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Graph Theory is a branch of Mathematics which has become quite rich and 

interesting for several reasons. In last three decades hundreds of research article have 

been published in Graph Theory. There are several areas of Graph Theory which have 

received good attention from mathematicians. Some of these areas are Coloring of 

Graphs, Matching Theory, Domination Theory, Labeling of Graphs and areas related to 

Algebraic Graph Theory. 

 

 We found that the Theory of Domination in Graphs deserves further attention. 

Thus, we explode this area for our research work. 

 

 The present dissertation is a study of some variants of domination in graphs from 

a particular point of view. In fact we consider the numbers associated with these variants. 

More explicitly the study is about the change in these numbers when a vertex is removed 

from the graph. To do this we consider vertices having different effect when they are 

removed. Our purpose is also to characterize these vertices using so called “Minimum 

Sets”. 

 

 The dissertation consists of five chapters incorporating the aspects describe 

above. 

 Now we give brief description of individual chapters of the dissertation. 

 

. 

Chapter-0: Introduction. 

 

 This chapter provides an introduction to domination and its variants. Some 

fundamental results regarding domination and its variants have been given in this chapter. 

Some historical background of domination has also been given in this chapter. 

 The mathematical study of Domination Theory in graphs started around 1960. Its 

roots go back to 1862 when C.F. De Jaenisch studied the problem of determining the 
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minimum number of queens necessary to cover an n × n chess board in such way that 

every square is attacked by one of the queens. 

 Domination Theory studied to solve basically three types of problem which are 

described as follows 

 

(1) Covering- what is the minimum number of chess pieces of a given type which 

are necessary to cover/attack/dominate every square of an n × n board?. This 

is an example of the problem of finding a dominating set of minimum 

cardinality. 

 

(2) Independent Covering- what is the minimum number of mutually non 

attacking chess pieces of a given type which are necessary to dominate every 

square of  n × n  board?. This is an example of the problem of finding a 

minimum cardinality of independent dominating set. 

 

(3) Independence Number- what is the maximum number of chess pieces of a 

given type which can be placed on an n × n chess board in such a way that no 

two of them attack/dominate each other?. This is an example of the problem 

of finding the maximum cardinality of an independent set. When the chess 

piece is the queen, this problems  known as the N-queen problem. It is known 

that for every positive integer n ≥ 4, it is possible to place n non attacking 

(independent) queen on an n × n board. 

 

For over a hundred years people have studied ways of doing this. 

These problems were studied in detail by two brothers A. M. Yaglom and  

I. M. Yaglom around 1964. 

They have derived solutions of some of these kinds of problems for rooks, knights, 

kings and bishops. 
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C. Berge wrote a book on Graph Theory in which he defined the concept of the 

domination number in 1958. 

He called this number the coefficient of external stability. Actually the names 

“Dominating Set” and “ Domination Number ” published in 1962. He used the 

notation d(G) for the domination number of  a graph. 

The notation γ(G) was first used by E. J. Cockayne and S. T. Hedetniemi for the 

domination number of a graph which subsequently  became the accepted notation. 

We also give a brief description of the notations to be used in this   

dissertation. 

 Some conventions will be declared in individual chapter. 

 

Chapter-1: Extended Total Domination. 

 

 Chapter-1 is about extended total domination in graphs. We define the concept of 

extended total domination and extended total domination number for any graph. We 

characterize those vertices whose removal increases, decreases of does not change the 

extended total domination number of a given graph. As consequence we prove that if 

there is a vertex whose removal increases the extended total domination number then 

there are at least two vertices such that removal of each one of them does not change the 

extended total domination number. 

 

Chapter-2: Independent Domination and Vertex Covering. 

 

 Chapter-2 contains the concepts of independent domination and vertex covering 

of a graph. 

 

 First we have consider independent domination and characterized those vertices 

whose removal increases or decreases the independent domination number of a graph. It 

may be noted that every maximal independent dominating set is an independent set and 

vice-versa. 
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 We have also considered vertex covering sets and vertex covering number of the 

graph. We prove that the vertex covering number of graph never increases when a vertex 

is removed from the graph. In particular we have proved that if a graph has at least one 

edge then it has vertices whose removal decreases the vertex covering number of the 

graph. Also we have proved that if a graph is vertex transitive and have at least one edge 

then removal of any vertex decreases the vertex covering number. Moreover we prove 

that if a graph is vertex transitive then the intersection of all minimum vertex covering 

sets is empty. As a consequence we prove that a vertex transitive graph with even number 

of vertices is bipartite if and only if it has exactly two minimum vertex covering sets.  

 

Chapter-3: Total k – Domination and k - touple Domination, k-dependent k-

dominating set. 

 

 In chapter-3, we consider total k-domination, k-tuple domination and k-dependent 

k-domination. Here also we define this concept and characterize those vertices whose 

removal increases or decreases the total k-domination number and k-touple domination 

number and k-dependent k-domination number. 

  

Chapter-4: Perfect Domination. 

 In chapter-4, we consider the perfect domination and prove similar results. 
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DOMINATION 

 

Here we give an introduction of basic concepts domination and total domination. 

Diagrams have been provided whenever they are required. Proofs have been given and 

omitted. This chapter also provides some notations and conventions.  

 

  Let G be a graph and S be a subset of the vertex set V(G)  of G. 

 

 

Definition-0.1 Dominating set:[44] 

A subset S of V(G) is said to be dominating set if for every vertex v in V(G)-S, 

there is a vertex u in S such that u is adjacent to v.  

That is a vertex v of G is in S or is adjacent to some vertex of S.  

 

Figure-0.1 

 For instance the vertex set {b, g} is a dominating set in this Graph of Figure-0.1 

The set {a, b ,c ,d , f} is a dominating set of the graph G.  

For a graph G, G-{v} denote the graph obtain by removing vertex v and all edges 

incident to v. 
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Definition- 0.2: Minimal Dominating Set.[ 44 ] 

 A dominating set S of the graph G is said to be a minimal dominating set if for 

every vertex v in S, S-{v} is not a dominating set. That is no proper subset of S is a 

dominating set. 

  For example, in graph of Figure -0.1 {b, e}and{a, c, d, f} are  minimal dominating sets.  

Every dominating set contains at least one minimal dominating set. 

 

Definition -0.3: Minimum Dominating Set.[ 44] 

 A dominating set with least number of vertices is called minimum dominating set. 

It is denoted as γ set of the graph G.  

 

Definition -0.4: Domination Number.[ 44] 

 The number of vertices in a minimum dominating set is called domination number 

of the graph G. It is denoted by γ(G). 

          

Theorem -0.5:[44]    A dominating set S of a graph G is a minimal dominating set of 

G if and only if every vertex v in S satisfies at least one of the following two 

conditions.      

(1) There exists a vertex w in V(G)-S such that N(w) ∩ S={v}                 

(2) v is adjacent to no vertex of S.                                                              

Proof: 

 First observe that if each vertex  v in S has at least one of the conditions (1) and 

(2), then S-{v} is not a dominating set of G. Consequently, S is a minimal dominating set 

of G.    

 

Conversely, assume that S is a minimal dominating set of G. Then certainly for 

each vertex v ∈ S, then set S-{v} not a dominating set of G. Hence there is a vertex w is 

no adjacent to any vertex of  S-{v}.  
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If w = v, then v is adjacent to no vertex of S, suppose then that w ≠ v. Since S is a 

dominating set of G and w  ∉ S, the vertex w is at least one vertex of S. However, w is 

adjacent to no vertex of S-{v}.Consequently N(w) ∩ S={v}. █  

 

 

Theorem- 0.6: [44]Every graph G without isolated vertices contains a minimum 

dominating set S such that for every vertex v  of   S, there exists a vertex w of  

  V(G) – S such that N(w) ∩ S ={v}.█ 

 

 

Examples-0.7: Now we Consider the following examples:  

 

(1) Cycle Graph C5 with vertices v1, v2, v3, v4, v5 :   

 

 

 

 

 

 

Figure-0.2 

 

In this graph set { v1, v3} is minimal and minimum dominating set. Then γ(C5) =2. 
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(2) Consider the graph G = Petersen Graph :  

 

 

 

 

Figure-0.3 

 

In this graph set {v2, v5 , v8} is minimal and minimum dominating set. Then γ(G) =3. 

 

(3) P5  : The path with five vertices v1, v2, v3, v4, v5: 

 

 

 

 

 

Figure-0.4 

 

In this graph set {v2,v4 } is minimal and minimum dominating set. Then γ(G) =2. 
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(4) Stra Graph K1,8  with nine vertices1,2,3,4,5,6,7,8,9: 

 

 

 

 

Figure-0.5 

 

 In this graph {9} is minimum dominating set and γ(G) = 1. 

 

(5) Wheel Graph with nine vertices1, 2 ,3, 4, 5, 6,7, 8, 9: 

 

 

 

Figure-0.6 
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 In this graph {9} is minimum dominating  and γ(G) = 1. 

 

(6) Complete Graph with K5 vertices 1,2,3,4,5: 

 

 
 

Figure-0.7 

 In this graph every singleton set is minimum dominating set and γ(K5) = 1. 

 

(7) Hyper Cube Graph with eight vertices v1, v2,….. v8 : 

 

  

 

 

Figure-0.8 

 

 In this graph {v1, v7}is minimal and minimum dominating set and γ(G) = 2. 
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(8) Consider the Path Pn with n vertices. 

Let Pn be a path with n vertices. It may be proved that the domination number of 

Pn is n/3 if n is divisiable by 3. And is [n/3] +1 . 

 

We shall use the following notations. [44]  

 Let G be a graph and V(G) be the vertex set of the graph G. 

V0 = {v ∈∈∈∈ V(G): γ(G-v) = γ(G)}. 

 

V+ = {v ∈∈∈∈ V(G): γ(G-v) > γ(G)}. 

 

V- = {v ∈∈∈∈ V(G): γ G-v) < γ(G)}. 

 

Obviously V(G) = V- U  V+ U V0 

 

Example-0.8: 

(1) 

 

Figure -0.9 

The graph in figure 2.1 with k ≥ 3 has  

V0 = { ui  : 1 ≤ i  ≤ k} U {v} 
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V+ = {u} 

V- = {w} 

 

(2) Consider Star Graph with nine vertices: (see Figure-0.5) 

In this graph 

     V+ = {9} 

              V0= {1,2,3,4,5,6,7,8 } 

     V- =φ. 

 

     (3) Consider the graph G =Petersen Graph: (see Figure-0.3) 

In this graph 

                                         V0 = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 } 

              V- = φ, 

            V+ = φ .    

        

(4) Consider the graph G = C5 with five vertices v1, v2, v3, v4, v5: 

 (see Figure-0.2) 

In this graph 

      V+ = φ 

      V- = φ 

                                                      V0 = { v1, v2, v3, v4, v5} 

           

Remark -0.9:[44] Note that removing a vertex from the graph G can increase the 

domination number by more than one, but can decrease it by at most one. 

Proof: Let S be a γ set of G. Suppose γ(G-v)   is less than γ (G) – 1. 

                                i.e.     γ (G-v) <   γ(G) – 1 . 

Let S1 be a γ set of G – {v}. So,  | S1 | < γ (G) – 1. So, S1 U {v} is a dominating set in G. 

So γ (G) ≤ | S1 | U {v} = γ (G) – 1. 

 γ (G) ≤ γ (G) – 1. 

This is a contradiction 
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. So,    γ (G-v) =   γ (G) – 1 . █ 

 

Theorem -0.10: [44]A vertex v ∈∈∈∈ V+ if and only if  

(a) v is not an isolate vertex.  

(b) v is in every γ set of G. 

(c) No subset S  ⊆⊆⊆⊆ V(G) – N[v] with cardinality γ(G)  dominates G – {v}. 

Proof: (a) 

  Suppose v is an isolate vertex in G and S is a γ set of G. Then v ∈ S. Then  

S-{v} is a dominating set of G-{v}. 

 

So, 

γ(G-v) ≤ │S-{v}│< | S |= γ(G) 

So, 

γ(G-v) <  γ(G) 

So, 

 v ∈ V- 

This is a contradiction. 

( v ∈ V+ is given in hypothesis.) So, v is not an isolate vertex. 

 

(b)  

 Suppose v ∉ S for some γ set S of G.  So, v ∈ V(G) – S and S ⊆ G –{v}. So, S is 

a dominating set in G – {v}.  

So, 

γ(G-v) ≤ │S│= γ(G) 

So 

,γ(G-v) ≤   γ(G) 

So,     

v ∉ V+ 

This is a contradiction.( v ∈ V+ is given in hypothesis.) 

So, v is in every γ set of G. 
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(c) 

  Suppose (c)  is not true. There is a set S ⊆  V(G) – N[v] such that │S│= γ(G) and 

S dominates G – {v}. 

So, 

 γ(G-v) ≤ │S│= γ(G) 

So,  

v ∉ V+ 

 

This is a contradiction. ( v ∈ V+ is given in hypothesis.) 

 

Now we prove converse. i.e. we want to prove v ∈ V+. 

 

Case -1:  

Suppose γ(G-v)  = γ(G)  

Let S be a minimum dominating set of G – {v} such that │S│= γ(G). If v is not 

adjacent to any vertex of S then S is subset of V(G)-N[v] with │S│= γ(G) and S is a 

dominating set of G-{v} which contradicts (c).  

 

If v is adjacent to some vertex of S then S is a minimum dominating set of G not 

containing v – which contradicts (b).  

Thus, v can not be in V0. 

 

Suppose v ∈ V-. Let S1 be a  γ set of G-{v}. Then |S1| = γ(G) – 1. If v is adjacent 

to any vertex of S1 then S1 is a dominating set of G-{v}. Therefore γ(G)  ≤  |S1| = γ(G) - 

1,which is impossible. So, v is not adjacent to any vertex of S1. Let S= S1U{v}. Then S is 

a minimum dominating set not containing v which contradicts (b).Thus, v can not be in 

V-.Therefore v ∈ V+. █ 
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Definition- 0. 11:[ 44 ] Private Neighborhood of v with respect to S set. i.e. Pn[v,S]  

Let S be a subset of V(G) and v∈ S. Then the private neighborhood of v with 

respect to S set = Pn[v,S] = {w ∈ V(G): N[w] ∩ S = {v}.}  

 

Example-0.12: 

 

 (1) Consider the given graph: 

 

 

Figure -0.10 

 

For the given graph, S is a any subset of G. 

               S = {4,5} 

   Pn[4,S] = {1,2,3} 

Pn[5,S] = {6,7} 
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Theorem -0.13:[ 44 ] A vertex v is in V- if and only if Pn[v,S] = {v} for some γ set S 

containing v in G. 

Proof:  

 We are given v ∈ V- , then γ(G-v)  < γ(G). So, γ(G-v)  = γ(G) – 1.Let S be a  

γ set of G – {v} and │S│ = γ(G) – 1 Now v  ∉  S, let S1 = S U {v}, So,| S1 | =  γ(G) 

 S1 is a γ set of G and v ∈ S1. Note that v can not be adjacent to any vertex of S, So, 

 v ∈ Pn[v,S1] .  

 

 Suppose w ∈ V(G) – S1 and  w is adjacent to only v, then w is not adjacent to 

any vertex of S, i.e. S is not a dominating set in G – {v}. This is a contradiction. This 

implies that either w is not adjacent v or w is adjacent v and some other vertex of S1. i.e. 

w ∉ Pn[v, S1] . So,   Pn[v, S1] = {v}. 

 

Now we prove converse. 

 

 Suppose we have γ set S containing v such that Pn[v,S]  = {v}. Note that  

|S| = γ(G). We prove that S – {v} is a dominating set in G – { v}. Let  

w ∈ V(G– {v})– (S – {v}). We have S is a γ set and w is adjacent to some vertex t of S. 

 

 Case -1:   

 Suppose t = v ,then w is adjacent to v. Since w ∉ Pn[v,S], So w must be 

adjacent to some vertex x of S such that  x ≠ v. So,  x ∈ S – {v} and x is adjacent to w. 

 

Case- 2:  

 Suppose t ≠ v then  t ∈ S – {v} and t is adjacent to  w which is required. So,  

S – {v} is a dominating set in G – {v}. So,    γ(G-v)  < γ(G). So, v ∈ V-              █ 
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Theorem -0.14:[4 ]For any graph G.  

(a)      If v ∈∈∈∈ V+, then for every γ set S of G, v ∈ S and Pn[v,S]  contains at least two 

non-adjacent vertices. 

(b)     If x  ∈∈∈∈ V+  and y  ∈∈∈∈ V-  then x and y are not adjacent. 

(c)      |V0 |  ≥ 2| V+| 

(d)       γ(G) ≠ γ(G-v) for all v ∈∈∈∈ V(G) if and only if V(G) = V -.  

(e)     If v ∈∈∈∈ V-  and v is not an isolated in G, then there exist a   γ  set  S of G Such 

that v ∉∉∉∉  S. 

Proof:  

(a) 

  We know that by Theorem -0.10, each v ∈ V+   is not an isolated vertex and is 

in every γ set S. If Pn[v,S] = {v}.We prove S – {v} U {u} is γ set, where u ∈ N(v). 

 Let t ∈ V(G) – (S - {v} U {u}). If t = v then t is adjacent u. 

  If  t  ≠  v then it has two cases. 

 

Case -1: t is adjacent to v,  

 Then t must be adjacent to some other vertices of S because Pn[v,S]  = {v}. 

Thus, t is adjacent to some vertex of S – {v}. Hence t is adjacent to some vertex of  

S–{v}U {u}. 

 

Case -2: t is not adjacent to v. 

