 (x = 0.0),          

La1-2xPrxCaxMnO3 (x = 0.10 & 0.15) respectively. 

 

Figure: 3.1 XRD pattern of undoped LaMnO3 (x = 0.0). 

 

 The structural study on x = 0.0, i.e. LaMnO3 sample has been carried out in the 

light of variation in Mn+4 content due to the defect structure resulting from the synthesis 

technique used in sample preparation. It is reported that, the structure of LaMnO3 changes 

from orthorhombic to rhombohedral as a function of Mn
+4
 [7, 8]. Fig. (3.1) clearly shows 
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that, the sample x = 0.0 possess a mixed phase orthorhombic and rhombohedral behavior. 

The doublet peaks indicate the presence of both the phases. The 100 % intensity peak can 

be indexed in rhombohedral structure with a0 = 5.523 A, b0 and c0 = 13.324 A. The 84 % 

intensity peak just before 100 % peak in the form of doublet is indexable in orthorhombic 

structure with space group = Pnma (62). The XRD pattern of x = 0.0 also can be indexed 

in the similar pattern in which the intensity of rhombohedral structured peaks dominates 

over the orthorhombic phase peaks [23].       

 

Figure: 3.2 XRD pattern of La1-2xPrxCaxMnO3 (x = 0.10). 

 

 
Figure: 3.3 XRD pattern of La1-2xPrxCaxMnO3 (x = 0.15). 

 

 The progressive simultaneous substitution of Pr-Ca at La in LaMnO3 results into 

the conversion of doublet peaks into singlet, as evident from figs. 3.2 and 3.3. For x = 

0.10, the three doublets are seen to be dissolved and becomes singlet with 100% maximum 

peak indexable in rhombohedral reflection. For x = 0.15 (fig. 3.3), the system is 

structurally converted to orthorhombic phase with the possibility that x = 0.18-0.20 as the 
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concentration of doping for the occurrence of pure orthorhombic structure exhibiting M-I 

transition and CMR behavior. 

 

 

 

Figure: 3.4 XRD pattern of La1-2xPrxCaxMnO3 (x = 0.20). 

 

 Fig. 3.4 shows the observed XRD pattern for x = 0.20 sample showing that almost 

all the peaks can be indexed in an orthorhombic structure with space group Pbnm (62). 

The presence of a low intensity peak before 100 % peak in this sample has been discussed 

at the end of this section. 
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Figure: 3.5 Rietveld fitted XRD pattern of La1-2xPrxCaxMnO3 (x = 0.30). 
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Figure: 3.5 Rietveld fitted XRD pattern of La0.5Pr0.2Ca0.3MnO3 system. 

 

 Figs. 3.5 and 3.6 depicts the rietveld fitted XRD patterns for La1-2xPrxCaxMnO3     

x = 0.30 and La0.5Pr0.2Ca0.3MnO3 sample respectively. It can be seen from the patterns that 

samples possess single phase orthorhombic structure. 

 The weak intensity peak before the 100 % maximum peak in the XRD patterns of 

all the samples studied cannot be indexed in the rietveld fitting. Moreover, it does not 

match with the unreacted 100 % La2O3 peak. Also, there is an absence of Mn2O3 peak in 

the XRD patterns, which suggest that this peak is indexable under JCPDS LaMnO3 

structural data as (0 2 0) symmetry reflection. Earlier work reported by B. Reveau et al,                  

J. B. Goodenough et al and C. N. R. Rao et al have shown that this weak intensity 

reflection can be indexed under distorted orthorhombic structure as (0 2 0) plane. 

3.2  Transport and magnetotransport measurements 

LaMnO3 

The results of the transport and magnetotransport measurements on LaMnO3 and                     

La1-2xPrxCaxMnO3 (x = 0.10, 0.15, 0.20 & 0.30) samples carried out using standard four 

probe resistance technique with and without applied magnetic field have been given in this 

section. 

Fig. 3.7 shows the variation of resistance as a function of temperature for pure 
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LaMnO3 with and without application of magnetic field. The inset figure shows the R-T 

behavior of LaMnO3 at low temperature up to 5 K.  

 

 

Figure: 3.7 R – T and Magneto R – T plots under 1T field of undoped LaMnO3. 

It is clear from the figure that the application of 1T field suppresses the peak 

resistance by an appreciable value, which can be quantified as negative peak 

magnetoresistance at I-M transition. The observation of I-M transition in pure LaMnO3 

under 0 T can be ascribed to the possible defect structure, which creates sufficient Mn
4+
          

(~ 24 %) [7, 8, 23] responsible for FMM state in the sample which break the AFM 

interactions between Mn
3+
 ion. The observation of slight up turn in the metallic R-T 

behavior at low temperature (around 50 K), as shown in the inset figure, indicates the 

development of insulating phase in the FMM matrix. This is an evidence of the presence 

of orthorhombic distortion in the structure of the sample at low temperature.  

La1-2xPrxCaxMnO3 for x = 0.10, 0.15, 0.20, 0.30 

In this section, the results of the studies on transport and magnetotransport 

behavior of Pr-Ca doped LCMO system have been given followed by the discussion on 

these results.  
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Figure: 3.8   R – T and Magneto R – T plots of La1-2xPrxCaxMnO3 (x = 0.1). 

Figure: 3.9   R – T and Magneto R – T plots of La1-2xPrxCaxMnO3 (x = 0.15). 

Figures 3.8 and 3.9 show the R-T and magneto R-T behavior of x = 0.10 and 0.15 

samples of LPCMO respectively. The values of the I-M transition temperatures for these 

samples have been tabulated in table 3.1. The increase in Pr concentration results into an 

increase in peak resistance and narrowing of I-M transition region. As it is difficult to 

control the cation deficiency in the lower doping regime of Pr-Ca substitution in the solid 

state reaction method of sample synthesis, the variation in I-M transition temperature (Tp) 

with doping concentration does not follow any systematic [9]. 

 

 

Figure: 3.10    R – T and Magneto R – T plots of La1-2xPrxCaxMnO3 (x = 0.2). 

Figure: 3.11    R – T and Magneto R – T plot of La1-2xPrxCaxMnO3 (x = 0.3). 
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It is evident from figs. 3.10 and 3.11 that, the peak resistance at Tp becomes 

highest (~ 38 K) for x = 0.30 sample with no change in the Tp value. The samples with           

x = 0.20 and 0.30 Pr-Ca doping concentrations are well above the minimum limit of 18 % 

Mn
4+
 content sufficient for long range ferromagnetic material throughout the sample. This 

is accompanied by structural phase transition from rhombohedral to orthorhombic phase 

for x = 0.20 and 0.30 samples [5]. In addition, with the increase in Pr-Ca concentration 

results into sharpening of the I-M transition and enhance suppression of peak resistance at 

Tp in an applied field of 1 T. 

La0.5Pr0.2Ca0.3MnO3 

 The R-T and magneto R-T measurements on the optimally Ca doped LaMnO3 with 

Pr doping of 20 % at La site were carried out under an applied fields of 1 T, 2 T and 5 T. 

From the fig. 3.12, it can be seen that the Tp increases from 122 K to 150 K with the 

decrease in Pr content from x = 0.30 to 0.20 with Ca content remaining x = 0.30. 
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Figure: 3.12 R – T and Magneto R – T plots of  La0.5Pr0.2Ca0.3MnO3.  

Also, The peak resistance decreases from 38 K (Pr, Ca = 0.30) to 6.8 K (Pr = 0.20, Ca = 

0.30) sample. In this sample it is observed that the amount of suppression of peak 

resistance under 1 T applied magnetic field is reduced as compared to La1-2xPrxCaxMnO3 

for x = 0.30 sample.  

 

 



 

 

Transport and magnetic properties of nearly low bandwidth manganites. 

III -10 

Conduction in Paramagnetic Insulator (PI) state or Paramagnetic Semiconductor 

(PS) mode 

In this section we have attempted to understand the mechanism of charge 

conduction in PI state. Although, this state has been explored less effectively for 

understanding the conduction mechanism due to its insulating nature, but is interesting 

because it also exhibits negative MR. It is reported that there is a need to investigate the 

nature of electrical transport for the region T > Tp. In an attempt to know whether the 

nature of conduction above transition temperature in the La1-2xPrxCaxMnO3  for x = 0.30 

and La0.5Pr0.2Ca0.3MnO3 systems is governed by variable range hopping (VRH) or small 

polaron formation, we have fitted the R-T data above Tp in both the models [24, 25].               

Figs. 3.13 and 3.14 show the VRH and small polaron fitting plots of La1-2xPrxCaxMnO3;            

x = 0.30 and La0.5Pr0.2Ca0.3MnO3 samples.  

 

Figure: 3.13 VRH and small polaron model fitting of R-T of La0.4Pr0.3Ca0.3MnO3. 

Figure: 3.14 VRH and small polaron model fitting of R-T of La0.5Pr0.2Ca0.3MnO3. 

 

  It can be seen from the fitted plots that, Motts type variable range hopping (VRH) 

model holds good throughout the temperature region above TC corresponding to the 

expression in the ρ = ρ0 exp(T0/T)
1/4
 while the fitting of R-T data into nearest neighbor 

small polaron hopping model corresponding to ρ = AT exp(E0/kT) is non-linear in the 

higher temperature regime. This suggests that the charge carrier conduction in the PI state 

obeys the Motts VRH model. T0 in the equation is related to localization length by 

equation, 

  KT0 = 18/L
2
 N(E) 
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where L is the localization length of the carriers and N(E) is the density of the states. 

