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CHAPTER 1

INTRODUCTION

Operations research (also referred to as decision science, or

management science) is an interdisciplinary mathematical science that focuses

on the effective use of technology by organizations. In contrast, many other

science & engineering disciplines focus on technology giving secondary

considerations to its use.

Employing techniques from other mathematical sciences — such as

mathematical modeling, statistical analysis, and mathematical optimization

— operations research arrives at optimal or near-optimal solutions to complex

decision-making problems. Because of its emphasis on human-technology

interaction and because of its focus on practical applications, operations

research has overlap with other disciplines, notably industrial engineering

and management science, and draws on psychology and organization science.

Operations Research is often concerned with determining the maximum (of

profit, performance, or yield) or minimum (of loss, risk, or cost) of some

real-world objective. Originating in military efforts before World War II, its

techniques have grown to concern problems in a variety of industries.

Operational research encompasses a wide range of problem-solving

techniques and methods applied in the pursuit of improved decision-making

and efficiency. Some of the tools used by operational researchers are statistics,

optimization, probability theory, queuing theory, game theory, graph theory,
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· Fundamental or foundational work takes place in three mathematical

disciplines: probability, optimization, and dynamical systems theory.

· Modeling work is concerned with the construction of models, analyzing

them mathematically, implementing them on computers, solving them

using software tools, and assessing their effectiveness with data. This

level is mainly instrumental, and driven mainly by statistics and

econometrics.

· Application work in operational research, like other engineering and

economics’ disciplines, attempts to use models to make a practical

impact on real-world problems.

2. PRE - WORK

As a formal discipline, operational research originated in the efforts of

military planners during world war II. In the decades after the war, the

techniques began to be applied more widely to problems in business, industry

2

decision analysis, mathematical modeling and simulation. Because of the

computational nature of these fields, OR also has strong ties to computer

science and analytics. Operational researchers faced with a new problem

must determine which of these techniques are most appropriate given the

nature of the system, the goals for improvement, and constraints on time and

computing power.

Work in operational research and management science may be characterized

as one of three categories:



and society. Since that time, operational research has expanded into a field

widely used in industries ranging from petrochemicals to airlines, finance,

logistics, and government, moving to a focus on the development of

mathematical models that can be used to analyze and optimize complex

systems, and has become an area of active academic and industrial research.

In the world war II era, operational research was defined as “a scientific

method of providing executive departments with a quantitative basis for

decisions regarding the operations under their control.” Other names for it

included operational analysis (UK Ministry of Defence from 1962) and

quantitative management.

Prior to the formal start of the field, early work in operational research was

carried out by individuals such as Charles Babbage. His research into the

cost of transportation and sorting of mail led to England’s universal “Penny

Post” in 1840, and studies into the dynamical behaviour of railway vehicles in

defence of the GWR’s broad gauge. Percy Bridgman brought operational

research to bear on problems in physics in the 1920s and would later attempt

to extend these to the social sciences. The modern field of operational research

arose during World War II.

Modern operational research originated at the Bawdsey Research Station in

the UK in 1937 and was the result of an initiative of the station’s superintendent,

A. P. Rowe. Rowe conceived the idea as a means to analyse and improve the

working of the UK’s early warning radar system, Chain Home (CH). Initially,
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he analyzed the operating of the radar equipment and its communication

networks, expanding later to include the operating personnel’s behaviour.

This revealed unappreciated limitations of the CH network and allowed

remedial action to be taken.

Scientists in the United Kingdom including Patrick Blackett later Lord Blackett

OM PRS, Cecil Gordon, C. H. Waddington, Owen Wansbrough-Jones, Frank

Yates, Jacob Bronowski and Freeman Dyson, and in the United States with

George Dantzig looked for ways to make better decisions in such areas as

logistics and training schedules. After the war it began to be applied to similar

problems in industry.

During the Second World War close to 1,000 men and women in Britain were

engaged in operational research. About 200 operational research scientists

worked for the British Army.

Patrick Blackett worked for several different organizations during the war.

Early in the war while working for the Royal Aircraft Establishment (RAE) he

set up a team known as the “Circus” which helped to reduce the number of

anti-aircraft artillery rounds needed to shoot down an enemy aircraft from an

average of over 20,000 at the start of the Battle of Britain to 4,000 in 1941.

In 1941 Blackett moved from the RAE to the Navy, first to the Royal Navy’s

Coastal Command, in 1941 and then early in 1942 to the Admiralty. Blackett’s

team at Coastal Command’s Operational Research Section (CC-ORS)

included two future Nobel prize winners and many other people who went on
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to be preeminent in their fields. They undertook a number of crucial analyses

that aided the war effort. Britain introduced the convoy system to reduce

shipping losses, but while the principle of using warships to accompany

merchant ships was generally accepted, it was unclear whether it was better

for convoys to be small or large. Convoys travel at the speed of the slowest

member, so small convoys can travel faster. It was also argued that small

convoys would be harder for German U-boats to detect. On the other hand,

large convoys could deploy more warships against an attacker. Blackett’s

staff showed that the losses suffered by convoys depended largely on the

number of escort vessels present, rather than on the overall size of the convoy.

Their conclusion, therefore, was that a few large convoys are more defensible

than many small ones.

While performing an analysis of the methods used by RAF Coastal Command

to hunt and destroy submarines, one of the analysts asked what colour the

aircraft were. As most of them were from Bomber Command they were

painted black for nighttime operations. At the suggestion of CC-ORS a test

was run to see if that was the best colour to camouflage the aircraft for

daytime operations in the grey North Atlantic skies. Tests showed that aircraft

painted white were on average not spotted until they were 20% closer than

those painted black. This change indicated that 30% more submarines would

be attacked and sunk for the same number of sightings.
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Other work by the CC-ORS indicated that on average if the trigger depth of

aerial delivered depth charges (DCs) was changed from 100 feet to 25 feet,

the kill ratios would go up. The reason was that if a U-boat saw an aircraft

only shortly before it arrived over the target then at 100 feet the charges

would do no damage (because the U-boat wouldn’t have time to descend as

far as 100 feet), and if it saw the aircraft a long way from the target it had time

to alter course under water so the chances of it being within the 20 feet kill

zone of the charges was small. It was more efficient to attack those submarines

close to the surface when these targets’ locations were better known than to

attempt their destruction at greater depths when their positions could only be

guessed. Before the change of settings from 100 feet to 25 feet, 1% of

submerged U-boats were sunk and 14% damaged. After the change, 7%

were sunk and 11% damaged. (If submarines were caught on the surface,

even if attacked shortly after submerging, the numbers rose to 11% sunk and

15% damaged). Blackett observed “there can be few cases where such a

great operational gain had been obtained by such a small and simple change

of tactics”.

Bomber Command’s Operational Research Section (BC-ORS), analysed a

report of a survey carried out by RAF Bomber Command. For the survey,

Bomber Command inspected all bombers returning from bombing raids over

Germany over a particular period. All damage inflicted by German air defences

was noted and the recommendation was given that armour be added in the

6



most heavily damaged areas. Their suggestion to remove some of the crew

so that an aircraft loss would result in fewer personnel loss was rejected by

RAF command. Blackett’s team instead made the surprising and counter-

intuitive recommendation that the armour be placed in the areas which were

completely untouched by damage in the bombers which returned. They

reasoned that the survey was biased, since it only included aircraft that returned

to Britain. The untouched areas of returning aircraft were probably vital areas,

which, if hit, would result in the loss of the aircraft.

When Germany organised its air defences into the Kammhuber Line, it was

realised that if the RAF bombers were to fly in a bomber stream they could

overwhelm the night fighters who flew in individual cells directed to their

targets by ground controllers. It was then a matter of calculating the statistical

loss from collisions against the statistical loss from night fighters to calculate

how close the bombers should fly to minimise RAF losses.

The “exchange rate” ratio of output to input was a characteristic feature of

operational research. By comparing the number of flying hours put in by

Allied aircraft to the number of U-boat sightings in a given area, it was possible

to redistribute aircraft to more productive patrol areas. Comparison of

exchange rates established “effectiveness ratios” useful in planning. The ratio

of 60 mines laid per ship sunk was common to several campaigns: German

mines in British ports, British mines on German routes, and United States

mines in Japanese routes.
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Operational research doubled the on-target bomb rate of B-29s bombing

Japan from the Marianas Islands by increasing the training ratio from 4 to 10

percent of flying hours; revealed that wolf-packs of three United States

submarines were the most effective number to enable all members of the

pack to engage targets discovered on their individual patrol stations; revealed

that glossy enamel paint was more effective camouflage for night fighters

than traditional dull camouflage paint finish, and the smooth paint finish

increased airspeed by reducing skin friction.

On land, the operational research sections of the Army Operational Research

Group (AORG) of the Ministry of Supply (MoS) were landed in Normandy

in 1944, and they followed British forces in the advance across Europe.

They analysed, among other topics, the effectiveness of artillery, aerial bombing,

and anti-tank shooting.

With expanded techniques and growing awareness of the field at the close of

the war, operational research was no longer limited to only operational, but

was extended to encompass equipment procurement, training, logistics and

infrastructure.

Academic Denis Bouyssou describes the historical development of operational

research from the 1940s to the 1970s as follows. “The historical development

of Operational Research (OR) is traditionally seen as the succession of several

phases: the ‘heroic times’ of the Second World War, the ‘Golden Age’ between

the fifties and the sixties during which major theoretical achievements were
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accompanied by a widespread diffusion of OR techniques in private and

public organisations, a ‘crisis’ followed by a ‘decline’ starting with the late

sixties, a phase during which OR groups in firms progressively disappeared

while academia became less and less

concerned with the applicability of the techniques developed”.
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CHAPTER 2

Operation Research

The Art and Science of Executive Decision

2.1 Introduction :

You may well be curious to know how a subject with so abstruse a

name as operations research could beget a several hundred page introductory

text purportedly dealing only with principles. The ambiguous term operations

research was coined during World War II. At that time, it was an apt description

of the subject matter. Unfortunately, the name stuck, even though

present-day applications of operations research are considerably more diverse

than they used to be.

Now there is a worldwide confederation of professional societies named

Opera-tions Research. The staffs of many industrial organizations bear the

title. So do departments in leading universities, which have gone on to sanctify

the term by granting advanced degrees bearing its name. These vested interests

are so well entrenched that the name operations research is unlikely to be

supplanted in our lifetime.

Disgruntled though we may be, saddled as we are with a title that is undisruptive

if not downright misleading, we nevertheless must show our respect. After

all, the scientists who originated the term were on the winning side of the war.

(Who knows what might have happened if the other side had invented the

10



approach first?) Numerous synonyms for operations research are in common

use. The British like operational research. A frequent American substitute is

management science. (The popularity of this name is fostered by yet another

international professional society called the Institute of Management Science.

The Operations Research Society and the Institute of Management Science

regularly hold joint meetings, and their membership overlaps to a large extent.)

As a beginning student, fortunately, you can afford to assume a lofty

indifference to the whole matter, leaving this semantic bone of contention for

your seniors to wrangle over.

For convenience, and with reasonable accuracy, you can simply define

opera-tions research as a scientific approach to problem-solving for executive

manage-ment. An application of operations research involves:

• Constructing mathematical, economic, and statistical descriptions or

models of decision and control problems to treat situations of

complexity and uncertainty.

• Analyzing the relationships that determine the probable future

consequences of decision choices, and devising appropriate measures

of effectiveness in order to evaluate the relative merit of alternative

actions.

It is sometimes believed that operations research refers to the constant

monitor-ing of an organization’s ongoing activities—and,in fact, decision

and control problems often do concern certain daily “operations” of the

organization. Exam-ples of this sort include production scheduling and
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inventory control, facility maintenance and repair, and staffing of service

facilities, to name a few applica-tions.

But many operations research studies treat other kinds of decisions

that bear on daily operations only indirectly. These studies usually have a

planning orientation. Illustrations include determining the breadth of a firm’s

product line, developing a long-term program for plant expansion, designing

a network of warehouses for a wholesale distribution system, and entering a

new business by merger or acquisition.

It is bad enough that the word “operations” inadequately describes the

diver-sity of present-day applications. To make matters worse, the word

“research” creates the false impression that the method is a “blue-sky

approach.” On the contrary, in the past decade operations research has proved

time and again to be a powerful and effective approach for solving critically

real management problems. You will learn most of the reasons in this chapter,

and you will know the full story after reading the main chapters of this book.

Of course, fundamental research in the methods of operations research

continues, mainly at universities and at governmental and industrial research

laboratories. Unlike the situation with basic research in other sciences,

however, relatively little time elapses between an important discovery in

operations research and its implementation by experienced practitioners in

industrial groups.

Better decisions in a complex and uncertain environment.

A preferable term to describe the subject of this book is decision
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analysis. An emphasis on making decisions or taking actions is central to all

operations research applications.

Decision analysis separates a large-scale problem into its subparts,

each of which is simpler to manipulate and diagnose. After the separate elements

are carefully examined, the results are synthesized to give insights into the

original problem. You may wonder why such complex decision-making

problems arise in the first place.

One reason is that in today’s economy, technological, environmental,

and com-petitive factors typically interact in a complicated fashion. For

example, a factory production schedule has to take account of customer

demand (tempered by the likelihood of a price-cut by competitors),

requirements for raw materials and inter-mediate inventories, the capacities

of equipment, the possibility of equipment failures, and manufacturing process

restrictions. It is not easy to make up a sched-ule that is both realistic and

economical.

Other reasons for complexity in real decision-making situations are

that the organization (perhaps only half-knowingly) may be pursuing

inconsistent goals, the responsibility and authority for making the required

decisions may be greatly diffused within the organization, and the economic

environment in which the company operates may be uncertain.

To be successful, an operations research approach must improve the

managerial decision-making process—the improvement being measured by

the net cost of obtaining it. You should keep in mind the distinction between
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improved decision-making and improved performance, or more succinctly,

between a good decision and a good outcome. For example, by all prior

analysis, your betting on the Irish Sweepstakes may not appear to be a good

decision (economically or morally); but after betting, the outcome will be

good if you win, Improving decision analysis is important because the only

thing you control is your decision prior to the uncer-tain outcome.

Distinguishing characteristics. There are many ways to approach

management problems, and most of these ways are related. Certainly, there is

no clear boundary line isolating the solutions derived by professional operations

researchers from those derived by such people as industrial engineers, or

econo-mists specializing in economic planning, or accountants or financial

analysts ori-ented toward management information systems. But most

operations research applications possess certain distinguishing characteristics.

Specifically, a suggested approach to a particular problem must contain all

the following qualities before we would call it an operations research approach:

i. A Primary Focus on Decision-Making, The principal results of the

analysis must have direct and unambiguous implications for executive

action.

ii. An Appraisal Resting on Economic Effectiveness Criteria. A

comparison of the various feasible actions must be based on measurable

values that unequivocally reflect the future well-being of the organization.
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In a commercial firm, these mea-sured quantities typically include

variable costs, revenues, cash flow, and rate of return on incremental

investment. A recommended solution must have evaluated the tradeoffs

and have struck an optimum balance among these sometimes conflicting

factors.

iii. Reliance on a Formal Mathematical Model. The procedures for

manipulating the data should be so explicit that they can be described

to another analyst, who in turn would derive the same results from the

same data.

iv. Dependence on an Electronic Computer. This characteristic is not

really a desid-eratum but rather a requirement necessitated by either

the complexity of the mathematical model, the volume of data to be

manipulated, or the magnitude of computations needed to implement

the associated management operating and control systems.

In science we trust. To embrace operations research, a company

must believe that applying the scientific method is relevant to the analysis of

managerial decisions. This statement is not the platitude it may seem to be at

first reading. The adoption of operations research calls for an act of faith in

the benefits of a systematic approach to decision-making, and not all

corporation executives are ready to make that act as yet.

It may sound strange, at this late date, to hear a plea for faith in science—

and operations research is a science. After all, the legitimacy of the scientific
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method in the study of other subjects, such as physical phenomena, is hardly

open to ques-tion. After hundreds of years of experience, chemists and

physicists have developed efficacious laboratory techniques. But the virtue

of applying scientific procedures to decision-making problems of significance

is not so well-established; its recogni-tion still calls for what the poet Coleridge

described, in another context, as “the willing suspension of disbelief.” Here

is why.

Rarely, if ever, can a company perform what most people would regard

as a bona fide “scientific” experiment to test the merit of an operations research

solution. Consider a company that is contemplating using a mathematical

model to arrive at its annual operating plan. Since the company’s economic

environment differs from year to year, it can never exactly repeat history, and

therefore can never prove indisputably that the model solution will produce a

realized improve-ment over the company’s current planning approach.

Consider a second illustration. Suppose that an operations research

model has been suggested for controlling a company’s inventories. Again,

testing whether the new system will definitely yield an improvement over the

present approach is inherently limited. Although you could use historical data

to compare how the suggested rule would have operated in the past, the

comparison does not represent a truly scientific experiment with controlled

variables. For one thing, you can only assume that historical data arc indicative

of what will happen in the future. For another, if the suggested rules improve

service and customers recognize the improvement, then there may be an
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increase in customer demand. In other words, the very operation of the

suggested policy can alter the environment.

Thus, the historical data may not be typical of the future. And because

the deci-sion system itself influences the environment, it is not really possible

to operate both the present and new systems “in parallel” (Occasionally, you

can run part of the system under the new set of rules and the other part under

the old set of rules. Explain why this test, also, is not a truly controlled

experiment.)

Of course, before a manager accepts a specific operations research

solution, he should perform various tests of reasonableness, including

historical comparisons. But at some point after making such tests, even in an

ideal situation, the manager will have to accept as axiomatic that a scientific

approach has intrinsic merit. We make three amplifying observations before

leaving this conclusion.

First, even though a company may be convinced about the worthiness

of the scientific method to aid decision-making, it need not accept the results

of a parti-cular operations research study as being valid. After all, the specific

project may have been ill conceived or poorly executed.

Second, a trust in science does not imply the abandonment of hunch

and intuition. On the contrary, the history of science itself is studded with

cases of important discoveries made through chance, hunch, serendipity—

even dreams. Behavioral scientists have not yet developed ways to induce

such flashes of bril-liance consistently. But most executives who use their
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hunches well also seem, to possess a high level of knowledge and

understanding about their activities. So the question is not when to apply

science and when to rely on intuition, but rather how to combine the two

effectively.

Third, the inherent difficulty of demonstrating that a suggested solution

is a sure-fire improvement is not unique to operations research. Because of

the inability to duplicate history, an act of faith is also required to accept any

other proposed solution—including maintaining the status quo.

Past, present, and future. Although the term “operations research”

was coined during World War II, the scientific origins of the subject date

much further back. Primitive mathematical programming models were

advanced by economists Quesnay in 1759 and Walras in 1874; more

sophisticated economic models of a similar genre were proposed by Von

Neumann in 1937 and Kantorovich in 1939. The mathematical underpinnings

of linear models were established near the turn of the 19th century by Jordan

in 1873, Minkowski in 1896, and Farkas in 1903. Another example of early

development is the seminal work on dynamic models accomplished by Markov,

who lived from 1856 to 1922. Two further illustrations are the innovative

suggestions for economical inventory control, published in business and

industrial engineering journals during the 1920’s, and the pioneering studies

of waiting line phenomena completed by Erlang, who lived from 1878 to

1929.
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Even though these early starts received recognition and acclaim, only

recently have mathematical models for decision analysis taken hold in business.

Why? At least two factors are important. First, the competitive pressures of

doing busi-ness have increased tremendously since World War II. Executives

of large corporation porations now find it essential in maintaining profits to

improve on the traditional ways of collecting and analyzing data. Second, the

fantastic development and widespread adoption of high-speed electronic

computers have fostered the growth of more sophisticated means for assessing

decision alternatives.

There are many reasons to believe that the process of implementing

operations-research-oriented systems will quicken. For example, new

technological develop-ments in what is called time-shared computing bring

the power of an electronic com-puter literally into an executive’s office. It is a

pipedream to suppose that, in the next few years, most corporation presidents

will have computer consoles on their desk tops for querying at a moment’s

notice. But already, financial vice presidents in several industrial companies

do have such consoles to evaluate major invest-ment alternatives. The future

is getting closer all the time.

2.2 BOUNDARIES OF QUANTITATIVE ANALYSIS

As should be obvious, quantitative analysis can never provide the entire

basis for all strategic decisions. It is inconceivable that -the selection of a

19



corporation president by a company’s board of directors, for example, could

(and should) ever rest solely on the manipulation of quantitative data, although

some numerical information may be relevant.

It is probably less apparent that even when quantitative analysis is of

central importance for a managerial decision process, an operations-research-

oriented system never supplies all the information required for action, no

matter how sophis-ticated the system’s design. Furthermore, a truly successful

implementation of an operations research system must apply behavioral as

well as mathematical sci-ence, because the resultant system must interact

with human beings. And finally, the very process of constructing an operations

research system involves the exercise of judgment in addition to the logical

manipulation of symbols and data. We discuss below each of these boundaries

on quantitative analysis.

Problems solved and unsolved. As you read the chapters of this

book, you will learn the ways an executive can be aided by the different

operations research models that are treated. We therefore limit our

comments in this section to more generally applicable remarks.

We have already mentioned that at the very inception of implementing

an operations research system it is necessary for experienced executives to

discern the relevance of the model. This alone is not enough, of course.

Since the corporate owners hold these men responsible for wisely managing

the firm, executives must continue to exercise their judgmental duty well
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beyond initial acceptance of the model. In one way or another, they must

monitor the system to ensure that the underlying model remains valid, and in

particular that it continues to be used properly to provide insights into the

real decision-making problems of the com-pany. (Managers must guard against

thinking of the model as being reality, and hence of the accompanying answers

as being sacrosanct.)

A newly implemented operations research system may well bring about

a restructuring or an amplification of information. As a result, executives may

act differently from how they might have acted without such information.

There is no getting away from the fact, however, that an executive, not the

model, takes the action.

In short, an operations research model is never sufficient unto itself; it

cannot become entirely independent of judgment supplied by knowledgeable

managers. This boundary on quantitative analysis is always manifest, because

the number of questions that managers can pose is boundless, whereas the

kinds of answers that a single model can provide are inherently limited.

Systems are for people. The above discussion also suggests that

there is more to a successful implementation of an operations research system

than the mere design of a mathematically correct model. Clearly, the system

must operate in the larger context of managerial activity. The model must

take account of the data sources, with respect both to quality of the data and

to the goals and expertise of the people responsible for collecting the data.
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The system must also reflect the information requirements of the managers

who review the analytic results, especially the needs for descriptive and

interpretive commentary.

Most experienced practitioners of operations research know how to

solve these so-called problems of communication. But there is a more

fundamental limitation on quantitative analysis: rarely, if ever, is a suggested

operations research system in perfect harmony with previously existing

managerial attitudes and predilec-tions. To ignore this fact is to invite internal

conflict, subterfuge, and sometimes downright sabotage of a new system.

