
 

         Saurashtra University 
     Re – Accredited Grade ‘B’ by NAAC 
     (CGPA 2.93) 

 
 
 
 
Priyadarshini, K. V. R., 2005, “Interactions Between Forage, Recruitment and 

Activity Patterns of the Indian Blackbuck”, thesis PhD, Saurashtra University 

  
http://etheses.saurashtrauniversity.edu/id/eprint/582 
  
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author. 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given.  
 
 
 
 
 
 
 
 
 

Saurashtra University Theses Service 
http://etheses.saurashtrauniversity.edu 

repository@sauuni.ernet.in 
 

© The Author 

http://etheses.saurashtrauniversity.edu/id/eprint/582
http://etheses.saurashtrauniversity.edu/


 
 
 
 

INTERACTIONS BETWEEN FORAGE, RECRUITMENT AND 
ACTIVITY PATTERNS OF THE INDIAN BLACKBUCK 

(Antilope cervicapra) 
 

 
 

 
 
 
 
 
 
 
 
 
 

Dissertation Submitted to Saurashtra University, Rajkot , Gujarat, for the 
award of the Degree of Doctor of Philosophy in Wildlife Science. 

 
 
 
 
 
 
 
 
 
 
 
 

K. V. R. PRIYADARSHINI 
 

Wildlife Institute of India 
Dehradun 

 
 

July 2005 
 





 

iii 

ACKNOWLEDGEMENTS 

Many institutions and individuals supported me during this study and dissertation 

writing.  This study is part of Wildlife Institute of India (WII) – United States Fish and 

Wildlife Service (USFWS) collaborative project on the Conservation of Indian wolf.  I 

would like to thank USFWS, which provided the primary funding support for this 

work.  Additional funding and logistic support was given by Earthwatch and 

Conservation Treaty Support Fund.  I am grateful to the present and earlier Directors 

of WII for permitting me to use the institutional facilities during the study period and 

dissertation writing.  I thank the Gujarat State Forest Department for permission to 

work in Velavadar National Park and am grateful to Mr. L. N. Jadeja (Park Director) 

and Mr. V. A. Rathod (the then Range Officer) for their help and logistic support.  I 

would like thank Dr. Indra Gadvi and his family for all their support and hospitality 

in Bhavnagar.  I am grateful to Deepak bhai and his team at Satvik Garage for the 

much-needed help with vehicles and equipment.  Several people in Velavadar made 

my fieldwork memorable.  I would like to thank the entire forest staff of VNP and the 

villagers of Velavadar Bhal for all the good times that I had during my stay in VNP.  I 

would like to thank Kavita Isvaran for sending me relevant literature and for her 

company in the field.  Three excellent project staff, Ramesh, Lalu and Rajinder, 

assisted in data collection and extended crucial support in the field.  I am extremely 

grateful to them.  

I am grateful to Dr. Y. V. Jhala for his support, guidance and supervision of 

this work.  I have benefited greatly from the inputs given to this study by Dr. S. P. 

Goyal and Dr. G. S. Rawat.  Dr. Goyal and Dr. Rawat gave valuable comments on an 

earlier draft of this dissertation.  I would like to thank Drs. K. Ramesh and Ashish 

David for having proof read this dissertation at a short notice.  I would like to thank 

Dr. Goyal, Dr. H. C. Bohra (Principal Scientist, CAZRI) and Mr. O. P. Gupta (Apex 

laboratories, Dehradun) for helping me with laboratory analysis of grass samples.  I 

am grateful to Dr. G. S. Rawat, Mr. M. M. Babu and Mr. P. L. Saklani for identifying 

plant specimens.  I benefited immensely from the inputs given by Dr. Barry Noon and 

K. Yoganand (Yogi) on statistical analysis.  In addition, Yogi provided many field 

equipment, helped in analysing and discussing the results, read through several drafts 

of this dissertation and gave valuable comments which helped improve the 

dissertation on the whole.  I would like to thank all WII library staff; technicians at 



 

iv 

the WII laboratory, especially Rakesh Sundriyal and Shyamlalji; staff of the computer 

cell, especially Muthu Veerappan, Dinesh Pundir, Virendra Sharma, and Harendra 

Kumar; and finally the USFWS Projects office at WII, especially Sajwan Sir and 

Rajeev Gupta for their excellent support. 

Several people at WII helped me at various stages of this work.  I sincerely 

appreciate the help of Gopi, G. V., Rajapandian, Bhaskar Acharya and Ashish David 

for helping me with sorting samples and checking errors in my drafts.  I thank Mr. 

Shirish Kyatham for his help in preparing the study area map.  I appreciate the 

support and encouragement of Aree, Jayapal, Ramesh, Suresh, Vijay, Siva, Rina, Anil, 

Anu and Bivash all along the study.  

A special thanks to my brother-in-law for getting me a laptop PC that helped 

me a lot while writing up.  I am extremely grateful to all my family members for their 

encouragement and support throughout the study period.  Without the unstinting 

support of my parents and my husband, I cannot imagine how this work could have 

been possible.  

 

Dehradun        K. V. R. Priyadarshini 

July 2005         



 v 

 CONTENTS Page 
No. 

 Acknowledgements   iii 

 List of Tables and Appendix  vi 

 List of Figures  vii 

 List of plates  x 

 Abstract  xi 

Chapter 1 General Introduction 1 

Chapter 2 Review of Literature 5 

Chapter 3 Study Area Description 13 

Chapter 4 Seasonality of calving in blackbuck in the grasslands of Velavadar 

National Park 

 

 4.1. Introduction 19 

 4.2. Methods 24 

 4.3. Results 31 

 4.4. Discussion 50 

 4.5. Summary 61 

Chapter 5 Activity patterns and time budgets of blackbuck herds in Velavadar 

National Park 

 

 5.1. Introduction 63 

 5.2. Methods 66 

 5.3. Results 69 

 5.4. Discussion 81 

 5.5. Summary 87 

Chapter 6 Effects of grass harvesting and grazing (biomass removal and 

fertilization) on grassland productivity and grass quality. 

 

 6.1. Introduction 89 

 6.2. Methods 93 

 6.3. Results 98 

 6.4. Discussion 105 

 6.5. Summary 110 

 Literature Cited 112 

 Appendix 130 

 



 vi 

LIST OF TABLES AND APPENDIX 
 
 

  Page No. 
Table 4.1 Seasonal differences in above-ground biomass (g/m2), 

moisture content (%), crude protein, ADF, lignins, silica 
content of grass (g/ 100g dry weight), and body condition 
factor scores of blackbuck females in Velavadar National 
Park. 

34 

Table 4.2 Relationships among various forage quality variables in 
Velavadar National Park. 

41 

Table 4.3 Correlations among the body condition ranks of five body 
parts of blackbuck females in Velavadar National Park and 
PCA component loadings. 

42 

Table 4.4 Relationships between monthly means of body condition 
factor scores of blackbuck females and various forage 
quality variables in Velavadar National Park. 

44 

Table 4.5 Length and other characteristics of the calving seasons in 
Velavadar National Park. 

46 

Table 4.6 Summary of relationships between monthly mean 
proportions of blackbuck females calving and the different 
predictor variables in Velavadar National Park. 

48 

Table 5.1 The effect of season and period of day on % time spent in 
various activities (arcsine transformed) as assessed by a 2-
way factorial ANOVA. 

75 

Table 5.2 Differences between periods of day in % of time spent in 
various activities by blackbuck as determined by post-hoc 
pair-wise comparisons. 

78 

Table 6.1 Differences in means of accumulated biomass (g/m2) and 
accumulated Nitrogen in grasses (g/m2) among various 
treatments during the experiment year 2001-02. 

101 

Table 6.2 Differences in accumulated biomass (g/m2) between pairs of 
 treatments in both years of the experiment. 

102 

Appendix 1 List of plant species recorded in Velavadar National Park 
during the study period (2000-2002). 

130 

   
 



 

vii 

LIST OF FIGURES 
 
Figure No.  Page No. 
Figure 3.1 Map of Velavadar National Park. 14 
Figure 4.1 A plot of cumulative weekly proportion of blackbuck 

female calving (lactating) in year 2000. 
28 

Figure 4.2 Total monthly rainfall recorded in the grassland in 
Velavadar National Park.  

31 

Figure 4.3 Monthly means of dry biomass of grass in Velavadar 
National Park.  

32 

Figure 4.4 Seasonal differences in grass biomass in Velavadar 
National Park. 

33 

Figure 4.5 Monthly means of moisture content (%) of grasses in 
Velavadar National Park. 

35 

Figure 4.6 Seasonal differences in moisture (%) content of grasses 
in Velavadar National Park. 

35 

Figure 4.7 Monthly means of crude protein content (g/100g dry 
weight) of grasses in Velavadar National Park. 

36 

Figure 4.8 Seasonal differences in crude protein content (g/100g 
dry weight) of grasses in Velavadar National Park. 

37 

Figure 4.9 Monthly means of Acid Detergent Fibre (ADF; g/100g 
dry weight) of the grasses in Velavadar National Park. 

38 

Figure 4.10 Monthly means of lignins (g/100g dry weight) in grasses 
in Velavadar National Park. 

38 

Figure 4.11 Monthly means of silica (g/100g dry weight) in grasses 
in Velavadar National Park. 

39 

Figure 4.12 Seasonal differences in Acid Detergent Fibre (ADF; 
g/100g dry weight) of grasses in Velavadar National 
Park. 

39 

Figure 4.13 Seasonal differences in the lignins content (g/100g dry 
weight) of grasses in Velavadar National Park. 

40 

Figure 4.14 Seasonal differences in silica content (g/100g dry 
weight) of grasses in Velavadar National Park.  

40 

Figure 4.15 Monthly means of body condition factor scores (from 
PCA) of blackbuck females in Velavadar National Park. 

43 

Figure 4.16 Seasonal differences in body condition of blackbuck 
females in Velavadar National Park. 

43 

Figure 4.17 Weekly mean proportion (%) of females calving 
(lactating) and weekly total rainfall in Velavadar 
National Park. 

45 

Figure 4.18 Monthly mean proportion (%) of females calving 45 



 

viii 

(lactating) and monthly total rainfall in Velavadar 
National Park. 

Figure 4.19 Monthly mean proportion (%) of blackbuck females 
calving, standardised (range transformed to vary from 0 
to 1) values of monthly means of body condition factor 
scores of females, and main forage quality variables in 
Velavadar National Park. 

49 

Figure 5.1 Dry season hourly mean % of blackbuck occupied with 
various activities, and the mean hourly ambient 
temperature in Velavadar National Park. 

70 

Figure 5.2 Wet season hourly mean % of blackbuck occupied with 
various activities, and the mean hourly ambient 
temperature in Velavadar National Park. 

70 

Figure 5.3 Cold season hourly mean % of blackbuck occupied with 
various activities in Velavadar National Park. 

71 

Figure 5.4 Hourly %  (a) feeding, (b) resting, and (c) moving   
activity of blackbuck herds in Velavadar National Park 
in different seasons. 

72 

Figure 5.5 Time budget of blackbuck herds for feeding, 
resting/ruminating, moving and other activities in 
different seasons in Velavadar National Park. 

73 

Figure 5.6 Variability in the time spent feeding by three blackbuck 
herds in dry, wet and cold seasons in Velavadar National 
Park. 

74 

Figure 5.7 Distance moved during the day by three blackbuck herds 
in different seasons in Velavadar National Park. 

75 

Figure 5.8 Percent of blackbuck feeding in different periods of day 
in different seasons. 

76 

Figure 5.9 Percent of blackbuck resting/ruminating in different 
periods of day in different seasons. 

77 

Figure 5.10 Percent of blackbuck moving in different periods of day 
in different seasons. 

77 

Figure 5.11 Relationship between hourly % time spent feeding by 
blackbuck and hourly temperature in Velavadar National 
Park. 

79 

Figure 5.12 Relationship between % time investment in feeding by 
blackbuck herds and biomass (g/ m2) of grasses in the 
foraging ranges of the herds during the periods of 
activity sampling. 

79 

Figure 5.13 Relationship between % time investment in feeding by 
blackbuck herds and moisture (%) of grasses in the 

80 



 

ix 

foraging ranges of the herds during the periods of 
activity sampling. 

Figure 6.1 Accumulated biomass in treatment plots during year 
2000 experiment and the standing biomass during the 
month of maximum biomass.  (a) Box plots of biomass 
in different treatment plots and (b) mean accumulated 
biomass in different treatment plots  

99 

Figure 6.2 Accumulated biomass in treatment plots during year 
2001-02 experiment and the standing biomass during the 
month of maximum biomass.  (a) Box plots of biomass 
in different treatment plots and (b) mean accumulated 
biomass in different treatment plots 

100 

Figure 6.3 Nitrogen content of grasses in the different treatment 
plots and standing biomass plots during year 2000 
experiment. 

104 

Figure 6.4 Nitrogen content of grasses in the different treatment 
plots and standing biomass plots during year 2001-02 
experiment. 

104 

 



 

x 

LIST OF PLATES 
 
 

Plate No.  Following 
Page No. 

Plate 1: Grassland habitat in Velavadar National Park. 14 
Plate 2a: Prosopis juliflora patch and barren ground habitat in 

Velavadar National Park.  A female dominated 
blackbuck herd is seen moving between grassland 
patches through barren ground. 

14 

Plate 2b: Saline habitat in Velavadar National Park. 14 
Plate 3a & 3b: Body parts used for ranking body condition of female 

blackbuck in the field. 
30 

Plate 4a & 4b: Blackbuck fawn hiding in the grassland and lying out 
in a saline patch of land. 

30 

Plate 5: Lactating blackbuck female with clearly visible teats 
and a non-lactating female with retracted teats that 
are not distinctly visible.   

30 

Plate 6a: Sampling of blackbuck activity by scan sampling, 
using a spotting scope. 

68 

Plate 6b: Female dominated mixed herds of blackbuck grazing 
and moving through grassland habitat in Velavadar 
National Park. 

68 

Plate 7a: An exclosure put up in the grassland of Velavadar 
National Park to study the effects of grazing and 
grass harvesting on above-ground productivity and 
quality of grasses. 

111 

Plate 7b: Harvesting of grass by local people in Velavadar 
National Park. 

111 

 
 



xi 

ABSTRACT 

Grasslands and grassland ungulates are considered to be inter-dependant, 

often to have co-evolved, and the interactions between them substantially 

influence each other in various ways.  In this study in Velavadar National Park 

(VNP), Gujarat, western India, conducted from October 1999 to January 2003, 

I investigated certain aspects of interactions between blackbuck (Antilope 

cervicapra) and the semi-arid grassland it inhabits.  Specifically, I studied 

seasonality in calving, body condition and foraging activity of blackbuck and 

assessed the relationships of these with forage availability and quality.  

Additionally, I examined the effects of grazing and grass harvesting on above-

ground productivity and quality of grasses in the study area.   

I assessed the seasonal patterns in forage availability, quality and body 

condition of blackbuck females, and examined if changes in these variables 

influenced calving seasonality.  Forage variables that were measured are 

above-ground grass biomass, moisture, crude protein, Acid detergent fibre 

(ADF), lignins and silica content of grasses.  Body condition of females was 

assessed by visual ranking of body parts.  Blackbuck were sampled in 

different blocks of the study area to estimate proportion of females lactating 

and this was used as a measure of proportion of females calving.   

Above-ground grass biomass was highest in cold season, and moisture 

and crude protein content were highest in wet season.  The other forage 

variables did not show substantial seasonal changes.  Body condition of 

females was best in wet season and worst in dry season.  Blackbuck calving 

was clustered during two separate periods of a year (dry and wet seasons), 

but a basal level calving (5 to 15%) occurred throughout the year.  The calving 

(lactation) season lengths ranged from 7 to 15 weeks.  The calving seasons 

appeared to be cyclical, occurred with an interval of 23 to 28 weeks between 

successive calving peak points, which corresponded with inter-calving interval 

in blackbuck.  There was no evidence of calving synchrony in VNP. 

Lactation status of females was not related to body condition (B  = 

 -0.174 (±0.18), Wald statistic= 0.94, df= 1, P= 0.33, exp(B)= 0.84), but 

showed seasonality.  Calving frequency, overall, was not strongly related to 

any of the predictor variables assessed, but the two calving peaks had 
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different relationships with the predictor variables.  The dry season calving 

peak preceded the crude protein peak, and the wet season calving peak 

followed the crude protein peak, and coincided with high biomass availability 

and high body condition of females.  The dry season calving peak was 

probably timed to the impending peak in forage quality, and the females that 

calved in the wet season perhaps provided greater maternal nutritional 

investment to the young. 

I compared the seasonal changes in daily activity patterns, time 

investment in feeding and resting/ruminating activities, and examined if these 

were influenced by changes in air temperature, forage quality and quantity.  

Activity of blackbuck was sampled using scan sampling method.  Each 

season, three herds were followed from dawn to dusk and their activities 

studied.  Temperature was measured using an automatic temperature logger.  

Forage variables (grass biomass and moisture content, as a correlate of 

crude protein content) were measured in eight plots from the foraging range of 

each herd in each season.  Over 60% of blackbuck spent their time feeding 

during 11 hours (out of 13 daylight hours) in wet season, 8 hours (out of 11 

hours) in cold season, and 6 hours (out of 13 hours) in dry season.  There 

was intensive feeding activity in the early morning, afternoon and late evening 

periods.  Hourly changes in resting/ruminating activity had a pattern that was 

reverse to that of feeding activity.  Blackbuck spent a major part of the day 

feeding (66%, 80% and 69% of daytime in dry, wet, and cold seasons, 

respectively).  Feeding, resting/ruminating, and moving activities did not show 

significant seasonal differences, but showed significant differences among 

periods of day.  Daily activity pattern of blackbuck showed a cyclical pattern, 

mainly alternating between feeding and resting/ruminating peaks.  The air 

temperature did not seem to affect feeding activity, as blackbuck continued to 

feed during periods even when temperatures were high (> 40oC).  Time 

investment in feeding activity by blackbuck did not seem to have a 

relationship with either of the forage variables.  This was probably because 

blackbuck spent a large proportion of time feeding in both periods, when 

forage quality and abundance were low and high.  Also, the magnitudes of 

changes in forage quality among seasons were not large (a maximum of 2.3% 
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change in crude protein among all pairs of seasons) and therefore, it may not 

have been a strong factor to influence changes in time investment in feeding.  

It seems that blackbuck in VNP were influenced more by intake rate, 

rumination time, and other limitations posed by morphological and 

physiological attributes, rather than by seasonal differences in forage quality 

and quantity. 

Lastly, I studied the effects of grass harvesting (biomass removal) and 

simulated grazing (biomass removal along with urine fertilisation) on above-

ground productivity and quality (in terms of Nitrogen content) of grasses in 

VNP, by way of an experiment.  Three levels of treatment – low, medium and 

high intensities of harvesting and grazing were applied to plots in 12 

exclosures distributed systematically in the study area.  The treatments were 

applied monthly, in the grass-growing season, and the experiment was 

conducted for two years (2000 and 2001-02).   

All harvesting and grazing treatments increased above-ground biomass 

and Nitrogen content of grasses (as compared to maximum standing 

biomass), but there were no substantial differences among the different 

treatments.  Small effect sizes and high variability in the treatment plots 

seems to have rendered the effect of treatments statistically not significant.  

Even after controlling for some of the variability by using grass-cover as a 

covariate, and accounting for variability in local environmental conditions by 

standardising the treatment biomass with maximum standing biomass, the 

magnitude of treatment effects remained uncertain.  It seems that there might 

have been unknown factors such as root biomass, and soil quality that had 

confounded the effect of treatments and added to the variability, leading to 

equivocal results.  In this study, the upper limits to harvesting and grazing, so 

as to maintain increased productivity of grasslands and at the same time 

control it from being over-grazed/harvested, could not be determined.   

The results of this study, in addition to contributing to the knowledge on 

ecology of blackbuck and semi-arid grasslands, have many implications for 

conservation of grassland and blackbuck in VNP.  These are discussed in this 

dissertation.  
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CHAPTER 1.  GENERAL INTRODUCTION 

Grasslands represent approximately one third of the earth’s terrestrial surface 

and they are subject to varying degrees of pressures and management by 

humans (Verchot et al. 2002).  As recently as 200 years ago, most of these 

grasslands supported large populations of wild ungulates.  However, global 

expansion of cropland and increased fodder needs of livestock have greatly 

decreased the area of natural grasslands (Verchot et al. 2002).  Most of the 

grasslands in India, as in other parts of the world, have been converted to 

croplands and the remaining grasslands have been highly degraded due to 

over-grazing by domestic livestock (Dabadghao and Shankaranarayan 1973, 

Misra 1979, Singh and Joshi 1979a, 1979b).  These grasslands support high 

abundance and diversity of wild fauna and the decline of these grasslands 

would endanger the wild animals that depend on these habitats.  This study is 

about certain ecological interactions between a large herbivore species and 

its habitat, a tropical semi-arid grassland.  Specifically, I studied the effects of 

forage availability and quality on breeding seasonality and foraging activity of 

blackbuck (Antilope cervicapra) in Velavadar National Park (VNP), western 

India.  Further, I studied the effects of grazing and grass harvesting on forage 

productivity and grass quality.  This study is expected to lead to an improved 

understanding of these important aspects of ecology of grasslands and 

grazing ungulates.  The results of this study have conservation implications 

and may contribute to theoretical knowledge.  

 

 Grasslands and grassland ungulates are considered to be inter-

dependant, often to have co-evolved and the interactions between them 

substantially influence each other in various ways (McNaughton 1979, 1984, 

Owen-Smith 2002).  Grassland ungulates depend on grasses for sustenance 

and grasses in turn are affected in their growth and form by ungulate use 

(McNaughton 1979, 1985, Milchunas et al. 1988, Milchunas and Lauenroth 

1993, Hobbs 1996, Detling 1998).  Grasses determine many aspects of the 

biology of grassland ungulates: their abundance, population dynamics, 

community structure and behaviour (Bell 1970, 1971, Jarman 1974, Sinclair 

1977a, 1977b, 1979, Jarman and Sinclair 1979, McNaughton et al. 1988, 
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Owen-Smith 1994, 2002).  Forage availability and quality have remarkable 

influence on reproduction of ungulates (Sadleir 1969, Sinclair 1977b, Rutberg 

1987, Bronson 1989, Ims 1990a, Sinclair et al. 2000).  The timing and 

frequency of reproduction, reproductive success, and recruitment of young 

are greatly determined by the abundance and nutritive quality of forage 

available in the habitat (Sadleir 1969, Field and Blankenship 1973, Sinclair 

1977b, Rutberg 1987, Bronson 1989, Ims 1990a, Sinclair et al. 2000, 

Langvatn et al. 2004).  Forage availability and quality also determine the 

physiological condition of individuals in a population, the time that they invest 

in foraging and other activities, and the social interactions among individuals 

(Jarman 1974, Kamil et al. 1987, Robbins 1993).  Although grassland 

productivity is directly influenced by climatic factors to a great extent, ungulate 

grazing also affects their productivity and quality (Cumming 1982, Hobbs 

1996, Frank 1998,).  For example, moderate level of ungulate grazing is 

known to promote grass growth (McNaughton 1979, 1985, Augustine and 

McNaughton 1998), while high-levels of grazing deters growth (Detling 1988, 

Milchunas and Lauenroth 1993, Van de Koppel et al. 1997, Verchot et al. 

2002).  Further, ungulate grazing, by means of fertilization by urine improves 

the nutritive quality of grasses (Day and Detling 1990, Frank and McNaughton 

1992, Ruess and Seagle 1994, Hobbs 1996, Frank and Groffman 1998).  The 

complex interactions between grassland habitats and ungulates that inhabit 

them are thus important and interesting to study. 

