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Abstract 

 Since the discovery of the phenomenon of Superconductivity in 1911 by 

Kammerling Onnes, tremendous efforts have been put in by various scientists around the 

world, in understanding this unusual property and also in developing new compounds. 

Several theories were put forward for explaining the mechanism and properties of 

superconductivity in elements and alloys. But since the transition temperature (Tc) of 

these elements was less, the endeavor to increase the Tc up to room temperature persisted. 

A major breakthrough in these efforts came with the discovery of superconductivity in 

oxide compounds (La2-xAxCuO4) in 1986. The dream of applying superconductors to reap 

their potential benefits received a major boost with the discovery of superconductivity in 

YBa2Cu3Oz (Y-123) compounds with transition temperature around 90K, above the 

boiling point of easily available liquid nitrogen (77 K). The interest in studying oxides 

grew by many folds because of the reason that the properties of oxides can be tailor made 

to specific roles by altering the synthesis methods. But till date, there is no such clear-cut 

explanation for the “Superconductivity” in these high Tc compounds. Several efforts are 

made to understand the mechanism responsible for superconductivity phenomenon in 

high Tc superconductors.  

 An attempt has been made in the present work to focus on the investigations on 

the structural, transport and magnetic properties of Lanthanum based 2125 type mixed 

oxide superconductors. This system is derived from the tetragonal RE-123 type 

superconductors. Due to the interesting properties exhibited by the La-2125 type 

tetragonal superconductors, an attempt has been made to investigate the role of dopants in 
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modifying the superconducting properties of these compounds and to establish a structure 

– property correlation in them.  

The thesis highlights the studies on rare earth doping at La site in                          

La2-xRExCayBa2Cu4+yOz [La-2125 for RE = Pr, Dy] system and metal ion doping at Cu 

site in La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz system, in order to understand the structural, 

transport and magnetic properties of system studied. A comparative study between           

RE-123 and La-2125 system has been carried out to understand and explore the 

mechanism of superconductivity in these mixed oxide systems.  

The major part of the thesis deals with the structural studies carried out on              

La-2125 type compounds using X-ray diffraction (XRD) and Neutron Diffraction (ND) 

measurements and the detailed analysis of the observed data by using Rietveld refinement 

method. The Rietveld analysis was done by assuming a tetragonal Y-123 structure with  

P 4 / MMM space group. All the samples fit well into this structure and confirm single-

phase tetragonal structure.  

 The other aspect of carrying out detailed study on the superconducting properties 

of La-2125 system, apart from the polycrystalline bulk samples, is the study of 

superconducting properties in thin film form.  The thesis introduces the synthesis of thin 

films of La2-xDyxCayBa2Cu4+yOz system using the Pulsed Laser Deposition (PLD) 

technique. PLD is an extremely simple and probably the simplest among all the thin film 

growth techniques. It is such a versatile technique that with the choice of an appropriate 

laser, it can be used to grow thin films of any kind of material.  The thin films were 

grown on LaAlO3 single crystal substrates.  
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 The results obtained on various La-based 2125 systems using various techniques 

provide a wealth of information regarding various properties of the system under 

investigations. Various techniques have been used to understand the structural, 

morphological, transport and magnetic properties of the La-2125 and doped La-2125 

systems.  

 Chapter 1 – 3 introduces to superconductivity, synthesis and characterization 

techniques, experimental tools used in the present work. Chapter 4 deals with the 

“Structural and superconducting property studies on La2-xDyxCayBa2Cu4+yOz system – 

Bulk and thin film form”. It is a proven fact that the superconductivity in RE-123 

superconductors is governed by the oxygen content which in turn is responsible for the 

carrier concentration in the system. Due to the oxygen dependent property, RE-123 

superconductors undergo structural phase transformation from orthorhombic to tetragonal 

as a function of oxygen content. It would be interesting to obtain a stable, tetragonal 

oxygen independent superconductor having dependence of its carrier concentration and 

Tc on the nature and amount of the substituted cation. Keeping this in mind, an attempt 

was made to synthesize a La-based mixed oxide superconductor by adding equal amounts 

of CaO and CuO to a non-superconducting, anti-ferromagnetic La2Ba2Cu4Oz (La-224) 

system. The resultant stoichiometric composition La2-xDyxCayBa2Cu4+yOz 

[LaDyCaBCO], where y = 2x; x = 0.1 – 0.5, shows a maximum Tc ~ 75K. The selection 

of rare earth Dy3+ ion has been made due to its strong magnetic moment and large 

neutron scattering length as compared to La3+ ion.  

 The detailed structural investigations on polycrystalline LaDyCaBCO system 

were carried out using XRD and ND techniques. The Rietveld analysis of the XRD and 
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ND data shows interesting results regarding the site occupancies of various dopants at La 

and Ba sites. The superconducting property measurements using d.c. resistivity, a.c. & 

d.c. susceptibility and d.c. magnetization measurement show a strong dependence of Tc 

on the hole concentration in conducting CuO2 sheets. The Ca-doping plays an important 

role in “turning on” of superconductivity into this system. The morphological studies on 

all the bulk samples studied using SEM techniques show the modification in the grain 

microstructure.  

 From application point of view, it is preferred to obtain the stable thin films of 

presently studied La-2125 mixed oxide superconductors. For this purpose, the 

superconducting thin films of LaDyCaBCO were synthesized for the first time using PLD 

technique. Due to the stochiometric variation from RE-123, it has been found that the 

experimental conditions and deposition parameters for the synthesis of La-2125 thin 

films using PLD technique are different. The thin films of La-2125 materials grown on 

LaAlO3 substrate were characterized for their structural, morphological, electrical and 

magnetic properties using XRD, AFM, d.c. resistivity, d.c. susceptibility and                      

d.c. magnetization measurements.  

 Chapter 5 is devoted to two systems, namely the LaPrCaBCO (Pr doped) and 

LaNdCaBCMoO (Mo doped) systems.  

Structural studies on La2-xPrxCayBa2Cu4+yOz system  

 Pr-123 is a non-superconductor with non-metallic nature. But there is marked 

difference in the properties of Pr-123 and Pr doped 123 systems. In Pr doped RE-123 

systems (RE1-xPrxBa2Cu3Oz) the superconducting transition temperature decreases 

linearly with increasing Pr concentration and for a critical Pr concentration the 
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superconductivity is completely quenched. Also, for a given critical Pr concentration in 

RE1-xPrxBa2Cu3Oz, Tc decreases linearly with increasing radius of RE3+ ion.   

 In order to understand the role of Pr in influencing the structural and 

superconducting properties in the La-2125 system, an attempt is made to study                    

La2-xPrxCayBa2Cu4+yOz,; x = 0.1 – 0.5; y = 2x system using XRD, d.c. resistivity, and               

d.c. susceptibility measurements. An interesting observation made is that, the results of Pr 

doped RE-123 system are different from those obtained for Pr doped La-2125 system. 

The detailed structural and site occupancy studies were done by the analysis of X-ray 

data using Rietveld refinement method. 

Studies on the La1.5Nd0.5Ca1Ba2(Cu1-xMoX)5Oz & La1.5-yNd0.5Ca1+yBa2(Cu0.8Mo0.2)5Oz  

systems 

  Cu - O layers (planes and chains) play a vital role in inducing superconductivity 

in these mixed oxide compounds. Due to their vital role only, these superconductors are 

also called ‘Cuprate’ superconductors. It has been observed in La-2125 system that 

superconductivity depends on the number of holes in the copper oxide (CuO2) planes and 

not on the oxygen content. The correlation between the hole concentration in sheets (psh) 

and Tc has been established. The difference in rate of suppression of Tc due to Mo-doping 

at Cu site in RE-123 and La-2125 system can be attributed to more number of Cu-O 

layers and the possibility of different charge transport mechanism in La-2125 system. 

The Mo substitution at Cu-sites also contributes in creating pinning centers in the 

structure, which helps in enchancing current density up to lower Mo-doping 

concentration.   
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 Unlike the role of Ca-doping in reviving the superconductivity of RE - 123 

system, in La - 2125, increasing Ca content in the form 

La1.5-yNd0.5Ca1+yBa2[Cu0.8Mo0.2]5Oz 

does not help in reviving the Tc of Mo doped La - 2125 system. This prompts us to 

propose that the stoichiometric composition 

La1.5Nd0.5Ca1Ba2Cu5Oz 

has an optimum level of hole concentration due to the doping of Ca and further increase 

in Ca content to Ca1+y leads to excess hole doping thereby resulting into no change in the 

superconducting properties.   The above system has been studied by XRD, d.c. resistivity, 

d.c. magnetization, d.c. susceptibility and iodometric double titration methods.   
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1.1 INTRODUCTION 

Superconductors, the materials do not possess resistance to the flow of charge 

carriers, are one of the last great frontiers of scientific discovery. Dutch physicist, 

Heike Kammerlingh Onnes, discovered “Superconductivity” in 1911, three years after 

he successfully liquefied Helium gas [1]. This discovery has lot to do with the 

advances in low-temperature refrigeration during 19th century. It had been known for 

many years that, the resistance of metals fell when cooled below room temperature, 

but it was not known what limiting value the resistance would approach, if the 

temperatures were reduced to very close to 0 K. Some scientists, such as William 

Kelvin, believed that electrons flowing through a conductor would come to a 

complete halt as the temperature approached zero. But other scientists, including 

Onnes, felt that a cold wire’s resistance would dissipate. This suggested that there 

would be a steady decrease in electrical resistance allowing for better conduction of 

electricity. At some very low temperature there would be a leveling off as the 

resistance reached some ill-defined minimum value allowing the current to flow with 

little or no resistance.  

In 1911, Onnes began to investigate the electrical properties of metals in 

extremely cold temperatures. He passed a current through a very pure mercury wire 

and measured its resistance as he steadily lowered the temperature [2]. There was no 

leveling off of resistance nor was any stopping of electrons as suggested by Kelvin. 

At 4.2 K the resistance suddenly vanished. Current was flowing through the mercury 

wire and nothing was stopping it, resistance was “ZERO” (Figure 1.1).  
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According to Onnes, “Mercury has passed into a new state, which on account 

of its extraordinary electrical properties may be called the superconducting state”. 

The temperature (4.2 K) at which the transition from normal metal to superconducting 

state took place was called the “transition temperature” .  Onnes and other scientists 

started to test other metals also and found that many of them behaved in the same 

manner when at extremely cold temperature. An electrical conductor with no 

resistance could carry current to any distance with no losses. In one of the Onnes 

experiment he started a current flowing through a loop of lead of wires cooled to 4 K. 

A year later the current was still flowing without significant current loss. Onnes found 

that the superconductors exhibited what he called “persistent currents”, electric 

currents that continued to flow without an electric potential driving them. Onnes was 

awarded Nobel Prize in 1913 for his discovery of “Superconductivity”.  

The important signatures of a superconductor can be highlighted as: 

a) Zero Resistance: Superconductors offer almost zero resistance to the flow 

of current below its transition temperature. The benefit of superconductors 

over other conductors is that they will not generate any heat. 

10-5 Ω 
Tc 

4.2 
Figure 1.1 Vanishing of resistance at critical temperature (Tc) for Hg metal 

T (K) 

   R    
  (Ω) 

4.4 

0.10   
  Ω 
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b) Perfect Diamagnetism: A superconductor will not allow a magnetic field 

to penetrate its interior. It causes currents to flow that generate a magnetic 

field inside the superconductor which just balances the field that would 

have otherwise penetrated the material. This effect is called the “Meissner 

Effect”  after Walther Meissner and R. Ochsenfeld made this discovery in 

superconductors [3].  

1.2 CONVENTIONAL AND HIGH TC SUPERCONDUCTORS (HTSC) 

Superconductors are classified as either conventional (Type I & Type II ) or 

high Tc superconductors on the basis of their response to the applied magnetic field, 

the former applying to the original elemental and alloy superconductors and the later 

referring to the mixed oxide compounds such as Yttrium Barium Cuprate. In a very 

weak magnetic field both the types of superconductors act in similar fashion i.e., they 

both expel the field entirely. Differences appear when the applied field is made 

stronger. Figures 1.2 (a) and (b) clearly shows this difference [4].  

 

Figure 1.2 (a) In Type I superconductor the currents collapse when the field is raised to 
a moderate intensity, usually less than 0.1 Tesla; the field then 
penetrates the metal and the superconductivity is abolished.  

 

Weak Magnetic Field 
Superconducting 

Moderate Magnetic 
Field - Quenched 
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Figure 1.2 (b) In Type II superconductors, the quanta of magnetic flux begin to enter at a 
moderate field but are isolated from the surrounding superconductive 
regions by vortical supercurrents. The last trace of superconductivity is 
not eliminated until the field reaches a higher-level.  

 

a) Type - I Superconductors: This category of superconductors mainly comprises of 

pure metals that normally show some conductivity at room temperature. They require 

incredible cold to slow down molecular vibrations sufficiently to facilitate unimpeded 

electron flow in accordance with what is known as BCS theory. They have one 

critical magnetic field for any given temperature. If they are in a magnetic field that is 

weaker than the critical magnetic field, they have zero resistance and show perfect 

diamagnetism. Figure 1.3 (a) shows the magnetic behavior of Type I superconductors 

under the applied external field.   

If the magnetic field is stronger than the critical magnetic field, resistance is 

greater than zero, and there is flux penetration. These superconductors are 

characterized by a very sharp transition to a superconducting state and by “perfect 

diamagnetism”. The Table 1.1 gives a list of some of the known Type I 

superconductors. 

Weak Magnetic Field        Moderate Magnetic Field   Strong Magnetic Field 
   Superconducting                    Superconducting                        Quenched 
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Figure 1.3 (a) Plot of induced magnetic field (M) inside a Type I superconductor as a 
function of the external applied field (H) [5] .  

 

Table 1.1 Some reported Type I and Type II conventional Superconductors 

Element Tc (
0K) Element Tc (

0K) 

Technetium 7.8 Lead 7.2 

Lanthanum 4.9 Tantalum 4.47 

Mercury 4.15 Tin 3.72 

Indium 3.40 Rhenium 1.697 

Thallium 1.70 Thorium 1.38 

Aluminium 1.175 Zinc 0.85 

TiZr 1.5 NbTi 9.5 

Zr3Bi 3.4 Nb3Ge 23.2 

CaIr2 6.2 NbN 17 

UPt3 0.43 LiTi2O4 13.7 

CuRh2Se4 3.5 La3Ni2B2N3 12 

H 

M 

Hc 

Type I Superconductor 

M = -H 

Superconducting state 

Normal state 
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b) Type - II Superconductors: Conventional Type II superconductors mainly 

comprise of alloys and mixtures of metal oxides which looses their superconducting 

property totally under the application of high magnetic field, through a more gradual 

process. The magnetic flux begins to penetrate at low field intensity (the lower critical 

field), but the last trace of superconductivity is not eliminated until a much stronger 

field is applied (the upper critical field) [6 - 8]. Figure 1.3 (b) gives the pictorial 

description of this fact. Thus, the Type II superconductors differ from Type I in their 

transition from a normal to a superconducting state, which is gradual across a region 

of ‘mixed state’ behavior. A Type II will also allow some penetration by an external 

magnetic field into its surface, but a Type I will not.  

 

 

 

 

 

 

 

 

Figure 1.3 (b)  Plot of Induced magnetic field (M) inside a Type II superconductor as a 
function of the external applied field (H) [4] . 

  
(c) High Tc Superconductors: In 1986, K Alex Muller and J. Georg Bednorz 

discovered the first high Tc superconductor in a ceramic oxide compound of 

Lanthanum, Barium and Copper (La1.85Ba0.15CuO4) at IBM Research Laboratory in 

Zurich [9]. The high Tc or Type II superconductors are comprised of metallic 

Super -
conducting state 

Vortex / Mixed 
State 

M Type II - Superconductor 

Hc
2
 Hc

1
 

Normal state 

Hc 

H 
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compounds and alloys with elements like Vanadium and Niobium as exceptions. The 

superconducting ‘perovskite’ (metal – oxide ceramics that normally have a ratio of 2 

metal atoms to every 3 oxygen atoms) also belong to this category. They achieve 

higher Tc s than Type I superconductors by a mechanism that is still not completely 

understood. Some postulates into the mechanism hold that, the relation of the planar 

layering within the crystalline structure is responsible for conduction. It is also 

believed that holes of hypo-charged oxygen in the charge reservoirs are responsible 

(hole being the positively-charged vacancies within the lattice). 

The Table 1.2 gives a list of some interesting Type II superconductors 

Table 1.2  List of High Tc perovskite superconductors along with their respective 
  Tc values 
 

Element Tc (
0K) Element Tc (

0K) 

HgBa2Ca2Cu3O8 133 HgBa2CaCu2O6 123 

HgBa2CuO4
 94-98 Tl2Ba2Ca2Cu3O10 125-127 

TlBa2Ca3Cu4O11 112 Tl2Ba2CuO6 70 

Bi2Sr2Ca2Cu3O10 110 Bi2Sr2CaCu2O9/8 110 / 80 

Ca1-xSrxCuO2 110 TmBa2Cu3O7 101 

YBa2Cu3O7-δ 93 Y2Ba4Cu7O15 93 

YBa2Cu4O8 80 (Ba, Sr)CuO2 90 

La2CaBa2Cu5O11 78 (Sr, Ca)5Cu4O10 70 

(La, Ba)2CuO4 35 – 38 La1.85Ba0.15CuO4 35 
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1.3 APPLICATIONS OF SUPERCONDUCTORS 

 Soon after Onnes discovered superconductivity, scientists began dreaming up 

practical applications for this strange new phenomenon [10, 11]. Powerful new 

superconducting magnets could be made much smaller than a resistive magnet, 

because the windings could carry large currents with no energy loss. Generators 

wound with superconductors would generate the same amount of electricity with 

smaller equipment and less energy. Once the electricity was generated it could be 

distributed through superconducting wires. Energy could be stored in 

superconducting coils for long periods of time without significant loss. The ability of 

superconductors to conduct electricity with zero resistance can be exploited in the use 

of electrical transmission lines.  

The field of electronics holds great promise for practical applications of 

superconductors. The generation of heat and the charging time of capacitors due to the 

resistance of the interconnecting metal films limit the miniaturization and increased 

speed of computer chips. The use of new superconductive films may result in more 

densely packed chips which could transmit information more rapidly by several 

orders of magnitude. Superconducting electronics have achieved impressive 

accomplishments in the field of digital electronics. Logic delays of 13 picoseconds 

and switching times of 9 picoseconds have been experimentally demonstrated.  

Through the use of basic Josephson junctions’ scientists are able to make very 

sensitive microwave detectors, magnetometers, SQUIDS and very stable voltage 

sources.   



Superconductivity – An Overview 

 

I - 10 

 
 

 The use of superconductors for transportation has already been established 

using liquid helium as a refrigerant. Prototype levitated trains have been constructed 

in Japan by using superconducting magnets.  

 Superconducting magnets are already crucial components of several 

technologies. Magnetic Resonance Imaging (MRI) is playing an ever-increasing role 

in diagnostic medicine. The intense magnetic fields that are needed for these 

instruments are a perfect application of superconductors. Similarly, particle 

accelerators used in high-energy physics studies are very dependent on high-field 

superconducting magnets.   

 In general the applications of superconductors can be pictorially depicted as 

shown in Figure 1.4.  

 

Figure 1. 4  Some applications of superconductors [12] 
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1.4 CURRENT STATUS OF DEVELOPMENTS IN HTSC 

The development of High Tc superconductivity provides both the intellectual 

challenge as well as technological promise. Since its discovery, the transition 

temperature has been quadrupled, several crucial aspects of HTSC have been 

understood, various models have been proposed, numerous material processing 

techniques have been developed, and a wide variety of prototype devices have been or 

are being constructed and tested.  

1.4.1 Basic Research 

From the Figure 1.5, we can see the increase of Tc with time.  
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Figure 1.5 Superconductivity timeline 
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As can be seen from the above figure, the road to higher Tc was very slow in 

spite of enormous research for developing a novel HTSC material [13]. Until 1986, 

the highest Tc observed was in a film of inter-metallic alloy Nb3Ge with Tc of 23 K an 

increase of 19 K since the first superconductor with Tc of 4.2 K over a span of 75 

years. Alex Muller and Georg Bednorz synthesized a new type of superconducting 

material, which consisted of a ceramic oxide of Lanthanum, Barium and Copper            

(La-Ba-Cu-O). They observed a dramatic drop in resistivity at 35 K [9, 14] and 

recognized the possibility of this type of material being a high temperature 

superconductor. Soon after this pioneering work there has been an explosion of 

worldwide interest in superconductivity, particularly in oxide superconductors. In 

December of 1986, Tanaka et.al determined the structure of this new ceramic 

superconductor and found its molecular formula to be La1.85Ba0.15CuO4 [15, 16]. In 

early 1987, it was observed that the critical temperature of the new ceramic 

superconductor could be raised by five degrees to 40 K by replacing the Barium 

atoms with Strontium [17, 18].  But the most significant ‘Jewel in the crown’ ceramic 

superconductor was the YBa2Cu3O7 (Y-123) superconductor synthesized and 

developed by Chu and Wu’s groups in March of 1987 [19]. It was the first 

superconductor with Tc of ~ 90 K, well above liquid nitrogen temperature. The 

unusual feature of these new types of superconductors is that, almost all rare earth 

elements will substitute in the Yttrium position (except Pr, Ce, Tb) of the 1-2-3 

structure and still yield materials with transition temperature in the 80 - 90 K range. 

The next round of discoveries began in early 1988 with higher Tc observed in          

Bi-Ca-Sr-Cu-O [20, 21] and Tl-Ca-Ba-Cu-O [22, 23] systems in early 1988.  The 

years between 1988 and 1996 represent a period of solid advancement and many 
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cuprate superconductors were discovered.  They may be considered to belong to or be 

derivable from the layered compound systems of R2CuO4 (R-214) with R = La, Nd, 

Sm, Eu and Gd, RBa2Cu3O7 (R-123) where R = rare earths (except Ce, Pr and Tb).  

Michael et al reported the occurrence of superconductivity in Bi-Sr-Cu-O at   

8 K, which turned out to be n = 1 member of the Bi2Sr2Can-1CunO2n+4 (Bi-22(n-1)n, 

with n = 1, 2, 3…) system [24]. Maeda et al while replacing R-123 elements by V-b 

group elements (such as Bi, Sb) detected superconductivity above 105 K in 

multiphase samples of BSCCO [20]. The crystal structures of three members of the 

homologous series Bi-12(n-1)n with n = 1, 2 and 3 with Tc 22, 80 and 110 K 

respectively, were determined showing a layered stacking sequence of 

(BiO)2(BaO)(CuO2)…(Ca)(CuO2)(BaO) with n(CuO2) layers separated by                

n-1(Ca)-layers. With increasing n > 3, the Tc decreased.  

Sheng and Hermann in 1987, working on the similar lines of forming R-123 

by replacing rare earth elements used the trivalent non-magnetic Tl for R. After 

proper synthesis methods were established, they detected superconductivity above   

90 K in a multiphase sample of the composition TlBa2Cu3Ox [22]. By partially 

replacing Ba by Ca in the following composition, they discovered Tc ~ 120 K in the 

multiphase sample of Tl-Ba-Ca-Cu-O in February of 1988 [23]. The structures of 

members of the homologous series were found to be similar to Bi-2223 but with no 

modulation in the (TlO)2 – double layer. Tc of 90, 110 and 125K were observed for    

n = 1, 2 and 3 in the Tl2Ba2Can-1CunO2n+4 (Tl-22(n-1)n) system. The highest Tc thus 

obtained for n = 3 system, was further enhanced to 131 K by the application of 

pressure. 
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 Putilin et al synthesized HgBa2CuO��/ then n = 1 member of               

HgBa2Can-1CunO�Q���/ (Hg-12(n-1)n, with n = 1,2,3,..) series and found a Tc = 94 K, 

the highest Tc detected in a single layered cuprate [25]. It was observed that Tc 

increases with n at least up to 3 or 4. Schilling et al succeeded in raising the Tc to   

133 K in a multiphase sample of Hg-12(n-1)n with n = 2 and 3. Later studies 

demonstrated that n = 1, 2 or 3 members of Hg-12(n-1)n possess Tc = 97, 127 and  

134 K, when optimally doped [26]. The crystal structure of Hg-12(n-1)n displays the 

stacking sequence of (HgO/)(BaO)(CuO2)(Ca)(CuO2)….(Ca)(CuO2)(BaO), with 

n(CuO2)-layers separated by n-1(Ca)-layers. This layered structure is similar to 

TlBa2Can-1CunO�Q� /, except Hg-12(n-1)n exhibits a large vacancy concentration in the 

(HgOδ)-layer for oxygen to occupy. Due to these local structures of the HgOδ-layers, 

unusually large Tc enhancement by pressure was achieved, pushing Tc first to ~ 154 K 

at ~ 16 GPa, and then to 164 K at ~ 30 GPa, setting new Tc records.                

The highest Tc of 124 K was observed in a non-toxic element cuprate with the 

nominal composition CuBa2Can-1CunO�Q���/ (Cu-12(n-1)n, with  n = 1,2,3,..) [27]. The 

compound CuBa2Can-1CunO�Q���/ with n = 3 and 4 were formed under high pressure 

with Tc of 60 and 117 K respectively. Cu2Ba2Ca2Cu3O�� / was also synthesized under 

high pressure to show a Tc ~ 110 K.  

 So far it has been observed that Tc increases with n, the number of CuO2 

layers per unit formula. Smith et al, in 1991, synthesized electron doped                    

Sr1-yNdyCuO2 under 2.4 GPa which showed Tc ~ 40 K [28]. Later, Takano et al 

detected superconductivity up to 110 K in (Sr1-xCax)0.9CuO2 prepared under 6 GPa 

[29]. Superconductivity up to 90 K has been reported in layered Sr2CuO4 synthesized 
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under high pressures [30, 31]. The samples thus prepared exhibit a structure similar to 

that of R-214 (1T). According to the Cu-valence effect on Tc, Sr2CuO4 was not 

expected to be superconducting, but the superconductivity at 90 K is due to the 

impurity such as S3Cu2O��/ present in the samples.  

One of the most prominent discoveries of superconductivity in recent times 

has been the superconductivity in the non-oxide binary compound MgB2 [32, 33]. 

Magnesium diboride (MgB2) was known since the early 1950s but was tested for its 

superconducting property very recently by Akimitsu and Nagamatsu et al observed a 

remarkably high Tc = 40 K, for binary compound. The simple crystal structure 

(hexagonal), high Tc, large coherence lengths, high critical current densities and 

fields, and transparency of grain boundaries to current make MgB2 a very suitable 

candidate for both large-scale applications and electronic devices.  In the framework 

of the BCS theory the low-mass elements result in higher frequency phonon modes, 

which may lead to enhanced transition temperature. The discovery of 

superconductivity in MgB2 confirms the predictions of higher Tc in compounds 

containing light elements, because it is believed that the metallic B layers play a 

crucial role in the superconductivity of MgB2 [34]. With Tc (~ 40 K) close to or above 

the theoretical value predicted by BCS theory, MgB2 presents a strong argument to be 

considered as a non-conventional superconductor.  

1.4.2 Applications: Challenges for HTSC materials 

High-temperature superconductors are brittle ceramic materials in which 

elements such as Yttrium and Barium, or Lanthanum and Strontium, are sandwiched 

between layers of Copper and Oxygen atoms. This layered atomic structure causes the 

materials to have highly anisotropic physical and superconducting properties. There 
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are two key physical properties related to granular high-temperature superconductors. 

First, the ‘coherence length’ – the length over which the superconducting 

wavefunction extends beyond a grain boundary. And second, the ‘upper critical field’ 

- the maximum magnetic field below which the material remains superconducting.  

The two properties are inversely related: the longer the coherence length, the lower 

the upper critical field. High temperature superconductors have a very high upper 

critical field (~ 18 T), which could open up a range of applications in extreme 

magnetic fields. In turn, the coherence length is very short, less than 2 nm. This 

means that the polycrystalline grains tend to be weak-linked unless the grain 

boundaries are both smooth at the single-atom level and free from disorder over a 

length scale significantly less than 2 nm. The high temperature superconductors are 

quasi-two-dimensional structures comprising weakly coupled copper-oxide (CuO2) 

layers. They are therefore highly anisotropic. These two factors – the coherence 

length and the anisotropy – mean that a polycrystalline HTSC wire must be dense, 

have a high degree of grain alignment and have high-quality grain boundaries. 

Although there are more than 50 known HTSC materials, only two have been used 

successfully to form long-length HTSC wires: the Bi2Sr2Ca2Cu3O10 (Bi-2223) and 

Bi2Sr2CaCu2O8 (Bi-2212).  

With the discovery of higher temperature superconductors, many applications 

of these materials have been prototyped in recent years [35 - 37]. These applications 

can be divided into two categories: bulk (as wires, tapes, cables etc) and film based 

(for electronic device applications).  
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a) Superconductors in bulk form 

i). Supermagnets: The latest medical diagnostic tool, the MRI (Magnetic 

Resonance Imagining) is commonly found in hospitals, where it is used to obtain 

detailed images of the interiors of a human body. The MRI uses a superconducting 

magnet to align hydrogen nuclei in the body. Radio pulses jostle the nuclei, as they 

wobble; the nuclei emit weak radio signals of their own that can be detected. With the 

advent of superconductors, this can be done without exposing the patient to X-rays or 

having to inject them with some kind of dye. Because MRI uses low temperature 

superconductors, this process is very expensive. But, when higher temperature 

superconductors take their place in the MRI, this process will become more affordable 

and may some day do away with X-rays. As of now, the MRI is considered the most 

successful use of superconductors.  