For example, a corporate planning model may call for the development

of realistic sales forecasts. You would expect that marketing executives should

ordi-narily be entrusted to provide these figures; but the traditional orientation

of the marketing department may make it impossible for these personnel to

articulate anything other than sales goals. If the motivational drive of the sales

organization is to set up targets and then try to meet them, and if it is then

called upon to enun-ciate both targets and realistic forecasts, severe

organizational conflicts may break out.

What can be done about this kind of limitation on quantitative analysis?

Presently, considerable research is under way by behavioral scientists to

discover successful means of instituting effective organizational change. Such

developments in administrative science will certainly have a fundamental effect

on the actual degree of success and speed of implementation of operations

research systems.
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The art of management science. The problem-solving ingenuity of

professional operations researchers is still a limiting factor in the spread of

quan-titative analysis. Despite the enormous growth in the acceptance of

management science models, there are preciously few “standard” applications.

Even in areas of decision-making where the relevance of mathematical models

has become well established, designing particular applications in specific

companies requires signi-ficant skill on the part of the management scientist.

Model formulations remain tailor-made to a large degree.

Conceivably, in the next decade some of the well-developed applications

of operations research will have become so widely adopted that procedures

for building these models can be codified, as many of the techniques in

industrial engineering and managerial accounting have been. The unabated

expansion of quantitative analysis into previously untouched areas of decision-

making is so enormous, however, that the need for imaginative and talented

problem-solving will remain undiminished for some time.

In other words, a considerable amount of “art” is still required for the

successful practice of management science. This in turn means that whether

you are a managerial user or a practitioner of operations research, you must

have some facility with both the artistic and the scientific ingredients of the

subject. A text-book, such as this one, can teach you many of the scientific

aspects, and give you a modicum of practice in the art through the study of

toy examples and the for-mulation and solution of small-scale problems.
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Unfortunately, however, it can do no more than make you aware of the artistic

elements.

To help you understand this interplay between the art and the science

of apply-ing operations research, we offer an analogy with the fine arts. A

knowledge of scientific principles, such as the chemistry of paint, the

physiology of the eye, the physics of light, the psychology of color, and the

laws of perspective, helps the artist master fully the craft of painting. Likewise,

such knowledge also distin-guishes the true connoisseur from the casual,

albeit appreciative, Sunday museum-goer. By the same token, an understanding

of the fundamentals of operations research is essential not only for the

practitioner, but for the manager who wants to make truly effective use of the

approach. If today’s business world continues to become more complex, an

executive will not be able to compete successfully in the role of a casual

onlooker, or he himself may end up as a museum exhibit.

2.3 IMPORTANCE OF MODEL-BUILDING

If you study this text diligently, you will learn a considerable amount of

mathematical technique. But a benefit that far transcends the mastering of

specific algorithms is the facility you will gain in formulating, manipulating,

and analyz-ing mathematical models. Model-building is the essence of the

operations research approach. It is the counterpart to laboratory

experimentation in the physical sciences.

Constructing a model helps you put the complexities and possible
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uncertainties attending a decision-making problem into a logical framework

amenable to com-prehensive analysis. Such a model clarifies the decision

alternatives and their anticipated effects, indicates the data that are relevant

for analyzing the alterna-tives, and leads to informative conclusions. In short,

the model is a vehicle for arriving at a well-structured view of reality.

A mixed bag. The word “model” has several shades of meaning, all

of which are relevant to operations research. First, a “model” may be a

substitute representation of reality, such as a small-scale model airplane or

locomotive. Second, “model” may imply some sort of idealization, often

embodying a simpli-fication of details, such as a model plan for urban

redevelopment. Finally, “model” may be used as a verb, meaning to exhibit

the consequential characteristics of the idealized representation. This notion

conjures up in the mind those television commercials dramatizing how love

and happiness will result after a single applica-tion of the sponsor’s product.

In operations research, a model is almost always a mathematical, and

neces-sarily an approximate, representation of reality. It must be formulated

to capture the crux of the decision-making problem. At the same time, it must

be sufficiently free of burdensome minor detail to lend itself to finding an

improved solution that is capable of implementation. Striking a proper balance

between reality and mana-geability is no mean trick in most applications, and

for this reason model-building can be arduous.

You will find three pervasive and interrelated themes in operations
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research raodel-building. The first is an emphasis on optimization.

Concentrating on decisions that are optimal according to one or more specified

criteria has been the forcing wedge for attaining improved decision-making.

Typically, the optimization is constrained, in that the values of the decision

variables maximizing the stated objective function are restricted so as to

satisfy certain technological restraints. Often, the model includes restrictions

that mirror the impact of dynamic phenomena.

The second theme is derivation of the analytic properties of a

mathematical model, including the sensitivity of an optimal solution to the

model’s parameters, the structural form of an optimal solution, and the

operating characteristics of the solution. To illustrate, if you have a

mathematical model leading to an inventory replenishment policy, you will

want to know how the rule depends on forecasts of customer demand, the

specification of the rule (such as, “when down to n, order again”), and the

long-run frequency of stockouts and the average inventory level.

The third theme is explicit recognition of system interactions. One of

the diffi-cult tasks in writing an elementary text is to convey how, in real

applications, the model-building effort is oriented toward management system

considerations. The result of an operations research analysis must be integrated

into the management information, decision-making, and control systems fabric

of the organization. Operations research applications cannot be undertaken

in isolation from the surrounding managerial environment. For these reasons,

an operations research project should be regarded, at least in part, as a systems
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effort.

In one easy lesson. Many of the scientists who pioneered present-

day applications of operations research are still alive and carry forward their

individual banners of progress. One cannot help but be struck by the way

each of these men treats nearly all of the significant decision-making problems

he encounters by using his own specialty, such as linear programming, dynamic

programming, inventory theory, or simulation, etc. This ability to apply a

single solution technique or mathematical construct to a diverse range of

problems—and to do so effec-tively—attests not only to the sheer genius of

these innovators but to the flexibility of their approaches.

The experience of these scientists not withstanding, most operations

research analysts, when faced with a difficult managerial decision problem,

usually do not find it self-evident that a single solution technique or model is

patently most appropriate. For example, an analysis of what markets a

company should serve, what products it should manufacture, what investments

it should undertake, or where it should locate its plants and warehouses

rarely leads to an immediate selection of a linear programming, or a dynamic

programming, or a simulation approach. This being the case, you may well

wonder how you will go about building or selecting a model when faced with

a particular decision problem.

We know that the notion of model-building, as described in a textbook,

carries with it an aura of mystery. Regrettably, it is virtually impossible to

27



provide you with a checklist for infallibly selecting and developing a model.

But rest assured, there is considerable evidence that most students who have

been trained in either the sciences, engineering, mathematics, business

administration, or economics have little trouble building models in practice,

provided they are inclined to do so. And nowadays, rarely, if ever, will you

be faced with applying operations research unaided by an experienced

practitioner. Therefore, you can count on being tutored at least the first time

you use operations research.

2.4 PROCESS OF QUANTITATIVE ANALYSIS

We outline below the stages that are standard in applying quantitative

analysis. An experienced practitioner takes these steps almost instinctively,

and frequently does not attach formal labels to them. Actually, the components

are not entirely distinct, and at any point in time, several of the phases proceed

in concert. As a beginner, however, you will find it helpful to look over the

entire process seriatim, so that you can plan ahead accordingly.

A prelude to a quantitative analysis of a decision problem should be a

thorough qualitative analysis. This initial diagnostic phase aims at identifying

what seem to be the critical factors—of course, subsequent analysis may

demonstrate that some of these factors are not actually so significant as they

first appear. In particular, it is important to attain a preliminary notion of what

the principal decisions are, what the measures of effectiveness are among

these choices, and what sorts of tradeoffs among these measures are likely
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to ensue in a comparison of the alterna-tives. There will be trouble ahead

unless you get a good “feel” for the way the problem is viewed by the

responsible decision-makers. Without this appreciation, you may encounter

considerable difficulty in gaining acceptance and implementing your findings.

What is worse, your results could very well be erroneous or beside the point.

Formulating the problem. The preceding diagnostic should yield a

statement of the problem’s elements. These include the controllable or decision

variables, the uncontrollable variables, the restrictions or constraints on the

vari-ables, and the objectives for defining a good or improved solution.

In the formulation process, you must establish the confines of the

analysis. Managerial decision-making problems typically have multifold

impacts, some of them immediate and others remote (although perhaps equally

significant). Determining the limits of a particular analysis is mostly a matter

of judgment.

Building the model. Here is where you get down to the fine detail.

You must decide on the proper data inputs and design the appropriate

information outputs. You have to identify both the static and dynamic structural

elements, and devise mathematical formulas to represent the interrelationships

among these elements. Some of these interdependencies may be posed in

terms of constraints or restrictions on the variables. Some may take the form

of a probabilistic evolutionary system.

You also must choose a time horizon (possibly the “never-ending
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future”) to evaluate the selected measures of effectiveness for the various

decisions. The choice of this horizon in turn influences the nature of the

constraints imposed, since, with a long enough horizon, it is usually possible

to remove any short-run restrictions by an expenditure of resources.

Performing the analyses. Given the initial model, along with its

parameters as specified by historical, technological, and judgmental data,

you next calculate a mathematical solution. Frequently, a solution means values

for the decision variables that optimize one of the objectives and give

permissible levels of performance on any other of the objectives. The various

mathematical techniques for arriving at solutions comprise much of the contents

of this text.

As pointed out previously, if the formulation of the model is too

complex and too detailed, then the computational task may surpass the

capabilities of presentday computers. If the formulation is too simple, the

solution may be patently unrealistic. Therefore, you can expect to redo some

of the steps in the formulation, model-building, and analysis phases, until

you obtain satisfactory results.

A major part of the analysis consists of determining the sensitivity of

the solution to the model specifications, and in particular to the accuracy of

the input data and structural assumptions. Because sensitivity testing is so

essential a part of the validation process, you must be careful to build your

model in such a way as to make this process computationally tractable.
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Implementing the findings and updating the model. Unfor-tunately,

most tyro management scientists fail to realize that implementation begins on

the very first day of an operations research project. There is no “moment of

truth” when the analyst states, “Here are my results,” and the manager replies,

“Aha! Now I fully understand. Thanks for giving me complete assurance

about the correct decision.”

We consider the entire process of implementation in Chap. 22. But we

mention here the importance of having those executives who must act on the

findings participate on the team that analyzes the problem. Otherwise, the

odds are heavy that the project will be judged only as a provocative, but

inconclusive, exercise.

It is common for an operations research model to be used repeatedly

in the analysis of decision problems. Each time, the model must be revised to

take account of both the specifics of the problem and current data. A good

practitioner of operations research realizes that his model may have a long

life, and so documents its details as well as plans for its updating.

What’s it all about ? Having learned the basic components of the

quanti-tative analysis process, you should step back to see what the entire

approach accomplishes.

The major effort is constructing a mathematical representation of a

complicated situation, along with gathering the required data. The model is
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essentially approximate—elaborate enough to capture the essentials, yet gross

enough to yield computable solutions. The balance between detail and

tractability is found by a trial and error process, involving considerable

examination of preliminary findings and extensive sensitivity analysis.

When operations research is applied in a planning context, the solution

usually consists of a most favorable set of values for the decision variables,

with some information as to the cost of deviating from these values. When

management science is used for developing an operating system, such as a

means for controlling inventories, then the solution consists of a set of decision

rules. Often, these rules are embodied in a computer program. For an inventory

system, the computer routines analyze historical demand data, permit

judgmental adjustments if specified, signal when replenishment is to take

place, and calculate the reorder amount.

Only rarely does an operations research solution represent a precise

forecast of what will happen in the future. Such an accurate prediction would

be of interest; but the crux of the decision problem is to select among

alternatives, not to forecast. A well-built model makes a valid comparison

among the alternatives. In case this distinction between accurately predicting

an outcome and legitimately comparing alternatives is puzzling, consider the

following illustration.

A company is about to decide whether or not to open a new plant in

Europe. An operations research model is constructed that contains forecasts

of sales, costs, and revenues; the resultant solution probably indicates
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anticipated production levels. If the economic advantage of opening this new

plant is relatively insensitive to a range of reasonable values for the forecasted

figures, then the company can make the correct expansion decision. It does

not need to commit itself, at the same time, to production levels; they would

be determined subsequently when more accurate demand forecasts are

available.

2.5 OPERATIONS RESEARCH, LILLIPUTIAN STYLE

Before explaining how and why quantitative analyses have been valuable in

aiding executive decision-making, we will examine a few highly simplified

illustrations of operations research models. Since our only purpose is to

show what mathematical decision models look like, we make no pretense

about the realism of these formulations; you will find more practical versions

in the subsequent chapters.

One-Potato, Two-Potato Problem. A frozen-food company

processes potatoes into packages of French fries, hash browns, and flakes

(for mashed potatoes). At the beginning of the manufacturing process, the

raw potatoes are sorted by length and quality, and then allocated to the separate

product lines.

The company can purchase its potatoes from two sources, which

differ in their yields of various sizes and quality. These yield characteristics

are displayed in Fig. 1.1. Observe that from Source 1, there is a 20% yield of
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French fries, a 20% yield of hash browns, and a 30% yield off fakes; the

remaining 30% is unrecoverable waste. The figures for flakes and waste are

also 30% for potatoes from Source 2. but the yield of French fries is relatively

higher.

How many pounds of potatoes should the company purchase from

each source? The answer depends, in part, on the relative profit contributions

of the source. These relative figures are calculated by adding the sales revenues

associated with the yields for the separate products, and subtracting the

costs of purchasing the potatoes, which may differ between the two sources.

(We have used the term relative profit contribution because we are ignoring

other variable expenses, such as sales and distribution costs. These depend

only on the products and not the sources of the raw potatoes, and so do not

affect the purchase allocation decision.) Suppose the relative profit contribution

is 5 for Source 1 and 6 for Source 2. Even though Source 2 is more profitable,

it does not follow that the company should purchase all of the its potatoes

from Source 2.

Atleast two other factors are relevant to the purchase decision: the
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maximum amount of each product that the company can sell, and the maximum

amount that the company can manufacture—given its production facilities.

To keep the Exposition simple, suppose that the two factors, in concert,

imply that total production cannot exceed 1.8 for French fries, 1.2 for hash

browns, and 2.4 for flakes, where these constants are measured in terms of

an appropriate unit of weight (such as millions of pounds). These restriction

can be expressed mathematically as follows.

Let p1 denote the amount (in weight) of potatoes that will be purchased

from Source 1, and P2 the amount from Source 2. Then the values for Pl

and P2 are con-strained by the linear inequalities

.2Pj + .3P2 ≤ 1.8    for French fries

.2Pt + .1P2 ≤ 1.2    for hash browns
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(1) .3Pl + .3P2 ≤ 2.4    for flakes

Pl ≥ 0  and    P2 ≥ 0.

The nonnegativity restrictions P1 ≥ 0 and P2 ≥ 0 are imposed because a value

such as P! = −4 would have no physical significance.

All the values for P1 and P2 satisfying (1) are shown in the shaded

region Notice that each line in the diagram is represented by a restriction in

(1) expressed as an equality. The arrow associated with each line shows the

direction indicated by the inequality signs in (1). Explain why a pair of values

for P1 and P2 that satisfies both the French fries and hash brown constraints

will also satisfy rhe flakes constraint.

Optimal values for P2and P1 are found by making the relative profit

contribu-tion as large as possible, consistent with the constraints. Therefore,

the optimiza-tion problem is to

(2) maximize (5P1 + 6P2)

subject to (1). In this simple problem, the solution can be exhibited graphically,

as

Each of the parallel straight-line segments represents different

combinations of P1 and P2 that give the same value for the linear objective

function 5P1 + 6P2. The highest segment still having a point in the feasible
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constraint region is the optimal value of the objective function, and such a

point is an optimal solution. You can see that there is only one optimal solution

in this example; it occurs at the intersection of the French fries and hash

brown constraints. Consequently, you can calculate the optimal values by

solving the associated simultaneous linear equations

.2Pl + .3P2 = 1.8    for French fries

(3) .2Pl + .1P2 = 1.2    for hash browns.

Verify that the optimal answers are Pl = 4.5 and P2 = 3, as shown in Fig. 1.3,

giving an objective-function value of 40.5.

This problem illustrates what is termed a linear programming model.

Real applications of linear programming usually involve hundreds of

constraints and thousands of variables. You will learn how to formulate and

solve such models in Chaps. 2 through 7.

Secretary Problem. An executive wishes to hire a new secretary, and

is about to ask a placement service to send qualified girls for him to interview.

He has found from past experience that he can determine from an interview

whether a girl, if hired, will turn out to be terrific, good, or just fair. He

assigns a relative value of 3 to a terrific secretary, 2 to a good one, and 1 to a

fair one. His previous experience also leads him to believe that there is a .2

chance of interviewing a girl who will be a terrific secretary, a .5 chance that

she will be a good one, and a .3 chance that she will be a fair one.

He wishes to see only three girls at most. Unfortunately, if he does not
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hire a girl immediately after an interview, she will take another job: hence, he

has to decide right away.

If the first girl he sees is terrific, he will hire her immediately, of course.

And if she is fair, he has nothing to lose by interviewing a second girl. But if

the first girl looks good, then he is not sure what to do. If he passes her by,

he may end up with only a fair secretary. Yet if he hires her, he surrenders the

chance of finding a terrific girl. Similarly, if he chooses to see a second girl,

he will again face a difficult decision in the event that she turns out to be

good.

The selection problem can be displayed conveniently by a so-called

decision tree, shown The circled nodes represent the interviewed girls, and

the branches from these nodes show the chance events and their probabilities.

The boxes indicate where a decision must be made, and the number at the

end of a branch gives the relative value of stopping the decision process at

that point.

The problem of finding an optimal decision strategy can be solved by

what is termed dynamic programming, and in particular, by a process known

as backward induction. You will study dynamic programming models and

solution techniques in Chaps. 8 through 12, and Chaps. 17 and 18. The

solution process is so simple in this example that you can compute the optimal

hiring strategy very easily, as we have done below.

Suppose that the executive does end up interviewing, and hence hiring,

a third girl. Then the expected value associated with the uncertain event is
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(4) 3(.2) + 2(.5) + l(.3) = 1.9.

In other words, the average value of a girl selected at random for an

interview is

1.9. Assume that this expectation legitimately represents the executive’s

evaluation of the chancey event. Mark the number 1.9 above the circled

Node 3

Next consider what happens if the executive does interview a second

girl, and she turns out to be good. If he decides to stop, then he obtains a

value 2. But if he continues,, then he can expect to receive only the value 1.9.

So he should stop when the second girl looks good. Put an X on the branch

indicating “Continue” when the second secretary is good; this signifies not

to take that action.

Now you are ready to determine the correct decision if the first girl

looks good. By stopping, the executive would obtain the value 2. But if he
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continues, then the expected value associated with the chancey outcome of

the second interview, and possibly the third, is

(5) 3(.2) + 2(.5) + 1.9(.3) =2.17.

The first term in (5) is for the event, of seeing a terrific secretary, whom he

hires; the second term is for the event of seeing a good secretary, whom, he

hires, as you already determined in the preceding paragraph; and the third

term is for the event of seeing a fair secretary, and consequently continuing to

the third chancey event that has a value of 1.9, given in (4). Since 2.17 is

larger than 2, the executive should pass up the first girl if she turns out to be

good. Mark 2.17 above the circled Node 2 and put an X on the branch

indicating “Stop” when the first secretary is good.

To summarize, the optimal policy is to stop after the first interview

only if the girl is terrific, and to continue after the second interview only if the

girl is fair.

The overall expected value of the interviewing process, given that the

executive acts optimally, is

(6) 3(.2) + 2.17(.5) + 2.17(.3) = 2.336.

Explain why. Mark this number above the circled Node 1 Since the quantity

1.9, calculated in (4), also represents the expected value if the executive

interviews only a single secretary and hires her, the difference

(2.336 − 1.9 = .436) is the incremental value from interviewing as many as

two more girls.
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Where-or-Whcn Production Problem. The name of this problem

arises from the observation that the associated mathematical model has several

interpretations. One is in terms of deciding optimal production levels at each

of several plants in a single time period; another is in terms of choosing

optimal production levels at a single plant in each of several time periods.

(The model also can be interpreted as a combination of the two problems,

that is, as a where-and-when problem.)

Starting with the multiplant version, suppose a company has N plants,

and must manufacture a total of D units of a single item during a stated time

period. Hence, letting xt denote the amount of production at Plant t, the

levels x1, x2,

. . . , xN must satisfy the constraints

(7) x1 + x2 + • • • + xN = D and all xt ≥ 0.

Assume that the cost of producing xt at Plant t is given by (1/ ct) xt,

where ct > 0 is known from historical accounting information. Consequently,

optimal values for the xt are those that

(8) minimize  x2
1 + x

2
2  + … + x2

N

      c1
       c2

           cN

subject to (7).

This optimization problem can be solved by dynamic programming

methods as well as by some simple nonlinear programming techniques, which

are dis-cussed in Chaps. 14 and 15. The numerical answers can be easily
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computed from the insightful formula

(9)    optimal xt =          ct•D                   for t = 1, 2, …,N,

                     c1 + c2 + … + cN

which yields the associated minimum cost

(10)                        D2              (optimal policy).

           c1 + c2 + … + cN

Turning to the multiperiod version, suppose you interpret xt as being

the level of production in a single plant during Period t. Notice that in this

version, all the costs are due to production, and no storage costs are incurred

while the units are inventoried from Period 1 to the end of Period N, when the

demand requirement D must be met. Given this view, you can state what

would be the optimal value for xt if the preceding levels x1, x2 ..., xt−1 were

already determined [not neces-sarily by (9)], namely,

             optimal conditional xt =  ct
.(D − x1 − x2 − • • •, xt_l)

(11)                      c1 + c2 + … + cN

(xl, x2, • • •, xt_l are specified).

As you can verify, calculating x1, x2, . . . , XN
 recursively (that is, successively,

one by one, starting with x^ from (11) yields the same values as computing

each of them from (9).

Economic Order Quantity Problem. The formulation below is

perhaps the simplest such model. Its precise assumptions are only rarely

satisfied in real life. Nevertheless, the resultant solution turns out to be
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sufficiently close to optimal for many practical situations as to make it a very

useful approximation.

Consider a company that consumes (or sells) an item at the rate of,

say, M units per week. For simplicity, suppose there is no uncertainty about

this consumption. Hence, if the inventory level is kM units, then this stock is

depleted in exactly k weeks. Further, suppose the rate M is unchanging over

time, so that the company must regularly place a replenishment order. The

decision problem is to determine the most economical order quantity.

(Assuming that the delivery time for an order is also known exactly, each

replenishment action is initiated early enough so that the order arrives just

when the inventory level falls to zero.)

