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Summary 
 

Introduction:  
Monitoring a few indicator species is an intuitively appealing method of measuring 

the ecological sustainability of forest management because it is impossible to 

measure and monitor the effects of forest management on all species or 

environmental conditions of interest. Invertebrates and in particular spiders 

(Araneae), have been widely recommended as bioindicators. Here I examine the 

evidence for spiders as bioindicators, using the Terai forests of India as a case study. 

The Terai forest provides an ideal case study for the development of an indicator 

framework because it is disturbance driven, where the dominant disturbance factor is 

changing from fire to plantation. This provides a clear context for developing explicit 

indicator objectives. This approach however can be applied more generally to other 

ecosystems. The present study was carried out in Terai Conservation Area (TCA) 

which represents one of the last remnants of Indian Terai ecosystem. The TCA is an 

important regional, national and international centre for biodiversity. The resulting 

complex of woodland-grassland-wetland ecosystems of TCA harbours a wide variety 

of floral and faunal life, including several charismatic and obligate species. This area 

has witnessed dramatic changes in land use policies, forest management practices, 

and persistent factors like forest fire, flooding and livestock grazing. Keeping in view 

these perspectives, this study intends to document the extent of spider assemblages 

that exists amongst various habitats, identify factors underlying the patterns of 

association, and assess the effect of grassland fire on spider diversity in the TCA. 
 

Faunistic Inventory of Spiders in Terai Conservation Area:  
Spiders currently comprise 109 families, about 3,733 genera, and nearly 40,700 

species. Strong evidence supports spider monophyly: cheliceral venom glands, male 

pedipalpi modified for sperm transfer, abdominal spinnerets and silk glands, and lack 

of the trochanter-femur depressor muscle. The study began with defining the 

systematic position of the spiders and reviewing the available taxonomic knowledge 

of the taxon. It also addresses the past studies in India, the region and the continent. 

This study provides a baseline inventory of the diversity of spiders including 

description of anatomical features of spider in general, their relation to classification, 

and genera of spiders sampled from the TCA during three years of fieldwork.  

 

 

 
 

x



Diversity and Composition of Spider (Araneae) Assemblages:  
 
This study deals with the comparison of spider diversity and composition in a 

complex landscape of the TCA characterized by alluvial floodplains of tall grassland 

interspersed with woodland, swamps, and riparian patches. High water table, annual 

flooding, and annual grassland fire maintain its dynamic complexity. Spiders were 

sampled from March 2005 to August 2006 by using pitfall traps and other semi-

quantitative collection methods along transects. A total of 3666 adult spiders 

representing 22 families, 60 genera, and 160 species were recorded. Using the 

abundance-based estimator, Chao1, the predicted richness for the total area 

sampled is 173 ± 8.32 (SD) species. This indicates that the inventory was almost 

complete at the regional scale (92%). With similar proportions of captured species, 

rarefied richness value showed that species richness was highest in riparian swamp 

forest. Comparison of different sites revealed that species composition was much 

more similar within the same vegetation type than among different vegetation types. 

Assemblage composition differed most between riparian swamp forest and 

plantation. Family composition varied considerably in relation to the structural quality 

of vegetation. On a coarse scale, this study revealed the relative importance of 

diverse habitat types on diversity and composition of spider assemblage in TCA. 

 

Habitat Association of Spider Assemblages:  
The habitat heterogeneity hypothesis states that the more complex the habitat, the 

higher the species diversity and structure. The present study analyses the effect of 

local habitat factors on regional spider richness and diversity. The objective is to 

untangle the relative importance of habitat structure and other environmental 

variables. Richness and diversity values of the spider species and family were 

modeled using multiple regression and a set of independent variables extracted from 

NMS ordination of vegetation, microclimate and disturbance variables. Vegetation 

structure, especially height variation in shrubs, plant species richness, tree and shrub 

densities were found to be important predictors for richness and diversity. The 

species and family composition is highly influenced by vegetation cover, litter cover 

and management intensity. Here I also examine the efficacy of spider assemblages 

as ecological indicators of habitat condition. Using correspondence analysis and 

weighted averaging, I identified potential indicator species (13 species out of 65 

species) analyzed and showed gradients in response to reflect overall habitat 

condition. 
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Effect of Grassland Burning on Spider (Araneae) Assemblages:  
Annual low-intensity fire is a conspicuous management strategy in virtually all 

floodplain grassland of protected areas in India. While it is primarily used to reduce 

fuel levels and to facilitate regeneration of desired species for wild ungulate 

communities, little is known about the effects of its repeated use on natural 

ecosystems over long periods of time. The increased use of prescribed fire generates 

questions regarding the effects of burning events on spider assemblage, and 

recovery of these grassland spiders following fire disturbance. This chapter describes 

the ecological consequences of burning tall grass of Terai on spider assemblages at 

different seasons and with different frequencies. It examines the effects of grassland 

fire on diversity and structure of spider assemblages at a coarse level of resolution. 

Grassland characteristics were also delineated to measures impacts of the fires and 

to assess variability and heterogeneity of the grassland environment. These analyses 

have a fairly coarse level of resolution and the study aims to establish its sensitivity to 

the disturbances caused by fire.  

 

Higher Taxa Surrogacy and Efficiency in Conservation:  
A critical issue in conservation biology is the establishment of a strong relationship 

between species richness and a surrogate index. Such a relationship could provide 

the basis for the establishment of cost effective and easy to monitor methods for 

measuring biodiversity, providing an alternative for the prioritization of sites for 

conservation. Both family and genus richness are tested in their ability to predict the 

number of spider (Araneae) species independently of sampling detection, spatial 

autocorrelation, area, geographical location and type of habitat. Data from two 

protected areas of TCA was used as a test case. Genus richness is considered a 

good surrogate of species richness, despite some caution being needed regarding 

the comparison of sites with considerably different sampling effort. Only genus alone 

is found to be reliable either for ranking sites according to taxa richness or for 

determining near-minimum sets of sites for conservation. The study recommends 

surrogacy at this higher taxonomic level as a promising approach for the prediction of 

spider species richness or evaluation and ranking of areas according to their 

conservation importance. 

 
 
 

***** 



CHAPTER 1 

INTRODUCTION 
 
 
1.1  Challenges for Invertebrate Conservation  
 
Invertebrates are the most diverse and abundant animals in most natural 

ecosystems but their importance in sustaining those systems is commonly not 

appreciated (New, 1995). Determining the distribution of invertebrates is an 

integral part of assessing their conservation status and to determine their 

possible management needs. Invertebrates, and in particular insects, can 

therefore not be ignored in the assessment of biodiversity (Holloway and 

Stork, 1991). The number of species in existence varies widely and that of 

insects ranges from an estimated three to 50 million (Wilson and Peters, 

1988). More recent assessments of available literature estimate the number of 

species to be closer to 10 million (Dobson, 1996). The wide variation in the 

estimates of the number of insect species in the world arises from the 

variation in the method of calculation of those estimates (Hawksworth, 1991; 

Solbrig et al., 1996). Samways (1993a) estimates that only 7 - 10 % of all 

insect species have been described and of those, only a small percentage 

have enough known about their biology to allow the construction of informed 

conservation plans. 
 

In the past, invertebrates were largely ignored in the design of conservation 

areas. Their conservation in existing parks and reserves has been incidental 

(New, 1999; Skerl and Gillespie, 1999). The reluctance of using invertebrates 

in conservation studies is mainly because of: (1) the time constraints, (2) lack 

of knowledge of the taxon (taxonomy, biology and distribution), (3) 

unstandardised sampling methods and (4) inadequate number of experts to 

do the species identifications. Furthermore, invertebrate surveys generate 

very large samples which demand a considerable effort to process in terms of 

time and expertise (New, 1999). Despite the above negative aspects of 

working with invertebrates, they represent a group of organisms that are 
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potentially useful when assessing the biodiversity of an area because of: (1) 

their generality of distribution, (2) trophic versatility, (3) rapid responses to 

perturbations and (4) ease of sampling (Holloway and Stork, 1991). There are 

too many undescribed taxa for which the expertise to identify organisms to the 

level of species does not exist for us to even contemplate surveying the 

complete diversity. At the current rate it will take several thousand years to 

describe all the species or have an idea about the diversity if traditional 

taxonomic methods are used (McNeely et al., 1995). This is because of (1) 

the formal determination of species names is time consuming and, in those 

groups where formal taxonomy is poorly developed, may not be possible; 

identifications are costly and (2) few professional taxonomists to have 

expertise on those groups (Oliver and Beattie, 1996). 

 

Both the magnitude and the urgency of the task of assessing global 

biodiversity require that we make the most of what we know through the use 

of estimation and extrapolation (Colwell and Coddington, 1994). Likewise, 

future biodiversity inventories need to be designed around the use of effective 

sampling and estimation procedures especially in “megadiverse” groups such 

as arthropods (Colwell and Coddington, 1994; Hawksworth et.al., 1995). It is 

in the light of this problem that other more rapid methods of diversity 

estimation have been suggested. The use of diversity indicators (Faith and 

Walker, 1996; McGeoch, 1998; Noss, 1990), higher taxon level identification 

(family or genus-level) and morphospecies level (Oliver and Beattie, 1993) 

identification as surrogate methods for species richness that may make the 

task of estimating global species diversity more manageable (Prance, 1994; 

Williams and Gaston, 1994; McGeoch, 1998). These measurements have 

often proved useful but limitations are often not recognised (Balmford et al., 

1996a). Furthermore, other studies have emphasised inaccuracy of 

conclusions based on indicator species (Lawton et al., 1998; Van Jaarsveld et 

al., 1998). Although it is very appealing to use quicker methods for biodiversity 

assessment the data obtained may not be adequate for conservation decision 

making, e.g. rare and endemic species may be missed when higher levels of 

identification are used. Despite this, indicator taxa and higher taxon level 

identifications are being adopted more widely. This study aims to evaluate the 
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use of indicators, higher taxon level identification and morphospecies level 

identification as surrogates for species richness, using spiders to test their 

usefulness. 

 

1.2 Spiders for Biodiversity Assessments 
 
Arachnids are an important but generally poorly studied group of arthropods 

that play a significant role in the regulation of insect and other invertebrate 

populations in most ecosystems (Russell-Smith, 1999). Previous conservation 

efforts in India have focussed on the larger vertebrates, while invertebrates 

were largely ignored and were only incidentally conserved in existing parks 

and protected areas. There is now a growing need to conserve all species 

and not only the large vertebrates (Samways, 1990). Surveys of invertebrate 

fauna have therefore become more important, especially in conserved areas 

where conservation strategies are already in place. Spiders, which globally 

include about 40, 700 described species (Platnick, 2008) and are estimated to 

number 60,000-170,000 species (Coddington and Levi, 1991), comprise a 

significant portion of this terrestrial arthropod diversity. Spiders are the most-

diverse and abundant invertebrate predators in terrestrial ecosystems (Wise, 

1993). They employ a remarkable diversity of predation strategies, occupy a 

wide array of spatial and temporal niches, and are characterized by high 

within habitat taxonomic diversity, exhibit taxon and guild responses to 

environmental change, extremely sensitive to small changes in habitat 

structure, including vegetation complexity, litter depth and microclimate 

characteristics (Uetz, 1991). Their high relative abundance, ease of collection, 

and diversity in habitat preferences and foraging strategies allows for effective 

monitoring of site differences (Yen, 1995). This ubiquity, diversity and 

ecological role of spiders makes them a promising focal group for invertebrate 

conservation and useful indicators of the effects of land management on local 

biodiversity (Clauseu, 1986; Churchill, 1997; Topping and Lövei, 1997; 

Maelfait and Hendrickx, 1998; Marc et al., 1999; Riecken, 1999). Spiders also 

show potential as a group to be used for higher taxonomic surveys. Oliver & 

Beattie (1996) found that non-specialists could be quickly trained to make 

remarkably accurate count of spider morphospecies. However, considerable 
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work is still needed to clarify the usefulness of spiders as indicators, relevance 

to high taxon surrogacy and to develop standardised sampling techniques 

(New, 1999). This study aims to contribute towards an improved 

understanding of these issues. In order to know how and where to protect 

biodiversity, it is imperative to know the patterns of diversity of terrestrial 

arthropods, which may comprise 80% or more of the earth’s surface but have 

been too often neglected by the resource mangers and conservation planners 

(Wilson, 1992; Kremen et al., 1993; Colwell and Coddington, 1994; Longino, 

1994).  

 

1.3 Forest Management Practices and Spiders  
 
Sustainability of forest management activities have recently begun to centre 

on the notion of disturbance emulation. The general hypothesis is that 

sustainable forest management practices should not affect wildlife populations 

differently than would natural disturbance over multiple scales of space and 

time (McLaren et al., 1998). Sustainable forest management is a widely held 

international goal (Mulder et al., 1999; Montreal Process, 2000; UNCSD, 

2001) and in many cases a legislated mandate (Statutes of Ontario, 2001; 

Commonwealth of Australia, 2001). Monitoring indicators of sustainability has 

been proposed (Montreal Process, 2000) as a mechanism for assessing 

sustainability. However, the choice of indicators and determining how they 

should be monitored is far from resolved. Monitoring a few indicator species is 

an intuitively appealing method of measuring the ecological sustainability of 

forest management because it is impossible to measure and monitor the 

effects of forest management on all species or environmental conditions of 

interest (Landres et al., 1988). Biological indicators of sustainable forest 

management are ecological indicators in that they must provide information 

on the effects of forest management on the functioning of the forest 

ecosystem to be useful. They can be keystone species, dominant species, 

sensitive species or species that reflect the ecological effects of a disturbance 

regime. The requirement for a bioindicator of sustainable forest management 

should have a functional role, rather than a descriptive role, provides a more 

concrete basis for interpreting the importance of change. For example, the 
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amount of change in vegetation composition and structure can be measured 

directly, but ecological indicators can help understand the impact of these 

changes on the biotic components of that system. Viewed in this manner, 

bioindicators can both monitor ecosystem change, and help identify and 

address ecosystem stressors and guide forest management.  

 

Ecological indicators must meet four criteria: they must be feasible and cost 

effective to sample, be easily and reliably identified, and be functionally 

significant and respond to disturbance in a consistent manner. Ground beetles 

and spiders readily meet the first three criteria. In summary, spiders are 

predators and important ecologically because of their role in regulating 

decomposer populations (Clarke and Grant, 1968). Their high biomass also 

makes them an important resource for larger forest predators such as 

salamanders, small mammals and birds. Invertebrates and in particular 

ground beetles (Coleoptera: Carabidae) and spiders (Araneae), have been 

widely recommended as bioindicators (e.g. Duchesne and McAlpine, 1993; 

Niemelä et al., 1993; Butterfield et al., 1995; Beaudry et al., 1997; Atlegrim et 

al., 1997; Churchill, 1997; Duchesne et al., 1999; Bromham et al., 1999; 

Werner and Raffa, 2000; Heyborne et al., 2003). Churchill (1997) briefly 

reviewed the potential of spiders as ecological indicators in Australia. 

 

Specifically, there are two questions that need to be asked of spiders when 

evaluating their potential as bioindicators of sustainable forest management. 

First, can individual species or species groups be identified that respond 

consistently to habitat disturbance, including timber harvesting or silvicultural 

treatments or wildfire. Second is the response of spiders to anthropogenic 

disturbance different to that of natural disturbance such as wildfire. Research 

suggests that ground beetles and spiders are strongly associated with habitat 

structure and/or associated microclimatic factors (Samu et al., 1999). Though 

much less is known of the response of ground spiders to fire. In Canada, 

three studies have examined the spider communities inhabiting recently burnt 

forest (Koponen, 1993; Aitchison-Benell, 1994; Buddle et al., 2000), although 

no studies have compared the pre- and post-burn condition or the immediate 

response of spiders to fire. Burned sites tend to be characterized by open 
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habitat, non-web-building species, with a gradual transition to web-building 

families as the vegetation regenerates (Koponen, 1993; Buddle et al., 2000). 

Aitchison-Benell (1994) suggests that the composition of burnt and unburnt 

habitats depends on site moisture, with mesic sites having a different species 

response than drier sites. In Europe, Huhta (1971) found that an intense burn 

removed the spider fauna. It is not clear how well spiders survive a light burn. 

 

1.4 Spiders in Conservation Research and Future Direction 
 
Like many other ‘little things that run the world’ (Wilson, 1987), spiders remain 

peripheral to mainstream conservation research and action. Despite their 

ecological role in many ecosystems, high diversity, documented threats and 

the known imperilment of some species, spiders have received little attention 

from the conservation community (Skerl, 1999). While this lack of attention 

may be related to negative public attitudes towards spiders (Kellert, 1986), a 

paucity of compiled information on spider conservation status and distribution 

may be a more important issue. However, it is important that imperilled and 

vulnerable spiders and other invertebrates are not left out of conservation 

planning efforts, as they may have unique ecological requirements or require 

particular site selection and management activities. Without knowledge of 

their locations in conservation databases, it is possible that habitats with 

vulnerable spider species would not otherwise be selected for conservation 

attention. The inclusion of spiders in conservation planning will depend on the 

amount of compiled information on their distribution and conservation status. 

Additionally, the most critical and useful habitat association data is not found 

in checklists. Such data are lacking for many spider species, particularly those 

with cryptic habits. Resources including all records and specific habitat 

associations would be most useful and spider survey in TCA may serve as a 

model for future efforts. Nevertheless, there exists a growing body of work on 

spiders as they relate to conservation issues – both as conservation tools and 

as explicit targets for conservation action. Efforts to characterize the 

ecological value of spiders, examine their potential as ecological indicators, 

document threats to spider diversity, and develop effective conservation 

programmes are taking place around the globe. 

 6



 

1.5 Aim and Objectives 
 
The goal of study is to document the extent of spider assemblages that exists 

amongst various habitats, identify factors underlying the patterns of 

association, and assess the effect of grassland fire on spider diversity in the 

Terai Conservation Area. In order to achieve the above goals, following 

objectives were framed for the present study: 

1. To provide comprehensive overview of baseline inventory of the 

diversity of spiders in different habitats of TCA. 

2. To compare diversity and community composition of spider 

assemblage in various habitats. 

3. To assess habitat association pattern of spider assemblages. 

4. To assess effect of grassland fire on the diversity and composition of 

spider assemblage. 

5. To evaluate the use of higher taxa surrogates and their efficiency in 

conservation decisions. 

 

1.6 Organization of the Thesis 
 
The present thesis is organized into eight chapters that include first two 

introductory sections, followed by five main chapters and last chapter as 

concluding remarks. Chapter 1 deals with general concepts on invertebrate 

conservation and presents a brief account of past studies on effect of forest 

management practices on spider assemblages with conservation notes and 

direction for future research needs. Chapter 2 contains a concise description 

on Terai Conservation Area (TCA) - the present study area with notes on 

physiography, soil, climate, drainage, and flora and fauna of the landscape. 

Chapter 3 reviewed the available taxonomic knowledge of spiders and 

provides detailed description of inventory of spider fauna in TCA. Chapter 4 

deals with the comparison of spider diversity and composition in a complex 

landscape of the TCA and discusses importance of diverse habitat types on 

diversity and composition. Chapter 5 untangles the relative importance of 

habitat structure and other environmental variables on species diversity and 
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structure of spider assemblages and assess the efficacy of spider 

assemblages as ecological indicators of habitat condition. In Chapter 6, I 

examined the effects of grassland fire on diversity and structure of spider 

assemblages and assess nature of association of spiders with the variability 

and heterogeneity of the grassland environment. Chapter 7 seeks to examine 

possible usefulness of the higher taxa surrogacy approach with spiders in 

Terai, testing it as species richness predictor and evaluation and ranking of 

areas according to their conservation importance. Chapter 8 concluded the 

study by relating conservation issues and ecological impact of forest 

management practices on spider diversity and structure. 

 

 

***** 

 

 

 



CHAPTER 2  

STUDY AREA 

 

 

2.1 Terai Conservation Area- Global Priority Region for Conservation 
 
The Terai ecoregion, which the Terai Conservation Area (TCA) represents, is 

one of the most threatened ecosystems of the India (Kumar et al., 2002). 

Terai region was included in the list of 200 Eco region represents ecosystem 

harboring globally important biodiversity and ecological processes, needs 

conservation attention (Olson and Dinerstein, 1998, 2002). The region is a 

vast flat alluvial plain lying between the Himalayan foothills and the Gangetic 

plains. It forms the integral part of the Terai-Bhabar biogeographic subdivision 

of the Upper Gangetic biotic province and the 7-Gangetic plains 

biogeographic zone (7A-Upper Gangetic Plain and 7B-Lower Gangetic Plain) 

(Rodgers et al., 2002). Rodgers and Panwar (1988) explained that this 

Gangetic plain is topographically homogeneous for hundreds of kilometer and 

one of the most fertile areas in the world and supports a dense human 

population. Furthermore, they raised concern over the rapid conversion of 

natural vegetation into agricultural land in this landscape.  

 

This ecoregion contains the highest densities of tigers, rhinos, and ungulates 

in Asia. One of the features that elevate it to the Global 200 is the diversity of 

ungulate species and extremely high levels of ungulate biomass recorded in 

riverine grasslands and grassland-forest mosaics (McGinley, 2008). The 

alluvial grassland fragments of this ecoregion now represent remnants of a 

once-extensive ecosystem. The extremely productive alluvial grasslands, 

which provide important habitats to endangered large animals such as tigers 

and elephants, are also good arable land, and most of the grasslands have 

been converted to agriculture. Perhaps no more than 2.0 percent of the 

alluvial grasslands of the Gangetic floodplain remains intact, and the best-

conserved examples of floodplain grasslands are in Royal Chitwan National 

Park, Royal Shukla Phanta Wildlife Reserve, Dudhwa National Park, and to a 
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lesser extent Royal Bardia National Park. An extensive network of reserves 

has been established in the Terai; the challenge now is to connect these 

reserves to allow wide-ranging species, such as tigers, elephants, and 

rhinoceros, to move among reserves (McGinley, 2008).   
 
2.1.1 Location and Extent 
 

The TCA lies in the four district viz. Lakhimpur Kheri, Pilibhit, Shahjahanpur 

and Bharaich of the state of Uttar Pradesh and is situated between Latitude N 

27o49´ and 28o43´ and longitude E 80o00´and 81o19´ (Fig. 2.1). The TCA 

constitutes a spatial heterogeneous landscape of Protected Areas (PAs) 

including Dudhwa National Park (DNP) and Kishanpur Wildlife Sanctuary 

(KWLS), and Managed Forests (MFS) of North Kheri and South Kheri Forest 

Divisions within a matrix of private agricultural lands. The Indo-Nepal border 

forms much of the northern border of the TCA, particularly the DNP (Kumar et 

al. 2002). The TCA Forest in DNP, KWLS, NKFD and SKFD are under 

different management objectives and also different administration.  

Fig.2.1 Base map of Terai Conservation Area (TCA) 
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Dudhwa National Park is located in the Nighasen Tehsil of district Lakhimpur 

Kheri, covers an area of 490.3 sq km and shares border with Nepal. Reserved 

forest area (adjacent managed forest) of 190.0 sq km serves as its buffer. 

(Table 2.1). Both park and buffer were once part of North Kheri Forest 

Division, they are separated and DNP was declared in 1977 (De, 2001).  

 

Kishanpur Wildlife Sanctuary (KWLS) was once part of South Kheri Forest 

Division and later was separated in 1972 which covers area of 203.4 sq km. 

This two protected areas (DNP and KWLS) constitute the Tiger Reserve, 

though separated physically, are by themselves compact and consists of 

continuous forest tracts.  

 
Table 2.1Terai Conservation Area –Constituent Areas and Extent 

Constituent Areas Area  
(sq. km) 

Dudhwa National Park (DNP) 490.30 
Buffer Area of National Park 190.00 
Kishanpur Wildlife Sanctuary (KWLS) 203.40 
North Kheri Forest Division and South Kheri Forest Divisions 842.80 
Total Extent of Terai Conservation Area 1726.50 
Agriculture Matrix 6170.00 
Total Landscape Area 7896.50 

 
 
2.1.2 Physiography, Soil, Drainage and Climate 
 

The TCA is on the flat alluvial flood plains of the Suheli, Mohana and Sharda 

rivers. The general aspect of drainage in TCA is north-west to south east .The 

altitude ranges from 182 m a.m.s.l in the north to 150 m a.m.s.l in the south-

east. The altitude at Dudhwa is 163 m, 183 m at Gauriphanta and 143 m at 

Mailani (Kumar et al., 2002).  

 

The soils of TCA forests are a recent alluvial formation (Singh, 1965) of the 

Genetic plains. A soil profile showed a succession of sand and loam beds, 

varying in depth. The surface soil is sandy, in more elevated portions and 

along the high banks of the river to loamy in the level uplands, and clayey in 

depressions. There is no boulder formation as in Bhabar sal tracts.  
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Relevance of water in TCA is reflected in the fact that some 20 rivers and their 

tributaries flow through the PAs alone. The TCA itself is drained by Ghagra 

river and their tributaries viz., Mohana, Suheli, Ull, Barrach and Katna rivers. 

Flooding rivers inundate large areas of lowland grasslands for 3-4 months 

during the monsoon. Flooding rivers and meandering channels have 

considerable influence on the spatial pattern of the landscape, particularly 

grasslands and riverine forests. Erosion and accretion elsewhere are inherent 

dynamic process of the Terai ecosystem.  

 

The climate of this conservation area represents tropical monsoon climate. 

TCA experience three distinct seasons; winter (October to March), summer 

(March to June) and monsoon (June to October). The TCA experiences 

extremes of temperature and humidity during different seasons. Nights during 

winter are cold and foggy. Usually fog sets in evening hours after sun set and 

persists until about middle of the next day. There is heavy dew fall during 

winter months and the vegetation remains damp. Frosts occur frequently 

during December to middle of February. These are attributed to the general 

cooling effects of the cold winds that flow down the Sharda valley and are 

most severe in open grasslands (phantas). The months of May and June are 

hottest with the mean maximum temperature rising upto 42.7°C. The high 

temperatures during the day time are associated with hot westerly winds. 

These are gradually replaced by easterly winds, which are prevalent during 

the rainy season. Usually, the onset of monsoon is by the end of June or early 

July. The monsoon is active during July- August and starts withdrawing by the 

middle of September. Usually November and December are the driest 

months. The entire landscape is very humid throughout the year. 

 
2.1.3 Floral and Faunal Diversity  

 

The resulting complex of woodland-grassland-wetland ecosystems of TCA 

harbours a wide variety of floral and faunal life, including several charismatic 

and obligate species viz, Tiger (Panthera tigris), Great One horned 

Rhinoceros (Rhinoceros unicornis), Swamp deer (Cervus duvauceli), Hog 

deer (Axis porcinus), Spotted deer (Axis axis), Bengal florican (Houbaropsis 
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bengalensis), and Hispid hare (Caprolagus hispidus) (Kumar et al., 2002). 

Forest in TCA belongs to the tropical moist deciduous forest type and can be 

broadly group into four categories viz., moist sal forests, moist mixed 

deciduous forests, riparian swamp forests and savannah (upland and lowland 

grassland). 

 

Studies on ‘Management of Forests in India for Biological Diversity and Forest 

Productivity’ were conducted in TCA by Kumar et al. (2002). They described 

the concept and approach of TCA in relation to landscape fragmentation and 

wildlife habitat use potentiality. The Terai with its characteristics complex of 

Sal forest, tall grassland and swamps maintained by periodic flooding, is one 

of the most threatened ecosystem of the India. Most of the Terai has 

succumbed to anthropogenic pressure, land encroachment for agriculture and 

homesteads replacing the rich natural vegetation.  

 
2.1.4 History of Forest Management Practices 
 

The history of TCA forests prior to 1861 is little known, except that they were 

under the control of the Raja Khairigarh for hunting reserves and commercial 

uses (Leete, 1902). Most forests came under government control in 1861 and 

forest management started in 1886 with the development of the first Forest 

Working Plan. A succession of Working Plans has guided forest management 

up to the present time (Srivastava, 1993; Srivastava, 2000; and De, 2001). All 

reserved forests in the region were managed for the commercial production of 

wood products and for the subsistence needs of the local people.  Extensive 

plantations were raised in gap areas or after clear felling of Sal or mixed Sal 

forests. Exotic species like Tectona grandis and Eucalyptus citriodora were 

introduced during this period. After 1947 large numbers of people were 

resettled from Pakistan and provided with private forest, grasslands and 

wetlands to clear or drain. The present extent of tall grasslands in the TCA 

forms an integral part of the forestlands, controlled by the forest department 

which is the custodian of wildlife and natural ecosystems in India (Sawarkar, 

2000). Till very recently, foresters considered them ‘unproductive’, and 

administrative and political decisions in favour of local or regional 
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development have diverted large tracts of grasslands to other uses. 

Grasslands are overgrazed, subjected to uncontrolled fires, and taken over by 

an abundance of weeds, which ultimately leads to degradation (Kumar et al., 

2002). 

 

***** 



CHAPTER 3 

FAUNISTIC INVENTORY OF SPIDERS IN  
TERAI CONSERVATION AREA 

 
   

3.1 Introduction 
 
There are approximately 40, 700 spider species that have been described 

worldwide belonging to 3733 genera and 109 families (Platnick, 2008). Out of 

these, 2299 spider species belonging to 552 genera and 67 families are 

reported from South East Asia (Siliwal and Molur, 2007). Of 552 genera, 49 

(9%) are monotypic, represented by single species and there are 65 genera 

(12%) is endemic to one or more South Asian countries. Around 1830 species 

(80%) are endemic South Asia.  Out of the 67 families of spiders in South 

Asia, seven families have not been reported from India. India represents 1520 

spider species belonging to 377 genera of 60 families (Sebastian and Peter, 

2009). 21 of 361 genera are endemic to India while 13 are endemic to South 

Asia. Of these species, 1002 are endemic to the Indian Mainland, 71 species 

are endemic to Andaman and Nicobar Islands and one species is endemic to 

Lakshadweep (Siliwal et al., 2005). The families represented by the highest 

number of genera and species in India are the Salticidae (66 genera and 192 

species) followed by the Thomisidae (38 genera and 164 species). 
 

3.2 The Classification of Spiders 
 
Spiders are one of the eleven orders of the class Arachnida, which also 

includes groups such Palpigradi (rnicrowhipscorpions), Amblypygi (tailless 

whipscorpions), Thelyphonida (whipscorpions), Schizomida (no common 

name), Ricinulei (no common name), Acari (mites and ticks), Opiliones 

(harvestmen), Scorpiones (scorpions), Pseudoscorpiones (pseudoscorpions) 

and Solifugae (sunspider, windscorpion, or solpugid). Before 1880, spider 

classification was based on broad categories of lifestyles resulting in a 

paraphyletic arrangement. Today, the monophylogeny of Araneae is 
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supported by several complex and unique synapomorphies. The most 

important of these are abdominal appendages modified as spinnerets, silk 

glands and associated spigots, cheliceral venom glands, male pedipalpal tarsi 

modified as sperm transfer organs, and loss of abdominal segmentation 

(Coddington and Levi, 1991). Within the Araneae, three major groups are 

generally recognized: Mesothelae, Mygalomorphae, and Araneomorphae. 

The suborder Mesothelae contains the single family Liphistiidae (5 genera, 87 

species) limited to China, Japan, Southeast Asia, and Sumatra (Platnick and 

Sedgwick 1984). The infraorder Mygalomorphae (15 families, 300 genera, 

2500 species) include the Theraphosidae (tarantulas), Ctenizidae, 

Actinopodidae, and Migidae (trapdoor spiders), Atypidae (purse-web spiders), 

Hexathelidae (funnel web spiders), and several groups with no common 

name. The infraorder Araneomorphae (94 families, 3200 genera, 36,000 
species), sometimes referred to as "true" spiders, includes all remaining 

spider taxa (Platnick, 2005). Araneomorphs include over 90% of known spider 

species: they are derived in numerous ways and appear quite different from 

mesotheles or mygalomorphs. Mesotheles are the only spiders with an 

anterior median pair of distinct spinnerets and mygalomorphs have lost them 

completely. A complex, important synapomorphy of araneomorphs is the 

fusion and reduction of the anterior median spinnerets to a cribellum, a flat 

sclerotized plate that bears hundreds to thousands of silk spigots that 

produces very fine, dry, yet extremely adhesive, silk (cribellate silk). 

Arachnida evidently originated in a marine habitat (Dunlop and Selden, 1998, 

Dunlop and Webster, 1999), invaded land independently of other terrestrial 

arthropod groups such as myriapods, crustaceans, and hexapods 

(Labandeira, 1999), and solved the problems of terrestrialization (desiccation, 

respiration, nitrogenous waste removal without loss of excess water, and 

reproduction) in different ways. Although the phylogeny of Arachnida is still 

controversial, specialists agree that the closest relative of Araneae is a group 

of orders collectively known as Pedipalpi: Amblypygi, Schizomida, and 

Uropygi (Shultz, 1990). 
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3.3 Spider Anatomy 
 
The spider body consists of two main parts, an anterior portion, the prosoma 

(or cephalothorax) and a posterior part, the opisthosoma (or abdomen). A 

narrow stalk, the pedicel, connects these parts (Fig 3.1-3.2).  

 

 
Fig. 3.1 External morphology of spiders showing the dorsal and ventral 
views. 
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With respect to functions, the prosoma serves mainly for locomotion, for food 

uptake, and for nervous integration. In contrast, the opisthosoma fulfills tasks 
associated with digestion, circulation, respiration, excretion, reproduction, and 

silk production. The prosoma is covered by a dorsal and a ventral plate: the 

carapace and the sternum, respectively. It serves as the place of attachment 

for six pairs of appendages: one pair of biting chelicerae and one pair of leg-

like pedipalps are situated in front of four pairs of walking legs. In mature male 

spiders, the pedipalps are modified into copulatory organs. The "head" part of 

the prosoma bears the eyes and the chelicerae. Most spiders have eight 

eyes, which are arranged in specific patterns in the various families.  

Usually the eyes lie in two rows, and accordingly they are referred to as 

anterior lateral eyes (ALE), anterior median eyes (AME), posterior lateral eyes 

(PLE), and posterior median eyes (PME) (Fig. 3.2). 

 
Fig. 3.2 Eye morphology and eye patterns of various eye parts. 
 

The chelicerae are the first appendages of the prosoma. Each chelicera 

consists of two parts, a stout basal part and a movable articulated fang. 

Normally the fang rests in a groove of the basal segment like a blade of a 
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pocketknife. When the spider bites, the fangs move out of their groove and 

penetrate the prey. At the same time poison is injected through a tiny opening 

at the tip of the fang. Both sides of the cheliceral groove are often armed with 

cuticular teeth. These act as buttresses for the movable fangs and, in 

addition, allow the spider to mash a prey item into an unrecognizable mass. 

Spiders without such teeth can only suck out their victims through small bite 

holes formed by the fangs. The second pair of appendages is the pedipalps. 

With the exception of an absent metatarsus, pedipalpal segmentation 

corresponds to that of the legs. Despite their general resemblance to legs, the 

palps are usually not used for locomotion. Instead, they often play a 

manipulative role during prey catching. The most notable modification of the 

palps is found in male spiders. Male palps act as copulatory devices by first 

sucking up freshly deposited sperm on the male's sperm web and then 

depositing this into the female's copulatory organs. 

 

The mouth opening is bordered laterally by the maxillae, in front by the 

rostrum, and in the back by the labium. The four mouthparts form the mouth 

proper, which leads into a flattened pharynx. The pharynx consists of a 

movable, hinged front (rostrum) and a back wall (labium) and is lined by 

cuticular platelets. These contain very fine grooves covered by small teeth 

which together function as a micro filter. The pharyngeal lumen can be 

widened by the action of several muscle bands. Thus, the pharynx acts as a 

suction pump and the spider does not chew its food but instead sucks the 

contents of its prey through the holes or macerated sections it makes in the 

prey's exoskeleton. Four pairs of legs fan out radially from the pliable 

connection between carapace and sternum. These legs are referred to as 

legs I, II, III, and IV starting from the anterior pair. Each leg has seven 

segments: a short coxa, a short trochanter, a long femur, a knee like patella, a 

slender tibia and metatarsus, and finally a tarsus with two or three claws. The 

tip of the tarsus bars two bent claws, which are generally serrated like a 

comb; a third claw may be present between them (Fig. 3.3). 
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Fig. 3.3 Segments of typical spider leg. 
 

Most spiders bear a soft, expansible and unsegmented opisthosoma. Only the 

Mesothelae, believed to represent an ancient form from which present-day 

spiders are derived, possess a clearly segmented abdomen (Platnick, 1995). 

The anterior dorsal surface of the opisthosoma may possess a darkly 

coloured, triangular mark that may stretch to the midway mark toward the 

spinnerets. This is the heart mark and under it is found the spider's primitive 

heart. On the under surface, again toward the anterior end, is a pair of book 

lungs and a single epigastric furrow. Both the male and female's reproductive 

organs are found beneath this furrow. In females however, this furrow is 

normally sclerotized forming an epigynal plate with a pair of pores, one on 

either side of the midline. These openings allow the insertion of a male's 

charged palps and lead directly to the sac-like spermathecae where semen is 

stored until oviposition. Retrolateral to the furrow are the book lungs. Primitive 

spiders have a second pair of book lungs found toward the posterior end of 

the abdomen directly in front of the spinnerets. A pair of spiracles and 

associated tracheae in advanced spiders replaces these posterior book lungs. 

 

A spider has three pairs of spinnerets on its abdomen, which represent 

modified appendages. The spinning glands terminate in little spigots on the 

surface of each spinneret. All three pairs of spinnerets, anterior, median, and 

posterior, are extremely mobile because they are equipped with a well-

 20



developed musculature. The anterior median pair is often extremely reduced 

and many spiders (such as Linyphiidae, Theridiidae, and Thomisidae) have 

only a vestigial bump, which is referred to as the colulus (Fig 3.4). In the 

remaining spiders, the colulus are absent altogether.  
 

 
Fig. 3.4 Ventral view of spider showing various parts of spinnerets. 
 
Numerous spiders possess an additional spinning organ, the cribellum, a 

small plate located in front of the three pairs of spinnerets (Fig. 3.5). The 

cribellar area is densely covered with many tiny spigots through which are 

extruded thin silk threads of the "hackle band". These thin silks are combed 

out of the cribellum by rhythmic movements of the calamistrum, a row of comb 

shaped hairs situated on the metatarsi of the fourth legs.  

 
Fig. 3.5 Ventral view of cribellum of typical cribellate spider. 
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3.4 Anatomy as it Relates to Classification 
 
The classification of spider families relies on the structure of the spinnerets, 

chelicerae, tarsal claws, and the labium. Genital structures however, are used 

mainly for the separation of species and are the only features that afford any 

reliable identification. Consequently, only adult specimens may be accurately 

identified to species level. Dondale and Redner (1989, 1982, and 1978) and 

Platnick and Dondale (1992) gave excellent accounts on sexual organ 

anatomy. The tarsus, pretarsus, and the tibia of the male palpus are modified 

to form a copulatory organ called the pedipalp. The pedipalp consists of a 

dorsal shield-like cymbium and a rounded genital bulb. The pedipalps of male 

spiders vary greatly in form and complexity. In their simplest form, each 

pedipalp bears on its cymbium a teardrop shaped genital bulb. The more 

complex pedipalp organs are formed of hard parts and soft parts called 

sclerites and hematodochae respectively; the sclerites bear processes called 

apophysis.  (Fig. 3.6) 

 

 
 

Fig. 3.6 Ventro-lateral view of an expanded palpal organ of a male 
spider. 
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The genital bulb in these spiders consists of a well sclerotized tegulum, within 

which are found an intromittent organ called the embolus, the seminal duct 

and the seminal reservoir. A terminal apophysis is associated with the 

embolus and a median apophysis is associated with the tegulum. All of the 

variously shaped apophysis is heavily used to classify adult males to species. 

Female spiders possess a pair of ovaries in the opisthosoma. The lumen of 

each ovary leads into an oviduct, and the two oviducts unite to form a uterus 

(also called the vagina). The uterus opens to the outside in the epigastric 

furrow. Many spiders possess a complexly structured sclerotized plate just in 

front of the epigastric furrow. This plate, called the epigynum, extends over 

the genital pore and bears the copulatory openings. This epigynum is heavily 

used to classify adult females to species level. 

 

3.5 Research and Studies on Indian Spiders 
 
Studies in the Indian part from different biogeographic regions have started in 

the late 19th Century by several European taxonomists and later by Indian 

Arachnologists. Review of available literature reveals that the earliest 

contribution by Blackwell (1864,1867); Stolickza (1869); Karsch (1873); 

Thorell (1877); Simon (1897a,b); Pocock (1895, 1899a,b, 1900a,b, 1901) and 

Sheriffs (1919, 1927, 1928, 1929) were the pioneer workers of Indian spiders. 

