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C H A P T E R     1 

 

Introduction 

Graph  theory  has  witnessed  rapid  growth  because  

of  its  applications  in  other  areas  like  Computer  

Sciences,  Engineering,  Psychology,  Biological  

Sciences  and  other  Social  Sciences.  Researchers  in  

Mathematics  and  in  other  Sciences  have  

successfully  used  this  branch  of  Mathematics  to  

solve  their  research  problems. 

    Several  areas  of  graph  theory  have  

been  accepted  by  Mathematicians  and  other  
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Scientists.  For  example  Trees  have  been  extensively  

utilised  in  theoretical  Computer  Science.  Labelling  

of  graphs  have  been  used  in  coding  theory  and  

Chemistry.  Domination  theory  which  was  originated  

from  Chess‐Board  problems  has  been  used  to  solve  

some  problems  in  Computer  Networks,  

Communication  Theory  and  other  areas.  Colouring  

of  graphs  has  been  a  reach  area  of  interest  of  

Mathematician  with  many  new  directions  coming  

up. 

        Domination  theory  in  graphs  has  

become  a  reach  area  of  interest  of  Graph Theorists.  

This  theory  which  was  originated  from  Chess‐Board  

problems  has  attracted  many  researchers  in  graph  

theory.  Over  1500  research  papers  have  been  

published  so  far  and  still  it  is  an  active  area  of  
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interest.  Domination  theory  encompasses  several  

other  parameters  along  with  domination  number.  

This  theory  has  provided  many  many  variance  of  

domination.  Which  have  enriched  this  area  to  a  

great  extent. 

    Graphs  which  are  critical  with  respect  

to  certain  property  P  occupy  an  important  place  in  

Graph  theory.  A  graph  is  said  to  be  critical  with  

respect  to  the  property  P  if  the  graph  G  has  

property  P  but  the  sub graph  obtain  by  removing  

every  vertex  or  every  edge  does  not have  that  

property  P.  This  area  of  graph  theory  has  

important  place  in  communication  network  theory. 

     If  we  consider  domination  as  property  

P  then  graphs  which  are  domination  critical  have  

been  studied  by  many  another’s. (see [28][51][52]).  
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They  have  studied  various  aspects  related  to  a  

domination  critical  graphs,  in  particular  a  graph  G  

is  said  to  be  domination  critical  if  its  domination  

number  changes  whenever  a  vertex  or  an  edge  is  

removed  from  the  graph.  However  we  will  also  

regard  a  graph  to  be  critical  if  its  domination  

number  changes  whenever  an  edge  is  added  to  the  

graph. 

    Several  authors  have  studied  the  

effect  of  removing  a  vertex  from  the  graph  on  the  

domination  number  of  the  graph.  It  may  be  noted  

that  this  number  may  increase  or  decrease  or  

remains  same.  When  a  vertex  is  removed  several  

authors  have  characterized  the  vertices  of  the  

above  three  types  using  so  called  minimum  sets  

which  are  also  called  ‐sets.     
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    It  may  be  noted  that  total  

domination,  k‐domination,  distance  domination  and  

connected  domination  have  been  studied  by  

G.J.Vala.  He  has  obtained  in  his  Ph.D.  thesis.  

Characterization  of  vertices  whose  removal  

increases,  decreases  or  dose  not  change  the  

corresponding  numbers  associated  with  the  graphs.  

On  the  other  hand  J.C .Bosamia  has  considered  

extended  total  domination,  independent  

domination,  vertex  covering  and  extended  total  k‐

domination  in  his  Ph.D.  thesis. 

    Like  domination  number  there  is  

associated  that  any  graph  a  number  called  big  

domination  number.  This  number  is  in  general  is  

bigger  than  the  domination  number  of  this  graph. 
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    Our  study  in  this  thesis  is  focused  on  

these  big  numbers  associated  with  some  properties  

that  is  like  total  domination,  independence,  vertex  

covering  and  packing.  We  shall  prove  that  the  big  

number  for  all  the  first  three  properties  decreases,  

or  remains  same  when  a  vertex  is  remove  from  

the  graph.  For  packing  this  number  may  increase,  

decrease  or  remains  same. 

    Our  dissertation  consists  of  four  

chapters. 

    In  chapter  1  we  give  introduction,  

preliminaries  and  notations. 

    In  chapter  2  we  define  so  called  Γt – 

sets  which  is  infect  a  minimal  totally  dominating  

set  with  maximum  cardinality.  We  define  the  big  

total  domination  number  of  the  graph  to  be  the  
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cardinality  of  any  Γt –set.  We  denote  this  number  

by  Γt(G).  We  characterize  those  vertices  whose  

removal  dose  not  change  the  big  total  domination  

number  and  also  characterize  those  vertices  whose  

removal  reduces  the  big  total  domination  number.  

We  also  consider  so  called  well  totally  dominated  

graphs.  We  prove  some  interesting  results  for  well  

totally  dominated  graphs. 

    In  chapter  3  we   consider  vertex  

covering  sets  and  maximum  independent  sets.  A  

minimal  vertex  covering  set  with  maximum  

cardinality  is  called  Γcr–set,  the  number  of  elements  

in  Γcr–set  is  called  big  vertex  covering  number  of  

the  graph  and  is  denoted  as  Γcr(G).  A  vertex  

covering  set  with  minimum  cardinality  is  called  cr‐

set  and  a  number  of  elements  in  such  a  set  is  



8      

 

called  the  vertex  covering  number  of  the  graph  

and  is  denoted  as  cr(G).  Minimum  vertex  covering  

sets  have  been  considered  by  J.C .Bosmia  in  his  

Ph.D.  thesis.  We  establish  that  the  big  vertex  

covering  number  of  a  graph  does  not  increase  

when  the  vertex  is  removal  from  the  graph.  We  

give  a  characterization  of  a  vertex  whose  removal  

does  not  change  the  big  vertex  covering  number. 

    It  may  be  noted  that  the  complement  

of  a  vertex  covering  set  is  an  independent  set.  

Thus  the  complement  of  a  Γcr–set  is  a  maximal  

independent  set  with  minimum  cardinality.  It  is  

denoted  as  i(G).  It  may  be  noted  that  Γcr(G)+i(G)=n  

where  n  is  the  number  of  vertices  in  G.  We  have  

proved  some  related  results.  We  have  also  proved  

some  theorems  related  to  maximum  independent  
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sets.  (I)  The  vertex  covering  number  of  a  graph  G  

is  denoted  as  α0(G)  and  (II)  The  maximum  

independence  number  of  a  graph  G  is  denoted  as  

β0(G).  It  may  be  noted   that  α0(G)+ β0(G)=n,  where  

n  is  the  number  of  vertices  in  G. 

    In  chapter  4  we  have  considered  

perfect  dominating  sets  and  packing.  We  have  

defined  so  called  pr‐sets  and  Γpr‐sets  for  perfect  

domination.  In  particular  we  have  proved  that  if  S  

is  a  pr‐sets    and  T  is  a  Γpr‐set  of  G  then  S T  for  

a  graph  for  which  pr‐sets < Γpr(G).  We  have  also  

given  some  examples. 
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Preliminaries 

If  G  is  a  graph  V(G)  will  denote  the  vertex  set  of  

the  graph  G.  If  S  is  a  subset  of  V(G)  then  S   will  

denote  the  number  of  elements  in  the  set  S.  G‐v  

will  denote  the  sub graph  obtain  by  removing  a  

vertex  v  from  the  graph  G.  All  graphs  considered  

in  this  thesis  are  finite  and  simple.  It  is  assumed  

that  a  totally  dominating  set  contains  at least  two  

vertices.   

    Also  Pn  denotes  the  path  graph  with  

n  vertices,  Wn  denotes  the  wheel  graph  with  n  

vertices  and  Cn  denotes  the  cycle  graph  with  n  

vertices. 

    An  automorphism  of  a  graph  G  is  an  

isomorphism  from  G  to  G. 



11      

 

C H A P T E R     2 

 

Total Domination In 

Graphs 

 In  this  chapter  we  consider  minimal  totally  

dominating  sets  with  highest  cardinality.  They  are  

called  Γt  sets  and  the  cardinality  of  such  set  is  

called  the big  total  domination  number  of  the  

graph  and  is    denoted  as Γt (G). 

 Through  out  this  chapter  we  assume  that  

graphs  do  not  have  isolated  vertices. 
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DEFINITION  2.1   [51] 

Let  G be  a  graph  and  S  be  a  subset  of  V(G).  The  

set  S  is  said  to  be  a  totally  dominating  set  if  for  

every  vertex  v  of  G  , v  is  adjacent  to  some  vertex  

of  S. 

  Obviously , every  totally  dominating  set  is  a    

dominating  set  . But  every   dominating  set  need  

not  be  a  totally  dominating  set  . We  assume  that  

every  totally  dominating  set  has  at least  two  

vertices. 

DEFINITION  2.2   [51] 

A  totally  dominating  set  S  of  G  is  said  to  be  a  

minimal  totally  dominating  set  if  for  every  vertex  v  

of  S  , S – v  is  not  a  totally  dominating  set  . 
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DEFINITION  2.3   [21] 

Let  S  be  a  subset  of  V(G)  and  v  S  then  the  total  

private  neighbourhood  of  v  with  respect  to the  set  

S  is  defined  as   

Prt( v , S ) = { w  V(G) / N(w)  S = { v } }. 

 

 

1           2       3  

Fig. 2.1   :       Path  graph with  three  vertices.  

In  the   above  figure  the  set  { 2 , 3 }  is  a  minimal  

totally  dominating  set  of  the  graph  G = the  path  

graph  with  three  vertices.  Also  if  S  =  { 2 , 3 }  and  v 

= 2  then  Prt( 2 , S ) = { 1 , 3 }  and  Prt( 3 , S ) = { 2 }. 

{1,3}  is  dominating  set  but  not  totally  dominating  

set  . 
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DEFINITION  2.4   [51] 

A  totally  dominating  set  with  minimum  cardinality  

is  called  a  minimum  totally  dominating  set  and  is  

called  a  t  set  of  the  graph. 

 

 The  cardinality  of  a  minimum  totally  dominating  

set  is  called  the  total  domination  number  of  the  

graph  G  and  is  denoted  as  t (G). 

 In  the  above  example  of  the  path  graph  with  

three  vertices  the  total  domination  number of  the  

graph   is   2. 

REMARK  2.5 

It  may  be  noted  that  every  minimum  totally  

dominating  set  is  a  minimal  totally  dominating  set  

but  the  converse  may  not  be  true. 
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However  a  minimal  totally  dominating  set  with  

smallest  cardinality  is  a  minimum  totally  

dominating  set. 

   We  state  the  following  theorem  with  out  

proof.  The  proof  can  be  found  in D.K.Thakkar  and      

G.J.Vala [9] 

THEOREM  2.6 

A  totally  dominating  set  S  of  the  graph  G  is  a  

minimal  totally  dominating  set  if  and  only  if  for  

every  vertex  v  S , Prt( v , S )  is  a  non  empty  set. 

DEFINITION  2.7   [51] 

A  minimal  totally  dominating  set  with  maximum  

cardinality  is  called  Γt  set  of  the  graph  G. 

