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General Introduction 

====================================== 

Microbes are truly omni-present organisms and contribute more than half of the living 

biomass on the planet. Among various microbes, extremophiles can grow and thrive in 

extreme environments, which were formerly considered too hostile to support life. The 

extreme conditions may be high or low temperature, high or low pH, high salinity, high 

metal concentrations, very low nutrient content, very low water activity, high radiation, 

high pressure and low oxygen tension. Some extremophiles are subjected to multiple 

stress conditions. Extremophiles are structurally adapted at the molecular level to 

withstand these harsh conditions.  

 

In view of the imminent role in human society, extremophiles have been the center of 

attraction for researchers and during the last several decades, turning points and 

milestones were established. Early environmental conditions were extreme compared to 

today’s, but might still be common beyond our planet.  What we previously thought of as 

in surmountable physical and chemical barriers to life, are now seen as yet another niche 

harboring “Tiny creature” known as “Extremophiles”. The term extremophiles was first 

used by Mac Elroy in 1974. 

 

Extreme conditions can relate to physical (temperature, pressure or radiation), nutritional 

(low and high concentrations of nutrients) and geochemical extremes (such as salinity 

and pH). Most of the extremophiles identified to date belong to the domain Archaea 

(Woese et al., 1990; Rothschild and Mancielli, 2001, Orange et al., 2011). However, 

many extremophiles from the eubacterial and eukaryotic kingdoms have also been 

identified and characterized during the recent years (Anton et al., 2000; Vreeland et al., 

2000; Sanchez-porro et al., 2003; Pikuta et al., 2003). 

 

Haloalkaliphiles are salt and alkaline pH loving organisms that inhabit hyper saline and 

alkaline environments. They can be found at saturated brine concentration. Some of the 

natural and man-made habitats are highly saline and alkaline in nature. Therefore, 
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microbes dwelling   in such environments are adapted to both high alkalinity and high 

salinity. Among the adaptation strategies production of large amounts of an internal 

solute or retention of a solute extracted from outside are key points. For instance, 

Halobacterium salinarum, an archaea, concentrates potassium chloride in its interior. As 

might be expected, the enzymes in its cytoplasm will function only if a high 

concentration of potassium chloride is present. But proteins in H. salinarum cell 

structures that are in contact with the environment require a high concentration of sodium 

chloride.  

 

Many prokaryotic and eukaryotic microorganisms balance the osmotic pressure of the 

environment and resist the denaturing effects of salts and alkaline pH. Among halophilic 

microorganisms, there are variety of heterotrophic and methanogenic archaea; 

photosynthetic, lithotrophic, and heterotrophic bacteria; and photosynthetic and 

heterotrophic eukaryotes. Among the well-adapted and widely distributed extremely 

halophilic microorganisms; Archaeal Halobacterium species, Cyanobacteria, such as 

Aphanothece halophytica and the green alga Dunaliella salina are prominent ones. 

 

The biocatalysts, called extremozymes, produced by these microorganisms, are proteins 

that function under extreme conditions. Due to their extreme stability, extremozymes 

offer new opportunities for biocatalysis and biotransformation. Examples of 

extremozymes include cellulases, amylases, xylanases, proteases, pectinases, keratinases, 

lipases,esterases, catalases, peroxidases and phytases, which have great potential for 

application various biotechnological processes. Currently, only 1–2 % of the 

microorganisms have been commercially exploited and amongst them there are only a 

few extremophiles. However, the renewed interest that is currently emerging as a result 

of new developments in the cultivation and production of extremophiles and success in 

the cloning and expression of their genes in mesophilic hosts will increase the 

biocatalytic applications of extremozymes. 

 

Of particular interest are the enzymes that help extremophiles to function in brutal 

circumstances and therefore, they have reserved their significant position in market.  The 
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primary reason of selecting enzymes from extremophiles is their high stability and 

activity under extreme conditions. The enzymes from these extremophiles are usually 

referred as “Extremozymes”. They have potential to eliminate the need for added steps, 

thereby increasing efficiency and reducing the costs. They can also form the basis of 

entirely new enzyme-based processes. This would be possible due to their ability to 

maintain catalytic power at un-conventional conditions. 

 

Recent studies have revealed that non-archaeal bacteria can also be extremely halophilic 

in nature, being able to grow at salinity 30-37 % (Anton et al., 2000). One of such 

bacteria belonging to Flavobacterium- Bacteroides phylum could grow at saturated NaCl, 

a finding that is against the accepted norm that extreme halophiles belong to Archaea. 

Halophilic archaea isolated from Soda Lake in Tibet were reported having gram negative, 

pleomorphic, flat and non- motile features with strict oxygen requirement (Xu et al., 

1999). Growth required at least 12 % NaCl between pH 8- 11 with an optimum pH at 9-

9.5. On the basis of r-RNA phylogenetic tree and DNA-DNA hybridization these isolates 

were grouped as Natrorubrum tibetenes sp. Polar lipid composition in addition to 16S 

rRNA analysis have proved particularly useful in the classification of the Halobacteria 

(Ross and Grant 1985; Xu et al., 1999).  

 

An extreme haloalkalophilic bacterium HAM-2 with pleomorphic rods was isolated from 

the soda lakes of inner Magnolia (Tian et al., 1997). HAM-2 could grow at salt levels 12-

30 % having pH range 7.8-10.4, optimum 9-9.5. Similarly, an extremely haloalkalophilic, 

chemoorganotrophic, homoacetogeneic bacterium was isolated from the bottom mud of 

the soda lake in Magadi, Kenya. The bacteria was obligate anaerobe, motile, Gram 

positive spore forming rod able to grow at pH range 8.1-10.7 and optimally in the range 

of 9.7-10. The optimum salt concentration was 12-15 %. 

 

Usually enzymes do not function in organic solvents. Kim( Kim et al., 1997), has isolated 

enzymes from halophilic and mesophilic bacteria and converted them into extremozymes. 

These extremozymes function in a variety of organic solvents and are thermostable. 

Enzymes isolated from halophiles and mesophiles were freeze-dried in the presence of 
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high salt concentration and then the powdered form of freeze-dried enzymes was added 

into organic solvents which showed considerable activity. Salt dehydrates the enzyme 

and sticks to it, shielding it from water. A sufficient amount of water is present to retain 

suitable charge distribution at the active site and the conformation of the enzyme.  

 

In organic solvents the thermostability was also increased due to the rigid nature of 

enzymes. Some industrially important enzymes, such as lipases, proteases, lysozymes and 

ribonuclease have also been made to function in a variety of organic solvents. 

  

In recent years a new class of solvent tolerant microbes having unique ability to sustain 

under non-aqueous system has drawn considerable attention. Such organisms are 

attractive for applications in solvent bioremediation and biotransformation in non-

aqueous media (Sardessai and Bhosle, 2004; Gupta et al., 2005, Rahaman  et al., 2006 

and Thumar et al., 2009). Some of these microbes are rich source of the solvent stable 

enzymes. Such biocatalysts are increasingly being used to assist in synthetic routes to 

complex molecules of industrial interest. Particular interest in the use of biocatalysis to 

create new routes to lower value chemicals, the biggest role for biocatalysis still remain 

in the pharmaceutical sector , where its exquisite regioselective and stereoselective 

properties enable difficult syntheses (often requiring multiple protection and 

deprotection). Only limited reports are available in literature on the screening of 

microorganisms, which produce organic solvent-stable proteases. With particular 

reference to halophiles and haloalkaliphilic bacteria, such studies are further restricted. 

 

Toxicity is considerably changeable among organic solvents. Solvent toxicity correlates 

inversely with its log Pow, the logarithm of its partitioning coefficient between defined 

octanol-water mixture (log Pow) (Sikkema  et al., 2002).  

 

Organic solvents with lower log Pow values are more toxic than those with higher log 

Pow values. The organic solvent with the lowest logPow in which target microorganisms 

can grow is called the index solvent, and the logPow value of the index solvent is called 

the index value. 
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Solvents with a log Pow below 4.0, e.g., benzene (log Pow 2.13), toluene (log Pow 2.69), 

octanol (log Pow 2.92), xylenes (log Pow 3.12–3.2), and styrene (log Pow 2.95), are 

extremely toxic for microorganisms because they accumulate in the cytoplasmic 

membrane of bacteria and disrupt the cell membrane structure. Solvent toxicity depends 

not only on the inherent toxicity of the compound but also on the intrinsic tolerance of the 

bacterial species and strains.  

 

Proteases being one of the most explored enzymes have attracted considerable attention 

over the last few decades.  They are the most variable group with respect to origin, 

mechanism of action and specificity.  Haloalkaline proteases, which catalyze protein 

hydrolysis under alkaline conditions in the presence of salt, have recently attracted 

attention of scientists from academic institutions and industries. This is because of their 

vital role in leather, food and detergent industries. In India, however, the use of industrial 

enzymes in general and extremozymes in particular is still quite limited.  Great emphasis 

has to be put on efficient production of the enzymes at large scale and vast market 

potential has to be realized. 

 

Biocatalysis in non-conventional (non-aqueous) media has potential to expand the 

spectrum of applications of proteases to the reactions that cannot precede effectively in 

aqueous environments, for instance, the synthesis of peptide bonds instead of their 

hydrolysis (Illanes and Barberis, 1994; Quiroga et al., 2000a). The reaction media include 

organic solvents (Clark et al., 2004; Gupta and Roy, 2004), supercritical fluids (Kamat et 

al., 1992; Mesiano et al., 1999), eutectic mixtures (Gill and Vulfson, 1994), solid-state 

(Halling et al., 1995; Erbeldinger et al., 1998) and ionic liquids (Park and Kazlauskas, 

2003; Van  et al., 2003; Lou et al., 2004; Machado and Saraiva, 2005). 

 

 These reactions offer other potential advantages as well, such as, the possibility of using 

poorly water soluble substrates; the modification of the equilibrium of reaction as a 

consequence of the alteration of the partition coefficients of substrates and products in the 

case of biphasic systems, the reduction of inhibitory effects by substrates and products, 

the easiness of biocatalyst, product recovery, the increase in the thermostability of the 
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biocatalyst and, in some cases, the variation in substrate specificity and the increase in the 

stereo and enantiospecificity in the resolution of racemic mixtures (Kawashiro et 

al.,1997; Klibanov 2001). As compared to chemical synthesis, a most important 

advantage of biocatalysis is the specificity of the reaction, which reduces the requirement 

of side-chain protection. 

Within the last decade there has been dramatic increase in the need for bioactive 

compounds with novel activities. Advances in microbiological techniques and enzyme 

technology in the 1960's and 1970's lead to the development of several industrial enzyme 

applications. Production of therapeutic proteins made by the discovery of new 

technologies has in 2001, generated sales exceeding 25 billion dollars. This combined 

with other commercial applications of the enzymes such as the synthesis of various fine 

chemicals have necessitated the need for wider sources of the biocatalysts (Gupta and 

Roy, 2002). The enzymes from haloalkaliphilic bacteria and archaea have many specific 

functions coming into the realization (Margesin and Schinner, 2001, Diego et al., 2007, 

Dodia et al., 2008).  

 

In view of the increasing emphasis on the solvent tolerant microbes and possible biotechnological 

potential of Haloalkaliphilic bacteria for non aqueous enzymology, the present study aims at the 

following objectives:  

 

 Diversity of organic solvent tolerant halophilic / haloalkaliphilic  bacteria and 

assessment of the effect of various solvents on the growth of these bacteria 

 Studies on the production of extracellular enzymes (protease and amylases) as a 

function of their tolerance against organic solvents 

 Effect of organic solvents on the enzyme activity and stability with crude, 

partially   purified and purified enzymes 
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The chapters in this thesis have been organized in the following manner: 

 

Chapter 1:  General Introduction  

Chapter 2:  Review of Literature 

Chapter 3:  Diversity of organic solvent tolerant haloalkaliphilic   

                    bacteria 

Chapter 4:  Optimization of Amylases catalysis   in the presence of organic solvent   

                     from haloalkaliphilic bacteria 

Chapter 5:  Optimization of Alkaline Protease catalysis in the presence of organic  

                    solvents from haloalkaliphilic bacteria  

Chapter 6:  Purification and Characterization of two haloalkaliphilic alkaline  

                    Protease with respect to organic solvents  

Chapter 7:  Concluding Remarks  

Chapter 8:  Summary  

Chapter 9:  Bibliography 
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REVIEW OF LITERATURE 

 

===================================== 

Organic solvents are among the prominent toxicants for microbial flora. Only a low 

concentration can disrupt the structural and functional viability of cell (Inoue et al., 1989 

and Sikkema et al., 1994). However, some microbes nullify the toxic effect of solvents. 

The toxicity of solvent for microorganism is equally distributed on natural toxicity of 

particular solvent as well as on innate tolerance level of the species and strain of 

microbes.  

For long, it was assumed that microorganisms can not survive with organic solvent (Aono 

etal., 1991 and Inoue et al., 1989). In 1989, Inoue published first paper about a solvent 

tolerant bacterium which could actively grow and multiply in the presence of 50% (v/v) 

toluene (Inoue et al., 1989).  Later, some other findings were reported, explaining and 

validating solvent tolerant microorganism (Cruden et al., 1992, Kim. et al., 1998, Zhang 

et al., 1998, Ramos et al., 1995) and efforts were focused on the mechanism of this 

interesting phenomenon.  

Pseudumonas strains especially P. putida was extensively reported as solvent tolerant 

bacterium. Earlier, it was supposed that gram negative bacteria are more tolerant to 

organic solvents as compared to gram positive bacteria. This is arguably due to the fact 

that the Gram negative bacterial cytoplasmic membranes are made up of phospholipid 

and lipopolysacharide (Inoue et al., 1991 and paje et al., 1997). In later years some 

organic solvent tolerant gram positive strains, such as Bacillus, Rhodococcus and Archi 
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bacteria were reported (Abe et al., 1995, Kato et al., 1996, Moriya et al., 1995 and Page 

et al., 1997)  

2.1 Physiological basis of solvent toxicity and concept of organic solvent   

tolerance    

Cell membrane is foremost site for solvent interaction. Cytoplasmic membrane is made 

up with bi-layer of phospholipids which consist of various enzymes and embedded 

transporter proteins. It crucially participate in transportation of solute, regulation of 

intracellular metabolism, protecting energy of cell, signal transduction, energy 

transducing process and turgor pressure.   Solvents create segment in cell membrane and 

disturb the lipid bilayer and affect the cell viability (Inoue et al., 1989, Sikkema et al., 

1995 and Sikkema et al., 1994). It is not the chemical structure of the solvent, but its 

concentration accumulated in the cell membrane that plays a crucial role in causing the 

toxicity (Bont et al., 1998 and Isken et al., 1998). 

 

Physiological investigation of microbes has revealed a correlation between solvent 

toxicity and its logPow value. The parameter log P is defined as the partition coefficient 

of the given solvent in an equimolar mixture of octanol and water (Inoue et al., 1989). 

Greater the polarity, lower the log P value and greater the toxicity of the solvent is 

observed. Generally, solvents with log P values below 4 are considered extremely toxic 

as their degree of partitioning in aqueous layer (which contains cell) and from there into 

the lipid membrane bilayer is high. The greater the degree of accumulation of the solvent 

in the membrane, the higher its toxicity (Bont et al.,1998  and Isken et al., 1998 ).  
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Each organism has its own intrinsic tolerance level for organic solvent, which is 

determined genetically and is also influenced by environmental factors (Koyabashi et al., 

1998). Organic solvent tolerance is believed as strain specific (Huertas et al., 1998). The 

tolerance of microorganism is represented by two terms, the index solvent and index 

value. The index value is the log P value of the most toxic organic solvent (index solvent) 

among those that can be tolerated by the organism. Each bacterium can grow on agar 

media overlaid with any one of the organic solvents having a logP value greater than indx 

value. However, under such condition, the growth of bacteria is suppressed by organic 

solvent having log P value near the index value (Aono et al., 1991). 

 

2.2 Microbial adoption to tolerate organic solvent  

Specific permeabilization of the cell membrane get affected due to solvent accumulation,  

causing leakage of ATP, potassium and other ions , RNA, phospholipids and protein 

( Heipieper et al., 1991; Ramos et al., 1997; Woldringh et al.,1973). Additionally organic 

solvent interrupt the fluidity of the membrane (Sikkema et al., 1994). In response to the 

toxicity of the solvent, the tolerant bacteria adapt some alteration, as reflected by several 

studies (Heipieper et al., 2007; Isken and de Bont, 1998; Mohammad et al., 2006; Ramos 

et al., 2002 Weber and de Bont, 1996).  The emerged adaptive features are described as 

below: 

 

2.2.1 Strengthening of the cell membrane 

 During long time exposure, there appears to be a shift in the ratio of saturated to 

unsaturated fatty acid in cell membrane (Mohammad et al., 2006; Pinkart et al., 1996; 
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Weber et al., 1994). Isomerization of the naturally formulated cis-isomer of an 

unsaturated fatty acid was changed to trans-isomer by an energy-independent periplasmic 

isomerase (Heiper et al., 1995; Mohammad et al 2006., Nielsen et al., 2005; Weber et al., 

1994). In context of tolerance, some bacteria exhibit changes in fatty acid compositions 

along with the alteration of phospholipids (Nielsen et al., 1994). While in some bacteria, 

change in composition of lipoploysachirdes (LPS), lipid protein ratios and outer 

membrane protein are also associated with the solvent tolerance (Pinkart et al., 1996; 

Ramos et al., 1997). These adoptions change the fluidity of the membrane and thus 

suppress the effects of the solvent. 

 

2.2.2 Degradation and biotransformation of organic solvents 

In some bacteria, such as E. coli and Rhodococcus sp. (Ferrante et al., 1995; Paje et al., 

1997), metabolism of organic solvent converts toxic hydrocarbon into simpler non-toxic 

compounds (Ferrante et al., 1995; Paje et al., 1997). 

 

2.2.3 Solvent-efflux pumps 

During the last decade, many bacteria were reported which utilized solvent efflux pumps 

to sustain with organic solvents and majority of them fall in RND (resistance/ nodulation/ 

cell division) family. Only a few efflux pumps for organic solvent, namely tolC, mar, rob 

SoxS and acrAB have been identified in Pseudomonas sp. (Kieboom et al., 1998; Li et al., 

1998; Ramos  et al., 1998) and E. coli. (Asako et al., 1997; Kobayashi et al., 2001). 
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2.2.4 Enlargement of cell size 

P. Putida and Enterobacter sp.  tolerated organic solvents  by growing their cell size to 

reduce the  relative surface for attaching organic solvent.  It is clear that performance of 

solvent efflux pump will be better if over all membrane is reduced. This escort to a 

reduction in the area that allows diffusion and partitioning of solvents into the membrane 

where they are recognized and excluded by the efflux –pump proteins (Neumann et al., 

2005) 

 

2.3 Enzymes of solvent tolerant bacteria 

Solvent-tolerant microbes have been less studied from the perspective of non-aqueous 

enzymology. Lately, enzymatic studies under non-aqueous conditions have emerged as 

interesting filed of research and efforts are focused on to optimize reaction conditions for 

synthetic applications of enzymes in the presence of solvents. As non-aqueous 

enzymology has generated possibilities to synthesize biologically active compounds, it is 

obvious that the enzymes display striking novel features and attain higher catalytic 

activity in organic solvents (Ogino and Ishikawa, 2001). Some of the industrially 

important enzymes such as lipase, protease and amylases have been studied from solvent 

tolerant microbes ( Doukyu et al., 2003; 2007; Geok et al., 2003; Ghorbel et al., 2003; 

Gupta et al., 2005; kardzic et al., 2004; ogino and Ishikawa,2001, Thumsr et al., 2009  ). 

Some halophiles have also been studied to exhibit the properties of solvent-tolerant 

enzymes; such as amylase from an extremely halphilic  archaea, Haloarcula sp. strain    

S-1 (Fukushima et al. 2005) and protease from moderately halophilic bacterium 

Sainiovibrio sp. Strain Af-2004 (Haidari et al 2007, Thumsr et al., 2009   ). These studies 
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have opened possibilities of new enzymatic potential with the enzymes having tolerance 

and ability to function under multitude of extreme conditions. 

 

 Enzymes of solvent tolerant microbes were explored specially for reverse reaction 

demand of biotechnological industries or in conditions of comparatively poor solubility 

of desired substrate in aqueous medium. Such enzymes are mainly classified as proteases 

(Gupta et al., 2005; Ogino et al., 1999 a, b), lipases (Ogino et al., 2000), cholesterol 

oxidase (Doukyu and Aono, 1998) and recently cholesterol esterase (Takeda et al., 2006). 

 One of the common features of enzymes from solvent tolerant sources is better solubility 

in hydrophobic solvents especially alkenes. Generally they are monomeric proteins of 

molecular weight 20-80kDa with hydrophobic surface and number of disulfide bonds. In 

literature, ion exchange chromatography and hydrophobic interaction chromatography 

(HIC) are mainly applied for enzyme purification. Most of such enzymes are from 

Pseudomonas and few Bacillus sp. (Geok et al., 2003; Ghorbel et al., 2003; Gupta et al., 

2005; Ogino et al., 1994 ). In most of the cases, there were similarity among the enzymes 

from different Pseudomonas and others. They are stable in alkanes and majority of them 

are stable in long chain aliphatic hydrocarbons, benzene, toluene and alcohols. 

 

2.3.1 Proteases  

Pharmaceutical industries significantly need variety of solvent stable proteases to satisfy 

emerging demand of various type of enzymaticaly synthesized peptides as protease- 

catalyzed synthesis of peptide has several advantages over chemical catalysis, e.g. region-

and stereo-selectivity, absence of racemization, lack of requirement of side chain 
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production and milder non-hazardous reaction conditions (Gill et al., 1996, Jakubke et al., 

1985; Kilbanov et al., 1986; Rahaman et al., 2007). Number of peptides like analgesic 

dipeptide Kyotorphin (tyr-arg) (Jonsson et al., 1996; Sareen et al., 2004) as well as 

aspartame (Eichhorn et al., 1997) has been produced in aqueous or non aqueous media 

using protease.  Successful synthesis of peptide by Subtilisin, thermolysin and other 

proteolytic enzymes has been accomplished in organic solvents (Isowa and Ichikawa, 

1979; Oka and Morihara, 1978, 1980; Pauchon et al., 1993). However, inactivation of 

enzyme in organic solvents is negative aspects of enzymatic peptide synthesis which 

leads the low rate of peptide synthesis (Ogino et al., 1999a; Vulfson et al., 2001). For 

example, ά-chemotrypsin could not catalyze peptide synthesis in the presences of 50% 

(v/v) ethanol, DMF, DMSO, acetone or Acitonitrile (Jakubke et al., 1985). Ogino and his 

group reported (Ogino et al 1995; 1999a) first solvent stable protease from solvent 

tolerant Pseudomonas stain; P. areuginosa PST-01.  This bacterial strain was quiet stable 

in cyclohexane, toluene, ethanol and acetone.  In water-miscible and immiscible organic 

solvents, it’s protease had higher stability compared to commercially available known 

protease, thermolysin, subtilisin Carlsberg and ά-chymotrypsin (Ogino et al., 199a).The 

PST-01 protease was successfully employed for peptide synthesis in the presence of 

organic solvents, such as in the synthesis of dipeptides; Cbz-Arg-Leu_Nh2, equilibrium 

yields of more than 60% in the presence of 50%(v/v) DMF and 50mM sodium Phosphate 

buffer (pH 7.0). The equilibrium yield of Cbz-Arg-leu-NH2 synthesized from Cbz-Arg 

and Leu-NH2 using the PST protease was similar to thermolysin and trypsin and 

considerably higher than that using papain, elastase, pepsin, ά-chymotrypsin or subtilisin 

(Ogino et al., 1999b). 
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Another attractive protease for peptide synthesis in aqueous acetonitrile media by a 

mutant strain (B. licheniformis RSP-09-37) was reported by Sareen et at., 2004.  The 

performance of this protease for synthesis of a Kyotorphin precursor was quiet better 

compared to commercially available ά-chymotrypsin. As the B. licheniformis RSP-09-37 

protease tolerated higher concentrations of acetonitrile , this resulted in higher conversion 

rates, less hydrolysis and increased stability, and thus makes this biocatalyst suitable for 

the synthesis of peptides. 