 

 The present knowledge on breeding biology of ungulates is largely 

based on studies on African (tropical) and temperate ungulates (Dasmann 

and Mossman 1962, Sadleir 1969, Estes 1976, Rutberg 1987, Bronson 1989, 

Sinclair et al. 2000).  Studies on grassland ecosystems and ungulates in India 

have been relatively few so far, and more studies on them could add to 

theoretical knowledge and an improved understanding of their ecology would 

aid in their conservation.  Further, limited work has been done on ecological 

aspects of dry grasslands in India.  The present knowledge on effects of 

grazing on dry grasslands is based on studies on African (McNaughton 1979, 

1983, 1985, Van de Koppel et al. 1997), North and South American 

grasslands communities that include temperate and tropical grasslands 
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(Detling 1988, Frank and McNaughton 1992, Chaneton et al. 1996, Frank and 

Groffman 1998).  Similar studies from Indian dry grassland ecosystems are 

urgently needed.  Understanding the interactions between grasslands and 

ungulates would help in management, such that their interactions are 

sustained.  Some of the ungulates and grasslands may have co-evolved and 

it is important to conserve the co-evolution partners for posterity.  For an 

endangered ungulate, manipulation of an important forage component can 

impact or improve breeding success and an understanding of such 

interactions would be important for appropriate management of the habitat 

and for the conservation of the endangered ungulate.  On the other hand, 

changes in grazing intensities would influence grassland productivity, by 

modifying the effects of the environmental variables, community structure and 

composition, and by affecting the interactions between different species of 

grass in the community (Detling 1988, Hobbs 1996).  Therefore, knowing the 

effects of different intensities of grazing on grassland productivity and quality 

is essential for setting limits to grazing and thereby for conservation of 

grasslands and wild ungulates.  

 

 Blackbuck is a tropical antelope endemic to the Indian sub-continent.  It 

is distributed widely in the Indian subcontinent and is commonly seen in some 

arid and semi-arid areas (Ranjithsinh 1989, Rahmani 1991).  The biology of 

this antelope has been studied by a few researchers, but there is yet to be a 

study that concerns the interactions that it has with its grassland habitat.  Arid 

and semi-arid areas in India experience seasonal changes due to monsoonal 

rainfall and consequently, the forage availability and quality too would vary 

among seasons.  These changes could influence the blackbuck in various 

ways.  It is important to understand the effects of varying forage availability 

and quality on reproduction, activity patterns and time budgets of blackbuck.  

Additionally, the effects of grazing and grass harvesting on the productivity 

and quality of grasslands need to be investigated, as these may have a great 

effect on reproduction and even survival of blackbuck.  In this context, I 

studied certain aspects of interactions between blackbuck and its habitat in 

VNP.  I examined whether calving seasons existed for blackbuck and whether 

this population showed synchrony in reproduction.  I investigated whether 
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seasonal changes in forage availability and quality influenced reproduction in 

blackbuck.  In addition, I studied the activity patterns and time budgets of 

female-dominated blackbuck herds, and examined if these were related to 

seasonal forage availability and quality.  I further examined the influence of 

temperature on daily activity patterns of blackbuck herds.  By way of an 

experiment, I investigated the effects of (i) different intensities of biomass 

removal (harvesting), and (ii) different intensities of grazing (biomass removal 

+ addition of urine), on grassland productivity and grass quality in VNP.  

 

 In this dissertation; Chapter 2 contains a brief review of literature that 

forms the background for the hypotheses and discussion in this dissertation.  

Chapter 3 gives a brief description of the study area (VNP).  In chapter 4, I 

describe the breeding seasonality in blackbuck and assess the influencing 

factors.  In Chapter 5, I describe the activity patterns of blackbuck, time 

investment in foraging activity and assess the influence of forage availability 

and quality on these aspects of behaviour.  In Chapter 6, I describe the effects 

of grazing and grass harvesting on grassland productivity and grass quality.  

Detailed introductions to the different aspects of this study are given in the 

respective chapters.  
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CHAPTER 2.  REVIEW OF LITERATURE 

 

2.1. EARLIER ECOLOGICAL RESEARCH ON BLACKBUCK 

An early description of blackbuck behaviour and activity was made by 

Schaller (1967), based on his observations of a Central Indian population 

(Kanha National Park, Madhya Pradesh).  He reported two rutting (lekking 

and display of males) and two calving seasons of blackbuck in a year.  

Mungall’s (1978) monograph presented a review of research done by workers 

in different parts of the world on captive and introduced, free-ranging 

blackbuck.  It is the most comprehensive report yet available on the biology of 

blackbuck.  She detailed descriptions of age classification (from dentition and 

field observations), activity, anatomy, and lactation, and presented some 

information on certain aspects of physiology (e.g. oestrus cycle), based on her 

studies on introduced populations in Texas, U. S. A.  Later, Ranjithsinh (1989) 

reviewed the distribution and population status of blackbuck in India, based on 

personal observations and from Forest Department records.  Rahmani (1991) 

compiled information on distribution and populations of blackbuck in India 

based on information collected during the Great Indian bustard (Aredeotis 

nigriceps) survey that he had undertaken, and from Forest Department 

records and various literature.   

 

Studies on aspects of blackbuck ecology and behaviour that are 

relevant to this study are summarised here.  Prasad (1985) examined the 

activity budgets of a blackbuck population occupying an agrarian landscape in 

Mudmal, Andhra Pradesh.  Some time periods of the day in certain seasons 

were not sampled during that study and his observations seem to have been 

made largely opportunistically.  He did not find any seasonal variation in time 

investment in feeding by blackbuck.  Feeding activity constituted the greatest 

proportion, however, it was much lower than what has been generally 

reported for ruminant ungulates in the tropics (Owen-Smith 2002).   

Chattopadhyay and Bhattacharya (1986) studied the seasonal diet of 

blackbuck population in Ballavpur in West Bengal, India, based on faecal 

pellet analysis.  They reported seasonal shifts in diet of blackbuck, similar to 
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that reported by Schaller (1967) in Kanha National Park and Mungall (1978) in 

Texas.  Howery et al. (1989) reported that the blackbuck in Texas calved 

throughout the year, without any distinct monthly or seasonal pattern.  Jhala 

(1991) studied the habitat and population dynamics of wolf and blackbuck in 

VNP.  He studied the nutritional ecology of blackbuck in VNP using feeding 

trials (Jhala 1997), and made detailed observations on captive animals, 

complementary to field observations.  He found seasonal changes in 

digestibility of forage, in addition to seasonal changes in their diet in VNP.  

Isvaran and Jhala (2000) studied the lekking behaviour of blackbuck in VNP 

and Isvaran (2003) assessed the mating strategy in blackbuck and reported 

lekking to be a flexible mating system in blackbuck.  With this background of 

information that was available on blackbuck behavioural ecology, this study 

was planned.  Its focus was on reproductive seasonality in blackbuck, activity 

patterns and time investment in different activities, and the effects of 

harvesting and grazing on grassland productivity and quality in VNP. 

 

2.2.  SEASONALITY OF CALVING  

One of the aspects examined in this study is the reproductive seasonality in 

blackbuck in VNP (Chapter 4).  Climatic factors (such as rainfall, photoperiod, 

temperature, and humidity), ecological factors (such as food abundance and 

population density), and social factors (socially induced oestrus cycles that 

are commonly seen in mammals, McClintock 1978) have been suggested to 

be responsible for seasonal reproduction in animals (Sadleir 1969, Bronson 

1989, Ims 1990a).  Although internal cues or existence of endogenous 

rhythms as cues for seasonal reproduction has been suggested, evidence is 

sparse and it has remained difficult to test these hypotheses (Ims 1990a).   

 

Seasonal and synchronised reproduction is commonly seen in 

mammals, and is especially common in ungulates, both in the temperate and 

tropical regions (Sadleir 1969, Estes 1976, Rutberg 1987, Bronson 1989, Ims 

1990a, Sinclair et al. 2000, Langvatn et al. 2004).  Ims (1990a) divided the 

causal factors for seasonal and synchronised reproduction into two types: 

socio-biological and ecological.  Socio-biological causes include factors such 

as communal foraging, where births are synchronised to optimise search for 
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feeding areas or maternal defence.  Ecological factors would include factors 

such as food abundance and quality, predation, and density dependant 

factors (Emlen and Oring 1977, Ims 1990a, 1990b, Langvatn et al. 2004, 

Keyser et al. 2005).  Food availability and quality have been reported to 

influence seasonality in reproduction.  Both food and predation have been 

reported to cause synchronised birthing (Rutberg 1987, Ims 1990a, Ims 

1990b, Sinclair et al. 2000).  

 

The environment affects forage availability and quality, and these, in 

turn, are expected to greatly influence reproduction, as the process of 

reproduction is energetically demanding for ungulates (Sadleir 1969, Sinclair 

1977b, Bronson 1989, Robbins 1993, Schmidt-Nielsen 1997, Pekins et al. 

1998, Sinclair et al. 2000).  In the temperate areas, seasonality in 

reproduction is more pronounced, since high quality food is available only for 

a short period (Bronson 1989, Langvatn et al. 2004).  In the tropics, seasonal 

rainfall affects food abundance and quality, which in turn affects reproduction 

(Field and Blankenship 1973, Jarman 1974, Sinclair 1977b, Sinclair et al. 

2000).  Several species of tropical ungulates have been reported to have a 

seasonal pattern of reproduction (Dasmann and Mossman 1962, Field and 

Blankenship 1973, Sinclair 1977b, Rutberg 1987, Sinclair et al. 2000).   

 

Studies have shown that some ungulate species employ synchronised 

reproduction as a unique anti-predatory strategy called “predator satiation” 

(Estes 1976, Rutberg 1987, Bronson 1989, Ims 1990a, Sinclair et al. 2000).  

For example, the wildebeest (Connochaetus taurinus) in Serengeti, give birth 

to highly conspicuous and precocial young and all births occur within a span 

of seven to ten days.  Consequently, the predators are swamped with 

numerous newborn prey and can only predate a limited fraction of the 

newborns from the population (Kruuk 1972, Estes 1976).  Additionally, with 

prey being plentiful, the predator is also confused about selecting prey (Ims 

1990a).  By following this strategy, wildebeest ensure survival of a definite 

percentage of offspring each year. 
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Rutberg (1987) examined reproductive seasonality and synchrony in 

27 species of ruminant ungulates.  He classified these species into two 

ecologically distinct groups, as ‘hiders’ and ‘followers’.  ‘Hiders’ were those 

species in which the newborn young were hidden, concealed or 

inconspicuous.  ‘Followers’ were those with highly conspicuous, precocial 

newborn that would follow the mother immediately after birth.  He found that 

the reproductive pattern in the ‘hiders’ group was influenced by climatic 

seasonality and synchronised reproduction in ‘followers’ group was an anti-

predatory strategy.  Geist (1981) in his review of reproductive strategies in 

ungulates also suggested the same.  The most commonly accepted theory for 

seasonal reproduction in ungulates seemed to be food related, but there has 

been no unanimity on synchronised birthing.  In this context, and conceding 

that blackbuck live in a seasonal environment, and have hiding newborn 

(Mungall 1991), I studied the influence of food availability on reproduction in 

blackbuck, and examined the results based on the above-mentioned 

hypotheses suggested for reproductive seasonality and synchrony.  

 

2.3.  ACTIVITY PATTERNS AND BUDGETS 

Ungulates divide a day’s time for various activities that include foraging, 

resting, travelling, vigilance, and other social interactions (Jarman 1974, 

Alcock 1984, Bunell and Gillingham 1985, Lucas 1987, Bunell and Harestad 

1989).  The daily activity pattern of an ungulate is influenced by energy 

requirements, distribution of food, predators and thermal stress (Bunell and 

Gillingham 1985, Parker and Robbins 1985, Bunnell and Harestad 1989, 

Schmidt-Nielsen 1997).  The time spent by ungulates in different activities is 

influenced by two major factors: the energy demands of the ungulate and the 

constraints that the ungulate encounters (Bunnell and Gillingham 1985, Lucas 

1987, Bunnell and Harestad 1989, Dove 1996).  The former would be 

influenced by age, sex, weight, and physiological state of an ungulate 

(Hudson and White 1985, Robbins 1993, Schmidt-Nielsen 1997).  The latter 

would encompass daylight time, ambient temperature, anatomical (such as 

type of mouth parts and size of rumen) and metabolic attributes, potential 

predation, time demands of social interactions such as displays and mother-

young interactions (Jarman and Jarman 1973, Jarman 1974, Underwood 
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1982, Sih 1992, Spalinger and Hobbs 1992, Krebs and Davies 1993, Caro 

1994, Owen-Smith 1994, 2002, Fitzgibbon and Lazarus 1995).  Importantly, 

abundance, quality, and distribution of forage, in time and space, would 

greatly influence the activity patterns and time investment of ungulates in 

different activities (Arnold 1985, Bunnell and Gillingham 1985, Lucas 1987, 

Bunnell and Harestad 1989, Robbins 1993, Dove 1996).  Low abundance of 

food would result in higher time spent searching for it and low quality of food 

would lead to lower energy gained per unit food ingested, and also higher 

would be the time invested in searching for appropriate food (Arnold 1985, 

Bunnell and Gillingham 1985, Robbins 1993, Dove 1996, Owen-Smith 2002). 

The spatial distribution of forage would affect the movement of ungulates from 

one patch to another and also the time spent searching for these patches 

(Stephens and Krebs 1986, Kamil et al. 1987, Lucas 1987, Owen-Smith 

2002).  This search for food patches may lead them to areas of high predation 

risk and thereby they might need to invest more time being vigilant against 

predators (Underwood 1982, Sih 1992, Krebs and Davies 1993, Caro 1994).     

 

 High ambient temperature could place thermal stress on ungulates and 

may affect their daily activity patterns, and in particular, their foraging activity 

(Parker and Robbins 1985).  Foraging increases thermal load through 

muscular activity and exposure to direct and indirect solar radiation.  The 

higher the ambient temperature over body temperature, the more difficult it is 

to dissipate heat (Schmidt-Nielsen 1997).  In ruminant ungulates, body size 

determines the rumen size and capacity (Demment and Van Soest 1985).  

The rumen capacity limits the amount of food an ungulate can ingest at any 

given time.  Therefore, once the rumen is full, the ungulate would not be able 

to ingest more food until the rumen can accommodate more food.  This 

process of rumen digestion, therefore, influences the intake rate of food in 

ungulates and determines the pattern in feeding activity (Arnold 1985, Bunnell 

and Gillingham 1985, Robbins 1993, Dove 1996, Schmidt-Nielsen 1997, 

Owen-Smith 2002).  Food quality would greatly influence the processing 

efficiency of the rumen.  Lower the nutritive quality, longer is the processing 

time.  Further, mouth morphology would determine the food type (browse or 

graze) and food intake amount (bulk feeder or selective feeder; Jarman 1974, 
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Arnold 1985, Bunnell and Gillingham 1985, Spalinger and Hobbs 1992).  The 

influences of such physiological and ecological factors, particularly that of 

forage quality and abundance on the activity patterns of blackbuck were yet to 

be studied, even descriptively.  With this background, I examined the activity 

patterns of blackbuck and their time investment in different activities. 

 

2.4.  EFFECT OF UNGULATE GRAZING AND GRASS HARVESTING 

ON GRASS PRODUCTIVITY AND QUALITY 

Studies on Indian semi-arid grasslands has largely been on evaluating 

primary productivity (Misra and Misra 1984, Shankaranarayan et al. 1985, 

Karunaichamy and Paliwal 1989, Singh et al. 1991).  Dabadghao and 

Shankaranarayan (1973) gave a detailed compilation of grass cover of India, 

dominant grass communities and some associated ecological characteristics, 

such as the effects of grazing on some taxonomic groups of grasses.  Singh 

and Joshi’s (1979b) compilation of Indian grasslands, as a part of the 

International Biological Programme (IBP), was an important source of data on 

grassland productivity and protein content of grasses from different areas in 

India.  Studies assessing the effects of ungulate grazing or grass harvesting 

by humans on grassland productivity and quality are few, particularly so in the 

semi-arid grasslands. 

 

 Most theoretical work and empirical evidence for the effect of grazing 

and harvesting are from studies carried out in East Africa, North America and 

Argentina (Day and Detling 1990, Frank and McNaughton 1992, Chaneton et 

al. 1996, Augustine and McNaughton 1998, Detling 1998, Frank 1998, Frank 

and Groffman 1998).  Long term work in the Serengeti grassland in East 

Africa provided evidence that low to moderate level of grazing by wild 

ungulates has a positive feedback on grasslands (McNaughton 1977, 1979, 

1983, 1985, 1988, McNaughton et al. 1996, McNaughton et al. 1997, 

Augustine and McNaughton 1998).  There was increased biomass 

productivity and the mineralization process was accelerated.  In addition, 

movement of nutrients from below ground parts of grasses to above-ground 

parts occurred.  Natural rotational grazing by migratory ungulates, grazing 

heterogeneity (differences in parts of grasses eaten), grazing patterns and 
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feeding behaviour of different ungulate species had profound effects on 

grassland productivity, community structure and nutrient cycling (McNaughton 

1977, 1983, 1984, 1985, 1988, 1990, McNaughton et al. 1988, Van de Koppel 

et al. 1997, Verchot et al. 2002).  For example, selective versus non-selective 

grazing changed the community structure of grasslands, affected the ratios of 

palatable to non-palatable species, and perennial species were replaced by 

annual species of grasses (Detling 1988).  Additionally, variability in spatial 

use of ungulates depositing minerals on to the soil through urine and faeces 

caused varying concentration of nutrients (McNaughton 1988, Day and 

Detling 1990).   

 

By conducting in situ and ex situ experiments, McNaughton and his 

colleagues (McNaughton 1979, 1984, McNaughton et al. 1988, Frank and 

McNaughton 1992, Ruess and Seagle 1994, McNaughton et al. 1997, 

Williams et al. 1998), showed that low to moderate level grazing by ungulates 

in Serengeti enhances productivity of grasses and also has a positive effect of 

feedback of nutrients to the grassland.  However, Milchunas and Lauenroth 

(1993) analysed data from 236 sites across the world and found that grazing 

history, consumption levels by the ungulates and productivity of the region 

play a significant role on the effect of grazing on productivity.  When the 

natural productivity was low, the effect of grazing was significant and when 

consumption levels were high, difference in productivity between grazed and 

ungrazed areas was small.  Additionally, harvesting the top layer of grasses 

also enhances productivity (Hilbert et al. 1981).  This happens due to 

increased penetration of light and consequent increased photosynthetic rate 

and increased tillering (lateral bud) growth.   

 

In arid high altitude moist sedge meadows (Carex infuscata – Kobresia 

royleana type) of the trans-himalyas in India, Mishra et al. (2001) found that 

under grazing K. royleana tussocks disintegrated and were replaced by 

members of the Poaceae family.  The graminoid vegetation that was 

stimulated to grow after the top layer of sedge was removed by herbivore 

grazing, gets further grazed to ground level under increasing grazing 

pressure.  Therefore, intensive grazing reduced graminoid biomass greatly as 
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compared to moderately grazed patches in this study.  Grazing has been 

known to enhance productivity under a certain set of conditions, but it could 

also have negative impacts on rangelands, leading to their degradation.  In 

the dry grasslands of Sahel region of northern Africa, grazing pressure has 

destroyed the grasslands so greatly, that sustained restoration efforts have 

also failed (Sinclair and Fryxell 1985, Van de Koppel et al. 1997).  Such dry 

arid and semi-arid grasslands are known to be extremely vulnerable to 

grazing pressures (Van de Koppel et al. 1997, Weber et al. 1998, Weber and 

Jeltsch 2000).  Theoretical simulation models also suggest that once 

rangelands completely degrade, restoration cannot be attained in a practical 

time scale (Friedel 1991, Laycock 1991).   

 

Management of rangelands and pastures is being practiced by various 

methods such as rotational and deferred grazing, controlling stocking 

densities, and weed control in North America (Reardon and Merrill 1976, 

Laycock 1991, Cassels et al. 1995, Irby et al. 2002).  Despite long term 

research and theoretical studies on the effects of ungulate use (both domestic 

and wild) of grasslands and rangelands, there seems to be no unanimity on 

the thresholds to grazing and harvesting.  This is because the long-term 

effects of management practices and the complex interactions are still not 

completely understood (Friedel 1991, Laycock 1991, Glasscock et al. 2005).  

Also, comparisons of forage productivity between natural and managed 

rangelands was not found useful to aid management since the vegetation in 

natural areas respond differently to grazing than rangelands (Reardon and 

Merrill 1976).  Different sites would have different susceptibilities to change 

(Friedel 1991) and therefore, any management measure has to be site 

specific, and should be made after detailed investigations.  Although limited 

information was available from studies carried out within India, many studies 

from ecologically similar regions were referred to, for forming the working 

hypotheses of this study.  With this background information, I examined the 

effect of grazing and grass harvesting on the grassland productivity and 

quality in VNP. 



 

 13 

CHAPTER 3.  STUDY AREA DESCRIPTION 
 

LOCATION 

Velavadar National Park (VNP) is located between N 22o 1.5’, E 72 o 1’ 

and N 22o 5’ and 72 o 5.5’ in Saurashtra region of the western Indian State 

of Gujarat (Fig. 3.1).  It covers an area of 34.08 km2 (Gujarat Forest 

Department Management Plan for Velavadar National Park 2002) of which 

about 8 km2 is grassland and the remaining is comprised of patches of 

Prosopis juliflora and saline land (Plate No.1, 2a and 2b).  VNP is part of 

an eco-region called the Bhal, which in Gujarati means “flat as the 

forehead”.  The Bhal region extends northwards up to Dholka (N 22o 43’ 

and E 72o 28‘), northwest up to Limbdi (N 22o 39’ and E 71o 48’), east to 

Gulf of Cambay, and on the south up to the River Kalubhar and covers an 

area of 2590 km2 (Dharmakumarsinhji 1978, Jhala 1991).  

 

GEOMORPHOLOGY 

The Bhal is a flat alluvium plain, its land cover is composed of a mosaic of 

agricultural fields, saline wastelands, grazing lands and marshy inter-tidal 

areas.  The soil cover are considered to be silt deposits from Rivers 

Narmada, Mahi, Sabarmati, Sukhbadar, Bhogavas and rivulets like the 

Kalubhar and Alang.  The Bhal region is believed to have emerged from 

the sea during the late Tertiary and Quaternary period, much later than the 

rest of the Saurashtra region (Raychaudhari et al. 1963, Jhala 1991).  The 

soil type of the region has been described as recent coastal alluvium soil 

(Dabadghao and Shankaranaryanan 1973, Singh and Joshi 1979a) and 

that of VNP has been described as clayey loam (Ranjithsinh 1989).  The 

soils are fine textured and heavy, have a high water holding capacity 

(68.6%, SE 2.2%), and are alkaline (Satyanarayana 1985, Ranjithsinh 

1989, Jhala 1991).  This has been attributed to the tertiary and quaternary 

origins of the Bhal region and the semi arid climate (Raychaudhari et al. 

1963). 
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Fig. 3.1.  Map of Velavadar National Park.  Solid black lines mark the boundary of the Park.  Black double-line marks a main road.  The white 
space within the Park boundary is mainly comprised of barren saline land, interspersed with small patches of short grass and other shrubs.  Inset 
map shows VNP’s location in India.  
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Two rivers, Alang and Paravalio flow through VNP.  Alang joins the 

Gulf of Cambay and contains inter-tidal water during a major part of the 

year.  During the monsoon, fresh water flows in it for a short period.  

Paravalio has a check dam built by the Forest Department to prevent the 

fresh water collected during the monsoon to flow into the sea.  Once the 

monsoon is over the ground salinity dissolves into the collected fresh 

water, and consequently, the water of Paravalio becomes brackish.  There 

are no fresh water sources in VNP other than the water holes dug out to 

collect rainwater.  

 

CLIMATE 

Three seasons can be distinguished in the study area: Dry, Cold and Wet 

seasons.  Dry season begins from March to May.  In this season, the 

temperature ranges from 37 oC to 44 oC, sometimes reaching as high as 

48-50 oC.  Hot winds and dust storms are common in the dry season.  Wet 

season is from July to September and almost all the precipitation occurs 

during the monsoon in this season.  The average annual rainfall in VNP is 

468 mm (Ranjithsinh 1989).  During a good monsoon, most areas of the 

Bhal and a large area of VNP becomes waterlogged.  Cold season begins 

in November and continues until January.  In the cold season, 

temperatures range from 1 oC to 38 oC, and dew is common during this 

season.  Months of February, June and October are transient periods 

occurring between the distinct seasons.  The eco-climate computed for 

VNP by the method of Thornwaite and Mather (1955) is semi-arid 

(Ranjithsinh 1989). 