3.2.2 Magnetoresistance studies 

The values of the magnetoresistance (MR) calculated from the magneto R-T 

measurements carried out under 1 T for LaMnO3 and La1-2xPrxCaxMnO3 (x = 0.10, 0.15 & 

0.20) samples under different fields 1 T, 2 T & 5 T for La0.4Pr0.3Ca0.3MnO3 and 

La0.5Pr0.2Ca0.3MnO3 samples have been given in Table 3.1. 
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Figure: 3.15  MR % Vs Temperature plot of LaMnO3 under 1T field. 

It can be seen from the figure that the presently studied pure LaMnO3 sample 

exhibits high MR effect under the application of 1 T field having an appreciable rise in its 

value at 225 K indicative of a reasonable MR% in PI or PS state also. The MR % becomes 

maximum around Tp. 

La1-2xPrxCaxMnO3 (x = 0.10, 0.15, 0.20) system 
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Figure: 3.16  MR % Vs Temperature plot of La1-2 xPrxCaxMnO3 under 1T field. 
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Fig. 3.16 depicts the variation of MR % with T (K) for different Pr-Ca (x) doping 

concentrations in La1-2xPrxCaxMnO3 (x = 0.10, 0.15 & 0.20) systems under 1 T field. The 

values of the MR % obtained from magneto R-T data at Tp are tabulated in Table 3.1. It 

can be seen from the figure that, for x = 0.10 and 0.15 samples the MR behavior is almost 

similar with maximum MR ~ 57 % for x = 0.10 and ~ 70 % for x = 0.15. Both systems are 

slightly cation deficient systems. The sample x = 0.20 shows high MR% at low 

temperature up to 200 K having a maximum of ~ 80 % near Tp. In a relatively weak 

applied field of 1 T, the observation of such a high MR at 125 K is an interesting result.  
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Figure: 3.17  MR % Vs Temperature plot of La0.4Pr0.3Ca0.3MnO3 under 1 T, 2 T and 5 T. 

It can be mentioned that, the observation of such an appreciable MR effect (80 % 

& 85 %) under 1 T for LPCMO (x = 0.20, 0.30), is a result, which should attract the 

application potential of this sample well above the LN2 temperature. The origin of this 

large CMR effect at relatively weaker fields lies in the magnetic disorder at Mn-O 

couplings and grain boundary effects [27]. The TC depends upon the transfer integral of eg 

electron, which further depends upon the spin arrangements on the adjacent Mn ions. If 

the Mn-O-Mn bond angle is towards 180º then the spin arrangement on Mn ions is 

ferromagnetic which favors the transfer of eg electron easily but deviation from this angle 

obstructs the conduction of eg electron and hence TC occurs at low temperatures. The 

application of magnetic field forces parallel alignment of the spins and eg electron transfer 

increases to show a drop in resistivity and hence CMR effect occurs when spins order 

ferromagnetically on Mn-O couplings [28]. The grain boundaries also contribute to 

resistivity by the spin dependent scattering of carriers. The application of magnetic field 
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reduces the spin dependent scattering of carriers and contributes to CMR effect [27]. The 

large sensitivity of the LPCMO system at weak fields prompted us to modify the system to 

a larger bandwidth by the substitution of larger size cation, which will be described in next 

chapter.                                                                                                                                         

The similar behavior of pronounced MR effect has been observed in sample with  

x = 0.30 ( fig. 3.17 ). It can be seen from the figure that the peak resistance is ~ 38 K (with 

a huge suppression in its value under the application of 1 T field resulting into MR ~ 85%. 

Fig. 3.18 shows the variation of MR% with the temperature for La0.5Pr0.2Ca0.3MnO3 

system under 1 T, 2 T and 5 T applied field. The sample exhibiting a peak resistance of          

~ 6.8 K exhibit MR ~ 40 % near Tp (140 K) under 1 T while the maximum MR ~ 85 % 

has been observed in 5 T field.   

50 100 150 200 250
0

20

40

60

80

100

120

La
0.5
Pr

0.2
Ca

0.3
MnO

3

H = 1T

H = 2T

H = 5T

 

 

M
R
 %

T (K)

 

Figure: 3.18 MR % Vs Temperature plot of La0.5Pr0.2Ca0.3MnO3. 
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Figure: 3.19 Maximum MR% Vs field for La0.4Pr0.3Ca0.3MnO3 and La0.5Pr0.2Ca0.3MnO3.  
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Fig. 3.19 and its inset, shows the dependence of maximum MR % observed for               

x = 0.3 sample and La0.5Pr0.2Ca0.3MnO3 sample at different applied fields. It can be 

observed from these figures that, in both the samples the MR behavior is sensitive in the 

fields up to 2 T with the x = 0.30 samples showing an appreciable rise in MR at 1 T field.  

3.3 Magnetization measurements 

This section describes the results of the magnetic measurements carried out using 

a.c. susceptibility and D.C. magnetization measurements using VSM facility. The a.c. 

susceptibility measurements were performed on undoped LaMnO3 and x = 0.10, 0.20 

samples while the D.C. magnetization measurements carried out for x = 0.10, 0.15, 0.20 & 

0.30 samples.  

3.3.1    A. C. susceptibility  

 

 

 

 

 

 

 

 

 

 

Figure: 3.20 A.C. susceptibility plot of  LaMnO3. 

Fig. 3.20 shows the temperature dependence of a.c. susceptibility of LaMnO3 

sample showing strong ferromagnetic transition at TC ~ 225 K. In this sample the I-M 

transition temperature (Tp ~ 140K) does not coincide with magnetic transition                         

(TC ~ 225 K), which has been often observed in the cation deficient system [8]. The 

disparity between Tp and TC shows that there is a possibility of electronic phase separation  

in the sample. Figs. 3.21 and 3.22 depicts the a.c. susceptibility curves for x = 0.10, 0.20 
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samples (H = 6 Oe) and x = 0.30 (H = 50 Oe) showing the strong ferromagnetic transition 

varying with the dopant concentration x. 
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Figure: 3.21 a.c. susceptibility plot of La1-2xPrxCaxMnO3 for x = 0.10, 0.20. 

Figure: 3.22 a.c. susceptibility plot of La1-2xPrxCaxMnO3 for x = 0.30. 

   Fig. 3.23  (a, b, c, d) shows the hysterics curves obtained under 1 T for all the 

LPCMO (x = 0.10, 0.15, 0.20, 0.30) samples. We have measured hysteresis behavior 

under 1T because the large MR% has been observed under the same field in these 

samples. It can be seen from the figures that with the increase in Pr-Ca (x) concentration 

the emu/gm value increases up to x = 0.20 with an increase in MR% (Table 3.1). In the 

case of x = 0.30 there is an anomaly showing that the magnetization does not saturate up 

to 1 T and the emu/gm value is lower in this sample. 

3.3.2 D.C. Magnetization 

   Fig. 3.23  (a, b, c, d) shows the hysterisis curves obtained under 1T for all the 

LPCMO (x = 0.10, 0.15, 0.20, 0.30) samples. We have measured hysteresis behavior 

under 1T because the large MR% has been observed under the same field in these 

samples. It can be seen from the figures that with the increase in Pr-Ca (x) concentration 

the emu/gm value increases up to x = 0.20 with an increase in MR % (Table 3.1). In the 

case of x = 0.30 there is an anomaly showing that the magnetization does not saturate up 

to 1 T and the emu/gm value is lower in this sample. 
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Figure: 3.23 Hysterisis loops of La1-2xPrxCaxMnO3 (x = 0.10, 0.15, 0.20, 0.30) under 1 T. 
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Table: 3.1 Values of Tp and TC, MR % (1 T) and emu/gm determined for                                

La1-2xPrxCaxMnO3 (x = 0.10, 0.15, 0.20 and 0.30) and La0.5Pr0.2Ca0.3MnO3 

samples. 

 

La1-2xPrxCaxMnO3 ~ Tp (K) ~ TC (K) ~ MR % (1 T) emu/g 

x = 0.10 120 175 57 2.25 

x = 0.15 122  72 2.40 

x = 0.20 122 184 80 2.78 

x = 0.30 122 150 89 2.21 

La0.5Pr0.2Ca0.3MnO3 150 160 45  
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Figure: 3.24 ZFC and FC curves of La0.4Pr0.3Ca0.3MnO3 under 50 Oe. 

Figure: 3.25 ZFC and FC curves of La0.5Pr0.2Ca0.3MnO3 under 50 Oe. 

 

Figs. 3.24 and 3.25 shows ZFC and FC curves for La0.4Pr0.3Ca0.3MnO3 (x = 0.30) 

and La0.5Pr0.2Ca0.3MnO3 samples under 50 Oe fields. The curves for x = 0.30 sample 

shows the presence of anisotropic nature in the magnetization more pronounced as 

compared to La0.5Pr0.2Ca0.3MnO3 (fig. 3.25) [29].  
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3.4 Results and discussion  

The observation of large CMR effect at low temperatures at and below Tp in the 

samples studied in the present work can be attributed to the inter-grain tunneling 

magnetoresistance. This observation can be explained on the basis of scattering of charge 

carriers at the interfaces of grain boundaries due to the application of magnetic field. It can 

be explained as an electron moving from initial grain to the next magnetic grain crosses 

two interfaces in its journey, each of which may behave as the scattering center [30]. This 

acts as an insulating barrier to the conduction of the carriers through the grains. Since     

A-site is occupied by different size cations, so unlike cations may occupy the positions at 

the faces of the adjacent grains [30, 31]. Hence, due to decrease in <rA> with Pr-Ca (x) 

concentration, the Mn environment changes at the interfaces of the connecting grains, 

which results in equal probability of weak and strong scattering of electrons at the 

interfaces. The strong scattering can be suppressed by the application of larger magnetic 

fields, to account for the larger drop in resistance as size disorder increases with x content 

[32]. 