 

Protease from PST-01 reported by Ogino (Ogino et al. (2001)) has two internal disulfide 

bond which enhances it’s stability in the presence of organic solvents. On the basis of 

some current studies, it’s clear that amino acid residues on the surface of enzyme play 

important role in stability of protein in organic solvents (Gupta et al., 2007; Ogino et al., 

2007). Most of the reported solvent tolerant isolates were form soil samples, while few 

were from fishing industry wastewater (Ghorbel et al., 2003) and cutting oil used in 

industrial metal-working  processes (Karadzic et al., 2004). Majority of the solvent stable 

proteases belonged to Pseudomonas Sp., and very few are from Bacillus species (Ghorbel 

et al., 2003; Sareen et al ., 2004). 

Common trend for both, Pseudomonas and Bacillus proteases were recorded for the 

catalysis in solvents, especially alkanes (Gupta and khare,2006; Ogino et al.,1995; 

Rahaman et al.,2006; 2007). In some cases, activity in the presence of alcohol was also 

reported (Ghorbel et al., 2003; Karadzic et al., 2004; Sanaet al.,2006). Anion exchange 

and /or hydrophobic –interaction choromatography were mainly used to purify these 

solvent tolerant protease.  
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2.3.2 Amylases 

Starch is one of the most abundantly presented polymers in nature and amylases play 

central role in the utilization of this natural polymeric substrate. Amylases are produced 

broadly by all the three domains of life, Eucarya, prokaryotes, and Archaea (Upadek et 

al., 1997, kikani et al., 2011). Enzymes utilized for the hydrolysis of starch are greatly 

diverse and broadly useful for many industrial processes, such as starch liquefaction, pulp 

process and in detergent (Kadziola et al., 1998, Machius et al., 1995). With involvement 

in vast range of biotechnology based industry, amylases are now one of the most 

demanding enzymes. Food and starch-processing industries (Vihinen et al., 1994) require 

a huge quantity of amylases. However, amylases are comparatively less attended 

enzymes for the study of solvent tolerance. Solvent tolerant amylases can open the new 

avenues for bioremediation and transformation of solvent polluted starch waste of 

industry as well as improvement of detergent for acting at low water conditions. Need of 

starch hydrolysis under non-aqueous conditions is another reason to explore a solvent 

stable amylases.  

 

A solvent tolerant amylase, having molecular mass of 70 kDa, from a halophilic archaeon, 

Haloarcula sp. strain S-1 was reported by Fukushima (Fukushima et al., 2005). This 

amylase was quiet active and stable in various organic solvents; benzene, toluene and 

choloroform, while the enzyme was not active at all in ethyl alcohol and acetone. Further, 

this enzyme maintained high activity with methanol at low ionic strength. 

 

Morita reported (Morita et al., 1995) an alpha-amylase which greatly accelerated the 

conversion of soluble starch to malto-oligosaocharides with two phase system of water 

and dodecane. However, a rapid inactivation of the enzyme was observed in this system. 

Addition of surfactants, such as Tween 60 or bis (2-ethylhexyl) sodium sulfosuccinate 

(AOT), was effective for the enzyme stability. Effect of enzyme immobilization on the 

stability of α-amylase, using Ca-alginate and chitosan beads, was also reported. The 

stability of immobilized enzyme was clearly enhanced in a 5–10% (v/v) water content 

two-phase system, whereas the free enzyme was inactivated within 41 h (Morita et al., 

1995).  
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An attractive amylase AmyA from the hyperthermophilic bacterium, Thermotoga 

maritime was able to hydrolyze internal 1,4-glycosidic bonds in various glucans at 85°C 

as the optimal temperature (Almazo et al., 2005). It was found that when methanol or 

butanol was used as the nucleophile instead of water, AmyA was able to catalyze 

alcoholysis reactions. This capability has been evaluated in the past for some amylases, 

with the finding that only the saccharifying fungal amylases from Aspergillus niger and 

from Aspergillus oryzae present measurable alcoholysis activity (Santamaria et al., 1999). 

Replacement of residue His222 by glutamine generated an increase in the alkyl glucoside 

yield as a consequence of a higher alcoholysis/hydrolysis ratio. The same change in 

specificity was observed for the mutants H222E and H222D, but instability of these 

mutants toward alcohols decreased the yield of alkyl glucoside. 

 

2.3.3 Lipases 

Lipases are among the most sought-after enzymes from the view point of solvent stability 

(Khare et al., 2000a; Sharma et al., 2001; Tasi et al., 2006). The reason being that lipases 

have industrial potential for exploitation of esterification and trans esterification reaction 

in non-aqueous medium and are being used for the production of various types of flavor 

esters, cocoa butter equivalent, the human milk fat substitute ’betapol’ structured lipids 

and biodiesel (Bosley et al.,1997; Gaur et al.,2008; Jager and Reetz.,1998; Khare et 

al.,2000b). In addition, the substrates; fats and oil and products of lipase-catalyzed 

reaction are often insoluble in aqueous solutions, while the enzyme is insoluble in organic 

solvents, thus necessitating the presence of organic-aqueous two phase media. The 

solvent stable lipases have mainly been isolated from Pseudomonads and Bacillus spp. 

Fusarium heterosporum, a fungal strain, produced a solvent stable lipase (Shimada et al., 

1993). The lipases have been purified by using combination of various chromatographic 

techniques. An organic solvent – stable lipase from P. aeruginosa LST-03 was purified 
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by ion exchange and hydrophobic interaction chromatography (Ogino et al., 2000). Lin et 

al., (1996) purified an alkaline lipase from P. Pseudoalcaligenes F-111 by acetone 

precipitation, gel filtration and hydrophobic interaction chromatography. The molecular 

weights are 30-36 kDa or 54-60kDa, indicating that there may be groups of solvent –

stable lipase. Despite organic solvent stability, these lipases are also alkaline in nature 

except from P. aeruginosa LST-03 and F. heterosporum (Ogino et al.,2000; Shimada et 

al.,1993). 

 

2.3.4 Esterase  

Industrial applications of esterases (carboxylesterases) are mainly transesterification of 

industrially used reactions.  It comprises the resolution of racemic mixture, enantio- and 

region-selective hydrolysis, synthesis of natural and non-natural drugs, detergents, 

polymers, and additives in organic solvent (Bornscheuer et al., 2002; Vulfson et al., 

2001).  Mostly fungi, yeast and bacteria (Fojan et al., 2000; Gupta et al., 2000; Perrone et 

al., 1999) are reported sources for microbial esterase to resolute racemic mixtures, 

enantio- and regioselective hydrolysis, and synthesis of drugs and polymers. However, 

poor reaction rates and low product yields are great limitation of microbial esterase 

(Claon and Akoh, 1994).  

A thermo-resistant and alcohol tolerant bacterium, Bacillus licheniformis S-86,  was 

reported (Torres et a.,l 2005), which produced a stable  esterase in high organic solvent 

concentration. Solvent-tolerant B. licheniformis S-86 displayed an approximately two 

fold higher specific activity of esterase in culture supplemented with C3-C5 alkanols 

(2,3-butanediol,propan-2-ol,butan-1-ol,and 3-methylbutan-1-ol) than the control (without 



                                                           Chapter 2: Review of literature  

19 

 

alcohol). Crude extracts of B. lichenformis S-86 displayed high esterase activity in 50% 

hydroxylic-water-solvent mixtures, and an optimum enzyme activity between 65ºC and 

70ºC. These properties make this enzyme quite attractive for the use in organic synthesis 

and industrial biocatalysis. 

 

2.4 Application of solvent-tolerant microbes and their enzyme   

Bioremediation/ biotransformation and valuable enzyme are beneficial out come of 

solvent tolerant microbes.  The primary necessity for microbial transformation of 

hydrocarbons, soil remediation and waste-stream purification, is the sustainability and 

growth of microbes in toxic effluent (Kieboom et al., 1998). The presence of solvents in 

contaminated sites is indicative of the lack of natural system that can efficiently degrade 

these compounds.  

Due to toxic effect of solvent, it is quiet difficult to apply biological system for solvent 

rich- pollute sites (Mohammad et al., 2006).  Organic solvent tolerant bacteria can be 

quite useful for such processes. For biphasic systems, the enzymes can be a good 

candidate. Exploration of solvent tolerant bacteria for biotransformation in biphasic 

system has been recently reviewed by Heipieper et al., 2007. Several examples of whole 

cell bioconversions in organic media are presented by Leon et al.,1998 and Salter and 

Kell (1995).  

 

The potent environmental pollutants are sulfur, nitrogen and oxygen hetrocycles. 

Recently, a review on microbial degradation of these toxic compounds by Xu et al., 

(2006) has been reported.    Pseudomonas sp. strain St-200 and Arthrobacter sp. ST-1 
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showed high  cholesterol degradation in the presence of mixed organic solvents (p-xylene 

and p-diphenyl methane3:7, V/V), and n-decane and n-dodecane, respectively (Aono et 

al., 1994; Moriya et al., 1995).  Two Bacillus strains have been reported for the 

transformation of cholesterol to cholest-4-ene-3,6-dione in the presence of chloroform as 

the organic phase (Sardessai and Bhosle, 2003).   

 

Bioremediation of crude-oil-polluted sea water by  an immobilized bacterial strain have 

been reported by Gentili et al., (2006).  This isolate immobilized on chitin and chitosan 

flakes, was able to remove 60% of the hydrocarbon, while in case of non-immobilized 

form 13% removal of hydrocarbon was recorded. A mixed consortium, isolated from oil- 

contaminated soil, was capable of degrading propanol and isopropanol (Bustard et al., 

2000). In another report, Mohammad et al., (2006) have described the mineralization of a 

high concentration of isopropanol by a solvent- tolerant strain of S. mizutae.  This isolate 

was able to utilize comparatively higher concentration of isopropanol as the sole carbon 

source, with mineralization occurring via an acetone intermediate, into the central 

metabolism (Mohammad et al., 2006).  

Butanol and other volatile solvent are health hazard features and influence on 

photochemical smog. Therefore, it’s highly desirable to efficiently transform it into non 

toxic form.  Biodegradation of solution-phase 1-butanol by solvent-tolerant Enterobacter 

sp. VKGH12(NCIM 5221) was reported by Veerengouda et al., (2006). This isolate 

utilized 1-butanolas as a sole source of carbon. Paje et al., (1987) isolated a Rhodococcus 

sp. strain 33 from a contaminated site in Sydney, Australia. This strain tolerated and 

degraded high concentration of benzene, and therefore, could be useful in clean-up 
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operations. In another interesting case, a solvent-tolerant desulfurizing bacterium (P. 

putida A4), was constructed by introducing the biodesulfurizing gene cluster dszABCD, 

from R. erythropolis XP, into the solvent-tolerant strain P.Putida. The strain degraded 

dibenzothiophene in the presence of various organic solvents. This study was significant 

step in the exploration of the biotechonological potential of novel biocatalysts for 

developing an efficient biodedesulurization process in biphasic reaction mixtures 

containing toxic organic solvents (Tao et al., 2006). 

 

2.5 Conclusions and future perspectives 

Last decade has added impressive growth in enzymatic reaction under low water and 

solvent media. Many new reactions for synthetic purpose were discovered. Maintenance 

of enzymatic stability and efficacy in organic solvents is essential for such applications. 

New strategies and effort has been incorporated to obtain solvent tolerant enzyme.  So in 

this perspective, solvent tolerant microbes seem to have ample scope with great 

probability of innate stability with solvent. For cost effective bioremediation and 

conversion of organic solvent, solvent tolerant bacteria will prove a prominent option.  

 

The  effective mineralization of high concentration of solvent by microbes raise the 

possibility to replace traditional physical and chemical techniques, which do not involve 

a pretreatment step for effluents so as to render them suitable for ‘normal’ biological 

condition. These possibilities represent a future avenue of research for both 

microbiologists and enzymologists.  
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3.1 INTRODUCTION  

===================================== 

On account of the industrial revolution, the production and use of chemicals have been 

constantly increasing. As a consequence, many kinds of products are synthesized and 

released into the environment. Certain products such as organic solvents or fuels reach 

the biosphere through losses during production, storage, accidents and solvent 

evaporation. There is now growing awareness concerning the possible toxic or even 

carcinogenic effects of these chemicals. Although the release of many of them is 

restricted by legislation, a number of pollutants have already reached the biosphere and 

thus need to be eliminated. The biological treatments to remove toxic chemicals seem 

quite promising (Ramos et al., 1994).  

 

Chemical toxicity adversely affects microorganisms in the removal of pollutants from 

waste streams and dump sites. Therefore, this is a serious problem with microbial 

bioremediation in reactors, biofilters, and soils (Heipieper et al., 1994, Segura et al., 

2001, Sikkema et al., 1992), particularly when organic solvents are in high 

concentrations. Solvent toxicity correlates with its log Pow, the logarithm of the 

partitioning coefficient of a solvent in a defined octanol-water mixture (log Pow) 

(Sikkema et al., 1995). Solvents with a log Pow below 4.0, e.g., benzene (log Pow 2.13), 

toluene (log Pow 2.69), octanol (log Pow 2.92), xylenes (log Pow 3.12–3.2), and styrene 

(log Pow 2.95), are extremely toxic for microorganisms because they accumulate in the 

cytoplasmic membrane of bacteria disrupting the membrane structure.  

 

Organic solvents damage the cell membrane by impairing vital functions (loss of ions, 

metabolites, lipids, and proteins; dissipation of the pH gradient and electrical potential) or 

by inhibiting membrane protein functions. This damage is often followed by cell lysis 

and death (Desmet et al.,1978, Sikkema  et al., 1995). Solvent toxicity depends not only 

on the inherent toxicity of the compound but also on the intrinsic tolerance of the 

bacterial species and strains. For example, certain strains of Escherichia coli are tolerant 

to cyclohexane (log Pow 3.44), while others are sensitive (Aono et al., 1991). Most of 
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microorganisms are highly sensitive to aromatic solvents with a log Pow between 2.0 and 

3.3 (Sikkema et al., 1995); nevertheless, there exist several Pseudomonas species that 

grow in  high concentrations of toxic organic solvents, such as toluene, styrene, and p-

xylene (Kim et al., 1998, Ramos et al.,  1995 , Weber et al.,1994). 

 

For the tolerance to aromatic hydrocarbons, a number of elements are involved in the 

response to these toxic chemicals: (a) metabolism of toxic hydrocarbons, which can 

contribute to their transformation into nontoxic compounds; (b) rigidification of the cell 

membrane via alteration of the phospholipids composition; (c) alterations in the cell 

surface that make the cells less permeable; (d) efflux of the toxic compound in an energy-

dependent process; and(e) formation of vesicles that remove the solvent from the cell 

surface . 

 

Only fractions of microbes have been explored as it is not practically possible to grow 

majority of them.  This realization emphasizes on the investigation of microbes in general 

and extremophiles in particular. Haloalkaliphiles are an interesting domain of 

extremophilic organisms that have adapted to harsh, hyper saline and alkaline conditions, 

and are not attended for organic solvent tolerance. With some native feature; as active 

efflux pump to maintain osmotic pressure, quick cis to trans isomerization of unsaturated 

fatty acid of cell membrane and comparative more hydrophobic amino acid on surface of 

enzyme, haloalkaliphilic  bacteria  would be of particular interest  as model system for 

the study on tolerance against organic solvents .  

 

With innate adaptation and adaptive alteration for organic solvent tolerance of 

haloalkaliphiles, there are ample possibilities that they can be easy source for valuable 

solvent stable enzymes for biotechnological stand point. The use of enzymes in organic 

media (with low water content) has been one of the most exciting facets of enzymology 

in recent times. It is an area in which applications and phenomena preceded the 

understanding of catalysis at the molecular level.  
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In the light of above scenario, the study in this chapter has focused on the screening and 

diversity of organic solvent tolerant haloalkaliphilic bacteria isolated from Gujarat Coast 

in Western India. The emphasis has been on the effect of varying concentrations of range 

of organic solvents on growth and protease production profile of haloalkaliphilic bacteria. 

Many potent isolates were subjected for identification and phylogenetic analysis, based 

on 16S rRNA sequences.  By Scanning Electron Microscopy (SEM) adaptive 

morphological alteration were also assessed.  
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3.2 MATERIAL AND METHOD 

===================================== 

3.2.1 Sample Collection, isolation and preservation of haloalkaliphilic 

bacteria 

 
The haloalkaliphilic bacteria were isolated from salt enriched soil and sea water samples 

were collected from 7 different sites along the Coast of Gujarat (Somnath Diu, Okha, 

Mithapur, Jodiya and two sites of Veraval). The samples were collected in sterile plastic 

bottles and bags; the pH and temperature of all the samples were measured manually at 

the time of the sample collection, and processed within four days after the sample 

collection. The water samples were stored at 4°C for further work. The work on the 

isolation of these haloalkaliphilic strains were carried out by Dr. Mital Dodia and Dr. 

Rupal Joshi as part their doctoral research in the laboratory of Prof. S.P. Singh, 

Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India.   

 

For the isolation, 2.0ml of the sea water sample was inoculated into the 100ml of the 

enrichment medium. The bacteria were isolated by using enrichment culture techniques 

in Complex Medium Broth (CMB) consisting, (g/liter): Glucose, 10; Peptone, 5; Yeast 

extract, 5; KH2PO4, 5; with varying concentration of NaCl (10-20%, w/v) at different pH 

8-10. The pH of the medium was adjusted by adding separately autoclaved Na2CO3 

(20%, w/v). After inoculation, flasks were incubated on environmental shaker at 37°C 

with regular monitoring on the turbidity of the enrichment media. After 48-72h of 

growth, a loop full culture was streaked on the CMB agar (3%, w/v) plate and incubated 

at 37°C. After 48h of the incubation, on the basis of colony characteristics, various 

isolated colonies were selected and pure cultures were obtained by subsequent streaking 

on the CMB agar plate 

 

The pure cultures were preserved on the CMB agar media (10% w/v NaCl; and pH 8- 10) 

and stored at 4°C. After screening for the extra cellular enzymes, the protease producers 

were preserved on gelatin agar medium respectively. The cultures were subsequently 

transferred on fresh CMB agar at 3 months intervals. 
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3.2.2 Effect of organic solvents on growth and extra cellular protease 

production 

 

The effect of solvents on growth and protease production haloalkaliphilic bacteria was 

assessed. The inoculum was prepared by adding a loop full of pure culture into 10 ml 

sterile CMB medium ((g/liter): Glucose, 10; Peptone, 5; Yeast extract, 5; KH2PO4, 5; 

NaCl, 10 % w/v and pH9) and incubated at 37oC on a environmental shaker for 24 hour. 

Thereafter, 5 % inoculum from the culture (At A540; 1.0) was inoculated into 250 ml 

flask, containing 50 ml CMB medium.  

 

Organic solvents; n-hexane, methanol, propanol and butanol at 1- 5 % (v/v) were added 

separately. Cultures were incubated under shaking condition (140 rpm) at 37ºC. Controls 

(without solvents) were also included for individual isolates. The culture aliqouts were 

withdrawn aseptically up to 96 hour at the interval of 24 hour and the growth was 

measured at A540. The cultures were centrifuged at 5,000 rpm for 10 min at 4
0
C and the 

cell free extracts were used as crude preparation to measure protease activity. 

. 

3.2.3 Scanning Electron Microscopy (SEM) 

 

Scanning Electron Microscopic (SEM) analysis was carried out isolate Kh-10-91 from 

Okha.  SEM was performed for the cultures grown with organic solvent.  Culture was 

centrifuged at 5000 RPM to get the pellet of the pure culture. The homogenous 

suspension of pure culture was prepared in HPLC grade water. The copper grid (10mm) 

was covered with the bacterial suspension and allowed to air dry on the Whatman filter 

paper. After drying, the preparation was mounted and viewed on Philips Tecnai 20 

Electron Microscope.  
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3.2.4  16 S rRNA amplification and nucleotide sequencing 

 

Genomic DNA was isolated from the pure culture of 14 potent isolates. The ~1.5 kb 

rDNA fragment was amplified through high-fidelity PCR polymerase by using consensus 

primers. The PCR product was bi-directionally sequenced by using the forward;             

5
,
-AGAGTTTGATCATGGCTCAG-3

,
 and Reverse primer;                                                 

5
,
-TACGGTTACCTTGTTACGACTT-3

,
 

 

3.2.5  Phylogenetic analysis of the 16 S rRNA sequences 

 

The published 16S rRNA gene sequences were obtained in aligned form from the 

Ribosomal Database Project (RDP) prokaryote ssu rRNA database (WWW site: 

http;//rdpwww.life.uiuc.edu/ (Maidak et al,. 1996) using the „subalign‟ service. The Rt3 

sequence was added to this alignment and manually aligned in accordance with RDP 

“align sequence” report, using the alignment editor AE2 (Larsen Likelihood (ML). The 

phylogeny of the aligned sequence was obtained using the RDP „suggest tree‟ service 

from fast DNAml program (version 1.08). 
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3.3 RESULT 

====================================== 

3.3.1 Sites for sample collection  

In order to obtain a pool of the haloalkaliphilic bacteria, six different locations along the 

costal region of Gujarat (India) were selected for the isolation. The sites of the isolation 

were Jodiya (22° 43' 0" N / 70° 17' 0" E) , Okha (22° 28' 9" N / 69° 3' 38" E) , Mithapur 

(22°25′N 69°00′E / 22.41°N 69.00°E / 22.41; 69.00[1]), Diu (20° 42‟ N, 71° 01‟ E),  

Somnath (20° 54‟ N & 70° 23‟ E) and Veraval (20° 53‟ N & 70° 26‟ E). 

 

3.3.2 Isolation of the organisms 

Total 82 haloalkaliphilic bacteria isolates from 6 different sites were obtained using 

different enrichment conditions of salt and pH in the medium. Twenty five strains were 

isolated from Mithapur; 13 from Okha; 8 from Jodiya, 14 from Veraval, 9 from Somnath 

and 13 from Diu (Figure 3.1).  

 

 

              Figure 3. 1- Isolates from all the six sites obtained by enrichment 

 

 

http://toolserver.org/~geohack/geohack.php?pagename=Mithapur&params=22.41_N_69.00_E_
http://toolserver.org/~geohack/geohack.php?pagename=Mithapur&params=22.41_N_69.00_E_
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3.3.3 Cell morphology and Gram reaction 

The isolates were examined for their cell morphology and Gram reaction.  Microscopic 

observations revealed that majority of the organisms form Mithapur were Gram positive, 

with only 2 displaying Gram negative features and 3 being Gram variable. Majority of 

the isolates were rod shaped; however, their size varied from long thin rod to short thick 

rod. The cells were arranged singly, in pair or in chain. Curved rod cells formed both, 

chain as well as clusters.  