 

CROPLAND CULTIVATION 

Crop cultivation in the Bhal region is highly dependent on the monsoon 

rains, as the ground water in this area is saline.  Cultivation is generally 

done just after the monsoon rains when fresh water becomes available.  

Main crops grown are cotton and sorghum and mainly salinity tolerant and 

drought resistant varieties are grown in this region.  Cotton is grown during 

a good monsoon year or in areas where fresh water is available (from 



 

 16 

nearby streams etc.), and in other areas, mostly sorghum is grown.  Wheat 

is occasionally grown, in years with high rainfall. 

 

FLORA  

VNP is a densely covered grassland (Plate No.1) surrounded by areas that 

remain barren for most part of the year except during the wet season when 

crops are cultivated.  VNP has patches of P. juliflora, an exotic woody 

shrub, interspersed in the grassland.  P. juliflora has spread rapidly and 

invaded a large area of the Bhal during the recent decades.  Some 

patches of Acacia nilotica trees are also found in the VNP.  The dominant 

perennial grass species in VNP are Dicanthium annulatum, Sporobolus 

madraspattensis and S. virginicus.  S. coromandialis, an annual grass, is 

found in saline areas in VNP, and in overgrazed barren patches outside 

VNP.  The most dominant grass species in VNP is D. annulatum, which is 

known to grow successfully in such saline, semi-arid areas that are 

protected from grazing (Dabadghao and Shankarnarayan 1973).  Chloris 

barbata, a perennial grass species is dominant in saline areas of VNP and 

Aristida funiculata, another perennial species is seen in small patches in 

the grassland.  Most of these species are C4 grasses, which commonly 

occur in such semi-arid areas (Medina 1982).  Seuda nudiflora is a 

perennial halophyte that is dominant in the saline areas, and is found in 

association with C. barbata.  During the wet season, many annual grass 

species and a few dicot plants grow in VNP (Appendix 1).  

 

FAUNA 

VNP has one of the largest populations of blackbuck in India (Rahmani 

1991).  Number of blackbuck reported here are greater than 1000 (Jhala 

1999).  This antelope is the most common of large mammals found here. 

Other ungulate species that are seen here are nilgai, Bosephalus 

tragocamelus and wild pig, Sus scrofa.  The largest carnivore found in 

VNP is the grey wolf Canis lupus (pallipes).  The golden jackal, Canis 

aureus, Indian fox, Vulpes bengalensis, and jungle cat, Felis chaus, are 

the other wild carnivores that are found in VNP.  Other small mammals 
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that are commonly found in VNP are desert hare, Lepus nigricollis 

(dayanus), grey mongoose, Herpestes edwardsii, five-striped palm 

squirrel, Funambulus pennanti, Indian gerbille, Tatera indica, and Indian 

porcupine, Hystrix indica.  

 

VNP is also well-known for its avifauna.  The endangered lesser 

florican, Sypheotides indica breeds in VNP during the wet season and the 

chestnut bellied sandgrouse, Pterocles exustus breeds here in the dry 

season.  The short-toed snake eagle, Circaetus gallicus is a resident 

species in VNP.  Other birds of prey that are commonly seen here are 

common kestrel, red headed merlin, black shouldered kite, steppe eagle, 

etc.  White storks, Ciconia ciconia, common cranes, Grus grus, demoiselle 

cranes, Grus virgo, and three species of harriers, montagu Circus 

pygargus, pallid, C. macrourus and marsh C. aeruginosus are winter 

visitors to VNP.  Several other migratory bird species, mostly water birds 

and grassland birds arrive in VNP after the monsoon rains. 

 

PARK MANAGEMENT 

In VNP, the Park management is mainly occupied with habitat 

management and protection, and does not directly manage animal 

populations.  The Park management regulates P. juliflora cover by clearing 

the saplings and uprooting the shrub that invades into grassland areas.  

Some patches of P. juliflora are maintained, because the wolves are 

known to use these patches as cover (Jhala 1991).  Since 1996, the Park 

management has been planting an indigenous tree species, Salvadora 

persica in different parts of the Park to eventually replace P. juliflora cover 

(Gujarat Forest Department Management Plan for Velavadar National 

Park 2002).  The management also undertakes soil conservation and 

grassland regeneration work, and makes water conservation trenches in 

the barren and saline patches of the Park.  In the dry season, the 

management provides water for animals by filling fresh water in man-made 

water holes (called ‘guzzlers’).  The Park management allows harvesting 

of grass by people from neighbouring villages in January and February of 
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every year (Gujarat Forest Department Management Plan for Velavadar 

National Park 2002).  

 

HISTORICAL PROTECTION  

VNP was a hunting preserve and grazing land (called vidi) of the erstwhile 

royalty of Bhavnagar and has probably been protected from use by local 

people for several decades (Ranjithsinh 1989).  After independence, it was 

acquired by the Government of India and was declared a wildlife sanctuary 

in 1969.  It was given the status of a National Park in 1976.  

 

CONSERVATION THREATS  

Most parts of the Bhal region are barren, except for VNP, which exists as 

an island of grass.  VNP is surrounded by villages on all sides, where a 

large proportion of human population subsists on cattle rearing.  The 

density of livestock in this region is very high (livestock population of 

Gujarat State and Bhavnagar District in 2003 were 14,322,591 and 

648,432 respectively, stocking density for Bhavnagar district was 68 

livestock head/ km2; URL: http://www.indiastat.com, September 2004).  

There is high pressure on VNP for cattle fodder, especially during the dry 

season, when the fodder shortage in the region becomes acute.  Domestic 

dogs from the surrounding villages enter the Park and prey on blackbuck, 

and especially on calves.  They also scavenge on kills made by wolves 

and jackals.  In addition, the dogs are also potential carriers of disease to 

wild animals.  Poaching, on a small scale, occurs in the peripheries of the 

Park and in other reserve forest areas in the Bhal.  The Bhal is a flat 

landscape and most areas become waterlogged in the wet season, 

including a large part of VNP.  There are only a few high grounds where 

blackbuck and other animals can take shelter when inundation occurs after 

the monsoon rains. During years of high rainfall, many animals are known 

to die by drowning.   
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CHAPTER 4.  SEASONALITY OF CALVING IN BLACKBUCK IN 

THE GRASSLANDS OF VELAVADAR NATIONAL PARK 

 

4.1.  INTRODUCTION 

Many mammals show seasonal variation in their reproduction.  Reproduction 

may occur clustered during some part of the year and may even be dramatic 

with all the population’s reproduction occurring during a distinctly short, 

restricted part of the year.  The former type of reproduction is termed as 

seasonal form of reproduction and the latter is called synchronised 

reproduction (Sadleir 1969, Bronson 1989, Ims 1990a).  Sometimes, seasonal 

clustering may be absent entirely and birthing might occur throughout the 

year.  This is termed as aseasonal or continual form of reproduction.  

Breeding patterns, whether aseasonal, seasonal, synchronised or 

asynchronised, sometimes vary among populations of a species inhabiting 

different environments (Bronson 1989, Sinclair et al. 2000).  Seasonal 

clustering of reproduction happens because certain times of the year may be 

better for offspring survival.  This is frequently seen in environments where 

there are seasonal peaks in resource availability (Sadleir 1969, Field and 

Blankenship 1973, Iason and Guiness 1985, Rutberg 1987, Ims 1990a, 

1990b, Cook et al. 2001). Synchronised birthing occurs when birthing is highly 

co-ordinated among the females in a population.  Seasonal peaks in resource 

availability or seasonal weather patterns may often not explain synchronised 

breeding.  Factors like predation pressure, need for migration or social 

behaviour (as seen, e.g., in wildebeest Connocheates taurinus, bank 

swallows Riparia riparia, moose Alces alces, African buffalo Syncerus caffer, 

musk oxen Ovibos moschatus) may often cause reproductive synchrony 

(Emlen and Demong 1975, Estes 1976, Emlen and Oring 1977, Rutberg 

1987, Ims 1990a, 1990b).  

 

Animals time their breeding during the seasonal peaks in resource 

availability.  This timing of breeding could be an adaptive strategy of animals 

to increase offspring survival (Estes 1976, Rutberg 1984, 1987, Ims 1990b, 

Berger 1992, Krebs and Davies 1993).  Theoretical biologists studying 
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adaptiveness of behaviour have examined the various advantages and 

disadvantages of various forms of seasonality and synchrony (McClintock 

1978, Knowlton 1979, Rutberg 1987, Ims 1990b, Rhine 1995).  Although 

population benefits of seasonal and synchronous birthing are known, the 

individual costs and benefits are still not fully understood (Berger 1992).  Also, 

the several hypotheses that exist for explaining reproductive seasonality and 

synchrony, which include both ecological and socio-biological factors (such as 

seasonal climate, seasonal availability of food, predator swamping strategy, 

density-dependent effects, social foraging, maternal defence etc.), have not 

been tested for many species (Ims 1990a). 

 

Ungulates, especially, show highly diverse birthing patterns, ranging 

from a completely aseasonal birthing, as in white-tailed deer (Odocoileus 

virginianus) in Florida keys, Burchell’s zebra (Equus burchelli), common 

duiker (Sylvicapra grimmia) and steenbuck (Raphiceros campestris) 

(Dasmann and Mossman 1962, Bronson 1989), to a highly seasonal birthing 

as in nyala (Tragelaphus angasi, Anderson 1979, 1984), giraffe (Giraffa 

camelopardalis, Field and Blankenship 1973, Bronson 1989, Sinclair et al. 

2000) and pygmy antelope (Neotragus batesi, Feer 1982).  Synchronised 

birthing has been observed in wildebeest (C. taurinus) of Serengeti plains, 

eastern Africa (Kruuk 1972, Estes 1976), American bison (Bison bison, Berger 

1992, Berger and Cain 1999), barren ground caribou (Rangifer tarandus, 

Dauphine and McClure 1974) and red deer in Norway (Cervus elaphus, 

Langvatn et al. 2004).  Ecological factors such as seasonal resource 

availability and sociobiological factors such as offspring defence (Rutberg 

1987, Ims1990a) and offspring behaviour (Geist 1981) have been stated to be 

some causes of birth seasonality and synchrony.  Social stimulus in group-

living animals on the physiological onset of oestrus has also been suggested 

as a cause in certain species.  There is airborne communication about the 

onset of oestrus among females, consequent to which all females in the group 

may come into synchronised oestrus  (McClintock 1978).  The possible 

causes for seasonal or synchronised breeding may differ among temperate, 

subtropical and tropical ungulates (Rutberg 1987, Bronson 1989).  In 

temperate areas, winter survival of calves, in addition to good forage 
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availability have been cited as causes (Festa-Bianchet 1988, Bowyer 1991, 

Rachlow and Bowyer 1991, Linnell and Andersen 1998, Cook et al. 2001, 

Langvatn et al. 2004).  High predation pressure has been found to be a cause 

of synchrony in births among ungulates in both tropics and temperates (Estes 

1976, Rutberg 1987, Ims 1990b, Gregg et al. 2001).  In the tropics, wildebeest 

of the Serengeti plains synchronise birthing (to a 2-week period) to swamp 

and satiate the predators with prey.  This is considered as an anti-predatory 

strategy adopted by this population to increase offspring survival (Estes 1976, 

Sinclair et al. 2000).  

 

 In many tropical ungulates, seasonality of forage quality has been 

found to be a main cause of seasonal reproduction (Bell 1971, Field and 

Blankenship 1973, Rutberg 1987, Sinclair et al. 2000).  Seasonal factors such 

as rainfall affect habitat quality and productivity, which in turn affect herbivore 

population dynamics and reproductive success (Sinclair 1977a, Huntley and 

Walker 1982, McNaughton 1983, Sinclair et al. 2000).  Nutrition plays a very 

important role in animal reproduction, since reproductive costs are high and 

consequently, the nutrient requirements are high.  Females giving birth would 

need high quality forage, with sufficient energy and protein content, since 

gestation and lactation are energy and protein demanding physiological 

processes (Oftedal 1985, Robbins 1993, Schmidt-Nielsen 1997, Cook et al. 

2001).  Many ungulates are known to tune their reproductive and other energy 

and protein demanding activities to peaks in forage quality (Robbins 1993).   

Newborn offspring would need good quality nutrition, in particular, protein, for 

survival and growth.  Also, protein requirement for weanling animals is known 

to be much higher as compared to nursing animals (Robbins 1993).  This is 

because the dry matter protein in mothers’ milk meets the requirements of the 

nursing young, whereas, the weaned young would have to obtain the required 

protein by foraging.  The adult animals require much less protein as compared 

to the growing young, but a minimum amount is still required to meet the 

maintenance and activity costs (Robbins 1993, Schmidt-Nielsen 1997).  There 

are seasonal differences in body condition of ungulates that are influenced by 

changes in forage quantity and quality (Fryxell 1987, Bronson 1989, Berger 

1992, Robbins 1993, Parker et al. 1999, Sinclair et al. 2000, Cook et al. 
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2001).  Thus, many aspects of physiology and ecology of ungulates seem to 

be greatly affected by changes in availability and quality of forage (Bunnell 

and Gillingham 1985, Hudson and White 1985, Robbins 1993, White 1993, 

Dove 1996, Schmidt-Nielsen 1997, Sinclair et al. 2000, Cook et al. 2001, 

Langvatn et al. 2004).  However, in some species, seasonal reproduction has 

been found to be absent despite peaks in resource availability (Dasmann and 

Mossman 1962, Bronson 1989, Sinclair et al. 2000).  Therefore, the 

determinants of seasonal or synchronised breeding pattern may be various 

and are still not fully identified for many ungulates (Rutberg 1987, Ims1990a).  

In the Indian sub-continent, a variety of ungulate species occur and there is a 

possibility of reproductive seasonality in many of them, driven by seasonal 

resource variability caused by the monsoonal climate.  However, only a few 

ungulate species in a few areas have been studied and their reproductive 

patterns and causal factors assessed (Rice 1988, Shankar Raman 1998).  

 

Blackbuck, inhabits arid and semi-arid areas, which are characterised 

by seasonal, low and annually highly variable rainfall (Singh and Joshi 

1979a).  Consequently, there may be a marked seasonality in forage growth 

and quality in these habitats.  VNP, a semi-arid grassland holds a large 

population (approximately 1200) of wild blackbuck (Ranjithsinh 1989, Jhala 

1991, Rahmani 1991).  Grass growth in VNP may be highly dependent on 

monsoon rains and consequently the forage availability and quality may have 

a marked seasonality.  For instance, Jhala (1997) reported seasonal lows (dry 

as compared to wet season) in forage quality (crude protein content) in VNP 

and suggested that this caused low forage consumption and nutrient 

digestibility of blackbuck in that season of low forage quality.  Seasonal 

birthing has been observed in blackbuck (Prakash 1960, Schaller 1967, 

Mungall 1978, Ranjithsinh 1989, Jhala 1991), however, it has not been 

studied in detail and the patterns and causes of it have not been examined.  

Inhabiting an area that is semi-arid, drought prone and a climate that is highly 

seasonal, blackbuck reproduction in VNP might be strongly influenced by the 

seasonal quality of nutrition.  I further expected that calving in blackbuck might 

be synchronised because forage availability and quality would be higher for a 

short period of the year, coinciding with the monsoon rains.  The known 



 

 23 

blackbuck predators in VNP are wolves, jackals, semi-feral domestic dogs 

and jungle cats, of which the latter three predate mostly on calves.  The 

blackbuck calves have a “lying out” period and are well camouflaged, but also 

follow their mothers for short durations (Mungall 1991).  This behaviour of the 

calves falls in the “hider” category described by Geist (1981). 

 

I studied the seasonality of blackbuck calving in VNP and examined 

whether birth synchrony exists for this species in the study area.  I assessed 

the seasonal patterns in forage availability and quality, and body condition of 

blackbuck females, and examined if calving seasonality was influenced by 

changes in forage availability, quality and body condition of females. Since, 

this is an initial study on these aspects of reproductive ecology of blackbuck 

and on seasonality of the habitat, it is generally exploratory in nature.  

 

The hypotheses that I tested are: 

• Calving frequency would be positively related to forage availability (above-

ground biomass) and quality (specifically, crude protein content) and 

would be negatively related to indigestible matter in forage.   

• Body condition of blackbuck females would be higher during seasons of 

high forage quality.   

• Calving frequency would be positively related to body condition of females.   
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4.2. METHODS 

 

Rainfall 

Rainfall was measured using a graduated rain gauge (Tru-check, Edwards 

Mfg. Co., Minnesota, U. S. A.).  This gauge was mounted on a 6 feet high 

pole, placed in the open grassland of VNP.  It was monitored every rainy day 

during 2001 and 2002 and the rainfall was directly read from the scale on the 

gauge. 

 

Seasons in VNP 

I classified the seasons in VNP as dry (March to May), wet (July to 

September) and cold (November to January) seasons.  The months of 

February, June and October are transitional months with high variability in 

climatic factors that influence the seasons (e.g. the date of onset of 

monsoonal rains varies) and so were not used in the analysis of seasonal 

effects.  But data from these transitional months were used in other analyses 

of relationships.  The amounts of moisture content in the grasses of VNP were 

used as an aid to classify seasons in this biologically appropriate way. 

 

Forage availability and quality 

The forage availability for blackbuck in VNP was measured in terms of above-

ground grass biomass and quality in terms of crude protein content and 

indigestible matter (acid detergent fibre, lignins and silica) content in the 

grasses.  Biomass was estimated for grass and browse, forage quality 

variables only for grass, as it was the predominant food.  These 

measurements were done from August 2000 to December 2002 in VNP. 

 

The grassland area of VNP (about 8 km2) was divided into 12 equal-

sized blocks (approximately 0.64 km2 each).  Above-ground biomass was 

estimated by harvesting the grass inside two randomly laid plots (size 0.5m x 

0.5m) within each block, totalling 24 plots harvested for each month.  The wet 

(fresh) biomass was weighed with a Pesola spring balance (PESOLA, Pesola 

AG, Baar, Switzerland) or an electronic balance, with a readability of 1 g 
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(OHAUS, Ohaus Corp., New Jersey, U. S. A.).  The grass samples were then 

oven-dried to a constant weight, at less than 60oC, and the dry weights were 

measured. The moisture content of the grasses was calculated from the fresh 

and dry weights and reported as % moisture (g moisture per 100 g of fresh 

grass).  The dried samples were ground and stored in airtight bags in the 

field.  In the laboratory, these samples were made to pass through a 1mm 

mesh screen of a Wiley mill and further chemical analyses were conducted on 

them. 

 

Samples from three random plots out of the 24 harvested plots each 

month were analysed for estimating crude protein and samples from two plots 

were analysed for acid detergent fibre, lignins and silica, because of the cost 

limitations of analysing more samples.  The samples were analysed using a 

semi-automated method using the Kjeltech equipment (at the Central Arid 

Zone Research Institute, Jodhpur, India) to estimate crude protein content 

(AOAC 1990).  Samples were digested via a modification of the Aluminium 

block digestion procedure.  The digestive mix contained 1.5 g of 9:1 K2SO4: 

CuSO4 and digestion proceeded for ≥ 4hours at 375o C in 6 ml of H2SO4 and 

2 ml of H2O2.  Nitrogen content was determined in the digestate by semi-

automated colorimetry and Nitrogen x 6.25 was used as a measure of crude 

protein (AOAC 1990, Hudson and White 1985, Robbins 1993). 

 

The Van Soest (1963) method, later modified by Goering and Van 

Soest (1970) and Robertson and Van Soest (1980) was used to estimate the 

fibre content of grasses by measuring the acid detergent fibre (ADF), lignins 

and silica (acid insoluble ash).  ADF is a measure of cell-wall cellulose and 

hemi-cellulose that can be digested by ruminants such as the blackbuck.  

ADF is fermentable, while lignins are not.  Lignins are indigestible fibre for 

ruminants and their content was estimated after further digestion of the 

remaining sample with alkali (Van Soest 1982).  Silica was estimated by 

burning the remaining sample after lignin estimation, in a muffle furnace at 

600oC for five hours.  All these were estimated as dry weight of grass sample 

(AOAC 1990).  
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The browse for blackbuck in VNP was found to be mainly from the ripe 

pods of Prosopis juliflora trees (Jhala 1997).  To measure browse availability, 

I marked 5-15 P. juliflora trees randomly within each P. juliflora patch in VNP 

and thus covered all the patches in VNP.  The number of trees marked in 

each patch was kept proportional to the area of the patch and a total of 55 

trees were marked.  The ripe pods on these marked trees were to be counted 

every three months from November 2000 to December 2002.  However, no 

fruiting of these trees occurred during the study period. 

 

Body condition of blackbuck females 

The physical body condition of blackbuck females in VNP was assessed by 

visually ranking, on a scale of 1 to 5, five parts of the body, namely rump, 

pelvic girdle, tailbone depression, pectoral girdle and ribs (Plate No.3a & 3b).  

Fat deposition occurs in these five body parts and so these parts were 

considered to be indicators of body condition (Kistner et al. 1980).  The high 

the roundness of rump, the less the depth of tailbone depression, the less 

prominent the pelvic and pectoral girdles and the near indistinguishability of 

ribcage and backbone indicated a very good condition and were given ranks 

of 5.  The other extremes indicated a very poor condition and were given 

ranks of 1.   Depending on intermediate conditions, ranks of 4, 3 and 2 were 

given.  The body condition assessment was done simultaneously while 

assessing lactation status of females, following the same sampling scheme 

(described below). 

 

As the conditions of the five body parts were not likely to be 

independent, a principal component analysis (PCA) was done to extract a 

smaller set of components that would explain the original variables 

(McGarigal et al. 2000).  The body condition factor scores obtained from PCA 

were used to assess the effect of seasons on the body condition of females 

and were also used in the analyses of relationships with other variables. 
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Calving frequency 

I used the number of females lactating as a proportional index of number of 

females with newborn calves (i.e., no. of females calving).  Directly observing 

if a female had calved is difficult, since the calves have a “lying out” period of 

10 days to two weeks (Mungall 1978, 1991).  During this period the calves are 

well-camouflaged and so are difficult to sight (Plate No.4a & 4b).  However, 

udders of females can be easily seen, when they are lactating (Mungall 

1978).  It is easy to confirm lactation in females when viewed from behind, 

even in a brief sighting in the field, since the teats are a contrasting black 

against a white rump (Plate no.5).  The teats are visible from parturition until 

the time the females are lactating, and they retract afterwards (Mungall 1978).  

I considered that the births had occurred if teats were clearly visible.  

 

The study area was divided into eight blocks.  All the blocks were 

searched systematically to locate blackbuck herds and females in the herds 

were sampled to estimate the proportion of females calving.  A set of 15 

females (of reproductive age; Mungall 1978) was sampled in a block, but 

when the herds were large (size > 200), one set of 15 females was picked for 

approximately every 100 blackbuck.  The sampling was repeated every week 

during the sampling period and was with replacement.  Sampling was done 

throughout the year in 2000, but in 2001 and 2002, intensive sampling was 

restricted to calving seasons that were identified from 2000 data.  Blackbuck 

females of reproductive age were sampled (Mungall 1978).  Although I 

sampled outside the calving seasons too in 2001 and 2002, the sampling 

effort was considerably less as compared to 2000.  The proportion calculated 

from each set of 15 sampled females was averaged over weeks and months.  

The calving seasons were determined from the mean proportion of blackbuck 

females calving each month.  A sequence of months, when the monthly 

proportion calving was greater than 20% was termed as a calving season.  

For each year, the lengths of calving seasons (as no. of weeks) were 

determined using plots of cumulative weekly proportion of females calving by 

measuring the difference between the points of inflection (an example of such 

a plot is given in Fig. 4.1).  
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Fig. 4.1.  A plot of cumulative weekly proportion of blackbuck female calving 
(lactating) in year 2000.  Arrows mark the points of inflection, which were used 
for measuring the calving season lengths and gaps between calving seasons.  
 

Relationships between calving frequency, forage quality and body 

condition 

To examine the relationship of proportion of females calving with predictor 

variables, the proportion data was arcsine transformed (θ = arcsine (√ 

proportion calving); Sokal and Rohlf 1995).  Linear regression analysis was 

done to assess the relationship between arcsine proportion calving and each 

of the possible predictor variables (grass biomass, moisture, crude protein, 

ADF, lignins and silica content in grass and body condition of females).  