They described many species from India, Burma and Sri Lanka from mostly 

preserved specimens. In the twentieth century studies on Indian spiders were 

documented by Gravely (1921); Narayan (1915); Reimoser (1934) and Dayal 

(1935). Tikader (1980, 1982) and Tikader and Malhotra (1980) described 

spiders from Central India. Major contributions to the Indian Arachnology were 

made by Pocock (1900) and Tikader (1980 -1987), have highlightened spider 

studies to the notice of other researcher. Pocock (1900) described 112 

species of spider from India. His book provided the first list of spiders, along 

with enumeration and new descriptions in British India based on spider 

specimens at the British Museum, London. Tikader (1987) also published the 

first comprehensive list of Indian spiders, which included 1067 species 

belonging to 249 genera in 43 families. Identification keys provided in these 

publications are still followed. Gajbe (1987- 1999) studied the spiders of 
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Madhya Pradesh and Chattisgarh region. Spiders of protected areas studied 

by Gajbe (1995a) in Indravati Tiger Reserve while recorded 13 species. Gajbe 

(1995b) also documented 27 species of spiders from Kanha Tiger Reserve. 

Patel (2003) described 91 species belonging to 53 genera from Parambikulam 

Wildlife Sanctuary, Kerala. Gajbe (2003) documented checklists of spiders of 

Madhya Pradesh and Chattisgarh area. Centre for Indian Knowledge System, 

Chennai has also conducted ecological studies of spiders in a cotton agro 

ecosystem of Guindy National Park. A brief account of major spider families is 

also provided by Vijayalakshmi and Ahimaz (1993). De (2001) overviewed 

and listed 19 species of spider from Dudhwa Tiger Reserve in his 

Management Plan. Biswas and Biswas (2004) contributed significantly by 

rendering comprehensive lists of new recorded spider species from Manipur 

and West Bengal. Recently, an updated checklist of Indian spiders was 

compiled by Siliwal et. al. (2005) provides taxonomic re-evaluation of 

described species of Indian mainland. Uniyal (2006) had conducted a survey 

of Ladakh region in order to explore Trans Himalayan spiders. Uniyal and 

Hore (2006) have recorded 17 species belongs to 16 genera from mixed Sal 

forest in Chandrabani area of Dehradun. Using standardized sampling 

protocols, Uniyal and Hore (2008) explored spider species diversity in various 

habitats of TCA. Hore and Uniyal (2008a) have studied the effect of 

prescribed fire on spider assemblages in Terai grasslands and also compared 

the community structure of spider assemblages in different vegetation types of 

TCA and explained the possible effect of habitat characteristics on species 

occurrence (Hore and Uniyal, 2008b). Subsequent study by Hore and Uniyal 

(2008c) have also identified indicator spider species of specific habitat type 

and found species mostly influenced by canopy cover and moisture regimes 

of the habitat. However, very little biodiversity research has been done on 

North Indian spiders especially, the Himalayan and sub Himalayan foothills 

region. Thus a there exists pressing need to explore diversity and distribution 

of spiders in the Northern part of the country. Keeping in view the taxonomic 

urgency, the current study provides a preliminary checklist of the spiders of 

TCA, India. It is expected that the current checklist will add to the existing 

knowledge of Indian spiders and serve to provide a base for future research 

on the poorly studied North Indian spider fauna since it might not be easy to 
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carry out meaningful ecological/conservational based studies when the fauna 

is poorly known. 

 

 

3.6 Inventory of Spiders in Terai Conservation Area 
 
A total of 186 species belongs to 77 genera and 27 families were collected 

during entire sampling periods (Table 3.1). Of these, 67 species (36% of all 

species) belong to morphospecies. Since many morphospecies are still to be 

identified with consultation with specialists, many more new species and 

records are expected in future. General appearance, natural history and 

biology of genera of spider families sampled in TCA are described below 

followed by Kaston, 1978; Preston-Mafham and Preston-Mafham, 1984; 

Filmer, 1991; Dippenaar-Schoeman and Jocqué, 1997; Koh, 2000; Leroy and 

Leroy, 2000; Cushing, 2001; Sebastian and Peter, 2009 and observations in 

field. The families have been listed alphabetically. Genera containing 

potentially new species are indicated by asterisks. 

 

Family Agelenidae (Funnel-web spiders) 
 
Family Agelenidae, represented by 42 genera and about 515 species occur 

worldwide (Platnick, 2008). Two genera are known from India (Siliwal et al., 

2005). These spiders resemble wolf spiders. They are usually dark grey to 

mottled brown, with the abdomen decorated with a reddish brown folium and 

a series of yellow to white spots or bands. The carapace is long and narrow in 

front with the eyes (equal size) situated in two procurved rows. The legs are 

long and narrow toward the extremities and are hairy with spines.  The 

abdomen is oval and tapers posteriorly. They have two elongated posterior 

spinnerets tapering at the ends. The funnel web of agelenids is very 

characteristic, consisting of a flat, slightly concave silk sheet with a funnel-

shaped retreat at one end, close to the soil surface. Agelenids are common in 

the grassland habitat but owing to their sedentary life-style, are not often 

collected during general surveys. Only one genus, Agelena, was sampled 

from the study area, and was sampled from only in grassland habitat type. 
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(i) Genus Agelena usually make their webs in low vegetation such as 

grass and low shrubs. The abdomen is with reddish tinge and 

several clearly marked chevrons. Posterior spinnerets are 

noticeably long. This genus lives permanently on a large, sheet-like 

web with a funnel retreat made close to the substrate.  

 

Family Araneidae (Orb-web spiders) 
 
The Araneidae is a large family comprising more than 2985 species in 167 

genera, 29 of which occur in India (Sebastian and Peter, 2009). Several 

subfamilies are recognised. Araneids are a diverse group of orb-web weavers 

occupying a wide range of habitats. Their most prominent characteristics are 

three tarsal claws and the third leg always being the shortest. They form an 

important component of the spider fauna of the grass and herb layer. The 

araneids were the most abundant family in the study are (42% of all captures) 

and were widely distributed. They were found in all habitats within the area. 

There are 13 genera sampled from the study area included: Arachnura, 

Araneus*, Argiope, Cyclosa*, Cyrtophora, Eriovixia, Gasteracantha, Gea, 

Larinia*, Neoscona, Parawixia*, Poltys, Zygiella*. Members of the subfamily 

Araneinae are diverse in morphology as well as behaviour.  

 

(i) Genus Arachnura construct a widely spaced orb web in low 

vegetation. They resemble much like a twig or dead leaf. When 

alarmed, they coils lower abdomen over the body giving an 

appearance of a scorpion. The cephalothorax is quite long and 

narrower interiorly.  The abdomen of Arachnura is uasually 

elongated with prominent shoulder humps and with posteriorly 

tapering tail-like tubercles. 

  

(ii) In genera Araneus and Neoscona (hairy field spiders) the 

carapace is moderately convex without any horny outgrowth. Colour 

varies from cream to brown to black, usually with distinct patterns 

dorsally. Eyes are set in two rows, median ocular quadrangle 

forming trapezium, not much longer than wide, median eyes are 
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usually longer than wide with lateral eyes almost contiguous and 

usually situated on prominent tubercles. The abdomen is usually 

wider than it is long, raised near the anterior, oval or triangularly 

oval in outline. Pedipalp of male is large with terminal apophysis 

and spiny patella. Araneus is a large genus widely scattered in all 

regions of the world. They construct orb web in low vegetation and 

rest in silken retreat constructed with leaves in the side of the web. 

  

(iii) Genus Argiope (cross spiders) is easily recognised by their large 

size and brightly coloured abdomens. Females are more than 9 mm 

and males are very small. The cephalothorax extremely flat, clothed 

with thick layer of white pubescence. Eyes are set in two rows, 

ocular quadrangle forming trapezium, longer than wide, and wider 

posteriorly, posterior row of eyes strongly procurved, anterior lateral 

eyes smaller than posterior laterals, lateral eyes close and situated 

on conspicuous tubercles. Chelicerae is small, weak and with a 

small boss. Legs are long and strong, combined length of patella 

and tibia shorter than metatarsus and tarsus. The abdomen usually 

flat and of variable shape, and generally decorated with darker 

bands, and the edge of the abdomen is often scalloped. They are 

diurnal spiders encountered in the hub of their orb-webs during the 

day. The webs are often provided with a stabilimentum consisting of 

zigzag silk bands. 

  

(iv) Genus Cyclosa (garbage line spiders) is usually built in shrubs and 

is common in open woodland. The stabilimentum often consists 

mainly on the prey remains attached in a vertical line to the centre 

of the web. Cephalothorax of Cyclosa usually with anteriorly narrow 

cephalic region, and distinctly separated from thoracic region by an 

oblique groove. Eyes are set in two rows, ocular quadrangle 

forming trapezium, much narrower behind than in front, posterior 

median eyes very close, laterals close and situated on conspicuous 

tubercles, rows of both eyes recurved. The first pair of legs is longer 

than the others. The abdomen of Cyclosa has a distinct caudal 
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(v) Cyrtophora (tent web spiders) are widely distributed throughout the 

world. The colour varies from cream to black with white markings. 

Carapace of Cyrtophora is almost flat and without hairs. Ocular 

quadrangle is usually slightly wider than long, lateral eyes 

contiguous and subequal in size, not situated on prominent 

tuberceles. Legs are moderately long and stout. The abdomen is 

usually longer than it is wide, and high, with distinct paired tubercles 

along the very high anterior end. They build specialised web in 

grassy vegetation, resembling that of Linyphiidae. The webs consist 

of a fine-meshed sheet, similar to the enlarged central area of the 

orb-webs, but made of dry silk and arranged horizontally.  

 

(vi) Eriovixia (bird dropping spiders) construct vertical orb webs usually 

among plants and shrubs. Cephalothorax of Eriovixia is slightly 

longer than wide, clothed with pubescence and hair. Ocular 

quadrangle is slightly longer than wide and situated on an elevation. 

The abdomen is usually flattish with pronounced tail like extension 

at the rear. These spiders are often seen in its typical resting 

posture legs are pulled in around the abdomen and carapace thus 

forming a circular outline.  

 

(vii) Genus Gasteracantha (spiny spiders) are brightly decorated with 

yellow, red or black and white patterns and ornamented with spines 

and sigilla. Cephalic region of Gasteracantha is much elevated at 

the middle and sloping anteriorly and posteriorly. The abdomen is 

shiny and dorsally flattened and has a number of spiny projections 

laterally and posteriorly. Median spines are often the longest.  The 

bright red, orange, yellow, white and black on the abdomen render 

this spider unmistakable. Spinnerets are forming circular space 

ringed by a thick flange. Gasteracantha is most common in the 

tropics.  They construct vertical orb webs, often in open spaces 
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between the branches of tall shrubs. In its typical posture the front 

portion of abdomen covers the thoracic portion of cephalothorax 

and only the cephalic portion is visible from above. 

 

(viii) Gea is a large genus comprising less than 30 species scattered in 

the Oriental, Australian, Neotropical and Ethiopian region. They 

often constructs small orb web in low vegetation close to ground 

without stabilimentum. Cephalic region of Gea is usually convex 

and clothed with hairs. The eyes are set in two rows, ocular 

quadrangle forming trapezium, wider behind than in front, eyes of 

anterior row evenly spaced, median eyes are close to lateral eyes 

than to each other.  Chelicerae is weak, smallest, and with a small 

boss. Tarsi are longer than patellae and tibiae together. Tibia of 

male is curved and armed with spines. The abdomen is longer than 

wide, almost pentagonal in shape. 

 

(ix) Genus Larinia differs from the related genus Araneus by the 

elongate, oval abdomen, often with an anterior, median tubercle 

and sometimes projecting behind and above the spinnerets. The 

light coloured carapace of Larinia may have a double, black, 

longitudinal line behind the eyes that fuses into a single median 

longitudinal line. The anterior median eyes are the largest, usually 

separated by a diameter or more. The posterior medians slightly 

smaller, are separated by their diameter at most, and are often in 

contact. The ocular quadrangle is narrower behind than in front. 

The abdomen usually has a dorsal pattern of longitudinal marks, 

and ventral with median white markings on black. Species of this 

genus often constructs webs on low vegetation, and sits in the hub 

of the web at night, on vegetation to the side of the web in daytime. 

  

(x) Members of genus Neoscona have a longitudinal thoracic groove 

in the cephalothorax. Median ocular quadrangle is slightly longer 

than wide, forming a trapezium. Anterior median eyes are the 

largest or sub equal in diameter than posterior median eyes. 
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Posterior lateral eyes are the smallest. Abdomen is variable in 

shape-ovoid, subovoid, triangular, or sub triangular. Epigynum is 

simple and tongue-like. Neoscona is common through the different 

regions of the world. They are more common in moist woodland 

habitats than in drier woods. Juvenile stages usually begin making 

vertical orb webs about dusk and take the orbs down shortly after 

dawn. During the day, each spider stays in a retreat made of leaves 

curled together and tied with silk, located at the attachment of an 

upper frame thread; frame threads are sometimes left in place. 

Adult females often leave their webs up and hunt during the day. 

This may be due to their need for additional food for developing 

eggs along with a decrease of nocturnal prey in the cooler nights. 

 

(xi) Parawixia constructs vertical orb web with an open hub.  Webs 

looks abandoned with damage portions to avoid further searching 

by predators. Spiders sit at the centre of web; hide in rolled leaf 

retreat or sites in open, resembling dead leaf. Cephalothorax of 

Parawixia is longer than wide, narrow in front, clothed with 

pubescence, hairs and spines with granular bases. Anterior row of 

eyes are procurved when viewed frontally.  Ocular quadrangle is 

slightly wider in front, with anterior rows of procurved eyes.  The 

abdomen is usually triangular in shape with prominent shoulder 

humps and sharp tubercles at the front and end. Epigynum is 

simple with a prominent beak-like scape borne on a swollen base. 

  

(xii) Poltys is a rather distinctive araneid genus that can be recognized 

by a combination of widely separated lateral eyes and a pear-

shaped carapace, where the “stalk” of the pear is an eye tubercle. 

Genus Poltys (tree stump spiders) contains some of the most 

unusually shaped of spiders. They construct very fine orb webs in 

the early hours of the night and destroy them just before dawn. The 

spiders are cryptically camouflaged and during the day they hide 

motionless on vegetation with the legs drawn tightly around the 

prosoma and just the median eyes, which are situated on the 
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(xiii) Spiders of genus Zygiella construct webs that have many radii and 

very fine mesh. Adults of several well-known species of Zygiella 

spin incomplete orb webs by omitting sticky spiral lines and radii 

from a sector about equal to the space between two or three radii, 

which is accomplished by their spinning back and forth many times 

in rounded loops instead of complete circles. A strong trap line is 

strung from the hub through this free zone, but not always in the 

same plane, to the retreat, which is an open silken tube hidden in a 

crevice or under bark. These mostly nocturnal spiders hang from 

their webs at night and lie hidden in their retreats by day. The 

Zygiellas are araneine orbweavers with short, oval, moderately 

sclerotized abdomens unadorned by humps or spinose outgrowths. 

The eyes of the posterior row are subequal in size and 

subequidistantly spaced. 

 
Family Clubionidae (Leaf-curling sac spiders) 
 
The Clubionidae are represented by 14 genera of which 3 genera occur in the 

India (Sebastian & Peter 2009). Clubionids are free-living, nocturnal hunters 

commonly encountered in sac-like retreats amongst foliage on living trees, in 

dead, rolled-up leaves, under bark, stones and logs and amongst debris on 

the ground during the day. They usually have a long, narrow body and the 

chelicerae are in contrast with the rest of the body. They are two clawed 

spiders. They are aggressive and use their front legs to detect and grab prey. 

They have long legs with scopulae on the tarsi. Their eyes are small and are 

situated in two transverse rows. While many of the species within this family 

are drab in colour, there are some brightly coloured species and also some 

species are incredibly good. In summer, the females are usually found 

enclosed within their retreats, closely guarding their flattened egg sacs of 
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white silk. One genus, Clubiona* (sac spiders), was found in the study area 

and was sampled in only two habitat types.  

 

(i) Genus Clubiona has distinct long cephalothorax, narrowed in front, 

and covered with silky hairs. Eyes nearly straight or slightly 

procurved, posterior row markedly longest. Anterior medians closer 

together than posterior medians. Their forth legs the longer than the 

first and second legs with tarsi and metatarsi conspicuously 

scopulate. The abdomen usually with notable dagger shaped mark, 

which starts at the front of the dorsal side and runs along the middle 

for half the length. They are frequently encountered under the bark 

of trees, on fallen bark on the ground, but can also be common on 

various plants amongst foliage. The young spiderlings hatch within 

a few weeks and remain with the retreat and the female for a 

considerable period before moulting and gradually dispersing. 

Mature spiders feed on a wide variety of bark- and leaf- dwelling 

insects and other spiders. Clubiona is a large genus and described 

species scattered in all the geographical regions of the world.  

 

Family Braychelidae (Trapdoor baboon spiders) 
 
They are two clawed, medium to large sized mygalomorph spiders. The 

species from family Barychelidae possess a conspicuous rastellum on the 

anterior face of the basal cheliceral segment, minute posterior median eye, 

eye tubercle low and scopulation of legs as follows : entire and thin pads on 

palpal tarsus and metatarsi  I and II, thin pad divided by a band of short setae 

on tarsus III . Scopulae are absent on tarsus IV and metatarsi III and IV. The 

labium bears some 25 cuspules on the anterior half of its length. Posterior 

spinnerets are usually with dome shaped apical segment. These spiders are 

mostly ground living and burrowing in habit, generally, but not always are 

close to the burrow with a trap door. Outer surface of the burrow is usually 

covered with soil particles and leaves. In many species, the burrow is 

provided with one or two trapdoor entrances. A total of five species belonging 
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to four genera are reported from India so far. Two genera of Barychelidae 

were sampled from the study sites. These included Sason and Sasonichus.  

 

(i) Genus Sason is known from the Seychelles, Andaman and 

Mariana Islands, India, Ceylon, northern Australia, and New 

Guinea. The retreat consists of a very short tube with a door at 

each end. The outer surface of the retreat is usually impregnated 

with particles of soil and leaves. They are small, compact, and 

stout-legged, lack a strong rastellum and, unlike many barychelids, 

their eyes are usually not on a tubercle and the eye group is 

rectangular. Carapace is glabrous but with numerous short bristles, 

especially in males. Ocular quadrangle is about twice as wide as 

long, rectangular. Eye tubercle is absent or low, and if present, 

usually excludes anterior lateral eyes. Clypeus is absent. 

Chelicerae is short, sloping, with one row of teeth on furrow. Legs 

are stout, sometimes with distinct annulations.  

 

(ii) Genus Sasonichus is endemic to India, recorded from Southern 

India. They dig burrow which is lined with a thick layer of silk. A 

disc-shaped plug of thick, strong silk is constructed by the spider 

and is fitted tightly into the entrance or entrances of the burrow. 

They differ distinctly from all other allied species by recurved 

thoracic fovea. Carapace is low and about as long as Tibia of first 

leg in male is without apical spur. Legs are highly furnished with 

bristles. Tarsus of labial palp is much longer than wide and with 

large rounded internal lobe.  

 

Family Corinnidae (Ant – mimicking sac spiders) 
 
Family Corinnidae is closely related to the families Clubionidae and 

Gnaphosidae and many of the species in the family were first described as 

clubionids or gnaphosids. Family Corinnidae comprising about 80 genera and 

956 species worldwide (Platnick, 2008). Nine genera and 36 species occur in 

India (Sebastian and Peter, 2009). Corinids are free living ground dwellers, 
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usually found in woody derris, litter or humus on the forest floor in shaded 

areas. Members of the genus Castianeira appear to be mimics of ants and 

velvet ants. It is a medium-sized family and occurs mostly in the tropical and 

sub-tropical regions of the world. Many of the species mimic ants upon which 

they feed. The spiders of this family can be identified by the eye formation. 

The eight eyes (small to medium sized) are situated on a slightly raised 

eminence at the anterior end, which is long and tapering, and the eyes are 

positioned in two recurved, widely separated rows. The lateral eyes are 

slightly smaller than the median eyes. Two genera of Corinnidae were 

sampled from the study sites. These included Oedignatha and Trachelas.  

 

(i) Genus Oedignatha commonly occur in dry grass litter complex and 

often in disturbed habitat. Cephalothorax is usually punctuate 

oblong, with cephalic shield present. The abdomen part is oblong 

covered with sclerotized dorsal shield ornamented by white spots. 

During the summer the female constructs a flat, white, disc-shaped 

egg-sac of brittle silk measuring about 5-9 mm diameter, usually 

placed under a fallen log or under a piece of bark on a tree. They 

are commonly parasitized by wasps. The mature spiders feed on a 

wide variety of ground-dwelling insects and other arthropods. 

 

(ii) Members of Trachelas commonly occur at the base of plants, in 

grasses and in ground debris. They are hunting spider and make no 

web. However, it builds a sac like tube to hid and rest in diurnally 

which is also used to protect its eggs. They tend to forage on other 

dead arachnids and insects which can cause its bite to be 

particularly unpleasant due to infections. Cephalothorax is longer 

than wide, with enlarged chelicerata. Abdomen is oblong, with 

darker markings on the dorsal side. 

 
Family Desidae 
 

This family contains mainly small to medium-sized eight-eyed spiders, 

measuring usually less than 20 mm long, with short, prominently spherical to 
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ovoid abdomens, and like the family Uloboridae (see later), they possess a 

cribellum and calamistrum. They posses large chelicerata almost as long as 

carapace, with teeth on both rows.  Most species construct irregular sheet 

webs; each sheet consists of several parallel to radially-arranged silken 

threads between which are numerous cross-threads arranged in a zigzag to 

wavy pattern. Family Desidae comprising about 38 genera and 182 species 

worldwide (Platnick, 2008). Only one genus and 2 species occur in India 

(Sebastian and Peter, 2009). Only one genera Desis, was sampled from the 

study area.  

 

(i) Spider belongs to genus Desis has dark reddish-brown carapace, 

with cream grey abdomen. Chelicerata long and pointed forward, 

abdomen densely covered with short pale hairs. 

 

Family Dictynidae (Mesh web spiders) 
 
Family Dictynidae, represented by 48 genera and about 561 species occur 

worldwide (Platnick, 2008). 11 species belongs to eight genera are known 

from India (Sebastian and Peter, 2009). Most dictynids of the subfamily 

Dictyninae live in a nest consisting of a retreat and a web. The web consists 

of parallel threads criss-crossed with cribellate silk to form a ladder structure. 

The retreat is made within the mesh. Webs are usually constructed on the 

stems and leaves of plants, but some species construct their webs on walls. 

Some dictynid species are ground-dwelling while others live in the intertidal 

zone. These small spiders have a wide cribellum and a uniserate calamistrum 

but are generally recognised by their unique webs. The abdomen slightly 

overlaps the carapace and is usually decorated with light and dark patterns. 

The carapace is distinctly high and usually clothed in white hairs. The eyes 

are arranged in two straight rows and are almost the same size. The anterior 

median eyes are dark and the rest of the eyes appear pearly white. The 

chelicerae are long and indented. Only one genus, Dictyna was sampled from 

all habitat types.  
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(i) Spiders of genus Dictyna, are small, less than 4mm long. They are 

mostly brownish or black in colour.  Carapace is markedly elevated 

in front, converge slightly anteriorly and posteriorly. Eyes are more 

or less equal size and evenly or rather widely spaced. Clypeus is 

wide.  Male chelicerata is long and excavated on their inner 

margins, labial palp with conical lateral projections at the tip. Tarsi 

and metatarsi are without trichobothria. The abdomen is void, and 

almost white with a pattern of yellowish brown areas. The entire 

body is covered with long hairs, longest in the carapace.  These 

spiders spin an irregular cribellate webs in heads of plants, both 

living and dead, and in bushes. 

 

Family Dipluridae (Funnel web tarantula spiders) 
 
The Dipluridae are one of the better known families of mygalomorph spider, 

found in tropical to sub-temperate regions on all continents. Though little is 

known about diplurids of India, represents only 4 species belongs to two 

genera (Sebastian and Peter, 2009). However, most of the species are 

uncommon and live in remote areas and are rarely encountered. They are 

mostly large, hairy, dark brown to black spiders, living in silken burrows in the 

ground or occasionally holes in trees above ground. Their burrows are rarely 

attached with doors but are sometimes adorned with an expansive silken 

sheet or curtain-like sheet threads over the entrance. 

 

(i) Only one genus, Indothele, was captured from the study area. The 

generic name, which is feminine in gender, is derived from the 

name of the subcontinent, India, where most species of this genus 

live. Body size usually small to medium, has carapace with 

moderately dense covering of thin hairs; abdomen marked with 

longitudinal series of 5-7 pairs of pale unpigmented spots, anterior 

pair round to elongate oval, rest obliquely transverse and thinner 

posteriorly. The webs of many species are more common on steep 

river banks and rocky slopes or outcrops than in the more gently 

sloping terrain nearby. Some species also build their webs in 
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shrubs and on rough or plant-covered tree trunks. Key microhabitat 

requirements for all species are natural crevices, cavities, or other 

small concealed spaces to house the retreat portion of the web and 

enough surface irregularities, rocks, exposed roots, branches, or 

leaves to support the capture web. Webs consist of two functionally 

distinct parts, a tubular retreat hidden in an enclosed space and an 

exposed capture web. 

 

Family Gnaphosidae (Flat-bellied ground spiders) 
 
The Gnaphosidae are a large family comprising about 110 genera and 1500 

species worldwide (Platnick, 2008). Twenty eight genera and about 139 

species occur in India (Sebastian and Peter, 2009). Gnaphosids are free-

living ground dwellers, with only a few living on plants. Most of the ground 

dwelling species construct a silk retreat under stones or surface debris within 

which they remain during non-active periods. Some gnaphosids attach their 

egg-sacs to the substrate whereas others spin complex egg-sacs in their 

retreats. Gnaphosids catch their prey using speed, force and agility. Their 

eyesight is poor and their prey is perceived by tactile or chemotactic stimuli. 

Surveys have shown that gnaphosids are more common in dry habitats. They 

are occasionally encountered in wet fields but very rarely in dense forest 

patch. They are dull coloured spiders and some genera have markings on the 

abdomen. They have hairs on the abdomen which may glisten). The shape of 

the carapace is variable – ovate to narrow. The eyes are in two rows, 

commonly both procurved, with the posterior median eyes in some species 

oval and set at an angle. The chelicerae are robust and they have dark fangs 

curving inwards and overlapping. The spinnerets are cylindrical and are 

markedly parallel to and separate from each other. Five genera of 

Gnaphosidae were sampled. These included Drassodes; Gnaphosa; 

Haplodrassus, Herphyllus and Zelotes. Gnaphosids were widely dispersed in 

the study area.  

 

(i) Spiders of genus Drassodes commonly found under some type of 

ground cover, usually stones. Female spiders are usually guarding 
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single egg sacs within their hibernacula. The hibernacula consisted 

of silken tubes stretched across the undersides of rocks, or of silk-

lined burrows extending straight down into the ground. The female 

would not leave her hibernaculum until it was broken open; she 

would then seize the egg sac in her chelicerae and attempt to drag 

or push it to safety. The presence of notched trochanters and two 

dorsal spines on tibia IV readily distinguishes this genus from 

Haplodrassus. The only genus likely to be confused with 

Drassodes, from its general appearance, is Scotophaeus but the 

latter has large anterior median eyes. 

 

(ii) Like most gnaphosids, Gnaphosa are primarily nocturnal hunters, 

and remain during the day in retreats under stones and logs. 

Females are often found with their characteristically flattened egg 

sacs, which can contain up to 250 eggs. Gnaphosa may be 

distinguished from all other gnaphosids by the presence of a 

serrated keel on the cheliceral retromargin and by the rounded 

endites.  Carapace oval in dorsal view, flattened, with ocular area 

narrowed; light orange to dark brown, with dark border. Cephalic 

area only slightly elevated; thoracic groove longitudinal. From front, 

anterior eye row slightly recurved to procurved, posterior row 

straight to slightly recurve. Abdomen is dark orange to brown, 

longer than wide, with dark, shiny anterior scutum in males. Six 

spinnerets are widely separated anteriorly. 

  

(iii) Spiders of genus Haplodrassus differs from Drassodes in lacking 

deep notches on trochanters and lacking dorsal spines on tibia IV. 

Sometimes distinct dark markings are present on carapace and 

occasionally an abdominal pattern is present. However, in some 

species carapace is unmarked and abdomen uniform grey or 

brown; and this sometimes occurs in species which usually have 

markings.  The males of some species of Drassodes enclose 

immature females in hibernacula adjacent to their own. Thirteen 

males were found sharing hibernacula with females. Of these, 
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mature males were found cohabiting with penultimate females and 

one mature male was found in a hibernaculum with a mature 

female. The hibernacula varied from a sac just large enough to 

enclose the two spiders to silken tube s 12 cm or longer. 

 

(iv) Herpyllus most easily recognized by genital characters: the male 

embolus is basally broadened and the median apophysis is 

elongated. Carapace is elongate oval, widest, gradually narrowed 

anteriorly, light to dark brown, lightest medially, with short 

recumbent dark setae. From above, the anterior eye row is slightly 

recurved, while posterior row is straight. Leg segments present with 

dorsal trichobothria. Abdomen is brown to dark grey, sometimes 

with distinct pattern. Herphyllus are commonly found along eroded 

river banks, rocky outcrops, and grasslands. 

 

(v) Zelotes are often found in association with termites. The spiders of 

this genus were commonly found along a lake shore, under rocks, 

and in tall grass. These spiders are difficult to capture, building 

transparent, lustrous blue webs where they operate to capture 

potential prey. Cephalothorax is oval, narrowed markedly in front 

covered with fine hairs. Eyes are rather closely grouped, posterior 

row of eyes slightly longer than the anterior row. Chelicerata is not 

very strong, vertical, with a number of hairs on inner part of anterior 

surface. Legs are moderately long, tibiae and metatarsi III & IV with 

or without ventral spines.  Abdomen is dark or black, covered with 

fine short hairs and three pairs of spots or impressions dorsally. 

 

Family Hahniidae (Comb-tailed spiders) 
 
The Hahniidae family comprising about 26 genera and 238 species worldwide 

(Platnick, 2008). Three genera and about 4 species occur in India (Sebastian 

and Peter, 2009). Spiders of the family Hahniidae are usually small (3-6 mm) 

in body size. They differ from other spiders by transverse arrangement of 

three pairs of spinnerets and the relatively large tracheal spiracle located on 

 39



well beyond the spinnerets. Most of the hahniid spiders dwell under stones, in 

leaf litters, mosses, and soil cervices on the ground or even tree bark where 

they build delicate sheet webs and mainly feed on spring tails. They are three 

clawed, eight eyed spiders. Cephalothorax of Hahniidae is usually longer than 

wide. Cephalic region is narrow, generally light to dark brown with dark 

pattern and black margin. Abdomen is oval, usually with double row of 

oblique, pale markings on grey background. Two genera, Hahnia and 

Neoantistea were found in the study area.  

 

(i) The members of genus Hahnia spp. are commonly found in leaf 

litter and detritus, or even on the leaves of shrubs and trees. The 

spiders spin delicate sheet webs near soil surface. This genus is 

the smallest of all genera in the family Hahniidae in terms of body 

length. It has along broad carapace, varying from light to dark 

brown, with grey to black pattern, and margined with black.  

Cephalothoraxes of these spiders are oval, longer than wide and 

narrowed in front. Anterior median eyes are smaller than anterior 

lateral eyes. Laterals side of chelicerata with stridulating organ. 

Abdomen is ovoid and slightly pointed posteriorly with transverse 

light markings on grey background.  

 

(ii) Genus Neoantistea is the largest of all members in the family 

Hahniidae. They spend their time within the leaf litter rather than 

walking on the ground surface. Carapace is convex, about as broad 

as long. Eyes are large, the anterior row procurved, straight from 

above, the medians slightly smaller, equal to, or larger than the 

laterals, equidistantly spaced. Posterior row are of eyes slightly 

procurved, the medians farther apart, equal to or smaller than the 

laterals. Segments of lateral spinnerets are almost equal in length. 

Pedipalp of male is without apophysis in the femur. 
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Family Hersiliidae (Long-spinnered spiders) 
 
The Hersiliidae family has worldwide distribution that comprises 12 genera 

and about 159 species (Platnick, 2008). Three genera occur in India 

(Sebastian and Peter 2009). Hersiliids have diverse life-styles, ranging from 

wandering tree-dwellers to ground-dwelling web-builders. They build small, 

silken traps nearby to where they rest, which are triggered by the prey and 

when detected, the spider races quickly and entangles it in silk. Their flattened 

body allows them to lie pressed to bark without casting shadows or enables 

them to hide in cracks. They are extremely fast runners and are occasionally 

encountered on walls and lichen-covered rocks. Body colour varies widely 

within species but they are often cryptically coloured to match their substrate. 

They generally have two long spinnerets protruding well beyond the posterior 

of the abdomen. Their eyes are in two recurved rows situated on a large 

protuberance at the front of the carapace. Two genera, Hersilia and Neotama, 

were found in the study area. The genera sampled from all habitat types 

except plantation habitat. 

 

(i) Hersilia is a small genus comprising less than ten species, 

distributed in the African and Oriental region. They occur on tree-

bark where its mottled appearance camouflages it well. They do not 

spin webs, but will attack pedestrian prey. While facing away from 

prey, they circle and fix it to bark with bands of silk emanating from 

long spinnerets, which they rotate rapidly to encapsulate the prey. 

Mature spiders feed on various small insects, other spiders and 

ants. Egg sacs are attached to the bark and camouflaged with bits 

of bark and debris. Cephalothorax is flat, angular laterally and 

slightly broader than long, with prominent high clypeus. Tarsi of legs 

I, II, and III are double segmented. Abdomen is flat, almost circular, 

slightly broader than long. Anterior and posterior row of eyes are 

strongly recurved. Posterior lateral spinnerets are very long, much 

longer than abdomen. Distinct colulus separate the anterior pair of 

spinnerets. 
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(ii) Members of Neotama are arboreal forest dwellers, usually found 

under bark. During summer the female constructs a broadly oval 

shaped egg-sac of white silk, strongly attached to the outside of the 

bark. They are difficult to see as the female camouflages them with 

dirty coloured silk. Mature spiders feed on various small insects, 

other spiders and ants. Carapace is long as wide; cephalic region is 

narrow and dorso ventrally flattened. Clypeus is short and not 

projecting beyond eye tubercles. Abdomen is wider than long and 

widest in posterior third. Posterior lateral spinnerets are conical in 

shape and narrowing distally to tapers at the end.  
 
Family Linyphiidae (Hammock-web spiders) 
 

Linyphiidae is the second largest family of spiders, comprising 482 genera 

and 4,359 species (Platnick, 2008). Sixteen genera occur in the India 

(Sebastian and Peter, 2009). Members belonging to the subfamily Linyphiinae 

are all small spiders. Linyphiids spin delicate sheet webs between branches of 

trees or shrubs, in tall grass and sometimes close to the ground. Spiders are 

suspended upside-down under the sheet and they have no retreat. Prey is 

bitten through the sheet from below. It is then pulled through the sheet before 

being consumed. They differs from others families by the form of and position 

of paracymbium  and characteristics of male palpal organ, presence of 

horizontal stridulating striae on the outer side of each chelicerata, and 

absence of serrated ventral bristles in tarsus IV. Members of the family have 

variable shape of carapace. Eight eyes present in tow rows, heterogeneous, 

with anterior median eye darker than the rest. Legs are slightly short and stout 

to thin and long, with or without spines.  The abdomen tends to be globose 

and usually shiny black to dark brown. Three genera were sampled, Erigone, 

Linyphia*, and Oedothorax*, and as yet, undetermined 14 linyphiid species. 

Linyphids were widely dispersed in Pure Sal and Riparian habitat. 

 

(i) Genus Erigone, is a moderately large genus of small-sized spiders, 

less than 3 mm long. They are readily separated from other 

members of the family by the presence of teeth in the margin of 
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cephalothorax and chelicerae. Posterior row of eyes are straight, 

anterior recurved, ocular quadrangle longer than wide. Metatarsus 

is longer than tibia and metatarsus IV is without trichobothrium. 

Male pedipalp is excavated and producing a deep pit. Female 

epigynum is simple and usually with a procurved rebordered 

posterior edge.  These spiders build very small sheet webs in mud 

and pits in soil between sand particles. 

 

(ii) Linyphia spp. constructs sheet-web consists of an unordered 

meshwork of fibres of different thicknesses. The sheet is connected 

to the scaffolding by means of attachment discs. The spider runs 

upside down on the lower surface of the sheet. Threads of silk that 

function as a knockdown trap extend above the sheet and are 

attached to surrounding vegetation. Eyes are fairly small, widely 

spaced on black spots. Legs are usually long, metatarsi as long as 

tarsi. Abdomen present with dorsal transverse bands. 

  

(iii) Dwarf spiders of the genus Oedothorax are approximately 3 mm 

long and the females are bigger than the males. Most of the time, 

copulation takes place upside down in the web. They mostly found 

in damp and swampy areas. Cephalothorax longer than broad, 

highest point of the male carapace is situated in the anterior part, 

and there is typically a pale region in the middle of the abdomen of 

the female. Abdomen is longer than wide. 

 

Family Lycosidae (Wolf spiders) 
 
The Lycosidae are represented by 110 genera and more than 2300 species 

(Platnick, 2008). India has a rich fauna with 17 genera belongs to 126 species 

(Sebastian and Peter, 2009). They are commonly called wolf spiders because 

of their method of capturing prey. They are vagrant hunters, mainly on the 

ground or amongst low-growing foliage or around the margins of lakes and 

swamps and on sandy riverine patches, preying on a wide variety of ground 

insects and other invertebrates, usually by striking and pouncing on the 
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victims which are often much larger than the spiders themselves. Wolf spiders 

are often common and distinctive, small to medium-sized spiders, usually 

coloured dark grey or brown but often patterned in black, grey, brown, white 

or orange. Lycosids have a very characteristic eye pattern, the eyes are 

arranged in three rows (4:2:2). The anterior four eyes are very small and 

either straight or slightly procurved, the two larger posterior medians are 

situated on the vertical front of the carapace; and the smaller posterior lateral 

eyes are above and to the sides of the head. Most species, with the aid of 

their very strong chelicerae, construct a short, cylindrical retreat burrow in 

sand or soft soil. This burrow may be covered with soil particles, leaves or 

sticks, usually amongst grass or other low growing vegetation, dead or alive. 

A few species construct doors which are loosely attached to the entrance of 

the burrow with a few silken threads. Other wolf spiders construct a 

permanent web-sheet around the burrow entrance. Six genera sampled from 

the study area included: Arctosa*, Evippa, Hippasa*, Lycosa, Pardosa, and 

Trochosa. Lycosids predominantly found in moist riparian habitat type. 

  

(i) Wolf spiders of the genus Arctosa are of medium to large size, with 

overall length (excluding legs) of 4.5 - 16.0 mm. They are swift 

runners, and possess relatively keen eyesight. Most dwell in sandy 

places such as seashores or the banks of rivers and lakes, though 

some occupy heath or lichen habitats in high mountains or arctic 

tundra. The principal body colours are grey, off-white, and tawny 

brown, in keeping with habitat. Females usually attend their eggs in 

silk-lined burrows rather than carry them about, and most species 

appear to be nocturnal. Carapace is broad, rather low, and 

approximately uniform in height between dorsal grooves. Posterior 

row of eyes are usually glabrous or nearly so, yellow, off-white, or 

mottled with grey, yellow, or brown. Anterior row of eyes is straight 

or somewhat procurved or recurved, longer than, shorter than, or 

equal to middle row in length.  Pale legs are usually robust, with 

dark rings, and sparse scopulae. Abdomen is usually pale and 

mottled like carapace.  
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(ii) Members of genus Evippa dig burrow in soft and porous soil. The 

entrance to the burrow is usually adorned with, and often covered 

by, small twigs, bark, foliage and other debris, often arranged in a 

radiating or regular pattern. The spiders mature in summer and 

after mating, the female constructs a large, pill-shaped egg-sac of 

greyish-white to white silk. The egg-sac is protected and guarded at 

all times by the female in the burrow. The eggs take about 4 weeks 

to hatch and the young spiders cling onto the dorsal surface of the 

abdomen of the female in typical wolf-spider fashion. The mature 

spiders feed on a wide variety of ground-dwelling insects such as 

grasshoppers, beetles and sheltering moths near the ground, as 

well as other small spiders. Anterior portion of the cephalothorax is 

somewhat abruptly elevated thus forming an angel with posterior 

portion of thoracic region. Anterior row of eyes are generally 

procurved. Inner margin of chelicerae bears only two teeth, while 

the outer margin armed with three teeth. Clypeus is vertical. 

Metatarsus IV is longer than tibia plus patella together.  