 

Organisms isolated form Okha showed maximum variation in cell shape and 

arrangement. Size and shape of the cells varied from long thin rod to short thin rod, 

amongst them few were curved. Eight isolates among 13 were Gram negative and 5 were 

Gram positive. Gram-positive isolates dominated (9) over Gram negative ones (6). None 

of the isolates were Gram variable. The cell arrangements were similar to that of the 

Mithapur and Okha isolates. Maximum numbers of Gram-positive isolates were isolated 

form Mithapur, while Gram negative character dominated by Okha isolates and the 

isolates from Mithapur were largely Gram variable in nature  

 

The isolates from Veraval were: Gram positive (6), Gram negative (6) and few Gram 

variables (2). All the isolates of the Veraval were small to large rod and arranged singly 

and/or in pair and among all, the number of the Gram positive isolates (8) dominated over 

the Gram variable isolate (1). From 9 isolates of Somnath, 6 were small thin to thick rod 

shaped arranged singly and in pair. Compared to other sites, maximum numbers of the 

Gram positive isolates were obtained from Diu. Most of the isolates appeared as short 

thick rod arranged singly and/or in pair and rest of with cocci shaped arranged in pair and 

tetrad (Table 3.1).  
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Isolates Size and Shape Arrangement Gram Reaction 

Mithapur 

Mi10-31 Thin long rod Singly and in chain Positive 

Mi10-32 Thick short rod Singly and in chain Positive 

Mi10-33 Thick short rod Singly Positive 

Mi10-34 Long rod Singly and in chain Positive 

Mi10-35 Thick short rod Singly Positive 

Mi10-36 Thin long rod 
Pair and in chain, 

clear gap between 
Positive 

Mi10-37 Very small rod Pair and in chain Positive 

Mi20-31 Short rod Single, Pair, Chain Positive 

Mi20-32 Very Thin Long rod 

Curved long chain, 

some of in single 

and pair 

Variable 

Mi20-33 
Long rod mostly 

curved 

Single, Pair and in 

chain 
Positive 

Mi30-3 Short rod In bunch Variable 

Mi10-41 thick long rod Pair and in chain Positive 

Mi10-42 Long thick rod Singly Negative 

Mi20-41 Short thick rod Mostly in single, Positive 

Mi20-42 Short thin rod Chain Positive 

Mi20-43 Short thick rod 
Mostly single and in 

pair 
Positive 

Mi25-41 Medium rod 
Chain, pair and 

single 
Positive 

Mi25-42 Very short rod Coiled chain Positive 

Mi25-43 Long thin rod In pair Negative 

Mi10-51 Long rod Chain Positive 

Mi10-52 Very small rod Single and in chain Positive 

Mi10-53 Short rod Chain Positive 

Mi10-54 Short thick rod Singly and pair Positive 

Mi10-55 
Short curved thick 

rod 
Pair and in chain Positive 

Mi20-51 Short very thick rod 
Mostly single and in 

pair 
Variable 
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Isolates Size and Shape Arrangement Gram Reaction 

Okha 

Kh10-81 Long thin rod Mesh like structure Negative 

Kh10-82 Short thick rod Chain, single Negative 

Kh10-83 Short thick rod 
Chain which is in 

coil form 
Positive 

Kh10-84 Thin rod Single Negative 

Kh10-91 Very thin long rod Single Negative 

Kh10-92 Cocci Cluster Positive 

Kh10-101 Short thin rod In chain Positive 

Kh15-81 Short thick rod Pair Negative 

Kh15-91 Short rod, curved In pair Negative 

Kh15-92 Short thin rod In chain Positive 

Kh20-81 Short thin rod In chain Negative 

Kh25-81 Cocci Cluster Positive 

Kh25-91 Very thick short rod Singly Positive 

 

Isolates Size and Shape Arrangement Gram Reaction 

Jodiya 
AH-6 Long thin rod Cluster, single Positive 

AH-10 Short thin rod Single, chain Negative 

AH-11 Long rod Chain Negative 

AH-12 Thin long rod Pleomorphic Negative 

CM-12 Thick long rod Pair and in bunch Positive 

CM-6 Long rod Single and in chain Positive 

Sj-1 Short thin rod Cluster Positive 

Sj-2 Thin long rod Cluster Positive 

 

Isolates Gram reaction Size and Shape Arrangement 

Somnath 
S-10-81 Positive Short rod Single and pair 

S-10-82 Positive Small cocci Single 

S-10-83 Positive Small thin rod Single and some in 

S-10-91 Positive Short thick rod Single 

S-10-92 Positive Very short thin rod, Single and most of 

S-10-93 Variable Small thin rod Single and in pair 

S-10-10 Positive Short thick rod Single 

S-15-9 Positive Small cocci Single 

S-20-9 Positive Small oval shape In tetrad only 

 



                                               Chapter 3: Diversity of organic solvent tolerant Haloalkaliphilc Bacteria  

 

32 

 

Isolates Gram reaction Size and Shape Arrangement 

Veraval 
Ve1-10-81 Negative Short thin rod Single and in pair 

Ve1-10-82 Negative Very short thick rod 
Single and in chain 

(2-3) 

Ve1-10-83 Variable Long thin rod Single 

Ve1-10-91 Negative 
Small thin rod with 

terminal spores 
Single 

Ve1-10-92 Negative Medium thin rod Single and in pair 

Ve1-10-93 Negative Small thin rod Single and in pair, 

Ve2-10-81 Negative Long thin rod Single and chain, 

Ve2-10-82 Positive Short thick rod Single and in pair 

Ve2-10-9 Variable Short thick rod Single and in pair 

Ve2-10-10 Positive Small cocci Single and  in pair 

Ve2-15-91 Positive Small cocci Single 

Ve2-15-92 Positive Small cocci Single 

Ve2-20-91 Positive Very small cocci Single and in 

Ve2-20-92 Positive Very small cocci Single 

 

Isolates Gram reaction Size and Shape Arrangement 

Diu 

D-10-81 Positive Very Short thick rod Single 

D-10-82 Positive Small thin rod 
Single 

 

D-10-9 Positive Short thick rod 
Mostly single but 

some in pair 

D-10-101 Positive Long thin rod Single 

D-10-102 Positive Small thick rod Single and in pair 

D-15-9 Positive Small cocci Single 

D-20-91 Positive Small cocci In pair and clustered 

D-20-92 Positive Very small cocci Single 

Dj10-81 Large Cocci Singly and cluster Positive 

Dj10-82 Long thin rod Chain Negative 

Dj20-81 Short thin rod 
Chain and in 

clusters 
Positive 

Dj30-81 Long very thick in clusters Positive 

Dj30-82 Thick long rod Chain 
Negative 

 

 

Table 3.1- Cell morphology and gram reaction of all the isolates 
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3.3.4 Effect of solvents on growth of Haloalkaliphilic bacteria 

As microbial life can be found in the most of extreme conditions and due to their quick 

multiplication rate they are the best tool for remediation of particular extreme 

environment pollutants. Focusing on organic solvent pollution, capability of organic 

solvent degradation by any bacteria can be   enumerated based on its ability to grow on 

organic solvent mixed media.    

 

For screening of organic solvent tolerant haloalkaliphilic bacteria, 1 to 5 %(v/v) of four  

Organic solvents methanol ( log Pow  0.82 ) Propanol (log Pow  0.25),      n-hexane (log Pow  

3.5) and  butanol (log Pow  0.9) were   supplemented in growth medium.   

 

Figure 2 illustrates tolerance of haloalkaliphilic  Bacteria in presence of varying 

concentrations of solvents. Growth was reduced with increasing solvent concentrations 

and in general, better growth was observed in solvents of higher log Po/w values. 

However, in the presence of immiscible solvents of low log Po/w, such as Butanol, growth 

was severely inhibited. 

 

Most of Jodiya isolates were tolerating all tested concentration of solvent. Majority of 

Jodiya isolates were able to tolerate 3-4 % (v/v) butanol while AH-10 and CM-101 were 

sustaining in presence of 1% (v/v) butanol. CM-102 did not show any growth in presence 

of butanol. With rest of solvent, decreasing growth rate were observed with enhancement 

in solvent concentration. 

 

The extent of solvent tolerance by mithapur isolates specialy for methanol, propanol and 

n-hexane did not vary extensively. Except Mi10-51 and Mi10-52 Majority of isolates 

were tolerating all tested solvent. These isolates were poorly tolerating all examined 

solvents. They were not even retaining 50% growth density of control. Mi10-54    and   

Mi10-55   growth   was totally inhibited in presence of butanol.  

Some isolates like  Mi10-55,   Mi10-52 , Mi20-41,  Mi10-41,  Mi30-3,  Mi20-32  Mi10-36    

were   displaying  growth  either better or equal to control  in presence of particular 
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solvent .  In presence of 4% (v/v) n-hexane after 96 hour cell density was equal to 

control. 

 

Solvent tolerance among Diu isolates were widely divers again. Except in presence of 

butanol, some isolates as Dj10-82, Dj20-81, Dj30-81 were potently tolerating rest of 

examined solvent.  Reduced growth in presence of butanol is a obvious trend as butanol 

is highly hydrophobic and  toxic to living flora. Remaining isolates as D-10-9, D-10-101, 

D-10-102, D-15-9, D-20-91, D-20-92 and Dj10-81 were exhibiting mixed trend of growth 

which was varying according to solvents.   

 

Somnath isolates were extensively diversified on the basis of the solvent tolerance. 

Isolate S-10-10 was not tolerating any solvent at all.  Growth of   S-15-9 was totally 

blocked in presence of butanol while with rest of solvent it‟s performance was quiet well. 

S-10-93 denoted maximum tolerant against methanol while many of them were tolerating 

n-hexane adequately.  

 

The extent of organic solvent tolerance was varied for Okha isolates. Kh-10-91 was 

highly tolerant for all tested solvent even it was growing very well even in presence of 

5% (v/v) butanol. Isolate was attending almost similar cell density in presence of all 

tested solvent ( Figure 3.2).  
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Figure 3.2- Growth Pattern of haloalkaliphilic Bacteria in presence of 0(), 1(■) 

,2(▲), 3(+), 4(×) and 5(.) % (v/v) solvent 
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3.3.5   Diversity of organic solvent tolerant haloalkaliphilic isolates 
 

  The extents of solvent tolerance varied among the isolates from the same site as well as 

those from different sites.  Among Okha isolates, 92% of the isolates were tolerating 

methanol, propanol and n-hexane, whereas 84% isolates tolerated butanol as additional 

supplement in CMB medium. In case of methanol 46 , 61, 76, 84 and 92 % isolates 

tolerated 1-5, 1-4, 1-3, 1-2 and 1 % (v/v) methanol, respectively . Better tolerance was  

recorded  for propanol, where 53, 76, 69, 92 and 92% isolates of Okha  sustained in the 

rage of    1-5 , 1-4, 1-3, 1-2 and 1 % (v/v) propanol, correspondingly. Among the Okha 

isolates, most effective tolerance was observed for n-hexane.  With 1-5 , 1-4, 1-3, 1-2 and 

1 % hexane , 69, 76,92,92 and 92 % isolates were able to maintain there growth.  

For butanol, only 23% Okha isolates were tolerating 1-5% (v/v) solvent. For lower range 

of butanol, comparatively better tolerance was observed; 46 and 84% isolates were able 

to grow with 1-4 and 1-3 %( v/v) butanol, while in the presence of 1-2 and 1% butanol, 

92% isolates exhibited their sustainability (Figure-  3.3A(a) and 3.3A(b)). 

In Case of Jodiya isolates, all the isolates were able to tolerate hexane and propanol while 

75 and 87% isolates were able to tolerate butanol and methanol respectively. At front of 

percent solvent tolerance, a broad diversity was observed. 62.62,75,100 and 100 % 

isolates were sustaining in presence of 1-5 , 1-4, 1-3, 1-2 and 1 % (v/v) methanol 

respectively.  Best tolerances were noted down for solvent hexane, 100 % isolates 

maintained their growth at all 5 tested concentration of hexane. Jodiya isolates were 

effectively tolerant to propanol too. 62 and 76% bacteria were able to grow in presence of 

1-5 and 1-4%(v/v) Propanol. Whereas at other tested concentration 100% isolates 

sustained nicely ( Figure -3.3 B(a) and 3.3 B(b)). 

 

A more diverse spectrum was observed in case of somnath‟s haloalkaliphilic isolates.  At 

this site 88, 88, 75 and 88% isolates were able to grew in presence of methanol, propanol, 

butanol and hexane.  

Here 85,91, 96, 100 and 100% haloalkaliphilic isolates were able to tolerate 1-5 , 1-4, 1-

3, 1-2 and 1 % (v/v) propanol correspondingly. In case of butanol extra diversity were 

recorded as in presence of 1-5 , 1-4, 1-3, 1-2 and 1 % (v/v) butanol , 62,70,89, 85 and 
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100% isolates were able to sustain. Most of Isolate of Somnath were tolerant all 

examined concentration of methanol and hexane (Figure-.3.3 C (a) and 3.3 C (b)) 

 

Among Diu isolates, 91% isolates were able to tolerate butanol.  With rest of tested 

solvent all the haloalkaliphilic bacteria of same site were able to maintain their growth. 

None of isolates of Diu were able to tolerate 1-5% (v/v) butanol.  In presence of 1-4, 1-

3,1-2 and 1 % butanol 16,61,84 and 100% isolate were able to tolerate. For tested 

concentration of propanol 33, 50, 66,100 and 100 % isolates exhibited tolerance.  

Comparatively better sustainability was observed in presence of methanol and hexane. 

Against the lower concentration of these two solvent all the isolates displayed growth 

(Figure- 3.3 D(a) and 3.3 D(b))   

 

Maximum numbers of isolates were from Mithapur site.  Almost 100% isolates of this 

site were able to sustain in presence of methanol, propanol, hexane and butanol. Eighty 

four , 87, 100, 100 and 100 % isolates were able to grow in presence of 1-5,1-4, 1-3, 1-2 

and 1 % (v/v) hexane.  In case of methanol 72, 66, 62,100 and 100 % haloalkaliphilic 

bacteria of Mithapur site   were able to sustain their growth. Consideable level of 

tolerance were observed in presence of propanol too. Where as poor growth were 

recorded in presence of higher concentration of  butanol , only 8 and 32% isolates were 

exhibiting growth in presence of 1-5 and 1-4% (v/v) butanol (Figure 3.3 E(a) and 3.3 

E(b)). Comparatively less diversity for solvent tolerance were recorded for Veraval 

isolates. Except 93% for butanol, all the isolates of this site were maintaining their 

growth with rest of three solvents. In presence of 1-5 and 1-4% (v/v) methanol 85% 

isolates were able to grow and with remaining concentration of same solvent 100% 

bacteria exhibited tolerance. With hexane, 100% bacteria of Veraval   site were 

exhibiting growth except in slot of 1-5% (v/v), 94% isolates were able to grow at this 

concentration. Propanol was most friendly solvent for the isolates of this site, all the 

bacteria were tolerant every tested concentration pf propanol (Figure . 3.3 F (a) and 3.3 F 

(b))  
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Figure 3.3 A- (a) Percent isolates of Okha site, tolerating particular solvents 
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Figure 3.3 A(b)- Percent isolates of  Okha ,  tolerating range of  solvents 
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Figure 3.3 B (a)- Percent isolates of Jodiya site, tolerating particular solvents 
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Figure 3.3 B (b)- Percent isolates of Jodiya, tolerating range of solvents 

 

 

 



                                               Chapter 3: Diversity of organic solvent tolerant Haloalkaliphilc Bacteria  

 

56 

 

          %

butanol, 75% propanl, 88%

methanol, 88%
n-hexane , 

88%

methanol

propanl

butanol

n-hexane 
 

 

Figure 3.3 C (a)- Percent isolates of Somnath site, tolerating particular solvents 
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Figure 3.3 C (b)- Percent isolates of Somnath, tolerating range of  solvents 
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Figure 3.3 D (a)- Percent isolates of Diu site, tolerating particular solvents 

 

 

75%
83%

91%

100%

100%

33%

50%

66%

100%100%0%16%
61%

84%

100%

30%

53%

84%

100%

100%

methanol 1-5%
methanol 1-4%

methanol 1-3%
methanol 1-2%
methanol 0-1%

propanol 1-5%
propanol 1-4%

propanol 1-3%
propanol 1-2%
propanol 0-1%

butanol 1-5%
butanol 1-4%
butanol 1-3%

butanol 1-2%
butanol 0-1%

n-hexane1-5%
n-hexane 1-4%
n-hexane 1-3%

n-hexane 1-2%
n-hexane 0-1%

 

 

Figure 3.3 D (b)- Percent isolates of  Diu,  tolerating range of  solvents 
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Figure 3.3 E (a)- Percent isolates of Mithapur site, tolerating particular solvents 
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Figure 3.3 E (b)- Percent isolates of  Mithapur ,  tolerating range of  solvents 
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Figure 3.3 F (a)- Percent isolates of   Veraval site, tolerating particular solvents 
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Figure 3.3 F (b)- Percent isolates of Veraval,  tolerating range of  solvents 
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3.3.6 Growth pattern of haloalkaliphilic bacteria in presence of organic 

solvent 

 

Twelve 16S r RNA sequenced isolates, which were expressing potent tolerance against 

organic solvent, were objected for growth pattern study. Growth of isolates AH-6, Sj-1, 

Sj-2, S-20-9, S-15-9, Ve2-10-82, Kh-10-101,     Kh-10-91, Ve1-10-82, Ve1-10-83, Mi-10-

62   were measured periodically in the presence of 20% (v/v) n-hexane. Two different type 

of growth pattern were observed. In first pattern the growth rate at exponential phas was 

considerably lower in the presence of n-hexane, but finally cell density reached above 

80% of that in absence of n-hexane. 

 

 In second pattern both growth rate and finally cell density were low in the presence of n-

hexane. In this type of growth pattern cell density in presence of   n-hexane was not 

exceeding to 55 to 65% of control.   Isolate Kh-10-101, Kh-10-82, Kh-10-91, Ve1-10-82, 

Ve1-10-83 and Mi-10-62 were fallowing first type of growth pattern. In exponential phase 

comparatively lower growth rate and cell density were recorded in presence of n- hexane   

and up to decline phase in presence of n-hexane, cell density was almost   equal to control 

( Figure 3.4 A) 

 

 Isolates AH-6, Sj-1, Sj-2, S-20-9, S-15-9 and Ve2-10-82 were following the growth 

pattern 2.  Reduced growth rate and cell density of these isolates were recorded in 

presence of n-hexane.  With solvent exponential phase was starting somewhat delayed 

and final cell density of these isolate was not exceeding more than 65% of control   

(Figure 3.4 B). 

 

 

 

 

 

 

 

 

 

 



                                               Chapter 3: Diversity of organic solvent tolerant Haloalkaliphilc Bacteria  

 

61 

 

 

 
  

   

 

AH-6

0

0.5

1

1.5

2

2.5

3

0 24 48 72 96 120

Hour

A
6
6
0

Sj-1

0

0.5

1

1.5

2

2.5

0 24 48 72 96 120

Hour

A
6
6
0

Sj-2

0

0.5

1

1.5

2

2.5

3

0 24 48 72 96 120

Hour

A
6
6
0



                                               Chapter 3: Diversity of organic solvent tolerant Haloalkaliphilc Bacteria  

 

62 

 

 
 

Figare 3.4 A- Growth pattern 1. Growth of control (◊) and growth in presence of 

20%(v/v) n-hexane(■)  
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Figure 3.4 B – Growth pattern 2 . Growth of control (◊) and growth in presence of 

20%(v/v) n-hexane(■)  

3.3.7 Effect of organic solvent on protease production  
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Protease production profile was not varying much in presence of organic solvent. In 

presence of all tested solvents reduced Production were observed. In presence of butanol , 

production was poor for all examined isolates. D-15-9 was able to secret considerable 

protease in presence of methanol and propanol. While In case of n-hexane, secretion was 

observed only up to 3% (v/v). 

 

Isolates of Jodiya Sj-1, Sj-2 and AH-6 were potent producer of protease. Significant 

protease productions were recorded in presence of methanol, propanol and n-hexane. 

Protease Production was inhibited in presence of butanol, (Figure 3.5.) 
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Figure 3.5- Effect of methanol(▥)), propanol (▤), n-hexane (▧) and butanol(▨) on 

Protease production 
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3.3.8 Phylogenetic analysis of the 16S rRNA sequences 

On the basis of 16S rRNA gene sequencing, 18 strains were classified in kingdom 

Bacteria.  Their identifications on the basis of gene homology and distance matrix along 

with their accession number are listed in Table 3.2.  

No. Isolate accession no. and  Identified strain 

1 
S-15-9 

 

GU059918 Haloalkaliphilic bacterium 

 

2 Sj-1 
GQ162111 Oceanobacillus sp. 

 

3 Sj-2 
EU090232 Bacillus pseudofirmus strain 

 

4 AH-6 
EU118361 Haloalkaliphilic bacterium 

 

5 S-20-9 
EU118360 Haloalkaliphilic bacterium 

 

6 Ve2-10-10 
EU118360 Haloalkaliphilic bacterium 

 

7 Ve2-15-91 
HM047796 Oceanobacillus onchorynchy strain 

 

8 Ve2-20-92 
HM047797 Oceanobacillus iheyensis 

 

9 D-15-9 
HM047795 Halophilic and alkaliphilic 

 

10 D-20-91 
HM047798 Oceanobacillus onchorynchy 

 

11 
Ve2-10-82 

 

EU604320 Haloalkaliphilic bacterium 

 

12 
Kh-10-101 

 

DQ026060 Bacillus okhensis 

 

13 
Kh-10-91 

 

EU684463 Halomonas venusta 

 

14 D-10-102 
GU059919 Haloalkaliphilic bacterium 

 

15 Ve1-10-82 
GQ121034 Oceanobacillus oncorhynchi 

 

16 Ve1-10-83 
EU6484464 Halomonas aquamarina strain 

 

17 Ve2-10-91 
HM047794 Haloalkaliphilic bacterium 

 

18 Mi-10-62 
GQ121032 Bacillus agaradhaerens 

 

 

 

Table 3.2 Phylogenetic relatedness and Gene accession of 16S r RNA sequenced 

isolates 

. 
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While performing CLUSTAL W for our 18 isolates, total eleven minor and 3 major 

clusters were obtained. Briefly describing the clusters, the first top cluster belonged to 

genera haloalkaliphile.  In this cluster, 5 roots (species) were observed and the organisms 

were able to tolerate organic solvents. The second major cluster included 3 genera: 

Ocenobacillus, Bacilli and Haloalkaliphilic group. Significant variation was evident from 

geographical point of view.  Most potent isolates on front of solvent tolerance and 

protease production in presence of solvents were from this cluster. Third and last cluster 

had very few species which belonged to halobacilli and haloalkaliphilic sps. In this 

cluster, all the species were able to produce protease (Figure 3.6).   
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Figure 3.6-  Phylogram for our 16S r RNA sequence constructed by CLUSTAL W 
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3.3.9  Scanning Electron Microscopy (SEM) of solvent tolerant bacteria 

SEM analysis was carried out for isolates: Kh-10-91 S- from Okha. Freshly grown Isolate 

in presence of 30% actone and control were subjected for SEM Analysis. From SEM 

analysis it was confirmed that the organism was rod shaped. After growing in the 

presence of 30% acetone, enlarged cell size was observed. In control, Kh-10-91 cell size 

was in the range of 896 nm to 2.88 um (Figure 3.7 A), while after growth in the presence 

of acetone, the cell size ranged 5.51 to 7.11 um (Figure 3.7B).   
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                                   Figure 6 A  SEM Anlaysis of Kh-10-91  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7A - SEM Anlaysis of Kh-10-91  grown with out solvent 

 

 

  

 

 

 

  

 

 

 

 

 

 

Figure 3.7 B-  SEM Anlaysis of Kh-10-91  grown with 30 % Acetone 
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3.4 DISCUSSION 

===================================== 

In the present study, possibilities of a range of applications for haloalkaliphilic bacteria 

were highlighted in biotechnology and bioremediation. The degradation or transformation 

of organic solvents as pollutants and the production of alternative energy are some of the 

recent and important fields of extremophiles. The biodegradation (transformation or 

mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, 

halogenated and nitrated compounds, has been shown to occur by some halophilic and 

haloalkaliphilic microorganisms (Moriya and Horikoshi, 1993b; Abe et al., 1995). 

Therefore, study of organic solvent tolerance in the presence of high salt concentrations 

at alkaline pH appears to be quite attractive preposition for the bioremediation of oil- 

polluted salt marshes and industrial wastewaters, contaminated with aromatic or 

chlorinated hydrocarbons (Ushami et al., 2003). 