Stepwise multiple regression analysis was used to further identify the smallest 

set of predictor variables that would best explain the variation in (has the 

strongest relationship with) calving frequency.  A stepwise multiple regression 

model, with P(F) ≤ 0.05 for entry and P(F) ≥ 0.1 for removal, was used.  

Collinearity among predictor variables was assessed from tolerance values. 

 

Dichotomous logistic regression analysis was used to examine if 

lactation status of females was influenced by body condition of the females.  

Logistic regression was used because the response variable – lactation 
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status, was dichotomous (lactating or non-lactating).  To examine the 

influence of season on the relationship between body condition and lactation 

status of females, a logistic regression model with two predictor variables was 

used and season, a categorical variable, was coded as a dummy variable. 

 

Statistical models used 

All the data that were analysed with parametric models were examined for 

adherence to normality assumption by graphically checking for symmetry of 

samples, using boxplots and scatter plots.  If the data were highly skewed or 

relationship appeared non-linear, appropriate transformations were made or 

non-parametric tests were used.  To examine the effect of seasons on 

different forage quality variables, an Analysis of Variance (ANOVA) model 

was used.  When the values of variables that were measured for multiple 

years were different among years (e.g. biomass of wet season in 2000-01 

and 2001-02 were very different), the data were not combined to assess the 

effect of seasons by ANOVA, but seasonal differences were analysed 

separately for each year.  For ANOVA, when group variances were unequal, 

box-cox family of power transformations (Sokal and Rohlf 1995) were applied 

manually (with λ ranging from –2 to 2, with an interval of 0.5) and the equality 

of variance was assessed by box plots.  When the transformations were not 

helpful, a weighted least-squares ANOVA was used, where the group values 

were weighted by the reciprocal of estimated group variances (Neter et al. 

1996).  For comparison of two groups with unequal variances, a t-test for 

unequal variance was used (Sokal and Rohlf 1995).  Post-hoc pair-wise 

comparisons were made with Tukey’s HSD test (Sokal and Rohlf 1995).  For 

all analysis comparing intra-year seasonal values, years were defined such 

that a year starts from June (with the beginning of the rainy season) and ends 

in May of the next calendar year (e.g. year 2000-01 begins with June 2000 

and ends with May 2001). 

 

Relationships between variables were assessed with regression or 

correlation analysis.  Residual plots were used to check for homogeneity of 

variance and non-linear relationships in regression models.  All analyses were 
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done using SPSS v. 8.0 software (SPSS Inc., Chicago, Illinois, U.S.A.).  To 

plot the different forage quality variables together on the same scale, the 

values were standardised so as to range from 0 (minimum) to 1 (maximum).  

This range transformation (termed “ranging”) was done as    

yi = (yi  - ymin)/(ymax - ymin) (Legendre and Legendre 1998). 

 

Statistical hypothesis testing and effect sizes 

For all statistical hypothesis testing, type-I error rate of 5% (α = 0.05) was 

used.  Two-tailed tests were used generally.  However, when the direction of 

change was known a-priori, one-tailed P values were used.  Values in 

parenthesis given alongside means in the Results section are 1 standard 

error, if not specified otherwise.  Considering that the statistical significance 

often depends purely on sample size (rather than on effect size) and does not 

necessarily mean biological significance (Yoccoz 1991, Johnson 1999), I 

have also calculated the effect sizes and their confidence intervals and used 

them as complementary to significance tests, to examine and interpret the 

results. 
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4.3.  RESULTS 

 

Rainfall 

There was negligible rainfall in VNP during 2000.  It was the third consecutive 

year of drought in that region (Mr. V. A. Rathod, Range Officer, VNP, personal 

communication).  In 2001, the first rain fell on 30th May.  The rains continued 

intermittently until September and the last rain was recorded on 20th 

September (Fig. 4.2).  There was rainfall during nine weeks in that year and 

the maximum weekly rainfall recorded was 90 mm.  Total rainfall in 2001 was 

309.2 mm.  The first rainfall in 2002 was on 20th June.  The rains continued 

until the first week of September (last day of rain was 4th September).  There 

was rainfall during six weeks and the maximum weekly rainfall was 195 mm.  

The total rainfall for 2002 was 384.3 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  4.2. Total monthly rainfall recorded in the grassland of Velavadar 
National Park.  There was negligible rainfall in the year 2000.  
 

Forage availability and quality 

The mean of monthly above-ground dry biomass of grasses in VNP was 

160.5(± 3.7) g/m2and the monthly means ranged from 60.2 g/m2 to 359.3 g/m2 

during August 2000 to December 2002 (Fig. 4.3).  Biomass levels were 

generally highest from September to February and lowest from March to July.  

However, for any month there was considerable variability in biomass among 
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Table 4.1.  Seasonal differences in the means of above-ground biomass (g/m2), moisture content (%), 
crude protein, ADF, lignins, silica content of grass (g/100g dry weight), and body condition factor scores 
of blackbuck females in Velavadar National Park.  Weighted least-squares ANOVA was used for 
comparisons among 3 groups, and unequal variances t-test was used for 2 groups (except for body 
condition scores).  Tukey’s HSD test was used for post-hoc pair-wise comparisons. 

Variable and Year Seasonal comparisonsa Effect Size 
(difference in 
means) ± 1 SE 

P value 95% Confidence 
Interval of effect 

size 
    Low High 

Cold  - Wet  (203.16 – 132.0) 71.17 (±19) 0.001 24.65 115.68 
Wet - Dry (132.0 - 70.78) 61.22 (±9.3) < 0.001 39.41 83.02 

Biomass  (2000-01) 
F (2, 165) = 49.26, 
P < 0.001 Cold - Dry  (203.16 - 70.78) 132.39  (±17.05) < 0.001 92.42 172.35 
      

Wet - Cold  (250.08 - 236.58) 13.5 (±20.62) 0.79 -34.82 61.82 
Wet - Dry (250.08 - 157.39) 92.64 (±22.39) < 0.001 40.22 145.16 

Biomass  (2001-02) 
F (2,165) = 22.34, 
P < 0.001 Cold - Dry (236.58 - 157.39) 79.19 (±12.2) < 0.001 50.58 107.8 
      
Biomass (2002) 
T = 0.5, df  = 68.6 

Wet - Cold (136.8 - 131.75) 5.08 (± 10.2) 0.62 -15.17 25.34 

Wet - Cold (35.4 - 14.05) 21.34 (±2.85) < 0.001 14.66 28.01 
Wet - Dry (35.39 - 7.15) 28.24 (±2.46) < 0.001 22.47 34.01 

Moisture (2000-01) 
F (2, 165) = 65.78,  
P < 0.001 Cold - Dry (14.05 - 7.15) 6.9 (±2.2) 0.005 1.73 12.07 
      

Wet - Cold (49.4 - 10.4) 39 (±1.57) < 0.001 35.31 42.7 
Wet - Dry (49.4 - 10.52) 38.95 (±1.8) < 0.001 34.63 43.28 

Moisture (2001-02) 
F(2, 165 )= 361, 
P < 0.001 Dry - Cold (10.52 - 10.40) 0.048 (±1.75) 1 -4.15 4.05 
      
Moisture  (2002) 
T = 4.6, df  = 59.23 

Wet - Cold (25.55 - 14.9) 10.67 (±2.31) < 0.001 6.07 15.28 

Wet - Cold (4.26 - 2.74) 1.52 (±0.37) 0.003 0.55 2.48 
Wet - Dry (4.26 - 2.35) 1.9 (±0.44) 0.001 0.77 3.03 

Crude-protein (2000-01)  
F (2,16) = 12.29, 
 P = 0.001 Cold - Dry (2.87 - 2.35) 0.38 (±0.43) 0.652 -0.73 1.5 
      

Wet - Cold (4.13 - 2.75) 1.38 (±0.92) 0.320 -0.99 3.75 
Wet - Dry (4.13 - 1.83) 2.3 (±0.64) 0.006 0.665 3.92 

Crude-protein (2001-02)  
F (2,18) = 6.96, 
P = 0.006 Cold - Dry  (2.75 - 1.83) 0.91 (±0.72) 0.431 -0.93 2.75 
ADF (2000-01) 
F (2,11) = 0.25, P = 0.78 

     

      
ADF (2001-02) 
F (2,11) = 0.49, P = 0.62 

     

Cold - Wet  (6.15 - 5.65) 0.5 (±0.58) 0.676 -1.07 2.06 
Dry - Wet (8.05 - 5.65) 2.4 (±0.73) 0.018 0.435 4.36 

Lignins (2000-01) 
F (2,11) = 5.45, 
P = 0.023 Dry - Cold (8.05 - 6.15) 1.9 (±0.78) 0.08 -0.22 4.02 
      
Lignins (2001-02) 
F (2,11) = 0.10, P = 0.9 

     

Silica (2000-01) 
F (2,11) = 0.05, P = 0.95 

     

      
Silica (2001-02) 
F (2,11) = 0.2, P = 0.82 

     

Wet - Cold (0.66 - (-0.145)) 0.8 (±0.11) < 0.001 0.541 1.07 
Wet - Dry  (0.66 - (-0.774)) 1.43 (±0.01) < 0.001 1.2 1.7 

Body condition (2000-01) 
F (2,549)= 104.65, 
P < 0.001 Cold - Dry ((-0.145) - (-0.774)) 0.63 (±0.09) < 0.001 0.427 0.84 
      
Body condition (2001-02) 
T = 6.6, df  = 709 

Wet - Dry (0.26 - (-0.224)) 0.48 (±0.07) < 0.001 0.34 0.627 

a Seasonal means are given in parentheses 
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Fig.  4.8.  Seasonal differences in crude protein content (g/100g dry weight) of 
grasses in Velavadar National Park. The line across the box indicates the 
median value; the hinges of the box give the range containing 50% of values 
and the whiskers, the minimum and maximum values.  Circles denote outliers. 

 

Monthly means of ADF in grasses did not vary much among months 

(Fig. 4.9), while that of lignins were relatively lower from August to January 

and higher from February to June (Fig. 4.10).  Variability in monthly means of 

silica was considerable, but did not show a consistent pattern (Fig. 4.11).  In 

general, ADF, lignins and silica levels in grasses do not seem to vary much 

through the year.  However, small sample sizes limit the inferences that could 

be drawn here.  When data were grouped into seasons, ADF did not show 

any substantial or statistically significant seasonal difference in both the 

sampled years (Fig. 4.12; Table 4.1).  Lignins content was not statistically 

different among seasons in year 2001-02, but in year 2000-01, a statistically 

significant difference was seen (Fig. 4.13; Table 4.1).  In that year, dry season 

lignins content was substantially higher than cold and wet seasons.  The 

difference between dry and wet seasons was statistically significant, 

considerably large, but the 95% CI of difference of means was wide, making 

the actual magnitude of difference uncertain.  This uncertainty was perhaps 

caused by an outlier sample, and if that sample is excluded, the difference 
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Relationship among forage quality variables 

Linear correlation analysis of forage quality variables – biomass, moisture, 

crude protein, ADF, lignins and silica showed that crude protein and moisture 

values were positively correlated (Pearson’s r = 0.5, P < 0.001) and ADF and 

crude protein showed a significant negative relationship (Pearson’s r = -0.437, 

P = 0.006).  A few other relationships were statistically significant, but were 

not strongly correlated (-0.4 < r < 0.4, Table 4.2). 

 
Table 4.2.  Relationships (Pearson’s r) among various forage quality variables 
in Velavadar National Park, sampled monthly from August 2000 to December 
2002.  Number of months sampled and samples in a month vary among 
variables (see Text). 

 Pearson’s r, 
P and n 

Biomass Moisture  Crude 
protein  

ADF Lignins Silica 
 

r 1.00      
P -      

Biomass  

n -      
r 0.128a 1.00     
P 0.002 -     

Moisture  

n 600 -     
r -0.159 0.500a 1.00    
P 0.233 <0.001 -    

Crude 
protein   

n 58 58 -    
r 0.039 0.025 -0.437a 1.00   
P 0.812 0.876 0.006 -   

ADF      

n 40 40 40 -   
r -0.128 -0.033 -0.178 0.317a 1.00  
P 0.431 0.840 0.286 0.046 -  

Lignins  

n 40 40 40 40 -  
r 0.229 0.067 -0.282 0.316a 0.048 1.00 
P 0.154 0.679 0.086 0.047 0.769 - 

Silica     

n 40 40 40 40 40 - 
a Correlations are significant at α = 0.05 
 

Body condition of blackbuck females 

Body condition ranks of all the five body parts were strongly correlated with 

each other (Table 4.3).  A PCA extracted only one component (with Eigenvalue 

= 4.636) that explained 92.7% of variation in the data.  Component loadings of 
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all original variables were > 0.93 (Table 4.3), indicating that the original 

variables were strongly correlated with the extracted component.  

 
 
Table 4.3.  Correlations (Pearson’s r) among the body condition ranks 
(visually ranked in the field) of five body parts of blackbuck females in 
Velavadar National Park.  Component loadings give the correlations of the 
original body condition variables on the extracted PCA component.  

Correlations 
(all  P<0.001) 

Rump  
(B) 

Pelvic 
Girdle 
(PG) 

Pectoral 
Girdle 
(PECG) 

Ribs  
(R) 

Tail-Bone 
Depression 
(TBDEPN) 

Component 
loadings 

B 1.000     0.962 

PG 0.920 1.000    0.979 

PECG 0.917 0.989 1.000   0.977 

R 0.882 0.870 0.867 1.000  0.931 

TBDEPN 0.912 0.931 0.930 0.868 1.000 0.964 

 
 

Blackbuck females were found to be in good body condition from June 

to October and in poor condition from March to May (Fig. 4.15).  Overall, 

females were found to be in the best body condition in wet season and the 

worst in dry season (Fig. 4.16).  However, within seasons, considerable 

variability in mean values among years was seen.  The differences in mean 

body condition factor scores among seasons were statistically significant in 

both the years (Table 4.1).  In the year 2000-01, a post-hoc pair-wise 

comparison showed that the difference in body condition was significant for all 

pairs of seasons.  In 2001-02 too, the difference between wet and dry 

seasons was significant.  The differences in means for all pairs of seasons 

were large, 95% CI were relatively narrow, suggesting that the true difference 

was large, and could be of biological significance.  Mean body condition 

scores in the dry season of 2000-01, which followed a low (negligible) rainfall 

wet season, was the lowest.  Also, the seasonal differences in body condition 

in that year were particularly large.   
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Relationship between body condition and forage quality variables 

Monthly means of body condition factor scores of blackbuck females were 

positively correlated to monthly means of moisture (Pearson’s r = 0.641, P = 

0.01) and crude protein (Pearson’s r = 0.609, P = 0.03), among the various 

forage quality variables (Table 4.4).  Relationships with other variables were 

neither strong nor statistically significant. 

 
Table 4.4.  Relationships between monthly means of body condition factor 
scores of blackbuck females and various forage quality variables in Velavadar 
National Park. 
 Pearson’s r P n 
Biomass 0.392 0.166 14 
Moisture 0.641a 0.014 14 
Crude protein 0.609a 0.027 13 
ADF -0.153 0.617 13 
Lignins -0.447 0.126 13 
Silica 0.253 0.404 13 
a Correlations are significant at α = 0.05 
 

Calving frequency 

Calving was clustered during two separate periods of the year and this was 

consistent for all three years of study (Fig. 4.17).  Higher proportion of females 

(> 20%) were calving during these two peak periods (termed “calving 

seasons”), however, a basal level of calving (5-15%) was happening 

throughout the year.  These calving seasons appear to be cyclical, occurring 

with a gap of 11-18 weeks between the seasons and an interval of 23-28 

weeks between peak-points.  The calving seasons themselves were not 

narrow, but considerably spread out with season lengths ranging from 7-15 

weeks during the three years (Table 4.5).  The calving season that occurred 

following the rains (wet season calving peak) was wider (by 4 weeks and 5 

weeks in years 2000 and 2001 respectively, Table 4.5) than the season 

before the rains (dry season calving peak).  Maximum weekly mean 

proportion of females calving was over 50% for a few weeks during both the 

seasons, but the proportion was generally between 20-50% during the 

seasons.  Dry season calving ended just before the rains started and wet 

season peak started as the rains were getting over (Fig. 4.17).  Monthly mean 
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proportion of females calving depicts the same bimodal pattern in calving as 

weekly data, but it additionally shows the variability within months and among 

years more clearly (Fig. 4.18).  It also depicts the wet season calving peak as 

much wider than the dry season peak.  Maximum calving occurred in the 

months of March, April, August and September during the study. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  4.17. Weekly mean proportion (%) of females calving (lactating) and 
weekly total rainfall (in mm) during 2000 to 2002 in Velavadar National Park.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  4.18. Monthly mean proportion (%) of females calving (lactating) and 
monthly total rainfall from 2000 to 2002 in Velavadar National Park (error bars 
represent 1 SE).  
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Table 4.5.  Length and other characteristics of calving seasons in Velavadar 
National Park.  The lengths of seasons were determined for each year from 
plots of cumulative weekly proportion of females calving (see Fig. 4.1), by 
measuring the difference between points of inflection. 
Year Season Calving 

season 
length 

Compared calving 
seasons 

Gap 
between 
calving 

seasons 

Interval between 
successive 

calving peak- 
points 

2000 Dry 7 weeks – – – – – – 

2000 Wet 11 weeks 2000 dry – 2000 wet 18 weeks 23 weeks 

2001 Dry 10 weeks 2000 wet – 2001 dry 11 weeks 28 weeks 

2001 Wet 15 weeks 2001 dry – 2001 wet 17 weeks 24 weeks 

2002 Dry 7 weeks 2001 wet – 2002 dry 12 weeks 24 weeks 

2002 Wet a 2002 dry – 2002 wet 16 weeks a 

a Length and interval not calculated due to limited sampling. 
 

Relationships between calving frequency, body condition and forage 

quality variables 

Logistic regression analysis of relationship between lactation status (lactating 

or non-lactating) and body condition factor scores of females showed that the 

probability (odds) that females were lactating does not have a relationship 

with the body condition of females (-2 log likelihood = 2794.06, Model chi-

square = 0.106, df = 1, P = 0.745, B = -0.015 (±0.046), exp (B) = 0.985).  

Since body condition of females differed between seasons (Table 4.1), there 

was a possibility that season might interact with body condition and 

consequently improve its relationship with the probability of lactation.  To 

assess such an influence, a multiple logistic regression model including 

season (coded as a dummy variable) and interaction terms for season and 

body condition was built and parameters were estimated.  This analysis 

showed that the model, although had a good fit overall (-2 log likelihood = 

2761.32, Model chi-square = 32.85, df = 5, P < 0.001), the predicted values 

from the model and the observed data were significantly different (Hosmer 

and Lemeshow Goodness-of-fit-test: chi-square = 18.79, df = 8, P = 0.016).  

Further, the body condition was not related to lactation status (B = -0.174 

(±0.18), Wald statistic = 0.94, df = 1, P = 0.33, exp (B) = 0.84).  The 

interaction terms too were not significant.  The categorical predictor, season, 

however was significantly related to lactation status (dry season with 
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reference to cold: B = 0.655(±0.19), Wald statistic = 11.94, P < 0.001, exp (B) 

= 1.93, 95% CI for exp (B) = 1.33 to 2.79; wet season with reference to cold: 

B = 1.04 (±0.2), Wald statistic = 26.33, P < 0.001, exp (B) = 2.83, 95% CI for 

exp (B) = 1.9 to 4.2).  On the whole, this indicated that season was related to 

probability of lactation, while body condition was not.  The odds that females 

were lactating was higher in wet and dry seasons as compared to cold 

season, independent of body condition of females.  This significant effect of 

season (Ha: β2 ≠ 0) has influenced the test of overall model fit, even though 

the model predicted poorly. 

 

Bivariate linear regression analysis of relationships between arcsine 

transformed monthly mean proportion of females calving and the different 

forage quality variables and body condition factor scores showed that only 

moisture content in grasses was significantly related, although it explained 

only about 34% variation in proportion calving (r2 = 0.34, F (1,13) = 6.627, P = 

0.023, B = 0.0091(±0.004)).  Also, the effect size (B) had a wide 95% CI, 

making its true value uncertain.  None of the other variables had any bivariate 

relationship with calving frequency (Table 4.6).  To develop a better model 

including multiple predictor variables that might explain more variation in 

calving frequency, a stepwise multiple linear regression analysis was done.  

However, moisture was the only variable included, and therefore did not result 

in a better model (Adjusted R2 = 0.29, F (1,10) = 5.499, P = 0.04, B = 0.0094 

(±0.004)).  No other predictor variable explained more variation in calving 

frequency than had already been explained by moisture.  Even when moisture 

was removed from the model, other variables did not show a relationship with 

calving frequency.  However, small samples may have been a limitation here.  

A graphical representation (Fig. 4.19) of monthly means of proportion of 

females calving and the main forage quality variables and body condition 

factor scores (all predictor variables were standardised, by range 

transformation, so as to vary from 0 (minimum value on the original scale) to 1 

(maximum value on the original scale)) depicted the pattern of relationships 

more clearly and provided some insights on the underlying processes.  The 
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Table 4.6. Summary of relationships between (arcsine transformed) monthly mean proportion of blackbuck 
females calving and the different predictor variables in Velavadar National Park, based on linear regression 
analysis. 

 
95% Confidence 
Interval of Bb 

Predictor 
variable 

r2  Adj r2 F statistica P 
value 

Effect size (B) and the 
Standard Error of Bb 

t 
statistic 

Low High 
Biomass 0.099 0.029 F(1,13) = 1.422 0.254 6.631 x 10-4 (±0.001) 1.193 -0.001 0.002 

Moisture 0.338 0.287 F(1,13) = 6.627 0.023 9.045 x 10-3 (±0.004) 2.574 0.001 0.017 

Crude protein 0.083 0.007 F(1,12) = 1.089 0.317 6.44 x 10- 2 (±0.062) 1.043 -0.070 0.199 

ADF 0.014 -0.069 F(1,12) = 0.166 0.691 -6.2 x 10-3 (±0.015) -0.408 -0.039 0.027 

Lignins 0.084 0.008 F(1,12) = 1.101 0.315 -3.73 x 10- 2 (±0.036) -1.049 -0.115 0.040 

Silica 0.005 -0.077 F(1,12) = 0.066 0.801 -1.15 x10- 2 (±0.045) -0.258 -0.109 0.086 

Body condition 

factor 

0.116 0.070 F(1,19) = 2.495 0.131 0.122 (±0.077) 1.579 -0.040 0.284 

   a Degrees of freedom are given inside the parentheses 
   b The values of B, it’s Standard Error and confidence intervals reported here have not been back transformed. 
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dry and wet season calving peaks seem to have different relationships with 

the predictor variables, and both peaks seem to be out-of-synchrony with the 

changes in predictor variables.  Wet season calving peaked after moisture 

and crude protein levels peaked and started declining, whereas, dry season 

calving peaked and declined before the crude protein peaked.  Biomass and 

body condition were generally high during the wet season calving peak, but 

relatively low during the dry season calving peak.  Crude protein and moisture 

levels were also low during the dry season calving peak.  

 

 
 
 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.19.  Monthly mean proportion (%) of blackbuck females calving (bars; 
primary y-axis), standardised (range transformed so as to vary from 0 to 1) 
values of monthly means of body condition factor scores of females (not 
measured in July) and main forage quality variables (lines; secondary y-axis) 
during 2000 to 2002 in Velavadar National Park. 
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4.4.  DISCUSSION 
 

Effect of season on forage quality 

Rainfall is locally highly variable in the Bhal region of Gujarat, of which VNP is 

a part.  The first year (2000) of this study was the final year of a three-year 

consecutive drought in VNP, although there had been rains in other parts of 

the region.  Drought is a frequent phenomenon in that region (data from URL: 

http://www.indiastat.com, September 2004).  No rainfall data from VNP, apart 

from the three years data of this study is available for comparison.  However, 

if the regional rainfall is considered, rainfall in VNP was less than the regional 

average in 2000, 2001, and 2002 (regional rainfall data from URL: 

http://www.indiastat.com, September 2004).  In spite of frequent local failures 

in rainfall, the regional-scale air moisture during the monsoon season is 

generally high, and this might be influencing the seasonal vegetation growth 

and chemical changes.  This is evident from the changes in above-ground 

biomass, moisture and protein content of grasses in 2000 wet season, despite 

the negligible rainfall in VNP.  