Let the order quantity be denoted by Q. Then the level of inventory

can be pic-tured by the sawtooth pattern shown Observe that each time a

replen-ishment arrives, the inventory level shoots up by the order quantity

Q.- Then the level diminishes, as shown by the downward slope of the

sawtooth, which equals —M.
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An optimal order quantity strikes a balance between the costs associated

with replenishing and with holding inventory. Specifically, assume that a fixed

setup cost K is incurred each time an order is placed, that a purchase cost c

is paid for each item ordered, and that a holding cost h is assessed for each

unit of inventory held per week. The setup cost is related to the effort expended

in placing and receiving the order. The holding cost is associated with storage,

insurance, and the capital tied up in inventory.

Let the economic criterion of effectiveness be measured as average

cost per week. Then the contribution due to setup costs is K (M/Q), since

there are M/Q, setups per week. The contribution due to purchase costs is

cM, since M items are consumed per week. And the contribution due to

holding costs is h(Q,/2), since Q/2 is the average level of inventory, as you

can see Adding the com-ponents, you have

(12) average cost per week == AC = KM + cM + hQ
            Q                 2

The economic order quantity that minimizes AC is

(13)                              optimal Q =  √ 2KM
              h

which can be found by setting the derivative of AC with respect to Q equal to

0, and solving for Q, It follows from (13) that the optimal order quantity only

doubles when the demand rate quadruples. Also note that the optimal quantity

is deter-mined by the ratio of setup to holding costs.
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OR Airline Problem. The One-Ride Airline Company is opening a

reservation service to be located in a suburban shopping center. A passenger

making reservations will be able to telephone the office and state his request.

The OR Airline Company wants to decide how many telephone lines to

install for answering reservation calls. It can easily compute the telephone

and personnel expenses that vary with the number of lines. But it also wishes

to compare the level of service for several different numbers of lines. In

particular, suppose the company seeks to determine the percentage of time

all the lines will be busy and the average

length of such busy periods.

This sort of analysis is classified as queuing or waiting line theory, We

could construct an explicit model and subject it to rigorous mathematical

analysis, but instead, we explain here how the method of simulation can be

used to deter-mine the service figures. To keep the expla-nation easy,

Suppose the company obtains data show-ing the statistical frequencies

The Distribution of Telephone
Intearrival Times.
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of minutes be-tween successive incoming telephone calls. As a first

approximation, assume that these successive interarrival times are completely

independent (such independence does not hold precisely if, for example, a

passenger calls up, finds the lines busy, and immediately redials the number).

A convenient way to summarize this distribution is to use a pie diagram, such

as the one where we assume for simplicity that the time between incoming

calls never exceeds 5 minutes.

Imagine a pointer, or spinner, affixed to the center of the pie diagram—

the mechanism would look something like a wheel-of chance at carnivals, or

a device that is often included in a child’s game to determine how many

advances a player’s piece may take at each turn. You can simulate the traffic

of incoming calls by giving the pointer a succession of sharp spins, and

jotting down the resultant sequence of interarrival times.

In addition, suppose the company has a frequency distribution of the

number of minutes that incoming calls require. Assume that these service

times are inde-pendent of each other and of the interarrival times. Then another

pie diagram and spinner mechanism can be constructed for generating the

service times.
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You are now ready to simulate the system. To begin, suppose there is only a

single telephone line. Then a simulated history may look like that The instants

of incoming calls are recorded with X‘s on the time axis, and are determined

by successive spins of the pointer mechanism for interarrival times. The

telephone line becomes busy as soon as the first call arrives. The length of

the busy period is determined by a spin of the pointer mechanism for service

times. Notice that the calls arriving at the instants circled are not answered

because the single telephone line is busy. You can obtain a good estimate of

the percentage of time the line will be busy and the average length of a busy

period by calculating the corresponding statistics for a fairly long simulated

run.

Suppose next that there are two telephone lines. Then the same

sequence of incoming calls can lead to a service history like that Observe

that more incoming ing calls are answered. Here a busy period is defined to

be a length of time during which both telephone lines are tied up. Note how

these periods are shorter than for the particular history. As you can see, the

same (approach can be used to estimate service for any number of lines.
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Commentary. As we stated at the beginning of this section, the above

examples illustrate how mathematical models are constructed to analyze

decision problems. We have made no attempt to be “realistic” in these

examples. But as you continue reading this book, you will discover how to

build practical models, and learn ways to solve problems with them.

2.6 ENDING RAINBOW

Today, virtually every major corporation employs personnel who are

responsible for applying operations research. Usually, these people constitute

a staff group at headquarters level. The group often reports to the controller,

the chief financial officer, or the head of corporate planning; but with growing

frequency, companies are also assigning operations researchers to report

directly to line managers. In a parallel fashion, operations research activity

has enjoyed a widespread growth within federal and local governments, as

well as in other nonprofit organizations. This section tells why management

science has succeeded so well.
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Merits of a rational process. Obviously, executives must and do

make decisions all the time. For a particular situation, an operations research

model may yield the very same conclusion that an experienced manager would

arrive at solely on intuitive grounds. Therefore, the benefits of using operations

research have to be evaluated in terms of its long-run impact on the entire

mana-gerial process.

The proper comparison is well represented by the question, “If a

company does not use operations research to guide the decision process,

then what will it use, and will the answers be consistently as good?”

Corporations that apply operations research—even when the approach does

not meet all of the company’s initial expectations—find that analyzing

complicated managerial problems this way is a sounder method than traditional

means. This assertion is amply borne out by the steadily increasing support

given to operations research in both the private and public sectors.

Qualities inherent in this particular rational approach rnake it a valuable

method, regardless of whether a company’s operations research personnel

attain the highest level of accomplishment for a specific project. These benefits

include:

• Emphasis on assessing the system-wide interactions and ramifications

of decision alternatives. Intrinsic in an operations research approach is

the construction of a model that synthesizes the segments of an enterprise

that are affected by a decision choice. Each individual part is constructed

by personnel who are the most knowledgeable about the relevant data.
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• Impetus to developing a full range of decision alternatives. The number

of action possibilities that can be analysed increases tremendously by

the application of mathematics and computers.

• Focus on resolving the critical issues. The approach proceeds in the

fashion of establishing implications of the form, “if Hypothesis H is true

and Action A is taken, then Result R will occur.” The method fosters

interdepartmental communication. As a consequence, clashes of pinion

within an organization can be sorted into disagreements over the

probable truth of different hypotheses, and over the assumptions used

in deriving the implications of different actions.

Important ancillary benefits emerge from the direction provided by the

model for gathering data, quantifying the value of additional information, and

document-ing factual knowledge that may be required in subsequent decision

analyses.

Having listed several of the important merits stemming from the rational

analytic process of operations research, we hasten to point out that the

advantages will occur to a greater or lesser degree, depending on the skill

used in carrying out the study.

Managerial cutting edge. The preceding paragraphs dealt with why

operations research is helpful in analyzing decision problems. Now we discuss

how the approach is beneficial. We have classified the ways into four somewhat

arbitrary and partially overlapping categories:
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i. Better Decisions. Frequently, operations research models yield actions

that do Improve on intuitive decision-making. A situation may be so complex

(because of Intricate interrelationships among decisions, voluminous data

pertinent to operations, and uncertainties of market activity) that the human

mind can never hope to assimilate all the significant factors without the aid of

operations-research-guided computer analysis.

Of course, in the past managers have made decisions in these situations

without the aid of operations research. They had to. But the depth of their

understanding and the quality of their decisions improve with the application

of such models, as considerable experience has shown. Particular decisions

may ultimately turn out t; be wrong, but the improved decision-making process

reduces the risk of making such erroneous decisions.

ii. Better Coordination. Sometimes operations research has been

instrumental in bringing order out of chaos. The following example, drawan

from an actual application, illustrates what can happen.

During special campaigns, a food manufacturer runs advertising that

significantly increases sales volume. But manufacturing production facilities

are limited, the supply of the foodstuff is limited, and the sales response is

often erratic. In the past, consequently, the marketing and manufacturing

divisions have been at opposite poles in terms of cooperative actions. An

operations-research-oriented planning model becomes a vehicle for

coordinating marketing decisions within the limitations imposed on
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manufacturing capabilities.

iii. Better Control. The managements of large organizations recognize

that it is extremely costly to require continuous executive supervision over

routine decisions. Operations research approaches combining historical

experience with the scientific method have resulted in standardized and reliable

procedures for handling everyday activities and for signaling dangerous trends.

Executives have thereby gained new freedom to devote their attention to

more pressing matters, except for those unusual circumstances which, when

they arise, necessitate reviewing the the course of everyday action. The most

frequently adopted applications in this category deal with production scheduling

and inventory replenishment.

iv. Better Systems. Often, an operations research study is initiated to

analyze a particular decision problem, such as whether to open a new

warehouse. After-wards, the approach is further developed into a system to

be employed repeatedly. Thus the cost of undertaking the first application

may produce benefits that are longer lasting than originally envisioned.

Where the action is. By this time, applications of operations research

are so common in industry and government, and so diverse in the functional

areas of decison-making, that we cannot hope to provide a complete survey.

To give you some idea, however, we mention that there are numerous

applications in industries such as aircraft, apparel, chemicals, cement, glass,

computers, electronics, farm and industrial machinery, food, metal
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manufacturing and products, mining, motor vehicles, paper and wood

products, petroleum refining, and pharmaceuticals, as well as in commercial

banks, insurance companies, merchandising firms, public utilities, and

transportation companies.

Depending on the industry, the applications pertain to extraction of

natural resources, manufacturing, transportation and warehousing, plant size

and location, inventory management, scheduling of men and machines,

forecasting, new product development, marketing, advertising, cash

management and finance, portfolio management, mergers, and both short-

and long-range corporate planning.

Most companies’ early operations research projects deal with monthly

or quar-terly scheduling, annual planning, inventory control, and other fairly

well-defined areas of decision-making. After the operations research group

demonstrates its capability in these areas, a company then applies its operations

research talents to the study of high-level strategic problems, such as selecting

new plant sites, entering new markets, acquiring overseas affiliates, and so

forth.

Operations research has provided a significant advance in the techniques

of long-range strategic planning. Even senior executives have difficulty piecing

together all the important considerations involved in a well-designed long-

range plan. What is more, the operations research approach lends itself to

the formulation of contingency plans, that is, a complete strategy indicating

which courses of action are appropriate for various future events. In addition,
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the findings may include directions for obtaining and then utilizing critical

information about such future events. In this way, the operations research

model suggests the actions to be taken immediately and the ones to be

postponed, and when to undertake a reassessment. For these reasons, more

and more frequently, boards of directors of large corporations find strategic

proposals being justified on the basis of extensive operations research studies.

Profitable applications in nonprofit organizations. The growth of

operations research in government and nonprofit corporations has been

phenomenal. A long succession of military applications began during World

War II. Now governmental applications involve health, education, and welfare;

air and highway traffic control; air and water pollution; police and fire

protection; voter and school redistricting; and annual planning and budgeting

by program, to name only a few.

Certainly, much of the credit for the great impetus in the adoption of

operations research in the public sector goes to the RAND Corporation

(located in Santa Monica). Many fundamental concepts and techniques in

operations research can be traced to the innovative ideas of RAND scientists.

At present, there are several other research organizations similar to RAND

serving the Federal Govern-ment ; a number of these (RAND among them)

work on state and city manage-ment problems as well as on military projects.

How different is operations research applied in the public sector from

that used in the private sector? The answer depends on the aspects of
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operations research you are considering. Specifically, the problem-solving

characteristics, the ensuing benefits, the emphasis on model-building, the

limitations of the scientific method, and the analytic process discussed above,

all hold with equal validity in applications to governmental and nonprofit

organizations. There does seem to be a noticeable difference, however, in the

sorts of solut’on techniques used. For example, linear programming has

gained widespread acceptance in industry, but is employed only occasionally

in governmental plan-ning. The opposite has been true of simulation models.

Sometimes it is claimed that the lack of clear-cut objective functions to be

optimized in nonprofit organizations raises a significant difference between

appli-cations in the private and public sectors. Industry most often measures

improve ment in terms of contribution to profit, but this criterion is by no

means the only relevant one for decision-making. Businesses are always

compromising among different objectives. Therefore, we feel that the absence

of a profit measure is less important than it might seem at first glance.

Probably the most important difference between the public and private

sectors concerns the exercise of decision-making responsibilities. The

organizational structures of big corporations are complex, and the authority

for taking actions may not always be precisely defined. But these structures

are simple indeed in comparison with most governmental structures. The

difference can be stated this way. In a commercial company, there is no one

left to pass the buck to, once the necessity for making a decision reaches top

management (or the board of directors). In an organization such as the Federal
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Government, even the President’s decisions are subject to the review of—

and thus become partly the responsibility of— Congressmen, who, along

with the President, are publicly elected. Understand that diffuse responsibilities

and authority only make it difficult to apply operations research outside of

industry. As the record shows, plenty of applications are being made in

governmental and nonprofit organizations.



CHAPTER 3

Computer Simulation of Management Systems

If you have patiently proceeded from, one chapter to the next, you

have studied a perhaps bewildering variety of operations research models

and techniques. Students often ask, in effect, “Is this arsenal of tools powerful

enough to encompass all the important managerial decision problems requiring

data analysis?” The answer is no, not by a long shot. To see why, reflect on

the kinds of problems that you know can be effectively analyzed by the

operations research tools presented thus far. As you become aware of gaps,

you will see more clearly why so many significant types of decision-analysis

problems are still not solvable by these approaches, and therefore must be

attacked in other ways. In the next few para-graphs we summarize the limitations

as well as the strengths of operations research tools including linear and

dynamic programming, inventory and queuing theory.

You have already learned that linear programming models are most

successful in aiding the planning efforts of corporate enterprises. If the planning

horizon is 10 years or longer, a corresponding multiperiod linear programming

model typically deals only with annualized data. The effects of the resultant

plan on week-to-week and month-to-month operations are left implicit.

Analogously, if the planning horizon is much shorter, say three months to a

year, the corresponding model usually ignores the day-to-day and week-to

week variations. Thus, for the most part, linear programming analysis falls

short of prescribing rules that translate a recommended plan into operating
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procedures for time spans shorter than the periods in the model.

A second limitation of linear programming analysis relates to uncertainty

about the future. Imprecise forecasts to some degree exist in all planning

studies.

Frequently, this uncertainty is not really the essence of the planning

problem, or it reflects a lack of knowledge about only a few parameters in the

model. In such cases, sensitivity analysis, as discussed in Chap. 5, suffices

to determine the impact of uncertainty. But on other occasions uncertainty

pervades the entire model, and standard sensitivity analysis is too clumsy

and computationally burdensome for analyzing the impact of uncertainty.

To rllustrate. consider a chemical manufacturing company that seeks a

long-range strategy for the development and marketing of new products.

Substantial research and investment costs are associated with each product,

and the actual size of the product’s market is uncertain. Furthermore, most

of the profits that are generated from a successful product will be used to

finance the research and development of new products. A linear programming

model that manages to capture the dynamic elements of this situation, but

treats the uncertainty aspects by simply using average values, is not likely to

yield a good strategy.

In contrast, dynamic programming models can analyze multiperiod

planning problems containing uncertainty, and so can be used to determine

optimal strategies. But, as compared with linear programming applications,

these dynamic programming models in practice can treat only drastically
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simplified systems. As you learned in Chaps. 10 and 1 7, unless the underlying

system is characterized by only a few state variables, the computational task

of solving a dynamic pro-gramming model is horrendous.

A similar limitation holds for those dynamic probabilistic models that

are amenable to mathematical analysis, such as the inventory and queuing

phenomena you studied in Ghaps. 19 and 20. To solve these models, you

not only must restrict yourself to a small-scale system, but you also must

simplify the way the system can operate. To illustrate, a realistic analysis of

waiting lines in a job-shop is intract-able using mathematical queuing theory

like that presented in Chap. 20 and Appendix III. Those models serve only

as rough approximations to realistic queuing phenomena.

Thus, despite the great diversity of applications of mathematical

programming and probabilistic models, many important managerial decision-

making problems must be analyzed by other kinds of techniques.

3.1 CHALLENGE REMAINING. The expanding scientific literature on

operations research bears witness that there is steady progress in finding

techniques to overcome the above-mentioned limitations. But for now and

the foreseeable future, the approaches given in the preceding chapters cannot

be relied on to provide a complete analysis of managerial decision-making

problems pertaining to:

(i) Choice of Investment Policies for Strategic Planning. A major

corporation’s invest-ment policy, to be comprehensive, should include
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provisions relating to research and development of new products, expansion

into new markets, choice of selec-tion criteria for major projects, measurement

and evaluation of risk, means of financing by debt and equity, reinvestment

of earnings, disposition of liquid assets, evaluation of mergers and acquisitions,

and divestment of assets. A full-fledged operations research model for the

analysis of alternative policies must recognize the impact of the uncertain and

dynamic nature of investments, as well as provide a means for screening the

enormous variety of investment decisions that face an organization.

(ii) Selection of Facilities in Operations Planning. Several examples in

this category were already discussed in Sec. 20.1. They included the

determination of the num-ber of checkout stands in a supermarket, the number

of gasoline pumps at a service station, and the number of elevators in a new

office building. There are numerous other examples dealing with personnel

staffing, plant layout, and machine capacity decisions. Typical facilities

selection questions are of the form: “How many?” “How large?” “Where

located?”

(iii) Design of Information-Feedback Scheduling and Operations Rules.

Illustrations of decision problems in this category are equally numerous,

although you may not think of them right away, unless you have had some

previous work experience. An important example is the design of scheduling

rules for a job-shop manufactur-ing plant, or an equipment repair facility, or a

computer center. Such rules for a manufacturing plant take account of

promised due dates to customers, the requirements for, and the availabilities
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of, machine capacities, the deployment of skilled labor, and the provisioning

for raw materials. As information on new orders arrives, and as completed

orders leave the system, the shop schedule has to be updated and revised.

Another example of an information-feed back system is a scheduling

procedure for routing transport facilities. To illustrate a freighter shipping

company in making a schedule of its ocean going equipment for several

months ahead, must take into account cargo demands at various ports, ship

capacities and speeds, uncertainties in sailing times due to vagaries in the

weather, and delays due to port congestion. Many shipping lines that own a

large fleet of vessels must reschedule daily as they receive more accurate

information about uncertain events. Similar problems arise in the scheduling

of patients into a hospital, and the timing of traffic lights on a majpr

thoroughfare.

What makes the three types of problems described above so difficult

to analyze? It is the combined effect of uncertainty, the dynamic interactions

between deci-sions and subsequent events, the complex interdependencies

among the variables in the system, and, in some instances, the need to use

finely divided time intervals. Such total systems problems are too big and

too intricate to handle with linear and dynamic programming models, or

standard probabilistic models.

Frequently, actual decisions arising from these three types of problems

involve spending at least several hundred thousand dollars, and vitally affect

the future operating costs and efficiencies of a company. Thus, management
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is highly moti-vated to employ a systematic approach to improve on intuitive,

or “seat-of-the-pants,”   analysis.  So far,   the  best  operations   research

approach  available is digital computer  simulation, Simulation approach.

Our main concern in this chapter will be to describe simulation and the kinds

of problems you encounter in employing this technique. We do not show

you in detail how to design and run simulations. Such instructions are in texts

devoted to simulation and in manuals distributed by computer manufacturers

to explain special simulation programming languages.

In brief, the simulation approach starts by building an experimental

model of a system. Then various specific alternatives are evaluated with

reference to how well they fare in test runs of the model.

If you think about it, you will recall occasions when you have been

involved in a simulated environment. For example, an amusement park, like

Disneyland, offers you many attractions, such as the jungle boat-ride and the

Matterhorn bobsled, that try to simulate actual experience. Less frivolous

examples are planetarium shows and the environments in a museum of natural

history. You may have learned how to drive an automobile in a mock-up

mechanism with a steering wheel and gas and brake pedals. And if you have

been in the armed services, you will remember that boot camp or basic

training consists mainly of simulated exercises.

It is usually too inconvenient and expensive to solve managerial decision

prob-lems by environmental analogue simulations, such as the field combat

war games that arc used in boot camp and basic training. Rather, it is preferable
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to represent a complex system by a computerized mathematical model. In a

computer, the only thing that can be shot is an electronic circuit.

The uncertainties, dynamic interactions, and complex interdependences

are all characterized by formulas stored in the memory of the high-speed

digital electronic computer. The system simulation begins at a specified starting

state. The combined effects of decisions, and of controllable and

uncontrollable evems, some of which may be random, cause the system to

move to another state at a future instant in time. The evolutionary process

continues in this fashion until the end of the horizon. Frequently, the time

intervals are finely divided and extend over a fairly long horizon. As a

consequence, the simulation experiments involve a vast number of calculations,

rapidly performed by the computer. This feature of years of history evolving

in a few minutes on a computer is termed time com-pression.

The only game in town. Most operations research analysts look

upon digital computer simulation as a “method of last resort”—hence the

title of this section, “When All Else Fails. . . .” There are two reasons for this

gloomy attitude.

The first reason is the nature of most simulation results. When the

model includes uncertain events, the answers stemming from a particular

simulation must be viewed only as estimates subject to statistical error. For

example, a simu-lated queuing model yields only an estimate of a waiting

line’s average length or the associated probability of a delay. Therefore, when
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you draw conclusions about the relative merit of different specific trial policies

as tested by a simulation model, you must be careful to assess the

accompanying random variations.

The second reason for diffidence about simulation involves the nature

of the applications themselves. If a system is so complicated that it is beyond

the reach, of such operations research tools as linear and dynamic programming

or standard probability analysis, then the required model-building effort and

the subsequent analysis of the simulated results are likely to be difficult.

Many an unwary analyst has found, to his chagrin, that the simulated world is

as unfathomable as the real world he hoped to approximate—he allowed so

much to go on in the model that it hampered his finding any insightful

information.

The above two reasons also suggest why electronic computers are

indispensable in performing simulations. To obtain sufficient statistical

accuracy for reliable decisions, a considerable number of simulation runs are

usually necessary. Each experiment is so complicated that it would be virtually

impossible to perform the simulation manually in a reasonable period of time.

It is not surprising, then, that computer simulation is often an expensive way

to study a complex system.

3.2 SIMULATION IN PERSPECTIVE

As you read in the preceding section, many important managerial

decision problems are too complex and too large to be solved by

mathematical program-ming and standard probability analysis. In such cases,
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real-life experimentation, even if feasible, is usually too costly a way to analyze

the alternatives. These observations establish the need for other problem-

solving approaches, but do not by themselves justify computer simulation.

Here we discuss why computer simulation is a useful technique, as well as

what its limitations are.

Unlike the situation with mathematical programming, there are as yet

no underlying principles guiding the formulation of simulation models. Each

ap-plication is ad hoc to a large extent. Computer simulation languages come

the closest to providing any general guidelines. [SIMSCRIPT and the General

Purpose Systems Simulator (GPSS) are the two best-known languages; we

say more about these programs in Sec. 21.8.]