  Then t is adjacent to some vertex of S – {v}. So, t is adjacent to some vertex of 

S – {v} U {u}. So, S – {v} U {u} is a dominating set. So, | S – {v} U {u} | = |S|.  

S – {v} U {u} is a γ set of G. Thus, we have γ set which does not contain v. This is a 

contradiction. So, Pn[v,S]  ≠ {v}. i.e. Pn[v,S]  is contains at least two vertices. 

 

Now we prove these two vertices are non adjacent. 
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 Suppose u1 and u2 are adjacent vertices in Pn[v,S]. If u1 and u2 are adjacent, 

then S– {v}U{u1} or  S – {v} U {u 2} is a  γ set not contain v. This is a contradiction. 

u1 and u2 must be non adjacent.  

 

(b)   

 We have x ∈ V+ and y ∈ V- . By Theorem-0.13 If y ∈ V- there is γ set S 

containing y such that   Pn[y,S] = {y}. Now x ∈V+ .So x is in every γ set of G. Thus   

x ∈  S. Since Pn[y,S]  = {y}.  i.e. y can not be adjacent to any vertex of S. So,  x ∈ V+ 

and y ∈ V-  then x and y are not adjacent. 

 

(c) 

 Let v ∈ V+. There is a γ set S such that v ∈  S and Pn[v,S] contains at least two 

non adjacent vertices u1 and u2. Note that u1  ∉  S, u2 ∉   S. So, u1 and u2 are not belongs 

to S. So, u1 and u2 are not belongs to V+.If u1 ∈ V-, then v and u1 must be non adjacent.  

( by above result-b ) which is not true. So, u1 and u2 are not belongs to V-.  So, 

u1 ,u2  ∈V0. Thus, for every vertex in V+, we get two distinct vertices in V0.So,  

| V0 |   ≥  2| V+ |. 

 

(d) 

 Suppose we have V(G) = V- , then γ(G) ≠ γ(G-v) .  

Now we prove converse part.  

 If γ(G) ≠ γ(G-v) for all v ∈ V(G) then V0 must be empty. So, V+ is also empty 

because   | V0 |  ≥ 2| V+| then all vertices are in V- .So, V(G) = V- .   

    

 

(e)     

 Let S0 be γ set containing v such that Pn[v,S0] ={v}.  Since v is not an isolated 

vertex there is a vertex w ∈ V(G) – S0 such that w is adjacent to  v.  Let  

S = S0 – {v} U {w} then S is a γ set of G which does not contain v, i.e. v ∉ S. █ 
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Result -0.15:[ 44] Let G be a graph for every vertex v ∈∈∈∈ V(G) and γ(G-v)  ≠ γ(G) 

then V(G) = V-. i.e. V0 and V+ are empty set. 

Proof : 

  Suppose V+ is not empty then V0 is also non empty. i.e. then there is a vertex v 

such that γ(G)  =  γ(G-v). This is a contradiction. So, V+ is empty. ……(1) 

 Now if  V0 is non empty then there is vertex w ∈ V0 such that  

γ(G-w)=γ(G).This is a contradiction. So, V0 is also empty. …(2) 

So. By 1 and 2  ,V(G) = V-.█ 

Result-0.16: The following graph which has all vertices are in V0. Thus, it may 

happen that V+ is the empty set. 

We have proved that V+ is empty set for a vertex transitive graph.  
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Fogure-0.11 

   γ -set  = {v 1, v 3,  v 5, v 7,  v 9, v 11,  v 13, v 15,   v 17, v 19 } and  = γ(G) = 10. 

 

 

Corollary-0.17:[44] For a graph G, V(G) = V- if and only if for each vertex v ∈∈∈∈ V(G). 

Pn[v,S]={v} for some γ set S containing v. 

Proof : 

 Let V(G) = V- i.e. v ∈ V-. Then by an earlier Theorem-0.13for every vertex if 

 v ∈ V-  then Pn[v,S] ={v} for some γ set S containing v. 

 

Now we prove converse. 

 

Suppose for every vertex v, let Pn[v,S]={v} for some γ set S containing v. Then  

( by an earlier Theorem-0.13) V=V-. So, v ∈ V- for every vertex v ∈ V(G). So V=V-. So,   

V(G) = V-.█ 

 

Theorem-0.18:[44] If a graph G has a non isolated vertex v such that the                                                                                  

sub graph    induced by N(v) is complete, then  V(G) ≠ V-. 

Proof:      

 Let v be a vertex which is non isolated and N(v) is complete. 

 

 Suppose v  ∈ V-  then there is a γ set S such that  Pn[v,S]={v}.  Let w be a vertex 

adjacent to v, then w ∉  S. Let T be a γ set containing w if v ∈  T, then w ∉ Pn[w,T] 

 ( because of w is adjacent to v, v ∈ T ). If v  ∉ T then either v ∈ Pn[w,T] or  Pn[w,T] =φ. 

So, w ∉ V-. Thus, we have obtained a vertex w ∉  V-. So, V(G) ≠ V- . █ 

 

 Next we consider the concept of total domination which will be used in the next 

chapter. The concept of total domination is stronger than domination. Also the total 

domination number of a graph is, in general, bigger than the domination number. 
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 It will be observed that a graph having an isolated vertex can not have a totally 

dominating set.  

 

 

 

TOTAL DOMINATION  

 

Definition -0.19: Totally Dominating set. [2] 

 A set T ⊂ V(G) is said to be a totally dominating set if for every vertex  

 v ∈ V(G), v is adjacent to some vertex of T. 

 

 Note that a graph with an isolated vertex can not have a totally dominating set and 

we assume that a totally dominating set has at least two vertices. 

 

Definition -0.20: Minimal Totally Dominating set.[2] 

 A totally dominating set S of G is said to be a minimal totally dominating set if  

S-{v} is not a totally dominating set for every vertex v in S. 

 

Definition -0.21 : Minimum Totally Dominating set.[2] 

 A totally dominating set with least number of vertices is called minimum totally 

dominating set. It is called a γT set of graph G. 

 

Definition -0.22:  Total Domination number. [2] 

 The number of vertices in a minimum totally dominating set is called total 

domination number of the graph G and it is denoted by γT(G). 

 

Example-0.23: 

 

(1)  Consider the G =Petersen Graph :(See Figure-0.3)     

For Petersen graph minimum totally dominating set is {v2 , v5 , v8, v10}  
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and γT(G) = 4 

 

 

 

 

(2) Consider the graph G = C9  with nine vertices v1, v2,….v9: 

 For this graph minimum totally dominating set is {v2, v3, v6, v7 , v9} and  

γT(G) = 5. 

 

 

 

Figure-0.12 

 

(3)  Consider the G =Petersen Graph :(See Figure-0.3)     

For Petersen graph minimum totally dominating set is {v2 , v5 , v8, v10}  

and γT(G) = 4 

 

(4) Consider the Wheel Graph with nine vertices 1, 2, 3, 4, 5, 6, 7, 8, 9: 

   (See Figure-0.6)          

For wheel graph minimum totally dominating set is {1, 9} and γT(G) = 2.  

 

(5) Consider the Star Graph with nine vertices 1, 2, 3, 4, 5, 6, 7, 8, 9:   
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(See Figure-0.5)                                                  

For wheel graph minimum totally dominating set is {1, 9} and γT(G) = 2. 

 

 

(6)Consider the Path Graph G = P6 with six vertices v1, v2, v3, v4, v5, v6 : 

 

 

Figure-0.13 

 

For Path graph P6 minimum totally dominating set is {v2, v3, v4, v5 } and  

γT(G) = 4. 

 

(7)    Consider the following graph                           

 

 

Figure-0.14 

For this graph minimum totally dominating set is {2, 3, 5} and γT(G) = 3. 

 

Definition-0.24: VT
0,  VT

+,  VT
-,  VT

i   . 

V0
T

   =  { v ∈∈∈∈ V(G) : γT(G-v) = γT(G) }. 

 

V+
T

  =  { v ∈∈∈∈ V(G) : γT(G-v) > γT(G) }. 
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V-
T =   { v ∈∈∈∈ V (G): γT(G-v) < γT(G) }. 

 

V i
T

 =  { v ∈∈∈∈ V(G) : G – {v} has an isolated vertices}. 

 

 

Example-0.25: 

(1) Consider the graph G = C9 with nine vertices v1, v2, v3, v4, v5, v6  v7, v8, v9 : 

(See Figure-0.11) 

                                               V0
T

  = { v1, v2, v3, v4, v5, v6  v7, v8, v9 } 

VT
+ = φ, 

VT
-  = φ, 

VT
i  = φ. 

 

(2)  Consider the graph G = Petersen Graph :    (See Figure-0.3)    

 

             V0
T

  =  { v1,  v3, v4,  v6  v7, v9 } 

                                            V+
T =  {  v2,  v5,  v8, v10 } 

                                                    V-
T  = φ 

                                                    Vi
T

  =  φ 

 

(3) Consider graph W9  Wheel Graph  with vertices 1, 2, 3, 4, 5, 6, 7, 8, 9: 

( See Figure-0.6 )        

 

        V0
T = {1,2,3,4,5,6,7,8} 

                                            V+
T =  {9}   

                                            V-
T  =  φ 

                                            Vi
T

  =  φ  

 

(4) Consider graph K1,8  Star Graph  with vertices 1, 2, 3, 4, 5, 6, 7, 8, 9: 

( See Figure-0.5) 
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                                      V0
T

  = {1,2,3,4,5,6,7,8} 

                                          V+
T =  φ 

                                          V-
T

  =  φ 

                                          Vi
T =  {9}        

 

 

(5)     Consider Path Graph P6 Graph  with vertices v1,  v2, v3, v4, v5, v6 : 

  (See Figure-0.13)         

 

 V0
T

  = {  v3, v4} 

   V+
T =  φ 

       V-
T

  =  { v1, v6 } 

      Vi
T =  { v2, v5 } 

(6)   Consider the following graph  (See Figure-0.14)              

 

     V0
T

  = {1,3,4,5,7} 

                                                       V+
T=  φ 

                 V-T =  φ 

       Vi
T

  =  {2,5} 

 

(7)  Consider the following graph. 

 

 
 
 

Figure-0.15 
 

γT = {2,3,5}, {2,4,5} ,{2,5,6}, (2,5,7) all vertices are in V0
T. So,  
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V(G) ∈ V0
T. 

 

 

 

 

 

 Definition -0.26: Totally Private Neighborhood.[ 2] 

 Let S ⊂ V(G) and v ∈ S then total private neighborhood of v with respect to S is  

Tpn[v,S] = {w ∈ V(G) : N(w) ∩ S = {v}}. 

 

 

Example-0.27: 

(1) Consider the Cycle Graph G =C9 with nine vertices v1, v2, v3, v4, v5, v6  v7, v8, 

v9 : (See Figure-0.12)     

 For cycle graph minimum totally dominating set is {2, 3, 6, 7, 9}.                                     

                                     Tpn[ 2,T]  = { v3 } 

                                     Tpn[ 3,T]  = { v3 , v4 } 

                                     Tpn[6,T]  = { v5 , v7 } 

                                     Tpn[ 7,T]  =  { v6 } 

                                     Tpn[ 9,T]  = φ 

 

(2) Consider the graph G =   Petersen Graph : (See Figure-0.3) 

For Petersen graph minimum totally dominating set is   { v2 ,v5 ,v8 ,v10 } 

                                     Tpn[ 2,T]    = { v1 , v3 } 

                                     Tpn[ 5,T]    = { v4 , v6} 

                                     Tpn[ 8,T]    = { v7 , v9 } 

                                     Tpn[ 10,T]  = { v2 , v5,  v8  } 

  

(3)  Consider the Wheel Graph G = W9 with nine vertices 1, 2, 3, 4, 5, 6, 7, 8, 9 :    

 (See Figure-0.6)   

For wheel graph minimum totally dominating set is {1, 9}.       
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                                     Tpn[ 1,T]    = {9} 

                                     Tpn[ 9,T]    = {1,3,4,5,6,7}   

 

                                                                           

 

 

(4) Consider Star Graph K1,8 with nine vertices 1, 2, 3, 4, 5, 6, 7, 8, 9 :   

(See Figure-0.5)   

For wheel graph minimum totally dominating set is {1, 9} .                    

                                     Tpn[ 1,T]    = {9} 

                                     Tpn[ 9,T]    = {1,2,3,4,5,6,7,8}    

   

                                                                        

(5) Consider the Path Graph G = P6 with six vertices v1, v2, v3, v4, v5, v6  : 

(See Figure-0.13) 

For Path graph G = P6 , minimum totally dominating set is  { v2, v3, v4, v5 }           

 

                                    Tpn[ 2,T]    = { v1} 

                                    Tpn[ 3,T]    = { v2} 

                                    Tpn[4,T]     =  {v5} 

                                    Tpn[ 5,T]    = { v6} 

 

  (6)     Consider the following graph . (See Figure-0.14) 

For this graph minimum totally dominating set is {2, 3, 5}. 

        

                                     Tpn[ 2,T]    = {1} 

                                     Tpn[ 3,T]    = {2,5} 

                                     Tpn[ 5,T]    = {6,7} 
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Theorem-0.28:[2] A Totally dominating set T of a graph G is a minimal totally       

dominating set of G if and if there exist a vertex w in V(G) such that N(w) ∩ T  = 

{v}.i.e. A Totally dominating set T is minimal totally dominating set if and only if  

for every vertex v in T, Tpn[ v,T ] ≠ φφφφ. 

Proof  :            

First we assume T is a minimal totally dominating set. 

 

To prove: For every vertex v in T there exist a vertex w in V(G) such N(w)∩T = {v}. 

 

 Let v ∈ T. Now we know that T is a minimal totally dominating set. So, T-{v} is 

not a totally dominating set. So, there exist a vertex w ∈ V(G) such that w is not adjacent 

to any vertex of T-{v}.But we have T is totally dominating set in G. So, w is adjacent to 

some vertex of T. So, w is adjacent to only v in T. So, N(w) ∩ T  = {v}. 

 

  Now we prove converse.  

 

 We assume that for every vertex v in T there exist a vertex w in V(G) such that 

N(w) ∩ T  = {v}. 

 

To prove: T is a minimal totally dominating set. 

 

Let v ∈ T, now there exist a vertex w in V(G) which is adjacent to only v in T.So, 

w is not adjacent to any vertex of T-{v}.So T-{v} is not a minimal totally dominating set. 

So, T is a minimal totally dominating set.█   
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Example-0.29: Note that removing a vertex can increase the total domination 

number more than one but will decrease at most one. 

Proof:  

 Wheel Graph with 11 vertices is example for removing a vertex can increase the 

total domination number more than one. 

 

Figure-0.16  

For the wheel graph with eleven vertices γT set  is {1,11} and  γT(G) : 2. Now for the 

graph G –{11} γT set  is {2,3,6,7,9,10} and γT (G-11) : 6. 

Theorem-0.30: [2] If v ∈∈∈∈ V-
T 

 then γT(G-v) = γT(G) – 1. 

Proof : 

 let T be a γT set of G. Suppose γT(G-v)  <  γT(G) – 1. Let T1 be a γT set of  

G-{v}. So,   |  T1 | < γT(G) – 1. 

Option -1:  Suppose v is adjacent to some vertex of T1, then T1 is totally dom 

inating set in G. 

 

So,       γT(G) ≤   |  T1 |  ≤  γT(G-v). 

So, 
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γT(G) ≤   |  T1 |  ≤  γT(G) – 1. 

So,    

γT(G) ≤  γT(G) – 1. 

This is a contradiction. 

Option  2 :  

If v is not an isolated vertex so, v is adjacent to some vertex w of  G – {v}. We 

have T1 is totally dominating set in G – {v}. Let T = T1 U {w} and we want to prove T is 

a totally dominating set in G. For this we have to show that every vertex of G is adjacent 

to some vertex of T = T1 U {w}, where w ∉ T1,   i.e. w is adjacent to v then  T = T1 U {w} 

is totally dominating set in G. 

So, 

  γT(G) ≤ | T |  ≤  γT(G) – 1. 

So, 

  γT(G) ≤  γT(G) – 1. 

This is a contradiction and we have 

 γT(G) <  γT(G) – 1. 

So, 

γT(G) =  γT(G) – 1.█ 

 

Theorem-0.31:[2] A vertex v ∈∈∈∈ V+
T if and only  

(a)  v is not an isolated vertex. 

(b)  v is in every γT set of G.    

(c)  No subset T   ⊆⊆⊆⊆  V(G) – N[v] with cardinality of T = γT (G) can totally   

      dominate G-{v}.           

Proof  :  

First we prove (a) 

 We are given v ∈ V+
T and T is a totally dominating set. So , by definition of 

totally dominating set it has no any isolated vertex. 
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Now we prove (b) 

We prove v is in every γT set. i.e. all minimum totally dominating set contains v. 

  

 

Now we assume v is in every γT set is not true. Therefore some γT set in T such 

that v does not belongs to T. i.e. v ∈ G - T. Let w ∈ G – {v}, and we have T is a totally 

dominating set in G. So, w is adjacent to some vertex of T. So, T is totally dominating set 

in G – {v}. 

So,   

γT(G-v) ≤  | T |  = γT(G). 

So, 

γT(G-v) ≤   γT(G). 

This is a contradiction.     ( because v ∈ VT
+) 

So, v is in every γT set. 

 

 (c)            

 Suppose we have subset T   ⊆ V(G) – N[v] with cardinality of T = γT (G) can 

totally dominate G – {v}.       

   

 Let w ∈  G – {v} and T is a totally dominating set in G. So, w is adjacent to some 

vertex of T. So, T is a totally dominating set in G - {v}.   