 

(iii) Genus Hippasa differs from other genera of wolf spiders in the 

appearance of the spinnerets. The posterior spinnerets are longer 

than anterior spinnerets and apical piece of posterior is as long as 

the basal piece. Carapace is longer than wide with cephalic part 

pale, with submarginal bands and dark streaks radiating near fovea. 

Anterior rows of eyes are wider than posterior row. Abdomen is 

elongated and oval with dorsal markings. They usually build sheet 

like webs with funnel retreat over which they run like members of 

family Agelenidae. They commonly occur in slopes of sandy river 

bank. 

 

(iv) Pardosa is one of the largest wolf spider genera and scattered 

worldwide. They commonly found on the soil surface as well as on 

plants. Pardosa are smaller members of the family and are creamy 

brown to black. Some species of Pardosa are semi aquatic and are 

frequently encountered on the banks or stony beds of rivers and 
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ponds and run with great agility on the surface of the water.  

Carapace is longer than wide, high and narrow, convex in the eye 

area, and clothed with pubescence. Usually procurved anterior eye 

row is distinctly shorter than posterior median eye row. Legs are 

moderately long, slender, pale or dark. Abdomen is oval, greyish or 

brown and mottled, cardiac mark at edge with white colour, and this 

mark is usually followed towards the rear by dark chevrons. 

 

(v) Members of Lycosa are known as burrowing wolf spiders, living in 

silk lined burrows. The spiders dig an open, vertical burrow, usually 

in well compacted soil, often near rocky outcrops. They are often 

more common in disturbed areas such as along the forest clearings 

and forest fire sites where they may colonize the sites where the 

soil is looser as a result of recent disturbance. The burrow of this 

species is unlike that of many wolf spiders, in that it does not 

possess a silken/earth lid nor is there any evidence of a mound or 

elevated rim of soil, sticks or pebbles, around the entrance of the 

burrow. The spiders prefer to build their burrows in open areas that 

are not covered with leaf litter, twigs and other debris and do not 

appear to shelter the burrow entrance under rocks, herbage or logs, 

as do many other wolf spiders Their chelicerae are red and are 

displayed when they are threatened.  

 

(vi) Genus Trochosa are moderately large lycosids, common in small 

hollows under stones or in the small cracks and cervices in bunds 

or levees in the field. The female constructs an almost spherical to 

spherical egg-sac. The egg-sac is well guarded by the female and 

is carried around attached to the end of the abdomen. The egg-sac 

contains non-glutinous, spherical eggs. After hatching, the young 

spiderlings are carried on the female abdomen until they moult and 

grow larger. The mature spiders feed on a wide variety of ground-

dwelling insects such as small beetles and cockroaches and other 

spiders. Body is usually pale in colour. Median band of carapace is 

distinct, anterior part with a pair of longitudinal dark marks. Anterior 
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eye row is straight or slightly recurved and as long as or shorter 

than posterior median eyes.  Males are easily distinguished by the 

presence of palpal claw, sickle shaped terminal apophysis. 

Cymbium of pedipalp is with thick terminal setae.  

 

Family Miturgidae (Dark sac spiders) 
 
The Miturgidae represented by 25 genera and about 337 species worldwide. 3 

genera are reported so far from India which includes 31 species (Sebastian 

and Peter, 2009). They are generally dark greyish brown to brown in general 

coloration with the abdomen often having black, white and/or grey marks on 

the dorsal surface. Their form and colour pattern resembles that of some of 

the wolf spiders, so much so, that they are often mistaken for the Lycosidae. 

They construct a broad, tubular retreat, which may measure up to 10 cm in 

diameter, near the ground in or under fallen logs, under and amongst stones 

and in low herbaceous plants such as herbs and grasses. Cephalothorax is 

longer than wide. Eight eyes are present in two rows. Legs are with two claws 

and claw tufts or with three claws. Abdomen is oval with markings, bands, 

chevrons and spots. One genus, Cheiracanthium was sampled from the study 

area.  

 

(i) The genus Cheiracanthium was previously placed in the family 

Clubionidae and is very similar appearance and habitat to 

Clubionia. Cheiracanthium are small spiders measuring about 5-10 

mm long and have body shape like silk sac retreats, hence 

commonly known as sac spider. They are mostly nocturnal, 

secretive and hide during the day in a silken retreat usually placed 

on the underside of leaves of broadleaved plants or in curled dead 

or living trees. Eyes are usually smaller, relative to distance 

between them. Posterior row of eyes are scarcely longer than 

anterior row of eyes. Legs relatively longer and slender, first leg 

longer than fourth. 
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Family Oonopidae (Dwarf six-eyed spiders) 
 
The Oonopidae, represented by 75 genera and about 512 species, are widely 

distributed in the tropics (Platnick, 2008). 4 genera occur in India which 

includes 15 species (Sebastian and Peter, 2009). Oonopids are nocturnal, 

ground-dwelling hunters that active pursue their prey. They occur in a variety 

of habitats such as forested areas, bird's and termite nests and the webs of 

other spiders. During the day they hide under stones and plant debris, humus 

and leaf litter. Some oonopids are found in association with dry material, for 

example hay sheds. They are short legged and have six tiny closely grouped 

eyes. Chelicerata is present without teeth. Legs are without scopulae, while 

tibiae and tarsi is usually with series of paired spines. Oonopids either have 

soft abdomens (subfamily: Oonopinae) covered in fine, pale hairs or 

abdomens that are covered with a hard shield or scutum (subfamiliy: 

Gamasomorphinae).  

 

(i) The three species of oonopids belong to genus Gamasomorpha* 

were found in the study area. Species from the genus 

Gamasomorpha are usually small armoured oonopids with two 

chitinous scutes or shields covering the dorsal and ventral sides of 

the abdomen. The eyes are all light in colour and arranged in a 

compact group. Oonopids were found in all habitat types except 

riparian habitat.  

 

Family Oxyopidae (Lynx spiders) 
 

Oxyopids are a family comprised of 65 genera, four of which are known to 

India (Sebastian and Peter, 2009). Oxyopids are mainly plant dwelling spiders 

commonly found on grass, shrubs and trees. They are also known as lynx 

spiders because of their incredible agility and speed when moving from place 

to place, a behaviour pattern reminiscent of that of certain big cats. They are 

mostly small spiders measuring from about 5-8 mm body length. They have 

long, narrow legs which bear conspicuous spines situated at right angles (or 

nearly so) to the leg segments. Their spiky appearance makes them readily 
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recognizable as a member of this family. They build no web-snare but are 

active hunters, frequenting grass, small shrubs and bushes, and other low 

vegetation (they are rarely found on the bare ground), where they use their 

very acute eyesight and jumping ability to capture prey and to avoid 

predators. Their eyes are characteristically arranged in a pattern of four rows 

of two eyes each.  Oxyopids hunt both by day and night and have good vision 

which enables them to quickly detect prey. They actively search for prey on 

plants by leaping from leaf to leaf. Prey is caught with the legs, and often by 

jumping a few centimetres or more into the air to seize a passing insect or by 

executing small jumps in pursuit of prey flying over plants. Oxyopids feed on 

moths of the families Noctuididae, Geometridae and Pyralidae. Oxyopids are 

generally recognised by having long spines that stand out at a 90° angle to 

the leg surface. They also have a high angular carapace that is flattened in 

the front with a wide clypeus and a distinctive hexagonal eye pattern. The 

abdomen tapers to a point. Lynx spiders are easily recognized because of the 

sharp (usually black) spines on the legs, which presumably assist the spider 

in scrambling from leaf to leaf. One genera of Oxyopidae sampled from the 

study area was Oxyopes.  

 

(i) Genus Oxyopes are often encountered on various grasses, weeds 

and other low-growing native plants. They build no web but are 

active solitary hunters during the day. They are usually inactive at 

night, hanging from a dragline attached to the underside of a leaf. 

They vary in colour from yellow-green to dull brown. Females 

produce a small, white, oval-shaped cocoon containing 30-45 eggs, 

usually amongst grass stalks or under a broad, curled leaf. The 

non-glutinous eggs are pale cream in colour and measure 0.6-0.7 

mm in diameter. Adult spiders feed on small lace-bugs, moths, 

small soft-bodied flies and occasionally beetles.  This genus is 

characterized by the strongly procurved posterior eyes row, 

equidistant from each other. Cephalothorax is high and rounded 

with anterior part vertical; abdomen long thin, rounded and widest at 

the front and then tapering all way to spinnerets. Face is almost 

vertical.  Ocular quadrangle is longer than wide. A thin black 
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straight line starts from each of the anterior medians down the 

vertical face and continues down the centre of the chelicerata to the 

tip. Abdomen elongate, widest behind base and tapering to the 

spinnerets.  
 

Family Philodromidae (Small wandering crab spiders) 
 
The Philodromidae are represented by 27 genera, seven of which occur in the 

India (Sebastian and Peter, 2009). Philodromids are free-living hunters 

commonly found on plants. Their movements are erratic and using their claw 

tufts and scopulae they are able to move around swiftly. In general 

philodromids have slightly dorsal-ventrally flattened bodies with slender, 

laterigrade legs and claw tufts are present. Most species have an elongated to 

oval abdomen, often with chevron type markings. There are teeth on the 

promargin of the chelicerae and the eyes are positioned in two recurved rows. 

Only one genus was found in sampled sites of TCA. Most of the Philodromids 

were sampled from the grasslands adjacent to marshes and swamps. 

 

(i) Philodromus spp. occur on tree trunks, in low bushes and herbs. 

They are grey to brownish-yellow in colour and move about rapidly 

on plants, usually capturing prey by lying in ambush with legs 

extended. Eyes are small and uniform in size; anterior row slightly 

recurved, posterior row strongly recurved. Abdomen usually oval, 

angulated laterally, moderately flat, and dorsally bears heart shaped 

markings and chevrons.   

 

Family Pholcidae (Daddy-long-leg spiders) 
 
The Pholcids are a fairly large family comprising 85 genera and about 1000 

species worldwide (Platnick, 2008). The Indian mainland has 6 genera and 9 

species (Sebastian and Peter, 2009). They live in tangled space webs 

consisting of different configurations. Some are irregular with long threads 

criss-crossing in an irregular fashion, or the centre of the web consists of a 

large, more compactly woven sheet, with a network of irregular threads above 
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and below. Pholcids characteristically vibrate the web rapidly when disturbed. 

The female carries the egg sac with her chelicerae. Several species are 

widely distributed and are commonly found in human habitations. These 

spiders are delicate with very thin long legs. They are commonly called 

Daddy-long Legs Spiders because of their legs.  They are mainly secretive 

spiders and live in dark sheltered places. They usually have eight eyes, 

although this number is reduced to six in some species and in some cave-

dwelling species, the eyes may be prominently reduced in size or are absent 

altogether. When disturbed, they usually undergo unusual defence behaviour; 

they begin to rotate and gyrate their bodies round and round, usually 

describing circles from right to left; they move so rapidly that their bodies often 

appear as a blur. Pholcids construct delicate webs in discarded boxes, under 

houses and verandahs and in other sheltered positions; in their native habitats 

they are frequent in caves and hollow tree-trunks. When resting in the web, 

they invariably hang body downwards or occasionally they may be detected 

resting in a vertical position, in which case, the head is positioned downwards. 

Unlike most spiders, the females of this family do not produce egg-sacs. 

Instead, the female wraps a loose covering of a small number of silken 

threads around the egg cluster which is held in position in the spider’s 

chelicerae and is carried around until the eggs hatch. The two genera 

sampled in the study area were Crossopriza and Smeringopus.  Pholcids 

were found mostly in pure sal and mixed sal habitat types. 

 

(i) Crossopriza have an oblong abdomen, truncated posteriorly. The 

eye pattern is distinct; eight eyes in two recurved rows. Legs are 

very long, thin, and spotted with black streak. The spiders occur in 

caves and in hollow logs and trees. During the winter, the spiders 

rest, tightly pressed and motionless, against the underside of wood 

or other material in their hideouts. With the onslaught of warmer 

weather, they become active and build their snare webs which 

consist of a tangle of irregular, soft, silken threads. Sometimes 

these webs may be represented by a tangled sheet of up to about 

30 cm in diameter. The spider always remains in the centre of the 
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web, where it is suspended upside down and from where it captures 

moving prey nearby. 

 

(ii) Smeringopus spp. have a cylindrical abdomen with a chevron 

pattern. The eye pattern of Smeringopus is distinct. There are two 

sets each of three contiguous eyes, on either side of the carapace, 

raised on slight tubercles, with two smaller anterior median eyes in 

the centre front of the carapace. This spider builds space web 

without sticky threads in abandoned deadwoods and rocky 

outcrops. Prey landing on the silk threads or moving below the web 

is caught with extended front legs, lifted to the chelicerata and bitten 

while the third and fourth pair of legs cast silk over it. 

   

Family Pisauridae (Nursery-web and fishing spiders) 
 
The Pisauridae are a fairly large family and 9 of the 53 genera occur in India 

(Sebastian and Peter, 2009). Pisaurids have diverse life-styles, some live in 

webs and others are free-living hunters. They have slender bodies and long 

legs. The elongated abdomen shows symmetrical patterns of black on brown 

to grey background. The long legs have numerous spines. There are three 

claws on each tarsus and colulus is present. Pisaurid females carry their eggs 

in their chelicerae. Just before the young emerge, the female constructs a 

framework of silk; know as a nursery web, in which the eggs are deposited. 

After emerging from the egg-sac the young remain in the nursery until 

dispersal commences. The two genera that were sampled from Terai were 

Pisaura* and Thalassius. Pisaurids only found in grassland sites adjacent to 

swamps and lakes. 

 

(i) Pisaura is lycosidae like genus, most species scattered in the 

Palaearctic, Ethiopian and Oriental regions. They live on leaves and 

make a small retreat. They are active hunters that pursue their prey 

in leaps and bounds across the substrate. They are commonly 

found in grasslands and open forests. Cephalothorax is longer than 

broad; dorso median band of carapace is usually divided by 
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longitudinal white stripes. Anterior row of eyes are shorter and 

slightly recurved than posterior row of eyes. Posterior median eyes 

usually lager than anterior median eyes. Chelicerae are with three 

retro marginal and promarginal teeth each. Abdomen is longer than 

broad, and usually bears longitudinal pale bands. Body length is 

about 8.5 – 15 mm long. 

 

(ii) Genus Thalassius is endemic in the Oriental and Ethiopian 

regions. They are fish eating spiders, and inhabit the fringes of 

freshwater pools. They can walk well on water as well as on land. 

The front legs are used in a sensory capacity much like the 

antennae of insects that are held in the air while the hind legs are 

dragged along. They hunt on the surface of the water, preying only 

on small fish, tadpoles, freshwater shrimps, insects and small 

toads. They dive into the water to grab their prey. They can be 

readily recognized from other pisaurids by the presence of strongly 

recurved anterior eyes, broad clypeus beyond ocular quadrangle 

and chelicerata with three retromarginal teeth.  

 

Family Salticidae (Jumping spiders) 
 
This is the largest spider family comprising more than 5000 species belongs 

to 563 genera worldwide (Platnick 2008). The Indian Mainland has a rich 

fauna that includes 192 species belongs to 62 genera (Sebastian and Peter, 

2009). They are commonly called jumping spiders because most of the 

species are very active in warm weather, leaping from leaves, bark, twigs etc, 

to other resting or jumping posts in the search of prey or to escape from 

potential predators. Most of the species are brightly coloured while most bark-

inhabiting species are dark in colour and mottled with clusters of brown, grey, 

white and/or black hairs. Salticids are diurnal, cursorial hunting spiders with 

well-developed vision. With their large eyes and complex retinas they have 

unique resolution abilities, unparalleled in animals of similar size. Generally 

males have ornate pedipalps and all have a squarish cephalothorax that is as 

large as or larger than the abdomen. The anterior median eyes are larger than 
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the remaining eyes. Most salticids do not spin a capture web or use silk to 

catch prey. Silk is only used to build sac-like retreats in which to moult, 

oviposit and sometimes mate, or which they occupy during periods of 

inactivity. The retreats are small, made of densely woven silk and attached to 

various substrates. Salticids were widely distributed in the study area, 

occurring in all habitat types and all sites. The 7 genera sampled from the 

Reserve included Marpissa, Myrmarachne*, Plexippus, Phintella, Portia, 

Rhene* and Telamonia.  

 

(i) Members of genus Marpissa are small to medium-sized jumping 

spiders with relatively flat carapaces. Width of carapace is 

approximately two-thirds of carapace length. Eyes of anterior row 

are subcontiguous, with anterior medians twice the diameter or 

slightly less than twice the diameter of the anterior laterals. Eyes of 

median row are variable in position between anterior laterals and 

posterior eyes. First pair of legs is two to three times as heavy as 

remaining legs. Members of this genus are common in leaf mold 

and (drift as well as low herbaceous and shrub vegetation). 

 

(ii) Genus Myrmarachne occurs throughout the tropics, and it is one of 

the most abundant among the salticids, comprising more than 200 

species. They resemble ants, both in behaviour and morphology. 

The spiders do not prey on ants but the resemblance affords these 

spiders a measure of protection. These salticids have rather unique 

abilities, e.g. they are very efficient in catching moths and some eat 

the eggs of other spiders. They are ant like salticids with long and 

narrow cephalothorax. The pedicel connecting cephalothorax and 

abdomen is very conspicuous. Ocular quadrangle is nearly as long 

as broad. Chelicerae with several teeth in the retromargin, male 

chelicerae strongly developed.  Abdomen is elongated, oval or 

spherical with a transverse depression in the male, dorsal scutum 

present in both sexes. Legs are slender with long segments.  
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(iii) Members of genus Phintella are small slender spiders (3-7 mm 

long) usually with dominantly pale grey brown body colour. The 

cephalothorax is quite high, with the cephalic region flat and the 

thorax sloping, slowly at first; and then steeply to the posterior 

margin. The sides are more or less vertical. The abdomen is oval 

and often with transverse light and dark streaks, or pale with grey 

indistinct linear patterns. The moderate spiny legs are long and 

slender and all of much the same size, with the front legs of the 

male marginally longer and stronger than the others. Metallic lustre 

in the cuticle and scale like setae present. They are often to be 

seen wandering about or sunning themselves on top of the leaves 

and sometimes to be found resting or in a cell under leaf. Salticids 

often build a retreat between and attached to two closely 

overlapping leaves. They rest during the day on the underside of 

the leaves in a silken retreat or may be observed resting on the leaf 

seeking insect prey. They are usually very wary and usually scurry 

into the shelter of leaf bases in the centre of the plant or move 

rapidly to the other side of the leaf if disturbed. 

 

(iv) Genus Plexippus represents medium sized jumping spider group, 

less than 10 mm in length, widely represented in most 

zoogeographical regions of the world. Members of this genus have 

a high, moderately convex cephalothorax, with cephalic sides 

almost parallel and rounded in thoracic area. Height of the 

cephalothorax is less than one half of its length. The convex 

carapace truncated posteriorly, and then curves very gradually to 

just behind the front eyes where it briefly diverges. It is dark brown 

with the eye field black and a broad, white median band running 

from the posterior eyes (and sometimes from the front eyes) to the 

rear margin where it joins two equally wide, entire, submarginal 

bands. There is a narrow black marginal band. The abdomen is 

elongate oval with hunched shoulders anteriorly. It is dark brown in 

colour with a broad white median band, continuing the one on the 

carapace and almost reaching the spinnerets. The sides of the 
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abdomen are white. At about a third of the way from the spinnerets 

there are two characteristic circular white spots adjacent to the 

white median band and two more near the spinnerets. They are 

also well adapted for living under bark and for moving between 

cracks and crevices in bark. They are rather rare but if encountered 

and disturbed, they usually become very active and scurry away to 

another crevice for protection. 

 

(v) The Portia spp. belongs to the subfamily Spartaeinine and these 

spiders are renowned for their hunting skills. Prey may be caught 

outside the web during hunting raids, or in the web of the prey itself, 

which is stalked by means of aggressive mimicry when the salticid 

imitates the signal emitted by males of the prey. They generally 

prey on other spiders and have the ability to move over cribellate 

and ecribellate silk. The males of this genus are referred to as 

dandy because of its elaborate pedipalps and black hairs on its 

body and upper legs. 

  

(vi) Rhene spp. is a quite a large, widespread genus of salticids.  They 

are small beetle like jumping spiders clothed with conspicuous thick 

hairs. Body length is usually less than 7mm. They are often to be 

found spun up in retreats in the seed heads of plants. Typically the 

cephalothorax is fairly thick and flat on top. The carapace is broader 

than long and widest at the level of the rear eyes. The flat top is 

almost trapezoidal in shape, widest just behind the rear eyes and 

narrowest at the front row of eyes. The sides and most of the thorax 

are vertical, with the rear margin very wide and truncate. The 

abdomen is oval, slightly truncates at the front and slightly pointed 

at the rear. The legs are fairly sturdy with the femora, patellae and 

tibiae noticeably swollen. Leg I more robust and hirsute than leg II-

IV.  

 

(vii) Telamonia is moderately large and typically colourful salticid 

genera which occur in tropical forests. The genus is Oriental in its 
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distribution. The cephalothorax is high, with the cephalus flat, the 

sides almost vertical and the thorax sloping steeply to the rear 

margin. The carapace is longer than wide, oval and moderately 

widely truncate at the rear. With the anterior lateral eyes just behind 

the medians, the pattern is more or less 2,2,2,2. The legs are long, 

slender and carry numerous thin spines. The colour patterns vary 

considerably between the sexes and between the species. 

Typically, the cephalic part of the carapace is usually coloured and 

there are usually two coloured longitudinal stripes running the 

length of the abdomen. The abdomen is long and tubular, rounded 

at the front and tapering gradually to a bluntish rear. The most 

distinguishing character separating it from other similar salticid 

genera is the presence of short, thick bristles on the lateral edges of 

the cymbium of the male pedipalp. Female epigynum is usually 

dome shaped with a pair of dark orifices separated by a pair of 

ducts medially. The spiders, especially the males, are often 

common during summer, hunting and dancing on leaves of shrubs 

during the day. They build a retreat of soft white silk amongst two or 

more leaves. The males are sometimes observed undergoing threat 

displays and are very agile in leaping from place to place. 
 

Family Scytodidae (Spitting spiders) 
 
Family Scytodidae is represented by a single genus, Scytodes, which includes 

9 Indian species (Sebastian and Peter 2009). Scytodids are nocturnal, 

cursorial spiders that have a specialised way of catching prey. They are the 

only spiders known to possess prosomal glands that produce silk. These 

enormous, specialised glands consist of two parts: an anterior part that 

produces venom and a posterior part that synthesises gluey silk. Before being 

squirted, the fibres are packed in paracristaline form in the apical part of the 

glandular cells. Rapid contraction of the carapace muscles squirts a mixture of 

venom and gluey silk from the chelicerae up to a distance of 1- 2 cm. They 

prey is glued to the substrate and the contact with the venom results in 

paralysis. The carapace is domed in the thoracic region, sloping downwards 
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towards the anterior aspect. They have six eyes arranged in three well-

separated pairs. The colour of the different species varies from pale yellow to 

dark brown, with a series of dark symmetrical patterns on the dorsal side. The 

weak and basally fused chelicerata bear no boss, and the fang furrow bears 

hard lamella. The legs are long and slender without heavy spines. Only one 

genus, Scytodes, was found in the study area. Scytodids were not very 

abundant in the study area. They were mostly found in plantation habitat.  

 

(i) Genus Scytodes is cosmopolitan in their distribution and usually 

found in the ground, usually in dry, sheltered situations amongst 

debris, dry leaves, and rocky outcrops. The female carries her 

brownish or purplish egg cocoons in her chelicerata held against 

sternum. Body length is about 5-7 mm. The cephalothorax is 

distinctive in being prominently arched towards the back and the 

abdomen, and slopes downwards to the chelicerae. Carapace lacks 

fovea or thoracic impressions, hump posteriorly, pale yellow with 

numerous black mottles forming irregular lines or patterns. The 

spider has six eyes, grouped in three pairs, two pairs of which are 

situated opposite to each other. The legs are very slender and 

spindly in relation to the rotund body and because of this 

unbalanced weight, the spider is unable to walk very fast; instead, it 

creeps along slowly in search of small prey such as soft-bodied 

flies, mosquitoes and silverfish. The abdomen is ovoid to sub 

globular and mottled like carapace.  

 

Family Sparassidae (Huntsmen spiders) 
 
The Sparassidae are a large family comprising 83 genera, 11 of which are 

known from India (Sebastian and Peter, 2009). Sparassids are free-living, 

nocturnal, wandering spiders with diverse lifestyles. They do not build webs, 

only silk retreats. Most of the species are large. Sparassid spiders have 

laterigrade legs like the unrelated Thomisidae and can run sideways as well 

as forwards. Their legs are often positioned outwards as well as forwards, and 

this feature allows them to move under loose bark, stones and in crevices in 
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rocks with great ease to escape predation or to retreat after hunting. Most 

genera are covered with a fine pile of light straw-grey to brown hairs. The 

carapace is broader than it is long. The cypleus shows a white band 

(moustache) and the eye pattern is in two rows, with the anterior laterals often 

the largest. They have long robust legs, turned outwards in crab-like fashion. 

They are usually found on or under the bark of trees and amongst foliage. 

Some Olios species construct a silken retreat amongst dead leaves in trees. 

Two genera Heteropoda and Olios were sampled from the TCA. Sparassids 

were widely distributed in the study area except mixed sal and plantation 

habitat types. 

 

(i) Hunting spiders of genus Heteopoda are usually with powerful 

mandibles and strongly spined legs, the tarsi having ungual tufts 

and only two claws. The genus Heteropoda has the cephalothorax 

squarish, generally raised behind; eyes of posterior line recurved, 

the lateral eyes larger and prominent, anterior eyes straight or 

procurved with their laterals larger than the medians; maxillae not 

crested; vulva consisting of two lobes (usually separated by a 

skeletal place, the sclerite) and not marked with circular pits. Mature 

spider feeds on a wide variety of insects (and other spiders) 

including moths, flies and other insect pests. Apart from occurring 

under stones and bark, and under slabs of stones on exposed rocky 

outcrops in natural habitats, these spiders have also been recorded 

living under pieces of corrugated iron, and amongst discarded 

wooden boxes and chopped firewood. 

 

(ii) Olios, are pale-brownish to grey-brown spiders which are easily 

identified by the colourful markings on the underside of the 

abdomen. Carapace of Olios is distinctly high and convex. Anterior 

row of eyes are straight, anterior medians largest, and larger than 

laterals and posterior of row of eyes slightly recurved. Second leg is 

usually longer than first. They build an oval retreat in the form of a 

finely webbed sac firmly attached to the underside of a stone or 

between two or three leaves fastened together with silk. They 
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usually rest during the day under the bark of trees, or in fallen logs 

and in hollow, rotten tree-trunks. The mature spiders feed on a 

variety of insects such as moths, beetles and other bark dwelling 

insects and other spiders.  

 

Family Tetrablemmidae 
 
The armoured spiders of the family Tetrablemmidae make up a little- known 

group of animals distributed throughout the world tropics. Family 

Tetrablemmidae comprising of 30 genera, of which 4 are known from India 

(Sebastian and Peter, 2009). They are very small three clawed spiders, with 

eyes six in number. Though, few species are eyeless. Most tetrablemmids live 

in litter, bark or mosses in the forest. Some species construct web on the 

surface of dry leaves. Although these spiders seem to be very common in the 

soil litter, they are still poorly represented in zoological collections, probably 

due to the rare use of soil sampling techniques to collect arachnids. 

 

(i) One genus Tetrablemma was collected during the entire sampling 

period. Carapace of Tetrbalemma males is strongly elevated, 

forming a conical shape. Only two single species of tetrablemmids 

found in grassland and riparian habitat respectively.  

 

Family Tetragnathidae (Long -jawed spiders) 
 
The Tetragnathidae are represented by 48 genera in several subfamilies 

(Platnick, 2008). The Indian mainland has 10 genera and 47 species 

(Sebastian and Peter, 2009). Members of the family Tetragnathidae are a 

rather diverse group of orb weavers of small to large size. These spiders are 

commonly known as the Long-jawed Spiders, because members of this group 

are easily recognized by the very long, dark-coloured chelicerae which 

prominently project from the front of the cephalothorax, and which together 

with the two long palps, give the appearance of the spiders having four “jaws”. 

Tetragnathids construct orb-webs and the behaviour and construction of these 

orb-webs varies between subfamilies. Five genera were found in TCA, 
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Leucauge* (sliver marsh spiders), Meta*, Nephila (golden orb spiders), 

Tetragnatha and Tylorida *. Tetragnathids were found in all habitat types 

except plantation habitat.  

 

(i) Leucauge spp. has a remarkable silvery abdomen with a pattern of 

red, green and gold markings. Members of the genus Leucauge are 

builders of large webs in low shrubs, hedges, in damp places such 

as marshes or swamps, and similar habitats. Webs are often 

horizontal or nearly so, and have a great number of radii and 

spirals. There may be a barrier of irregular threads below the orb. 

Males and females differ little in size, and the legs of males exhibit 

no sexual modifications. The common body colouring is silvery. 

Carapace broad posteriorly, somewhat narrowed at sides anteriorly; 

Eyes subequal in size and posterior row of eyes straight or 

somewhat procurved. Chelicerae are stout and somewhat swollen 

on anterior surface. Legs I and II are long and slender, femora IV 

with double fringe of hairs or trichobothria. Abdomen is silvery, 

twice as long as wide, anterodoraslly with zero or more pairs of 

tuberceles. 

 

(ii) Representatives of the genus Meta are dusky inhabitants of cool 

dark places such as caves, cellars, and moist stone piles in dense 

forests. The web is vertical or nearly so, and the spider rests at the 

hub. Egg sacs are suspended on a thread near the web. Males and 

females are approximately the same size, and the males possess 

no sexual modifications on the legs.  Carapace is brownish, paler 

anteriorly, shiny, smooth, narrowed anteriorly at level of leg I. Eyes 

are approximately equal in size and posterior row somewhat 

procurved. Abdomen commonly with paired series of large dark 

spots on brownish background, broadly elliptical, plump, 

approximately as high as long. Their tendency toward living in moist 

dark habitats is also unusual among orb weavers. 
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(iii) The Nephila (Golden Orb Weavers) is large and impressive. 

Nephila are large (at least the female is) tropical spiders commonly 

known as Golden Orb Weavers because of their large webs built of 

strong golden silk. The web is usually supported between two trees 

and can span enormous spaces, metres wide, about 1.5 metres or 

more from the ground. The female is almost entirely black and the 

first, second and fourth pairs of legs have a brush of bristles on the 

tibia. Cephalothorax is with convex cephalic region more elevated 

than thoracic area and armed usually with a pair of tuberceles 

posteriorly. Median ocular quadrangle is squarish to slightly broader 

posteriorly. Legs are very long and strongly spinulose. Combined 

length of tarsi and metatarsi is longer than tibiae and patellae 

together. The abdomen is elongated (long oval) and is yellow with 

the posterior end black or blue with yellow speckles infusing forward 

into the yellow. Kleptoparasites like the dewdrop spiders of the 

genus Argyrodes (family Theridiidae) often inhabit the webs of 

Nephila's and they steal prey from the orb-webs of their hosts. 

  

(iv) Members of the genus Tetragnatha are moderately large 

inhabitants of trees, shrubs, and tall grass in meadows or along the 

margins of lakes and streams. Some build their webs over running 

water, where emerging aquatic insects are the main prey. Some of 

these spiders may stand at the hub of their webs by day as well as 

night; others may be crepuscular. Some may also be found closely 

appressed to a grass stem near the web, extending legs I and II 

forward along the stem and III and IV backward in the same way, 

thus achieving a degree of camouflage. The webs are usually 

inclined from the vertical, sometimes horizontal, and may be 30 cm 

or more in diameter. The hub is usually open, and there is a well-

defined free zone and narrow attachment zone.  Body is 

prominently long and narrow, several times longer than wide. 

Carapace is oval, widest near the middle, flattened above, with 

conspicuous thoracic groove. Eyes are small, ringed with black 

pigment; lateral eyes on each side usually distinctly separated, 
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(v) Spiders of genus Tylorida, mostly preferring moister places along 

damp ravines and overhanging stream banks. They build web, is 

vertical or nearly so, and has a small central spiral with the hub 

open. Though, web varies in orientation, even within species, from 

nearly vertical to nearly horizontal. When hunting, the spider often 

wraps its prey, hangs it in the web, and returns for an interval of 

time to the hub before feeding. Carapace is yellowish brown with 

grey markings, sometimes pitted, rather low, widest at mid length 

and gently narrowed anteriorly and posteriorly. Eyes are subequal 

in size; lateral eyes on each side touching; posterior row of eyes 

approximately straight. They posses very long leg I, and have single 

row of straight trichobothria on each of the legs I-IV. Abdomen is 

high and roughly forms right angle triangle in shape.  

 

Family Theraphosidae (Bird-eating spiders) 
 
The Theraphosidae are a large family that comprise 116 genera and about 

920 species. Though there are only 10 genera reported from India (Sebastian 

and Peter, 2009). This is a small family of usually very large and hairy spiders. 

They are commonly called Bird-eating spiders because they have been 

known to kill and eat small birds. Other small vertebrates such as lizards and 

frogs are also preyed upon. Theraphosids, with heavy legs retain the basal 

diameter throughout the length of the leg. They have large, hairy pedipalps 

that look like another pair of legs. They are similar to barychelids but have a 

distinct lobe on the anterior aspect of the maxillae. They have a wide clypeus 

and their eight eyes are arranged on an ocular protuberance on the front 
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portion of the carapace, behind the clypeus. Bird-eating spiders do not 

construct web but instead, they live in deep, sinuous burrows that may 

measure over half a metre deep. Unlike other spiders which live in holes in 

the ground (e.g. trap-door spiders), they do not construct a lid of silk at the 

entrance of their burrows. Their burrows concealed under rocks, and beneath 

roots of trees and fallen logs, and may also have a sheet-web surrounding the 

entrance. 

 

(i) One genus, Selenocosmia was found in the study area. These 

spiders of genus Selenocosmia are nocturnal in habits and during 

the day they hide in a deep, sinuous burrow which measures up to 

60 cm deep; a silk sheet is constructed around the entrance to 

capture inspects and ground-dwelling vertebrates. Selenocosmia 

are large spiders with dense, long hairs on the legs and tarsi and 

have stridulatory organs on the chelicerae. These consist of a 

cluster of short, hard spines on the anterior margins of the maxillae 

and a series of short hairs on the outer portion of the chelicerae. 

They are rapidly rubbed together to produce sound. Theraphosids 

were confined to river banks of all habitats sampled. 

 

Family Theridiidae (Comb-footed spiders) 
 
Theridiids are one of the larger spider families represented by 109 genera 

with over 2293 species so far described (Plantnick, 2008). The Indian 

Mainland represents 19 genera (Sebastian and Peter, 2009). They are small 

to medium sized spiders with a globular abdomen and long legs of which the 

third pair is the shortest. Theridiids have diverse life-styles. Most genera 

construct three dimensional, untidy-looking space-webs of different shapes. 

Some webs enable the spider to catch flying insects and consist of criss-cross 

threads or sheet platforms with viscid threads on the outside, while in other 

webs the viscid threads are lightly attached to the substrate. Some theridiids 

build special retreats inside or outside the frame and use plant material or soil 

particles to camouflage the web. Other theridiids construct regular webs or the 

webs can be reduced or absent. The members of this family are commonly 
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called Comb-footed Spiders because of their “comb”, a series of serrated 

spines along the outside margin of the tarsi of the last (fourth) pair of legs. 

This comb is used to comb out the silk from the spinnerets. Theridiids wrap 

their prey in viscid silk using combs on tarsi IV. This technique is unique to 

this group.  Several species of theridiids were found in the study area. Genera 

that were sampled included: Achaearanea*, Argyrodes*, Chrysso* and 

Theridion*. The Theridiids had a very wide distribution in the study, while 

mostly occuring plantation habitat.  

 

(i) Members of genus Achaearanea spin irregular network of fine 

threads built commonly in hidden habitat. Webs are also placed 

amongst rocks and rarely amongst foliage. The spider usually rests 

upside down in a sheltered part of the web where it is more closely 

woven but is not dense enough to conceal the spider. Occasionally, 

a mature spider may construct a web in an open, unsheltered 

situation. In this instance, the spider will often carry a piece of leaf 

or some other debris into the web which will act as a retreat for the 

spider. Mature spiders feed on a wide variety of insects, such as 

grass-hoppers, flies, beetles and moths. They have 

characteristically balloon shaped abdomen almost vertical and 

spinnerets at bottom. Anterior row of eyes procurved and posterior 

row slightly recurved or straight and square shaped median ocular 

area. 

  

(ii) Genus Argyrodes (dew drop spider) represents the largest 

member in the family Theridiidae, with approximately more than 200 

species described worldwide. Members of Argyrodes commonly 

known as the Quicksilver or Dewdrop Spider because of its bright 

silver coloration on the abdomen. They are kleptoparasites, live in 

the webs of larger spiders where they share the prey which is 

captured within their host’s snare. They usually rest on the outskirts 

of their host webs but they do not appear to be disturbed by their 

hosts and often feed on prey close by to the host. Cephalothorax is 

flat and rather low posteriorly in thoracic region.  Chelicerae bear 

 65



two or three promarginal teeth and one or two in retro margin, or 

row of small or equal sized denticles. General colouration of 

abdomen is uneven, usually silvery or with silvery patches. 

Abdomen bears tuberceles, extended sub triangular to very long. 

Dimorphisms of secondary sexual characters are pronounced in 

Argyrodes. Males are usually larger than females and have larger 

legs. Eye position and size also differs from females. 

 

(iii) Genus Chrysso consist of small to medium sized spiders (1-5 mm) 

comb footed spiders. They are common in low vegetation and 

grasses and construct irregular webs in the lower side of leaves, 

very close to ground. Members of this genus are distinguished from 

other allied genera by following characters; longer than wide 

cephalothorax, anterior row of eyes slightly procurved, posterior 

rows of eyes straight or slightly recurved or procurved. Eyes sub 

equal in size or anterior median eyes slightly larger or smaller than 

the rest. Tarsal IV bears a tarsal comb. Cheliceral length is almost 

as long as clypeus height. Abdomen is longer than wide or tall 

extends beyond spinnerets. Male pedipalp bears a distinct radix, 

with curved embolus base. 

 

(iv) Theridion (false button spiders) is the largest theridiid genus and 

distributed worldwide. They are smaller than true button spiders, 

often with a shiny, globular abdomen, and occur in a wide variety of 

habitats. They are found in bushes, on tree trunks, in the crevices in 

rocks and walls and frequently also in houses. These spiders build 

irregular tangles of silk as a snare, usually amongst foliage of living 

trees and bushes. Some of the strands of silk which hang vertically 

downwards from the tangled mass of silken fibres may have a 

sticky drop of fluid at the ends. When a small insect brushes onto 

the viscid droplet, the strand rapidly curls upwards entangling the 

prey with the droplet and silk. They possess longer than wide 

carapace without stridulating structures. Row of anterior eye is 

straight or procurved as viewed frontally, while posterior eye row is 
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straight as seen dorsally. Enlarged chelicerae are present in males. 

They are long legged spiders, patella I and tibia I at least 1.5 times 

as long as cephalothorax.  Abdomen usually spherical, longer than 

high, sometimes wider than long, sub triangular without plate or 

tuberceles. Male pedipalp is with distinct median apophysis, 

conductor and radix, though vary in positions. 

 

Family Thomisidae (Crab spiders) 
 
Thomisids are represented by 173 genera and about 2085 species in seven 

subfamilies (Platnick, 2008). 164 species belongs to thirty eight genera was 

recorded from India (Sebastian and Peter, 2009). Most thomisid spiders are 

characterized by having legs (the first two pairs of which possess ventrally 

paired spines), which are able to move forwards or sideways (i.e. laterigrade), 

in a manner similar to that of crabs; hence the popular vernacular name of 

Crab Spider for the group. They have also been called Aerial or Gossamer 

spiders on account of their remarkable ability of transporting themselves from 

place to place by a silken thread which is blown with the wind and attaches 

and carries the spider to other supports and retreats. Many species of 

Thomisidae frequent the ends of branches and flowers of low to high-growing 

trees or shrubs, while other species live under or on the bark of mature trees. 