The presently studied LPCMO system exhibits strong ferromagnetic behavior. The 

observation of magnetic anisotropy in higher (x) concentration is possibly due to the 

coexisting FM and AFM clusters. This coexistence of the mixed phases near the first order 

transition, results into the non-coincident Tp and TC behavior [33]. The increasing Pr and 

Ca content increases the coexisting metal insulator phases and the carrier concentration. It 

can be interpreted from the magnetization measurements that, in the region where FM part 

prevails over the metallic one, separate FM droplets exist. The Zener double exchange is 

operative in these individual FM droplets but not across droplets, thus showing a small FM 

insulating region. The inhomogeneous cluster formation for different compositions shows 

lower Tp. At a certain temperature the individual ferromagnetic clusters coalesce into large 

aggregates resulting into I-M transition [31, 34]. The magnetotransport behavior is 

observed under 1 T field showing large CMR effect for all the Pr-Ca compositions. The 

low Curie temperature puts the presently studied system in the category of nearly low 

bandwidth system, which exhibits non-coincident electric and magnetic transitions [34]. 
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3.5 Conclusion 

   In the present work, we have synthesized using solid state reaction route, the pure 

LaMnO3 cation deficient sample and less cation deficient system like                                      

La1-2xPrxCaxMnO3 (x = 0.10, 0.15) which have been optimized for long range 

ferromagnetic order in it, exhibiting I-M transition and appreciable MR behavior under 

low applied field. 

 The La1-2xPrxCaxMnO3 (x = 0.20, 0.30) system of simultaneous doping of Pr and 

Ca showing high MR % under relatively low field 1 T. 
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Introduction 

The simultaneous substitution of Pr-Ca induces interesting properties in the 

resulting manganite system. The La1-2xPrxCaxMnO3 in the previous chapter has been 

identified as a low bandwidth system exhibiting transition temperature below 120 K with 

significant CMR effect at relatively weaker fields [1, 2]. However, we have optimized this 

series with a sample to show that an optimal density La0.5Pr0.2Ca0.3MnO3 composition 

exhibit low Tp and TC with a large MR%. In this chapter we have taken this sample as 

basis for the study of bandwidth modifications and cation size variance effect by Sr2+ and 

Ba2+ substitution on the electronic, magnetic and magnetotransport properties of the 

resulting system. In this endeavor, we have synthesized two series as             

La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.20 (0.05) and La0.5Pr0.2Ca0.3-xBaxMnO3 

(LPCBMO); x = 0.0-0.30 (0.05). Lastly, we show that, increasing the cation size variance 

above a certain limit in La0.4Pr0.3Ba0.3MnO3 results in the phase-segregation indicative 

from the extra peaks of BaMnO3 in the XRD spectrum. The conductivity in the 

semiconducting region is dominated by Mott’s Variable Range Hopping type of 

conduction of polarons [3]. The structural, electrical, magnetic and magnetotransport 

properties have been studied using XRD, magnetoresistance and magnetic susceptibility 

measurements in the light of bandwidth modification and cation size disorder effects. 

As mentioned earlier I-M & PM-FM transition temperatures, which are due to 

spin-polarized conduction of carriers through Zener-Double exchange depends upon the eg 

electron bandwidth and carrier density [4]. La0.7Ca0.3MnO3 (LCMO) and Pr0.7Ca0.3MnO3 

(PCMO) are intermediate and low bandwidth systems respectively. The dependence of 

transition temperature is ascribed to the amount of divalent cation doping and average A-

site cation radius which is quantified by a tolerance factor, t = <A-O>/(√2<Mn-O>).    
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L.M. Rodriguez-Martinez et al [5] defined a quantitative factor called size variance,                    

σ 2=∑xiri
2-<rA>

2     - - - - (1),    where xi is the fractional occupancy of the cation with 

ionic radius ri and <rA> is the average A-site cation radius; characteristic of the mismatch 

of size of the different cations occupying A-site and studied its effect on the structural and 

transport behavior [5]. It is an established fact that, the optimal divalent cation doping of 

33% in the absence of any cation size mismatch induces the largest possible concomitant 

electrical and magnetic transition temperatures. The effect of substitution of larger cation 

Sr2+ is interesting to observe the bandwidth modification and cation size mismatch effects. 

We have studied the La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.20 (0.05) and 

La0.5Pr0.2Ca0.3-xBaxMnO3 (LPCBMO); x = 0.0-0.30 (0.05) systems with an aim to 

investigate the modifications in the transport and MR behavior with increasing bandwidth 

and size disorder. 

4.1 Studies on (La0.5Pr0.2)(Ca0.3-xSrx)MnO3 (LPCSMO) 

         x = 0.0-0.20 (0.05) series 

4.1.1 Experimental details & structural studies 

High purity La2O3, Pr6O11, CaCO3, SrCO3, BaCO3 and MnO2 powders were taken 

for synthesizing the thoroughly mixed and calcinated at 950ºC. All the samples were 

pelletized and sintered in the range of 1100-1400ºC with several intermittent grindings. 

A.c and d.c. susceptibility measurements were carried out for the magnetic susceptibility 

studies. 

 XRD measurements using Cu-Kα radiation were performed for the structural 

determination and phase purity. The Rietveld refinement program using FULLPROF 

program was employed. The refined XRD patterns of all the samples are given in       

figure 4.1, while figure 4.2 shows a typical Rietveld fitted pattern of x=0.15 sample. 
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Figure 4.1: XRD pattern of the La0.5Pr0.2Ca0.3-xSrxMnO3 (x = 0.0 - 0.20) 
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Figure 4.2: Rietveld fitted XRD pattern of the La0.5Pr0.2Ca0.3-xSrxMnO3 (x=0.15) 

Rietveld refinement using FULPROOF program of all the samples for phase purity and 

structural investigations reveals a good phase formation with an impurity ~1-2% of mother 
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compounds for some of the samples. In this series all the samples fit to a distorted 

orthorhombic structure. The cell parameters and hence the volume increases with 

increasing Sr concentration, which can be attributed to larger size cation substitution 

effect. Table – 4.2 shows the variation of cell parameters, cell volume <rA> and σ
2 wih 

increasing x. 

Table 4.1 : Structure, cell parameters and cell volume of La0.5Pr0.2Ca0.3-xSrxMnO3  
       (0≤x≤0.20) samples. 
 

x Structure  a (Å) b (Å) c (Å) Volume(Å3) 

0 Orthorhombic (Pnma) 5.4576(1) 7.7224(2) 5.4436(2) 229.426 

0.05 Orthorhombic (Pnma) 5.4482(1) 7.7295(1) 5.4633(1) 230.078 

0.10 Orthorhombic (Pnma) 5.4559(2) 7.7145(1) 5.4774(2) 230.532 

0.15 Orthorhombic (Pnma) 5.4859(1) 7.7145(2) 5.4592(1) 231.045 

0.20 Orthorhombic (Pnma) 5.4995(2) 7.7165(1) 5.4613(2) 231.764 

 

4.1.2 Electronic transport and magnetoresistance 

Fig. 4.3 depicts the R-T and magneto R-T behaviour of LPCSMO samples in 

absence of magnetic field and in applied magnetic fields of 1 Tesla, 2 Tesla and 5 Tesla. 

The electrical transport behavior of the LPCSMO system, reveals that, as Sr2+ 

concentration increases, the transition temperature increases with a subsequent fall in 

resistivity, which has its origin in the modification of eg electron bandwidth as the average 

A-site cation radius increases by Sr2+ substitution.  
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Figure: 4.3  R-T and magneto R-T plots for La0.5Pr0.2Ca0.3-xSrxMnO3; x = 0.0 - 0.20 (0.05)   

                    series. 

In order to understand the conduction mechanism of polarons created as a result of 

electron-phonon coupling in the semiconducting region, we fitted the R-T data LPCSMO 

samples in figure 4.4, to nearest neighbor small polaron hopping model [6, 7] 

corresponding to ρ = ρ0 exp(Ea/kT) and the Mott’s type Variable Range Hopping model 

[8, 9] (VRH) corresponding ρ = ρo exp(To/T)
1/4.  



IV - 6 

As shown in figures 3&4, the data fits linearly in lnρ vs. T -0.25 plot, suggesting 

that, the conduction of the carriers in the semiconducting region obeys the Mott’s Variable 

Range Hopping model. To in this equation is related to localization length by a relation,  

kTo = 18/L
2 N(E)  - - - - (2) 

where L is the localization length of the carriers and N(E) is the density of states. 

It is observed from the magneto R-T measurements on Sr2+ substituted 

La0.5Pr0.2Ca0.3-xSrxMnO3 system (fig.2) that, Tp increases with increasing Sr content and a 

subsequent fall in MR%. The transition temperature is revived from 140 K to 247 K and 

CMR effect falls from 46% to 7% at a field of 1T with the 20% substitution of Sr2+. Since 

the larger cation increases the Mn-O-Mn bond angle towards 180º and the fall in the 

magnetic disorder at the Mn-O couplings accounts for the low CMR effect [10]. 

Interestingly the CMR effect increases consistently at low temperature below transition 

temperature with increasing Sr content. This low temperature large CMR effect is due to 

the intergrain tunneling magnetoresistance [11]. The drop in the resistance in the higher 

magnetic field also increases with doping concentrations.  

The magnetoresistance also occurs as result of the reduction of the scattering of the 

carriers at the interfaces due to application of magnetic field. The scattering of the carriers 

at the interfaces can be understood in the following way [12]. An electron moving from 

initial grain to the next magnetic grain crosses two interfaces in its journey, each of which 

may scatter the electron. This acts as an insulating barrier to the conduction of the carriers 

through the grains. Since A-site is occupied by different size cations, so unlike cations may 

occupy the positions at the faces of the adjacent grains. Hence, due to increasing size 

variance, the Mn environment varies at the interfaces of the connecting grains, which 

results in equal probability of weak and strong scattering of electrons at the interfaces. The 
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strong scattering can be suppressed by the application of larger magnetic fields, to account 

for the larger drop in resistance as size disorder increases with Sr content. Another notable 

factor is that, the trend in the increase in TC is not linear with Sr concentration, being 

larger for lower compositions and smaller for higher Sr content. This leads to deviation in 

the ideal relationship of Tc and tolerance factor [4]. 