    
γT(G-v) ≤  | T | = γT(G). 

 

      γT(G-v) ≤   γT(G). 

   This is a contradiction     (   because v ∈ VT
+) 

 

So, no subset T  ⊆  V(G) – N[v] with cardinality of T = γT (G) can totally  dominate  

G-{v}.   
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    Now, we prove converse . 

 

Case-1: v ∈ V0
T 

  i.e.   γT(G-v) =  γT(G). 

Let T be a minimum totally dominating set in G – {v}.  

 

Case -(a):  

v is adjacent to some vertex of T. i.e. T is a minimum totally dominating set in G 

which does not contain v. So, condition (b) is violated. So, our assumption is wrong. 

 

Case- (b):  

v is not adjacent to any vertex of T. 

 

 i.e.  T  ⊆  V(G) – N[v] and | T | = γT(G-v) =  γT(G). So, | T | =  γT(G) 

So, T is a totally dominating set in G – {v}. This violate condition (c). So, our 

assumption is wrong. Thus, v does not belong to VT
0. So, v  ∈  VT

+.   

 

Case -2 : v ∈ V-
T. 

i.e. γT(G-v) <  γT(G) 

So, 

γT(G-v) =  γT(G) – 1. 

 

Let T be a γT set in G – {v}. Let w ∈ G – {v} which is adjacent to v, i.e. w is 

adjacent v. Let T1 = T ∪ {w} is a γT set in G but T1 does not contains v. So, condition (b) 

is violated. So, our assumption is wrong. So, v ∈ V-
T  

 is not possible. So, v ∈ VT
+. 

 

Now by case 1 and 2 we prove that v ∈ V0
T

 and v ∈ V-
T   is not possible.                              

So, v  ∈ V+
T   █ 
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Theorem-0.32:[2] v ∈∈∈∈ V-
T  if and only if there is a γT set T such that v ∉∉∉∉ T and  

v ∈∈∈∈ Tpn[ w,T ], for some w ∈∈∈∈ T. 

Proof : 

 Suppose v ∈ V-
T.  i.e. γT(G-v) =  γT(G) – 1. 

 

 Let T be a minimum totally dominating set in G – {v}, then obviously T can not 

be a totally dominating set in G. Let w be a vertex not in T which is adjacent to v. 

Let T1 = T ∪ {w}, then v is adjacent to only one vertex w of T1. So, T1 is a γT set of G. 

So, v ∈ Tpn[ w,T1 ]. Suppose z ∈ Tpn[ w,T1] then z ≠ v  implies that z is not adjacent 

any vertex of T. So, z is a vertex of G – {v} which is not adjacent to any vertex of T. This 

contradicts the fact that T is a totally dominating set in G – {v}.Thus, if z ≠ v then 

 z ∉ Tpn[ w,T1 ]. 

 

Now we prove converse. 

 

 Conversely suppose there is a  γT  set S of G such that v ∉ S and v ∈ Tpn[ w, S] 

for some w in S. 

 

 Let T = S – {w} then v is not adjacent to any vertex of T. Also  z ≠ v, then z is not 

adjacent to at least one vertex of S different from w. So, z is adjacent to some vertex of T. 

Thus, S – {w} which is equal to T is a totally dominating set in G – {v}.  

So, 

 γT(G-v) ≤   | S – {w} | =  | T |  <   | S | = γT(G)  

So,  

  γT(G-v) < γT(G) 

So, 
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  v ∈ VT
- .  █ 

 

 

 

 

 Theorem-0.33[2]: If v ∈∈∈∈ V+
T then for every γT  set T, v ∈∈∈∈ T and one of the following 

condition is satisties. 

(1) If T pn[v,T] = {w}, then w ∉∉∉∉ T. 

(2) If w 1,w2 ∈∈∈∈ Tpn[v,T] and both are in T then they are non adjacent. 

Proof :  

(1)  

Let T is γT set of G and v ∈ VT
+ and we have Tpn[v,T] = {w}.We prove w ∉  T. 

  Suppose w ∈ T. 

 

 

Figure-0.17 

 

Let w1 is any vertex is adjacent to w and w1 ∉  T. Let T1 = T – {v} U {w}, but w 

is adjacent w1 .So, all vertices of G are adjacent to some vertex of T1 and  |T1| = |T| = 

γT(G). So, T1 is γT set of G but v ∉ T1.This is a contradiction .So,  w ∉ T. 

 

(2) 

 Let T is a γT set and w1, w2 ∈Tpn[v,T]. w1, w2  ∈T. 

We prove: w1, w2 are non adjacent. 

We assume w1 is adjacent to w2. 

Now, w1 is adjacent to v and w1 is adjacent w2, it is not possible. 
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( By the definition of Tpn[v,T]. ) So, w1 and w2 are in T then they are non adjacent.█ 
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It is clear from the definition of domination that a dominating set exists in any 

graph. However it is not true for total domination. A totally dominating set does not 

exist in a graph having isolated vertices. Moreover when a vertex is removed from the 

graph the resulting graph may have the isolated vertices. Considering this fact it is 

desirable to have the concept which is approximately same as total domination and it 

can be define for any graph. To accomplish this we introduce the concept of so called 

extended total domination. 

 

 In this chapter we introduce the concept of extended total domination and 

relevant concepts. In particular we define minimum extended totally dominating set 

and extended total domination number. This chapter is devoted to characterize those 

vertices whose removal increases, decreases or does not change the extended total 

domination number of a graph. We prove that if the extended total domination 

number changes whenever any vertex is removed then it decreases when any vertex is 

removed.  

 

 We may mention that a totally dominating set is assumed to have at least two 

vertices and all our graphs are simple.  

 

 In this chapter I will denote the set of all isolated vertices of G. 

 

Definition-1.1: Totally Dominating Set.[2] 

 Let G be graph and S be a set of vertices. Then S is said to be a totally 

dominating set if every v in V(G) is adjacent to some vertex of S.   

 We introduced the following definition. 

 

Definition-1.2: Extended Totally Dominating Set.                    

 A set S is said to be a extended totally dominating set if S = S1 U I, where S1 

is totally dominating set in G – I. 
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 Definition-1.3: Minimal Extended Totally Dominating Set.   

 An extended totally dominating set S is said to be minimal extended totally 

dominating set if every v ∈ S then S- {v} is not an extended totally dominating set. 

 

Definition-1.4: Total Private Neighborhood. 

 Let S ⊂ V(G). Then the total private neighborhood of v with respect to S is  

Tpn[v,S] = {w ∈ V(G) : N(w) ∩ S = {v}.}   

 

Definition-1.5: Minimum Extended Totally Dominating Set. 

 An extended totally dominating set with smallest cardinality is said to be 

minimum extended totally dominating set. It is denoted by γTe set of graph the G. 

  

Definition-1.6: Extended Total Domination Number. 

 The number of vertices in a minimum extended totally dominating set is 

called extended total domination number of the graph G. It is denoted by γTe(G). 

  

Example-1.7 We Give an example of graph whose domination number and 

extended total domination number are different.       

 

(1)    

 

 

Figure-1.1 

γ set = {2,3}   and γ(G) = 2 

 γTe = {1,2,3}    and   γTe(G) = 3. 
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(2) 

 

                                             

 

Figure-1.2 

 

γTe set  = {a, c, d} ,     γTe (G)  =3 

γ set = {a, d} γ(G) = 2. 

 

Note: It may be noted that a set S is an extended totally dominating set if and only if 

every vertex v of G is either isolated or adjacent to some vertex of S. 

 

 

We characterizes those vertices whose removal increases, decreases or does 

not change the extended total domination number of the graph. For this purpose we 

will define three types of sets as follows. V+
Te , V

-
Te , and V0

Te . 

 
V+

Te  = {v ∈∈∈∈  V(G): γTe(G-v) > γTe(G)}. 

 

V-
Te   = {v ∈∈∈∈ V(G): γTe(G-v) < γTe(G)}. 

 

V0
Te   = {v ∈∈∈∈ V(G): γTe(G-v) = γTe(G)}. 

 
 

Obviously all the three sets are mutually disjoint and their union is V(G).  
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 First we characterize minimal extended totally dominating sets in the 

following theorem. 

 

Theorem -1.8: An extended totally dominating set S of  graph G is minimal 

extended totally dominating set if and only if   every vertex v  in S satisfies only 

one of the following two conditions. 

(1) Tpn[v,S]  ≠ φφφφ. 

(2)  v is an isolated vertex of G. 

Proof:  

 We are given S is minimal extended totally dominating set of G. Suppose 

 v ∈ S, if v is an isolated vertex then second condition will be satisfied.  

 

           Suppose v is not an isolated vertex. Now S1 = S – I ,( because S = S1U I ), and 

S1 is minimal totally dominating set in G – I. So, S1 – {v} is not a totally dominating 

set in G – I. So, there is at least one vertex w which is not adjacent to any vertex of  

S1 – {v}, where w ∈ G. i.e. suppose w = v, then v is not adjacent to any vertex of  

S1 –{v}. This contradicts fact that S1 is a totally dominating set in G – I. So, w ≠ v. 

 

          We know that S1 is totally dominating set in G – I. So, w is adjacent to some 

vertex of S1 and we also know that w is not adjacent to any vertex of S1 – {v}.So, w is 

adjacent to only v. So, N(w) ∩ S = {v}. 

 

Now we prove converse. 

  Let v ∈ S. If v is an isolated vertex then S –{v}is not an extended totally 

dominating set in G . 

 

           Now let v is not an isolated vertex. So, there is only one vertex w is adjacent to 

only v in S1 and w is not adjacent to any vertex of S1 –{v}.So, S1 –{v} is not a totally 

dominating set in G – I. Hence S-{v} is not an extended totally dominating set of G.█ 
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Lemma -1.9: Suppose v is a vertex of G such that γTe(G-v) < γTe(G). Then  

 γTe(G-v) = γTe(G) -1. 

Proof:  Suppose v ∈ V-
Te . If  v is an isolated vertex of G then v belongs to 

every γTe set of G. So, suppose v is not an isolated in G.  

 

Let S1 be a minimum extended totally dominating set of G-{v}. 

 

 Suppose v is adjacent to some vertex of S1.Then w must be unique because if 

w1 is any other vertex of S1 such that v is adjacent to w1 then T = S1-{w}U{v} is an 

extended totally dominating set of G with |T| < γTe(G) – a contradiction. Thus, w is 

unique. Let S = S1 U {v}.  Then S is a minimum extended totally dominating set of  

G. Therefore γTe(G) = |S| = |S1 + 1| = γTe(G-v) +1.Thus, γTe(G-v) = γTe(G)-1.  

 

 Suppose v is not adjacent to any vertex of S1. Let w be a vertex of G which is 

adjacent to v. Let S = S1U{w}. Then S is a minimum extended totally dominating set 

of G. Thus, γTe(G-v) = γTe(G)-1. █ 

 

 Now we prove necessary and sufficient conditions under which the extended 

total domination number increases when a vertex v is removed. Note that these 

conditions are similar to those for domination.(Theorem– 0.31 ) 

 

Theorem- 1.10: v ∈∈∈∈ V+
Te if and only if the following three conditions are satisfies. 

(1) v is not an isolated vertex of  G. 

(2) v is in every  minimum extended totally dominating set of G. 

(3) There is no set S which satisfies any one of the following two conditions.  

(a)S is a minimum extended totally dominating set of G-{v} with  

|S| ≤  γTe(G) such that N[v] ∩ S is an empty set.  

(b) S is a minimum extended totally dominating set of G-{v} with  

|S| ≤ γTe(G) and there is a neighbor of v in S which is an isolated vertex in  

G-{v}. 
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Proof: (1) 

  We assume v is an isolated vertex of G. Let S be an extended totally 

dominating set in G, then v ∈ S. Let w be any vertex of G –{v}.  

 

If w is an isolated vertex in G-{v} then w is an isolated also in G.( because v 

is an isolated. ). Hence  w ∈  S-{v}. 

 

If w is not an isolated vertex in G-{v} then w is adjacent to some vertex t of S. 

Since v is an isolated vertex and t ≠ v. Thus, w is adjacent to some vertex of S-{v}. 

Thus, S-{v} is an extended totally dominating set in G-{v}. Hence γTe(G-v) < γTe(G) 

. This is a contradiction. 

 

(2)  

Suppose there a γTe set T of G such that v ∉ T. Now we prove that T is an 

extended totally dominating set in G – {v}.Now, T = T1 U I where I is the set of 

isolated vertices of G. Since v ∉ T. Now, we prove that T1 is totally dominating set of 

G- {v}.Let w be any vertex of G – {v} which is not an isolated vertex. Since T is an 

extended totally dominating set of G. So, w is adjacent to some vertex z of T. Since  

v ∉ T, and z ≠ v. So, w is adjacent to z, for some z in T1. Hence T is an extended 

totally dominating set in G – {v}. Thus,  γTe(G-v) ≤  |T| =  γTe(G), a contradiction  

( Because we are given v ∈ V+
Te). So, v must be in every γTe set T of G. 

 

(3) 

Suppose there is a subset S of the graph G-{v} with |S| ≤   γTe(G) and suppose 

S satisfies either (a) or (b). Then  γTe(G-v) ≤  |S| ≤  γTe(G). Thus, v ∉ V+
Te. This is a 

contradiction. Thus, S can not satisfies (a) or (b). 

 

Now we prove converse.  

 

Conversely assume conditions (1), (2)  and (3) hold for the graph G. 
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Suppose v ∈ V0
Te. Let S1 be a minimum extended totally dominating set of  

G-{v}. Then |S1| ≤ γTe(G). If v is not adjacent to any vertex of S1 then N[v] ∩S1= φ 

This is not possible.  

 

 Let w be any vertex of  S1 which is adjacent to v. By 3-(b), w must be non 

isolated in G-{v}. Since S1 is an extended totally dominating set of G-{v}, w must be 

adjacent to some vertex of S1. Thus, S1 is a minimum extended totally dominating set 

of G not containing v which contradicts condition (2).  

 

Suppose v ∈ V-
Te. Let S1 be minimum extended totally dominating set of  

G-{v}. Then |S1| = γTe(G)-1. Suppose v is not adjacent to any vertex of S1. Let w be 

neighbor of v ( which is not in S1). Let S = S1U {w}. Then S is a minimum extended 

totally dominating set of G not containing v – which contradicts (2). 

 

If v is adjacent to some vertex z of S1 then z must be non isolated in G-{v} 

and therefore z be adjacent to some vertex of S1. This is true for any such vertex z of  

S1 which is adjacent to v. 

Thus, S1 is an extended totally dominating set of G with |S1| ≤ γTe(G). This is 

again a contradiction.  

Thus, v does not belongs to V-
Te or V0

Te. Hence v ∈ V+
Te. This complete the 

theorem. █ 

Example-1.11: Consider the path graph G = P5 with vertices v1, v2, v3, v4, v5 : 

(See Figure-0.4) 

Note that γTe(G) = 3, and S = { v2, v3, v4 } is the unique γTe set of G. Also note that 

v3 ∈ V+
Te  and  γTe(G- v3) = 4.  

Consider the graph G-{ v4}.  Note that γTe(G- v4) =3. The sets S1 ={v1, v2, v5} and  

S2 ={ v2, v3, v5} are γTe sets of G-{v4}.  Also note that there is a neighbor of v4 

((namely v5 ) which is an isolated vertex of G-{ v4}.Also note that |S1| =  |S2| = 

γTe(G). 
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Theorem -1.12: Let G be a graph and v be a vertex of G. v ∈∈∈∈ V-
Te if and only if 

one of the following conditions is satisfied. 

(1) v is an isolated vertex of G and v is in every  γTe set. 

(2) There is γTe set S not containing v and a vertex w in S such that  

Tpn[w,S] ={v}. 

Proof:  

Suppose v ∈ V-
Te . If v is an isolated vertex then v is in every γTe set S.  

Suppose v is not an isolated vertex in G. Since v ∈V-
Te, then there is a γTe set 

S of G-{v} with |S| =  γTe(G) – 1.If v is adjacent to some vertex w of S then w must 

be unique. Because if w1 
 is any other vertex of S adjacent to v then ( S-{w1}) ∪ {v} 

is an extended totally dominating set of G with cardinality less than  γTe(G). This is a 

contradiction. Thus, w is unique. Also w is not adjacent to any other vertex of S 

because otherwise S would be an extended totally dominating set in G with 

cardinality less than γTe(G). Let S1 = S  ∪ {v} then S1 is a γTe set of G and Tpn[w,S1] 

contains v.  Since v is not an isolated vertex in G then there is a vertex w in G-{v} 

which is adjacent to v. Note that w can not be an isolated vertex in G-{v}, because  

w ∉ S and S is an extended totally dominating set of G-{v}. Let w 1 be vertex of S 

which is adjacent to w. Let S1=S U {w}, then S1 is a γTe set in G. Since v is not 

adjacent to any vertex of S and v ∈ Tpn[w,S1]. 

 

 Thus, in both the cases we have proved that there is a vertex w in S1 such that 

Tpn[w,S1] contains v. 

 

  Let t be a vertex of G where t ≠ v. If t is an isolated vertex of G-{v}then t can 

not be adjacent to w because w ≠ v. If t is not an isolated in G – {v}then  t is  adjacent 

to some vertex z of S. If t is adjacent w implies that t is adjacent to two distinct 

vertices of S1. i.e. t does not belongs to Tpn[w,S1]. So, Tpn[w,S1] = {v}. 
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Now we prove converse. 
 

Let S be an extended totally dominating set of G such that condition (1) or (2) 

holds. 

If v is an isolated vertex of G then S – {v} is an extended totally dominating 

set of G – {v} and we have v ∈  V-
Te. 