Many species form connections between objects, such as twigs and leaves, 

which are widely separated from each other by long, single threads of silk, 

while other species conceal themselves amongst herbage, or in the corners of 

rough bark, rocks or walls. Thomisid spiders do not construct a web, but in 

order to capture their prey, they rely on concealment, attractive coloration or 

resemblance (mimicry) to their prey. This adaptive evolution has resulted in a 

myriad of forms and colours amongst the Thomisidae. A majority of the light-

coloured species await in ambush at the centre of flowers, below petals and 

whole inflorescences, tips of leaves etc., with their anterior legs extended 

typically sideways and forwards to form half a circle. The eyes of Crab 

Spiders are arranged in two rows of four, sometimes raised on a tubercle 

either singly or together as a group. Their anterior eyes are usually larger than 

the posterior ones. Another remarkable characteristic of Crab Spiders is their 
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ability to move the anterior median eyes in opposite directions at the same 

time. Male thomisids are usually much smaller than the females and are 

seldom encountered in the field. The females of most species construct a 

small, whitish egg-sac on a curved or doubled over, broad leaf or blade of 

grass, sealed with a thick covering of silk around the margins. The thomisids 

were abundant in this study and 5 genera were collected. Genera included 

Diaea , Misumena, Ozyptila*, Runcinia, and Thomisus*. Thomisids display an 

interesting range of adaptations to their habitats.  

 

(i) Most Diaea species are small spiders (i.e. less than 1 mm in total 

length) and they have a distinctive oval to circular, somewhat 

flattened abdomen, sometimes broader and sharply pointed 

towards the posterior extremity. Their bodies are usually white, 

yellow or green, while their abdomens are smooth and coloured 

white, yellow, pink, orange and are often adorned with spots, marks 

or lines of red, orange and/or brown.  

 

(ii) Spiders of genus Misumena generally are small to medium-sized 

thomisids, 3.00-10.00 mm long, scattered throughout the world. 

They are found in flowers and low plants or bushes. Carapace of 

these spiders is armed with very short fine spines. Eyes of anterior 

row are equidistant and in more or less recurved line. Lateral eyes 

situated on slightly elevated confluent tubercles.  

 

(iii) Ozyptila spp. are often encountered on the ground under dry 

leaves. As these spiders are small, of a dull brown colour with 

indistinct marks and as they live on the ground they are easily 

overlooked. Cephalothorax is slightly elevated. Anterior and 

posterior rows of eyes procurved, posterior row longer, laterals 

larger than medians and on separate tubercles, the anterior being 

the larger.  Ocular quadrangle is higher than wide, usually with 

parallel sides, but occasionally wider in front. Legs are short and 

stout, I and II longest, tibia and metatarsus with spines beneath. 

Abdomen is depressed, broad at base and rounded behind. 
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(iv) Members of the genus Runcinia, often occur commonly on the 

brown seed heads of grasses and sedges where their colour 

pattern provides them with adequate camouflage against predation. 

The egg sacs are hidden amongst the seeding heads of the 

grasses. The spiders feed mostly on small moths which also live 

amongst the grasses. The genus Runcinia is well distinguished 

from the other thomisids by the flat, nearly as long as wide 

carapace lined with short hairs and head with short setae. Eyes are 

set in two rows, both rows recurved, posterior row wider than 

anterior row, anterior lateral eyes larger than anterior media eyes 

and ocular quadrangle longer than wide. Abdomen obliquely 

truncated at the front from the side, and more or less converging at 

thorax, terminating abruptly at the rear and just covering the 

spinnerets. 

 

(v) Thomisus spp. is a paleotropical genus of medium- to large sized 

thomisids compromising approximately 80 species. They commonly 

occur on white flowers and amongst leaves of various native plants 

where they wait in ambush for flies, beetles, bees and other diurnal 

flying insects; it has also been recorded feeding on other spiders. 

Some species of Thomisus have the ability to change their colour to 

conform to their background. Thomisids are very common on plants 

and play an important role in the natural control of pests. Members 

of this genus are sexually dimorphic, with male darker than female. 

Cephalothorax is almost as long as wide without setae; head with 

laterally projected large horn like protuberances between lateral 

eyes. Eyes are small, subeqal in size, and poorly developed. 

Anterior lateral eyes are largest. Abdomen is wider than long, very 

pronounced in female and more sclerotized in male. 
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Family Uloboridae (Lace orb-web spiders) 
 

The Uloboridae are cosmopolitan in their distribution, attaining great 

diversities in tropical and subtropical regions. The family comprises 19 genera 

in four subfamilies. 22 species belongs to five of the genera occur in India 

(Sebastian and Peter, 2009). Uloborids characteristically spin orb-webs of 

cribellate silk, ranging from a section of an orb to a single line. Lacking venom 

glands, these spiders first thoroughly wrap their prey and then kill it by 

grasping it with their palpal claws and pouring digestive juices over it. The 

chelicerae are little used in feeding, and their usual function of piercing and 

kneeding the prey is replaced by a greater use in wrapping silk. This thick 

wrapping of silk by which the spider enmeshes its captures may also be 

digested as feeding progresses. There is a large diversity of web types in this 

group of spiders, although the group itself is rather small in species numbers. 

The uloborids were found in all habitat types except plantation habitat. Two 

genera, Miagrammopes and Uloborus*, were sampled from the area.  

 

(i) Miagrammopes (single-line web spiders) is moderately a small 

genus. The diagnostic characters are the prominently longer than 

wide cephalothorax and elongated abdomen.  The eyes are 

arranged in two rows. The anterior eye row is reduced while the 

posterior eye row is recurved and widely spaced on the carapace. 

Cribellum and Calamistrum is present. Tarsi shorter than metatarsi 

and tarsus IV bears ventral row of macrosetae. They build webs of 

one or more sticky threads connected to a non sticky resting thread.  

 

(ii) Uloborus (lace orb-web spiders) are characterised by its long front 

legs, rather humped abdomen and almost horizontal orb-web. It has 

a brush of coarse hairs on the tibiae of the first leg and hence its 

common name “feather-legged spider”. Members of the genus 

Uloborus build fully developed orb webs having a sticky spiral. The 

web is usually horizontal. They build webs in low bushes, between 

objects near the ground and are frequently found in and around 

buildings. 
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Family Zodariidae (armoured spiders) 
 
The Zodariidae are a family represented by 74 genera, twenty of which, 

represented by 7 genera, are known to India (Sebastian and Peter, 2009). 

Zodariids have been regarded as relatively rare spiders. This is probably due 

to the fact that the ground fauna of tropical and subtropical regions has been 

studied very superficially. Zodariids are characteristic of semi-arid habitats in 

India where they are active nocturnal hunters. Some species of zodariids 

specialise in ants and termites as prey. They are eight-eyed hunting spiders 

very diverse in general appearance. Their eyes may be arranged in the 

traditional two rows of four eyes, or in three rows, consisting of 2, 2 and 4 

eyes. In some genera the epidermis of the carapace is thick and looks like 

armour. The legs are usually similar in length and thickness. The anterior 

spinnerets are usually the longest and are situated close together. Zodariids 

were found predominantly in grasslands in habitat of all sites sampled. 

They are usually small, terrestrial spiders; they live under stones, rotten logs 

and amongst litter. Some species live in burrows in the ground and construct 

a palisade of twigs or debris around the entrance of the burrow. They do not 

construct any web to catch prey and are best described as vagrant hunters.  

 

(i) Members of Lutica make a silken retreat just under the surface of 

sandy dunes and ambush prey from within it. Only one genus was 

found in TCA was Lutica.  Lutica is diurnal and are specialist ant 

eaters. They live in ant colonies where they have easy access to 

their prey. They do not dig burrows but use silk and sand grains to 

build small retreats which resemble inverted igloos on the underside 

of stones.  
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Table 3.1 Species and morphospecies of spiders captured during entire 
field work. Known distribution according to Siliwal et al., 2005. 
 

Family Species Author Distribution 

 
Agelenidae. 

 
Agelena gautami 

 
Tikader, 1962 

 
Endemic to India 

 Agelena inda Simon, 1897 Endemic to India 
    

Araneidae Arachnura melanura  Simon, 1867 India to Japan and 
Sulawesi 

 Araneus bilunifer Pocock, 1900 Endemic to India 
  Araneus sp. nov.1    

  Argiope anasuja Thorell, 1887 Endemic to South 
Asia 

  Argiope pulchella Thorell, 1881 India to China and 
Java 

  Cyclosa confraga (Thorell, 1892) India, Bangladesh to 
Malaysia 

  Cyclosa mulmeinensis (Thorell, 1887) Africa to Japan, 
Philippines 

  Cyclosa simoni Tikader, 1982 Endemic to India 
  Cyclosa sp. nov.1    
  Cyrtophora bidenta Tikader, 1970 Endemic to India 

  Cyrtophora cicatrosa (Stoliczka, 
1869) 

India, Pakistan to New 
Guinea 

  Cyrtophora citricola (Forskål, 1775) Old World, Hispaniola, 
Colombia 

  Cyrtophora feai (Thorell, 1887) India to Myanmar 
  Cyrtophora ksudra Sherriffs, 1928 Endemic to India 

  Cyrtophora 
moluccensis 

(Doleschall, 
1857) 

India to Japan, 
Australia 

  Eriovixia excelsa (Simon, 1889) 
India, Pakistan, 
Philippines, Indonesia, 
Taiwan  

  Eriovixia laglaizei  (Simon, 1877) 
India, China to 
Philippines, New 
Guinea 

  Gasteracantha dalyi Pocock, 1900 Endemic to South 
Asia 

  Gasteracantha 
geminata 

(Fabricius, 
1798) India, Srilanka 

  Gasteracantha hasselti C.L. Koch, 1837 India, China to 
Moluccas 

  Gea corbetti Tikader, 1982 
India, Bangladesh to 
Philippines, New 
Guinea 

  Gea subarmata Thorell, 1890 
India, Bangladesh to 
Philippines, New 
Guinea 
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Family Species Author Distribution 

 

  Larinia chloris (Audouin, 1826) India, Middle East to 
Mozambique 

  Larinia sp. nov.1    

  Neoscona biswasi Bhandari & 
Gajbe, 2001 Endemic to India 

  Neoscona mukerjei Tikader, 1980 Endemic to India 
  Neoscona odites (Simon, 1906) Endemic to India 

  Neoscona theisi  (Walckenaer, 
1842) 

India, China to Pacific 
Island 

  Neoscona vigilans  (Blackwall, 
1865) 

Africa to Philippines, 
New Guinea 

  Parawixia dehaanii (Doleschall, 
1859) 

India to Philippines, 
New Guinea 

  Parawixia sp. nov. 1    

  Poltys illepidus C. L. Koch, 
1843 

India to Philippines, 
Australia 

  Zygiella indica Tikader & Bal, 
1980 Endemic to India 

  Zygiella sp. nov.1    
    

Barychelide Sason robustum 
(O. P.-
Cambridge, 
1883) 

India, Srilanka, 
Seychelles 

 Sasonichus sullivani Pocock, 1900 Endemic to India 
    

Clubionidae Clubiona boxaensis Biswas & 
Biswas, 1992 Endemic to India 

 Clubiona deletrix 
O. P.-
Cambridge, 
1885 

India, China, Taiwan, 
Japan 

  Clubiona filicata 
O. P.-
Cambridge, 
1874 

India, Bangladesh, 
China 

  Clubiona sp. nov.1    
    

Corinnidae Oedignatha indica Reddy & Patel, 
1993 Endemic to India 

 Trachelas 
himalayensis Biswas, 1993 Endemic to India 

    
Desidae Desis inermis Gravely, 1927 Endemic to India 
    

Dictynidae Dictyna albida 
O. P.-
Cambridge, 
1885 

India, China 
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Family Species Author Distribution 

 Dictyna turbida Simon, 1905 India, Sri Lanka 
    
Dipluridae Indothele rothi Coyle, 1995 Endemic to India 
    

Gnaphosidae Drassodes gangeticus Tikader & 
Gajbe, 1975 Endemic to India 

 Drassodes luridus 
(O.P.-
Cambridge, 
1874) 

Endemic to India 

  Drassodes parvidens Caporiacco, 
1934 India, Pakistan 

  Gnaphosa kailana Tikader, 1966 Endemic to India 

   
Gnaphosa stoliczkai 

 
O.P.-
Cambridge, 
1885 

 
India, China 

  Haplodrassus 
ambalaensis Gajbe, 1992 Endemic to India 

  Haplodrassus morosus 
(O. P.-
Cambridge, 
1872) 

India, Israel 

  Haplodrassus 
tehriensis 

Tikader & 
Gajbe, 1977 Endemic to India 

  Herpyllus calcuttaensis Biswas, 1984 Endemic to India 

  Zelotes nainitalensis Tikader & 
Gajbe, 1976 Endemic to India 

  Zelotes pexus (Simon, 1885) Endemic to India 
    
Hahniidae Hahnia mridulae Tikader, 1970 Endemic to India 

 Neoantistea maxima (Caporiacco, 
1935) Endemic to India 

    

Hersiliidae Hersilia savignyi Lucas, 1836 Sri Lanka, India to 
Philippines  

 Neotama punctigera Baehr & Baehr, 
1993 Endemic to India 

    
Linyphiidae Erigone rohtangensis Tikader, 1981 Endemic to India 

 Linyphia perampla 
O.P.-
Cambridge, 
1885 

Endemic to India 

  Linyphia sikkimensis Tikader, 1970 Endemic to India 
  Linyphia sp. nov. 1    
  Linyphia sp. nov. 2    
  Linyphia sp. nov. 3    
  Linyphia sp. nov. 4    
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Family Species Author Distribution 

  Linyphia sp. nov. 5    
  Linyphia sp. nov. 6    
  Linyphia sp. nov. 7    
  Linyphia sp. nov. 8    
  Linyphia sp. nov. 9    
  Linyphia sp. nov.10    
  Linyphia sp. nov.11    
  Linyphia sp. nov.12    
  Linyphia sp. nov.13    

  Linyphia straminea 
O.P.-
Cambridge, 
1885 

Endemic to India 

  Linyphia urbasae Tikader, 1970 Endemic to India 
  Oedothorax globiceps Thaler, 1987 Endemic to India 
  Oedothorax sp. nov.1    
    

Lycosidae Arctosa indica Tikader & 
Malhotra, 1980 India, China 

 Arctosa sp. nov.1    
  Arctosa sp. nov.2    
  Arctosa sp. nov.3    

  Evippa solanensis Tikader & 
Malhotra, 1980 Endemic to India 

  Hippasa himalayensis Gravely, 1924 Endemic to India 
  Hippasa pisaurina Pocock, 1900 Iraq, India, Pakistan 
  Hippasa sp. nov.1    
  Hippasa sp. nov.2    
  Lycosa tista Tikader, 1970 Endemic to India 

  Pardosa birmanica Simon, 1884 Pakistan to China, 
Philippines, Sumatra 

  Pardosa kupupa (Tikader, 1970) India, China 

  Pardosa minuta Tikader & 
Malhotra, 1976 Endemic to India 

  Pardosa timidula (Roewer, 1951) Yemen, Sri Lanka, 
Pakistan 

  Trochosa himalayensis Tikader & 
Malhotra, 1980 Endemic to India 

    

Miturgidae Cheiracanthium 
adjacens 

O. P.-
Cambridge, 
1885 

China, India 

    
Oonopidae Gamasomorpha Simon, 1907 Endemic to India 
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Family Species Author Distribution 

clypeolaria 

 Gamasomorpha 
sp.nov.1    

  Gamasomorpha 
sp.nov.2    

  Gamasomorpha 
sp.nov.3    

    

Oxyopidae Oxyopes birmanicus Thorell, 1887 India, China to 
Sumatra 

 Oxyopes elongatus Biswas et al., 
1996 

India, China to 
Sumatra 

  Oxyopes shweta Tikader, 1970 India, China 
    

Philodromidae Philodromus pali Gajbe & Gajbe, 
2001 Endemic to India 

    

Pholcidae Crossopriza lyoni (Blackwall, 
1867) Cosmopolitan 

 Smeringopus pallidus (Blackwall, 
1858) Cosmopolitan 

    

Pisauridae Pisaura decorata Patel & Reddy, 
1990 Endemic to India 

 Pisaura sp.1    

  Thalassius albocinctus Doleschall, 
1859 

Myanmar to 
Philippines 

    
Salticidae Marpissa decorata  Tikader, 1974 Endemic to India 

 Myrmarachne 
himalayensis  Narayan, 1915 Endemic to India 

  Myrmarachne sp.nov.1    
  Myrmarachne sp.nov.2    

  Phintella bifurcata Prószyn’ski, 
1992 Endemic to India 

  Plexippus paykulli (Audouin, 1826) Cosmopolitan 

  Plexippus redimitus Simon, 1902 Endemic to South 
Asia 

  Portia albimana (Simon, 1900) India to Vietnam 
  Rhene indica Tikader, 1973 India, China 
  Rhene sp.nov.1    
  Rhene sp.nov.2    
  Rhene sp.nov.3    
  Telamonia sikkimensis (Tikader, 1967) Endemic to India 
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Family Species Author Distribution 

Scytodidae Scytodes pallida Doleschall, 
1859 

India, China, 
Philippines, New 
Guinea 

    

Sparassidae Heteropoda buxa 
Saha, Biswas & 
Raychaudhuri, 
1995 

Endemic to India 

 Heteropoda fabrei Simon, 1885 Endemic to India 

  Heteropoda venatoria (Linnaeus, 
1767) Pantropical 

  Olios tikaderi 

Kundu, Biswas 
& 
Raychaudhuri, 
1999 

Endemic to India 

Tetrablemmidae Tetrablemma 
deccanense (Tikader, 1976) Endemic to India 

    

Tetragnathidae Leucauge celebesiana (Walckenaer, 
1842) 

India to China, Japan, 
Sulawesi, New 
Guinea 

 Leucauge decorata  (Blackwall, 
1864) Paleotropical 

  Leucauge sp. nov.1    
  Meta  sp. nov.1    

  Nephila pilipes  (Fabricius, 
1793) 

China, Philippines to 
Australia 

  Tetragnatha 
chamberlini (Gajbe, 2004) Endemic to India 

  Tylorida ventralis (Thorell, 1877) India to Taiwan, New 
Guinea 

Theraphosidae Selenocosmia 
himalayana Pocock, 1894 Endemic to India 

    
Theridiidae Achaearanea budana Tikader, 1970 Endemic to India 
 Achaearanea sp. nov.1    
  Achaearanea sp. nov.2    

  Achaearanea 
triangularis Patel, 2003 Endemic to India 

  Argyrodes cyrtophorae Tikader, 1963 Endemic to India 

  Argyrodes fissifrons 
O.P.-
Cambridge, 
1869 

India, Sri Lanka to 
China, Australia 

  Argyrodes sp. nov.1    
  Argyrodes sp. nov.2    
  Argyrodes sp. nov.3    
  Argyrodes sp. nov.4    
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Family Species Author Distribution 

  Chrysso picturata (Simon, 1895) Endemic to India 
  Chrysso sp. nov.1    
  Chrysso sp. nov.2    

  Theridion incertum 
O.P.-
Cambridge, 
1885 

Endemic to India 

  Theridion manjithar Tikader, 1970 Endemic to India 
  Theridion sp. nov.1    
  Theridion sp. nov.2    
  Theridion sp. nov.3    
  Theridion sp. nov.4    
  Theridion sp. nov.5    
  Theridion sp. nov.6    
  Theridion sp. nov.7    
  Theridion sp. nov.8    
  Theridion sp. nov.9    
    

Thomisidae Diaea subdola  
O.P.-
Cambridge, 
1885 

Russia, India, 
Pakistan to Japan 

 Misumena indra Tikader, 1963 Endemic to India 
  Misumena mridulai Tikader, 1962 Endemic to India 
  Ozyptila manii Tikader, 1961 Endemic to India 
  Ozyptila sp. nov.1    

  Runcinia affinis  Simon, 1897 Africa, India to Japan, 
Philippines, Java 

  Runcinia roonwali Tikader, 1965 Endemic to India 
  Thomisus pugilis Stoliczka, 1869 Endemic to India 
  Thomisus sp. nov.1    
  Thomisus sp. nov.2    
  Thomisus sp. nov.3    
  Thomisus sp. nov.4    
  Thomisus sp. nov.5    
  Thomisus sp. nov.6    
  Thomisus sp. nov.7    
  Thomisus sp. nov.8    
  Thomisus sp. nov.9    
  Thomisus sp. nov.10    
      

Uloboridae Miagrammopes 
gravelyi Tikader, 1971 Endemic to India 
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Family Species Author Distribution 

 Miagrammopes indicus Tikader, 1971 Endemic to India 
  Uloborus danolius Tikader, 1969 Endemic to India 
  Uloborus sp.1    
    

Zodariidae Lutica bengalensis Tikader & Patel, 
1975 Endemic to India 
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CHAPTER 4 

DIVERSITY AND COMPOSITION 
OF SPIDER (ARANEAE) ASSEMBLAGES 

 

 

4.1 Introduction 
 
Despite their fundamental roles in natural ecosystems, ecosystem services 

and potential use in identifying conservation priority areas, arthropods have 

largely been ignored in conservation studies (Franklin, 1993; Kremen et al., 

1993; New, 1999a, b). When corrected for knowledge bias, data on 

arthropods show that risk of extinction is as real for them as it is for 

vertebrates (Thomas and Morris, 1994; MacKinney, 1999; Dunn, 2005). As a 

consequence of the current data and knowledge deficit, nowadays most 

conservation studies and decisions necessarily rely on data predominately 

from plants, birds and mammals, but their function as good indicators for 

conservation priorities which ought to be relevant for all other living beings still 

needs to be proved. When this assumption is tested on comparable datasets, 

at least birds and mammals appear to be rather ineffective in relation to the 

use of various arthropod taxa (Lund and Rahbek, 2000; Lund, 2002). 

  

Spiders (order Araneae) represent one of the most speciose arthropod orders. 

It has been estimated that one hectare of tropical forest may support between 

300 and 800 species of spiders at any given time (Coddington and Levi, 

1991). They are among the most numerous arthropods in many samples in all 

kinds of habitats (Basset, 1991; Borges and Brown, 2004). Although 

considerable effort has been invested in recording spider diversity in 

temperate habitats (Russell-Smith, 1999), only recently have studies on 

species diversity in tropical ecosystems been undertaken (Dippenaar-

Schoeman and Jocqué, 1997). 
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In India, most ecological studies on spiders were prevalent in agroecosystems 

mainly in rice ecosystem and coffee plantations (Sebastian et al., 2005; 

Kapoor, 2008). Little is known about the composition of the arachnid 

communities of forest or natural ecosystems, especially undisturbed 

conserved areas in India. In India, earlier work on the inventory of protected 

area arachnids has been undertaken for purposes other than biodiversity 

assessment. In addition, earlier studies used a restricted range of sampling 

techniques which are likely to have provided a biased sample. Here I present 

a description of diversity and species composition as well as contrast between 

sites found in different habitat types within the study area. The aim of the 

study was to investigate the spider species composition in different habitat 

types within terai ecosystem and to compare sites in terms of their family and 

species composition. The objectives were to describe the diversity and 

characteristics of species assemblages found in different habitat types. In 

addition, greater understanding of the heterogeneity of diversity at local scale 

could be achieved by conducting surveys within this area. Using this 

information, the communities of spider assemblages in different vegetation 

types was compared and the possible effect of habitat characteristics on 

species occurrence and observed pattern was explained. 

 
4.2 Methods 
 
Spiders were sampled in localities across five habitat types (Fig 4.1) that 

contained contiguous and relatively homogeneous areas of each vegetation 

community. These were identified subjectively based on apparent differences 

in vegetation type, physiography and soil characteristics, viz, (a) Riparian 

swamp forest- this forest type was found in swampy depressions along 

streams and remain under water continuously for a long period during the 

rains or where deep black heavy waterlogged soils occur and are structurally 

characterized by extremely diverse overstorey and understorey structure 

relative to other vegetation types. This densely vegetated forest type is 

associated with rich humus soil. The most common tree species were 

Syzygium cumini, Barringtonia acutangula (patches occurred along rivers), 

Trewia nudiflora, Terminalia alata, Lagerstromea parviflora and Ficus 
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racemosa. Clerodendrum viscosum, Glycosmis pentaphylla and Murraya 

koenigii are the prominent shrubs. 

 

 
Fig. 4.1 Base map of Terai Conservation Area (TCA) showing sampling 
sites in five different habitat types. In TCA only intensive sampled sites 
of Dudhwa National Park and Kishanpur Wildlife Sanctuary were showed 
here. 
 

Ageratum conyzoides, Dioscorea belophylla and Corchorus aestuans, were 

the important herbs in this type of forest. Syzygium cumini formed a dense 

crop with long clean boles. Structurally, this habitat typically have a mixture of 

sparse and closed canopy, a diverse understorey, and a deep layer of leaf 

litter (b) Grassland - Grasslands occurred in low-lying areas or depressions, 

which were water logged or marshy in nature. Such areas had alluvial soils, 

mostly sandy with clayey patches. These depressions mark old river 

channels. Structurally, these grasslands are characterized by an absence of 

trees and moderate to low herbaceous ground cover. Floristically, these 

grasslands were composed primarily of native and introduced grass species, 

and a few, scattered shrubs. These areas are annually burnt as part of the 

management practices in TCA. Prominent tree species were Bombax ceiba, 

Ficus racemosa and Syzygium cumini. Prominent grasses were Arundo 
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donax, Phragmites karka, Themeda arundinacea, Sclerostachya fusca, 

Saccharum spontaneum and Saccharum narenga. These grasslands have 

interspersed swamps. (c) Pure sal woodland – This habitat type represents 

moist deciduous forest that occurred on higher alluvial terraces. Shorea 

robusta (Sal) occupied a major part of this woodland. This woodland was 

often associated with flat topography and loamy soil. Variation in overstorey 

structure is limited by the dominance of Shorea and the understorey structure 

is relatively diverse, composed of Ardisia solanacea, Colebrookia 

oppositifolia, Clerodendrum viscosum and Murraya koenigii. Woody climber 

Tiliacora acuminata formed a dense carpet on ground in several patches.  (d) 

Mixed Sal woodland. This was the rarest vegetation type, which occurred only 

in five patches in the entire study area and was confined to the gentle slopes 

and old river terraces around grasslands. The overstorey was composed of 

old Shorea robusta with Bridelia squamosai, Bauhinia racemosa, Mallotus 

philippensis, Syzygium cumini and Terminalia alata. Mixed Sal woodlands are 

structurally characterized by closed overstorey of Shorea robusta and 

Terminalia alata, while the dense understorey layer is composed of Ardisia 

solanacea, Clerodendrum viscosum and Glycosmis pentaphylla. (e) 

Plantation. - Extensive plantations of Acacia catechu, Ailanthus excelsa, 

Bombax ceiba, Dalbergia sissoo, Eucalyptus citriodora and Tectona grandis 

have been raised as gap planting as well as after clear felling. This vegetation 

type mostly represents large scale mechanised plantations of teak (Tectona 

grandis) and Eucalyptus. This habitat type were chosen to represent disturbed 

condition, since most of the patches were proximal to villages and on the 

periphery of the protected areas, continue to undergo grazing and other 

biomass extraction to varying extents. Structurally, plantations are 

characterized by moderate to low canopy cover and least herbaceous ground 

cover. 

 

4.3 Sampling Design and Techniques 
 
Spiders were collected along 50 m x 10 m transects, with 20 transects per 

habitat type. These transects were treated as our basic sampling units, 

hereafter sites. Transects were placed randomly within stratified vegetation 
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types. Sampling was carried out over three periods, winter (November 2005 – 

February 2006), summer (March 2005 – June 2005), monsoon (July 2005 – 

October 2005). Spiders were sampled along these transects using six 

sampling techniques (pitfall traps and semi-quantitative sampling). Pitfall 

sampling was operated for 64 weeks and other five semi-quantitative 

sampling performed on 64 occasions (once every week) at the same sampling 

sites. The principal purpose of this sampling design was to produce a 

relatively complete species list and associated abundance data for a 

representative example of each habitat type in the region, and of the region as 

a whole. 

 

4.3.1 Pitfall Sampling 

 

Pitfall traps consisted of cylindrical plastic bottles of 10 cm diameter and 11cm 

depth (Churchill and Arthur, 1999). Six pitfall traps were laid along each 

transect line at an interval of 10 m each. Traps were filled with preservative 

(69 % water, 30% ethyl acetate and 1% detergent). After 7 days, specimens 

were removed from traps, which allowed me to maintain spider specimens in 

good condition before laboratory processing and identification. Since the 

limitations of this method are that the number of individuals trapped is affected 

by environmental, weather and species-specific factors (Mitchell, 1963; 

Krasnov and Shenbrot, 1996; Parmenter et al., 1989; Ahearn, 1971), other 

time constrained semi-quantitative collection methods were employed after 

Coddington et al., (1996) to maximize capture. 

 

4.3.2 Semi-quantitative Sampling  

 

Aerial sampling (for upper layer spiders up to 1.5 m) involved searching 

leaves, branches, tree trunks, and spaces in between, from knee height up to 

maximum overhead arm’s reach. Ground collection (for ground layer spiders) 

involved searching on hands and knees, exploring the leaf litter, logs, rocks, 

and plants below low knee level. Beating (for middle layer spiders up to 1 m) 

consisted of striking vegetation with a 1m long stick and catching the falling 

spiders on a tray held horizontally below the vegetation. Litter sampling was 
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done by hand sorting spiders from leaf litter collected in a litter collection tray. 

Sweep netting (for middle layer spiders up to 1 m) was carried out in order to 

access foliage dwelling spiders. Each sampling method comprised 1 hour 

active sampling, measured with a stopwatch. 

 

All adult spiders were identified to family and species using existing 

identification keys wherever possible (Pocock, 1900a; Tikader, 1982, 1987; 

Cushing, 2001; Koh, 2000). Voucher specimens of each spider species 

collected are deposited at Wildlife Institute of India, Dehradun and Arachnida 

Section, Zoological Survey of India, Kolkata. 

 
4.4  Analysis 
 
4.4.1 Species Richness and Local Diversity 
 
Spiders captured by pitfall traps and semiquantitative methods were pooled 

for each site for quantitative analysis. Species richness was estimated for 

each habitat type, as well as for the regional data set using the nonparametric 

estimators Chao1 and Jacknife2. Accumulation curves were generated after 

100 randomizations using EstimateS 8.0 (Colwell, 2006). Chao1 gives an 

estimate of absolute number of species in an assemblage based on number 

of rare species (singletons and doubletons) in a sample. Chao1 estimate of 

species richness is recommended for inventory completeness values, 

completeness being the ratio between observed and estimated richness 

(Sørensen et al., 2002; Scharff et al., 2003). Jacknife estimators in general, 

and Jacknife2 in particular, have been found to perform quite well in 

extrapolation of species richness, with greater precision, less bias and less 

dependence on sample size than other estimators (Palmer, 1990, 1991; 

Baltanás, 1992; Brose et al., 2003; Petersen et al., 2003; Chiarucci et al., 

2003).  

 

Many indices have been developed to measure and compare diversity 

(Magurran, 1988). Spider assemblages of Terai are very rich (see results) and 

were not completely covered by sampling regimes. Under this condition 
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species numbers are not accurate descriptors of diversity (Gotelli and Colwell, 

2001). I therefore calculated Fisher’s alpha of the log series as measure of 

total diversity using EstimateS 8.0 (Colwell, 2006). Log series-type 

distributions are commonly occurs in nature and measures such as Fisher’s 

alpha are suitable to characterize such datasets. Fisher’s alpha has also been 

extensively used in many other arthropod studies, thus facilitating 

comparisons between studies (Shochat, et. al., 2004). Non-parametric 

Kruskal-Wallis ANOVA was used to compare the diversity indices of spiders 

among habitats. 
 
To compare the species richness values of sites, and to calculate expected 

species richness, individual-based rarefaction was used (Gotelli and Colwell, 

2001). These curves standardize different datasets on the basis of number of 

individuals and not on number of samples. The software program EcoSim7.0 

(Gotelli and Entsminger, 2001) was used for rarefaction analyses. Thereafter, 

the curves were rarefied to the lowest number of individuals recorded in a 

vegetation type (300) to ensure valid comparisons of species richness 

between different sites (Gotelli and Colwell, 2001). Rarefaction was used as a 

diversity index because it considers the number of individuals collected and 

species richness (Magurran, 2004), allows comparison of diversity between 

sites at similar sample size, and by showing the rate of new species 

accumulation, allows for verification that enough samples were collected to 

make proper comparisons of diversity (Gotelli and Colwell, 2001; Magurran, 

2004; Buddle et al., 2005).  
 
4.4.2 Site Similarity and Cluster Analysis 
 
The similarity across sites was depicted as Bray-Curtis similarities (Krebs, 

1989), using both species and guild composition. Multidimensional scaling 

(MDS) plots were constructed based upon similarity values of species 

composition across habitat types in program PRIMER (Clarke and Gorley, 

2001). Analysis of similarities (ANOSIM – Clarke, 1993) was performed 

between each pair of habitat types to determine whether there were 

significant differences between the spider assemblages in the five main 
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habitat types. The data were fourth-root transformed before analysis to reduce 

the weight of common species (Clarke and Warwick, 1994a). The ANOSIM 

procedure of PRIMER is a nonparametric permutation procedure applied to 

rank similarity matrices underlying sample ordinations (Clarke, 1993). This 

method generates a global R-statistic, which is a measure of the distance 

between groups. An R-value that approaches one indicates strongly distinct 

assemblages, whereas an R-value close to zero indicates that the 

assemblages are barely separable (Clarke, 1993). These R-values were used 

to compare spider assemblages between habitat types. Where ANOSIM 

revealed significant differences between groups, SIMPER analyses (PRIMER) 

were used to identify those species that contributed most to the observed 

assemblage differences (Clarke and Gorley, 2001). Similarity percentages 

(SIMPER) allowed identification of species and guild important in 

discriminating between groups that differed significantly from each other. 

Cumulative contributions were cut arbitrarily at 50%. The species with the 

highest dissimilarity to standard deviation ratios were identified as good 

discriminators for each comparison (Clarke, 1993). 
 
4.5  Results 
 
4.5.1 Species Richness and Local Diversity 
 
A total of 3666 adult spiders were captured representing 22 families, 60 

genera and 160 species, which represent 11% of spider species recorded in 

Indian mainland (see Appendix 4.1 for the habitat wise list of spider species 

observed during sampling). The pooled species accumulation curve reached 

an asymptote for both Chao1 and Jacknife2 (Fig. 4.2), indicating that 

sampling was almost complete at regional level. 
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Fig. 4.2 Species-Accumulation curve and estimation curves Chao1 and 
Jacknife 2, for the regional (all samples pooled) dataset. Curves are generated 
from 100 randomizations. 
 
 

The estimated total species richness using Chao1 was 173 ± 8.32 (SD), and 

using Jacknife2 191±1.82 (SD) for the complete sample. The ratio of 

observed to estimated (Chao1) number of species was 92% suggesting that 

at least 8% more species are to be expected in the area than were actually 

collected. However, at local level, in plantation and grassland, I failed to 

collect such a high percentage of species (44% missing) compared with other 

habitat types (Table 4.1). 
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Table 4.1. Measures of species richness estimates and inventory 
completeness for each habitat type and for the regional dataset. 
Richness estimator values (Chao 1 & Jacknife2) represent the mean of 
100 randomizations of sample order. Ratio of estimated and observed 
richness represents inventory completeness. All values rounded to the 
nearest integer. 
 

  

Pure sal 
woodland 

Mixed Sal 
woodland 

Plantation Grassland Riparian 
swamp 
forest 

Regional

No. of 
specimens 777 805 301 729 1054 3666 

Observed 
richness 87 76 41 76 95 160 

Number of 
Singletons 19 18 8 13 28 35 

Number of 
Doubletons 11 7 5 3 10 13 

Chao1 103 99 73 135 127 173 

Jacknife 2 108 98 60 99 136 191 
% 
Completeness 84 77 56 56 75 92 

 

 

From all species recorded, 35 were singletons (21% of all species) and 13 

were doubletons (8% of all species). The most abundant species was 

Chrysso picturata, Simon 1895 (Theridiidae) (112 individuals) and most of the 

individuals (70% of total catches) were found at plantation sites. The highest 

species richness was found in the riparian swamp forest (90 species), while 

lowest species richness was in the plantation sites (41 species). The 

remaining three habitat types did not differed statistically in richness 

considering the overlap of confidence intervals of richness value (Fig. 4.3). 

The fraction of local singletons relative to species numbers recorded per site 

varied between 26% and 77%. The highest contribution of singletons was 

found in riparian swamp forest. Plantation and grassland habitat had lower 

proportion of singletons, these were lowest at sites with more regeneration or 

at early successional phase. 

 

Values of Fisher’s alpha (Fig. 4.4) were high at all sites, but varied 

considerably (range= 23.6-55.2). Highest spider diversity was observed in 
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Riparian swamp habitat, followed by Pure Sal, while it was significantly lower 

in the plantation habitat. 
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Fig 4.3 Comparison of species richness values (±95% confidence 
interval) at lowest number of individuals (300) derived from individual-
based species rarefaction curves of spider assemblages across the 
different habitat types. RP, Riparian; MS, Mixed Sal; PS, Pure Sal; GR, 
Grassland; PL, Plantation.  
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Fig. 4.4 Mean spider diversity (fisher’s alpha) in five habitat types. 
differences between groups are significant (KS test: Chi square=44.24, 
df=4, P<0.01). 
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4.5.2 Species Composition and Site Similarity 

 

Comparing among different sites revealed that on average, species 

composition was much more similar within the same habitat type than among 

different habitat types. MDS plot generated from relative abundances of 

different spider species in each habitat type showed that sampling sites from 

each habitat type clustered together (Fig. 4.5). Sampling sites of 

homogeneous grassland and plantation were well separated from 

heterogeneous forest habitats, which clustered together. Sampling sites in 

pure sal and mixed sal woodland grouped together, and showed little overlap 

with other habitat types. Pair wise ANOSIM test showed most difference in 

species composition occurred between riparian swamp forest and plantation 

sites (R = 0.79, P = 0.001), while the least difference was seen between pure 

sal and mixed sal woodland (R = 0.34, P = .011). Further comparisons of 

dissimilarity in composition were made to identify the species contributing to 

the difference between groups of sites that differed most. 

 

2D Stress: 0.22
2D Stress: 0.22

2D Stress: 0.22
2D Stress: 0.22

 
 
Fig. 4.5 MDS ordination plots of sampling sites in the TCA, generated by 
species composition sorted according to habitat types (open triangle: 
Riparian sites, inverted closed triangle: Grassland sites, open square: 
Pure Sal sites, closed square: Mixed Sal sites; open circle: Plantation 
sites). 
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Fifteen species contributed around 50% to the difference between groups of 

sites. These species differed in mean abundance, which was reflected in the 

degree of group association. Eleven species of family Araneidae, were almost 

absent from plantation sites and present in high abundance in riparian swamp 

forest, whereas Chrysso picturata, Achaearanea triangularis and Argyrodes 

sp. 2 of family Theridiidae were found in greater abundance at plantation sites 

compared to riparian forest (Table 4.2). 

 

Table 4.2 SIMPER analysis of differences in the species of spider 
assemblage contributing to the dissimilarity between most dissimilar 
habitat types found.  
 
Groups Riparian & Plantation (Average dissimilarity= 98.30%) 
  
  Plantation Riparian  

Species 
Mean 

Abundance 
Mean 

Abundance 
Cumulative 

contribution% 
Chrysso picturata 4.45 0.10 6.88 
Leucauge decorata 0.00 2.30 10.66 
Cyrtophora ksudra 0.00 2.15 14.04 
Cyclosa sp.1 0.00 2.20 17.09 
Achaearanea 
triangularis 1.75 0.65 19.98 
Neoscona theisi 0.05 1.70 22.68 
Argiope anasuja 0.00 2.10 25.33 
Lycosa tista 0.00 1.70 27.97 
Hippasa sp. 2 0.00 1.70 30.60 
Neoscona biswasi 0.00 2.10 33.23 
Eriovixia laglaizei 0.80 1.50 35.80 
Poltys illepidus 1.50 0.00 38.22 
Gasteracantha 
geminata 0.00 1.40 40.44 
Argyrodes sp.2 1.30 0.00 42.56 
Neoscona vigilans 0.00 1.10 44.63 
Araneus bilunifer 0.00 1.50 46.61 

 

 
4.5.3 Family Composition and Site Similarity 
 
The most abundant families were Araneidae (41.78% of all captures), and 

Theridiidae (12.46%). Other dominant families comprised Lycosidae (295 

individuals, 11 species), Tetragnathidae (253, 17), Linyphiidae (211, 19), 
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Clubionidae (170, 4), Salticidae (133, 12), and Gnaphosidae (123, 7). All other 

families (14) were represented by less than 100 individuals each, and 

contributed only 29 species. 
 

2D Stress: 0.25

 
Fig. 4.6 MDS ordination plots of sampling sites in the TCA, generated by 
family composition sorted according to habitat types (open triangle: 
Riparian sites, inverted closed triangle: Grassland sites, open square: 
Pure Sal sites, closed square: Mixed Sal sites; open circle: Plantation 
sites). 
 