   The  cardinality  of  a  Γt  set  is  called  the  big  

total  domination  number  of  the  graph  G  and  is  

denoted  as  Γt(G). 
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EXAMPLE  2.8 

 

                              

       

 

   

 

Fig. 2.2:  W6 = Wheel graph with six vertices 

Consider  the wheel  graph  W6 with  six  vertices  as  

mentioned  in  the  above  figure. 

(i) The  total  domination  number  of  this  graph  

is  2. 

(ii) The  set  S = { 1,2,3 }  is  a  minimal  totally  

dominating  set  with  the  highest  cardinality.  

Hence  S  is  a  Γt  set  of  the  graph. 

4

0 35 

21
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(iii) The  big  total  domination  number  of  this  

graph  Γt(W6) = 3. 

It  may  happen  that  the  total  domination  

number  of  a  graph  is  same  as  the  big  total  

domination  number  of  the  graph.(For  

example  the  path  graph  with  three  vertices.) 

 REMARK  2.9 

It  may  be  noted  that  a  totally  dominating  set  

does not  exist  if  the  graph  has  an  isolated  vertex , 

also  if  v  is  a  vertex  of  graph  G  such  that  G – v has  

an  isolated  vertex  then  a  totally  dominating  set  

does  not  exist  in   G – v . Thus  we  consider  only  

those  graphs  which  do  not  have  isolated  vertices .  

Also  we  avoid  those  vertices  whose  removal  

creates  isolated  vertices .  

We  introduce  the  following  notations. 
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i
tV = { v  V(G) / G – v  has an  isolated  vertex }. 

We  now  introduce  the  following  sets. 

(i)  tW
+  = { v  V(G) / v ∉

i
tV and  Γt( G – v ) > Γt(G) }. 

(ii) tW
−    = { v  V(G) / v ∉

i
tV and  Γt( G – v ) < Γt(G) }. 

(iii) 0
tW   = { v  V(G) / v ∉

i
tV and  Γt( G – v ) = Γt(G) }. 

Note  that  the  above  sets  are  mutually  disjoint  and  

their  union  is  v(G) ‐ 
i
tV . 

      EXAMPLE  2.10   Consider  the  Cycle  C5 .  Fig.2.3:  

(i)  

         

 

 

 

4

35 

21 
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It  may  be  noted  that  Γt(C5 ) = 3. If  we  remove  the  

vertex  5  then  the  resulting  graph  is  the  path  graph  

P4. 

 

Fig. 2.4: Path  graph  with  four  vertices. 

Γt(P4) = 2 , 5  tW
−

 . It  may  be  noted  that  every  

vertex  of  C5  is  a  member  of  tW
−

.  That  is  tW
−

 = The 

vertex  set  of C5. 

( Note  that  
i
tV   

is the  empty  set  for  this  graph C5). 

(ii) Consider the  wheel  graph  W6.  If  we  remove  the  

vertex  0  from  the  graph  W6  then  the  resulting  graph  

is  C5.  Γt(W6 ) = 3 and  Γt(C5 ) = 3. 

Thus  0  0
tW . 

4 32 1 
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Now  we  prove  that  when  a  vertex  is  remove  

the  big  total  domination  number  does  not  

increase. 

THEOREM  2.11 

Suppose  G  is  a  graph  v   V(G)  such  that  

 v ∉   
i
tV   

 then  Γt( G – v ) ≤ Γt(G). 

PROOF     :  Suppose  S  is  a  
   
Γt  set  of  G – v  there  

are  three  possibilities  for  the  vertex  v 

(i) v  is  not  adjacent  to  any  vertex  of  S.  Let  w  be  

a  vertex  adjacent  to  the  vertex  v   

Since  S  is  a  totally  dominating  set  in  G – v,  

S1 = S U { w } is  a totally  dominating  set  in  G.  In  fact  

S1  is  a  minimal  totally  dominating  set  in  G. 

Therefore    Γt(G)  ≥  Cardinality  of  S1 = S1 >   

Cardinality  of  S = Γt( G – v ). 
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Thus  Γt( G – v ) ≤ Γt(G). 

(ii) v  is  adjacent  to  exactly  one  vertex  w  of  S. 

Thus  S  is  a  minimal  totally  dominating  set  in  G. 

Therefore  Γt(G)  ≥  Cardinality  of  S = Γt( G – v ). 

(iii) v  is  adjacent  to  at  least  two  vertices  of  S.  

Then  S1 = S U { v }  is  a  minimal  totally  dominating  

set  of  G. 

         Therefore  Γt(G)  ≥│S1│ │S│  = Γt( G – v ). 

         Therefore  Γt(G)  ≥  Γt( G – v ). 

         Thus  in  all  cases  Γt( G – v ) ≤ Γt(G).  

 

         THEOREM  2.12 

Let  G  be  a  graph  and  v  be  a  vertex  of  V(G)  

such  that  v∉
i
tV then  v   0

tW  if  and  only  if  

either  there  is  a  Γt  set  S  of  G  such  that  v ∉ S  and  

v  is  adjacent  to  at  least  two  vertices  of  S, or  there  

is  a  Γt  set  S1  of  G  such  that  v ∉ S1  and  there  is  a  
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vertex  w  in  S1  such  that  the  total  private  

neighbourhood  of  w  with  respect  to  S1  contains  at  

least  two  vertices  including  v. 

  PROOF :    

Suppose  v  0
tW .Let  S  be  a  Γt  set  of  G – v . If  v  is  

not  adjacent  to  any  vertex  of  S  then  let  w  be  any  

vertex  adjacent  to  v  then  T = S U { w } is  a  minimal 

totally  dominating  set  of  graph  G  and   

T  > S  . 

 Therefore   Γt  (G)     ≥ T   > S  = Γt  (G ‐ v)   . 

That  is  Γt  (G ‐ v)   <  Γt  (G)   . This  means  that  v  tW
−

 

which  contradicts  with  our  assumption. Therefore  v  

must  be  adjacent  to  some  vertex  of  S. 
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 Suppose  there  is  a  vertex  w  S  such that  v  is  

adjacent  to  only  w  in  S  , Therefore  v  Prt( w , S )  

also  S  is  a  minimal totally  dominating  set  in  G – v . 

Therefore  total  private  neighbourhood  of  w  with  

respect  to  S  in  G – v contains  a  vertex  v’ .  Thus    

Prt( w , S )  contains  at  least  two  vertices  and  one  of  

them  is  v. 

 In  the  other  case , that  is  v  is  adjacent  to  at  

least  two  vertices  of  S  then  S  is  a  minimal totally  

dominating  set  of  G  not  containing  v  and  v  is  

adjacent  to  at  least  two  vertices  of  S  . 

CONVERSE  

Suppose  S  is  a    Γt  set  of  G  not  containing  v  such  

that  v  is  adjacent  to  at  least  two  vertices  of  S  , 

then  for  every  vertex  w  in  S.  Prt( w , S )  can  not  

contain  v  .  Therefore  S  is  a  minimal totally  
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dominating  set  in  G – v . Therefore  Γt  (G ‐ v) ≥ S =   

Γt  (G)   .  Since  Γt  (G ‐ v) > Γt  (G)  is  not  possible  ,  we  

have    Γt  (G ‐ v) = Γt  (G)  .  Hence   v  0
tW . 

 Suppose  S  is  a  Γt  (G)  such  that   v ∉ S  and  there  

is  a  vertex  w  S  such  that  Prt( w , S )  contains  at  

least  two  vertices  and  one  of  them  is  v  ,  therefore  

Prt( w , S )  contains  a  vertex  of  G – v .  Also  for  other  

vertices  w ’ in  S  .  w  can  not  be  a  member  of    Prt( 

w’ , S )  ,  Prt( w’ , S )  contains  a  vertex  of  G – v  . Thus 

, S  is  a  minimal totally  dominating  set  in  G – v. 

By  similar  argument  of  S  in  above  case  ,  we  have   

Γt  (G ‐ v)   =  Γt  (G)   .  

Now  we  characterize  the  vertices  of  the  set tW
−

. 

 

 



25      

 

THEOREM  2.13 

Let  G  be  a  graph  and  v  be  a  vertex  of  G  such  that  

v ∉
i
tV  then  v  tW

−
 if  and  only  if  ,  whenever  S  is a   

 Γt  set  of  G  not  containing  v  then  there  is  a  vertex  

w  in  S  such that  Prt( w , S )  = { v }. 

  PROOF :    

Suppose  v  tW
−

.  Let  S  be  a  Γt  set  of  G  such  that   

v ∉ S. Now  v  is  adjacent  to  some  vertex  of  S  if  v  is  

adjacent  to  at  least  two  vertices  of  S  then  by  

previous  theorem  v   0
tW .  Which  contradicts  our  

assumption  with  v  tW
−

, there  fore  there  is  a  

vertex  w  in  S  such  that  v  is  adjacent  to  w  and  v  

is  not  adjacent  to  any   other  vertex   
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of  S  ,  this  implies  that  if  there  is  a  another  vertex  

v’ in  G  such  that  v’  Prt( w , S )  then  again  by  

previos  theorem  v  0
tW . Which  is  a  contradiction.  

Hence  

Prt( w , S )  = { v } . 

CONVERSE : 

Suppose  v  0
tW  then  there  is  a    Γt  set  S  of  G  not  

containing  v  such  that  one  of  the  following  two  

conditions  hold 

(a) There  is  a  vertex  w  in  S  such  that Prt( w , S )   

Contains  at  least  two  vertices  including  v. 

(b) Now  v  is  adjacent  to  at  least  two  vertices  

of  S   

 Now , suppose  condition (a)  holds. 
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There  is  a  vertex  w’  in  s  such  that  

 Prt( w’ , S )  = {v}. 

 If  w  =  w’  then  our  condition  is  violated  .  

Suppose  w ‡ w’ , then  v  is  adjacent  to  two  vertices  

of  S, it  implies  that   v ∉  Prt( w’ , S ). 

If  v  is  adjacent  to  at  least  two  vertices  of  S  then  v

∉  Prt( w’ , S ) for  any  w’  in  S  . This  again  violate  

with  our  condition  . 

 Thus  v  0
tW  gives  rise  to  a  contradiction  in  

either  case  , thus  v  tW
−

.Hence  the  theorem  is  

proved.  

 

EXAMPLE  2.14 



28      

 

Consider  the  Cycle  C6. Let { 1,2,3,4,5,6 } be  its  vertex  

set. 

(i)     

 

 

 

Fig.2.5: Cycle  graph  with  six  vertices. 

The  big  total  domination  number  of  this  graph  is  

4, and  S = { 1,2,4,5 }  is  a Γt  set  of C6.  Now  6 ∉ S , also 

6  is  adjacent  to  two  vertices  of  S  namely  1  and  5 .  

Therefore  by  above  theorem  6  0
tW   

 Similarly  it  can  be  proved  that  every  other  

vertex  of  C6   0
tW . 

 

 

5 4

6 3

21
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(ii) 

    

 

 

 

Fig.2.6: Cycle  graph  with  five  vertices. 

Consider  the  Cycle  C5 with  vertex  set  { 1,2,3,4,5 }.  

Its  big  total  domination  number  is  3. Consider  the  

vertex  5. Consider  the  set  S = { 2,3,4 } which  is  a  Γt  

set  of  G  not  containing  5  .  Prt( 4 , S ) = { 5 } and  4  

S.  Similarly  if we  consider  the  set  S1  =  { 1,2,3 }  then  

S1 is a 

Γt  set  not  containing  5  and  Prt( 1 , S1 ) = { 5 }. 