 

Organic solvents are regularly utilized in many industries and can be toxic to the 

microbes, Based on the inherent toxicity of the solvents and the basic tolerance of the 

bacterial species and strains, their log Pow symbolize the toxicity. Greater the polarity of 

a solvent, the lower its log Pow value and the greater its toxicity. In general, solvents 

with log Pow values below 4 are considered extremely toxic. Solvent tolerance is a 

strain-specific property and every microorganism has a limiting log Pow value below 

which it is unable to grow.  

 

In general, the concentrations of the solvents supplied to these microorganisms are 

extremely low (Ooyama and Foster, 1965; Yamada et al., 1965; Arai and Yamada, 1969; 

Bean and Perry, 1974; Stiriling and Watkinson, 1977; Kanemitu, 1980; de Carvalho et 

al., 2004; Fukushima et al., 2005). However, during the last several years, many highly 

organic solvent-tolerant microorganisms have been isolated and described (Inoue and 

Horikoshi, 1989; Cruden et al., 1992; Moriya and Horikoshi, 1993a, 1993b; de Carvalho 

et al., 2004; Schneiker et al., 2006). These strains are capable of growing in the presence 

of a large volume of p-xylene and toluene. 
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Gujarat (Western India) posses the major portion of coastline covering 1600 Km long 

shore, with industrial activities of many projects, huge amount of organic solvents is 

released into the atmosphere.   Existence of halotolerant, haloalkalitolerant and 

haloalkaliphilic bacteria clearly indicated the wide spread distribution of such organisms 

in natural saline environment beyond the conventionally described habitats of Salt Lakes, 

solar salt evaporation ponds and salt deserts.  

 

Extensive work has been done on the organic solvent tolerance of other domain of 

microbes, but only limited information are available on the solvent tolerance of 

haloalkaliphilic bacteria. In order to explore the haloalkaliphilic microbes for 

bioremediation of organic solvent pollutants, 1 to 5 % (v/v) of 4 solvents: methanol, 

propanol, n-hexane and butanol were added in growth medium of 82 haloalkaliphilic 

bacteria isolated from the saline habitats of Coastal Gujarat.  

 

Most of isolates displayed growth in the tested solvents. In complex medium, Kh-10-91 

tolerated butanol along with methanol, propanol, methanol and n-hexane. These result are 

quiet interesting as with 0.8 Log Pow, butanol is one of the most toxic solvents and  the 

results suggested it‟s potential for bioremediation.  The findings resembled with a toluene 

resistant strain Pseudomonas putida. The bacteria tolerated 30% toluene (Inoue and 

Horikoshi, 1989). In another study, Mycobacterium sp.NRRL B-3805 displayed tolerance 

to butanol (de Carvalho et al., 2004). Except Kh-10-91, none of the isolates effectively 

tolerated butanol. This trend was similar to earlier work by Gimenez et al., 2000).  

 

Isolates of all 6 isolation sites: Somnath, Veraval, Okha, Mithapur, Diu and Jodiya grew 

well with n-hexane. The results resembled with the work of Ogino (Ogino et al., 1995) in 

which P. aeruginosa PST-01 tolerated   solvents of similar range of log P ow.  Mixed 

trends were recorded for methanol and propanol. A halotolerant Streptomyces sp, isolated 

from an oil field in Russia, has been reported to degrade crude petroleum (Nicholsan, et 

al., 2003). It did not grow in the presence of organic solvent with log Pow values equal or 

less than 2.5. However, the tolerance of Pseudomonas aeruginosa PST-01 was relatively 
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less than that of earlier described strain Pseudomonas aeruginosa LST-03 (Ogino et al., 

1994). Escherichia coli strains, in general, are highly sensitive to organic solvents and 

can only survive in the presence of solvents with a log Pow greater or equal to 4 (Aono 

and Horikoshi, 1997). 

 

Enzyme production was greatly inhibited by tested solvents. Poor Protease productions 

were recorded by many potent isolates as S-20-9 and D-15-9. Ogino and coworkers 

(1995) reported the delayed and reduced production of proteolytic enzymes in the 

presence of cyclohexane in Peudomonas aeruginosa PST-01, where delayed enzyme 

production was due to direct effect of cyclohexane on the bacterium.  

 

Our some isolate were able to produce protease potently in the presence of all 4 solvents 

planned for screening. AH-6, Sj-1 and Sj-2 are potent protease producers. Production was 

reduced with organic solvents. The trends are quite similar to earlier reports (Ogino et al., 

1995; Gupta et al., 2006). In another report (Geok et al.,2002), protease from 

Pseudomonas aeruginosa strain K  was not active in  organic solvents, with log P values, 

equal to or  lower than 4.0. As mentioned earlier, the lower the log P, the greater the 

polarity value and the greater the toxicity of the solvent to the enzyme. Generally, 

solvents with log P values below 4 are considered extremely toxic as their degrees of 

partitioning into the aqueous layer are higher (de bont et al., 1998). In comparision to 

some of these reports, the haloalkaliphilic bacteria in the present study sustained the 

production of protease with lower log P ow solvents. 

 

In context to growth in the presence of solvents, two different types of growth pattern 

were recorded.  In first type, growth rate and cell density were lower in the presence of 

solvent, while final cell density reached more than 80% of control. In the second type of 

growth pattern, the cell density and growth rate both did not more than 65% of the 

control. Difference in growth pattern can be related with genes responsible for organic 

solvent tolerance.  

 

Analysis of the 16S rRNA gene sequences provides a strong footing and is currently 

being used as a powerful tool in molecular chronology. On the basis of 16S rRNA 
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nucleotide sequencing, 18 haloalkaliphilic isolates were analyzed and diversity was 

judged.   

 

Isolates Kh-10-91 grew in the absence and presence of 30% (v/v) acetone were subjected 

for scanning electron microscopy to access structural alteration in cell. Cell size was 

enlarged by 2 to 2.5 fold, which clearly indicated the formation of vesicles for the storage 

and elimination of entered organic solvents into the cell.  

 

 Formation of vesicles for storage of toxic solvent has been reported by Cruden (Cruden 

et al., 1992) and Gupta (Gupta et al., 2005) for Pseudomonas sp. cells grown in p-xylene 

and Enterobacter sp. grown in the presence of cyclohexane, respectively. Solvents are 

reported to damage the integrity of cell membrane structure. This causes loss of 

permeability regulations. In extreme cases, leakage of cell RNA, phospholipid and 

protein also takes place (Sikkema et al., 1995). Solvent tolerant cells adapt by making 

changes in fatty acid composition and protein/lipid ratio in cell membrane to restore the 

fluidity (Isken and debont, 1998).  

 

To emphasize, the haloalkaliphilic bacteria and their extracellular haloalkaliphilc 

enzymes may tolerate organic solvent and thus can be subjected to bioremeadation 

where high salt and concentrations along with pH  and organic solvents are present. The 

organic solvent tolerant haloalkaliphilic bacteria may be able to bioremeade at organic 

solvent pollution and their solvent stable protease may be proved valuable for peptide 

synthesis under non-aqueous conditions, which otherwise would be thermodynamically 

unfavorable in water. Further, the study as a whole appears quite interesting as 

haloalkaliphilic organisms have rarely been explored for their tolerance under organic 

solvent. 
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4.1 INTRODUCTION 

==================================== 

Starch is one of the most abundant polymers in nature and amylases play central role 

in its utilization. Amylases are produced by eukaryotes, prokaryotes and archaea 

displaying its diverse nature (Upadek et al., 1997). The amylases are significant in 

many industrial processes, such as starch liquefaction, pulp process and in detergent. 

(Kadziola et al.,1998 and Machius et al., 1995).   

 

Amylases have increasingly become one of the most valuable enzymes in 

biotechnology, particularly in the food and starch processing industries . Besides, food 

and starch processing industries require a huge quanity (Vihinen et al., 1994). 

Therefore, with the involvement in many industries, amylases have emerged as the 

key enzymes of biotechnological significance. Haloalkaliphiles are an attractive group 

of Extremophiles, having ability to survive under saline and alkaline conditions. With 

these feature, such organisms provide unique system for investigating biocatalysis 

under multitude of extremities.  

 

Haloalkaliphiles are a class of extremophilic organisms adapted to saline and high pH 

conditions (Dodia et al., 2008 and Gupta et al., 2005). Haloalkaliphilic proteins are 

stable at high salt concentrations due to their innate habitat at saline environment and 

special arrangement of amino acids (Lanyi et al.,1974, Eisenberg et al., 1992,  

Madern et al., 2000 and Mevarech et al., 2000). With comparatively larger number of 

negatively charged amino acids on surface, halophilic proteins display hydrophobic 

characteristics in contrast to non-halophilic proteins. This feature is beneficial to 

avoid precipitation of enzyme as well as maintains structural flexibility with organic 

solvents (Mevarech et al., 2000). Noticeably, haloalkaliphic proteins need high salt 

for activity and stability and majority get unfolded and inactivated at less than 1–2 M 

NaCl or KCl (Madern et al.,  2000). High salt creates a hydrophobic environment and 

thus, haloalkaliphilic enzymes are suitable for biocatalysis under non-aqueous 

conditions.    
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While many amylases are reported from microbial sources, only a few haloalkaliphilc 

bacteria are known in this context.  In particular, studies on the organic solvent 

tolerance among  haloalkaliphilc amylases are nearly non-existent. 

 

Due to exceeding   boundaries of biotechnology, requirement of variety of organic 

solvent tolerant enzymes has enhanced.  Demand of organic solvent tolerant amylases 

is greatly enhanced due to their significance in clinical, medicinal and analytical 

sectors. Present work focused on the catalytic potential of a haloalkaliphilc amylase in 

the presence of organic solvents. 

 

In the view of above perspectives, optimization of the haloalkaliphilic amylases with 

reference to various organic solvent is of utmost significance. Studies presented in 

this chapter, deal with the solvents effect on haloalkaliphilic amylases isolated from 

costal belt of Gujarat. We believe that results would be highly significant in scaling 

up the process to commercial level 
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 4.2 MATERIAL AND METHODS 

==================================== 

4.2.1 Microorganism and culture conditions 

For the isolation of amylase producing  haloalkaliphilic bacteria, mud and sea water 

samples were collected from  Okha (22°28′0″N 69°4′0″E), Diu (20°43′N 

70°59′E20.71°N 70.98°E) and Veraval (20°54′N 70°22′E20.9°N 70.37°E) along the 

Costal Gujarat.  Samples were subjected to enrichment culture techniques in Complex 

Medium Broth (CMB) consisting, (g/liter): Glucose, 10; Peptone, 5; Yeast extract, 5; 

KH2PO4, 5; with varying concentration of NaCl (10-20%, w/v) at different pH 8-10.  

 

The pH of the medium was adjusted by adding separately autoclaved Na2CO3 (20%, 

w/v). After inoculation, flasks were incubated on environmental shaker at 37°C with 

regular monitoring on the turbidity. After 48-72 hour of growth, a loop full culture 

was streaked on the CMB agar (3%, w/v) plate and incubated at 37°C. After 48 hour 

of the incubation, on the basis of colony characteristics, various isolated colonies were 

selected and pure cultures were obtained by subsequent streaking on the CMB agar 

plate.   

 

For  screening of amylase producing isolates, actively growing cultures were prepared 

as mentioned above and inoculated on starch agar plates (g/liter: Starch, 2; Yeast 

extract, 3; Peptone, 5; NaCl, 100, pH 8-10; Agar, 30) as spot. The plates were 

incubated for 24-48 hour at 37°C and after sufficient growth, amylase producing 

bacteria appeared on the starch agar plate were picked  and preserved at 4°C.  

 

 

4.2.2 Amylase production and assay  

 From activated culture of amylase producing isolate (A540; 1.0), 5% was inoculated 

into Starch medium (g/liter: Starch, 2; Yeast extract, 3; Peptone, 5; NaCl, 100, pH 9). 

Culture was harvested after 12 hour, which was pre standardized for maximum 

amylase production. The culture was centrifuged at 8,000 rpm for 10 min at 4°C and 

the cell free extract was used as crude enzyme preparation. Amylase was measured by 

http://toolserver.org/~geohack/geohack.php?pagename=Diu&params=20.71_N_70.98_E_
http://toolserver.org/~geohack/geohack.php?pagename=Diu&params=20.71_N_70.98_E_
http://toolserver.org/~geohack/geohack.php?pagename=Veraval&params=20.9_N_70.37_E_
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estimating reducing groups released from starch, by the reduction of 3, 5-

dinitrosalicylic acid (DNS) with slight modification of Bernfeld (12) method. 0.5ml 

enzyme was added to 1ml (2%, w/v) starch prepared in NaOH-Borax buffer (20mM, 

pH 10) and incubated at 37°C for 20min. One ml of DNS reagent (g/liter: DNS, 10; 

Sodium potassium tartarate, 300; Sodium hydroxide, 16) was added to the mixture 

and kept in boiling water bath for 10min. After cooling, the mixture was diluted with 

8 ml distilled water and absorbance measured at 540nm. Unit of amylase activity was 

defined as 1µg of maltose liberated by enzyme from starch per minute. 

 

4.2.3 Organic Solvents    

 Methanol, butanol, propanol and n-hexane were selected for non-aqueous studies on 

amylase, based on their Log Pow values (0.9, 0.25, 3.9 and 0.8), hydrophobicity and 

hydrophilicity. 

 

4.2.4 Screening of amylase for nonaqueous condition 

Amylases of 8 bacterial isolates;   Mi-10-62, Kh-10-101, Dj-30-81, Ve1-10-81, Ve1-10-

82, Ve1-10-83, Ve1-10-91, Ve1-10-92 and Ve1-10-93 were selected for screening of 

solvent tolerance. Kh-10-91, Dj-30-81, Mi-10-62 were isolated from Okha (22°28′0″N 

69°4′0″E ) , Diu (20°43′N 70°59′E20.71°N 70.98°E / 20.71; 70.98) , Mithapur 

(22°30′0″N 68°4′0″E )  respectively, while Ve1-10-81,   Ve1-10-82, Ve1-10-83, Ve1-10-

91 , Ve1-10-92   and  Ve1-10-93 were  from Veraval (20°54′N 70°22′E20.9°N 70.37°E). 

Amylase activity was measured in a reaction mixture of 0.5 ml enzyme and 1 ml starch 

solution (2%, w/v) prepared in NaOH-Borax buffer (20mM, pH10) with 5, 10 and 20% 

(v/v) of methanol, propanol, n-hexane and butanol.  The enzyme estimation was 

performed as describe above. Controls of each set were also included.  

 

4.2.5 Effect of pH on activity and stability of Amylase  

Amylase catalysis in the presence of organic solvents was assessed at different pH, using 

buffers (20mM); Sodium Phosphate (pH 5.5 - 8), Tris-HCl (pH 8 – 9.5), NaOH-Borax 

(pH 9.5 - 10) and Glycine - NaOH (pH 8 - 12). The enzyme was incubated with 5, 10 and 

20% (v/v) of methanol and butanol along with respective buffer. To investigate solvent’s 

effect on stability of the enzyme at different pH, the pH adjusted to 5-13 with above 

http://toolserver.org/~geohack/geohack.php?pagename=Diu&params=20.71_N_70.98_E_
http://toolserver.org/~geohack/geohack.php?pagename=Veraval&params=20.9_N_70.37_E_
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buffers in the presence of 20% methanol. After incubation for 30-180 minute, residual 

activities were estimated. 

 

4.2.6 Effect of NaCl on activity and stability of Amylase 

 The effect of NaCl and organic solvent in conjunction on enzyme activity was assessed 

by supplementing the reaction mixture with 0.5- 4M NaCl. Amylase assay was carried 

out at 37°C with 5, 10 and 20% (v/v) of the tested solvents.  

For the study of the stability of amylase in response to salt and solvent, the enzyme was 

incubated with NaCl in the range of 0- 4M NaCl and the aliquots were withdrawn at 

regular time intervals for monitoring residual activity. The amylase activity in the absence 

of NaCl was considered as a 100%. 

 

4.2.7 Effect of Temperature activity and stability of Amylase 

The temperature profile for amylase activity was examined by incubating the assay 

reaction mixture at different temperatures in the range of 37-80°C. The amylase activity 

was determined as mentioned above. The temperature stability was studied by incubating 

the enzyme at different temperatures (37-80°C). The aliquots were withdrawn at 30, 60, 

90, 120 and 180 min and reaction mixture was incubated at optimum temperature. The 

residual enzyme activities were measured. 
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4.3 RESULTS  

==================================== 

Amylase catalysis in the presence of organic solvents 

Amylases of all isolates were able to catalyze the reaction in presence of all tested 

solvents. Amylases from Dj-30-81, Ve1-10-82, Ve1-10-83 and Ve1-10-93 were quiet 

active with 20% (v/v) of methanol, propanol, n-hexane and butanol (Figure- 4.1).  

Compared to control, with 5% (v/v) solvents, there was almost similar catalysis. 

However, at higher concentrations of solvents, varying patterns emerged, as reflected 

in Figure-4.1.  

On the basis of relative production of amylases, Ve1-10-82 and Mi-10-62 were 

selected for further study. Based on 16S rRNA gene sequencing, Ve1-10-82 was 

phylogenetically nearest to Oceanobacillus oncorhynchi and hence the isolate was 

designated as Oceanobacillus oncorhynchi Ve1-10-82 (the accession number of 16S 

rRNA gene sequence-GQ121034) Mi-10-62 was phylogenetically nearest to Bacillus 

agaradhaerens. The accession number of the submitted 16S rRNA gene sequence 

from Mi-10-62 is GQ121032. 
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Figure 4.1- Catalysis of various Amylases in presence of organic solvents  
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4.3.1 Mi-10-62 

Partial purification of the enzyme was achieved by ammonium sulphate precipitation 

with 3.9 fold purification, specific activity of 1246.6 U/mg and 34.87% yield. 

4.3.1.1 Amylase catalysis in the presence of organic solvents 

The crude and partially purified preparations of Mi-10-62 amylase were quiet active in 

the presence of the solvents. The enzyme was noticeably active up to 30 % (v/v) of 

propanol, hexane, heptane, decane and dodecane. With alcohols and lower alkenes, 

however, relatively reduced activity was evident in partially purified enzyme.  

Catalysis in the presence of 10 % (v/v) hexane, heptane, deacne and dodecane was 

comparable to control. While with 10% (v/v) dodecane, the activity was nearly the 

same as control, the enzyme retained 50% activity in the presence of 10 % (v/v) 

Butanol. With 0.8 log Pow value, butanol is highly toxic for living organisms and 

their macromolecule and therefore, its quite interesting feature of this enzyme to be 

substantially active in its presence.  

Partially purified amylase with 30% (v/v) dodecane, decane heptane, hexane, 

methanol and propanol exhibited 80, 75, 72, 71, 40 and 35% residual activities, 

respectively. However, with 30% (v/v) butanol, the amylase activity was totally lost.  

Amylase in crude form retained 80, 78, 71, 61, 56, 47 and 42% residual   activities 

with   dodecane, decane, heptane, hexane, propanol, methanol and butanol, 

correspondingly (Figure-4.2). Activity of control was considered as 100% for 

calculating residual activity. The residual activities of crude and partially purified 

enzyme are summarized in Table 4.1. 
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Table 4.1- Residual activities of Mi-10-62 Amylase in crude and partially purified form with different solvents 

 Mi-10-62 Amylases residual activity  with Organic solvent 

Solvent  

% 

(v/v) 

Methanol n-hexane Propanol Butanol Heptane Decane Dodecane 

 
P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

P..P.  

Enzyme 

Crude 

Enzyme 

10% 68.24 80.86 87.4 83.04 65.67 82.24 48.82 62.5 91.58 85.94 95.89 89.3 104.9 91.73 

20% 50.08 58.11 81.17 78.1 48.85 64.92 23.71 44.3 80.42 75.79 85.78 87.53 88.03 86.15 

30% 39.85 46.59 70.99 61.3 34.56 56.23 0 41.58 71.93 70.65 74.87 77.89 79.45 79.27 
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Figure 4.2A- Catalysis of Mi-10-62 crude Amylases in presence of organic solvents 
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Figure 4.2B- Catalysis of Mi-10-62 partially purified Amylases in presence of organic      

                   Solvents 

 

Figure 1- Effect of organic solvents; 0 %(░) 10 %(▥) 20 %(▤) 30 %(▧), V/V, on 

the catalysis of Mi-10-62 Amylase in crude (4.2A) and partially purified 

preparations (4.2B)  
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4.3.1.2 Effect of pH on the catalysis of amylase 

Effect of pH on amylase was assessed in the presence of popanol and dodecane, 

where enzyme was active in alkaline pH, 8 to 12.  The activity at pH 10, without any 

solvent, was considered as 100%. At several combinations of pH and solvent 

concentrations, the residual activities were monitored. Crude amylase retained 56, 46 

and 45 % residual activities with 10, 20 and 30% (v/v) propanol at pH 8. The loss of 

activities of partially purified enzyme under similar conditions of pH and solvents 

were quite comparable to those of crude preparation (Figure 4.3 A). Enzyme had 83, 

70 and 63% residual activities in crude form and 46, 42 and 36% in partially purified 

preparation with the tested concentrations of dodecane (Figure 4.3B).   

 The crude amylase exhibited   57, 50 and 30 % residual activities, while the partially 

purified enzyme retained 73, 62 and 40% activities in the presence of   10, 20 and 

30% (v/v) of propanol. At the same concentrations of dodecane, the crude and 

partially purified enzymes had 75, 60, 55 and 55, 60, 40 % residual activities, 

respectively. 

 At optimum pH 10; 86, 77 and 64% activities for crude and 79, 68 and 62 % 

activities for partially purified enzymes were obtained with tested concentrations of 

propanol. However, in the presence of dodecane, comparatively higher residual 

activities 90, 85, 78 and 80, 70, 63% were recorded for crude and partially purified 

enzymes, respectively.  

Amylase was quiet efficient at pH 11 with Dodecane. At pH 11, the enzyme activities 

for crude were 70, 58 and 42% while partially purified enzyme had 57, 43 and 32 % 

activities in the presence of 10, 20 and 30% (v/v) solvent, respectively. At pH 12, the 

activities were quite negligible for both tested solvents. Effect of pH on amylase 

catalysis in the presence of solvents is presented in (Figure 4.3 A and 4.3B).  
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Figure 4.3A-Effect of pH on Mi-10-62 Amylases in presence of propanol 
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Figure 4.3B- Effect of pH on Mi-10-62 Amylases in presence of dodecane. 

 

Figure 4.3- Effect of pH on Mi-10-62   Amylase activity with 0% (), 10%(■), 

20%(▲) and  30%(×), (v/v), propanol (4.3A)  and dodecane (4.3B)  
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4.3.1.3 Effect of Salt on catalysis of Mi-10-62 Amylases 

Effect of 0.5-4M NaCl on Mi-10-62 amylase catalysis was examined in the presence 

of 10-30% (v/v) propanol and dodecane.  With both solvents, a change in the pattern 

of salt profile was evident. For crude and partially purified enzyme, the salt optima 

were 3 and 2M NaCl, respectively. Crude amylase with 0.5 M salt and 10, 20, and 30 

% (v/v) propanol and dodecane had 58, 50 43, and 52, 47, 40 ug/ml/min respectively.  

For partially purified enzyme, compared to control (358 ug/ml/min), the activities 

were 325, 300 and 285 with Propanol and 335, 315 and 290 ug/ml/min with 

dodecane, respectively. 

At 1 M salt, better enzyme activity was observed with both tested solvents. As 

compared to activity at 0.5 M salt, nearly two fold enzyme activities were recorded at 

1 M salt.  With 1 M salt, the activities of crude enzyme were 100, 98 and 86 at tested 

concentrations of propanol and 100, 97 and 62ug/ml/min with dodecane.  

 With the same concentrations of salt and propanol, activities of partially purified 

enzyme were 560, 535 and 485, while with dodecane; 600, 575 and 500ug/ml/min 

activities were recorded. Salt at 2M was optimum for partially purified enzyme; 

exhibiting    710, 670, 595 ug/ml/min activities with Propanol and 735, 698 and 657 

ug/ml/min activities with the tested concentrations of dodecane. With further increase 

in salt, partially purified enzyme resulted in loss of activity (Figure 4.4 A and 4.4B). 