It can be explained by the mismatch of the cations at A-site, which increases with 

Sr content. The large size variance, as calculated from equation, 222 ><−∑=
Aii
rrxσ , 

induces the strain in the lattice by random displacement of oxygen ions and hence 

obstructs the Zener-Double exchange.  
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Figure 4.4: Mott’s VRH model (ln R vs T -0.25) and small polaron model (ln (R/T) vs T -1)  

                    fits for La0.5Pr0.2Ca0.3-xSrxMnO3; x = 0.0 - 0.15 (0.05) series. 

The fitting of the electrical transport data in the semiconducting region reveals that 

conduction in this region occurs through the Mott’s Variable Range hopping of polarons. 

CMR effect is found to have an inverse relationship with the transition temperature. The 

A-site disorder increases with Sr concentration and leads to microscopic inhomogenieties 

in the samples through the random displacement of oxygen anion and showing its 

influence on the electrical, magnetic and magnetotransport properties. 
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4.1.3 Magnetization 

The magnetic susceptibility plots for LPCSMO samples (fig. 4.5) shows an 

increasing trend in Curie temperature with increasing Sr content. It is inferred that the 

magnetic irreversibility decreases with increasing transition temperature.  
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Figure 4.5: Magnetic susceptibility vs Temperature plots for La0.5Pr0.2Ca0.3-xSrxMnO3  

          series.  

4.2. Studies on (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (LPCBMO) (0.05≤x≤0.3) 

In addition to Sr2+, Ba2+ is another divalent cation which is interesting for 

substitution at A-site due to two reasons, namely, 1) due to its larger size (~1.47Å) it 

enhances the tolerance factor significantly and 2) due to large mismatch with size of the 

other cations at A-site, it increases the A-site size-disorder. As mentioned earlier, the 

increasing size disorder increasing the intrinsic inhomogenieties, which may affect the 

transport, magnetic and magnetotransport properties of the resulting compounds. As 

shown in the previous section, the La0.5Pr0.2Ca0.3MnO3 is a suitable system for 
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substitutional studies aiming to elucidate the effect of tolerance factor and size-variance. 

Keeping this in mind, we have replaced the smaller size divalent cation, Ca2+, by a larger 

size cation, Ba2+, in the system (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) and studied the 

ionic size and size disorder effect on the structural, transport and magnetic properties. In 

this series, the size-disorder increases from 0.0001Å2 for x=0 to 0.016 Å2. Such a large 

variation of size-disorder across the series makes all these compounds, an interesting 

subject of investigations. Other than this series of compounds, we have also tried to 

synthesize the compound, La0.4Pr0.3Ba0.3MnO3, which possesses the largest size-disorder 

among all the compounds studied in this section. In the La0.4Pr0.3Ba0.3MnO3 manganite 

sample, we find the chemical phase-segregation, resulting in secondary phase [14]. The 

various structural, transport, magnetotransport and magnetic properties are collated in the 

following sections. 

4.2.1 Experimental details 

All the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) and La0.4Pr0.3Ba0.3MnO3 

compounds were synthesized using conventional solid-state reaction route. Constituent 

oxides (La2O3, Pr6O11, and MnO2) and carbonates (SrCO3 and CaCO3) were mixed 

thoroughly in stoichiometric proportions and calcined at 950°C for 24 hours. These were 

ground, pelletized and sintered in the temperature range of 1100°C - 1200°C for 100 hours 

with many intermediate grindings. The final sintering was carried out at 1300°C for 24 

hours. X-ray diffraction (XRD) patterns were recorded in the 2θ range of 20o – 80o on a 

Siemens diffractometer. Magnetization measurements were performed using a SQUID 

magnetometer (MPMS XL, Quantum Design). The resistivity and magnetoresistance 

measurements were carried using d.c. four probe method on a physical property 

measurement system (PPMS, Quantum Design).  
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4.2.2 Structural Studies 

The XRD patterns of all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) (to be 

referred as LPCBMO) samples were indexed to be single phase compounds crystallizing in 

a distorted orthorhombic structure. Rietveld refinement technique using FULLPROF 

software was employed to obtain to refined cell parameters. Figure 4.6 shows the XRD 

patterns of all the samples while figure 4.7 displays a typical Rietveld refined XRD pattern 

of x=0.2 and La0.4Pr0.3Ba0.3MnO3 (LPBMO) samples. It is seen that there is an excellent 

agreement of experimental and fitted patterns of x=0.20 sample and is, therefore, single-

phase compound. However, when LPBMO fitted to orthorhombic structure shows some 

additional peaks in the structure indicated by (*), presumably of BaMnO3 [6]. This sample 

has maximum A-site size-disorder and may be the cause of the structural phase 

segregation. This shows that, above a certain critical limit of A-site size-disorder, it exert a 

structural strain and results in phase-segregation. Table – 4.2 shows the variation of cell 

parameters, cell volume <rA> and σ
2 with increasing x. 

Table 4.2: Structure, cell parameters and cell volume of (La0.5Pr0.2)(Ca0.3-xBax)MnO3 

      (0.05≤ x ≤0.3) samples. 
 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 

(0.05≤ x ≤0.3) 
a (Å) b (Å) c (Å) Cell Volume 

X=0.05 5.46603(2) 7.72868(2) 5.47161(2) 231.149 

X=0.10 5.47066(2) 7.73082(2) 5.49513(2) 232.404 

X=0.15 5.47913(2) 7.7416(2) 5.51209(2) 233.808 

X=0.20 5.48911(2) 7.75494(2) 5.52533(2) 235.201 

X=0.25 5.49859(2) 7.76887(2) 5.48911(2) 236.439 

X=0.3 5.51182(2) 7.79095(2) 5.54783(2) 238.237 
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Figure 4.7: XRD patterns of the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) sample 
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Figure 4.8: Rietveld fitted patterns of (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (x=0.20) and  

                   La0.4Pr0.3Ba0.3MnO3 samples. The asterisks in the fitted patterns of LPBMO   

                   sample (Lower panel) depict the secondary phase of BaMnO3. 
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4.2.3 Electrical Resistivity  

The plots of electrical resistivity as a function of temperature for all the 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) in zero field and in a fields of 5T and 9T over a 

temperature range of 5 K-320 K. The plots are shown in figs. 4.9 and 4.10. 
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Figure 4.9:  Resistivity as a function of temperature in 0T, 5T and 9T in a temperature    

                     range of 5 K-320 K for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.15) samples. 
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Figure 4.10: Resistivity as a function of temperature in 0T, 5T and 9T in a temperature  

                      range of 5 K-320 K for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.20≤x≤0.30) samples. 

It is seen in figs. 4.9 & 4.10 that all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) 

samples exhibit insulator-metal transition. The I-M transition temperature, Tp, increases 

from ~145 K for x=0.05 sample to ~175 K for x=0.30 sample. This enhancement in Tp 

may be understood on the basis increase in tolerance factor with increasing Ba2+ content. 
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Progressive substitution of Ba2+ (1.47Å) at Ca2+ (1.18Å) induces a large increase in 

average A-site cation radius and hence the tolerance factor increases to a larger extent. 

4.2.4 Magnetization measurements 

The temperature dependence of magnetization measurements for all the samples 

were performed in zero-field-cooled (ZFC) and field-cooled (FC) manner. This implies 

that sample is cooled in zero-field (ZFC) to the lowest temperature and then a certain field 

is applied for measuring the magnetization of the sample in warming direction. After this 

temperature of magnetization, the sample is cooled in the same magnetic field (FC) to the 

lowest temperature and then measured the magnetization while warming. The ZFC and FC 

magnetization versus temperature for all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) 

samples is shown in fig. 4.11.  
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Figure 4.11: Zero-field-cooled (ZFC) and field-cooled (FC) magnetization (M) as a  

                      function of temperature for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples in a field of   

                      50 Oe. 

The Curie temperature (TC) increases from 150K for x=0.05 to 220K for x=0.30. 

With increasing Ba-substitution, the increasing trend of TC is similar to increasing trend of 

the insulator-metal transition temperature (Tp). However, it is seen that the TC and Tp of 



IV - 18 

these samples do not match with each other and this disparity increases with increasing 

Ba-concentration. This disparity is not in accordance with the Zener-Double-Exchange 

interactions and can be explained on the purview of possible grain boundary localization 

or phase separation. It is needless to mention that the polycrystalline samples of various 

micron sized grains, in which properties may vary inside the grain and on the grain 

boundaries. As the ZDE come into play, the bulk part of the grain become ferromagnetic 

and metallic while the grain boundaries are still insulating. The grain boundaries may be 

insulating because of the grain boundary pinning of Mn-ion spins, poor connectivity and 

grain boundary contamination [15]. This creates the insulating channels at the grain 

boundaries and does not allow the percolation of the charge carriers and results in 

insulating behavior even after the onset of TC. Once the grain boundaries become 

conducting at lower temperatures, the I-M transitions appear. Other factor that can cause a 

disparity between Tp and TC is the phase-separation as explained in [16]. Due to the 

granular mixture of different electronic densities, the TC of different grains could be 

different. For instance, we assume that majority of the grains have large electronic density 

so that they exhibit TC at higher temperatures, while the remaining minor fraction have 

lower TC. Now, at the onset of the TC of majority of grains (with higher TC), the systems 

tends to be ferromagnetic even as a minority of grain are still paramagnetic-insulating. In 

such as a situation, though the system will be ferromagnetic, it will continue to exhibit 

semiconducting/insulating behavior unless all the grains become ferromagnetic. At a 

certain temperature when the whole system attains ferromagnetism, percolation is possible 

and the system exhibits I-M transition. The disparity in TC and Tp in the present system 

may be because of either or both of the above stated causes. We get an evidence of the 

phase separation from the d.c. magnetic susceptibility.  
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Figure 4.12: Inverse susceptibility (H/M at H = 5 kOe) as a function of temperature for  

                     (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples. 