Therefore  5    tW
−

. 

 

4

5
3

21
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THEOREM  2.15 

Let  G  be  a  graph  for  which  tW
−

 is  an  empty  set  if  

the  set  { S1,S2,S3,...,SK }  is  the  set  of  all Γt  sets  of  the   

graph  G  then  S1 S2 S3 ... SK = 
i
tV . 

  PROOF :   

Suppose  v  S1 S2 S3 ... SK .  Suppose  v ∉
i
tV , 

Then   v    0
tW .  Therefore  there  is  a  Γt  set  Sj  which  

does  not  contain  v  ,  by theorem  2.12  that  is  v ∉ 

S1 S2 S3 ... SK , and  this  is  a  contradiction.  

Hence  v  
i
tV  

Therefore S1 S2 S3 ... SK  ⊂   

i
tV . 

 Suppose  v    
i
tV  
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If v ∉ S1 S2 S3 ... SK   then  for  some  j  ,  v  ∉  S j .  If  v  

is  adjacent  to  at  least  two  vertices  of  S j  then  by  

theorem  2.12  v    0
tW  , this  is  a  contradiction. 

 If  there  is  a  vertex  w  in  S j  such  that  Prt( w , Sj ) 

contains  at  least  two  vertices  including  v  then  also  

by  theorem  2.12  v    0
tW  .  This  is  a  contradiction. 

  If  there  is  a  vertex  w  in  S j  such  that  Prt( w , Sj )  = 

{ v }  then  v  tW
−

, but tW
−

 is  empty  and  so  this  

possibility  is  ruled  out  .   

Hence  v  S1 S2 S3 ... SK   . 

There fore 
i
tV  ⊂   S1 S2 S3 ... SK   . 

Hence  S1 S2 S3 ... SK   =  
i
tV .  
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Well  Totally  Dominated  Graphs 

DEFINITION  2.16 

Let  G  be  a  graph  then  G  is  said  to  be  well  totally  

dominated  graph  if  all  minimal  totally  dominating  

sets  of  G have  the  same  cardinality  .  Equivalently , 

t (G) = Γt (G). 

EXAMPLE  2.17 Consider  the       Cycle  C5  . 

    

 

  

Fig.2.7: Cyclic  graph  with  five  vertices. 

t (C5) = Γt (C5) = 3. 

Thus  C5  is  a  well  totally  dominated  graph. 

 

4 

5 3

1 2
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EXAMPLE  2.18 

Consider  the  wheel  graph  W6  then  t (W6 ) = 2,  and   

Γt (W6) = 3 . Thus  W6  is  not  a  well  totally  dominated  

graph. 

THEOREM  2.19 

Suppose  G  is  a  well  totally  dominated  graph  and  v 

 V(G)  such  that  v ∉
i
tV  then the  following  

statements  are  true. 

(i)  v ∉ tV +

 (That  is  tV +

 is  empty) 

(ii) If  v  
0
tV  then  G – v is  well  totally  dominated  

graph  . 

(iii) If  v  
0
tV  then  v  

0
tW . 

  PROOF :   
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(i) If  v  tV +

then  t (G)< t (G ‐ v)  Γt (G ‐ v)  Γt (G). 

Since  t (G) = Γt (G). This  implies  that  t (G ‐ v) = t (G) 

Which  is  a  contradiction . Thus v ∉ tV +

. 

(ii) If  v 
0
tV then  

t (G) = t (G ‐ v)  Γt (G ‐ v)  Γt (G). 

This  implies  that  t (G ‐ v)  Γt (G ‐ v) . 

Thus  G – v  is well  totally  dominated  graph  . 

(iii)  From  (ii)  t (G) = t (G ‐ v) = Γt (G ‐ v) = Γt (G). 

Therefore  v  
0
tW . Hence  the  theorem .  

DEFINITION  2.20 

A  graph  G  is  said  to  be an approximately  well  

totally  dominated  graph , if  Γt (G)  =  t (G ) + 1. 

For  example P5  is  an  approximately  well  totally  

dominated  graph . 
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 Fig.2.8: Path  graph  with  five  vertices.   

THEOREM  2.21 

Let  G  be  a  well  totally  dominated  graph and  v  be  

a  vertex  of  G  such  that  v ∉ 
i
tV   then  either  G – v  

is  well  totally  dominated  graph  or  it  is an 

approximately  well  totally  dominated  graph . 

  PROOF :   

Suppose  v  tV −

therefore  t (G – v ) = t (G) – 1 . 

t (G – v )  Γt (G – v )   Γt (G)  . 

Case  : (i) If  Γt (G – v )  = t (G – v ) then G – v  is well  

totally  dominated  graph . 

Case : (ii) t (G)  Γt (G – v )  Γt (G)  . 

4 532 1 
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Since  G  is  well  totally  dominated  graph . 

t (G) = Γt (G)  and  thus  Γt (G – v )  = t (G) . Which  is  

equal  to t (G – v ) + 1. 

Thus G – v  is  an  approximately  well  totally  

dominated  graph  . 

   If     v   
0
tV ,  then  t (G) = t (G – v )  Γt 

(G – v )   Γt (G).   

Therefore  Γt (G – v )  = t (G – v )  and  hence  G – v  

is  a  well  totally  dominated  graph.  
 

EXAMPLE  2.22 

Consider  the  path  graph  P5  for  this  graph  t (P5) = 3  

and  Γt (P5 )  = 4. Thus  P5  is  not  well  totally  

dominated  graph . 

However  if  v  is  any  vertex  in  P5  such  that  v ∉ 
i
tV . 
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Then  t (P5 – v ) = Γt (P5 – v ). Thus  it  is   well  totally  

dominated  graph . 

 The  above  two  theorems  can  be  summarized  as 

follows. 

 For  any  vertex  v  which  is  not  in  
i
tV  . G – v  is  

either  well  totally  dominated  graph   or  an  

approximately  well  totally  dominated  graph  

provided  the  given  graph  G  is  well  totally  

dominated  graph   . 

THEOREM  2.23 

Suppose  G  is  an  approximately  well  totally  

dominated  graph  and  v  is  a  vertex  such  that  v ∉ 

i
tV ,

then  if  

 v  tV +

then G – v  is  well  totally  dominated  graph , 
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 v  0
tW  and  Γt (G – v ) = t (G ) + 1. 

  PROOF :   

Since  v  tV +

, 

t (G )< t (G – v )  Γt (G – v )  Γt (G )= t (G ) + 1. 

Therefore  t (G – v ) = t (G ) + 1. 

Therefore t (G ) + 1  Γt (G – v )  t (G ) + 1. 

Hence  Γt (G – v ) = t (G ) + 1 = t (G – v ). 

That  is  G – v is  well  totally  dominated  graph . 

Also , Γt (G – v ) = t (G ) + 1 = Γt (G ). 

Thus  v  0
tW .  

THEOREM  2.24 

Suppose  G  is  an  approximately  well  totally  

dominated  graph  and  v  is  a  vertex  such  that  v ∉ 

i
tV . 
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If   v  
0
tV , then  G – v is  either  an  approximately  

well  totally  dominated  graph  or  it  is  well  totally  

dominated  graph  . 

 In  the  first  case  v  0
tW   and  in  the  second  case  

v  tW
−

  . 

  PROOF :   

Since  v  
0
tV , 

t (G )= t (G – v )  Γt (G – v )  Γt (G ). 

Case : (i)   

Γt (G – v ) = Γt (G ) , 

 then  Γt (G – v ) = Γt (G )= t (G )+1 = t (G – v )+1. 

Thus  G – v is  an  approximately  well  totally  

dominated  graph. 

Since  Γt (G – v ) = Γt (G ). 
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That  is  v  0
tW . 

Case : (ii)  Γt (G – v ) = t (G – v ) , then obviously  G – v  

is  well  totally  dominated  graph. 

Since  Γt (G – v ) = t (G – v )= t (G)< Γt (G ), 

Therefore  v  tW
−

  .  

THEOREM  2.25 

Let  G  be  an  approximately  well  totally  dominated  

graph  and  v  is  a  vertex  such  that  v ∉ 
i
tV .  If   

v  tV −

   
then  exactly  one  of  the  following  three  

possibilities  holds. 

(i) G – v  is  well  totally  dominated  graph  . 

(ii) G – v  is  an approximately  well  totally  dominated  

graph  . 

(iii) v  0
tW . 



41      

 

  PROOF :   

Since   , v  tV −

. 

t (G – v ) = t (G) – 1. 

Now , t (G – v )  Γt (G – v )  Γt (G). 

Therefore  Γt (G – v )= t (G) – 1 , or  Γt (G – v )= t (G)  or  

 Γt (G – v )= Γt (G). 

If  the  first  equality  holds  then  Γt (G – v ) = t (G – v )  

and  the  graph  G – v  is  well  totally  dominated  

graph. 

If  the  second  equality  is  true  then   

Γt (G – v )= t (G)= t (G – v )+1 , and  so the  graph  is  

an  approximately  well  totally  dominated  graph  . 

If  the  third  equality  holds  then  v  0
tW .  
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C H A P T E R     3 

 

Vertex Covering Sets 

 In  this  chapter  we  consider  vertex  covering  sets  

in  graphs.  We  will  define  so  called  Γcr  sets  which  

are  infect  minimal  vertex covering  sets  with  

maximum  cardinality.  We  will  find  conditions  under  

which  the  big  vertex  covering  number  of  a  graph  

decreases  or  remains  same.  Before  that  we  will  

prove  that  this  number  never  increases  when  a  

vertex  is  remove. 
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DEFINITION  3.1   [51] 

A  subset  S  of  V(G)  is  said  to  be  a  vertex  covering  

set  if  for  every  edge  of  the  graph  at  least  one  end  

vertex  is  S. 

DEFINITION  3.2   [51] 

A  vertex  covering  set  S  is  said  to  be  a  minimal  

vertex  covering  set  if  S – v  is  not  a  vertex  covering  

set  for  every  v  in  S. 

DEFINITION  3.3   

A  vertex  covering  set  S  with  minimum  cardinality  is  

called  a  minimum  vertex  covering  set  and  is  

denoted  as  cr  set.  Note  that  every  minimum  

vertex  covering  sets  is  a  minimal  vertex  covering  

sets  but  converse  is  not  true(see  example  3.5). 
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   The  cardinality  of  a  minimum  vertex  

covering  set  of  a  graph  G  is  called  the  vertex  

covering  number  of  G  and  is  denoted  as  0(G). 

DEFINITION  3.4   [51] 

A  minimal  vertex  covering  set  with  maximum  

cardinality  is  called  Γcr  set. 

   The  cardinality  of  Γcr  set  is  called  a  big  

vertex  covering  number  of  the  graph  G  and  is  

denoted  as Γcr(G).  Obviously  0(G)     Γcr(G).   

EXAMPLE  3.5 

Consider  P5.  The  path  graph  with  5  vertices. 

 

 

Fig. 3.1: Path  graph  with  five  vertices. 

3 4 5 2 1 
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Let  denote  this  graph  P5 = G.  In  this  graph  the  set  

S = { 2,4 }  is  a  minimal  vertex  covering  set  and  

hence  0(G) = 2. 