NaCl at 3M was optimum for crude amylase, resulting in 150, 130, 100 and 140, 130, 

120 ug/ml/min activities with Propanol and dodecane, respectively.  At 4 M salt, 

decreased activities were evident with both solvents. 
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                 Figure-4.4A- Effect salt on Mi-10-62 Amylases in presence of propanol  
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          Figure- 4.4 B- Effect salt on Mi-10-62   Amylases in presence of dodecane  

 

Figure 4.4- Effect of salt NaCl on Mi-10-62   amylase activity in the presence of  

0% () , 10%(■), 20%(▲) and  30%(×) (v/v) Propanol (4.4A) and dodecane 

(4.4B)  

 

0
20
40
60
80

100
120
140
160

0.5 1 2 3 4

A
c
ti

v
it

y

NaCl (M)

Crude 

 Partially  Purified 

0

100

200

300

400

500

600

700

800

0.5 1 2 3 4

NaCl (M)

A
c
ti

v
it

y



 

Chapter 4: Optimization of Amylases catalysis in the presence of organic solvent  

 

 

92 

 

4.3.1.4 Temperature optima of Mi-10-62 in presence of Propanol  

Figure 4.5 displays the effect of temperature on the catalysis of Mi-10-62 amylase in 

the presence of propanol.  Optimum temperature for crude amylase was 50°C, which 

shifted to 60°C in the presence of propanol. At 20 % (v/v) propanol, the partially 

purified enzyme retained comparable activity as control with the enhanced 

temperature optima. At 30% (v/v) solvent, the enzyme retained nearly 50% of the 

residual activity.  

 

Figure 4.5- Temperature optima of Mi-10-62 amylase with propanol 

 

Figure 4.5- Effect of propanol on temperature optima of enzyme; 0% (), 

10%(■), 20%(▲) and  30%(×) (v/v) Propanol    
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4.3.2 Ve1-10-82  

4.3.2.1 Effect of pH on catalysis of Ve1-10-82 Amylase 

Effect of pH on enzyme catalysis was judged in the presence of methanol and butanol. 

The enzyme was quiet active at broader range of acidic and alkaline pH. Activity at 

pH 10, without any solvent was assumed as 100%. With many combinations of pH 

and concentrations (v/v) of solvents, enhanced activities were recorded. At pH 5, 

relative to control; 92, 108 and 57% activities with 5, 10 and 20% (v/v) of methanol 

and 40, 30 and 20% activities at the same concentrations of butanol, respectively, 

were evident.  

Enzyme performance was quiet better at pH 6. The activities were 106, 100 and 82% 

of control at 5, 10 and 20% (v/v) of methanol and 100, 80 and 96% with the same 

concentrations of butanol. At neutral pH, however, the activities declined in the 

presence of methanol, while it remained unaltered with butanol. At pH 7, the residual 

activities were 50, 75 and 50% at 5, 10 and 20% of methanol, respectively. At same 

pH with butanol, the residual activities were 92, 108 and 74% at the tested 

concentrations of the solvent.  

In alkaline pH range better activities were recorded. At pH 8 enzyme exhibited 61, 73 

and 87% residual activities at 5, 10 and 20% (v/v) methanol. At pH 9; 70, 90 and 85 

of the residual activities with 5, 10 and 20% (v/v) methanol, while 92, 87 and 82% 

activities with the corresponding concentrations of butanol were observed. However, 

at pH 10, the residual activities were 125, 115 and 90 % of control with 5, 10 and 

20% of methanol. With the same concentrations of butanol, at pH 10; the residual 

activities were 90, 68 and 52%. pH 11 was  quiet favorable for enzyme activity with 

methanol , although butanol at the same pH was not as favored. At pH 11, the 

activities were 116, 92 and 85% with methanol and 60, 52 and 50% with 5, 10 and 

20% v/v of butanol. The residual activities were significantly reduced with both 

solvents at pH 12.  

The enzyme exhibited 70, 67 and 57% residual activities with methanol and 36, 18 

and 13% with butanol. At pH 13, with 5, 10 and 20% v/v methanol; highly reduced 

residual activities at 35, 30 and 20% were recorded. While with butanol at pH 13, the 
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activities were totally lost at higher solvent concentrations. At pH 13, with 5% (v/v) 

butanol, 30 %residual activity was detected (Figure 4.6A and Figure 4.6 B). 
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Figure- 4.6 A- Effect of pH on Ve1-10-82 Amylases in the presence of methanol 
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Figure- 4.6B- Effect of pH on Ve1-10-82 Amylases) in presence of butanol 

 

Figure 4.6- Effect of pH on Ve1-10-82 Amylase activity with 0% () , 5% (■), 

10%(▲) and  20%     (×) (v/v)  methanol (4.6A) and butanol (4.6B)  
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4.3.2.2 Effect of salt on the enzyme catalysis  

Effect of NaCl (0.5 - 4M) on enzyme catalysis was investigated in the presence of 5, 

10 and 20% (v/v) methanol and butanol. With 0.5 M Salt, in presence of 5, 10 and 

20% (v/v) methanol and butanol  31, 25, 39 and 46, 44, 39 (µg/ml/min) activities were 

recorded. With 1 M salt, comparatively better activities were observed at the tested 

concentrations of both solvents. In case of butanol, there were slightly enhance 

activities at 46, 48 and 42 µg/ml/min, while for methanol, the enhancement in 

activities was nearly threefold of the value at 0.5M salt. 

At 1 M salt, the activities were 100, 84 and 130 µg/ml/min, correspondingly. Salt at 2 

M was optimum for catalysis in presence of both solvents. At this salt concentration; 

80, 73 and 48 µg/ml/min activities with butanol and 113,105 and 100 µg/ml/min 

activities with methanol were observed. On further increase in salt concentrations, the 

activities were reduced for both tested solvents. At 3 M salt; 63, 52, 47 and 122, 113, 

93 µg/ml/min activities were observed in the presence of 5, 10 and 20% butanol and 

methanol, respectively.  At 4 M salt; 48, 54, 33 and 70, 68, 60 µg/ml/min activities 

were evident with butanol and methanol, correspondingly (Figure 4.7A and 4.7B). 

 

 

0

20

40

60

80

100

120

140

160

0.5 1 2 3 4

NaCl (M)

A
c

ti
v

it
y

 (
u

g
/m

l/
m

in
)

 

Figure 4.7A- Effect salt on Ve1-10-82 Amylases in the presence of methanol 
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Figure 4.7 B- Effect salt on Ve1-10-82 Amylases in the presence of butanol 

 

Figure 4.7 -  Effect of salt (NaCl) concentration on Ve1-10-82 amylase activity 

in the presence of  0% () , 5% (■), 10% (▲) and  20% (×) (v/v) methanol 

(4.7A) and butanol (4.7B)  

 

4.3.2.3 Stability of Ve1-10-82 in presence of methanol 

 

Amylase of Ve1-10-82 was quiet stable with methanol up to 180 minute, at 50 and 

60
o
C. While at 70

o
C, the enzyme was active only up to 90 minute( ure 4.8). Residual 

activities of at various methanol concentrations are shown in Table-4.2. Amylase was 

stable and active at acidic and alkaline pH range. While, in acidic range (pH 5-6), the 

enzyme was stable up to 90 minute , at neutral pH with 5 and 10% (v/v) methanol, it 

was stable up to 180 minute with reduced activity (Figure 4.8 ). In alkaline range, at 

pH 9-11, the enzyme was stable up to 180 minute retaining good activity, the pH at 11 

being optimum for activity and stability. At pH 12, the activities and stability 

decreased significantly. The residual activities with different concentrations of 

methanol at varying pH are presented in Table-4.3. 
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Figure 4.8- Thermo stability of Ve1-10-82 Amylase 

 

Figure 4.8- Effect of methanol on thermo stability of Ve1-10-82 amylase with 0% 

() , 5% (■), 10% (▲) and  20% (×) (v/v) methanol   
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Figure 4.9   Stability of Ve1-10-82 Amylase at different pH 

 

Figure 4.9- Stability of Ve1-10-82 amylase at various pH in the presence of 0% 

(), 5 %(■), 10 %(▲) and 20 % (× ) (v/v) methanol 
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Table 4.2- Residual activities of Ve1-10-82 amylase in the presence of methanol at 

various temperatures (
o
C) 

 

 

Temp 

o
C 

% 

Methanol 

(v/v) 

Residual activity at different  Time interval  

(Minute ) 

  
0 

(Min) 
30(Min) 60(Min) 90(Min) 120(Min) 180(Min) 

50
 o

C 0 100 78.20 71.43 68.70 66.24 52.14 

 5 53.70 58.14 50.94 50.61 42.38 26.80 

 10 50.92 71.19 43.20 41.03 34.75 18.32 

 20 40.74 33.77 30.86 29.27 18.63 13.93 

  
0 

(Min) 

30 

(Min) 

60 

(Min) 

90 

(Min) 
120(Min) 180(Min) 

60
 o

C 0 100 98.22 95.63 92.50 92.24 89.95 

 5 83.59 79.46 68.13 64.27 56.58 44.46 

 10 79.50 76.83 67.70 64.87 61.88 38.50 

 20 59.51 56.39 47.58 46.77 42.08 25.42 

  
0 

(Min) 

30 

(Min) 

60 

(Min) 

90 

(Min) 
120(Min) 180(Min) 

70
 o

C 0 100 82.33 76.69 37.59 0 0 

 5 73.30 37.59 38.34 34.15 0 0 

 10 35.71 36.84 32.36 22.48 0 0 

 20 30.82 21.66 19.81 14.39 0 0 
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pH 
% 

Methanol 

(v/v) 

Residual Activity at different Time interval  

(Minute) 

5  0 (min) 30(min) 60(min) 90(min) 120(min) 180(min) 

 0 100 79.77 59.70 41.01 27.97 21.87 

 5 116.9 89.82 68.81 54.06 24.37 13.79 

 10 113.59 71.98 39.50 25.58 15.23 5.02 

 20 87.61 56.89 34.59 23.34 11.91 3.57 

6  0 (min) 
30 

(min) 

60 

(min) 

90 

(min) 

120 

(min) 

180 

(min) 

 0 100 71.81 52.88 39.30 18.08 15.70 

 5 89.64 65.20 49.63 37.01 19.64 11.24 

 10 85.62 63.11 40.74 22.07 14.73 0 

 20 66.40 45.50 23.68 16.04 0  

7  0 (min) 
30 

(min) 

60 

(min) 

90 

(min) 

120 

(min) 

180 

(min) 

 0 100 93.54 83.37 63.87 45.21 27.27 

 5 67.94 58.13 51.31 48.31 43.52 34.56 

 10 85.59 70.21 57.24 43.31 35.35 22.24 

 20 58.49 43.54 33.01 17.41 0 0 

8  0 (min) 
30 

(min) 

60 

(min) 

90 

(min) 

120 

(min) 

180 

(min) 

 0 100 91.21 87.26 79.25 72.76 63.39 

 5 113.47 107.40 100.29 83.74 73.79209 71.15 

 10 143.19 129.98 116.54 95.08 88.05 83.16 

 20 121.81 116.39 107.61 98.38 89.70 87.52 
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pH 
% 

Methanol 

(v/v) 

Residual Activity at different Time interval  

(Minute) 

9  0(min) 30(min) 60(min) 90(min) 120(min) 180(min) 

 0 100 95.56 87.90 82.92 78.24 70.07 

 5 73.75 71.33 67.78 58.75 53.84 46.29 

 10 89.49 84.01 73.73 67.32 58.64 52.12 

 20 99.96 76.10 65.84 45.26 31.55 23.37 

10  
0 

(min) 

30 

(min) 

60 

(min) 
90 (min) 

120 

(min) 

180 

(min) 

 0 100 83.59 79.26 62.45 60.21 49.27 

 5 119.90 104.81 87.27 78.23 63.55 48.30 

 10 85.50 73.81 70.24 64.50 56.30 43.87 

 20 77.60 68.98 57.68 52.12 37.75 31.73 

11  
0 

(min) 

30 

(min) 

60 

(min) 
90 (min) 

120 

(min) 

180 

(min) 

 0 100 97.79 92.08 88.65 80.57 71.34 

 5 96 86.77 82.04 78.66 73.92 69.87 

 10 85.06 73.87 71.42 65.14 52.81 50.04 

 20 80.48 66.13 60.57 51.83 47.73 42.77 

12  
0 

(min) 

30 

(min) 

60 

(min) 
90 (min) 

120 

(min) 

180 

(min) 

 0 100 78.48 64.79 39.89 14.64 4.69 

 5 95.69 64.66 38.46 24.11995 6.25 0 

 10 88.39 63.36 29.15 18.59 0 0 

 20 64.66 47.58 24.11 0 0 0 

 

 

Table 4.3 - Residual activities of Ve1-10-82 amylase at different pH with % (v/v)  

methanol  
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4.4 DISCUSSION  

==================================== 

Extremozymes have attracted considerable attention due to their potential to meet 

industrial demand for enzymes with multitude of extremities. High salinity, alkaline 

conditions and non-aqueous medium are some of the examples of extremity for 

biocatalysis. However, only limited literature is available on the enzymes from 

haloalkaliphilic bacteria with respect to non-aqueous biocatalysis (Herbert et al.,    

1992. Madigan et al., 1997, Niehaus  et al., 1999 and Eichler et al., 2001).   

 

Some intra and extra cellular enzymes from extremely and moderate halophilic and 

haloalkaliphilic bacteria have been isolated and characterized, which might have 

potential applications  in food, chemical, pharmaceutical, leather, tanning, paper pulp 

and waste-treatment industries  (Costa et al., 1998, Patel et al.,  2005, Jogi et al.,      

2005 , Patel et al.,  2006 and Wejse et al.,  2003).   

 

The studies on haloalkaliphilc amylases with respect to their tolerance against organic 

solvent have not been investigated in great deal. However, some haloalkaliphilic 

archaea and their relationship with organic solvents have been investigated during the 

recent years (Tadamasa et al.,  2005 and Saraiva et al., 1996). It is well reported that 

enzymes are inactivated in the presence of organic solvents, and catalytic activities in 

non-aqueous environment are generally lower than those in aqueous system (Ogino et 

al., 2001  and Ru et al., 1999). Therefore, it was quite interesting to study an amylase 

from haloalkaliphilic bacteria in non-aqueous medium.  

 

The haloalkaliphilic bacteria in the present report were screened against 4 organic 

solvents; methanol, propanol, n-hexane and butanol. The isolates displayed varying 

diversity with respect to catalysis in these solvents. With quiet less Log Pow value, 

butanol is extremely toxic for living cell and their macromolecules. Therefore, the 

catalytic of Ve1-10-82 even in the presence of butanol reflected a unique feature of the 

enzyme. 
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Enzyme catalysis with 5% (v/v) water miscible and immiscible alcohols and alkane, 

similar to control, signify its robust nature at lower solvent concentration. At higher 

concentrations, varying results were evident. 

 

Mi-10-62 amylase reported in this study was screened against 7 organic solvents; 

Methanol, Propanol, n-hexane, Butnol, Heptane, Decane and Dodecane.  The amylase 

displayed varying responses against these solvents.  Catalysis of Mi-10-62 amylase in 

the presence of Butanol was an interesting feature of the study. Catalysis with 20% 

(v/v) water miscible and immiscible alcohols and alkane, indicated the robust nature 

of the enzyme. At concentrations above 20% (v/v), varying effects were observed. 

Mi-10-62 amylase was active over wide range of pH, 8-11; the optimum being at 10. 

These values are marginally higher than those reported for an amylase from an 

alkaliphilic Bacillus sp. (Igrashi et al., 1998) and significantly higher than those 

reported for another amylase from Halobacterium salinarum (Good et al., 1970). 

Other organisms, such as thermophilic and halotolerant bacteria, Halothermothrix 

orenii are reported to have amylases with optimal activities in the similar range of pH 

(Mijts et al., 2001).  

Amylase from Ve-10-82 was active at both acidic and alkaline pH, while at pH 7 it 

lost activity. The optimal pH for the catalysis was 10-11, which appeared to be higher 

than an amylase from alkaliphilic Bacillus sp. (pH 8.0-8.5) (Igrashi et al.,  1998). The 

Ve-10-82 enzyme retained stability over a wide range of pH; 6.0-10.0, which is quiet 

higher than an amylase from Halobacterium salinarum (Good  et al.,   1970 ). Other 

prokaryotes, such as a thermophilic and halotolerant bacterium, Halothermothrix 

orenii was reported to have optimal amylase activity in range of pH 6.0-9.5 . 

Regarding the stability at different pH, the enzyme was quite active over acidic and 

alkaline range. At pH 5 and 6 with 5 and 10% (v/v) methanol, the enzyme was stable 

up 90 min, while it was highly stable at pH 10-11. While the enzyme retained activity 

over a wide pH range of 5-11, enhanced activities were observed at alkaline pH range. 

Therefore, the alkaliphilic nature of the enzyme was highly pronounced. 
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Halophilic enzymes, in general, are not stable in low salt concentrations, because of 

ionic charges and salt dependent structural stability (Madern et al., 2000, Danson  et 

al., 1997, Bonnete et al., 1994 , Martınez et al., 2009). Therefore, an increase of 

activity with salt concentrations is a common feature of the halophilic enzymes (Dym  

et al., 1995). The amylase from Mi-10-62 in the present study displayed an upward 

shift in activity with salt from 0.5 to 2 M. Salt affects the binding between the enzyme 

and substrate .  

Most of the halophilic and haloalkaliphilic enzymes are inactivated at NaCl or KCl 

concentrations below 2 M (Camacho et al., 1995). As described earlier, the amylase 

activity in Mi-10-62 increased with increasing salt concentrations, indicating an 

overall effect of salt on the reaction. The enzyme was quiet active with 1M NaCl even 

in the presence of solvents. Optimum catalysis at comparatively low salt and its 

behavior to retain activity with broader range of salt concentrations in the presence of 

solvents is quite relevant to haloalklaiphilic bacteria. The findings are quite 

comparable to a moderately halophilic and aerobic bacterium, Halomonas meridiana 

(Coronado et al., 1995).  The Mi-10-62 amylase had differential effects in response to 

salt when crude and partially purified enzymes were compared. While 2M salt was 

optimal for partially purified enzyme, the crude preparation required 3M for maximal 

activity.  

Normally structure of halophilic enzymes are not stable in low salt concentrations 

because of ionic charge required for the stability of the enzyme structure (Joshi  et al., 

2008 and Madern et al., 2000). Therefore, decrease in the salts required by halophilic 

enzymes may lead to the loss of their structure and function (Danson  et al., 1997, 

Bonnete  et al., 1994, Rosa  et al., 2009). The amylase reported here appears to be 

adapted to the high NaCl concentrations. The increase of activity with salt is a 

common feature of halophilic enzymes (Dym et al., 1995). Amylase of Ve1-10-82 

highlights its halophilic character with upward shifting of enzyme activity from 0.5-

1M NaCl.  

Higher concentrations of salt affect the binding mechanism between the enzyme and 

substrate (starch). However, as described earlier, the activity increased at higher salt 

concentrations, indicating that salt had an overall positive effect on the reaction rate. 

Most of the halophilic and haloalkaliphilic enzymes studied are inactivated when the 
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NaCl or KCl concentration decreases to less than 2 M (Madern et al., 2000). In 

contrast to this general acceptance, amylase in the present report was optimally active 

at 1M NaCl with methanol. While with butanol, the enzyme required 2M NaCl 

concentration for its maximal activity. Optimal performance at comparatively low salt 

concentrations and ability to retain activity with border range of salt concentrations 

was evident in a moderately halophilic and mesophilic aerobic bacteria, Halomonas 

meridiana (Coronado at al., 2000). There were substantial changes in salt profile of 

the enzyme. In the presence of butanol, the optimum activity shifted from 1M to 2M 

salt concentration. 

The optimal temperature (55 to 60 
0
C) for Mi-10-62 amylase was quite comparable 

with the enzyme from Halobacterium salinarum (Good et al., 1970). However, the 

enzyme was active at higher temperatures, and with 20% v/v propanol, it retained 

significant activity up to 70
0
C. Comparable to our studies, the enzyme from an 

alkaliphilic Bacillus sp. also exhibited the optimal temperature at 60
0
C (Igrashi et al., 

1998). Other Halophilic enzymes, such as NAD and NADP glutamate 

dehydrogenases from Halobacterium salinarum displayed maximal activity at 70
0
C, 

with higher temperature stability (Bonete et al., 1987). The temperature profiles and 

stability were quite comparable to a thermophilic amylase from Thermus sp. AMD33, 

which had optima at 70
0
C (Nakamura et al., 993), or with a halophilic and 

thermophilic bacteria Halothermothrix orenii, with an optima at 65 
0
C (Mijts et al., 

2001). The thermophilic nature of our enzyme was also reflected by a shift in 

temperature optima to higher range. The high optimal temperatures for enzymatic 

catalysis in halophilic organisms may be considered an adaptive feature as these 

enzymes have to endure in their natural salt environments, such as, slatterns exposed 

to intense sunlight. The thermophilic nature has been further reported for several 

halophilic enzymes (Camacho et al.,  1995  and Marhuenda  et al., 2002).  

The optimal temperature for the Ve1-10-82 amylase was in the same range (55-60 
0
C) 

as reported for the enzyme from Halobacterium salinarum. However, it retained 

activity at higher temperatures. Similar to Ve1-10-82 amylase, an enzyme from 

alkaliphilic Bacillus sp. had optimal temperature at 55
0
C (Igrashi et al.,  1998). Other 

Halophilic enzymes such as NAD and NADP glutamate dehydrogenases from 

Halobacterium salinarum displayed maximal activity at 70
0
C, with high temperature 
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stability (Bonete et al., 1987), which quite are comparable to an amylase from 

Thermus sp. AMD33 (34). Along the similar lines, a halophilic and thermophilic 

bacterium, Halothermothrix orenii, had temperature optima at 65
0
C (Mijts et al.,   

2001). 

Ve1-10-82 amylase displayed thermophilic character in its stability as well. The 

thermal stability, however, decreased sharply at 80
0
C.  In the literature, there are some 

reports on the thermostable amylases from mesophilic and halophilic organisms 

(Mijts et al.,   2002). 

High optimal temperature may be considered as an adaptive response to the high 

temperatures these enzymes have to endure in their natural salt environments, i.e., 

salterns exposed to intense sunlight. The thermophilic nature has been reported for 

some other halophilic enzymes (Camacho et al., 1995 and Marhuenda et al.,    2002). 

In conclusion, the enzyme described in the present report reflected several features 

close to those reported for halophilic enzymes. However, the effect of solvents on 

amylase from moderately halophilic bacteria reflected towards the new findings. The 

action of various solvents in combination with varying conditions of pH, salt and 

temperatures further highlighted the significance of the enzymatic studies under non-

aqueous conditions. The residues implied in the chemical mechanism seem to share 

some common features related to the halophilic nature of the enzyme and its ability to 

function in combination of other extreme conditions. Findings on haloalkaliphilic 

amylases and its performance with organic solvent will enrich the data base of non-

aqueous enzymology. 

In conclusion, the enzyme described in the present report highlighted several features 

quite similar to those found in other halophilic enzymes, including salt-dependent 

activity. Further, the temperature profile and thermal stability closely resembled to 

features reflected in thermophilic organisms. The findings on the haloalkaliphilic 

extracellular amylase with respect to its catalysis and enzymatic stability under 

multitude of extremities; salt, temperature and organic solvents would enrich the 

knowledge on non-aqueous enzymology, broadening the prospects of biocatalysis.  
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5.1 INTRODUCTION 

====================================== 

The haloalkaliphilic isolates are valuable sources of novel enzymes and possess unique 

metabolic machinery able to produce novel molecules (Eichler et al., 2001; Rozzell et al., 

1999; Herbert et al., 1992). Most of the halophiles and haloalkaliphiles produce 

extracellular hydrolytic enzymes which are salt and thermo tolerant, such as protease, 

amylase, lipase, xylanases and pullulanase can be utilized in detergent, food and leather 

industries, waste water treatment, biotransformation of uranium compound and in textile 

industries. Because of the extreme nature of their enzymes, they can execute the current 

requirement of industries. However, only few extracellular enzymes have been 

characterized from Halophiles and haloalkaliphiles.  

