

Saurashtra University Re – Accredited Grade 'B' by NAAC (CGPA 2.93)

Vagadia, Harsha C., 2005, "Discovering The New Chemical Entities of Therapeutic Interest", thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/527

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.


This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu repository@sauuni.ernet.in

© The Author

Gram : UNIVERSITY Fax : 0281-2577633 Phone : (R) 2584221 (O) 2578512

SAURASHTRA UNIVERSITY

University Road. Rajkot - 360 005.

Dr. H.H.PAREKH

M.Sc., Ph.D. Professor and Head Department of Chemistry

Residence :

B-1,Amidhara Appartment 2-Jalaram plot, University Road, Rajkot - 360 005. GUJARAT (INDIA) Dt. - -2005.

No.

Statement under O.Ph.D. 7 of Saurashtra University

The work included in the thesis is my own work under the supervision of *Dr. H. H. Parekh* and leads to some contribution in chemistry subsidised by a number of references.

Dt. : - -2005 Place : Rajkot.

(Harsha C. Vagadia)

This is to certify that the present work submitted for the Ph. D. Degree of Saurashtra University by *Harsha C. Vagadia* is her own work and leads to advancement in the knowledge of chemistry. The thesis has been prepared under my supervision.

Date : - -2005 Place : Rajkot. **Dr. H. H. PAREKH** Professor and Head,

Department of Chemistry, Saurashtra University Rajkot - 360 005.

MY BELOVED FAMILY

acknowledgement

First & foremost, I Pay all my homage and devote, my emotions to *"Almightly God"* without whose blessing this task would not have been accomplished. I bow my head in utter humility and complete dedication.

I deem it to be my proud previlage to express my deep sense of gratitude and acknowledge my sincere indebtedness to my respected guide, Dr.(Mrs.)H.H.Parekh, Professor & Head, Department of Chemistry, for her unceasing interest, uncessant encouragment, constructive suggestions and gifted guidence through out the progress of this research work. I consider my self fortunates in having a guide like her & my gratefulness to her cannot be expressed in printed words.

I owe a great deal to great Legend Dr. A. R. Parikh, retired Professor & Head, Department of Chemistry, who is a Gem of a institute & always showed deep concern & was always approachable in time to show the silver lining in every dark cloud. I will never forget his constant inspiration with keen interest & ever vigilant guidance without which this task could not have been achieved.

I feel great pleasure to acknowledge my deepest sense of indebtedness to Dr. N. A. Chauhan, retired Professor, Department of Chemistry for his invaluable inspiration and moral support throughout the course of my research work.

Above all, I bow my bead with utter respect to my beloved grandfather late Shri Amubhai & grandmother late Smt.Jeevuben who formed part of my vision and taught me the good thing that really matter in life. The happy memory of my grand parents still provide a persistent inspiration for my journey in this life. I bow my bead with utter respect to my beloved mother Smt. Kantaben for her continuous source of inspiration, motivation & devotion to the family and my father Shri Chandubhai for the uncopromising principles that guided my life.Through the stress & strain of this study my sister Hetal has encouraged me to reach my destination. I am also grateful to Asif for the inspiration and moral support through out my research work. I am thankful to my beloved kanchanmasi and Bhupatmama, my brothers Sunilbhai & Anilbhai, bhabhis Rashmi & Bharti,sisters Shobhana & Poonam and jijaji Shaileshbhai for their faith in me.I am thankful to my nephews Depency, Aemil & Dishin whose unstoping flow of love belped me to reach the goal.

Aove all, needless to say "Thanks" to express my deep indebtedness to my seniors Dr. Ranjan, Dr. Nila, Dr. Fatema and all my seniors and juniors who ever stood beside me with their belping bands and moral support.

I feel lucky and very proud to have intimate friends like Lata, Hemlata, Arti Thaker, Sheetal, Krishna, Meera, Arti Padnya and Nikunj who have been always participating with my problems & disappointment and rebuilt my confidance at an appropriate stages. I gratfully thanks for the help & co-ordination extended by my colleagues Ronak&Viral.

I am thankful to Mr. Harshad Joshi & Mrs. Namrata for their kind support and providing chemicals & glasswares in time. I am thankful to Mr. Devendra Goswami to magnifying the presentation of my work in the form of thesis.

I am thankful to the authorities of CIL-Chandhigarh, CDRI-Lucknow and Professor and Head, Department of Chemistry for providing facilities for spectral studies.

I gratfully acknowledge the most willing help and co-operation extended by TAACF, Southern Research Institute, Alabama U.S.A.

Finally, I express my grateful acknowledgement to the authorities of Saurashtra University for providing the research facilities.

CONTENTS

					Page No.
SYNOPSIS					1
Discovering the ne	w chemical entitie	s of therapeutic inf	terest		10
[A] : STUDIES ON	PYRAZOLE DERIV	ATIVES			
Introduction					14
PART - I :	STUDIES ON PY	RAZOLYLPYRAZOL	INES		
Introduction					22
Section - I : Synt	hesis and biological	evaluation of 1-Aryl-3	3-(1',N-phenyl-'3-p-		
fluor	rophenyl pyrazol-4'-y	l)-2-propene-1-ones			
Introduction and Spe	ctral studies				29
Experimental					35
Graphical data of In	Vitro Evaluation of A	ntimicrobial activity			40
Section - II : Synt	hesis and biological	evaluationof 3-Aryl-5	-[1'-N-phenyl-3'-p-		
fluor	rophenyl pyrazol-4'-y	l]-pyrazolines			
Introduction and Spe	ctral studies				42
Experimental					46
Graphical data of In	Vitro Evaluation of A	ntimicrobial activity			49
		-			
Section - III : Synt	hesis and biological	evaluationof 1,N-phe	nyl-3-Aryl-5-[1'-N-		
pher	nyl-3'-p-fluorophenyl	pyrazol-4'-yl]-pyrazoli	ines		
Introduction and Spe					51
Experimental					55
Graphical data of In	Vitro Evaluation of A	ntimicrobial activity			58
- · · ·		, , , , , , , , , , , , , , , , , , ,			
PART - II :	STUDIES ON CY.	ANOPYRIDINES			
Introduction					60
	thesis and biological	evaluation of 2-Amino	o-3-cyano-4-[1',N-phe	nvl-3'-	
-	iorophenyl pyrazol-4'			<i>,</i> –	
Introduction and Spe		J-1 o algi pyrlamos			66
Experimental	ettar studies		••		70
-	Vitro Englustion of A	••			70
Graphical data of In	VILLO LOUIDALION OF A				13

Section - II : Synthesis and biological evaluation of 2-methoxy-3-cyano-4-

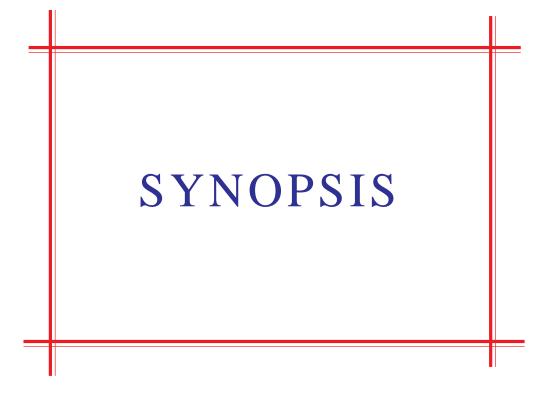
[1',N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl]-6-aryl-pyridines

Introduction and Spectral studies	••	••	 75

Experimental		 	79
Graphical data of In Vitro Evaluation of An	timicrobial activity	 	82
Primary assay of Antitubercular activity		 	84