 

If v is not an isolated vertex of G then there is a vertex w in S such that 

Tpn[w,S] = {v}. We prove that S – {w} is an extended totally dominating set of  

G – {v}. 

 

Let x be any vertex of G-{v}.If x is an isolated vertex in G – {v} and also 

isolated in G then x ∈ S and obviously x ∈ S-{v}. 

 

If x is an isolated in G – {v}but not isolated in G then since S is an extended 

totally dominating set in G, x must be adjacent to some vertex z of S. Since 

 x ∉  Tpn[w,S] ,  we may assume that z ≠w, thus x is adjacent to some vertex of  

S-{w}.Hence S-{w} is an extended totally dominating set of G-{v}.This implies that  

v ∈V-
Te.   

 

If  x is not an isolated vertex in G-{v} then x is not an isolated in G also and 

since S is an extended totally dominating set in G, there is a vertex z in S different 

from w which is adjacent to x. Thus, x is adjacent to some vertex of S-{w}.This 

proves that S-{w} is an extended totally dominating set of G-{v}. 

 

 Hence  v ∈V-
Te.    █ 
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Theorem-1.13: Let G be graph and v be a vertex which belongs to V+
Te, then for 

any γTe set S, v ∈∈∈∈ S and Tpn[v,S] contains at least two vertices. 

Proof:  

First we prove that if Tpn[v,S] = {w}then w ∉ S.  

 

Suppose w ∈ S, then w is not adjacent to any other vertex of S. Suppose also 

that w is not adjacent to any vertex outside S, then w is an isolated vertex in G-{v}. 

Now we prove that S1 = S-{v} is an extended totally dominating set in G-  {v}.For 

this let z be any vertex of G – {v}.If z is an isolated in G then z ∈ S-{v}. Suppose z is 

an isolated in G-{v} but is not isolated in G. Since S is an extended totally 

dominating set in G, z is adjacent to some vertex t of S. Since z ∉ Tpn[v,S], we may 

assume that t ≠ v. Thus, z   is adjacent to at least two vertices of S which is a 

contradiction. Therefore this possibility does not arise.  

 

  If z is not an isolated in G-{v} then z is adjacent to some vertex of S different 

from v. Therefore z is adjacent to some vertex of S-{v}. Therefore S1 = S-{v}    is an 

extended totally dominating set in G- {v}. So, γTe(G-v) < γTe(G). So, v  ∈ V-
Te , This 

is a contradiction. So, w must be adjacent to some vertex w1 outside S. Now w1 is 

adjacent to some vertex w11 of S. Now let S1= S-{v}U{w 1}.Then S1 is a γTe set of G 

not containing v.   This contradict the fact that v ∈ V+
Te. Thus, w can not be in S. So, 

w∈V{G}-S. 

 

Now suppose w is an isolated in G – {v} then S1= S-{v}U{w} is an extended 

totally dominating set in G-{v}. So, γTe(G-v) ≤ γTe(G). So, v ∉ V+
Te. This is  a 

contradiction. Thus, w can not be an isolated vertex in G-{v}. So, there is a vertex  

z  ∉ S such that z is adjacent to w. Now, z is adjacent to z1 of S. Let S1= S-{v}U{z} is 

a minimum extended totally dominating set in G not containing v. This contradicts 

the fact that v ∈ V+
Te. Thus, if we assume that Tpn[v,S] = {w} then we have a 

contradiction. Thus, Tpn[v,S] must contain at least two vertices..█ 
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Remark-1.14:  

 The above Theorem 1.13 implies that if v ∈ V+
Te then d(v) ≥ 2. Thus, any 

vertex of degree one is either in V-
Te or  V0

Te.  Of course we know that any vertex of 

degree zero is always in V-
Te.   

  

Example 1.15: It may be noted that if w1 and w2 belongs to Tpn[v,S] and w1 and 

w2  does not belongs to S then w1 and w2 may or may not be adjacent. 

 

                                                   

                  Figure -1.3                                                                      Figure -1.4 

 

In Figure-1.31, the graph has vertices 0,1,2,3,4,5. And 0 ∈ V+
Te T ={0,1}then  

Tpn[0,T] = {4,3}, where 4 and 3 adjacent   

In Figure-1.4,  0 ∈ V+
Te T = {0,2} Tpn[0,T] = {2,5}, where 2 and 5 are  non 

adjacent. 

 

Theorem -1.16: Let G be a graph and v and w are distinct vertices of G such 

that v  ∈∈∈∈ V+
Te and w ∈∈∈∈ V-

Te  then v and w are non adjacent vertices. 

Proof:  

If w is an isolated vertex of G then v and w are non adjacent. 

Suppose w is non isolated vertex of G then by above Theorem-1.12 there is a 

γTe set S and vertex w1 in S such that Tpn[w1,S] = {w}. Now, v ∈ S because  

v  ∈ V+
Te. If v and w are adjacent and v and w1 are  the  same vertices then   it 

implies  that Tpn[v,S]= {w}.which contradicts the statement of above (Theorem-

1.13). 
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If v and w1
 are distinct vertices then w is adjacent to two vertices of  S and one 

of them is v which is implies that w ∉ Tpn[w1,S]. This is a contradiction. 

Therefore v and w must be non adjacent. █ 

  

Theorem-1.17: Let G be a graph then |V0
Te| ≥  2|V+

Te| . 

Proof:  

We will prove that every v ∈ V+
Te   give rise at least two vertices v1 and v2 in 

V0
Te. Let S be a γTe set containing v then (by above Theorem-1.13 ), Tpn[v,S] contains 

at least two vertices w1 and w2. 

 

Case 1 : Suppose w1 and w2 ∈ S. If w1,w2 ∈ V0
Te . Let v1 =   w1 and v2 = w2. 

 Suppose w1 ∉ V0
Te then w1 ∈ V-

Te or w1 ∈ V+
Te. Since w1 and v are adjacent, 

w1  ∉ V-
Te then w1 ∈ V+

Te. Since w1 ∈ V+
Te, Tpn[w1,S] contains a vertex z different 

from v ( by above theorem 1.13 ) so, z ∉ S, again by similar above argument  

z ∉V-
Te. So,  z  ∈ V0

Te. 

 

 Let v1 = z .If w1 ∈ V0
Te then   v1 =   w1.  

If w2  ∈ V+
Te then by similar above arguments there is a vertex z1 not is S such that 

 z 1 ∈ Tpn[w2,S].Let v2 = z1 

 If w2 ∈ V0
Te , then  v2 =  w2.  

 

Case 2 : If w1,w2  ∉ S then  v1 =   w1 and v2 = w2. 

 

Case 3 : Suppose w1 ∈ S and w2 ∉ S if w1 ∈ V0
Te then v1 =   w1 and v2 = w2. 

If w1 ∈ V+
Te then as in case (1) there is a vertex z not in S such that z is adjacent to w1 

and z ∈ V0
Te.Let in this case let  v1 =  z and v2 = w2. 
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       Figure-1.5                                                          Figure-1.6                                                       

 

Case 4 : 

 If w1 ∉ S and w2 ∈ S. The proof of this part is as in above case. So, in all 

cases we get two vertices v1 and v11 in V0
Te corresponding to  vertex v ∈ V+

Te. It can 

be proved if v1 and v2
 are distinct vertices of V+Te . Then the sets {v11, v12} and  

{v 21, v22} are disjoint. So,  |V0
Te|   ≥ 2|V+

Te|.           █ 

 

Corollary-1.18: If G is  graph such that γTe(G-v) ≠   γTe(G) then γTe(G-v) <   

γTe(G) for every v ∈∈∈∈ V(G). 

Proof: 

 Suppose for every vertex v of G,  γTe(G-v) ≠ γTe(G) then v ∈ V+
Te or v ∈ V-

Te. If for some vertex v ∈ V+
Te, then there are two vertices v1 and v2 such that v1 and 

v2 belongs to V0Te. This contradicts the hypothesis of corollary. Hence V(G) = V-
Te. █ 

 

Theorem-1.19: Let G be a graph and v be a   non isolated vertex of G. If for 

every vertex w ∈∈∈∈ N(v) and N(w) is complete then v ∉∉∉∉ V-
Te. 

Proof : 

 Suppose v ∈ V-
Te  then there is a γTe set S not containing v and a vertex w in 

S such that Tpn[w,S] = {v}. Now, w is adjacent to some vertex w1 in S. Since N(w) is 

complete it implies that v is adjacent to w1.This contradicts the fact that  

v ∈  Tpn[w,S]. 

 

Hence v ∉ V-
Te.  █ 
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Independent sets play an important role in Graph Theory and other areas like 

discrete optimization. They appear in matching theory, coloring of graphs and in trees. 

Our aim in this chapter is to consider independent domination and characterize those 

vertices whose removal increases, decreases or does not change independent domination 

number. Further we also characterize those vertices whose removal decreases the 

independent domination number in terms of maximal independent sets with minimum 

cardinality ( i set ).  

 

Further we consider vertex covering sets of graphs. We define the vertex covering 

number of a graph and prove that this number does not increase when a vertex is removed 

from the graph. We prove the characterization for those vertices whose removal reduces 

the vertex covering number of a graph. We further prove that when the  vertex covering 

number decreases the independence number remain same and conversely when the 

independence number decreases the vertex covering number remain same. We also prove 

that if G is a vertex transitive graph then either removal of every vertex reduces the 

vertex covering number or removal of any vertex does not change the vertex   covering 

number. We also characterize vertex transitive graphs which are bipartite.  

 

Definition-2.1: Independent Set. [44] 

A set of vertices in a graph G is said to be an independent set or an internally 

stable set if no two vertices in the set are adjacent. 

 

Definition-2.2: Maximal independent set.[44] 

An independent set S is said to be maximal independent set if S U {v} is not an 

independent set for every vertex v not in S.  

 

Definition-2.3: Independence number. [44] 

The independence number is the, maximum cardinality of an independent set in 

G. It is denoted by β0(G).  
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Definition-2.4: Minimum independent dominating set. [44] 

A set with minimum cardinality among all the maximal independent set of G is 

called minimum independent dominating set of G or just i set of G. 

 

Definition-2.5: Independent domination number. [44] 

The cardinality of a minimum independent dominating set is called independent 

domination number of the graph G and it is denoted by i(G). 

Note: A maximal independent set is a dominating set of G. 

 

Definition 2.6: (Vertex Transitive Graph).[1] 

 Let G be a graph then G is said to be vertex transitive if for every u, v, ∈ V(G) 

there is an automorphism f(G) such that f(u) = v. 

 

 We introduce the following sets. 

V i
0 = { v ∈∈∈∈ V(G) : i(G -v) = i(G) } 

 

V i
+ = { v ∈∈∈∈ V(G) : i(G -v) > i(G) } 

 

V i
-  = { v ∈∈∈∈ V(G) : i(G -v) < i(G) } 

 

 These three sets are mutually disjoint and its union is V(G). 

Note: If S is an independent dominating set of graph G then for  every vertex v in S, 

Pn[v,S] contains v. 

 

Example-2.7: 

(1) Consider the graph G = C5 (See Figure -0.2) 

For this  graph minimum independent dominating set is {V 2, V5} and 

independence domination number is 2. and Vi
0 = {V 1,V2,V3,V4,V5}, V i

+ = φ,        

V i
- =  φ. 
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(2)Consider the graph G = P7 : 

                 

 

 

Figure-2.1 

 

For Pat h Graph P7, minimum independent dominating set is {V2, V4, V6} 

and independence domination number is 3. and Vi
0 = {V 1,V2,V3,V5,V6, 

V7}, V i
+ = φ,   and Vi

- =  { V4}. 

 

(3)  Consider the graph G = Patersen Graph : (See Figure -0.3) 

For Peterson Graph minimum independent dominating set is {V2, V5, V8} 

and independence domination number is 3.  

And Vi
0 = {V 1, V2, V3, V4, V5,V6, V7, V8 ,V9 , V10 }, V i

+ =φ and Vi
- =   φ. 

 

(4)  Consider the Graph G = Hyper Cube Graph :   ( See Figure -0.8 )  

For Hyper Cube Graph minimum independent dominating set is {V1, V6} 

and independence domination number is 2.  

And Vi
+ = φ, Vi

0 =  {V1,V2,V3,V4,V5,V6,V7,V8}, and Vi
- =   φ. 

 

Theorem-2.8: Let G be a graph i(G-v) < i(G) then i(G-v) = i(G) – 1. 

Proof: 

  Suppose i(G-v) < i(G) -1. Let S is a i set of G – {v}. 

Case-1: v is adjacent to some vertex of S. 

Then S is an independent dominating set in G with |S| < i(G). This is 

contradiction. (Because a set with |S| < i(G) is not an independent dominating set of G.) 
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Case-2: v is not adjacent to any vertex of S. 

 

So, S1 = S U {v} is an independent dominating set in G.  

So, |S1| = |S| + 1 ≤ i(G-v)< i(G). So, |S1| < i(G).This is a contradiction.  

( because  i(G-v)< i(G)-1 ). Thus, i(G-v) = i(G)-1.█ 

 

Theorem -2.9: A vertex v ∈∈∈∈ Vi
+ if and only if  

(a) v is not an isolated vertex. 

(b) v is in every i set of G. 

(c) No independent subset S of V(G)– N[v] with |S| = i(G) or i(G) -1 can         

dominates G-{v}. 

Proof:  (a)  

suppose v is an isolated vertex of G. Let S be a i set of G then v ∈ S then  

S – {v} is an independent set in G – {v}.Let w ∈ (G – {v}) – ( S – {v}) ,So w ≠ v.  So,  

w ∉ S. (i.e. G-S), and S is i set of G. So, w must be adjacent to some vertex t of S where 

 t ≠ v because v is an isolated vertex of G. So, t ∈ S – {v}.So, w is adjacent to some 

vertex t of S – {v}. So, S – {v} is an independent dominating set in G – {v}.  

So,    

 i(G-v) ≤ |S – {v}| < |S|. 

So, 

 i(G-v)  < |S| = i(G). 

 

So,     i(G-v) < i(G). 

 

So,     v ∉ Vi
+. 

 

This is a contradiction.  

So, v is not an isolated vertex of G.  
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(b)  

Suppose there is some i set S of G which does not contains v. Now, S is an 

independent dominating set in G – {v}. So,  i(G-v)  ≤ |S| = i(G). So, v ∉ Vi
+. This is a 

contradiction. Thus, v is in every i  set  of G. 

 

(c)   

Suppose there is an  independent subset of V(G) – N[v] with |S|= i(G) or i(G) -1 

can dominates G – {v}. Then i(G-v)  ≤ |S| ≤ i(G). So, v ∉ Vi
+. This is a contradiction. 

Thus, no independent set S ⊆V(G) – N[v] with |S| = i(G) or i(G) -1 can dominates 

 G – {v}. 

 

Now we prove converse. 

Case 1: Suppose v  ∈ Vi
-  

 

 Let S be a i set of G – {v}.Suppose v is adjacent to some vertex w of S in G. Then 

S is an independent dominating set in G such that |S| = i(G-v) < i(G), which is not 

possible. So, v is not adjacent to any vertex of S. Then S ⊆ V(G) – N[v] such that  

 |S| =  i(G) -1 and S  dominates G – {v}. This is a contradiction. So, v ∉ Vi
-. 

 

Case 2:  Suppose v  ∈  Vi
0. 

 

 Let S be a i set of G – {v}. Therefore |S| = i(G). Suppose v is adjacent to some 

vertex w of S. Then S is a i set in G and v  ∉ S. This is contradiction. So, v is not adjacent 

to any vertex of S. Then S ⊆  V(G) -N[v] which is independent and dominates G – {v}. 

This is a contradiction. So,  v ∉ Vi
0. Thus, v ∈ Vi

+.█ 
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We introduce the following definition. 

 

Definition-2.10: External private neighborhood. 

 Let v be a vertex of the graph G and S ⊂ V(G) containing v then external private 

neighborhood of  v with respect to S, 

 i.e. Epex[v, S] = { w ∈∈∈∈  V(G) - S: N(w) ∩ S = {v} }. 

Note:   Epex[v, S] ⊂ Pn[v, S].  

 

Theorem -2.11: The following conditions are equivalent for a graph G and a vertex 

v ∈∈∈∈ V(G)  

(1) v ∈∈∈∈ Vi
-. 

(2) There is a i set S containing v such that Epex[v, S] = φφφφ. 

(3) There is a i set S containing v such that S – {v} is an independent dominating set 

in G – {v}. 

Proof: Now (1) => (2). 

  Let S1 be a i set in G – {v} then |S1| = i(G) – 1. Now v can not be adjacent 

to any vertex of S1 ( because otherwise S would be an independent dominating set in 

G with cardinality less than i(G) ). Let S = S1 U {v}, then obviously S is a i set in G 

and v ∈ S. If w ∈ Epex[v, S] then w is not adjacent to any vertex of  S1. This 

contradicts that S1 is an independent dominating set  G–{v}. Hence Epex[v, S] = φ. So, 

(1) => (2) is proved. 

 

     Now, (2)  => (3). 

          Let S be the given set in statement (2). Suppose S – {v} is not an 

independent dominating set in G – {v}. So, there is a vertex w in (G – {v}) –  

(S – {v}) which is not adjacent to any vertex of S – {v} implies that w ≠ v. Now S is 

an independent dominating set in G. Therefore w is adjacent to v only in S. This is a 

contradiction. So, Epex[v, S] = φ. So, (2) => (3) is proved. 

 

Now,  (3) => (1). 