 

Microorganisms served as an important source of proteases mainly due to their shorter 

generation time, the ease of bulk production and the ease of genetic and environmental 

manipulation. Proteases are the most important kind of industrial enzymes (Joo et al.,  

2002) and account for about 65% of the total worldwide sale of industrial enzymes in the 

world market (Johnvesly and Naik, 2001). Application of proteases in detergent, leather, 

silk, bakery, soy processing, meat tendering and brewery industries is well documented. 

However, its application in the production of peptide synthesis in organic media is 

limited by the specificity and the instability of enzyme in the presence of organic 

solvents. Enzymes can be stabilized in the presence of organic solvents (Desantis and 

Jones, 1999; Kamiya et al., 2000). Having naturally stable and highly active enzymes in 

organic solvents are of greater advantage. 

 

Bacterial resistance to organic solvents has attracted attention from a number of 

laboratories due to the significant potential of resistance in non aqueous medium. 

(Heipieper et al., 1995). Apart from the biotechnological interest, the study of solvent 

resistance should enrich our understanding of the adaptive mechanisms, when challenged 

by extreme environmental conditions. An organic solvent appearing in a microbial habitat 
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from either a natural or man-made source is one of the harshest stress factors 

microorganisms can come across, and yet they have developed organic solvent resistance 

(Aono., et a.,l 1995).  

 

In recent years a new class of solvent tolerant microbes having unique ability to sustain 

under non-aqueous system has drawn considerable attention. Such organisms are 

attractive for applications in solvent bioremediation and biotransformation in non-

aqueous media (Isken and de Bont, 1998; Pieper and Reineke, 2000; Sardessai and 

Bhosle, 2004; Gupta and Khare, 2005). Some of these microbes are reported to be rich 

source of the solvent stable enzymes. Very few reports are available in literature 

concerning the screening of microorganisms, which produce organic solvent-stable 

proteases. Protease from solvent tolerant Pseudomonas sp. is novel in this regard (Ogino 

et al., 1999; Geok et al., 2003 and Gupta and Khare, 2005). 

 

In view of the above facts, study in the present chapter, deals with the effect of 

hydrophobic and hydrophilic organic solvents on the catalysis of Sj-2 alkaline protease. 

Susceptibility of the haloalkaliphilic alkaline protease in the presence of solvent with 

respect to different pH, salt and temperature was also looked into.  
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5.2 MATERIAL AND METHODS  

====================================== 

5.2.1 Microorganism and culture conditions 

Haloalkaliphilic sp. Sj-2 was isolated from saline soil collected from the seashore near 

Jodiya (Latitude 22.28 N, Longitude 69.4, 60º E) in Gujarat, Western cost of India. The 

bacterium was isolated as described in Chapter 3.  

Due to significantly high level of protease production, Sj-2 was selected for further study. 

Based on 16S rRNA gene sequencing, the isolate in the present study, was 

phylogenetically nearest to Bacillus Pseudofirmus strain Sj2. The accession number of 

the 16S rRNA gene sequences for Sj-2 is EU090232. 

 

5.2.2 Enzyme production 

For protease production, the Sj-2 was grown at 37ºC in CMB medium (pH 9.0) consisting 

of (g/l): glucose, 10.0; KH2PO4, 10.0; yeast extract, 5.0; peptone, 5.0; casein acid 

hydrolysate, 5.0 and NaCl, 100.0. The 24 hour grown mother culture (A660; 1.0, 3 ml) 

was inoculated to 100 ml of production medium, which contained (g/l): gelatin, 30.0; 

casein acid hydrolysate, 10.0 and NaCl, 100; pH 9. The culture was incubated at 37 ºC at 

100 rpm and 96 h grown cells were harvested by centrifugation at 5,500 g for 10 min. 

The supernatant was used as crude enzyme preparation. The crude enzyme preparation 

was stored at 4 ºC until further use.  

 

5.2.3 Enzyme purification by ammonium sulphate precipitates 

The crude enzyme was concentrated by ammonium sulphate (75% saturation, w/v) and 

precipitates were suspended in a minimum volume of 20 mM Borax-NaOH buffer (pH 

10). The protease activity was measured by Anson–Hagihara’s method ( Hagihara et al., 

1950), as described earlier in chapter 3.  
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5.2.4 Solvents selected for the study   

 Methanol, ethanol, propanol glycerol, diethyl ether, hexane, octane, and butanol with the 

corresponding Log Pow values: 1.9, 1.25, 3.9, 2.8, 2.13, 2.69, 2.92 and 0.95 were 

selected for non-aqueous enzymatic studies of Sj-2 alkaline protease.  

 

5.2.5 Effect of organic solvents on the catalysis of protease 

Protease activity was measured in a reaction mixture of 0.5 ml enzyme and Casein 

Solution (0.6%, w/v) prepared in NaOH-Borax buffer (20mM, pH10) with 10, 20 and 

30% (v/v) of methanol, ethanol, Propanol, diethyl ether, hexane, octane and glycerol. 

Activities were calculated by Anson– Hagihara method as discuss earlier. 

 

5.2.6 Effect of pH on the catalysis of alkaline protease  

Effect of pH on protease catalysis with organic solvent was determined by protease assay at 

different pH in presence of ethanol. The buffers (20mM) used were Sodium Phosphate (pH 

5.5 - 8), Tris-HCl (pH 8 – 9.5), NaOH-Borax (pH 9.5 - 10) and Glycine - NaOH (pH 8 - 12). 

The enzyme was incubated with 10, 20 and 30% (v/v) of organic solvents along with 

respective buffers. 

 

5.2.7 Effect of NaCl on protease activity in non-aqueous condition 

 To examine the influence of NaCl and organic solvents on enzyme activity, the reaction 

mixture was supplemented with 0.5 to 4M NaCl. Protease assay was carried out at 37°C with 

5, 10 and 20% (v/v) of ethanol.  Percent residual activities were calculated. The protease 

activity in the absence of additional NaCl and solvent was considered as 100%. 

 

5.2.8 Effect of Temperature on protease catalysis and temperature optima 

The temperature profile for Protease activity was examined by incubating the assay reaction 

mixture at different temperatures in the range of 37-80°C. The Protease activity was 

determined as mentioned earlier. 
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5.3 RESULT  

====================================== 

The present study describes the partial purification of an alkaline protease from a 

Haloalkaliphilic bacterium strain Sj-2 isolated from the saline soil near Jodiya from 

Coastal Gujarat, followed by the characterization of the enzyme in the presence of 

organic solvents. The enzyme was partially purified by ammonium sulphate precipitation. 

The purification results are summarized in Table 5.1.   With 30.63 % yield and 1,383.9 

U/mg specific activity, 3.96 fold purification was achieved. 

  

Preparation 
Volume 

(ml) 

Total 

protein 

(mg) 

Total 

activity 

(U) 

Specific 

activity 

(U/mg) 

Yield 

(%) 

Purification 

fold 

Crude 750 139.6 48,700 348.85 100 - 

Ammonium 

suphate 

 

10 

 

10.78 

 

14,919.5 

 

1,383.9 

 

30.63 

 

3.96 

 

Table 5.1- Purification of Sj-2 protease by ammonium sulphate precipitation 

 

5.3.1 Protease catalysis in the presence of organic solvents 

Sj-2 alkaline Protease was quiet active in the presence of the tested solvents. The enzyme 

was noticeably active up to 20 % (v/v) of glycerol and ethanol while in case of methanol 

and propanol, it was active up to 10% (v/v). Quiet reduced activity was evident in 

presence of propanol. Catalysis in presence of 10 % (v/v) glycerol and ethanol was 

comparable to control. While with 10% (v/v) methanol and propanol, the activities were 

nearly one third of the control. With methanol and propanol even at 20 % (v/v) total loss 

of activity were recorded.  

Protease in presence of 30% (v/v) ethanol, exhibited 5 % residual activities. However, 

with 30% (v/v) glycerol, methanol and propanol, the protease activity was totally lost.  
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With 20% (v/v) ethanol, glycerol, methanol and propanol alkaline protease retained 

98.14, 55.42, 7 and 6 % residual   activities correspondingly.  

 

The enzyme was noticeably active up to 30% (v/v) of diethyl ether, octane and n-hexane. 

Relatively reduced activity was evident in presence of butanol. Catalysis in the presence 

of 10% (v/v) diethyl ether and octane was comparable to control. While with 10% (v/v) 

n-hexane, the activity was nearly the same as control, while with butanol even at 10% 

(v/v), there was total loss of activity. 

 

Partially purified enzyme with 10% (v/v) n-hexane, diethyl ether and octane exhibited 

95.8, 92.1 and 68.98% residual activities, respectively. However, with 10, 20 and 30% 

(v/v) butanol,  Protease activity was totally lost. Enzyme retained 88.2, 79.3 and 68.21% 

residual activities with 20% (v/v) n-hexane, diethyl ether and octane, correspondingly. In 

presence of 30% n-hexane, diethyl ether and octane, the activities further reduced to 77.3, 

62.18 and 64.77%, respectively (Figure 5.1).  
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Figure 5.1- Catalysis of Sj-2 Alkaline Protease in presence of various organic solvent 
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5.3.2 Effect of pH on the catalysis of protease 

Effect of pH on Sj-2 alkaline protease was assessed in the presence of ethanol in which 

enzyme was active in alkaline pH range, 8 to 12.  The activity at pH 10, without any 

solvent, was considered as 100%. At several combinations of pH and solvent 

concentrations, the residual activities were monitored. Protease retained 73, 65 and 62 % 

residual activities with 10, 20 and 30% (v/v) ethanol at pH 8. The loss of activities of 

partially purified enzyme under similar conditions of solvent and pH 9 were quite 

comparable to those of at pH 8. Enzyme had 90, 76 and 72 % residual activities with 

ethanol at pH 9.  

 

Protease exhibited 119, 106 and 89 % residual activities at pH 10. Enzyme was exhibiting 

maximum activity at pH 10.  At higher pH, the enzyme had reduced activities. At pH 11, 

protease retained 82, 65 and 53% residual activities in presence of   10, 20 and 30% (v/v) 

of ethanol. With the same concentrations of ethanol, Sj-2 Protease had 54, 38 and 24% 

residual activities, respectively at pH 12 (Figure 5.2).  

.   
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Figure 5.2- Effect of pH on catalysis of Sj-2 Alkaline Protease in the presence of ethanol  
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5.3.3 Effect of salt on catalysis of Sj-2 protease 

Effect of 0.5 - 4M NaCl on Sj-2 protease catalysis was examined in the presence of 10 - 

30% (v/v) ethanol. NaCl at 3M was optimum for Sj-2 protease catalysis.  While at 2M 

NaCl, the activity was quiet similar to optimum salt concentration. In presence of 0.5 M 

NaCl, the protease retained 58, 50 and 43% residual activities with 10, 20, and 30 % (v/v) 

ethanol.  

 At 1 M, comparatively better enzyme activity was observed with the tested solvents. As 

compared to activity at 0.5 M salt, nearly two fold enzyme activities were recorded at 1 

M salt.  With 1 M salt, the residual activities were 102, 98 and 86% at 10, 20 and 30% 

(v/v) ethanol, respectively.  Activities at 2M salt were similar to optimum level. The Sj-2 

alkaline protease with 10, 20 and 30 % (v/v) ethanol, exhibited 139, 124 and 97 % 

residual activities, correspondingly.   

 At 3 M NaCl in reaction medium, enzyme exhibited 149, 130 and 104% residual 

activities with 10, 20 and 30% (v/v) of ethanol, respectively. 3M Salt concentration was 

optimum for alkaline protease which was unaltered in presence of different 

concentrations of ethanol. With various salt concentrations, better activity was noted at 3 

M. At 4 M NaCl; 80, 65 and 27% residual activities were recorded at tested 

concentrations of ethanol. 
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Figure 5.3-Effect of salt on Sj-2 alkaline protease in presence of ethanol 
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5.3.4 Temperature profile of Sj-2 protease in presence of n-hexane 

 

 Figure 5.4 displays the effect of temperature on the catalysis of Sj-2 Protease in the 

presence of n-hexane.  Optimum temperature for alkaline protease was 50°C, which 

shifted to 60°C in the presence of n-hexane. At 10 % (v/v) n-hexane, protease retained 

comparable activities as control coupled with enhanced temperature optima. At 30% (v/v) 

solvent, the enzyme retained nearly 50% of the residual activity.  
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     Figure 5.4- Effect of hexane on temperature optima of Sj-2 alkaline protease 
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DISCUSSION 

===================================== 

As highlighted earlier, due to many limitations only 1-5 % of the microbial word has 

been explored. The most concentrated and widespread occurrences of organisms are 

generally observed in moderate environments. However, there are extreme environments 

thought to prevent the existence of life (Eugster et al., 1978). Organisms which thrive in 

extreme saline and alkaline environments offer us the opportunity to appreciate the range 

of adaptive possibilities that evolution can bring to bear on fundamental biological 

processes and they constitute unique models for investigations on how biomolecules are 

stabilized when subjected to extreme conditions. Halophilic and haloalkiliphilic micro-

organisms offer a multitude of actual or potential applications in various fields of 

biotechnology (Zeynep et al., 2001). 
 

The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, 

including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to 

occur by many halophilic and haloalkaliphilic microorganisms (Ward et al., 1978). 

Therefore, study of organic solvent tolerance in the presence of high salt concentrations 

and alkaline pH is of interest for the bioremediation of oil- polluted salt marshes and 

industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated 

hydrocarbons (Margesin et al., 2002). Over the last twenty years, biocatalysis in organic 

solvents has emerged as an area of systematic research and industrial development, 

fueled mainly by chemical and pharmaceutical interest. Attention has been especially 

focused on enzymes as catalysts for asymmetric synthesis.  

 

Proteases from haloalkaliphilic bacteria represent an interesting resource for both 

fundamental enzymology and biotechnology, as they are active under high salt and 

alkaline pH. The haloalkaliphilic bacteria in the present study were able to grow and 

produce alkaline protease in the presence of solvents. Only limited literature is available 

on the enzymes from haloalkaliphilic bacteria with respect to non-aqueous biocatalysis 
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(Herbert et al.,1992; Gupta et al., 2005, Madigan et al., 1997; Niehaus et al.,1999, Karan 

et al. 2010 and Eichler et al. 2001). Some intra and extra cellular enzymes from 

extremely and moderate halophilic and haloalkaliphilic bacteria and actinomyctes have 

been characterized, which might have potential applications in food, chemical, 

pharmaceutical, leather, tanning, paper pulp and waste-treatment industries (Costa et 

al.,1998; Mehta et al. 2006; Patel et al. 2005; Jogi et al. 2005; Patel et al. 2006, Thumar 

et al. 2007 and Wejse et al.  2003). Studies on haloalkaliphilc proteases with respect to 

their tolerance against organic solvents have not been investigated in great deal. 

However, some haloalkaliphilic archaea, actinomycetes and their relationship with 

organic solvents have been investigated during the recent years (Tadamasa et al., 2005; 

Thumar et al., 2009 and Saraiva et al., 1996). It is well reported that enzymes are 

inactivated in the presence of organic solvents, and catalytic activities in non-aqueous 

environment are generally lower than those in aqueous system (Ogino et al., 2001 and Ru 

et al., 1999).Therefore, it was quite interesting to study a protease from haloalkaliphilic 

bacteria in non-aqueous medium. A haloalkaliphilic protease reported in this study was 

screened against various organic solvents. The protease displayed varying responses 

against these solvents.  Catalysis of Sj-2 protease was in the presence of methanol and 

propanol was inhibited, with other tested solvent, the enzyme was quiet active. Catalysis 

with 30% (v/v) water miscible solvents as   ethanol and glycerol indicated the robust 

nature of the enzyme.   

 

Sj-2 alkaline protease was active over wide range of pH, 8-11; the optimum being at 10. 

These values are marginally higher than those reported for a protease from an alkaliphilic 

Bacillus sp. (Igrashi et al., 1998) and significantly higher than those reported for another 

Protease from Halobacterium salinarum (Good et al., 1970). Other organisms, such as 

thermophilic and halotolerant bacteria, Halothermothrix orenii are reported to have 

proteases with optimal activities in the similar range of pH (Mijts et al., 2001). Halophilic 

enzymes, in general, are not stable in low salt concentrations, because of ionic charges 

and salt dependent structural stability (Madern et al., 2000; damson et al., 1997; Bonnete 

et al., 1994 and Martinez et al., 2009). Therefore, an increase of activity with salt 

concentrations is a common feature of the halophilic enzymes (Dym et al., 1995). The 
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protease from Sj-2 in the present study displayed an upward shift in activity with salt 

from 0.5 to 2 M. Salt affects the binding between the enzyme and substrate. Most of the 

halophilic and haloalkaliphilic enzymes are inactivated at NaCl or KCl concentrations 

below 2 M (Camacho et al., 1995). As described earlier, the protease activity in Sj-2 

increased with increasing salt concentrations, indicating an overall effect of salt on the 

reaction. The enzyme was quiet active with 1M NaCl even in the presence of solvents. 

Optimum catalysis at comparatively low salt and its behavior to retain activity with 

broader range of salt concentrations in the presence of solvents is quite relevant to 

haloalklaiphilic bacteria. The findings are quite comparable to a moderately halophilic 

and aerobic bacterium, Halomonas meridiana (Coronado et al., 2000).   At front of 

solvent tolerance, Sj-2 protease had non differential effects in response to salt as optimum 

3M salt concentration was unaltered with varying concentrations of solvents.  

The optimal temperature (50
0
C) for Sj-2 protease was quite comparable with the enzyme 

from Halobacterium salinarum (Good et al., 1970). However, the enzyme was active at 

higher temperatures, and with 30% v/v n-hexane. It retained significant activity up to 

70
0
C. Comparable to our studies, the enzyme from an alkaliphilic Bacillus sp. also 

exhibited the optimal temperature at 60
0
C (Igrashi et al., 1998). Other Halophilic 

enzymes, such as NAD and NADP glutamate dehydrogenases from Halobacterium 

salinarum displayed maximal activity at 70
0
C, with higher temperature stability (Bonete 

et al., 1987). The temperature profiles and stability were quite comparable to a 

thermophilic Protease from Thermus sp. AMD33, which had temperature optima at 70
0
C 

(Nakamura et al., 1993), or with a halophilic and thermophilic bacteria Halothermothrix 

orenii, with an optima at 65 
0
C (Mijts et al., 2001). The thermophilic nature of our 

enzyme was also reflected by a shift in temperature optima to higher range. The high 

optimal temperatures for enzymatic catalysis in halophilic organisms may be considered 

an adaptive feature as these enzymes have to endure in their natural salt environments, 

such as, slatterns exposed to intense sunlight. The thermophilic nature has been further 

reported for several halophilic enzymes (Mijts et al., 1995 and Marhuenda et al., 2002).  

In conclusion, the enzyme described in the present report highlighted several features 

quite similar to those found in other halophilic enzymes, including salt-dependent 
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activity. Further, the temperature profile and thermal stability closely resembled to 

features reflected in thermophilic organisms. The findings on the haloalkaliphilic 

extracellular protease with respect to its catalysis and enzymatic stability under multitude 

of extremities; salt, temperature and organic solvents would add to the knowledge on 

non-aqueous enzymology.  

 

 

 

 

 

 

 

 

 



Purification and 
Characterization of 
Alkaline Proteases    
 

 

Chapter 6 



        Chapter 6 Purification and Characterization of Alkaline Proteases in presence of organic solvents   

 

122 

 

6.1 INTRODUCTION 

===================================== 

Organic solvent’s tendency to create partition in cytoplasm and disrupt the vital functions 

of cell, make it extremely toxic for living cells. Their accumulation in cell membrane can 

change the structural and functional integrity. It accumulates in the bacterial cell 

membrane and changes in structural and functional integrity may lead to cell lysis 

(Adams et al.,1987, Affleck et al.,1992, Adinarayana et al., 2003). With quick and high 

multiplication rate and shorter life span, organic solvent tolerant bacteria are a relatively 

suitable approach to overcome toxic effect of solvent polluted environment. Explorations 

of Solvent tolerant isolate have another great intersect. Due to their natural tolerance for 

organic solvent, their enzymes have innate stability against organic solvents.  Screening 

of such a solvent tolerant enzyme can avoid the different physical and chemical methods 

to stabilize it in organic solvents (Bustard et al., 2003). 

 

The enzymatic route of peptide synthesis demands a solvent tolerant protease, which can 

cope up with harsh and instability causing industrial condition. Biocatalysis in non-

aqueous environment have many advantages as increased solubility of hydrophobic 

substrates, altered enantio-selectivity, reduced microbial contamination and curtailed 

water-induced side reactions (Bonete et al., 1987).  

 

Several solvent tolerant halophilic isolate have been reported (Beg et al., 2003, Colby et 

al.,  1977, Costa et al.,  1998, Dodia et al., 2006, Diego et al.,  2006). These 

microorganisms deal with high osmotic pressure by efficient efflux pump. This is a 
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positive asset to refrain from structural disorganization. Precipitation in high saline 

conditions is avoided on account of the increased negative charges on the surface of 

halophilic proteins due to large number of acidic amino acid residues (Fausnaijgh et al., 

1984).  With such adaption, most of halophilic proteins perform their functions with high 

concentrations of NaCl.  Optimal activity has been recorded in the NaCl concentration 

range of 4–5 M (Gimenez et al., 2000). High salt reduces water activity, a feature also 

generated by the organic solvents. Therefore, halophilic proteins offer valuable tools for 

non-aqueous enzymology (Gupta et al., 2005).  

 

While number of studies are available on the organic solvent tolerant microorganisms 

(Gessesse et al., 2003 and Gomes et al., 2004 ), only  limited work is available on 

haloalkaliphiles in this context (Hagihara  et al., 1958, Heidari et al.,  2008, Izotova  et al., 

1983, Isken et al.,  1998). Enzymatic characteristics from haloalkaliphilic bacteria under 

nonaqueous conditions are further restricted (Inoue et al., 1989 and Ikura et al., 1997). 

 

In view of the above facts, the present work has focused on the solvent tolerant 

haloalkaliphilic Bacterium Sj-1  and AH-6 from the saline habitats of Coastal Gujarat in 

Western India.  Haloalkaliphilic Bacterium grew well in presence of high concentrations 

of solvents. It produced an extracellular protease, active in various organic solvents. In 

the present work, we also illustrated a single step purification protocol based on 

hydrophobic interaction chromatography for the efficient purification of the protease. The 

catalysis and stability of the enzyme under non-aqueous conditions are studied in detail.  
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6.2 MATERIAL AND METHOD 

======================================  

 6.2.1 Materials 

Phenyl sepharose 6 FF was purchased from Sigma (St. Louis, MO, USA). Casein was 

from Sisco Research Laboratories (Mumbai, India) and other media components were 

purchased from Hi Media Laboratories (Mumbai, India). All organic solvents (analytical 

grade) were purchased from Rankem (New Delhi, India).All other chemicals were of 

analytical grade. 

6.2.2 Bacterial strain 

Haloalkaliphilic bacteria Sj-1 and AH-6 were isolated from soil sample collected from 

Jodiya (Latitude 22°43'11"N, Longitude70°16'48"E) Western Coast of Gujarat, India. 

Protease producing isolate was screened by inoculating actively grown culture on gelatin 

agar plates ((g/l): Gelatin, 30; Peptone, 10; NaCl, 100; pH, 9 and Agar, 30) and incubated 

at 37°C for 24-48 hour.  The Sj-1 strain exhibited considerable protease production and, 

therefore, was selected for further study.  