PART - III : STUDIES ON THIAZOLIDINONES

Introduction					85
Section - I :	Synthesis and biological	evaluationof 2-Arylim	ino-3-N-aryl-5-		
	[1',N-phenyl-3'-p-fluoro	phenyl-4'-pyrazolylmet	hino]-4-thiazolidinone	s	
Introduction an	d Spectral studies				91
Experimental					96
Graphical data	of In Vitro Evaluation of .	Antimicrobial activity			100
Primary assay o	of Antitubercular activity		••		102
PART - IV	: STUDIES ON PY	RIMIDINONES			
Introduction					103
Section - I :	Synthesis and biological	l evaluationof 6-Arylim	nino-7,N-aryl-2-oxo-4-		
	[1',N-phenyl-3'-p-fluoro	phenyl pyrazol-4'-yl]-1	,2,3,4-tetrahydro-		
	thiazolidino-[4,5-d]-pyri	idmidines			
Introduction an	d Spectral studies				109
Experimental					113
Graphical data	of In Vitro Evaluation of	Antimicrobial activity			116
Primary assay o	of Antitubercular activity				118
PART - V	: STUDIES ON IS	OXAZOLES			
Introduction			••		119
Section - I :	Synthesis and biological	evaluationof 3-aryl-5-			
	[1',N-phenyl-3'-p-fluorog	ohenyl pyrazol-4'-yl]-is	oxazoles		
Introduction an	d Spectral studies		••		125
Experimental					129
Graphical data	of In Vitro Evaluation of	Antimicrobial activity			132
Primary assay o	of Antitubercular activity				134
PART - VI	: STUDIES ON CY	YANOPYRIDONES			
Introduction					135
Section - I :	Synthesis and biological	l evaluationof 3-cyano	-4-[1'-N-phenyl-3'-		


p-fluorophenyl pyrazol-4'-	yl]-6-aryl-1,2-dihydro	o-2-pyridones	
Introduction and Spectral studies			 141
Experimental			 145
Graphical data of In Vitro Evaluation of Ar	ntimicrobial activity		 148
Primary assay of Antitubercular activity			 150

PART - VII : STUDIES ON IMIDAZOLINONES

Introduction	 	 151

p-fluorophenyl-4'-pyrazolylmethino]-imidazolin-5-ones

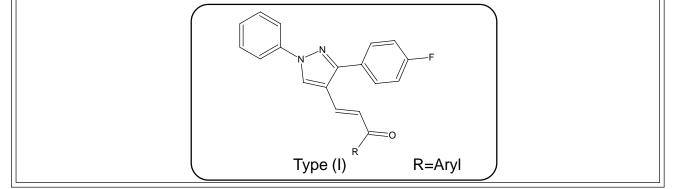
Introduction an	d Spectral studies				156
Experimental			••		161
Graphical data	of In Vitro Evaluation of	Antimicrobial activity			164
PART - VIII	: STUDIES ON N	ITRILES			
Introduction					166
Section - I :	Synthesis and biologica	l evaluationof α -aryla	mino-[1'-N-phenyl-3	3'-	
	p-fluorophenyl pyrazol-	4'-yl]-acetonitriles			
Introduction an	d Spectral studies				169
Experimental					173
Graphical data	of In Vitro Evaluation of	Antimicrobial activity			176
Primary assay o	of Antitubercular activity				178
[B] : STUDIES	6 ON MICROWAVE INI	DUCED SYNTHESIS			
Introduction					179
Section - I :	Synthesis and biologica	l evaluationof 1,N-ac	etyl-3-aryl-5-[1'N-ph	ienyl-3'-	
	p-fluorophenyl pyrazol-4	1-yl]-pyrazolines using	conventional metho	bd	
Introduction an	d Spectral studies				184
Experimental					188
Section - II :	Synthesis and biologica	l evaluationof 1-N-ace	etyl-3-aryl-5-		
	[1',N-phenyl-3'-p-fluoro	phenyl pyrazol-4'-yl]-j	pyrazolines		
	using microwave induce	d synthesis			
Experimental					191
Graphical data	of In Vitro Evaluation of	Antimicrobial activity			193
REFERENCES	i				195
LIST OF NEW	COMPOUNDS			••	221

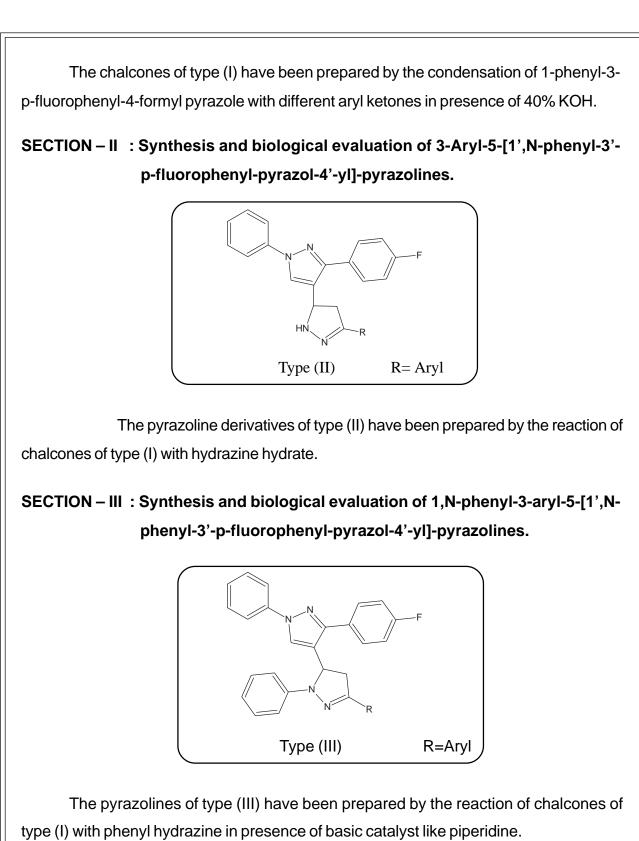
1

A brief summary of the work incorporated in the thesis with the title "DISCOVERING THE NEW CHEMICAL ENTITIES OF THERAPEUTIC INTEREST "has been described as under.

[A] STUDIES ON PYRAZOLES[B] STUDIES ON MICROWAVE INDUCED SYNTHESIS OF PYRAZOLINES

[A] STUDIES ON PYRAZOLES

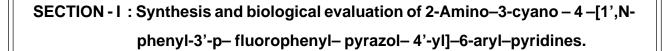

The research on the chemistry of pyrazoles has been a focus of attention for chemists for a long time, due to their wide spread diversified biological activities like antitubercular, antimicrobial, hypnotics, anti-inflammatory, antitumor, plant growth regulators and are also used as herbicidal and fungicidal.

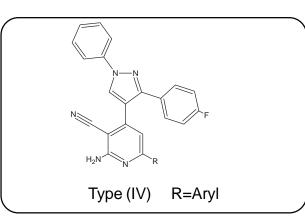

Considering the increasing importance of pyrazole nucleus, the synthesis of some new chalcones, pyrazolines, cyanopyridines, thiazolidinones, pyrimidinones, isoxazoles, cyanopyridones, imidazolinones and nitriles has been undertaken in order study their pharmacological profile.

PART-I: STUDIES ON PYRAZOLYLPYRAZOLINES

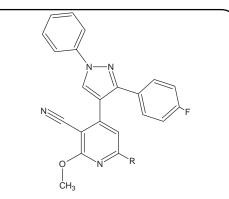
Pyrazoline derivatives represent one of the modest class of compounds possessing wide range of pharmacological activities like anticancer, anthalmentic, antitubercular and anti-inflammatory etc. With a view to evaluate pharmacological profile, some new pyrazolines bearing 1-phenyl-3-fluorophenyl-4-formyl pyrazole moiety have been prepared which have been describes as under.

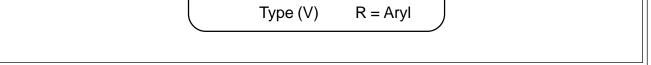
SECTION – I : Synthesis and biological evaluation of 1-Aryl-3-[1',N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl]-2-propene-1-ones.





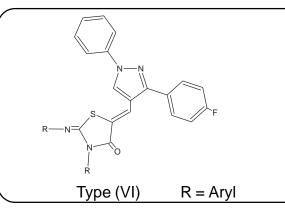
PART-II: STUDIES ON CYANOPYRIDINES


The compounds containing the cyanopyridine ring system have a prominent feature in medicinal chemistry and possess biological activities such as antihypertansive, antibacterial, antidiabetic and anticholestemic. They have been also used as dyes for cotton and polyester fabrics. In view of these facts, it was contemplated to synthesize cyanopyridine derivatives, which have been described as under.