The absence of a unifying theory of digital simulation is both a boon

and a bane. On the positive side, you can build a simulation model containing

arbi-trarily high-order complexities and a huge number of dynamic inter

dependencies, as well as nonstationarities and correlated random phenomena.

On the negative side, the more complicated the model, the more you will

have to rely on em-bryonically developed statistical theory to perform the

data analyses. As mentioned above, the very intricacy of the model can make

it difficult to assess the model’s validity. If the model is very complicated,

you may have to expend a great deal of computer time on replication to

obtain trustworthy answers and nearly optimal policies. Given the considerable

research interest in simulation techniques, how-ever, many of the current

deficiencies in the theory and design of simulation experiments are bound to
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be eliminated in the years ahead.

Objectives. You would construct a simulation model to assist in

analyzing managerial decision problems with one or more of the following

purposes in mind:

(i) To Describe a Current System. Consider a manufacturing firm that

recently has witnessed an increase in its customer orders, and has noticed a

consequent marked deterioration in meeting due-dates promised to its

customers. This company may want to build a simulation model to study

how its current procedures for estimating due-dates, scheduling production,

and ordering raw material are giving rise to the observed delays.

(ii) To Explore a Hypothetical System. Consider a hospital that is

contemplating the installation of a new computerized inventory replenishment

system for its medical supplies. It may want to build a simulation model

using historical data to test what the average level of inventory investment

would be, and how often there would be shortages of various supplies under

the proposed plan.

(iii) To Design an Improved System. Consider a job shop in which

machine capacities are allocated by priorities assigned to each job. The

company may want to build a simulation model in order to find an effective

way to assign such priorities so that the jobs are completed without long

delays and, at the same time, so that equipment utilization is acceptably high.

We turn next to the steps in constructing and applying a simulation model.

So you want to build a simulation. The outline to follow describes the way
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you would go about constructing a simulation:

Step 1. Formulate the Model. This step is much the same as that for

other opera-tions research models. There is an ever-present danger, however,

of including too much detail in a simulation model and, as a result, consuming

excessive amounts of computer time to perform the experiments. The best

guard against this tendency is to keep your specific purpose constantly in

mind. For example, if a model is to aid in the choice between two different

locations for a new warehouse, it is probably not necessary to simulate

activities on a hour-to-hour, or even day-to-day basis; weekly aggregates

ought to suffice. If, on the other hand, a model is to aid in the choice between

one or two loading docks at a new warehouse, then it may be necessary to

simulate activities occurring in intervals as small as 5 to 15 minutes.

Step 2. Design the Experiment. You will reduce the chance of making

mistakes and wasting time if you work out the details of the experimental

procedures before running the model. This means that you need to think out

carefully what operating characteristics of the simulated system’you plan to

measure. Further, you must consider the statistical tools you intend to apply

to take account of the experi-mental fluctuations in the measurements.

Step 3, Develop the Computer Program. The simulation experiments

will be per-formed entirely by a high-speed electronic calculator. That is,

each historical evolution of the model, including the generation of random

events, will take place within the computer. If the simulated model has a very

simple structure, you may find it easiest to use a standard programming
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language, such as FORTRAN, PL/1, or ALGOL, to develop the computerized

version. More likely, you will find it preferable to employ one of the several

simulation languages, such as SIMSCRIPT or GPSS, that arc available on

many large-scale electronic computers.

When you undertake an actual application, you will find that the above

steps are not completely separate and sequential. For example, if you have

already become familiar with, say, the GPSS simulation language, then you

may want to formulate the model, initially, in terms of this language. We give

more detail on each of these steps in the sections below.

3.3 STOCK MARKET SIMULATION EXAMPLE

An investor, Wynn Doe, wants to evaluate a particular strategy for

buying and selling common stocks. To keep the exposition straightforward,

suppose he does all of his trading in a single stock. At present, he holds 100

shares of the stock, which currently has a. price of 810 a share. Again for the

sake of simplicity, assume that the stock price can change each day by only

SI, so that some of the possible stock prices are P, $9, $10, $11, 812, .... The

investor makes, at most, one transaction each day, and pays a commission

of 2% of the transaction value whenever he buys or sells; of course, he need

not make a transaction every day.

Wynn Doe wants to test the profitability of the following rule for buying and

selling that has been suggested by his broker Benton Cherning;
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(i)  If you own the stock, then sell it whenever the price falls.

(ii) If you do not own the stock, then buy it whenever the price rises.

According to this rule, if Wynn Doe owns the stock he will hold on to it while

the price stays the same or rises; if he does not own the stock, he will refrain

from buying it as long as the price stays the same or falls.

In order to evaluate this strategy, Wynn Doe must also postulate how

he believes the stock price will fluctuate from day to day. After analyzing

historical data, he formulates the price-movement model shown. To illustrate,

if the share prices on Monday and Tuesday are both S10, then he believes

that the price on Wednesday will be $11 with probability i, $10 with probability

£-, and $9 with probability {-, as can be seen in the second row If, instead.

Tuesday’s price is $9, then he believes that the share price on Wednesday

will be $10 with probability £, $9 with probability, and $8 with probability, as

can be seen in the third row Notice that as the stock price increases, the

investor thinks there is probability that it will increase again, and analogous

statements hold if the share price remains the same or decreases.

To begin testing Cherning’s rule by manual simulation generate a specific

history of price movements according to the probabilities given A simple

mechanism for doing this is to toss a pair of unbiased coins, using the

correspondences shown. Verify that the assignments of the outcomes of a

toss of two unbiased coins yield the postulated probabilities
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Suppose you simulate 20 days of

activity, starting on Day 1 and ending

on Day 20. Then you must toss the two

coins 20 times; a particular sequence of

tosses is recorded To determine the

associated sequence of stock prices, you

have to specify the initial conditions,

namely, the stock price on Day 0 and

whether it represents a fluctuation from

the preceding day. the price on Day 0 is

$10, which presents no change from the

preceding day. Given these initial

conditions and a toss having a head and

a tail on Day 1, the stock price for Day

1 is $10, according to the second row

of Then on Day 2, since yesterday’s

price remained the same, the toss of two

tails implies that the share price falls to

$9, again according to the second row

Proceeding to Day 3, since yesterday’s

price decreased, the toss of two heads

causes the share price to be $10,

according to the third row Check the

Day Coin Yesterday’s     Today’s

Toss   Price              Stock

0 — —              10*

1 H/T Same* 10

2 ZT Same 9

3 2H Decreased 10

4 ZH Increased IO

5 ZH Same  11

6 H/T Increased 12

7 ZH Increased 12

8 ZT Same 11

9 ZH Deere a sea 12

10 H/T Increased 13

M 2T Increased 12

12 H/T Decreased I I

13 ZT Decreased  11

11 ZH Some 12

15 H/T Increased 13

16 H/T Increased 14

17 ZT Increased 13

18 H/T Decreased 12

19 H/T Decreased 1 1

20 ZT Decreased II

Legend; H/T A Head and A Tail

2H Two Heads

2T Two Tails

 Simulated Price Movements

MoToss

70



entries for Days 5, 10, 15, and 20.

You  can  now  determine  how  weil  Cherning’s  suggested rule for

 buying and selling has performed on this particular simulated 20-day istory

of price move-ments. The details are shown notice that the history of rices

from has been copied for easy reference. The entries in the column labeled

“Decision” are a direct consequence of the price history and the suggested

rule. The entries in the last three columns are determined after some auxiliary

calculations.

To illustrate, on Day 2, the investor sells his 100 shares at a price $9;

but he must pay a 2% commission, which amounts to (.02 X $9 X 100 =

$18); thus he receives only $882(= $900 - $18) from the sale. On Day 3, he

repurchases the stock Once again he must pay a 2% commission, so

effectively the stock price is $I0.20 a share. Since he has $882 cash, he can

purchase only 86 shares, leaving him $4.30 (= S882 — 86 x 810.20) cash.

Notice that at the end of the 20th day, the investor’s cash position—$931.90-

—is worse following the rule than it would have been if he had sold his 100

shares on Day 0 and thereby re-ceived 8980 cash, after paying the

commis-sion.

Given all the model’s assumptions, is Cherning’s rule profitable?

Probably your immediate reaction is, “No.” But wait a minute. Suppose

instead of arbitrarily select-ing 20 days as the length of the simulation, you

had picked either 6 or 16 days instead. What would your answer have been

then ? Or suppose you rerun the simulation with a new history of 20 tosses.
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Will the rule still look poor at termi-nation? The issue of whether the rule is

any good really depends in part on the statistical variability in the result obtained

on Day 20, and on the significance of looking at a horizon of 20 versus 200,

versus 2000, versus any other number of simulated days.

As you think further about the model, you will realize that the evaluation

issue is complicated by the fact that as the horizon lengthens, there is an

increase in the possible range of variability in the investor’s wealth position at

the end of the horizon. Further, even ! the rule implies an upward drift in the

expected wealth position as the horizon lengthens, there is at least an initial

increase in the proba-bility that the investor may go broke along the way.

Twenty-Day Test of wynn Doe’s Trading Rule.
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So as you can see, even this simple-minded simulation gives rise to

some dif-ficult questions concerning what to measure and how to design a

scientific experi-ment to test the effectiveness of the rule. What is more, if

you take the trouble to run the mode) by hand for another 20 periods, you

will quickly appreciate the desirability of letting an electronic computer do all

the coin tossing and arithmetic.

3.4 BUILDING A SIMULATION MODEL

We now return to a more general discussion of the steps involved in

using computer simulation. In this section we examine three aspects of model

building: specifying the model’s components; testing its validity and reliability;

determin-ing its parameters and measuring its performance,

Model components. The structure of most simulation models is

con-veniently described in terms of its dynamic phenomena and its entities.

The dynamic phenomena in the stock market simulation of the preceding

section include the investor’s activity of buying or selling the stock, according

to the stated decision rule, and the factors governing the movement of stock

prices. The entities on any day include the amount of stock the investor

holds, his cash posi-tion, and wealth. Typically, the entities in a model have

attributes. To il-lustrate, the amount of stock the investor holds has a monetary

value, given the associated price of the stock. Further, there are membership

relationships  providing connections between the entities. For example, the

investor’s wealth on any day includes both his cash and stock positions.
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At any instant of a simulation, the model is in a particular state. The

descrip-tion of the state not only embodies the current status of the entities

but frequently includes some historical information. For example, the state of

the system at the beginning of a day in the stock market simulation is described

by yesterday’s price, how yesterday’s price differed from the price on the

day before, the number of shares held, and the cash position.

A model also can encompass exogenous events, that is, changes that

are not brought about by the previous history of the simulation. To illustrate,

the investor in the stock market simulation may have decided to add $1000

more cash from his savings on Day 21, regardless of how well he has done

using the tested strategy.

Knowing the state of the system and the dynamic phenomena, you can

then go on to determine the subsequent activities and states. Frequently,

simulation models having this evolutionary structure are called recursive or

causal.

Note that in building a causal model, you must resolve the way activities

occur within a period. For example, on each day of the stock market simulation,

first the price is determined, then the decision to buy or sell is exercised.

Actually, the price of a stock may change several times during a day, so the

model we con-structed is only a rough approximation to reality. The mode!

also assumes that if the investor sells the stock, he receives the cash at the

end of the day; and anal-ogously, if he purchases the stock, he pays the cash

at the end of the day. Such financial transactions do not always occur so
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rapidly in practice.

Model validity and reliability. After building a simulation model,

you are bound to be asked, “How realistic is it?” The more pertinent question

is, “Does the model yield valid insights and reliable conclusions?” After all,

since the model can only approximate reality, it must be evaluated by its

power to analyze the particular managerial decisions you are studying.

Once the purpose of the simulation experiment is defined, you construct

each piece of the model with a commensurate amount of detail and accuracy.

A caveat is in order here. As simulation experts can attest, it is easy For a

novice to build a model that, component by component, resembles reality;

yet when the pieces are hooked together, the model may not behave like

reality. So beware not to assume blindly that the entire simulated system is

sufficiently accurate, merely because each of the component parts seems

adequate when considered in isolation. This warning is especially important,

because usually the objective of a simulation model is to fathom the behavior

of a total system, and not that of the separate parts.

Model parameters and performance measures. It is one thing to

describe the pieces of a simulation model abstractly, and it is another to

collect sufficient data for a trustworthy representation of these pieces. Limited

availa-bility of data may very well influence the way you build a simulation.

You must be particularly cautious when you are dealing with extrapolated
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data and nonstationary performance measures. (Remember the story of the

cracker barrel manufacturer who, not so very long ago, forecasted that he

would be selling millions of barrels today. He assumed, unquestioningly, that

his sales trend would continue as it had in the past.)

You also must watch out for cyclical or periodic phenomena, When

these are present, you must be judicious in selecting the variables to measure

in the experi-ments. If you look only at “ending values,” for example, then

your conclusions may be very sensitive to the exact length of the horizon that

you simulated.

3.5 GENERATING RANDOM PHENOMENA

Most applications of simulation models encompass random

phenomena. For example, in simulated waiting line models, the random

variables include arrival and service times; in inventory models, the variables

include customer demand and delivery times; and in research and development

models, the variables include events of new product discoveries. Frequently,

such simulations require thousands, and sometimes hundreds of thousands,

of draws from the probability distributions contained in the model. How an

electronic computer makes these draws is the subject of this section.

Uniform random numbers. As you will see, the basic building block

for simulating complex random phenomena is the generation of random digits.

The following experimental situation is an illuminating description of what we
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mean by generating a sequence of uniform random numbers,

Suppose you take ten squares of paper, number (hem 0, 1, 2, . . . , 9,

and place them in a hat. Shake the hat and thoroughly mix the slips of paper.

Without looking, select a slip; then record the number that is on it. Replace

the square and, over and over, repeat this procedure. The resultant record of

digits is a particular realized sequence of uniform random numbers. Assuming

the squares of paper do not become creased or frayed, and that you thoroughly

mix the slips before every draw, the nth digit of the sequence has an equal, or

uniform, chance of being any of the digits 0, 1, 2, . . . , 9, irrespective of all

the preceding digits in the recorded sequence.

         In a simulation, you typically use random numbers that are pure

decimals.So, for example, if you need such numbers with four decimal places,

then youcan take four at a time from the recorded sequence of random digits,

and placea decimal point in front of each group of four. To illustrate, if the

sequence of digits is 3, 5, 8, 0, 8, 3, 4, 2, 9, 2, 6, 1, . . . , then the four-

decimal-place random numbers are .3580, .8342, .9261, Suppose you have

to devise a way for making available inside a computer a sequence of several

hundred thousand random numbers.You would probably first suggest this

idea; perform something like the “slips-in-a-hat experiment”

described above, and then store the recorded sequence in the computer’s

memory. This is a good suggestion, and it is sometimes employed. The

RAND Corporation, using specially designed electronic equipment to perform

the experiment, actually did generate a table of a million random digits. The

77



table can be obtained on magnetic tape, so that blocks of the numbers can be

read into the high-speed memory of a computer as they are needed. Several

years ago, this tabular approach looked disadvantageous, because

considerable computer time was expended in the delays of reading numbers

into memory from a tape drive. But with recent advances in computer

technology and programming skill, these delays have been virtually eliminated.

Experts in computer science have devised mathematical processes for

generating digits that yield sequences satisfying many of the statistical

properties of a truly random process. To illustrate, if you examine a long

sequence of digits produced by these deterministic formulas, each digit will

occur with nearly the same frequency, odd numbers will be followed by even

numbers about as often as by odd numbers, different pairs of numbers occur

with nearly the same frequency, etc. Since such a process is not really random,

it is dubbed a pseudo-random number generator.

Computer simulation languages, like those discussed in Sec. 21.8,

invariably have a built-in pseudo-random number generator. Hence, you will

rarely, if ever, need to know specific formulas for these generators. But if you

want to strengthen your confidence in the process of obtaining the numbers,

then you can study the example of a pseudo-random number generator given

below. If not, go on to the discussion of how to generate random variables.

Congruential method. To begin, we need to review the idea of

modulus arithmetic. We say that two numbers x zndy are congruent,modulo

m, if the quantity (x — j) is an integral multiple of m. For example,

78



letting m = 10, we can write

3 = 3 (modulo 10)                       4 = 4 (modulo 10}

13 = 3 (modulo 10)  84 = 4 (modulo 10)

(1) 313 = 3 (modulo 10)                  124 = 4 (modulo 10)

48,653 s 3 (modulo 10)    1,000,004 = 4 (modulo 10).

To find the value of, say, 857 (modulo 10), you calculate the integer remainder

of 857 divided by 10, which is 7.

One popular approach for generating pseudo-random numbers is the

so-called Multiplicative Congruential Method, The general formula .for

producing the random numbers is

(2)                rn = arn_, (modulo m),

where the parameters a and m, and the seed r0 are specified to give desirable

statistical properties of the resultant sequence. Note that because of the

modulus arithmetic, each rn must be one of the numbers 0, 1, 2, 3, . . . ,

m — I.

Clearly, you must be careful about the choice of a and r0. For example,

if a = 1,

then Tn — ra, for all n. Or if r0 = 0, then rn = 0, for all n. The values of a and

rc should be chosen to yield the largest cycle or period, that is, to give the

largest value for n at which r, = ra for the first time.

To illustrate the technique, suppose you want to generate ten-decimal-

place numbers «„ u2, u3, .... It can be shown that if you use
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ua — ra x 10 ~10, where

(3) rn = 100,003 rn_, (modulo 101Ch)

r0 = any odd number not divisible by 5,

then the period of the sequence will be 5 X 10a; that is, ra = r0 for the first time

at n = 5 X 10s, and the cycle subsequently repeats itself. Given that you want

ten-decimal-pi ace numbers, this is the maximum possible length of period

using (2). (There are other values for a that also give this maximum period.)

Verify that the selection of ra in (3) eliminates the possibility that rn — 0; so un

satisfies 0 < u» < 1.

Let us look at an example of (3). Suppose r0 ~ 123,456,789. Then

(4)     r, = (100,003).(123,456,789) = 12,346,049,270,367

= 6,049,270,367 (modulo 10’”),

so that u, = .6049270367, and

(5) ra = (100,003) - (6,049,270,367) = 604,945,184,511,101

         = 5,184,511,101 (modulo 1010),
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so that u2 = . 5184511101. The decimals um,n

= 1, 2, . . . , 20, are shown in Fig. 21.5. Notice

that the rightmost digits in this sequence form

a short cycle 7, 1, 3, 9, 7, I, 3, 9, .... Thus the

statistical properties of the digits near the end

of the number are far from random.

While (2) works reasonably well for

some types of simulation models, it has poor

serial correlation proper-ties that make it

dangerous to use for dynamic systems. A

simple device for rectifying this deficiency is

to intermix several sequences, each being

generated with a different value for the seed ?0,

and possibly a different value for a. For

example, you can sequentially rotate among,

say, 10 of these generators.

The advantage of using a pseudo-

random number generator in lieu of a recorded

table of random numbers is that only a few

simple computer instructions are required to

generate the sequence. Therefore, the approach

uses only a small amount of memory space

and does not require reading magnetic tape.

n Un

1  .60492 70367

2    .51845 1 1 101

3    .66636 33303

4 .332 1 1 99909

5    .99544 99727

6    .9836 1 99181

7    .94266 97543

8    .80343 92629

9    .33660 77887

10  .78869 33661

II   .70269 00983

12  .1 1790 02949

13  .383 1 9 08847

14  .23804 26541

15  .97953 79623

16  .73484 38869

17  .59322 16607

18  .94573 49821

19 .33541 49463

20 .50087 46389

The Multi-plicative

Congruential Method: a =

100,003; T
O
 = 123,456,789.
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Generating random variables. We turn next to an explanation of

how to employ a sequence of uniform random numbers to generate complex

proba-bilistic phenomena. The treatment below suggests several techniques

that can be used; but it is by no means exhaustive. Further, the examples that

illustrate the techniques are chosen more for expository ease than

computational efficiency. In an actual situation, you should seek the advice

of a computer science specialist to determine the appropriate technique for

your model.

Inverse Transform. Method. The following is the simplest and most

fundamental technique for simulating random draws from an arbitrary single-

variable probability distribution. Let the distribution function for the random

variable be denoted by

F(x) = probability that the random variable has a value less than or

equal to x.

For example, suppose the random phenomenon has an exponential density

function

(6)                        f (t) = λe-λτ, τ ≥ 0,

then    x

(7) F (x) 0 λe-λτ  dt = 1 - λe-λx

Now 0 <F(x) < I, and suppose F(x} is continuous and strictly

increasing. Then given a value ut where 0 < a < 1, there is a unique value for x

such that F(x) = u. Symbolically, this value of x is denoted by the inverse
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functionF-1(u}. The technique is to generate a sequence of uniform random

decimal numbers Un, n = 1, 2, . . . , and from these, determine the associated

values as xn = F-1(un).

The correctness of this approach can be seen as follows. Consider

any two numbers aa and a6, where 0 < aB < u6 < 1 . Then the probability that

a uniform random decimal number u lie’s in the interval ua <C u < w6 is a0 —

ua. Since F(x) is continuous and strictly increasing, there is a number xa such

that F(xa) — ua, and a number x& such that F(xb) = u6, where xa < xb. The

Inverse Transform Method is valid provided that the true probability of the

random Variable having a value between xa and xb equals the generated

probability ub — ua. This true probability isF(xb) — F(xa) = ub — ua by

construction, so that the method is indeed valid.

To see how this method works, return to the exponential distribution (6) and

(7). Let VT, denote a uniform random decimal number. Set

(8) vn = 1 - e-λxn ,

so that

(9) xn = -loge (1- vn) = -loge un

       λ             λ

where un = 1 — vHt and hence is itself a uniform random decimal number.

Thus, you generate a sequence of uniform random decimal numbers u1, u2,

u3. . . . , and by (9) compute xt, x2, x3, . . , , to obtain a random exponentially

distributed variable. A diagrammatic representation of the technique is shown
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The idea can also be applied to a probability mass function P(j), Suppose j =

0, 1,2, 3,..., so that

   x

(10) F (x) = ∑  p(j)

 J=0

hen the inverse function can be written as

(11) xn = j for F (j – 1) < un ≤ F (j),

where we let F( — l) = 0. For example, suppose the probability mass function

is the binomial distribution:

(12) p(j) = (k)pj (1 – p)k-j for j = 0, 1, ……, k,

           j

where 0 < p < 1, and k is a positive integer. In particular, assume k = 2 and p

=.5; thenp(0) = 1/4,p(1)1/2 and p(2)=1/4, so that by (11) you have

(0   for    0 < K» <   .25

0 for 0 < un ≤ .25
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(13) xn = 1 for .25 < un ≤ .75

          2 for .75 < un ≤ 1.