 6.2.3 Growth and protease production with organic solvents  

To study the growth kinetics of Sj-1 and AH-6 with various solvents, gelatin Broth media 

containing (g\l): Gelatin, 30; Peptone, 5; NaCl 100 at pH; 9 was prepared with   10 - 30% 

(v/v) organic solvents; n-hexane, methanol, propanol, butanol, dodecane, decane, 

isooctane, heptanes, xylene and cyclohexane. Solvents were added separately. For 

preparation of inoculums a loop full of pure culture was added into 25 ml sterile gelatin 

broth medium (NaCl, 10% w/v; pH 9). Medium was incubated at 37ºC for 24 hour.    
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Further, solvent containing 50 ml gelatin broth medium was inoculated with 5% of the 

activated culture. Medium was incubated under shake flask conditions (140 rpm) at 37ºC.  

Control of each set was carried out simultaneously. Up to 120 hours culture aliquots were 

withdrawn at 24 hour interval and microbial growth was measured at 660nm.The 

experiments were performed in three independent replicates. 

Culture aliquots were centrifuged at 10,000 rpm for 10 minutes at 4
o
C and cell free 

supernatant was used as crude enzyme preparation.  

 

6.2.4  Enzyme purification by hydrophobic interaction chromatography 

At the first step, 75% saturation (w/v) Ammonium Sulphate was gradually added in the 

crude enzyme with gentle stirring. The precipitate collected by centrifugation at 12,000g 

for 20 minutes, was suspended in a minimum volume of 20 mM Borax-NaOH buffer 

(pH 10).  Purification was performed by hydrophobic interaction chromatography. The 

partially purified enzyme preparation (10.0 ml in 1M Ammonium Sulphate) was loaded 

on a phenyl sepharose 6 fast flow columns (1 cm × 6.5 cm).  

 

The column was pre-equilibrated with 0.1 M sodium phosphate buffer (pH 8.0) 

containing 1 M ammonium sulfate. Elution of bound enzyme was done by 0.1 M sodium 

phosphate buffer, pH 8.0 containing a decreasing step gradient of ammonium sulfate 

(1.0–0.1 M). Fractions were collected at a flow rate of 0.7 ml min
-1

 and analyzed for 

protease activity. The active fractions were pooled and used for further characterization. 

 

 



        Chapter 6 Purification and Characterization of Alkaline Proteases in presence of organic solvents   

 

126 

 

6.2.5 Enzyme assay and estimation of protein 

The proteolytic activity of the enzyme, with casein as the substrate, was determined by 

Anson–Hagihara’s method (Hagihara et al., 1958). An aliquot of protease (0.5 ml) was 

added to 3.0 ml substrate solution (0.6% casein in 20 mM borax–NaOH buffer, pH 10.0) 

and the reaction mixture was incubated at 37ºC for 20 minute. The reaction was 

terminated by the addition of 3.2 ml TCA mixture (containing 0.11 M trichloroacetic acid, 

0.22 M sodium acetate and 0.33 M acetic acid). The inactivated reaction mixture was 

maintained at room temperature for 20 minute, filtered through Whatman filter paper No. 

1 and absorbance was measured at 280  nm with tyrosine as a standard. 

 

In control, the enzyme was added after adding TCA mixture. One unit of alkaline 

protease activity was defined as the amount of enzyme required to produce peptide 

equivalent to 1.0 g of tyrosine per minute per ml at standard assay conditions. Protein 

was estimated by dye binding method, using bovine serum albumin as standard protein. 

 

6.2.6 Effect of pH on activity and stability of Protease 

The effect of pH in the presence of isooctane on purified protease was examined by 

assaying the enzyme at pH:8.0-12.0, using different buffers (20mM); Sodium Phosphate 

(pH 5.5 - 8), Tris-HCl (pH 8 – 9.5), NaOH-Borax (pH 9.5 - 10) and Glycine - NaOH (pH 

8 - 12).The enzyme was incubated with 5, 10 and 20% (v/v) of solvent along with 

respective buffer. To investigate solvent’s effect on stability of the enzyme at different 

pH, the pH adjusted to 5-13 with above buffers in the presence of 30% isooctane. After 

incubation for 30-180 minute, residual activities were estimated. 
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6.2.7 Effect of NaCl on activity and stability of Protease 

The effect of NaCl and isooctane in conjunction on enzyme activity was assessed by 

supplementing the reaction mixture with 0.1 to 0.4 M NaCl for AH-6 and 1-4 M NaCl for 

Sj-1. Protease assay was carried out at 37°C with 5, 10 and 20% (v/v) of isooctane. For 

the stability of protease in response to salt and solvent, the enzyme was incubated with 2 

M NaCl (Sj-1) ,0.2 M NaCl (AH-6) and solvent and the aliquots were withdrawn at 

regular time intervals for monitoring residual activities. The protease activity in the 

absence of extra NaCl was considered as a 100%. 

 

6.2.8 Effect of Temperature on activity and stability of enzyme 

The effect of temperature on purified protease was examined by incubating the reaction 

mixture at different temperatures in the range of 37-80°C. The protease activity was 

determined as mentioned above. The temperature stability was studied by incubating the 

enzyme at different temperatures (37-80°C). The aliquots were withdrawn at 30, 60, 90, 

120 and 180 minute and reaction mixture was incubated at optimum temperature. The 

residual enzyme activities were measured. 
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6.2.9 SDS-Polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried 

out according to the method of Laemmli using 12% crosslinked polyacrylamide gel. The 

protein bands were visualized on the gel by Coomassie blue staining. 
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6.3 RESULT 

====================================== 

Microbes from exposed and unpopulated habitats have been explored comprehensively 

for the study of their sustainability and performance of their enzyme in various organic 

solvents (Laane et al., 2006, Lama 2005). However, the exploration of Haloalkaliphilic 

bacteria for similar studies is quite limited.  In the present study, organic solvent 

tolerance of a haloalkaliphilc bacterium and its extra cellular Protease has been 

undertaken. The haloalkaliphilic bacterium was aerobic and gram-positive having thin 

long rod. It has simple nutritional requirement having the ability to grow at alkaline and 

saline conditions.   

 

6.3.1 Sj-1 

6.3.1.1 Effect of organic solvents on growth and protease production 

Growth of Sj-1 was monitored at various concentrations of different organic solvents and 

the patterns are highlighted in Figure 6.1 In general, better tolerance was observed with 

the organic solvents of higher log Pow values. In hexane (log Pow:3.9),  dodecane (log 

Pow: 2.92), decane (log Pow: 5.98), methanol (log Pow: 0.82) , cyclohexane (log Pow: 

3.4 ), isooctane(log Pow: 4.5 ) and heptane (log Pow:  4.66), the organisms grew well.  At 

10 % ( v/v) of  these solvents, the organism started growing after 24 hour .  

With xylene (log pow:  3.20) and propanol (log Pow: 0.25), growth was recorded after 48 

hour. While in butanol (log Pow:0.9),  the growth was further delayed and observed at  

72 and 96 hour s, correspondingly.  
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Growth patterns of Sj-1 with hexane and isooctane were similar to control even at 30% 

(v/v).  It reached to nearly 70% cell density at 120 hour. With 30 % (v/v) heptane, 

dodecane, decane, methanol and propanol,   Sj-1 maintained 50% cell density of control. 

Butanol retarded the growth most effectively. At 10% (v/v) butanol, significant growth 

was recorded at 120 hour, while at higher concentrations, it reduced to negligible level. 

 

Considerable protease production was recorded with various solvents (Figure 6.2). In  

hexane, methanol, dodecane, decane, hepaten and isooctane, considerable protease 

production was observed at all concentrations. Even at 30% (v/v) solvent, significant 

enzyme production was apparent.  Especially with isooctane, hexane, dodecane and 

decane, the enzyme production was comparable with control. In case of propanol and 

xylene, enzyme production was recorded at 10% (v/v) concentration. Protease production 

was totally inhibited with butanol and cyclohexane. 
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 Figure 6.1 1 -  Growth of Sj-1  in presences  10,20 and 30% (v/v) Hexane ( ░,) decane  (☷), propanol (▧), butanol (▩), dodecane  

(▤), methanol  (▥), isooctane(□),xylene (■), cyclohexane (▨), heptane (▓) at different time interval  
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Figure 6.2– Sj-1 Protease production at 120 hour in control (▧), 10(▥), 20(▨) and 30(▤
) % (v/v) of various organic solvent 

 

6.3.1.2 Protease purification by hydrophobic interaction 

chromatography 

The enzyme was purified by hydrophobic interaction chromatographic, leading to  27.83 

fold purification, specific activity at 9611 U/mg and yield 28% (Table 1). Hydrophobic 

interaction chromatography has been effectively applied for the purification of alkaline 

proteases. Purified protease was observed as a single band on SDS-PAGE (Figure -6.3) 

and its apparent molecular weight was determined as 30 kDa 
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Table 6.1- Purification of Sj-1 protease by hydrophobic interaction chromatography 

 

 

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 - SDS PAGE analysis of Sj-1 protease 

 

Preparation  Volume(ml) Total 

Protein 

(mg) 

Total 

Activity 

(U) 

Specific 

Activity 

 (u/mg)  

Yield % Purifiation 

Fold  

Crude  1000 168.26 58000 344.70   

(NH4)2SO4 10 16.28 20365 1250.92 35 3.62 

Phenylsepharose 

6FF HIC 

10 1.725 16580 9611.59 28 27.83 

KDa 

205 

97 

66 

43 

29 
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6.3.1.3 Effect of pH on the activity and stability of Protease 

Effect of pH in combination of organic solvents was studied with 10-30 % (v/v) isooctane 

and pH 8-12. Optimum catalysis was at pH 10 and it did not change in isooctane.  At pH 

8 with 10, 20 and 30% (v/v) isooctane, the enzyme had 60, 56, and 48% residual 

activities, respectively. At pH 9 and 10, for the same set of reactions;    80, 73, 56 and 

108, 90, 70 % residual activities were recorded, correspondingly.    At higher pH11 and 

12; 67, 50, 38 and 43, 30, 24% residual activities were present, correspondingly, with the 

tested concentration of isooctane.  Activity without solvent at pH 10 was considered as 

100% (Figure 6.4A).  

 

Stability of Sj-1 protease in the presence of isooctane was evaluated at pH 10.    Enzyme 

was capable to retain its catalysis for 18 hours in 30% (v/v) isooctane (Figure 6.4(b). 

Enzyme activity without solvent at 0 minute was treated as 100%. After 3 hours, with 

tested concentration of isooctane, the enzyme retained 85, 80 and 63 % residual activities.  

After 6 hours incubation with the same concentration of solvent; 77, 62 and 60 % residual 

activities were recorded.   After 6 hours, the enzyme activity started decreasing. The 

residual activities at 12 and 18 hours in the presence of 10, 20 and 30 %( v/v) isooctane,     

were 52, 40, 37 and 40, 34, 27 %. 
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Figure 6.4- A Effect of pH on catalysis of Protease in presence of 0 (), 10(■), 20(▲) 

and 30 (×)% (v/v) isooctane 
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Figure6.4 B- Effect of pH on stability of Protease in presence of  0 (▧), 10(▥), 20(▨) 

and 30 (▤)% (v/v) isooctane 
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6.3.1.4 Effect of salt on Protease catalysis 

The effect of salt on Sj-1 protease catalysis in non-aqueous condition was assessed with 1 

– 4M NaCl and 10, 20 and 30% (v/v) isooctane.  At border range of salt, considerable 

activities were recorded and at 2 M salt (w/v), it was highest. The activity at 1M NaCl 

without any solvent was considered as 100%. With 10, 20 and 30% (v/v) isooctane and 1 

M NaCl, the residual Sj-1 activities were 94, 86 and 78 %, respectively. At 2 M salt, 

moderately enhanced activities were observed, while at the examined concentrations of 

solvent; 96, 90 and 83% residual activities were evident.  Optimum activity was observed 

with 3 M (w/v) salt and the enzyme retained 105, 98 and 90% residual activities (Figure 

6.5 A). 

 

Sj-1 protease stability with salt was studied in isooctane at optimum salt concentration. 

With various concentrations of isooctane, stability was significantly retained for 18 hours. 

Activity at 0 % (v/v) solvent was considered as 100%.  After 3 hours of incubation with 

the tested concentrations of the solvent, the enzyme retained 90, 74 and 56 % residual 

activities, while after 6 and 12 hours; 77, 70, 42 and 65, 57, 38 % residual activities were 

observed, respectively.  However, at 18 hours, the enzyme with isooctane had 52, 50 and 

24 % residual activities (Figure 6.5 B). 
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Figure 6.5 A  Catalysis of Sj-1Protease in presence of 0 (), 10(■), 20(▲) and 30 (●) %   

( v/v) isooctane and various salt concentration 
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Figure 6.5B  Stability of Sj-1Protease in presence of presence of  0 (▧),10(▥), 20(▨) 

and 30 (▤)% (v/v) isooctane 
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6.3.1.5 Effect of solvent on temperature profile and stability of protease 

 Effect of Solvent on temperature optima of Sj-1 protease is summarized in Figure 6.6.  

The optimum temperature was 50°C, which remained unaltered in isooctane up to 30% 

(v/v).   At various concentrations of isooctane, the enzyme was quite active up to 70°C. It 

retained around 54% residual activity with 10% v/v isooctane at 70°C.  The enzyme 

exhibited 58, 70, 77, 60 and 38 % residual activities at 40, 50 60, 70 and 80°C, 

respectively, with 30 %( v/v) isooctane (Figure 6.6 A). 

 

 The enzyme was quiet stable at wide range of concentrations of isooctane: 10-30% (v/v) 

(Figure 6.6B). Stability of protease was investigated at its optimum temperature of 50°C.  

After 3 hours of incubation; 88, 80 and 64% residual activities were evident.  At 6 and 12 

hours;   70, 60, 50 and 60, 53, 42% residual activities were recorded.  However, after 18 

hours incubation with the examined concentrations of isooctane, only 40% of the residual 

activities as compared to control were observed.  
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Figure 6.6 (a)-  Effect of temperature on protease in presence of 0 (), 10(■), 20(▲) 

and 30 (●) % (v/v) isooctane. 
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 Figure 6.6 B- Effect of temperature on the catalysis of Protease in the presence of 0 

(▤),10(▧), 20(▥) and 30 (▨)% (v/v) isooctane 
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      6.3.2 AH-6 

 6.3.2.1 Effect of organic solvents on growth and protease production 

The growth of AH-6 was monitored in the presence of varying concentrations of different 

organic solvents.  Figure 6.7 illustrates the growth patterns of AH-6, where the organism 

tolerated solvents with higher logPow. AH-6 grew in the presence of hexane (log 

Pow:3.9), propanol (log Pow: 0.25), dodecane (log Pow: 2.92), decane (log Pow: 5.98), 

isooctane (log Pow: 4.5 ) and heptanes(log Pow:  4.66) .  With 10 % (v/v) of these 

solvents, the growth started after 24 hour. In the presence of xylene (log pow:  3.20) and 

cyclohexane (log Pow: 3.4), growth was visible after 48 hour, while for methanol (log 

Pow: 0.82) and butanol (log Pow:0.9), it appeared at 72 and 96 hour, respectively. 

Growth in dodecane, decane, isooctane and heptanes, even at 30% (v/v), was quiet 

comparable with control. With 30 % (v/v) hexane, methanol and propanol, the growth 

was   nearly 50% of control. Butanol most effectively retarded the growth. 

 

Protease production is represented in Figure 6.8. In the presence of hexane, methanol, 

dodecane, decane, hepaten and isooctane, considerable protease production was observed 

as compared to control, at all tested concentrations of solvents. Significant enzyme 

production, especially with hexane, dodecane and decane was recorded even at 30% (v/v) 

solvent concentrations. In propanol and xylene , protease production was observed only 

at  10%(v/v) solvent. However, no enzyme was recorded with butanol and cyclohexane. 

On the other hand, better enzyme production in comparison to control was apparent with 

10 % (v/v) hexane. 
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Figure  6.7  -  Growth of Ah-6  in presences  10,20 and 30% (v/v) Hexane ( ░,)decane  

(▥), propanol (▧), butanol (▩), dodecane  (▨), methanol  (□), isooctane( ■),xylene ( ▓), 
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 Figure 6.8- AH-6 Protease production at 120 hour in control (▧), 10(▤), 20(▨) 

and 30(▥) % (v/v) of various organic solvent 

 

6.3.2.2 Protease purification by hydrophobic interaction 

chromatography 
 

The purification results are summarized in Table 1. 18-fold purification of AH-6 protease 

was achieved by a single step purification method with phenyl sepharose 6 FF with a 

specific activity of 7,312 U/mg and 22% yield (Table 1). The purified enzyme migrated 

as a single band in SDS-PAGE (Fig. 6.9) and apparent molecular mass was determined as 

40 kDa. 
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Table 6.2 Purification of AH-6 protease by hydrophobic interaction 

chromatography 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 – SDS PAGE analysis of AH-6 protease 

 

Preparation  Volume 

(ml) 

Total 

Protein 

(mg) 

Total 

Activity 

(U) 

Specific 

Activity 

 (U/mg 

protein)  

Yield % Purification 

Fold  

Crude  750 142.68 49000 343.61   

(NH4)2SO4 10 12.46 16832 1350.88 34 3.93 

Phenyl 

sepharose 6FF 

HIC 

10 1.915 14003 7312.27 28 21.30 

Lane 1 Lane 2 

KDa 

43 

2
9 

66 

97 
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6.3.2.3 Effect of pH on activity and stability of Protease 

Effect of pH: 8-12 on AH-6 protease catalysis was examined in the presence of 10-30% 

(v/v) hexane. Optimum catalysis was at pH 10, which remained unaltered in hexane.   At 

pH 8, AH-6 Protease with 10, 20, and 30 % (v/v) hexane, had 46, 40 and 38 % residual 

activities, respectively. At pH 9 and 10, for the same set of reactions,    97, 76 ,`63 and 

108, 85,  76 % residual activities were recorded, correspondingly. At higher pH, 

decreased activities were observed. At pH 11 and 12 with 10, 20 and 30% hexane;  

51,43,32  and 34, 21 and 12 % residual activities were  observed, respectively. Activity of 

protease at pH 10, without solvent was considered as 100% (Figure 6.10A). 

 

The enzyme was considerably stable up to 18 hours at pH 10 in the presence of 30% (v/v) 

hexane (Figure 6.10B).  The initial enzyme activity without solvent was considered 100%. 

After 3 hours, the enzyme retained 84, 78 and 65 % residual activities with 10, 20 and 

30% (v/v) hexane. While at 6 hours, it was 61, 54 and 48 % with the same concentrations 

of the solvent. Fast decline in the activity was observed after 6 hour and at 12 and 18 

hours with 10, 20 and 30 % (v/v) hexane, the enzyme retained 35, 30, 19 and 25, 19 and 

10 % residual activities, respectively. 
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Figure 6.10 A 
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Figure 6.10 B 

 

Figure 6.10 A - Effect of pH on the catalysis of Protease in the presence of 0 (), 

10(■), 20(▲) and 30 (×)% (v/v) hexane 

 

Figure6.10 B - Effect of pH on the stability of Protease in the presence of  0 (▤),10(▧), 

20(▥) an30(▨)%(v/v) hexane 
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6.3.2.4 Effect of salt on Protease catalysis 

Effect of NaCl (0 – 400mM) on enzyme catalysis was investigated in the presence of 10, 

20 and 30% (v/v) hexane. The enzyme was active at wide range of salt concentrations, 

with the optimum at 200 mM. Activity in the absence of salt and solvent was considered 

as 100%. In presence of 10, 20 and 30% (v/v) hexane, without salt, the residual activities 

were   95, 84 and 81. With 100 mM salt; 116, 97 and 75% residual activities were 

recorded with the tested concentration of hexane.  At optimum salt concentration in the 

presence of tested concentrations of hexane, 125, 105 and 87 % residual activities were 

observed. At higher salt concentrations, the enzyme rapidly lost activity(6.11 A). 

 

Effect of salt on stability of AH-6 protease in the presence of hexane was investigated at 

optimum salt concentration, 200mM (w/v). Enzyme maintained 77, 86 and 43 % residual 

activities after 3 hour. While at 6 and 12 hours, the residual activities with 10, 20 and 

30% (v/v) hexane were; 58,74, 36 and 56,48 and 23 %, respectively.  After 18 hours, the 

enzyme retained 34, 38 and 112 % residual activities (Figure 6.11B). 
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Figure 6.11 B 

Figure 6.11 A -Catalysis of AH-6 Protease in the presence of 0 (), 10(■), 20(▲) an 

30 (●) %( v/v) hexane and various salt concentrations 

Figure 6.11B- Stability of Ah-6 Protease in presence of presence of 0    (▤), 10(▧),   
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                    20(▥) and 30 (▨)% (v/v) hexane 

 

6.3.2.5 Effect of solvent on temperature profile and stability of protease 

Figure 6 (A) reveals the trends of temperature profile of AH-6 alkaline protease in the 

presence of n-hexane. The optimum temperature at 50°C in the absence of solvent 

remained unaltered with up to 30% n-hexane. At all tested concentrations of hexane, 

enzyme was quite active up to 70°C. Enzyme retained around 55% residual activity with 

10% (v/v) hexane at 70°C.  The enzyme exhibited 84, 90, 80, 40 and 20 % residual 

activities at 40, 50 60, 70 and 80°C with 30 % (v/v) hexane (6.12A). 

 

AH-6 protease was highly stable over a broad range of hexane from 10 to 30% hexane 

(v/v) (6.12B).  Stability of enzyme was examined at 50°C, which was optimum for it’s 

catalysis. The protease retained nearly 70 and 50 % of the original activity at 6 and 12 

hour, respectively, with 10 % (v/v) hexane. With 20 % (v/v) hexane; 53, 40 and 25% 

residual activities were recorded at 6, 12 and 18 hours.  However, in the presence of 30 % 

(v/v) hexane, the enzyme was stable for shorter duration. At the same concentration of 

hexane, nearly 50 and 40 % residual activities were observed at 6 and 12 hours, 

correspondingly. 

 

 

 

. 
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Figure 6.12A 
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Figure 6.12 B 

Figure 6.12 A- Effect of temperature on protease in the presence of 0 (), 10(■), 

20(▲) and 30 (●) % (v/v) hexane. 

 

Figure 6.12 B- Effect of temperature on the catalysis of Protease in the presence of 0 

(▤),10(▧), 20(▥) and 30 (▨)% (v/v) hexane. 
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DISCUSSION 

====================================== 

Bioremediation of organic solvents and cost-effective source of valuable enzymes for 

biotechnological industry   are the major attractions for exploration of organic solvent 

tolerant microbes. Various reports have been published on microbes dealing with non-

aqueous catalysis.  Haloalkaliphilic Bacteria and their enzymes, adapted to sustain in 

saline and alkaline conditions have not been attended well with respect to their organic 

solvent tolerance and possible role in bioremediation.  Though there are some reports on 

the haloalkaliphilic archaea and their interactions with organic solvents (Heidari et al., 

2007, Tadamasa et al., 2005), only scarce attention has been paid to haloalkaliphilic 

bacteria in this context (Colby et al., 1987 ).  

 

Haloalkaliphilic bacteria Sj-1 tolerated most of the tested immiscible and miscible 

organic solvents such as methanol, propanpl, hexane, heptanes, isooctane, dodecanese, 

decane and cyclohexane.  Corresponding to an earlier report, butanol inhibited and 

delayed the growth of Sj-1.  Applicability of Sj-1 gets strength on account of the constant 

tolerance against organic solvents, even after several sub culturing. Therefore, Sj-1 can 

be useful in the remediation of organic solvent pollutants from saline and costal areas. 

 

Organic solvents alter the active quarterly structure of enzyme leading to inactivation and 

therefore, specific catalytic activity in organic solvents are usually less than aqueous 

conditions (Ogino  et al., 2001, Ru et al.,  2000 ). Protease production in 30% organic 
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solvents: hexane, heptane, dodecane, isooctane and methanol were compared with control. 