2- Amino –3- cyano pyridines of type (IV) have been prepared by the condensation of chalcones of type (I) with ammonium acetate and malononitrile.

SECTION- II : Synthesis and biological evaluation of 2- Methoxy –3-cyano-4-[1', N- phenyl-3'- p-fluorophenyl –pyrazol –4'- yl] –6-aryl- pyridines.

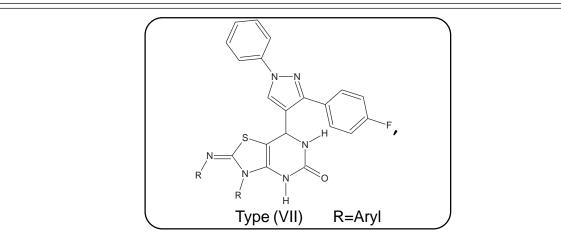


2- Methoxy-3-cyanopyridines of type (V) have been prepared by the condensation of chalcones of type (I) with malononitrile and sodium methoxide.

PART-III : STUDIES ON THIAZOLIDINONES

It has been reported that compounds bearing thiazolidinones nucleus show wide range of biological activities such as antitumor, antileprosy, antitubercular and antibacterial etc. By considering these valid observations, we have synthesized some new 5-arylidine-4-thiazolidinones shown as under.

SECTION – I : Synthesis and biological evaluation of 2-Arylimino–3,N-aryl –5 – [1',N- phenyl-3'-p– fluorophenyl–4'-pyrazolyl methino]–4'-thiazolidinones.

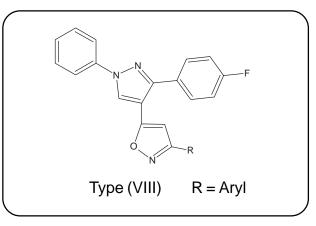

The thiazolidinones of type (VI) have been prepared by condensation of 1, N-phenyl-3-p-fluorophenyl-4-formyl-pyrazole with different thiazolidinones in glacial acetic acid.

PART-IV: STUDIES ON PYRIMIDINONES

Pyrimidinones possess remarkable pharmaceutical importance and biological activity. Some of the pyrimidinones, which occurs as natural products like nucleic acid and vitamin-B can be used as therapeutic agents for treatment of AIDS and antitumor agent. Keeping in association of pyrimidinones with varied biological activity, it was thought worthwhile to synthesize new pyrimidinones as under.

SECTION –I : Synthesis and biological evaluation of 6-Arylimino–7,N-aryl –2-oxo –4-[1',N- phenyl-3'-p– fluorophenyl–pyrazol- 4'-yl]-1,2,3,4-tetrahydro

thiazolidino-[4,5-d]-pyrimidines.



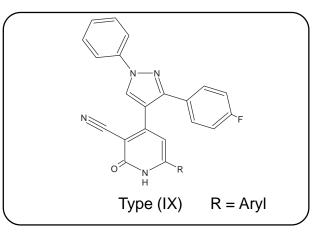
The compounds of type (VII) have been synthesized by the condensation of type (VI) with urea in presence of hydrochloric acid as catalyst.

PART-V: STUDIES ON ISOXAZOLES

It has been reported that isoxazole derivatives possess remarkable pharmacological importance and biological activities such as antifungal, antibacterial, sedative and hypnotics etc. In order to develop medicinally important compounds, we have synthesized some new isoxazole derivatives shown as under.

SECTION – I : Synthesis and biological evaluation of 3-Aryl-5-[1',N- phenyl-3'-pfluorophenyl– pyrazol– 4'-yl]–isoxazoles.

The isoxazole derivatives of type (VIII) have been prepared by the reaction of chalcones of type (I) with anhydrous sodium acetate and hydroxylamine hydrochloride in

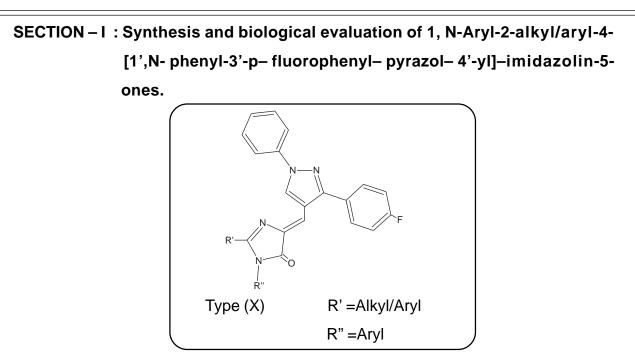

5

glacial acetic acid.

PART-VI: STUDIES ON CYANOPYRIDONES

Cyanopyridones play an important role owing to their wide range of biological activities such as analgesic, antidiabatic, anticonvulsant, insecticidal and antibacterial etc. It appeared of interest to design and synthesize cyanopyridone derivatives, which have been described as under.

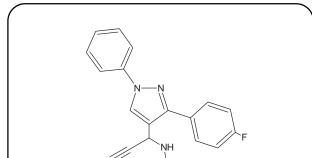
SECTION – I : Synthesis and biological evaluation of 3-Cyano – 4 – [1', N- phenyl-3'-p– fluorophenyl– pyrazol– 4'-yl]–6-aryl–1, 2-dihydro-2-pyridones.

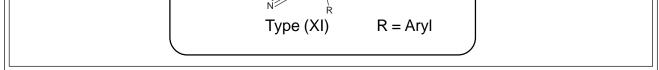


The cyanopyridones of type (IX) have been prepared by the condensation of chalcones of type (I) with ethylcyanoacetate and ammonium acetate.

PART- VII: STUDIES ON IMIDAZOLINONES

Imidazolinone derivatives have been found to be potent drug in pharmaceutical and possess a wide range of biological activities such as anticonvulsant, sedative, hypnotic, anti-inflammatory, antihistamine and antithyroid etc. In order to develop medicinally important compounds, we have synthesized some new imidazolinones shown as under.

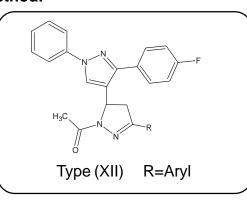



The imidazolinone derivatives of type (X) have been prepared by the condensation of azalactone with different aryl amines in pyridine.

PART-VIII: STUDIES ON NITRILES

Recently nitrile derivatives have drawn considerable attention due to their good pharmacological activities like cardiovascular, sedative, antifungal and antibacterial etc. Led by these considerations, we have synthesized some new nitriles, which have been described as under.

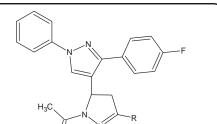
SECTION – I : Synthesis and biological evaluation of á–Arylamino-[1',N- phenyl-3'-p– fluorophenyl– pyrazol– 4'-yl]–acetonitriles

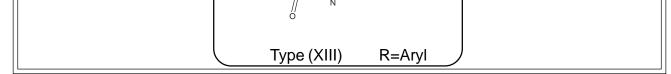


The nitriles of type (XI) have been prepared by the condensation of 1,N-phenyl-3p-fluorophenyl-4-formyl-pyrazole with different aromatic amines in the presence of sodium cyanide and glacial acetic acid at 0-5 $^{\circ}$ C.

[B] STUDIES ON MICROWAVE INDUCED SYNTHESIS OF PYRAZOLINES

In recent years **MORE** (Microwave Induced Organic Reaction Enhancement) technique has become very popular due to substantial reduction in reaction time, operational simplicity and formation of cleaner reaction products. Keeping these facts in view, we have synthesised acetyl pyrazoline derivatives using microwave irradiation and also by conventional method.


SECTION – I : Synthesis and biological evaluation of 1,N-Acetyl- 3-aryl-5-[1',Nphenyl-3'-p-fluorophenyl-pyrazol-4'-yl]-pyrazolines using conventional method.