   Also, T = { 1,3,5 }  is  a  minimal  vertex  

covering  set  with  maximum  cardinality.  That  is  T  is  

a  Γcr  set,  and  hence  Γcr(G) = 3.  Here  T  is  a  minimal  

vertex  covering  set  but  not  a  minimum  vertex  

covering  set. 

   Note  that  every  vertex  covering  set  is  a  

dominating  set  and  hence  (G)  0(G)  for  any  

graph  G  without  isolated  vertices. 

In  P5 = G   ,   (G) 0(G) . 

In  C3 = G  ,    (G) = 1  and  0(G) . 

 

 

Therefore     (G) < 0(G). 

3 

2 1 
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EXAMPLE  3.6 

Consider  the  Peterson  graph  G  as  shown  in  the  

figure 

 

    

 

 

 

 

 

Fig. 3.2: Peterson  graph 

For  this  graph  G  the  set 

S = { 2,3,4,5,6,9,10 }  is  a  Γcr set  and  the  big  vertex  

covering  number  of  this  graph  is  7. 

That  is  Γcr(G) = 7.  Also  T = { 1,3,4,6,7,10 }  is  a  cr  set  

and  the  vertex  covering  number  of  graph   

4

9
5 

10 
8

3

76

21 
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G = 6 = 0(G) = cr (G). 

Note  that  0(G) <  Γcr(G). 

   First  we  introduce  the  following  notations.

crV
+  = { v  V(G) / 0(G ‐ v) > 0(G) }. 

crV
−  = { v  V(G) / 0(G ‐ v) < 0(G) }. 

0
crV  = { v  V(G) / 0(G ‐ v) = 0(G) }. 

   The  above  sets  are  mutually  disjoint  and  

their  union = V(G). 

   First  we  prove  that  for  any  graph  G , crV
+   

is  empty. 

THEOREM  3.7 

Let  G be a graph and  v  V(G)  then  0(G ‐ v)  0(G ). 
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PROOF : 

Let  S  be  a  minimum  vertex  covering  set  of  graph  

G.  Then  every  edge  of  G  has  at  least  one  end  

point  in  S.  Now  every  edge  of  G – v  is  also  an  

edge  of  G.  Therefore  every  edge  of  G – v  has  at  

least  one  end  vertex  in  S.  Thus  S  is  a  vertex  

covering  set  of  G – v , if  v ∉ S.   

Therefore  0(G ‐ v)  S = 0(G). 

   If  v  S  then  S – v  is  a  vertex  covering  set  

in  G – v .Therefore  0(G ‐ v) S‐v < S = 0(G). 

Thus   0(G ‐ v)  0(G ).  

THEOREM  3.8 

Let  G  be  a  graph,  v  be  a  vertex  of  G  such  that  

 v  crV
−   then  0(G ‐ v)  0(G )  ‐  1  . 
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PROOF : 

Let  S  be  a  minimum  vertex  covering  set  of  G – v .  

If  all  the  neighbours  of  v  are  in  S  then  S  is  a  

vertex  covering  set  of  G  and  hence 

0(G)  S = 0(G – v)  0(G). 

Therefore   0(G – v) = 0(G),   and   hence  v  0
crV . 

Which is not   true.   

Therefore  there  is  some  neighbours  v’   of  v  such  

that  v’ ∉ S.  Let   S1 = S U {v}.  Then S1 is a vertex  

covering  set  of  G  . 

Therefore  0(G)  S1  S +1. 

Therefore  S < 0(G)  S +1. 

Hence  0(G)  S +1. 

Therefore  0(G)   0(G – v) + 1. 

Therefore   0(G – v) = 0(G)  ‐  1.  
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THEOREM  3.9 

Let  G  be  a  graph  and  v  V(G).  

Then  Γcr(G – v)  Γcr(G). 

PROOF : 

Let  S  be  a  Γcr set  of  G – v .  If  all  the  neighbours  of  

v  are  in  S  then  S  is  a  minimal  vertex  covering  set  

of  G  and  therefore  S  Γcr (G)  and   

thus Γcr( G – v )  Γcr (G). 

   If  some  neighbour  of  v  is  not  in  S  then   

S U {v}  is  a  minimal  vertex  covering  set  of  graph  G.   

Therefore  S < S U {v}  Γcr (G). 

That  is  Γcr( G – v ) <  Γcr (G).  

We  define  the  following  symbols. 

crW
+

 = { v  V(G) / Γcr( G – v ) > Γcr (G) }. 

crW
−

 = { v  V(G) / Γcr( G – v ) < Γcr (G) }. 
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0
crW  = { v  V(G) / Γcr( G – v ) = Γcr (G) }. 

   We  now  prove  the  following  theorem. 

THEOREM  3.10 

Let  G  be  a  graph  and  v  V(G).  Then  v  0
crW   

If  and  only  if  there  is  a  Γcr set  S  of  G  not  

containing  v  such  that  S  is  also  Γcr set  of  (G ‐ v). 

PROOF : 

Suppose  that  v  0
crW . 

Let  S1  be  any  Γcr set  of  G – v .  If  some  neighbour  of  

v  is  not  in  S1  then  S  =  S1 U {V} is  a  minimal  vertex  

covering  set  of  G  and  hence  S1 < S   Γcr (G). 

That  is  Γcr (G – v) < Γcr (G). Which  implies  that  v  

crW
−

. 
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Which  is  not  true.  Thus  all  neighbours  of  v  must  in  

S1.  Let  S = S1  then  as  proved  in  previous  theorem  S  

is  a  minimal  vertex  covering  set of  G  .  If  S  is  not  a   

 Γcr set  of  G  then  S <  Γcr (G). 

That  is  Γcr (G – v) < Γcr (G).  Which  is  a  contradiction  .  

Hence  S  is  a  Γcr set  of  G.  Also,  thus  S  is  the  

required  Γcr set  . 

   Conversely,  suppose  S  is  a  Γcr set  of  G  not  

containing  v  such  that  S  is  also  a  Γcr set  of  G – v 

then  Γcr(G) = S =  Γcr (G – v).  Thus  v  0
crW .  

COROLLARY  3.11 

Let  G  be  a  graph  and  v  V(G).  Then  v  crW
−

  

If  and  only  if  whenever  S  is  a  Γcr  set  of  G  not  

containing  v  then  S  is  not  a  Γcr  set  of  G – v . 
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EXAMPLE  3.12 

   Let  G = C5. 

 

     

 

 

 

   

  Fig.  3.3: Cycle  graph  with  five  vertices. 

 Then  Γcr(G) = 3.  Let  v  =  5.  Then  G – v = The  path   

  Graph  P4.  Γcr(G – v) = 2. 

   

Fig.  3.4: Path  graph  with  four  vertices. 

Thus  v  crW
−

 . In  G  there  are  two  Γcr  set  not  

containing  S 

5 

3 4 

2 1 

3 4 2 1 
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(i) S1 = { 1,3,4 } 

(ii) S2 = { 1,2,4 } 

Note  that  neither  S1  nor  S2  is  a  Γcr  set  in  G – v . 

EXAMPLE  3.13 

Fig. :  3.5: Wheel  graph  with  six  vertices. 

     

 

 

 

 

The  Γcr(G) = 3.  Let  v = 0  then  G – v = C5  and   

Γcr(G – v) = 3.  Thus  v  0
crW . 

   In  fact  S = { 1,3,4 }  is  a  Γcr  set  of  G  not  

containing  0  such  that  S  is  a  Γcr  set  of  G – v . 

 

4

5 0

3 

21
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Well  Covered  Graphs 

DEFINITION  3.14   [51] 

A  graph  G  is  said  to  be  a  well  covered  if  any  two  

minimal  vertex  covering  sets  have  the  same  

cardinality. 

    Equivalently  a  graph  G  is  well  

covered  if  0(G) = Γcr(G). 

For  example  C4  and  P4  are  well  covered  graphs. 

    On  the  other  hand  the  Peterson  

graph  is  not  a  well  covered  graph(see  example  3.6) 

THEOREM  3.15 

Let  G  be  a  well  covered  graph  and  v  V(G) 

(i) G – v  is  well  covered  or  v  0
crW  
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(ii) If  v  0
crV  then  v  

0
crW   and  G – v is  well  covered. 

(iii)  If  v  crV
−

  then  either  G – v is  well  covered  and   

        Γcr(G – v) = Γcr(G) – 1  or  v  0
crW . 

PROOF : 

(i)   0(G – v)  0(G)  Γcr(G). 

   Also  0(G – v)  Γcr(G – v)  Γcr(G) 

   Hence  if   Γcr(G – v) = 0(G – v)  then  G – v  is  well  

covered  or  if  Γcr(G – v) = Γcr(G)  then  v  0
crW . 

(ii) In  this  case   

       0(G – v) = 0(G)  Γcr(G – v)  Γcr(G). 

 Therefore  0(G – v)  0(G)  Γcr(G – v)  Γcr(G). 

 Thus  G – v is  well  covered  and  v  0
crW .  

(iii)        0(G – v) = 0(G)   Γcr(G – v)  Γcr(G). 
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Therefore  Γcr(G – v) = 0(G – v)  or 

Γcr(G – v) = 0(G) = Γcr(G). 

Thus  either  G – v  is  well  covered  and 

Γcr(G – v) = Γcr(G) – 1   or  v  0
crW .  

      We  introduce  the  following  concept. 

        DEFINITION  3.16   

A  graph  G  is  said  to  be  approximately  well  covered  

if  0(G) = Γcr(G) – 1. 

For  example    Peterson  graph  is an approximately  

well  covered  graph. 

THEOREM  3.17 

Let  G  be  an  approximately  well  covered  graph  and   

v  V(G). 

(i) If  v  0
crV  then  either  G – v  is  well  covered  or  

approximately  well  covered  . 
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(ii) If  v  crV
−

  then  either  G – v  is  well  covered  or  

approximately  well  covered  or  v  0
crW . 

PROOF : 

(i)        0(G – v) = 0(G)  Γcr(G). 

Also  0(G – v)  Γcr(G – v)  Γcr(G). 

Thus  if  v  0
crV  then  Γcr(G – v) = 0(G – v)  and  in  this  

case  G – v  is  well  covered  or  if  Γcr(G – v) =   Γcr(G). 

Then  0(G – v) = 0(G) = Γcr(G) – 1 = Γcr(G – v) – 1 and  

hence  G – v  is  an  approximately  well  covered. 

(ii) If  v  crV
−

  then  if  Γcr(G – v) = 0(G – v)  then  G – v  

is  well  covered.  If  Γcr(G – v) = 0(G)  then   

Γcr(G – v)  = 0(G) = Γcr(G) – 1.  Then  G – v  is  an  

approximately  well  covered.  If  Γcr(G – v) = 

Γcr(G)  then  v  0
crW .  
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      We  introduce  the  following  concept. 

 

          DEFINITION  3.18    

          A  graph  G  is  said  to  be    approximately  well      

dominated  if  (G)  =  Γ(G) – 1. 

        THEOREM  3.19 

If  graph  G  is   approximately  well  dominated  then  

either  G  is  well  covered  or  G  is   approximately  

well  covered. 