In the presence of butanol and cyclohexane, the enzyme was totally inhibited.  The results 

are relevant with the proposal by lane et al., (Laane et al., 2005) which stated that 

hydrophobic solvents with lower log Pow do not suit to enzymatic catalysis. 

 

Catalysis of Sj-1 protease in various solvents was related to α-amylase from Halarcula sp. 

Strain S-1 (Manikandan  et al., 2009). Reduced stability in organic medium is mentioned 

in many reports (Ogino et al., 1999, Izotova et al., 1983). In aqueous medium, water 

helps to maintain structural flexibility and mobility of protein molecule. Organic solvents 

may cause deamidation of Asn and Gln residues and hydrolysis of peptide bonds, leading 

to unfolding of enzyme molecules and loss of enzymatic activity (Affleck et al., 1992).  

 

AH-6 was capable to tolerate various water miscible and immiscible organic solvents, 

such as, methanol, propanpl, hexane, heptanes, isooctane, dodecanes, decane and 

cuclohexane.  In butanol delayed growth was observed which corresponded with an 

earlier work (Gimenez et al., 2000). The genetic basis and constitutive nature of the 

solvent tolerance in AH-6 gained strength on account of its constant tolerance even after 

several sub-culturing in solvent free-medium. With these features in the background, the 

isolate may emerge as a capable candidate for remediation of organic solvent in saline 

areas. 

It is well established that enzymes are highly inactivated in organic solvents and specific 

catalytic activities in non-aqueous environment are generally lower than those in aqueous 

system (Ogino et al ., 2001 , Ru et al.,  200).  AH-6 strain produced protease with up to 
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30 % solvents; hexane, hepatane, decane, dodecane, isooctane and methanol. Comparing 

to control, it retained quiet appreciable level of activity. The enzyme activities in 

propanol and butanol were quite reduced. The results corresponded with the proposal by 

Lane ., (Laane  et al., 2002), according to which, hydrophilic solvents (log P 2) are not 

suitable for enzymatic catalysis; however, the ionization state of protein is not taken into 

account in the log P model. Behavior of AH-6 alkaline protease in organic solvents could 

be related to α-amylase from Halarcula sp. Strain S-1 (Manikandan  et al., 2009). Some 

of the earlier reports (Vidyasagar et al., 2006, Izotova et al., 1983) documented reduced 

stability in organic solvents compared to aqueous medium. In water media, water 

promotes conformational mobility of protein molecule, deamidation of Asn and Gln 

residues and hydrolysis of peptide bond, causing the unfolding of enzyme molecules and 

loss of enzymatic activity (Nikolaev et al., 2006). 

 

To purify halophilic protease, acetone or ethanol fractionation, ammonium sulphate 

perception, ultra-filtration, gel filtration, ion exchange or affinity chromatographies have 

been common techniques (Vidyasagar et al ., 2006, Heidari et al.,  2008 Xiong et al., 

2007).  Hydrophobic interaction chromatography is usually preferred method for 

effectual purification with better yield of 25 to 35 %.  Presence of salt around halophilic 

enzyme assist it in binding of protein and matrix (Gupta et al.,   2005 , Namwong et al.,  

2006, Sánchezp et al.,  2003). In the present study, purification of Sj-1 Protease was 

successfully achieved by hydrophobic affinity chromatography with 27 fold purification 

and 28% yield. The protease was a monomer protein with the molecular mass of about 30 

KDa.  Many proteases from halophiles in literature corresponded with the molecular 
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weight (Vidyasagar et al ., 2006 , Xiong et al., 2007, Gessesse et al.,2003, Manikandanet 

et al.,  2009 ). 

 

Our results of AH-6 supported the usefulness of hydrophobic interaction chromatography 

for purification of haloalkaliphilic protease with 21 fold purification and 28% yield. AH-

6 protease was a monomeric protein with a molecular mass of about 40 KDa. The 

molecular weight of the enzyme was in the range as reported for halophilic archaeal and 

bacterial proteases (Gessesse et al.,2003, Xiong et al., 2007). 

 

Activity and stability of Sj-1 Protease at wider pH range 8-11, with optimum at 10, 

revealed it’s alkaliphilic nature, would fall in the category of moderate alkaliphile (Lama  

et al., 2005, Patel et al.,2006, Adams  et al.,1998 ). Our findings are comparable with 

alkaline proteases from (Salinivibrio Vidyasagar  et al., 2006, Knubovets et al.,  1996) 

and the protease CP1 from Pseudoalteromonas sp. strain CP76 (Lama  et al., 2005). 

Stability of Sj-1 protease at various concentrations of isooctane was an attractive feature 

of this enzyme. 

 

According to studies, optimal activity of halophilic enzymes generally required 1–2 M 

salt and at lower salt concentrations, these enzymes get inactivated (Affleck  et al., 1992). 

Our findings were quiet similar to Halobacterium halobium   extracellular protease which 

required 3 M NaCl for optimal activity (Affleck  et al., 1992).     Sj-1 alkaline protease 

was not salt dependent, but for its maximal activity, it required it. The enzyme was 

optimally active at 3 M salt.  
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AH-6 protease reflected alkaliphilic nature as it was active and stable over wide range of 

alkaline pH: 8-11, the optimum being at 10.  This pH range closely resembled with some 

earlier reports for protease (Adinarayana  et al., Gessesse  et al., 2003).  pH profile  

revealed a moderate alkaliphilic character (maximum activity at pH 9.0). These 

characteristics are similar to alkaline protease from Salinivibrio (Heidari et al., 2007, 

Lama  et al., 2005) and protease CP1 from Pseudoalteromonas sp. strain CP76 (Sánchez  

et al., 2003). Stability of protease with various concentration of hexane is attractive part 

of this study. 

 

It’s suggested that the halophilic enzymes generally require 1–2 M salt for their optimal 

activity and the catalytic activity was lost irreversibly when exposed to lower salt 

concentrations (Inoue et al., 1989 ). An extracellular protease from Natrialba magadii 

was optimally active with 1–1.5 M NaCl/ KCl (Ruiz  et al., 2007) and another 

extracellular protease from Halobacteriumhalobium required 3 M NaCl for optimal 

activity (Izotova et al., 1983). The AH-6 alkaline protease did not require high salt for the 

optimum catalysis as it was optimally active with 150–200 mM NaCl. In contrast to 

protease from Salinivibrio sp. strain AF-2004 (Heidar  et al., 2007) and similar with 

metalloprotease CP1 from Pseudoalteromonas sp. strain CP76 (Sánchez et al., 2003), this 

enzyme needed lower concentration of salt (0.2 M NaCl) for maximum activity. 

 

The Sj-1 Protease was moderately thermophilic in nature, with the optimum activity at 

50°C and considerable stability up to 70 °C. Similar findings were also reflected by 

Khalil Beg and Gupta (Kim  et al., 1997) for Bacillus mojavensis.   
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In general, compared to aqueous medium, the enzymes are more thermostable in 

anhydrous condition. For example, the thermostability of lysozyme with absolute 

glycerol at 80°C temperature was much greater than in water (Sardessai et al., 2004). Sj-1 

protease had significant activity with isooctane at 70°C compared. However, the 

temperature optimum was unchanged in isooctane.  Other halophilic enzymes, such as 

NAD and NADP glutamate dehydrogenases from Halobacterium salinarum displayed 

maximal activity at 70°C, with higher temperature stability (Tadamasa  et al., 2005 ). The 

thermophilic nature has been further reported for some other halophilic enzymes (Thumar 

et al., 2009). 

 

 Solvent tolerant proteases are required for effective peptide synthesis  while significant 

activity of most of frequently used commercial protease, such as α-chymotrypsin and A. 

oryzae protease, drop-down in presence of organic solvents (Gupta  et al., 2005 ).  

Protease from Sj-1 was significantly active and stable in hydrophobic and hydrophilic 

organic solvents. 

 

         AH-6 protease was moderately thermophilic in nature having stability at temperatures up 

to 70°C, with the optimum at 50°C. Khalil Beg and Gupta (Beg et al., 2003) reported a 

similar temperature optimum (50°C) for a protease produced by Bacillus mojavensis. 

        The water dependent events cannot proceed in anhydrous organic solvent and therefore, 

enzymes, in general, are extremely thermostable in such systems. For instance, 

thermostability of a lysozyme in absolute glycerol at temperatures above 80°C was 
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greater than that in water (Knubovets, et al., 1999). In the present study, AH-6 protease 

had significant activity with hexane. At 70°C, the protease displayed above 75% activity 

of control, while that at 80°C was 70%. The temperature optimum at 50°C was unaltered 

with all tested solvents.  Other Halophilic enzymes, such as NAD and NADP glutamate 

dehydrogenases from Halobacterium salinarum displayed maximal activity at 70°C, with 

higher temperature stability (Bonete   et al., 1987). The thermophilic nature has been 

earlier reported for some halophilic enzymes (Mijts  et al.,  2001 and Marhuenda   et al., 

2002). 

 For effective peptide synthesis, proteases stable in organic solvents are highly desirable 

(Ryu  et al., 1994). Interestingly, some of the most widely used commercial proteases, e.g. 

α-chymotrypsin and A. oryzae protease lose significant amounts of their activity in the 

presence of organic solvents (Gupta et al., 2005). In contrast, protease from AH-6 was 

significantly active and stable in hydrophobic and hydrophilic organic solvents. 

 

 Catalysis and stability of protease in organic solvents in combination of salt, pH and 

temperatures make this study noteworthy. The stability of the protease under alkalinity, 

high temperature and range of concentrations of NaCl, detergent and organic solvents 

make the Sj-1 and AH-6 protease a potential enzyme for industrial applications. Besides, 

the information would add significantly to the knowledge of biocatalysis and be useful 

for enzymatic applications in remediation. 

 



Concluding  
        Remarks 
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CONCLUDING REMARKS 

========================================================== 

The work presented in this thesis addressed the microbial heterogeneity followed by 

the tolerance of haloalkaliphilic bacterial strains and their extra cellular enzymes. The 

exploration of enzymatic potential from these bacteria is still in its preliminary stage. 

In the work presented in this thesis, we have addressed the question of haloalkaliphilic 

diversity based on organic solvent tolerance from, beyond the boundaries of Soda 

Lake, Dead Sea and populated sites. In the present work, the natural and manmade 

saline and hyper saline habitats along the coastal region of Gujarat followed by the 

exploration of the enzymatic potential of these bacteria for non- aqueous conditions. 

 

Haloalkaliphiles hold many interesting biological secrets, such as the biochemical 

limits to macromolecular stability and the genetic instructions for constructing 

macromolecules stable to more than one extremity. Despite the significance of 

extremophiles, particularly those with dual or multitude extremities, such organisms 

have been paid only limited attention towards the exploration of biotechnologically 

relevant products and enzymatic potential. In view of the non-cultivability of the 

microorganisms, different enrichment conditions were employed with varying pH and 

salt to isolate maximum population present in the concerned habitat. 

 

A total of 82 bacterial strains belonging to haloalkaliphilic group of bacteria were 

isolated. The results on the isolation revealed that extremophiles are not restricted to 

the highly extreme habitats only. Instead, they can also be found in crystallizer pond, 

saline soil and seawater. Our studies on these saline environments revealed wide 

diversity among these organisms with respect to their growth in presence of wide 

range of hydrophobic and hydrophilic organic solvents. One of the facts that emerged 

from our studies established that with the increasing concentration of solvent during 

growth kinetics, inferior cell densities were recorded. This clearly indicated that 

microorganisms dwelling in extreme environments might display poor sustainability.  

 

The isolates under study displayed significant diversity on the basis of the available 

data on phenotypic and physiological characteristics, these “traditional” taxonomic 

methods are usually not sufficient to establish their taxonomic positions. Prokaryotic 
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systematic has seen a large number of changes in the past few decades and increasing 

attention has been paid towards using genetic data to investigate the evolutionary 

relationship and to base the taxonomy on that knowledge. Much emphasis has been 

put on the use of 16S rRNA/DNA sequence data, which has come up as an effective 

means to ascertain the phylogenetic relatedness of the organisms. Four isolates from 

our study, identified by 16S rRNA gene homology, resembled to halophilic and 

alkaliphilic bacteria isolated from various soda lakes.  Total 18 haloalkaliphilic 

isolates were sequenced for 16S rRNA. Their dendogram were revealed 3 major 

domains and 11 minor domains.  

 

As a recent trend, extremophiles are being looked into for the utilization of organic 

solvents and production of alternative energy. In realization of the fact that the solvent 

tolerance of haloalkaliphilic bacteria is rarely studied, we explored the production and 

catalysis of alkaline protease amylases from isolated bacteria under non-aqueous 

conditions. Most of tested isolates and their enzyme displayed tolerance towards the 

solvents having log Pow less than 1, which is highly toxic for any living organisms.  

 

As highlighted earlier, haloalkaliphilic bacteria require not only salt but also alkaline 

pH for their growth.  These two features are favoring for non-aqueous enzymology. 

Thus, the enzymes from such organisms must be active and stable in presence of 

organic solvents. Most of the studies related to enzymes have so far concentrated from 

the halophiles and alkaliphiles; however, the enzymatic potential of haloalkaliphilic 

bacteria is nearly untouched. In view of this realization, the isolates under study were 

screened for the most commonly secreted extra cellular enzymes; protease and 

amylase. 

 

The protease of AH-6, Sj-1 and Sj-2 were highly stable and catalyzed the reaction 

over the broad range of pH (8-12), optimum being at pH 10-10.5. Our studies 

revealed the wide occurrence and variation in production and catalysis level of 

alkaline proteases, only few secreted amylase. The organic solvent range for growth 

and enzyme secretion varied among the isolates from different samples and 

enrichment conditions. However, the variation in optimum solvent concentration was 

more pronounced. 
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 The growth did not necessarily correspond to enzyme secretion as a function of 

organic solvent levels. In general, protease producers had ability to grow and secret 

protease over a wider range of organic solvent as compared to amylase producers. 

However, to enhance production of such enzymes, several research groups have 

focused their attention by studying the physiology of these unique microorganisms 

and designing bioreactors that improve growth conditions. Under the larger umbrella 

of optimization, we looked into the various factors affecting production of proteases 

and amylases at laboratory scale from certain key strains. Because of low production 

and unstable nature of the amylases, further studies on production, purification and 

characterization were focused on the alkaline protease from three potent strain, AH-6, 

Sj-1 and Sj-2.The protease production was highly influenced by physical conditions 

and available organic solvent concentrations in media.  

 

The production was enhanced at higher NaCl and alkaline pH and with hydrophobic 

solvents. The results established that AH-6; Sj-1 and Sj-2 produced alkaline protease 

substantially in presence of various concentration of different solvent and could prove 

as potential candidate for process development and various industrial applications 

especially for peptide synthesis. 

 

Unlike other halophilic proteins, AH-6 protease did not require high salt for their 

optimum catalysis; however in case of   Sj-1 and Sj-2 salt requirement was enhanced 

and partially purified preparation of Sj-2 and purified preparations of SJ-1  was quite 

stable in 0-4M NaCl. 

 

It would be further interesting to look into the mechanism of solvent tolerance among 

these organisms. Recently, the genome sequence of an oil hydrocarbons and solvent 

degrading marine bacterium, Alcanivorax borkumensis, has been completed 

(Schneiker et al., 2006). The organism has a streamlined genome with a paucity of 

mobile genetic elements and energy generation–related genes. This genome sequence 

may provide the basis for the future design of strategies to mitigate the ecological 

damage caused by oil spills. 
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Future perspective 

 

 It would be interesting to locate the phylogenetic positions of other isolates in 

order to investigate maximum diversity from the coastal region of Gujarat. 

 

 As the genetics organic solvent tolerance by organisms are less attempted and 

in case of haloalkaliphiles it is not covered at all, it would be interesting to 

understand genome structure. Development of expression systems for the 

production of key enzymes and metabolites would be another key point to 

focus. 

 

 Use of active and stable proteases from potent isolates for peptide synthesis 

under  non- aqueous conditions will add to the applicative part of this study. 

 

 Inducible gene/s responsible for organic solvent tolerance is reported for some 

microbes, such study for our potent isolates might be an interesting future. 

 

 It would be quite interesting to clone and sequence the alkaline protease genes 

from haloalkaliphilic bacteria followed by site directed mutagenesis. It will 

increase the understanding for interaction between enzyme and organic 

solvents.   
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SUMMARY 

===================================================== 

 

Screening and diversity of organic solvent tolerant haloalkaliphilic 

bacteria  

 

 A total 82 haloalkaliphilic Bacteria from 6 isolation site of Costal Gujarat were    

screened for organic solvent tolerance, 1 to 5 % (v/v) of 4 solvents: methanol, 

propanol, n-hexane and butanol were added in growth medium to assess their 

effect on growth and protease production. 

 

 Majority of isolates were able to grow at the tested concentration of methanol, 

propanol and n-hexane. Compared to control, in the presence of all solvents, 

initially cell density was lower. 

 

 Butanol was most growth retarding solvent. Most of the isolates did not tolerate 

butanol more than 3% (v/v). 

 

 In presence of organic solvents, the isolates exhibited two types of growth 

patterns. In first type of growth pattern, initially growth rate and cell density were 

lower while finally cell density was almost similar to control. In second type, 

difference between control and growth in the presence of solvent remained 

uneven. 

 

 Isolates Kh-10-91   was able to grow in presence of    30% (v/v) acetone.  Cell size 

was enlarged 2 to 2.5 fold. It might be possible that for the storage of entered 

organic solvents, cell has created vesicles. 

 

 Analysis of the 16S rRNA gene sequence of 18 isolates revealed 3 major and 11 

minor clusters.      
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Effect of organic solvents on catalysis of Haloalkaliphilic Amylase 

 

 

 Amylases of 9 isolates were subjected for screening of potent amylase for non-

aqueous condition. Ve1-10-82 and Mi-10-62 were selected for further study. Based 

on 16S rRNA gene sequencing, Ve1-10-82 was designated as Oceanobacillus 

oncorhynchi (GQ121034) and Mi-10-62 was Bacillus agaradhaerens (GQ121032) 

 

 Partial purification of the enzyme was done by ammonium sulphate precipitation 

with 3.9 fold purification, specific activity of 1246.6 U/mg and 34.87% yield. The 

crude and partially purified preparations of Mi-10-62 amylase were quiet active in 

the presence of the solvents. The enzyme was noticeably active up to 30 % (v/v) 

of propanol, hexane, heptane, decane and dodecane. 

 

 Amylase of Mi-10-62 was quiet active at alkaline pH range 8 to 12 in presence of 

solvent propanol and dodecane.  

 

 Mi-10-62 amylase catalysis was examined with 0.5 – 4 M NaCl   in the presence 

of 10-30% (v/v) propanol and dodecane.  With both solvents, a change in the 

pattern of salt profile was evident. For crude and partially purified enzyme, the 

salt optima were 3 and 2 M NaCl, respectively. 

 

 Temperature optimum of Mi-10-62 was altered in presence of propanol. Crude 

amylase was optimally active at 50
o
C, while in presence of propanol, it was 

shifted to 60
o
C.  

 

 In presence of butanol Amylase of Ve1-10-82     was active at pH range of 5 to 12, 

while in presence of methanol, it was active in pH range of 8 to 12.  

 

 Salt profile affected the catalysis of Ve1-10-82  amylase. In presence of methanol, 

it was active with 3M NaCl, while in presence of butanol, it was optimum at 2M 
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NaCl. Amylase was active up to 70
o
C, optimally at 50

o
C. Amylase was active up 

to 12 hour with 10% solvent. 

 

Effect of organic solvent on catalysis of haloalkaliphilic protease  

 

 Protease of Haloalkaliphilic sp. Sj-2 was subjected for screening such study. The 

isolate was obtained from Jodiya (Latitude 22.28 N, Longitude 69.4, 60º E).  

 

 With 3.96 fold and 30.63 % yield, Sj-2 protease was purified by ammonium 

sulphate precipitation. Its specific activity was 1,383.9U/mg.  Protease was quiet 

active with 30% ethanol, glycerol, methanol, propanol, n-hexane, diethyl ether 

and octane.  

 

 Protease was active with 10-30 %( v/v) ethanol. Optimum activity was at pH 10. 

Sj-2 protease was optimally active at 2 M salt which was not altered in presence 

of solvents.  Considerable activities were recorded with 3M salt in 20% ethanol.  

 

 In presence of hexane, temperature optima of protease shifted to lower range. In 

the absence of solvent, temperature optima was 60
o
C, while in presence of hexane  

shifted to 50
o
C. 

 

Purification and Characterization of two haloalkaliphilic alkaline 

Protease with respect to organic solvents 

 

 Haloalkaliphilic bacteria Sj-1(GQ162111) and AH-6 (EU118361) isolated from 

Jodiya (Latitude 22°43'11"N, Longitude70°16'48"E) were subjected for 

purification and characterization. 

 In the presence of butanol and cyclohexane, production of protease was inhibited.  

Sj-1 was able to produce significant amount of protease in the presence of  iso-

osctan, methanol , propanol, hexane, xylene , heptane, dodoecane and decane. 
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 With 27 fold and 28 % yield, Sj-1 was purified by hydrophobic interaction 

chromatography. Its specific activity was 9611 U/mg.  Based on SDS-PAGE, it’s 

molecular weight was 30 KDa.  Protease was considerably active with 30% 

ethanol, glycerol, methanol, propanol, n-hexane,  dodecane, decane and octane.  

 

 Protease was active at pH range 8 to 12, while it’s optimum pH was 10 . Enzyme 

was considerably stable up to 12 hour with 30 %( v/v) isooctane.  

 

 Salt profile was affected by solvent. In control, the optimum activity of Sj-1 

protease was at 2M NaCl, while in isooctane, maximum activity was recorded at 

3M salt. At optimum salt concentration in presence of isooctane , protease was 

stable up to 18 hour . 

 

 Temperature optima were unaltered due to presence of solvent. Protease was 

optimally active at 50
o
C and in presence of solvent too it was optimally active at 

the same temperature. 

 

 AH-6 protease was purified with 18-fold purification with a specific activity of 

7,312 U/mg and 22% yield. Based on SDS-PAGE, its apparent molecular mass 

was determined as 40 kDa. 

 

 Ah-6 protease was active at pH 8-12, maximally at 10. Solvent did not affect pH 

profile. In the presence of 30 % (v/v) hexane, it was stable up to 12 hour.  

 

 In control and in presence of hexane, protease exhibited maximal activity at 200 

mM NaCl.  With solvent, it was stable up 12 hour. 

 

 Temperature optimum of AH-6 protease was 50
o
C and it did not change due to 

hexane. The enzyme was stable with 20% (v/v) hexane up to 24 hour. 

 



Conclusions  
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CONCLUSIONS  

==================================== 

 Potent tolerances of the haloalkaliphilic bacteria against range of organic 

solvents indicated their wide presence beyond the organic solvent polluted   

land or crud oil extraction sites.  A total 82 haloalkaliphilic bacteria were 

screened against methanol, propanol, hexane and butanol. Decreased 

sustainability was recorded with increasing concentration of organic solvents, 

especially hydrophilic solvents. 

 

 Expansion of cell size of isolates can relate with the formation of vesicle as an 

adaptive modification at cellular level. 

 

 Two different growth patterns in presence of organic solvents is attractive part 

of this study. These isolates may prove model to understand biochemical and 

genetic basis of organic solvent tolerance. 

 

 The occurrence of the organic solvent tolerant amylases and Proteases from  

the isolated strain  indicated  that this region must be explored for valuable 

biocatalysts for non-aqueous conditions. 

 

 Amylases had broader range of pH, salt and temperature for the catalysis and 

stability in presence of organic solvents. Salt and temperature profile was 

shifted to higher range in the presence of organic solvents.  

 

 Alkaline proteases were purified to the homogeneity by single step 

purification by affinity chromatography. Catalysis and stability of the Sj-1 and 

AH-6 proteases  at wide range of three extremities of pH, salt and temperature 

in combination with organic solvent would be quiet useful for harsh conditions 

of biotechnological industry.  
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