 The second most important potential use of superconductors is in the 

development of powerful magnets for generating high fields. Niobium-Titanium and 

Niobium-3-Tin achieve current densities of about 400,000 amperes per square 

centimeter 1000 times as much current as the copper wire. Bulk samples (not wires!) 

of Y-Ba-Cu-O have been made at the AT&T Bell laboratories that carry 4,000 

amperes per square centimeter at 77 K in a one-tesla field and without field it carries 

17,000 amperes per square centimeter.   

ii). Generators and Power lines: In electric generators mechanical power 

provided by a spinning turbine rotates a magnet, which induces an electric current. 

Superconducting magnets could increase the efficiency of such generators. Large 

superconducting generators are projected to be about 99.5 % efficient. HTSC cables 

offer a two-to tenfold increase in power capacity for the same cross-sectional area of 
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cable. And impressively, the total HTSC conductor weighs 70 times less than the 

copper cables it replaces.  

iii). Transformers: Another promising area for applications of 

superconductors is in transformers. A large HTSC system (> 30 MV A) is expected to 

weigh about half as much as a conventional transformer. Also the HTSC offer the 

opportunity to eliminate the oil that is used for cooling and dielectric purposes.   

iv). Storing Electrical Energy: An energy-storage system would enable a 

utility to store excess energy during times of overproduction and then tap it when 

demand exceeds. A system made of superconductors would be able to hold a massive 

amount of direct current with almost no energy loss.  

 On a smaller and less expensive scale, SMES could be put to a different use to 

smooth the transmission of power generated by highly erratic sources, such as an 

array of windmills. SMES units of this type are capable of switching large amounts of 

power but do not have to store much energy, and so they do not require expensive 

containment systems.  

v). Levitating Trains: One of the most widely discussed and debated 

applications of superconductor is the Maglev (Magnetically Levitating) train, which 

could cruise at high speed, suspended above a guide way of magnetic forces. As the 

train advances over aluminium coils in the guide way, the magnets induce opposing 

fields that levitate the train. High temperature superconductors would offer greater 

engineering reliability for Maglev trains.  

b) Superconductors in the form of films 

i). Superconducting computers: Ever since Brian D. Josephson realized the 

superconducting effects in an electronic device (now known as Josephson effect) the 
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dream of building a superconducting computer took shape. In simple words, the 

Josephson effect is the ‘jumping of electrons from one superconductor to another 

across an insulating barrier’. It is also known as tunneling [38].  

A Josephson junction consists of a thin layer of insulating material 

sandwiched between layers of a superconducting material.  

 

It switches voltages very fast while consuming several orders of magnitude 

less energy than conventional devices. Their low power consumption promised more 

compact computers.  

ii). SQUID: The Superconducting Quantum Interference Device (SQUID) is 

an important application of Josephson junction. It consists of one or two Josephson 

junctions inserted into a loop of superconducting wire. The device is extraordinary 

sensitive to changes in electromagnetic fields. The magnetic flux contained within a 

superconducting loop is quantized: it occurs only in integer multiples of a basic unit 

called fluxon (about 2 X 10-7 Gauss cm2). The current in the SQUID is a periodic 

function of the total fluxons contained by the loop and is extremely sensitive to any 

change in the magnetic flux.  

Figure 1.6 Josephson Junctions 

e- pair 

Superconductor 

Oxide layer 
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A SQUID can measure voltage differences as small as 10-18 volt, currents as 

small as 10-18 ampere (only several electrons per second!) and magnetic fields of less 

than 10-14 tesla (one ten-billionth of the earth’s magnetic field). When a SQUID is 

operated at four degrees K, thermal noise is virtually eliminated and the SQUID’s 

sensitivity approaches the fundamental limits imposed by quantum mechanics.  

The SQUID is and in some cases will be used in future for the following 

applications: 

9 For building detectors (SONAR) for submarines 

9 To detect faint magnetic signals associated with electrically activity in the 

heart and brain.  

9 Magnetoencephalography detects signals from the brain that are only slightly 

greater than 10-13 tesla and can determine the source of the nerve signal to 

within a few millimeters.  

Some other applications of high temperature superconductors is in fault-

current limiters and low-thermal-conductivity current leads, which are used to reduce 

heat leaks into the cryo-environment of low-temperature superconducting high-field 

magnets. The thin films also find applications for microwave antennas and filters.  

 

1.5 BRIEF THEORETICAL BACKGROUND 

(i). The BCS Theory 

The complete explanation to the mechanism of superconductivity was given 

by the macroscopic theory of John Bardeen, Leon N. Cooper, and J. Robert Schrieffer 

(known as the BCS theory) in 1957 [39]. The BCS theory accounts for (a) Second 
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order phase transition, (b) an electronic specific heat varying as exp(-T0/T) near                 

T = 0 0K and other evidence for an energy gap for individual particle-like excitations, 

(c) Meissner effect (B = 0), (d) effects associated with infinite conductivity (E = 0) 

and (e) dependence of Tc on isotopic mass Tc√M = constant [40].  

The normal conductors have an orderly arrangement of lattice surrounded by a 

“sea of electrons”. This sea is a body of electrons that are shared by many nuclei; it is 

caused by the atoms losing their valence electrons to obtain the preferred electronic 

configuration of noble gases. According to the Pauli exclusion principle, no two 

electrons in an atom can have the same four quantum numbers. Similarly, in a sea of 

electrons, no two electrons can have the same energy. Therefore, the electrons in a 

metal range from having the lowest amount of kinetic energy possible to the highest 

energy possible, known as the Fermi energy. The energies of the electrons are in 

discrete energy levels, and the groupings of levels are called energy bands. In a 

metallic conductor, the valence band is not full, so if an electrical potential is applied 

across the materials, electrons can easily flow and produce a current. The conduction 

band in metallic conductors is mostly empty.  

Inside a superconductor the behavior of electrons is vastly different. The 

impurities and lattice are still there, but the movement of the superconducting 

electrons through the obstacle course is quite different. As the superconducting 

electrons travel through the conductor they pass unobstructed through the complex 

lattice, because they bump into nothing and create no friction. They can thus transmit 

electricity with no appreciable loss in the current and no loss of energy. The 
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explanation of the BCS theory is based on the “electron-phonon-electron” 

interaction, now also known as “Cooper pair formation”.  

Band theory can explain the behavior of normal metals, but it is not applicable 

to superconductors as the electron pairs or Cooper pairs cannot be treated like 

individual objects. In normal conductors, there is a small electron-phonon interaction, 

that is, the vibrations of the lattice (phonons) have a small effect on the electrons. 

However, a large electron-phonon interaction is also the cause of superconductivity. 

This is why most good conductors such as Gold and Silver don’t superconduct, and 

most of the best superconductors tend to be poor ordinary conductors.  

Formation of Cooper pairs 

 As an electron moves through a superconductor, it distorts the lattice because 

the electron’s negative charge attracts the surrounding positive nuclei, as shown in the 

Figure 1.7 (a). 

 

Figure 1.7 (a) Wave of lattice distortion due to attraction to a moving electron  

If a second electron comes close enough to the first electron, it gets drawn to 

the area of the lattice that is distorted because the positive charges are more 

concentrated there. In other words, there is an effective attraction between the two 
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electrons that overcomes their repulsive forces. This weakly bound pair, called a 

Cooper pair, results in a lower state of energy. In this pair, there is a transfer of 

momentum between the two electrons. The electrons that form these pairs are called 

“superconducting electrons” as shown in Figure 1.7(b).   

 

Figure 1.7 (b) Two electrons, called Cooper pairs, become locked  
together and travel though the lattice 

 

These electrons are responsible for superconductivity, and the other normal 

electrons in the material do not have much of a role. In a superconductor, the Cooper 

pairs are constantly breaking and re-pairing with new partners because a large 

distance separates the electrons in a pair and they overlap. There is an optimal number 

of pairs that can form and the superconductor obtains the lowest energy possible when 

the maximum number of pairs are made. At the transition temperatures, the 

superconducting state becomes the more favorable, lower energy state, and electrons 

begin to form pairs. When a superconductor is warmed, the heat is first used to break 

the Cooper pairs before raising the temperature of the material. This explains the 

change in specific heat when a material moves from the normal state into the 

superconducting state. Superconductivity is different from other states of matter 
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because in phases such as liquid phase or solid phase, the molecules settle and 

condense in physical space. However, when a material becomes a superconductor, the 

electrons condense in momentum space. Unlike liquid and gas phases, 

superconductivity is a second-order phase transition, that is, when a material is cooled 

so that it becomes a superconductor, the transition takes place almost instantaneously 

without any latent heat.   

 According to the BCS theory Tc is given as  

Tc = 1.14ΘD exp [-1/N(EF)V] 

Where, ΘD = Debye temperature,  

N (EF) = electron-density of state at Fermi surface, 

V = electron-phonon interaction.  

(ii)  Ginzburg – Landau Theory 

 The background of the Ginzburg – Landau (G-L) theory [41] is the London 

Theory given by F. London and H. London [42]. The London theory is purely 

classical. According to the London theory, the extension of Maxwell’s equation to the 

superconductivity applies, and can be given as: 

B (x) = λ2∇2B 

This is the London equation, where B decays exponentially with x (x = depth). The 

value λ = √α (where α = constant = ms/µ0nse
2); is called the London penetration 

depth. λ is temperature dependent, tending to infinity as T approaches Tc. In non-

cubic superconductors, and especially high temperature superconductors, penetration 

depths are anisotropic. They depend on crystallographic orientations with respect to 

both magnetic field and specimen surface.  
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 The superconducting carriers have a free energy. In a magnetic field there are 

two opposing components in the surface energy. One component is due to the 

magnetic energy and the other due to the free energy of the superconducting state. 

The superconducting state is defined by three very important factors: critical 

temperature (Tc), critical field (Hc), and critical current density (Jc). Each of these 

parameters is very dependent on the other two properties present. The phase diagram 

of Figure 1.8, demonstrates the relationship between Tc, Hc and Jc.  

 

Figure 1.8 Relationship between Tc, Hc and Jc – Phase diagram 

The two theories are consistent with some exceptions. They are useful because 

the more complete BCS theory is a microscopic theory, so that additional application 

of many body theory is needed to reach the same results. The basic concept of          

G-L theory is the order parameter ‘ψ’, which represents the ordering of 

superelectrons, formed during the superconducting phase transformation. The theory 

is used to predict Bc1, Bc2, the penetration depth, coherence length, the criteria for 

Tc 
Hc 

Jc 
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Type I and Type II superconductors etc. Most macroscopic properties are predicted by 

this theory.  

1.6 AIM OF THE PRESENT WORK 

Many superconducting structures have been synthesized by various groups all 

over the world, both in oxides and from inter-metallic compounds with varying Tc, Hc 

and Jc values. But till date, there has been no satisfactory explanation for the 

occurrence of superconductivity in ceramic oxides, which have a rather complex 

structure. The widely studied structure of all the high Tc compounds is the 1-2-3 type 

of superconductors. There are many approaches by which this 1-2-3 structure can be 

formed. In the present work, an attempt has been made to study this fascinating 

structure from a different point of view. The approach is from a La-224 

(La2Ba2Cu4Oz) non-superconductor, which has been made superconducting by the 

simultaneous addition of CaO and CuO, thus yielding the La-2125 (La2Ca1Ba2Cu5Oz) 

superconductor [43, 44]. Both the starting La-224 and final La-2125 phases are 

derivatives of the La-123 superconductors [45].  

The exact mechanism of any superconducting system can be best studied by 

the role played by dopants in the structure. Keeping this in mind the following three 

series of samples were studied  

(i) La2-xDyxCayBa2Cu4+yOz (LaDyCaBCO) 

(ii)  La2-xPrxCayBa2Cu4+yOz (LaPrCaBCO) 

(iii)  La1.5Nd0.5Ca1Ba2[Cu1-yMoy]5Oz and  

La1.5-zNd0.5Ca1+zBa2[Cu1-yMoy]5Oz (LCBMO) 
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 The main emphasis in this work has been on establishing the structure – 

property relation in the La-2125 type of mixed oxide superconductors. For this 

purpose, the Neutron Diffraction (ND) studies on powder samples were carried out 

for the structural investigations of LaDyCaBCO system. The analysis of the ND data 

was carried out for the determining structural information like space group, phase 

purity, atomic positions, occupancy of constituent elements, unit cell parameters etc., 

by Rietveld Refinement method using the Fullprof program. Rietveld refinement 

method was also used to refine the X-ray Diffraction (XRD) data of LaPrCaBCO 

system along with LaDyCaBCO system. Rietveld refinement has emerged as a very 

powerful tool in refining the structure of any material. It gives very precise 

information about the crystal structure. 

 La-2125 types of superconductors possess stable tetragonal structure – 

isostructural to tetragonal Y-123 superconductors. The Rietveld analysis of ND and 

XRD data are in agreement on the fact that, the structure is stable tetragonal 

throughout the doping range, and the unit cell parameters are also in good agreement. 

Since, ND measurements are expensive and rarely available; rest of the series              

(i.e., LaPrCaBCO and LaNdCaBCO) were characterized by XRD for structural 

studies. Also, the oxygen content, a very important ingredient in oxide 

superconductors for superconductivity, has been determined by ND and crosschecked 

by Iodometric titration method. The values are in good agreement. Thus, for other 

samples, it was assumed that the oxygen content thus obtained is near the true values.  

 Another aspect of studying the superconducting property of the oxide 

materials is the study in thin film form. The tetragonal superconducting thin films are 

reported to be more stable against degradation by atmosphere and water. Thus, they 
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promise to be eligible candidates for practical applications of tetragonal 

superconductors. The thin films of LaDyCaBCO system (La-2125) were synthesized 

for the first time during the course of this work. Though, La-2125 is a derivate of       

La-123 structure; it was found that the deposition parameters for both are different. 

After many attempts the superconducting tetragonal thin films were successfully 

synthesized using Pulsed Laser Deposition (PLD) technique. PLD is one of the 

simplest yet very efficient thin films growing technique. The stochiometric 

composition of the films is fairly maintained during ablation by PLD.  

 In summary, the present work deals with two aspects of the doped La-2125 

superconductors. One is the crystal structure determination by ND studies and 

another, synthesis of thin films using PLD technique. The results of both these 

techniques are presented in this thesis.  

The role of different dopants in La-2125 like fluctuating valence Pr at La and 

Mo at Cu sites were also studied during the course of this work. The results of these 

studies are also presented.   
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2.1 SYNTHESIS METHODS – BULK AND THIN FILMS 

2.1.1 Synthesis of Bulk samples  

– The ‘shake & bake’ method: The shake and bake method of preparing the 

samples involves two steps. First is the ‘shake’ method i.e., to prepare the starting 

compounds for actual sample preparation. It involves, pre-heating (i.e., to remove the 

unwanted moisture from the compounds) and weighing accurately in stochiometric 

quantities. The second step is the ‘bake’ method, which involves sintering of the 

samples with intermittent grinding to obtain homogeneous mixture. The homogenous 

mixture can be obtained either by fine grinding, ball milling, co-precipitation, sol-gel 

etc., methods.   

(a) Solid State Reaction route (Chemical Reaction method): The starting 

compounds used for the preparation of high Tc superconductors are pure, anhydrous 

powders of oxides, carbonates or nitrates of the metallic elements. Prior to reacting, 

these compounds are broken down by mixing with other compounds so that 

neighbouring grains react in furnace to form new stable phases. For example, the 

carbonates (say BaCO3) decompose, releasing carbon dioxide, at temperatures, which 

are comparable to typical sintering temperatures. It decomposes and reacts with CuO 

to form ternaries such as BaCuO2 or other compounds. This initial decomposition of 

stable starting powders, by heating below their melting points in known as 

calcination.  

 Decomposition is typically endothermic. The rate at which calcination occurs 

depends on  

(1) The rate of reaction at the reacting surface,  
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(2) The rate of heat transfer and, 

(3) The rate of gas transport.  

The enthalpy (∆H 0298
) of decomposition reaction of BaCO3: 

BaCO3(s) ÆÆ BaO(s) + CO2 (g) 

is –1.218 J mol-1. The reaction rate depends on a balance of heat flow to the reaction 

interface and gas flow away from it. The heat flow depends also on the thermal 

conductivity of the porous BaO and on the heat transfer rate from the furnace. The 

solid BaO, which is one product of the decomposition, then reacts with neighbouring 

grains by chemical processes, which are common to sintering [1]. The reactions can 

be idealized as follows: 

BaCO3(s) + CuO(s) ÆÆ CO2 (g) + BaCuO2(s) 

4BaCuO2 + Y2O3 + 2CuO ÆÆ 2 YBa2Cu3O7-δ 

 In sintering, all grains in adjacent particles react and bond. In homogeneous 

reactions, i.e., when all of the reactants are in the same phase, the reaction rate, dc/dt, 

is described by classical chemical-reaction kinetics. The rate is proportional to the 

concentrations of the reactants, c1, c2, c3, etc., raised by powers corresponding to 

respective order of reactionα,β γ etc. 

dc /dt =  Kc1
αc2

βc3
γ… 

The reaction constant, K, is related to the activation energy, Q, through the Arrhenius 

equation: 

K = A exp (-Q/RT) 

where A is a constant.  
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 In ceramic systems, the reactions generally occur at interfaces between 

different phases and are therefore heterogeneous. The reaction rate depends on  

(1) Transport of reactants to the phase boundary, 

(2)  Reaction at the phase boundary and, 

(3) Transport of the products away from the phase boundary.  

The rate-limiting factor can be either the slowest of the transport mechanisms 

or slowest of the chemical reactions.  

 Repeated grinding, mixing and re-sintering are needed to make a reaction to 

complete so as to form single-phase high Tc compounds. Surface contact between 

particles can be maximized by pressing the powders into pellets before sintering and 

the initial shape of the compacted material can often be retained, with more or less 

shrinkage or expansion, depending on the processing conditions.  

 The dominant physical factor controlling sintering is temperature. In 

traditional ceramics a typical sintering temperature is three-quarters of the melting 

temperature expressed on the absolute scale. However, the high temperature 

superconductors require accurate control.  

Two features, which occur during sintering, are necking between grains and 

the consequent change in pore shape. The necking results due to the reduction in 

surface energy. Broad interfaces between grains determine both mechanical and 

electrical properties. However, in the processing of high Tc materials, it is even more 

important to ensure that chemical reaction goes to completion and that the material 

product contains only the desired homogeneous single phase. Chemical 

inhomogeneity results in intergranular phases, which constitute weak links. 
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Homogeneity is enhanced by fine grain size and also by good mixing, especially of 

starting powders.  

The fine powders, or homogeneous mixtures of the starting compounds can be 

achieved by any of the following methods: 

(i) Milling media (Ball milling): Ball mill is commonly used for mixing and 

grinding larger quantities of ceramic powders. Careful selection of the milling media 

is required to avoid the contamination of the samples by the media. Balls or cylinders 

of selected materials are mixed with the ceramic compounds in a volatile organic 

lubricant (e.g. Acetone, Propanol etc), and the mixture is poured into suitable jars. 

These jars are sealed and made to rotate for long periods, e.g., several days, on 

motorized rollers. The balls generally used for the preparation of high Tc 

superconductors are made up of partially stabilized Zirconia (PSZ) [2]. Finer powders 

require smaller balls for effective milling. A typical volume ratio of powder to balls is 

3:1. The typical particle sizes after milling range above 10 µm. Powder can be further 

grounded to finer particle sizes, about 1 µm, by attrition milling. The powder is 

suspended in slurry and pumped through a mill containing fine ball milling media, 

which are rapidly shaken in a cylindrical container by a central rotating screw shaft. 

Attrition milling has the advantage in speed, since the process takes hours instead of 

days.  

(ii)   Co-precipitation method: The reaction rate can be speeded up by reducing the 

particle size and by mixing of pre-reacted compounds. In the co-precipitation method, 

soluble compounds, typically nitrates, are firstly dissolved in a suitable solvent, 

typically aqueous. Sometimes warming is required, e.g., Ba salts. Solutions, which 
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contaminate the final product, such as chlorides or sulfates, are usually avoided. The 

various ionic species then form chemical bonds, for example with added oxalate 

anions, and precipitate from the liquid phase. With the control of pH and temperature, 

it is possible to promote simultaneous co-precipitation of the various species [3].  

Anions commonly used for co-precipitation of high Tc superconducting compounds 

are carbonates, oxalates, hydroxides, citrates, etc. Many variations in procedure have 

been used, some with the use of precursors to overcome differences in solubility 

between ions. The co-precipitated powders are then calcined.  

(iii)  Aerosol Techniques: Fine, well mixed particles can be formed from the same 

nitrate solutions by atomization in a jet of gas such as O2. The aerosol formed can be 

either frozen and dried in a freezer drier, or alternatively dried and reacted by passing 

in a flow of O2 gas through a furnace, which is called spray drying or as spray 

calcination if the furnace temperature is sufficiently high to promote chemical 

reaction. An aerosol is formed by an atomizer. If an aerosol flow rate of 3 standard 

liters per minute (slm) is passed with a residence time of 25 seconds, through a 

furnace raised to 950 0C, powders formed from the nitrates of Y, Ba and Cu 

decompose and react [4]. Dried, calcined powder is collected on a warmed filter at the 

end of the furnace. Typical particle sizes are in the 2 – 10 µm range.  

Freezing can be performed by passage of the aerosol through liquid nitrogen 

or through a cold liquid, such as n-hexane at –100 0C. If the frozen aerosol is 

transferred to a vacuum chamber at pressure less than 27 kPa (0.2 Torr), the droplets 

in the aerosol are dried by sublimation, and sub-micron sized particles can be 

prepared. Typically the frozen powders are hydrated, and heating drives off the water 
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molecules. If melting occurs before calcination reactions, the phase separation takes 

place, and the chief benefit of the frozen aerosol mixture is lost. Phase separation is 

reduced by rapid heating, but for best results either the anhydrous nitrate should be 

prepared by heating in vacuum, or other solutions must be used, e.g., acetates. If the 

nitrates are used, the sub-micron sized, dried powders of high Tc starting compounds 

are heated to 50 0C in vacuum and transferred quickly to preheated crucibles for 

calcination at 7000 – 940 0C. The effectiveness of freeze-drying for the formation of 

fine mixed particles is reduced if precipitation before the aerosol is frozen. For this 

reason, concentration and pH are important parameters. Mass quantities can be mixed 

with drying times of 24 hours or more.  

(iv) Sol-gel: “Sol” describes the dispersion of colloids, i.e., particles in the range of 

1 – 100 nm diameter, in liquids. If the viscosity of the sol is made to increase 

sufficiently, e.g., by partial loss of the liquid phase, it becomes a rigid “gel”. Sol-gel 

technique can be used for several purposes including the formation of fine powders, 

homogeneous thin and thick films, fibers, homogeneous bulk material, porous solids 

and powders [5]. “Sol-gel” methods have been used to prepare both Y-123 and        

Bi-2212 superconductors. There has been considerable development in sol-gel 

techniques resulting from applications dependent on organic solvents, as even nano-

scale particles can be prepared. An example of the use of organic solvents is the use 

of metal alkoxide precursor method. The chief difficulties in using this technique lie 

in the relative insolubility of Cu alkoxides in organic solvents and different hydrolysis 

rates for the different metal alkoxides. For these reasons, stochiometric and 

homogeneous oxides are not easily prepared. In the alternative aqueous route, water-

soluble starting powders, typically nitrates or acetates are first dissolved as in the co-
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precipitation technique. These solutions are generally simply prepared. Gels are 

subsequently formed in a variety of ways, such as by ethylene glycol solutions with 

nitrates, or by the addition of ammonium hydroxide or pH control of acetate solution. 

Among with the benefits, especially homogeneity, which are found in the sol-gel 

technique products, there lie many disadvantages. These include 

(a) Residual carbon left from the organic solvents after firing, 

(b) Long processing times and, 

(c) Health hazards of organic solvents. 

(v). Precursor routes: The sol-gel technique is one example of the use of organic 

solvents as precursors in the formation of high Tc compounds. In processing with 

inorganic compounds, advantages are frequently obtained by sequencing the reactions 

and forming intermediate precursors. Single phase Y-123 is formed comparatively 

easily, precursors are not often used in forming this compound but they have 

important uses in forming the AaB2CanCun+1O6+2n compounds e.g., Tl-2223. Precursor 

routes have been applied with several aims: to reduce multiphase components, e.g., 

Bi-2201 and Bi-2212 in Bi-2223, to reduce processing times or to increase density. 

Standard metallurgical processes in inert atmospheres can form metallic precursors. 

As the metallic elements generally have low miscibilities, rapid solidification is 

required to reduce segregation.  

– Pelletizing & Shaping: Once the samples have been prepared in the powder form, it 

is imperative to give them a definite shape for practical purposes. Unlike, metals, 

ceramics are generally shaped prior to firing rather than after firing. This is not only 

because they are more brittle and difficult to handle, but also because pressure is 

normally required before sintering so as to ensure large areas of surface contact 
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between grains. Large areas of surface contact not only increase reaction rates, but 

also tend to increase the density and strength of the final product. The grain 

morphologies of the final products depend on processing conditions and determine 

their mechanical and electrical properties. Some high Tc materials, like Y-123, tend to 

densify during sintering, and the densification can be increased with sintering aids. On 

the other hand, Bi-2223 has strong preferred growth directions, which cause the 

material to expand during sintering and yield a product, which is, except with 

specialized processing, porous.  The high Tc samples are usually palletized, formed 

into wires and tapes.  

(i) Pelletization: Pellets are most easily formed by axial pressure applied with a 

hydraulic press to powder in a die. The effects of pressure are  

(a) To reduce pore size, 

(b)  To break up particles especially at surfaces in contact, & 

(c)  To introduce strain and plastic flow.  

After pressing, the pellets are handled carefully to avoid mechanical stress. 

The pellets are placed on chips or powder of the same (superconductor) material to 

avoid contamination from underlying brick during firing. Cracks, introduced by 

inhomogeneous compression, tend to grow during sintering for reasons of stress 

relief.  

(ii) Wire formation: Wires can be formed by extrusion or by drawing. Drawing 

can only be used with materials having sufficient density, but not with brittle 

materials such as the high Tc ceramics. Two methods are commonly used for 

preparing superconducting wires, one being the powder-in-tube method and the other 

being the organic-binder method.  
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(a) Powder-in-tube method: In this method, superconducting material is 

packed in a metal tube made from relatively inert material such as Ag, and the tube is 

either extruded or drawn. Besides providing a sheath in which compaction occurs, the 

Ag tube supplies the ductility necessary for drawing. The compaction is, however, 

greater in extrusion. The attainable reduction in wire diameter depends on the 

thickness of the Ag tube, which tears under large reductions, while the uniformity of 

the wire cross-section along its length depends on uniform rates of drawing or 

extrusion.  

The fabrication of long wires requires continuous processes in which the wire 

is slowly moved along a tube furnace with a hot zone matched to require sintering 

temperatures. Oxygenation can be induced in the cooler zone towards the edge of the 

furnace, depending upon the sample being used. Multifilament wires can be formed 

by repeated extrusion of tubes filled with bundles of previously reduced wires.  

(iii) Tapes formation: Tapes present the greatest promise for bulk high Tc 

materials in applications requiring large current flow. This is because Bi-2223 and   

Bi-2212, which grow with platellar morphologies, can be aligned in tapes.   

 Tapes can be formed either with Ag sheaths or with organic binders. Plate-

shaped particles in Ag-sheathed wire can be aligned by the mechanical stress applied 

in rolling. With repeated sintering and grain growth interspersed with a gradual 

reduction in tape thickness, high performance tapes can be formed into long lengths or 

coils.  

 Slurry containing superconducting powder is mixed with  

(a) An organic binder, 

(b) A solvent to regulate the viscosity of the slurry, 
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(c) A deflocculant or wetting agent and 

(d) A plasticizer to prevent cracking in the green phase before sintering. 

The slurry is poured onto a moving organic carrier film and passed under a ‘doctor 

blade’, which scrap the film of uniform thickness. The film is dried, formed into its 

final shape and sintered. The highest Jc in bulk high temperature superconductors 

have been recorded from Ag-sheathed tapes.  

(iv) Coils: Superconducting coils for producing magnetic fields require materials 

which pass high current densities, and which have mechanical strength sufficient to 

withstand large Lorentz forces. High Tc coils have potential for uses either as 

resistance less coils with simple cryogenic requirements, or as inserts for 

conventional, low-temperature, high field magnets. The requirement for high currents 

implies that the high Tc material must be textured. Moreover, the anisotropic transport 

found in high Tc materials can be used to advantage in the flat ribbon geometry to 

avoid severe flux creep, which occurs when the field direction is perpendicular to the 

ribbon surface.  

 To provide the necessary mechanical strength, the coil is contained in a steel 

sheath and impregnated with epoxy resin. The layers of tape are insulated by glass 

fiber.  

2.1.2 Synthesis of Thin films 

The fabrication of high Tc thin films is motivated by their potential 

applications in electronic devices, sensors, bolometers, interconnects etc. It is 

generally assumed that high Tc thin films should, if properly prepared, have properties 

approaching those measured in single crystals. In low Tc material, that is not a valid 

assumption. The majority of high Tc thin films have been made is of Y-123 because 
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stoichiometry can more easily be reproduced in these compounds than in Bi-based 

superconductors. The Tl-based superconductors also have the disadvantage in 

producing thin films along with the toxicity and volatility of Tl.  