 

The MDS plot generated from relative abundances of spider guilds was 

similar to that generated from spider species with respect to habitat 

associations (Fig. 5.6). Plantation plots were well separated from forested 

plots and those in three forest habitats (riparian, pure sal & mixed sal) showed 

overlapping. Pair wise ANOSIM test showed most difference in family 

composition occurred between riparian swamp forest and plantation sites (R = 

0.66, P = 0.001), while the least difference was seen between pure sal and 

mixed sal woodland (R = 0.35, P = 0.001). Results of SIMPER analysis (Table 

4.3) revealed that family Araneidae contributing mostly in group difference 

between riparian and plantation sites. Spiders belong to family Araneidae and 
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Tetragnathidae, mostly constructs delicate orb web are predominant in 

riparian sites, while members of family Theridiidae those spin irregular 

network of space web were most abundant in plantation sites. Most species of 

lycosid spiders are found abundant in riparian sites construct a short, 

cylindrical retreat burrow in sand or soft soil. 

 

Table 4.3 SIMPER analysis of differences in the families of spider 
assemblage contributing to the dissimilarity between most dissimilar 
habitat types found.  
 
Groups Plantation & Riparian (Average dissimilarity = 76.53) 
  Plantation Riparian  

Family 
Mean 

Abundance 
Mean 

Abundance 
Cumulative 

contribution% 
Araneidae 3.10 23.95 38.66 
Lycosidae 0.00 8.35 54.18 
Theridiidae 8.00 4.10 66.18 
Tetragnathidae 0.00 3.45 72.97 
Gnaphosidae 0.00 3.55 79.60 
Salticidae 0.40 2.80 84.77 
Thomisidae 1.25 1.65 88.75 
Linyphiidae 1.00 2.10 92.44 
Sparassidae 0.05 1.05 94.93 
Oonopidae 0.50 0.90 96.57 

 
 
4.6 Discussion 
 
The present study, a systematic inventory of spiders, is the first of its kind in 

Terai and is one of the few studies on spider communities in India. As there is 

no species list available for TCA, it is difficult to know precisely what 

proportion of the actual local and regional species richness the study captured 

(Hore and Uniyal, 2008b). However, based on estimated richness inventory 

was almost complete at the regional scale (92%). In spite of the relative 

success of this study, it still cannot be described as comprehensive – 

undoubtedly species were missed at local scales. Sampling additional sites or 

using different methods would capture more species. Additionally, lacking 

access to the canopy, I restricted sampling to the understorey layer. Thus, 

species that predominantly or exclusively occur in the canopy are under 
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sampled. Moreover, sampling efficiency was reduced in the dense forest 

vegetation. Therefore, capturing cryptic species in dense vegetation habitat is 

probably less complete by sampling than those from open habitats. However, 

using a sample-size independent diversity measure like Fisher’s alpha (Hayek 

and Buzas, 1997) should minimize distortions of between-habitat 

comparisons. Nevertheless, the inventory protocol utilized here provided a 

sufficiently thorough sample of local and regional spider species to permit an 

accurate comparison of species richness of different habitat types. The spider 

diversity found not similar in different habitat types. Comparatively, riparian 

swamp forests exhibit highly diverse assemblages, possibly due to higher 

structural complexity. The relatively open and diverse overstorey and 

understorey structure of riparian swamp forest supported the highest number 

of spider species while closed canopy woodland and plantation sites 

supported relatively few. Additionally, these swamp forests are subjected to 

annual flooding, which may ‘‘reset’’ areas to earlier successional stages due 

to removal of existing substrate, organic matter, and organisms, and the 

deposition of sediments (Junk et al., 1989; Sparks et al., 1990; Richards et al., 

2002). These processes may affect spider communities by alteration of 

microhabitats and their relative availability. The disturbances of successive 

floods are cumulative, and may lead to a highly heterogeneous patchy habitat 

condition. However, it is unclear whether such flooding may create higher 

species richness through removal of dominant species and creation of 

ecological space for other opportunist species, or through creation of diverse 

microhabitats, or a combination of these. The intermediate disturbance 

hypothesis (Connell, 1978) might provide an explanatory framework for the 

pattern observed. According to this hypothesis species diversity is greatest in 

communities experiencing intermediate levels of disturbance, so both very 

early as well as very late stages of recovery from disturbance should exhibit 

lower diversity. Disturbance creates novel opportunities for species not found 

in undisturbed forest, and the habitat mosaic resulting from regeneration after 

patchy disturbance further increases the number of niches available. 

Intriguingly, results showed high species richness and diverse assemblage in 

grassland, considering the low structural diversity of this vegetation type. One 

of the possible reasons for this pattern may be the practice of annual, low 
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intensity prescribed burning in the grassland. Burning is a management tool 

used to reduce fuel levels and facilitate regeneration of desired grass species 

for wild ungulate communities. This annual fire essentially increases structural 

complexity of grassland, where characteristic elements of both sparse and 

dense vegetation occur in close proximity, providing a rich mosaic of 

microclimatic conditions, capable of supporting a large number of spider 

species (Moretti et al., 2002). However, it would be interesting to observe 

what proportion of locally and regionally endemic or restricted species are 

affected negatively or positively by this practice. In our study the proportion of 

unique singletons was 21%, but fractions of local singletons mostly ranged 

around 30%. Singletons were more prevalent in the mature forest 

understorey. One plausible explanation for this high proportion is that species 

represented as singletons are “true forest species”, which occupy special 

niches and occur at low densities (Basset et al., 1998, 2001; Novotny and 

Basset, 2000). The spider composition in plantation showed the most 

dissimilar assemblage in comparison with those of other habitat types. 

Possible reasons may be the scarcity of understorey vegetation, single tree 

species dominance, and isolation from nearest forest habitat, affecting the 

amount of different microhabitats available to spiders. Patch isolation can act 

as a barrier to spider dispersal from other patches. Bonte et al., 2004 showed 

that the distribution of spider species depends on their aerial dispersal 

potential and on habitat connectivity. Plantations had higher abundance of 

space weavers and relatively few orb weavers belongs to family Theridiidae 

and Araneidae respectively. This pattern probably resulted from lack of 

suitable microhabitats for orb web construction (vegetation dominated by a 

few species of dense and short grasses, with low densities of herbaceous 

ground flora), as well as exposure to wind and rain due to relatively open 

canopy. Compared with orb weavers, space weavers can endure a higher 

level of disturbance, which may explain why they are more abundant (Tsai et 

al., 2006). In contrast, relative abundance of orb weavers (Araneidae and 

Tetragnathidae) was much higher in pure sal and mixed sal woodland, where 

dense canopy and stable microclimate prevails year round. These habitats 

have high vertical stratification (Robinson, 1981; Scheidler, 1990; Balfour and 

Rypstra, 1998) and may offer more physical structures for web attachment, 
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such as different kinds of branches. Such variation in species abundance of 

orb weavers can potentially be used to monitor changes of structural quality of 

vegetation parameters and habitat disturbances. However, as with most 

tropical arthropods species, data on life cycles and habitat requirements of 

Indian spiders are presently too scant to allow for an assessment of that 

hypothesis (Kapoor, 2008). 

 

In conclusion, despite small distances between habitats studied, local 

ecological processes were strong enough to allow for a differentiation 

between spider assemblages from mature forest and naturally disturbed sites. 

At disturbed sites spider assemblage retained considerable diversity, partially 

even higher than in the mature forest, suggesting that landscape mosaics at 

the edge of nature reserves may support the survival of many of the more 

common spider species. Such areas could play an important role as buffer 

zones around protected areas (Schulze, 2000). 

 



 
Habitat types sampled for spiders across the study area 
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CHAPTER 5 

HABITAT ASSOCIATION OF SPIDER ASSEMBLAGES 
 
 
5.1  Introduction 
 
5.1.1 Habitat Heterogeneity Hypothesis 
 
The ‘habitat heterogeneity hypothesis’ is one of the cornerstones of ecology 

(Simpson, 1949; MacArthur and Wilson, 1967; Lack, 1969). It assumes that 

structurally complex habitats may provide more niches and diverse ways of 

exploiting the environmental resources and thus increase species diversity 

(Bazzaz, 1975). In most habitats, plant communities determine the physical 

structure of the environment, and therefore, have a considerable influence on 

the distributions and interactions of animal species (Lawton, 1983; McCoy and 

Bell, 1991). For example, for bird species diversity in forests MacArthur & 

MacArthur (1961) evidenced that the physical structure of a plant community, 

i.e. how the foliage is distributed vertically, may be more important than the 

actual composition of plant species. Although positive relationships between 

vegetation-shaped habitat heterogeneity and animal species diversity are well 

documented on both local and regional scales (Davidowitz and Rosenzweig, 

1998), empirical and theoretical studies have yielded contradictory results. 

Depending on the taxonomic group, the structural parameter of the vegetation 

and the spatial scale, species diversity may also decrease with increase in 

habitat heterogeneity (Ralph, 1985; Sullivan and Sullivan, 2001). Moreover, 

effects of habitat heterogeneity may vary considerably depending on what is 

perceived as a habitat by the species group studied. Structural attributes of 

the vegetation that constitute habitat heterogeneity for one group may be 

perceived as habitat fragmentation by another taxonomic group (Okland, 

1996). 
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5.1.2 Patterns and Process of Global Diversity 
 

Global patterns of diversity can be attributed to climate, area, latitude, altitude; 

productivity, available resources and habitat complexity (MacArthur, 1972; 

Rosenzweig, 1995; Trevelyan and Pagel, 1995). Most major terrestrial groups 

are more speciose in tropical than temperate regions. These global patterns 

of species diversity are well established (Trevelyan and Pagel, 1995; Gaston, 

2000a). Determining why these differences occur has long been the core 

objective of ecologists (Menge and Olson, 1990; Gaston, 2000a). The past 

decade has seen a proliferation of studies documenting broad-scale spatial 

patterns in biodiversity. While there is extensive literature on the patterns of 

diversity at a global scale, the underlying processes driving the local and 

regional patterns of diversity have not been considered in such detail. The 

processes influencing groups such as mammals (Munthali and Banda, 1992; 

du Toit, 1995) and birds (MacArthur and MacArthur, 1961; MacArthur, 1972; 

Fretwell and Lucas, 1970) are well studied. Far less research has been 

conducted on the processes influencing the diversity patterns of invertebrates 

and even less on spiders. In addition, our knowledge of these groups is 

geographically biased with the majority of the studies being conducted in 

temperate latitudes (Trevelyan and Pagel, 1995).  A better understanding of 

processes influencing the diversity of invertebrates is clearly desirable.  It has 

often been assumed that invertebrate communities are primarily dependent 

upon the vegetation species composition and structure (Curry, 1987) and that 

management practice for the vegetation should therefore be of equal benefit 

to the invertebrate communities (Panzer and Schwartz, 1998). In recent 

decades, the conservation of insects and arthropods has received increasing 

attention, not only because they are worth conserving, but also because some 

insect groups have been shown to be particularly good bioindicators which 

react very quickly to environmental alterations. However, the basic knowledge 

on habitat specificity, necessary to construct such a predictive system, is still 

scarce, and in most groups even absent (Lobry de Bruyn, 1997; van Straalen, 

1997).  
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5.1.3 Habitat Factors and Spider Assemblage 
 
Habitat structure, and more precisely, vegetation complexity, has been 

consistently recognised as one of the most important factors in determining 

the presence of spider, as well as their species richness and composition 

(Colebourn, 1974; Hatley and Macmahon, 1980; Robinson, 1981; Urones and 

Puerto, 1988; Döbel et al., 1990; Uetz, 1991; Wise, 1993; Downie et al., 1995; 

Balfour and Rypstra, 1998; Downie et al., 2000; Borges and Brown, 2001). 

Despite the absence of strong spider association with host plants, vegetation 

type can be an important factor in determining spider assemblages because 

of their relationship with vegetation structure (Urones and Puerto, 1988). 

Additionally, other climate and topographic factors have been highlighted as 

relevant for spiders: humidity (Coulson and Butterfield, 1986; Rushton et al., 

1987; Rushton and Eyre, 1992; Bonte et al., 2002) and temperature (Rypstra, 

1986).  Many spiders often rely on a distinct complex of environmental habitat 

factors with respect to species-specific ecological demands. And there is 

experimental evidence that habitat alterations due to forest succession, 

natural disturbances, or forestry practice result in structural changes of the 

spider community (Pearce et al., 2004; Ziesche et al., 2004; Oxbrough et al., 

2005; Finch and Szumelda, 2007). In particular, the formation of ground 

vegetation and the resulting microclimate are most likely to affect the 

abundance and distribution of spider species and this is probably a major 

reason for the formation of specific species assemblages in a habitat 

(Bultman and Uetz, 1982; Hurd and Fagan, 1992; Gibson et al., 1992). In this 

context, the formation of tree crown canopies creates distinct and often small-

scale microclimates at the soil surface (Mc Caughey et al., 1997) and thus 

exerts important controls on the composition of the ground vegetation and 

many biochemical processes, along with seasons (Grimmond et al., 2000). 

Although many forest ecosystems appear to be homogeneously structured, a 

diverse microhabitat mosaic exists at the forest floor with respect to various 

relevant environmental parameters such as irradiation, humidity, ground 

vegetation, litter layer, and other soil characteristics (e.g., Niemelä et al., 

1996; Holst et al., 2004; Oheimb et al., 2005). Based on this knowledge, it is 
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natural to assume a species specific distribution pattern of spiders on a small-

scale spatial and temporal level.  

 

Experiments involving artificial habitat manipulations have provided evidence 

that spider communities quickly react to these variations in vegetation 

structure (Wise, 1993). As a rule, spiders are highly sensitive to habitat 

structure. Therefore, variations in spider communities can give an index of 

zoological changes associated with natural or anthropogenic (human) 

changes in vegetation structure. The analysis of spatio-temporal changes in 

the constitution of spider communities could offer an approach for 

biodiagnosing the evolution or stability of different biotopes when vegetation is 

affected by human activities. Due to the position of spiders in the trophic 

scheme, other ecological information relating to other components of the 

fauna (potential prey and predators of spiders) inhabiting the habitat could be 

inferred from the spider community analysis (Marc et al, 1999).  

 

Apart from vegetation structure and microclimate spider assemblages is also 

influenced by availability and size of the insects as potential prey items which 

affects the diversity and density of spiders within a habitat (Enders, 1974; 

Rypstra, 1985, 1986). The degree of food limitations for spiders varies 

spatially and temporally, and evidence of such from responses to changes in 

food availability; i.e. from the effects of food shortage on foraging behaviour 

(Gillespie, 1981).  Rypstra (1985) has provided experimental evidence that 

the orb weaver Nephila clavipes aggregates in areas of high prey density in a 

subtropical Peruvian forest, and the relationship between increased insect 

abundance and greater spider number have been shown in a number of 

previous studies (Cherret, 1964; Schaefer, 1972). Furthermore, field 

experiments conducted in enclosures have shown the web building spiders 

leave areas of low prey abundance and tend to remain where areas of prey 

captures are greater (Turnbull, 1964; Gillespie, 1981; Olive, 1982; Vollrath, 

1985).  

 

The aim of the present study is to assess the habitat affinities of spider 

assemblages and to examine how these affects the components of 
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assemblage structure and composition. More specifically, I test whether 

vegetation, microclimate, prey availability or disturbance are good predictors 

of spider richness or diversity. Primarily the study intends to (1) assess the 

small-scale spatial distribution pattern of spider assemblages in different 

habitat types, (2) reveal the environmental key factors leading to a separation 

of species assemblages, and (3) identify those key factors that are intrinsic 

features of the habitat heterogeneity and disturbances. 

 

Using a range of environmental variables as surrogate measure for 

disturbance and heterogeneity, the study also intends to judge the response 

of the spider assemblages to the habitat condition. From these species I 

identify a group of ecological indicator species those provide accurate 

indication of immediate environmental stress and change than a single 

indicator species. In this study I present one such group of spiders as 

potential indicators of habitat conditions in Terai Conservation Area (TCA), 

India. 

 

5.2 Methods 
 
Spiders were collected along 50 m x 10 m transects, with 20 transects per 

habitat type. These transects were treated as basic sampling units, hereafter 

sites. Transects were placed randomly within stratified vegetation types. 

Sampling was carried out over three periods, winter (November 2005 - 

February 2006), summer (March 2005-June 2005), monsoon (July 2005 -

October 2005). Spiders were sampled along these transects using six 

sampling techniques (pitfall traps and semi-quantitative sampling, see details 

in chapter 3). Within each site in a given sampling period habitat variables 

were measured from 10 x 10 m quadrats adjacent to each transects used for 

spider sampling. [See Appendix 5.1 for list of the sampling sites and their 

attributes]. There are 20 quadrats per habitat type was assessed for all habitat 

variables selected. Thus quantitative variables measured encompassed the 

putative response of spider assemblages. 
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5.2.1 Vegetation Variables 
 

Vegetation data were obtained from permanent quadrats established included 

standard measures of vegetation structure and cover variables. Vegetation 

structure data included 5 variables viz., foliage height diversity (FHD), shrub 

height variation (HRS), mean litter depth (AVLD), plant species richness 

(PSR), and tree and shrub density (TSD). Vegetation cover data included 5 

variables viz., tree canopy cover (TCC), shrub canopy cover (SCC), ground 

herb cover (GHC) and litter cover (LCC). 

  

(a) Foliage height diversity (FHD)- was estimated from four random points 

in each quadrats using 4m long pole placed vertically, and number of 

times vegetation came into the contact with pole in each height class 

(1= 0-0.5m, 2= 1-1.5m, 3=1.5-2m, 4=2-2.5m, 5=2.5-3m, 6=3-3.5m) 

was recorded. Height diversity was calculated using the Shannon 

index, FDH=∑Pi*log (pi). Foliage height diversity was expected to be 

increased with the increase of structural quality of the habitat condition. 

 

(b) Shrub height variation (HRS)-four measurement of shrub height were 

taken with measuring ruler. The standard deviation was determined as 

measure of variation in shrub height. 

  

(c) Mean litter depth (AVLD)-mean litter depth was measured four random 

points with the quadrate. Depth was measured inserting a 

measurement ruler into the leaf litter until the harder soil layer was 

encountered. Normally, disturbed sites are likely to accumulate higher 

litter on the ground as decomposition rate was marginal. 

 

(d) Plant species richness (PSR)-total number of all plant species were 

recorded in each quadrate including trees, shrubs, herbs and grasses. 

Decrease in plant species richness was expected to be accompanying 

early-to-mid level response by plants to disturbance. 
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(e) Tree and shrub density (TSD)- total number of trees and shrubs per 

quadrate area was summed and density was calculated for site. Tree 

and shrub density was expected to be lower in disturbed habitat 

patches. 

 

(f) Tree canopy cover (TCC)- mean percentage of canopy cover was 

estimated from four points in each quadrate using densitometer. Tree 

canopy cover was expected to be lower in disturbed habitat patches.  

 

(g) Shrub canopy cover (SCC)- Forty (20 x 50 cm) quadrats, 

systematically spaced at 1.5 m intervals along two parallel 10 m lines 2 

meters apart, were used for the quadrate method: canopy coverage 

was estimated within six cover classes: (I) 0-5, (2) 5-25, (3) 25-50, (4) 

50-75, (5) 75-95, and (6) 95-100%, with the midpoints of each class 

used in computing the mean. Shrub canopy cover was expected to 

increase with increase heterogeneity of the sites. 

 

(h) Ground herb cover (GHC)- percentage herb cover was estimated 

visually in four sub quadrate (1x1m) within each quadrate. Herb cover 

was expected to decrease with increased disturbance of tree layer. 

 

(i) Litter cover (LCC)- percentage litter cover was estimated visually in 

four sub quadrate (1x1m) within each quadrate. Litter cover was 

expected to increase with disturbance as decomposition rate in 

complex habitat of forest floor are quite lower. 

 

5.2.2 Microclimate Variables 
 
Microclimate features, including soil pH (SPH), soil moisture (SM) and soil 

temperature (ST), were measured using a soil pH and moisture tester and a 

WekslerTM mercury soil thermometer. Precipitation (mm/year), mean 

temperature (°C), diurnal temperature range (°C) data were extracted from 

CRU high resolution surface climatology data (http://cru.uea.ac.uk/cru/data 
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/tmc.htm). Ambient moisture was measured using hygrometer (Taylor 

Mason’s hygrometer). 

 

5.2.3 Prey Biomass 
 
All insects from the pitfall traps and the sweep nets were kept. These insects 

were sorted to level of order and divided into size classes. Body length 

measurements (from the head to the end of the abdomen) were recorded 

using a pair of callipers. The values were then used to calculate the biomass 

of insects. The biomass of insects (prey available to spiders) was then 

determined by calculating the weight (mg) from a weight versus length 

relationship (Rogers, et. al., 1975). The following equation was used to 

calculate the biomass: 

W = 0.0305 L2.62 

Where: W = the weight (mg); L = the body length (mm) 

The invertebrates were regarded as an indication of the prey base available to 

spiders (predators) in that particular site. The biomass of insects from sweep 

samples and pitfall traps was used in the multiple regression analysis. 

 

5.2.4 Disturbance Variables 
 

Potential habitat variables were selected based ongoing disturbances effects 

as well as the outcome of the previous disturbance events. Because of the 

difficulties of estimating habitat disturbances for spider assemblages, a score 

based management intensity index (MII) was calculated following Downie et 

al. (1998, 1999). Five broad variables were considered at each site. Each 

variable at each site were assigned to 0 to 3 in ascending order of intensity 

related to disturbance (low, moderate and high). Variables included: (a) 

grazing intensity (0,none, no pellets or dung; 1, low, 1-20/m2; 2,  moderate, 

20-30/m2; 3, high, >30/ m2); (b) extent of fire (0, none, no area burnt; 1, low, 1-

25% area burnt; 2, moderate, 25-50% area burnt; 3, high, >50% area burnt) 

(c) snag density (3, very high, 0/m2; 2, high, 1-5/m2; 2, moderate 5-10/m2; 0, 

low, >10/m2) (d) number of termite mounds (3, very high, no mound/m2; 2, 

high, 1-2/ m2; 1, moderate, 5-2/m; 0, low, >5/m); (e) number of visible webs 
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(3, very high, no webs; 2, high, 1-10; 1, low, 10-25; 0, low, >25); dead wood 

debris (density) (3, very high, 0/m; 2, high, 1-5/m; 1, moderate, 5-15/m; 0, low, 

>15/m). Observed values lay between 5 and 16 (5= sites least disturbed; 16= 

sites most disturbed) within the potential range from 0 to 3. In addition, 

percentage bare ground (BCOV) and number of trampling sign (NDOS) were 

also considered additional disturbance variables for the study.  

 

5.2.5 Analysis 
 
5.2.5.1 Richness, Abundance, Diversity and Habitat Variables 
 
Many commonly used statistical techniques (e.g., regression) are unable to 

deal with sparse data matrices (i.e., matrices with many zeroes, as are often 

encountered with species abundance data) (Legendre and Legendre, 1998), 

or become difficult to interpret in the presence of multicollinearity (Graham, 

2003), as is also often observed with ecological data (such as habitat data). 

Ordination techniques have been recommended for variable reduction of 

predictor variables as a solution to the problem of multicollinearity in multiple 

regression analyses (Graham, 2003), which also addresses the problems of 

sparse data matrices. Nonmetric multidimensional scaling (NMS) is an 

iterative ordination method that places sample units in k-dimensional space 

using the ranked distances between them. As in other ordination methods 

(e.g., principal components analysis, detrended correspondence analysis), 

sample units that are more similar to one another (based on species 

composition, for example) have scores that are closer together than sample 

units that are less similar (Fasham, 1977). Ordered positions of the sample 

units in the final configuration (i.e., reduced dimension) are optimized to 

maintain a monotonic relationship between the distances of the ordinated 

points and the distance matrix generated from the raw data (Legendre and 

Legendre, 1998; McCune and Grace, 2002). Departures from monotonicity 

are indicated by “stress” (higher values of stress suggest poorer fit between 

the raw data and the NMS configuration). In contrast to other ordination 

methods, the numbering of the axes is arbitrary; the first axis of an NMS 

ordination does not necessarily explain more variation among the sample 
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units than the second, and so on (McCune and Grace, 2002). Correlations 

between the k axes of the ordination and the original variables can be used to 

interpret the axes. Because NMS does not assume linearity or monotonicity of 

the underlying data structure, it is particularly appropriate with the kinds of 

ecological data in this study (Fasham, 1977; Minchin, 1987; McCune and 

Grace, 2002).  

 
To reduce the dimensionality of the vegetation structure, vegetation cover and 

microclimate data matrices, I used NMS with the Sørensen distance measure 

(PC-ORD 4, 1999, MjM Software Design, Gleneden Beach, Oregon). PC-

ORD implements global NMS. I used PC-ORD's autopilot mode, which 

performs 40 runs with the raw data and 50 runs with randomized data using a 

random starting configuration each time; the program calculates one-

dimensional through six-dimensional solutions for each run and reports the 

recommended k-dimensional solution. I used transformed (ARCSINE) percent 

cover data to perform ordinations of the vegetation cover data matrices. 

Species occurring in fewer than ten percent of the all individuals in a sampling 

site were omitted from the ordinations (McCune and Grace, 2002). I then used 

the k axes from each NMS analysis as variables in multiple linear regressions 

using SPSS 16.0, employing all possible subsets regression for variable 

selection. I used the vegetation cover axis (VGC), vegetation structure axis 

(VGS), microclimate axis (MCV), management intensity index (MII) and prey 

biomass (PB) as predictors of spider assemblage structure (abundance, 

species richness, species diversity [fisher’s alpha], family richness and family 

diversity[fisher’s alpha]). Responses of assemblage structure (dependent 

variables) to regression variables (independent variables used in regressions 

model) were interpreted based on the signs of the correlation coefficients of 

both predictor and response variables with the NMS axes, and the signs of 

the parameter estimates from the final regression models. As this is an 

observational rather than experimental study, I did not use a sequential 

Bonferroni correction, due to the increased risk of Type II errors associated 

with it. 
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5.2.5.2 Community Composition and Habitat Variables 
 
The pattern of variation in the species and family composition of spider 

assemblage was examined by Canonical Correspondence Analysis (CCA). 

The effect of each of 21 habitat variables belongs to vegetation, microclimate, 

prey biomass and disturbances (Table 5.1) on species composition was 

explored using CCA (using PC-ORD software, McCune and Grace, 2002). 

The sites were then ordinated, which combines both ordination and multiple 

regression (ter Braak, 1988). The advantage of this form of ordination is that 

the axes are chosen in the light of known environmental variables by imposing 

the extra restriction that the axes be linear combinations of the environmental 

variables (Direct Gradient Analysis). Prior to ordination analyses, rarer taxa 

were removed from the data set (those taxa occurring only at one site, or 

those for which the total number caught by all sampling techniques comprised 

less than 0.50 % of total abundance). CCA was employed to position sites, 

and spider species and family data in ordination space constrained by same 

21 habitat attributes, which are plotted as vectors from the origin (0,0) and 

where the lengths of vectors reflects the relative degree of influences. Mantel 

Test was performed to test the null hypothesis that there is no relationship 

between the species, sites, family and variable matrix. The significance of 

Mantel statistic (r) was based on 999 repeated randomizations. Hill’s scaling 

method was followed in CCA ordination (ter Braak and Smilauer, 1998). 

 

5.2.5.3 Indicator Species 
 
To identify potential indicator spider species sensitive to habitat condition 

(heterogeneity and disturbance), the relationship between variables of habitat 

condition and abundance of spider assemblages was directly examined by 

CCA and WA (weighted averaging method). The simplest way to estimate 

species optimum is by calculating the weighted average (WA(Sp)) of the 

values of environmental variables in the n samples where the species is 

present. The species importance values (abundances) are used as weights in 

calculating the average: 
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Where Envi is the value of environmental variable in the ith sample, and 

abundi is the abundance of the species in the ith sample. The species 

tolerance value can be calculated from the model as the square root of the 

weighted mean of the squared difference between the species optimum and 

the actual values in the sample. This value is analogous to the standard 

deviation. The standard deviation value was therefore taken for subsequent 

analysis. The overall habitat condition score was calculated from the summed 

score of  (a) CCA axis value (species score rescaled from 1-10), (b) indicator 

weight value of species (IWV std) as weighted standard deviation in WA 

model (IWV std score rescaled) and (c) abundance score of species as 

counts of individual per sampling area  (1-8 with increasing abundance value). 

CCA extracts gradients in the spider composition that are constrained to be a 

function of explanatory variables and allows species that are most responsive 

to the explanatory variables to be identified. The effect of variables on the 

composition of the spider assemblage was tested with a Monte Carlo 

permutation test. Species that showed a significant response along the first 

CCA axis were selected as potential indicators of habitat heterogeneity and 

disturbance correlated with that axis. The centroid of abundance of each 

species along canonical axes was estimated by the weighted average score 

of indicator species along CCA axis 1 was indexed by rescaling the 

eigenvector scores of indicators species to scale of 1 to 10, with 1 

representing the scores of that species located first and 10 the position of the 

last species along the gradient. The subsequent data analysis I use CCA to 

determine the ‘environmental gradient’ for the weighted averaging (WA) 

modeling. Using CCA I reduced the multivariate data of the community 

composition to a linear scale and used it as input into a linear model, namely 

weighted averaging (WA). WA has often been used to explore species-

specific responses to human impact (ter Braak, 1987; ter Braak and Juggins, 

1993; Smith et al., 2007). WA establishes species optima on the assumption 
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that species follow a unimodal response curve in relation to an environmental 

variable (ter Braak and Prentice, 1988; Birks, 1995). In the first step, an 

estimate of each species’ ‘optimum’ (used as indicator value) was calculated 

as the abundance-weighted average of the rescaled CCA sample scores for 

the sites. The weighted standard deviation (WSD) around the optimum is 

called ‘tolerance’ and indicates the breadth of the species’ occurrence along 

the environmental gradient. The value of WSD was then rescaled from 1-5 

(decreasing tolerance order) for disturbance axis and 10-1 for heterogeneity 

axis (decreasing tolerance order). In WA models, the abundance weighted 

standard deviation or ‘tolerance’ reflects the ecological amplitude of a given 

species across the environmental gradient. Species may have a narrow 

distribution pattern along impact gradients, which makes them good 

indicators, or they may be distributed over a broad range with only a flat peak 

rendering them of little use as indicators (Johnson, 1995). To take these 

differences in niche breadths into account, tolerance downweighing can be 

applied in a WA model using the inverses of the squared tolerances as 

additional weight. I used the raw indicator weight W as a second weighing 

factor, similar to the one used in the Saprobien System. W is derived from the 

tolerance in following Friedrich (1990) setting tolerance ranges and assigning 

ranked indicator weights. The smaller the standard deviation in a species’ 

distribution range, the better an indicator this species is which is expressed in 

a high indicator weight.  

 
5.3 Results 
5.3.1 Richness, Abundance, Diversity and Habitat Variables 
 
Because initial NMS analyses with all 100 transects indicated separation of 

the habitats based on all data matrices (microclimate, vegetation structure 

and vegetation cover), but no separation based on sampling month or year, I 

analyzed the data with sites. Details of the NMS ordination results were given 

in the Table 5.1. Seven microclimate variables, six vegetation cover variables 

and five vegetation structure variables are included in the analysis. The 

vegetation cover and structure data were reduced to two dimensions (VGCI & 

VGS1 axes) and as well the microclimate data to one dimension (MCV1 axes) 

 110



in for all 100 sites. All final configurations met the criterion of instability < 

0.001 (instability measures changes in stress). The vegetation structure 

ordination axes explained the 27-57% of the variation among the sampling 

units, while the vegetation cover and microclimate axes explained 20-57% 

and 40-59% of the variation respectively. Stress (Kruskal’s stress Formula 1 x 

100) was found greater in microclimate data (49.03) in compare to vegetation 

structure (36.29) and vegetation cover (41.04). While the microclimate stress 

value is considered high (i.e., exceeding 20 [McCune and Grace 2002]), 

stress values are known to be higher with larger sample sizes or higher 

species counts (Clarke 1993; McCune and Grace 2002). 

 

Table 5.1 Correlations of the habitat variables with the first and only 
significant NMS axis.  
 

Vegetation Structure Variables Axis 1 (VGS1) 
AVLD -0.181 
HRS 0.220 
FHD 0.133 
PSR 0.459 
TSD 0.367 

Vegetation Cover Variables Axis 1 (VGC1) 
TCC 0.159 
LCOV -0.129 
TVCOV 0.070 
BCOV -0.004 
SCC 0.102 
GHC 0.061 

Microclimate Variables  Axis 1 (MCV1) 
AMMOI 0.021 
DTR 0.004 
MT -0.003 
PRE 0.000 
SPH -0.002 
SM 0.034 
STEMP -0.014 

 

Components of general spider assemblage, such as number of individuals, 

species richness or species diversity were significantly predicted (α=0.05) by 

the all four variables vegetation structure component (VGS1 axis), prey 

biomass (PB), microclimate component (MCV1), and management intensity 

(MII) index and selected by the regression model except vegetation cover 
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component (VGC 1 axis). In all three cases of significant regressions, whole 

model p-values were less than 0.01. In compare to species abundance and 

diversity, species richness showed strongest association with predictor 

variables, the model explained 51% of the variation in number of species. The 

other two models explained 26% and 44% of the variation in number of 

individuals and diversity of the assemblage. Responses to the all variables 

are presented in Table 5.2 as positive or negative based on the signs of the 

correlation coefficients and regression parameter estimates. All three 

variables (species richness, species abundance and species diversity) 

responded in the same way (i.e., all positively or all negatively) to the 

vegetation structure variable, although family richness responded differently. 

The prediction power of relationship varied differently as the R2 value (0.51) 

for species richness is significantly higher than other two dependent variables.  

In case of family richness, values for richness were predicted negatively by 

management intensity (MII) and positively by prey biomass (PB) and 

vegetation components (VGC1 & VGS1) were included in the model (Table 

5.3). 

 

Table 5.2 Summary of multiple regressions model for spider species 
richness, abundance and species diversity in TCA. Models were chosen 
by best subset regression analysis. 
 

(a)Species richness         
Regression model R R2 F P 
Predictors (VGS1, MCV1,PB & 
MII) 0.720 0.519 52.330 <.0001

Variables 
Regression 
coefficient SE t P 

Constant 17.719 3.841 4.613 <.0001
VGS1 67.900 9.530 2.281 0.003 
MCV1 0.018 0.657 2.027 0.009 
PB 0.061 0.019 3.236 0.002 
MII -0.574 0.262 -2.190 0.031 

(b)Species abundance      
Regression model R R2 F P 
Predictors (VGS1, PB, MII) 0.517 0.267 11.644 0.001 

Variables 
Regression 
coefficient SE t P 

Constant 24.887 3.736 6.661 <.0001
VGS1 3.393 2.085 2.627 0.007 
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MCV1 2.904 1.730 2.679 0.006 
PB 0.179 0.050 3.350 <.0001

(c)Species diversity      
Regression model R R2 F P 
Predictors (VGS1, PB & MII) 0.669 0.447 25.860 <.0001

Variables 
Regression 
coefficient SE t P 

Constant 0.872 0.065 13.352 <.0001
VGS1 69.2 10.010 6.222 <.0001
PB 0.002 0.002 5.569 <.0001
MII -0.010 0.004 -2.339 0.021 

 
Table 5.3 Summary of multiple regressions model using family richness 
and family diversity in TCA. Models were chosen by best subset 
regression analysis. 
 

(a)Family richness         

Regression model R R2 F P 
Predictors (MII & PB) 0.501 0.251 16.259 <.0001

Variables 
Regression 
coefficient SE t P 

Constant -6.027 4.123 -1.462 0.147 
MII 1.533 0.274 5.591 <.0001
PB 0.590 0.019 3.087 0.003 

(b)Family Diversity         

Regression model R R2 F P 
Predictors (VGS1) 0.244 0.059 6.185 0.015 

Variables 
Regression 
coefficient SE t P 

Constant 0.352 0.142 2.487 0.015 
VGS1 2.802 0.142 19.794 <.0001

 
5.3.2 Community Composition and Habitat Variables 
 

CCA using vegetation, microclimate and disturbance variables, without the 

confounded effects of seasons, revealed significant patterns for all canonical 

axes (P<0.001). For species-environment data, the first two axes represented 

more than 94 percent of variation, while family-environment data, the 

percentage variation explained was 90 percent (Table 5.4a). In species 

matrix, plantation sites were well separated from the other sampled sites on 

CCA axis 1 (Fig. 5.1). Sites belong to riparian, pure Sal and mixed Sal 

habitats did not separated as clearly in their response to the explanatory 
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variables, but the ordination suggests that the mixed Sal sites are 

intermediate in response between riparian and pure Sal sites. Grassland sites 

were also well separated from the riparian, pure Sal and mixed Sal sites on 

CCA axis 2. In family matrix, the overall pattern of site separation on CCA axis 

1 is similar, though on CCA axis 2 the grassland sites were well separated in 

their response to explanatory variables (Fig. 5.2). The second axis of CCA 

was strongly associated with increasing habitat heterogeneity and decreasing 

disturbance, while in contrary first axis represents increase of disturbance and 

decrease in heterogeneity (Fig. 5.4). CCA for species-environment 

association showed that tree canopy cover (r=0.87), plant species richness 

(r=0.74), total vegetation cover (r=0.72), shrub canopy cover (r=0.64) and 

ground herb cover (r=0.59) were positively associated with CCA axis 2, but 

this axis was negatively associated with litter cover (r= -0.91) and 

management intensity (r= -0.62) (Fig. 5.3). CCA axis 1 represented variability 

positively associated with litter depth (r=0.47) and management intensity 

(r=0.37), while negatively associated with foliage height diversity (r= -0.81), 

prey biomass(r= -0.62), and ground herb cover (r= -0.62) (Table 5.4 a). Sites 

with high management intensity predominantly grassland and plantation 

habitat, had vegetation characterized by low herb cover, less variation in 

foliage height and as hold fewer prey species for spiders. CCA for family-

environment association exhibited that trampling frequency (r=0.69) and 

management intensity (r=0.66) were positively correlated with CCA axis 1, 

whereas ground herb cover (r= -0.72)) and foliage height diversity (r= -0.77) 

was negatively correlated with this gradient. CCA axis 2 represented 

variability positively associated with tree canopy cover (r=0.68) and negatively 

with increasing soil temperature (r=-0.71) and litter cover (r= -0.73). CCA for 

family-environment association revealed that tree canopy cover (r=0.68) was 

positively associated with CCA axis 1, and this variable explained most of 

variance, while soil temperature (r=0.72) and litter cover (r=0.74) were 

negatively related to this axis. CCA axis 1 was positively correlated with the 

management intensity (r=0.66) and trampling frequency (r=0.69), but 

negatively correlated with the foliage height diversity(r = - 0.77), ground herb 

cover (r = - 0.73), prey biomass (r = - 0.68) and shrub canopy cover (r = - 

0.66) (Table 5.4 b). The result is encouraging since it confirmed the qualitative 
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assessment of the condition of habitat complexes and heterogeneity: pure 

Sal, mixed Sal sites, least disturb, and high complexity; riparian sites, 

intermediate disturb and high complexity; grassland and plantation sites of 

most disturbed and low complexity.  

 

Table 5.4 Summary of the canonical correspondence analysis (CCA) of 
spider (a) species composition and (b) family composition, with axes 
related to environmental variables. 
 

(a) Species Axis 1 Axis 2 Axis 3 
Eigen Value 0.54 0.51 0.35 
Species-Environment r 0.94 1.00 0.92 
      
Cumulative percentage variance     
of species data 5.80 11.20 14.90 
of species-environment data (Kendall rank) 0.65 0.57 0.67 
      

(b) Family Axis 1 Axis 2 Axis 3 
Eigen Value 0.18 0.11 0.08 
Family-Environment r 0.90 0.88 0.84 
      
Cumulative percentage variance     
of family data 12.80 20.50 26.60 
of family-environment data (Kendall rank ) 0.65 0.70 0.55 

 

Table 5.5 Correlations between environmental variables measured 
(vegetation, microclimate & disturbance) and eigen vector scores of axis 
from canonical correspondence analysis (CCA). 
 