 It follows that i(G-v) < i(G) implies that  v ∈ Vi
-. So, (3) => (1) is proved. █ 
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Remark – 2.12:  

 From the above Theorem-2.11 it follows that there is an  one –one 

correspondence between the minimum independent set of G containing v and 

minimum independent sets of G-{v} if v  ∈ V-
i. It also follows that there are at least 

as many minimum independent dominating sets of G as that of G-{v}.  

 

Now we consider vertex transitive graphs. We prove the following theorem. 

 

Theorem-2.13: Let G be a vertex transitive graph and v ∈∈∈∈ V(G). If i(G-v) < i(G) 

then i(G-w) < i(G) for all w ∈∈∈∈  V(G). 

Proof:  

We use the statement (2) of Theorem -2.11. Let w be any vertex different from v 

and f be an automorphism of the graph G such that f(v) = w. Since v ∈V-
i then there 

is i set S containing v such that Epex[v,S] = φ. 

 

 Now consider the set f(S) which is a i  set because f is an automorphism of G. 

Since v ∈ S and f(v) = w ∈ f(S). 

 

 Now suppose w1  ∈ Epex[w,f(S)] .Let v1 ∈ V(G) such that f(v1) = w1. Since  

w1 ∉ S, also w1 is adjacent to w implies that v1 is adjacent to v. Since w1 is not 

adjacent to any other vertex of f(S), and  v1 is not adjacent to any other vertex of S 

that is v1 ∈  Epex[v,S]. This is a contradiction.  

 

 Thus, Epex[w,f(S)] = φ. This is equivalent to say that w ∈ V-
i.  

(by Theorem-2.11.)█ 
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Theorem -2.14: For any graph G  

(a) If v ∈∈∈∈ Vi
+ then for every i set S of G, v ∈∈∈∈ S and Epex[v, S] contains at least two    

non adjacent vertices. 

(b) If x ∈∈∈∈ Vi
+ and y ∈∈∈∈ Vi

- then x and y are not adjacent. 

(c) |Vi
0| ≥ 2| Vi

+|. 

(d) i(G) ≠ i(G-v) for all v ∈∈∈∈ V(G) if and only if V = V i
-.  

Proof:     

 (a)   

Let S be a i set of G. Since v ∈ Vi
+ and v ∈ S. If Epex[v, S] = φ then it implies that 

v ∈ Vi
- (by Theorem -2.11). Therefore if w is the only vertex such that w ∈ Epex[v, S], 

then S1 = S – {v} U {w} is a i set not containing v which contradicts the Theorem – 2.9. 

 Suppose any two vertices in the Epex[v, S] are adjacent. Select any two vertices 

say w1 and w2 in the Epex [v, S]. Now let S1 = (S – {v}) U {w 1} then S1 is a i set not 

containing v. This is again contradiction.  

(b)  

There is a i set S is containing y such that S – {y} is an independent dominating 

set in G – {y}. (by Theorem – 2.11). Since x ∈ Vi
+ and  x ∈ S. Since S is an independent 

set. So, x and y are non adjacent. 

 

(c)  

Let   x ∈ Vi
+ and S be a i set containing x (by - a). Therefore vertices x1 and x2 in 

the Epex [v, S] ( which are possibly non adjacent ). Since x and x1 are adjacent and  

x1 ∉ Vi
-. (by –b ).Therefore x1 ∈ V0

i.Similarly x2 ∈ Vi
0. Thus, every vertex  x ∈ Vi

+ gives 

rise  two distinct vertices in Vi
0. It can be verified. If x and x1 are distinct vertices in Vi

+ 

then the sets {x1,x2} { x 1
1,x2

1}are disjoint. Thus, it follows that |Vi
0|  ≥  2| Vi

+|. 

(d)  

Suppose i(G-v) ≠  i(G) for all v ∈ V(G). If some v ∈V i
+ then it implies that  

V i
0 ≠ φ .(by- c).That is there is vertex w such that i(G-w) =  i(G) which contradicts our 

hypothesis. Its converse is obvious.    █ 
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VERTEX COVERING 

 

Definition -2.15: Vertex Covering Set.[44] 

 Let G be a graph. A set S ⊂ V(G) is said to be a vertex covering set of the graph 

G if every edge has at least one end point in S. 

 

Definition -2.16: Minimal Vertex Covering Set.[44] 

 If S is a vertex covering set such that no proper subset of S is a vertex covering set 

then S is called minimal vertex covering set. 

 

Definition-2.17: Minimum Vertex Covering Set.[44] 

 A vertex covering set with minimum cardinality is called minimum vertex 

covering set. It is also called γcr set. 

Note that every minimum vertex covering set is minimal vertex covering set. 

 

Definition -2.18: Vertex Covering Number.[44] 

 The vertex covering number of the graph G is the cardinality of any minimum 

vertex covering set of the graph G. It is denoted by α0(G) or simply α0. 

 

Definition -2.19 : Independent Set.[44] 

 A set S ⊂ V(G) is said to be  independent set if any two distinct vertices of S are 

nonadjacent. 

 We will regard a single tone set as an independent set.  

 

 

Definition -2.20: Maximum independent Set.[44] 

 A independent set with maximum cardinality is called maximum independent set. 
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Definition -2.21: Independence Number.[44] 

 The cardinality of a maximum independent set is called independence number of 

the graph G and it is denoted by β0(G) or simply β0. 

 Now we see that vertex covering number of a graph does not increase when a 

vertex is removed from the graph. 

 

Lemma -2.22: If v ∈∈∈∈ V(G) then  

(1) αααα0(G-v) ≤ αααα0(G). 

(2) If αααα0(G-v) < αααα0(G) then αααα0(G-v) = αααα0(G) – 1. 

Proof : (1)  

 Case- a:  

 Let S be a γcr set in G and v ∈ S. Consider the set S – {v} of  G –{v}. If e = xy is 

an edge of G – {v} then at least one end vertex x or y lies in S. Since e is an edge of  

G – {v}, x ≠ v and y ≠ v. Thus,  the end vertex of e which lies in S actually a vertex of  

S - {v}. Thus, S- {v} is a vertex covering set of G –{v}.Therefore α0(G-v) ≤ α0(G). 

 

Case –b: v ∉ S. 

 Here also by similar argument S is γcr set of G – {v}.Thus, α0(G-v) ≤ α0(G). 

 

(2)    Suppose α0(G-v) < α0(G) – 1. 

Let S be a minimum vertex covering set of G – {v}. 

 Case -1: Suppose v is not adjacent to any vertex of S. 

Let S1 = S U {v}, then S1 is a minimal vertex covering set of the graph G.  

So, 

α0(G) ≤ α0(G –v ) + 1 <  α0(G) – 1 + 1 

So, 

 α0(G)  <  α0(G). 

This is a contradiction. 
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Case -2: Suppose v is adjacent to some vertex of S. 

 Let S1 = S U {v}, then S1 is a  vertex covering set of the graph G.  

So,     

 α0(G) ≤   | S1 | = | S |  + 1 = α0(G –v ) + 1 <  α0(G) – 1 + 1 

So, 

α0(G)  <  α0(G). 

This is a contradiction. 

 So, by above case we have contradiction. Thus, α0(G -v) = α0(G) – 1.█ 

 

Theorem -2.23: Let G be a graph and v ∈∈∈∈ V(G) then  v ∈∈∈∈ V-
cr if and only if  there is 

a γcr set S1 such that v ∈∈∈∈ S1. 

Proof:  

Suppose that v ∈ V-
cr. Let S be a minimum vertex covering set of G-{v} and let 

S1 = S U {v}. Then since α0(G-v) = α0(G) – 1.So, S1 is a minimum vertex covering set of 

the graph G. and v ∈ S1.  

 

Now we prove converse. 

 Let S1 be a minimum vertex covering set of the graph G containing the vertex v. 

Let S = S1 – {v} then |S| < |S1|. We now prove that S is a vertex covering set of the graph 

G – {v}. Let e = xy be an edge of the G-{v} then x ≠ v and y ≠ v. Since S1 is a vertex 

covering set of the graph G so, x ∈ S1 or y ∈ S1. In fact (by above Theorem-2.22), x ∈ S 

or  y ∈ S. Thus, S is a vertex covering set of G – {v}. 

 

So,  

α0(G -v) ≤   | S | < | S1 | =  α0(G) 

So, 

α0(G -v) <    α0(G) 

So, 

  v ∈ V-
cr. █ 
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Corollary -2.24: Let G be a graph and v ∈∈∈∈ V(G) then v ∈∈∈∈ V0
cr if and only if  v does 

not belongs to any minimum vertex covering set of the graph G. █  

 

Corollary -2.25 : Suppose S1, S2, ……Sk are all γcr set of the graph G and v ∈∈∈∈ V0
cr 

then N(v)  is subset of S1∩ S2∩……∩Sk. 

Proof: 

 If N(v) = φ then the result is obvious. 

If w ∈ N(v) then w adjacent to v and since v ∉ Si for any i ( i = 1,2, 3, …..k) 

 w ∈ Si for every i . Hence w ∈ S1∩ S2∩……∩Sk. █ 

 

Corollary -2.26 : Let G be a graph and v ∈∈∈∈ V0
cr  such that v is not an isolated vertex 

in G then S1∩ S2∩……∩Sk  is non empty. █ 

 

Corollary -2.27: The set V0
cr  is an independent set. 

Proof : 

 If u and v belongs to V0cr and if u and v adjacent then either u or v belongs to 

some minimum vertex covering set of the graph. In other words u ∈ V-
cr or v ∈ V-

cr 

 (by Theorem -2.23). This is a contradiction. Hence u and v are non adjacent. █ 

 

δ(G) denote minimum degree of the graph G. 

 

Corollary -2.28: Let G be a graph   then | V-cr | ≥ δ(G). 

Proof :  

If V 0
cr  = φ  then V-

cr  = V(G). Hence the result is true. 

Suppose V0cr  ≠ φ. Let v ∈ V0
cr. If v is an isolated vertex then also the result is true. 

Suppose v is not an isolated vertex then N(v) is a subset of S1∩ S2∩……∩Sk. which 

is a subset of S1U S2U……U Sk. Hence  

δ(G) ≤  | N(v) |  ≤  | S1U S2U……U Sk | = | V-
cr | 

Thus, δ(G) ≤  | V-
cr |. █ 
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Corollary 2.29: If G is any graph then  | V0
cr | ≤  | V(G) | - δ(G). █ 

 

Corollary -2.30: For any graph G  

(1) | V-
cr | ≥ αααα0(G). 

(2)  | V0
cr | ≤  β0(G). 

Proof:  

Note that the union of all minimum vertex covering sets = V-
cr and α0(G) is the 

cardinality of the minimum vertex covering set. It follows that | V-
cr | ≥ α0(G) and 

similarly | V0
cr | ≤ β0(G). █ 

 

● Note that a graph having at least one edge has at least one non empty vertex covering 

set. 

● We make following convention. 

 

The graph with no edges has only one vertex covering set namely the empty set.  

So, vertex covering number of such a graph is zero. 

 

Theorem -2.31: Let G be a graph then v ∈∈∈∈ V0
cr for every vertex v ∈∈∈∈ V(G) if and only 

if the graph is a null graph. 

Proof:  

If G is a null graph then its vertex covering number is zero and it can not decrease 

further when any vertex is removed. Hence every vertex belongs to V0cr. 

 

Conversely suppose there is at least one edge in the graph G. Then it has a non empty 

vertex covering set. Hence any vertex x of this set belongs to V-cr by above Theorem 2.24 

This contradicts the assumption. Thus, the graph has no edges. █ 
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Remark -2.32: 

(1) Note that the compliment of a minimum vertex covering set is a maximum 

independent set. Hence α0(G) +β0(G) = n. 

 

 

(2) Let v be a vertex of the graph G. 

Now α0(G-v) +β0(G-v) = n -1. If v ∈ V-
cr, then α0(G-v) = α0(G) –1, then by above 

equation, 

α0(G) -1 +  β0(G-v) = n-1. 

So, 

 α0 (G)   +β0(G-v) = n. 

So, 

 β0(G-v) = n  -α0 (G) . 

So, 

 β0(G-v) = β0(G) ( because α0(G) +β0(G) = n. 

 

Thus, we conclude that if the vertex covering number decrease (when a 

vertex is removed.) then the independence number of the graph G does not change 

(when a vertex is removed.). 

Similarly if the vertex covering number does not change when a vertex is 

removed then the vertex independent number of G is decrease (when that vertex is 

removed). 

 

Example-2.33: 

(1) Consider the complete graph Kn for n ≥ 2. Its vertex covering number is n-1.     

For any v of Kn , Kn – {v} = K n -1, and its vertex covering number is n -2. Thus, every 

vertex of Kn   belongs to V-cr. 

 

(2) Consider the cycle Cn, n ≥ 3 then every vertex of  Cn  belongs to V-cr . Similarly every 

vertex of the Hyper Qube Graph –Q3 belongs to V-cr. 
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Theorem -2.34: If G is vertex transitive graph with at least one edge then every 

vertex v ∈∈∈∈ V-
cr. 

Proof:  

Let S be a non empty minimum vertex covering set in G and v be a vertex of the 

graph G. If v ∈ S then v ∈ V-
cr by Theorem 2.23. 

 

If v ∉ S then,  let u ∈ S. Let f be an automorphism of the graph G such that 

 f(u) = v (because G is vertex transitive graph). Now consider the set f(S) which is 

minimum vertex covering set of the graph G and it contains f(u) = v that is v ∈ f(S). 

Thus, f(S) is a minimum vertex covering set of G such that v ∈ f(S). So, again by  

Theorem - 2.23 ,  v ∈ V-
cr. Thus, every vertex of the graph G belongs to V-

cr.█  

 

Theorem 2.35: If G is a graph without isolated vertices and if S1 and S2 are disjoint 

vertex covering set of the graph G then, 

(1) G is a bipartite graph. 

(2)S1 and S2 are minimal vertex covering set of the graph G. 

Proof:  

(1)   

Let e = uv be an edge of graph G then either u ∈ S1 and v ∈ S2 or u ∈ S2 and  

v ∈ S1. Thus, every edge joins a vertex of S1 to a vertex of S2 (No edge can join two 

vertices of the same set of S1 or S2). 

 

Moreover if x is any vertex of graph G and if e is an edge whose one end vertex is 

x then x ∈ S1 or x ∈ S2. Thus every vertex of the graph G belongs to either S1 or S2. 

Thus, G is a bipartite graph. 
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(2)   

Now let v be any vertex of S1 and if e is an edge whose end vertex is v then  

S1-{v} does not contain the end vertex v of the edge e. Thus, S1-{v} is not a vertex 

covering set of the graph G. Hence S1 is a minimal vertex covering set of the graph G. 

Similarly S2 is a minimal vertex covering set of the graph G. █ 

 

 

Corollary-2.36: If G is a graph without isolated vertices and if G has an odd number 

of vertices then any two minimum vertex covering set have non empty intersection. 

Proof :  

Suppose S1 and S2 are disjoint minimum vertex covering set of the graph G. Then 

by Theorem-2.35 graph G is a bipartite. Hence |V(G) | = | S1 | + | S2 | .Since 

 | S1 | = | S2 | , |V(G) | is an even number which is not true. Thus, S1 ∩ S2  ≠ ¢ . █ 

 

Definition-2.37: Co-vertex covering set.  

 A set S of vertices is said to be co-vertex covering set if u and v are non 

adjacent then u ∈ S or v ∈ S. 

 

 

 

Figure-2.2 

 

S = {1, 3} is not co-vertex covering set because 2 and 4 are not adjacent and  

2 , 4 ∉ {1,3 }. 

 

If S = {1, 2} is co-vertex covering set because 1 and 3 are not adjacent and  

1 ∈{1, 2}.Similarly 2 and 4 are not adjacent and 2 ∈{1, 2}. 
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Theorem-2.38: If S is a vertex covering set and its compliment has at least two 

vertices and any two of them are not adjacent then S is not a co-vertex covering 

set.█ 

 

Theorem-2.39: S ⊆⊆⊆⊆ V(G) is a vertex covering set and co-vertex covering set of G if 

and only if  S = V(G) or V(G) – S is a single tone set. 

Proof:  

 Suppose S is both vertex and co-vertex covering set. If S = V(G) then the 

condition is satisfies. 

 If S ≠ V(G) and if V(G) – S has at least two vertices then any two of them are 

adjacent or non adjacent. 

 If they are adjacent it implies that S is not a vertex covering set. 

 If they are nonadjacent it implies that S is not a co- vertex covering set. This is a 

contradiction. Hence V(G) – S must be a single tone set.  

Now we prove converse. 

 If S = V(G) then S is both vertex and co-vertex covering set. 

If V(G) – S is a single tone set and u and v are two vertices of the graph G then at least 

one of them must belongs to S. 

 

 Hence S is both vertex and co-vertex covering set of the graph G.█ 

 

Corollary-2.40: If G is a graph and |V(G)|  = n, then there are exactly n + 1 sets 

which are both vertex and co-vertex covering sets. █ 

 

 Suppose G is a graph and δ(G) = k. Let S be a minimum vertex covering set and 

v be a vertex such that d(v) ≥ k and v ∉ S then all the neighbors of v are in S. Thus, S is a 

k-dominating set of the graph G. Therefore the k-domination number of the graph G is 

less than of equal to α0(G). 

 

 

 



Chapter-2: Independent Domination and Vertex Covering 

 68

Definition-2.41: K-perfect dominating set. 

 Let G be a graph and S ⊂ V(G) then S is said to be a k- perfect dominating set if 

for every vertex v not in S, v is adjacent to exactly k vertices of S. 

 The minimum cardinality of a perfect k-dominating set is called perfect  

k-domination number of the graph G. It is denoted by γpk(G). 