 

The unimodal pattern of rainfall in VNP may cause the pronounced 

seasonality of forage abundance and quality in VNP. Monsoon rains 

commenced usually by the end of May or June but was variable among years.  

Fresh growth in grass, flowering and seeding happened during the wet 

season.  Above ground biomass increased in the wet season, it’s rate of 

growth declined by the end of that season and was at the highest levels in the 

late wet or cold season (Fig. 4.3).  Grasses continued to grow even after 

seeding, but at a slower rate, in the presence of moisture in soil and air, and 

matured as the seasons progressed from wet to cold.  There was some above 

ground growth in grasses until late winter.  The grass blades started to 

senesce as moisture content declined in the early part of dry season.  In the 

dry season, biomass declined because removal was not compensated by 

biomass addition.  Biomass removal may have been due to herbivory, 

physical damage by either wind or animals or just litterfall.  Grasses found in 

VNP are C4 grasses and the productivity and Nitrogen content of these 
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grasses are comparable to semi-arid areas elsewhere in India (Singh and 

Joshi 1979a). 

 

Grasses in VNP had higher moisture and crude protein content in the 

earlier part of wet season.  Although a relatively pronounced protein peak was 

seen in wet season (Fig. 4.5), the change in mean values was only relatively, 

not absolutely large (i.e. only about 1.3 to 2.3% change) and also the actual 

magnitudes of differences were uncertain (95% CI were wide).  However, 

although the crude protein level did not increase a lot, its digestibility in 

blackbuck may have increased in the wet season (Jhala 1997).  In contrast, in 

dry season, a negative crude protein digestibility was found by Jhala (1997).  

In ruminants, forage must contain at least 3.13% crude protein (31.3g/kg of 

forage) for just the maintenance requirements and the necessary dietary 

requirement may be higher (Robbins 1993).  Therefore, even though some 

crude protein was available to blackbuck in dry season in VNP, it just may not 

have been digestible.  Similar to VNP, in Gir forests, protein in grasses 

(Apluda mutica and Sehima nervosum dominated communities) changed only 

marginally, from 2 – 4%, from dry to wet season (Berwick 1974).  The crude 

protein levels in VNP (N ranges from 0.24 g/m2 in May 2001 to 1.87 g/m2 in 

September 2001) were, in general, comparable to other western Indian semi-

arid grasslands (Singh and Joshi 1979b).  The low levels of protein in VNP 

may have been due to the nitrogen-poor soil quality there (Singh and Joshi 

1979a, Satyanarayana 1985), but soil quality was not assessed in this study.  

Crude protein level was found to be positively related to moisture content of 

grasses (Table 4.2).  There may have been high moisture available during the 

wet season for protein synthesis to occur and for translocation of minerals 

from soil to grass (McNaughton 1985).  Various studies suggest that plant 

growth in semi-arid areas is limited by water availability, which simultaneously 

restricts acquisition of nutrients like Nitrogen and Phosphorus (Johnson and 

Asay 1993). 

 

Acid detergent fibre, lignins and silica content of grasses in VNP did 

not show much change among the three seasons, except that lignins content 

was higher in dry season than wet season in one year.  Fibre (ADF and 
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lignins) content is expected to be low only during growth phase or in fresh 

green shoots (McNaughton 1985).  However, in VNP, grasses were perennial 

and so clumps were mostly mature.  In addition, there was no annual fire or 

heavy grazing by cattle to create space for fresh growth to happen in the wet 

season.  A limited harvesting of grass by villagers was being allowed as part 

of an eco-development programme.  So, grazing by wild herbivores 

(ungulates, other vertebrate and invertebrate fauna) was the main means of 

grass removal.  Therefore, there may have been limited space for grass to 

grow or regrow and a consequent limited scope for overall change in fibre 

level in grasses in VNP.  Fibre content generally reduces the digestibility of 

forage in ungulates.  However, in ruminants, ADF is digestible by microbial 

fermentation in the rumen, but lignins and silica are indigestible (Van Soest 

1982, Robbins 1993, Schmidt-Nielsen 1997).  Therefore, high ADF levels may 

not affect blackbuck as much as lignins and silica.  However, high ADF may 

mean higher retention time and therefore, high digestive costs (Bunnell and 

Gillingham 1985, Robbins 1993).  How much these fibre levels affect forage 

consumption by blackbuck is not known.  Seasonal changes in forage 

consumption by blackbuck in VNP has been found (Jhala 1997), but the role 

of fibre in that is unclear.  A caution that I add here is that the results may 

have been influenced to some extent by small sample sizes available for 

these variables. 

 

Limited data on seasonal changes in forage quality is available from 

Indian habitats.  The available studies suggest that biomass and grass growth 

in drier parts of India are highly dependent on monsoon rains, its periodicity, 

and the quantum of rainfall (Singh and Joshi 1979a, Misra and Misra 1984, 

Shankarnarayan et al. 1985, Karunaichamy and Paliwal 1989, Jhala 1997).  In 

Serengeti plains of eastern Africa, a similar kind of seasonality in forage 

abundance and quality is seen as a consequence of rainfall (Field and 

Blankenship 1973, Sinclair 1977a, McNaughton 1979, 1985, Sinclair et al. 

2000).  In higher latitudes too, forage availability and quality are affected by 

seasonal climate, where high quality forage is available in spring, but lasts 

only for a short period (Festa-Bianchet 1988, Berteaux et al. 1998, Cook et al. 

2001, Langvatn et al. 2004). 
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Effect of forage quality on body condition of blackbuck females 

Body condition scores of blackbuck females in VNP was found to be better in 

wet season and worse in dry season (Fig. 4.15).  This corresponded with the 

availability of higher quality forage to females in wet season, as compared to 

dry season.  However, the body condition scores of females in VNP, even in 

wet season may not be considered high on an absolute scale.  The pectoral 

and pelvic girdles and tailbone depression were visible in the wet season too 

in VNP during the study period and this did not indicate a high body condition.  

In contrast, body condition scores of females from other populations such as 

Sawainagar, Madia (Bhal region, Gujarat) and Katuda (Surendranagar district, 

Gujarat), which largely subsist on croplands or on browse, were much higher 

than VNP, in the same seasons (unpublished data).  Body condition score of 

females in VNP was positively correlated with moisture and crude protein 

content of grasses (Table 4.4).  Moisture, although would not affect body 

condition directly, may have an indirect effect by increasing the forage quality 

of grasses.  Energy and protein levels of forage affect the nutritional status of 

adult females, as these are essential physiological requirements for 

maintenance, and for other reproductive activities such as pregnancy and 

lactation (Sinclair 1977b, Oftedal 1985, Price and White 1985, Robbins 1993, 

Schmidt-Nielsen 1997, Parker et al. 1999).  Tropical ungulates show changes 

in body condition as forage quantity and quality changes with seasons, and in 

particular with rainfall patterns (Sadleir 1969, Sinclair 1977b, Fryxell 1987, 

Sinclair et al. 2000).  In northern latitudes, period of high energy and protein 

availability to animals is short, and animals respond by changes in body 

condition.  Animals synchronise most high energy and protein demanding 

activities to that period.  They reproduce, wean their young and put on body 

reserves during the short spring season to tide them over harsh winters 

(Festa-Bianchet 1988, Berteaux et al. 1998, Cook et al. 2001, Langvatn et al. 

2004).  

 

Seasonality of calving in blackbuck 

There was pronounced seasonality of calving in blackbuck in VNP, although a 

basal calving of 5-15% was seen throughout the year (Figs. 4.17 and 4.18).  
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Calving seasonality was bimodal and appeared to be cyclical with an interval 

between successive calving peak points of about 23-28 weeks (Table 4.5).  

Blackbuck females in VNP appeared to calve twice in a year with a calving 

interval of 6 months, as had been observed in Texas ranches (Mungall 1978).  

A bimodal pattern of reproduction, with two seasonal peaks in calving and two 

births in a year, is common in several other tropical and subtropical ungulates 

(Dasmann and Mossman 1962, Sadleir 1969, Field and Blankenship 1973, 

Anderson 1979, Geist 1981, Kingdon 1982, Murray 1982, Rutberg 1987, Rice 

1988, Bronson 1989, Sinclair et al. 2000).  In the monsoon tropics, rainfall 

plays an important role in defining seasons by its effect on forage quality and 

quantity (Sadleir 1969, Field and Blankenship 1973, Fryxell 1987, Sinclair 

1977a, Bronson 1989, Sinclair et al. 2000).  Whereas, in the temperate areas, 

photoperiod and extreme seasonality defines the birthing seasons (Clutton-

Brock et al. 1983, Festa-Bianchet 1988, Bronson 1989, Langvatn et al. 2004). 

 

A weekly maximum of 62% of females in 2000 and 53% of females in 

2001 and 2002 had calved in VNP.  This is much lower as compared to the 

proportions that were reported for some ungulate species.  The percentage of 

females that reproduced in a year was up to 90% in white-tailed deer, red 

deer, caribou, Dall’s sheep and bison (Dauphine and McClure 1974, Richter 

and Labisky 1985, Rachlow and Bowyer 1991, Berger 1992, Langvatn et al. 

2004, Keyser et al. 2005).  These were observed when the forage conditions 

were good (e.g., the forage was abundant and quality was good) and in 

addition, population density was low (Richter and Labisky 1985, Langvatn et 

al. 2004, Keyser et al. 2005).  Even in tropical ungulates of Africa, the 

percentage of females having given birth in a year has been reported to be as 

high as 85% (Field and Blankenship 1973, Estes 1976).  The blackbuck 

population in VNP is considered to be a high-density population 

(approximately 30 blackbuck/km2 for the whole area of VNP; Ranjithsinh 1989, 

Jhala 1999, Gujarat Forest Dept. Management Plan for Velavadar National 

Park 2002).  Within the suitable grassland habitat of about 10km2, the density 

could be over 100/ km2.  The forage quality, in terms of crude protein, can not 

be considered high in VNP.  The lower reproduction percentage in VNP could 

have been influenced by these factors.  
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The calving seasons in VNP were considerably spread out, with 

lengths ranging from 7-15 weeks.  These were too long to be classified as 

synchronised calving.  Most other ungulates that have synchronised birthing, 

such as wildebeest (Estes 1976), American bison (Berger 1992, Berger and 

Cain 1999), barren ground caribou (Dauphine and McClure 1974), bighorn 

sheep (Festa-Bianchet 1988), mountain sheep (Bunnell 1982) and red deer 

(Langvatn et al. 2004) have birthing seasons that are extremely short (ranging 

from 10 days to 3 weeks).  Even in the range of taxonomic groups that show 

synchrony, including plants (Janzen 1976, Kelly and Sork 2002), brachyuran 

crabs (Morgan and Christy 1994), insects (Karban 1982), marine reptiles 

(Rubenstein and Wikelski 2003), birds (Emlen and Demong 1975, Hatchwell 

1991, Westneat 1992, Amundsen and Slagsvold 1998) and bats (Heideman 

and Utzurrum 2003), the birthing season is extremely short.  Moreover, all 

species that show synchronised birthing breed only once a year, as the 

factors that cause such acute synchrony is more likely to occur once in a year.  

In ungulates, two reasons have been most frequently cited as causes for 

synchronised birthing.  One is seasonal availability of high quality forage 

(Sadleir 1969, Festa-Bianchet 1988, Bronson 1989, Fournier et al. 1999, 

Langvatn et al. 2004) and second is predator satiation (Kruuk 1970, 1972, 

Estes 1976, Rutberg 1987, Bronson 1989, Ims 1990a, b).  Although there is a 

seasonal peak in forage quality in VNP, this does not seem to cause any 

synchrony in calving.  In ungulates where predator satiation (or in other 

words, predator swamping), is a strategy the young follow their mother 

immediately after birth, i. e., they are precocial and are also highly 

conspicuous (Estes 1976, Geist 1981, Kingdon 1982, Rutberg 1987, Ims 

1990a).  Blackbuck have hiding young that are inconspicuous and predation is 

avoided mainly by concealment (Fitzgibbon 1990, Mungall 1991).  Therefore, 

predator swamping does not seem to operate in blackbuck in VNP.  Further, 

Emlen and Oring (1977) suggested that the species that lek tend to have a 

longer breeding period and synchrony is rare.  One of the main reasons that is 

forwarded by them for this pattern is the long period of food availability.  The 

male blackbuck in VNP exhibit lekking behaviour and year round rutting, 

although with seasonal peaks (Mungall 1978, Isvaran and Jhala 2000, Isvaran 

2003, personal observation).  All these characteristics – 2 calving peaks, wide 
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calving seasons, year round basal level of calving, calf hiding behaviour and 

male rutting behaviour, point to an absence of acute birth synchrony in this 

population.  However, one caveat needs to be added to these results here.  I 

have used lactation as an index to calving.  So, the season of calving here is 

not the season of births alone, but is confounded by the nursing period.  The 

season of actual births might be shorter than what was measured in this 

study.  Unless the actual births are followed, it would not be possible to 

measure the length of actual calving seasons.  However, since the lactation 

season lengths were measured from cumulative distributions of lactation, it is 

likely to reflect the actual calving season lengths.  

 

There was no strong relationship between the body condition scores of 

females and their lactation status.  This is contrary to what has been reported 

in many studies (Price and White 1985, Robbins 1993, Parker et al. 1999, 

Cook et al. 2001).  Ungulate body condition greatly influences reproduction 

and lactation.  Females with bad body condition either do not conceive or are 

unable to successfully reproduce (Sinclair 1977b, White and Price 1985, 

Robbins 1993).  In this study, although seasonal changes in body condition of 

females were found, body condition differences between lactating and non-

lactating females was not found, in any season.  This shows that there may 

have been stronger factors than body condition that were influencing lactation 

and were probably overriding the possible influence of body condition.  Or, 

although there were relative seasonal differences, the females were in (an 

absolute) condition sufficient for reproduction in all seasons.  During my study 

period, I have not seen many females in absolutely poor condition in any 

season and probably the minimum nutritional requirements were being met.  

Also, I sampled lactating females and the phase of lactation could not be 

determined.  Therefore, the sampled females could have calved much before 

sampling and had lost condition already due to lactation costs.  Animals are 

known to lose body condition rapidly during lactation (Sadleir 1969, Robbins 

1993).  Further, for determining fine-grade changes in body condition, an 

indirect method of visual estimation such as the one I followed may not be 

appropriate, and better techniques (such as body size measurements, bone-

marrow fat or kidney fat index; Sinclair 1977b, Robbins 1993) need to be 
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adopted.  Also, the influence of body condition may have to be measured in 

terms of offspring survival, rather than birthing alone.  Females in poor 

condition may give birth, but survival of their offspring may be low.  Therefore, 

measuring calf survival rates would be more appropriate for assessing the 

influence of body condition on blackbuck reproduction.  Although body 

condition did not seem to influence lactation, season had a strong effect.  

Females, irrespective of body condition, were more likely to calve in the 

appropriate seasons (wet and dry) when they probably experience high calf 

survival rates.  

 

The dry season calving peak declined before protein content of 

grasses started to increase (Fig. 4.19). Although dry season calving occurred 

during period of low forage availability and quality, calves born during this 

peak weaned (after 2 months) at a time of higher quality (high in protein) 

forage.  Protein requirement for early growth, especially in weanling calves 

may be relatively much higher as compared to nursing young or adults (White 

and Price 1985, Robbins 1993).  In white-tailed deer, protein requirement for 

weanlings is 13 – 20 % protein in forage intake.  For nursing young, protein 

requirement may be met from protein in mothers’ milk, but the weaned calves 

would have to obtain protein from forage.  For adult wild ruminants, protein 

requirements for maintenance and daily activity can be as low as 5% of forage 

intake (Robbins 1993).  Ruminants do not require high protein from forage, 

except may be for the growth of young ones (White and Price 1985, Robbins 

1993, Dove 1996).  So, for blackbuck in VNP, protein may be a limiting factor 

only during the seasons when the young are growing.  Therefore, dry season 

calving peak may have been timed to precede the peak in quality of forage 

that would be available for young when they weaned, so as to meet their 

energy and protein requirements for growth and survival.  Similar results were 

found in Grant’s and Thompson’s gazelle in Kenya’s rift valley and in white-

eared kob in southern Sudan, which calved during suboptimal forage 

availability, but the calves weaned when forage quality was at its peak (Field 

and Blankenship 1973, Fryxell 1987).  Reproduction in many tropical 

ungulates tends to track seasonal highs in forage quality to maximise 

reproductive output (Geist 1981).  Lactation probably provides a buffer for 
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calves against poor forage quality present through the dry season.  The dry 

season calving peaks were also shorter than the wet season peaks, by 1 – 8 

weeks (Table 4.5).  As lactation costs for the females would be high, they 

perhaps invested a shorter time in lactation during the dry season.  

Consequently, the calves would have weaned earlier as compared to wet 

season.  The nutritional requirements of lactation probably would not be met 

from the dry season forage and the females in VNP may depend, to a large 

extent, on catabolization of body reserves (Sadleir 1969, Parker et al. 1999).  

Blackbuck populations that have browse available may shift to feeding on 

browse in the dry season (Berwick 1974, Chattopadhyay and Bhattacharya 

1986, Jhala 1997).  

 

Wet season calving frequency started increasing just as the protein 

level peaked and the calving peaked as the protein level started to decline.  

The wet season calving peak occurred after a gap of 23-24 weeks (Table 4.5), 

which roughly corresponds to the calving interval (5 months gestation period + 

1 month post-parturition, pre-oestrus interval) in blackbuck (Mungall 1978).  In 

the later part of the wet season, although protein levels were lower, there was 

high biomass available until the onset of dry season.  In addition, higher 

protein levels in the earlier part of the wet season may have helped pregnant 

females and the ones that had recently calved in investing more in foetus and 

in body reserves.  Thus, both the energy and protein needs of lactating 

females could be met in that season.  Also, the body condition of females was 

high during that season, and this perhaps enabled them to invest more in 

offspring (e.g., offspring body mass may have been higher in the wet season 

calving as compared to dry season calving), or lactated longer.  During 

gestation and lactation, adult females may not need protein-rich, but would 

need energy-rich forage.  However, their protein requirements would be 

relatively higher than non-gestating or non-lactating females (Robbins 1993, 

Schmidt-Nielsen 1997).  In the wet season, the protein digestibility in 

blackbuck in VNP increased as compared to dry season (Jhala 1997).  

Therefore, higher protein digestibility, in addition to higher protein content in 

grass in wet season may have combined to cause a greater increase in 

forage quality during wet season.  Also, intake of digestible energy may be a 
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greater nutrient limitation than intake of digestible protein, annually, for 

ruminant ungulates (Robbins 1993, Berteaux et al. 1998, Parker et al. 1999).  

Since there was higher biomass available to meet the energy demands of 

females giving birth in the wet season, and given the higher body condition in 

that season, those females might have lactated for a longer period.  Thus, 

they may have provided a greater investment in the calves, which might have 

compensated for the lower quality forage that was available when the calves 

weaned.  This probably has caused the observed longer wet calving season 

(11 to 15 weeks) as compared to dry calving season (7 to 10 weeks).  Note 

that the length of calving season that I measured was that of nursing rather 

than birthing season.  

 

The observed cyclical calving pattern, with the wet season calving peak 

following the dry season calving peak (which precedes the seasonal peak in 

forage quality and digestibility) after an interval equivalent to the inter-calving 

period in blackbuck, may be related to the oestrus cycle characteristic of 

blackbuck.  In blackbuck, post-partum oestrus has been observed and 

lactation and development of a new embryo can occur simultaneously 

(Mungall 1978).  In other tropical and subtropical ungulates too, females tend 

to come into oestrus shortly after giving birth (Geist 1981, Rice 1988).  The 

observations that blackbuck males in VNP lek more frequently during both the 

calving peaks (Schaller 1967. Mungall 1978, Ranjithsinh 1989, personal 

observations) also supports this viewpoint.   

 

The basal level calving that occurred throughout the year was 

maintained probably due to individual genotypic variations, or individual’s 

nutritional status related reproduction, first time calving of young females, or 

loss of neonate and subsequent post-partum oestrus.  Even moderate 

survival chances of young might maintain both the peaks and the biannual 

calving might increase the lifetime reproductive output of blackbuck females.  

Offspring survival is probably enhanced by females that calved in the dry 

season by having timed their calf weaning to the impending peak in forage 

quality.  The females that calved in the wet season, perhaps compensated for 

forage quality by greater maternal nutritional investment into the young.  In 
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addition, limited space for new flush to grow and limited scope for increase in 

forage quality in VNP (due to perennial, matured grass) may have limited the 

increase in calving frequency (proportion of females calving) in the apparently 

better (for the growth and survival of weaned-calf) dry season peak.  

Therefore, both the calving peaks may be maintained over time.  However, 

the limitations to an increase in the proportion of females calving in the wet 

season are not clear.  Data on survival rates of young in both the calving 

seasons and individual female reproductive rates are required to verify these 

hypotheses and to better understand the factors limiting blackbuck calving. 
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4.5. SUMMARY 

• I studied the seasonality of blackbuck calving in VNP and examined 

whether birth synchrony exists in this population.  I assessed the 

seasonal patterns in forage availability, quality, and body condition of 

blackbuck females, and examined if changes in forage availability, 

quality and body condition of females influenced calving seasonality. 

• Forage variables that were measured are, aboveground grass 

biomass, moisture, crude protein, ADF, lignins, and silica content in 

grasses.  Biomass and moisture content of grasses were measured by 

harvesting 24 plots (size 0.5m x 0.5m) each month from August 2000 

to December 2002.  The other forage variables were measured by 

analyzing samples from three random plots each month.  Body 

conditions of blackbuck females were assessed visually by ranking five 

indicative body parts.  Blackbuck females were located in different 

blocks of the study area and females in herds were sampled to 

estimate the proportion of females lactating (studied from February 

2000 to September 2002).  I used the number of females lactating as a 

proportional index of number of females calving.       

• Some of the forage variables showed considerable seasonal changes, 

while some did not.  Biomass was the highest in the cold and late wet 

seasons and lowest in the dry season.  Crude protein content was the 

highest in wet season and the lowest in dry season.  ADF and silica 

content did not show considerable seasonal changes.  In one year, 

lignins content in the dry season was higher than the wet season, but 

in general it does not seem to vary much through the year in VNP.  

Body condition of females was the best in the wet season and worst in 

the dry season. 

• Blackbuck calving was clustered during two separate periods of a year 

(bimodal calving pattern), but a basal level calving (5 – 15%) occurred 

through out a year.  Maximum calving occurred in the months of March 

and April (dry season), and August and September (wet season) during 

the study.  The calving seasons were considerably spread out with 

season lengths ranging from 7 – 15 weeks, and these calving seasons 
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appear to be cyclical, occurring with an interval of 23 – 28 weeks 

between successive calving peak points.  There was no evidence for 

calving synchrony in VNP. 

• Lactation status of females was not related to body condition, but was 

influenced by season.  Calving was not strongly correlated to any of the 

predictor variables assessed.  However, graphical analysis suggested 

that the two calving peaks (wet and dry calving seasons) seem to have 

different relationships with the predictor variables.  The dry season 

calving peak preceded the crude protein peak, and the wet season 

calving peak followed the crude protein peak and coincided with high 

biomass availability and high body condition of females. 

• Blackbuck in VNP appear to have a cyclical calving pattern.  The dry 

season calving peak was probably timed to the impending peak in 

forage quality, which would have benefited the calves when they 

weaned.  The wet season calving peak occurred after a gap that 

corresponded to inter-calving interval in blackbuck.  The females that 

calved in the wet season perhaps provided greater maternal nutritional 

investment into the young, which might have compensated for the 

lower quality forage that was available to the calves when they 

weaned.     
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CHAPTER 5.  ACTIVITY PATTERNS AND TIME BUDGETS OF 

BLACKBUCK HERDS IN VELAVADAR NATIONAL PARK 

 

5.1.  INTRODUCTION 

Bunnell and Harestad (1989) summarised that the daily activity pattern of an 

animal is influenced by energy requirements, predators and thermal stress.  