    Species  Family   

Variables 
Code Variables Axis 1 Axis 2 Axis 1 Axis 2 

AMMOI ambient moisture -0.453 0.349 -0.248 -0.006 
AVLD mean litter depth 0.476 -0.424 0.219 0.114 
BCOV bare ground cover 0.016 -0.078 0.186 -0.274 
DTR diurnal temperature 

range -0.070 0.189 0.103 0.276 
FHD foliage height diversity -0.814 0.020 -0.771 -0.472 
GHC ground herb cover -0.611 0.595 -0.729 0.099 
HRS height variation in 

shrubs (SD) -0.237 0.355 -0.095 -0.124 
LCOV litter cover 0.092 -0.919 0.341 -0.734 
MII management intensity 0.372 -0.621 0.662 -0.413 
MT mean temperature 0.067 -0.334 -0.019 0.047 
NDOS number of trampling 0.263 -0.544 0.692 -0.444 
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    Species  Family   
Variables 

Code Variables Axis 1 Axis 2 Axis 1 Axis 2 
sign 

PB prey biomass -0.628 0.575 -0.680 0.082 
PRE mean precipitation -0.093 0.032 0.170 0.111 
PSR plant species richness -0.558 0.749 -0.560 0.195 
SCC shrub canopy cover -0.528 0.649 -0.658 0.184 
SM soil moisture -0.208 0.270 -0.218 0.138 
STEMP soil temperature 0.230 -0.377 0.205 -0.718 
TCC total canopy cover -0.150 0.874 -0.375 0.684 
TVCOV total vegetation cover -0.202 0.718 -0.206 0.344 

 

 
 
Fig. 5.1 Axis 1 and Axis 2 of CCA based on species composition and 
environmental variables with sites. For environmental variables see 
Table 5.5. 
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Fig. 5.2 Axis 1 and Axis 2 of CCA based on family composition and 
environmental variables with sites. For environmental variables see 
Table 5.5.  

 
 
 
Fig. 5.3 Axis 1 and Axis 2 of CCA based on species composition 
showing species with sites.  
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Fig. 5.4 Axis 1 and Axis 2 of CCA based on family composition showing 
species with sites.  
 
 
5.3.3 Indicator Species 
 

In general, the gradient in species and family composition across these 

habitat patches that range widely in variation to heterogeneity and 

disturbance, provides opportunity to identify species or species group i.e., 

family that respond to vegetation and microclimate attributes that change 

along the gradient. Based on these CCA results, the assumption was made 

that the first axis arranged the sampling sites objectively along an impact 

gradient which was primarily associated with increase of management 

intensity and, though to a lesser extent, with trampling component. 

Consequently, the site scores for the first axis represented the relative 

position of each site on the impact gradient. In contrary, second axis arranged 

sampling sites along habitat heterogeneity that was mostly associated with 

increase of moisture regime, vegetation cover, and vegetation structure 

component.  The data set of the study allowed the calculation of species 
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scores and indicator weights for 65 spider species. Five and thirty eight 

species had more than 10 percent of their variance accounted for CCA axes 1 

and axes 2, respectively (Table 5.6). Out thirty eight species nine species 

were most abundant and closely associated with CCA axis 2, chosen as 

possible indicator species, whose relative position along the vegetation-

microclimate gradient could be indication in the habitat complexity. Five 

species closely associated with CCA axis 1 showed marked opposite 

response, being most abundantly present along disturbance gradient. Scaling 

of indicator weight value of 8 species related to CCA axis 2, I found Thomisus 

sp.1 was the least tolerant to sites with high disturbance. The low standard 

deviation value of weighted average score in species distribution range 

reflecting the narrow distribution amplitude. They were restricted to minimally 

impacted habitat patches located in the study are. All other species have 

wider ecological amplitude and, hence, a lower weighted average score. On 

the other end of the scale, five disturbance indicator species were found, with 

indicator weight of 7.61 or less (Table 5.7). The lowest score of 4.87 was 

found for Argyrodes sp.2, which thrives at plantation patches with high density 

per site sampled. 

 

Table 5.6 Cumulative fraction of the variance of each spider species 
accounted for by the first two axes of the CCA (fit) for species with > 10 
percent fit.  
 

Species Family Axis 1 Species Family Axis 2 

Chrysso sp.1 Theridiidae 0.34113 Thomisus sp.1 Thomisidae 0.85368

Poltys illepidus Araneidae 0.19860 
Cyrtophora 
citricola Araneidae 0.83287

Achaearanea 
triangularis Theridiidae 0.17447 Cyrtophora ksudra Araneidae 0.82446

Argyrodes sp.2 Theridiidae 0.13222 Neoscona biswasi Araneidae 0.69113
Gamasomorpha 
sp.2 Oonopidae 0.10836 Pardosa timidula Lycosidae 0.68791

     Hippasa pisaurina Lycosidae 0.67209

     
Gasteracantha 
geminata Araneidae 0.66553

     Cyclosa sp.1 Araneidae 0.64741

      Argiope anasuja Araneidae 0.62913
 

 119



The summation value of axis score (sensitivity to environmental gradient), 

indicator weight score (tolerance to variation in environmental gradient) and 

abundance values will provide overall condition indicated by a species of 

habitat condition on a scale of 18 to 10 (18 = best, 10 = poorest) (Table 5.7). 

For example, high proportion of Thomisus sp.1 or Cyclosa sp.1 will represents 

sites with high habitat heterogeneity, whereas if the Chrysso sp.1 or 

Argyrodes sp.2 dominate then sites will be assumed to be highly impacted 

due to disturbances. In such weighted condition scoring procedure, the scores 

calculated for 100 sampling sites based on relative scoring of only chosen 

indicator species closely reflected the original order of sites along the CCA 

axis1 (r=-0.95) and CCA axis 2 (r=0.98) (calculated from all 65 common 

species).  

 

Table 5.7 Eigen values of species along the first CCA axis of spider 
species composition, indicator weight value (IWV), abundance per 
sampled area, and scores reflect the increasing disturbance condition of 
habitat. 
 

Species 
Axis 1 
value IWV std 

No. of 
individuals/ 
area   

Achaearanea 
triangularis 0.17447 8.42 0.128   
Argyrodes sp.2 0.13222 4.87 0.126   
Chrysso sp.1 0.34113 7.40 0.224   
Gamasomorpha sp.2 0.10836 6.54 0.038   
Poltys illepidus 0.19860 7.61 0.098   

Species 
Axis 
Score 

IWV(std) 
score 

Abundance 
Score 

Overall 
condition 
Score 

Chrysso sp.1 10.00 3 5 18.00 
Argyrodes sp.2 7.58 5 4 16.58 
Achaearanea 
triangularis 8.79 1 5 14.79 
Gamasomorpha sp.2 8.20 4 1 13.20 
Poltys illepidus 5.82 2 3 10.82 
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Table 5.8 Eigen values of species along the second CCA axis of spider 
species composition, indicator weight value (IWV), abundance per 
sampled area, and scores reflect the increasing heterogeneous 
condition of habitat.  
 

Species 
Axis 2 
Value IWV std 

No. of 
individuals/ 
area   

Cyclosa sp.1 0.64741 37.243 0.048   
Cyrtophora citricola 0.83287 43.071 0.058   
Cyrtophora ksudra 0.82446 40.723 0.118   
Gasteracantha 
geminata 0.66553 38.050 0.130   
Hippasa pisaurina 0.66553 47.794 0.054   
Neoscona biswasi 0.69113 42.028 0.134   
Pardosa timidula 0.68791 43.107 0.050   
Thomisus sp.1 0.85368 35.536 0.070   

Species 
Axis 
Score 

IWV(std) 
score 

Abundance 
Score 

Overall condition 
Score 

Cyclosa sp.1 7.53 9 8 24.53 
Thomisus sp.1 10 10 4 24.00 
Pardosa timidula 8.00 6 7 21.00 
Cyrtophora citricola 9.68 5 5 19.68 
Cyrtophora ksudra 9.59 7 3 19.59 
Gasteracantha 
geminata 7.74 8 2 17.74 
Hippasa pisaurina 7.74 4 6 17.74 
Neoscona biswasi 8.04 6 1 15.04 

 
 
5.4 Discussion 
 
The results of the study revealed vegetation structure (VGS1) and availability 

prey biomass were the most important variables influencing the richness, 

diversity and species abundance. Previous studies also have demonstrated 

that there are clear associations between spider abundance, species richness 

and diversity and the structural diversity of the habitat (Greenstone, 1984; 

Rypstra, 1986; Dennis et al., 1998; Halaj et al., 1998). Structural 

heterogeneity may also influence spider communities indirectly by its positive 

effect on prey densities; typical prey species such as herbivorous 

invertebrates (Nentwig, 1980) benefit from the greater variety of food 

resources available in more structurally diverse habitats (Siira-Pietikäinen et 

al., 2003). Increased vegetation complexity may also indicator of microhabitat 

features available and of the abundance of the resources, potential predators, 
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and/ or competition in habitat. The availability of structures for attaching a 

web, and of ambush and refuge sites is probably the most direct effect of 

vegetative complexity, but other indirect effects may be related, such as, for 

example, microclimate, prey availability (Uetz, 1991; Marc et al., 1999). 

Regression model also indicated management intensity as an important factor 

determining spider diversity and richness. With high intensity management, 

spider communities often lack diversity and are dominated by a few r-selected 

species affiliated with bare ground. Low intensity management produces more 

complex communities introducing more niches for aerial web spinners and 

climbing spiders (Bell et al., 2001).  

 

Ecologists increasingly use NMS as a tool for descriptive multivariate data 

analysis, and the principles and mechanics have been well documented 

(McCune and Grace, 2002). NMS is well suited to community data, 

particularly when β diversity is high (i.e., the data matrix contains many 

zeroes) (Faith et al., 1987) and provides robust analysis of many data types. 

In analyses of simulated data with known gradients, NMS has shown superior 

ability to recover underlying data structure compared to principal components 

analysis, principal coordinates analysis, reciprocal averaging, and detrended 

correspondence analysis (Fasham, 1977; Minchin, 1987). In the approach I 

present here, the NMS axes representing habitat variables are secondarily 

related to species assemblage structure through multiple regression analyses. 

This approach has several advantages for community analyses over the 

methods discussed above. It provides the opportunity for statistical hypothesis 

testing of complicated data sets by incorporating as much information from 

the raw data as possible while producing statistically tractable datasets for 

regression analyses, rather than simply being descriptive (Beals, 2006). 

Because the assumptions in NMS about the underlying structure of the data 

(e.g., response shapes) are less restrictive, it is more likely to produce 

ecologically meaningful variables for further analyses. The regression models 

for the data in this study explain relatively low amounts of variation. This is 

likely because other factors that influence spider communities, such as intra 

and inter specific competition or predation by vertebrates or other arthropods, 

were not incorporated. The low R2 values indicate a problem with the data, 

not with the approach. The high stress values and comparatively lower 
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variation explained in the variables ordinations suggest that the final 

configuration was not capturing the underlying data structure as effectively for 

this matrix, resulting in noise in the variables. In spite of the noisiness of the 

data, this approach allowed an interpretable analysis of complicated data sets 

in which the data themselves determined which of the original variables were 

important in these communities. Being able to explain at least some of the 

variation in these spider communities allows a broader understanding of the 

roles of habitat heterogeneity and disturbance factors. Animal communities 

are structured by a complicated set of interacting factors. Using an 

unconstrained, data-driven approach, this study has shown how multiple 

components of both habitat structure, cover, microclimate, disturbance and 

prey base are related to spider community structure, and elucidated the 

different responses of assemblage component (richness, abundance and 

diversity) at different taxonomic level (species and family). Understanding the 

simultaneous responses of assemblage to environmental variables constitutes 

an important step in community-level research. This study contributes not only 

to our knowledge of the community dynamics in an important group of 

terrestrial predators, but also to our ability to incorporate complicated 

community data in ecological research. 

 

CCA has been widely used to analyse species–environment relationships. It is 

a direct method to ordinate sites along an environmental gradient (ter Braak, 

1987). CCA in conjunction with WA had not been used before to establish 

sensitivity scores for spider assemblages. The idea to use numerical weights 

to account for observed differences in the species value or strength as 

indicator was introduced by Zelinka and Marvan (1961) for the Saprobien 

System, which was later revised by Friedrich (1990). Walley and Hawkes 

(1997) incorporated an indicator weight into the British BMWP scoring system 

(BMWP, 1978). The indicator weight strengthens and emphasises the species 

score. It also highlights those species that are highly tolerant to impact, either 

because they have a very broad ecological niche or because they are a group 

or cluster of species with different niche breadths rather than a single species. 

This study identify a suite of spider species that can be rapidly surveyed and 

used to judge the habitat and ecological conditions of the TCA, identify sites 

of high conservation value as well those in need of conservation and 
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restoration. Of the 65 species analysed, the variation in the abundance of the 

nine species was significantly associated with the habitat heterogeneity 

gradient and five species with the disturbance gradient. Disturbance 

measured in this study relate to edge effects induced by the plantation 

forestry, increase frequency of fires in the grassland matrix, livestock farming 

at the forest edges, and indirect effect of flooding and siltation. Although 

current habitat conditions for spiders vary in TCA, with many causes, not 

addressed in the study, I show it is possible to link the heterogeneous habitat 

conditions to the response of individual species and species group such as 

family. The concept of indicator species here addressed because the 

management of the environment may be simplified and made more cost 

effective by considering a single or small group of indicator species whose 

response is easier to monitor than whole communities (McGeoch, 1998). A 

suite of spider species as ecological indicator here mentioned includes a 

broad range of species response that permit evaluation of habitat condition in 

general and not just perspective or single species used. Within the species 

here enlisted as potential indicators Chrysoo sp.1 and Cyclosa sp.1 exhibit 

significantly positive response to the disturbance and heterogeneity 

respectively. This two species are logical response if one species had to 

select.  

 

In conclusion, spiders can be used as ecological indicators of Terai forests. 

This study shows that spider assemblages provide reliable assessment of the 

habitat condition in response to habitat heterogeneity and disturbance. 

Spiders seem well suited to discriminate habitat type and quality, since play 

important role as diverse and abundant invertebrate predators in terrestrial 

ecosystems. Forest managers should encourage the growth of ground layer 

vegetation species at all stages of the forest cycle, whilst retaining features 

typical of a mature forest in order to enhance the diversity of both open and 

forest species within a plantation patches. At a landscape scale, a mosaic of 

different aged plantations will provide the heterogeneity of habitat types 

necessary to sustain both open and forest specialists. 

 

 

***** 



CHAPTER 6 

EFFECT OF GRASSLAND BURNING ON  
SPIDER ASSEMBLAGES 

 
 
6.1  Introduction 
 
6.1.1 Habitat Disturbance and Biodiversity 
 
Globally, disturbances are recognized as important processes maintaining 

patterns of biological diversity in terrestrial and aquatic ecosystems 

(Rosenzweig and Abramsky, 1993). Disturbances alter habitat composition 

and resource availability through the loss of biomass, and as a consequence 

they can influence the diversity of assemblages that an ecosystem can 

support. In addition, disturbances have the ability to influence succession 

rates and trajectories, modifying vegetation associations and ecosystem 

diversity (Broncano et al., 2005; Farji-Brener et al., 2002; Ratchford et al., 

2005). Therefore, because disturbances play a key role in determining 

patterns and processes which maintain biodiversity, successful management 

must be based on a sound understanding of the effects of major ecosystem 

disturbances on key components of biodiversity. Fires often lead to changes 

in environmental conditions, biomass, species diversity, and ecosystem 

function (Bengtsson, 2000). Ecological theory predicts that repeatedly and 

moderately disturbed ecosystems are likely to have the greatest species 

richness and to be highly resilient to disturbance (Connell, 1978; Walker, 

1995). Local changes in environmental conditions after disturbance tend to 

switch the competitive balance between species, allowing a redistribution of 

dominance among species (Begon et al., 1999). 

 
6.1.2 Prescribed Burning and Impact on Biodiversity 
 
Prescribed burning is widely used to maintain native assemblages of fire-

dependent plants and avoid destructive wildfires (Malanson, 1987). Using 
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prescribed burning to reduce forest fuels, and thereby prevent or help 

suppress high intensity wildfires, has generated debate on the long term 

effects on biodiversity (Bradstock et al., 2002). Fire may indirectly affect 

arthropod communities by changing plant species composition and foliar 

characteristics, reducing the litter layer, and modifying soil moisture and 

temperature (Mitchell, 1990). Burning can lead to increased soil pH, and 

greater fluctuations in temperature and moisture, influencing vegetation 

composition (Haimi et al., 2000). Arthropods suffer exposure to greater 

extremes of temperature, light, and moisture, resulting in subsequent habitat 

loss (Buffington, 1967). However, arthropods protected from fire disturbance 

either by life history traits, location during fire, or behavioural characteristics 

that prevent mortality, can benefit following fire because of potential 

reductions in competitors and predators, increases in dead prey for 

scavengers, and more nutritional plant hosts. In particular, there is a paucity 

of information on the effects of fire on insects and other arthropods, which 

contribute most to faunal biodiversity and play key roles in ecosystem 

dynamics. This is a poor basis for effective ecosystem management 

(Andersen, 1999). 

 

6.1.3 Tall Grasslands in India 
 
The tall grasslands once extended across the Northern Gangetic plain from 

Uttar Pradesh, through the Nepalese Terai, to Bengal, north- western Assam, 

and South to West Bengal, being concentrated on the floodplains of Ganges 

and Brahmaputra rivers and their tributaries. However, these grasslands have 

suffered a rapid decline principally as result of land conversion for agriculture, 

intense livestock grazing, and are now entirely confined to protected areas of 

Uttar Pradesh, Assam and lowland Nepal (Peet et al., 1997).  

 

These grasslands harbour a variety of floral and faunal life, including several 

endangered, charismatic and obligate species viz., Great Indian One-horned 

rhinoceros (Rhinoceros unicornis), Swamp deer (Cervus duvauceli duvauceli), 

Hispid hare (Caprolagus hispidus) and Bengal florican (Hubaropsis 

bengalensis). Despite this, scant international attention has been paid to their 

 126



conservation, and especially to applied management issues have yet to be 

addressed. 

 

6.1.4 Tall Grasslands and Fire in India 
 

Historically in Indian tall grassland, with a large area of habitat and a low 

human population, burning would probably have produced a mosaic of burned 

and unburned grassland and sites at different ages of post burn regeneration. 

Today, with increased human pressure on a limited habitat resource, virtually 

entire area of grassland inside protected area is burned annually. Tall 

grasslands are subjected to a high fire frequency making it advantageous for 

faunal species to exploit ephemeral habitat created by fire, ranging from fire 

front to post burn phases of vegetation regeneration. A range of habitats 

created by slow regeneration from fire over the years are not available as 

most areas are subjected to burn at least once annually. For faunal species a 

high degree of mobility is needed to exploit these ephemeral habitats. Apart 

from some obligate grassland species, most of the ungulates and birds exploit 

these habitats mainly for making use of food resources. Small mammals, 

reptiles, amphibians and invertebrates are generally less mobile and fire can 

have direct and indirect effects on these communities. The dramatic decline of 

hispid hare and pygmy hog has been partly due to annual burning of most of 

remaining tall grassland (Bell et al., 1990) in Terai. 

 

6.1.5 Tall Grasslands, Fire and Biodiversity Conservation in India 
 
While the effects of fire on vegetation are reasonably well documented in 

Terai Grasslands of India and Nepal (Lehmkhul, 1989; Peet et al., 1997; 

Kumar, 2002), for animals, and invertebrates in particular, there are no such 

studies (Peet et al., 1997; Kumar, 2002) addressed this issue. Within the 

Indian sub-continent, species inventories for invertebrates in tall grassland 

habitat are lacking and therefore, response of invertebrates to fire in this 

habitat is unknown (Peet et al., 1997). As fire occurs during dry seasons, with 

rising air temperature, drying soil and litter, its impact on invertebrates may be 

severe. The lack of understanding of fire effects is of particular concern given 
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that fire is widely used as a management tool in many of the region’s 

protected areas, where the primary aim has been the management of large 

game or, more recently, the conservation of biodiversity as a whole. 

Managers of protected areas alter the fire regime by deciding when, where 

and how fires should be lit. If the effects of these alterations on a variety of 

taxa are not well understood, then neither is their role in conserving 

biodiversity as a whole (Parr and Brockett, 1999; Keith et al., 2002). Given 

that there is a need to provide conservation managers with reliable 

information on the effects of burning on invertebrates, this study made use of 

fire experiment to investigate the responses of spider assemblage to burning 

regime. 

 

By preying on decomposers at lower trophic levels, spiders influence 

ecosystem functioning (Lawrence and Wise, 2000, 2004). Moreover, spiders 

themselves respond to habitat variables altered by burning. Spiders respond 

markedly to altered litter depth, but also to changes in the structural 

complexity and nutrient content of litter (Uetz, 1991; Bultman and Uetz, 1982). 

Given their variety of functional roles, the responses of grassland spider to fire 

is likely to reflect the responses of a variety of other grass-layer invertebrates. 

 

The aims of the current study were to (i) determine the effects season and 

frequency of burn and post-fire condition (time since fire) have on spider 

species richness and composition; (ii) compare the response of spider 

assemblages to fire in two different grassland types, and (iii) assess whether 

any changes in spider assemblage structure can be linked to differences in 

vegetation structure and habitat composition. I am particularly interested to 

determine the extent of the resistance (i.e. the extent of change following a 

disturbance) and resilience (i.e. the rate of return to a pre-disturbance state) 

of the spider assemblages to burning. 
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6.2 Methods 
 
6.2.1 Study Site  
 
The study was conducted at Dudhwa National Park which represents one of 

extensive tall grassland in Terai Region. The sub-tropical, tall wet grasslands 

in foothills of the Himalayas have been referred as ‘riverine’, ‘floodplain’, ‘tall’ 

or ‘Terai’ grasslands (Mathur, 2000; Lehmkuhl, 2000; Peet et al., 1999a, b; 

Wegge et al., 2000). These grasslands occur on the east-west stretch of 

northern alluvial lowland of Nepal and floodplains of river Ganges and 

Brahmaputra, well known as the Terai region. These grasslands are 

dominated by dense stands of perennial grass species belonging to family 

Poaceae, reaching up to 6-8 meters height, which form a dynamic complex 

with interspersed woodland and swamps. High water table, annual flooding, 

and the synergistic influence of annual grassland fires characterized this 

complex (Lehmkuhl, 1994; Peet et al., 1997 and 1999a, b). The topography is 

low lying, ill-drained, with a high water table. Rainfall is up to 4000 mm per 

annum. The soil reaction varies from very acidic to mildly alkaline, with a pH 

range of 4.5-7.5. The cover consists of nineteen principal grass species and 

56 other herbaceous species, including sixteen legumes (Kumar et al., 2002). 

The tall grasslands in Terai are described as stages in the succession 

continuum between the primary colonization of new alluvial deposits by flood 

climax grass and herbaceous species, and the non-flooded climax deciduous 

Sal (Shorea robusta) dominated forest (Champion and Seth, 1968; 

Dabadghao and Shankarnarayan, 1973; Lehmkuhl, 1989, 1994). These 

grasslands are diverse and among the most productive in the world 

(Dinerstein, 1979a, b; Lehmkuhl, 1989). The two main grassland habitats 

within the park are the upland grasslands and lowland grasslands. The former 

occurred on drier or well-drained soils while the later type in low lying 

waterlogged sites or sites inundated during the monsoon or subsequent 

months. Floristically, Imperata cylindrica, Saccharum spontaneum, Vetiveria 

zizanoides and Saccharum bengalensis characterized the Upland grasslands. 

The Lowland grasslands were predominated by Sclerostachya fusca, 
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Phragmites karka, Arundo donax, Themeda arundinacea, Saccharum 

narenga and Saccharum spontaneum. The grasses in upland grasslands 

usually attained height up to 2m while grasses in lowland grasslands were 

even 6m tall. 

 

Sixteen grassland sites from burnt and unburnt areas in both grassland types 

were sampled from October 2006 to August 2007, representing 4 seasons of 

sampling. During sampling seasons a total of 8 sampling sites were 

established in each of the lowland and upland grassland habitats;4 on burnt 

areas and 4 on unburnt areas. Further, within burnt areas I assessed two fire 

regimes for their impact on grassland spider assemblage: (i) single fire, sites 

currently under management practices, burnt annually early in the dry season 

(January-February); (ii) repeated fire, sites burnt multiple times (as commonly 

occurs as uncontrolled) wildfires before the end of the dry season (January- 

May). At each site, ten plots were randomly established. Each plot consisted 

of a transect containing six sampling points at approximately 10 m intervals. 

These six points along transect were used for both spider sampling and 

grassland microhabitat assessment. Because the fires were relatively large in 

extent, it was ensured that sampling sites were at least 100m apart. Each plot 

measured approximately 60m × 60m and represented a different burning 

regime (season and fire frequency combination). 

 

6.2.2 Spider Sampling 
 
Spiders were collected using pitfall traps and sweep netting. One pitfall trap 

was set (pitfall traps consisted of cylindrical plastic bottles of 10 cm diameter 

and 11 cm depth. Traps were filled with preservative liquid (69 % water, 30% 

ethyl acetate and 1% detergent). After 2 days, specimens were removed from 

traps, which allowed me to maintain spider specimens in good conditions 

before taking them for laboratory processing and identification. Pitfall traps are 

an efficient means of collecting arthropods over long periods of time, despite 

their known drawbacks (Spence and Niemela, 1994). Sweep-nets were used 

to collect spiders from grass layer and above ground vegetation (up to 2 m in 

height) and I standardized the effort by sampling for 30 min. During which 
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time sweep-net was stirred back and forth all ground layer herbs and shrubs 

till all vegetation in the sampling plot had been swept thoroughly. The sweep 

net consisted of a 91.4 cm handle, 40.6 cm ring, and collecting bag made of 

white canvas. A single sweep consisted of; 1) first stroke of the net started on 

the left and moved toward the right forming a 180 degree arc, 2) the second 

stroke covered the same area as the first stroke, but the net was moved in the 

opposite direction. Each sweep consisted of 500 strokes completed at 30 min 

interval. All adult spiders were identified to family and species using existing 

identification keys wherever possible (Pocock, 1900a; Tikader, 1982, 1987; 

Cushing, 2001; Koh, 2000). Juvenile spiders were excluded from the analyses 

as very few can be reliably identified to species (Norris, 1999). Voucher 

specimens of each spider species collected are deposited at Wildlife Institute 

of India, Dehradun and Arachnida Section, Zoological Survey of India, 

Kolkata. 

 

6.2.3 Vegetation and Microhabitat Variables 
 

Microhabitat variables were measured by placing a 1m2 quadrat next to each 

pitfall trap. For each quadrat the percentage cover of grass (GCOV), litter 

(LCOV), and bare ground (BCOV) were visually estimated. Litter depth was 

the vertical height of the litter layer at each point. Litter depth (AVLD) was 

calculated as the average of 4 measurements from the quadrat. Number of 

grass species (GSC) of each quadrate was also counted. Grass height (GH) 

included the height of the tallest grass in each quadrat, as well as the 

standard deviation of the heights of the tallest grass in each of four points 

within the quadrat (a measure of structural heterogeneity; quadrats with 

relatively uniform heights of the tallest grass will have a lower SD than 

quadrats in which heights are high in one quarter and low in another, for 

example). Soil pH (SPH), soil moisture (SM) and soil temperature (STEMP) 

were measured using a soil pH and moisture tester and a WekslerTM mercury 

soil thermometer. Ambient moisture (AMMOI) was measured using 

hygrometer (Taylor Mason’s hygrometer). 
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6.2.4 Analysis 
 
Total species richness and abundance were compared between habitat types 

for all sampling periods using analysis of variance (ANOVA), and for each 

habitat type and sampling species richness and abundance were also 

compared between burnt and unburnt plots. ANOVAs were used to determine 

if there were any significant differences in species richness and abundance 

between unburnt (control) and burnt plot treatments for each sampling season 

separately, and combined. This was done for the upland and lowland 

grassland habitat separately. Because the use of ANOVA requires that data 

are normally distributed, data were log transformed where necessary.  

 

To compare species richness between fire regimes, individual based 

rarefaction was used as a measure of sampling effort, as recommended by 

Gotelli and Colwell (2001). For direst statistical comparison of accumulation 

curves, I standardize curves of different datasets on the basis of number of 

individuals and not on number of samples and calculated the number of 

species observed ± the 95% confidence interval using the analytical formula 

proposed by Colwell et al., (2004). The software program EcoSim 7.0 (Gotelli 

and Entsminger, 2001) was used for rarefaction analyses. Thereafter, the 

curves were rarefied to the lowest number of individuals recorded (21) to 

ensure valid comparisons of species richness between different fire regimes 

(Gotelli and Colwell, 2001). I used the Bray-Curtis index based on abundance 

to examine the species turn over between fire regimes. The value of the index 

is one when species turn over of the data being compared are same and 

index drops to zero when there are no species common between samples 

(Magurran, 2003). I also counted the observed number of shared species. 

Given that any measure of the beta diversity depends on the number of 

shared and exclusive species between samples, I also calculated the 

estimated number shared species using procedure proposed by Chao et al., 

(2005) with the routine provided by Estimate S version (Colwell, 2005). The 

reason for comparing the observed and estimated number shared species is 

obtain additional information regarding the exactness of the measure of 

observed beta diversity (Chao et al., 2005). 
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 A visual representation of diversity was provided by species-abundance 

distributions of k-dominance curves (Lambshead et al., 1983). In the curves, 

the percentage abundance of each species, ranked in decreasing order of 

dominance, is plotted cumulatively. Lambshead et al., (1983) noted that, 

whenever two k-dominance curves do not intersect, all diversity indices yield a 

higher diversity for the sample represented by the lower curve. However, 

when curves do intersect, the assemblage which is taken to be the more 

diverse depends on the diversity index chosen. 

 

Multivariate community analyses were undertaken using PRIMER v.5.0 

(Clarke and Gorley, 2001) to assess overall changes in spider assemblage 

composition. Bray–Curtis similarity measures were used to determine whether 

spider assemblage structure varied between seasons, and within and 

between- habitats. Data were fourth-root transformed prior to analyses to 

reduce the weight of common species. Analyses of similarity (ANOSIM) were 

used to establish if there were significant differences in the spider 

assemblages on plots that differed in burn season (Oct-Nov, Jan-Feb, Apr-

May and Jul-Aug) and frequency (single fire, repeated fire and 

unburnt/control). The ANOSIM procedure of PRIMER is a non-parametric 

permutation procedure applied to rank similarity matrices underlying sample 

ordinations (Clarke and Warwick, 2001). ANOSIM produces a global R-

statistic, which is an absolute measure of distance between groups. An R-

value approaching one indicates strongly distinct assemblages, whereas an 

R-value close to zero indicates that the assemblages are barely separable. 

These R-values were used to compare spider assemblages between habitat 

types, fire frequency and burn plot treatments within and between sampling 

periods. R-values may occasionally be very low, indicating that assemblages 

are barely separable, but these values may also be significantly different from 

zero. This reflects a high number of replicates or samples, and the fact that R 

is inconsequentially small is of greater importance (Clarke and Warwick, 

1994). The converse may also be found, where R-values may be very high 

(indicating that assemblages are almost completely different) but these values 

are not significant. This situation occurs when the sample size is small, and in 

such instances the R-value is of greater importance (Clarke and Gorley, 
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2001). The relationships between habitat types, fire frequencies and burn plot 

treatments for all sampling periods were displayed using non-metric 

multidimensional scaling (nMDS) ordinations. These were iterated several 

times from at least 10 different starting values to ensure that a global optimum 

was achieved (indicated by no decline in the stress value) (Clarke and Gorley, 

2001). In addition, the similarity percentage (SIMPER) procedure was used to 

determine which species were good discriminators of differences in diversity 

between burnt and unburnt sites. SIMPER measures the percentage 

contribution of each species to the dissimilarity between samples (Clarke and 

Warwick, 2001). 

 

Finally, spider species characteristic of the two habitat types, and of single 

fire, repeated fire and unburnt plots in each area, were identified using the 

Indicator Value method (Dufrêne and Legendre, 1997). This analysis 

assesses the degree to which a species fulfils the criteria of specificity 

(uniqueness to a particular habitat) and fidelity (frequency of occurrence). A 

high indicator value (IndVal, expressed as percentage) indicates that a 

species can be considered characteristic of a particular habitat or site. This 

method can derive indicators for hierarchical and non-hierarchical site 

classifications, and is robust to differences in the numbers of sites between 

site groups (McGeoch and Chown, 1998). Indicator values for each species 

were calculated based on a species abundance matrix, and Dufrêne and 

Legendre’s (1997) random reallocation procedure of sites among site groups 

was used to test for the significance of IndVal measures for each species. 

Species with significant IndVals> 70% were considered as species 

characteristic of the site or habitat in question (subjective benchmark; 

McGeoch et al., 2002). Monte-Carlo randomization tests are used to 

determine if the value is greater than expected by chance; thus, species with 

only one or a very few total individuals are unlikely to be considered 

indicators, even if they appear in only one habitat type (McCune and Grace, 

2002). PCOrd (McCune and Mefford, 1999) was used for this analysis. 

 

The BIOENV procedure in PRIMER was used to examine the relationship 

between habitat variables on the plots and the spider assemblages (Clarke 
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and Gorley, 2001). BIOENV produces a rank-correlation coefficient (choice of 

3) among measures for the biological distance among sites (calculated by 

using assemblage composition data) plotted against measures for 

environmental distance among sites (calculated by using disturbance and 

habitat data in this study, Clarke and Ainsworth, 1993). This is first performed 

using single environmental variables, then pairs of variables, then three 

variables combined, and so on, until the full environmental data set is used. At 

each level of complexity, BIOENV calculates the degree to which the rank 

order of association measures within the association matrix (produced by the 

selected environmental variables) correlates with that produced using the 

biological data. The inclusion of variables that have no effect on the 

composition of assemblages tends to decrease the correlation, so that the 

optimum set of environmental variables and the degree to which they explain 

the underlying biotic pattern emerges. 

 

BIOENV is a non-parametric analysis tool used for comparing two different 

similarity matrices (i.e. Bray–Curtis and Euclidean/biotic and abiotic) giving 

Spearman rank correlations for different combinations of variables (rho). A 

single, among site species similarity matrix was constructed using Bray–Curtis 

similarity measures, while several similarity matrices were constructed for 

each of the possible combinations of the specified habitat variables using 

Euclidean similarity measures. Spearman’s rank correlation coefficients (ρ) 

were then calculated for the species matrix and each of the possible habitat 

matrices. The variable or set of variables that have the highest ρ-value are 

those that best explain the species data (Clarke and Gorley, 2001). 

Unfortunately this ρ-value does not produce an associated significance value. 

Data were (log+1) transformed where necessary in order to fulfil assumptions 

of normality for the Euclidean similarity matrices. 
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6.3 Results 
 
6.3.1 Species Richness, Abundance and Fire Effects 
 
A total of 10,172 individuals were collected during the entire sampling period, 

represents 98 species belonging to 58 genera and 22 families (Table 6.1). 

There was a significant difference in species richness between two grassland 

types (ANOVA, F1, 158 = 48.10, P<0.0001). Mean species richness per plot 

was higher at lowland grassland (mean 24.81 species plot-1, S.E. = 1.01) 

compare to upland grassland (mean 15.84 species plot-1, S.E. = 0.79) (Fig. 

6.1a). 

 

Table 6.1. Abundance and species richness for each area in Terai 
grassland per sampling periods. n = total number of plots summed 
across all sites, and sampling seasons. 
 

Lowland Grassland Upland Grassland  
(n=160) (n=160) 

Abundance 
Oct-Nov 3245 2509 
Jan-Feb 246 40 
Apr-May 817 172 
July-Aug 1830 1298 
Species richness 
Oct-Nov 80 80 
Jan-Feb 24 5 
Apr-May 74 29 
July-Aug 79 74 

 

 

There was significant difference in species richness between sampling 

seasons (ANOVA, F3,365= 369.31, P<0.001) (Fig. 6.1.b). Mean species 

richness of spider significantly varied across sampling seasons for both 

lowland grassland (ANOVA, F3,316=218.29, P<0.005) and upland grassland 

(ANOVA, F3,316=209.68, P<0.005) types. When all burn plots were compared 

to unburnt plots, significant difference was found between mean species 

richness for upland (ANOVA, F1,78=88.87, P<0.0001) and lowland grasslands 

(ANOVA, F1,78=189.30, P<0.0001) (Fig.6.1.a).This was inconsistent for all 
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sampling seasons: Oct-Nov (F1,158= 124.26 P<0.0001); Jan-Feb (F1,158=13.31, 

P<0.0001); Apr-May (F1,158=4.11, P<0.05); July-Aug (F1,158=64.19, P<.0001).  

There was significant difference in spider abundance between two habitats 

(ANOVA, F1,158=16.19, P<0.0001). Mean abundance was higher at lowland 

grassland (Fig. 6.1a). There was significant difference in abundance between 

burnt and unburnt, control plots for both lowland (ANOVA, F1,78=191.11, 

P<0.0001) and upland grassland (ANOVA, F1,78=123.64, P<0.0001) (Fig. 

6.2b). Mean abundance of spider significantly varied across sampling 

seasons for lowland grassland (ANOVA, F3,256=4.55. P<0.005) and upland 

grassland (ANOVA, F3,256 =4.42. P<0.006) types. There was significant 

difference in mean abundance among sites of fire regimes (ANOVA, 

F2,117=17.06, P<0.0001). The mean species richness also varied significantly 

(ANOVA, F2,117=17.06, P<0.0001) among sites corresponding to three fire 

regimes (Fig. 6.3). 
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Fig. 6.1 Mean species richness and mean abundance of spiders in (a) 
two grassland types and  (b) four sampling seasons. Error bars are +1 
standard error. 
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Fig. 6.2 Mean number of  (a) species and (b) individuals of spiders in 
burnt and unburnt sites of lowland and upland grassland habitat. Error 
bars are +1 standard error. 
 
 

Comparing species accumulation curve at the lowest abundance value (21 

individuals), rarefied species richness seems to have higher in single fire sites 

than unburnt and repeated fire sites. However, the overlap of confidence 

interval of richness value for unburnt and repeated fire sites suggests there 

were no statistical difference exists (Fig. 6.4). The analysis of species 

turnover indicates that similarity was never greater than 60% (Fig. 6.5). 

According Bray-Curtis index single fire sites hold most dissimilar assemblage, 

while repeated fire sites showed maximum similarity. In all comparison, the 

number of observed species was lower than expected, most notably of single 

fire sites and unburnt sites. The observed mean number of shared species 

was 49 and 56 of single fire sites and repeated fire sites respectively. 
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Fig. 6.3 Mean number of species and individuals of spiders in unburnt, 
single fire and repeated fire sites of grassland habitat. Error bars are +1 
standard error. 
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Fig. 6.4 Comparison of species richness values (±95% confidence 
interval) at the lowest number of individuals (21) derived from individual-
based species rarefaction curves of spider assemblages across the 
different fire regimes.  
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Fig. 6.5 Species turn over between fire treatments using Bray-Curtis 
Index. The observed number of shared species (open squares) and 
expected number of shared species (closed triangle) are also given. 
 
 

Vertical distribution of diversity in unburnt and burnt sites for each sampling 

season is represented by means of k-dominance plots. In lowland grassland, 

highly diverse assemblage represented by unburnt plots of Oct-Nov, while 

least diverse assemblage was found for burnt plots of Jan-Feb (Fig. 6.6). In 

case of Upland Grassland there was no such consistent trend found, except 

burnt and unburnt sites of Jan-Feb which was significantly differed from other 

sites (Fig. 6.7). In upland grassland, season of sampling appeared to have a 

lesser effect on species rank-abundance curves. 
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Fig. 6.6 K dominance curve (cumulative dominance vs species rank) for 
spider assemblage of burnt and unburnt sites in lowland grassland. 
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Fig. 6.7 K dominance curve (cumulative dominance vs species rank) for 
spider assemblage of burnt and unburnt sites in upland grassland. 
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6.3.2 Community Composition 
 
There were significant differences between the spider assemblages 

occupying the two different grassland types (Global R= 0.351, P<0.002; Fig. 

6.8). Pairwise ANOSIM test revealed that unburnt sites are significantly 

different form single fire and repeated fire sites in both the grassland (Table 

6.2). Though, the effect of fire frequency was more pronounced in upland 

grassland, discriminating single fire and repeated fire sites (Fig. 6.9). MDS 

plots revealed that the effect of fire frequency on assemblage composition in 

lowland grassland is highly variable (Fig. 6.10). Compare to frequency of fire, 

ANOSIM result showed small effect of season of fire. Moreover, difference in 

spider assemblages to season of fire was more pronounced in upland 

grassland. Though, after burning assemblage differed significantly in lowland 

grassland. Results revealed a distinct shift in species composition from pre 

burn period (Oct-Nov) to post burn period (Jul-Aug) in upland grassland (Fig. 

6.11-12). Similarity percentages revealed that the shift in community 

composition between pre and post burn period was driven by distinct 

difference in the occurrence of many taxa (Table 6.4). For example, Leucage 

decorata, Oxyopes elongates (Oxyopidae), Oxyopes sertatus (Oxyopidae) 

and Pisaura decorta (Pisauridae) occurred most frequently in the preburn 

period while conversely, Myrmarachne himalayensis (Salticidae), Hippasa 

himalayensis (Lycosidae), and Cheiracanthium adjacens (Miturigidae) were 

captured more frequently from sites having burnt late. 
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Table 6.2 Analysis of similarity (ANOSIM) for spider assemblage 
between sites for lowland and upland grassland of four sampling 
season.  
 