 

Theorem-2.42: Let G be a k-regular graph then αααα0(G) = γpk(G). 

Proof: 

  Let S be a minimum vertex covering set of the graph G. If v ∉ S then v is 

adjacent to exactly k vertices of S because d(v) = k and S is vertex covering set. Thus, 

S is a perfect k-dominating set of G .Hence γpk(G) ≤ α0(G). 

 

 Let T be a minimum perfect k-dominating set of the graph G. We prove that T is 

vertex covering set of the graph G. 

 

 Let e = uv be an edge of the graph G. Suppose u ∉ T. Since d(u) = k and T is a 

perfect k-dominating set, u is adjacent to exactly k vertices of T and therefore v must 

be in T. Thus, T is a vertex covering set of the graph G. Therefore  

α0(G)   ≤  γpk(G) .This proves that  α0(G)  =  γpk(G) █ 

 

 

Theorem-2.43: If G is a vertex transitive graph which is not null graph then 

(1) There are at least two distinct minimum vertex covering sets in the graph 

G. 

(2) The intersection of all minimum vertex covering sets of G is empty set. 

Proof:  

(1)   

 Since G is not a null graph there is a proper vertex covering set of the graph G, 

therefore there is a proper subset S of V(G) which is a minimum vertex covering set. 

Now let y ∈ S and x ∉ S. Since G is a vertex transitive graph. So, there is an  
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automorphism f: V(G) → V(G) such that f(y) = x then f(s) is a minimum vertex 

covering set containing f(y) = x.  Note that S ≠ f(S) because x  ∈ f(S) but x ∉ S.  

Thus, S and f(S) are two distinct minimum vertex covering sets of G. 

 

(2)    

 Let S1,S2,S3,…..Sk be all the minimum vertex covering sets of the graph G and 

we assume that Si ≠  Sj , if i ≠ j. 

 Now suppose S1∩S2∩S3∩….∩Sk ≠ φ Let y ∈ S1∩S2∩S3∩….∩Sk. Note      that 

this intersection is a proper subset of Si for every i. 

 Let x ∈ S1 such that x ≠ y. Now since G is vertex transitive then there is an 

automorphism f such that f(y) = x. Now the set  

{S1, S2, S3,…..Sk }    =    {   f(S1), f(S2) f(S3),   …. f(Sk) } 

 

 Now f(y) ∈ f(S1) ∩ f(S2) ∩ f(S3) ∩,   …. ∩f(Sk) 

x  ∈   S1∩S2∩S3∩….∩.Sk but    x  ∉   S1∩S2∩S3∩….∩.Sk . This is a contradiction. 

Hence S1∩S2∩S3∩….∩.Sk =  φ    █ 

 

 

Theorem-2.44: Suppose G is a vertex transitive graph which is not a null graph 

(1) If G has exactly two minimum vertex covering sets then they are disjoint, 

the graph is bipartite graph and the γcr(G) = n/2. (i.e. n is an even number of 

vertices of G.) 

(2) If G is a bipartite graph and if G has n (even)  vertices then G has exactly 

two disjoint minimum vertex covering sets and γcr(G) = n/2. 

Proof :  

(1)       

    Suppose S1 and S2 are the only minimum vertex covering sets of the graph G then S1 

and S2 are disjoint.( by  last theorem-2.43 ). 
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 Now since every edge has one end point in S1 and the other end point in S2 then 

the graph is bipartite. Also by   (Theorem-2.35 )  n must be even. Also note that S1 or S2   

does not contain any isolated vertex.( In fact all vertices are of the graph G have the same 

degree.Since the graph is vertex transitive and therefore regular.) Thus, {S1,S2} is 

partition of V(G) and since |S1| = |S2| . So, γcr(G) = n/2. 

 

(2)        

  Let m = n\2. We will prove that β0(G) = m. First we note that if V1 and V2 is the 

partition of the graph G then |V1| = |V2| = m. Since the graph G is vertex transitive it is  

k-regular for some k≥1. The number of edges incident with vertices of V1 = k|V1| and the 

same edges are incident with vertices of V2 and the number of such edges =k|V2|. Hence 

k|V1| = k|V2|    So, |V1| = |V2| = m  = n\2.The set of vertices of V1 is an independent set. 

Hence β0(G)  ≥ m. Now we prove that any set with m+1 vertices can not be an 

(maximum) independent set. 

 

 Let S be any set with m+1 vertices. S has at least one vertex fromV1 and at least 

one vertex from V2. Let t be the number of vertices in   S which in V1 then m+1-t vertices 

of S are in V2. 

 

 Suppose S is an independent set. Consider the edges which are incident with 

those vertices of S which are in V1. The number of such edges = kt. The other end point 

of these edges are those vertices of V2 which are not in S. There are exactly m-(m+1-t) = 

t-1 such vertices. The number of edges incident with these vertices is k(t -1).Thus, k(t-1) 

≥ kt. i.e. t -1 ≥ t  which is not true. Thus, S can not be an independent set. This implies 

that β0(G)  = m. Hence α0(G) =  m = n\2.  █ 
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 In this chapter we consider the notions of total k–domination, k-tuple 

domination and k-dependent k-domination for graphs.(k ≥2) It may be noted that if a 

graph has a vertex of degree less than k then there does not exist a totally k-dominating 

set in the graph. Similarly if a graph has a vertex of degree less than k -1 then a k-tuple 

dominating set does not exist. In this chapter we consider and characterize those vertices 

whose removal increases or decreases total k-domination number of the graph. We prove 

similar result for k-tuple domination and k-dependent k-domination. 

 

TOTAL k-DOMINATION  

 

 In this section we introduced a totally k-dominating sets. We prove theorems 

similar to those of domination. 

 

Definition-3.1: Totally k-dominating set. 

 Let k be an integer k≥1. Let G be a graph and S ⊂ V(G). The set S is said to be 

totally k-dominating set if for every vertex v ∈ V(G) , v is adjacent to at least k vertices 

of S. 

 Note that every totally k – dominating set is a k-dominating set. However the 

converse is not true. 

Example-3.2: 

 

Figure -3.1 

 Consider the above graph G with vertices 1,2,3,4. Let S = {1,3} if k =2 then S is 

a 2- dominating set but it is not a totally 2 –dominating set. 
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Remark-3.3:  

  Note that if a graph G contains a vertex v with degree less than k then no subset 

of V(G) can be totally k-dominating set. (Although it may be k-dominating set.) 

k-dominating set:  A set S is k-dominating set if for every vertex v ∈ V(G)- S , v is 

adjacent to at least k vertices  of S. i.e.| N(v) ∩ S| ≥ k. 

  

Definition -3.4: Minimal totally k-dominating set. 

 Let S be a totally k-dominating set then S is said to be minimal totally 

 k-dominating set if for every vertex v in S, S-{v}is not a totally k-dominating set. 

 

Definition -3.5: Minimum totally k-dominating set. 

 A totally k-dominating set with minimum cardinality is called a minimum 

totally k- dominating set. It is called a γTk set. 

 

Definition-3.6: Total k- Domination Number. 

 The cardinality of a minimum totally k-dominating set is called total  

k-domination number of the graph G and it is denoted as γTk(G). 

 

 Note that any totally k-dominating set must contain at least k+1 vertices 

therefore total k-domination number of any graph, if it is define is grater than or equal to 

k+1. 

Definition -3.7: Total k- private neighborhood. 

 Let G be a graph and S ⊂ V(G) and v ∈ S then total k-private neighborhood of 

v with respect to the set S. 

PTk[v,S] ={  w ∈ V(G) : w is adjacent to exactly k vertices of S including v.  }  

 

Example -3.8: Consider the cycle C5 with five vertices v1, v2, v3, v4, v5 :  

 (See Figure-0.2) 

 S = { v1, v3, v4}. We consider the cycle C5 with vertices v1, v2, v3, v4, v5. Let  

 v = v1  then PT2[v1, S] = { v2 , v5 }   
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Theorem-3.9: Let G be a graph. k ≥ 1(k is a positive integer.) A totally k-dominating 

set S is minimal if and only if for every vertex v of S, PTk[v,S] ≠ φφφφ. 

Proof:  

 Suppose S is a minimal totally k-dominating set. Let v ∈ S then S-{v} is not a 

totally k-dominating set. Hence there is a vertex w in V(G) which is adjacent to at most 

k-1 vertices of S-{v}. 

  

 If w = v then we have a contradiction because v is adjacent to at least k vertices 

of S. So, w ≠ v. 

 

 Now w is adjacent to at least k vertices of S and is adjacent to at most k-1 

vertices of S-{v}. This means that w is adjacent to exactly k vertices of S including v.  

Hence w ∈ PTk[v,S]. 

 

Now we prove converse. 

 

 Suppose v ∈ S. Let w ∈  PTk[v,S]. Now w is adjacent to exactly k vertices of S 

including v therefore w is adjacent to k-1 vertices of S-{v}. i.e. S-{v} is not a totally k-

dominating set. This implies that S is a minimal totally k-dominating set. █ 

 

Comments-3.10:  

 As we have noted earlier a graph having vertices with degree less than k can not 

have totally k-dominating set. Also it may happen that when a vertex is removed the 

resulting graph may have vertices having degree less than k. 

 

 Let G be a graph. Let Ik denote the set of vertices whose degree is less than k. 
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Notations: We define the following notations. 

V i
Tk : {v ∈∈∈∈ V(G) : G-{v} has vertex of degree less than k in (G-{v})} 

 

V+
Tk : {v ∈∈∈∈ V(G) :  γTk(G-v) > γTk(G).} 

 

V-
Tk : {v ∈∈∈∈ V(G) :  γTk(G-v) < γTk(G).} 

 

V0
Tk : {v ∈∈∈∈ V(G) :  γTk(G-v) = γTk(G).} 

 

 

Theorem -3.11: Let v ∈∈∈∈ V(G) such that d(v) ≥ k and v ∉∉∉∉ Vi
Tk. If v ∈∈∈∈ V-

Tk then 

γTk(G)-k ≤≤≤≤ γTk(G-v) ≤≤≤≤ γTk(G)-1. 

Proof: 

  Let S1 be a minimum totally k-dominating set of G-{v}. Since v  ∈ V-
Tk ,  

| S1 | < γTk(G) and v is adjacent to at most k-1 vertices of S1. Suppose v is not adjacent to 

any vertex of S1. Let z1, z2, …….zk be  k neighbor of  v.  

 

 Let S =  S1 U { z1, z2, …….zk }, then S is a totally k- dominating set in G. 

Therefore γTk(G) ≤ | S | = | S1 | + k = γTk(G-v) + k . Therefore γTk(G) – k ≤   γTk(G-v). 

 

 If v is adjacent to m vertices  say  z1, z2, …….zm (m<k). Let zm+1 , zm+2 , .. zk 

be the vertices adjacent to v and not in S1.  

 

 Let S = S1 U { zm+1, zm+2, …….zk }, then as above S is a totally k- dominating 

set in G and by similar argument γTk(G) – k ≤   γTk(G) –(k-m) ≤  γTk(G-v). 

 Thus in both the cases the inequality holds. █  
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Theorem -3.12: Suppose v ∈∈∈∈V(G), d(v) ≥ k and v ∉∉∉∉V i
Tk then v ∈∈∈∈ V+

Tk if and only if 

the following conditions hold. 

(1) v is contained in every γTk set of G. 

(2) No subset S of V(G) which intersects N[v] in at most k-1 vertices of N[v] and 

with |S| ≤≤≤≤ γTk(G) can be a totally k-dominating set of  G-{v}. 

Proof: 

 (1) 

  Suppose v ∈ V+
Tk. Suppose S0 is a γTk of G such that v ∉ S0 . Let v1 be any 

vertex of G-{v}. Since v ∉V i
Tk , d(v1) ≥ k in G-{v} and hence G also. Thus, v1 is adjacent 

to at least k vertices of S0. Thus, S0 is a totally k – dominating set of G-{v}. Thus,  

γTk(G-v) ≤ |S0| = γTk(G). That is v ∉ V+
Tk. a contradiction. 

 

(2)  

 Suppose there is a set S0 which intersects N[v] in at most k-1 vertices, and 

 |S0| ≤ γTk(G) and S0 is a totally k-dominating set of G-{v}. Then γTk(G-v) ≤ |S0| ≤ γTk(G). 

This is again a contradiction. Therefore condition (2) holds. 

 

Now we prove converse. 

 Suppose v ∈ V0
Tk. Let S be a minimum totally k-dominating set of G-{v}.If v is 

adjacent to at least k vertices of S then S is a minimum totally k-dominating set of G not 

containing v, which contradict (1). 

 

 Suppose v is adjacent to m vertices of S where 0 ≤ m < k. Then S is a set which 

intersects N[v] in at most k -1 vertices, |S| ≤ γTk(G) and S is a totally k-dominating set of 

G-{v} which contradicts (2).  

 

Suppose v ∈ V-
Tk. Then γTk(G) –k ≤ γTk(G-v) ≤ γTk(G) -1. 

 Let S be a minimum totally k-dominating set of G-{v}. If v is adjacent to at 

least k vertices of S then S is a totally k-dominating set of G with |S| < γTk(G). That is  
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γTk(G) < γTk(G) - a  contradiction. So v is adjacent to at most k-1 vertices of S then also S 

is a set which intersects N[v] in at most k-1 vertices and |S|  ≤ γTk(G) is a totally k-

dominating set of G-{v}, which contradicts (2). 

  

 Thus, v can not be in  V-Tk or V0
Tk. Hence v  ∈V+

Tk █ 

 

Next we prove the following theorem. 

Theorem -3.13: Suppose d(v) ≥ k and v ∈∈∈∈ V+
Tk. Then for any γTk set S, v ∈∈∈∈ S and 

PTk[v,S] contains at least two vertices. 

Proof : 

  Let S be any  γTk  set of G. Since v  ∈V+
Tk , v  ∈ S. Since S is a minimum set, 

PTk[v,S] contains at least one vertex.  

 Suppose PTk[v,S]  contains only one vertex say w.   

Claim: w ∉ S. 

Proof of the Claim: Suppose w ∈ S. If w is not adjacent to any vertex out side S then 

d(w) < k in G-{v}which contradicts that v ∉ Vi
Tk. Thus, there is a vertex w1 outside S 

which is adjacent to w.  

 

 Now let S1= S –{v} U {w 1}. Then S1 is a minimum totally k-dominating set of 

G not containing v. which contradicts that v ∈ V+
Tk .  

 

 This proves that w ∉ S. Since d(w) ≥ k, in G-{v},  w is adjacent to some vertex 

w1 which is out side S.  

 Now let S1= S-{v}U{w 1}. Then S1 is a minimum totally k-dominating set of G 

not containing v , which is a contradiction. 

 

 Thus, in any case we get a contradiction. Hence PTk[v,S] contains at least two 

vertices. █ 
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Theorem -3.14: Let v be a vertex of G such that d(v) ≥ k and v∉∉∉∉ Vi
Tk. Then 

 v ∈∈∈∈ V-
Tk if and only if there is a minimum totally k-dominating set S and k vertices 

w1,w2,…wk in S such that PTk[w i,S] = {v} for every i.  

Proof:  

 Suppose v ∈ V-
Tk. Let S1 be a minimum totally k-dominating set of G-{v}.  

 If v is not adjacent to any vertex of S1 then let w1,w2,…wk be k vertices adjacent 

to v. Let S = S1U { w1,w2,…wk } then S is a minimum totally k-dominating set of G. For 

each i v is adjacent to exactly k vertices of S including wi ( other vertices to which v is 

adjacent are w1,w2,…wi-1, wi+1,…wk) Thus, v ∈ PTk[w i,S] for every i. 

 

 Let v1 be a vertex different from v. Since S1 is a totally k-dominating set of  

G-{v}, v 1 is adjacent to at least k-vertices of S1 and no wi is member of S1. Therefore  

v1 ∉ PTk[w i,S]. 

 Hence PTk[w i,S] = {v} for each i. 

 

 To prove converse suppose S is a minimum totally k-dominating set of G and 

w1,w2,…wk are vertices of S such that PTk[w i,S] = {v} for each i. 

 

 Let S1 = S-{w1}. We will prove that S1 is a totally k-dominating set of G-{v}. 

Let z be any vertex of G-{v}.First suppose that z = w1. Since S is a totally k-dominating 

set in G, z = w1 is adjacent to at least k vertices of S1.  

 

 Suppose z ≠ w1. Since z ≠ v, z ∉ PTk[w i,S]. Hence if z is adjacent to w1 in G 

then z must be adjacent to at least k other vertices of S. This means that z is adjacent to at 

least k vertices of S1. If z is not adjacent to w1 then since S is a totally k-dominating set of 

G, z is adjacent to at least k vertices of S1.  

 

 Thus in any case z is adjacent to at least k vertices of S1. This proves that S1 is a 

totally k-dominating set of G-{v}. and hence γTk(G-v) ≤ |S1| < |S| = γTk(G). This means 

that v ∈ V-
Tk . █  
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Corollary -3.15: Suppose v is a vertex in V+Tk and w is a vertex in V-
Tk then v and w 

are non adjacent.  

Proof:  

 There is a minimum totally k-dominating set S and k vertices w1,w2,…wk in S 

such that PTk[w i,S] = {w}for each i. Since v ∈ V+
Tk , v ∈ S. (Theorem -3.3). Note that v ≠ 

wi for any i, because PTk[v,S] contains at least two vertices while PTk[w i,S] contains only 

w. Now if v and w are adjacent then w is adjacent to k+1 vertices of S including w1 

which contradicts the fact that PTk[w1,S] = {w}. Thus, v and w can not be adjacent. █ 

 

K-TUPLE DOMINATION 

 

 The concept of k-tuple domination can be found in [44]. Note that every totally 

k-dominating set is a k-tuple dominating set but converse is not true. We begin with the 

definition of a k-tuple dominating set.  