The pyrazoline derivatives of type (XII) have been investigated by the reaction of chalcones of type (I) with hydrazine hydrate in glacial acetic acid.

SECTION – II : Synthesis and biological evaluation of 1,N-Acetyl- 3-aryl-5-[1',N-

phenyl-3'-p-fluorophenyl-pyrazol-4'-yl]-pyrazolines by Microwave induced synthesis.

The pyrazoline derivatives of type (XIII) have been synthesized by the reaction of chalcones of type (I) with hydrazine hydrate in glacial acetic acid under microwave irradiation in few minutes.Benefits of microwave irradiation have been discussed.

The constitution of newly synthesised compounds have been characterized using elemental analyses, Infrared and ¹H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

In Vitro study on multiple biological activities:

- (1) All the compounds have been evaluated for their antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards *Aspergillus Niger* at a concentration of 40 \u00e3g. The biological activity of the synthesized compounds has been compared with standard drugs.
- (2) Selected compounds have been evaluated for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis* H_{37} R_v at a concentration of 6.25 \g/ml using Rifampin as standard drug, which have been tested at Tuberculosis Antimicrobial Acquisition Coordinating Facility (TAACF), Alabama, U.S.A...

Medicinal chemistry concerns the discovery, the development, the identification of action of biologically active compound at the molecular level. Emphasis it put on drugs, but the interest of the medicinal chemistry is also concerned with the study, identification, and synthesis of the metabolic products of drugs and related compounds.

Medicinal chemistry is a part of pharmacology, this latter taken in its etymological sense 'pharmakon' + 'logs' : study of drugs. The activity of a given drug depends on a sequence of physio-chemical events that begin when the active molecule penetrates into the living organism and which culminates when the active molecule reaches its target and elicits the appropriate biological response. Classically it is addmitted that three characteristic phases govern the biological activity of a drug in a living organism. They are as under.

(I) The pharmaceutical phase

Sometimes it is also called biopharmaceutical phase, deals with the choice of the appropriate route of administration and with the choice of the pharmaceutical formulation most suited to the desired medical treatment.

(II) The pharmacokinetic phase

It controls the different parameters that govern the random walk of the drug between its application point and its final site of action and which ensure the destruction and/or the elimination once the effect is produced.

10

(III) The pharmacodynamic phase

It is the phase of the greatest interest to the medicinal chemist as it deals with the nature and the quality of the interaction of the drug with its biological target.

Modern medicinal chemistry began in the 1950s when organic chemists began to apply newly developed steric & electronic structure active relactionship of the steroids. During the second half of the twentieth century, chemistry and biology made possible the discovery of a steady stream of important new medicines. Chemistry contributed to these discoveries through impactful advantaces in both theory & practice of this art/science. Notable examples include invaluable advances in physical measurements, computational techniques, inorganic catalysis, stereochemical control of synthesis & the application of physical organic chemical concepts, typified by the transition state analog principle, to enzyme inhibitor design. At the same time biology continued to contribute through the discoveries of new concepts and understanding at a rate that may well be termed explosive.

During the 1970s, target validation became an important consideration in the selection of therapeutic programs explored by the pharmaceutical industry. In the strictest sense this strategy holds that intervention in any particular biochemical or pharmacological pathway has been fully validated only if it has been shown to work in human subjects. Any research program that does not pass this definitive test is there for thought to be a 'long shot'. In practise, this leads to the conclusion that a conservation porfolio of an organization's programs should strike some appropriate balance between' validated' and 'long shot' targets. In recent years succesful use of antibodies in neutralizing a target protein or other substance has come to the accepted as adequate validation; this is also the case for another validated technology, the use of 'knock-out' or 'knock-in' mice.

Inspite of all the qualified successes of synthetic drug research achieved in the last four decades to combat infectious disease of the more than 80,000 different ailments, unfortunately only about one third can be treated with drugs, most of them only symptomatically. The discovery of better, effective and safey drugs is needed to fight the cause of dreadful disease like cancer, acquiredimmuno-deficiency-syndrome (AIDS), arthritis, cardiovascular diseases, disorders of the central nervous system (CNS) such as Alzheimer's disease and other vital infectious and metabolic disease like rheumatoid arthritis.

In order to meet these challenges one needs to adopt novel approaches in pharmaceutical research. Both molecular biology and genetic engineering will be exploited duly in opening up new routes.

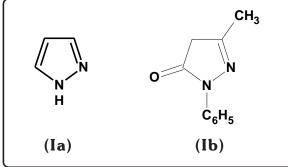
It is earnestly believed that towards the begining of new century (2001 AD) keeping in view the tremendous global technological competition, one is left with no other choice than to internationalize research and development of pharmaceutical drugs to achieve the common objective "better drugs for a better word".

AIMS AND OBJECTIVES

Taking in view of the applicability of heterocylic compounds, we have undertaken the preparation of heterocycles bearing pyrazole nucleus. The placement of a wide variety of substituents of these nuclei have been designed in order to evaluate the synthesised products for their pharmacological profile against several strains of bacteria and fungi.

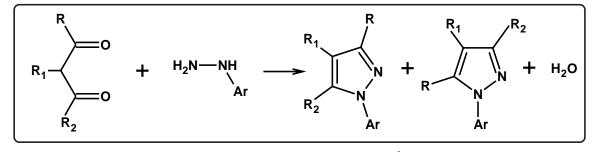
* To generate several derivatives like chalcones, pyrazolines, cyanopyridones, thiazolidinones, oxo-pyrimidines, isoxazoles, cyanopyridones,

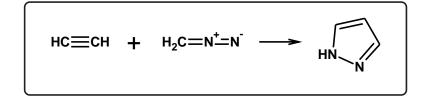
12


imidazolinones, nitriles bearing pyrazole moiety.

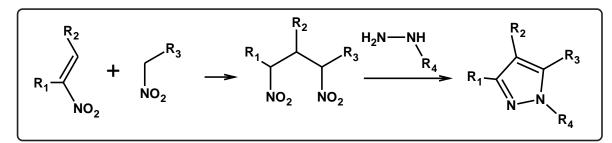
- To synthesise biologically active pyrazolines bearing pyrazole moiety using microwave induce synthesis method.
- In a programmed research directed towards the construction of medicinally active new heterocycles bearing pyrazole has been investigated in following parts.
- To characterise these products for stucture elucidation using spectroscopic technique like IR, PMR and Mass spectral studies.
- Purity of all compounds have been checked by thin layer chromatography.
- To evaluate new product for better drug potential against different strains of bacteria, fungi and for antitubercular activity against Mycobacterium Tuberculosis H₃₇ Rv.

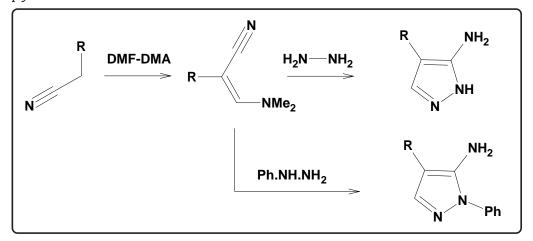
INTRODUCTION

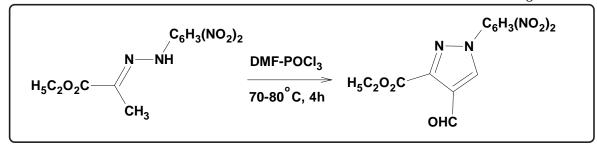

The pyrazole ring system (Ia) is consisting of three carbon atoms and two adjacent nitrogen atoms. The ring system does not occur naturally. Knorr^{1,2} first syntehsised a compound (Ib) containing this system in 1833 by a reaction of ethylacetoacetate with phenylhydrazine. Pyrazoles have been extensively explored for their applications in the field of medicine, agriculture and industrial chemistry.