Fire parameter Lowland Grassland Upland Grassland 
 R P R P 

Frequency 
Unburnt vs Single fire 1.000 0.007 1.000 0.006 
Unburnt vs Repeated fire 1.000 0.007 1.000 0.006 
Single fire vs Repeated fire 0.750 0.033 1.000 0.033 
Season 
Oct-Nov vs Jan-Feb 0.195 0.056 0.249 0.013 
Jan-Feb vs Apr-May 0.052 0.589 0.165 0.055 
Apr-May vs July-Aug 0.171 0.033 0.051 0.221 
Oct-Nov vs Apr-May 0.289 0.020 0.205 0.028 
July-Aug vs Oct-Nov 0.520 0.001 0.165 0.061 
July-Aug vs Jan-Feb 0.313 0.007 0.250 0.015 
 

2D Stress: 0.1

 
Fig. 6.8 Non-metric multi-dimensional scaling ordination of abundance 
of spider assemblages in two different grassland habitats in Terai 
grassland (open triangle, lowland grasslands and closed triangle, 
upland grasslands). 
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2D Stress: 0.01

 
Fig. 6.9 Non-metric multi-dimensional scaling ordination of abundance 
of spider assemblages in upland grassland habitat in Terai grassland, 
based on frequency of burn (open triangle, unburnt sites; open square, 
single fire sites and closed square, repeated fire sites). 
 

2D Stress: 0.01

 
Fig 6.10 Non-metric multi-dimensional scaling ordination of abundance 
of spider assemblages in lowland grassland habitat in Terai grassland, 
based on frequency of burn (open triangle, unburnt sites; open square, 
single fire sites and closed square, repeated fire sites). 
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2D Stress: 0.16

 
Fig. 6.11 Non-metric multi-dimensional scaling ordination of abundance 
of spider assemblages in lowland grassland habitat in Terai grassland, 
based on season of burn. open triangle, Oct-Nov (Pre burn); open 
square, Jan-Feb (Burn); open diamond, Apr-May (Post Burn 1) and open 
circle, (Post Burn 2). 
 

2D Stress: 0.11

 
Fig 6.12 Non-metric multi-dimensional scaling ordination of abundance 
of spider assemblages in upland grassland habitat in Terai grassland, 
based on season of burn. open triangle, Oct-Nov (Pre burn) ; open 
square, Jan-Feb (Burn); open diamond, Apr-May (Post Burn 1) and open 
circle, (Post Burn 2). 
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Multivariate analysis indicated that response of spider assemblage between 

burnt and unburnt sites corresponding to two grassland types. Assemblage 

composition between burnt and unburnt sites during four sampling seasons 

differed significantly but more pronounced in upland grassland (R=0.721, 

P=0.001) than lowland grassland (R=0.661, P=0.001). However, in both the 

grassland type, species composition differed distinctly just after burring (Jan-

Feb) (Table 6.3 and Fig. 6.9) 

 

Table 6.3 Analysis of similarity (ANOSIM) for spider assemblage 
between burnt and unburnt sites for lowland and upland grassland of 
four sampling season.  
 

Lowland Grassland Upland Grassland   
R P R P 

Unburnt vs Burnt 
Oct-Nov 0.719 0.029 0.839 0.029 
Jan-Feb 1 0.029 1 0.029 
Apr-May 0.896 0.029 1 0.029 
July-Aug 0.708 0.029 0.74 0.029 
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(a) 

2D Stress: 0.16

 
(b) 

2D Stress: 0.1

 
Fig. 6.13 Multi-dimensional scaling ordination for burnt and unburnt 
sites for four sampling season: (a) lowland grassland, and (b) upland 
grassland. (open triangle, unburnt Jul-Aug; closed triangle, burnt Jul-
Aug; open square, unburnt Oct-Nov; closed square Oct-Nov; open 
diamond, unburnt Jan-Feb; closed diamond, burnt Jan-Feb; open circle, 
unburnt Apr-May; closed circle burnt Apr-May ). Each point of the 
ordination represents a sampling site in the respective habitats and 
seasons. 
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Table 6.4 Species contributing most to average dissimilarity between 
burnt and unburnt sites for each of the sampling seasons. Results from 
SIMPER analysis shown as percentage contribution. 
 

Habitat Species 
 

Percentage Contribution to 
Dissimilarity 

Lowland 
Grassland     
 
Oct-Nov Achaearanea budana 5.95 
  Pardosa minuta 5.40 
  Agelena inda 5.08 
 
 Jan-Feb Pardosa birmanica 32.38 
  Hippasa himalayensis 12.58 
  Trochosa himalayensis 8.53 
 
 Apr-May Myrmarachne himalayensis 13.15 
  Leucauge celebasiana 9.25 
  Pardosa birmanica 5.79 
 
 July-Aug Leucauge decorata 9.70 
  Myrmarachne himalayensis 8.92 
  Oxyopes birmanicus 5.49 
 
Upland 
Grassland   
 
 Oct-Nov Gnaphosa stoliczka 9.00 
  Hippasa himalayensis 8.69 
  Agelena inda 8.10 
 
 Jan-Feb Hippasa himalayensis 35.78 
  Hippasa pisaurina 16.28 
  Pardosa birmanica 7.80 
 
Apr-May Pardosa birmanica 18.47 
  Hippasa himalayensis 11.04 
  Arctosa indica 8.93 
 
 July-Aug Pardosa birmanica 15.47 
  Trachelas himalayensis 14.18 
  Hippasa pisaurina 11.11 
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6.3.3 Fire Regime Effect on Individual Species 
 
Given that the responses of spider assemblages to fire lay between burnt and 

unburnt control plots only, and between burning seasons, IndVal analyses 

were carried out to identify characteristic species, first with lowland and 

upland grassland plots only, and secondly (based on hierarchical clustering) 

classified according to grassland and plot type (control and burnt plots) prior 

to analysis. This second IndVal analysis, using all burn plots classified either 

as burnt (including variable plots) or control plots, allowed the robustness and 

applicability of potential indicators identified from the first analysis to be 

confirmed. The third IndVal analysis was performed on sites differed by fire 

frequency (single and repeated fire). 

 

Using abundance data from all plots, IndVal analyses revealed that there 

were three species considered as characteristic of upland grasslands and two 

of lowland grasslands irrespective of burnt and unburnt plots. Potentially 

reliable indicators for both the habitat type were found for the lowland and 

upland grassland areas (Table 6.5). At lowland grassland, there were only 

four species characteristic of control plots, and two species characteristic of 

burnt plot types were found. Upland grassland had fewer characteristic 

species with high abundance and high site fidelity than lowland grassland. For 

single fire sites, all three species identified as indicators of annually burnt 

plots were indicators of burnt plots when plots were classified as burnt plots, 

i.e. with a coarser classification (Table 6.6). This served to confirm the 

robustness of species such as Drassodes parvidens and Plexippus redimitus 

as indicators of burnt areas. Only one spider species could be considered 

indicator of the repeated burnt treatment, Haplodrassus morosus, a hunting 

spider belongs family to Gnaphosidae 
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Table 6.5 Percentage indicator values (Ind Val) of spider assemblages 
for each habitat and burn site type (hierarchical clustering). P Values of 
corresponding each IndVal value is less than 0.001. 
 

Classification Lowland Grassland Ind 
Val 

Upland Grassland Ind 
Val 

Habitat Dictyna albida 73.5 Drassodes parvidens 43.3 
  Cheiracanthium adjacens 59.4 Oxyopes elongatus 39.1 
  Oxyopes birmanicus 48.8    
       
Lowland 
Grassland 

Unburnt plots  Burnt plots  

  Telamonia sikkimensis 100 Trochosa ruricoloides  82.5 
  Leucauge decorata  97.5 Plexippus redimitus 62.5 
  Pardosa kupupa 92.5    
  Leucauge celebasiana 87.5    
       
Upland 
Grassland  

Unburnt plots  Burnt plots 
  

  Pardosa kupupa 92.5 Haplodrassus morosus 62.5 
  Arctosa indica 79.3 Trochosa ruricoloides  52.5 
  Agelena inda 75.2    
  Leucauge decorata  72.5    
       
Fire 
Frequency 

Single fire  Repeated fire 
  

  Plexippus redimitus 78.1 Haplodrassus morosus 62.5 
  Clubiona deletrix 76.8    
  Drassodes parvidens 70.2    
          

 
6.3.4 Microhabitat Composition 
 
Microhabitat composition varied considerably between burnt and unburnt sites 

in both habitats during each of the sampling periods. In the lowland grassland 

during the burn season (Jan-Feb) litter depth and grass height was four times 

greater in unburnt habitat; whilst bare ground on burnt sites was nearly double 

that on unburnt sites (Table 6.6). During the dry season in the lowland 

grassland habitat grass cover was again significantly higher on unburnt plots, 

whilst bare ground was higher on burnt plots (Table 6.6). During the same 

sampling period there were also significant differences in percent cover of 

exposed wood between burnt and unburnt lowland grassland sites. In the 

Upland grassland there were significant differences in the soil moisture, bare 
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ground, and grass cover during the burn season (Jan-Feb), and except bare 

ground remaining all microhabitat variables vary significantly during the post 

burn seasons (Table 6.7). In all cases there was a greater percentage of 

grass, litter on unburnt sites, compared to an increase in exposed rock and 

bare ground on burnt sites (Table 6.7). This is consistent with the physical 

properties of fire: burning cured vegetation and leaf litter to expose bare 

ground and rocky substrates. 
 



Table 6.6 Kruskal Wallis results for differences in mean of microhabitat variables between burnt and unburnt sites for 
lowland grassland habitat during four sampling seasons. (CSV denotes chi square value) 
 
  Oct-Nov     Jan –Feb     Apr-May     Jul-Aug     

  Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig 

SPH 
6.19 3.09 57.18 0.00 6.16 7.00 50.97 0.00 3.82 4.76 28.91 0.00 3.16 4.59 53.75 0.00 

SM 6.90 5.60 52.48 0.00 5.36 1.72 60.21 0.00 5.48 4.52 47.89 0.00 7.03 6.22 39.28 0.00 

STEMP 
6.03 6.43 0.59 0.44 18.40 30.98 46.68 0.00 22.50 24.40 14.40 0.00 10.75 14.58 52.63 0.00 

AMMOI 87.23 82.88 18.34 0.00 75.58 72.95 5.41 0.02 84.13 74.08 59.62 0.00 89.75 83.18 47.98 0.00 

GSC 
5.38 2.30 58.40 0.00 4.40 1.50 56.25 0.00 4.40 3.85 2.74 0.10 6.28 3.68 37.60 0.00 

LCOV 0.02 0.05 30.14 0.00 0.72 0.18 54.02 0.00 0.03 0.05 13.47 0.00 0.04 0.07 13.49 0.00 

GCOV 
1.24 1.09 49.74 0.00 0.81 0.06 61.66 0.00 0.99 0.86 57.98 0.00 1.18 1.02 60.33 0.00 

BCOV 0.04 0.06 13.29 0.00 0.08 0.83 55.40 0.00 0.14 0.19 32.51 0.00 0.04 0.08 16.24 0.00 

AVLD 
6.94 2.99 59.49 0.00 4.22 0.47 60.22 0.00 3.98 2.49 56.62 0.00 5.85 2.81 40.69 0.00 

GH 6.21 5.78 25.37 0.00 3.42 0.17 59.99 0.00 3.24 2.39 42.51 0.00 6.26 4.71 59.34 0.00 
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Table 6.7 Kruskal Wallis results for differences in mean of microhabitat variables between burnt and unburnt sites for 
upland grassland habitat, during four sampling seasons. (CSV denotes chi square value) 
 

  Oct-Nov     Jan –Feb     Apr-May     Jul-Aug     

  Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig Unburnt Burnt CSV Sig 

SPH 6.11 2.52 59.98 0.00 6.17 7.27 58.81 0.00 4.03 6.54 59.32 0.00 6.11 2.52 59.47 0.00 

SM 6.50 4.40 59.95 0.00 5.10 1.69 62.36 0.00 5.09 3.85 40.14 0.00 6.50 4.40 49.86 0.00 

STEMP 9.60 10.20 4.50 0.03 17.35 40.15 59.48 0.00 21.33 27.18 51.65 0.00 9.60 10.20 60.41 0.00 

AMMOI 80.10 75.55 27.15 0.00 86.07 67.05 51.88 0.00 82.02 67.38 59.98 0.00 80.10 75.55 46.26 0.00 

GSC 5.18 1.95 60.60 0.00 4.73 1.42 58.23 0.00 4.30 1.52 60.50 0.00 5.18 1.95 61.38 0.00 

LCOV 0.03 0.06 17.94 0.00 0.74 0.01 66.41 0.00 0.04 0.08 14.85 0.00 0.03 0.06 9.02 0.00 

GCOV 1.22 1.03 58.73 0.00 1.34 0.02 65.22 0.00 0.92 0.80 60.36 0.00 1.22 1.03 61.03 0.00 

BCOV 0.04 0.09 27.59 0.00 0.19 0.86 29.15 0.00 0.16 0.20 17.05 0.00 0.04 0.09 3.97 0.05 

AVLD 6.30 2.37 59.62 0.00 5.42 0.74 59.42 0.00 3.33 1.74 58.75 0.00 6.30 2.37 42.12 0.00 

GH 6.27 5.55 41.24 0.00 4.42 0.23 61.95 0.00 2.69 1.81 31.96 0.00 6.27 5.55 59.41 0.00 



6.3.5 Habitat Variables and Fire Effects 
 
BIO ENV analysis revealed that at lowland grassland the overall pattern in 

spider assemblages were best explained by grass cover (rho=0.83), grass 

height (rho=0.73) and soil moisture (rho=0.70). In upland grassland, habitat 

variables that best explained the overall pattern in spider assemblages were 

grass cover (rho=0.75), grass height (rho=0.62) and litter depth (rho=0.58). 

Combining habitat variables of two grassland types to contrast similarity 

between patterns explained by best variables for all spiders found highly 

correlated with grass cover (rho=0.78), soil moisture (rho=0.65) and grass 

height (rho=0.64).  

 

6.4 Discussion 
 
Annual low-intensity fire is a conspicuous management strategy in virtually all 

floodplain grassland of protected areas in India. Previous studies of the long-

term effects of fire in Terai grasslands were limited to the successional studies 

of grass regeneration pattern and habitat use by ungulate community followed 

by burning (Lehmkhul, 1989; Peet et al., 1997, Kumar et al., 2002). Ecological 

studies of arthropod assemblages in tall grasslands of India are surprisingly 

rare, considering the diversity of arthropods in the state in general and their 

importance in Terai ecosystem. This is the first study which examined the 

impacts of grassland fire on the spider assemblage in the Terai Conservation 

Area. In this Terai Grassland, the effects of fire on spider assemblages varied 

with habitat type, frequency of burn and marginally with seasons of burn. The 

differential response is likely to be related to differing levels of habitat change 

in the two grassland types following fire. Spider assemblages are mostly 

affected by fire because of fire-induced habitat modification, altering 

microhabitats, resource availability and even interspecific relationships. The 

effect of fire on spider assemblages was most pronounced in the upland 

grassland habitat, with large and significant differences in spider assemblage 

composition and richness between burnt and unburnt sites.  
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In Terai Grasslands there is growing concern about the increasing frequency 

and extent of fires in the region; this shift in burning regime is thought to be 

damaging to biota, and links have been made to declines in a range of taxa 

(Peet et al., 1997). Results from this study indicate there can be great 

variation in response to fire; spider assemblages in upland grassland habitats 

being less resilient to fire than those in lowland grassland  habitats and this 

has implications for the scale at which current fire management is 

implemented. In contrast to the upland grassland habitat, spider assemblages 

in the lowland grassland habitat showed little response to fire. Spider 

assemblages in this habitat exhibited a high degree of resilience to burning. In 

this habitat, annual and perennial grasses, which dominate the ground story, 

experience prolific seasonal growth and recover much more rapidly in post-

fire period, thus structural changes to the habitat are short-term and minimal. 

The lowland grassland consist of tall, coarse grasses occurring in swampy 

and moist places and showed high affinity to moisture regimes. The early 

successional stages of tall perennial grasses are maintained by fluvial action 

and flooding during monsoon (Lehmkhul, 1989). On the contrary, upland 

grasslands are relatively homogenous on drier soils and consists of shorter 

perennial grasses predominated by Imperata cylindrica and Vetiveria 

zizanoides. In addition to this, the availability of annual fuel loads and 

prevailing drier condition in the upland grassland mean that large areas within 

this habitat are more susceptible to burnt than the lowland. Because this study 

suggests there are likely to be more species that occur only in lowland 

grassland, it may therefore be important from a conservation perspective to 

ensure, unburnt patches of lowland grassland persist in the landscape. 

  

In the study I found species strongly associated with particular fire regime and 

rarefied species richness was higher at single fire sites, represented high 

diversity compared to unburnt sites. This diversity could be explained in terms 

of an increase in habitat structural heterogeneity, where characteristic 

elements of both sparse and dense vegetation occur in close proximity, 

providing a rich mosaic of microclimatic conditions (Morreti et al., 2002). This 

heterogeneity provides a wide range of microhabitats capable of supporting a 

large number of species. The above pattern was similar to that recorded 
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following single fires in the Swiss Alps by Morreti et al. (2002); however the 

finding of the study was interpreted for short duration scale. Single fire 

qualified better considering prolonged time period allow recolonisation of 

spiders since aerial dispersal and colonization of neighbouring habitat patches 

are common phenomena among spiders (Bishop and Riechert, 1990). I found 

litter depth, grass height and bare ground cover were important variables that 

explained the fire related disturbance. Other studies also found that the 

proportion of bare ground as an important variable during pyric succession 

(Merrett, 1976; Brennan et al., 2006; Hore and Uniyal, 2008a). Fire had 

significant effect on the cover and diversity of the dominant grass species in a 

way that changes in the structure and composition of grass-layer vegetation 

appeared substantial. In several studies the depth of the litter layer was an 

important determinant of spider assemblage composition, as litter affects prey 

abundance, reduces temperature and humidity fluctuations, and provides 

structural retreats from predation (Uetz, 1991; Bultman and Uetz, 1982). 

Studies found that burning generally acts as a sanitation procedure by 

removal or reduction of plant structure and litter layer (Ismail and Yarborough, 

1981). In addition, reduced litter cover on burnt plots is likely to result in the 

loss of some cryptic species from these areas. More importantly for spiders, 

the effects of repeated fires are primarily considered to be direct through 

changes in vegetation structure and habitat composition (Moretti et al., 2002). 

Here, the effects of fire on vegetation structure were more pronounced at 

upland grassland than at lowland. At upland grassland, low biomass 

accumulation at ground level probably accounted for the lack of difference in 

vegetation complexity. The high resistance and resilience of lowland spiders 

to burning, and the responses of spider assemblages to burning at upland 

grassland, can thus also be interpreted as a response by spiders to changes 

in habitat structure as well as habitat cover. The study advocate that a 

patchwork mosaic of both recently burnt and older ages might be necessary 

to meet the different habitat requirements of many taxa. Moreover, habitat 

variables altered by burning, such as the proportion of bare ground, litter 

depth, and grass height, are potentially useful predictors of spider 

assemblages. 
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Importantly, conservation and land managers need to be sensitive of how 

different habitats respond to fire, how this might vary seasonally, and thus 

what the consequences of different management actions might be. This study 

highlights the importance of considering land unit types and sensitivity to fire 

when burning for biodiversity conservation, and cautions against applying 

prescribed fire in a ‘blanket-fashion’ across the conservation area. 

Nevertheless, given that extensive areas of grasslands are highly resilient in 

relation to fire, a complex burning system with high levels of pyrodiversity may 

not be required for effective biodiversity conservation (Barrow et al., 2007). 

Finally, effective conservation management in these areas can only be 

achieved through active co-operation and communication of management 

plans protected area boundaries, potentially reducing the frequency of large, 

homogeneous burns. 
 

 

***** 



CHAPTER 7 

HIGHER TAXA SURROGACY AND  
EFFICIENCY IN SPIDER CONSERVATION 

 

 
7.1 Introduction 
 
The biodiversity on Earth is rapidly diminishing, and conservation biologists 

are struggling in cataloguing and preserving the remaining of its natural 

variability. The rapid decline in biodiversity and practical challenges in 

describing and enumerating it rigorously enough, including money, effort, 

expertise and time (May, 1994), have urged conservation biologists to rely on 

surrogates for explaining patterns in biodiversity.  Such approaches try to 

overcome the problem of the enormous amount of resources (e.g. time, 

money, taxonomists) required to reach close to complete inventories, if such 

goal is possible to achieve. Among the most popular is the use of higher taxa 

surrogates, as proposed by Gaston and Williams 1993 (see also Williams, 

1993; Williams and Gaston, 1994). Others are the use of indicator (or 

surrogate) groups of overall richness (e.g. Pearson and Cassola, 1992; 

Beccaloni and Gaston, 1995; Prendergast and Eversham, 1997) and the 

inference of diversity from available information on environmental variables 

(e.g. Braithwaite et al., 1989; MacNally et al., 2003). Despite all the pros and 

counters all these have, the higher taxon approach has several advantages, 

namely by allowing obtaining information on a large number of taxa with 

relatively low effort and resource use. Another crucial advantage is the 

retention of broad biological information that allows the understanding of 

distribution patterns (Eggleton et al., 1994; Williams et al., 1994; Gaston et al., 

1995) and more efficiency in the definition of conservation priority areas 

(Williams, 1993; Williams et al., 1994; Vanderklift et al., 1998), after all, the 

ultimate goal of conservation biology. Higher taxon approach was applied at 

both local and regional scales (Gaston et al., 1995; Larsen and Rahbek, 

2005), which could be highly demanding in terms of performing direct species 

measurements. Recently, application of the higher taxon approach has been 
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extended to evaluate effects of environmental changes, such as burning 

(Brennan et al., 2006) and has been used to study the association between 

plant richness and climatic based variation in water-energy dynamics (O'Brien 

et al., 1998). Although most previous work points to a reliable use of higher 

taxa surrogacy in many different kinds of organisms (Williams and Gaston 

1994; Williams et al., 1994; Gaston and Blackburn,1995; Vanderklift et 

al.,1998; Balmford et al., 2000), caution should be given when applying the 

method and interpreting results since the method is subject to a series of 

limitations such as sampling effort, data quality, habitat type, geographic 

location  and spatial autocorrelation (Gaston and Williams, 1993; 

Andersen,1995; Grelle, 2002; Cardoso et al., 2004). A potential criticism in the 

efficiency of higher taxon approach arises from the area effect on the 

analytical process (Andersen, 1995; Gaston, 2000b). A positive relationship 

between species richness and habitat area is rather expected, although the 

extent to which species—area relationships are reflected to higher ranked 

taxa is unclear. Another potential limitation on the efficiency of the method 

could arise because of variation in environmental conditions. Spatial 

heterogeneity is related to ecological process and variability and could act as 

a determinant of species richness and composition by favouring specific 

organisms and eliminating the distribution of others. However, the potential 

influence of spatial heterogeneity on the performance of the higher taxon 

approach has been ignored in most of the study so far. 

 
Though nearly all studies of higher taxa surrogates have simply looked at the 

extent of correspondence in the richness of areas measured at different 

taxonomic levels. But efficient reserve networks consist not just of rich sites, 

but of sites which are rather different from one another biotically and which, 

therefore, exhibit high between-site complementarity (Pressey and Nicholls, 

1989; Pressey et al., 1993; Williams, 1998). Hence a full evaluation of the 

utility of the higher-taxon approach for reserve planning should include 

consideration of the degree of cross-level correspondence in patterns of 

complementarity as well as richness, and an assessment of how well entire 

reserve networks designed using information on genera or families manage to 

capture species-level diversity (for examples of the latter, see Vane-Wright 
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and Rahardja, 1993; Williams, 1993; Balmford et al., 1996a). One critical 

limitation is that even those tests which have addressed these other concerns 

have nearly always targeted relatively species-poor groups such as birds and 

mammals (Balmford et al., 1996a). This is not surprising, as very few good 

quality, local-scale datasets of highly speciose groups such as insects and 

arachnids currently exist. Nevertheless, rapid assessment methods are 

obviously most needed for megadiverse groups, for which a shortage of 

expertise is compounded by the long time required to sort records down to the 

level of species (Bloemers et al., 1997; Lawton et al., 1998). 

 

With this work, I intend to provide evidence of the possible usefulness of the 

higher taxa surrogacy approach with spiders in Terai, testing it as species 

richness predictor. I also consider the effects of environmental and 

methodological factors in the validity of predictions. Finally, I test the use of 

this kind of surrogacy as a tool for a reliable definition of conservation priority 

sites, either by ranking them according to taxa richness or by considering 

complementarity of known taxa between sites to examine how well subsets of 

our sites capture species-level diversity when using information on species, 

genera, families and orders. Spider species richness and respective spatial 

distribution are virtually unknown in India with a certainly very low figure of 

1520 species registered for the country (Sebastian and Peter, 2009). Although 

not even higher taxa data are available for most of the country’s territory, 

given the difficulty in the identification of species, many remaining to be 

described or discovered, it seems advisable to test for future use such 

potential tools as are different surrogates of biodiversity. 

 

7.2 Methods 
 
Fieldwork design was implemented to test for several effects that can 

influence the higher taxa surrogates approach – geographical location, type of 

habitat and sampling effort. Two protected areas of Terai Conservation Area  

under the jurisdiction of Dudhwa Tiger Reserve were chosen, one in the north 

–Dudhwa National Park–and the other nearby area in south–Kishanpur 

Wildlife Sanctuary, sampled from 2006 -  2007 (Fig. 7.1).  
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Fig. 7.1 Map showing sampling sites in TCA. 
 
For a question of simplicity, these two areas are simply referenced from now 

on as belonging to north and south geographical regions. Ideally, all sites in 

all protected areas have been sampled during the same year. I chose such 

areas due to high habitat diversity and, by comparing the two regions, 

allowing the study of geographical effects on the surrogacy methods to be 

tested. In each area, I sampled several sites, summing 10, trying to cover the 

majority of the most significant habitats represented. This way, I also consider 

habitat effect by differentiating sites with and without arboreal cover and those 

with “natural”, vegetation, from the ones dominated by introduced vegetation 

or under severe human influence or management. Ten major vegetation types 

were identified and two sampling sites per vegetation types were selected for 

spider sampling. Size of the sampled sites ranged from 1.8 to 13.3 km2. 

Spiders were sampled along the 50 m transects using pitfall traps and semi-

quantitative sampling. 10 transects were placed randomly within each of 

vegetation types. Pitfall sampling was operated for 64 weeks and other 

semiquantitative sampling performed on 64 occasions (once every week) at 

the same sampling sites. Pitfall traps consisted of cylindrical plastic bottles of 
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10 cm diameter and 11 cm depth (Churchill and Arthur, 1999). Six pitfall traps 

were laid along each transect line at an interval of 10 m each. Traps were 

filled with preservative (69% water, 30% ethyl acetate, and 1% detergent). 

After seven days, specimens were removed from traps, which allowed me to 

maintain spider specimens in good condition before laboratory processing and 

identification. Semi-quantitative sampling involves aerial sampling (searching 

for upper layer spider in leaves, branches, tree trunks, and spaces in 

between, from knee height up to a maximum overhead arm’s reach); ground 

collection (involved searching for ground layer spiders on hands and knees, 

exploring the leaf litter, logs, rocks, and plants below low knee level); beating 

(striking vegetation with stick and catching the falling spiders on a tray held 

horizontally below the vegetation); litter sampling (hand sorting  of spiders 

from leaf litter collected in a litter collection tray); sweep netting (for middle 

layer spiders up to 1 m). Each sampling method comprised 1 hour active 

sampling, measured with a stopwatch. 

 

7.2.1 Analysis 
 
To test if either family or genus richness can be reliably used to predict 

species richness regression analysis was performed over all available data. 

Linear, log-log and exponential regression were tested. I used both the 

percentage of variance explained by the independent variable and visual 

evaluation of the scatter plots as a measure of adjustment, surrogacy 

reliability and predictive power. In search for the possible influence of 

sampling detection, geographical location and habitat type over surrogacy 

results, I also adjusted regression lines after separating sites according to 

their characteristics, one factor at a time. Analysis of covariance (ANCOVA) 

was order in order to test for statistically significant differences between 

regression lines. If differences were found, the factor involved was considered 

as potentially influencing the reliability of surrogacy. SPSS 16.0 software was 

used for statistical analysis. I estimated the relationship between study site 

areas. In order to test if the study site area affected the relationship between 

species richness and higher order richness, I regressed the residuals of the 

relationship with the site area. The pattern of diversity is known to be spatially 
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autocorrelated (Lennon et al., 2001). Autocorrelation distorts systematically 

the classical tests of association and can generate misleading results in 

correlation coefficients, regression slopes and associated significance tests 

(Clifford et al., 1989; Lennon et al., 2001). To avoid this, I applied the modified 

correlation test of Clifford et al. (1989) that corrects the significance of the 

Pearson correlation coefficient for the spatial dependency within and between 

the two patterns examined. This correction uses the concept of ‘effective 

sample size’. This is the equivalent sample size for the two patterns when the 

redundancy produced by spatial autocorrelation is removed. In the present 

study, the effective sampling size was always equal or close to the real 

sample size, and thus the spatial autocorrelation did not affect the estimated 

level of statistical significance. 

 

Two approaches were tested for prioritisation and ranking of sites for 

conservation. A scoring approach, which uses the raw number of taxa 

represented in each site as the sole value for ranking (Table 7.1). Spearman 

rank correlation index was used to test for surrogacy reliability in the scoring 

of sites. In addition, scatter plots of family and genus richness versus species 

richness ranking of sites were used for visual inspection of reliability. I 

furthermore tested a more efficient iterative approach of conservation priority 

ranking. For each of the considered taxonomic levels (family, genus or 

species), I first choose site with highest species richness, then calculate 

complementarity richness by counting species that are not already present. 

Then, subsequently choose site with highest complementarity and repeat until 

all species are represented in data matrix. Finally I reorder by 

complementarity richness with carefully deselect sites if redundant in 

retrospect. I first chose the richest site and from it, in a stepwise manner, the 

one site that would further raise the number of represented taxa was added to 

the set of sites to be considered for protection. In case of ties, I chose the 

richest site in the respective taxa. By doing so, I test the effect of using higher 

taxa for choosing a near-minimum set of sites that potentially preserves the 

maximum number of species. 
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Table 7.1 Taxa richness of sampled sites and respective ranking. 
 

Richness Rank Site 
 Species Genera Family Species Genera Family 

grsk2 45 27 13 1 3 4 
pssk1 45 25 10 1 4 7 
grsd2 44 31 17 2 1 1 
rpsd2 44 28 10 2 2 7 
pssd2 42 25 11 3 4 6 
grsk1 41 31 15 4 1 3 
mssd2 41 27 13 4 3 4 
rpsk1 39 24 9 5 5 8 
rpsd1 36 22 12 7 6 5 

rpsk2 36 25 11 7 4 6 

mssk1 32 21 10 8 7 7 

pssd1 31 21 10 9 7 7 

grsd1 30 24 16 10 5 2 

mssd1 30 14 8 10 10 9 

mssk2 29 21 12 11 7 5 

plsd2 23 15 8 12 9 9 

plsk1 19 15 8 13 9 9 

plsk2 10 7 4 14 11 11 

plsd1 7 6 5 15 12 10 

 
 
7.3 Results 
 
A total of 186 species belongs to 77 genera and 27 families were collected 

during entire sampling periods. Of these, 67 species (36% of all species) 

belong to morphospecies. All species were identified at least to genus level, 

since genus identification is required for most calculations. At generic level 

terai spider assemblage represents 20% of all genera described from India, 

which is considerably high and rich. Adopted nomenclature consistently 

follows Platnick’s (2008) world spider catalogue. 
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7.3.1 Species Richness Prediction 
 
7.3.1.1 Choosing the Best Surrogate 
 
After fitting all previously defined regression types – linear, log-log and 

exponential - to family and genus taxonomic levels, I choose the ones with the 

highest regression coefficient value. A non-linear exponential relationship is 

found for the former and a linear relationship for the latter (Fig. 7.2). Both 

taxonomic levels present highly significant relationship with the number of 

species (n=20, p<0.001), however genus richness seems to have much better 

predictive power with high r2 value. 

 

7.3.1.2 Influence of Factors  
 
Since genus richness was found to have high predictive power and represents 

linear relationship with species richness, in subsequent test for influence of 

factors on taxonomic level, genus level data is only considered. Comparing 

regressions line of sites representing different detection (frequency of 

occurrence of species to individual) level for individual species was found 

significantly different (n= 20, p<0.05) (Fig. 7. 3a). This was to be expected as 

heterogeneity in the detection probabilities of different species capture is 

varying with local and regional species pool. The same didn’t happen with 

other factors, whose differences are not found to be statistically different.  

 

Regression based analysis demonstrated only weak correlation between area 

and different taxonomic levels for all classes (R2 = 0.123 and 0.204, 

respectively). The correlation between area and the residuals of the 

relationship between species richness and higher taxonomic level richness 

was not significant (a = 0.001).The spatial autocorrelation among sites seems 

to be not a significant effect, since effective sample size deviated only slightly 

from real sample size without altering the results. 
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7.3.1.3 Cross-level Correlations in Complementarity 
 

There was good congruence in complementarity patterns measured in terms 

of species and genera, but not across families (Fig. 7.4b). Between-site 

complementarity of species was quite closely related to between-site 

complementarity of genera (r2=0.84, n=0 pairs of sites, p<0.001); thus sites 

with very different spider species also had very different spider genera, and 

vice However, species-level complementarity could be far less closely 

predicted from family-level complementarity (for species vs families, r2=0.44, 

n=20, p<0.10). These results were apparently not confounded by variation in 

the difference in area of paired sites (since pairs are widely differing 

size).Thus, it appears that the match in how well sites complement each other 

when assessed in terms of species and genera is real, and alongside 

congruence in richness, explains why sets of sites identified using spider 

genera do so well at representing spider species. 

 

7.3.2 Conservation Priority 
 
7.3.2.1 Scoring Approach 
 
Using the rank of sites according to their taxa richness, families found to have 

low predictive power of species based site ranking (Table 7.2), despite the 

high Spearman rank correlation value of 0.855. Examination of the rank 

scatter plot (Fig. 7.5b) also leads to conclude about the low reliability of the 

family surrogacy approach. Genera, on the contrary, seem to rank sites in 

much the same way as species do (Table 7.2) (Spearman rank correlation = 

0.962). Predictive power is especially high at the highest and lowest ranked 

sites, being not as good at the middle ones (Fig. 7.5b). 

 

7.3.2.3 Iterative Approach 
 
Although a scoring approach to site ranking can be evaluated for future use, it 

is not the most efficient method for establishing conservation networks of 

sites. Complementarity is a fundamental issue to be taken into account. This 
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way, scoring of sites was not done simply according to their richness values, 

but according to which ones will allow the protection of the maximum number 

of species not included in previously chosen sites. By using accumulation 

curves, effects of adopting this approach for the different taxonomic levels can 

be carefully. The objective is to check what proportion of species can be 

protected by using the same number of sites that protects all considered 

higher taxa. Genus level data was chosen for this analysis since it fitted best 

with species algorithm. The number of sites (13 sites; 65% of all sites 

sampled) necessary to include all genus is enough to protect, at most, 90% of 

species (Fig. 7.6).  

 

7.4 Discussion 
 
Results of the study suggest that only genus richness can be used as a 

significant and reliable surrogate of species richness, with much higher 

regression coefficient value and predictive power than families. Its linear 

relationship is also simpler than the more complex, non-linear, exponential 

relationship that family richness has with species richness. Previous studies 

also recognize the same high relationships between species and genera 

richness, while several studies highlight caveats on the use of family richness 

(Williams and Gaston, 1994; Gaston and Blackburn, 1995; Balmford et al., 

1996a, 1996b; Roy et al., 1996; Grelle, 2002; Cardoso et al., 2004; Bergamini 

et al., 2005). However, there is evidence demonstrating family richness to be 

an equally good predictor of species richness (Williams et al., 1994; Negi and 

Gadgil, 2002; Báldi, 2003). Given our findings of high correlation and 

predictive power between higher taxonomic level richness and species 

richness, the study concluded that genera level richness could be used in 

describing patterns of species diversity. However, caution should be taken 

that the decision on the taxonomic level to be used in a similar analysis 

should be based on a preliminary analysis undertaken at the region of 

interest. This is mainly because the responses of organisms to environmental 

variability differ for the same group of species from region to region. 
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Species richness is known to increase as the sampling area and 

environmental variability (here measured as habitat diversity) increases. In the 

present study the relationship between species richness and area or habitat 

diversity was found generally weak. Neither geographical location or area or 

habitats were found to have significant influence over the usefulness of higher 

taxa surrogacy at genus level. When sampling effort is same, the only factor 

found that may limit the use of higher taxa surrogacy is imperfect detection of 

species in a single or multiple sites. 
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Fig 7.2(a) Exponential relationship between family and species richness, (b) linear relationship between genus and 
species richness in all 20 sites sampled for spiders in the study area. 
 
 
 

 

 

 

 
 

169



 170

y = 0.5303x + 3.1584
R2 = 0.8018

South

y = 0.6204x + 1.6154
R2 = 0.919

North

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Species

G
en

er
a

y = 0.5603x + 2.424
R2 = 0.8248
 Arboreal25

y = 0.5999x + 2.2279
R2 = 0.9312

Non Arboreal

0

5

10

15

20

0 10 20 30 40 50

Species

G
en

er
a

Fig. 7.3(a) Comparison of genus richness and species richness relationship between sites with high (open squares) 
and low (filled squares) detection (b) northern (filled squares) and southern (open squares) (c) with (filled squares) 
and without (open squares) arboreal cover. (d) “natural” (open squares) and those with high human influence (filled 
squares). 
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Fig. 7.4 Cross-level Congruence in the Complementarity of pairs of sites 
in the study area (a) species vs genera, and (b) species vs families. 
Complementarity scores are calculated as the number of species or 
genera or families found at just one or other site, divided by the 
combined total found at either or both (Colwell and Coddington, 1994).  
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Fig. 7.5(a) Comparison of site ranking according to family and species 
richness. (b) Comparison of site ranking according to genus and 
species richness. 
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Fig 7.6 Accumulation curves of the number of taxa represented by the 
adding of sites in stepwise manner, considering complementarity 
algorithm. 
 

Because species are detected imperfectly, some species that were not 

detected at the site may have in fact been present (i.e., a false absence), 

while others could be genuinely absent from the site (i.e., not part of the local 

community during that sampling period). Repeated surveys are needed to 

estimate detection probability and the assumptions need to be fulfil that the 

occupancy status of the site for each species does not change during the 

season, or that changes occur completely at random (i.e., the members of the 

local species pool present at the site are constant during sampling period) 

(MacKenzie et al., 2006). In future research, site occupancy approach that 

permit the direct estimation and modeling of this parameter, Ψ, as well as of 

the rate parameters that cause the relative species richness and species 

composition to change over time can increase and refine the predictive power 

of this proposed higher taxa relationship.  
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Results also show that for fine-scale variation in genus-level richness mirrors 

variation in species richness. It is also due to moderate cross-level 

correspondence in the extent to which different sites complements one 

another: sites that are highly complementary at the species level also tend to 

exhibit high complementarity at the genus level, and vice versa. In contrast, 

data on families and orders are much poorer predictors of patterns of species 

richness and species-level complementarity. 

 

Recent attempts have been made to explore the performance of higher taxa 

approach in identifying priority areas for conservation (Balmford et al., 2000; 

Fjeldså, 2002; Whiting et al., 2000). Accordingly, some encouraging results 

have been drawn, at a continental scale, but only for large grain sizes (Larsen 

and Rahbek, 2005). Such an analysis was performed at regional scale, in 

order to explore the ability of different taxonomic levels to encompass species 

diversity. The aim was to investigate the efficiency of different levels of 

information to prioritize sites for conservation and also the reliability of the 

higher taxon approach. The analysis demonstrated that the higher taxon 

approach performed equally well as the species level approach. Yet, its use 

on reserve selection should follow further analysis. 

 

Genera, but not families, are also considered a good surrogate for choosing 

priority sites for conservation. Either if I choose to apply a simple scoring 

approach or a much more efficient iterative algorithm approach to the problem 

of sites ranking, genera can be used as a surrogate of species, when no 

taxonomic data are available on these. The use of caution is suggested, and 

in case of doubt, a conservative approach should be taken, by trying to 

protect more sites than those expected to be necessary to represent all 

genera. This way this will guarantee that the proposed reserve network covers 

a large proportion of species. 