Since un, is a uniform random decimal number, there is a 1/4 probability that

un lies between 0 and .25, a 1/4 probability that it lies between .25 and .75)

and a £ probability that it lies between .75 and 1. A diagrammatic representation

of the technique is shown Of course, many continuous distribution functions

F(x} do not have analytic inverse functions as cioes the exponential

distribution. The Inverse Transform Method can still be applied in these

instances by employing a discrete approxima-tion to the continuous function,

that is, by storing the values of F(x) for only a finite set of x. The accuracy of

the approximation can be improved by interpolating between the stored values.

In several computer simulation languages (such as GPSS), you need only

specify this discrete approximation, and the corresponding random

phenomenon will be automatically generated.

85



Tabular Method. The rule in (II) is easily implemented for an electronic

computer by means of a few standard programming instructions. But if the

range of possible values for j is large, then an excessive amount of time may

be consumed in searching for they that satisfies the inequalities in (11). A

faster version of the Inverse Transform Method can be employed at the

expense of using part of the computer’s internal memory for storing a long

table. We illustrate the idea with the binomial example (13).

You can store the inverse function in computer memory in the form

0 for s = 1, 2, …, 25,

(14) G(s) = 1 for s = 26,27, … 75,

2 for s = 76,77,… 100.

Given a value of uni let da be the number formed from the first two digits of

un. Set sn = da + I, and let xn = G(fn). For example if ua = .52896. . . , then sn

= 52 + 1 = 53, and so *„ = G(53) = I in (14). Once the function G(s) has

been stored in memory, only a few calculations must be performed by the

com-puter to produce X
N
.

Method of Convolutions. Sometimes you can view a random variable

as the sum of other independently distributed random variables. .When this

is so, the probability distribution of the random variable is a convolution of

probability distributions, which may be easy to generate. (Occasionally, you

can obtain a workable approximation to a complex probability distribution

by using a weighted sum of independently distributed random, variables. For
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this reason, the approach aiso has been called the Method of Composition.)

To illustrate, consider a random variable having a gamma density function

(15) g(y) =  λ(λy)k-1e-λv , y ≥ 0, k a positive integer,

(k – 1)!

Such a variable can be considered as the sum of k independent random

variables, each drawn from the same exponential density specified in (6).

Consequently, adding k independent values of x„, as given by (9), yields a

random variable with the distribution in (15).

Similarly, a binomial random variable, as specified in (12), can be

viewed as the sum of k draws of a variable described by

(16) i = 1 with probability p

 0 with probability 1 – p.

You can therefore obtain a binomially distributed variable by adding k

values of i. Each of these values for i is determined by the rule

(17) i = 1 for 0 < u ≤ p

0 for p < u ≤ 1,

where u is a uniform random decimal number.

Method of Equivalent Transformations. Sometimes you can

generate a random variable by exploiting a correspondence between its

probability distribution and that of a related random variable.

For example, consider the Poisson distribution written in the form
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(18)(18)(18)(18)(18) p(j) = (λΤ)je-λΤ for 0, 1, 2, …,

  J!

which has mean λT. In terms of the waiting line models you can interpret j as

the number of customers arriving during a period of length T, where the

interarrival times for the customers are independently and identically dis-tributed

exponential random variables with the density function specified in (6).

Consequently, you can generate a Poisson distributed random variable by

making successive independent draws of an exponentially distributed variable

— using (9) to obtain such values. You stop making draws as soon as the

sum of j + 1 of these variables exceeds T. The distribution of the resultant j is

(18) Explain why.

Normally distributed random variables.  Unfortunately,   the

distribution function for the Normal density with mean 0 and variance 1,

(19) F(x) =       1  e-t2/2 dt,

     -∞ 2Π

does not yield an analytic formula for the inverse function F-1(a). Of course

the Inverse Transform Method can be used by employing a discrete

approximation, and interpolating between values. But there are other methods

for generating a Normally distributed random variable. Only a few are

presented here.

One technique requires generating a pair of independent uniform random

decimal numbers u and v, and in turn yields a pair of independently distributed
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Normal random variables x and y having the distribution function in (19).

Specifically, compute

(20)    x = (-2 loge u)1/2 cos 2Πv

           y = (-2 loge u)1/2 sin 2Πv

Alternatively, you can apply the Method of Convolutions and invoke the

Central Limit Theorem. This technique employs the sum of k independently

and identically distributed uniform random variables. Specifically, let uit for i

= 1, 2, . . . , 12, be independent draws of a uniform random decimal number;

then compute

      12

(21) x = ∑ ui – 6

      i-1

The distribution of x will have mean 0 and variance 1, and will be approximately

Normal. The approximation is poor for values beyond three standard

deviations from the mean.

A third approach is to compute

(22)   x = [ (1 – u)-1/6.158 – 1] -1/4.874 – [u-1/6.158 – 1]-1/4.874

.323968

where u is a uniform random decimal number.

Correlated random variables. There are straightforward ways to

generate variables from a multivariate Normal distribution, and from other

joint probability distributions, as well as random variables having serial
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correla-tion. The techniques go beyond the scope of this book, but can be

found in most texts on computer simulation.

3.6 HOW TO MARK TIME

A dynamic systems simulation model can be structured in either of

two ways. One approach, which is the more obvious, views simuiated time

as elapsing period by period. The computer routine performs all the

transactions taking place in Period t, and then proceeds to Period t -j- 1. If

the events in Period t imply that certain other transactions are to occur in

future periods, then the computer stores this information in memory, and

recovers it when the future periods arrive. You already saw an illustration of

this approach using fixed-time increments in the stock market simulation of

Sec. 21.4. Another example is given below.

In some simulations, the periods have to be relatively short. But there

may be many of these periods in which no transactions occur. For such

models, there is a second approach that lets the simulation advance by variable-

time incre-ments. This idea is illustrated in the second example below.

Time-step incrementation — inventory model.  Suppose you wish

to evaluate the operating characteristics of a proposed inventory replenish-ment

rule. Assume that you can specify the probability distribution for each day’s

demand, and that daily demand is identically and independently distributed.

If demand exceeds the amount of inventory on hand, the excess represents
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lost sales. Let us postulate that, during a daily time period of the simulation

model, the sequence of events is: first, any replenishment order due in arrives;

then demand occurs; and finally, the inventory position is reviewed, and a

reorder is placed if the replenishment rule indicates it should be. An order

placed at the end of Period t arrives at the start of Period t + L, where L is

fixed and L > 1.

To keep the exposition simple, assume that the replenishment rule is to

order Q units whenever the amount of inventory on hand plus inventory due

in is less than or equal to s, where Q > s. Verify that the inequality Q > s

implies there is never more than one replenishment order outstanding. (Since

our focus here is simulation and not inventory theory, we do not comment

further on the rea-sonableness of the replenishment rule; we do point out,

however, that the model is an approximation to that in Sec. 19,6.)

A simulation model of this inventory system is easily constructed by

stepping time forward in the fixed increment of a day, beginning with Day 1

(f — I). To start the simulation, you must specify the initial conditions of the

level of inventory on hand, the amount due in, and the associated time due in.

You must also designate the number of periods that the simulation is to run;

let the symbol “HORIZON” denote this value.

A flow chart of the simulation is shown in Fig. 21.8. The initializing is

done in Block 1. For example, you can lei the amount INVENTORY ON-

HAND = Q,, the AMOUNT DUE-IN = 0, the TIME DUE-IN = 0, and t = 1.

Verify that when Block 2 is reached, the answer is “No,” and you proceed at
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Block 4 to generate a value of demand q for Day 1. Here is where you use an

approach from the preceding section.

At the end of Day 1, INVENTORY ON-HAND is diminished by q,

unless q exceeds the amount available, in which case the amount

of-INVENTORY ON-HAND becomes 0. This calculation is performed at

Block 5.

At Block 6, a test is made to determine whether a replenishment order

is to be placed. If so, the AMOUNT DUE-IN becomes Q., and the TIME

DUE-IN becomes I + L(since at the start t = 1), as indicated in Block 7. If a

replenish-ment order is not placed, you continue directly to Block 8, where

the time step is incremented by 1; that is, the simulation clock is advanced to

Day 2.

If Day 2 goes beyond the HORIZON you specified, the simulation

terminates. Assuming that you set the HORIZON > 1, the simulation returns

from Block 9 to Block 2.

At some day, TIME DUE-IN will equal (, and then the simulation

branches from Block 2 to Block 3, where the amount of INVENTORY ON-

HAND is augmented by Q, and the AMOUNT DUE-IN is reset to 0.

The flow chart does not indicate where you would collect statistical

data on the operating characteristics of the system. In programming the model,

you would keep a tally at Block 5 of the level of INVENTORY ON-HAND at

the end of a day, as well as of the amount of lost sales and the number of

days when a stockout occurs. You would tabulate at Block 6 the number of
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days an order was placed.

Then, before terminating the simulation at Block 10, you would summarize

these tallies into frequency distributions, along with their means, standard

deviations, and other statistical quantities of interest.

Suppose the item is a “slow mover,” that is, there is a high probability that

demand q = 0 on any day. Then the time-step method may be inefficient,

because there will be many consecutive days when the computations in Blocks

2, 5, and 6 will be identical. Such redundancies can be eliminated by using
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the technique illustrated below.

Event-step incrementation—waiting line model. Suppose you want

to examine the operating characteristics of the following queuing sys-tem,

which is simple to describe but proves difficult to analyze mathematically.

Customers arrive at the system according to a specified probability distribution

for intcrarrival times. The system has two clerks, A and B. When both servers

arc busy, arriving customers wait in a single line and are processed by a first

come, first served discipline. The service times for each clerk can be viewed

as indepen-dent draws from a specified probability distribution; but each

clerk has a different service time distribution. Neither the imerarrival nor the

service time distributions are exponential.

After thinking about the way this system evolves over time, you will

discover that the dynamics can be characterized by three types of events: a

customer’s arrival, a customer’s service begins, and a customer’s service

ends. Each event gives rise to a subroutine in the computerized version of the

system,

A simulation model using variable-time increments also contains a

master program having an event list, which is repeatedly updated as the

master program switches from one event subroutine to another. At the start

of a simulation run, the event list is usually empty; but at a later instant in the

run, it indicates when some of the future events are to occur. The role this

event list plays will be clearer as you examine the event flow charts
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Assume that you specify the initial conditions of the simulation as: a

customer arrives, say, at Time 0, there are no customers in line, and both the

clerks are free. The master program starts with the event subroutine

CUSTOMER AR-RIVES, shown as Block 1 in Fir. interarrival time at Block

2. The informa-tion that this next arrival event occurs at the implied future

time is entered into the event list. A determination of whether both clerks are

busy is made in Block 3. Since the answer is “No” at the start, the master

program switches to the event subroutine SERVICE BEGINS, as indicated

in Block 4. To keep the flow diagram uncluttered, we have suppressed the

details that would specify that the computer must keep track of which clerk

serves the customer, an item of information that is needed when the master

program switches to the subroutine SERVICE BEGINS in Block 7.
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The first instruction in SERVICE BEGINS is at Block 8, which records

that the selected clerk is now busy. Then the service time of the customer is

determined in Block 9, using the appropriate service time probability

distribution for the selected clerk. The information that a service-ends event

occurs at the implied future time is entered into the event list. The subroutine

then transfers back to the master program with the instruction in Block 10 to

find the next imminent event in the event list. So far, this can be either the

arrival of the next customer or the completion of service of the first customer.

Suppose it is the latter, so that the master program switches to the subroutine

SERVICE ENDS in Block 11.

The first instruction in SERVICE ENDS is at Block 12, which records

that the server is now free again. Then a test is made at Block 13 to see

whether the waiting line designated by the symbol “LINE” is empty. Verify

that the answer is “Yes.” Also check that when control switches back in

Block 14 to the master program, the next imminent event will be the arrival of

the second customer.

Later in the run, the LINE will contain customers, and then the answer

is “No” at Block 13. As a result, the length of the LINE is decreased by 1 in

Block 15, and control transfers in Block 16 to the subroutine SERVICE

BEGINS. Explain what can happen subsequently if Block 10 leads to the

CUSTOMER ARRIVES subroutine.

A simulation run progresses as each event subroutine either switches

to another event subroutine or instructs the master program to increment
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time to the next imminent event. As you can imagine, considerable skill is

required to write a simulation program that uses event-step incrementation.

In particular, expertise is needed to program the updating of the event list

efficiently as future events are generated by the subroutines. Many simulation

languages of the type discussed in Sec. 21.8 already include a master program

that maintains an updated list of events; to employ these languages, you only

have to specify the separate event subroutines.

We have glossed over a number of details in describing the queuing

simulation model. We briefly mention a few of these before going on to the

next section, which considers the design of simulation experiments. First,

note that the charts do not show a test for terminating a simulation run. Of

course, you must include s.uch a calculation; you might state it by means of

a time horizon or limit on the number of customers arriving. Second, observe

that tabulating statistics on the operating characteristics is not an easy process

because of the variable-time increments between successive events. Care

must be taken to mea-sure, for example, not only the frequency with which

the waiting line has n customers, but also the associated fraction of the

simulated horizon. Finally, recall that the initial conditions were chosen

arbitrarily. If the queuing system in fact tends to be congested, then the effect

of letting LINE = 0 at the start will take a while to wear off. Specifying

appropriate initial conditions is part of the tactics of designing a simulation

experiment.
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3.7 DESIGN OF SIMULATION EXPERIMENTS

After constructing a simulation model, you face the difficult task of

designing a set of runs of the model and analyzing data that emanate from

these runs. For example, you must decide the

• Starting conditions of the model.

• Parameter settings to expose different system responses.

• Length of each run (the number of simulated time periods and the of

amount of elapsed computer time).

• Number of runs with the same parameter settings.

• Variables to measure and how to measure them.

If you are not careful, you can expend an enormous amount of computer

time in validating the model to see whether it behaves like a real system, in

estimating the system responses of the model to different parameter settings,

and in discover-ing the response relationships among these parameters. Even

then, and even after collecting a vast amount of data, you still may not have

sufficiently accurate infor-mation to guide a managerial decision.

Surprising as it may seem, there has been relatively little development

of statistical techniques aimed at constructing efficient designs of simulation

experi-ments. By and large, professional management scientists have tried to

“make do” with standard statistical tools to analyze experimental data from

simulations. These techniques at best are only moderately successful, because

most of them are not constructed for the analysis of multidimensional time

series data. In particular, many (but not all) of the commonly used statistical
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tools assume that separate observations of the variables being measured are

uncorrelated and drawn from a Normal distribution with the same parameters.

We cannot possibly summarize all of the standard statistical techniques

that can be applied to analyze simulation data. Instead, we discuss certain

design procedures that enable you to employ many techniques ordinarily

found in a this section requires a. knowledge of statistical methods modern

text on experimental statistics. We also give a brief a statistical approaches

that are particularly well suited to the simulations.

In search of Normality, Suppose you have constructed a queuing

model to test two different service disciplines. For example, your application

may-be a model of a job-shop production system, and the two disciplines

lor processing orders are “first come, first served” and a particular priority

scheme. Assume further that the difference in the two disciplines is to be

measured solely in terms of the average waiting lime (exclusive of service)

for orders. How might you ascertain what this difference is ?

This question is more difficult than it may appear at first glance. Since

your measurements will be random variables, you must consider their statistical

variability and be on the watch for certain kinds of complications. In any

single simulation run, the waiting times of successive orders will be serially

cor-related (sometimes called autocorrelated) ; that is, there is a greater

like-lihood thai ihe (n + l)st order will be delayed if the nth order waits, than if

the nth order commences service immediately. The extent of variation in
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waiting times may itself be affected by the two different disciplines. The

model may be unstable and the trend of waiting times may be ever upward.

Even if the system does approach equilibrium, which may require a

considerably long run, wailing limes need not be Normally disiributed. To

ignore all these considerations and simply compare the average wailing times

from a simulated run of each discipline is to court disaster.

Suppose you can demonstrate, on theoretical grounds, that ihe queuing

model is stable, and thai the effects of the starting conditions eventually fade

away. Then it can be proved that even though the waiting times of successive

orders are autocorrelated, the expected value of the sample average of these

waiting times, taken over a sufficiently long run, is approximately that implied

by the equilibrium distribution.

More precisely, let *,, for i — 1,2, . . . , q, represent q successive data

observa-tions of ihe random variable in a given simulation run, and define the

time-integrated average as

       q

(1) x = ∑ xt .

      t=1

Let u represent the so-called ensemble mean of this random variable, as

calculated from the equilibrium distribution. Then for q sufficiently large, we

have the approximation

(2) E[x] ≈ µ

Furthermore-, il can be shown that the sampling distribution of x is
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approx-imately Normal. You can calculate an estimate of the variance of this

dish ibuiion as follows. Assuming that the process is covariance-stationary

(the covariance between xt and xt+k depends only on k and not on t), and that

the associated autocorrelations tend to 0 as k grows large, you first estimate

these autocorrelations by :

                              q-k

(3) rk =     1  ∑ (xt+k – x) for k = 0, 1, 2, …, M,

              q-k     t=1

where M is chosen to be much smaller than q. (Unfortunately, a discussion

of how much smaller M should be is too complicated to be given here, but

can be found in the statistics literature under the subject title autocorrelation

and spectral analysis.) The appropriate estimate of the variance of x is

         M

(4) Vx =  1  r0 + 2 ∑ (1 – k/M)rk

                  K=1

Note that if, in fact, the time series is known to be free of autocorrelation,

then the terms rt, for k = 1,2,..., M, would be eliminated from (4). The presence

of positive autocorrelation, however, implies greater statistical variability in x

as compared with the case of uncorrelated observations.

We now can look at two commonly employed approaches to statistical

analyses. For the first method, consider making one very long run of each

service discipline; specifically, take T consecutive observations in each run.

Then you can apply (1) through (4) with q = T. If T is sufficiently large, the

101



statistic (x — u)J/vPs is approximately Normally distributed with mean 0 and

variance I. This fact allows you “to perform standard statistical procedures

for hypothesis testing and construct-ing confidence intervals for fj., as well

as to use modern Bayesian analysis. To compare the effect of the two service

disciplines on average waiting time, you can apply standard statistical theory

for discerning -the difference between the means of two Normally distributed

variables that have possibly unequal and estimated variances.

For the second method, consider making ;i independent replications, that is,

n different runs. Suppose you want to have T observations in luta from the n

replications and that you take Tjn observations from each run (assume Tjti is

an integer}. Then for each replication p. calculate a time -integrated average

xv, for p = 1, 2, . . . , n, using (!) with q = T/n. Afterwards compute the grand

average

      n

(5) x = ∑ xp

     P=1  n

For any T/n, if n is large enough, the sampling distribution of x is approximately

Normal due to the Central Limit Theorem for the mean of independently and

identically distributed random variables (namely, the x0). If you let Tjn be

large enough, the approximation is improved because of the near -Normality

of the sampling distribution for each xt. What is more, it follows from (2) that

when T/n is sufficiently large,
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(6)   E[x] ≈ µ.

To determine the accuracy of x, you can estimate the variance of the

sampling distribution of x from the variation in xp, using

               n

(7) Vx = 1     ∑ (xp – x)2

         N        n – 1

Once again, if n and T are large, the quantity (x — u)/vVj is

approximately Normally distributed with mean 0 and variance 1, and so the

same sorts of sta-tistical analyses can be performed as in the one-long-

replication procedure.

Although the preceding discussion has related to a comparison of two

different service disciplines in a job-shop model, these statistical approaches

are generally applicable. In summary, assuming that the simulated system

does approach an equilibrium, then under widely applicable conditions, you

can legitimately average the successive observations of a simulated time series.

As the number of observa-tions grows large, this time-integrated average, in

a probabilistic sense, converges to the desired ensemble mean implied by the

equilibrium, distribution. (You can find the subject of probabilistic convergence

treated in detail in texts on stochastic processes under the heading ofergodic

theorems.} And furthermore, under widely applicable conditions, the time-

integrated average is approximately Normally distributed. {You can look up

the topic of Normal approximations in advanced statistics texts under the

heading of the Central Limit Theorem for correlated random variables.)
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Therefore, in many situations you can apply Normal-distribution theory

if you either replicate simulation runs and then take a grand average of the

individual time-integrated averages, or if you take a single time-integrated

average from a very long run. A comparison of the relative merits of these

two approaches as well as of other methods goes beyond the scope of this

text. (The issues involved con-cern ihe amount of bias introduced by the

starting conditions of the simulation and the stability properlies of Vx)

Sample size. Assume that you take a sufficient number of replications

or let the simulation run long enough to justify using the Normal distribution

to approximate the. sampling distribution uf the calculated averages. You still

may need even more replications or a longer run to obtain the accuracy you

require for decision analysis. The determination of an appropriate sample

size for a simula-tion is no different from sample-size determination in ordinary

statistical problems. Therefore, you can find the question discussed in detail

in every text on statistical analysis.

We do emphasize, however, the influence of the number of observations

on the accuracy of the statistical estimates. Whether you use the single-long-

run ap-proach, depicted in (1) through (4), with q = T, or the n-replication

approach, depicted in (5) through (7). with q = T/n. the true variance of the

sampling dis-tribution for the calculated mean equals the reciprocal of the

total number of observations T multiplied by another factor that is independent

of T. Therefore, to reduce the standard deviation of the sampling distribution
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of either x or 5 from a value of s, say, to (.l)s, you must increase the total

number of observations to

100T. More generally, to reduce the standard deviation by a factor of I//, you

have to take/^ as many observations.

Usually, you cannot know how many observations to take at the start

of a simulation., because you do not know the factors that multiply I/T in the

expres-sions for the true variances of the sampling distributions of x and x.

For this reason, a commonly used procedure is to sample in two stages. In

the first stage, you take a relatively small number of observations, and thereby

calculate an estimate of the factor that multiplies 1/7'. With this estimate, you

determine the remaining number of observations to take in the second stage

to give the required accuracy. In actual applications, you may be surprised to

find how many observations are needed to yield reasonable accuracy in the

estimates. As pointed out above, the root of the difficulty is often the presence

of positive autocorrelation. We discuss below a few approaches for coping

with inherently large variation in the statistical estimates.

Variance-reduction techniques. There are a number of ways to

improve the accuracy of the estimate of the ensemble average for a given

number of data observations. These leehniques arc explained in texts on

simulation under the heading of Monte Carlo or variance-reduction

methods. Their use in management-oriented simulations is not yet widespread.

We give only a couple of illustrations to suggest what is involved.
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To assist in the exposition, we return to the example above of simulating

a job-shop production system. Suppose, for the sake of definiteness, that

you arc simulat-ing under the “first come, first served” discipline, and that

you want to estimate the average waiting lime of an order.

The first device we examine is sometimes called the Method of

Control Variates, or alternatively, the Method of Concomitant Informa-tion.

W’c present a highly simplified example of the idea. By elementary

consid-erations you know that the interarrival times and the waiting times of

each order are negatively correlated - roughly put, the longer the time since

the previous order arrived, the shorter the waiting time of the latest order.