For the purpose of device fabrication, it is necessary that thin films should be 

easily reproducible, with transition temperatures close to those observed in bulk 

material and with comparable transition widths. Also, the thin films should be 

compatible with conventional electronic devices grown on Si or GaAs for inter 

connectivity in electronic circuits. The growth of high quality thin films depends on 

the following conditions.  

(i) Deposition environment: Base vacuum and the annealing play a vital role in 

modifying the properties of the thin films. High Tc films grown in-situ superconduct 

on removal from the vacuum chamber. Film grown ex-situ are removed from a 

deposition chamber and placed in a reaction chamber, where they are annealed in 

oxygen-rich environment to form the superconducting phase. In situ films are grown 

layer by layer on heated substrates, with surface diffusion playing an important role, 

enabling the atoms to migrate to their equilibrium sites. Ex situ films are deposited in 

the amorphous state, and the crystal structure of the superconductor is formed 

subsequently by bulk diffusion with solid phase epitaxy during an anneal. The bulk 

diffusion process requires higher processing temperatures than are needed for the 

surface diffusion in situ. Ex situ films are often deposited onto cold substrates using a 

simple experimental arrangement. 

(ii) Oxygen pressure:  The composition of compounds formed during deposition 

depends on partial oxygen pressures. For example, during the deposition of Y-123 

superconductors, all the deposition techniques, which operate at higher substrate 
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temperatures and higher oxygen partial pressure, favor the formation of YBa2Cu3O6. 

This compound is subsequently transformed to superconducting, orthorhombic     

YBa2Cu3O7-δ by annealing in O2 at pressures between 10-1 to 10-3 Torr.  

(iii) Stoichiometry: Prior to deposition, the elements can be evaporated from a 

single source or from multiple sources. Whichever is used, the properties of the 

resulting films, including Tc, transition width ∆Tc, and Jc depend critically on the 

stoichiometry of the deposited film. With good deposition monitoring and with good 

control, stoichiometric compositions can be achieved from multiple sources though 

deposition from a single source is less complex and less expensive. The deposition 

from single source is more reproducible.  

(iv) Co-deposition from multiple sources: In thermal evaporation from substrates 

of Y-123 powders, for example, elemental evaporation rates and sticking factors are 

not uniform, so that stoichiometry is lost. These problems can be overcome by co-

evaporation from multiple sources. In this case especially, in situ monitoring of 

evaporation and deposition rates is required for fabrication of reproducible, high 

quality films.  

(v) Substrates: Among the most important considerations in processing high 

quality films is the selection of substrate material. The substrates must be available as 

large single crystals. The ideal substrate should have the following properties [6-8]: 

(a) A smooth, clean surface, free of twins and other structural inhomogeneity; 

(b) Matched lattice parameters between substrate and film; 

(c) Chemical compatibility 

(d) Matched coefficients of thermal expansion; 
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(e) No phase transformations between room temperature and deposition or 

annealing temperatures; and  

(f) Electrical properties, such as dielectric constant compatible with required 

applications. 

Lattice parameter mismatch results in coherency strains in the films. The 

corresponding stress leads to cracks or micro-cracks, which increase in magnitude and 

frequency with increasing film thickness. Ex situ crystal growth during post-

deposition annealing is accompanied by diffusion, so chemical compatibility is 

required between substrate and thin film. Substrates, which undergo phase 

transformations during annealing cycles or which have different coefficients of 

expansion from that of the thin film also produce defects in the deposited film.  

 Commonly used substrates and growth planes are SrTiO3 (100) or (110), MgO 

(100), YSZ (100) – Yttrium stabilized Zirconia, Al2O3 (1102), LaAlO3 (100), LaGaO3 

and NdGaO3 (100). The properties of some of these commonly used substrates are 

listed in Table 2.1. All these substrates are available in singe crystal form. Films of  

Y-123 have been successfully grown on polycrystalline substrates, including 

Hastelloy, stainless steel and YSZ [9].  

(vi) a - axis films: On substrates of (100) orientation, epitaxial growth normally 

occurs with the thin film c-axis normal to the plane of the film. However, processing 

conditions can control the orientation of the films. This is particularly true in the case 

of Y-123 in which the c-parameter is close to three times the ‘a’ or ‘b’ parameters.  
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Table 2.1 Properties of some commonly used substrates for the deposition of high 
  Tc superconducting thing films 
 
Substrate Structure a-axis lattice 

parameter ‘a’        

(in nm) 

Melting point        

(mp in 0C) 

SiTiO3 Cubic (perovskite) 0.3905 2080 

LaAlO3 Rhombhohedral 

(perovskite) 

0.3793 2100 

LaGaO3 Orthorhombic 

(perovskite) 

0.3890 1750 

MgO Cubic (NaCl) 0.4213 2800 

YSZ Cubic 0.5240 2700 

Sapphire Trigonal 0.4758 1370 

Si Cubic (diamond) 0.5431 1150 

GaAs Cubic (zincblende) 0.5650 1238 

 
 
 (vii) Heterostructures: Heterostructures are compounds containing alternating 

layers of different compounds e.g., YBa2Cu3O7-/ / PrBa2Cu3O7-/ [10]. 

Heterostructures must be grown by in situ methods, in order to limit bulk diffusion. 

The Tc s of these structures depends on the thickness of both the YBa2Cu3O7-δ and 

PrBa2Cu3O7-δ layers. Heterostructures can be produced by selection of deposition 

temperatures, with either c- or a-axis orientation.  

(viii) Film Quality: The quality of the films can be checked in many ways. 

Comparison of Tc
 s and Jc

 s with those of single crystals is a normal first step. 
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Frequently, the sharpness of the drop in magnetic susceptibility at the 

superconducting transitions,∆χ, and the minimum value of the real part of the 

magnetic susceptibility, χmin, recorded at temperatures below Tc, provides a further 

guide to film quality. The morphology of an ideal epitaxially grown film is flat and 

featureless. In practice, pinholes, surface roughness and other defects are usually 

observed. They affect electrical and magnetic properties of the films depending on the 

size of the defects. 

Different deposition techniques: Most of the deposition techniques employed for the 

synthesis of high Tc superconducting thin films was previously used for the 

depositions of thin films of semiconductors. The techniques are based either on 

Physical Vapor Deposition (PVD) or on Chemical Vapor Deposition (CVD). 

Different deposition techniques, which are commonly used for the synthesis of thin 

films, are as follows 

(a) Thermal Evaporation: The simplest deposition technique involves thermal 

evaporation from a single source, e.g., of Y-123 alone or of Y-123 with selected 

additions. In single source evaporation there is little control over deposition rates, so 

that films are often deficient in one or more elements. Individual elements are 

contained in furnaces and their vapor fluxes controlled through individual furnace 

temperatures. A typical chamber is pumped by a turbo molecular pump and by cryo 

panels. A deposition rate between 0.1 and 1 mm/s is normally achieved.  

 In its most sophisticated form, Molecular Beam Epitaxy (MBE) occurs layer 

by layer, controlled by shutters. Artificial compounds, not possible in bulk form, can 

be fabricated. For epitaxial growth, the specimen substrate is mounted to a heater 
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holder and is tilted toward each furnace in turn during evaporation. To grow films in 

situ, oxygen is fed into the chamber and plasma is formed by high-tension discharge 

close to the specimen and substrate. The atomic structure of the film is monitored by 

Reflection High-Energy Electron Diffraction (RHEED) of electrons directed 

towards the specimen at a glancing angle from an electron gun. Electron beam               

(e-beam) evaporation requires high vacuum at pressures ≈ 10-4 Pa, so that, for in situ 

growth with a reactive gas, differential pumping is needed between the specimen and 

target. Alternatively, electron beam evaporation is well suited to ex situ methods. 

(b) Sputtering:  Sputter deposition of thin films is carried out at pressures, from   

1 to 100 Pa, considerably higher than those used in thermal or e-beam evaporation. A 

working inert gas, usually Ar, is introduced into the sputtering chamber. The 

sputtering gas may contain some oxygen. Plasma is created either by dc discharge or 

by RF excitation. A typical rf coil operates at 2 MHz and 5 kV, Ar+ ions are 

accelerated out of the plasma by the potential of the target, and they strike the target, 

releasing atoms, which are collected on the substrate to form the film.  

 Sputtering is performed either with a single target or with multiple targets. In 

the simplest configuration, the substrate faces the target. This is known as on – axis 

sputtering, and typically deposition rates are more rapid than 0.1 nm/s. In off-axis 

sputtering, the substrate is oriented at 90 0C with respect to the target so as to lie 

outside the plasma to avoid resputtering effects, but the deposition rates are low, 

around 0.03 nm/s.  

 In magnetron sputtering, the plasma, excited by either an rf or dc potential, is 

confined by the magnetic field produced by a permanent magnet. The resputtering 
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problem is solved in this method by using an ‘unbalanced’ magnetic field 

configuration. Under dc operation, the discharge typically runs at about 115 V and   

1.2 A. For in situ films, sputtering occurs in Ar/O2 atmosphere typically above 1 Pa. 

The system can also be used to produce ex situ films.  

 A typical dc sputtering arrangement consists of a vacuum chamber for in situ 

deposition with a heated substrate, a shutter and several sputtering targets operated by 

dc or rf power. Flow controllers are used to define the Ar and O2 gas mixtures.  

(c) Laser Ablation: When a pulsed excimer laser, with energy fluence about        

3 J/cm2, is focused onto target material, ablated species including atoms, molecules 

and radicals are transferred to the nearby substrate [11, 12]. The Figure 2.1 shows the 

typical experimental arrangement of deposition by laser ablation.  

 The laser optics are contained outside the vacuum chamber, with the entry 

widow is often geometrically shielded from ejected material. The pressures of reactive 

gases, such as O2 or N2O, are adjustable and may be as high as 0.5 atm. The target is 

typically oriented at 450 to the beam. The ablated species are emitted in a plume with 

maximum emission normal to the target surface. The substrate is normally heated to 

enable epitaxial film growth. Deposition rates up to 10 nm/s are obtainable in high 

quality films. The deposition rate depends on the pulse repetition rate, which depends 

simply on what is commercially available; say around 10 Hz. Higher repetition rates 

allow faster growth rates. Figure 2.1 shows gives a typical laser ablation setup, which 

is generally used for depositing thin films using a single target holder, or multiple 

target holders.  
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Figure 2.1 Schematic representation of a PLD setup for laser ablation  

 Each pulse of laser energy causes localized melting and evaporation, and 

leaves a crater in the target. The crater contains resolidified melt with various phases, 

so the target is moved between pulses to preserve stoichiometry in the deposited film. 

If the target is made of porous material, particulates are ablated and deposited on the 

substrate along with atoms, molecules and radicals. The deposition of particulates is 

alleviated by the use of dense targets.  

(d) Chemical Vapor Deposition: All the techniques discussed above were 

physical vapor deposition methods (PVD). The draw back of PVD method is that 

deposition rates are generally slow, and vacuum apparatus is required. Often only 

small areas of film can be deposited with uniform composition. High quality thin 

films have been made by MOCVD (metal-organic chemical vapor deposition). It is 
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comparatively simple to deposit large-area thin films rapidly by this technique. The 

technique depends on the production of volatile metal-organic precursors as sources 

of the metal elements. Properties required in a suitable precursor include 

(i) Sufficiently high vapor pressure for vapor transport; 

(ii)  Stability at operating temperatures without losing volatility; and 

(iii)  Stability at room temperatures for long-term storage. 

 The chief difficulty experienced in MOCVD is the identification of suitably 

volatile metal-organics, particularly for Ba. Also some contamination from the 

organics is inevitable and does degrade the properties of the films when compared 

with those made by physical vapor techniques.  

(e) Metal-organic Solution Deposition: One of the most successful condensed 

states ex situ deposition techniques is the metal-organic solution deposition method. A 

solution of metal-organics is coated onto a spinning substrate, which is subsequently 

heat-treated to form a superconducting film. For example, 2-ethylhexanoates of Bi, Ca 

and Cu and strontium cyclohexanoate are used for forming Bi-2212. Films can be 

formed on various substrates including stainless steel with a buffer layer, e.g., of 

HfO2, Ag and single crystal MgO. After deposition the films are annealed in air at 

8450C. The current densities of these films are several orders of magnitude lower than 

those measured for thin films deposited by PVD, supposedly due to the residual 

carbon contamination.  

2.2 STRUCTRUAL STUDIES 

 For the understanding of superconductivity in cuprate superconductors, it is 

necessary to understand the crystal chemistry, which actually determines the property 
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and structure of the superconductors. The crystal structures are derived mainly from 

X-ray powder diffraction patterns, but they can also be derived from single crystals.  

Neutron diffraction has been the most powerful method for structural determination 

because the scattering cross-sections are significant for all of the atoms occurring in 

the high Tc materials whereas in X-ray and electron diffraction, the cross-sections are 

strongly weighted towards the heavier atoms. The cross-sections depend on the 

wavelengths of radiation used. The Table 2.2 briefly gives the idea of the 

discrepancies in the values of mass absorption coefficients for various elements.  

 A second reason for the comparative usefulness of neutron diffraction in 

structural analysis is the smaller absorption coefficients than corresponding 

coefficients in X-ray and electron diffraction. In the following sections, a review of 

the present day techniques widely used for structural studies is discussed. 

2.2.1 X-ray diffraction: The easy availability and accessibility of X-ray diffraction 

makes it a useful technique not only for phase identification, but also for initial 

identification of lattice structure and for modeling of the basic unit cell.  

 The wavelengths of the X-rays are of the order of the inter-atomic distances in 

the crystal, which are of the orders of few Angstroms. Hence, the X-rays scatter very 

well from the array of atoms from a crystalline structure. The property of crystals, i.e., 

the repeated arrangement of atoms appears as a grating to the imping X-rays, hence 

the outgoing X-rays forms a diffraction pattern. Just as in optical diffraction pattern, 

X-rays interfere destructively except at points where special conditions are met. 
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Table 2.2  Mass absorption coefficients (µ / ρ) and Linear absorption coefficients  
  (µ) for various elements and systems respectively 

 µ / ρ  µ 
 

Element Neutrons 
(1.08 Å) 

X-rays 
(1.54 Å) 

Compound Neutrons 
(1.08 Å) 

X-rays 
(1.54 Å) 

 
O 10-5 11.5 La1.85Ba0.15CuO4 0.13 1717 

 
Cu 2.1 X 10-2 52.9 La1.85Sr0.15CuO4 0.13 1642 

 
Sr 5.0 X 10-3 125 YBa2Cu3O7 0.05 1091 

 
Y 6.0 X 10-3 134 YBa2Cu3O6 0.05 1074 

 
Ba 2.6 X 10-3 330 Bi2Sr2Ca2Cu3O10 0.033 932 

 
La 2.3 X 10-2 341 Bi2Sr2CaCu2O8 0.027 1024 

 
Pb 3.0 X 10-4 232 

 
   

Bi 6.0 X 10-5 240 
 

   

Ca 3.7 X 10-3 162 
 

   

 
 If we consider a crystal as a series of planes with their inter-atomic distance 

being‘d’. Then the incoming X-ray, with wavelength, �� ZLOO XQGHUJR VFDWWHULQJ DQG

interfere constructively only with that from adjacent planes at special angles ‘θ’, that 

meet the Bragg condition,  

n.λ = 2dsinθ 

 A crystal contains parallel planes along three different axes, so the actual 

measured values of θ vary with the alignment between the crystal planes and the 

incoming beam of X-rays. A plane perpendicular to the crystallographic a-axis is 

called the [100] plane; one perpendicular to b-axis is called [010] plane, and so on. 
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For complicated crystals like, the triple perovskite HTSC s, there are many choices of 

planes that can contribute to the X-ray diffraction pattern.   

 With the knowledge of chemical composition of a solid and of ionic sizes, 

structural models can be built and used in refinement procedures with either X-ray or 

neutron diffraction spectra. One of the building blocks commonly used in the 

structural models is the CaTiO3 (or ABO3) cubic perovskite structure. The building 

block is similar to the cube centered on Ba in Y-123, with charges being balanced by 

adjacent layers. Other building blocks used in structural models are K2NiF4 layered 

perovskite structure (i.e., the structure of La2CuO4) and Bi4Ti3O12 Auruvillius 

structure.  

2.2.2 SEM & EDAX: Scanning Electron Microscope (SEM) is one of the important 

tools to identify the micro structural properties of the HTSC compounds since like 

many other physical properties, superconductivity in HTSC ceramics depends on 

microstructures. SEM is the workhorse of micro-structural characterization. This is 

because of the variety of signals that can be recorded, each providing its own peculiar 

information, including elemental analysis by energy-dispersive x-ray spectroscopy 

(EDAX). The two signals most commonly used in SEM imagining are the secondary 

electron signal and the backscattered signal. These two signals provide different 

information corresponding to the different physical processes involved.  

 From the SEM studies, structural information can be obtained from 

microscopic areas of specimen with resolution approaching 0.1 mm. This is partly 

because electron scattering cross-section is large compared to those of X-rays and 

neutrons. Heavy elements scatter electrons more than the lighter ones. Absorption 

coefficients are also generally high. In consequence, the specimens must be thinned 
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and viewed in transmission. Diffraction angles are small owing to the short 

wavelengths of high-energy electrons typically λ ~ 10-12 m in an electron microscope.  

2.2.3 Neutron Diffraction: Neutron scattering cross-sections are generally so small 

that large specimens are required for structural analysis, i.e., much larger than the 

single crystals of high Tc materials that can be homogeneously grown. Diffraction 

patterns are therefore obtained from compressed powders or sintered pellets. The 

powder diffraction patterns are used to identify the Bravais lattice, and from this an 

informed guess is made concerning the detailed crystal structure. In the case of 

cuprate superconductors the information required is, the conditions required for 

perovskite (ABO3) and layered perovskite (K2NiF4 structure) building blocks for the 

lattice. Structural refinement proceeds by fitting calculated structure factors for 

diffraction from structural models to diffraction data, and by adjusting atomic sites 

and occupancies. During the structural refinement, instrumental and theoretical line 

widths and shapes are taken considered. Either a neutron beam with a wide energy 

spread is directed onto a specimen and diffracted beams recorded at a single scattering 

angle as a function of wavelength or the beam is first monochromated and the 

diffracted beams recorded as a function of scattering angle.  

 Neutron scattering is a powerful tool for investigating other features of high Tc 

systems. The magnetic moment of the neutron can be used to probe spin states in the 

compounds. Neutrons are also powerful tool for examining phonon densities of states. 

It has been found, in the case of Y-123, that significant changes occur when 

YBa2Cu3O6 transforms to YBa2Cu3O7.   
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2.2.4 Atomic Force Microscopy: As compared to SEM, Atomic Force Microscopy 

(AFM) provides extraordinary topographic contrast, direct height measurement and 

unobscured views of surface features without any coating [13]. AFM is being used to 

solve processing and materials problems in a wide range of technologies affecting the 

electronics, telecommunications, biological, chemical, automotive, aerospace, and 

energy industries. AFM can be used to investigate thin and thick film coatings, 

ceramics, composites, glasses, synthetic and biological membranes, metals, polymers 

and semiconductors. AFM is also used to study the phenomena such as abrasion, 

adhesion, cleaning, corrosion, etching, friction, lubrication, plating, and polishing. By 

using AFM one can not only image the surface in atomic resolution but also measure 

the force at nano-newton scale. Like all other scanning probe microscopes, the AFM 

utilizes a sharp probe moving over the surface of a sample in a raster scan. In the case 

of the AFM, the probe is a tip on the end of a cantilever, which bends in response to 

the force between the tip and the sample.  AFMs can achieve a resolution of 10 pm, 

and can image samples in air and under liquids.  

2.3 TRANSPORT MEASUREMENTS 

 In the case of high temperature superconductors, no consistent theoretical 

framework exists to the present day, which can describe all the typical transport 

properties. In the concentration range corresponding to improved superconducting 

properties, where normal transport properties look somewhat metallic, most of the 

discussion is usually in the framework of semi-classical approximation, which is 

described by the Boltzmann transport equation: 

( )collisiontkr ffFf ∆=∆+∆
!

1ν  
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 The above equation describes, the modifications introduced by the external 

driving forces (F) and by single electron scattering on the local distribution of carriers 

(f(r, k)) as a function of the real (r) and momentum space (k). In this model, it is 

assumed that the steady state (f) that corresponds to the state of the system after a 

response to external forces does not depart very far from the equilibrium state.  

 However, in the regime of low conduction, the transport properties are often 

described in terms of hopping conduction. The resulting model, principally based on 

the work of Hubbard, Mott and Anderson, describes the situation where either 

disorder or electron-electron correlation becomes important and may even result in 

localization of charge carriers.  

2.3.1 R-T measurements: The dc resistivity of a sample is measured by the voltage 

drop across a specimen when a current of known magnitude, which is typically 

around 1 mA, passes. The terminals used for measuring the voltage pass little current 

when connected to a high impedance voltmeter. These terminals are distinct from 

those used for passing the main part of the current through the specimen, where 

voltage drops in both leads and contacts are significant. The Figure 2.2 shows a 

schematic diagram of four probes connected to a specimen whose temperature is 

measured by a temperature sensor in thermal contact with the specimen [14].  

 A similar four-probe apparatus can be used for elementary measurements of Jc, 

defined according to the sensitivity of the apparatus or to a selected criterion. In bulk 

material, the specimen, e.g., Y-123 is mounted on a thermally compatible, insulating 

substrate (say quartz film) for mechanical strength. The contacts must have low 

resistance to reduce heating effects. The heating effect of the high currents at contacts 

and neck is further reduced by use of a pulsed current source. Starting with a low 



Synthesis and Experimental Characterizations… 

 

II - 27 

 
 

current, this is increased until the voltage drop, observed with a rapid voltage monitor, 

such as an oscilloscope, reaches a defined level corresponding to Ec.  

           

           

           

           

           

           

           

        

Figure 2.2 Schematic diagram of a four-probe setup  

 A C  resistivity can be measured by a similar four-probe arrangement, but 

using an a.c. current source and lock-in amplifier for voltage measurement. Signal 

noise is reduced by the use of a preamplifier close to the specimen. Alternatively, if a 

specimen is biased with voltage V and microwave ac frequencies ν applied across a 

junction, the ac Josephson effect is observed.  

2.3.2 Specific Heat studies: The specific heat measurements provide useful 

information about the electronic and vibrational excitations present in the sample 

both, in the normal state above Tc and superconducting state below Tc. Specific heat 

measurements are usually performed with standard heat pulse technique using an 

adiabatic calorimeter (relaxation method) [15, 16].  

2.3.3 Thermo power measurements: The thermo electric power (TEP) studies offer 

a sensitive probe to understand the nature of charge carriers participating in the 
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transport mechanism of high Tc superconductors. The sign of TEP gives an indication 

of the nature of charge carriers in the sample. For HTSC samples this sign is generally 

positive, indicating that the charge carriers in HTSC are holes.  

2.3.4 Thermal conductivity: For understanding theoretically, the electronic and 

vibrational properties of the HTSC materials, it necessary to understand the thermal 

conductivity of these materials. The thermal conductivity of the superconductors 

provides information about how efficiently and by what means does the heat flows in 

these superconductors. The magnitude and temperature dependence of the thermal 

conductivity are parameters, which have an impact on a broad spectrum of 

superconducting devices. It provides information about the charge carriers and 

phonons and scattering process between them. The traditional galvanometric and 

thermoelectric probes such as the electrical resistivity, the Hall effect and 

thermoelectric power are inoperative in the wide temperature range below Tc. the 

contributions from the electronic Ke and the lattice Kg yields the thermal conductivity 

K as; 

K = K e + Kg 

 While the phonon contribution is always present, the magnitude of the carrier 

contribution depends on the type of solid because it is directly proportional to free 

carrier density and to their mobility.  

2.4 MAGNETIC MEASUREMENTS 

 Magnetic properties of superconductors represent the bulk behavior of the 

sample, while resistivity properties depend on the microscopic nature of the sample. 

Magnetic properties can be measured in either applied a.c. or d.c. fields. 
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2.4.1 a.c. susceptibility: Susceptibility is the ratio of the intensity of magnetization 

(M) to the applied magnetic field (H), given as 

χ = M / H 

while measuring the a.c. susceptibility, the real and imaginary parts of magnetic 

susceptibility can be conveniently measured with a mutual inductance susceptometer 

containing null-balance sense coils. Figure 2.3 is a schematic block diagram showing 

the arrangement of coils and specimen. The primary coil is connected to an a.c. 

current source. Two secondary coils are wound in opposition so that the field induced 

by the primary produces, after compensation adjustment and specimen withdrawal, 

zero potential, V = 0, at a step-up transformer which feeds a lock-in amplifier. When a 

specimen is introduced into one of the secondaries, the phase and voltage of the signal 

received by the lock-in amplifier are fed to a computer, and signals are recorded as a 

function of specimen temperature.  

 

Figure 2.3 Block diagram of susceptibility apparatus showing magnet configuration 
with a.c. current source and detection [17] 
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In order to measure the field dependence of the susceptibility, superconducting coils 

are energized to provide uniform field around the specimen. The magnitude of the off-

balance, induced voltage, V, depends on the rate of change of magnetic flux given by 

|V| = | -dφ /dt | = ζn1νµ0H0ω | χ | 

Where, ζ is a filling factor, n1 is the number of turns in the secondary coil, ν is the 

volume of the sample, H0 is the amplitude of the applied ac magnetic field, and ω is 

the angular frequency. | χ | is the measured susceptibility, which approximates to the 

true susceptibility when the specimen is small and demagnetizing fields can be 

ignored. For a type I superconductor, when B < Bc, χ = -1. The d.c. coil is not 

essential to measure the susceptibility of the sample at low fields because a field is 

applied by the primary coil. The response in the secondary coils is generally out of 

phase with the impulse supplied by the primary coil. The real and imaginary parts of 

the magnetic susceptibility, measured from the voltage induced in the secondary coils 

vary with the applied field strength. The real part, in phase with the current in the 

primary coil, corresponds to a diamagnetic moment, which screens the applied field 

from the specimen core. The imaginary part, out of phase with the current in the 

primary coil, is the part of the response due to energy loss by resistive heating of flux 

motion, eddy current losses, surface losses, etc.  

2.4.2 d.c.susceptibility: D.C. magnetic susceptibility measurements can be used to 

determine the superconducting volume fraction in a given material. In the simplest 

case, the Meissner effect compels the susceptibility of a homogeneous Type I 

superconductor that contains no trapped flux to be –1. In inhomogeneous materials 

the superconducting volume fraction can be a fraction of –1 for several reasons, 
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including insulating second phases, voids, non-superconducting grain boundaries, 

surface flux penetration, inhomogeneities in layered unit cells, etc. Measured 

susceptibility is further increased if magnetic flux is trapped in the specimen.   

2.4.3 d.c.magnetization:  At higher field strengths the magnetization produced in a 

specimen by a d.c. coil can be used to characterize the superconducting material. This 

is commonly by two methods, one by using VSM (vibrating sample magnetometer) 

and SQUID (superconducting quantum interference device). Both the methods 

employ the voltage induced in secondaries by movement of the specimen.  

(a). SQUID: In the SQUID magnetometer, the cooled specimen is drawn slowly 

through two secondary coils, wound in opposite direction. The field induced in the 

coils is amplified by a transformer and the flux change detected by a SQUID device, 

when this device is used as a null field detector with a feedback circuit, it is sensitive 

to individual quanta of magnetic flux.  

(b). Vibrating Specimen magnetometer: The specimen is typically immersed in a 

magnetic field and attached to a rigid rod which is made to vibrate by a piezoelectric 

crystal or by an ac driven electromagnet. A lock-in amplifier connected to a detection 

circuit detects the a.c. field induced in secondary coils. The response is rapid so that 

the magnetization of the specimen can be measured in a continuously swept field. 

2.4.2 Hall effect: The basic physical principle underlying the Hall effect is the 

Lorentz force. When an electron moves along a direction perpendicular to an applied 

magnetic field, it experiences a force acting normal to both directions and moves in 

response to this force and the force effected by the internal electric field. Assume that 

a constant current I flow along the x-axis from left to right in the presence of a          

z-directed magnetic field. Electrons subject to the Lorentz force initially drift away 



Synthesis and Experimental Characterizations… 

 

II - 32 

 
 

from the current line toward the negative y-axis, resulting in an excess surface 

electrical charge on the side of the sample. This charge results in the Hall voltage, a 

potential drop across the two sides of the sample. (Note that the force on holes is 

toward the same side because of their opposite velocity and positive charge.) This 

transverse voltage is the Hall voltage VH and its magnitude is equal to IB/qnd, where I 

is the current, B is the magnetic field, d is the sample thickness, and q                         

(1.602 x 10-19 C) is the elementary charge. In some cases, it is convenient to use layer 

or sheet density (ns = nd) instead of bulk density. One then obtains the equation 

ns = I.B/q. |VH| 

Thus, by measuring the Hall voltage VH and from the known values of B, q, 

and I one can determine the sheet density ns of charge carriers in superconductors.  

2.5 OXYGEN CONTENT DETERMINATION 

The properties of the mixed oxide systems are very sensitive to the value of 

oxygen present in them. Since, oxygen is important for both structure and properties 

of the high temperature superconductors, it is imperative to have a reliable oxygen 

determination method, to ensure that the structure – property correlation exists and 

can be explained accordingly. In the following section an attempt is made to highlight 

the few of the present day reliable oxygen content determination techniques.  

2.5.1 Iodometry: In volumetric analysis, a standard solution of the reagent is put in a 

measuring vessel known as burette and is then gradually added to the solution to be 

analyzed (in a titration flask). The process is continued until it is found by a suitable 
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method that the amount of reagent, which has been added, is equivalent to the 

substance being determined. This operation is called Titration and, therefore, 

volumetric analysis is also called titrimetric analysis or titrimetry.   