  

From a practical point of view the method could be applied for monitoring and 

management proposes to frequently study and determine changes in 

biodiversity richness and distribution. The results show clearly that higher 

taxon approach could be used towards this direction for performing rapid area 
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inventories. Assuming, very conservatively, that there are no savings from 

higher-taxon surveys in terms of field time, that subsequent identification of 

spiders in the laboratory takes no longer than fieldwork, and that the 

identification time required for genera is fully half that for species, it follows 

that genus-level surveys would take at the very most only 50% of the time 

required for sorting down to species. Perhaps more important than time 

savings, in most situations (e.g. the highly diverse tropics), the great majority 

of the work required for genus-level inventories of spiders could be conducted 

by well-trained parataxonomists or by nonspecialist using local or regionally 

based operational keys, rather than by expert scientists (see Oliver and 

Beattie,1996; Krell, 2004). 

  

Apart from spiders the higher-taxon approach and the validity of the approach 

in other richer arthropod groups should continue to be encouraged, and the 

cautious use of genus- level surveys will represents a very promising route to 

putting priorities for megadiverse groups on the conservation map. The 

efficiency of the method to be used for prioritization of conservation areas 

needs to be demonstrated for different groups of taxa in different biomes and 

in different biogeographical areas (Balmford et al., 2000). 

 

 

***** 



CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSION 
 
 
8.1 Introduction 
 

Conservation issues mostly focus on the ecological impact of management 

practices, as their aim is to provide practical background for sustainable 

management (Spence, 2001; Aubert et al., 2003; Oxbrough et al., 2005). To 

achieve this purpose, an understanding of how management practices affect 

forest biodiversity is a necessary condition (Bengtsson et al., 2000). Forest 

management practices determine different forest structures. Thus, typical 

practices such as cleanings or plantations reduce the predominance of old-

growth structures characterized by vertical and horizontal heterogeneity, wide 

range of age classes, presence of large trees and dead wood. Compared to 

naturally regenerating forests, succession in managed forests includes 

accelerated successional cycles and decreased vegetation heterogeneity 

(Essen et al., 1992; Buddle et al., 2006).  

  

Management practices promote changes in community structure and 

composition of different animal groups (e.g., Gram et al., 2001; Dunn, 2004; 

Drever et al., 2008), including invertebrates (e.g., Finch and Szumelda, 2007; 

Pohl et al., 2007) due to the modification of forest structure that causes 

changes in environmental conditions, nesting sites and food resource 

availability. Among arthropods, spiders are the most abundant predators in 

many terrestrial ecosystems, playing an important role in ecosystem functioning 

throughout habitats (Van Hook, 1971). As generalist predators, they contribute 

to the regulation of herbivore populations in forest communities (Lawrence and 

Wise, 2000) and thus occupy a strategic functional position in terrestrial food 

webs (Ferris et al., 2000). While spiders in forest ecosystems contribute to the 

maintenance of insect community equilibrium, the distribution of species and 

the composition of assemblages are significantly influenced by environmental 

conditions (Ziesche and Roth, 2008).   
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The TCA being the last, largest representative of the Indian Terai ecosystem 

has also undergone several transformations during the past 8-10 decades, 

mainly through: (i) the long history of forest management including timber 

felling, raising of plantations, and (ii) habitat management practices viz., grass 

harvesting, annual burning of grasslands, weed control, water management, 

and habitat restoration through protection (Kumar et al., 2002). The resultant 

combined effect of above management practices thus, provided an opportunity 

to study the existing mosaic of habitats and their ultimate effect on spider 

diversity and structure. 

 

8.2 Faunistic Inventory of Spiders in Terai Conservation Area:   
 

The present study, conducted at Terai Conservation Area (TCA), has made a 

significant contribution towards increasing knowledge of spider species 

distributions in this landscape. This area has extremely high spider diversity. A 

total of 186 species, 77 genera and 27 families were sampled during the study 

period. Considering the high spider diversity in this area, efforts should be 

continued to ensure that the area is conserved, not only for the large 

vertebrates (which attract considerable attention), but also for the invertebrates. 

No previous work on spiders has been conducted in this area thus the study 

represents new distribution records for all species recorded and 67 suspected 

previously undescribed species. Several genera that are endemic to India and 

South East Asia occur in this area which further highlights the importance of 

maintaining the conservation status of this landscape. 

 

8.3 Diversity and Composition of Spider (Araneae) Assemblages 
 

This was surprising to find that our sampling programme cover only five, albeit 

quite different, habitats located in a small region has detected more than 10% 

of Indian spiders. Obviously, many more habitats will have to study until the 

relationship between local and regional species pool of spiders can be 

understood. This study has considered diversity in spider assemblage with 

respect to sample size and habitat heterogeneity. However, other factors such 
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as productivity, latitudinal gradient and size of the regional species pool have 

been suggested to influence species richness (Huston, 1994; Gaston, 1996). It 

was not possible to analyse the impact of these factors quantitatively as only 20 

sites per habitat type was sampled. However, with its emphasis on the diversity 

patterns at small spatial scale the present study may help to shape ideas for 

the design of future inventory and monitoring programmes. 

 

This study revealed that habitats other than plantation are worth recognizing 

and the value of plantations will depend on their size and location. Spider 

diversity and composition in plantations was different from the other forest 

habitats. Especially, plantation patch showed the most dissimilar assemblage 

structure no matter what taxon was analysed. Possible reasons are (i) the 

scarcity of understorey vegetation; and (ii) patch isolation. The amount of 

understorey vegetation has a strong influence on spider abundance and 

diversity, thus affecting the amount of habitat available to spider occurrence. 

Therefore, diversity can be maintained as far as suitable habitat structure is 

provided, so that spiders can perceive the connectivity of different habitats. 

Forest managers should encourage the growth of lower field layer vegetation 

species at all stages of the forest cycle, whilst retaining features typical of a 

mature forest in order to enhance the diversity of both open and forest species 

within a plantation. Future studies in this forest system should focus on 

processes influencing individual species responses to forest management. The 

river margins and the alluvial forests of TCA were the most species rich habitat, 

holding greatest number of stenotopic species. Different flood regimes of TCA 

benefit different spider species, an optimum in species richness which is 

assumed to be maintained by increased microhabitat heterogeneity (Uniyal and 

Hore, 2008). This allows for a narrow niche separation (Bonn and Kleinwächter, 

1999), hence benefiting the persistence of species with divergent habitat 

preferences and interrelated sets of species traits.  

 

8.4 Habitat Association of Spider Assemblages 
 

Considering conservation aspects, given heterogeneity in TCA forests due to 

small spatial scale gradients of environmental parameters will promote species 
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diversity. This applies particularly for taxa like spiders that are not strictly bound 

to tree species like many herbivorous insects. Thus, sustainable forestry 

practice may play an important role for maintaining spider diversity. When 

considering the implications of managing forests for spider diversity, 

establishing a set of easily recognisable and quantifiable structural indicators is 

vitally important. This study has shown that there may be straightforward ways 

to enhance spider diversity which correspond with the management of other 

invertebrate groups and plants. Indicators such as cover of field layer 

vegetation, canopy and litter layers could be assessed by foresters with little or 

no specialist taxonomic training making it possible for spiders to be 

incorporated into sustainable forest management strategies. 

 

Invertebrates have been extensively used as ecological, environmental, and 

biodiversity indicator species (Stork and Eggleton, 1992; Brown, 1997; 

McGeoch, 1998). Groups of related species have been used as indicators, 

such as carabid beetles (Rainio and Niemelä, 2003) and butterflies and moths 

(Kitching et al., 2000). Our study suggests a group spider species provide 

reliable assessment of the habitat condition in relation to the heterogeneity and 

disturbance gradient. Spider assemblages are well suited to discriminate 

habitat quality, since many spiders often rely on a distinct complex of 

environmental habitat factors with respect to species-specific ecological 

demands. And there is experimental evidence that habitat alterations due to 

forest succession, natural disturbances, or forestry practice result in structural 

changes of the spider community (Pearce et al., 2004; Ziesche et al., 2004; 

Oxbrough et al., 2005; Finch and Szumelda, 2007). In particular, the formation 

of ground vegetation and the resulting microclimate are most likely to affect the 

diversity and distribution of spider species and this is probably a major reason 

for the formation of specific species assemblages in a habitat (Bultman and 

Uetz, 1982; Hurd and Fagan, 1992; Gibson et al., 1992). 
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8.5 Effect of Grassland Burning on Spider (Araneae) Assemblages 
 
Tall grasslands in TCA form an integral part of the forestland. Ecological 

functions of grasslands in TCA have been ignored for a long time because of 

earlier policies. Mainly burning is being in practice to maintain grassland 

diversity and productivity. The complexities of management practices and their 

effects on grassland values and functions have been poorly understood. 

Mathur (2000) has reviewed the status of research and monitoring in protected 

areas of the Indian Terai and highlighted the need for experimental research on 

grassland management practices, which has lacked in the majority of Indian 

PAs. Peet et al. (2000) have reviewed researches on the tall grasslands in 

Nepal. They have summarized the research, and conclusions on management 

priorities based on the investigations addressing the effect of burning of 

grasslands and its impact on ungulates, and socio-economics of grassland 

harvesting. 

  

This study recommends that the spider fauna of Terai grassland is rich and 

useful for monitoring work, and that support for the conservation of this area 

should be continued. More individual spider species need to be studied in order 

to evaluate their indicator values that would help in establishment of a longer 

list of indicator species for grassland habitat management. Thus, it might be 

wise to extend this survey to other Terai grassland  within the Indian Sub 

continent that have slightly different rainfall but the same type of grassland 

ecosystem, since it might increase the number of the known species in this 

ecosystem. 

 

Forest managers must establish goals and weighs ecological cost and benefits 

when establishing management regimes of fire.  Some may choose to manage 

for a narrow range of rare or favoured species.  In this case, suitable burn 

regime might range from annual fires, with everything burned as often as 

possible, to nearly fire exclusion. However, to preserve self sustaining systems 

replete with diversity of spiders, grasslands of TCA should be burned on 

rotational basis, with sufficient unburnt refugia maintained each year. Ideally, 

important microhabitats will be represented in all units. This study suggests 
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rotational and patch burning are compatibles with the preservation of spider 

biodiversity as well. In contrast, annual burning of entire sites can be expected 

to reduce remnant grassland dependent spider species within this fragmented 

landscape of TCA. Although level of fire remnant-dependence, fuel loads and 

spider phonologies can vary geographically, perhaps resulting in contrasting 

response pattern. Therefore, additional studies should be conducted within 

contrasting systems to test the generalities of the result obtained here. 

 

Past studies on other taxa like hispid hare (Bell, 1986) and pygmy hog (Oliver, 

1980) have also shown adverse effects of above management practices. Whilst 

Laurie (1978 and 1982) and Dinerstein (1979a,b; 1980; and 1987) have 

documented that cutting and burning practices are essential to create the 

mosaic of habitats so as to maintain the viable populations of one horned 

rhinoceros and other wild ungulates in the Terai region, respectively. These 

studies advocated ‘patch burning’ as a conservation measure in fire-prone 

areas. 

 

8.6 Higher taxa Surrogacy and Efficiency in Conservation 

 

Scientific names have been given to approximately 1.4 million species of 

plants, animals, and microorganisms (Wilson and Peters, 1988; Ehrlich and 

Wilson, 1991) but this is only a fraction of all species. Estimates of arthropod 

diversity in tropical forests alone range from about 7-80 million (Erwin, 1982, 

1983; Stork, 1988; Hammond, 1992), and other invertebrate phyla are even 

more poorly known. Estimates have been made that if the collection and 

description of new species were to continue at the current rate, using traditional 

methods, it would take several thousand years to catalogue the world’s 

biodiversity (Disney, 1986; Soulé, 1990), and in fact the rate is slowing down 

because funding for taxonomy has declined (Stork and Gaston, 1990; 

Whitehead, 1990). Since complete inventories are not a practical option, yet 

land use change is proceeding apace, some measurable biodiversity 

surrogates are required. Realistically, there are three kinds available: sub-sets 

of taxa or higher taxa, assemblages, and environmental variables or classes. In 

reality some combination of these surrogates will have to be used in most 
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cases to identify biodiversity priority areas because the data available will 

normally come from a variety of sources (Nix et al., 2000). 

 

Higher taxa (e.g. genera, families) might also be used if a relationship between 

the distribution patterns of higher taxa and the distribution patterns of species 

can be demonstrated. For the same breadth of taxonomic coverage, it would be 

cheaper and easier to identify samples at higher taxon levels (Williams and 

Gaston, 1994). Most taxa remain undescribed and even of the taxa that are 

known, only a small sub-set is sufficiently well studied, both in terms of 

taxonomic status and geographic distribution, to be used to identify priority 

areas. Higher taxon methods (family or genera) are an improvement. However, 

our data suggest that the relationship is stronger at the level of genus than 

family. It follows then that if higher taxon surveys are to be used for spider 

diversity assessment then estimates at the level of genus should be used. The 

results of this study show clearly that higher taxon approach could be used 

towards this direction for performing rapid area inventories. Neither 

geographical location or area or habitats were found to have significant 

influence over the usefulness of higher taxa surrogacy at genus level. When 

sampling effort is same, the only factor found that may limit the use of higher 

taxa surrogacy is imperfect detection of species in a single or multiple sites. 

Higher taxon data should only be used in situations where there are insufficient 

resources available for good species data to be a realistic alternative. 

 

 

***** 
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Appendix 4.1 Lists of spider species recorded in each habitat type during 
sampling 100 sites in 5 habitat types in TCA. [Habitats are abbreviated as follows 
PL, Plantation, MS, Mixed Sal, PS, Pure Sal, GR, Grassland, and RP, Riparian] 

 
Species Species 

code 
Family PL MS PS GR RP 

Achaearanea budana sp1 Theridiidae 0 0 1 0 1 
Achaearanea sp.1 sp2 Theridiidae 3 0 0 0 7 
Achaearanea sp.2 sp3 Theridiidae 0 15 4 0 19 
Achaearanea triangularis sp4 Theridiidae 35 12 4 0 13 
Agelena gautami sp5 Agelenidae. 0 0 0 5 0 
Arachnura melanura  sp6 Araneidae 0 4 20 0 11 
Araneus bilunifer sp7 Araneidae 0 6 11 17 30 
Araneus sp.1 sp8 Araneidae 0 26 0 0 6 
Arctosa indica sp9 Lycosidae 0 0 1 0 0 
Arctosa sp.1 sp10 Lycosidae 0 2 1 0 0 
Arctosa sp.2 sp11 Lycosidae 0 0 0 0 13 
Arctosa sp.3 sp12 Lycosidae 0 1 0 0 1 
Argiope anasuja sp13 Araneidae 0 19 36 0 42 
Argiope pulchella sp14 Araneidae 0 20 51 0 10 
Argyrodes crytophorae sp15 Theridiidae 1 1 0 0 0 
Argyrodes fissifrons sp16 Theridiidae 0 6 6 0 12 
Argyrodes sp.1 sp17 Theridiidae 2 0 0 0 0 
Argyrodes sp.2 sp18 Theridiidae 26 12 25 0 0 
Argyrodes sp.3 sp19 Theridiidae 0 1 0 0 0 
Argyrodes sp.4 sp20 Theridiidae 0 0 1 0 1 
Chrysso picturata sp21 Theridiidae 2 0 0 10 0 
Chrysso sp.1 sp22 Theridiidae 89 19 2 0 2 
Chrysso sp.2 sp23 Theridiidae 1 0 0 0 0 
Clubiona boxaensis sp24 Clubionidae 0 0 0 0 1 
Clubiona deletrix sp25 Clubionidae 0 0 11 0 1 
Clubiona filicata sp26 Clubionidae 0 0 22 0 0 
Clubiona sp. 1 sp27 Clubionidae 0 0 0 0 1 
Crossopriza lyoni sp28 Pholcidae 0 32 2 0 0 
Cyclosa confraga sp29 Araneidae 0 10 30 13 0 
Cyclosa mulmeinensis sp30 Araneidae 0 27 27 15 12 
Cyclosa simoni sp31 Araneidae 0 41 21 22 0 
Cyclosa sp.1 sp32 Araneidae 0 12 15 1 44 
Cyrtophora bidenta sp33 Araneidae 0 3 5 0 2 
Cyrtophora cicatrosa sp34 Araneidae 0 37 17 1 1 
Cyrtophora citricola sp35 Araneidae 0 3 7 0 19 
Cyrtophora ksudra sp36 Araneidae 0 8 8 0 43 
Cyrtophora moluccensis sp37 Araneidae 0 43 20 25 0 
Diaea subdola  sp38 Thomisidae 1 1 1 17 4 
Drassodes gangeticus sp39 Gnaphosidae 0 0 0 2 18 
Drassodes luridus sp40 Gnaphosidae 0 0 0 8 19 
Drassodes parvidens sp41 Gnaphosidae 0 0 1 0 1 
Eriovixia laglaizei  sp42 Araneidae 16 17 19 18 30 
Evippa solanensis sp43 Lycosidae 0 0 0 0 18 
Gamasomorpha 
clypeolaria sp44 Oonopidae 1 0 0 0 0 
Gamasomorpha sp.1 sp45 Oonopidae 3 2 0 40 0 
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Species Species 
code 

Family PL MS PS GR RP 

Gamasomorpha sp.2 sp46 Oonopidae 6 3 2 8 0 
Gamasomorpha sp.3 sp47 Araneidae 0 5 8 0 18 
Gasteracantha dalyi sp48 Araneidae 0 1 30 12 18 
Gasteracantha geminata sp49 Araneidae 0 11 26 0 28 
Gasteracantha hasselti sp50 Araneidae 0 1 4 3 26 
Gea corbetti sp51 Araneidae 0 0 6 24 0 
Gea subarmata sp52 Araneidae 0 0 2 0 0 
Gnaphosa stocliczka sp53 Gnaphosidae 0 0 0 4 13 
Gnaphosan kailana sp54 Gnaphosidae 0 0 0 11 8 
Haplodrassus tehriensis sp55 Gnaphosidae 0 0 0 19 12 
Hersilia savignyi sp56 Hahniidae 0 1 2 0 0 
Heteropoda buxa sp57 Sparassidae 1 0 1 0 1 
Heteropoda faberi sp58 Sparassidae 0 0 0 1 1 
Heteropoda venatoria sp59 Sparassidae 0 0 1 5 18 
Hippasa pisaurina sp60 Lycosidae 0 0 0 0 27 
Hippasa sp. 1 sp61 Lycosidae 0 0 0 0 12 
Hippasa sp. 2 sp62 Lycosidae 0 0 0 4 34 
Larinia chloris sp63 Araneidae 3 0 0 1 0 
Larinia sp. 1 sp64 Araneidae 12 0 0 0 0 
Leucauge celebasiana sp65 Tetragnathidae 0 0 0 0 1 
Leucauge decorata  sp66 Tetragnathidae 0 17 8 1 46 
Leucauge sp. 1 sp67 Tetragnathidae 0 10 4 0 1 
Linyphia perampla sp68 Linyphiidae 1 7 12 0 1 
Linyphia sikkimensis sp69 Linyphiidae 7 0 2 0 0 
Linyphia sp. 1 sp70 Linyphiidae 0 0 0 0 1 
Linyphia sp. 10 sp71 Linyphiidae 0 0 1 1 2 
Linyphia sp. 11 sp72 Linyphiidae 0 0 1 43 4 
Linyphia sp. 12 sp73 Linyphiidae 0 0 0 13 1 
Linyphia sp. 13 sp74 Linyphiidae 9 1 3 0 1 
Linyphia sp. 2 sp75 Linyphiidae 0 1 2 44 0 
Linyphia sp. 3 sp76 Linyphiidae 0 0 0 1 0 
Linyphia sp. 4 sp77 Linyphiidae 1 0 0 16 0 
Linyphia sp. 5 sp78 Linyphiidae 0 0 5 14 0 
Linyphia sp. 6 sp79 Linyphiidae 0 3 3 1 0 
Linyphia sp. 7 sp80 Linyphiidae 0 3 0 23 0 
Linyphia sp. 8 sp81 Linyphiidae 0 1 3 0 0 
Linyphia sp. 9 sp82 Linyphiidae 1 0 0 0 0 
Linyphia straminea sp83 Linyphiidae 0 0 8 6 0 
Linyphia urbasae sp84 Linyphiidae 0 0 0 16 12 
Lutica bengalensis sp85 Zodariidae 0 0 1 12 0 
Lycosa tista sp86 Lycosidae 0 0 0 0 34 
Marpissa decorata  sp87 Salticidae 2 17 0 16 2 
Meta  sp. 1 sp88 Tetragnathidae 0 0 2 0 0 
Miagrammopes gravelyi sp89 Uloboridae 0 7 9 0 1 
Miagrammopes indicus sp90 Uloboridae 0 0 4 0 0 
Misumena indra sp91 Thomisidae 3 0 0 0 0 
Misumena mridulai sp92 Thomisidae 1 2 0 0 0 
Myrmarachne 
himalayensis  sp93 Salticidae 0 9 0 0 22 
Myrmarachne sp.1 sp94 Salticidae 2 1 16 0 16 
Myrmarachne sp.2 sp95 Salticidae 0 0 0 0 7 
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Species Species 
code 

Family PL MS PS GR RP 

Neoscona biswasi sp96 Araneidae 0 24 1 0 42 
Neoscona mukherji sp97 Araneidae 0 34 17 1 23 
Neoscona odites sp98 Araneidae 0 18 12 0 3 
Neoscona theisi  sp99 Araneidae 1 25 36 0 34 
Neoscona vigilans  sp100 Araneidae 0 80 9 0 22 
Neotama punctigera sp101 Hahniidae 0 10 15 18 0 
Nephila pilipes  sp102 Tetragnathidae 0 12 22 0 2 
Oedothorax globiceps sp103 Linyphiidae 1 0 0 1 10 
Oedothorax sp.1 sp104 Linyphiidae 0 1 0 1 10 
Olios tikaderi sp105 Sparassidae 0 0 0 0 1 
Oxyopes shweta sp106 Oxyopidae 0 8 0 14 7 
Ozyptila manii sp107 Thomisidae 0 0 0 0 1 
Ozyptila sp.1 sp108 Thomisidae 0 0 0 0 2 
Parawixia dehaanii sp109 Araneidae 0 1 3 46 1 
Parawixia sp. 1 sp110 Araneidae 0 1 1 1 0 
Pardosa timidula sp111 Lycosidae 0 0 0 0 25 
Philodromus pali sp112 Philodromidae 4 0 10 11 0 
Phintella bifurcata sp113 Salticidae 0 0 0 13 1 
Pisaura decorata sp114 Pisauridae 0 0 0 5 0 
Pisaura sp.1 sp115 Pisauridae 0 0 0 5 0 
Plexippus paykulli sp116 Salticidae 1 2 1 0 0 
Plexippus redimitus sp117 Salticidae 1 5 7 1 0 
Poltys illepidus sp118 Araneidae 30 0 10 9 0 
Portia albimana sp119 Salticidae 0 1 2 0 7 
Rhene indica sp120 Salticidae 0 1 0 0 0 
Rhene sp.1 sp121 Salticidae 1 0 0 0 0 
Rhene sp.2 sp122 Salticidae 1 0 3 4 1 
Rhene sp.3 sp123 Salticidae 0 0 1 5 0 
Runcinia affinis  sp124 Thomisidae 3 0 0 0 0 
Runcinia roonwali sp125 Thomisidae 1 1 1 0 1 
Scytodes pallida sp126 Scytodidae 0 0 3 0 1 
Selenocosmia 
himalayana sp127 Theraphosidae 0 0 0 0 2 
Smeringopus pallidus sp128 Pholcidae 0 12 2 0 0 
Tetrablemma deccanense sp129 Tetrablemmidae 10 0 0 1 1 
Tetragnatha chamberlini sp130 Tetragnathidae 0 0 0 0 19 
Thalassius albocinctus sp131 Pisauridae 0 0 0 1 0 
Theridion incertum sp132 Theridiidae 0 2 6 0 0 
Theridion manjithar sp133 Theridiidae 1 3 2 1 0 
Theridion sp.1 sp134 Theridiidae 0 2 0 3 2 
Theridion sp.2 sp135 Theridiidae 0 0 0 13 1 
Theridion sp.3 sp136 Theridiidae 0 0 1 6 1 
Theridion sp.4 sp137 Theridiidae 0 9 0 1 9 
Theridion sp.5 sp138 Theridiidae 0 2 4 5 0 
Theridion sp.6 sp139 Theridiidae 0 0 1 0 0 
Theridion sp.7 sp140 Theridiidae 0 0 0 1 12 
Theridion sp.8 sp141 Theridiidae 0 0 0 1 0 
Theridion sp.9 sp142 Theridiidae 0 6 5 2 2 
Thomisus pugilis sp143 Thomisidae 4 1 0 1 0 
Thomisus sp.1 sp144 Thomisidae 10 4 5 2 2 
Thomisus sp.10 sp145 Thomisidae 0 0 5 0 5 
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Species Species 
code 

Family PL MS PS GR RP 

Thomisus sp.2 sp146 Thomisidae 0 0 1 0 0 
Thomisus sp.3 sp147 Thomisidae 0 0 0 1 10 
Thomisus sp.4 sp148 Thomisidae 0 0 0 3 2 
Thomisus sp.5 sp149 Thomisidae 0 0 0 2 0 
Thomisus sp.6 sp150 Thomisidae 0 0 0 5 0 
Thomisus sp.7 sp151 Thomisidae 2 0 0 0 0 
Thomisus sp.8 sp152 Thomisidae 0 0 0 4 6 
Thomisus sp.9 sp153 Thomisidae 0 0 0 3 0 
Trochosa himalayensis sp154 Lycosidae 0 0 0 0 3 
Tylorida ventralis sp155 Tetragnathidae 0 0 0 1 0 
Uloborus danolius sp156 Uloboridae 0 13 5 1 1 
Uloborus sp.1 sp157 Uloboridae 1 3 6 0 0 
Zelotes nainitalensis sp158 Gnaphosidae 0 16 0 0 0 
Zygiella indica sp159 Araneidae 0 13 32 0 12 
Zygiella sp.1 sp160 Araneidae 0 14 13 43 20 

 
 

***** 
 
 
 
 
 
 
 



Appendix 5.1 List of sampling sites with their attributes representing habitat gradient in the study area, TCA. The vegetation 
measurements are mean values averaged across season for each sampling plots. [Variables are abbreviated as follows tree 
canopy cover (TCC), litter cover (LCC), total vegetation cover (TVCOV), bare ground cover (BCOV), mean litter depth  
(AVLD), shrub height variation (HRS), plant species richness (PSR), shrub canopy cover (SCC), ground herb cover (GHC) 
foliage height diversity (FHD), and tree and shrub density (TSD).  
 
Transect 
Code 

Vegetation Type TCC LCC TVCOV BCOV AVLD HRS PSR SCC GHC FHD TSD 

tps1 Pure Sal 73.54 0.54 0.71 0.37 0.73 2.74 46.00 4.472 6.481 1.985 145.60 
tps2 Pure Sal 68.15 0.59 0.62 0.47 0.75 1.82 42.00 4.583 6.708 2.108 158.40 
tps3 Pure Sal 75.99 0.51 0.33 0.68 0.79 0.00 41.00 4.796 6.000 1.549 200.90 
tps4 Pure Sal 75.50 0.51 0.52 0.52 0.79 0.00 44.00 4.899 5.657 1.601 180.50 
tps5 Pure Sal 70.60 0.57 0.55 0.43 0.83 0.00 43.00 5.000 5.477 1.705 185.70 
tps6 Pure Sal 73.54 0.54 0.71 0.33 0.76 0.00 48.00 4.899 5.568 1.517 184.70 
tps7 Pure Sal 79.91 0.47 0.63 0.63 0.58 1.82 44.00 5.196 5.099 1.212 197.60 
tps8 Pure Sal 82.85 0.42 0.47 0.58 0.79 3.04 47.00 5.292 5.385 1.828 168.90 
tps9 Pure Sal 87.26 0.37 0.40 0.63 0.79 0.00 31.00 5.657 5.000 1.917 151.80 
tps10 Pure Sal 78.93 0.48 0.63 0.63 0.58 3.04 35.00 5.831 5.745 1.993 153.90 
tps11 Pure Sal 65.21 0.63 0.58 0.47 0.79 2.13 36.00 5.657 6.083 1.822 159.40 
tps12 Pure Sal 73.54 0.54 0.52 0.47 0.83 2.74 35.00 5.568 6.245 2.108 158.90 
tps13 Pure Sal 55.90 0.72 0.58 0.33 0.88 0.00 34.00 4.690 6.325 2.030 155.30 
tps14 Pure Sal 60.80 0.68 0.47 0.40 0.94 3.04 38.00 5.657 6.403 1.760 143.20 
tps15 Pure Sal 75.01 0.52 0.58 0.58 0.68 0.00 30.00 5.385 6.481 1.731 169.80 
tps16 Pure Sal 75.50 0.51 0.73 0.33 0.73 0.00 36.00 5.292 6.633 1.966 178.80 
tps17 Pure Sal 72.56 0.55 0.47 0.79 0.58 2.43 35.00 5.000 5.292 1.899 172.80 
tps18 Pure Sal 40.22 0.88 0.52 0.47 0.83 0.00 39.00 5.916 5.196 1.571 175.30 
tps19 Pure Sal 83.34 0.42 0.33 0.58 0.88 0.00 35.00 5.568 5.831 1.891 176.70 
tps20 Pure Sal 76.97 0.50 0.52 0.33 0.94 0.00 36.00 5.477 5.916 1.512 192.50 
tpl1 Plantation 44.14 0.85 0.33 0.33 1.10 0.30 3.00 2.236 1.000 1.000 20.00 
tpl2 Plantation 23.07 1.08 0.58 0.88 0.33 1.52 4.00 2.000 2.236 1.371 22.00 
tpl3 Plantation 36.30 0.93 0.33 0.58 0.88 0.00 5.00 2.449 2.646 0.000 24.00 
tpl4 Plantation 43.16 0.85 0.58 0.58 0.58 1.52 2.00 2.646 2.828 1.000 21.00 
tpl5 Plantation 42.18 0.86 0.68 0.58 0.22 0.30 7.00 2.828 1.732 1.000 26.00 
tpl6 Plantation 56.88 0.72 0.68 0.58 0.88 0.30 8.00 1.000 3.000 1.000 26.90 
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Transect 
Code 

Vegetation Type TCC LCC TVCOV BCOV AVLD HRS PSR SCC GHC FHD TSD 

tpl7 Plantation 54.92 0.73 0.63 0.58 0.94 0.30 3.00 0.000 2.449 0.000 28.00 
tpl8 Plantation 49.04 0.79 0.63 0.58 0.94 0.30 4.00 1.414 1.000 0.000 30.30 
tpl9 Plantation 38.75 0.89 0.68 0.58 0.88 1.82 5.00 2.828 0.000 0.000 32.00 
tpl10 Plantation 52.96 0.76 0.58 0.58 1.00 1.82 6.00 1.732 1.414 0.000 31.00 
tpl11 Plantation 48.55 0.80 0.22 0.58 0.79 0.91 7.00 0.000 1.732 0.000 10.50 
tpl12 Plantation 24.54 1.06 0.33 0.58 0.58 0.91 9.00 0.000 2.000 0.000 10.60 
tpl13 Plantation 36.30 0.93 0.22 0.58 1.17 0.91 1.00 0.000 2.449 0.000 28.40 
tpl14 Plantation 37.77 0.91 0.33 0.58 0.68 0.91 3.00 0.000 2.646 0.000 22.30 
tpl15 Plantation 42.18 0.86 0.73 0.58 0.22 0.91 4.00 1.414 1.732 0.971 25.50 
tpl16 Plantation 55.90 0.72 0.58 0.58 1.00 2.13 10.00 1.732 2.828 0.000 21.50 
tpl17 Plantation 59.82 0.68 0.52 0.58 1.06 2.13 7.00 2.000 3.000 0.918 22.60 
tpl18 Plantation 27.48 1.02 0.47 0.58 1.10 2.74 5.00 1.000 1.414 0.971 22.70 
tpl19 Plantation 50.02 0.79 0.58 0.58 1.00 1.52 2.00 2.236 1.732 0.918 22.80 
tpl20 Plantation 52.96 0.76 0.58 0.58 1.00 3.04 1.00 2.449 1.000 1.906 22.90 
tgr1 Grassland 0.00 1.57 0.22 0.58 0.73 0.91 5.00 2.449 3.317 2.193 156.70 
tgr2 Grassland 0.00 1.57 0.33 0.58 0.68 0.30 1.00 2.646 3.464 2.281 54.90 
tgr3 Grassland 0.00 1.57 0.22 0.58 0.88 1.22 6.00 1.732 3.742 2.163 56.70 
tgr4 Grassland 0.00 1.57 0.33 0.58 0.58 1.22 12.00 1.000 3.873 2.236 53.90 
tgr5 Grassland 0.00 1.57 0.33 0.58 0.73 1.22 10.00 1.414 4.000 2.135 69.20 
tgr6 Grassland 0.00 1.57 0.22 0.58 0.88 1.22 9.00 3.000 4.123 2.117 73.80 
tgr7 Grassland 0.00 1.57 0.22 0.58 0.94 1.22 3.00 2.828 4.243 1.922 84.80 
tgr8 Grassland 0.00 1.57 0.22 0.58 0.94 1.22 8.00 2.646 4.359 2.097 92.50 
tgr9 Grassland 0.00 1.57 0.22 0.58 0.88 1.22 6.00 2.236 3.317 2.064 98.50 
tgr10 Grassland 0.00 1.57 0.33 0.58 0.83 1.22 6.00 2.449 3.162 2.175 63.90 
tgr11 Grassland 0.00 1.57 0.00 0.58 0.40 0.61 5.00 2.646 3.464 2.077 80.60 
tgr12 Grassland 0.00 1.57 0.33 0.58 0.58 0.61 11.00 0.000 3.606 2.127 67.70 
tgr13 Grassland 0.00 1.57 0.22 0.58 1.06 0.00 12.00 1.000 3.742 2.239 88.00 
tgr14 Grassland 0.00 1.57 0.00 0.58 0.68 0.61 7.00 2.236 3.873 2.197 145.40 
tgr15 Grassland 0.00 1.57 0.22 0.58 0.40 0.91 8.00 2.449 4.359 2.227 113.70 
tgr16 Grassland 0.00 1.57 0.22 0.58 0.63 1.22 9.00 2.646 4.123 2.197 128.90 
tgr17 Grassland 0.00 1.57 0.22 0.58 0.73 1.22 3.00 3.000 4.000 2.047 91.20 
tgr18 Grassland 0.00 1.57 0.33 0.58 0.79 1.22 11.00 2.236 3.873 2.074 90.00 
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Transect 
Code 

Vegetation Type TCC LCC TVCOV BCOV AVLD HRS PSR SCC GHC FHD TSD 

tgr19 Grassland 0.00 1.57 0.00 0.58 1.00 1.22 11.00 2.646 3.742 2.098 85.40 
tgr20 Grassland 0.00 1.57 0.00 0.58 0.83 1.22 13.00 1.732 4.243 2.000 83.20 
trp1 Riparian Swamp 57.86 0.71 0.68 0.58 0.47 2.74 61.00 5.916 6.782 2.251 200.00 
trp2 Riparian Swamp 29.93 1.00 0.33 0.58 0.00 3.65 68.00 6.000 7.483 2.317 198.20 
trp3 Riparian Swamp 72.07 0.56 1.10 0.58 0.22 3.95 58.00 6.245 7.280 2.050 186.40 
trp4 Riparian Swamp 62.27 0.66 1.17 0.58 0.22 3.95 56.00 6.325 7.211 2.108 175.30 
trp5 Riparian Swamp 50.02 0.79 1.17 0.58 0.10 5.47 52.00 6.481 8.062 2.154 177.80 
trp6 Riparian Swamp 82.36 0.43 1.25 0.58 0.30 4.26 64.00 7.000 6.403 2.158 179.30 
trp7 Riparian Swamp 68.15 0.59 0.73 0.58 0.58 3.95 66.00 7.071 6.481 2.048 203.60 
trp8 Riparian Swamp 69.13 0.59 0.58 0.58 0.00 3.04 65.00 7.211 6.856 2.123 223.90 
trp9 Riparian Swamp 76.97 0.50 1.10 0.58 0.47 3.95 54.00 7.141 6.928 2.145 224.50 
trp10 Riparian Swamp 75.01 0.52 0.88 0.58 0.52 3.34 51.00 7.416 7.616 2.167 226.70 
trp11 Riparian Swamp 69.13 0.59 0.73 0.58 0.40 3.65 65.00 7.348 7.416 2.124 232.80 
trp12 Riparian Swamp 55.90 0.72 0.22 0.58 0.00 3.95 69.00 7.280 8.000 2.190 170.50 
trp13 Riparian Swamp 77.46 0.49 1.00 0.58 0.52 4.26 67.00 6.928 7.937 2.255 178.90 
trp14 Riparian Swamp 67.66 0.61 0.83 0.58 0.58 4.26 68.00 7.000 7.746 2.259 191.70 
trp15 Riparian Swamp 56.88 0.72 1.29 0.58 0.22 3.04 69.00 6.708 7.071 2.242 200.80 
trp16 Riparian Swamp 77.46 0.49 1.33 0.58 0.17 0.00 65.00 6.782 8.062 2.296 202.30 
trp17 Riparian Swamp 73.54 0.54 0.79 0.58 0.22 3.65 65.00 6.856 7.550 2.267 207.80 
trp18 Riparian Swamp 64.72 0.63 0.58 0.58 0.22 4.26 56.00 7.211 7.616 2.316 203.40 
trp19 Riparian Swamp 75.01 0.52 0.83 0.58 0.73 6.08 65.00 7.416 7.141 2.293 209.50 
trp20 Riparian Swamp 66.68 0.62 0.83 0.58 0.68 6.08 59.00 6.164 7.810 2.281 208.40 
tsm1 Mixed Sal 58.84 0.69 0.52 0.58 0.40 0.00 55.00 8.062 9.220 2.266 165.70 
tsm2 Mixed Sal 72.07 0.56 0.68 0.58 0.22 0.00 51.00 8.246 8.185 2.290 178.90 
tsm3 Mixed Sal 61.29 0.67 0.47 0.58 0.40 1.82 56.00 8.660 8.485 2.280 222.90 
tsm4 Mixed Sal 55.90 0.72 0.63 0.58 0.47 1.22 58.00 8.485 8.775 2.233 202.40 
tsm5 Mixed Sal 51.49 0.78 0.63 0.58 0.22 2.74 57.00 8.426 8.888 2.292 209.50 
tsm6 Mixed Sal 58.84 0.69 0.63 0.58 0.22 3.95 51.00 8.367 9.000 2.307 204.80 
tsm7 Mixed Sal 57.37 0.71 0.68 0.58 0.40 1.52 42.00 8.307 9.274 2.289 227.90 
tsm8 Mixed Sal 51.98 0.76 0.73 0.58 0.52 1.82 43.00 8.307 8.832 2.275 234.50 
tsm9 Mixed Sal 53.94 0.75 0.88 0.58 0.33 1.52 44.00 8.944 8.602 2.228 171.90 
tsm10 Mixed Sal 54.43 0.75 0.58 0.58 0.52 1.22 44.00 8.718 8.307 2.227 173.60 
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Transect 
Code 

Vegetation Type TCC LCC TVCOV BCOV AVLD HRS PSR SCC GHC FHD TSD 

tsm11 Mixed Sal 45.12 0.83 0.83 0.58 0.40 2.43 46.00 8.775 8.185 2.246 179.40 
tsm12 Mixed Sal 48.06 0.80 0.73 0.58 0.47 1.22 45.00 8.832 8.000 2.194 174.60 
tsm13 Mixed Sal 44.63 0.83 0.73 0.58 0.47 1.22 47.00 8.124 9.165 2.258 177.80 
tsm14 Mixed Sal 49.04 0.79 0.68 0.58 0.52 0.91 49.00 8.185 9.110 2.249 172.90 
tsm15 Mixed Sal 54.92 0.73 0.63 0.58 0.83 1.22 48.00 8.307 9.055 2.237 189.60 
tsm16 Mixed Sal 53.94 0.75 0.73 0.58 0.33 0.91 55.00 8.426 8.944 2.254 199.40 
tsm17 Mixed Sal 53.45 0.75 0.63 0.58 0.40 0.91 52.00 8.485 8.367 2.266 198.40 
tsm18 Mixed Sal 57.86 0.71 0.63 0.58 0.40 1.52 51.00 8.602 9.000 2.253 192.80 
tsm19 Mixed Sal 25.52 1.04 0.52 0.58 0.40 1.22 53.00 8.944 9.055 2.275 198.30 
tsm20 Mixed Sal 41.20 0.88 0.52 0.58 0.40 3.04 50.00 8.775 8.944 2.263 212.50 
 
 
 

***** 
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