PROOF : 

Since  G  is    approximately  well  dominated  

 (G) = Γ(G) – 1.  Now  every  maximal  independent  

set  is  a  minimal  dominating  set.  Therefore  

cardinality  of  every  maximal  independent  set  is  

equal  to  Γ(G) – 1  or  Γ(G). 
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Therefore  i(G) = Γ(G)  or  i(G) = Γ(G) – 1  . 

Now  i(G)  0(G)  Γ(G).(Because  a  maximum  

independent  set  is  a  minimal  dominating  set). 

Case(i)  i(G) = Γ(G).  Then  from  the  above  inequality   

0(G) = Γ(G) = i(G).  Therefore  n ‐ 0(G) = n – i(G). 

Now  0(G) + 0(G) = n  and  i(G) + Γcr(G) = n. 

Thus  0(G) = Γcr(G).  Therefore  the  graph  is  well  

covered. 

Case(ii)  i(G) = Γ(G) – 1.   

Now  again  i(G)  0(G)  Γ(G).  If  0(G) = Γ(G) – 1.   

Then  0(G) = i(G).  Therefore  by  the  argument  in  

Case(i)  G  is  well  covered. 

 Suppose  0(G) = Γ(G)  then  i(G) = 0(G) – 1. 

Therefore  n – i(G) = (n ‐ 0(G)) + 1. 

Therefore  Γcr(G) = 0(G) + 1. Therefore  0(G) = Γcr(G) –1  

Therefore  0(G) = Γcr(G) – 1 . 
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Therefore  the  graph  is  an  approximately  well  

covered.  

THEOREM  3.20 

Suppose  G  is  a  graph  and  v  V(G)  such  that   

Γcr(G – v) = Γcr(G) – 1  and  if  G – v  is  well  covered  

then  G  is  also  well  covered  or  an  approximately  

well  covered. 

PROOF :   

0(G – v) = Γcr(G – v) = Γcr(G) – 1 . 

Now  0(G – v) = 0(G)  or  0(G) – 1 . 

Case(i)  If  0(G – v) = 0(G)  then  0(G) = Γcr(G) – 1  . 

Thus  G  is  an  approximately  well  covered. 

Case(ii)  If  0(G – v) = 0(G) – 1  then  from  above   

0(G) – 1 = Γcr(G) – 1.  Hence  0(G) = Γcr(G). 

Thus  the  graph  is  well  covered.  
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Maximum  Independence 

DEFINITION  3.21   [52] 

Let  G  be  a  graph  and  S  be  a  subset  of  V(G),  then  

S  is  said  to  be  an  independent  set,  if  any  two  

distinct   vertices  of  S  are  non  adjacent. 

DEFINITION  3.22   [52] 

An  independent  set  S  is  said  to  be  a  maximal  

independent  if   it  is  not  properly  contain  in  any 

independent  set. 

DEFINITION  3.23   [52] 

An  independent  set  of  maximum  size  is  called  a  

maximum  independent  set. 
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REMARK  3.24  

Note  that  every  maximum  independent  set  is  a  

maximal  independent  set  but  the  converse  is  not  

true. 

   Also  note  that  every  maximal  independent  

set  is  an  independent  dominating  set 

   Also  note  that the complement  of  an  

independent  set  is  a  vertex  covering  set.  Therefore  

a  set  S  is  a  maximal  independent  if  and  only  if  

V(G) – S  is  a  minimal  vertex  covering  set.  Also  a  

set  S  is  maximum  independent  if  and  only  if   

V(G) – S  is  a  minimum  vertex  covering  set. 

DEFINITION  3.25   [52] 

The  cardinality  of  a  maximum  independent  set  is  

called  the  independence  number  of  the  graph  G  

and  it  is  denoted  as  0(G). 
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   Thus  if  a  graph  has  n  vertices  then  

0(G)+ 0(G)= n.                     Now  we  prove  the  following  theorem. 

THEOREM  3.26 

If  G  is  a  graph  and  v  V(G)  then  0(G – v)  0(G). 

PROOF :   

Let  S  be  a  maximum  independent  set  of  G – v . 

   If  v  is  not  adjacent  to  any  vertex  of  S  

then  S  {v}  is  an  independent  set  in  the  graph  G.  

Therefore   0(G – v) <  S  {v}    0(G). 

   If  v  is  adjacent  to  same  vertex  of  S,  Then  

S  is  a  maximal  independent  set  in  the  graph  G.  

Therefore    0(G – v)  =  S    0(G). 

   Thus  in  all  the  cases  0(G – v)    0(G).  

Now,  we  introduce  the  following  notations. 

I −  =  { v  V(G) / 0(G – v) < 0(G) }. 
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0I  =  { v  V(G) / 0(G – v) = 0(G) }. 

First  we  prove  the  following  Lemma. 

LEMMA  3.27 

If  v  I −  then  0(G – v) = 0(G) ‐ 1 . 

PROOF :   

We  know  that  0(G – v) < 0(G).  Let  T  be  a  

maximum  independent  set  of  G,  then   

0(G – v) < T .                      If  v  T  then  T  is  a  maximum  independent  

set  of  G – v , Which  is  not  possible.  Therefore  v  T.  

Now  T – v  is  an  independent  set  in  G – v  and  its  

size  must  be  maximum,  because  v  I − . 

Therefore  0(G – v) < T – v  = T  ‐ 1  = 0(G) – 1.  
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THEOREM  3.28 

Let  G  be  a  graph  then  v  0I  if  and  only  if  there  is  

a  maximum  independent  set  S  of  G  such  that   

v  S. 

PROOF : 

Suppose  v  0I .  Let  S  be  a  maximum  independent  

set  of  G – v ,  then  S  is  also  a  maximum  

independent  set  of  G,  because v  0I .  Obviously , 

v  S 

   Conversely , suppose  there  is  a  maximum  

independent  set  S  of  G  such  that  v  S.  Then  S  is  

also  a  maximum  independent  set  of  G – v .  

Therefore  v  0I .  

 

COROLLARY  3.29    
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If  v  I −

 if  and  only  if  v  belongs  to  every  maximum  

independent  set  of  G.  

COROLLARY  3.30 

 I −

 is  equal  to  the  intersection  of  all  maximum  

independent  sets  of  G.  

COROLLARY  3.31 

Let  G  be  a  graph  then  I −

 = V(G)  if  and  only  if  the  

graph  G  is  a  null  graph. 

PROOF : 

Suppose  G  is  a  null  graph  then  G  has  only  one  

maximum  independent  set.  Therefore  I −

 = V(G). 

   Conversely,  suppose  I −

 = V(G)  . 

Since,  I −

 is  contained  in  every  maximum  

independent  set, V(G)  is  contained  in  every  
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maximum  independent  set.  Therefore  G  has  only  

one  maximum  independent  set.  Namely  V(G).  

Hence  G  is  a  null  Graph.  

COROLLARY  3.32 

A  graph  G  has  at  least  one  edge  if  and  only  if  0I   

is  a  non  empty.  

COROLLARY  3.33 

If  u  and  v  belongs  to  I −

 then  u  and  v  are  non  

adjacent. 

PROOF : 

Let  S  be  a  maximum  independent  set  of  G  then  u  

and  v  belongs  to  S.  Since  S  is  an  independent,  u  

and  v  are  non  adjacent.  

COROLLARY  3.34 

Let  G  be  a  graph  and  v  be  a  vertex  of  G  then  if  
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 v  I −

 then  all  its  neighbours  are  in  
0I . 

 

 

PROOF : 

Suppose  u  is  a  neighbour  of  v.  Let  S  be  a  

maximum  independent  set  of  G,  then  v  S  and   

u  S.  Because  u  and  v  are  adjacent  and  v  I −

,  

and  u  S.  Thus  by  previous  theorem  u  0I .  

In  other  words  N(v)  is  a  subset  of  0I . 

COROLLARY  3.35 

For  any  graph  G,  (G)  0I .  

                Now  we  consider   so  called  vertex  

transitive  graphs.  In  these  graphs  there  are  enough  

automorphism. 
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DEFINITION  3.36   [7] 

Let  G  be  a  graph  then  G  is  said  to  be  a  vertex  

transitive  graph  if  for  any  two  vertices  u  and  v  of  

G,  there  is  an  automorphism  f:V(G) V(G)  such  that  

f(v) = u. 

    The  complete  graph  Kn,  the  cycle  Cn  

and  the  Peterson  graphs  are  some  examples  of  

vertex  transitive  graphs.  However  a  tree  with  at  

least  three  vertices  is  not  vertex  transitive  graph.  

In  fact  every  vertex  transitive  graph  is  regular  

graph. 

    We  now  prove  the  following  theorem. 

THEOREM  3.37 
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Let  G  be  a  vertex  transitive  graph  and  v  V(G) 

such  that  v  0I  then  every  vertex  of  G  is  a  

member  of  
0I .  That  is  

0I  =  V(G). 

 

 

PROOF: 

Since  v  0I  there  is  a  maximum  independent  set  S  

such  that  v  does  not  belongs  to  S. 

    Let  u  be  any  vertex  of  G,  then  there  

is  an  automorphism   f : V(G) V(G)  f(v) = u. 

Now,  f(S)  is  a  maximum  independent  set  because  f  

is  an  automorphism.  Since  v  does  not  belongs  to  S,  

f(v) does  not  belongs to  f(S).  That  is  u  does  not  

belongs  to  f(S).  Thus  there  is  a  maximum  
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independent  set namely  f(S)  which  does  not  

contains  u.  There  fore  u  0I .  

COROLLARY  3.38 

let  G  be  a  vertex  transitive  graph  and  v  V(G).  If  

 v  I −

 then  every  vertex  of  G  belongs  to  I
−

 . 

That  is  I −

 = V(G). 

 

PROOF : 

Let  u  be  any  vertex  of  G,  then  there  is  an  

automorphisum  f  such  that  f(v) = u.  Since  v  every  

maximum  independent  set  of  G, f(v)  every  

maximum  independent  set  of  G.  That  is  u   every  

maximum  independent  set  of  G.  Hence  u  I −

.  
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THEOREM  3.39 

Let  G  be  a  vertex  transitive  graph  then  the  union  

of  all  maximum  independent  sets  of  G  is  V(G). 

PROOF : 

Suppose  u  is  a  vertex,  which  does  not  belongs  to  

any  maximum  independent  set  of  G  and  v  S.  

Now  there  is  an  automorphisum  f  of  G  such  that  

f(v) = u.  Since  v  S,  f(v)  f(S)  and  f(S)  is  a  

maximum  independent  set,  which  contains  u.  This  

contradicts  our  assumption.  There  fore  union  of  all  

maximum  independent  sets  is  V(G).  

EXAMPLE  3.40 

Consider  the  path  graph  G = P5.  Whose  vertices  are   

1,2,3,4,5. 
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Fig.3.6: Path  graph  with  five  vertices. 

This  graph  has  only  one  maximum  independent  set  

S = { 1,3,5 }  and  the  union  of  maximum  independent  

set  is  not  V(G). 

    This  is  because  the  path  graph  P5  is  

not  vertex  transitive.  In  fact it  is  not  even  regular  

graph. 

EXAMPLE  3.41 

Consider  the  cycle  G = C5  with  vertices  1,2,3,4,5. 

     

 

 

 

   

  Fig.3.7: Cycle  graph  with  five  vertices.   