 Therefore, one of the solutions is taken in a burette and the second is taken in 

the titration flask. The exact point at which a chemical reaction is completed during 

the titration is called the end point or equivalent point. In order to determine the 

completion of the reaction (or end point) a substance is used known as indicator . 

These show changes in color just at the stage when the reaction is complete. 

 The reactions involved in titrimetric analysis may be divided into two main 

types: 

(i) The reactions in which no changes in oxidation state occur. These simply 

undergo combination of ions. 

(ii)  The reactions in which there is change in Oxidation State or other wise 

expressed as transfer of electrons. 

For the purpose of convenience, the above two types of reactions are divided 

 into the following four types: 

(a) Acid-base titration (Acidimetry and alkalimetry): These involve titrations of 

free acids or those formed from salts of weak bases by hydrolysis with a 

standard base (alkalimetry) or a titration of a free base or those formed from 

salts of weak acids by hydrolysis with a standard acid (Acidimetry). We know 

that an acid-solution has pH value less than 7 while a basic solution has a pH 

value greater than 7. Therefore, when an acidic solution is reacted a basic 

solution, its pH changes. These pH changes can be measured by different 
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methods. Generally volumetric titrations involving acid-base reactions are 

carried out by the following methods: 

1. Visual method, 

2. Electrical conductivity method, 

3. E.m.f. titrations. 

(b) Oxidation reduction (or redox) titrations: Oxidation involves loss of electrons 

while reduction involves gain of electrons. In these titrations an oxidizing 

agent (accepting electrons) is titrated against a reducing agent (losing 

electron). Such types of reactions in which oxidation and reduction occur at 

the same time are called Redox reaction and titrations involving redox 

reactions are called redox titration. 

Our interest is in the study of reactions involving iodine. The redox reactions 

involving iodine are of two types: 

Iodimetry: The titrations involving the direct use of iodine solution are called 

iodimetry. The iodine solution is used to estimate reducing agents such as Sodium 

thiosulphate, sodium sulphite, arsenites, antimonates, etc. 

Iodometry: The titrations involving the titration of iodine, which is liberated in a 

chemical reaction [18, 19]. In iodometry, a solution of I2 in KI is used as  

KI + I2 ÙKI3  

In this reaction iodine is liberated from KI by strong oxidizing agents such as KMnO4, 

K2Cr2O7, H2O2 and Cu2+ ions and then liberated iodine is estimated by titration 

against standard sodium thiosulphate solution. For example, to estimate the strength 

the KMnO4, the solution of known volume of KMnO4 is taken in the titration flask. 
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About same volume of dil. H2SO4 is added to the solution and then 10% solution of 

KI is added. The liberated iodine is titrated against standard solution of Na2S2O3.  

 In iodometry and iodimetry, starch is used as an indicator, which gives intense 

blue color at the end point. This intense blue color is due to the formation of a 

complex I2 with the starch in the presence of iodide ions. 

2.5.2 T.G.A and D.T.A: Thermo Gravimetric Analysis (T.G.A) is another method 

for the determination of oxygen content in the oxide superconductors [20]. This 

method gives the amount of oxygen in the starting material, from the weight loss 

observed in the compound as a function of increasing temperature, under the reducing 

atmosphere (usually N2 or Ar).  

 Differential Thermal Analysis (D.T.A) gives the information about the type 

of reaction (endothermic or exothermic reaction) taking place in the sample as a 

function of temperature. This technique, along with the analysis of the XRD date for 

phase formations, gives a clear understanding of the chemistry and structure of high 

Tc superconducting oxides. D.T.A relies on the fact that the heat is evolved or 

absorbed during a phase change. By observing temperature changes due to this heat 

transfer, one can summarize that a phase change is taking place.  

2.5.3  E.R.D.A:  Elastic Recoil Detection Analysis (E.R.D.A) is a technique 

specially suited for the depth profiling of lighter elements overcoming the limitations 

of the RBS (Rutherford Back Scattering) technique [21]. RBS provides depth 

profiling, using alpha particles of energy of few MeV’s, on surface of few microns. 

RBS channeling measurement allow the quantification of crystallization, dopant atom 

location, determination of strain in superlattices, etc. RBS has poor sensitivity to the 

detection of light elements such as, C, N and O in the presence of substrate (used in 
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thin film depositions) due to low Rutherford scattering cross-section, which is 

proportional to product of atomic numbers of the projectile and scatter. The 

disadvantages of RBS are overcome by ERDA, first demonstrated by L’Ecuyer et al, 

in 1976 [22].  

 Basically ERDA is similar to RBS technique, but instead of scattered 

projectile detection at back angle, the recoils are detected (resulting from elastic 

collision of the incident particle and the atoms in the sample) in forward direction. 

ERDA technique is further strengthened in terms of its capabilities by the use of 

particle identifying techniques. Some salient features of ERDA with the use of heavy 

ions are: 

(i) Large recoil cross sections with heavy ions, hence good sensitivity, 

(ii)  Almost same recoil cross section for a wide mass range of target atoms, 

(iii)  Elemental depth profiling of a wide range of elements from hydrogen to 

rare earth elements using particle-identifying techniques.  

2.5.4 Neutron Diffraction: Neutron diffraction technique is one of the most 

prominent and reliable technique for the determination of the structure as well as the 

composition of the structure. Unlike in the case of X-rays, the scattering cross-section 

of neutron is very less. The scattering length of neutron is independent of atomic 

number (or the number of electrons surrounding the nucleus), but instead depends on 

the nuclear energy levels. Hence, the sensitivity of neutrons is same for all ions, 

except for neutron absorbers or killers. This enables, during analysis of the neutron 

diffraction data, to estimate and calculate the exact site occupancies of all constituent 

atoms, including the most important light ion in the case of mixed oxide 

superconductors, the oxygen. During the Rietveld refinement of the neutron data, the 
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oxygen content can be varied to see the marked changes in the diffraction pattern. The 

difference in X-ray diffraction and Neutron diffraction also lies in their sensitivities to 

light and heavy ions. The neutron diffraction patterns also indicate the peaks observed 

due to oxygen, which cannot be seen in the X-ray diffraction patterns.  
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3.1 SYNTHESIS 

During the course of the present work, La based mixed oxide superconductors 

of the type La2Ca1Ba2Cu5Oz (La-2125) were studied in two forms, bulk and thin film. 

It was for the first time that an attempt was made to synthesize superconducting thin 

films of La-2125 composition. Owing to the stochiometric and property differences 

with the pristine La-123 type of superconductors, it is interesting to synthesize the    

La-2125 superconducting thin films. From the application point of view, a good film 

is that which possess all the features of the bulk sample. And for synthesizing a good 

film the first and foremost requirement is a very good quality bulk target, which can 

be easily reproducible and which possesses stable properties.  

3.1.1 Synthesis of bulk samples: All the bulk samples were synthesized by the 

standard solid-state reaction method following the route shown in the flowchart 

(Figure 3.1). For good quality of samples, high purity chemicals were taken in 

stochiometric quantities and ground thoroughly using an agate and mortar, to obtain a 

homogeneous mixture. As described in section 2.1, a homogeneous mixture increases 

the rate of peritectic reaction, thus giving a single-phase end product. The reaction 

temperature is chosen after considering the solid-solubility limits of all the constituent 

compounds. The first two heating schedules are called the ‘calcination’ cycles. It is 

done to ensure that all the ‘carbon’ is liberated from the mixture in the form of 

‘carbon dioxide’. It is necessary since alkaline carbonates are used. Followed by 

calcination, the mixtures are ground thoroughly to obtain a uniform composition. The 

resultant mixture is then pelletized at 2-3 ton pressure. This ensures densification of 

the samples and uniform heating of the mixture during sintering. 
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Figure 3.1 Flow chart for solid-state reaction method used for synthesis of bulk 

samples 
 

Pelletization also helps in giving shape to the compound, which makes it 

easier to handle them. The sintering of the thus formed pellets confirms the shape 

SYNTHEISIS   ROUTE 

SOLID STATE REACTION METHOD 

STOCHIOMETRIC QUANTITIES

La2O3, Dy2O3, Nd2O3 
Pr6O11

All Powders are 99.99% Pure Aldrich / Fluka / Strem make 

Dry Mixed in Powder form in Agate Mortar

First 
Heating 

930 0C – 940 0C / 24 hrs 
[Powder form Calcination] 

Grinding thoroughly 

Second 
Heating 

930 0C – 940 0C / 24 hrs 
[Powder form Calcination]

Ground, Sieved, Pelletized (2-3 ton pressure, 10mm die)

940 0C – 9500C [Sintering] 

Oxygen Annealing at 500 0C for 24 hrs: Oxygen flow 1bubble/sec 

Cooling in Oxygen @ 1 0C/min up to 100 0C 

Product: Single Phase La-2125 type High Tc Sample 

BaCO3, CaCO3 CuO, MoO3 

Third 
Heating 



 Characterization methods used… 

 

III - 4 

 
 

while it densify the compound, ensuring maximum reaction between the particles, 

since the distance between them gets reduced after pelletizing. The intermittent 

grindings and sintering of the samples are essential to form single-phase high Tc 

compounds.  

3.1.2 Synthesis of thin films: The thin films of the La-2125 type superconductors 

were synthesized, during the course of this work, by using the Pulsed Laser 

Deposition (PLD) technique at PLD Lab, Tata Institute of Fundamental Research, 

Mumbai and also at Department of Physics, University of Pune, Pune.  

 Conceptually and experimentally, PLD is extremely simple, probably the 

simplest among all thin film deposition techniques. The schematic experimental 

arrangement of a PLD setup is shown in Figure 3.2.     

   

     

 

 

 

 

 

 

Figure 3.2 Schematic diagram of a pulsed laser deposition apparatus 
 

As shown in the above figure, it consists of a target holder and a substrate 

holder housed in a vacuum chamber. A high-power laser is used as an external energy 

source to vaporize materials and to deposit thin films. A set of optical components is 

used to focus and raster the laser beam over the target surface. The decoupling of the 

Quartz 
window 

Focusing lens 

Target 

Reactive gas 

Plume 
Substrate 

Vacuum pump 

Laser beam 
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vacuum hardware and the evaporation power source makes this technique so flexible 

that it is easily adaptable to different operational modes without constraints imposed 

by the use of internally powered evaporation sources [1, 2].  

The mechanism that leads to material ablation depends on laser characteristics, 

as well as the object, topological and thermodynamical properties of the target. When 

the laser radiation is absorbed by a solid surface, electromagnetic energy is converted 

first into electronic excitation and then into thermal, chemical and even mechanical 

energy to cause evaporation, ablation, excitation, plasma formation and exfoliation.  

Evaporants form a “plume” consisting of a mixture of energetic species including 

atoms, molecules, electrons, ions, clusters, micron-sized solid particulates and molten 

globules. The collisional mean free path inside the dense plume is very short. As a 

result, immediately after the laser irradiation, the plume rapidly expands into the 

vacuum from the target surface to form a nozzle jet (as shown in Figure 3.2), with 

hydrodynamic flow characteristics. This process attributes to many advantages as well 

as disadvantages. The advantages are flexibility, fast response, energetic evaporants 

and congruent evaporation. The disadvantages are the presence of micron-sized 

particulates and the narrow forward angular distribution that makes large-area scale-

up a very difficult task [3, 4].  

PLD is so versatile that with the choice of an appropriate laser, it can be used 

to grow thin films of any kind of material. According to the basic relationship in 

electromagnetism 

E = (2φ/cε
0
n)1/2 

where E = electric field of electromagnetic wave in V/cm 
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 φ = power density in W/cm2 

 ε
0 = dielectric constant in vacuum = 8.854 * 10-12 F/m 

 c = velocity of light 

Consider a material with n = 1.5 and a peak radiation power coupled into the material 

to be 5 X 108 W/cm2. The corresponding electric field inside the materials will be          

5 X 105 V/cm, sufficiently high to cause dielectric breakdown. Thus, any material, 

that absorbs laser radiation of this power level, will be transformed to form plasma. In 

other words, PLD can be used to vaporize and to deposit thin films of any material if 

the absorbed laser power density is high enough [5, 6].   

 The use of short laser pulses offers other advantages, such as congruent 

evaporation. The criterion for this condition requires the heated volume, characterized 

by the thermal diffusion length during the laser-target interaction  

L = 2 (D.τ) ½, 

where D is the thermal diffusivity and τ is the laser-target interaction time (i.e., pulse 

duration), to be smaller or equal to the thickness of the ablated layer per pulse. 

Therefore, the use of short laser pulses for ablation is more likely to achieve 

congruent ablation that allows PLD to preserve stoichiometry during mass transfer 

from the target to the thin film. Because of the lack of active electrical elements, such 

as filaments and discharge electrodes, any kind of reactive gas could be used. Another 

advantage of undertaking PLD in a reactive environment is the enhanced gas phase 

reactivity due to the hyperthermal kinetic energy (1 – 20 eV) and the electronic 

excitation energy of the laser-ablated species.  
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LASER used in the present work: Generally, for the purpose of thin film deposition, 

the useful laser wavelength used for PLD lies in the range of 200 nm – 400 nm. Most 

materials used for deposition work exhibits strong absorption in this spectral region. 

Absorption coefficients tend to increase as one move to the short wavelength end of 

this range and the penetration depths into the target materials are correspondingly 

reduced. This is a favorable situation because thinner layers of the target surface are 

ablated as one move closer to the 200 nm mark. Most of the thin film work has been 

centered on the use of excimer lasers and Nd3+: YAG lasers as the deposition sources. 

The Nd3+: YAG lasers are solid-state systems in which the Neodymium (Nd) ions 

serve as the active medium and are present as impurities in the YAG (Yttrium 

Aluminium Garnet) host. It has a fundamental laser wavelength at 1064 nm. Using a 

nonlinear crystal, the 1064 nm output can be frequency doubled with about 50% 

power conversion efficiency yielding an output at 532 nm. In order to produce light in 

the UV, the 532 nm output is mixed with the residual 1064 nm light or frequency 

doubled again. The resulting outputs at 355 nm or 266 nm are produced with the 

respective efficiencies of ~ 20 % and ~ 15 % relative to the fundamental.  

 The excimer is a gas laser system. Unlike Nd3+: YAG lasers, excimer lasers 

emit their radiation directly in the UV. High outputs delivering in excess of 1 J/pulse 

are commercially available. These systems can also achieve pulse repetition rates up 

to several hundred hertz with energies near 500 mJ/pulse. Consequently, the excimer 

is generally the widely used laser system for PLD work. The Table 3.1 gives a list of 

excimer wavelengths that are available in the commercial laser systems.  

Of all the excimer lasers shown above, KrF and XeCl have been extensively 

used for PLD, with KrF being the highest gain system for electrically charged pumped 
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exicmer lasers and is the popular choice among the PLD community. With these 

benefits on hand, the present work has been carried out using the KrF excimer laser 

system at both Tata Institute of Fundamental Research and University of Pune.  

Table 3.1 Excimer Laser operating wavelengths 

Excimer laser system Wavelength (nm) 

F2 157 

ArF 193 

KrCl 222 

KrF 248 

XeCl 308 

XeF 351 

 

Basics of Excimer laser: The light output from an excimer laser is derived from a 

molecular gain medium in which the lasing action takes place between a bound upper 

electronic state and a repulsive or weakly bound ground electronic state. Because the 

ground state is repulsive, the excimer molecule can be dissociated rapidly (on the 

order of a vibrational period ~ 10-13 s) as it emits a photon during transition from 

upper state to ground state. The high ratio of upper state lifetime to lower state 

lifetime makes the excimer the perfect laser medium because population inversion 

and therefore high gain are so easily achieved [7].  

  Some of the factors, which affect the quality of the thin films and their 

superconducting properties, are 

(a) The quality of the bulk target, 
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(b)  Deposition conditions, viz. target to substrate distance, lens distance, laser 

density, oxygen partial pressure, substrate temperature etc., and 

(c) The type of substrate being used 

It is observed that high density and highly homogeneous targets yield the best 

films. However, even the best targets must be resurfaced (sanded flat) at regular 

intervals in order to perform optimally. In order to maintain uniform target erosion 

and consumption, the target is rotated during deposition.  

As with most thin film deposition techniques, the manner in which the 

substrate is held and its location and orientation relative to the target are important 

parameters in a PLD system. Frequently, the substrate must be heated to produce 

good adhesion and/or epitaxy. For many of the materials commonly deposited by 

PLD, substrate temperatures in excess of 800 0C must be maintained with uniformities 

better than ± 0.5%. The formation of epitaxial complex metal oxide films of high 

temperature superconductor like Y-123 or La-2125 requires oxygen ambients and 

high temperatures.  

Since the evaporants are ejected as a highly forward-directed plume of 

material along the target normal, the substrate must be held directly opposite the 

target. The optimal target – to – substrate distance, Dts, depends on several factors, 

most significant of which is the energy delivered to the target. Higher beam energies 

permit larger Dts s to be used. Also, the deposition rate can be controlled by treating 

Dts as a variable.   

During the deposition of thin films of La1.5Dy0.5Ca1Ba2Cu5Oz (La-Dy-2125) 

bulk target, several of the above parameters were varied in order to achieve optimum 

deposition parameters. The optimum parameters give thin films with repetition of the 
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properties. The most critical parameters for the thin film deposition for La-Dy-2125 

films have been the oxygen partial pressure, which was kept between                           

150 mTorr – 500 mTorr. The target to substrate distance, Dts, was also varied from         

40 mm to 51 mm. Another important parameter for the deposition is the substrate 

temperature. The substrate temperature was also raised from 7000C to 8250C in order 

to attain uniform epitaxial thin films. The ablation was done at different laser 

energies. The range was between 1.316 J/cm2 – 2 J/cm2.  

3.2 STRUCTURAL PROPERTIES 

3.2.1 X-ray Diffraction: Until 1912, mineralogists and crystallographers 

accumulated most of the knowledge about the crystals over the years, by the 

measurement of interfacial angles, chemical analysis, and determination of physical 

properties. There was little knowledge of interior structure, it was indicated that the 

X-rays might be electromagnetic waves about 1-2 Å in wavelength. In addition, the 

phenomenon of diffraction was well understood, and it was known that diffraction 

occurred whenever wave motion encountered a set of regularly spaced scattering 

objects, provided that the wavelength of the wave motion was of the same order of 

magnitude as the repeat distance between the scattering centers. The German physicist 

von Laue was the first person to carryout diffraction experiment using X-rays in 1912. 

The two English physicists W. H. Bragg and W. L. Bragg analyzed the Laue 

experiment and were able to express the necessary conditions for diffraction in a 

mathematical form. They also solved the crystal structures of NaCl, KCl, KBr and KI, 

all of which have the NaCl structure, and were the first complete crystal-structure 

determined using the X-ray diffraction as a characterization tool [8].   
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 Diffraction takes place whenever the Bragg law,  

λ = 2d Sinθ 

is satisfied. This equation puts very stringent conditions on ‘λ’ and ‘θ’ for any given 

FU\VWDO� ,Q RUGHU WR VDWLVI\ WKH %UDJJ ODZ HLWKHU � RU � FDQ EH YDULHG� DQG WKLV LV GRQH LQ

different diffraction methods as 

 λ θ 

Laue method Variable Fixed 

Rotating-crystal method Fixed Variable (in part) 

Powder method Fixed Variable 

  

The positions of the atoms in the unit cell affect the intensities but not the 

directions of the diffracted beams. The intensity of a diffracted beam is changed by 

any change in atomic positions, conversely the atomic positions can be determined by 

the observations of diffracted intensities. It is interesting to understand the complex 

problem of relation between the atomic position and diffracted intensity.  

The XRD patterns of all the samples studied during the course of present work 

were recorded at TIFR (Mumbai) using JEOL and SIETRONICS X-ray 

diffractometers using Cu-Kα radiation of wavelength 1.5418 Å, in the 2θ range of         

200 – 800. All the samples were in polycrystalline powder form.  

3.2.2 Neutron Diffraction: The main source of obtaining the neutron beam is the 

nuclear reactor. The neutron diffraction work in the present work has been carried out 

at the Powder diffractometer (TT-1015) of ‘Dhruva Reactor’ at BARC, India using 

neutron beam of wavelength 1.094 Å.   
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In principle the diffraction from X-rays and neutrons are same, except for 

some differences such as wavelength, the penetration powers, the scattering factors of 

atoms for neutrons and X-rays. The information obtained from X-ray diffraction and 

neutron diffraction varies a little due to these differences. The analysis of neutron 

diffraction data can be taken as complimentary to the one obtained from X-ray 

diffraction. 

The neutrons in a beam has kinetic energies extending over a considerable 

range, but a ‘monochromatic’ beam, i.e., a beam composed of neutrons with a single 

energy, can be obtained by diffraction from a single crystal and this diffracted beam 

can be used in diffraction experiments [9]. If E is the kinetic energy of the neutrons, 

then 

E = ½ mv2   

which can be written as; 

E = P2/2m 

where, m = mass of the neutrons (1.68 X 10-27 kg), v = velocity of the neutron,           

P = momentum of the neutrons.  The wavelength of these neutrons can be calculated 

as; 

λ = h/P 

or 

λ = h / √(2mE) 

The neutrons issuing from a reactor have their kinetic energies distributed in 

much the same way as those of gas molecules in thermal equilibrium; i.e., they follow 

the Maxwell distribution law. The largest fraction of these so-called “thermal 
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neutrons” therefore has the kinetic energy equal to kT, where k is Boltzmann’s 

constant and T the absolute temperature. If this fraction is selected by the 

monochromatic crystal, then E = kT can be taken, and thus, 

λ = h / √(2mkT) 

T is of the order of 300 0 to 400 0K, which means that λ is about 1 or 2 Å. 

Thus, the monochromatic neutrons are taken out of the reactor, and used for 

diffraction on samples (polycrystalline samples, in the present case). The samples 

were taken in the form of powders, filled in Vanadium can with aluminium cap. 

Vanadium being transparent to neutrons, will not contribute to the diffracted patterns. 

The arrangement of the sample is made in such a way that only the Vanadium can is 

exposed to the impinging neutron beam and the diffracted neutron beam is recorded 

by the position sensitive detector (PSD). The schematic representation of the typical 

neutron diffraction experiment setup is shown in the Figures 3.3 (a) and (b). The 

planes in the ‘polycrystalline sample’ act as grating to the neutron beams, and diffract 

them. The diffracted neutrons are collected by the PSD, which is filled with helium 

gas. For every neutron falling on the PSD, the following reaction takes place, and 

eventually, the intensity is observed.  

1n
0
 + 3He

2
 Æ 3T

1
 + 1p

1
 

One incoming neutron interacts with the molecule of Helium gas, and breaks it 

into one tritium and one proton. Protons are charged particles, which ionizes the 

helium gas thus producing ions. These ions are recorded, as pulses by the “cathode – 

anode setup” kept under high potential. The whole cathode length is distributed or 

sliced into 1024 channels in the Dhruva reactor setup. The counts (pulses i.e., the 
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number of ions falling on the cathode) at each channel are recorded. The multi-

channel analyzer (MCA) records the data from each channel and using a discriminator 

separates out the neutron pulses from the background pulses (which occur due to 

gamma ray etc,). The data from MCA is fed into the computer from where the 

intensity vs. channel spectrum can be analyzed and recorded. Using appropriate 

calibration constants, the channels are converted into corresponding angles.  

 

Figure 3.3 (a) Experimental Neutron diffraction experiment setup  

 

Figure 3.3 (b) Arrangement of sample at the detector angle in front of the PSD 
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Figure 3.4 shows the difference in the scattering amplitudes of X-rays and 

neutrons for different atoms [10].  
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Figure 3.4 The irregular variation of neutron scattering amplitude (b) with atomic 
number Z for some selected elements. For comparison the regular 
increase for X-ray is shown 

 
The main differences between the X-rays and neutrons, in terms of their usage 

for the purpose of diffraction for structural studies, can be summarized as: 

(a) A neutron beam is highly penetrating. An iron plate, 1 cm thick, is opaque to 

electrons, virtually opaque to 1.5 Å X-rays, but transmits 35% of 1.5 Å 

neutrons. 

(b) The intensity of neutron scattering varies quite irregularly with the atomic 

number Z of the scattering atom. Elements with almost the same values of Z 

may have quite different neutron-scattering powers, and elements with widely 

separated values of Z may scatter neutrons equally well. Furthermore, some 
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light elements, such as carbon, scatter neutron more intensely than some heavy 

elements, such as tungsten. Hence, it can be stated that structure analyses can 

be carried out with neutron diffraction that are impossible, or possible only 

with great difficulty, with X-ray or electron diffraction. Neutrons can also 

distinguish in many cases between elements differing by only one atomic 

number, elements which scatter X-rays with almost equal intensity. 

(c) Neutrons have a small magnetic moment. If the scattering atom also has a net 

magnetic moment, the two interact and modify the total scattering. In 

substances that have an ordered arrangement of atomic moments 

(antiferromagnetic, ferromagnetic, and ferromagnetic) neutron diffraction can 

disclose both the magnitude and direction of the moments. Only neutron 

diffraction can furnish such information, and it has had a major impact on 

studies of magnetic structure.  

(d) Diffuse scattering (in transmission), also occurs with neutrons. Neutron small-

angle scattering has certain advantages over X-rays as a means of studying 

inhomogeneities in materials, particularly because thick specimens, rather than 

thin foils can be examined.  

Structural analysis of the X-ray and Neutron diffraction data: The investigation into 

the structure of an unknown compound involves many stages. First one is the data 

acquisition and secondly the analysis of this data to retrieve the relevant information, 

and finally the proper interpretation of the analyzed data. The powder diffraction of 

the high temperature La-2125 type mixed oxide superconductors has been carried out 

by X-rays and neutrons, in order to ascertain the structure of these types of oxides.  
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Figure 3.5 shows the general approach to the structural analysis using XRD 

data, which has been employed in the present work.  

 

Figure 3.5 Block-diagram for the analysis of XRD data 

The X-ray data has been recorded on the Sietronics and JEOL (Left 

Goniometer) X-ray diffractometers at TIFR, Mumbai using a Cu-Kα radiation of 
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1.5418 Å. The analysis of the X-ray data has been done using various computer 

softwares. The softwares used prominently in the present work are PowderX [11], 

FULLPROF [12], and Powder Cell [13]. In the course of present work, these 

softwares have been used very efficiently to obtain exact unit cell parameters and site 

occupancies of all the polycrystalline samples studied.  

‘PowderX’ – the features of Powder X can be summarized as: 

1. PowderX can read 13 data formats, either from angular-dispersive or energy-

dispersive X-ray diffraction, used by various diffractometers made by Mac 

Science, Philips, Siemens, Rigaku, etc.  It can also write many data formats 

used for ab initio structural solution and Rietveld refinements (EXPO, DBWS, 

GSAS, FULLPROF, RIETAN, etc.)    

2. Display both the previous data and the data after processing so that it is very 

easy to see the effects of the processes during smoothing, background 

subtraction and .2 elimination. 

3. Simple method for parameters input and easy to use interfaces. 

4. VarioXV PHWKRGV IRU GDWD VPRRWKLQJ� .2 elimination and peak search are 

available, so that the user can find the optimum methods for their data set. The 

high-angle side fluctuations is less than 0.5% of the peak intensity using our 

methods for Cu-K.2 elimination, which is much better than conventional 

Rachinger and Ladell methods.  

5. Derivatives and Fourier transforms of the X-ray data can be calculated, plotted 

and saved as data files.  

6. Zero shift and other geometrical aberrations can be easily calculated and 

corrected. 
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7. Any part of the plot can be zoomed with mouse to see the details. 

8. Print the ready-to-publish plots of X-ray diffraction data. 

9. Edit the control file using graphical interfaces for pattern fitting program 

Simpro.   

10. Several other programs, Dhkl (Calculate the diffraction angles and crystal plane 

spaces from the lattice parameters), Lazy (generating the simulated powder x-

ray diffraction patterns), Treor90 (Index) and Eracel have been included in this 

system with user-friendly interfaces. 

‘FULLPROF ’ – is the Rietveld refinement program, which can be used for the 

Rietveld refinement of both X-ray and neutron diffraction data. Mainly used for 

Rietveld analysis (structure profile refinement) of neutron (CW, TOF, nuclear and 

magnetic scattering) or X-ray powder diffraction data collected as a function of the 

scattering variable T (2theta or TOF). The program can be also used as a Profile 

Matching tool, without the knowledge of the structure. Single crystal refinements can 

also be performed alone or in combination with powder data. The program FullProf is 

based on the code of the Young & Wiles (DBW) program on the code DBW3.2S 

(Versions 8711 and 8804). The features of FullProf can be highlighted as 

1. Choice of line shape (Gaussian, Lorentzian, modified Lorentzians, pseudo-

Voigt, Pearson-VII or Thompson-Cox-Hastings) for each phase. 

2. Neutron (constant wavelength and TOF) and X-ray (laboratory and        

synchrotron sources) 

3. One or two wavelengths  (K.1 + K.2) 

4. Background refinement  

5. Multi-phase (up to 8 phases) 
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6. Preferred orientation: two functions available  

7. Absorption correction for a cylinder, microabsoprtion for flat samples. 

8. Choice between three wheighting schemes: standard least squares, maximum 

likelihood and unit wheights.  

9. Choice between automatic generation of hkl and/or symmetry operators        

and file given by user. 

10. Magnetic structure refinement (crystallographic and spherical        

representation of the magnetic moments). Two methods: describing the 

magnetic structure in the magnetic unit cell of making use of the propagation 

vectors using the crystallographic cell. This second method is necessary for 

incommensurate magnetic structures. 