Fig. 4.12 shows the inverse susceptibility as a function of temperature for the 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.25) samples when magnetization is acquired in a 

field of 5kOe. It is seen that there exists a deviation of Curie-Weiss law from the 

paramagnetic susceptibility of all the samples. This indicates towards the magnetic 

inhomogeneities or possible existence of ferromagnetic clusters in the paramagnetic 

region. Such inhomogeneities, which may be present both in paramagnetic and 
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ferromagnetic regions, suggesting that phase separation could be one cause of disparity of 

TC and Tp in these samples.  
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Figure 4.13: Fractional change of magnetization (MFC-MZFC/MZFC) versus   

                    temperature (T) for all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples. 

On the other hand, we evidence a large bifurcation of ZFC and FC magnetization 

curves for all the samples. To quantify this separation, we have plotted a quantity called 

fraction change in magnetization (MFC-MZFC/MZFC) as a function of normalized 

temperature (T/TC) in figure 4.13. As seen in this figure that (MFC-MZFC/MZFC) decreases 

as function of increasing Ba2+ concentration. The x=0.30 sample does not follow this trend 

because this sample was prepared in a different batch with a slightly different synthesis 

route. Also, it is mentioned that generally a bifurcation of MZFC and MFC arises from grain 

boundary pinning. In the samples under present study, the a large bifurcation of the two 

curves in all these Ba2+ substituted samples suggests enhanced grain boundary pinning 
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and, thus, the grain boundary localization [13]. Therefore, this factor is also likely to play a 

role in the disparity of Tp and TC of these samples. Thus, by providing experimental 

evidence of phase-separation and grain boundary localization, we show that these factors 

cause the I-M transition to occur at lower temperatures than TC. 

4.2.5 Magnetoresistance measurements 

The resistance was measured as a function of applied magnetic field at various 

temperatures for all (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) samples. From these data 

magnetoresistance was calculated using the formula MR(%)={(ρ0-ρH)/ρ0}×100 and the 

plots of magnetoresistance versus magnetic field isotherms are shown in figs. 4.14 & 4.15. 

It may be seen that all the samples exhibit maximum MR in the vicinity of their respective 

I-M transition temperatures. Maximum MR in the vicinity of Tp may be explained on the 

basis of field induced suppression of spin fluctuation. At the I-M transition, there exists 

maximum magnetic disorder and magnetic field enhances the ferromagnetic spin ordering. 

On the other hand, at low temperature we observe two features in MR. One, a large MR of 

nearly 20% in a low field of 0.5-1 Tesla and other, a low MR at higher fields. Here, a large 

low-field MR arises from the inter-grain spin-polarized tunneling while a low high-field 

MR is also because of almost complete spin-polarization at low temperatures. 
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Figure 4.14: Magnetoresistance (MR%) as a function of magnetic field (H) at various  

                      temperatures for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.15) samples. 
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Figure: 4.15 Magnetoresistance (MR%) as a function of magnetic field (H) at various  

                      temperatures for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.20≤x≤0.30) samples. 

 In figs. 4.14 & 4.15, we observe that at lower Ba2+ substitution, the maximum MR 

of ~95% for x=0.05 decreases to a maximum of ~75% for x=0.30 sample in the vicinity of 

their respective I-M transition temperatures. As the temperature decreases below the I-M 
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transition temperature, the MR starts decreasing. Interestingly, we see two clear trends in 

MR with decreasing temperature and increasing Ba2+ concentration. As the temperature 

goes below 50K [17], we observe an enhancement in MR in low-fields while the MR in 

high-fields decreases. Also, it is seen that the low field MR at low temperatures increases 

with increasing Ba2+ content. This trend may be explained as follows [17, 18, 19]. As Ba2+ 

content increases, the increase in TC suggests that the spin polarization will increase at low 

temperatures. The enhanced spin polarization will result in larger spin-polarized inter-

grain tunneling on the application of small fields. Hence, we observe increasing low-field 

MR as the TC increases with increasing Ba
2+ concentration. The high field MR at low 

temperatures occurs due to magnetic disorder at Mn-O-Mn bonds (due to Zener-Double-

Exchange) and pinning of Mn-ion spins at the grain boundaries. As stated above the spin 

polarization increases and, hence, the spin magnetic disorder decreases at the Mn-O-Mn 

bonds, which results in a low high-field MR as the TC increases. 

4.3 Comparative study of La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.30 (0.05) 

and La0.5Pr0.2Ca0.3-xBaxMnO3 (LPCBMO); x = 0.0-0.30 (0.05) 

The substitution of Sr2+(~1.31 Å) and Ba2+(~1.47 Å) in La0.5Pr0.2Ca0.3MnO3 results 

in the LPCSMO and LPCBMO series, which have mixed impact of tolerance factor and 

size-disorder on the transport and magnetic and magnetotransport properties. Here we 

compare some of the properties of these two series. In both LPCSMO and LPBMO series, 

the tolerance factor and size-disorder increases with increasing substitution of Sr2+ and 

Ba2+ respectively. The respective increase in average A-site cation radius (<rA>, which 

represents the tolerance factor) and A-site cation disorder in both the series is depicted in 

Fig. 4.16. 
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Figure 4.16: Variation of A-site cation size-disorder as a function of <rA> for both the  

                      LPCSMO and LPCBMO series. 

It is seen from Fig. 4.16 that the increase in σ2 with increasing <rA> is too large in 

LPCBMO as compared to that in LPCSMO series. However, in spite of large <rA> (and, 

therefore, the tolerance factor) of LPBMO series, its electronic and magnetic transition 

temperatures are lower as compared to LPCSMO series. Table-4.3 lists, for comparison, 

values of various structural parameters and electronic transition temperatures of these two 

series. 
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Table – 4.3: Average A-site cation radius (<rA>), size-disorder (σ
2) and insulator-metal 

transition temperature (Tp) for (La0.5Pr0.2)(Ca0.3-xAx)MnO3 (A=Sr and Ba). 

x 
<rA> (Å) 

A= Ba(Sr) 

σ2 (Å2) 

A=Ba(Sr) 

Tp (K) 

A=Ba(Sr) 

0.0 1.196(1.196) 0.00039(0.00039) 140(140) 

0.05 1.211(1.203) 0.00391(0.00098) 145(170) 

0.10 1.225(1.209) 0.00701(0.00149) 150(205) 

0.15 1.239(1.216) 0.00969(0.00191) 164(230) 

0.20 1.254(1.222) 0.01195(0.00224) 171(260) 

0.25 1.269(1.228) 0.01378(0.00249) 172(----) 

0.30 1.284(1.235) 0.0152(0.00266) 175(313) 

 

Similarly, we find a variation in I-M transition temperatures (Tp) as a function of 

varying size variance (σ2) for pair of samples of the two series with constant <rA>. Figure 

4.17 shows the Tc vs size variance plots for a fixed average A-site ionic radius for 

La0.5Pr0.2Ca0.3-xAxMnO3, A = Ba & Sr. For <rA> =1.21 Å, Ba = 0.05 and Sr = 0.10; for 

<rA> = 1.22Å, Ba = 0.10, Sr = 0.20 and for <rA> = 1.23Å, Ba = 0.15, Sr = 0.30. 



IV - 27 

0.002 0.004 0.006 0.008 0.010
100

200

300

400

 

 

 <r
A
> = 1.21

 <r
A
> = 1.22

 <r
A
> = 1.23

T
c (
K
)

σ
2
 (Å

2
)  

Figure 4.17: Variation of I-M transition temperature (Tp) as a function of varying size- 

                      disorder of a pair of samples having constant <rA> from both the LPCSMO  

                      and LPCBMO series. 

It is observed from the fig. 4.17 that, the fall in Tc for the set of Sr-Ba doped 

samples with < rA> = 1.23 is maximum as compared to samples with < rA> = 1.22 and 

1.21.  The samples with maximum drop in Tc possess large variation in the size variance. 

The values given in Table-3.1 and figs 4.16 and 4.17 reveal that the LPCSMO has more 

impact of increasing <rA> on the large enhancement of Tp as the Sr
2+ concentration 

increases. In LPCBMO series, though <rA> increases significantly and should enhance the 

Tp more than that in LPCSMO series with increasing substitution. However, it is not the 
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case as the Tp enhancement is slow in LPCBMO series and this may be attributed to the 

detrimental effect of increasing size-disorder on the Tp. 

The Ba being a larger cation puts a strain on the lattice, which is evident from the 

low rate of rise in Tc and broader nature of transition.  The size mismatch at A-site due to 

larger Ba cation results in the random displacement of oxygen ions and hence influences 

the Mn-O hybridization [20]. This induces the local spin and position dependent 

fluctuations in the lattice. The increasing Ba concentration increases the size variance at A 

site and this affects the motion of electrons significantly. If the size variance at A site 

increases beyond a limit then structural deformation leads to phase segregation which is 

evident from the structural studies on La0.4Pr0.3Ba0.3MnO3 sample in which the Pr 

concentration was increased to enhance the variance for a constant carrier density. 