 

Definition -3.16: k-tuple dominating set.[44] 

   Let G be a graph and k be an integer greater than or equal to two. A subset S of 

V(G) is said to be a k-tuple dominating set if following conditions satisfied.  

(1) If v ∈ S then v is adjacent to at least k-1 vertices of S.  

(2) If v ∉ S then v is adjacent to at least k vertices of S. 

 

Definition -3.17: Minimal k-tuple dominating set. 

 A k-tuple dominating set S of G is said to be a minimal k-tuple dominating set if 

for each vertex v of S, S-{v} is not a k-tuple dominating set. 

 

Definition -3.18:  Minimum k-tuple dominating set. 

 A k-tuple dominating set with minimum cardinality is called minimum k-tuple 

dominating set which also called γku set of G. 
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Definition -3.19:   k-tuple domination number. 

 The cardinality of a minimum k-tuple dominating set is called k-tuple 

domination number of the graph G. It is denoted  by γku(G). 

  

Remark-3.20: Note that any minimum totally k-dominating set is a k-tuple dominating 

set, but converse is not true. This means that γku(G) ≤ γTk(G). 

 

Example -3.21:  Consider the cycle C5 with vertices v1, v2, v3, v4, v5.  Let k=2 then  

2-tuple domination number of C5 is 4 and total 2-domination number is 5. 

(See Figure –0.2)  

 

 Now we define so called k-tuple private neighborhood of a vertex v with respect 

to a set containing it.  

 

Definition -3.22:   k-tuple private neighborhood. 

 

 Let S be a subset of V(G) and v ∈ S. Then the k-tuple private neighborhood of v 

with respect to S. i.e. Pku[v,S] =S1US2US3  

 Where S1 = {w ∈S: w ≠ v and w is adjacent to exactly k-1 vertices of S including v.}, 

S2 = {w ∈S: w = v and w is adjacent to exactly k-1 vertices of S}, 

S3 = {w ∉S:  w is adjacent to exactly k vertices of S including v.} 

 

For example if we consider the cycle graph C5, ( See Figure –0.2 )  

 S = { v1, v2, v3, v4 } , v = v1  then Pku[v1, S]= { v1 ,v5}. 

Note that in the above definition any one of S1, S2, S3 can be an empty set.  

 Also note that every minimum k-tuple dominating set is a minimal k-tuple 

dominating set. 

 

 

 We state the following theorem without proof as it is similar to that of Theorem -3.9  
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Theorem-3.23: A subset S of V(G) is a minimal k-tuple dominating set if and only if 

for each vertex v of S Pku[v,S] ≠≠≠≠ φφφφ. █ 

Now we introduced the following symbols. 

V+
ku = { v ∈∈∈∈ V(G): γku(G-v) > γku(G) }. 

 

V-
ku = { v ∈∈∈∈ V(G): γku(G-v) < γku(G) }. 

 

V0
ku = { v ∈∈∈∈ V(G): γku(G-v) = γku(G) }. 

 

Theorem-3.24: Let v ∈∈∈∈ V(G) such that d(v) ≥ k and v ∉∉∉∉V i
Tk. Then v ∈∈∈∈ V-

ku if and 

only if γku(G) – k ≤≤≤≤ γku(G-v) < γku(G). 

Proof:  

 Suppose v ∈ V-
ku. Let S1 be a minimum k-tuple dominating set of G-{v}. 

Obviously v is adjacent to at most k-1 vertices of S1.  

 If v is adjacent to exactly k-1 vertices of S1 and in this case let S = S1U{v}. 

Then S is a minimum k-tuple dominating set of G and |S| = |S1| + 1. This means that  

γku(G-v) = γku(G) -1.  

 

 If v is adjacent to no vertex of S1 then let w1, w2,….wk be vertices adjacent to v. 

Let S = S1U{ w 1, w2,….wk }, then  S is a  k-tuple dominating set of G. Therefore  

γku(G) ≤ | S | = | S1 | + k = γku(G-v) + k. This proves that γku(G) –k ≤ γku(G-v) < γku(G). 

 

 Suppose v is adjacent to m vertices of S1 say w1, w2,….wm . ( 1≤ m < k). Let 

wm+1 , wm+2 ……wk be vertices adjacent to v and not in S1. Let S = S1U { wm+1 , wm+2 

……wk }. Then S is a k-tuple dominating set of G and | S | = | S1 | + k.  

Therefore  γku(G) ≤  γku(G-v) + k-m < γku(G-v) +k. 

Hence  

  γku(G) –k ≤ γku(G-v) < γku(G). 

This proves the theorem. █ 
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We state the following theorem without proof as it is similar to that of Theorem-3.12 

 

Thoerem-3.25: Let v ∈∈∈∈ V(G) such that d(v) ≥ k and v ∉∉∉∉V i
Tk. Then v ∈∈∈∈ V+

ku if and 

only if each of the following two conditions is satisfied.  

(1) v is contained in every minimum k-tuple dominating set.  

(2) No subset S of V(G-v) which intersects N[v] in at most k-1 vertices and with 

|S| ≤≤≤≤ γku(G) can be a tuple dominating set of G-{v}.█ 

 

Theorem-3.26: Let v ∈∈∈∈ V(G) such that d(v) ≥ k and v ∉∉∉∉ Vi
Tk. If v  ∈∈∈∈ V+

ku and S is a 

minimum k-tuple dominating set then v ∈∈∈∈ S and Pku[v,S] contains at least two 

vertices.  

Proof:  

 By Theorem-3.23, v ∈ S. Since S is a minimal k-tuple dominating set, Pku[v,S] 

is non empty.  

 First suppose that Pku[v,S] consists  only one vertex w. 

 Let w ∈  Pku[v,S]. If w = v then S-{v} is a k-tuple dominating set of G-{v}.This 

means that v ∈ V-
ku and this is a contradiction. If w ≠ v  then there are two cases:  

Case-1:  

 w ∈ S. Then w is adjacent to exactly k-1 vertices including v of S. Since d(w) ≥ 

k, there is a vertex w1 outside S which is adjacent to w. Let S1 = S –{v}U{w 1}, then S1 is 

a minimum k-tuple dominating set of G not containing v. This contradicts the assumption 

that v  ∈ V+
ku.   

 

Case-2:  

 w∉ S. Let S1= S-{v}U{w}, then S1 is a minimum k-tuple dominating set of G 

not containing v ,which is again a contradiction . as v ∈ V+
ku. 

 

 Thus, the assumption that the Pku[v, S] contains only  one vertex leads to a 

contradiction. Therefore it must contain at least two vertices. █ 
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Example-3.27:  Consider the following graph to understand for the Theorem-3.26. 
 
 

 
Figure-3.2 

 
 γ2u = {2,3,4,5} and k =2, So, (G) = 4. ,5 ∈ V+

ku Now for the graph G –{5} 
 
γ2u = {2,3,4,6,7} = S , and k = 2 , So, P2u[5,S] = {6,7} 
 

 
 

 
Figure-3.3 

 
Now for the graph G –{5} 
 
γ2u = {2,3,4,6,7} = S , and k = 2 , So, P2u[5,S] = {6,7} 
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Theorem-3.28:  Let v ∈∈∈∈ V(G) , d(v) ≥≥≥≥ k, and v ∉∉∉∉ Vi
Tk , 

(1) If v ∈∈∈∈ V-
ku then there is a minimal k-tuple dominating set S containing v 

such that Pku[v,S] = {v}. 

(2) If there is a minimum k-tuple dominating set S containing v such that 

Pku[v,S] ={v} then v ∈∈∈∈ V-
ku. 

Proof: (1) 

 Suppose v ∈ V-
ku. Let S1 is a minimum k-tuple dominating set of G-{v}. Then v 

is adjacent to at most k-1 vertices of S1. 

 

Case-1: v is adjacent to no vertex of S1. 

 Let w1, w2, ……wk-1 be vertices not in S1 such that wi is adjacent to v for every 

i. Let S = S1 U { w1, w2, ……wk-1 , v }. Then S is a minimal k-tuple dominating set of G 

containing v. 

 

Suppose v1 is a vertex different from v. 

  If v1 ∈ S1 then v1 is adjacent to at least k-1 vertices of S1. Thus, if v1 is adjacent 

to v then v1 is adjacent to at least k vertices of S. Therefore v1∉ Pku[v,S]. 

 

 Suppose v1 = wi for some i. Now wi ∉ S1 and therefore wi is adjacent to at least 

k vertices of S1. Therefore if wi is adjacent to v then wi is adjacent to k+1 vertices of S. 

Therefore wi ∉ Pku[v,S]. 

 

 Suppose v1 ∉ S then v1 is adjacent to at least k vertices of S1 therefore if v1 is 

adjacent to v then v1 is adjacent to k+1 vertices of S. Therefore v1∉ Pku[v,S]. 

 

Case-2: v is adjacent to m vertices w1, w2, ……wm of S1 where 1 ≤ m < k 

 Let wm+1, wm+2,……wk-1 be vertices not in S1and adjacent to v. Let  

 S = S1 U { wm+1, wm+2,……wk-1, v } then S is a minimal k-tuple dominating set of G 

containing v. 
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Let v1 be a vertex different from v. 

 

 If v1 = wi for some i ∈ {1,2,3……m} then if wi is adjacent to exactly k-1 

vertices of S1 then wi is adjacent to k vertices of S if wi is adjacent to v. Therefore  

v1 = wi ∉ Pku[v,S]. 

 

 If v1 = wi for some i ∈ {m+1, m+2, …….k-1} then since wi is adjacent to at 

least k vertices of S1. wi is adjacent to at least k+1 vertices of S, if wi is adjacent to v. 

Therefore wi ∉ Pku[v,S]. 

 

Case-3: v is adjacent to exactly k-1 vertices of S1. 

 Let S = S1 U {v}, then S is a minimal k-tuple dominating set of G containing v. 

Let v1 be a vertex different from v. 

 

 If v1 = wi for some i, then since wi is adjacent to at least k-1 vertices of S1, wi is 

adjacent to at least k vertices of S including v, if wi is adjacent to v. Therefore  

v1 = wi ∉ Pku[v,S]. 

 

 If v1∈ S1 then v1 is adjacent to at least k-1 vertices of S1. Therefore v1 is 

adjacent to at least k vertices of S if v1 is adjacent to v. Therefore v1  ∉ Pku[v,S]. 

 

 If v1 ∉ S1 then v1 is adjacent to at least k vertices of S1 and therefore adjacent to 

at least k+1 vertices of S if v1 is adjacent to v. Therefore v1 ∉ Pku[v,S]. 

 Note that v ∈ Pku[v,S]. Hence Pku[v,S] = {v}. 

 

(2)   

 Suppose there is a minimum k-tuple dominating set S of G containing v such 

that Pku[v,S] = {v}. 

 Let S1 = S-{v}. We will prove that S1 is a k-tuple dominating set of G-{v}. 
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Let v1 be any vertex of G-{v}. 

Case-1: v1 ∈∈∈∈ S1. 

 

 Since S is a k-tuple dominating set of G. v1 is adjacent to at least k-1 vertices of 

S. Suppose v1 is adjacent to v in G and v1 is adjacent to exactly k-1 vertices of S then v1 

vertex different from v and v1 ∈ Pku[v,S] which is not true. Since Pku[v,S] = {v}. 

Therefore if v1 is adjacent to v. Then v1is adjacent to at least k-1 other vertices of S. 

Thus, v1 is adjacent to at least k-1 vertices of S1 = S-{v}. If v 1 is not adjacent to v then v1 

is adjacent to at least k-1 vertices of S different from v. Therefore v1 is adjacent to at least 

k-1 vertices of S1. 

 

 Suppose v1 ∉ S1. Now v1 ≠ v. Therefore v1 ∉ S. Now since S is a k-tuple 

dominating set of G. v1 is adjacent to at least k vertices of S different from v. Therefore 

v1 is adjacent to at least k vertices of S1.Thus, S1 is a k-tuple dominating set of G-{v}.  

Therefore,  

  γku(G-v) ≤ | S1 | < | S | ≤ γku(G) 

Therefore,   

  γku(G-v) <  γku(G) 

Therefore, 

  v ∈ V-
ku. █ 

 

 

 The following definition of k-dependent set is due to J. F. Fink and M.S. 

Jacobson [21]  

 

 

 

 



Chapter-3 :Total k-Domination and k-tuple 
Domination and k-dependent k-Domination 

 87

 

 

K-DEPENDENT K-DOMINATION 

 

Definition -3.29: k-dependent set.[21] 

 Suppose k ≥ 1. A set S subset of V(G) is said to be k-dependent set if for every 

vertex v in S, v is adjacent to at most k-1 vertices of S.  

 Note that if k=1 then 1-dependent set is just an independent set. 

 

Definition -3.30: Maximal k-dependent set. 

 Let k ≥ 1 and S be a subset of V(G). Then S is said to be a maximal k-dependent 

set if  

(1) S is a k-dependent set. 

(2) For every vertex v not in S, S U {v} is not a k-dependent set.   

  

Note that every maximum k-dependent set is a maximal k-dependent set. 

 

 If S is a maximal k-dependent set then obviously for every vertex v not in S v is 

adjacent to at least k vertices of S.  Thus, S is a k-dominating set. Hence every maximal 

k-dependent set is a k-dominating set. 

 

 Also if S is a k-dependent set and v ∈ S then v is adjacent to at most k-1 

vertices of S. Therefore v belongs to private k-neighborhood of v with respect to S, which 

is denoted as Pk[v,S]. That is Pk[v,S] is non empty. 

 

 Therefore S is a minimal k-dominating set of G. [2] Thus, every maximal  

k-dependent set is a minimal k-dominating set. 
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Definition -3.31: k-dependent k-dominating set. 

 Let k ≥ 1 and S is subset of V(G). Then S is said to be k-dependent  

k-dominating set if  

(1) S is a k-dependent set. 

(2) S is a k-dominating set. 

 

Definition -3.32: Minimal k-dependent k-dominating set. 

 Let S be a k-dependent k-dominating set then S is said to be minimal  

k-dependent k-dominating set if for each vertex v ∈ S, S-{v} is not a (k-dependent ) 

 k-dominating set. 

 

Definition -3.33: Minimum k-dependent k-dominating set. 

 A k-dependent k-dominating set S with minimum cardinality is called a 

minimum k-dependent k-dominating set. It is denoted by ik set. 

 

Definition -3.34: k-dependent k-domination number. 

 The cardinality of a minimum k-dependent k-dominating set is called  

k-dependent k-domination number of the graph G. It is denoted as ik(G). 

 

 Thus, by above remark every maximal k-dependent set is a minimal  

k-dependent k-dominating set. 

 Conserve is also true. That is every minimal k-dependent k-dominating set is 

also a maximal k-dependent set. 

 

 Thus, the minimum cardinality of a k-dependent k-dominating set = the 

minimum cardinality of a maximal k-dependent set. That is ik(G). 
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We define the following symbols. 

 

V+
Ik  = {v ∈∈∈∈ V(G) : γγγγik(G) < γγγγik(G-v)}. 

 

V-
Ik  = {v ∈∈∈∈ V(G) : γγγγik(G) > γγγγik(G-v)}. 

 

V0
Ik  = {v ∈∈∈∈ V(G) : γγγγik(G) = γγγγik(G-v)}. 

 

V i
Tk = { G-{v} has a vertex which degree is less than k.} 

 

Note that the above sets are mutually disjoint and their union is V(G).  

We state the following theorem without proof. 

 

Theorem-3.35: Let v ∈∈∈∈ V(G), d(v) ≥≥≥≥ k and v ∉∉∉∉ Vi
Tk then v ∈∈∈∈ V+

Ik  if and only if the 

following conditions holds. 

(1) v belongs to every minimum k-dependent k-dominating set of G. 

(2) No subset S of G-{v} which intersects N[v] in at most k-1 vertices and 

      |S| ≤ ik(G) can be a k-dependent k-dominating set of G-{v}. 

Proof: The proof of this theorem is similar to that of corresponding theorem for total 

 k-domination. █   

 

 

Example-3.36:  

(1) Consider the graph G = Petersen Graph ( See Figure- 0.3) 

 For the Petersen Graph i3 set is {2, 4, 6, 7, 9, 10} and i3(G) = 6.  

 and i2 set is {1, 3, 6, 9, 10} and i2(G) = 5. 

 

(2) Consider the graph G = Hyper Qube ( See Figure – 0.8) 

 For the Hyper Qube Graph i3 set is {2, 3, 4, 5, 6, 8} and i3(G) = 6. 

 and i2 set is {2, 4, 6, 8} and i2(G) = 4. 
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Definition -3.37: External private k-neighborhood. 

 Let S be  subset of V(G) and v ∈ S, then the external private k-neighborhood of 

v with respect to S. i.e Ex[v,S] 

Ex[v,S] = {w ∈ V(G)-S : w is adjacent to exactly k vertices of S including v.} 

 

Now we state and prove the equivalent conditions for vertex v to be in V-Ik. 

 

Theorem-3.38: Let v ∈∈∈∈ V(G), d(v) ≥≥≥≥ k, and v ∉∉∉∉ Vi
Tk then the following statements 

are equivalent. 

(1) v ∈∈∈∈ V-
Ik . 

(2) There is a minimum k-dependent k-dominating set S containing v such that 

Exk[v,S] is empty. 

(3) There is a minimum k-dependent k-dominating set S of G containing v such 

that S-{v} is a k-dependent k-dominating set of G-{v}. 