11.  Automatic generation of reflections for an incommensurate structure with up 

to 24 propagation vectors. Refinement of propagation vectors in reciprocal 

lattice units.  

12. h, k, l dependence FWHM for strain and size effects  

13. h, k, l dependence of shift and asymmetry for special kind of defects  

14. Profile Matching. The full profile can be fitted without prior knowledge of the 

structure (needs only good starting cell and profile parameters)  

15. Quantitative analysis without need of structure factor calculations.  

16. Chemical (distances) and magnetic (magnetic moments) slack constraints  

17. Resolution function (for pseudo-Voigt peak shape) may be supplied in a file  

18. Structural or magnetic model could be supplied by an external subroutine for 

special purposes (rigid body, TLS, polymers, form factor refinements, small 
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angle scattering of amphifilic crystals, description of incommensurate 

structures in real direct space, etc.)  

19. Single crystal data or integrated intensities can be used as observations (alone 

or in combination with a powder profile) 

20. Neutron (or X-rays) powder patterns can be mixed with integrated      

intensities of X-rays (or neutron) from single crystal or powder data. 

The requirement for using the FULLPROF program is an input file, with the 

description (in proper format) of assumed structure such as space group, atomic 

positions, occupancy, unit cell parameters etc. The program generates a profile of the 

assumed structure (or say model) using the description we have provided. This pattern 

is refined to fit with the observed data. By varying the profile generating parameters 

in the assumed model, a perfect fit with reliable Rietveld profile parameters, is 

obtained. The program has ability to carryout multi-phase refinement and also to 

carryout magnetic structure refinement, in the case of neutron diffraction data of 

magnetic samples.  

“Powder Cell” - The basic idea of the program is the specific use of crystallographic 

know-how for an intuitive generation of structure models. Very often the success of 

the so-called Rietveld programs — e.g. DBWS, LHPM8, EDINP/ALLHKL, GSAS, 

PREP/PROF (RIETVELD), FULLPROF, or RIETAN — depends on the initial 

structure model. Exactly this characterizes the aim of the program. The user shall be 

able to manipulate in an easy way known crystal structures (translation and rotation of 

atoms or molecules; change, delete and insert atoms or molecules, symmetry 

reduction etc.) or to create a new in a relative short time only by the use of 
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crystallographic and crystal chemical knowledge. On this way Powder Cell tries to 

support the structure determination.  

The criterion for the quality of the created or modified model is the calculated powder 

pattern. That means that one of the most important requirements is an excellent X-ray 

or neutron measurement on a powder of the interesting substance. On one hand, the 

deviation in the experimental and theoretical diffractograms may be due to 

unacceptable adaptation of the model on the real structure. On the other hand it is very 

possible that the measurements include texture components. However, the comparison 

with a theoretical diffractogram requires its exact calculation. Therefore the 

simulation must allow the variation of essential experimental parameters, e.g. used 

radiation, consideration of anomalous dispersion, diffraction geometry, fixed or 

variable slits, different intensity corrections, consideration of doublet, background etc.  

However, not only in research it is useful, but also for the solution of problems 

connecting with phase identification, phase mixtures, unknown preferred orientations, 

the simulation of a powder pattern of a phase described exclusively by single crystal 

data, one can apply the different features of Powder Cell.  

)) The Rietveld Refinement method: The principal goal of this method is to refine 

crystal structures and not profiles, hence it is called Rietveld method instead of 

‘profile refinement’ or ‘whole pattern fitting structure refinement’. The things actually 

being refined are parameters in models for the structure and for other specimen and 

instrument effects on the diffraction pattern. It is called “Rietveld method”, named 

after Dr. H. M. Rietveld [14, 15], because of his work and open-handed sharing of all 

aspects. He was the first person 
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• who first worked out computer-based analytical procedures to make use of the 

full information content of the powder pattern 

• who put them in public domain by publication of two seminal papers 

• who shared freely and widely his computer program. 

In the Rietveld method, the least-squares refinements are carried out until the 

best fit is obtained between the entire observed powder diffraction pattern taken as a 

whole and the entire calculated pattern based on the simultaneously refined models 

for the crystal structure, diffraction optic effects, instrumental factors, and other 

specimen characteristics (e.g., lattice parameters) as may be desired and can be 

modeled [16].  

For a Rietveld refinement, it is essential that the powder diffraction data be 

collected properly. The data is recorded in digitized form i.e., as a numerical intensity 

value, y2, at each of several thousand equal increments (steps), i, in the pattern. 

Depending on the method, the increments can be scattering angle, 2θ or wavelength 

(X-ray data collected with an energy dispersive detector and an incident beam of 

‘white’ radiation X-radiation). For constant wavelength data, the increments are 

usually steps in scattering angle and the intensity yi at each step i, in the pattern is 

measured directly with a quantum detector on a diffractometer. Factors affecting the 

data collection and which have to be considered before the collection are the 

geometry of the diffractometer, the quality of the instrument alignment and 

calibration, the most suitable radiation (e.g. conventional X-ray, synchrotron X-ray or 

neutron), the wavelength, appropriate sample preparation and thickness, slit sizes and 

necessary counting time.  
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Typical step sizes range from 0.01 to 0.05 in 2θ for a fixed wavelength X-ray 

data and a bit larger for fixed wavelength neutron data. To ensure good counting 

statistics throughout an X-ray powder diffraction pattern, more time should be spent 

on data collection at high angles where the intensities are lower. An appropriate data-

collection strategy depends on the nature of the sample (e.g., how well it scatters, how 

quickly the pattern degrades, peak-broadening effects and the degree of peak overlap). 

Ideally the step size = FWHM/5, FWHM = full width at half-maximum, as there are 

at least five steps across the top of each peak. The time per step should approximately 

compensate for the gradual decline in intensity with 2θ.  

 Rietveld refinement with neutron diffraction data has been notably successful 

both with fixed-wavelength data, with which Rietveld developed and used this 

method.  The Rietveld method is the same no matter what powder diffraction data are 

used. The differences among data sources affect the data preparation that is required, 

whether the steps are in angle or energy, and the instrumental parameters that are 

refined but not in the method itself.  

In all cases, the best fit sought is the best least squares fit to all of the 

thousands of yi‘s simultaneously [17]. The quantity minimized in the least-squares 

refinement is the residual, Sy:  

Sy = ( )2∑ −
i

ciii yyw   

where, 

 wi = 1 / yi 

 yi = observed (gross) intensity at the ith step.  

 yci = calculated intensity at the ith step, 
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and the sum is overall data points.  

A powder diffraction pattern of a crystalline material may be thought of as a 

collection of individual reflection profiles, each of which has a peak height, a peak 

position, a breadth, tails which decay gradually with distance from peak positions, and 

an integrated area which is proportional to the Bragg intensity, Ik, where K stands for 

the Miller indices, h, k, l, Ik is proportional to the square of the absolute value of the 

structure factor |F|2. It is a crucial feature of the Rietveld method that no effort is made 

in advance to allocate observed intensity to particular Bragg reflections nor to resolve 

overlapped reflections. Consequently, a reasonably good starting model is needed. 

The ‘method is a structure refinement method’. Typically, many Bragg reflections 

contribute to the intensity, yi, observed at any arbitrarily chosen point, i¸ in the pattern. 

The calculated intensities yci, are determined from the |FK|2 values calculated from the 

structural model by summing of the calculated contributions from neighboring (i.e., 

within a specified range) Bragg reflections plus the background: 

yci = s ( ) bikki
k

kk yAPFL +−∑ θθφ 22
2

 

where, s is scale factor, K is the miller indices, h, k, l for Bragg reflection, Lk is the  

Lorentz, polarization, and multiplicity factors, - is the reflection profile function, Pk 

is the preferred orientation function, A is an absorption factor, Fk is the structure 

factor for the kth Bragg reflection and ybi is the background intensity at the ith step. 

The structure factor Fk, is given by 

Fk = ∑
j

ii fN H[S >��L�K[j + kyj + lzj)] exp [-Mj] 
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with Mj  ��
2us

-2sin2
� � �

2, where us
-2 is the root-mean-square thermal (and random 

static) displacement of the jth atom.  

 The effective absorption factor, A, differs with instrument geometry. It is 

usually taken to be a constant for the instrument geometry used for X-ray 

diffractometers. The least squares minimization procedures lead to a set of normal 

equations involving derivatives of all of the calculated intensities, yci, with respect to 

each adjustable parameters and are soluble by inversion of the normal matrix with 

elements Mjk formally given by 

Mjk = ( ) 









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where the parameters xj, xk are the (same set of) adjustable parameters. In the use of 

this algorithm, it is common practice to approximate these matrix elements by 

deletion of the first term, that in (yi – yci). Thus, we are dealing with the creation and 

inversion of an m X m matrix, where m is the number of parameters being refined. 

Because the residual function is non-linear, the solution must be found with an 

iterative procedure in which the shifts, û[k are 

û[k = 

k

y
jk x

s
M

∂
∂

∑ −1
 

 The calculated shifts are applied to the initial parameters to produce, a 

supposedly, improved model and the whole procedure is then repeated. Because the 

relationships between the adjustable parameters and the intensities are non-linear, the 

starting model must be close to the correct model or the non-linear least squares 

procedure will not lead to the global minimum.  
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 The model parameters that may be refined include not only atom positional, 

thermal, and site-occupancy parameters but also parameters for the background, 

lattice, instrumental geometrical optical features, specimen aberrations (e.g., specimen 

displacement and transparency), an amorphous component and specimen reflection-

profile-broadening agents such as crystallite size and microstrain. Multiple phases 

may be refined simultaneously and comparative analysis of the separate overall scale 

factors for the phases offers what is probably the most reliable current method for 

doing quantitative phase analysis.  The usual refinable parameters are listed in table 

3.2.  

Table 3.2 Parameters refinable simultaneously during Rietveld refinement 

Parameters to be refined for each 
phase present 

Global Parameters 

 

xj yj zj Bj Nj; xj  yj  zj are position 

coordinates, Bj is an isotropic thermal 

parameters, and Nj is the site-occupancy 

multiplier, all for the jth atom in the unit 

cell 

 

�� – Zero shift 

Scale factor  Instrumental profile 

Specimen-profile breadth parameters Profile asymmetry 

Lattice parameters Background  

Overall temperature factor (thermal 

parameters) 

Wavelength 

Individual anisotropic thermal parameters Specimen displacement 
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Preferred orientation Specimen transparency 

Crystallite size and microstrain Absorption 

Extinction  

 There are usually two approaches to dealing with the background in a powder 

diffraction pattern. It can both be estimated by linear interpolation between selected 

points between peaks and then subtracted, or it can be modeled by an empirical or 

semi-empirical function containing several refinable parameters. For refining the 

background, ybi, must be obtained from a refinable background function, which may 

be phenomenological or, better, based on physical reality and include refinable 

models. One such phenomenological fifth-order polynomial provided with an 

operator-specific origin is 

ybi = ∑
=

5

0m
mB (2θi / BKPOS) -1]m 

where BKPOS is the origin that is to be specified in the input control file.  

With a complete structural model and good starting values for the background 

contribution, the unit-cell parameters and the profile parameters, the Rietveld 

refinement of structural parameters can begin. Because the global minimum of the 

least-squares residual function is much shallower with powder data than it is with 

single-crystal data, and false minima are more prevalent, the refinement needs 

constant monitoring. A refinement of a structure of medium complexity can require a 

hundred cycles, while a structure of high complexity may easily require several 

hundred. The profile fit is best seen in a plot but can also be followed numerically 

with a reliability factor or R factor. The difference plots indicate whether a high R-

value is due to a profile-parameter problem (i.e., total intensity is approximately 
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correct but there are differences in the peak form) or to a deficiency in the structural 

model (i.e., integrated intensities does not match). An approximate strategy for 

refinement can be described as, 

Changes in positional parameters cause changes in structure-factor magnitudes 

and therefore in relative peak intensities, whereas atomic displacement (thermal) 

parameters have the effect of emphasizing the high-angle region (smaller thermal 

parameters) or de-emphasizing it (larger thermal parameters).  

The scale, the occupancy parameters and the thermal parameters are highly 

correlated with one another, and are more sensitive to the background correction than 

are the positional parameters.  

The structure should be refined to convergence. That is, the maximum shift / 

estimated standard deviation (e.s.d) in the final cycle of refinement should be no more 

than 0.10. All parameters (profile and structural) should be refined simultaneously to 

obtain correct e.s.d.  

R-values: Although a difference profile plot is probably the best way of following and 

guiding a Rietveld refinement, the fit of the calculated pattern to the observed data 

can also be given numerically. This is usually done in terms of agreement indices or 

R-values.  

 The weighted-profile R-value, Rwp, is defined as: 

Rwp =   ∑
N

i

wi[yi(obs) – yi(calc)]2 / ∑
N

i

wi[yi(obs)]2   ½ 

where yi (obs) is the observed intensity at step, i, yi (calc) the calculated intensity, and 

wi the weight. From a purely mathematical point of view, Rwp, is the most meaningful 

of these R s because the numerator is the residual being minimized. For the same 
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reason, it is also the one that best reflects the progress of the refinement. Ideally, the 

final Rwp should approach the statistically expected R-value, Rexp, 

Rexp =      (N-P) / ∑
N

i

wi yi(obs)2    ½ 

where N is the number of observations and P the number of parameters. Rexp reflects 

the quality of the data (i.e., the counting statistics). Thus, the ratio between the two is 

another useful numerical criterion, called the ‘goodness of fit’. It is generally given as, 

χ2 and expressed as: 

χ2 = Rwp / Rexp 

If the data have been ‘over-collected’ Rexp will be very small and χ2 for a fully refined 

structure much larger than 1. Conversely, if the data have been ‘under-collected’, Rexp 

will be large and χ2 could be less than 1.  

 An R-value similar to that reported for single-crystal refinements, based on the 

agreement between the observed and calculated structure factors, Fhkl, can also be 

calculated by distributing the intensities of the overlapping reflections according to 

the structural model, 

RF = ∑
hkl

|Fhkl (obs) – Fhkl (calc)| / ∑
hkl

|Fhkl (obs)| 

Similarly, the Bragg-intensity R-value, 

RB = ∑
hkl

|Ihkl (obs) – Ihkl (calc)| / ∑
hkl

|Ihkl (obs)| 

Where Ihkl = mF2
hkl (m = multiplicity), or its weighted equivalent can be used to 

monitor the improvement in the structural model. Because ‘R-Bragg (RB)’ and              

‘R-structure factor (RF)’ are based not on actually observed Bragg intensities but on 

those deduced with the help of the model, they are, therefore, biased in favor of the 
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model being used. None the less, they are the R’s that are most nearly comparable to 

the conventional R-values quoted in the literature on single crystal structure 

refinements. They also serve a useful function because they are insensitive to misfits 

in the pattern that do not involve the Bragg intensities of the phase(s) being modelled.  

 R-values are useful indicators for the evaluation of a refinement, especially in 

the case of small improvements to the model, but they should not be over interpreted. 

The most important criteria for judging the quality of a Rietveld refinement are 

 The fit of the calculated pattern to the observed data and the chemical sense of 

the structure model.  

The former can be evaluated on the basis of the final profile plot (using the 

complete range of data collected) and the latter on a careful examination of the final 

atomic positions.  

One of the great triumphs of Rietveld analysis has been in its crucial 

contributions to the development of the field of high temperature superconductors. 

Diffractionists at the best neutron diffraction facilities, in 1987 - soon after the 

discovery of first really high temperature superconductor, Tc = 90 K, and Brookhaven 

National Laboratory, in the US; pulsed neutron (TOF) sources at the Rutherford-

Appleton Laboratory in the UK and many other groups around the world, studied 

larger samples of the polycrystalline matrix, performed Rietveld analysis with several 

different starting models, and all came to the same conclusion in detail. The structure 

was, thus correctly determined from powder diffraction data whereas the X-ray single 

crystal results had been in error.  

 In the present work, the starting model of tetragonal Y-123 with space group  

P 4/M M M was assumed. Since it was expected that the La-2125 is a stochiometric 
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derivative of the La-123 compound. Hence, the fitting was carried out on the lines of 

tetragonal La-123 compound. The patterns matched very well, giving reliable             

R-values. Using the results of Rietveld analysis of all the samples, bond lengths and 

bond angles were calculated. And based on them, a structure for La-2125 unit cell has 

been simulated.  

3.2.3  Atomic Force Microscopy (AFM): The atomic force microscope (AFM) 

probes the surface of a sample with a sharp tip, a couple of microns long and often 

less than 100 Å in diameter [18]. The tip is located at the free end of a cantilever that 

is 100 to 200 µm long. Forces between the tip and the sample surface cause the 

cantilever to bend, or deflect. A detector measures the cantilever deflection as the tip 

is scanned over the sample, or the sample is scanned under the tip. The measured 

cantilever deflections allow a computer to generate a map or surface topography [19].  

 Several forces typically contribute to the deflection of an AFM cantilever. 

AFM operates by measuring the attractive or repulsive forces between a tip and the 

sample. The forces most commonly associated with atomic force microscopy are 

interatomic force called the van der Waals force. The dependence of the van der 

Waals force upon the distance between the tip and the sample is shown in the Figure 

3.6. The two distance regimes are labeled in the figure are (a) the contact regime; and 

(b) the non-contact regime.  

 In the contact regime, the cantilever is held less than a few angstroms from the 

sample surface, and the interatomic force between the cantilever and the sample is 

repulsive. In the non-contact regime, the cantilever is held on the order of tens to 

hundreds of angstroms from the sample surface, and the interatomic force between the 
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cantilever and sample is attractive (largely a result of the long-range van der Waals 

interactions).  

In principle, AFM resembles the record player as well as the stylus profilometer. 

However, AFM incorporates a number of refinements that enable it to achieve 

atomic-scale resolution: 

♦ Sensitive detection 

♦ Flexible cantilevers 

♦ Sharp tips 

♦ High-resolution tip-sample positioning, and  

♦ Force feedback 

In the present work, the work was carried out by using the contact mode of 

AFM. In contact AFM mode, also known as repulsive mode, an AFM tip makes soft 

‘physical contact’ with the sample. The tip is attached to the end of a cantilever with a 

low spring constant, lower than the effective spring constant holding the atoms of the 

sample together. As the scanner gently traces the tip across the sample (or the sample 

under the tip), the contact force causes the cantilever to bend to accommodate changes 

in topography. Considering the Figure 3.6, we can see that at the right side of the 

curve a large distance separates the atoms. As the atoms are gradually brought 

together, they first weakly attract each other. This attraction increases until the atoms 

are so close together that their electron clouds begin to repel each other 

electrostatically. This electrostatic repulsion progressively weakens the attractive 

forces as the interatomic separation continues to decrease. The force goes to zero 

when the distance between the atoms reaches a couple of angstroms, about the length 
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of a chemical bond. When the total van der Waals force becomes positive (repulsive), 

the atoms are in contact.  

The slope of the van der Waals curve is very steep in the repulsive or contact 

regime. As a result, the repulsive van der Waals force balances almost any force that 

attempts to push the atoms closer together. In AFM, this means that, when the 

cantilever pushes the tip against the sample, the cantilever bends rather than forcing 

the tip atoms closer to the sample atoms. 

 

Figure 3.6 Interatomic force versus the distance curve for the operation of AFM 

In addition to the repulsive van der Waals force, two other forces are generally 

present during contact AFM operation: a capillary force exerted by the thin water 

layer often present in an ambient environment, and the force exerted by the cantilever 

itself [20]. Most AFMs detect the position of the cantilever with optical techniques 

[21, 22].  
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Figure 3.7 The working of a Contact mode AFM 

As shown in Figure 3.7, a laser beam bounces off the back of the cantilever 

onto a position-sensitive photo detector (PSPD). As the cantilever bends, the position 

of the laser beam on the detector shifts. The PSPD itself can measure displacements 

of light as small as 10Å. The ratio of the path length between the cantilever and the 

detector to the length of the cantilever itself produces a mechanical amplification. As 

a result, the system can detect sub-angstrom vertical movement of the cantilever tip.  

Once the AFM has detected the cantilever deflection, it can generate the 

topographic data set by operating in one of two modes, constant-height or constant-

force mode. In constant-height mode, the spatial variation of the cantilever deflection 

can be used directly to generate the topographic data set because the height of the 

scanner is fixed as it scans. In constant – force mode, the deflection of the cantilever 

can be used as input to a feedback circuit that moves the scanner up and down in z – 

direction, responding to the topography by keeping the cantilever deflection constant. 

In this case, the image is generated from the scanner’s motion. With the cantilever 
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deflection held constant, the total force applied to the sample is constant. In this 

method, the speed of scanning is limited by the response time of the feedback circuit, 

but the total force exerted on the sample by the tip is well controlled.  

The present work has been carried out on a Nanoscope III (Digital 

equipments) AFM at TIFR (Mumbai) working in the contact mode.  

3.2.4 Scanning Electron Microscopy (SEM): The Scanning Electron Microscope 

(SEM) is a microscope that uses electrons rather than light to form an image. The 

SEM has a large depth of field, which allows a large amount of the sample to be in 

focus at one time. The SEM also produces images of high resolution, which means 

that closely spaced features can be examined at a high magnification [23]. Preparation 

of the samples is relatively easy since most SEMs only require the sample to be 

conductive. The combination of higher magnification, larger depth of focus, greater 

resolution, and ease of sample observation makes the SEM one of the most widely 

used instruments in materials research.  

 In the SEM, a beam of electrons is directed from a filament to the sample in a 

vacuum environment ranging from 10-4 to 10-10 Torr. The electrons are guided on to 

the sample by a series of electromagnetic lenses. The resolution and depth of field of 

the image are determined by the beam current and the final spot size, which are 

adjusted with one ore more condenser lenses and the final, probe-forming objective 

lenses. The electrons interact with the sample with a few nanometers to several 

microns of the surface, depending on beam parameters and sample type. Electrons are 

emitted from the sample primarily as either backscattered electrons or secondary 

electrons. Once these electrons escape from the sample surface, an Everhart-Thornley 

scintillator-photomultiplier detector typically detects them.  
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 Secondary electrons are the most common signal used for investigations of 

surface morphology. They are produced as a result of interactions between beam 

electrons and weakly bound electrons in the conduction band of the sample which 

then escape from the sample surface as secondary electrons. Secondary electrons are 

low energy electrons (< 50 eV), so only those formed within the first few nanometers 

of the sample surface have enough energy to escape and be detected. High-energy 

beam electrons, which are scattered, back out of the sample (backscattered electrons) 

can also form secondary electrons when they leave the surface. Since these electrons 

travel faster farther into the sample than the secondary electrons, they can emerge 

from the sample at a much larger distance away from the impact of the incident beam, 

which makes their spatial distribution larger. The SEM image formed is the result of 

the intensity of the secondary electron emission from the sample at each x, y data 

point during the rastering of electron beam across the surface.  

 Although SEM and AFM appear very different, they actually share a number 

of similarities. Both techniques raster a probe across the surface to detect some 

interaction with the surface to form an image. Both have a lateral resolution, which is 

similar in scale. By using these two techniques, which are complementary, one 

technique will often compensate for the imagining artifact of the other technique.  

 In the present work, the SEM measurements were carried out at TIFR 

(Mumbai) using a Jeol instrument at magnification range of 5000 - 10000.  

3.3 TRANSPORT PROPERTIES 

3.3.1 Resistivity measurements: Resistivity studies on the high temperature 

superconducting samples were carried out using the standard d. c. four probe 



 Characterization methods used… 

 

III - 38 

 
 

technique [24, 25]. These studies help to determine the exact value of the 

superconducting onset and zero electrical resistance temperature (Tc) of a particular 

HTSC sample.  

 Four contacts were made on the well-sintered pellet using conductive silver 

epoxy paint. Fine enameled copper wires were used to pass the constant current 

through the outer two leads using a constant current source (KEITHLY current source 

– Model 220). Current of the order of few hundred microamps to few milliamps is 

passed, while the voltage developed across the two inner leads is measured using the 

nanovoltmeter (KEITHLEY model 181) as a function of temperature. DC resistance 

of the samples is then found by Ohm’s law. In this configuration, the lead resistance 

of the potential leads does not come into the picture because no current flows through 

these leads under null-balanced condition, thus ensuring that the measured potential is 

the potential of the sample only. The block diagram of the four-probe setup used for 

measuring the d.c. resistance is shown in Figure 3.8.  

 

Figure 3.8 Block diagram of d.c. four probe resistivity setup 
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The characteristic parameters of superconducting transition generally used are defined 

as: 

Tc
on The superconducting onset temperature is the temperature at which the 

resistance starts decreasing abruptly 

Tc
R=0  The temperature at which resistance goes to zero within the measuring 

capability of the measuring instrument. Generally, to characterize the zero 

resistance state a criterion of potential drop of < 10-1 µv was used. 

 

Tc
mid The temperature corresponding to the mid point of the superconducting 

transition, i.e., the average of the temperature corresponding to 90% and 

10% of the resistance at Tc
on 

∆Tc  Width of the superconducting transition, which measures the temperature 

interval for the fall of resistance from 90% to 10% of its value of Tc
on 

 

3.4 MAGNETIC PROPERTIES 

3.4.1 a.c.susceptibility: The a.c. susceptibility measurements were performed using 

mutual inductance method consisting of primary and secondary coils. The primary 

coil (wound in same direction) are coaxially wound on secondary coils (two sections 

connected in series but wound in opposite direction). The primary coil was connected 

to a lock-in-amplifier (EG & G Model 5210). A low frequency (100 Hz) sine wave 

signal was generated using a signal generator and was fed to the primary coil as well 

as the lock-in-amplifier as a reference signal. The alternating current produced an 

alternating magnetic field inside the primary coil, which induced voltage in secondary 
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coils. With no sample in the coil, the mutual inductance of the combined coil is zero. 

The signal from the secondary coil was fed back to the lock-in-amplifier for phase 

sensitive detection. When a superconducting sample is placed in one of the sections of 

second coils, any change in the magnetization of the sample (and hence the 

susceptibility) corresponds to a change in the emf induced in the secondary coil, 

which is measured by the lock-in-amplifier. Hence, for a properly calibrated and 

scaled system, the change in magnetization (∆M) due to primary field amplitude 

(∆Hac) gives the diamagnetic susceptibility (χac = ∆M/ ∆Hac).  

3.4.2 d.c.susceptibility: The d.c.susceptibility measurements were performed on the 

commercially available “Oxford” cryogenic Vibrating Sample Magnetometer (VSM) 

at TIFR, Mumbai. All materials acquire a magnetic moment when placed in a 

magnetic field. The magnetic moment per unit volume is known as the 

‘Magnetization’. The VSM uses an induction technique for the measurement of 

magnetic moment by detecting the a.c. field produced by an oscillating sample 

moment. The technique is very simple.  

 

Figure 3.9 Signal generation in VSM 
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The sample is attached to the lower end of a rigid rod and made to oscillate 

vertically, typically over 1 – 1.5 mm and frequencies 40 – 80 MHz. If the sample is 

magnetized (either permanently or in response to an external applied field) the 

oscillation will induce an a.c. signal in a set of suitably pick-up or sense coils. The 

amplitude of this signal is proportional to the magnetic moment of the sample. This 

type of design, named after its inventor Simon Foner (1956) [26], is appropriate for 

the systems where the direction of vibration and field is parallel. Mallison designed an 

effective set of sense coils for system where the field direction is horizontal, that is, 

proportional to the vibration direction [27].  

The block diagram in Figure 3.10 shows how the individual components of the 

system may be integrated to form a VSM. 

 The pick up coils are usually connected as a gradient pair such that the 

induced emf ’s in each coil add. This also has the advantage, if the coils are matched, 

of rejecting the total emf induced in the coil system by any external applied field 

change. The lock-in amplifier (LIA) is tuned to the vibration frequency using a 

reference signal from the vibrator controller and detects the in-phase voltage from 

sense coils. 

The applied field and sample temperature may be varied under computer 

control. The computer may then record the LIA voltage data as a function of field, 

temperature or time.  

In the present work, the d.c. susceptibility measurements were taken using the 

above setup. Magnetization as a function of temperature was measured for all the 

samples in order to see the paramagnetic – diamagnetic transition, thus cross-checking 

the superconducting Tc obtained from electrical method (resistivity measurements).  
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Figure 3.10 Block diagram of VSM measurement 

3.4.3 d.c.magnetization: The magnetization measured as a function of varying 

applied field at a given temperature gives the hysteresis loops. Magnetization 

measurements were also performed on the VSM at TIFR, using the setup described 

above. All the samples were studied up to 1 Tesla applied field and different 

temperatures (below and above Tc), in order to see the broadening of the loops to 

calculate current density (Jc). From the width of these loops, and using the Bean’s 

critical state model, Jc can be calculated.  
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3.5 OXYGEN CONTENT DETERMINATION 

3.5.1 Iodometric double titration: The oxidation state of copper in the high Tc 

superconductor is significantly related to its superconducting property [28]. The 

method of double iodometric titration is generally adopted to determine the oxidation 

state of copper (or the average valence of copper, 2 + p) and oxygen content z               

[29-32].  