4.4 Conclusions 

Effects of competing tolerance factor and size-disorder at A-site on the structural 

and transport properties have been studied in Sr2+ and Ba2+ substituted nearly low-

bandwidth La0.5Pr0.2Ca0.3MnO3 systems, resulting in the two series as             

La0.5Pr0.2Ca0.3-xSrxMnO3 (0 ≤ x ≤ 0.30) and La0.5Pr0.2Ca0.3-xBaxMnO3 (0 ≤ x ≤ 0.30)   An 

increase in substitution of larger cation Ba at Ca site as compared to Sr, results in an 

enhanced size mismatch, thereby increasing the strain on the lattice and affecting the 

motion of electrons significantly. This decreases the rate of Tc enhancement due to Ba 

substitution and results in broader resistive transitions. 
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Introduction 

The simultaneous substitution of Pr-Ca induces interesting properties in the 

resulting manganite system. The La1-2xPrxCaxMnO3 in the previous chapter has been 

identified as a low bandwidth system exhibiting transition temperature below 120 K with 

significant CMR effect at relatively weaker fields [1, 2]. However, we have optimized this 

series with a sample to show that an optimal density La0.5Pr0.2Ca0.3MnO3 composition 

exhibit low Tp and TC with a large MR%. In this chapter we have taken this sample as 

basis for the study of bandwidth modifications and cation size variance effect by Sr2+ and 

Ba2+ substitution on the electronic, magnetic and magnetotransport properties of the 

resulting system. In this endeavor, we have synthesized two series as             

La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.20 (0.05) and La0.5Pr0.2Ca0.3-xBaxMnO3 

(LPCBMO); x = 0.0-0.30 (0.05). Lastly, we show that, increasing the cation size variance 

above a certain limit in La0.4Pr0.3Ba0.3MnO3 results in the phase-segregation indicative 

from the extra peaks of BaMnO3 in the XRD spectrum. The conductivity in the 

semiconducting region is dominated by Mott’s Variable Range Hopping type of 

conduction of polarons [3]. The structural, electrical, magnetic and magnetotransport 

properties have been studied using XRD, magnetoresistance and magnetic susceptibility 

measurements in the light of bandwidth modification and cation size disorder effects. 

As mentioned earlier I-M & PM-FM transition temperatures, which are due to 

spin-polarized conduction of carriers through Zener-Double exchange depends upon the eg 

electron bandwidth and carrier density [4]. La0.7Ca0.3MnO3 (LCMO) and Pr0.7Ca0.3MnO3 

(PCMO) are intermediate and low bandwidth systems respectively. The dependence of 

transition temperature is ascribed to the amount of divalent cation doping and average A-

site cation radius which is quantified by a tolerance factor, t = <A-O>/(√2<Mn-O>).    
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L.M. Rodriguez-Martinez et al [5] defined a quantitative factor called size variance,                    

σ 2=∑xiri
2-<rA>

2     - - - - (1),    where xi is the fractional occupancy of the cation with 

ionic radius ri and <rA> is the average A-site cation radius; characteristic of the mismatch 

of size of the different cations occupying A-site and studied its effect on the structural and 

transport behavior [5]. It is an established fact that, the optimal divalent cation doping of 

33% in the absence of any cation size mismatch induces the largest possible concomitant 

electrical and magnetic transition temperatures. The effect of substitution of larger cation 

Sr2+ is interesting to observe the bandwidth modification and cation size mismatch effects. 

We have studied the La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.20 (0.05) and 

La0.5Pr0.2Ca0.3-xBaxMnO3 (LPCBMO); x = 0.0-0.30 (0.05) systems with an aim to 

investigate the modifications in the transport and MR behavior with increasing bandwidth 

and size disorder. 

4.1 Studies on (La0.5Pr0.2)(Ca0.3-xSrx)MnO3 (LPCSMO) 

         x = 0.0-0.20 (0.05) series 

4.1.1 Experimental details & structural studies 

High purity La2O3, Pr6O11, CaCO3, SrCO3, BaCO3 and MnO2 powders were taken 

for synthesizing the thoroughly mixed and calcinated at 950ºC. All the samples were 

pelletized and sintered in the range of 1100-1400ºC with several intermittent grindings. 

A.c and d.c. susceptibility measurements were carried out for the magnetic susceptibility 

studies. 

 XRD measurements using Cu-Kα radiation were performed for the structural 

determination and phase purity. The Rietveld refinement program using FULLPROF 



 
Effect of bandwidth modification by Sr and Ba substitution in manganites 

IV - 3 

program was employed. The refined XRD patterns of all the samples are given in       

figure 4.1, while figure 4.2 shows a typical Rietveld fitted pattern of x=0.15 sample. 
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Figure 4.1: XRD pattern of the La0.5Pr0.2Ca0.3-xSrxMnO3 (x = 0.0 - 0.20) 
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Figure 4.2: Rietveld fitted XRD pattern of the La0.5Pr0.2Ca0.3-xSrxMnO3 (x=0.15) 

Rietveld refinement using FULPROOF program of all the samples for phase purity and 

structural investigations reveals a good phase formation with an impurity ~1-2% of mother 

compounds for some of the samples. In this series all the samples fit to a distorted 

orthorhombic structure. The cell parameters and hence the volume increases with 

increasing Sr concentration, which can be attributed to larger size cation substitution 

effect. Table – 4.2 shows the variation of cell parameters, cell volume <rA> and σ
2 wih 

increasing x. 

Table 4.1 : Structure, cell parameters and cell volume of La0.5Pr0.2Ca0.3-xSrxMnO3  
       (0≤x≤0.20) samples. 
 

x Structure  a (Å) b (Å) c (Å) Volume(Å3) 

0 Orthorhombic (Pnma) 5.4576(1) 7.7224(2) 5.4436(2) 229.426 

0.05 Orthorhombic (Pnma) 5.4482(1) 7.7295(1) 5.4633(1) 230.078 

0.10 Orthorhombic (Pnma) 5.4559(2) 7.7145(1) 5.4774(2) 230.532 

0.15 Orthorhombic (Pnma) 5.4859(1) 7.7145(2) 5.4592(1) 231.045 

0.20 Orthorhombic (Pnma) 5.4995(2) 7.7165(1) 5.4613(2) 231.764 

 

4.1.2 Electronic transport and magnetoresistance 

Fig. 4.3 depicts the R-T and magneto R-T behaviour of LPCSMO samples in 

absence of magnetic field and in applied magnetic fields of 1 Tesla, 2 Tesla and 5 Tesla. 

The electrical transport behavior of the LPCSMO system, reveals that, as Sr2+ 

concentration increases, the transition temperature increases with a subsequent fall in 

resistivity, which has its origin in the modification of eg electron bandwidth as the average 

A-site cation radius increases by Sr2+ substitution.  
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Figure: 4.3  R-T and magneto R-T plots for La0.5Pr0.2Ca0.3-xSrxMnO3; x = 0.0 - 0.20 (0.05)   

                    series. 

In order to understand the conduction mechanism of polarons created as a result of 

electron-phonon coupling in the semiconducting region, we fitted the R-T data LPCSMO 

samples in figure 4.4, to nearest neighbor small polaron hopping model [6, 7] 

corresponding to ρ = ρ0 exp(Ea/kT) and the Mott’s type Variable Range Hopping model 

[8, 9] (VRH) corresponding ρ = ρo exp(To/T)
1/4.  
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As shown in figures 3 & 4, the data fits linearly in ln ρ vs. T -0.25 plot, suggesting 

that, the conduction of the carriers in the semiconducting region obeys the Mott’s Variable 

Range Hopping model. To in this equation is related to localization length by a relation,  

kTo = 18/L
2 N(E)  - - - - (2) 

where L is the localization length of the carriers and N(E) is the density of states. 

It is observed from the magneto R-T measurements on Sr2+ substituted 

La0.5Pr0.2Ca0.3-xSrxMnO3 system (fig.2) that, Tp increases with increasing Sr content and a 

subsequent fall in MR%. The transition temperature is revived from 140 K to 247 K and 

CMR effect falls from 46% to 7% at a field of 1T with the 20% substitution of Sr2+. Since 

the larger cation increases the Mn-O-Mn bond angle towards 180º and the fall in the 

magnetic disorder at the Mn-O couplings accounts for the low CMR effect [10]. 

Interestingly the CMR effect increases consistently at low temperature below transition 

temperature with increasing Sr content. This low temperature large CMR effect is due to 

the intergrain tunneling magnetoresistance [11]. The drop in the resistance in the higher 

magnetic field also increases with doping concentrations.  

The magnetoresistance also occurs as result of the reduction of the scattering of the 

carriers at the interfaces due to application of magnetic field. The scattering of the carriers 

at the interfaces can be understood in the following way [12]. An electron moving from 

initial grain to the next magnetic grain crosses two interfaces in its journey, each of which 

may scatter the electron. This acts as an insulating barrier to the conduction of the carriers 

through the grains. Since A-site is occupied by different size cations, so unlike cations may 

occupy the positions at the faces of the adjacent grains. Hence, due to increasing size 

variance, the Mn environment varies at the interfaces of the connecting grains, which 

results in equal probability of weak and strong scattering of electrons at the interfaces. The 
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strong scattering can be suppressed by the application of larger magnetic fields, to account 

for the larger drop in resistance as size disorder increases with Sr content. Another notable 

factor is that, the trend in the increase in TC is not linear with Sr concentration, being 

larger for lower compositions and smaller for higher Sr content. This leads to deviation in 

the ideal relationship of Tc and tolerance factor [4]. 

It can be explained by the mismatch of the cations at A-site, which increases with 

Sr content. The large size variance, as calculated from equation, 222 ><−∑=
Aii
rrxσ , 

induces the strain in the lattice by random displacement of oxygen ions and hence 

obstructs the Zener-Double exchange.  
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Figure 4.4: Mott’s VRH model (ln R vs T -0.25) and small polaron model (ln (R/T) vs T -1)  

                    fits for La0.5Pr0.2Ca0.3-xSrxMnO3; x = 0.0 - 0.15 (0.05) series. 