5432 1 

5 

3 4 

2 1 
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Note  that  any  maximum  independent  set  of  C5  has  

size  2.  Also  note  that  { 1,3 }, { 2,4 }, { 3,5 }, { 4,1 },  

{ 2,5 }  are  all  maximum  independent  sets  of  C5,  and  

the  union  of  these  sets  is  { 1,2,3,4,5 } = V(G). 

Note  that  this  graph  is  a  vertex  transitive  graph. 
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Well  Covered  Graph  Again 

Here  again  we  consider  well  covered  graphs.  We  

recall  the  following  notations. 

0(G) = The  size  of  the  smallest  vertex  covering  set      

               Of  G. 

i(G) = The  independent  domination  number  of  G. 

  = The  size  of  the  smallest  maximal  independent      

            Set. 

 

Γcr(G) = The  size  of  the  largest  minimal  vertex   

              covering  set  of  G.   

iV +  =  { v   V(G) / i( G – v ) > i(G) }. 

iV −  =  { v   V(G) / i( G – v ) < i(G) }. 

0

iV  =  { v   V(G) / i( G – v ) = i(G) }. 

Note  that, 
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(I)       A  set  is  a  vertex  covering  set  if  and  only  if  

its  compliment  is  an  independent  set. 

(II)       A  set  is  a  minimal  vertex  covering  set  if  and  

only  if  its  compliment  is  a  maximal  

independent  set. 

(III)        G  is  well  covered  if  and  only  if  i(G) = 0(G). 

 

We  will  denote  maximal  independent  set  with  

minimum  cardinality  as  an i‐set  of  G. 

   Note  that  a  graph  G  is  well  covered  if  

and  only  if  all  maximal  independent  sets  have  the  

same  cardinality,  equivalently  all  independent  

dominating  sets  have  same  cardinality. 

THEOREM  3.42 

Let  G  be  a  graph  and  v  V(G). 

(I) If  G  is  well  covered  then  
iV +  is  empty. 
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(II) If  v  
iV −

 and  G  is  well  covered  then  either  

        v  0I  or  G – v is  well  covered. 

(III)  If  G  is  well  covered  and  v 0

iV   then  G – v is  

well  covered  and  v  0I . 

PROOF : 

(I) If  there  is  a  vertex  v  in  
iV +  then  

 i(G) < i(G‐v)  0(G‐v)  0(G).   

Since  i(G) = 0(G) , i(G‐v) = 0(G) =  i(G). 

Which  contradicts  the  fact  that  i(G‐v) > i(G). 

       Hence  
iV +  is  empty. 

(II) Now  i(G‐v) < i(G) = 0(G).   

    Also,  i(G‐v)  0(G‐v)  0(G).  If  0(G‐v) 0(G),  

then   v  0I . 

   Otherwise  0(G‐v) = i(G‐v).  Which  implies  that  G – 

v  is  well  covered. 
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(III)  Now,  i(G‐v) = i(G) = 0(G).   

        Also   i(G‐v)  0(G‐v)  0(G) = i(G). 

         Since  i(G‐v)  i(G).   Which  implies  that   

         0(G‐v) = i(G‐v) = i(G) = 0(G).  Thus  G – v is  well           

    covered  and  v  0I .  

                                  Also  we  consider  so  called  an  

approximately  well  covered  graphs  which  have  

been  already  defined  earlier.   

     Note  that  a  graph  G  is  

approximately  well  covered  if  and  only  if , 

 i(G) =  0(G) – 1. (   Because  0(G) = Γcr(G) – 1  implies  

n ‐ 0(G) = n ‐ Γcr(G) + 1. That  is  0(G) = i(G) + 1.) 

THEOREM  3.43 

(I) Suppose  G  is    approximately  well  covered  

       and  v  
iV +  then  i(G‐v) = i(G) + 1,  and  v  0I , and            

 G – v  is  well  covered. 
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(II) If  G  is   approximately  well  covered  and     

v  
iV −  then  either  0(G‐v) = 0(G) – 2, and  

v  I − ,  or  0(G‐v) = 0(G) – 1,  and   

v  I − ,  or  v  0I . 

(III)  If  G  is    approximately  well  covered  and     

v  0

iV  then  either  v  I − ,and  G – v  is  well  

covered    or  v  0I . 

          PROOF :    (I) 

Suppose  G  is     approximately  well  covered 

and  v  
iV + .  Then  i(G) < i(G – v)  0(G‐v)  

i(G) + 1.  This  implies  that  i(G – v) = i(G) + 1, 

and  0(G‐v) = i(G – v) and  thus  G – v  is  well  

covered  and  since  0(G‐v) = i(G) +1 = 0(G),  

v  0I . 
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(II) 

 i(G – v) = i(G) ‐1.  i(G) ‐1  0(G‐v)  i(G) +1. 

If  0(G‐v)  i(G) +1.  Then  0(G‐v) = 0(G) – 2,  

and  hence    v  I − . If  0(G‐v)  i(G) = 0(G) – 

1,  then  v  I − .  If  0(G‐v)  i(G) +1,  then   

0(G‐v)  = 0(G)  and  hence  v  0I . 

(III) 

i(G – v) = i(G)  0(G‐v)   0(G).   

If  0(G‐v)  =  i(G – v),  then  G – v  is  well  

covered  and   v  I − .  Otherwise  0(G‐v)  = 

0(G)  and   v  0I .  
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C H A P T E R     4 

 

Perfect  Domination 

    In  this  chapter  we  consider  so  called  

perfect  dominating  sets.  Perfect  dominating  sets  

are  closely  related  to  perfect  codes  which  have  

applications  in  coding  theory. 

    In  this  chapter  we  consider  minimal  

perfect  dominating  sets  with  maximum  cardinality.  

The  cardinality  of  any  such  set  is  called  the  big  

perfect  domination  number  of  the  graph.  As  we  

did  in  earlier  chapter  we  prove  necessary  and  
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sufficient  conditions  under  which  this  number  

decreases  or  remains  same. 

DEFINITION  4.1   [51]   

A  subset  S  of  V(G)  is  said  to  be  a  perfect  

dominating  set  if  for  every  vertex  v  not  in  S,  v  is  

adjacent  to  exactly  one  vertex  of  S. 

    Note  that  every  perfect  dominating  

set  is  a  dominating  set. 

DEFINITION  4.2 

A  perfect  dominating  set  S  is  said  to  be  a  minimal  

perfect  dominating  set  if  for  every  vertex  v  in  S,   

S – v  is  not  a  perfect  dominating  set. 

 DEFINITION  4.3   [51]   

A  perfect  dominating  set  with  smallest  cardinality   

is  called  a  minimum  perfect  dominating  set.  It  is  
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also  called  pr‐set  of  G.  The  cardinality  of  a  pr‐set  

is  called  a  perfect  domination  number  of  the  graph  

G  and  is  denoted  as  pr(G). 
EXAMPLE  4.4   

     

     

 

 

 

 

  Fig.4.1: Cycle  graph  with  six  vertices. 

Let  G  be  the  graph  C6 ,  with  vertices  1,2,3,4,5,6.  Let  

S = { 1,4 }  then  S  is  a  minimal  perfect  dominating  

set  and  in fact  it  is  a  minimum  perfect  dominating  

5 4

6 3 

21
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set,  and  perfect  domination  number  of  G  is  2.  That  

is    pr(G) = 2. 

DEFINITION  4.5 

Let  G  be  a  graph,  S  be  a  subset  of  V(G)  and  v  S,  

then  the  perfect  private  neighbourhood  of  v  with  

respect  to  S  is  pprn(v,s) = { w  V(G) / w  does not 

belongs to S and  n[w]  S = {v} }  {v}.  If  v  is  

adjacent  to  no  vertex  of  S  or  at  least  two  vertices  

of  S. 

EXAMPLE  4.6 

     

     

 

 

 

5 4

6 3 

21
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  Fig.4.2: Cycle  graph  with  six  vertices. 

Consider  the  graph  C6 ,  S = {1,4}  and  v = 1 , 

 Then  pprn(1,S) = { 1,2,6 } 

THEOREM  4.7 

A  perfect  dominating  set  S  is  a  minimal  perfect  

dominating  set  if  and  only  if  for  every  v  S  

pprn(v,S)  is  non  empty. 

PROOF: 

Suppose  S  is  a  minimal  perfect  dominating  set  and  

v  S.  Now  S – v  is  not  a  perfect  dominating  set.  

There  fore  there  is  a  vertex  w  not  in  S – v  which  

is  either  adjacent  to  at  least  two  vertices  of  S – v  

or  is  adjacent  to  no  vertex  of  S – v. 

    If  w  v  and  w  is  adjacent  to  at  least  

two  vertices  of  S – v  then  N[w]  S  contains  at  
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least  two  vertices.  Thus  w does  not  belongs  to  S  

and  w  is  adjacent  to  at  least  two  vertices  of  S.  

Which  is  a  contradiction. 

    Thus  w  is  adjacent  to  no  vertices  of  

S – v .  since  w  is  not  in  S ,  and  S  is  a  perfect  

dominating  set, w  must  be  adjacent  to  v  only  in  S.  

That  is  N[w]  S = {v}.  Hence  w    pprn(v,S). 

    If  w = v  and  if  w  is  adjacent  to  at  

least  two  vertices  of  S – v,  then  w = v  pprn(v,S). 

    If  w = v  and  w  is  non  adjacent  to  any  

vertex  of  S – v  then  it  means  that  v  is  not  adjacent  

to  any  vertex  of  S.  Thus  w = v  pprn(v,S). 

    Thus  in  all  cases  pprn(v,S)  is  non  

empty. 

CONVERSELY    

Suppose  pprn(v,S)  is  non  empty  for  every  v  in  S. 
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Let  w  be  a  vertex  in  pprn(v,S).  If  w = v  then  w  is  

not  adjacent  to  any  vertex  of  S.  Thus  w  does  not  

belongs  to  S – v  and  w  is  not  adjacent  to  S – v .  if  

w = v  and  w  is  adjacent  to  at  least  two  vertices  of  

S  then  w does  not  belongs  to  S – v  and  w  is  

adjacent  to  at  least  two  vertices  of  S – v . 

    If  w   v  then  w  does  not  belongs  to  

S.  Since  w  pprn(v,S),  N[w]  S = {v}.  Thus  w  is  not  

adjacent  to  any  vertex  of  S – v .  Thus  in  all  cases  

either  w  is  adjacent  to  no  vertex  of  S – v  or  

adjacent  to  at  least  two  vertices  of  S – v .  Hence   

S – v  is  not  a  perfect  dominating  set.  Hence  S  is  a  

minimal  perfect  dominating  set.  

Now  we  introduce  the  following  notations. 

prV +  = { v  V(G) / pr(G ‐ v) > pr(G) }. 

prV −  = { v  V(G) / pr(G ‐ v) < pr(G) }. 
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0

prV  = { v  V(G) / pr(G ‐ v) = pr(G) }. 

We  note  that  the  above  three  sets  are  mutually  

disjoint  and  their  union  is  V(G). 

DEFINITION  4.8  

A  minimal  perfect  dominating  set  with  higest  

cardinality  is  called  Γpr – set.  The  number  of  

elements  of  such  a  set  is  called   the  big  perfect  

domination  number  of  G,  and  is  denoted  as  Γpr(G). 

LEMMA  4.9  

Let  G  be  a  graph  and  v  V(G),  then   

Γpr(G – v )   Γpr(G). 