Similarly, the proportion of time an animal invests in various activities is 

influenced by many environmental, physiological, and ecological factors.  

Ruminant ungulates divide a day’s time for various activities, including 

foraging, resting, ruminating, travelling, vigilance, breeding and other social 

interactions.  The factors that determine the time-budgets of ungulates range 

from body size (Bell 1970, 1971, Jarman 1974, Van Soest 1982, Demment 

and Van Soest 1985, Lucas 1987, Robbins 1993, Schmidt-Nielsen 1997), 

other anatomical, physiological, and morphological attributes (Jarman 1974, 

Jarman and Sinclair 1979, Kingdon 1982, Arnold 1985, Bunnell and 

Gillingham 1985, Kamil et al. 1987, Dove 1996), competition for resources 

(Bertram 1978, Alcock 1984, Krebs and Davies 1993, White 1993), predation 

(Jarman and Jarman 1973, Kruuk 1970, 1972, Underwood 1982, Sih 1992, 

Caro 1994, Fitzgibbon and Lazarus 1995, Owen-Smith 2002), to caring for 

young (Bunnell and Gillingham 1985, Laca and Demment 1996, Owen-Smith 

2002).  Further, ambient temperature would influence activity patterns of 

ungulates (Parker and Robbins 1985, Schmidt-Nielsen 1997, Owen-Smith 

1998).  Foraging increases thermal load through muscular activity and by 

exposure to direct and indirect solar radiation.  High temperature is known to 

have a depressant effect on feeding activity.  The higher the ambient 

temperature over the body temperature, the more difficult it is to dissipate 

heat and the animals would suffer heat stress (Parker and Robbins 1985, 

Schmidt-Nielsen 1997).  In addition to the above-mentioned factors, two 

important factors that influence time allocation to feeding are availability and 

nutritive quality of forage.  These food-related factors determine many aspects 

of foraging behaviour of ungulates and consequently influence their overall 

survival and fitness (Herbers 1981, Bunnell and Gillingham 1985, Hudson and 
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White 1985, Belovsky 1986, Stephen and Krebs 1986, Laca and Demment 

1996, Owen-Smith 2002).   

 

For ungulates, especially ruminants, body size, morphology of 

mouthparts and stomach anatomy determine the kind and quantity of food 

that they can consume.  Body size determines gut capacity, mouthparts 

define whether an animal is a specialist or generalist feeder, a grazer or a 

browser and anatomy of stomach determines the efficiency and rate of 

processing of food (Bell 1970, 1971, Jarman 1974, Jarman and Sinclair 1979, 

Kingdon 1982, Owen-Smith and Novellie 1982, Van Soest 1982, Arnold 1985, 

Bunnell and Gillingham 1985, Demment and Van Soest 1985, Van Hoven and 

Boomker 1985, Robbins 1993, Schmidt-Nielsen 1997, Owen-Smith 2002).  In 

addition, for ruminants, rumen capacity would influence time allocated to 

feeding, since it physically constrains the amount that an animal could 

consume at any one time (Van Soest 1982, Arnold 1985, Robbins 1993, Dove 

1996, Schimdt-Nielsen 1997, Owen-Smith 2002).  Apart from these factors, 

there are others that constrain the time an animal would allocate to feeding, 

and a major among those is social behaviour: ungulates form large social 

groups to reduce the risk of predation and for other socio-biological factors 

(Jarman 1974, Krebs and Davies 1993, White 1993, Laca and Demment 

1996).  However, this also increases intra-group competition for food.  On the 

other hand, solitary animals would need to spend more time being vigilant and 

thus lose out time that they could otherwise allocate for feeding (Jarman 

1974, Underwood 1982).  The time spent feeding would depend on energetic 

demands of an animal (e.g. pregnancy or lactation would incur a higher 

energy demand), forage dispersion (time searching is higher when food is 

dispersed widely), abundance, and quality (searching time is less when forage 

is abundant and the rumen would process food efficiently when forage quality 

is high; Arnold 1985, Bunnell and Gillingham 1985, Owen-Smith 2002).    

 

Blackbuck is a medium sized ruminant.  It is primarily a grazer and 

feeds on browse in the absence of grass and can be considered a mixed 

feeder (Schaller 1967, Mungall 1978, Prasad and Rao 1984, Chattopadhyay 

and Bhattacharya 1986, Jhala 1997).  It inhabits arid and semi-arid, open 
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habitats of India and was once abundant throughout the Indian sub-continent. 

Hunting and loss of habitat has decreased its numbers and is now listed as 

being vulnerable to extinction (IUCN 2000).  It is protected by the Wildlife 

Protection Act (1972) of India as a Schedule-1 species.  Despite this antelope 

having been abundant and widespread in the past, more is needed to be 

known about its ecology.  Most studies hitherto have been on behavioural 

aspects of blackbuck (Schaller 1967, Mungall 1978, 1991, Prasad and Rao 

1984, Prasad 1985, Isvaran and Jhala 2000, Isvaran 2003), with an exception 

of Jhala (1997), which focussed on the nutritional ecology of this species.  

Activity patterns of blackbuck, time allocation to different activities and the 

influence of forage availability and nutritive quality on these aspects of 

behaviour have not yet been studied in detail. 

 

I studied the daily activity patterns and time budgets of blackbuck herds 

in VNP and assessed the changes in activity patterns during dry, wet and cold 

seasons.  I examined if air temperature had an influence on daily activity 

pattern of blackbuck.  I compared the proportional time investment in feeding, 

moving and resting/ruminating activities and the distances moved by the 

blackbuck herds in the different seasons.  I further examined if forage quantity 

and quality influenced the time investment in feeding by blackbuck herds in 

VNP.   

 

The research hypotheses that I tested are:  

• Blackbuck would rest more and feed less during periods of high 

temperature and vice versa. 

• Time invested in feeding activity would be higher in dry and cold seasons 

(due to low quality forage) as compared to wet season. 

• Time invested in resting/ruminating activity would be higher in dry season 

as compared to wet and cold seasons. 

• Time investment in feeding (as opposed to foraging) by blackbuck would 

be positively correlated with forage abundance. 

• Time investment in feeding by blackbuck would be negatively correlated to 

forage quality. 
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5.2. METHODS 

 

Temperature and day-length 

Temperature in VNP was measured using an automatic temperature logger 

(Hobo-Onset computer Corp., Bourne, Massachussetts, U.S.A).  This was set 

up in the grassland at a height of 2 feet from the ground and was set to log 

the ambient temperature every 15 minutes.  From these, hourly means of 

temperature were calculated.  Temperature was recorded for the dry and wet 

seasons and could not be measured for the cold season.  Day-length was 

calculated from sunrise and sunset times obtained by a Global Positioning 

System (GPS) receiver.  

 

Sampling of blackbuck activity  

I used scan sampling (Altmann 1974) to study the foraging activity of 

blackbuck in the grassland area of VNP.  For each season, three female 

dominated mixed herds of blackbuck were sampled in the study area.  

Sampling was done during April 2002 (dry season), September 2002 (wet 

season) and January 2003 (cold season).  Scans were done from dawn to 

dusk with a scan interval of 15 minutes.  I attempted to age and sex all 

animals in the herds during scans, but this was not possible many times as 

the animals were hidden among grass when they were sitting, feeding or with 

their heads down in the grassland.  Therefore, the total animals that were 

sampled have been used for analysis without any sex or age-class 

segregation among them.  A spotting scope (magnification 10 – 20x, 

Bushnell) mounted on a tripod was used for scan sampling (Plate No.6a).  

Scans were done from watchtowers or from an open jeep.  A distance of 100-

200m was kept from the herd when sampling, so that the animals would not 

get disturbed. 

 

The activities of blackbuck were classified into moving, feeding, 

standing, sitting and other activities such as grooming, social interactions 

were grouped as ‘others’ (Plate No. 6b).  Standing and sitting activities were 

added to give resting/ruminating activity.  In VNP, to make out whether 
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blackbuck that were standing and sitting were ruminating was difficult, 

particularly when they were in the grassland farther than 200m.  Standing and 

sitting (= resting) together can be considered to indicate rumination time since 

rumination generally occurs, in standing, sitting and lying positions (Jarman 

and Jarman 1973). 

 

Blackbuck movement  

Blackbuck herds were followed from dawn to dusk and their locations were 

recorded using a GPS unit.  The herds did not move together as a single unit 

but as loose sub-groups.  GPS fixes were recorded of the position where 

greater than 70% of the herd was found.  The approximate centre of the herd 

was recorded as the herd location.  Locations were recorded every two hours 

or when the herds had moved for about 500m.  The herd movements were 

monitored along with scan sampling for the same herds.  The linear distances 

moved between successive locations were measured using Arcview (version 

3.1 software, ESRI, Redlands, LA, U. S. A) and the total daily distances 

moved were calculated. 

 

Biomass and moisture 

Above-ground biomass (g /m2) was measured in 8 systematically (see 

Chapter 4) laid plots of size 0.5m x 0.5m in the foraging range of each 

blackbuck herd during the months of activity sampling.  Moisture (%) was 

determined from fresh and dry weights of the harvested grass.  Moisture was 

strongly positively correlated to protein content in grass (see Chapter 4) and 

so was considered to indicate protein content and thereby grass quality.  

Biomass and moisture values from the foraging range of each herd was 

compared to the time invested for feeding by each of the respective herds, in 

each season. 

 

Statistical analysis 

To examine the seasonal differences in activities of blackbuck herds, the 

proportion of animals in various activities (moving, feeding, resting/ruminating 

and others) in each scan was calculated and the proportions were averaged 
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to the hour.  The hourly activity pattern of blackbuck in different seasons was 

described and the feeding, moving and resting/ruminating activities were 

compared among the three seasons.  Further, to examine seasonal 

differences in feeding, moving and resting/ruminating activities in different 

periods of the day, data from individual scans were averaged within each time 

period.  The time periods were, early morning (daylight to <8:00 hrs), late 

morning (8:00 – < 10:00 hrs), noon (10:00 – <12:00 hrs), afternoon (12:00 – 

<14:00 hrs), evening (14:00 – <16:00 hrs) and late evening (16:00 to 

darkness).  The total time spent in feeding, moving and resting/ruminating and 

other activities was calculated by adding the proportions of animals in each 

activity at the end of the scan session (Altmann 1974, Martin and Bateson 

1993, Lehner 1996).  For statistical analysis, the activity proportions were 

arcsine transformed ((θ = arcsine (√ proportion calving)) to improve normality 

of data (Sokal and Rohlf 1995). 

 

A two-way factorial Analysis of Variance (ANOVA) model, with period 

of day and season as the fixed factors, was used to test for the effect of 

season and period of day on feeding, moving and resting/ruminating activity 

of blackbuck.  Relationships between proportion time spent in feeding and the 

two predictor variables (biomass and moisture) was assessed using 

Spearman’s rank correlation.  For all statistical hypothesis testing, type-I error 

rate of 5% (α = 0.05) was used.  I have also calculated the effect sizes and 

their confidence intervals and used them to complement hypothesis testing in 

interpreting the results. 
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5.3.  RESULTS 

 

Temperature and day-length 

Dry season daily temperature in VNP ranged from 21.3 oC at 5:00 hrs to 45 oC 

at about 14:00 hrs.  It gradually rose during the day until afternoon and fell to 

about 35 oC at 18:00 hrs (Fig. 5.1).  In the period from 10:00 to 16:00 hrs, 

temperature remained consistently high (greater than 40 oC).  Wet season 

daily temperature ranged from 22.4 oC at 5:00 hrs to 39 oC at about 14:00 hrs.  

Mean temperature was 30.3 oC at 18:00 hrs.  From 10:00 to 16:00 hrs, 

temperature was moderately high and remained between 30 to 40 oC (Fig. 

5.2).  Mean sunrise time was 6:20 hrs in dry season, 6:30 hrs in wet season 

and 7:20 hrs in cold season.  Mean sunset time was 19:00 hrs in dry season, 

18:45 hrs in wet season and 18:20 hrs in cold season. 

 

Activity patterns  

In the dry season from 6:00 to 8:00 hrs, 80% of the blackbuck were engaged 

in feeding activity and the rest were mostly moving (Fig. 5.1).  At 9:00 and 

10:00 hrs, there was a sharp decline in the proportion of animals feeding to 

about 40%, while 20% to 30% were resting or were moving.  The proportion of 

animals feeding increased to about 50% to 65% from 11:00 to 14:00 hrs.  At 

15:00 hrs, proportion of animals feeding dropped to 25% and proportion of 

animals moving increased to 20%.  Resting was the highest at 15:00 and 

16:00 hrs with the proportion of animals resting rising to 45% to 50% (Fig. 

5.1).  In the subsequent hours, proportion of animals resting decreased 

sharply to 20% and 11%.  In the hours before sunset, moving activity also was 

less, but proportion of animals feeding sharply increased to about 70% to 

80%.   

 

In the wet season too, greater than 70% of blackbuck were engaged in 

feeding activity in the morning hours (until 7:00 hrs) and the rest were mostly 

moving (Fig. 5.2).  At 8:00 and 9:00 hrs, there was a decline in the proportion 

of animals feeding to about 45% to 55%, while 30% to 45% were resting.  The 

proportion of animals feeding was high (greater than 75%) from 9:00 to 14:00 
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Fig. 5.4. Hourly % (a) feeding, (b) resting/ruminating and (c) moving activity of 
blackbuck herds in Velavadar National Park (n = 3 groups in each season) in 
different seasons. 
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There was high inter-herd variability in the time invested in feeding in 

the three seasons and these inter-herd differences did not seem to be related 

to group size (Fig. 5.6).  The differences in the mean proportion of time 

invested in feeding among the three seasons were not statistically significant 

(Table 5.1).  The differences in the mean proportion of time invested in 

moving and resting/ruminating among the three seasons also were not 

significant (Table 5.1).  The inter-herd variability in the linear distances moved 

in a day by blackbuck herds in all the seasons were considerably high (Fig. 

5.7).  The differences in mean linear distances moved among the three 

seasons were not significant (ANOVA, F (2,9) = 1.064, P = 0.402).  Overall, no 

significant seasonal differences were seen in any of the three types of 

activities or in the linear distances moved by blackbuck herds. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.6. Variability in time spent feeding by 3 blackbuck herds in dry, wet and 
cold seasons.  The shaded circles are the means of the groups sampled in 
each season.  Values adjacent to the markers are mean group sizes of each 
of the sampled herds. 
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Table 5.1.  The effect of season and period of day on % of time spent in 
various activities (arcsine transformed) as assessed by a 2–way factorial 
ANOVA analysis.   
 

Feeding 

 

Resting Moving Effect df 

F P F P F P 

Season 2, 35 2.32 0.11 1.56 0.22 2.24 0.12 

Period of day 5, 35 3.62 0.01 3.55 0.01 2.54 0.05 

Season x Period of day 10, 35 1.57 0.16 1.57 0.16 1.06 0.42 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.7.  Distance moved during the day (sum of linear distances between 
feeding patches) by three blackbuck herds in different seasons in Velavadar 
National Park.  The shaded circles are means of groups sampled in each 
season. 
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In the dry and cold seasons, percent feeding was higher in early mornings 

than all other periods of day and particularly higher than noon and evening 

(Fig. 5.8).  Whereas in the wet season, percent animals feeding was more or 

less similar during all periods of day except late mornings.  Percent of animals 

resting/ruminating was similar in dry and cold seasons.  In these seasons 

animals rested little in the early morning period and more in the evening than 
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Table 5.2.  Differences between periods of day (the ones that were found to 
be statistically significant are given here) in % of time spent in various 
activities by blackbuck (arcsine transformed), as determined by post-hoc pair-
wise comparisons. 
 

95% 
Confidence 
Interval of  
effect size 

Activity Post-hoc 
testsa 

Period of day and % activity in 
parenthesis 

Effect sizes 
(difference 
in means – 

arcsine 
transformed)

± 1SE 

P 
value 

Low High 

Feeding Tukey’s 

HSD 

Early morning 

(84.04) 

Evening 

(49.7) 

0.414 

 (±0.106) 

0.005 0.093 0.735 

Resting Tamhane’s Early morning 

(4.06) 

Evening 

(32.24) 

0.4230 

(±0.107) 

0.042 0.011 0.834 

Moving Tamhane’s Afternoon 

(14.1) 

Late-evening 

(5.08) 

0.1720 

(±0.066) 

0.029 0.012 0.331 

aTukey’s HSD test was done for feeding since the error variances were found to be equal 
among groups and Tamhane’s was done for moving and resting activities as the error 
variances were found to be unequal. 
 

 

 

Relationships of feeding activity with air temperature, biomass, and 

moisture content of grasses  

Hourly percent time spent feeding by blackbuck seemed to have a weak 

negative relationship with hourly air temperature (Spearman’s rho = - 0.521, P 

= 0.006, N = 26, Fig. 5.11).  Seasonal means of (arcsine transformed) % time 

invested in feeding by blackbuck and seasonal means of grass biomass in the 

foraging ranges of the herds did not seem to have a relationship (Spearman’s 

rho = 0.367, P = 0.332, Fig. 5.12).  Similarly, seasonal means of (arcsine 

transformed) % time invested in feeding by blackbuck and seasonal means of 

moisture content of grasses did not seem to have a relationship (Spearman’s 

rho = -0.010, P = 0.798, Fig. 5.13). 
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Fig. 5.11.  Relationship between (arcsine transformed) hourly % time spent 
feeding by blackbuck and hourly temperature ( in o C) in Velavadar National 
Park. (Spearman’s rho = -0.521, P = 0.006, n = 26). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.12.  Relationship between (arcsine transformed) % time investment in 
feeding by blackbuck herds and biomass (g/ m2) of grasses in the foraging 
ranges of the herds during the periods of activity sampling (Spearman’s rho = 
0.37, P = 0.33, n = 9). 
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Fig. 5.13. Relationship between (arcsine transformed) % time investment in 
feeding by blackbuck herds and moisture (%) of grasses in the foraging 
ranges of the herds during the periods of activity sampling (Spearman’s rho = 
- 0.10, P = 0.8, n = 9). 
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5.4. DISCUSSION 

The daily activity pattern of blackbuck was largely cyclical, alternating mainly 

between feeding and resting/ruminating activities (Fig. 5.4).  There were three 

feeding peaks and two resting/ruminating peaks during daylight hours.  

Intensive feeding activity was seen in early morning, around noon and late 

evening hours.  This cyclical activity pattern was more or less similar in all the 

three seasons.  In the wet season, large proportions of each hour were spent 

feeding throughout the day, or in other words, the resting peaks were not 

prominent.  A large proportion of the day (>65%) was spent in feeding by 

blackbuck herds in VNP in all the seasons (Fig. 5.5).  Hourly feeding activity 

did not seem to have a relationship with air temperature and seasonal feeding 

activity did not seem to have relationships with grass biomass and moisture 

content of grasses (which indicates protein content).   

 

 Ruminants are physically constrained by the rumen/gut capacity (Bell 

1970, McNab 1980, Van Soest 1982, Demment and Van Soest 1985, Robbins 

1993, Dove 1996).  Once the rumen is full after an intensive bout of feeding, 

the ruminants would need to rest and process the consumed food (ruminate) 

until the rumen can accommodate more food.  When the fibre content is high 

in the forage, higher is the retention time in the rumen as the processing by 

microbes in the rumen becomes slow (Bunnell and Gillingham 1985, Robbins 

1993. Schimdt-Nielsen 1997).  Although grass biomass availability shows a 

seasonal difference, the forage quality does not show substantial seasonal 

differences (refer to Chapter 4) and is low in the grasses of VNP (low protein 

and high fibre content).  However, even the small seasonal difference in 

forage quality seems to affect the digestibility of grasses by blackbuck in VNP 

(Jhala 1997).  The increase in forage quality in the wet season results in a 

higher digestibility.  Consequently, in the wet season, blackbuck could spend 

a larger proportion of the hour feeding and a smaller proportion of time in 

resting/ruminating (thus, the resting/ruminating peaks are not prominent). 

 

Most studies on other species of ungulates (e.g., Jarman and Jarman 

1973, Klein and Fairall 1986, Twine 2002), including some on blackbuck 
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(Schaller 1967, Mungall 1978; except for Prasad 1985) reported distinct 

feeding peaks in a daily cycle, with an intensive feeding peak in the early 

morning period.  The description of activity patterns of blackbuck by Prasad 

(1985) was not clear due to the following reasons: feeding activity was 

reported to be less than 30% during most hours of the day, in all the seasons, 

which is exceptionally low as compared to other studies on ungulates (Jarman 

and Jarman 1973, Mungall 1978, Arnold 1985, Bunnell and Gillingham 1985, 

Bunnell and Harestad 1989, Owen-Smith 2002).  Prasad (1985) observed 

feeding peaks during noon and evening in the monsoon; in early morning, 

noon and evening in winter; and feeding activity was more or less constant 

until noon and evening (afternoon activity was not recorded) in the dry 

season.  Activity was not sampled in the early morning hours in monsoon and 

consequently, the early morning feeding peak may have been missed out. 

 

Cyclical pattern of activity with alternating feeding and ruminating 

phases as observed for blackbuck in this study, have been reported in several 

other species of ungulates such as impala, Aepyceros melampus (Jarman 

and Jarman 1973, Klein and Fairall 1986), greater kudu, Tragelaphus 

strepsiceros (Owen-Smith 1998), black wildebeest, Connochaetus gnou 

(Twine 2002), and blesbok, Damalicus dorcas (Klein and Fairall 1986, Twine 

2002).  Schaller (1967) and Mungall (1978) have also described similar 

cyclical activity patterns for blackbuck.  Schaller (1967) and Mungall (1978) 

reported that blackbuck spent most of the night-time lying down and resting, 

with a single feeding peak between 2:00 and 4:00 hrs and that too with only a 

small proportion of animals feeding.  A similar night-time feeding peak has 

also been reported for impala (Jarman and Jarman 1973) and greater kudu 

(Owen-Smith 1998) in Africa.  Night-time activity was not examined in the 

present study.  However, it was observed that the blackbuck herds would 

congregate in open areas at dusk and largely stayed there until dawn.  Some 

feeding activity was noticed in the nights, but was limited to the peripheries of 

the open patches where they rested in the nights.  

 

Activity pattern of blackbuck in VNP seemed to have been 

synchronised with time of day and this was maintained in all the three 
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seasons.  There was an apparent out-of-synchrony in feeding and 

resting/ruminating activities in the cold season due to the later sunrise and 

early sunset during that season.  Feeding activity of ungulates is known to be 

greatly influenced by daylight and this could determine the beginning of 

feeding activity.  Impala began their daytime feeding activity with dawn since 

these animals depended on vision for detecting predators (Jarman and 

Jarman 1973).  Blackbuck, being an open habitat ungulate and preyed upon 

by mainly coursing predators, may depend on vision for predator detection 

(Schaller 1967, Mungall 1978, Ranjithsinh 1989).  Therefore, daylight could be 

the cue for blackbuck in VNP for beginning their feeding activity, which also 

starts the cycle of alternating between feeding and resting/ruminating 

activities. 

 

The air temperature did not seem to affect hourly feeding activity of 

blackbuck herds.  They showed a peak in feeding activity in the noon hours, 

even in dry season, when the ambient air temperature was very high (>40 oC).  

The apparently weak negative correlation observed between hourly feeding 

activity and air temperature is a statistical artefact, because of the early 

morning and late evening feeding peaks when temperatures were low and the 

trough in feeding during afternoon when temperatures were high.  These 

peaks and troughs are probably due to the cycling pattern of activity rather 

than related to temperature.  Many desert mammals (including ungulates) 

inhabiting hot tropics and arid areas are adapted to high temperature 

(Schmidt-Nielsen 1972, Taylor 1972).  They have various physiological 

adaptations by which they are able to withstand higher ambient temperatures 

than otherwise possible.  Studies on influence of ambient temperature on 

feeding activity of other tropical ungulates (impala – Jarman and Jarman 

1973; greater kudu – Owen-Smith 1998, black wildebeest and blesbok – 

Twine 2002) also suggest that the effect of temperature is small and the 

animals are not greatly influenced by high daytime temperature.  All these 

species showed substantial feeding activity even when the ambient 

temperatures were high.  
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 A large proportion of daytime was spent feeding by blackbuck herds in 

all the three seasons.  In addition, the time invested in feeding activity and the 

daily distance moved did not change much among seasons.  The overall time 

spent foraging typically ranged between 40-70% for grazing ungulates 

(Jarman and Jarman 1973, Arnold 1985, Bunnell and Gillingham 1985, 

Hudson and Frank 1987, Bunnell and Harestad 1989, Owen-Smith 2002).  