State why. Therefore, sup-pose in a particular simulation run that the

observed average of interarival times is greater than the true average.Then

you can use this information to add a posi-tive correction to the observed

average value of the waiting times. Similarly, suppose the observed average

of interarrival times is smaller than the true average. Then you can make a

negative correction to the observed average value of the waiting times. The

technique explained below calculates either a positive or negative correction,

whichever is appropriate.

Specifically, from the input data for the simulation you have the value

of the true mean interarrival time, say, 1/X. Then let xt represent the waiting

time of Order t, and^, the mlerarrival time between Orders t — 1 and t.

Consider the measurement
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(8) zt = xt + yt -   1 ,

   λ

and its time-integrated average

  T

(9) z = ∑zt =  ∑ xt + yt – 1  = x + y –  1

 t=1              t=1                          λ

Note that the expectation of z is the same as that of x, since y is an unbiased

esti-mator of I/A. So you can use z as a consistent estimate of the average

waiting time. But if xt and yt, are sufficiently negatively correlated, then the

variance of z will be less than the variance of x. A sample estimate of the

variance of z can be calculated by assessing the variation in z from several

replications, or by sub-stituting zt for x, in (I), (3), and (4) above.

A more sophisticated method than (8) is to calculate

z, = xt, + a(yt — l/^)> where now the value of a is specifically chosen to

rnake the variance of z small. Under ideal conditions, a can be set such that

Var (z) = Var (x)(l — p2}, where p is the correlation between x and jr.

Before going on, we caution that the preceding example is meant only

to be illustrative of the control variate idea. If you actually apply the technique

to a queuing model like a job-shop production system, you should select a

control vanate that would absorb more of the sampling variation that would

be accounted for by the inlerarrival times of orders. In fact, you probably

should use several control variates instead of only one.
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The second variance-reducing device we examine is called the Method

of Antithetic Variates. The aim here is to introduce negative correlation

between two separate replications of the simulation, so that the variance of

the combined averages is less than if the replications were independent. {The

idea can also be extended to more than two replications.)

Suppose in the job-shop production simulation that the interarrival

times are determined by the Inverse Transform Method of Sec.21.5. Let ut,

for t = 1, 2, . . . , TV2, be the corresponding uniform random decimal

numbers for generating the interarrival times yt in the first simulation run of

the model. Then in the second simulation, by using the values 1 — ut, which

are also uniform random decimal numbers, the two time-integrated sample

averages will be negatively correlated. State why.

Notice that the two simulations involve a total of T observations.

Whether the mean of the two separate negatively correlated averages has less

statistical varia-tion than does the average of T autocorrelated observations

from a single run depends on the extent to which the antithetic variates U
L
 and

1 — u, induce nega-tive correlation. Thus, the answer depends on the particular

model being simu-lated, and the specific values of the model’s parameters.

The crucial factor in deciding when to use variance-reduction techniques

is whether, in fact, a given approach diminishes the variance of the estimates,

and if so, whether the reduction is sufficient to warrant the extra computations

re-quired.
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Multivariate analysis. The discussion so far has been partly

mislead-ing in that we have discussed examples involving the measurement

of only a single operating characteristic for a system, such as average waiting

time, and the comparison of only two alternatives, such as two different

service disciplines. In real applications of simulation models, there are usually

several operating char-acteristics of relevance and a multitude of alternatives

to evaluate.

Multivariate analysis is by no means a new subject in statistics literature,

but techniques for the analysis and design of experiments involving multivariate

time series arc just emerging. The reason for this relatively late development

is that only recently has the availability of electronic computers made it practical

to perform .such data analyses.

By employing the approaches previously described to yield

measurements that are Normally distributed, you have at least partially opened

the storehouse of standard multivariate statistics. But still it is no simple

matter to design a simulation experiment that can legitimately apply, say. latin

squares, factor analysis, or multivariate regression.

Progress in devising helpful tools for multivariate analysis and complex

experi-mentation is being made on two fronts. One important development,

known as spectral analysis, aims at exploring the nature of serial correlation

and periodicities in time series. The other front seeks methods for finding

optimal levels of the decision variables; two such developments are response

surface and stochastic ap-proximation techniques. You can  find these
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developments explained m the technical statistics literature.

3.8 COMPUTER  LANGUAGES

Unless you become both an operations research specialist and a

computer-programmer, you personally will not have to translate your simulation

model into a workable computer program. You should, however, know the

major steps involved in this translation.

If your model is fairly simple and is a common application of simulation,

then a so-called canned program may be available in which all you need do

is specify a modest amount of input information. The best examples of this

type of program ;ire inventory control simulators. There are a number of

canned programs that test the effectiveness of inventory replenishment rules.

To employ these routines, you must supply the specific rules, such as “when

down to 4, order 10 more/’ or a formula to calculate the rules, given demand

data. You also supply as part of the input either actual historical data on

customer demand or a proba-bility distribution for demand. The computer

program then simulates the system for whatever number of time periods you

designate, and calculates statistics such as the frequency of stockouts, the

average inventory level, the number of orders placed, etc.

More typically, your model will require some special computer

programming. If the simulation is only moderately complex, is to be used

infrequently, and is to be programmed by personnel inexperienced in simulation

techniques, then using a general purpose language, such as FORTRAN, PL/

110



1; or ALGOL, is probably the easiest way to accomplish the task. This type

of computer language is familiar to all programmers of scientific problems; a

programmer requires only the details of your model to translate it into computer

language.

There is an important drawback to employing languages like

FORTRAN, PL/1, and ALGOL. The programmer has to write, from scratch,

subroutines for certain kinds of calculations that are included in almost all

simulations. In the vernacular, the-programmer has to “reinvent the wheel/’

For example, most simulations require generating random variables, and so a

subroutine is needed for each such variable in the model. In addition, since

you want to collect statistics on the system’s operating characteristics,

subroutines have to be written to calcu-late these statistics, and a fair-sized

associated programming effort must be ac-complished to format the output

of the simulation runs. Even a moderately complex model requires careful

attention in organizing the data within the computer memory, writing a master

routine for sequencing events in their proper order, and keeping track of

simulated time within the computer.

Several computer languages have been developed for the specific purpose

of easing the programming task of building a simulation model. These

programs require that you specify only the probability distribution functions,

and they automatically generate random events according to the distributions

you indi-cate. Several of the languages collect statistics on whatever operating

characteristics you want to examine, and report the results on predesigned
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output forms. These languages also properly sequence events and keep track

of time as it elapses in the model.

With such advantages, you may wonder why all simulations are not

pro-grammed in one of these languages. At present, there are several good

reasons. One is that the languages differ to some extent from FORTRAN.

PL/I or ALGOL, and hence require a programmer to become familiar with a

new system.

One of the most powerful simulation languages is SIMSGRIPT; it

requires a knowledge of FORTRAN and is fairly complex because of its

considerable flexibility. At the other extreme of complexity is the General

Purpose Systems Simulator (GPSS). It is a self-contained language that is

easy to learn by beginners, but, accordingly, is restricted in its scope.

A second reason for not employing a simulation language is that it may

not be available on the computer you want to use. This is rarely the determining

factor today because SIMSGRIPT and GPSS programs are available for

many com-puters, and there is widespread access to computer service bureaus

that have these programs.

A third reason becomes important if the simulation is complex and is

to be run frequently. A price you pay in using a simulation language is that it

often runs slowly and consumes large amounts of a computer’s high-speed

memory. As a result, you may find it costly to perform many experiments,

and your model may literally not fit into the available memory capacity of the

computer.
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As further technical improvements in simulation languages continue,

and as management scientists gain more experience in employing computer

simulation, it seems likely that such languages will be the common mode of

solution.

3.9 DEUS EX MACHINA

So far we have discussed only simulation models that to some degree

represent approximations to real situations. Their orientation has been to

provide a simu-lated environment in which to test the effects of different

managerial policies. A related class of simulation models tries to encompass

goal-seeking or purposeful behavior. These models display what is termed

artificial intelligence.

Some of the popular examples of artificial intelligence programs include

computer routines for playing such games as chess and checkers. There also

have been a few applications to managerial problems. One group of

applications focuses on the behaviora. patterns of individual dec is ion-makers.

A measure of 3uch a model’s success is how well it yields decisions agreeing

with those of (the individual whose behavior is allegedly reprcsenled.

Another group of applications deals with complex combinational

problems, like those discussed. 13. They are sometimes referred to as heuristic

programming methods. For example, several of these models have been

designed to derive good schedules for intricate sequencing problems. The

follow-ing illustration suggests how they work.
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Suppose the goal of the model is lo schedule orders through a job-

shop with maximum equipment efficiency. The computer starts by tentatively

.scheduling a few orders. Tt ihcn selects another order to schedule, and

examines various feasibility restrictions, due dates, and equipment efficiency.

As a consequence, the cf nputer may have to reschedule some of the previous

orders. In brief, the computer model uses, a number of “look-back” and

‘’look-ahead” rules, and pro-ceeds by educated I rial-and-err or toward a

feasible schedule. If the rules are sufficiently sophisticated, then usually the

schedule is good. Frequently, the schedr ule is nearly optimal according to

the specified efficiency criterion, assuming the heuristic rules are promulgated

with reference to this criterion.

      Management scientists have also employed computer models for

operational gaming. Some of the early applications, known as management

games, involved several teams of players, each representing a business firm.

A team made decisions about pricing, production quantities, advertising, etc.

The computer served the two-fold purpose of keeping the accounting records,

and of calculating the net impact of the decisions made by the several teams.

More recently, such applications have been used to train personnel in

administrative procedures, and to explore the system dynamics of an industry

in which the competing firms are employing specified strategies.
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CHAPTER 4
Advanced Topics in Network Algorithms

4.1 MAXIMUM FLOW THROUGH A CAPACITATED

NETWORK

In the development of sophisticated techniques to solve difficult network

models, analysis of the following problem is of central importance: given a

network with arc capacities, where Node 0 is the source of all flow and Node

p + 1 is the sink, what is the maximum amount of flow that can be routed

from source to sink? Formally, the model is described as

(1) maximized F

subject to
(2) ∑ xoj = F for k =0

        (0,j)  in
        network

(3)         ∑ xkj  −  ∑    xik = 0 for k = 1, 2, …, p
       (k,j) in (I,k) in
       network   network

(4)         − ∑ xi, p+1 = − F for k = p + 1
(i, p+1) in
network

(5) 0 ≤ xij ≤ uuij for all (i.j) in network,
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where uij are nonnegative integers.

A simple method can be used to solve the problem. To make the

basic idea of the

algorithm transparent, assume

(6) uij = 1 for all (i,j) in network.

Once you see how to find a solution with (6), you will have no difficulty in

understanding the minor modification required to solve the general case.

Begin with any feasible flow. The steps in the technique either determine

that the flow is maximal, or discover another solution with increased flow:

Step 1. Starting at Node 0, put a ( + ) on each arc (0,j) without flow

and label Node j with a check mark (√). Put the mark (√) on Node 0.

Step 2. Consider any Node j that is labeled (√) Put a (+) on every

flowless outward are (j, k) if Node k is not labeled, and label Node k with (√).

Then put a (− � ) on every inward arc (k,j) with flow if Node k is not labeled,

and label Node k with (√). Finally, cross the check (√) on Node j to indicate

that the node also has been spanned.

Step 3. Continue with the operation in Step 2 until Node p + 1 is

labeled or all labeled nodes have been spanned. A breakthrough occurs as

soon as Node p + 1 is labeled, because a flow-augmenting path has been

discovered from Node 0 to Node p + 1. The path can be found by tracing

back from Node p + 1 the arcs that have been marked with a ( + ) or a (−).

Add a unit of flow on each arc with a (−) and remove the flow from each arc

with a (−). Return to Step 1. If, however, Node p + 1 remains unlabeled at the
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termination of Step 2, then the current solution is maximal.

There are several ways to proceed. Follow the one below by making

light pencil marks on

(i) Scan Node 0: put + on arcs (0, 4) and (0, 5) and label Nodes 4 and 5

   with (√) Mark Node 0 as (√).

(ii) Scan Node 5: put — on arc (3, 5) and label Node 3 with (√). Mark

              Node 5 with (√).

(iii) Scan Node 3: put — on arc (1, 3) and label Node 1 with (√).Mark

     Node 3 with (√).

(iv) Scan Node 1: put + on arc (1, 2) and label Node 2 with (√). Mark

      Node 1 with (√).

(v)  Scan Node 2: put + on arc (2, 6) and label Node 6 with (√). A flow

     augmenting path has been found.
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Check your work with the result in Fig. 1.2. The solution therefore

improves if you

(i) Add a unit of flow on the arcs (2, 6) and (1,2).

(ii) Remove a unit of flow from arcs (1, 3) and (3, 5).

(iii) Add a unit of flow on arc (0, 5).

The revised solution is given in Fig. 1.3 on the next page.

Verify that the flow is now maximal by repeating the steps of-the

algorithm. The sequence of nodes scanned will be Nodes 0, 4, and 5. It will

not be possible to label any other node.

To remove the arc capacity restriction (6), the algorithm is modified in

two respects. Put a (+) on every outward arc with less than capacity flow in

the scanning process. Then, when a flow-augmenting path has been found,

route as much flow as possible on the path, taking into account the amount

of unused capacity on each (+) arc and the current level of flow on each

(−) arc. Thus for the maximum flow problem (1) through (5) the algorithm

now terminates according to the following stopping rule.

Scanning
Process.
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STOPPING RULE. Every arc from a spanned node to an unlabeled node

is at its full capacity and every arc from an unlabeled node to a spanned node

is at zero flow.

At each iteration, Step 3 results either in one or more units of increased

flow or in termination; therefore the algorithm is finite, since the maximum

possible flow is bounded. It remains only to show that when the algorithm

terminates, the solution in fact is optimal. To do this, partition all the nodes

into two classes, say, C0 and Cp+l. Put Node 0 in C0 and Node p + 1 in Cp+1.

Such a separation is called a cut, and we define the cut capacity as the sum

of all the uti such that Node i is contained in C0 and Node j in Cp+1.

The cut capacity for any partition provides a limit on the maximal

value of flow possible. (If the cut capacity equals 0, then Node 0 literally is

cut off from Node p + 1 and no flow is possible between source and sink.)

Consequently, if a feasible flow equals any cut capacity, the flow must be
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optimal. Furthermore, because of the conservation of flow restrictions (2),

(3), and (4), the value of F in any feasible routing must equal the sum of the

flows along all arcs (i,j) minus the sum of the flows along all arcs (j,i), where

Node i is contained in C0 and Node j in Cp+l.

With the above observations, the optimality proof is at hand. Consider

the feasible solution when the algorithm terminates. Define C0 to be all the

spanned nodes, and Cp+l the remaining nodes. According to the Stopping

Rule, there is no flow from any node in CP+I to any node in C0, so the total

flow equals the sum of the flows on all arcs from nodes in C0 to nodes in

Cp+1. All of these arcs contain flows at capacity levels; therefore the total

flow in the solution equals the cut capacity, and no further improvement is

possible. The preceding argument is summarized by the fundamental result

below. MAX FLOW/MIN GUT THEOREM : The maximum flow F in the network

structure (2) through (5) is equal to the minimal cut capacity relative to the

source and sink. A corollary result is that the algorithm results in integral

values for all xij.

4.2 SOLUTION OF THE ASSIGNMENT MODEL

Recall the assignment model, discussed in detail in Sec. 6.4:

(1) minimize

subject to

(2)                = 1       for i = 1, 2, . . ., n

        n
     ∑  ∑  cijxij
     i=1

 n

 i=1

        n
     ∑  xij
     j=1
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        n
     ∑  xij
     i=1

(3)     for i = 1, 2, . . ., n

(4)      xij = 0 or 1    for all i and j.

By the nature of the problem, a feasible solution contains only n

variables equal to 1, whereas a basic solution includes n + n − 1 variables.

Consequently, when the simplex algorithm for networks is applied to the

assignment model (1) through (4), each basis contains n — 1 routes at zero

level. This observation suggests that the special structure of the assignment

model is not fully exploited by the simplex algorithm. In this section, three

other approaches will be explained.

The first makes use of the maximum flow problem of the preceding

section. The second combines the principles of the maximum flow and

shortest-route algorithms. The third demonstrates a further connection between

the assignment problem and the shortest-route problem. The methods will be

illustrated by an example, which is first solved by the simplex algorithm to

provide a basis for comparison. As you will learn in Sec. 1.3, the three

approaches are of additional significance because they generalize to other

network optimization models.

Simplex algorithm. Consider the assignment problem shown If you

apply the procedure explained in the advanced material of Sec. 7.4 for

calculating relative costs to assist in picking an initial basic solution, you

obtain the amounts.  A starting basis is exhibited. Notice that three routes (in
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the second row) are at zero level, indicating degeneracy. You can follow the

iterations by examining which contain the succession of improvement

potentials and trial solutions. Observe that the value of the objective function

does not change until the final solution.
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Maximum flow approach. An alternative method is based on the

maximum flow algorithm in the preceding section. for finding a good initial

solution. The technique, in bare outline, consists of two steps:

Step 1. Given row constants ui, for i = 1, 2, . . . , n, and column

constants wj, for j = 1,2, . . . , n, yielding nonnegative relative costs

(cij − ui − wj) ≥ 0, determine whether a feasible solution exists using only

routes with relative costs equal to 0. If so. stop, since the solution is optimal;

otherwise go to Step 2.

Step 2. Revise vi and wj such that at least one new route has relative

cost equal to 0. Return to Step 1.

The details of each step are explained with reference to the previous
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example. You can always begin Step 1 with the constants used by the method

for selecting an initial solution. However, in order to compare this approach

with

the simplex algorithm, it is convenient to start with the values indicated

The maximum flow algorithm is employed in Step 1 to find whether

there exists a feasible solution using only routes with 0 entries Tabular short-

cuts

are available to carry out the procedure; but since the main purpose of this

discussion is to make clear how the maximum flow model is of value, the

exposition will not streamline the format to aid the calculations.

A network flow diagram comprised only of the routes with relative

cost equal to 0 is constructed The node designation ri, corresponds
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to Row i and similarly kj to Column j. All arcs out of the source node and into

the sink node have capacity 1, corresponding to the row and column

constraints of the problem.

If the maximum flow for the network were four, the corresponding

routing would be an optimal assignment, since a unit of flow gn arc (ri, kj)

would imply xij = 1. A trial solution with three units of flow is exhibited in Fig.

1.15 The maximum flow algorithm is carried out in Fig. 1.16 to demonstrate

that flow cannot be augmented in this network. Therefore you must go to

Step 2.

The following rationale makes plausible a way to revise the ui and wj.

Since the flow in



Figure is maximal but less than four units, it is necessary to intro-duce at least

one new arc (ri, kj). Given the nature of the flow algorithm, it is reasonable to

restrict attention to those arcs such that Node ri is labeled but Node kj is not.

If such an arc is added, then the steps of the flow algorithm will continue and

permit at least one more Node kj to be spanned.

In altering the ui and wj however, you should be careful not to destroy

the equality cij − ut − wj = 0 for routes now having flow, as well as for those

marked with (+) in the spanning process. Otherwise, you may not be able to

continue the scanning where you left off in Step 1 Also, the relation

cij − ui − wj ≥ 0 must be preserved for all i and j. A rule that achieves all these

conditions is

(5) (i) Add c to ut if Node ri, is labeled,

(ii)  Subtract c from wj if Node kj is labeled, where

(6) c = smallest relative cost for arcs between every

                         labeled Node ri and unlabeled Node kj.

Nodes r3 and r4 are labeled, whereas Nodes k1, k2, and k3 are not;

therefore examine the entries at the intersection of Rows 3 and 4 and Columns

1, 2, and 3 to obtain

(7) c = minimum (3, 4, 4, 2, 7,7) = 2 = c41.

The revised ut and wj are shown in Fig. 1.14 along with the new relative

costs. Observe that arc (r4, k1) now has relative cost equal to 0, but arc (r1,

k4) has a positive relative cost. The associated network appears The maximum
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flow algorithm continues from and, in the process, labels Nodes k1, r1, k2, r2,

k3, and finally the sink. The (+) and (−) signs on the arcs indicate the flow-

augmenting path that produces the optimal solution in

We now recapitulate the algorithm. Starting with trial values for ui and

wj in Step 1, apply the maximum flow algorithm to the associated network. If

the resultant total flow equals n, the solution is optimal and you stop. Otherwise,

proceed to Step 2, where you revise the ut and wj according to the rule in (5)

and (6). Return to Step 1 with the resultant, somewhat altered, network: at

least one new arc will have been added (where it is assumed the corresponding
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cij equals the value c), and some unused arcs may have been dropped. Restart

the maximum flow algorithm with the previous flow pattern. Again check for

a total flow of n, and so forth.

Proof that the solution at termination is optimal is exactly the same as

that given for the simplex method applied to the transportation model.

Convergence in a finite number of iterations is established by noting that

(i) Each time Step 2 occurs, at least one more node is spanned in the

   subsequent Step 1. Since the number of nodes is finite, Step 2

     eventually results in a breakthrough at the succeeding Step 1.

(ii) Only a finite number of breakthroughs can occur, because each

      results in increased flow, and total possible flow is bounded.

An implication of the convergence proof is that no more than

.5(n2 + 3n − 2) applications of Step 2 are required. This bound is typically

far in excess of what actually occurs; however, you should note that the

bound is considerably smaller than (2n−l), which is the simplex algorithm bound

calculated in terms of the number of basic solutions possible.

The network flow approach has a certain resemblance to the dual

simplex method in that the dual constraints are satisfied at every iteration, but

a feasible solution is not obtained until termination. In sharp contrast to both

the standard and dual simplex methods, the network approach does not

maintain a basic solution.

n
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Minimal cost/maximum flow approach. To initiate Step 1 of the

previous approach, you had to find constants ui and wj such that all the

relative costs (cij − ui − wj) were nonnegative. You can assume without loss

of generality that all cij ≥ 0, since you can always add a positive constant c*

to every cost element. Then you can begin Step 1 in the previous approach

by letting ui =  wj = 0. If you do so, the sequence of solutions turns out to be

a minimal cost routing among all routings with the corresponding amount of

flow. This point of view leads to another statement of the algorithm that

provides a, helpful insight in generalizing the method to more complex network

problems. The idea is to increase total flow in such a way that the routing for

each higher level of flow incurs minimal total cost. Thus, ifF units of flow

have been so routed, the method seeks a flow-augmenting path with least

cost, and increases flow on this path. The technique for finding the path

employs the shortest-route algorithm.

The approach is summarized below:

Step 1. Construct a new network’ based on the current solution as

follows. Include each arc in the original network that currently is flowless,

and let cij be the arc’s path length. If flow occurs between Nodes r1 and kj,

add arc (kj, ri) and let its path length be −cij. It is possible to augment flow in

the original network on any path between source and sink of the new network.

Step 2. Find a shortest path from the source to the sink in the new network.

In the usual manner, increase flow on this path in the original network. If all

the assignment model’s constraints are satisfied, stop; otherwise, return to
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Step 1.