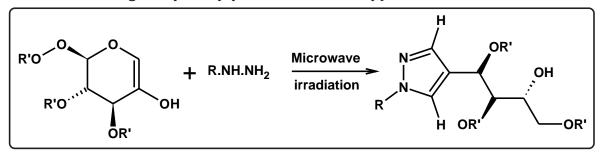

SYNTHETIC ASPECTS

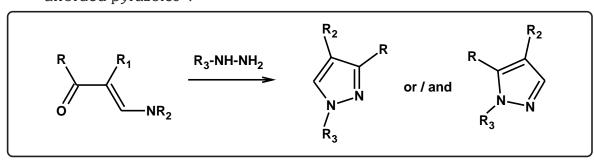
Different methods of preparation are available in literature which are as under.


 By the reaction of the substituted hydrazines, with 1,3-dicarbonyl compounds yielded two structurally isomeric pyrazole³.

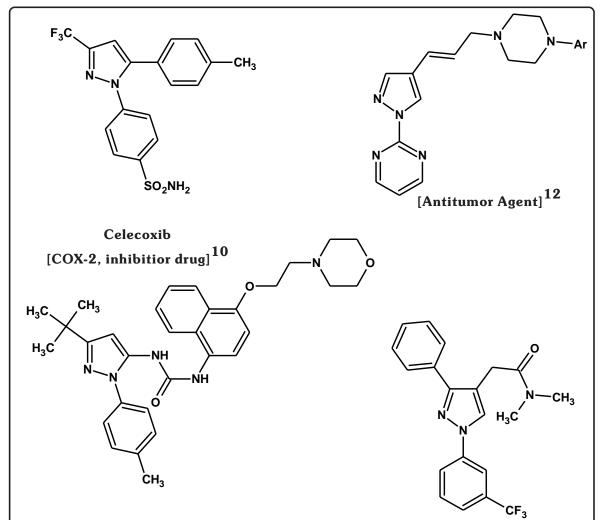

2. By the reaction of acetylene with diazomethane 4 .


3. By the reaction of 1,3-dinitro alkanes with hydrazines⁵.

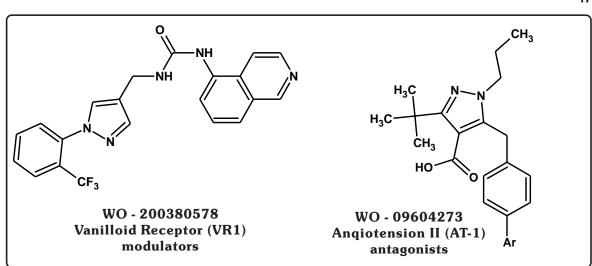

4. By the reaction of acetonitrile derivatives with dimethylformamide & diethyl acetal (DMF-DMA) in xylene gives an intermediate which on reaction with hydrazine hydrate or phenyl hydrazine in presence of HCl as catalyst yields pyrazole⁶.


5. By the reaction of hydrazones with Vilsmeier reagent $(DMF-POCl_3)^7$.

6. By the reaction of 2-formyl glycals with aryl hydrazines under solvent free conditions give optically pure 4-substituted pyrazoles⁸.



7. By the cyclocondensation of mono substituted hydrazines with enaminones afforded pyrazoles⁹.

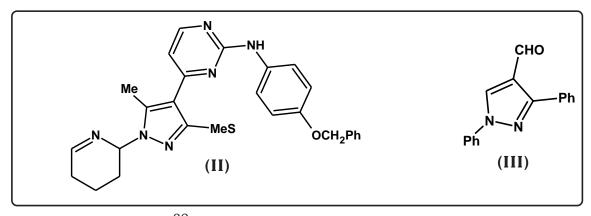

THERAPEUTIC IMPORTANCE

Pyrazole and its derivatives are shown to possess important biological and pharmaceutical activities. Pyrazole motifs in drug candidates with good pharmacological activities are listed below.

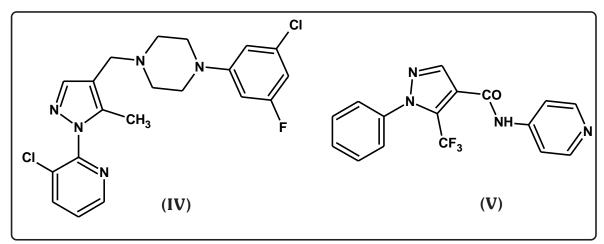
16

Doramapimod (BIRB796) [P³⁸MAP-Kinase inhibitor]¹¹ [Diabetic Agent]¹³

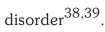
Several biological activities associated with pyrazole derivatives have been

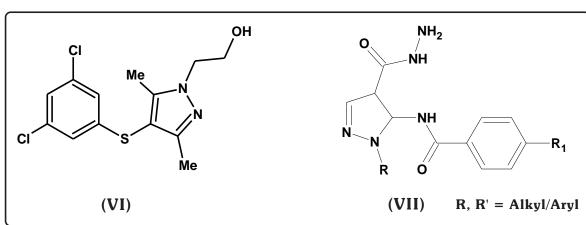

described as under.

- 1. Antitumor¹⁴
- 2. Herbicidal¹⁵
- 3. CNS depressant¹⁶
- 4. Antiulcer¹⁷
- 5. Anticancer¹⁸
- 6. Antimicrobial¹⁹
- 7. Neurotonsin receptor²⁰
- 8. AntiHIV²¹
- 9. Antiviral²²
- 10. Immuno suppresants²³

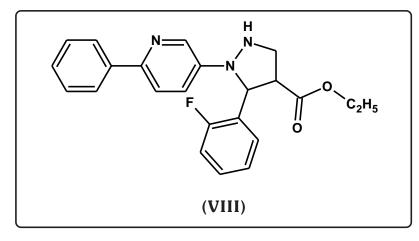

Jonh M. et. al.²⁴ have synthesised pyrazole as neoplasm inhibitors. Antonio Bellotti²⁵ has reported pyrazole derivatives as antitubercular & bacteriostatic agents. L. Villa & co-workers²⁶ have screened pyrazoles which are used in the rhematic disease & related syndromes. Yoshiro Usui & co-workers²⁷ have screened pyrazoles as fungicidal.

Bruderer-Hans & co-workers²⁸ have synthesised pyrazole & reported their tranquilizing activity. M. M. El-Kerdawy & co-workers²⁹ have prepared pyrazoles as herbicidal.

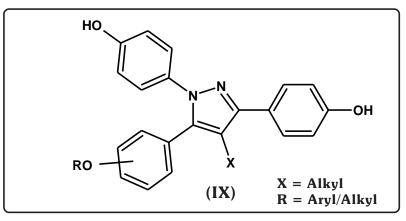

Young Choon Moon³⁰ has reported pyrazole derivatives (II) as protein kinase inibitors. El-Emery et. al.³¹ have synthesised 1,3-diphenyl pyrazole derivatives (III) and reported their variety of biological activities.

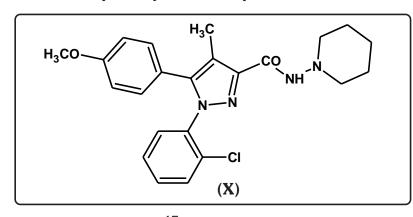


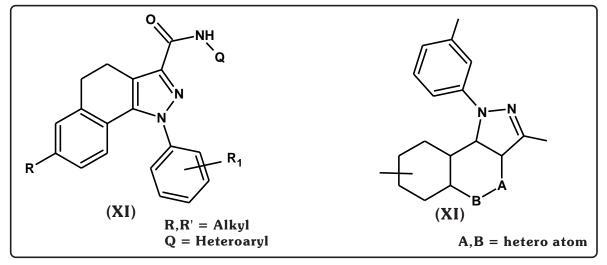
Feid-Allah Hassan³² have prepared pyrazoles and reported their antidiabetic and antibacterial activity. Ejima Akio et. al.³³ have synthesised pyrazole derivatives as antitumor agent (IV). Recently, Atkinson R. N. et. al.³⁴ have synthesised pyrazoles as sodium channel blocker (V). Murakani Hirani et. al.³⁵ have synthesised pyrazole as antifoulling agent.