The dominant species of grasses found in VNP are perennial.  The protein 

content of grass is low and fibre and silica content of grass is high in VNP 

(see Chapter 4).  Blackbuck in VNP may need to forage for long periods to 

meet their energy and protein demands from the low quality forage.  A higher 

time spent feeding during low forage quality periods and habitats have been 

found for many other ungulate species both in tropical and temperate areas 

(Jarman and Jarman 1973, Jarman 1974, Van Soest 1982, Bunnell and 

Gillingham 1985, Hudson and White 1985, Bunnell and Harestad 1989, 

Robbins 1993, Berteaux et al. 1998, Owen-Smith 1998).  Jarman and Jarman 

(1973) found that impala (A. melampus) spent more time feeding in Serengeti 

as the forage quality fell.  There was a higher utilisation of the fibrous foods in 

impala by the increase in the rumen volume without a reduction in the gut 

passage rate (Hofmann 1984, Klein and Fairall 1986).  This has also been 

reported for greater kudu (T. strepsiceros) in South Africa, where it includes 

less palatable forage species in its diet, in addition to an increase in the 

digestive capacity to accommodate higher forage intake (Owen-Smith 1994).  

Blackbuck is a medium sized antelope with an average adult female weight of 

about 23-30 Kg and male weight of about 35-40 kg (Mungall 1978) and is a 

mixed feeder, but primarily feeds on grass (Prasad and Rao 1984, Bunnell 

and Harestad 1989, Jhala 1997).  They do exhibit seasonal shifts in diet 

(Schaller 1967. Mungall 1978, Chattopadhyay and Bhattacharya 1986, Jhala 

1997), but in VNP this happens only during the short monsoon period when 

other species of annual grass and forbs become available and in summer 

they feed on P. juliflora pods (Jhala 1997).  Therefore, to get the required 

energy and protein from the low quality forage in VNP, blackbuck may need to 

spend a large proportion of time feeding.  
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  In both tropical and temperate ruminants, digestible energy and protein 

are two factors that are major determinants of the time investment in feeding 

activity (Owen-Smith and Novellie 1982, Arnold 1985, Bunnell and Gillingham 

1985, Demment and Van Soest 1985, Hudson and White 1985, Robbins 

1993, Berteaux et al. 1998, Mysterud 1998).  Ruminants are expected to 

modify their time investment in feeding corresponding to digestible energy and 

protein content of forage.  There is increased digestibility of grasses for 

blackbuck in VNP in the wet season as compared to dry and cold seasons 

(Jhala 1997).  Consequently, the energy gain for blackbuck per unit time 

feeding would be lower in dry and cold seasons than wet season.  Therefore, 

blackbuck should feed more in dry and cold seasons.  However, time 

investment in feeding in dry and cold seasons was lower than wet season by 

10-15% (Fig. 5.5).  It is most probably because the lower quality forage 

means more time needed for digestion/rumination and thereby a lower 

percentage of time could be spent feeding.  Also, in the wet season, 

blackbuck would feed much despite higher digestibility and convert extra 

energy as body reserves to meet future reproduction and lactation costs 

(Oftedal 1985, Robbins 1993).  

 

The time investment in feeding by blackbuck did not seem to be 

influenced by either grass biomass or protein content of grass.  This is 

probably because, firstly, the blackbuck spent a large proportion of time 

feeding in both periods: low forage abundance and quality (dry and cold 

seasons) and high forage abundance and quality (wet season).  In the low 

forage quality period, blackbuck needed to spend a large percent of time 

feeding because of low digestibility of forage, and in the high forage quality 

period, blackbuck spent a large percent of time feeding that enabled them to 

put on body reserves.  Secondly, the magnitude of change in forage quality 

among seasons was rather small (a maximum of 2.3% change in crude 

protein among all pairs of seasons; see chapter 4) and this small change in 

quality is not expected to change the time investment in feeding greatly.  

Therefore, a statistically discernible relationship could not be seen between 

time investment in feeding and the forage-related explanatory variables.  
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However, a finer-scale assessment of both feeding activity and forage quality 

than done here may reveal any existing relationships.   

Such a lack of influence of forage quantity and quality on time spent 

feeding was also reported in other ungulates.  For greater kudu, the 

consumption rate (likely to indicate time spent feeding) was not influenced by 

the changing food abundance (Owen-Smith 1994).  Also, it has been 

observed that as the abundance and quality of forage increased, feeding 

activity would still be high, although time spent in searching for good quality 

food would decrease (Bunnell and Gillingham 1985).  The processing 

efficiency of the rumen would also be high when the forage becomes more 

digestible and there would be increased energy gain by which ungulates could 

build body reserves for energy demanding processes of reproduction or 

lactation (Hudson and White 1985, Robbins 1993, Schimdt-Nielsen 1997).  

Further, Spalinger and Hobbs (1992) suggest that the feeding time (intake or 

consumption rate) would be limited by physiological and morphological 

attributes (rumen capacity and bite size) rather than by changing biomass, 

because the maximum intake rate would be limited by these attributes. 
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5.5. SUMMARY 

• I studied the daily activity patterns and time budgets of blackbuck in VNP.  

I compared the seasonal changes in daily activity patterns, time 

investment in feeding and resting/ruminating activities and examined if 

these were influenced by changes in air temperature, forage quality and 

quantity. 

• Activity of blackbuck was sampled using scan sampling.  Each season, 

three herds were followed from dawn to dusk and their daily activities were 

studied and distance moved was measured.  Temperature was measured 

using an automatic temperature logger placed in grassland.  Forage 

variables (grass biomass and moisture content as a correlate of crude 

protein content) were measured in eight plots (0.5m x 0.5m) from the 

foraging range of each blackbuck herd in each season. 

• A large proportion of blackbuck spent their time in feeding activity during 

many hours in all seasons.  Blackbuck showed intensive feeding activity in 

the early morning, afternoon and late evening periods.  Feeding activity 

was lower in midday in the dry season, but was higher throughout midday 

and evening in the wet season.  Hourly changes in resting/ruminating 

activity had a pattern reverse to that of feeding activity in all seasons.  

Moving activity was higher in late morning hours of dry season and was 

lower during late afternoon and evening hours in wet season. 

• Blackbuck spent a major part of the day feeding in all seasons.  66%, 

80%, and 69% of daytime was spent feeding in dry, wet and cold seasons, 

respectively.  Feeding, resting/ruminating, and moving activities of 

blackbuck did not show significant seasonal differences, but showed 

significant differences among periods of day. 

• Daily activity of blackbuck showed a cyclical pattern, mainly alternating 

between feeding and resting/ruminating activities.  There were three 

feeding peaks and two resting/ruminating peaks during daylight hours.  

This cyclical pattern was similar in all seasons, except in wet season, 

when the midday resting/ruminating peak was not prominent.  This could 

have been because of higher digestibility of forage available in that 
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season, which might have required less rumination time and allowed more 

feeding time.   

• Blackbuck continued to feed during periods of day even when 

temperatures were high and thus the air temperature did not seem to 

affect feeding activity.  The weak negative correlation observed could be a 

statistical artefact, because of the early morning and late evening feeding 

peaks, when temperatures were low and the trough in feeding during 

afternoons, when temperatures were high. 

• Time investment in feeding activity by blackbuck did not seem to have a 

significant relationship with the forage variables.  This was probably 

because blackbuck spent a large proportion of time feeding in both 

seasons of low and high forage quality and abundance.  Also, the 

magnitudes of changes in forage quality among seasons were not large (a 

maximum of 2.3% change in crude protein among all pairs of seasons) 

and therefore it may not have been a strong factor to influence changes in 

time investment in feeding.  It is also possible that blackbuck in VNP were 

influenced more by intake rate, rumination time and other limitations posed 

by morphological and physiological attributes, rather than by seasonal 

differences in forage quality and quantity. 
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CHAPTER 6.  EFFECTS OF GRASS HARVESTING AND 

GRAZING (BIOMASS REMOVAL AND FERTILIZATION) ON 

GRASSLAND PRODUCTIVITY AND GRASS QUALITY 

 

6.1.  INTRODUCTION 

Studies have shown that the effects of ungulates on plants are profound and 

cascade through all trophic levels (McNaughton 1977, 1979, 1985, Detling 

1988, Hobbs 1996).  Hobbs (1996) describes ungulates as not merely outputs 

of ecosystems but as important regulators of ecosystem processes.  

Research by various investigators in different continents have shown that the 

ungulates modify the environment for plants and many other organisms 

(Caughley 1976, McNaughton 1977, 1979, 1985, 1988, 1990, Cumming 1982, 

Detling 1988, Milchunas et al. 1988, Day and Detling 1990, Frank and 

McNaughton 1992, Milchunas and Lauenroth 1993, Owen-Smith 1994, 2002, 

Hobbs 1996, Frank 1998).   

 

Although grassland community structure is largely determined by 

edaphic and other environmental factors, large mammalian herbivores do 

exert a strong influence on the processes and functions of the ecosystem 

(McNaughton et al. 1988, Ruess and Seagle 1994, Hobbs 1996, Ritchie et al. 

1998).  Ungulate influence in ecosystems, specifically grassland and savanna 

ecosystems range from nutrient cycling, litter decomposition, altering 

productivity and nutritive quality of grasses, species composition and 

community structure.  Ungulate grazing removes the more mature tissues 

from the top of the grass stands and promotes growth at the basal meristems.  

Increased penetration of light by the removal of mature tissues from the top 

increases photosynthetic rate by increasing photosynthate allocation to shoot 

growth, and increases tillering (lateral bud) growth (Hilbert et al. 1981).  

Ungulates affect the cycling of nutrients directly and indirectly.  By grazing, 

they facilitate movement of Nitrogen from below ground to above ground parts 

(Detling 1988, Ruess and Seagle 1994, Hobbs 1996).  They raise the level of 

soil nutrients locally by adding urine and faeces.  85-90% of Nitrogen in 

grasslands is recycled in the form of urine and added to the soil in a readily 
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absorptible form for plants (Day and Detling 1990, Ruess and Seagle 1994, 

Hobbs 1996).  Patchy use by ungulates also regulates the distribution of 

nutrients spatially (McNaughton et al. 1988, Day and Detling 1990, 

McNaughton 1990).   

 

Extensive studies on grassland-ungulate interactions have been done 

in Africa (McNaughton 1977, 1979, 1985,1988, 1990, Weber et al. 1998), 

North and South America (Day and Detling 1990, Frank and McNaughton 

1992, Chaneton et al. 1996, Frank 1998, Frank and Groffman 1998).  These 

studies have shown that ungulate diversity, their foraging behaviour and 

varied intensities of their grazing affect the phenology, productivity, and 

quality of grasslands.  Selective or non-selective grazing affects the 

competitive interactions between plant species and this may change the ratio 

of palatable to non-palatable species, and may even result in the 

transformation of a perennial grassland to an annual one (Detling 1988, 

Hobbs 1996, Van de Koppel et al. 1997).  An important aspect to be 

considered by studies on grassland-grazing interactions is the grazing history 

of grasslands and their co-evolution with grazing ungulates, both wild and 

domestic (McNaughton 1985, Milchunas et al. 1988, Frank and McNaughton 

1992).  The grazing history would have a large impact on the physiognomy of 

the grassland and would determine their ability to support grazing.  For 

example, tillering response to grazing would largely depend on the growth 

form and grazing history of the grass species (Milchunas et al. 1988). 

 

Results from studies on effects of herbivore grazing on plant 

productivity, regrowth and mineralization processes have been varied.  

However, it is established that under moderate levels of grazing coupled with 

appropriate environmental conditions, plants respond positively to herbivore 

grazing by increasing productivity and improving their quality (McNaughton 

1977, 1985, Detling 1988, Hobbs 1996, Weber et al. 1998).  On the other 

hand, it has also been shown that high densities of wild herbivores and 

overstocking of domestic livestock that depend on natural and cultivated 

rangelands for fodder, have had irreversible detrimental effects on rangelands 

(Sinclair and Fryxell 1985, Van de Koppel et al. 1997, Weber and Jeltsch 
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2000, Verchot et al. 2002).  Since many terrestrial grazing lands are known to 

be extremely vulnerable to effects of grazing pressure (Van de Koppel et al. 

1997), it is important to understand the impact of grazing on remnant 

protected grasslands such as the one in VNP.  Livestock population in India 

was 464.5 million in 2003 and the fodder requirement was projected to be 

632.6 million tonnes against an availability of dry and green fodder of about 

550 million tonnes (URL: http://www.indiastat.com, September 2004).  Under 

such a scenario, the last remaining grasslands would face a high pressure 

from grazing.  Much less than needed is known of the ecology of grasslands 

and the roles of large herbivores in such ecosystems in India.  Understanding 

the dynamics of grasslands and the ecological processes that are involved 

are necessary to effectively manage both native and cultivated grassland 

systems (Boyce 1998, Sinclair 1998).  Protected grasslands such as VNP 

could act as baselines for such an understanding.  Also, to manage such 

remnant grassland habitats that support a variety of wild animals, it is 

necessary to know the kind and magnitude of effects of grass harvesting and 

grazing would have on the grasslands and thereby to set limits to the 

permissible levels of harvesting or grazing. 

 

VNP is a semi-arid grassland which has been a grazing land for at 

least several decades (Ranjithsinh 1989).  It was declared a protected area in 

1969 and since then the cattle grazing has been minimal inside the Park.  The 

large herbivores that depend on the grasses of VNP are blackbuck (Antilope 

cervicapra), nilgai (Bosephalus tragocamelus) and the occasional cattle and 

buffaloes that belong to neighbouring villages.  Other areas of the Bhal region 

outside VNP are a stark contrast to VNP in that they are heavily grazed and 

trampled and are barren for most part of the year.  Stocking densities of 

livestock are high in this region (livestock population of Gujarat State and 

Bhavnagar District in 2003 were 14,322,591 and 648,432 respectively), and a 

large proportion of human population depend on livestock rearing for 

livelihood (URL: http://www.indiastat.com, September 2004).  Due to high 

pressure for fodder from the local communities, the Park management allows 

harvesting of grass in selected patches in the grassland area of VNP, by 

people from the neighbouring villages in January and February.  
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I studied the effects of above-ground biomass removal and simulated 

grazing (biomass removal along with urine fertilisation) on the above-ground 

productivity and quality of grasses (in terms of Nitrogen content) in the 

Dicanthium annulatum dominated grassland in VNP.  D. annulatum is a highly 

palatable species of grass (remains palatable throughout the year; 

Dabadghao and Shankarnarayan 1973) and is the dominant grass species 

eaten by ungulates in VNP (Jhala 1997).  I assessed the effects of different 

intensities of biomass removal and simulated grazing on above-ground 

biomass productivity and Nitrogen content of these grasses in VNP by way of 

an experiment.   

 

The research hypotheses that I tested are:  

• There would be higher biomass production and Nitrogen content in 

grasses in moderately harvested or grazed areas than in ungrazed areas.   

• The above ground grass productivity and quality (Nitrogen content) would 

be higher at low and medium levels of removal of biomass and lower at 

high level of removal of biomass.   

• The above-ground grass productivity and quality (Nitrogen content) would 

be higher at low and medium levels of simulated grazing and lower at high 

level of grazing.   

• Grazing treatment would have higher productivity and quality of above-

ground biomass as compared to comparable levels of clipping (harvesting) 

alone.  
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6.2.  METHODS 

 

Exclosure layout  

The study area was divided into 12 equal sized blocks (size approx 0.8 km x 

0.8 km).  Within each block, grassland patches dominated by D. annulatum 

were identified and exclosures were randomly placed within the patches.  One 

exclosure (size 3m x 2m) in each block was constructed with a wire mesh 

(size 10cm x 10cm) of electroplated 10-gauge wire, totalling to 12 exclosures 

in the study area.  Within each exclosure, the treatment plots were 

systematically demarcated with a distance of 20 cm between them.  Also a 

distance of 20 cm was kept from the exclosure fence to the experiment plots.  

The height of the exclosures were kept at approximately 1.65m (5.5 feet) to 

prevent large ungulates from grazing the enclosed area (Plate No. 7a).  The 

plots were marked with metal tags to identify specific treatments.  All the 

treatment plots were harvested to the ground level before the arrival of 

monsoon rains (in May each year).  The size of the plots in the first 

experiment year (2000) was kept at 0.25m x 0.5m and in the second year 

(2001-02), the plot size was increased to 0.5m x 0.5m, to reduce the 

variability in the data. 

 

Experimental treatments  

The experiment consisted of examining the effect of three different levels of 

clipping and simulated grazing on above-ground productivity and nutritional 

quality of grasses.  Clipping meant above-ground biomass removal and 

grazing included clipping along with fertilisation by synthetically prepared 

bovine urine.  I selected six treatments that corresponded to high, medium 

and low intensities of clipping and grazing.  High intensity clipping involved 

removal of biomass of up to 80% of what was standing in a plot; medium 

involved removal of 50% biomass; and low involved removal of 10% biomass.  

In the grazing plots, bovine urine proportional to the clipping intensity (see 

below) was applied.  Two randomly laid plots in each block were harvested 

each month during the entire experiment period to measure the standing 

above-ground biomass.  Care was taken that these plots were placed only in 
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ungrazed areas.  If a plot fell in an area with signs of grazing, it was discarded 

and a fresh plot was placed randomly and harvested. 

 

I clipped grass biomass corresponding to the different treatment levels 

by visual estimation.  For this, I first calibrated my visual estimation by the 

following method.  Before beginning the experimental treatments, 30–50 plots 

were laid each month in all exclosure areas and covering localities with 

varying grass heights and clump sizes and the above-ground grass biomass 

in the plots were visually estimated.  Then the plots were completely 

harvested and the total fresh biomass measured.  I calibrated my visual 

estimates with the actual measurements and thus got trained to estimate 

above-ground grass biomass visually.  I continued the calibration until I was 

able to estimate the total fresh above-ground biomass in a plot to the nearest 

5gms.  During the experiment, I visually estimated total biomass in the 

treatment plots and then clipped the grass in increments and measured them 

so that the biomass clipped equals the treatment level (10% of total biomass 

for low-intensity clipping, etc.).  I thus, clipped grass to the specific level 

required by the different treatments.  The experiment was done for two years 

(2000 and 2001-02) in the grass-growing season in VNP and treatments were 

same for both the years.  In 2000 experiment, treatments were applied 

monthly from August 2000 until December 2000 when the final harvest was 

done.  The period of 2001-02 experiment was modified so as to cover the 

grass-growing period that extended beyond December.  Due to heavy rains 

and inundation of the grassland in August 2001, the experimental treatments 

were first measured in September 2001 and the next set of treatments were 

done in October 2001.  After October, the grass was allowed to grow for two 

months and treatment was applied in December 2001.  The final harvesting 

was done in the first week of March 2002.  Due to lack of space inside the 

exclosures, the medium clipping treatment (biomass removal at 50%) was not 

done in 2001-02 experiment.  The grass communities were dominated by D. 

annulatum and were similar in all the treatment plots.  
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Application of bovine urine (as fertiliser) 

Synthetic bovine urine was prepared as described by Day and Detling (1990).  

The chemicals used to prepare a one-litre stock solution were urea (13.65 g), 

magnesium chloride (0.76 g), magnesium sulphate (0.73 g), calcium chloride 

(0.09 g), potassium chloride (7.02 g), potassium bicarbonate (6.83 g), and 

sodium chloride (1.21g).  These chemicals with the respective weights were 

dissolved in one-liter distilled water in a volumetric flask to make a stock 

solution.  This solution with different dilutions was used for fertilising the 

different treatment plots. The total volume of the fertiliser solution that was 

applied was kept constant at 1.2 l/ m2, but the urine concentration differed.  

For high intensity grazed plots (clipped plus fertilised) 800 ml/m2 urine 

concentration was applied; for medium intensity grazed plots 400 ml/m2 urine 

concentration and for low intensity grazed 100 ml/m2 urine concentration were 

applied.  The amount of urea (NH2CONH2) that would have got added to the 

treatment plots via urine was 10.92 g/m2 (2.54 g of Nitrogen/m2) for high 

intensity grazed treatment; 5.46 g/m2 (1.27 g of Nitrogen/m2) for medium 

grazed treatment; and 1.4 g/m2 (0.33 g of Nitrogen/m2) for low grazed 

treatment.  The stock solution of the fertiliser was prepared fresh just before 

the time of application.  The fertiliser application was done on the plots after 

sunset, to reduce volatilisation of the components (especially urea) of the 

fertiliser. 

 

Laboratory analysis 

The fresh biomass was measured with a Pesola spring balance or an 

electronic balance (OHAUS).  The samples were dried to constant weight in 

an oven (at less than 60 oC) and dry weights were measured.  The dried 

samples were ground and stored in airtight bags in the field for later laboratory 

analysis.  Grass samples from three randomly selected plots for each 

treatment in each month and samples from three standing biomass plots each 

month were analysed for Nitrogen content.  The ground and dried samples 

were made to pass through 1mm mesh screen (stainless steel) of a Wiley mill 

in the laboratory.  The samples were analysed for Nitrogen content by the 

micro-Kjeldahl method (AOAC 1990).  Samples were digested in a digestive 
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mix containing 1.5g of 9:1 K2SO4 (pottassium sulphate): CuSO4 (copper 

sulphate) and digestion was done in a digestion chamber for ≥ 6 hours at 375 
oC in 6 ml of sulphuric acid and 2ml of hydrogen peroxide.  The digested 

acidic sample was distilled and the gaseous ammonia was collected in boric 

acid.  It was then titrated against 0.1 Normal sulphuric acid with a double 

indicator of bromo-cresol-green and methyl red in a 3:1 ratio.  The titre value 

was used to calculate Nitrogen content of the sample. 

 

Statistical analysis 

The accumulated above-ground biomass (sum of biomass removed each 

month and the biomass harvested at the end of the experiment) was used as 

a response variable for comparisons.  Standing biomass was not used for 

comparison with treatment plots, as they were not considered true controls.  

Therefore, statistical tests were done only for comparing the effect of different 

treatments on biomass productivity and Nitrogen content of grasses.  For the 

year 2000 experiment, December 2000 standing biomass (which was the 

highest monthly standing biomass for that experiment period) was compared 

(graphically) with the accumulated biomass in the different treatments.  

Similarly, for the 2001-02 experiment, September 2001 biomass (which was 

the highest monthly standing biomass during the experiment period) was 

compared with accumulated biomass in the treatments graphically.  March 

2002 standing biomass was much lower than the maximum biomass 

(September 2001) produced in the study area during the experiment period 

(probably because of withering, litter fall or herbivory).  Nitrogen content of 

grasses, that is % Nitrogen, was translated into Nitrogen g/m2.  The % 

Nitrogen was calculated as the average of the three samples analysed in the 

laboratory for each month and converted to Nitrogen g/m2 using the following 

formula: Nitrogen (g/m2) = % Nitrogen x biomass (g/m2)/100.  Then, using 

these Nitrogen g/m2 values, the accumulated Nitrogen was calculated and 

used in statistical analysis, for testing the effect of treatments on Nitrogen 

productivity. 
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To examine the effect of various experimental treatments on 

accumulated above-ground biomass and Nitrogen content, an Analysis of Co-

variance model (ANCOVA) was used.  Although I had harvested all the 

treatment plots before monsoon rains (in May) in both the experiment years to 

reduce the factors that may confound treatment effects, I could not control for 

the already existing grass clumps with established roots.  Since root biomass 

and associated variables could not be measured, I estimated grass cover (% 

of the plot area covered by grass) in the treatment plots visually and used the 

grass cover as a covariate in the ANCOVA model to correct for variability in 

the density of grass in different treatment plots.  Post-hoc pair-wise 

comparisons were made with Tukey’s HSD test (Sokal and Rohlf 1995).  In 

addition to ANCOVA analysis, I also compared treatment effects with a t-test 

for paired comparisons (Sokal and Rohlf 1995).  I controlled for the variation 

in local conditions of each exclosure area, by standardising the treatment 

biomass with the maximum monthly standing biomass in that exclosure area 

(accumulated biomass in treatment plots - maximum monthly standing 

biomass) and conducted paired t-tests between pairs of treatments.  Finally, 

to test for concordance of treatment effects in both the experiment years, a 

Kendall’s tau-b rank correlation was done (Sokal and Rohlf 1995).  For all 

statistical hypothesis testing, α = 0.05 was used. 
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6.3. RESULTS 

There was high variability in accumulated above-ground biomass among plots 

in all the treatments during the experiment year 2000 (Fig. 6.1a).  Medium 

grazed (clipped plus fertilised) had comparatively low variability, followed by 

high grazed.  Treatment plots had higher accumulated biomass as compared 

to the standing biomass in the study area during the month of maximum 

biomass (December 2000; Fig. 6.1b).  However, there was no appreciable 

difference in accumulated biomass among the different treatments.  Even 

after controlling for grass cover (covariate; r2 = 0.3, P < 0.001), the differences 

in means of biomass among treatments during the experiment year 2000 

were not statistically significant (ANCOVA, F (5, 65) = 0.29, P = 0.92). 