The approach is illustrated for the example Assume you have applied

the algorithm to obtain the minimal cost routing for three units of flow. The

solution is the same as that in Fig. 1.15, a*nd has a cost of 28 (=2 + 18 4- 8).

The new network constructed according to Step 1 appears Notice the

source is connected only to Node r3 and the sink to Node k3, since the other

such arcs are at capacity flow. The network contains arcs (k1, r1), (k2, r2),

and (k4, r4) because the current solution has flow in the opposite direction.

The remain-ing arcs have zero flow in the current solution.
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The shortest-route algorithm of Sec. 7.6 is applied to the network and

yields the result in Fig. 1.20. Sending a unit of flow along the indicated path

produces the optimal solution in agreement with Fig. 1.18. Notice that a unit

routed on arc (k4,r4) implies that flow is to be removed Iroin arc (r4,k4) in the

original network. Since the shortest path has length 24, the final solution has

total cost of 52 (= 28 4- 24). The length of the shortest routes from each

Node ri; is an optimal value for −ui and similarly, the length from each Node

kj is an optimal value for wj.

Shortest-route approach. you discovered how to convert a shortest-

route problem into the format of an assignment model. In this chapter, you

learned an efficient method for solving the shortest-route problem without

making such a conversion. Now you will see how to solve the assignment

model by putting it into the form of a shortest-route problem and then applying

the shortest-route algorithm.

The general idea is to solve a 1 x 1 assignment model, which is a trivial

task. Then use the answer to solve a 2 x 2 model, and continue in the same

fashion, adding one more row and column at each iteration until the n x n

solution is obtained. Given the solution for a p x p problem, any remaining

row and any remaining column can be chosen to form the (p + 1) x

(p + 1) problem.

As before, the technique is explained in terms of the example in Fig,

1.4 Suppose you have solved the 3 x 3 problem consisting of Rows 1, 2, and
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4 and Columns 1, 2, and 4 of Fig. 1.4. For convenience, the array is displayed

and the circled cij correspond to the optimal solution for that table. Notice

that the solution is the same as that

To form the 4 x 4 problem, add the remaining third row and column of Fig.

1.4, which gives Fig. 1.22. Then calculate relative costs (cij − ui), where ui =

0 for the new row and the other ui are the values cij for the optimal routes in

the 3 x 3 problem. The result appears. Notice the table has the

same appearance as that for a shortest-route problem, such as Fig. 6.9 on p.

179. The network is drawn using the node designations appearing
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Apply the shortest-route algorithm to find a best path from Node 0 to

Node 4  corresponds to the optimal solution to the original assignment problem.

The only subtlety in demonstrating the validity of the approach is to

establish that when the shortest-route network is drawn, the sum of the path

lengths around every loop is nonnegative. Recall that such a condition is

required for the shortest-rout algorithm. Observe that only loops possible

involve Nodes 1,2, and 3, which correspond to the rows columns considered

in the 3 x 3 problem. As usual, the optimal solution to the 3 x 3 problem must

remain optimal in terms of the relative costs  A loop among the Nodes 1,2,

and 3 is tantamount to a particular solution to the 3 x 3 proble; therefore no

loop can have a negative cost, since the optimal 3 x 3 solution has zero cost
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4.3 ALGORITHMS FOR OTHER NETWORK MODELS

The techniques in the preceeding section generalize readi!y to other

network optimization problems.

The only alteration needed to adapt the maximum flow approach to

handle the standard transportation problem in Sec. 6.2 is to let the arc capacity

from the source to Node r[ be St, and similarly the arc capacity from Node kj

to the sink be DJ. For this problem, the number of times Step 2 is executed

cannot exceed

(1)

Analogously, the only essential change required in the minimal

costjmaximum flow approach to cover the general network optimization model

(1) through (4) in Sec. 6.8  is to revise Step 1 so as to include each arc in the

original network that at present has flow below capacity. (The statement

concerning Nodes TJ and kj applies to any Nodes i and j in the network.) As

the advanced material at the end of Sec. 6.8 indicated, it may be necessary to

transform the model initially so that there is only a single source and sink.

The shortest-route approach also can be extended to treat the standard

transporta-tion problem, which is not surprising since such a problem is

conceptually equivalent to an assignment model.

        n
     ∑ xij = 1 for j = 1,2, …, n
     i=1
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CHAPTER 5
Implementation of Operations Research

5.1 Introduction

In the past few years, many significant technical breakthroughs have

been made in operations research. Even greater progress occurred, however,

in implementing operations research in commercial and governmental

enterprises.

In the early 1960’s, a practicing operations researcher had to be both a

scientific expert and a master of the “art of persuasion.” Ethical, but

convincing, salesmanship was needed then because relatively few companies

firmly believed that operations research was a profit-yielding activity. Most

executives classified the effort as blue-sky research and development, and,

in fact, several major corporations placed their operations research group in

an R & D department.

Since then, the picture has changed dramatically. Only rarely now is an

operations researcher called upon to defend his raison d’etre. Today,

executives show pride in. employing computer models that have been designed

to assist them in analyzing complex decision problems. (Many managers

guard their computer models as a part of their territorial imperative.) In short,

very few executives in leading corporations still ask, ‘’Why do we need

operations research ?” They know why.

The questions that managers do raise are, “What areas of application
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are the most profitable?” “Is our company spending too little or too much on

operations research?” ‘’How can I best use operations research?” In other

words, the present interest of businessmen is learning how to get the maximum

benefit from operations research.

The sections below explore the practical implications of this managerial

attitude and offer some insights into the implementation process. Although

the sections are entitled “How to. . . ,” the chapter is not really a comprehensive

nuts-and-bolts manual of procedures for guaranteeing profitable

implementation. Rather, the chapter provides a few guidelines for making

operations research work effectually. The orientation of the discussion is

toward people, not mathe-matical techniques.

As you will soon discover, the key to the successful conduct of

operations research is the joint exercise of good judgment by executives and

professional operations researchers. In particular, the managers and technicians

must decide in concert what projects to pursue, what goals to sight, what

level of effort to expend, and what timetable to follow. These are the subjects

analyzed below.

You may be curious to know why implementation is so much easier

now. The reasons may not be obvious, as many of ihe most useful

mathematical techniques have existed for more than 15 years. Part of the

answer has already been given in Sec. 1.7, which explained how executives

have come to appreciate the powerful analytic assistance of operations

research. But this recognition is by no means the only factor contributing to a
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widespread acceptance of the approach.

An equally important reason is that computing equipment has become

vastly more accessible, and that the number of programming specialists has

increased concomitantly. The improvement in so-called software computer

programs that assist in solving large-scale optimization and simulation

problems as well as the development of time-shared computing systems have

diminished the task of systems design and lessened the difficulties of obtain-ing

numerical solutions. Another reason is that the population of well-trained and

experienced operations researchers has expanded sufficiently to provide the

required professional manpower.

5.2 HOW TO PUT OPERATIONS RESEARCH TO

MANAGERIAL USE

What commonly distinguishes an executive familiar with employing

operations research from a first-time user is his recognition of the need to

exercise responsibility vis-a-vis the conduct of the project. For quite

understandable reasons, tyro managers are usually “stand-offish” in their

involvement. Such a posture is ill advised and can be expensive to the company,

even when the operations research application ultimately succeeds.

In essence, line managers must take responsibility to see that the right

problem is analyzed and that adequate controls are exercised to monitor the

progress of the application. Experience has shown repeatedly that ignoring

this responsibility is detrimental to all and may easily be the root cause of
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failure, despite the expertise and sincerity of the operations research technical

staff. This section suggests some ways for an executive to ensure that an

operations research effort is well directed and aimed at bettering the entire

organization.

What benefits should a manager expect ? Operations research can

be employed to mount a massive analysis, when warranted, of an important

and intricate decision-making problem. As you will readily observe in applying

operations research, the approach inherently requires adhering to systematic

procedures and paying careful attention to details. (No other approach for

solving complex management problems even comes close in demanding so

much discipline in analysis.) The combined utilization of advanced

mathematical techniques and enormous computing power permits a thorough

exploration of relevant alternatives. A good operations research study will

leave no doubt in an executive’s mind that all reasonable courses of action

have been Investigated, and will make crystal clear the relative merits of specific

alternative actions and their possible consequences.

A central ingredient to a sound operations research investigation is

extensive sensitivity testing. Careful managerial scrutiny of comparative case

studies provides the principal means by which an executive can confirm his

understanding of the underlying model, its assumptions, and its data.

Furthermore, the benefits a manager receives from a planning-oriented model

stem largely from such insightful sensitivity testing. Rarely, if ever, does an
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executive seek “numbers” as answers; rather, most decision-makers want a

quantitative assessment of what risks are at stake with different actions, what

changes in direction are likely to yield profit improvements, and what avenues

are promising for further investigation (such as the development of new

products, expansion into new markets, location of new plant sites, etc.).

Often sensitivity testing reveals that the uncertainty of an allegedly critical

factor is actually not very important In making a good decision, whereas

another factor, previously thought insignificant, is truly pivotal.

To determine whether an operations research project is meeting

acceptable standards of quality, some easy items to check are ‘the ready

availability of input data and model assumptions in a form understandable to

nontechnicians, the summarization of results and the backup detail printed in

the format of managerial reports, and reasonable turnaround times for running

additional analyses having slightly modified input data or assumptions. The

best way for a manager to make these checks is to ask questions and probe

the answers. A competently designed model should provide a manager

comprehensible answers to his spontaneous “why does. . .” and ‘’what

if. . .” questions without requiring a mammoth crash effort. (We hasten 10

add, however, that it is unfair to expect such rapid service at the initial stages

of a study. A line executive should continue to ask questions throughout the

duration of the project, and monitor whether the effort required to answer

these questions eventually becomes routine and commensurate with the value

of the analytic assistance provided.)
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Another indicator of project quality is the extent to which the analysis

results in a recommended strategy, as distinct from a suggested single decision.

To illustrate, the output from a long-range capacity-expansion study should

not be merely a string of recommended equipment purchases and forecasted

production levels. Rather, the output should indicate the decisions to take

immediately, should include recommendations of when to make the next set

of decisions, given the present data, and should establish the circumstances

for reviewing, and possibly revising, these future decisions. Even, the

immediate decision recommendations should be qualified to the point of

ascertaining what other alternatives are appropriate if the data are varied within

a plausible range of values and any restric-tive assumptions are relaxed.

What limitations should a manager recognize? This question was

partially answered in Sec. 1.3, and you may want to review that material.

Three more cautions are added here.

First, when an operations research model is used to reduce costs, the

percentage savings-may be relatively small. But if this percentage is applied

to a, large cost base, the absolute savings can pay for the operations research

study many times over. Occasionally, a planning model will uncover a costly

error in current operating procedures; in such an instance, the savings may

be large. Most often, profit improvements stem from executives possessing

a deeper understanding of the problem area, and hence developing a keener

sense for taking correct actions and maintaining control in an uncertain and
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competitive environment. It is impossible to assign a precise dollar

improvement figure to this type of impact; neverthe-less, the benefits are real

and are perceived and valued by company management. In a preponderence

of successful applications, the beneficial effects are truly manifest in the

altered decision behavior of executives and managers at several levels of the

corporation.

Second, although an operations research model often uses the

mathematics of optimization, the resultant solution should not be viewed as

necessarily yielding an optimal answer to the real problem. After all, as the

text has stressed through-out, a model is inherently an approximation to reality,

and therefore an optimal solution to this approximation need not be the “final”

answer to the actual decision problem. The important issue, however, is not

whether a proposed solution is optimal, but whether the solution yields a

significant enough improvement over the alternatives to make it worthy of

acceptance.

Third, while providing a solution to one set of problems, the operations

research model may create, in turn, another set of problems. For example,

the analysis may demonstrate the need for an improved information gathering

system, or for a restructuring of operating policies. And, ensuring the continued

maintenance of an up-to-date model does, itself, pose new managerial

problems.

When should, a manager initiate an operations research project? It is

helpful to distinguish between so-called one-shot or infrequent decision
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problems and recurring decision analyses (like devising an annual plan,

scheduling men and equipment, and replenishing inventories).

In special studies, a decision to apply operations research depends on

the economic and strategic importance of the decision, the time span available

for performing the analysis, and the relevance and availability of data. It is

difficult and hazardous to apply operations research under “time pressure.”

Consequently, a manager should consider employing the approach when the

stakes are sizeable, the decision does not have to be made next Monday

morning, data are available for the analysis, and the choice is not so governed

by political and personality considerations within the company that economic

analysis is of only minor import.

In planning situations, the decision to apply operations research also

depends on the economic and strategic stakes of the problem and the available

data. But planning applications differ from special studies most critically in

the longer time horizon over which the model can be developed and tested.

As we point out in later sections, controlling progress in the conduct of an

operations research study is important; nevertheless, the corporation will not

grind to a halt if a couple of weeks’ delay postpones the completion of an

operations research planning model. (And there always is a couple of weeks’

delay!)

The decision to develop a computerized model for daily operations usually

is more involved. Numerous companies have successfully constructed such

models for as diverse applications as inventory control, tanker-fleet routing,
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and job-shop scheduling. Often the economic benefits are small percentage

wise, the systems design effort is staggering, and the implementation process

is painful. Hence, this type of application is usually justified in terms of

producing economic benefits that will extend over a relatively long term.

Sometimes executives misjudge whether the available data arc

sufficiently accurate as to warrant using an operations research approach.

Applications of statistical techniques to the design of industrial research

experiments, to the monitoring of continuous production processes and

machinery, and to the auditing of voluminous accounting transactions

demonstrate that mathematical techniques can be effective in analyzing sparse

data that are subject to variability and measurement errors. Inaccurate or

limited data do not per se negate the application of a mathematical technique.

Even if there are no historical data at all, managers may be able to impart their

experience-based knowledge by means of probabilistic statements. Hence, it

is inappropriate for an executive to reject using operations research solely on

the grounds of less than perfect factual information.

Sometimes executives shy away from operations research because

they feel that their company personnel are not sophisticated enough to use

mathematical techniques. This fear may be well founded, but the apprehension

also may be based on a limited or even erroneous understanding of the degree

of sophistication that is actually required. And all too often, senior managers

underestimate the capability of their experienced personnel to learn how to

apply operations research.
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Many successful applications have been made by personnel who are

trained in accounting, engineering, economics, or business, and who have

been away from school for years. Their first-hand knowledge of the company

more than compensates for their initial unfamiliarity with technicalities of

operations research. In addition, the widespread availability of easy-to-use

canned computer programs has removed much of the burden in going from

a model formulation and actual data to a numerical solution and sensitivity

analysis. And, finally, although the mathematical methods employed to obtain

a numerical solution may be advanced, the solution itself may be easy to

interpret and to implement. (A good example of this type of application is

inventory control. The computations of a reorder point and replenishment

quantity can sometimes be intricate; nevertheless, the resultant ordering policy

may simply be of the form “when down to 4, order more” and thus may be

easily understood.)

How can a manager get what be pays for? Perhaps the most difficult

responsibility that an executive faces in controlling the progress of an

operations research application is to strike the right balance between conducting

the effort as a “research project” and as a “task-force assignment.”

Estimating how profitable or beneficial an application will be in a

particular company is central to the research aspect. For example, many

companies are able to reduce inventory investment by at least 25% by adopting

scientific inventory control, but the level of reduction in a specific company

can only be estimated after the operations research project is begun and
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some trial tests are completed. Similarly, most medium-sized oil refineries are

able to cut costs by $I000 a day when using a linear programming model to

make a weekly operating schedule, but an estimate of savings at any particular

refinery can only be made after a preliminary model is built and run on a trial

basis. Thus, an executive should view the initial phases of an operations

research effort as exploratory.

It is erroneous, however, for management to view the entire project as

research. Companies with the best record of implementing operations research

plan each project from the very beginning as an effort to improve current

procedures. The line managers who are involved share a sense of urgency

about completing the effort and remain vigilant in keeping the study practical

and pertinent to the actual decision problems.

Standard control techniques for managing include formulating a

statement of goals, assigning task responsibilities, developing and updating a

time schedule for completing various tasks, and planning for managerial

reviews. It is the nature of operations research studies to encounter delays

and unforeseen difficulties. Hence, expect that the unexpected will occur.

The inevitability of these contingencies is the very reason why an operations

research project needs careful managerial control.

Most operations research efforts require two to three man-years of

effort and extend over a period of three to nine months. Naturally, if the

project is important and complicated, these figures will be exceeded. The

economic benefits of a well-conceived and controlled application, should far
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outweigh the expense of developing and operating the system.

5.3 HOW TO SUCCESSFULLY CONDUCTAN OPERATIONS

RESEARCH PROJECT

This section outlines the components of a successful operations

research application and expands on several of the factors already discussed

above; the context here is the conduct of a selected project.

Managerial guidance and participation. Both top management. and

operating management must recognize their respective roles in the evolution

of a project. Since an operations research application typically cuts across

different departments, the effort must have the sincere sponsorship of top

management and the needed entrees into line activities. Furthermore, lop

management must watch that the corporation’s best interests are held

paramount and that the study is not diverted so as to serve the interests of

individual groups at the expense of the company.

Operating management must actively participate in the project’s goal

formulation, administration; and evaluation. It is both difficult and foolish to

impose an operations research system on an operating management that has

not been a party to the system’s design. Anyone with only a modicum of

experience knows that the best of plans can be so cleverly sabotaged by a

group of unwilling personnel [hat the promulgator looks like a fool. But more

Is at issue than just personality conflicts. When operating management has

not been actively engaged in the study, there is substantial likelihood that the
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proposed methods of the system will not be sufficiently comprehensive and

flexible to handle the inevitable exigencies. Thus, if operating management

has not participated in the evaluation (and, as a result, has little confidence in

the worth of the endeavor), trouble looms ahead, even with the -most insistent

encouragement of top management.

Project planning and control. The need for monitoring the progress

of a project has been underscored. Now we highlight several factors in this

process that are critical to success.

• The project team should realize at the outset where managerial judgment

will be required. Specific plans should be made to obtain this counsel,

and these provisions may in turn require some preparatory educational

effort. People, not computers, make managerial decisions.

• The technical phase should be executed carefully, because if it is poorly

done, the outcome can be disastrous. The team should recognize,

however, that the mathematical side of the study will represent

probably only a minor part of the total effort of developing and

implementing the application.

• The data requirements should be ascertained early,  and the information

collection indicated soon enough to avoid long delays in the project.

Often, this phase is poorly executed in an operations research study,

even when the project is led by an experienced practitioner.
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• Managers and operating personnel should be alerted to any transitional

difficulties that may arise in testing and installing a new system. For

example, when scientific inventory replenishment rules are implemented,

total inventory investment usually rises for the first few months. (Can

you explain why?) Top  management is likely  to express consternation

unless properly fore-warned.

• The team should be careful to document the model’s components and

assumptions, and to record the input data and sources. In a large-

cale effort, assumptions made several months earlier are easily

forgotten. Furthermore, as test results and new data are examined,

the model is inevitably altered. So it is essential that the team

systematically catalogues each revision.

Credibility. Just like pregnancy, there is no such thing as a little

credibility. Either an executive believes that the operations research

representation of his problem is valid or he dismisses the results as worthless.

The following paragraphs discuss how to develop a model that legitimately

earns the trust of managers.

The project learn should realize from the very beginning that the

economic benefits of an operations research application never prove

themselves and are never self-evident. And to make matters worse, a reliable

“before and after’’ comparison is always extremely difficult to perform. There

are two reasons why.
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First, sufficient data about past operations may not be available, at

least not in a form convenient for tabulation and analysis with acceptable

accuracy. Hence, in its enthusiasm lo design and implement a new approach

the operations research team should not slight the job of installing a data-

gathering system to reflect the true economic impact of a change. And when

past data are insufficient, the team should start collecting current data long

before it institutes new procedures. The team also should recognize the need

to design a controlled experiment that focuses the effects to be evaluated.

Unless the team heeds these cautions, it will, itself, be unable to prove factually

that an improvement has occurred.

Second, only in exceptional circumstances can a team make a

completely parallel comparison between two systems operating under different

sets of procedures. There is no guarantee that an approach that looks attractive

in terms of last year’s operations will be just as attractive during this year’s

activities (or vice versa). Further, because managerial decisions at one point,

in time may have a specific effect on business conditions later, it may be

futile to attempt to show with great precision how anything but an actually

operating system behaves over an extensive period of lime.

Thus, it is hard to prove precisely how well an operations research

approach, would have performed historically, or how much better an

implemented operations research approach is faring as compared 10 what

the previous system would have done. Management and the professionals

must realize al the outset that they are limited in providing irrefutable evidence
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that improvements actually result from an operations research approach. But

it is important to remember that the same limitations exist in measuring the

impact of any competing problem solution.

The above observations mean that by and large credibility ought to be

established during the course of the project and not relegated .to the end.

Most executives express the following doubts about an operations research

model: “How do I know that it uses the right data? . . . makes realistic

assumptions? . . . computes the economic consequences correctly? . . . and

encompasses the enormous number of relevant detailed considerations?” If

you pause to think, it does stagger the imagination that the essence of a

complex decision-making problem can be transferred to the “brain” of an

inanimate electronic device. The following analogy may help to explain the

psychology of establishing credibility and suggests some ways of allaying

those doubts expressed by managers.

Suppose you are handed a telephone book for the first time and told

that the volume contains the correct telephone numbers of everyone in the

city. In a moment, you surely would realize that the claim is an overstatement.

After all, telephones are installed and removed every day, so the telephone

book is only an approximate representation of all the telephone numbers in

the city. (In this sense, the volume of listings is a “model.”) What really

concerns you is whether the approximation is worth using. How would you

find out ?
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Probably you would start by looking up a telephone number you already

know (perhaps, your own). If you find that the listed number is correct, you

then might select a person whose number you do not know, look up the

number, and place a call to see if the book in fact gives the right listing. After

several more tries of this kind, assuming you are successful each time, you

would be willing to start using the book. And most likely you would continue

to use it until you observed an increased frequency of wrong numbers. Then

you would complain to the telephone company, or go back to relying upon

the Information Operator.

Now consider the telephone company’s objectives. If wants to provide

a model or system that gives you the right numbers. There are many possible

systems (or models, if you like} for providing this service. The telephone

company has discovered that the most economical solution is to publish one

book containing every listed number and to distribute the volume to you and

all other subscribers. The company knows full well that you will use only a

miniscule fraction of all the numbers; even so, you will judge the system’s

merit on the validity of this small fraction.

The preceding analogy is relevant to the design of an operations

research system in several ways. An executive first tests the validity of an

operations research model by asking questions about data and conclusions;

he knows the right answers to some of the questions and has some intuition

about others. His confidence builds if the forthcoming answers are

straightforward, comprehensible, and correct. He will start to rely on the
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model until his confidence is shaken by some “obvious” mistakes.