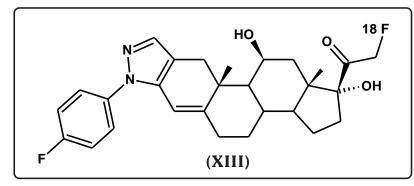


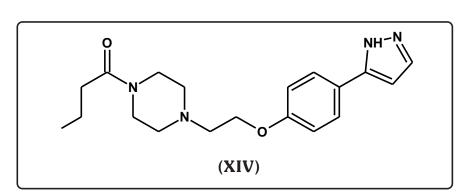
Graid Mamalo et. al.³⁶ have newly synthesised pyrazole derivatives tested for antimicrobial activity. Carbau Rouald and co-worker³⁷ have prepared pyrazole derivatives (VI) useful as reverse transcriptase inhibitors for the treatment of HIV infection. Giuseppe Daidone et. al. have studied pyrazole derivative with hydrazide as side of type (VII) used as to inhibit fibrosis and to treat fibrosis



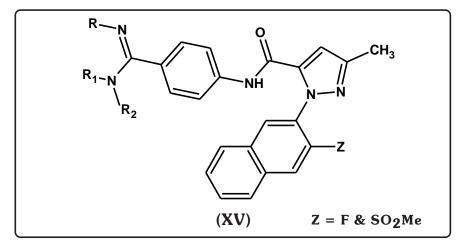

Laborde Edgardo et. al.⁴⁰² have found that pyrazole possess glycine transport-2-inhibitors activity. Andrew-Thurkaub et. al.⁴¹ have synthesised high affinity C5a receptor modulator pyrazoles. Nagaaki Sato et. al.⁴² have prepared pyrazole as neuropeptide T5 receptor antagonists. G. Yamanouch Pharma. Co⁴³ has suggested pyrazoles as glycine transporter protein inhibitors (VIII).


Ohki H. et. al.⁴⁴ have synthesised novel pyrimidinyl pyrazole derivatives possessing antiproliferature activity. Jun Sun et. al.⁴⁵ have studied pyrazole derivative of type (IX) used as antagonists for Estrogen receptor - α .


Recently, some pyrazole derivatives (X) have been synthesised as a potential PET ligand for CB1 receptors by J. S. Dileep et. al. 46



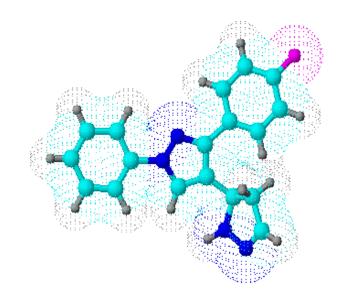
Gabriele Murineddu et. al.⁴⁷ have reported pyrazole derivatives (XI) as cannabinoid $CB_1 \& CB_2$ receptor. Recently S. Prasanna & co-workers⁴⁸ have found pyrazole (XII) as COX-2 inhibitors.



Pyrazole(XIII) has found as potential glucocorticoid receptor ligand for position emission tomography (PET) by Frank Wiist et. al.⁴⁹. Toshio Nakaura et. al.⁵⁰ have discovered pyrazole (XIV) as potent inhibitory activity toward 20-HETE synthase.

Zhaozhony J. Jia et. al.⁵¹ have synthesised pyrazoles (XV) as potent and selective factor Xa inhiitors with desired *in vitro* anticoagulant activity.

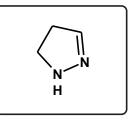
Looking to the diversified biological activity, it appeared of interest to synthesise some chalcones, pyrazolines, cyanopyridines, thiazolidinones, pyrimidinones, isoxazoles, cyanopyridones, nitriles bearing pyrazole moiety, in order to achieving compounds having better therapeutic importance. These study are described in the following parts.


[A] STUDIES ON PYRAZOLES

PART - I	:	STUDIES ON PYRAZOLYLPYRAZOLINES
PART - II	:	STUDIES ON CYANOPYRIDINES
PART - III	:	STUDIES ON THIAZOLIDINONES
PART - IV	:	STUDIES ON PYRIMIDINONES
PART - V	:	STUDIES ON ISOXAZOLES
PART - VI	:	STUDIES ON CYANOPYRIDONES

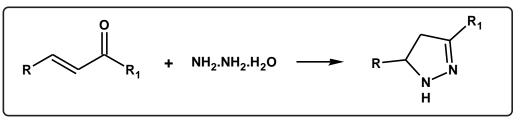
21

PART - VII : STUDIES ON IMIDAZOLINONES


PART - VIII : STUDIES ON NITRILES

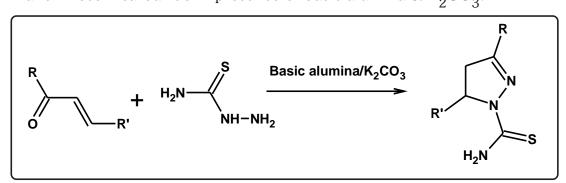
PART-I STUDIES ON PYRAZOLINES

INTRODUCTION

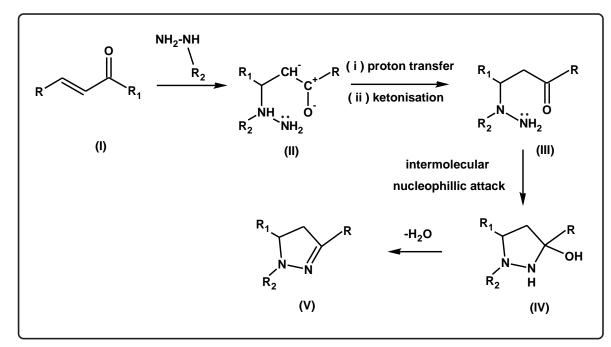

Amongst nitrogen containing five membered heterocycles, pyrazolines have been proved to be the most useful skeleton for biological activities. Pyrazolines have attracted attention of medicinal chemists for both with regard to heterocyclic chemisry and the pharmacological activities associated with them. In 1967 Jakobe, reviewed the chemistry of pyrazolines, which have been studied extensively for their biodynamic behaviour⁵² and industrial applications⁵³.

SYNTHETIC ASPECTS

Different methods for the preparation of 2-pyrazoline derivatives documented in literature are as follows.


 2-Pyrazolines can be constructed by the cyclocondensation of chalcones with hydrazine hydrate⁵⁴.

2. 2-Pyrazoline can also be prepared by the conjugate addition of hydrazines to α , β -unsaturated nitrile followed by cyclisation⁵⁵.


3. 2-Pyrazoline can be prepared by the condensation of α , β -unsaturated ketone and thiosemicarbazide in presence of basic alumina & K₂CO₃.⁵⁶

- Dipolar cycloaddition of nitriles of dimethyl fumarate, fumaronitrile and the N-aryl maleimides yields the corresponding pyrazolines⁵⁷.
- 5. Epoxidation of chalcones have epoxy ketones which reacted with hydrazine and phenyl hydrazine to give pyrazolines⁵⁸.

MECHANISM

The following mechanism seems to be operable for the condensation of chalcones with hydrazine hydrate 59 .

Nucleophillic attack by hydrazine at the $\beta\text{-position}$ of the $\alpha,\beta\text{-unsaturated}$

23

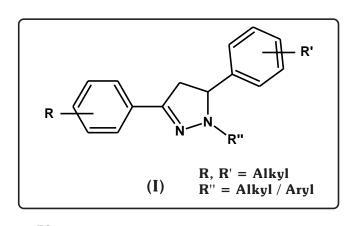
carbonyl system forms species (II), in which the -ve charge is mainly accomodated

by the electronegative oxygen atom.

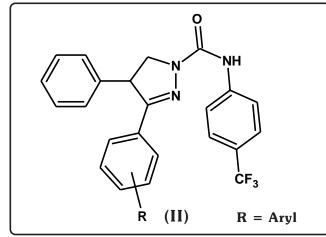
Proton transfer from the nitrogen to -ve oxygen produces an intermediate enol which simultaneously ketonises to ketoamine (III). Another intermolecular nucleophillic attack by the primary amino group to ketoamine on its carbonyl carbon followed by proton transfer from nitrogen to oxygen leads ultimately to carbonyl amine (IV). The later with a hydroxy group and amino group on the same carbon lose water molecule to yield the pyrazolines (V).