PROOF: 

Let  S  be  a  Γpr – set  of  G – v .  if  v  is  adjacent  to  

exactly  one  vertex  w  of  S  then  S  is  a  minimal  

perfect  dominating  set  of  G. 
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There  fore  Γpr (G)  S  = Γpr(G – v ). 

    If  v  is  adjacent  to  no  vertex  of  S  or  

is  adjacent  to  at  least  two  vertices  of  S    then         

S1 = S  {v}  is  a  minimal  perfect  dominating  set  of  

G.  There  fore  Γpr (G) > S1  > S  = Γpr(G – v ). 

Thus  Γpr(G – v )  Γpr(G).  

Now  we  define  the  following  notations. 

prW −  = { v  V(G) / Γpr(G – v )  Γpr(G) }. 

0

prW  = { v  V(G) / Γpr(G – v )  Γpr(G) }. 

Note  that  the  above  sets  are  disjoint  and  their  

union  is  the  vertex  set  V(G). 

THEOREM  4.10 

Let  G  be  a  graph  and  v  V(G)  then  v  0

prW   if  and  

only  if  there  is  a  Γpr – set  S  of  G  not  containing  v  
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and  a  vertex  w  in  S  such  that  pprn(w,S)  contains  

at  least  two  vertices  and  one  of  them  is  v. 

PROOF: 

Suppose  v  0

prW .  Let  S  be  a  Γpr – set  of  G – v . 

Claim : v  is  adjacent  to  exactly  one  vertex  of  S. 

Proof  of  the  claim:  If  v  is  adjacent  to  no  vertex  of  

S  or  at  least  two  vertices  of  S  then  S1 = S  {v}  is  a  

minimal  perfect  dominating  set  of  G  and  hence   

Γpr(G – v )  Γpr(G).  Which  contradicts  our  assumption  

then  v  0

prW  .  Thus  v  is  adjacent  to  exactly  one  

vertex  of  S. 

    Let  w  be  the  only  vertex  of  S  to  

which  v  is  adjacent.  There  fore  v  pprn(w,S).  Also  

S  is  a  minimal  perfect  dominating  set  of  G – v. 

There  fore  pprn(w,S)  contains  a  vertex  v’  of  G – v .  
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Thus  pprn(w,S)  contains  at  least  two  vertices  and  

one  of  them  is  v. 

Converse: Let  S  be  a  Γpr – set  of  G  not  containing  

v  such  that  for  some  vertex  w  in  S,  pprn(w,S)  

contains  at  least  two  vertices  and  one  of  them  is  

v.  Thus  pprn(w,S)  contains  a  vertex  of  G – v , also  

for  any  other  vertex  p  of  S,  pprn(p,S)  contains  a  

vertex    v’  of  G.  This  vertex  v’  cannot  be  equal  to  

v , because otherwise  v  would  be  adjacent  to  two  

distinct  vertices  w  and  p  of  S.  Which  contradicts  

that  S  is  a  perfect  dominating  set  in  G. 

Thus  v’  is  different  from  v.  Thus  for  every  point  z  

of  S  pprn(z,S)  is  non  empty  in  G – v . Hence  S  is  a  

minimal  perfect  dominating  set  of  G – v . There  fore   

Γpr(G – v )  S  = Γpr(G).  But  it  is  impossible  that  

Γpr(G – v ) > Γpr(G),  because  of  Lemma  4.9.  There  fore   
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Γpr(G – v ) = Γpr(G).  Hence  v  0

prW .  

COROLLARY  4.11 

Let  G  be  a  graph  and  v  V(G)  then  v  
prW −   if  and  

only   if  for  every   Γpr – set  S  of  G  either  v  S  or  

there  is  a  unique  vertex  w  in  S  such  that  

pprn(w,S)  is  equal  to  v. 

PROOF: 

Suppose  v  
prW −   then v  does  not  belongs  to  0

prW . 

Let  S  be  a  Γpr – set  of  G.  If  v  S  then  the  corollary  

is  proved. 

    Suppose  v  does  not  belongs  to  S.  Let  

w  be  the  unique  vertex  of  S  which  is  adjacent  to  

v( S  is  a  perfect  dominating  set  in  G ).  Then  v  

pprn(w,S).  If  there  is  another  vertex  w  v  such  

that  v’  pprn(w,S)  then  it  means  that  pprn(w,S)  
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contains  at  least  two  vertices  and  one  of  them  is  

v.  This  implies  that v  0

prW  by  above  theorem  and  

we  have  a  contradiction.  Thus  pprn(w,S) = {v}. 

CONVERSE 

Suppose   v  0

prW  then  by  above  theorem  there  is  a   

Γpr – set  S  of  G  not  containing  v  and  a  vertex  w  of  

S  such  that  pprn(w,S)  contains  at  least  two  vertices  

and  one  of  them  is  v.  This  contradicts  our  

assumption,  and  hence  v  
prW −  .  

EXAMPLE  4.12 

Consider  the  cycle  C5  with  vertices  1,2,3,4,5.  Note  

that  the  vertex  set  V(C5)  it  self  is  a  perfect  

dominating  set.  Also  if  we  remove  any  vertex  i  

from  the  graph  the  remaining  set  is  not  a  perfect  

dominating  set.  There  fore  V(C5)  is  a  minimal  
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perfect  dominating  set  of  the  graph  C5.  In  fact  

Γpr(C5) = 5. 

    If  we  remove  any  vertex  i  from  C5.  

The  remaining  graph  is  a  path  graph  with  four  

vertices  and  its  big  perfect  dominating  number  is  

2.  There  fore  Γpr(C5 ‐ i) = 2.  Thus  every  vertex  

belongs  to  
prW −  . 

REMARKS  4.13 

It  may  be  noted  that  a  set  S  is  a  minimal  

dominating  set  if  and  only  if  S – v  is  not  a  

dominating  set  for  every  vertex  v  in  V(G)  if  and  

only  if  no  proper  subset  of  S  is  a  dominating  set. 

    However  for  perfect  domination  the  

situation  is  not  exactly  similar.  That  is  we  cannot  

say  that  if  a  set  S  is  a  minimal  perfect  dominating  
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set  then  no  proper  subset  of  S  is  a  perfect  

dominating  set. 

    For  example  consider  the  cycle  C5  

with  vertex  set  { 1,2,3,4,5 } = V(G).  Then  V(G)  is  a  

minimal  perfect  dominating  set.  However  the  set  S1 

= { 1,2,3 }  which  is  a  proper  subset  of  S  is  also  a  

minimal  perfect  dominating  set  of  C5. 

Next  we prove  the  following  lemma. 

LEMMA  4.14 

If  S1  and  S2  are  minimal  perfect  dominating  sets  of  

G  which  are  disjoint  then  S1  = S2 . 

PROOF: 

Every  vertex  v  of  S1  is  adjacent  to  a  unique  vertex  

v’  of  S2.  Also  every  vertex  v’  of  S2  is  adjacent  to  a  

unique  vertex  u  of  S1.  Since  S1  and  S2  are  perfect  

dominating  sets,  and   v  u  if  and  only  if   
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v’  u’.  There  fore  S1  = S2 .  

THEOREM  4.15 

Let  G  be  a  graph  for  which  pr(G) < Γpr(G).  If  S  is  a  

pr‐set  of  G  and  T  is  a  Γpr‐set  of  G  then  S  T  is  

non  empty. 

PROOF: 

Note  that  S  = T .  If  S  and  T  are  disjoint  then  

since  they  are  minimal  perfect  dominating  sets.  

Their  cardinality  will  be  same  if  they  are  disjoint.  

Hence  the  theorem.  

DEFINITION  4.16 

Let  G  be  a  graph  and  S  be  a  proper  subset  of  

V(G)  then  S  is  said  to  be  a  maximal  perfect  

dominating  set  if  for  every  vertex  v  not  in  S,   

S  {v}  is  not  a  perfect  dominating  set. 
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THEOREM  4.17 

Let  G  be  a  graph  and  S  be  a  proper  subset  of  

V(G)  and  S  is  a  perfect  dominating  set,  then  S  is  a  

maximal  perfect  dominating  set  if  and  only  if  it  

contains  all  pendent  vertices  of  the  graph  G. 

PROOF: 

Suppose  S  is  a  maximal  perfect  dominating  set  and  

suppose  that  there  is  some  pendent  vertex  v  of  G  

such  that  v  does  not  belongs  to  S.  Then  it  is  easily  

verified  that  S  {v}  is  a  perfect  dominating  set.  

Which  is  a  contradiction.  Thus  v  S. 

CONVERSE 

Suppose  S  is  not  a  maximal  perfect  dominating  set.  

Then  there  is  some  vertex  v does  not  belongs  to S  

such  that  S  {v}  is  a  perfect  dominating  set. 

Claim  v  is  a  pendent  vertex  of  G. 
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Proof  of  the  claim:   If  v  is  not  a  pendent  vertex  of  

G,  then  let  w1  and  w2  be  two  neighbours  of  v.  

    If  w1  and  w2  belongs  to   S  then  we     

have  a  contradiction  because  S  is  a  perfect  

dominating  set. 

    When  either  w1  S  or  w2  S.  

Suppose  w1  S  and  w2  does  not  belongs  to  S.  Now   

S  {w2}  is  a  perfect  dominating  set(by  assumption).  

However  v  is  adjacent  to  two  distinct  vertices  w1  

and  w2  of S  {w2}.  This  is  a  contradiction. Thus  v  

must  be  a  pendent  vertex  of  G. 

    Thus  we  have  proved  that  if  S  is  not  

maximal  perfect  dominating  set  then  there  is  a  

pendent  vertex  out  side  of  S.   
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REMARK  4.18 

It  is  usual  to  expect  that  a  minimal  set  is  not  a  

maximal  set  and  vice versa. 

    However  this  does  not  happen  in  the  

case  of  perfect  domination. 

 

EXAMPLE  4.19 

Consider  the  below  graph  G. 

  Fig.2.3: 
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Then  the  set  S = { 4,5,6 }  is  a  maximal  perfect  

dominating  set,  because  it  contains  all  pendent  

vertices,  and  also  it  is  a  minimal  perfect  

dominating  set. 

 

THEOREM  4.20 

Let  G  be  a  graph  which  has  no  pendent  vertices  

then  every  minimal  perfect  dominating  set  of  G  is  

a  maximal  perfect  dominating  set. 

PROOF: 

A  minimal  perfect  dominating  set  contains  the  set  

of  all  pendent  vertices ( because  it  is  empty )  and  

there  fore  by  above  theorem  it  is  a  maximal  

perfect  dominating  set.  
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Maximum  Packing 

Let  G  be  a  graph  and , u  and  v  be  two  vertices  of  

G.  then  the  distance  between  u  and  v,  denoted  as  

d(u,v),  is  the  length  of  the  shortest  path  in  G  

joining  u  and  v.  If  there  is  no  path  joining  u  and  

v.  We  write  d(u,v) = ∞  and  we  accept  that   

d(u,v) > k,  for  all  positive  integer  k. 

DEFINITION  4.21[51] 

A  subset  S  of  V(G)  is  said  to  be  packing  of  G  if  

d(u,v) > 2,  for  all  distinct  vertices  u  and  v  of  S. 