The operations research project team should try to anticipate what

questions managers may ask and what data yield answers. This task is helped

by discussing the detailed designs of the data reports and numerical summaries

with the executives involved. The computer analysis should include not only

summary reports similar to standard management informal ion reports but

also detailed backup analyses that clearly show the “how” and “why” of the

summary figures. Much. of [he output may be examined infrequently; but it

is there “just in case.”

The telephone book analogy should not be pushed too far, because it is

impractical and impossible to provide every number that an executive might

possibly request. But novice operations researchers invariably make the

mistake of providing far too little backup information, documentation, and

analysis. As a consequence, they are frequently put in a position that is

embarrassing to them and annoying to a manager, namely, having to go “back

to the drawing board” to obtain the information that executives want in order

to understand the model’s results.

The above discussion stresses the output requirements of a well-

conducted operations research analysis. Of course, the team also must employ

other means of effective communication. These are familiar to professional

task-force leaders and amount to maintaining an open dialogue between the

managers, who ultimately have to judge the merit of the results, and the team

members. To repeat, managerial guidance and participation is a sine qua non
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for establishing credibility.

Responsive and responsible implementation. Truly effecting change

within a corporate organization, whether the change be installing a new

computer system or reassigning managerial responsibilities, is usually a difficult

job. Aside from any special aversion that personnel may have to computer-

based systems analysis, there are few. if any, problems of implementing change

that are peculiar to an operations research project. As is true for effecting

most significant changes within a company, the support of top management

is vital, adequate educational training of operating personnel is necessary, a

carefully worked out plan for introducing the changes is essential, and the

implementation process must be controlled and monitored to sense and then

correct difficulties that may arise. Unfortunately, there is no substitute for

experience in knowing how to implement change skillfully.

One problem does deserve additional discussion. The difficulty is

reminiscent of that encountered in factory mechanization many years ago.

Certain operations research applications, especially those involving daily

operations, may drastically change the character of the decision-maker’s job.

For example, developing a computer scheduling model for the processing of

orders in a factory, or the routing of ships between ports, or the purchasing

of materials from vendors, may transform a job requiring long familiarity with

the decision problem into one of routinely supplying raw data to a computer.

An operations research approach may remove the fun, challenge, exercise of
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judgment, sense of contribution, and mystique in a job. Rarely is top

management willing to forego the resultant economic benefits for these reasons.

But the project team must face up to the likely reaction of individuals who

will be so affected. The team should recognize that the implementation process

will arouse hostility; accordingly, they should provide post-implementation

procedures to control a situation that might easily deteriorate because of a

hostile environment.

Systems design. If the application is to be used again after the initial

testing and analysis, then the ultimate success of the project depends upon

the model’s long-term viability. In the early years of commercial applications

of operations research, many companies achieved noteworthy success for a

while; later they discovered that their efforts had dissipated with the changing

of business conditions and the promotion or resignation of operations research

personnel. Now experienced firms realize the necessity for building systems

support to main-tain and update a continuing operations research application.

This point would not merit special mention except for a commonly

observed phenomenon that most executives still find paradoxical. The typical

operations researcher, although having expertise in model building and analyzing

complex problems, is usually ill equipped and frequently disinterested in the

above-mentioned systems requirements. Consequently, experienced

companies include systems-oriented personnel in an operations research

project team to devise procedures for maintaining the model in good working
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order.

5.4 HOW TO MANAGE AN OPERATIONS RESEARCH

STAFF

In keeping with the tenor of the chapter, this section highlights only a

few issues that pertain directly to the profit-making impact of a corporate

operations research activity.

Location and size. The proper placement of an operations research

group within a large corporation is no longer a subject of much debate

among professionals. No standard pattern has evolved, even within an

industry, and these technical staffs have successfully operated under the

guidance of controllers, chief planners, vice-presidents of manufacturing,

as well as chiefs of research and development departments. Today, pragmatic

considerations dominate the location decision. And divisionalized companies

operating under a policy of decentralized management frequently have

operations research activities at both the corporate and division levels.

The size of an operations research staff is an unreliable indicator of the

group’s productivity; a small staff of six talented professionals may have a

much greater profit impact on a corporation than a group of 20 that contains

only two or three top-notch scientists. In operations research, quantity is a

very poor substitute for quality.
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Corporate responsibilities. Top management expects the operations

research staff to exercise a high degree of intellectual integrity. This means

not only that the group must meet demanding professional standards, but

also that the staff must seek truthful conclusions and refrain from organizational

partisanship.

The operations research group manager must be careful not to

overcommit his staff. In an effort to please, many groups undertake more

projects than they can accomplish in a reasonable period of time. As a result,

all the users become dissatisfied. An operations research group should have

a systematic way to decide what projects to accept and how to allocate its

own scarce professional resources to best serve the needs of the entire

company.

Cooperation with users. The preceding; sections emphasized the

importance of working with line managers in the conduct of operations research

projects. Here this subject is treated from the technical staff’s point of view.

The group should always keep in sight the way an operations research

model typically assists managers. In most applications, the rnodel-building

effort provides insights into the quantitative implications of specified data

and assumptions. Ultimately, it is the managers who make the decisions and

arc held responsible for the outcomes. Hence these executives must assess

the relative likelihood of various assumptions and weigh the risks associated

with different courses of action. An operations researcher should avoid the
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trap of believing that his model is true reality.

When a corporate operations research staff is first establishing its

reputation, the group will work under less than ideal cooperative arrangements

with its users.-The requesting organization may be pleased to see the project

completed successfully, and even may pay for the project. Nevertheless, the

user organization may not readily provide other necessary kinds of help,

which often include the collection of data and careful managerial review of

intermediate results; consequently, the effort may get bogged down waiting

for essential assistance in the line organization. But when the operations research

staff has progressed to where it can pick and choose from among several

worthwhile projects, then a major selection criterion should be the willingness

of the user organization to commit its personnel time to the project team. A

good index of user interest and involvement is the extent to which it will

allocate the lime of its people to assist in the application.

5.5 TECHANICAL & TECHNOLOGICAL ADVANCES

Operations research has advanced so rapidly that speculating about

even the near future is risky. But several developments are now underway

that certainly will have a major impact over the years immediately ahead. We

somewhat arbitrarily separate these into technical and technological advances.

Technical progress. Two avenues of research are particularly

important for new applications of operations research to executive decision
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problems. The first is the development of efficient techniques for analyzing

very large-scale problems, such as linear programming models containing

thousands of constraints. The second is the development of practical methods

for solving realistic combinatorial problems (as discussed in Chap. 13).

Contributions will continue to be made, of course, in the theory of operations

research, including the development of improved nonlinear programming

algorithms, multi-item inventory replenishment models, and statistical

procedures for simulation experiments. Business applications including

decision models in areas such as marketing, advertising, pricing, purchasing?

personnel development, and finance also will receive more attention from

management scientists. In addition, tremendous progress will be made in the

application of operations research in other than profit-making enterprises.

Technological progress. Although the technical breakthroughs often

occur independently of advances in computer hardware, the applications of

the techniques to actual problems do depend significantly on the state of

computer technology. (Linear programming models, for example, did not

have widespread acceptance until comprehensive and easy-to-use computer

programs were generally available. The same is true for simulation models.)

The development of time-shared computing systems seems to be the most

significant technological advance with regard to future operations research

applications.

Time-sharing has already reduced the amount of effort required to
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build and test a model; and this mode of computing has markedly cut the

turnaround time between successive trial runs. But the more important impact

is the stimulus to building new types of models and attacking different types

of managerial problems. Corporations in the avant-garde are constructing

very detailed financial planning models and are continually running economic

analyses of new action alternatives as they arise in managerial deliberations.

Time-sharing now allows the decision-maker to perform sensitivity analysis

on-line. Being able to execute hundreds of thousands of calculations in a

matter of seconds and getting the results immediately is an impressive and

important step forward in the science of executive decision making.

An inevitable future impact of time-sharing will be the development of

operating systems for decision problems that relate to the scheduling and

daily allocating of scarce resources, and to the supervision of production

processes. The rate of progress and acceptance in these areas depends on

the growth in the general availability of time-shared computing equipment

and software systems that are appropriate to the needs of commercial

installations.

Administrative science. The time has past when an operations

researcher can build a mathematical model and remain impervious to the

behav-ioral characteristics of the individuals affected and the organizational

milieu. Visionaries among operations research professionals are fully aware

that new developments such as those described above exert tremendous

159



strains on the managerial fabric of a corporate organization. To enhance the

adoption of these technical and technological advances by industry and

government, management and behavioral scientists together will have to find

ways by which executives can deal effectively with computerized systems as

beneficial change agents.
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CHAPTER 6

TEXTILES
6.1 A Spin Plan for Maximum Profit

A project was undertaken in a cotton-spinning mill processing the

counts 2fls, 30s, 31s, 40s and 60s. It was desired to determine the quantity to

be spun in each count subject to the availability of resources so as to obtain

maximum profit.

It was not possible to allot all the frames to that count which gave the

maximum profit per frame shift, since capacity of the machinery at back

process, the availability of cotton reserve, and difficulty in marketing the

entire production of a single count might not permit such a step. Knowing

the profit margin available in the various counts considered for production,

the problem was to determine the counts to be spun and the quantity to be

produced in each, so as to obtain the maximum possible profit subject to. of

course, the restriction imposed by the capacity of machinery available to

various departments and cotton reserve on hand for each count.

Further there were certain number of doubling frames in the mills, with

the help of these frames, two single threads of any particular count, could be

twisted together (doubled) and sold in the market. The profit margin for

doubled yarn was again different from that if the yarn was sold as single yarn.

Taking into consideration the margin in doubled yarn and the capacity available

in doubling, it was found necessary  to work out how much quantity in each

count should be doubled, so that the resultant profit would be maximum.
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There are 85 spinning frames including 27 new Texmaco (N.T.)  frams.

From the past performance, it has been found that production N.T. frames

was invariably higher by 10% as compared with the other frames of different

make. For simplifying the problem slightly, it was better to take the machinery

capacity in the spinning department in terms of certain standard units.

Accordingly the 27 N.T. frames had been taken to be equivalent to 30 standard

units, i.e., 27x1.1, thus giving weight age for the increased production of

these frames. The total number of frames available in the mill could, therefore,

be taken as 88 in terms of standard units. A similar procedure could be

adopted to standardise the units in the other sections also.

In the sections Drawing, Fly Frames. Spinning and Doubling, the

capacity was limited and there would be difficulty in feeding material at the

subsequent processes in the coarse counts such as 20s The availability of

machines in these Departments should therefore be taken as a restriction in

finding a solution to the problem for maximising the profit.

For standard units, production figures should be known in each of

these sections to relate the requirements with the availability of machinery.

From the records of the mills, the production figures in each section were

analysed and standards of production of the standard units assumed were

evolved for each count.

Since planning period was one month, the cotton stock for different

counts both on hand and the expected arrival in the course of the month-had

been taken into account. Again for the purpose of relating the figures of
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availability and requirements of the raw materials, we need to know the

quantities of materials required at each stage to produce one kg of yarn. For

this purpose, waste figures in each count at various departments were analysed

and the required ratios were estimated.

The cost of yarn consisted of three parts-raw material cost, processing

cost and overhead cost. Since the overall overhead cost for the mill is constant

for each month, the margin between the sale rate and the cost excluding the

overhead was considered for maximisation instead of the direct profit figures.

For the present project the latest sale rates as obtained, from the

management and the average cost figures for the previous month had been

considered.

The Linear Programming formulation of the problem was considered

for solution. The problem consisted of determining the quantity to be

manufactured in single yarn and double yarn in each count, in such a way that

the actual requirements as regards the machinery in each department and raw

material did not exceed the availability and at the same time the resultant

profit would be maximum.

The solution to the problem is arrived at by employing simplex

technique.

The management of the mill was really impressed by the solution pven. The

solution offered could give additional profit of about Rs. 32,500 per month

over the programme they had inforce. Naturally the management was eager

to implement the results and reallocate the frames to dinerent counts in the
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manner suggested by the solution obtained. However, they wanted to modify

the programme so as to take into consideration the additional quantity of

cotton they had purchased in 30s and 40a since the start of working out the

problem. Taking them into account the problem was reformulated and soived.

This modified programme would enable the mill to earn a profit of more than

Rs. 60,000/- per month over the profit under the spinrjng plan followed by

the mill earlier. The management had already taken steps to reschedule the

allotment of frames to the various counts in accordance with the solution.

The solution arrived at cannot hold good for ever. It is to be modified

every time there are changes in selling prices or cost of production in the

various counts. However, due to practical considerations, since it is not

possible to go

on changing the plan every now and then, it is suggested that the plan be

revised once in a month, taking into account, all possible changes that might

have occurred in the factors affecting the solution.

6.2 Allotment of Drums to Winders in Cone-Winding

In a textile mill, production efficiency in the Cone-winding department

was found to be around 60% in the case of 20s count. The winding capacity

in the mill was a limiting factor and the management wanted that the production

efficiency in this department must be stepped up. Observations made on the

workers in the winding department revealed that they were tightly engaged all

the time and operator idleness was not the reason for the lower efficiency
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obtained in the section. This gave at; indication that ’he workload might have

to be reviewed with a view to improve the machine efficiency.

It is common experience that when the allottment of drums to winders

is high, the machine efficiency is low and the operator efficiency is high; on

the other hand, when the number of drums allotted to winders is or, the

machine

efficiency may be better but the operator efficiency will be reduced. It is,

therefore, necessary to fix the work assignment at a level which will minimise

the total of the two cost components. The assignment for which the cost is

minimum or the profit is maximum is known as optimum workload.

For any given number of drums allotted to a winder, the machine

efficiency will depend upon:

(1) average number of breaks per 10G cop changes ;

(2) average number of cop changes per cone;

(3) average time taken to attend to end breaks ;

(4) average time taken for a cop change;

(5) drum speed;

(6) average time taken for doffiing;

(7) average yarn content per cop.

Extensive data were collected to obtain the values for the factors listed

as above. Using finite queuing theory the machine utilisations for different

allotments of drums were calculated. From the knowledge of drum speed
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and the corresponding theoretical production, the expected production for

various allotments of drums was arrived at. From cost considerations, the

marginal profit per machine shift in winding was worked out with respect to

each allotment of drums. The results are summarised in the following table.

MACHINE UTILISATION AND MARGINAL PROFIT FOR

DIFFERENT ALLOTMENT OF DRUMS

Number Machine Expected Marginal profit per

of utilisation production machine shift (Rs.)

drums per spindle

(in lbs)

18 61.6 8.53 93.34

17 65.0 9.00 99.75

16 68.5 9.48 105.01

15 72.0 9.96 109.09

14 75.4 10.44 113.67

13 78.4 10.85 116.92

12 81.0 !1.21 118.87

11 83.2 11 51 118.81

10 1’.50 11.76 117.46

It is obvious from the above table that the margin of profit per

machine shift is maximum corresponding to an allotment of 12 drums per

operator. This allottment increases the marginal profit per machine shift by
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Rs. 19.12 over the existing allocation of 17 drums per operator. Based on

the findings, the management immediately reduced the workload to 12 drums

per operator. Consequently, the machine utilisation increased to over 80%

and the net increase in the marginal profit per annum was found to be Rs.

30,000 for the two machines working on this count.

6.3 Optimum Work Assignment to Siders in Spinning

Proper fixation of workloads to the workers in the various departments

of a textile mill offers good scope for cost reduction. In any spinning mill,

the siders in the spinning section form a major proportion of the total number

of workers employed and determination of the work assignment for this

category of workers is very important from the cost, point of view. Generally,

a group of spindles will be assigned to a sider and be will be require to

attend to end breaks, creol breaks and creel changes occurring within that

group.

Arbitrary fixation of the number of spindles in any such group may

lead to an increase in cost. For, when the number of spindles allotted to a

sider is large, the chance of finding more number of ends un pieced at any

time will be greater and this will result in not only loss of production in

spinning, but also increased waste. Consequently the component of cost

due to loss of production and additional waste may go up. If, however, the

allotment of spindles per sider is small, the number of siders required to
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cover all the ring frames in the shed will be more and naturally the labour

wages component of cost will increase. Hence the problem is one of finding

the stage (optimum workload) at which the total cost of labour wages and the

loss due to idle spindle and bonda waste is minimum.

A study was taken up in a spinning mill for arriving at an optimum

workload for the siders in spinning for 60s count. The number of spindles to

be allotted will naturally depend upon the following factors.

(1) end breakage rate in ring frame;

(2) rate of creel breakages;

(3) frequency of roving bobbin changes;

(4) time taken for piecfhg an end break;

(5) time taken for piecing a creel break

(6) time taken for making r. bobbin change;

(7) time taken for patrolling and cleaning the sider.

Extensive data were collected to determine the values for the above

fictors with a reasonable degree of accuracy.

from the consideration of the statistical distribution of the end breakage

and that of creel breakages in general, a model had been developed using

queueing theory, to estimate the proportion of time that a an end remains un

pieced and also the proportion of time that a spindle is rendered idle due to

creel breaks, corresponding to any particular spindle allotment.

From an analysis of cost figures available with the mills, the loss per

shift on account of end remaining un pieced was estimated as 30 paise.
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Similarly the cost associated with an idle spindle was worked out as 15 paise

per shift. The total wages paid to a sider including the fringe benefits like P.F.,

E.S.I., leave with wage, etc. accounted to Rs. 13.50 per day.

knowing the the proportion of time that an end remains un pieced and

a spindle is idle for a given allotment of spindles to a sider, the sum of  the

siders’ wages and the loss due to bonds waste and idle spindles per frame

per shift was evaluated. The results are presented ir the table.

Number of estimated expected total cost

spindles proportion of proportion of component/

alloted time thai an idle time due frame

end remains to creel break shift (Rs.)

unpieced

600 0.70% 0.10% 0.90

700 0.92% 0.14% 8.90

800 1.23% 0.18% 8.34

900 1.64% 0.25% 8.14

1000 2,23% 0.34% 8.28

1100 3.14% 0.50% 8.97

1200 3.14% 0.50% 8.97

1300 7.30% 1.26% 13.66
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6.4 Determination of Optimal Number of Tape Stitchers in a

Spinning Shed

The mill had an installed capacity of 39,960 spindles (in 94 spinning

frames). A system of snap survey in the spinning shed every shift was in

vogue in the mills. An observer goes round the spinning section noting down

the idle spindles in each frame and the causes for them. Among the causes

for idle spindles were the apron cut, feed cut, tape cut, etc. Efforts were

being made to eliminate the idle spindles due to each of these causes. Having

tackled the other causes, the present study was directed towards investigation

of the problem of tape cut and the optimum number of tape stitchers required

per shift. There were 3 tape stitchers engaged in a shift which was considered

high.

Snap survey results of the past six months revealed that on an

average 40 spindles were idle at any time due to the tape cut. This incidence

of tape cut was considered very high in view of the fact that three tape

stitches were engaged in every shift. It was felt that an elaborate study would

bring out all the relevant factors. The factors studied included the following:

(i) The average number of tape cuts occurring in a shift;

(ii) average time taken by tape stitchers for replacing and stitching the tapes.

The actual occurrence of tape cut was studied for a fortnight in the department.

It has been observed that on an average 48 tapes are cut per shift in spinning

section.
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As soon as the tape cut is noticed, the tape stitcher walks to the frame

and then to the exact place of tape cut with the stitching machine. The required

lengths of tapes are cut and kept ready. The stitcher inserts the tape through

the swindles, takes it round the drum, joins the ends, stitches the ends and

fixes the tape on the spindles. The stitcher has to go round the spinning shed

searching for the tape cuts and mending them wherever observed.

The stitching time, varied from 2.5 to 5.5 minutes and the bulk of the stitching

time was centered at 3 minutes.

One important aspect to be considered in determining the optimum number

of stitchers is the interference delay. The occurrence of tape cuts is purely

random. In that case assuming only one tape stitcher is there, when one tape

is being stitched, another tape has to wait for stitching till the tape stitcher

completes his job on the tape he is attending. One tape idle for a minute

results in a loss of 4 spindle minutes. The optimum number of tare stitchers

has to be decided based on the cost due to idleness of spindles and the

wages to the stitchers.

From the actual observation of the number of tape cuts and time of

stitching during- the shift, instead of estimating the interference delay based

on any rigid statistical distribution, the actual distribution has been simulated

with the help of random number tables.

Since the frequency distribution of the servicing time is also known

from the collected data, the stitching time in each case also has been simulated.

The simulated time of occurrence of tape cuts and stitching time were recorded
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at different periods of the day.

The interference delay when the number of tape stitchers is varied

from 1 to 3 is shown in the table below:

INTERFERENCE DELAY FOR VARIOUS ALLOTMENTS OF

STITCHERS

No. Of tape     No. of tape      Interference     Delay spindle

stitchers       cuts per shift        minutes     minutes

1 48 36  144

2 43 1 4

3 48 0 0

In addition to considering the interference due to employment of 1,2

or 3 tape stitchers, we should also consider the cost associated with each

and arrive at an optimum number of tape stitchers required based on the

minimum total cost.

The cost components associated with the breakage and stitching of s

are as follows:

(i) Cost of idle spindle due to interference delay;

(ii) cost associated with the wage for the stitcher.

It has been estimated that idleness of one spindle per shift will cost Rs

0 25. Daily wage of each tape stitcher has been estimated as Rs. 15 The cost

of idle spindle per day and total cost taking into consideration the wages of

the stitchers and other costs is presented in the table boew:
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TOTAL COST FOR DIFFERENT ALLOCATIONS

No. Of. Ape     Wage of the     Cost of idle       Spindle      Total

stitchers per      tape stitchers   Idle spindle       Cost (Rs.)   cost

day                    per day (Rs.)  minutes per                         per day

                                                     day     (Rs.)

3   (1 per shift)       45.00 432            0.25   45.25

6   (2 per shift)       90.00 12            0.01   90.01

9   (3 Per shift        135.00 0             0   135.00

      existing)

It is seen that the total cost is minimum when one tape stitcher

is employed. By increasing the tape stitchers frorns one to three, loss of Rs.

89.75 per day, i.e., Rs. 31,405,50 will be incurred per annum. Hence one

tape stitcher is considered to be optimum for stitching tapes.

From the present set up, it is seen that even after employing three

tape stitchers, the number of idle spindles due to tape cut per sbifi came to

40 which shows clearly that either the tape stitchers do not properly carry

out their duties or they are not being utilized properly. This maybe due to

the fact that

(i) the tape stitchers are not going round the frames observing the tape cats

and stitching them immediately, and

(ii) the tape stitchers are engaged in other activities. In order to enable the

stitcher to stitch the tapes without delay as soon as tape cut is observed, it is
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suggested that an indicator may be fixed on each frame.

The arrow of the indicator should be raised by the siders attending on

that frame. This will enable the stitcher to stitch the tapes as soon as it is cut.

If a stronger thread is used for stitching, it may last longer.

Due to friction, wear is caused and tape gels worn out throughout the

length and breaks. Hence spindles should be properly checked and alignment

of spindles should be adjusted.

All these recommendations were immediately put to practice by the

management.
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