THERAPEUTIC IMPORTANT

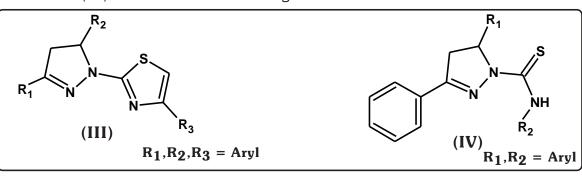
From the literature survey, it was revealed that 2-pyrazoline derivatives shows following activities.

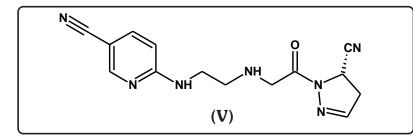

- 1. Analgesic⁶⁰
- 2. Bactericidal⁶¹
- 3. Cardiovascular⁶²
- 4. Diuretic⁶³
- 5. Fungicidal⁶⁴
- 6. Hypoglycemic⁶⁵
- 7. Herbicidal⁶⁶
- 8. Insecticidal⁶⁷
- 9. Tranquilizing⁶⁸
- 10. Antiallergic⁶⁹
- 11. Anticonvulsant⁷⁰
- 12. Antidiabetic⁷¹
- 13. Antiimplantation⁷²
- 14. Antiinflammatory⁷³
- 15. Antitumor⁷⁴
- 16. Antineoplastic⁷⁵

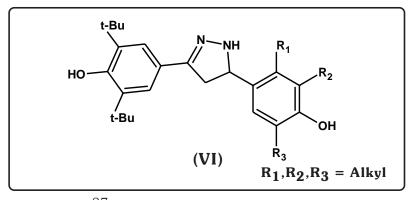
Ekta Bansal and co-workers⁷⁶ have synthesised 1-acetyl-5-substituted ary-3-(b-aminoaphthyl)-2-pyrazolines which acts as antiinflamnmatory agent. F.

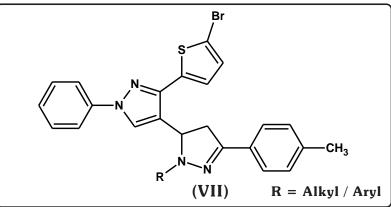

24

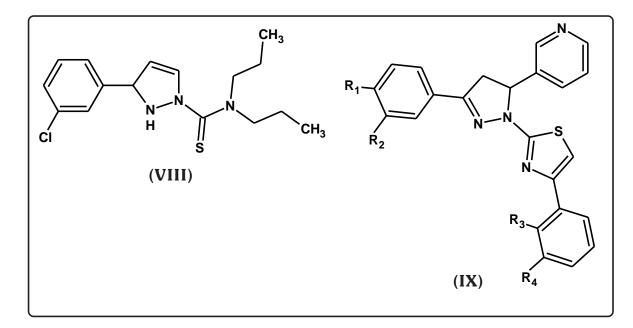
Chimenti et. al.⁷⁷ have discovered series of N.1-substituted 3-5-diphenyl


pyrazolines (I) and reported their antiHelicobacter pyroli activity.

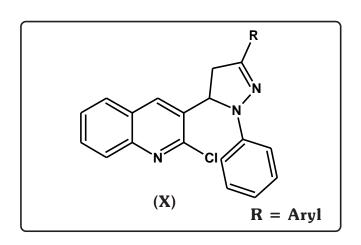

Nugent Richard⁷⁸ investigated pyrazoines bis phosphanate ester as novel antiinflammatory and antiarthritic agents. Furthermore, Tsuboi et. al.⁷⁹ have synthesised some new (phenylcarbonyl) pyrazoline (II) as an insecticides and at 40% concentration show 100% mortality of spodopetra litura larve after seven drops.


Gulhan Taran-Zitouni et. al.⁸⁰ have demonstrated 1-(4-arylthiazol-2-yl)-3,5diaryl-2-pyrazolines (III) as antihypertensive agents. S. P. Hiremath et. al.⁸¹ have reported substituted pyrazolines as analgesic, antiinflammatory and antimicrobial agents. Malhotra et. al.⁸² have prepared 1-thiocarbamoyl-2-pyrazolines derivatives (IV) as anticardiovascular agents.


Nesrin Gokhan et. al.⁸³ have synthesised new 1,N-substituted thiocarbomoyl-3-phenyl-5-thienyl-2-pyrazoline derivatives and evaluated theirs for antidepressant, antiogenic and mammalianmonoamine oxidase (MAO)- A & B inhibitory activities. jin Hee Ahn et. al.⁸⁴ have synthesised new series of cyano pyrazoline derivatives (V) through achiral and chiral synthetic methods and evaluated for their ability to inhibite dipeptidyl peptidase IV (DP-IV) as potent antidiabetic agents.


Maria Celoni et. al.⁸⁵ have discovered some new pyrazoline derivatives and reported as α_2 -adrenoceptors and 5-HT receptors mediate, the antinociceptive effect. Novel 3,5-diaryl pyrazolines (VI) have been discovered as low density lipoprotein (LDL) oxidation inhibitor by Tae-Sock et. al.⁸⁶

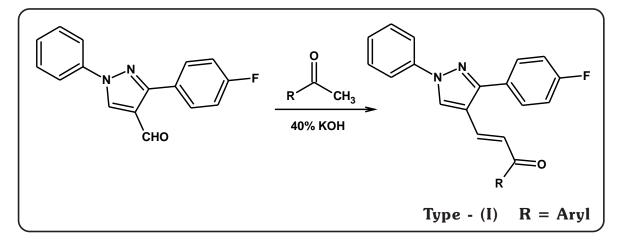
Adnan and Tarek 87 have synthesised pyrazoline derivatives (VII) as antiinflammatory antimicrobial agents.


A series of new 1,N-substituted pyrazoline analogues (VIII) of thiosemicarbazones were synthesised by Mohammad Abid and Amir Azam⁸⁸ as antiamoebic agent. Abbas Sdhafiee et. al.⁸⁹ have demonstrated 1-(4-aryl-2-thiazolyl)-3,5-disubstituted-2-pyrazolines (IX) which acts as antinociceptive agents.

CONTRIBUTION FROM OUR LABORATORY

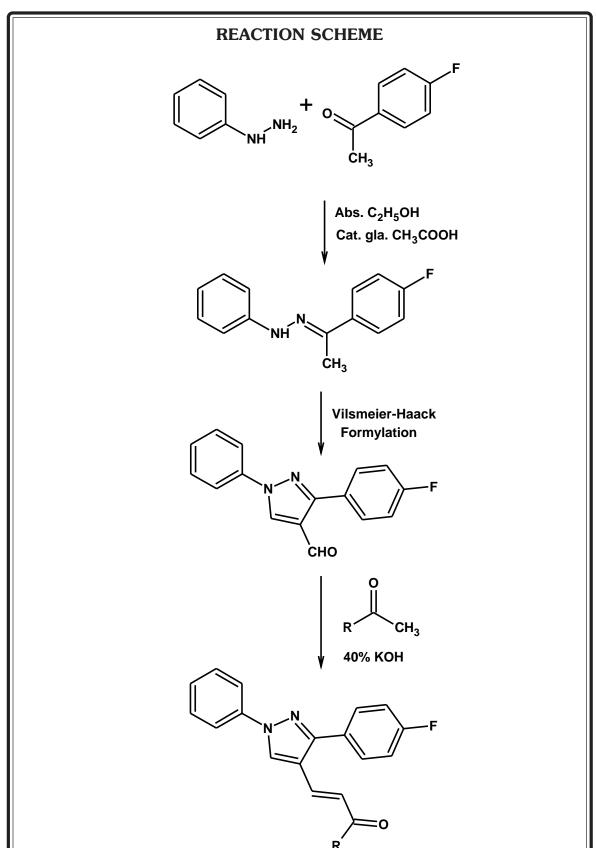
Parekh et. al.⁹⁰ have prepared 1-acetyl-5-aryl-3-[3-(3,4-dihydro-2-methyl-4-one-3-quinazolinyl)-phenyl]-2-pyrazolines which possess antimicrobial activity. Tejas Upadhyay et. al.⁹¹ and sohit Rajvaidya et. al.⁹² have prepared pyrzolines as antimicrobial agent.