The fitting of the electrical transport data in the semiconducting region reveals that 

conduction in this region occurs through the Mott’s Variable Range hopping of polarons. 

CMR effect is found to have an inverse relationship with the transition temperature. The 

A-site disorder increases with Sr concentration and leads to microscopic inhomogenieties 

in the samples through the random displacement of oxygen anion and showing its 

influence on the electrical, magnetic and magnetotransport properties. 
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4.1.3 Magnetization 

The magnetic susceptibility plots for LPCSMO samples (fig. 4.5) shows an 

increasing trend in Curie temperature with increasing Sr content. It is inferred that the 

magnetic irreversibility decreases with increasing transition temperature.  
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Figure 4.5: Magnetic susceptibility vs Temperature plots for La0.5Pr0.2Ca0.3-xSrxMnO3  

          series.  

4.2. Studies on (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (LPCBMO) (0.05≤x≤0.3) 

In addition to Sr2+, Ba2+ is another divalent cation which is interesting for 

substitution at A-site due to two reasons, namely, 1) due to its larger size (~1.47Å) it 

enhances the tolerance factor significantly and 2) due to large mismatch with size of the 

other cations at A-site, it increases the A-site size-disorder. As mentioned earlier, the 

increasing size disorder increasing the intrinsic inhomogenieties, which may affect the 

transport, magnetic and magnetotransport properties of the resulting compounds. As 

shown in the previous section, the La0.5Pr0.2Ca0.3MnO3 is a suitable system for 
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substitutional studies aiming to elucidate the effect of tolerance factor and size-variance. 

Keeping this in mind, we have replaced the smaller size divalent cation, Ca2+, by a larger 

size cation, Ba2+, in the system (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) and studied the 

ionic size and size disorder effect on the structural, transport and magnetic properties. In 

this series, the size-disorder increases from 0.0001Å2 for x=0 to 0.016 Å2. Such a large 

variation of size-disorder across the series makes all these compounds, an interesting 

subject of investigations. Other than this series of compounds, we have also tried to 

synthesize the compound, La0.4Pr0.3Ba0.3MnO3, which possesses the largest size-disorder 

among all the compounds studied in this section. In the La0.4Pr0.3Ba0.3MnO3 manganite 

sample, we find the chemical phase-segregation, resulting in secondary phase [14]. The 

various structural, transport, magnetotransport and magnetic properties are collated in the 

following sections. 

4.2.1 Experimental details 

All the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) and La0.4Pr0.3Ba0.3MnO3 

compounds were synthesized using conventional solid-state reaction route. Constituent 

oxides (La2O3, Pr6O11, and MnO2) and carbonates (SrCO3 and CaCO3) were mixed 

thoroughly in stoichiometric proportions and calcined at 950°C for 24 hours. These were 

ground, pelletized and sintered in the temperature range of 1100°C - 1200°C for 100 hours 

with many intermediate grindings. The final sintering was carried out at 1300°C for 24 

hours. X-ray diffraction (XRD) patterns were recorded in the 2θ range of 20o – 80o on a 

Siemens diffractometer. Magnetization measurements were performed using a SQUID 

magnetometer (MPMS XL, Quantum Design). The resistivity and magnetoresistance 
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measurements were carried using d.c. four probe method on a physical property 

measurement system (PPMS, Quantum Design).  

 

4.2.2 Structural Studies 

The XRD patterns of all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) (to be 

referred as LPCBMO) samples were indexed to be single phase compounds crystallizing in 

a distorted orthorhombic structure. Rietveld refinement technique using FULLPROF 

software was employed to obtain to refined cell parameters. Figure 4.6 shows the XRD 

patterns of all the samples while figure 4.7 displays a typical Rietveld refined XRD pattern 

of x=0.2 and La0.4Pr0.3Ba0.3MnO3 (LPBMO) samples. It is seen that there is an excellent 

agreement of experimental and fitted patterns of x=0.20 sample and is, therefore, single-

phase compound. However, when LPBMO fitted to orthorhombic structure shows some 

additional peaks in the structure indicated by (*), presumably of BaMnO3 [6]. This sample 

has maximum A-site size-disorder and may be the cause of the structural phase 

segregation. This shows that, above a certain critical limit of A-site size-disorder, it exert a 

structural strain and results in phase-segregation. Table – 4.2 shows the variation of cell 

parameters, cell volume <rA> and σ
2 with increasing x. 

Table 4.2: Structure, cell parameters and cell volume of (La0.5Pr0.2)(Ca0.3-xBax)MnO3 

      (0.05≤ x ≤0.3) samples. 
 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 

(0.05≤ x ≤0.3) 
a (Å) b (Å) c (Å) Cell Volume 

X=0.05 5.46603(2) 7.72868(2) 5.47161(2) 231.149 

X=0.10 5.47066(2) 7.73082(2) 5.49513(2) 232.404 
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X=0.15 5.47913(2) 7.7416(2) 5.51209(2) 233.808 

X=0.20 5.48911(2) 7.75494(2) 5.52533(2) 235.201 

X=0.25 5.49859(2) 7.76887(2) 5.48911(2) 236.439 

X=0.3 5.51182(2) 7.79095(2) 5.54783(2) 238.237 
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Figure 4.7: XRD patterns of the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) sample 
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Figure 4.8: Rietveld fitted patterns of (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (x=0.20) and  

                   La0.4Pr0.3Ba0.3MnO3 samples. The asterisks in the fitted patterns of LPBMO   

                   sample (Lower panel) depict the secondary phase of BaMnO3. 

 

 

 

 



 
Effect of bandwidth modification by Sr and Ba substitution in manganites 

IV - 14 

 

4.2.3 Electrical Resistivity  

The plots of electrical resistivity as a function of temperature for all the 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.3) in zero field and in a fields of 5T and 9T over a 

temperature range of 5 K-320 K. The plots are shown in figs. 4.9 and 4.10. 
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Figure 4.9:  Resistivity as a function of temperature in 0T, 5T and 9T in a temperature    

                     range of 5 K-320 K for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.15) samples. 
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Figure 4.10: Resistivity as a function of temperature in 0T, 5T and 9T in a temperature  

                      range of 5 K-320 K for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.20≤x≤0.30) samples. 
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It is seen in figs. 4.9 & 4.10 that all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) 

samples exhibit insulator-metal transition. The I-M transition temperature, Tp, increases 

from ~145 K for x=0.05 sample to ~175 K for x=0.30 sample. This enhancement in Tp 

may be understood on the basis increase in tolerance factor with increasing Ba2+ content. 

Progressive substitution of Ba2+ (1.47Å) at Ca2+ (1.18Å) induces a large increase in 

average A-site cation radius and hence the tolerance factor increases to a larger extent. 

4.2.4 Magnetization measurements 

The temperature dependence of magnetization measurements for all the samples 

were performed in zero-field-cooled (ZFC) and field-cooled (FC) manner. This implies 

that sample is cooled in zero-field (ZFC) to the lowest temperature and then a certain field 

is applied for measuring the magnetization of the sample in warming direction. After this 

temperature of magnetization, the sample is cooled in the same magnetic field (FC) to the 

lowest temperature and then measured the magnetization while warming. The ZFC and FC 

magnetization versus temperature for all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) 

samples is shown in fig. 4.11.  
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Figure 4.11: Zero-field-cooled (ZFC) and field-cooled (FC) magnetization (M) as a  

                      function of temperature for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples in a field of   

                      50 Oe. 

The Curie temperature (TC) increases from 150K for x=0.05 to 220K for x=0.30. 

With increasing Ba-substitution, the increasing trend of TC is similar to increasing trend of 

the insulator-metal transition temperature (Tp). However, it is seen that the TC and Tp of 
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these samples do not match with each other and this disparity increases with increasing 

Ba-concentration. This disparity is not in accordance with the Zener-Double-Exchange 

interactions and can be explained on the purview of possible grain boundary localization 

or phase separation. It is needless to mention that the polycrystalline samples of various 

micron sized grains, in which properties may vary inside the grain and on the grain 

boundaries. As the ZDE come into play, the bulk part of the grain become ferromagnetic 

and metallic while the grain boundaries are still insulating. The grain boundaries may be 

insulating because of the grain boundary pinning of Mn-ion spins, poor connectivity and 

grain boundary contamination [15]. This creates the insulating channels at the grain 

boundaries and does not allow the percolation of the charge carriers and results in 

insulating behavior even after the onset of TC. Once the grain boundaries become 

conducting at lower temperatures, the I-M transitions appear. Other factor that can cause a 

disparity between Tp and TC is the phase-separation as explained in [16]. Due to the 

granular mixture of different electronic densities, the TC of different grains could be 

different. For instance, we assume that majority of the grains have large electronic density 

so that they exhibit TC at higher temperatures, while the remaining minor fraction have 

lower TC. Now, at the onset of the TC of majority of grains (with higher TC), the systems 

tends to be ferromagnetic even as a minority of grain are still paramagnetic-insulating. In 

such as a situation, though the system will be ferromagnetic, it will continue to exhibit 

semiconducting/insulating behavior unless all the grains become ferromagnetic. At a 

certain temperature when the whole system attains ferromagnetism, percolation is possible 

and the system exhibits I-M transition. The disparity in TC and Tp in the present system 

may be because of either or both of the above stated causes. We get an evidence of the 

phase separation from the d.c. magnetic susceptibility.  
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Figure 4.12: Inverse susceptibility (H/M at H = 5 kOe) as a function of temperature for  

                     (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples. 