 

During the year 2001-02 experiment, there was again high variability in 

accumulated above-ground biomass among plots in all the treatments (Fig. 

6.2a).  Standing above-ground biomass in the study area during the month of 

maximum biomass (September 2001) had relatively low variability and had 

two outliers.  It also was much lower as compared to the accumulated 

biomass in the treatment plots (Fig. 6.2b).  The accumulated above-ground 

biomass was lower for low clipped and low grazed treatments as compared to 

the other treatments (Fig. 6.2b).  After controlling for the grass cover 

(covariate; r2 = 0.1, P = 0.02), the differences in means of accumulated 

biomass among treatments were found to be statistically significant 

(ANCOVA, F (4, 49) = 2.54, P = 0.05).  Post-hoc pair-wise comparisons 

(Tukey’s HSD test) showed that the differences between 3 pairs of treatments 

were statistically significant (Table 6.1).  However, the 95% CI of the 

differences (effect sizes) were very wide, resulting in an ambiguity about the 

true magnitude of differences.  Paired t-tests showed that the difference in 

biomass between all pairs of treatments were not statistically significant for 

both the experiment years (Table 6.2). 
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Table 6.1.  Differences in the means of accumulated biomass (g/m2) and 
accumulated Nitrogen in grasses (g/m2) among various treatments during the 
experiment year 2001-02 (May 2001 to March 2002).  Results of post-hoc 
pair-wise comparisons (Tukey’s HSD test) and the 95% Confidence Intervals 
of effect sizes are given (only the results that are significant at a = 0.05 are 
given here).  
 

95% Confidence 
Interval of effect 

size 

Variables  Comparisons between 
treatments a 

Effect Size 
(difference in 
means) ± 1 

SE 

P 
value 

Low High 
High clipped - Low 

clipped 
(758.67 - 557.71) 

200.96 
(± 81.82) 

0.018 36.52 365.39 

High clipped - Low 
grazed 

(758.67 - 585.54) 

173.13 
(± 78.82) 

0.033 14.73 331.53 

Grass 
biomass 
(g/m2) 

 

Medium grazed – Low 
clipped 

(737.48 - 557.71) 

179.76 
(± 82.61) 

0.034 13.74 345.79 

High clipped - Low 
clipped 

(4.47 - 3.60) 

1.1 
(± 0.48) 

0.027 0.130 2.070 

High clipped - Low 
grazed 

(4.47 - 3.05) 

1.56 
(± 0.46) 

0.002 0.626 2.494 

High grazed - Low 
grazed 

(4.27 - 3.05) 

1.44 
(± 0.470) 

0.004 0.498 2.389 

Nitrogen 
in grass 
(g/m2) 

 

Medium grazed - Low 
grazed 

(3.98 - 3.05) 

0.976 
(± 0.462) 

0.04 0.047 1.903 

a Treatment means are given in parentheses 
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Table 6.2. Differences in accumulated grass biomass (g/m2) between pairs of 
treatments in both years of the experiment.  Results of paired t-test and 95% 
Confidence Intervals of effect sizes are given. 

95% 
Confidence 

Interval of effect 
size 

Experiment 
year 

Comparison between pairs of 
treatments a 

Effect size 
(difference 
in means) 

± 1SE 

T  P  

Low High 

Low grazed - Medium grazed 

(144.6 - 168.6)  

24  

(± 44.8) 

0.53 0.6 -74.6 122.68 

Low grazed - High grazed 

(144.6 - 218) 

73.3 

 (± 36) 

2.03 0.06 -5.91 152.57 

Medium grazed - High grazed 

(168.6 - 218) 

49.3 

 (± 40.8) 

1.2 0.25 - 40.6 139.24 

Low grazed - Low clipped 

(144.6 - 179.3) 

34.6  

(± 50) 

0.7 0.5 -75.2 144.61 

Medium grazed - Medium 

clipped 

(168.6 - 152) 

16.6  

(± 52.5) 

-0.31 0.75 -132.3 99.02 

2000 

High grazed - High clipped 

(218 - 128) 

90  

(± 49.4) 

-1.81 0.09 -198.9 18.93 

Low grazed - Medium grazed 

(231.3 - 376) 

144.7  

(± 73.7) 

1.96 0.07 -19.58 309 

Low grazed - High grazed 

(231.3 - 329.1) 

97.8 

 (± 74.1) 

1.32 0.21 -67.45 263 

Medium grazed - High grazed 

(376 - 329.1) 

47 

 (± 100) 

-0.47 0.65 -269.8 176 

Low grazed - Low clipped 

(238.2 - 231.8) 

6.4  

(± 78.3) 

-0.08 0.93 -183.7 170.9 

2001-02 

High grazed - High clipped 

(329.1 - 365.8) 

36.7 

 (± 60.1) 

0.61 0.55 -97.3 170.7 

a Treatment means are given in parentheses 
 
 

Differences in the means of accumulated Nitrogen in grass (% Nitrogen 

x biomass) among treatments during the experiment year 2000 were not 

statistically significant (ANCOVA, F (4, 54) = 0.41, P = 0.8).  However, the 

differences in the means of accumulated Nitrogen in grass among treatments 

during the experiment year 2001-02 were found to be statistically significant 

(ANCOVA, F (4, 48) = 3.8, P = 0.01).  The differences were statistically 
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significant for 4 pairs of treatments (Table 6.1): between high clipped and low 

clipped; high clipped and low grazed; high grazed and low grazed; and 

medium grazed and low grazed.  As expected, the treatment effects were 

similar for both accumulated Nitrogen and accumulated biomass during both 

the experiment years.  Since % Nitrogen was converted to Nitrogen g/m2 by 

multiplying with biomass, the effects of treatments, if any on % Nitrogen, 

independent of biomass, could not be ascertained from this analysis.  

Therefore, to assess this, mean nitrogen content (% Nitrogen) in the different 

treatments were compared (Figs. 6.3, and 6.4).  In the experiment year 2000, 

the Nitrogen content of grasses from standing biomass plots was lower than 

all the treatments in all the months, since the first month of treatment (August 

2000) until the final month (December 2000; Fig. 6.3).  However, there was no 

such consistent difference in % Nitrogen among the different treatments.  

When compared within months, there was no statistically significant difference 

among the treatment means (%Nitrogen).  In the experiment year 2001-02 

too, the treatment effects on %Nitrogen were similar to the experiment year 

2000 (Fig. 6.4).  Nitrogen content of standing biomass plots was lower than all 

the treatments in all the months; and the differences among treatments were 

not consistent.  In December 2001, Nitrogen content of high clipped and high 

grazed plots could not be measured, as there was limited growth in those 

plots.  In the experiment year 2001-02, when compared within months, there 

was no statistically significant difference among treatment means 

(%Nitrogen). 

 

The rank order correlation coefficient as a measure of concordance 

among the treatment effects of the experiments in both the years were, 

Kendall’s tau b = –0.2, P = 0.6, and N = 5 for biomass, and Kendall’s tau b = 

0, P = 1, and N = 5 for Nitrogen.  This shows an absence of agreement in the 

results of the experiments in the two years, for both the variables (biomass 

and Nitrogen). 
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Fig. 6.3.  Nitrogen content of grasses (% Nitrogen) in the different treatment 
plots during year 2000 experiment.  Nitrogen content of grasses in the 
standing biomass plots for each month is given for comparison (circles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.4. Nitrogen content of grasses (%Nitrogen) in the different treatment 
plots during year 2001-02 experiment.  Nitrogen content of grasses in the 
standing biomass plots for each month is given for comparison (circles). 
Nitrogen content of high clipped and high grazed treatments were not 
measured in December 2001 (see Results).
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6.4.  DISCUSSION 
 

Clipping and grazing treatments (of all levels) increased above-ground grass 

biomass productivity and Nitrogen content of grasses.  However, there were 

no appreciable differences in the effects of treatments on both the variables 

(biomass and Nitrogen content of grasses) among the different treatments.  

Additionally, the effects of treatments were not consistent in the two years of 

the experiment.  Overall, there was a high variability in the data and the 

differences among treatments were small, leading to equivocal results.  

 

        Above-ground grass biomass productivity in all the treatments 

were higher as compared to standing biomass (controls), in both the 

experiment years.  Similarly, Nitrogen content of grasses (%Nitrogen) were 

higher in all the treatments than that of grass from standing biomass plots.  

Grazing by ungulates is known to increase grass productivity and Nitrogen 

content in grass (McNaughton 1977, 1985, Day and Detling 1990, Hobbs 

1996, Augustine and McNaughton 1998, Frank and Groffman 1998).  

Defoliation (harvesting) also increases grass biomass productivity to some 

extent (Detling 1988, McNaughton 1985, Hobbs 1996).  When grass is grazed 

or harvested, there is facilitation of release of energy and nutrients from below 

ground parts of grass to above ground parts.   When ungulates graze, they 

add urine, which contains Nitrogen in a readily usable form (aqueous urea) to 

the ground, and thereby effect mineralisation (Day and Detling 1990, Hobbs 

1996, Augustine and McNaughton 1998, Frank and Groffman 1998).  85% of 

Nitrogen in ecosystems is known to be recycled as ungulate urine (Day and 

Detling 1990, Hobbs 1996).  Additionally, removal of mature tissues from the 

top level of grass increases light penetration to the basal meristems, which in 

turn increases their photosynthetic rate, and this coupled with the presence of 

moisture leads to an increase in productivity (Detling 1988, McNaughton 

1985, Hobbs 1996).  

 

Grasses in VNP were mostly perennial, clumps were mature, and there 

has been no heavy grazing or application of fire as a management tool.  

However, some harvesting of grass has been allowed as a part of Park 
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management’s eco-development programme (Plate No. 7b).  Therefore, grass 

productivity and Nitrogen content of grasses in VNP were expected to 

increase with grazing and harvesting, due to the above mentioned factors.  

However, there could be other unstudied physiological responses to grazing 

happening alongside (e.g., effect on root biomass productivity, loss of tissue 

Nitrogen etc., McNaughton et al. 1998, Ritchie et al. 1998).  Also, grazing and 

harvesting did not always promote growth.  Studies in rangelands and on 

grass species in the laboratory indicated that the response of grasses to 

grazing and biomass removal (harvesting) were highly varied and depended 

on several interacting factors, such as geographical location, species 

composition, productivity, consumption level, grazing history, type of grasses 

and grassland (C3, C4  grasses; tall or short grassland), etc. (Detling 1988, 

Milchunas et al. 1988, Milchunas and Lauenroth 1998, Heitschmidt et al. 

1999).  Milchunas and Lauenroth (1998), comparing data from many studies 

in various regions, found that grazing effects on biomass productivity were 

varied.  In their analysis of grassland studies, they found that productivity of 

the habitat and consumption levels affected the response of productivity to 

grazing.  When productivity of the grassland was high, the difference in 

biomass production between grazed and ungrazed sites was small.  Also, at 

higher levels of consumption, the difference in productivity between grazed 

and ungrazed sites was small.  Detling (1988) found that grass productivity in 

short and tall grass prairies (of both C3 and C4 grasses) was not affected by 

grazing, whereas, grasses in Northern mixed grass prairie and desert 

grassland showed varied responses.  In Northern mixed grass prairie, C3 

grasses showed a higher productivity in ungrazed patches, while C4 grasses 

showed a higher productivity in grazed patches.  In desert grasslands, C4 

grasses showed a higher productivity in ungrazed patches (Detling 1988).  

Similar to the result from northern mixed grass prairie, the C4 grass 

community of VNP showed increased productivity after grazing treatment.  

 

I found no significant differences among the different experimental 

treatments in both the years.  Low to medium levels of grazing or harvesting 

were expected to have higher productivity and quality of grasses, as 

compared to high levels of grazing or harvesting, as have been found in other 
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studies (McNaughton 1979, 1983, Detling 1988, Frank and McNaughton 

1992, Milchunas and Lauenroth 1993, Frank and Groffman 1998).  The 

grasses in Serengeti of eastern Africa had an increased biomass productivity 

and quality (Nitrogen content) with low to medium levels of grazing 

(McNaughton 1977, 1983, 1985, McNaughton et al. 1988).  However, high 

level of grazing affected grass productivity detrimentally and there was 

additional impact of trampling by the migratory wildebeest (Connochaetus 

taurinus).  Similar results were found in grasslands of Yellowstone National 

Park in North America (Frank 1998, Frank and McNaughton 1998).  In the 

present study, differences among treatments could not be seen clearly, and 

this seems to be largely due to the small effect sizes and high variability in the 

data.  Although I controlled for some of the sampling variability by harvesting 

all the treatment plots at the beginning of the experiment, so as to have 

similar starting points for all the plots in all the treatments, and further used 

grass-cover as a co-variate in an Analysis of Co-variance (ANCOVA) model, 

the variability was still high.  Further, I accounted for the variability in local 

environmental conditions of exclosure sites by standardising the treatment 

biomass value of each exclosure with the maximum standing biomass of that 

area, and conducted additional statistical analysis (paired t-tests).  However, 

the variability still remained high and the differences were not found to be 

statistically significant.   

 

I laid out the treatment replicate plots in 12 different exclosures spread 

out in the study area, to capture the variability in response to treatments, but 

this seemed to have contributed to the high variability in the data.  Many 

factors that influence productivity, such as local soil conditions, root biomass 

of grass clumps etc., may also have contributed to the high variability.  Some 

of these factors could potentially be controlled in future studies, by including 

them as co-variates and analysing the data in an ANCOVA type of model.  In 

an ANCOVA model, the effect of co-variates on response variables could be 

controlled retrospectively, and thus inclusion of co-variates would reduce the 

unexplained variation in the response variable (Underwood 1997).  However, 

some factors may still remain unknown because of the complexity of the 

system.  It would be best to do such experiments in completely controlled 
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conditions, such as the ones done by McNaughton and his colleagues for 

their Serengeti studies, where they reproduced natural conditions in the 

laboratory and supplemented lab studies to field studies (McNaughton 1979, 

McNaughton 1984, McNaughton et al. 1988, Frank and McNaughton 1992, 

Ruess and Seagle 1994, McNaughton et al. 1997, Williams et al. 1998).  

 

 In the present study, results of both years of the experiment were 

inconsistent.  The first year of the experiment was a drought year and second 

was a good rainfall year.  Although the difference in the inter-year rainfall 

would not have affected within-year comparisons of grass productivity and 

quality, the rainfall probably had influenced different grass response to the 

treatments in the two years and that perhaps has lead to inconsistent results.  

Rangelands are known to respond differently to external treatments in periods 

of drought and good rainfall (Heitschmidt et al. 1999).  I repeated the 

experiment in the second year so that results from the first year’s experiment 

could be confirmed and stronger inferences could be made.  But the 

discordant results indicate a need for further replication of the experiment or a 

redesigning of the experiment, improving on the drawbacks of the present 

design.  This study is a good example as to why whole experiments need to 

be replicated temporally and spatially, or complemented with laboratory work, 

before conclusions could be drawn on effect of treatments.  

 

Although it was shown that grazing and biomass removal (harvesting) 

did enhance productivity and quality of grasses in VNP, the upper limits to 

grazing and harvesting, so as to maintain the increased productivity and to 

control it from being over grazed/harvested, and consequently from becoming 

highly degraded, could not be determined.  Even in other parts of the world, 

despite long-term research and theoretical studies, there seems to be no 

unanimity on the thresholds to grazing and harvesting.  This is because the 

long-term effects of management practices and the complex interactions are 

still not completely understood (Friedel 1991, Laycock 1991, Glasscock et al. 

2005).  The long-term effects of different intensities of grazing and harvesting 

need to be known in VNP, but are beyond the scope of this study.  It would be 

imperative to assess the effects of grazing and harvesting in a comprehensive 
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way for better management and conservation of grasslands.  Grassland 

habitats like VNP are declining in size and are becoming endangered in India 

and elsewhere in the world (Van de Koppel et al. 1997).  With increasing 

pressure of humans and livestock on grasslands, it becomes important to 

scientifically manage the remaining grasslands.  This is needed to prevent 

them from being degraded completely as it happened in the grasslands of 

Sahel region of northern Africa, where sustained restoration work has also 

been largely unsuccessful (Sinclair and Fryxell 1985, Van de Koppel et al. 

1997).   

 

The unprotected areas outside VNP are completely overgrazed and 

barren, and are in stark contrast to the dense grassland inside the protected 

Park.  Because of low productivity, low Nitrogen levels, high soil salinity, 

frequent droughts, unimodal rainfall pattern, and a high stocking density of 

livestock in this region, there is a high pressure on the Park for fodder needs 

of local human communities.  However, before grazing or harvesting of grass 

is allowed in VNP, additional studies that address the effects of such practices 

on below ground productivity, long term effects on the habitat, and impacts on 

other components of the ecosystem become necessary.  In the studies 

carried out in similar semi-arid grasslands of western India (Singh et al. 1991), 

it was suggested that winter burning or moderate grazing could enhance 

productivity, but the authors have not considered the negative feedback 

effects, or other ecological processes that might get impacted by such 

practices.  Therefore, until the upper limits to grazing and harvesting, so as to 

maintain the enhanced productivity and quality are known, and other 

grassland dynamics are understood, it would be difficult to suggest ways to 

optimally manage these grasslands.  A conservative approach to 

management may be necessary until then. 
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6.5. SUMMARY 

• I studied the effects of harvesting (biomass removal) and simulated 

grazing (biomass removal along with urine fertilisation) on the above-

ground productivity and quality of grasses (in terms of Nitrogen content) in 

the Dicanthium annulatum dominated grassland in VNP, by way of an 

experiment.  

• Three levels of treatment – low, medium, and high intensities of harvesting 

(clipping) and grazing (clipping and fertilisation with chemically prepared 

bovid urine), were applied to plots in 12 exclosures distributed 

systematically in the study area.  The treatments were applied monthly 

and the experiment was done in the grass-growing season for two years 

(2000 and 2001-02).  The forage variables were measured and the effects 

compared among treatments and with the maximum standing biomass of 

the study area. 

• All harvesting and grazing treatments increased above-ground biomass 

and Nitrogen content of grasses (as compared to standing biomass), but 

there were no substantial differences among the different treatments.  The 

small effect sizes and high variability in the treatment plots seems to have 

rendered the effect of treatments on grass productivity and quality 

statistically not significant.  This is despite controlling for some of the 

variability by using grass cover as a co-variate.  Even when I accounted 

for variability in local environmental conditions of exclosure sites by 

standardising the treatment biomass of each exclosure with maximum 

standing biomass of the surrounding area, and conducted analyses using 

a paired t-test design, the magnitude of treatment effects remained 

uncertain. 

• It seems that there might have been unknown factors such as root 

biomass, and soil quality that confounded the effect of treatments and 

added to the variability, leading to equivocal results.  

• Although it was observed that harvesting and grazing did increase above-

ground productivity and quality of grasses, the upper limits to harvesting 

and grazing, so as to maintain the increased productivity, and at the same 

time to control it from being over-grazed or harvested and consequently 
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from becoming degraded could not be determined.  Therefore, before 

grazing or harvesting of grass is allowed in VNP, further studies on this 

aspect and studies that address the effects of such practices on below 

ground productivity, long term effects on the habitat, and impacts on other 

components of the ecosystem become necessary. 
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APPENDIX 1.  List of plant species recorded in VNP during the study period (2000-

2002). 

Name of  plant species Type of plant 
Perennials   

Acacia nilotica tree 

Aelulopus leugopoides herb 

Aristida funiculata grass 

Chloris barbata grass 

Dactylotenium aegyptum grass 

Dicanthiulm annulatum grass 

Heteropogon  contortus grass 

Prosopis juliflora tree 

Salvadora persica tree 

Sehima nervosum grass 

Sporobolus coromandialis grass 

Sporobolus virginicus grass 

Sueda nudiflora herb  

Themeda triandra grass 

Annuals  

Abutilon fruticosum herb 

Aristida adscensionis grass 

Cyperus alulatus sedge 

Echinocloa colonum grass 

Enicostema littorale herb 

Fimbristylis dichotoma sedge 

Fimbristylis  miliaceaea sedge 

Hibiscus tetraphyllus herb 

Rungia parviflora herb 

Setaria glauca grass 

Sporobolus pallides grass 

 

 



 
 
Plate 1: Grassland habitat in Velavadar National Park.  Blackbuck are seen grazing in the middle ground and a Prosopis juliflora patch lines the 
background.  There are over 1000 blackbuck estimated to inhabit Velavadar NP.   (Photo by: K. Yoganand) 



 

 
 
Plate 2 (a): P. juliflora patch and barren ground habitat in Velavadar NP.  A female-
dominated blackbuck herd is seen moving between grassland patches through barren 
ground. (Photo by: K. Yoganand) 
 
 

 
Plate 2 (b): Saline habitat in Velavadar NP.  This habitat remains waterlogged during 
monsoon rains.  Blackbuck forage occasionally on the herb Sueda nudiflora that 
grows in this habitat.  (Photo by: K. Yoganand)  



 
 
Plate 3 (a): Arrows indicate the body parts used for ranking body condition of female 
blackbuck in the field – 1) Rump; 2) Pelvic girdle; 3) Ribs; and 4) Pectoral girdle. 
(Photo by: K. Yoganand) 
 
 

 
 
Plate 3 (b): Arrow indicates the 5th body part used for ranking body condition of 
blackbuck females – 5) Tail bone depression.  (Photo by: Y. V. Jhala) 
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Plate 4 (a):  Blackbuck fawn hiding in the grassland.  The fawns do not follow their 
mother during the first few weeks after being born.  (Photo by: Y. V. Jhala) 
 
 

 
 
Plate 4 (b):  Blackbuck fawn lying out in a saline patch of land.  The fawn hiding 
behaviour is considered to have evolved as an anti-predator strategy. (Photo by: Y. V. 
Jhala) 



 
 
Plate 5:  Lactating blackbuck female (left picture) when viewed from behind has its black teats distinctly visible against its white 
underbelly.  In contrast, teats are retracted and not distinctly visible in a non-lactating female (right picture).  This character was used to 
identify lactating females in the field.  (Photos by: V. Joseph and Y. V. Jhala, respectively)  



 
 
Plate 6 (a):  Sampling blackbuck activity by scan sampling method, using a spotting 
scope.  Blackbuck herds were followed from dawn to dusk and their activities 
sampled at 15 minute intervals.  (Photo by: K. Yoganand) 
 
 

 
 
Plate 6 (b):  Female dominated herds of blackbuck grazing and moving through 
grassland habitat in Velavadar NP.  Blackbuck spent a major part of the day feeding 
on grass during the study period.  (Photo by: K. Yoganand)



 
 
Plate 7 (a):  An exclosure put up in the grassland of Velavadar NP to study the effects 
of grazing and grass harvesting on above-ground productivity and quality of grasses.  
(Photo by: Y. V. Jhala)  
 
 

 
 
Plate 7 (b):  Harvesting of grass by local people in Velavadar NP.  The Park 
management allows regulated harvesting of grass in the cold season of each year by 
local people to use as fodder for livestock.  (Photo by: K. Yoganand)  
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