Proof: 

 (1) => (2) 

 Let S1 be a k-dependent k-dominating set of G – {v}. Then |S1| < ik(G). If v is 

adjacent to at least k vertices of S1 then S1 is a k-dependent k-dominating set of G and 

therefore ik(G) ≤  |S1| < ik(G). This is a contradiction. Therefore v is adjacent to at most  

k-1 vertices of S1. 

 

 Let S = S1 U {v} then S is a minimum k-dependent k-dominating set of G 

containing v. 

 

 Suppose w ∈Exk[v,S] then w is adjacent to exactly k-vertices of S including v 

therefore w is a vertex of G-{v} such that w ∉ S1 and w is adjacent to exactly k-1 vertices 

of S1. This is a contradiction because S1 is a maximal k-dependent set in G-{v}. 

Therefore Exk[v,S] is empty. Hence (1) => (2) is proved. 
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Now  (2) => (3). 

 Let S be a minimum k-dependent k-dominating set of G containing v such that 

Exk[v,S] is empty. 

 

 Consider the set S1 = S-{v}. We prove that S1 is a k-dependent k-dominating set 

of G-{v}. 

 Let w be a vertex of G-{v} such that w ∉ S-{v}. Then w is a vertex of G with w 

∉ S. If w is adjacent to v in G then w must be adjacent to at least k other vertices of S  

( because w ∉ Exk[v,S] ) Therefore w is adjacent to at least k vertices of S –{v}. 

 

 Since S is a k-dependent set in G, S-{v} is also k-dependent set in G-{v}. Thus, 

S-{v} is a k-dependent k-dominating set of G-{v}. Hence (2) => (3) is proved. 

 

Now (3) => (1) 

 Let S be a minimum k-dependent k-dominating set of G containing v such that 

S-{v} is a k-dependent k-dominating set of G-{v}. Then  

 

ik(G-v) ≤ | S-{v}| < |S| = ik(G) 

Therefore, 

   ik(G-v) < ik(G). 

Hence v ∈ V-
Ik. Thus, (3) => (1) is proved.█ 
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 Perfect Domination is closely related to Perfect Codes and Perfect Codes have 

been used in Coding Theory. In this chapter we study the effect of removing a vertex 

from the graph on perfect domination.  

 

Definition-4.1: Perfect dominating set.[42] 

 A subset S of V(G) is said to be a perfect dominating set if for each vertex v not  

in S, v is adjacent to exactly one vertex of S. 

 

 Consider the path P4 with four vertices 1,2,3,4. The set S= {2, 3} is perfect 

dominating set in this graph. 

 

 It may be noted that if G is a graph then V(G) is always  a perfect dominating 

set of G. 

 

Definition-4.2: Minimal perfect dominating set. 

 A perfect dominating set S of the graph G is said to be minimal perfect 

dominating set if for each vertex v in S, S-{v} is not a perfect dominating set. 

 

 It may be noted that it is not necessary that a proper subset of minimal perfect 

dominating set is not a perfect dominating set. 

 

Example-4.3:  

 Consider the cycle graph G = C6 with six vertices 1, 2, 3, 4, 5, 6. Then 

obviously V(G) is a minimal perfect dominating set of G. 

 

 However the set {1, 4} is proper subset of V(G) and is a perfect dominating set 

in the graph G.  
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Definition-4.4: Minimum perfect dominating set. 

 A perfect dominating set with smallest cardinality is called minimum perfect 

dominating set. It is called γpf set of the graph G. 

 

Definition-4.5: Perfect domination number. 

 The cardinality of a minimum perfect dominating set is called the perfect 

domination number of the graph G. It is denoted as γpf(G). 

 

 The perfect domination number of cycle C6 is 2 and that of the path P3 is also 1. 

 

Definition-4.6: Perfect private neighborhood. 

 Let S be a subset of V(G) and v ∈ S. Then the perfect private neighborhood of v 

with respect to S =  

Ppf[v,S] = { w ∈ V(G)-S: N(w) ∩ S ={v}} U {v, if v is adjacent to no vertex of S or at    

least  vertices of S }. 

 

Theorem-4.7: A perfect dominating set S of G is minimal perfect dominating set if 

and only if for each vertex v in S Ppf[v,S] is non- empty. 

Proof:  

 Suppose S is minimal and v ∈ S. Therefore there is a vertex w not in S-{v} such 

that either w is adjacent to no vertex of S-{v} or w is adjacent to at least two vertices of 

S-{v}. 

 

 If w = v then this implies that v∈  Ppf[v,S].  

 

 If w ≠ v then it is impossible that w is adjacent to at least two vertices of S-{v} 

because S is a perfect dominating set. Therefore w is not adjacent to any vertex of S-{v}. 

Since S is a perfect dominating set w is adjacent to only v in S. That is N(w) ∩ S = {v}. 

Thus, w  ∈  Ppf[v,S].  
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Conversely suppose v ∈ S and Ppf[v,S] contains some vertex w of G. 

 If w = v then w is either adjacent to at least two vertices of S-{v} or w is 

adjacent to no vertex of S-{v}. Thus, S-{v} is not a perfect dominating set.  

 If w ≠ v then N(w) ∩ S = {v} implies that w is not adjacent to any vertex of  

S-{v}. 

 Thus, in all cases S-{v} is not a perfect dominating set if v ∈ S. Thus, S is 

minimal. █ 

  

Example-4.8:  

Consider the path G = P5 ( See Figure-0.4 ) with five vertices v1, v2, v3, v4, v5 .    

Note that S = {v2,v5} is minimum and therefore minimal perfect dominating set. 

  Ppf[v2,,S] = { v1, v2, v3}. 

 

Now we define the following symbols. 

V+
pf = {v ∈∈∈∈ V(G): γpf(G) < γpf(G-v)}. 

 

V-
pf = {v ∈∈∈∈ V(G): γpf(G) > γpf(G-v)}. 

 

V0
pf = {v ∈∈∈∈ V(G): γpf(G) = γpf(G-v)}. 

Note that the above sets are mutually disjoint and their union is V(G). 

Now we prove the following lemma. 

Lemma-4.9: Let v ∈∈∈∈ V(G) and suppose v is a pendent vertex and  has a neighbor w 

of degree at least two. If v ∈∈∈∈  V-
pf  then γpf(G-v) = γpf(G) – 1. 

Proof: 

 Let S1 be a minimum perfect dominating set of G-{v}. If w ∈ S1 then S1 is a 

perfect dominating set of G with |S1| < γpf(G). That is γpf(G) ≤ |S1| < γpf(G), this is a 

contradiction.Therefore w ∉ S1. Let S = S1 U {w}. Then S is a minimum perfect 

dominating set of G. Therefore γpf(G) = |S| = |S1| + 1 = γpf(G-v) + 1. 

This proves the lemma. █ 
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Next we prove the necessary and sufficient conditions for a pendent vertex (with a 

neighbor of degree at least two) to be in V+
pf. 

 

Theorem-4.10: Let v be a vertex of G Then v ∈∈∈∈ V+
pf if and only if the following 

conditions are satisfies. 

(1) v belongs to every γpf set of G. 

(2) No subset S of  G-{v} which is either disjoint from N[v] or intersects N[v]        

in at least two vertices and |S| ≤ γpf(G) can be a perfectly dominating set of  

      G-{v}. 

Proof: 

 (1) 

 Suppose v ∈ V+
pf .  

Suppose S is a γpf set of G which does not contain v then S is a perfect dominating set of 

G-{v}.Therefore γpf(G-v) ≤ |S| = γpf(G).Thus, v ∉ V+
pf. This is a contradiction. Thus, v 

must belong to every γpf set of G. 

 

(2) 

 If there is set S which satisfies the condition stated in (2). Then S is a perfect 

dominating set of G-{v} and therefore γpf(G-v) ≤  γpf(G). – This is a contradiction. 

 

Conversely assume that (1) and (2) hold.  

 Suppose v ∈ V0
pf. Let S be a minimum perfect dominating set of G-{v}.Then 

 |S| =  γpf(G).  

 

 Suppose v is not adjacent to any vertex of S. Then S is disjoint from N[v],  

|S|= γpf(G) and S is a perfectly dominating set of G-{v}. This violates (2). 

 

 Suppose v is adjacent to exactly one vertex of S then S is a minimum perfect 

dominating set of G not containing v which violates (1). 
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 Suppose v is adjacent to at least two vertices of S. Then  S ∩N[v] in at least two 

vertices and S is a perfectly dominating set of G-{v} with  |S| =  γpf(G), which again 

violate (2). 

 

 Thus, v ∈ V0
pf implies (1) or (2) violated. 

 

 Suppose v ∈ V-
pf. Let S1 be a minimum perfect dominating set of G-{v}. 

Then |S1| < γpf(G). If v is not adjacent to any vertex of S1 then as above (2) is violated. 

If v is adjacent to exactly one vertex of S1 then S1 is a perfect dominating set of G with 

|S1| < γpf(G) – which is a contradiction. 

 

 If v is adjacent to at least two vertices of S1 then S1∩ N[v] in at least two 

vertices, |S1| ≤ γpf(G) and S1 is a perfect dominating set of G-{v} – which again  

violates (2). 

 

 Thus, v ∈ V-
pf implies that (2) is violated. 

 Thus, v does not belongs to V0
pf or  V-

pf. Hence v ∈ V+
pf. █ 

 

Theorem-4.11: Let v be a pendent vertex which has the neighbor w of degree at least 

two then v ∈∈∈∈ V-
pf if and only if there is γpf set S containing w and not containing v 

such that Ppf[w, S ] = {v}. 

Proof: 

 Suppose v ∈ V-
pf. Let S1 be a minimum perfect dominating set of G-{v}.Then 

as proved Lemma -4.9, w ∉ S1. Let S = S1 U {w}. Then S is γpf containing w.  

 

 Since S1 is a perfect dominating set of G-{v}, w is adjacent to some vertex of 

S1. Therefore w ∉ Ppf[w,S]. If x is any vertex different from v such that x is adjacent to w 

then x is also adjacent to some vertex of S1 because S1 is a perfect dominating set of  

G-{v}. Thus, x ∉ Ppf[w,S]. Further v is adjacent to only w of S therefore  Ppf[w,S] = {v}. 
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 Conversely suppose there is a γpf set S containing w such that Ppf[w,S] = {v}. 

Let S1 = S- {w}. Let x be any vertex of G-{v} which is not in S-{v}. Since x ∉ Ppf[w,S], 

x must be adjacent to some unique vertex S1. Thus, S1 is a minimum perfect dominating 

set of G-{v} with |S1| < γpf(G). Thus, v ∈ V-
pf. █ 

 

Example-4.12: 

 Consider the path G= P4 with vertices 1,2,3,4. Then γpf(G) = 2. Let v = 1 and  

w = 2.  

 Now γpf(G-1) = 1. Thus, 1 ∈ V-
pf also S = (2, 3) is γpf set of G , containing  

w = 2 and Ppf[2,S] = {1}.  

 

Theorem-4.13: Let S1 and S2 be two disjoint perfect dominating sets of G. Then  

|S1| = |S2|  

Proof: 

 For every vertex x in S1 there is a unique vertex v(x) in S2 which is adjacent to 

x. Also for every vertex y in S2 there is a unique vertex u(y) in S1 which is adjacent to y. 

It may be noted that these functions are inverses of each other. Therefore 

 |S1|= |S1|.         █  

 

Corolary-4.14: If in a graph G there are perfect dominating sets S1 and S2 such that 

|S1| ≠ |S2| then S1 ∩ S2 ≠ φφφφ.      █ 

 

Corolary-4.15: Let G be a graph with n vertices. If there is a perfect dominating set 

S with |S| < n/2 or  ≥  n/2 then V(G) - S is not a perfect dominating set. █. 
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V(G)  : Set of all vertices of the graph G. 

G –{v}  : A sub graph removing a vertex from the graph G. 

γ set  : Dominating set with minimum cardinality of the graph G. 

γ(G)  : Cardinality of minimum dominating set of the graph G. 

N(v)  : Open neighborhood of vertex v in the graph G. 

C5  : Cycle Graph with five vertices. 

P5  : Path Graph with five vertices. 

Pn  : Path Graph with n vertices. 

K5  : Complete Graph with five vertices. 

W9  : Wheel Graph with nine vertices. 

K1,8  : Star Graph with nine vertices. 

V0  : {v ∈ V(G): γ(G) = γ(G-v)}. 

V+  : {v ∈ V(G): γ(G) < γ(G-v)}. 

V-  : {v ∈ V(G): γ(G) > γ(G-v)}. 

N[v]  : Closed neighborhood of a vertex v in the graph G. 

|S|  : Cardinality of the set S. 

Pn[v,S]  : {w ∈ V(G): N[w] ∩ S = {v}}. 

γT set  : Totally dominating set with minimum cardinality of the graph G. 

γT(G)  : Cardinality of a minimum totally dominating set of the graph G. 

V0
T

     : {v ∈ V : γT(G-v) = γT(G) }. 

V+
T

  :{ v ∈ V: γT(G-v) > γT(G) }. 
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V-
T   :{ v ∈ V: γT(G-v) < γT(G) }. 

V i
T

   :{ v ∈ V: G – {v} has isolated vertices}.  

Tpn[v,S]  :{w ∈ V(G) : N(w) ∩ S = {v}}. 

I  : Set of all isolated vertices of the graph G. 

G-I  : The sub graph of removing all isolated vertices of the graph G. 

γTe set  :Extended totally dominating set with minimum cardinality of  graph  G. 

γTe(G)  : Cardinality of  minimum extended totally dominating set of the graph G. 

V+
Te  : {v ∈ V(G): γTe(G) < γTe(G-v)}. 

V-
Te  : {v ∈ V(G): γTe(G) > γTe(G-v)}. 

V0
Te  : {v ∈ V(G): γTe(G) = γTe(G-v)}.. 

β0(G)  : Cardinality of a maximum independent set of the graph G. 

i set  : Independent dominating set with minimum cardinality of the graph G. 

i(G)  : Cardinality of a minimum independent dominating set of the graph G. 

V0
i   : {v ∈ V(G): i(G-v) = i(G)}. 

V+
i   : {v ∈ V(G): i(G-v) > i(G)}. 

V-
i   : {v ∈ V(G): i(G-v) < i(G)}. 

Epex[v,S] : { w ∈  V(G) - S: N(w) ∩ S = {v} }. 

γcr set   : Vertex covering set with minimum cardinality of the graph G. 

α0(G)  : Cardinality of a minimum vertex covering set of the graph G. 

δ(G)  : Minimum degree of the graph G. 

Kn  : Complete Graph with n vertices. 

Cn  : Cycle Graph with n vertices. 
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Q3  : Hyper Qube Graph. 

γpk set  : Perfect k-dominating set with minimum cardinality of the graph G. 

γpk(G)  : Cardinality of a minimum perfect k-dominating set of the graph G. 

γTk set  : Totally k-dominating set with minimum cardinality of the graph G. 

γTk(G)  : Cardinality of a minimum k-dominating set of the graph G. 

PTk[v,S]  :{w ∈ V(G) : w is adjacent to exactly k vertices of S including v}. 

Ik  : Set of all vertices whose degree less than k of the graph G. 

V i
Tk  : {v∈ V(G): G-{v} has vertices of degree less than k }. 

V+
Tk  : {v ∈ V(G): γTk(G) < γTk(G-v)}. 

V-
Tk  : {v ∈ V(G): γTk(G) >  γTk(G-v)}. 

V0
Tk  : {v ∈ V(G): γTk(G)  = γTk(G-v)}. 

d(v)  : degree of vertex v in the graph G. 

γku set   : k-tuple dominating set with minimum cardinality of the graph G. 

γku(G)  : Cardinality of a  minimum k-tuple dominating set of the graph G. 

Pku[v,S]  : S1US2US3 , Where S1= { w∈S: w ≠ v and w is adjacent to exactly k-1     

vertices of  S including v.}, S2 = {w ∈S: w = v and w is adjacent to 

         exactly k-1 vertices of S},S3 = {w ∉S:  w is adjacent to exactly k vertices            

                         of S including v.} 

V+
ku  : {v ∈ V(G): γku(G) < γku(G-v)}. 

V-
ku  : {v ∈ V(G): γku(G) > γku(G-v)}. 

V0
ku  : {v ∈ V(G): γku(G) = γku(G-v)}. 

V i
Tk  : {v∈ V(G): G-{v} has vertex of degree less than k}. 
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ik  : k-dependent k-dominating set with minimum cardinality of the graph G. 

ik(G)  : Cardinality of a minimum k-dependent k-dominating set of the graph G. 

V+
Ik  : {v ∈ V(G): ik(G) < ik(G-v)}. 

V-
Ik  : {v ∈ V(G): ik(G) > ik(G-v)}. 

V0
Ik  : {v ∈ V(G): ik(G) = ik(G-v)}. 

V i
Tk  : {G-{v} has vertex which degree less than k}. 

Exk[v,S]  : {w ∈ V(G)-S : w is adjacent to exactly k vertices of S including v}. 

γpf set  : Perfect dominating set with smallest cardinality. 

γpf(G)  : Cardinality of a minimum perfect dominating set. 

Ppf[v,S]  : { w ∈ V(G)-S : N(w) ∩ S = {v}}  

     U { v, if v is adjacent to no vertex of S or at least two vertices of S} . 

V+
pf  : { v ∈ V(G): γpf(G) < γpf(G-v)}. 

V-
pf  : { v ∈ V(G): γpf(G) > γpf(G-v)}. 

V0
pf  : { v ∈ V(G): γpf(G) = γpf(G-v)}. 
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