 For the first experiment of iodometric titration, the valence number of copper 

in a sample equals 2 + p. The superconducting cuprate sample is weighed [about 30 – 

40 mg (w1)] and is placed in a three-neck flask. Powdered KI, (~ 1 gm) is added so as 

to cover the sample. The solution is blanketed with nitrogen gas. The whole mixture is 

then dissolved in an acidic solution of 6N HCl (hydrochloric acid, ~10 ml) to ensure 

that the sample is always in contact with an excess of iodine. This yellow coloured 

solution is then well stirred and 6N NH4OH (ammonium hydroxide ~ ammonia 

solution) is added drop wise until the solution turns in to a persistent green coloured 

solution. Then, 2 ml of 85% H3PO4 (ortho phosphoric acid) is added and the titration 

is carried out with 0.01 N Na2S2O3 (sodium thiosulphate). Starch solution is used as 

an indicator to the titration. The volume of Na2S2O3 required is V1 ml, which, in turn 

gives the volume of iodine liberated from the sample, weighing w1. The reactions, 

which take place, are as follows: 

Cu1+ + I - Æ CuI 

Cu2+ + 2I - Æ CuI + ½ I2 

Cu3+ + 3I - Æ CuI + I2 
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In general the whole reaction can be written as: 

Cu2+p + (2+p) I - Æ CuI + 0.5 (p+1) I2 

Where p is the hole concentration. The liberated I2 will participate in the reaction with 

the solution of Na2S2O3 as 

I2 + 2 Na2S2O3 Æ 2NaI + Na2S2O3 

From the above reactions, it is observed that any Cu1+ ion present in the sample will 

precipitate out as CuI and without producing neutral iodine. All other species of 

copper having their higher oxidation level greater than Cu1+ will react and yield a 

quality of neutral iodine, which is proportional to the degree of oxidation (p+1). Thus 

the amount of neutral iodine produced has to be accurately determined using standard 

titration average charge or degree of oxidation of copper i.e., (Cu-O)+p.  

 In the second step of iodometric titration, the sample containing copper with 

valence 2+p is first dissolved in an acidic solution to determine the total copper. The 

sample (weighing w2) is dissolved in 10 ml of 6N HCl; it is then diluted to 40 ml with 

distilled water and heated up to nearly 50 0C. Approximately 10 ml of 6N NH4OH is 

added drop by drop. The solution is simultaneously stirred till a persistent blue colour 

is formed. This is followed by adding 2 ml of 85% H3PO4 solution. This resultant 

solution is cooled to room temperature and blanketed with nitrogen gas. 1 g of powder 

KI is added and the solution is titrated with 0.01 N solution of Na2S2O3 to a starch end 

point.  

 The second titration thus gives the volume V2 of the solution of Na2S2O3 

required to titrate the iodine generated from sample weighing w2. The reactions 

involved in the second titration are: 

Cu+ + H+ Æ Cu2+ + H2O 
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[Cu-O]-p Æ [Cu-O] + O2 

By using the known values of V1, V2 and w1, w2 in the following formula to calculate 

the excess number of divalent copper, 

1

2
2

1
1

−













=

w
V

w
V

p     

Thus, by determining the effective oxidation level or effective copper valence, i.e., 

2+p, the oxygen content is calculated assuming that the stochiometric is known. In 

order to obtain the exact value of oxygen content, the titration is usually repeated 2-3 

times and average readings are used. For example, for calculating the oxygen content 

(z) of La2Ca1Ba2Cu5Oz sample, the following relation has been 

2z = 7(2+p) + 11 

or 

z = 3.5(2+p)+5.5 

where, z is the oxygen content per La-2125 unit cell. Actually, these relations are 

derived from the relations for RE-123 system. Since RE-123 and La-2125 are 

isostructural, hence, the modification of the relation is justified. The values of the 

oxygen content thus obtained can be verified by the values of oxygen content 

obtained from neutron diffraction data analysis, done using Rietveld refinement.  

3.5.2 Neutron diffraction: Scattering powers of the neutrons are dependent on the 

nuclear energy levels, and not on the atomic numbers. Hence, it gives a great 

advantage in identifying individual species present in the structure. Since the oxygen 

is a light atom, the oxygen is largely suppressed in the X-ray diffraction pattern. 

Neutron powder diffraction has been the major player in crystal structure studies of 
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various high Tc materials since discovered and has gone far in elucidating the 

structural origins, or requirements, of superconductivity. One important parameter is 

the distribution of oxygen atoms between two incompletely filled sites. The ability of 

neutrons to be scattered prominently by even light atoms gives an advantage in 

determining the oxygen content. In the Rietveld refinement of the neutron diffraction 

data, the oxygen occupancy can be varied and exact values can be determined. Since, 

oxygen plays a major role in the structural and superconducting properties of high 

temperature superconductors; it is highly appreciable to ascertain the exact oxygen 

content values, which in turns gives exact bond lengths and bond angles.  
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INTRODUCTION 

It is reported that, the synthesis and repetitiveness in the superconducting 

properties of LaBa2Cu3Oz (La-123) system, has remained a problem to be solved till 

date [1-3]. Extensive studies have been carried out on the La-based superconductors 

in order to stablise the superconducting phase in them by the addition of Ca [4-5]. The 

Ca-doped 123 superconductors’ exhibit tetragonal structure and superconductivity     

Tc ~ 5 - 10 K, lower than most of the orthorhombic 1-2-3 materials [6]. Substitution is 

a simple way to introduce the holes in the conducting CuO2 layers of high Tc cuprate 

superconductors. For example, substituting part of La-atoms with Ca, Sr or Ba atoms 

in the La2CuO4 would increase the amount of [Cu-O]+ and a transformation from 

semi-conductor to superconductor [7]. In the course of present work, an attempt is 

made to obtain a superconducting phase from non-superconducting La2Ba2Cu4Oz   

(La-224) by the addition of equal amounts of CaO and CuO along with the 

substitution of rare earth metal ion like Dy at La site.  

In this chapter, studied on synthesis of the La2-xDyxCayBa2Cu4+yOz 

(LaDyCaBCO); x = 0.1 – 0.5, y = 2x, samples obtained by adding equal amounts of 

CaO and CuO to La-224 along with substitution of Dy3+ for La3+ have been reported. 

Detailed structural studies have been carried out by using neutron diffraction and          

X-ray diffraction measurements and analyzing the data by Rietveld analysis 

technique. The neutron diffraction studies provide an accurate determination of the 

oxygen atom positions, the bond lengths and site occupancies of La, Ca and Ba ions 

in LaDyCaBCO system.  The interrelationship between the superconducting transition 
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temperature, dopant valency and the variation in the oxygen content is discussed in 

the context of the hole concentration.  

In addition to the bulk studies, the thin films of the LaDyCaBCO compounds 

were synthesized for the first time using Pulsed Laser Deposition (PLD) technique. 

Structural and superconducting properties of thin films were studied using variety of 

experimental techniques. The tetragonal thin films possess stable properties and 

longer life [8, 9]. The La-2125 mixed oxide superconductors exhibit tetragonal 

structure throughout the CaO and CuO doping range, up to (x = 0.5, y = 1.0). It is thus 

interesting to synthesis and study the properties of thin films of these compounds for 

possible device applications.  

4.1 STRUCTURAL STUDIES  

4.1.1 In Bulk form 

(a) X-ray Diffraction: The Figure 4.1 shows the indexed XRD patterns for the     

La2-xDyxCayBa2Cu4+yOz (x = 0.1 – 0.5; y = 2x) [LaDyCaBCO] system. The XRD 

patterns were recorded at room temperature at TIFR, Mumbai using Cu-Kα radiation 

with wavelength, λ = 1.5408 Å. 

The XRD patterns clearly show the single-phase nature of all the samples with 

tetragonal symmetry. The values of unit cell parameters, calculated by least square 

method are tabulated in Table 4.1.  

The X-ray data was analyzed by Rietveld analysis method for detailed 

structural studies using the FULLPROF Rietveld refinement program. The details 

about the various X-ray data fitting softwares used to obtain the values of unit cell 

parameters and other structural parameters are given in Chapter III (Section 3.2) in the 
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form of a flow chart (Figure 3.5). After preliminary XRD data analysis, Rietveld 

FULLPROF program was used for detailed structural refinement. 

 

 

 
 
Figure 4.1 Indexed XRD patterns of La2-xDyxCayBa2Cu4+yOz (x = 0.1 – 0.5; y = 2x) 
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Table 4.1 Values of unit cell parameters, unit cell volume and X-ray density  
of LaDyCaBCO samples 
 

Sample 
(x, y) 

Unit cell Parameters Volume 
(Å) 3 

X-ray density   
(gm / cm3) 

 (a= b) 
Å 

(c)  
Å 

  

(0.1, 0.2) 3.8954 (3) 11.6890 (8) 177.3748  9.1740 

(0.2, 0.4) 3.8828 (3) 11.6461 (8) 175.5842 9.5462 

(0.3, 0.6) 3.8710 (3) 11.6210 (8) 174.1429 9.9063 

(0.4, 0.8) 3.8643 (3) 11.6750 (8) 174.3420 10.1758 

(0.5, 1.0) 3.8670 (3) 11.6760 (8) 174.5992 10.4648 

 
 The La-224, the starting compound (x = 0.0, y = 0.0) can be normalized to  

La-123 form as follows: 

La2Ba2Cu4Oz (La-224)  =  La-224 (La: Ba: Cu = 1:1: 2) 

= (La2Ba2Cu4Oz) * ¾ 

    =  (La1.5Ba1.5Cu3Oz’) = (La: Ba: Cu = 1:1:2) 

    =  La1(Ba1.5La0.5)Cu3Oz’ Æ La-123                … (1) 

Hence starting model of Y-123 tetragonal system with P4/MMM space group 

(No. 123) was assumed in starting the analysis [10]. During refinement, variable 

parameters like atomic positions, occupancies of different ions (except oxygen), unit 

cell parameters etc were varied for obtaining a matching fit between the observed and 

calculated patterns. Figures 4.2 (a-e i.e., x = 0.1 – 0.5) show the Rietveld fitted 

patterns of the LaDyCaBCO system.  

The patterns fit very well into the assumed model, thus confirming the atomic 

positions and the space group. It also confirms the phase purity of all the samples 
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studied. Rietveld analysis of the XRD data gives the accurate values of unit cell 

parameters, site occupancies and oxygen content in the samples.  

 

Figure 4.2 (a) XRD Rietveld fitted pattern of La1.9Dy0.1Ca0.2Ba2Cu4.2Oz 

 

Figure 4.2 (b) XRD Rietveld fitted pattern of La1.8Dy0.2Ca0.4Ba2Cu4.4Oz 
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Figure 4.2 (c) XRD Rietveld fitted pattern of La1.7Dy0.3Ca0.6Ba2Cu4.6Oz 

 

Figure 4.2 (d) XRD Rietveld fitted pattern of La1.6Dy0.4Ca0.8Ba2Cu4.8Oz 
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Figure 4.2 (e) XRD Rietveld fitted pattern of La1.5Dy0.5Ca1Ba2Cu5Oz 

The results of the detailed Rietveld analysis on the XRD data are tabulated in 

Table 4.2. The results clearly show that, with increasing Ca2+ and Dy3+ concentration 

(smaller ionic radii elements as compared to La3+ and Ba2+), the unit cell parameters 

decreases along with the unit cell volume.  Since the X-rays are not sensitive to the 

oxygen content, oxygen values were kept fixed during the refinement. The atomic 

positions, thermal parameters and unit cell parameters were varied during the 

refinement cycles, and the best-fit values have been tabulated in the table.  
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Table 4.2 Values obtained from XRD Rietveld analysis 

Sample (x, y) 
 

Parameters (0.1, 0.2) (0.2, 0.4) (0.3, 0.6) (0.4, 0.8) (0.5, 1.0) 
 

Space group 
a = b (Å)  
c (Å)  

P4/MMM 
3.8920 (3) 
11.6720 (8) 

P4/MMM 
3.8773 (3) 
11.6805 (8) 

P4/MMM 
3.8666 (3) 
11.6434 (8) 

P4/MMM 
3.8585 (3) 
11.6272 (8) 

P4/MMM 
3.8564 (3) 
11.6201 (8) 
 

La/Nd/Ca 
(½, ½, ½) 
NLa 
NDy 
NCa 

 
 
0.8289 
0.0432 
0.0432 

 
 
0.6223 
0.1360 
0.0863 

 
 
0.4615 
0.1956 
0.2890 

 
 
0.4747 
0.2247 
0.2247 

 
 
0.3039 
0.3039 
0.4039 

Ba (½,½, z) 
z 
N 

 
0.1790 
1.4187 

 
0.1776 
1.3454 

 
0.1801 
1.3043 

 
0.1846 
1.3036 

 
0.1854 
1.2443 
 

La @ Ba (N) 0.4901 0.5254 0.6555 0.5539 0.6443 
 

Ca @ Ba (N) 0.0616 0.1064 0.2044 0.3039 0.2443 
 

Cu (1) (0,0,0) 
N 

 
1.0000 

 
1.0000 

 
1.0000 

 
1.0000 

 
1.0000 
 

Cu (2) (0,0,z) 
z 
N 

 
0.3507 
2.0000 

 
0.3539 
2.0000 

 
0.3476 
2.0000 

 
0.3544 
2.0000 

 
0.3562 
2.0000 

O (1) (0,½,0) 
N 

 
0.8000 (3) 

 
0.7000 (3) 

 
0.6700 (3) 

 
0.6300 (3) 

 
0.6000 (3) 

O (2) (0,0,z) 
z 
N 

 
0.1643 
2.0000 

 
0.1524 
2.0000 

 
0.1673 
2.0000 

 
0.1763 
2.0000 

 
0.1667 
2.0000 
 

O (4) (0,½,z) 
z 
N 

 
0.3745 
4.0000 

 
0.3319 
4.0000 

 
0.3662 
4.0000 

 
0.3690 
4.0000 

 
0.3702 
4.0000 
 

Total Oxygen 
(z’ – in 123) 
(z – in 2125) 

 
6.8000 (3) 
9.5200 (5) 

 
6.7000 (3) 
9.8266 (5) 

 
6.6700 (3) 
10.2273 (5) 

 
6.6300 (3) 
10.6080 (5) 

 
6.6000 (3) 
11.0000 (5) 

R-factors 
χ2 
Rwp 
Rp 

 
2.55 
23.3 
14.6 

 
3.20 
27.7 
15.5 

 
2.05 
27.7 
19.3 

 
3.78 
27.9 
14.3 

 
2.60 
26.3 
16.3 



Studies on LaDyCaBCO system…                                                                                
 

 

IV-10 
 

 
 

(b) Neutron Diffraction:  Neutron diffraction (ND) is a very powerful tool in 

obtaining the exact structural information of any unknown compound from the 

powder diffraction data. The neutron diffraction technique is best suited for estimating 

the actual site occupancies and atomic positions [11]. It also gives the accurate 

oxygen content in the sample, which is very essential for the superconducting 

properties of mixed oxide superconductors [12].  

The neutron diffraction experiments were performed on the polycrystalline 

samples of LaDyCaBCO system on a powder diffractometer (TT1015) at Dhurva 

Reactor, BARC Mumbai. The samples were taken up for neutron diffraction at room 

temperature using neutrons of wavelength λ = 1.094 (except for x = 0.4 sample). The 

Figures 4.3 (a-e) shows the Rietveld fitted neutron diffraction plots for all the samples 

of LaDyCaBCO system.  

The detailed analysis of the ND data carried out using FULLPROF Rietveld 

refinement method [13] resulted in to the values of crystallographic site occupancies 

of constituent ions at different atomic positions, oxygen content, unit cell parameters 

etc; which are tabulated in Table 4.3.  The details of FULLPROF refinement program 

and the features have been discussed in Chapter-III (Section 3.2).  
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 Figure 4.3 (a & b) Rietveld fitted neutron diffraction plots of x = 0.1 & 0.2 samples 



Studies on LaDyCaBCO system…                                                                                
 

 

IV-12 
 

 
 

 

 

Figure 4.3 (c & d) Rietveld fitted neutron diffraction plots of x = 0.3 & 0.4 samples  
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Figure 4.3 (e) Rietveld fitted neutron diffraction plot of x = 0.5 samples  

The neutron diffraction pattern for x = 0.4 (y = 0.8) sample has been recorded 

on a modified neutron powder diffractometer with wavelength 1.248 Å. The 2θ range 

has been 5 – 1390 for this particular sample. The analysis of the neutron diffraction 

data on x = 0.4 sample has been done on the similar lines of rest of the samples. The 

results of the analysis have been tabulated in Table 4.3, along with the results of other 

samples (x = 0.1 – 0.5).  
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Table 4.3 Values of unit cell parameters, site occupancies and R- factors obtained  
from Rietveld analysis of Neutron Diffraction data 

 
Sample (x, y) 

 
Parameters (0.1, 0.2) (0.2, 0.4) (0.3, 0.6) (0.4, 0.8) (0.5, 1.0) 

 
Space group 
a = b (Å)  
c (Å)  

P4/MMM 
3.8935 (3) 
11.7293 (8) 

P4/MMM 
3.8705 (3) 
11.6593 (8) 

P4/MMM 
3.8606 (3) 
11.6825 (8) 

P4/MMM 
3.8611 (3) 
11.6402 (8) 

P4/MMM 
3.8670 (3) 
11.6763 (8) 
 

La/Nd/Ca 
(½, ½, ½) 
NLa 
NDy 
NCa 

 
 
0.804 
0.071 
0.125 

 
 
0.614 
0.136 
0.250 

 
 
0.554 
0.196 
0.250 

 
 
0.405 
0.250 
0.316 

 
 
0.300 
0.300 
0.400 
 

Ba (½,½, z) 
z 
N 

 
0.1804 
1.251 

 
0.1830 
1.364 

 
0.1819 
1.304 

 
0.1864 
1.250 
 

 
0.1868 
1.200 
 

La @ Ba (N) 0.507 0.614 0.554 0.606 
 

0.600 
 

Ca @ Ba (N) 0.319 0.023 0.141 0.195 0.200 
 

Cu (1) (0,0,0) 
N 

 
1.000 

 
1.000 

 
1.000 

 
1.000 

 
1.000 

Cu (2) (0,0,z) 
z 
N 

 
0.3494 
2.0000 

 
0.3490 
2.0000 

 
0.3526 
2.0000 

 
0.3529 
2.0000 

 
0.3526 
2.0000 
 

O (1) (0,½,0) 
N 

 
0.929 

 
0.995 

 
0.989 

 
0.861 

 
0.937 

O (2) (0,0,z) 
z 
N 

 
0.1619 
2.254 

 
0.1614 
2.0000 

 
0.1601 
2.245 

 
0.1591 
2.407 

 
0.1653 
1.9666 

O (4) (0,½,z) 
z 
N 

 
0.3634 
3.844 

 
0.3656 
4.0000 

 
0.3669 
3.8010 

 
0.3684 
3.9710 

 
0.3706 
3.9130 

Total Oxygen 
(z’ – in 123) 
(z – in 2125) 

 
7.027 
9.8378 

 
6.9950 
10.2593 

 
7.035 
10.787 

 
7.2390 
11.582 

 
6.8166 
11.361 

R-factors 
χ2 
Rwp 
Rp 

 
1.47 
6.40 
5.04 

 
1.35 
8.12 
6.40 

 
1.50 
6.28 
4.93 

 
2.33 
7.10 
5.48 

 
1.51 
5.86 
4.63 
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During the refinement procedure, single phase fit with tetragonal space group 

P4/MMM was attempted with Gaussian peak shape. All possible positional (x, y, z), 

thermal parameters (B) and occupational (N) parameters were varied in addition to 

cell parameters, half width parameters, background parameters, zero angle and scale 

factor. These parameters were varied in separate cycles due to a strong correlation 

between the thermal and occupancy parameters. The occupancy fractions of Ba and 

La ions at Ba-sties were refined assuming that no vacancies are present at these sites. 

The occupancy fractions of La were refined assuming all substituted Dy and Ca ions 

occupy La-site only (for non-zero values of x and y). As a result of refinement, very 

good fits were obtained for all the five samples refined on the basis of standard 

tetragonal 1-2-3 structural model with the final values of profile R-factors (Rp) 

converging [Figures 4.3 (a-e)] 

 Using the results obtained from the neutron diffraction analysis, bond lengths 

were calculated for different ions using Powder Cell. The results are given in Table 

4.5. Based on these structural observations a model of structure for La-2125 unit cell 

has been proposed for the first time.  

The refinement of the neutron data on LaDyCaBCO samples has been done 

according to the RE-123 tetragonal structure model and, hence it is imperative to 

establish the relation between RE-123 and La-2125 structures.  Figure 4.4 shows the 

unit cell of La-2125 structure when normalized to La-123 (tetragonal) form, while 

Figure 4.5 depicts the crystallographic unit cell of La-2125 sample consisting of four 

CuO2 sheets contributing four Cu-atoms and two Cu-O chains contributing one           

Cu-atom each.  
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 It is well known that the REBa2Cu3Oz (R = Y, Er, Gd etc) phase posses a 

layered structure with a sequence along c-axis of the  

Cu(1)Ox – BaO – Cu(2)O2 – RE – Cu(2)O2 – BaO – Cu(1)Ox [12] with one Cu(1) 

chain site and two Cu(2) plane sites. In a similar fashion, the sequence along the       

c-axis for the layered structure La2Ca1Ba2Cu5Oz can be written as 

Cu(1)Ox – BaO – Cu(2)O2 – La – Cu(2)O2 – CaO -  Cu(2)O2 – La - Cu(2)O2 – BaO - 

Cu(1)Ox, hence it is assumed that the La-2125 structure possess four Cu(2) plane sites 

and one Cu(1) site as clearly depicted in Figure 4.5. 
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Figure 4.4  Unit cell of La-2125 structure - normalized RE-123 (Tetragonal) type 
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Figure 4.5 Unit cell of proposed La-2125 structure  
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The La-2125 structure can be normalized to La-123 form by the following relation: 

La-2125    ⇔ La-123 

La2Ca1Ba2Cu5Oz   = (La2Ca1Ba2Cu5Oz) X (3/5) 

    = La1.2Ca0.6Ba1.2Cu3Oz’ 

    = La1(Ba1.2Ca0.6La0.2)Cu3Oz’                                       … (2) 

    = La-123 (1: 2: 3)                                            

Similarly, the La1.9Dy0.1Ca0.2Ba2Cu4.2Oz can be normalized to La-123 form as: 

La1.9Dy0.1Ca0.2Ba2Cu4.2Oz  = (La1.9Dy0.1Ca0.2Ba2Cu4.2Oz) X (3/4.2) 

    = La1.36Dy0.08Ca0.14Ba1.42Cu3Oz’ 

    = (La0.92Dy0.08)(Ba1.42Ca0.14La0.44)Cu3Oz’          … (3) 

    = La-123 (1: 2: 3) 

And also, the La1.5Dy0.5Ca1Ba2Cu5Oz can be normalized to La-123 form as: 

La1.5Dy0.5Ca1Ba2Cu5Oz  = (La1.5Dy0.5Ca1Ba2Cu5Oz) X (3/5) 

= La0.9Dy0.3Ca0.6Ba1.2Cu3Oz’ 

    = (La0.3Dy0.3Ca0.4)(Ba1.2Ca0.2La0.6)Cu3Oz’     … (4) 

   = La-123 (1: 2: 3) 

The stochiometries obtained from neutron diffraction, for LaDyCaBCO compounds 

have been tabulated in Table 4.4, which gives the values of the stoichiometries as 

calculated and obtained from Rietveld analysis.  Table 4.5 lists the values of various 

bond distances between Cu-O, Ba-O and La-O atoms, for different Dy-Ca doped 

LaDyCaBCO samples. It can be seen that, the Cu-O bond lengths do not show an 

appreciable change while La-Opab bond length decreases with increasing Ca-

concentration due to increase occupancy of smaller Ca2+ ions at La3+ site.  
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Table 4.4 Occupancies of different atoms obtained from the refinement   
(in 1-2-3 & 2-1-2-5) stochiometries 

 
Sample  La1.9Dy0.1Ca0.2Ba2Cu4.2Oz 
Atoms Initial value (as taken 

in stochiometric formula) in 
2125 form 

Reduced to 
1-2-3 type (3 / 
total no. of copper 
present per 
stochiometric 
formula) 

Obtained 
from 
refinement (in 
123 form) 

Final 
stoichiometry 
(in 2125 form = no. of 
copper present per 
stochiometric formula 
/ 3) 

La 1.9000 1.3570 1.3110 1.8354 
Dy 0.1000 0.0714 0.0710 0.0994 
Ca 0.2000 0.1430 0.4440 0.6216 
Ba 2.0000 1.4280 1.2510 1.7514 
Cu 4.2000 3.0000 3.0000 4.2000 
O z z’ 7.0270 9.8378 
 
 
Sample  La1.8Dy0.2Ca0.4Ba2Cu4.4Oz 
Atoms Initial value (as taken in 

stochiometric formula) in 
2125 form 

Reduced to 
1-2-3 type (3 / 
total no. of copper 
present per 
stochiometric 
formula) 

Obtained 
from 
refinement (in 
123 form) 

Final 
stochiometry 
(in 2125 form = no. of 
copper present per 
stochiometric formula 
/ 3) 

La 1.8000 1.2270 1.2280 1.8010 
Dy 0.2000 0.1360 0.1360 0.1994 
Ca 0.4000 0.2727 0.2730 0.4004 
Ba 2.0000 1.3636 1.3640 2.0005 
Cu 4.4000 3.0000 3.0000 4.4 
O z z’ 6.9950 10.2593 
 
 
Sample  La1.7Dy0.3Ca0.6Ba2Cu4.6Oz 
Atoms Initial value (as taken in 

stochiometric formula) in 
2125 form 

Reduced to 
1-2-3 type (3 / 
total no. of copper 
present per 
stochiometric 
formula) 

Obtained 
from 
refinement (in 
123 form) 

Final 
stoichiometry 
(in 2125 form = no. of 
copper present per 
stochiometric formula 
/ 3) 

La 1.7000 1.1080 1.1080 1.7000 
Dy 0.3000 0.1950 0.1960 0.3005 
Ca 0.6000 0.3910 0.3910 0.5995 
Ba 2.0000 1.3040 1.3040 1.9994 
Cu 4.6000 3.0000 3.0000 4.6000 
O z z’ 7.035 10.7870 
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Table 4.4 Continued… 

Sample  La1.6Dy0.4Ca0.8Ba2Cu4.8Oz 
Atoms Initial value (as taken in 

stochiometric formula) in 2125 
form 

Reduced to 
1-2-3 type 
(3 / total no. of 
copper present 
per stochiometric 
formula) 

Obtained 
from 
refinement 
(in 123 form) 

Final 
stoichiometry 
(in 2125 form = no. 
of copper present per 
stochiometric 
formula / 3) 

La 1.6000 1.0000 1.011 1.6176 
Dy 0.4000 0.2500 0.250 0.5000 
Ca 0.8000 0.5000 0.511 0.8176 
Ba 2.0000 1.2500 1.2500 2.0000 
Cu 4.8000 3.0000 3.0000 5 
O Z z’ 7.240 11.5820 
 
 
Sample  La1.5Dy0.5Ca1Ba2Cu5Oz 
Atoms Initial value (as taken in 

stochiometric formula) in 2125 
form 

Reduced to 
1-2-3 type 
(3 / total no. of 
copper present 
per stochiometric 
formula) 

Obtained 
from 
refinement 
(in 123 form) 

Final 
stoichiometry 
(in 2125 form = no. 
of copper present per 
stochiometric 
formula / 3) 

La 1.5000 0.9000 0.9000 1.5000 
Dy 0.5000 0.3000 0.3000 0.5000 
Ca 1.0000 0.6000 0.6000 1.0000 
Ba 2.0000 1.2000 1.2000 2.0000 
Cu 5.0000 3.0000 3.0000 5 
O Z z’ 6.8166 11.3610 
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Table 4.5 Bond distances for LaDyCaBCO samples calculated from Neutron 
diffraction results 
 

Dy & Ca-concentration (x, y) Bond 
length  

(Å) (0.1,0.2) (0.2, 0.4) (0.3, 0.6) (0.4, 0.8) (0.5,1.0) 

Cu1 - Oab 1.9467 
 

1.9353 1.9303 1.9305 1.9335 

Cu1 - Oc 1.8990 
 

1.8818 1.8704 1.8520 1.9301 

Cu 2 - Opab 1.9537 
 

1.9449 1.9375 1.9390 1.9449 

Cu 2 - Oc 2.1992 
 

2.1873 2.2489 2.5559 2.1870 

La – Opab 2.5213 
 

2.4901 2.4787 2.4645 2.4538 

Ba – Oab 2.8753 
 

2.8806 2.8709 2.9043 2.9148 

Ba – Oc 2.7617 
 

2.7484 2.7417 2.7487 2.7459 

Ba – Opab 2.8978 
 

2.8711 2.8978 2.8662 2.8886 

 

(c)  Scanning Electron Microscopy (SEM): The SEM studies were carried out on 

the polycrystalline bulk samples of the LaDyCaBCO system in order to determine the 

average grain size and for studying the grain morphology. Figure 4.6 shows the SEM 

photographs for all the LaDyCaBCO samples, taken at X 5000 magnification (Figures 

4.6 a – d) and at X 10,000 magnification (Figure 4.6 e - f). It can be observed from 

SEM pictures that, the superconducting grain structure is well developed and shows 

good packing of the grains. The average grain size of the LaDyCaBCO samples lies in 

the range 1800 Å – 2300 Å.  
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(a) x = 0.1, y = 0.2 @ 5k magnification 

 

(b) x = 0.2, y = 0.4 @ 5k magnification 
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(c) x = 0.3, y = 0.6 @ 5K magnification 

 

(d) x = 0.4, y = 0.8 @5k magnification 
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(e) x = 0.5, y = 1.0 @ 10 k magnification 

 

(f) x = 0.5, y = 1.0 @ 17 k magnification 

 

Figure 4.6 (a – f): SEM Images for La2-xDyxCayBa2Cu4+yOz samples  
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4.1.2 In thin film form 

The thin films of La-2125 (La1.5Dy0.5Ca1Ba2Cu5Oz) samples were deposited 

using PLD technique by varying different deposition parameters.  Table 4.6 lists the 

various parameters varied during the deposition and their results. 