Fig. 4.12 shows the inverse susceptibility as a function of temperature for the 

(La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.25) samples when magnetization is acquired in a 

field of 5kOe. It is seen that there exists a deviation of Curie-Weiss law from the 

paramagnetic susceptibility of all the samples. This indicates towards the magnetic 

inhomogeneities or possible existence of ferromagnetic clusters in the paramagnetic 

region. Such inhomogeneities, which may be present both in paramagnetic and 



 
Effect of bandwidth modification by Sr and Ba substitution in manganites 

IV - 20 

ferromagnetic regions, suggesting that phase separation could be one cause of disparity of 

TC and Tp in these samples.  
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Figure 4.13: Fractional change of magnetization (MFC-MZFC/MZFC) versus   

                    temperature (T) for all the (La0.5Pr0.2)(Ca0.3-xBax)MnO3 samples. 

On the other hand, we evidence a large bifurcation of ZFC and FC magnetization 

curves for all the samples. To quantify this separation, we have plotted a quantity called 

fraction change in magnetization (MFC-MZFC/MZFC) as a function of normalized 

temperature (T/TC) in figure 4.13. As seen in this figure that (MFC-MZFC/MZFC) decreases 

as function of increasing Ba2+ concentration. The x=0.30 sample does not follow this trend 

because this sample was prepared in a different batch with a slightly different synthesis 

route. Also, it is mentioned that generally a bifurcation of MZFC and MFC arises from grain 

boundary pinning. In the samples under present study, the a large bifurcation of the two 
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curves in all these Ba2+ substituted samples suggests enhanced grain boundary pinning 

and, thus, the grain boundary localization [13]. Therefore, this factor is also likely to play a 

role in the disparity of Tp and TC of these samples. Thus, by providing experimental 

evidence of phase-separation and grain boundary localization, we show that these factors 

cause the I-M transition to occur at lower temperatures than TC. 

4.2.5 Magnetoresistance measurements 

The resistance was measured as a function of applied magnetic field at various 

temperatures for all (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.30) samples. From these data 

magnetoresistance was calculated using the formula MR(%)={(ρ0-ρH)/ρ0}×100 and the 

plots of magnetoresistance versus magnetic field isotherms are shown in figs. 4.14 & 4.15. 

It may be seen that all the samples exhibit maximum MR in the vicinity of their respective 

I-M transition temperatures. Maximum MR in the vicinity of Tp may be explained on the 

basis of field induced suppression of spin fluctuation. At the I-M transition, there exists 

maximum magnetic disorder and magnetic field enhances the ferromagnetic spin ordering. 

On the other hand, at low temperature we observe two features in MR. One, a large MR of 

nearly 20% in a low field of 0.5-1 Tesla and other, a low MR at higher fields. Here, a large 

low-field MR arises from the inter-grain spin-polarized tunneling while a low high-field 

MR is also because of almost complete spin-polarization at low temperatures. 
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Figure 4.14: Magnetoresistance (MR%) as a function of magnetic field (H) at various  

                      temperatures for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.05≤x≤0.15) samples. 
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Figure: 4.15 Magnetoresistance (MR%) as a function of magnetic field (H) at various  

                      temperatures for (La0.5Pr0.2)(Ca0.3-xBax)MnO3 (0.20≤x≤0.30) samples. 
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 In figs. 4.14 & 4.15, we observe that at lower Ba2+ substitution, the maximum MR 

of ~95% for x=0.05 decreases to a maximum of ~75 % for x=0.30 sample in the vicinity of 

their respective I-M transition temperatures. As the temperature decreases below the I-M 

transition temperature, the MR starts decreasing. Interestingly, we see two clear trends in 

MR with decreasing temperature and increasing Ba2+ concentration. As the temperature 

goes below 50 K [17], we observe an enhancement in MR in low-fields while the MR in 

high-fields decreases. Also, it is seen that the low field MR at low temperatures increases 

with increasing Ba2+ content. This trend may be explained as follows [17, 18, 19]. As Ba2+ 

content increases, the increase in TC suggests that the spin polarization will increase at low 

temperatures. The enhanced spin polarization will result in larger spin-polarized inter-

grain tunneling on the application of small fields. Hence, we observe increasing low-field 

MR as the TC increases with increasing Ba
2+ concentration. The high field MR at low 

temperatures occurs due to magnetic disorder at Mn-O-Mn bonds (due to Zener-Double-

Exchange) and pinning of Mn-ion spins at the grain boundaries. As stated above the spin 

polarization increases and, hence, the spin magnetic disorder decreases at the Mn-O-Mn 

bonds, which results in a low high-field MR as the TC increases. 

4.3 Comparative study of La0.5Pr0.2Ca0.3-xSrxMnO3 (LPCSMO); x = 0.0-0.30 (0.05) 

and La0.5Pr0.2Ca0.3-xBaxMnO3 (LPCBMO); x = 0.0-0.30 (0.05) 

The substitution of Sr2+(~1.31 Å) and Ba2+(~1.47 Å) in La0.5Pr0.2Ca0.3MnO3 results 

in the LPCSMO and LPCBMO series, which have mixed impact of tolerance factor and 

size-disorder on the transport and magnetic and magnetotransport properties. Here we 

compare some of the properties of these two series. In both LPCSMO and LPBMO series, 

the tolerance factor and size-disorder increases with increasing substitution of Sr2+ and 

Ba2+ respectively. The respective increase in average A-site cation radius (<rA>, which 
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represents the tolerance factor) and A-site cation disorder in both the series is depicted in 

Fig. 4.16. 
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Figure 4.16: Variation of A-site cation size-disorder as a function of <rA> for both the  

                      LPCSMO and LPCBMO series. 

It is seen from Fig. 4.16 that the increase in σ2 with increasing <rA> is too large in 

LPCBMO as compared to that in LPCSMO series. However, in spite of large <rA> (and, 

therefore, the tolerance factor) of LPBMO series, its electronic and magnetic transition 

temperatures are lower as compared to LPCSMO series. Table-4.3 lists, for comparison, 

values of various structural parameters and electronic transition temperatures of these two 

series. 
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Table – 4.3: Average A-site cation radius (<rA>), size-disorder (σ
2) and insulator-metal 

transition temperature (Tp) for (La0.5Pr0.2)(Ca0.3-xAx)MnO3 (A=Sr and Ba). 

x 
<rA> (Å) 

A= Ba(Sr) 

σ2 (Å2) 

A=Ba(Sr) 

Tp (K) 

A=Ba(Sr) 

0.0 1.196(1.196) 0.00039(0.00039) 140(140) 

0.05 1.211(1.203) 0.00391(0.00098) 145(170) 

0.10 1.225(1.209) 0.00701(0.00149) 150(205) 

0.15 1.239(1.216) 0.00969(0.00191) 164(230) 

0.20 1.254(1.222) 0.01195(0.00224) 171(260) 

0.25 1.269(1.228) 0.01378(0.00249) 172(----) 

0.30 1.284(1.235) 0.0152(0.00266) 175(313) 

 

Similarly, we find a variation in I-M transition temperatures (Tp) as a function of 

varying size variance (σ2) for pair of samples of the two series with constant <rA>. Figure 

4.17 shows the Tc vs size variance plots for a fixed average A-site ionic radius for 

La0.5Pr0.2Ca0.3-xAxMnO3, A = Ba & Sr. For <rA> =1.21 Å, Ba = 0.05 and Sr = 0.10; for 

<rA> = 1.22Å, Ba = 0.10, Sr = 0.20 and for <rA> = 1.23 Å, Ba = 0.15, Sr = 0.30. 
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Figure 4.17: Variation of I-M transition temperature (Tp) as a function of varying size- 

                      disorder of a pair of samples having constant <rA> from both the LPCSMO  

                      and LPCBMO series. 

It is observed from the fig. 4.17 that, the fall in Tc for the set of Sr-Ba doped 

samples with < rA> = 1.23 is maximum as compared to samples with < rA> = 1.22 and 

1.21.  The samples with maximum drop in Tc possess large variation in the size variance. 

The values given in Table-3.1 and figs 4.16 and 4.17 reveal that the LPCSMO has more 

impact of increasing <rA> on the large enhancement of Tp as the Sr
2+ concentration 

increases. In LPCBMO series, though <rA> increases significantly and should enhance the 

Tp more than that in LPCSMO series with increasing substitution. However, it is not the 
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case as the Tp enhancement is slow in LPCBMO series and this may be attributed to the 

detrimental effect of increasing size-disorder on the Tp. 

The Ba being a larger cation puts a strain on the lattice, which is evident from the 

low rate of rise in Tc and broader nature of transition.  The size mismatch at A-site due to 

larger Ba cation results in the random displacement of oxygen ions and hence influences 

the Mn-O hybridization [20]. This induces the local spin and position dependent 

fluctuations in the lattice. The increasing Ba concentration increases the size variance at A 

site and this affects the motion of electrons significantly. If the size variance at A site 

increases beyond a limit then structural deformation leads to phase segregation which is 

evident from the structural studies on La0.4Pr0.3Ba0.3MnO3 sample in which the Pr 

concentration was increased to enhance the variance for a constant carrier density. 

4.4 Conclusions 

Effects of competing tolerance factor and size-disorder at A-site on the structural 

and transport properties have been studied in Sr2+ and Ba2+ substituted nearly low-

bandwidth La0.5Pr0.2Ca0.3MnO3 systems, resulting in the two series as             

La0.5Pr0.2Ca0.3-xSrxMnO3 (0 ≤ x ≤ 0.30) and La0.5Pr0.2Ca0.3-xBaxMnO3 (0 ≤ x ≤ 0.30). An 

increase in substitution of larger cation Ba at Ca site as compared to Sr, results in an 

enhanced size mismatch, thereby increasing the strain on the lattice and affecting the 

motion of electrons significantly. This decreases the rate of TC enhancement due to Ba 

substitution and results in broader resistive transitions. 
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