REMARK  4.22 

It  may  be  easily  verified  that  a  subset  S  of  V(G)  is  

a  packing  if  and  only  if  for  every  vertex  v  V(G),  

N[v]  S  is  either  empty   or  a  singleton  set. 
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EXAMPLE  4.23 

Consider  the  path  graph  G = P4  with  vertices  

1,2,3,4.  Then  S = {1,4}  is  a  packing  of  G.  It  may  be  

noted  that  no  set  with  cardinality  higer  then  2  is  a  

packing  of  G. 

DEFINITION  4.24  

A  packing  with  largest  cardinality  is  called  a  

maximum  packing  of  G.  A  cadinality  of  such  a  set  

is  denoted  as  ρ(G). 

     It  may  be  noted  that  a  subset  S  

of  V(G)  is  a  packing  if  and  only  if  for  any  two  

distinct  vertices  u  and  v  of  S,  N[u]  N[v] =  . 

     We  now  consider  a  operation  of  

removing  a  vertex  from  the  graph  and  its  effect  on  

the  number  ρ .  it  may  be  noted  that  if  v  V(G)  
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and  a  and  b  are  distinct  vertices  of  G – v ,  then  

d(a,b)  in  G – v    d(a,b)  in  G. 

EXAMPLE  4.25 

(I)  Consider  the  following  graph  G. 

Fig.2.4: 

     

   

 

 

The  set  S = {4,5}  is  a  maximum  packing  of  this  

graph  G.  Thus  ρ(G) = 2.  Let  v = 1  then  G – v is 

Fig.2.5: 
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In  this  graph  T = {3,5,6}  is  a  maximum  packing  and  

thus  ρ(G‐v) > ρ(G).  That  is  3 > 2. 

(II) Consider  the  cycle  graph  G = C6  with  vertices  

1,2,3,4,5,6.  Then  the  set  {1,4}  is  a  maximum  

packing  of  G.  There  fore  ρ(G) = 2.  Now  

consider  the  graph  G – v ,  where  v = 6  then  

G – v  is  the  path  graph  with  vertices  

1,2,3,4,5.  Here  also  the  set  {1,4}  is  a  

maximum  packing  in  G – v .  there  fore   

ρ(G‐v)=2.  There  fore  ρ(G‐v)= ρ(G).  That  is 

2=2. 

(III)  Consider  the  cycle G = C5  with  vertices  1,2,3,4,5.  

In  this  graph  distance  between  any  two  

vertices  is  less  than  or  equal  to  2.  Thus 

ρ(G)=1.  Now  let  v = 5  then  G ‐ v  is  the  path  

graph  P4  with  vertices  1,2,3,4.  Note  that  the  
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set  {1,4}  is  maximum  packing  of  P4.  Thus  

ρ(G‐v) > ρ(G).  that  is  2 >1. 

(IV)  Consider  the  path  graph G = P4  with  vertices  

1,2,3,4.  Then  ρ(G) = 2.  If  we  remove  any  end  

vertex  say  v = 1  then  the  resulting  graph  is  

P3  and  ρ(P3) = 1.  There  fore  ρ(G‐v) < ρ(G).  

That  is  1 < 2. 

(V) Consider  the  path  graph G = P7  with  vertices  

1,2,3,4,5,6,7.  Then  ρ(G) = 3.  If  we  remove  

any  end  vertex  say  v = 7, then  the  resulting  

graph  is  P6  and  ρ(P6) = 2.  There  fore  ρ(G‐v) < 

ρ(G).  That  is  2 < 3 Consider  the  path  graph G 

= P4  with  vertices  1,2,3,4.  Then  ρ(G) = 2.  If  

we  remove  any  end  vertex  say  v = 1  then  

the  resulting  graph  is  P3  and  ρ(P3) = 1.  There  

fore  ρ(G‐v) < ρ(G).  That  is  1 < 2. 
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Notation:  Let  k  1  then   

Nk(v) = { w  V(G)  1  d(v,w) k }. 

THEOREM  4.26 

Let  G  be  a  graph  and  v  V(G)  then  the  following  

statements  are  equivalent. 

(I)  ρ(G‐v) < ρ(G).   

(II)  There  is  a  maximum  packing  S  in  G – v such  

that  N2(v)  S = . 

(III)   Every  maximum  packing  T  contains  v  of  G  and  

T – v  is  a  maximum  packing  in  G – v . 

PROOF: 

(I)  Implies  (II). 

Let  S1  be  a  maximum  packing  of  G.  If  v  does  not  

belongs  to  S1  then  s1  is  a   packing  of   

G – v  also  and  hence  ρ(G)  ρ(G‐v).  Which  is  a  

contradiction  to  our  assumption.  Thus  v  must  
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belongs  to  S1.  Since  S1  is  a  packing  in  G,  d(v,x) > 2  

for  all  x  in  S1  with  x  v.  Now  let  S = S1 – {v}  then  

S  is  a  maximum  packing  in  G – v  and  since   

d(v,x) > 2  for  all  x  in  S,  and  N2(v)  S = . 

(II)  Implies  (I). 

Let  S  be  a  maximum  packing  in  G – v  such  that 

N2(v)  S = .  Let  S1 = S  {v}  then  S1  is  a  packing  in  

G  with  S1  > S .  There  fore  ρ(G) > ρ(G‐v).   

(I) Implies  (III) 

Suppose  there  is  a  maximum  packing  T  in  G  such  

that  v  does  not  belongs  to  T  then  T  is  a  packing  

in  G – v .  there  fore  ρ(G‐v)  ρ(G).  which  contradicts  

(I).  There  fore  every  maximum  packing  T  of  G  

contains  v.  Since  T  is  a  packing  in  G,  T – v  is  also  

a  packing  in  G,  and  hence  a  packing  in  G – v .Since  



109      

 

ρ(G‐v) < ρ(G),  T – v  must  be  a  maximum  packing  in  

G – v. 

(III)  Implies  (I) 

Let  T  be  a  maximum  packing  in  G  then  v  T  and  

T – v is  a  maximum  packing  of  G – v.  There  fore  

ρ(G‐v) < ρ(G).  

 

EXAMPLE  4.27 

Consider  the  Peterson  graph  G  with   

V(G) = {1,2,3,4,5,6,7,8,9,10}.  It  may  be  noted  that  

the  distance  between  any  two  non‐adjacent  

vertices  is  2.  There  fore  a  set  with  at  least  two  

element  cannot  be  a  packing.  Thus  the  packing  

number  of  this  graph  is  1. 

    Now  consider  the  graph  obtain  by  

removing  vertex  1. 
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Fig.2.6: 

          

 

   

 

  

 

  

 ρ(G) = 1. ρ(G ‐ 1) = 3. 

 It  may  observed  that  this  graph  has  a  

maximum  packing  consisting  of  three  vertices  

namely  S = {2,5,6}.  Thus  ρ(G ‐ 1) = 3.  Thus  

maximum  packing  number  is  increases  

whenever  any  vertex  is  removed  from  the  

graph. 
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        Symbols 
  

Chapter-2 

 

 Cn  Cycle  graph  with  n  vertices. 

         G – v        The  sub graph  obtain  by  removing  the  

                          vertex  v  and  all  edges  incident  to  v. 

 Pn  Path  graph  with  n  vertices. 

 Prt(v,S) Total  Private  neighbourhood  of  v  with   

   respect   to  a  set  S. 

 V(G)  Set  of  all  vertices  in  G. 

 Wn  Wheel  graph  with  n  vertices. 

            

i
tV            { v  V(G) / G – v  has an  isolated  vertex }. 

        tV +
           { v  V(G) / t (G – v) > t (G) }.  

        tV −
           { v  V(G) / t (G – v) < t (G)  }.  

        
0
tV            { v  V(G) / t (G – v) = t (G)  }.  
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        tW
+           { v  V(G) / v ∉

i
tV and  Γt( G – v ) > Γt(G) }. 

        tW
−           { v  V(G) / v ∉

i
tV and  Γt( G – v ) < Γt(G) }. 

         0
tW           { v  V(G) / v ∉

i
tV and  Γt( G – v ) = Γt(G) }. 

         S             Cardinality  of  a  set  S. 

         t (G)        Total  domination  number  of  a  graph  G. 

         t – set     Minimum  totally  dominating  set  in  a   

                          graph. 

         Γt‐set        Minimum  totally  dominating  set  with                   

                          maximum  cardinality.   
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Chapter-3 

 

i –set          Maximum  independent  set  with  lowest  

                    cardinality. 

i(G)            The  independent  domination  number  of                   
the  graph  G. 

I −      { v  V(G) / 0(G – v) < 0(G) }. 

0I              { v  V(G) / 0(G – v) = 0(G) }. 

N(v)       The set  of vertices adjacent to the vertex        

v. 

S – v  The  set  obtain  by  removing  the  element     
v       from  S. 

(G) The  minimum  degree  of  the  graph  G. 

tV +
    { v  V(G) / i( G – v ) > i(G) }. 

tV −
    { v  V(G) / i( G – v ) < i(G) }. 

0
tV     { v  V(G) / i( G – v ) = i(G) }. 
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crV
+       { v  V(G) / 0(G ‐ v) > 0(G) }. 

crV
−         { v  V(G) / 0(G ‐ v) < 0(G) }. 

0
crV       { v  V(G) / 0(G ‐ v) = 0(G) }. 

crW
+

     { v  V(G) / Γcr( G – v ) > Γcr (G) }. 

crW
−

     { v  V(G) / Γcr( G – v ) < Γcr (G) }. 

0
crW      { v  V(G) / Γcr( G – v ) = Γcr (G) }. 

         (G)             Domination  number  of  a  graph  G. 

         cr – set       Minimum  vertex  covering  set  in  a   

                             graph. 

         cr(G)            Vertex  covering  number  of  a  graph  G.       

         Γcr‐set          Minimum   vertex  covering  set  with                   

                              maximum  cardinality.   

         Γcr(G)            Big  vertex  covering  number  of  a  graph  

                              G. 
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        Γ(G)             Upper  domination  number  of  a  G.          

        0(G)            Vertex  covering  number  of  a  graph  G. 

        0(G)            Independence  number  of  a  graph  G. 

 

Chapter-4 

  

 d(u,v)  Distance  between  u  and  v  in  a  graph. 

 N[v]   N(v)  {v}.  

 Nk(v)  { w  V(G)  1  d(u,w)  k }. 

pprn(v,S) { w  V(G) / w  does not belongs to S and      
n[w]  S = {v} }  {v}.   

prV
+      { v  V(G) / pr(G ‐ v) > pr(G) }. 

prV
−

     { v  V(G) / pr(G ‐ v) < pr(G) }. 

0
prV      { v  V(G) / pr(G ‐ v) = pr(G) }. 

prW −      { v  V(G) / Γpr(G – v )  Γpr(G) }. 

0

prW      { v  V(G) / Γpr(G – v )  Γpr(G) }. 
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pr‐set Minimum  perfect  dominating  set  of  a    

graph  G. 

pr(G) Perfect  domination  number  of  a     

graph  G. 

Γpr‐set   Minimum  perfect  dominating  set  with  

highest  cardinality. 

Γpr(G) Big  perfect  domination  number  of  a  

graph  G. 

         ρ(G)    The  size  of  a  maximum  packing.  

 =  The  packing  number  of  G. 
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