Table 4.6 Variation in deposition parameters used for La-2125 thin films 

Parameters A B C D E 
 

 
Target  

 
La1.5Dy0.5Ca1Ba2Cu5Oz single phase tetragonal superconductor 

 
 
Substrate 

 
LaAlO3 single crystal (1 0 0) 

 
 
Ts 

 
8000C 

 
 
Dts 

 
50 mm 

 
 
Laser used 

 
248 nm KrF exicmer laser 

 
Frequency 
of Laser 

10 Hz 

Laser 
Energy 

~ 2 J/cm2 ~ 2 J/cm2 ~2 J/cm2 ~1.316 
J/cm2 

~1.316 J/cm2 

 
Op 100 mTorr 300 mTorr 250 - 

300 
mTorr 

300 mTorr 500 mTorr 

 Annealing Yes for 2hrs at 
5000C before 
cooling to room 
temp. (RT) in 
oxygen 
atmosphere.   

Yes for 2 
hrs at 
5000C 
before 
cooling to 
RT in 
oxygen 
atmosphere. 

Cooled 
in 
oxygen 
at Op  

Cooled in 
oxygen at 
atmospheric 
pressure 

Cooled in 
oxygen at 
atmospheric 
pressure 

Tc Non 
Superconductor 

Metallic 
behavior 

~ 54 K ~ 62 K ~ 62 K 
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 All the films were deposited on the LaAlO3 (LAO) single crystal (1 0 0) 

substrates. The choice of substrate also plays a vital role in the deposition of the thin 

films. Due to the lattice matching (‘a’ and ‘b’ parameters) of LAO substrates with the 

La-2125 unit cell, c-axis oriented thin films were produced. Also, various crucial 

deposition parameters, such as oxygen partial pressure, target -to- substrate distance 

(Dts) were varied to see the effect of these parameters on the quality of thin films. The 

films A and B (Table 4.6) deposited at high energy but low oxygen partial pressure, 

keeping other parameters like Dts etc constant, resulted in non-superconducting 

behavior. Film C was then annealed in oxygen after deposition, which exhibited 

superconductivity. But the maximum Tc ~ 62K, was observed in the thin films 

deposited at ~ 1.316 J/cm2 and high oxygen partial pressure of 300mTorr to 500mTorr 

(Films D and E respectively).  The structural studies and transport measurements were 

performed for the thin film exhibiting maximum Tc.  

(a) X-ray Diffraction: The thin films of La1.5Dy0.5Ca1Ba2Cu5Oz composition were 

deposited by using Pulsed laser deposition (PLD) technique at different conditions in 

order to optimize the deposition conditions for La-2125 type mixed oxide 

superconductors. The XRD measurements were taken on these thin films in order to 

verify the epitaxial growth. Figure 4.7 shows the typical XRD plot of 

La1.5Dy0.5Ca1Ba2Cu5Oz film deposited at the substrate temperature of 800 0C, Dts 

(target to substrate distance) of 5.1 cm and oxygen partial pressure (inside the 

deposition chamber during ablation) of 500 mTorr.  

 Figure 4.7 also shows the LAO substrate peaks. With the improvement of the 

deposition conditions, the epitaxy of the film also improved. The thin film yielding 
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the maximum Tc achieved so far (~ 62K), showed epitaxial growth, which is shown in 

the figure below.  

 

Figure 4.7 The typical XRD plot of La1.5Dy0.5Ca1Ba2Cu5Oz thin film on LAO substrate 
 

(b) Atomic Force Microscopy: In order to study the surface morphology of the 

thin films and estimation of grain size, Atomic Force Microscopic (AFM) studies 

were carried out on the thin films of La1.5Dy0.5Ca1Ba2Cu5Oz (La-2125) sample using 

JEOL contact mode AFM, at TIFR, Mumbai. Figures 4.8 (a & b) shows the AFM 

pictures of the LaDy-2125 superconductors, deposited at 8000C (substrate 

temperature), Dts = 5.1 cm and Op = 500 mTorr. These films are deposited on LAO 

(LaAlO3) substrate and has Tc
R=0 ~ 62K. The AFM pictures show that, the surface 

grains are having uniform shape and distribution with good packing pattern. The 

average grain size of the film is ~ 1800 Å.  
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(a) 

 

(b) 

 

Figure 4.8 (a & b) AFM pictures (normal and surface) of LaDy-2125 thin film 

 
 



Studies on LaDyCaBCO system…                                                                                 IV - 30           
 

 
 

 

4.2 TRANSPORT MEASUREMENTS 

(a) Resistivity measurements on bulk samples: The resistivity measurements 

were performed on all the bulk samples using the standard four-probe method for 

determining the transition temperatures. Figure 4.9 shows the normalized resistance 

versus temperature plots for all the bulk samples in LaDyCaBCO series and the Table 

4.7 lists the values of Tc
R=0.  
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Figure 4.9 Normalized resistance versus temperature plot for LaDyCaBCO system 

 It is evident from the above figure that, with the increasing Ca concentration, 

the superconductivity is induced into the system from a non-superconducting sample 

(x = 0.1, y = 0.2) to a sample with maximum Tc (x = 0.5, y = 1.0). Also, the metallic 

nature of the sample improves with increasing dopant concentration.  
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Table 4.7 Values of Tc (R=0 and χ), oxygen content and hole concentration 

Ca 
concentration 

Transition 
temperature 

Oxygen content       
(in 123 & 2125) 

Hole concentration 
 
 

(x, y) Tc
R=0 (K) Tc

M(ON) z’ z p psh 

 

(0.1,0.2) < 20 ~ 25 6.90 (2) 9.66 (2) 0.266 (2) 0.200 (2) 
 

(0.2,0.4) < 30 - 6.95 (2) 10.19 (2) 0.300 (2) 0.225 (2) 
 

(0.3,0.6) 66 (1) 63 (1) 6.96 (2) 10.68 (2) 0.306 (2) 0.230 (2) 
 

(0.4,0.8) 71 (1) - 6.96 (2) 11.14 (2) 0.309 (2) 0.232 (2) 
 

(0.5,1.0) 75 (1) 73 (1) 6.97 (2) 11.61 (2) 0.313 (2) 0.235 (2) 
 

 

(b) Resistivity measurements on thin films: In order to optimise the deposition 

conditions for the La-2125 thin films, several parameters were varied. As a result of 

these changes, maximum Tc was observed in the film (Film E in Figure 4.10) 

deposited at 8000C substrate temperature and 500 mTorr oxygen partial pressure. 

Initially the deposition conditions of RE-123 were used which were subsequently 

modified for the deposition of La-2125 thin films. Superconductivity is observed in 

films C & D synthesized in the same oxygen partial pressure with film D cooled in 

oxygen at atmospheric pressure. Film E deposited at higher oxygen pressure showed 

sharp resistive transition with less resistance. These findings clearly show that, 

oxygen partial pressure plays an important role in inducing superconducting property 

in this system. Table 4.6 gives the values of transition temperatures for all the films 

synthesized using varying deposition conditions.  
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Figure 4.10 Normalized resistance versus temperature plot for LaDy-2125 thin film 

4.3 MAGNETIC MEASUREMENTS 

4.3.1 On bulk samples 

(a) D.C. Susceptibility: The d.c. susceptibility measurements were performed on 

few selected samples of LaDyCaBCO system to verify the transition temperatures 

obtained from resistive method.  

It is clear from Figure 4.11, that with increase in Ca concentration along with 

Dy in the LaDyCaBCO system, Tc increases up to maximum value of ~ 75K. The 

values of Tc obtained from both electrical (R-T) and magnetic methods (M-T) are in 

good agreement (Fig s. 4.9 & 4.11). The susceptibility measurements were taken on 

the Oxford make VSM at TIFR (Mumbai) in the temperature range of 10 – 100 K at a 

field of 10 Oe. Table 4.7 lists the values of transition temperatures obtained from    

d.c. susceptibility measurements. 
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Figure 4.11 Magnetic Moment versus temperature plot for LaDyCaBCO system 

(b) D.C. Magnetization: The D. C. Magnetization measurements were performed 

on the bulk La-2125 (La1.5Dy0.5Ca1Ba2Cu5Oz) for the determination of magnetic 

current density (Jc). Figure 4.12 shows the M-H (hysteresis) plots for the La-2125 

sample obtained at 20 K, 50 K and 85 K in an applied field up to 10 k Oe.  
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Figure 4.12 The hysteresis plot for La-2125 sample at different temperatures 
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 The values of magnetic Jc of La-Dy-2125 sample at 20 K and 50 K have been 

determined using Bean’s critical state model [14, 15] according to  

 




 ∆= ρ*
30

D

M
Jc (A/cm2)                                      … (5) 

where, Jc = current density in A/cm2 

 ∆M = width of loop 

 D = average grain size (Å) 

 ρ = X-ray density (in gm / cm3) 

The values of current density at various applied fields have been tabulated in 

Table 4.8.  

Table 4.8 Values of current densities at various temperatures and fields 

Sample Temperature (K) Field 
H (k Oe) 

Jc   
(X 106 A/cm2)  

 

   
20 

 
0.5063 

 
2.3218 

  0.6330 2.0015 
  1.7721 1.1208 
  2.6582 0.9607 
  5.1898 0.7218 
  6.7721 0.6405 

La1.5Dy0.5Ca1Ba2Cu5Oz  9.0506 0.5605 
 

  
50 

 
0.4430 

 
0.4403 

  0.9493 0.2802 
  1.1392 0.2401 
  1.4556 0.2001 
  4.5569 0.1200 
  8.2278 0.0800 
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4.3.2 On thin films 

(a) D.C. Susceptibility: The D.C. Susceptibility measurements were taken on the 

thin film (Film E – Table 4.5) with maximum Tc
R=0 in order to confirm the transition 

temperature for the film and also to study its diamagnetic behavior. The VSM (Oxford 

instruments) facility at TIFR Mumbai has been used to measure the M-T plot for the 

thin film.  

 The value of transition temperature obtained from d.c. susceptibility curve  of 

La-Dy-2125  thin film (Figure 4.13) is in good agreement with the value obtained 

from similar measurements on bulk sample. This shows the good quality of the thin 

film.  
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Figure 4.13 M-T plot for La1.5Dy0.5Ca1Ba2Cu5Oz thin film 

(b) D.C. Magnetization: Similar to the studies on bulk sample, the thin film of 

LaDyCaBCO system (Film E), has been studied for its magnetic behavior at different 

temperatures and applied fields. The magnetic hysteresis loop for the Film E has been 
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recorded using the VSM magnetometer at TIFR, Mumbai at 20 K and 85 K up to           

10 k Oe applied field.  

 The magnetization measurements recorded at 20 K (below Tc) and at 85 K 

(above Tc) show totally different behaviors. Figure 4.14 depicts the M-H loop of          

La-Dy-2125 thin film recorded at 20 K showing a large hysteresis effect. M-H loop of 

the sample taken at 85 K has not been shown as it shows paramagnetic behavior with 

large fluctuations in the data.   
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Figure 4.14 M-H loop for La1.5Dy0.5Ca1Ba2Cu5Oz thin film at 20 K 

The current densities at different applied fields were calculated using the 

Bean’s critical state model, using the relation for thin film samples [16] 





 −

∆=

a

b
b

M
Jc

3
1

30
                                               … (6) 

where, ∆M = width of the hysterisis loop at same field, 

a & b are the dimensions of the thin film (Å) 
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The values of the current densities calculated at 20 K, using the above formula 

for the La1.5Dy0.5Ca1Ba2Cu5Oz thin film has been tabulated in the Table 4.9.  

Table 4.9 Current density values for LaDyCaBCO thin film 

Sample Temperature (K) Field 
H (k Oe) 

Jc   
(X 106 A/cm2)  

   1.23377 2.6564 
La1.5Dy0.5Ca1Ba2Cu5Oz  2.72727 2.4467 

(Thin film)  4.48052 2.2835 
 20 5.12987 2.2136 
  5.77922 2.1204 
  7.01299 2.0272 
  7.66234 1.9806 

 

4.4 IODOMETRIC TITRATION   

Oxygen content in the LaDyCaBCO samples was determined by the 

Iodometric double titration method. Small weights (~ 30 – 40 mg) of the finely 

powdered samples were taken for titration against the reducing agents. The detailed 

procedure explained in Chapter 2 (Section 2.5.1) and Chapter 3 (Section 3.5.1) has 

been followed in calculating the oxygen content and hole concentration. Table 4.7 

lists the values of oxygen content and hole concentration calculated from Iodometric 

titration results.  

The oxygen content has been calculated by using the relation: 

z = 3.5(2+p) + 5.5                                         … (7) 

The following relation has been used to calculate the value of oxygen content per unit 

formula in RE-123 form: 

z’ =[z* 3/ (Cu content per unit formula of La-2125 unit cell)]    

The values of oxygen content have been used for calculating the hole 

concentration per unit formula using Tokura’s model [17].  
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4.5 DISCUSSION   

Results of the structural, electrical and magnetic property measurements on 

the bulk samples of La2-xDyxCayBa2Cu4+yOz (LaDyCaBCO); x = 0.1-0.5, y = 2x 

system have been discussed here in the light of effect of simultaneous increase in Dy 

and Ca concentration in non-superconducting tetragonal La2Ba2Cu4Oz system.  

Figure 4.15 shows the variation in unit cell parameters and unit cell volume 

with the increase in Dy concentration (x).  
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Figure 4.15 Variation in unit cell parameters and volume with increasing Dy 
concentration (x) 
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The figure clearly shows that, the replacement of La3+ by smaller Dy3+ and 

Ca2+ ions is responsible for the decrease in unit cell parameters and unit cell volume. 

Also, the density of the samples increases with increasing Dy-Ca concentration (Table 

4.1). Figure 4.16 shows the variation in Tc for LaDyCaBCO samples with increasing 

Dy (x) and Ca (y = 2x) concentration. It can be seen that, Tc increases with increasing 

dopant concentration with a maximum Tc ~ 75 K for x = 0.5 i.e. y = 1.0, 

concentration.  
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Figure 4.16 Increase in Tc with increase in Dy (x) and Ca (y = 2x) concentrations 

  This behavior in Tc increase due to Dy-Ca doping can be explained as follows: 

Rietveld analysis of the neutron diffraction (ND) data on bulk LaDyCaBCO samples 

reveal that, with increasing Dy-Ca concentration the occupancy of Ca-ions at La-site 

increases with concomitant displacement of La ions at Ba-site (Table 4.3). This 

behavior can be clearly seen in Figures 4.17 and 4.18.  
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Figure 4.17 Occupancy of Ca at La site (in %) with increasing Dy (x) concentration 
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Figure 4.18 Occupancy of La at Ba site (in %) with increasing Dy (x) concentration 

 It has been observed that, increasing Ca concentration results in an increase in 

Ca-occupancy at La site (Figure 4.17) along with some fraction of Ca2+ occupying 

Ba2+ site (Figure 4.19).  
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Figure 4.19 Occupancy of Ca at Ba site (in %) with increasing Dy (x) concentration 

 The results of the comprehensive Rietveld analysis of the ND data for 

knowing the % occupancy of Ca ions at La and Ba site in Dy-Ca doped LaDyCaBCO 

samples are displayed in Figure 4.20, which shows the overall variation in Ca 

occupancy at La and Ba sites with increasing dopant concentration.  
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Figure 4.20 Overall occupancy of Ca (in %) at La and Ba sites 
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For Dy (x = 0.5), i.e. Ca (y = 1.0) sample, with the composition 

La1.5Dy0.5Ca1Ba2Cu4+yOz, which when normalized to RE-123 is 

La0.9Dy0.3Ca0.6Ba1.2Cu3Oz or (La0.3Dy0.3Ca0.4)(Ba1.2Ca0.2La0.6)Cu3Oz                             

[La-123 stochiometry], it has been observed that out of overall Ca occupancy of 0.6, 

Ca occupies 0.4 (i.e., ~ 66 %) at La site which is responsible for providing the 

necessary holes for superconductivity in the sample.  
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Figure 4.21 Plot of oxygen content (z) and hole concentration vs. Dy concentration 

The results of the Rietveld analysis suggests that, Ca doping increases the hole 

concentration, thereby increasing Tc. This has been supported by the oxygen content 

determination studies using Iodometric titration. Figure 4.21 shows the dependence of 

oxygen content (z) and hole concentration in CuO2 (psh) sheets, on the doping 

concentration (x). Increasing the dopant content increases the (z) and hence psh values, 

which clearly shows, that the concentration of holes in CuO2 sheets is responsible for 

the occurrence of superconductivity in La-2125 system. This observation has been 

understood by normalizing the La-2125 stochiometry to, well understood La-123 
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system. Based on these studies, an attempt is made to propose a crystallographic unit 

cell model of La-2125 system, which is shown in Figure 4.5, developed on the basis 

of unit cell of La-123 structure [Figure 4.4]. 

The structural and transport studies on La-2125 system have revealed that, Ca 

ions plays an important role along with Cu ions in ‘turning on’ of superconductivity in 

this system. A large number of studies have been reported on the current density 

measurements and it’s dependence on various dopants, applied field and temperature 

in RE-123 type of superconducting systems [18, 19]. These studies in bulk and thin 

film forms of the RE-123 samples help to explore the possibility of applications of 

RE-123 materials in various devices [20, 21].  

Keeping in mind the importance of current density studies and similarity of 

structural and transport properties of La-2125 & RE-123 system, an effort is made to 

determine the current density (Jc) of La-Dy-2125 samples using magnetic 

measurement techniques. La-Dy-2125 sample has been selected as it exhibits 

maximum Tc ~ 75 K and stable tetragonal structure [22].  

Figure 4.22 shows the variation of current density with increasing applied 

magnetic field at various temperatures for La-Dy-2125 sample. The values of Jc are in 

the range of 0.6 X 106 – 2.4 X 106 A/cm2 and 1 X 105 – 4 X 105 A/cm2 measured at  

20 K and 50 K respectively. This clearly shows that within the temperature difference 

of 30 K, the current density decreases by a factor of six.  
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Figure 4.22 Jc vs. H plot for La1.5Dy0.5Ca1Ba2Cu5Oz bulk sample. 

Figure 4.23 shows the logarithmic (natural) values of Jc and H for the above plot.   
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Figure 4.23 ln Jc vs. ln H for LaDy-2125 bulk sample 

The slopes of the above plots (n), also called the gradient of plots (-n), which 

are 0.4860 and 0.5658 at 20 K and 50 K respectively. The values are in good 

agreement with the flux creep model [23], which relates the current density to the 

applied field according to the relation [24]  
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Jc ∝ H-n (n = 0.5)                                   … (8)                             

In addition to the Jc measurement in bulk La-Dy-2125 sample, magnetic Jc has 

been also determined in the thin film of La-Dy-2125 sample synthesized using PLD 

technique. For the determination of magnetic Jc, the equation (5) has been modified to 

equation (6) by taking into consideration the dimensions of the thin films.  

Figure 4.24 shows the decrease in current density (Jc) for the La-Dy-2125 thin 

film with increasing applied field (H).  
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Figure 4.24  Jc versus H plot for La1.5Dy0.5Ca1Ba2Cu5Oz thin film 

It can be seen that, the range of Jc of thin films of La-Dy-2125 is 2.1 X 106     

– 2.6 X 106 (A/cm2), which is higher than the range of Jc variation of                             

6 X 105 - 2.4 X106 (A/cm2) for bulk La-Dy-2125 sample at 20 K.  

The Figure 4.25 shows the logarithmic (natural) values of Jc and H for                   

La-Dy-2125 thin film at 20K. The slope (n) of the plot is 0.1589, which is a clear 

deviation from the flux creep model observed in the bulk sample with the same 

composition.  
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Figure 4.25  ln Jc vs. ln H plot for LaDy-2125 thin film at 20K 

Since it is very difficult to estimate exact dimensions and thickness of thin 

films, the formula used to obtain Jc is an estimate. Further, thin films are supposed to 

be a replica of single crystal in which uniform grain size and homogeneity are 

maintained. Therefore, it is expected that film will not obey flux creep model. The 

present findings agree with the above assertion that thin films do not obey flux creep 

model that is why the slope found for thin films is about 0.16, where as for bulk it is 

around 0.5.   
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CONCLUSIONS 

 Our studies on the structural, transport and magnetic measurements on the 

bulk and thin film samples of La2-xDyxCayBa2Cu4+yOz; x = 0.1 – 0.5, y = 2x, samples 

shows the following salient features 

) Addition of equal amounts of CaO and CuO, along with  rare earth Dy, in the 

non-superconducting tetragonal La2Ba2Cu4Oz system, results into the 

formation of a superconducting tetragonal La1.5Dy0.5Ca1Ba2Cu5Oz (La-2125) 

phase  with a maximum Tc of ~ 75 K with stable oxygen independent 

behavior. 

) There exists a direct relationship between Tc and hole concentration in 

conducting CuO2 planes with the Ca concentration. 

) The thin films of La-Dy-2125 system exhibits single phase epitaxial behavior 

with an average grain size of ~ 1800 Å and a well defined surface 

morphology. 

) The detailed structural investigations using neutron diffraction (ND) studies at 

room temperature shows that, with increasing Ca-concentration the occupancy 

of Ca ions at La site increases with concomitant displacement of La onto Ba 

site. The increased Ca occupancy provides the necessary holes for conduction 

in CuO2 planes and Ca substitution helps in ‘turning on’ of superconductivity 

in the system. 

) Results of the current density measurements on the bulk La-Dy-2125 samples 

with maximum Tc ~ 75K suggests that, the decrease in Jc (current density) 

with increasing field at different temperatures obeys the flux creep model. The 
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study of field dependence of Jc for La-Dy-2125 thin film shows that, there is a 

deviation from flux creep model which may be attributed to the uniform grain 

size and homogeneity in the films.  
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INTRODUCTION 

 Pr-123 is a non-superconductor with non-metallic nature [1-2]. But there is a 

marked difference in the properties of Pr-123 and Pr doped 123 systems. In Pr doped 

123 systems, the increase in Pr content gradually suppresses the superconductivity         

[3, 4]. In order to explain this behavior of Pr-doped 123 systems, two mechanisms 

have been proposed which are magnetic pair breaking and /or localization of holes 

available for conduction in CuO2 planes [5].  

The substitutional effects of Pr existing in either Pr3+, Pr4+ or mixed valent 

Pr3+, 4+ at RE (rare earth) site in RE1-xPrxBa2Cu3Oz (RE-123) with RE = Eu, Er, Gd 

and Y etc have been widely studied [6 – 8]. In RE-123 systems, the superconductivity 

gets suppressed at about x ≥ 0.5 either due to tetravalent Pr induced hole filling or 

localization of mobile holes in the conducting CuO2 planes or by magnetic pair 

breaking through hybridization of Pr3+ (4f2) and O2-(2p) states of CuO2 planes [9, 10].  

Our earlier studies on the role-played by RE substitution at La-site in newly 

synthesized La2-xRExCayBa2Cu4+yOz; x = 0.0 – 0.5, y = 2x system, have shown that 

RE ion at La-site provide the stability to the La-2125 structure [11, 12]. Keeping in 

mind the role played by Pr-substitution at RE-site in RE-123 systems [3, 4] it would 

be interesting to study the role played by Pr – substitution at La-site in modifying the 

structural and superconducting properties of La2-xPrxCayBa2Cu4+yOz (LaPrCaBCO) 

system. For this purpose La-2125 system is normalized to RE-123 and then the effect 

of Pr-substitution at La-site on the Tc has been studied on the basis of mechanisms 

relevant to RE-123 system. For this purpose a series of samples with the stochiometric 

composition La2-xPrxCayBa2Cu4+yOz, x = 0.1 – 0.5, y = 2x; (LaPrCaBCO) have been 
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synthesized and detailed structural study has been done by analyzing the X-ray 

diffraction (XRD) data by Rietveld refinement method. The XRD data was obtained 

at room temperature (RT) using Cu-Kα radiation of wavelength, λ = 1.5405 Å.  The 

superconducting properties have been studied using electrical (four probe resistivity) 

and magnetic (d.c. susceptibility and d.c. magnetization) methods.  

 The substitutional studies at different crystallographic sites in RE-123 

superconductor have been done by many researchers to investigate the origin and 

mechanism of superconductivity [13, 14]. It is reported that, the Cu-site substitution 

by Fe, Co, Ni, Zn, Mo etc reduces Tc and induces structural phase transitions. 

Interestingly, partial substitution of rare earth at La-site in La-2125 systems shows no 

effect on Tc similar to rare earth substituted RE-123. To date no attempt has been 

made to substitute metal dopant like Mo for Cu-site in La-2125 superconductor in 

order to understand the effect of aliovalent substitutents on structure and 

superconductivity of the La-2125 compounds.  

One of the important properties needed to be determined for application of 

high-Tc superconductors is their current-carrying capacity and temperature and field 

dependence. For most applications, a high critical current density Jc ~ 104 – 106 A/cm2 

is required, often in the presence of crystalline defects that can act as pinning centers, 

which are necessary to sustain resistanceless currents in magnetic fields [15]. It is well 

established that, the superconducting behavior of 123 materials depends markedly on 

the changes in the effective copper valence [16]. The effective valence can be 

monitored by the changes in the oxygen stoichiometry or the chemical substitutions at 

copper and non-copper sites [17, 18]. The valency of dopant plays an important role 
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in monitoring the effective copper valence (the mobile carrier concentration, p) or the 

oxygen content of oxide superconductors, as superconducting behavior depends on it. 

Especially, cation doping [19, 20] at the Cu-site may change p and affect many 

properties accordingly. The valence state of Mo4+, 6+ is higher than that of Cu2+; such a 

substitution of Mo for Cu in YBCO decreases p and is also equivalent to the 

introduction of defects at Cu-sites, which act as pinning centers. Some work has been 

reported on the effect of Mo substitution on the superconducting properties of YBCO 

and REBCO [21] which prompted us to extend this interesting work onto the La-2125 

system and study the effect of Mo substitution at Cu site in            

La1.5Nd0.5Ca1Ba2[Cu1-xMox]5Oz system for x = 0.00 – 0.20. Literature survey reports 

that, the hole filling by Mo at Cu site can be compensated by hole doping in the non-

copper cation sites in RE-123 systems [22]. In order to investigate, whether this hole 

doping phenomenon can be possible in the presently studied system, we studied the 

Mo substituted system with Ca doping in the form,                             

La1.5-yNd0.5Ca1+yBa2[Cu1-xMox]5Oz, for x = 0.20 and y = x, 2x, 3x.  

5.1 STUDIES ON LaPrCaBCO SYSTEM 

5.1.1 X-ray Diffraction: The X-ray diffraction measurements were performed on all 

the samples of LaPrCaBCO system at room temperature in the 2θ range of 200 - 800 

using a Cu-Kα radiation of wavelength λ = 1.5405 Å. Figure 5.1 shows the indexed 

XRD patterns for the LaPrCaBCO system.  

The XRD patterns were indexed and unit cell parameters were refined by 

using the ‘PowderX’ software. The values of unit cell parameters, unit cell volume 

and X-ray density are shown in Table 5.1.  



Studies on Pr and Mo substituted systems… 

 

V - 5 

 
 

Table 5.1 Values of unit cell parameters, volume and X-ray density 

Unit cell Parameters Volume 
(V) 

X-ray density 
(ρ)  

Sample 
(x, y) 

(a= b) 
Å 

(c) 
Å 

(Å)3 (gm / cm3) 

(0.1, 0.2)  3.9312 (3) 11.8340 (8) 182.8903 8.8690 
 

(0.2, 0.4) 3.8839 (3) 11.6601 (8) 175.8969 9.5576 
 

(0.3, 0.6) 3.8783 (3) 11.6287 (8) 174.9117 9.8452 
 

(0.4, 0.8) 3.8675 (3) 11.6074 (8) 173.6247 10.1939 
 

(0.5, 1.0) 3.8726 (3) 11.6342 (8) 174.4797 10.4142 
 

 

 Detailed structural studies on the LaPrCaBCO system have been done by 

analyzing the XRD data by Rietveld refinement technique using FULLPROF 

program. During the refinement of the data, an initial model of RE-123 tetragonal 

structure with P 4/M M M space group (No. 123) was assumed on the lines of 

analysis of LaDyCaBCO system (Chapter – IV). Figs. 5.2 (a – e) shows the Rietveld 

fitted indexed XRD patterns for all the samples of LaPrCaBCO system.  It can be seen 

from the figures that, the calculated XRD patterns fit very well with the observed 

patterns, which shows the single-phase nature and good quality of the samples.  
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Figure 5.1 
Indexed XRD patterns for LaPrCaBC

O
 system
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Figure 5.2 (a) Rietveld fitted XRD pattern for LaPrCaBCO, (x = 0.1,y = 0.2) sample 

 

Figure 5.2 (b) Rietveld fitted XRD pattern for LaPrCaBCO, (x = 0.2,y = 0.4) sample 
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Figure 5.2 (c) Rietveld fitted XRD pattern for LaPrCaBCO, (x = 0.3, y = 0.6) sample 

 

Figure 5.2 (d) Rietveld fitted XRD pattern for LaPrCaBCO, (x = 0.4, y = 0.8) sample 
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Figure 5.2 (e) Rietveld fitted XRD pattern for LaPrCaBCO, (x = 0.5,y = 1.0) sample 

The results of the Rietveld analysis for the LaPrCaBCO samples are tabulated 

in Table 5.2. The site occupancies, atomic positions, unit cell parameters were varied 

during the refinement cycle. Since the XRD is insensitive to oxygen, the site 

occupancy of oxygen was kept fixed and not varied during the refinement. All the 

other parameters like atomic positions, unit cell parameters, thermal parameters, scale 

factor, zero shift angle were varied until the refinement cycle converge. The reliable 

R-values obtained from the converging cycle were taken as final values.  

The Table 5.2 lists the values obtained from the Rietveld analysis of the X-ray 

diffraction data.  
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Table 5.2 Values obtained from XRD Rietveld analysis 

Sample (x, y) 
 

Parameters (0.1, 0.2) (0.2, 0.4) (0.3, 0.6) (0.4, 0.8) (0.5, 1.0) 
 

Space group 
a = b (Å)  
c (Å)  

P4/MMM 
3.8988 (3) 
11.7235 (8) 

P4/MMM 
3.8824 (3) 
11.6698 (8) 

P4/MMM 
3.8724 (3) 
11.6417 (8) 

P4/MMM 
3.8650 (3) 
11.6336 (8) 

P4/MMM 
3.8712 (3) 
11.6388 (8) 
 

La/Nd/Ca 
(½, ½, ½) 
NLa 
NPr 
NCa 

 
 
0.821 
0.035 
0.035 

 
 
0.630 
0.143 
0.094 

 
 
0.451 
0.184 
0.279 

 
 
0.476 
0.226 
0.226 

 
 
0.274 
0.275 
0.395 
 

Ba (½,½, z) 
z 
N 

 
0.1804 
1.433 

 
0.1830 
1.328 

 
0.1819 
1.242 

 
0.1864 
1.255 
 

 
0.1868 
1.120 
 

La @ Ba (N) 0.505 0.509 0.594 0.505 
 

0.560 
 

Ca @ Ba (N) 0.076 0.090 0.142 0.255 0.180 
 

Cu (1) (0,0,0) 
N 

 
1.000 

 
1.000 

 
1.000 

 
1.000 

 
1.000 

Cu (2) (0,0,z) 
z 
N 

 
0.3504 
2.0000 

 
0.3521 
2.0000 

 
0.3535 
2.0000 

 
0.3536 
2.0000 

 
0.3596 
2.0000 
 

O (1) (0,½,0) 
N 

 
1.0562 

 
1.3192 

 
1.0100 

 
0.9415 

 
1.5050 

O (2) (0,0,z) 
z 
N 

 
0.1527 
2.0000 

 
0.1687 
2.0000 

 
0.1594 
2.0000 

 
0.1626 
2.0000 

 
0.1575 
1.3903 

O (4) (0,½,z) 
z 
N 

 
0.3653 
4.0000 

 
0.3799 
4.0000 

 
0.3687 
4.0000 

 
0.3622 
4.0000 

 
0.3735 
3.1823 

Total Oxygen 
(z’ – in 123) 
(z – in 2125) 

 
7.0562 
9.8786 

 
7.3192 
10.7348 

 
7.0997 
10.8862 

 
6.9415 
11.1064 

 
7.0692 
11.7820 

R-factors 
χ2 
Rwp 
Rp 

 
2.18 
34.6 
22.8 

 
2.01 
38.3 
28.9 

 
2.20 
44.1 
30.6 

 
1.96 
45.3 
35.2 

 
1.57 
44.3 
32.7 
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5.1.2 Transport measurements: The four probe d.c. resistivity technique was used 

to study the variation in resistance as a function of temperature which gives the values 

of transition temperatures. Figure 5.3 shows the normalized resistance versus 

temperature plots for all LaPrCaBCO samples.  
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Figure 5.3 Normalized resistance versus temperature plot for LaPrCaBCO system 

The maximum transition temperature Tc
R=0 ~ 58K has been observed in           

x = 0.5 which is ~ 20 K less than the conventional La1.5RE0.5Ca1Ba2Cu5Oz system.  

5.1.3 Magnetic measurements: The d.c. susceptibility measurements were 

performed on few selected bulk samples of LaPrCaBCO system in order to verify the 

transition temperatures obtained from electrical method. Figure 5.4 shows the 

magnetic moment versus temperature plots for LaPrCaBCO system. The 

susceptibility measurements were performed using the Vibrating Sample 

Magnetometer (VSM) at TIFR, Mumbai.  

The values of the transition temperatures obtained from resistivity and d.c. 

susceptibility measurements are tabulated in Table 5.3. It can be seen that, both the 
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values agree fairly well, showing good quality of samples and reliability of 

measurements. 
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Figure 5.4  Magnetic moment versus temperature plots for LaPrCaBCO system 

5.1.4 Iodometric titration: Iodometric double titration has been performed on all the 

samples of LaPrCaBCO system to determine the oxygen content per unit cell and 

hence calculate the effective copper valence and hole concentration. Table 5.3 gives 

the values of oxygen content obtained from iodometric analysis.  It can be seen that, 

oxygen content (z) and hence hole concentration in CuO2 (psh) increases with 

increasing Pr – content.  
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Table 5.3 Values of Tc, oxygen contents and hole concentration 

Pr 
concentration 

Transition 
temperature  

(K) 

Oxygen content       
(in 123 & 2125) 

Hole concentration 
 
 

(x) Tc
R=0  Tc

M ON z’ Z p psh 

 

0.1 -- 
 

16 6.6708 9.3391 0.1138 0.0854 

0.2 35 
 

-- 6.7732 9.9340 0.1821 0.1366 

0.3 48 
 

48 6.8405 10.4887 0.2270 0.1702 

0.4 54 
 

-- 6.8631 10.9810 0.2420 0.1815 

0.5 58 
 

59 6.8702 11.4504 0.3800 0.1851 

 

5.2 STUDIES ON LaNdCaBCMoO SYSTEM 

5.2.1 X-ray Diffraction studies: The room temperature X-ray diffractograms were 

recorded on all powdered samples of La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz for                        

x = 0.00 – 0.20; (LaNdCaBCMoO) system using the Cu-Kα radiation with                     

λ = 1.5408 Å. Figure 5.5 shows the indexed patterns of LaNdCaBCMoO samples.  

 It can be seen from the figures that, number of impurity peaks with (*) 

indication increases with increasing Mo content. These impurity peaks cannot be 

indexed in La-2125 tetragonal structure, which may be due to un-reacted components 

or secondary phase formation at higher Mo-doping concentrations. XRD plots of                    

x = 0.15 and x = 0.20 are hence not shown.  
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Figure 5.5 Typical XRD patterns for few La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples 
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The unit cell parameters were calculated from the XRD patterns for all the 

samples of LaNdCaBCMoO samples using least square fitting method. The values of 

unit cell parameters, unit cell volume obtained from XRD analysis have been 

tabulated in Table 5.4. Increasing the Ca concentration in                             

La1.5-yNd0.5Ca1+y(Cu1-xMox)5Oz sample for x =  0.2, y = x, 2x and 3x samples, do not 

contribute to the superconducting properties, and also do not contribute to structural 

improvement also. Increase of Ca in the La1.5-yNd0.5Ca1+y(Cu1-xMox)5Oz; x = 0.2,            

y = x, 2x and 3x samples leads to multiphase formations having large impurity due to 

excess Ca-doping and the XRD patterns (not shown) cannot be fitted in La-2125 

tetragonal structure.   

Table 5.4 Unit cell parameters, volume and X-ray densities for LaNdCaBCMoO  
samples 

 

5.2.2 Resistivity measurements: D.C. four-probe resistance measurements were 

carried out on all the LaNdCaBCMoO and LaNdCayBCMoO samples in the 

temperature range, from RT - 20 K using closed cycle cryostat for the determination 

Mo 
concentration  

(x) 

a = b 
(Å) 

c 
(Å) 

Volume  
(Å3) 

X-ray Density 
(ρ) 

(gm / cm3) 
0.00 3.8677 (3) 11.5998 (8) 173.5226 10.4119 

 
0.01 3.8727 (3) 11.5998 (8) 173.9715 10.4856 

 
0.03 3.8739 (3) 11.5994 (8) 174.0733 10.4798 

 
0.05 3.8664 (3) 11.5703 (8) 172.9649 10.6056 

 
0.10 3.8122 (3) 11.6146 (8) 168.9794 11.0157 
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of resistive transition temperatures. Values of the Tc
R=0 obtained from R-T 

measurements have been tabulated in Table 5.5. 

 Figs. 5.6 (a) & (b) shows the normalized resistance versus temperature 

dependence of different Mo doped LaNdCaBCMoO samples. It can be seen from the 

Figure 5.6 (a) that up to x = 0.10 sample, all the samples exhibit metallic behavior and 

Tc is suppressed at the rate of 4K / atm % of Mo-doping. Figure 5.6 (b) shows that, 

samples with x = 0.15 and 0.20 exhibit large resistance and does not show Tc
R=0.  
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Figure 5.6 (a) R-T plots for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples (x = 0.00 – 0.10) 
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Figure 5.6 (b) R-T plots for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz  samples (x = 0.15 & 0.20) 
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Figure 5.6 (c) R-T plots for La1.5-yNd0.5Ca1+yBa2(Cu1-xMox)5Oz samples 

Figure 5.6 (c) shows that, with increasing Ca in Mo substituted 

LaNdCaBCMoO system, leads to highly resistive semi-conductive system. For           
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x = y = 0.20 in La1.5-yNd0.5Ca1+yBa2[Cu1-xMox]5Oz system, the resistance goes up to 

Mega-Ohm range but on further increase in Ca (y = 2x, 3x), the resistance decreases 

to few hundred Ohms, but the system still remains semi-conducting.  

Table 5.5 Values of Tc, oxygen content, hole concentration of Mo-Ca doped              
La-2125 system 
 

Concentration Transition 
temperature 

(K) 

Oxygen content       
(in 123 & 2125) 

Hole concentration 
 
 

 
(x, y) 

 
Tc

R=0 
 

Tc
M 

on
 

 
z’ 

 
z 

 
p 

 
psh 

 

(0.00, 0.00) 78 (1) 77 (1) 6.950 (3) 11.583 
(8) 

0.300 0.225  
 

(0.01, 0.00) 74 (1) 75 (1) 6.807 (3) 11.345 
(8) 

0.205 0.153 
 

(0.03, 0.00) 66 (1) 68 (1) 6.793 (3) 11.322 
(8) 

0.195 0.146 
 

(0.05, 0.00) 64 (1) 65 (1) 6.686 (3) 11.143 
(8) 

0.124 0.093 
 

(0.10, 0.00) 39 (1) 55 (1) 6.671 (3) 11.119 
(8) 

0.114 0.085 
 

(0.15, 0.00) NS -- 6.666 (3) 11.110 
(8) 

0.1109 0.083 
 

(0.20, 0.00) NS -- 6.652 (3) 11.087 
(8) 

0.1015 0.076 
 

(0.20, 0.20) NS -- -- -- -- -- 

(0.20, 0.40) NS -- -- -- -- -- 

(0.20, 0.60) NS -- -- -- -- -- 

NS: Non - superconducting 

 

5.2.3 Magnetic measurements: Few selected samples of LaNdCaBCMoO system 

were studied for their magnetic properties by d.c.susceptibility and d. c. magnetization 

using MPMS (Magnetic Property measurement system) at TIFR, Mumbai. The d. c. 

susceptibility measurements on all the samples studied (M-T) were taken at 20 Oe 
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field. Figure 5.7 shows the variation in magnetic moments observed as a function of 

temperature for all the samples investigated. Values of the transition temperature 

obtained from M – T curves (Tc
Mon

) are tabulated in Table 5.5, which agrees well with 

Tc
R = 0 values.  
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Figure 5.7 M - T plots for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples (x = 0.00 – 0.10) 

The magnetization measurements as a function of field at different 

temperatures were performed on few selected samples of LaNdCaBCMoO system in 

order to determine their current densities. Figures 5.8 (a-d) shows the magnetic 

hysteresis loops for LaNdCaBCMoO samples with x = 0.00 – 0.05 obtained at 

different temperatures and fields.  
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Figure 5.8 (a) M - H loops for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz  (x = 0.00) sample  
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Figure 5.8 (b) M - H loops for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz (x = 0.01) sample  
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Figure 5.8 (c) M - H loops for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz (x = 0.03) sample   
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Figure 5.8 (d) M - H loops for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz (x = 0.05) sample  
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It can be seen from these figures that with increasing Mo concentration, the 

magnetic hysterisis loop collapses. The current density for each sample has been 

calculated using Bean’s critical state model according to the following formula,  

ρ*
30






 ∆=

D

M
Jc

                                                      … (1) 

Where, Jc = current density in A/cm2 

 ∆M = width of the magnetization loop at a particular H 

 D = average grain size (~ 2.3 * 10-4 cm) 

 ρ = X-ray density (g/cm3) 

The values of the magnetic current densities of different Mo-doped samples 

determined at different temperatures and fields are tabulated in Table 5.6.  
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Table 5.6 Jc values for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples  
 

Sample Temperature (K) Field 
H (kOe) 

Jc   
(X 106 A/cm2)  

   5.5556 1.1502 
  10.0000 0.9448 
  13.3300 0.7805 

La1.5Nd0.5Ca1Ba2Cu5Oz 05 20.0000 0.6161 
(x = 0.00)  23.8888 0.5304 

  30.0000 0.4518 
  35.5555 0.3286 

 
    
  0.9716 3.7755 
  2.6372 3.4323 

La1.5Nd0.5Ca1Ba2Cu4.95Mo0.05Oz 05 3.4700 3.0318 
(x = 0.01)  3.5394 3.0032 

  4.5112 2.6686 
  5.9684 2.2882 
    
  0.4838 0.4970 
  1.0483 0.4083 
  1.7741 0.2589 

La1.5Nd0.5Ca1Ba2Cu4.95Mo0.05Oz 40 2.0161 0.2485 
(x = 0.01)  3.0645 0.1450 

  3.6290 0.1346 
  5.1612 0.1035 
  8.8710 0.7249 
    
  2.5000 1.5780 
  6.9444 1.0777 
 05 15.0000 0.6543 
  18.0555 0.6158 
  27.2222 0.4618 

La1.5Nd0.5Ca1Ba2Cu4.85Mo0.15Oz  33.3333 0.4233 
(x = 0.03)    

  1.6667 0.8467 
  2.2222 0.7697 
 40 5.0000 0.3858 
  12.7778 0.1539 
  27.2222 0.0768 
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Table 5.6 continued… 
Sample Temperature (K) Field 

H (kOe) 
Jc   

(X 106 A/cm2)  

    
  2.2222 0.6080 
  3.8880 0.5007 

La1.5Nd0.5Ca1Ba2Cu4.75Mo0.25Oz 05 6.1110 0.3576 
(x = 0.05)  15.227 0.2147 

  21.111 0.1788 
  32.770 0.1430 
    

 

5.2.4 Iodometric titration: Iodometric double titration was performed on all the 

samples of the LaNdCaBCMoO series to determine the oxygen content and hole 

concentration as a function of increasing Mo concentration. The values of the oxygen 

content, X-ray density, and hole concentration for all the samples studied are 

tabulated in Table 5.5.  



Studies on Pr and Mo substituted systems… 

 

V - 25 

 
 

5.3 DISCUSSION  

Results of the experimental investigations on Pr-doped                             

La2-xPrxCayBa2Cu4+yOz; (LaPrCaBCO); x = 0.1 – 0.5, y = 2x and Mo-doped 

La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz; x = 0.00 – 0.10, (LaNdCaBCMoO) samples studied 

for their structural, electrical and magnetic properties have been discussed in this 

section. Rietveld analysis of the XRD data was done to determine the occupancy of 

dopants at different sites while d.c. four probe method was used to study the R-T 

behavior for the determination of Tc. D.C. Magnetization measurements performed at 

different temperatures and fields were used for the determination of magnetic Jc of 

Mo-doped La-2125 samples.   

5.3.1 Studies on LaPrCaBCO system 

 Values of the unit cell parameters and unit cell volume obtained from XRD 

analysis are given in Table 5.1. Variation of unit cell parameters and volume with 

increasing Pr-concentration in LaPrCaBCO system is shown in Figure 5.9. It can be 

seen from the figure that, lattice parameters and hence volume decreases with 

increasing Pr and Ca content, which may be attributed to the smaller ionic radii               

(Pr3+ / 4+, rPr = 0.99 / 0.85 Å and Ca2+, rCa = 1.00 Å) occupying La3+(rLa = 1.03 Å) ion.   
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Figure 5.9 Variation of unit cell parameters and volume with increasing Pr (x) 
concentration 

  

The detailed structural studies were carried out on all the samples of 

LaPrCaBCO system using the FULLPROF program. The XRD patterns were refined 
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using RE-123 tetragonal structure as a starting model, which fitted well into the 

assumed structure with P 4/M M M space group. The results of the Rietveld analysis 

of the XRD data are given in Table 5.2. It can be clearly seen from the table that, as 

observed in the analysis of La-Dy-2125 samples, Ca is distributed at both La and Ba 

sites along with concomitant displacement of La onto Ba site with increasing Pr and 

Ca concentration. Out of total Ca in the sample, the Ca concentration increases from 

35 % (for x = 0.1) to 68% (x = 0.5) at La site. The occupancy of Ca at La site 

increases from 39% - 41 %.   

 Figure 5.10 shows increase in hole concentration (in CuO2 sheets) and oxygen 

content with increasing Pr-concentration. In the Pr substituted RE-123 samples, the 

fluctuating valence of Pr (Pr3+ / 4+) plays the role of localizing the mobile holes in the 

conducting planes thus suppressing superconductivity with increasing Pr content. 

Various models have been proposed to explain the suppression of Tc by Pr 

substitution. In the present study, Pr is substituted at La site, which can be considered 

equivalent to the substitution of Pr at RE site in RE-123 system. But in RE substituted 

La-2125 systems, the La site is occupied by La, RE and Ca. Hence, the increase in Tc 

with increasing Pr substitution can be attributed to the hole doping by Ca2+, which 

overcomes the hole filling by Pr4+ at La3+ site, resulting into enhancement in Tc.   
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Figure 5.10 Variation in oxygen content (z) and hole concentration in sheets (psh) as 
a function of Pr concentration (x) 

 

Figure 5.11 shows the variation of Tc as a function of increasing Pr 

concentration.  

0.1 0.2 0.3 0.4 0.5

35

40

45

50

55

60
 

 

T
c(K

)

Pr  - Concentration (x)

 

Figure 5.11 Variation in Tc  as a function of Pr concentration (x) 
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  Our studies on the La2-xRExCayBa2Cu4+yOz, RE = Y, Er, Nd, Dy etc, system 

establishes the fact that, with increase in RE and Ca (x = 0.0 – 0.5, y = 2x) as per the 

stoichiometry, there is increase in the hole concentration in the CuO2 sheets, which is 

responsible for inducing the superconductivity. The maximum Tc ~ 75 K is achieved 

for x = 0.5 (i.e., La-Dy-2125 phase) composition [23]. As Figure 5.12 depicts, the 

LaPrCaBCO system is an exception to these findings. The rate of increase in Tc, with 

increase in Pr and Ca concentration, is less as compared to Dy or Nd systems. The 

possible reason for this exception can be due to the fluctuating valence of Pr3+, 4+ 

substituting at La3+ site and the hole filling by Pr>3+ cannot be fully compensated by 

hole doping by Ca2+ at La3+. The holes contributed by Ca helps in de-localizing the 

mobile charges in the conducting CuO2 planes. This results into the difference in 

maximum Tcs achieved for x = 0.5 composition in La2-xPrxCayBa2Cu4+yOz 

stoichiometry and other RE doped La2-x(Nd/Dy)xCayBa2Cu4+yOz systems                 

(Figure 5.12).  
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Figure 5.12 Comparison of increase in Tc with increasing RE and Ca in                               
La2-xRExCayBa2Cu4+yOz system 
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5.3.2 Studies on LaNdCaBCMoO system 

 The variation of unit cell parameters (a, b and c) and unit cell volume for all 

the samples in the La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz; x = 0.00 – 0.10 series is shown in 

Figure 5.13. The figure shows the variation of unit cell parameters with increasing Mo 

concentration at Cu site. It is important to note here that, the changes in the unit cell 

parameters can be due to the fluctuating valence of Mo, which exists in Mo3+, 4+, 5+, 6+ 

states. The ionic radii of each respective valence state is 0.69, 0.65, 0.61, 0.59 Å. At 

lower Mo concentrations, the change in unit cell parameters is very small, but at 

higher concentrations of Mo, there is sharp change which can be due to the 

appearance of secondary phases or un-reacted constituents indicated by impurity 

peaks in the XRD patterns (Figure 5.5).  

 The Figure 5.14 shows the decrease in oxygen content (z) and hole 

concentration in CuO2 sheets (psh) with increasing Mo concentration (x). The plot 

clearly shows that, oxygen content and hence hole concentration decreases with 

increasing Mo-concentration indicating that Mo exists in > 3+ state. The decrease in z 

and psh may be attributed to the hole filling by Mo>3+ resulting into lowering of charge 

carriers and hence suppression of superconductivity. This has been shown in the Tc 

variation with Mo-doping concentration in Figure 5.15.  



Studies on Pr and Mo substituted systems… 

 

V - 31 

 
 

0.00 0.02 0.04 0.06 0.08 0.10

3.82

3.84

3.86

3.88

3.856

3.860

3.864

3.868

3.872

170

172

174

 

a
 =

 b
 (

A
)

M o  - concentration  (x)

 a =  b
 c / 3

 c
 / 3

 (A
)

 

 

 V
V

o
lu

m
e

 (
A

3 )

 

Figure 5.13 Variation of unit cell parameters and volume with increasing Mo (x) 
concentration 
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Figure 5.14 Decrease in z, psh with increasing Mo concentration in 
La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples 
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Figure 5.15 Decrease in Tc with increasing Mo concentration in          
La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples 

 

 It is interesting to study the effect of substitution of Mo>3+ (rMo = 0.65Å - 

0.59Å) at Cu2+ (rCu = 0.73Å). The mismatch in ionic radii results in introducing the 

defects in the crystal structure, which acts as flux trapping centers, called ‘point 
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defects’. The Figures 5.16 (a & b) show the current densities measured for few 

samples of the LaNdCaBCMoO system as a function of applied field at 5 K and 40 K 

respectively.  
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Figure 5.16 (a) Current density for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples at 5 K. 
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Figure 5.16 (b) Current density for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples at 40 K. 
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Figure 5.17 (a & b) shows the plots lnJc vs lnH at 5 K and 40 K respectively. It 

can be observed from these figures that, Jc decreases with increasing temperature and 

field.   
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Figure 5.17 (a) lnJc versus lnH for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples at 5 K 
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Figure 5.17 (b) lnJc versus lnH for La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples at 40 K 
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The flux creep model accounts for the behavior of Jc in magnetic fields. The field 

dependence of Jc is given by 

Jc ∝ H-n (n = 0.5)                                                  …(2) 

where, the gradient (-n) of the plots is obtained by the slope of ln Jc vs. ln H plot. 

Figure 5.18 shows the increase in ‘n’ as a function of increasing Mo (x) concentration 

in La1.5Nd0.5Ca1Ba2Cu5-xMoxOz, the values of which are given in Table 5.7.  

Table 5.7 Values of the gradient of slope (-n), with increasing Mo concentration  

Mo-concentration (x) n 

0.00 0.3326 

0.01 0.3359 

0.03 0.5226 

0.05 0.5576 
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Figure 5.18 Variation in the slope of lnJc vs lnH with increasing Mo concentration in 
La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz system 
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As can be seen from above figure and table, the observed values of the 

gradients (-n) of the plots are within the limits of the experimental uncertainties and 

thus the Mo doped La-2125 system can be seen to obey the flux creep model of field 

dependence of Jc.  

The Figure 5.19 shows the current density values for different Mo doped 

samples at a particular field and temperature (H = 6 k Oe, T = 5 K). The maximum 

current density has been observed for x = 0.01 (i.e., 1 % Mo substitution at Cu site) 

sample. With increasing Mo concentration, the current density decreases.  
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Figure 5.19 Variation of Jc with increasing Mo concentration (x) for 
La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz samples 

 

 The studies on Mo-doped RE-123 systems have established the fact that Mo-

substitution at low concentrations results in point defects, which act as pinning centers 

and promote the enhancement of Jc [24].   

The comparison of behavior of Tc vs Mo-doping concentration (x) in RE-123 

and La-2125 systems has been made in Figure 5.20. Unlike the RE-123 systems, in 
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which the superconductivity is completely suppressed at around x = 0.08 (~ 8 % of 

Mo doping), superconductivity is still observed in La-2125 system up to x = 0.10         

(~ 10% of Mo doping). The rate of Tc suppression due to Mo-doping in RE-123 

superconductors is different than that compared with Mo-doped La-2125 system, 

which suggest the possibility of different conduction mechanism in La-2125 systems.  
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Figure 5.20 Comparison of changes in Tc for RE-123 and La-2125 systems doped 
with Mo (x) 

 

The behavior of Tc suppression due to Fe substitution at Cu-site in RE-123 

superconductors has been explained on the basis of two mechanisms. These are, 

magnetic pair breaking and hole filling in the CuO2 planes. In the present course of 

work, the substitution of Mo>3+ at Cu-site in La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz system 

has resulted into the suppression of superconductivity with increasing Mo content, 

which is shown in Figure 5.15. In order to see whether the Tc suppression due to Mo 

doping in LaNdCaBCMoO system is due to hole filling or pair breaking mechanism, 
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the experimental observations on the nature of Tc suppression have been compared 

with the curve obtained from Abrikosov-Gorkov pair breaking theory [25] of 

magnetic impurity substitutions in Figure 5.21.  
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Figure 5.21 Comparison of Tc suppression: experimental data ( • ) and  
AG - Theory (  ) 
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as x Æ 0 (or small). It is evident from the Figure 5.21 that, there is a agreement 

between the decrease of normalized Tc value with Mo concentration (x) and it follows 

the A-G pair breaking model.  

 This linear dependence of [Tc (x) / Tc (0)] vs. x (for x = 0.00 – 0.15) can be 

interpreted as evidence for pair breaking mechanism along with hole filling by Mo>3+ 

which suppresses superconductivity in LaNdCaBCMoO system.  
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CONCLUSIONS 

 On the basis of the results obtained on the studies on Pr–Ca and Mo–doped   

La–2125 mixed oxide superconducting systems, the following conclusions are drawn 

) Structural studies on Pr–Ca substituted La2-xPrxCayBa2Cu4+yOz samples reveal 

that, Ca occupies La–site and Ba–site with simultaneous displacement of La 

on to Ba site.  

) The maximum Tc obtained in Pr–Ca doped La–2125 system is ~ 58 K which is 

lower than, Tc ~ 75 – 78 K obtained for other rare earth dopings like Nd, Dy 

and Er at La–site which may be correlated to the concentration of holes in 

CuO2 sheets having a maximum value of 0.185 (psh) for La-Pr-2125 as 

compared to La-Dy-2125 (psh = 0.235) systems.  

) The effect of Ca–addition resulting into the hole doping which increases Tc in 

Nd/Dy/Er doped La-2125 systems, has been counter balanced by the Pr3+, 4+ 

substitution at La–site which lowers the Tc value probably by hole filling 

mechanism.  

) Structural investigations on Mo doped La1.5Nd0.5Ca1Ba2(Cu1-xMox)5Oz system 

shows that, the unit cell parameters varies with increasing Mo content due to 

ionic size effect. 

) The decrease in Tc with increasing Mo concentration in LaNdCaBCMoO 

samples can be explained on the basis of decrease in oxygen content and 

hence hole concentration in CuO2 sheets indicating that Mo exists in > 3+ state 

in the system under investigation, which fills the mobile holes necessary for 

conduction, thereby suppressing the Tc.  
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) Comparison of the Mo doping effects, on the Tc suppression in Y - 123,             

Gd – 123 and La – 2125 systems and to know whether Tc suppression obeys  

A  - G pair breaking theory, shows that, in La–2125 system, Mo–substitution, 

results into Tc suppression both by hole filling and pair breaking.  

) The enhancement of Jc for 1% Mo doping at Cu – site in LaNdCaBCMoO 

system shows that Mo – substitution at low concentration helps in the 

enhancement of Jc due to flux pinning effect. The dependence of Jc on applied 

field for LaNdCaBCMoO samples obeys the flux creep model of field 

dependence.  
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SCOPE FOR THE FUTURE WORK 

 The structural, magnetic and transport studies on La–Dy–2125, Pr–Ca doped 

La–2125 and Mo–doped La–Nd–2125 systems have revealed many interesting 

properties which help to understand the cause of superconductivity and mechanism of 

conduction in these systems. 

 From the point of view of future work on these systems, it would be 

interesting to study the structural and superconducting properties of thin films of all 

the doping concentrations with La–Dy–2125 stoichiometry and study the current 

density behavior in them. Also, more detailed structural studies on all the                          

La–Dy–2125 samples using low temperature neutron diffraction measurements will 

help to explore the possibility of structural phase transition if any associated with 

superconducting transition.  

 In addition to the above mentioned studies, it will be worthwhile to carry out 

ERDA (Energy Recoil Dispersive Analysis) measurements on various thin films of  

La–Dy–2125 samples in order to check the oxygen stability due to 16O, 107Ag or  

197Au swift heavy ion irradiation effects. All these future studies on the presently 

studied La–2125 system will help to understand in more detail the structural and 

superconducting properties of this newly synthesized mixed oxide superconducting 

system.  
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