A. V. Dobaria & Co-workers⁹³ has discoverd pyrazolines bearing chloroquinoline nucleus which used as antimicrobial agents. Jatin Upadhyay et. al.⁹⁴ have described pyrazoline derivatives as antimicrobial agents. Akhil Bhatt and co-workers⁹⁵ have reported pyrazoline derivatives showing antimicrobial activity.

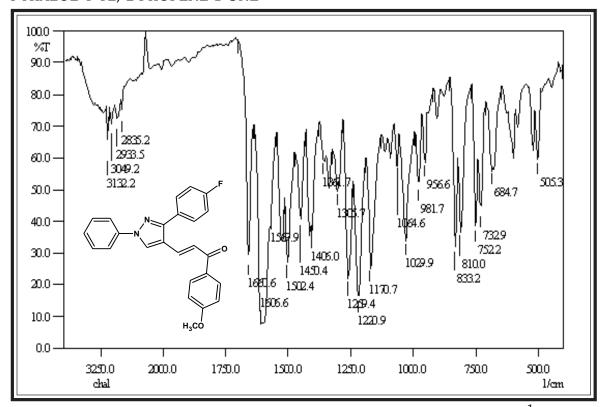

With an aim to synthesise better therapeutic agents, we have investigated some new pyrazolines to enhance the overall drug potential of resulting compounds which have been described as under.

- SECTION I : SYNTHESIS AND THERAPEUTIC EVALUATION OF 1-ARYL-3-[1'-N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-2PROPENE-1-ONES
- SECTION II: SYNTHESIS AND THERAPEUTIC EVALUATION OF 3-ARYL-5-[1'-N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES
- SECTION III : SYNTHESIS AND THERAPEUTIC EVALUATION OF 1,N-PHENYL-3-ARYL-5-[1'N,-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES

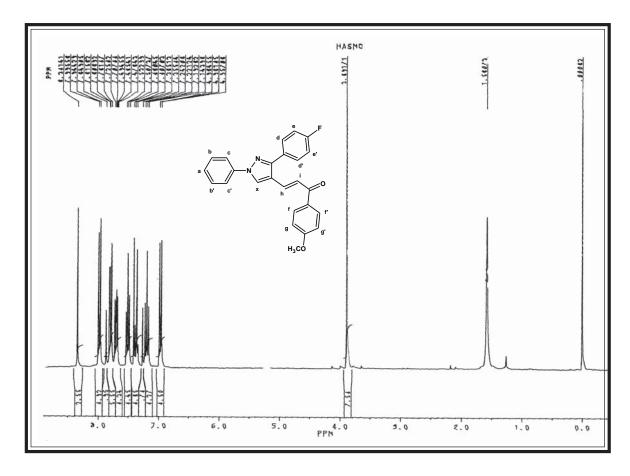
SECTION - I


SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-ARYL-3-[1'-N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-2-PROPENE-1-ONES

Recently, much interest has been focused on the synthesis and biodynamic activities of chalcones and it is a good synthon for verious heterocyclic rings. With a view to obtaining compounds having better therapeutic activity, we have synthesised 1-aryl-3-(1',N-phenyl-3'-p-flurophenyl-pyrazol-4'-yl)-2-propene-1-ones by the condensation of 1-phenyl-3-p-fluorophenyl-4-formyl-pyrazole with various aromatic ketones in alkaline solution.


The constitution of the synthesised compounds have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

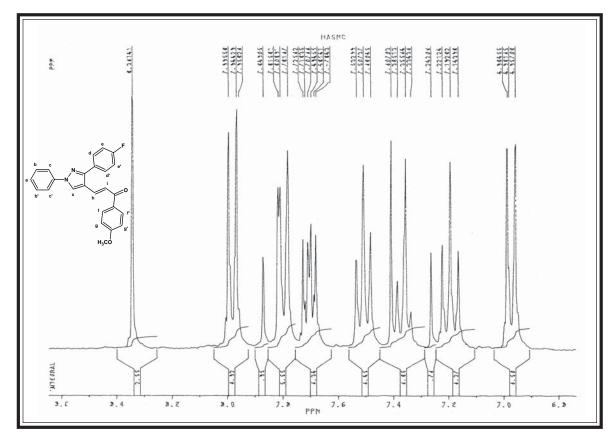
The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

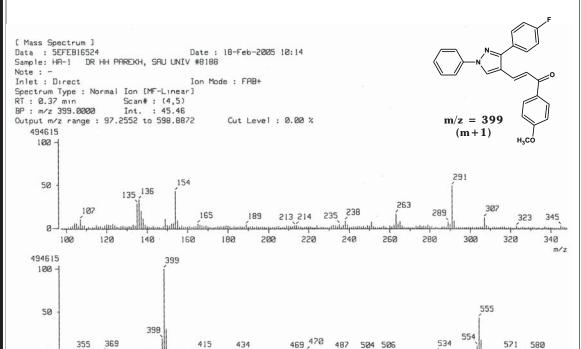

Tuno	Vibration	Freque	Frequency in cm ⁻¹			
Туре	mode	Observed	Reported	Ref.		
Alkane	C – H str.(asym.)	2933	2975–2950	426		
-CH ₃	C – H str. (sym.)	2835	2880–2860	"		
	C – H i.p. (def.)	1450	1470–1435	"		
	C – H o.o.p. (def.)	1361	1385–1350	"		
Aromatic	C – H str.	3049	3130–3030	427		
	C = C str.	1502	1585–1480	"		
	C – H i.p. (def.)	1064	1125–1090	"		
	C – H o.o.p. (def.)	833	835-810	"		
Pyrazole	C = N str.	1606	1650–1580	428		
moiety	C – N str.	1259	1350–1200	"		
	C – F	752	760-710	"		
Ether	C – O – C str. (asym).	1220	1275–1200	"		
	C – O – C str. (sym).	1029	1075–1020	"		
Chalcone	C = O str.	1660	1760–1655	429		

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 1-(p-ANISYL)-3-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-2-PROPENE-1-ONE

PMR SPECTRAL STUDY OF 1,p-ANISYL-3-[1',N-PHENYL-3'-p-FLOROPHENYL-PYRAZOL-4'-YL]-PROPENE-1-ONE




 $\label{eq:Internal Standard: TMS; Solvent: CDCl_{3} \quad : Instrument: BRUKER Spectrometer (300 \text{ MHz})$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.89	1H	singlet	Ar-OCH ₃	-
2.	6.95-6.98	2H	doublet	Ar-Hgg'	Jgf=8.7
3.	7.16-7.22	2H	triplet	Ar-Hdd'	-
4.	7.33-7.40	2H	quartet	-CH(h&i)	-
5.	7.48-7.53	2H	triplet	Ar-Hee'	-
6.	7.67-7.72	2H	multiplet	Ar-Hbb'	-
7.	7.98-7.81	3H	triplet Ar-Hcc'+Ha		-

8.	7.96-7.99	2H	doublet	Ar-Hff'	Jfg=8.7
9.	8.34	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

0	360	380	400	420	440	460	480	500	520	540	560	580	2
													m

ANTIMICROBIAL ACTIVITY

Method	:	Cup-Plate ⁹⁶
Gran positive bacteria	:	B. cocous and B. subtillus
Gram negative bacteria	:	Proteus vulgaris
		Escherichia coli
Fungi	:	Aspergillus niger
Concentration	:	40 µg
Solvent	:	Dimethyl formamide
Standard drug	:	Amoxycillin, Benzoylpenicillin,
		Ciprofloxacin, Erythromycin, Greseofulvin.

The antimicrobial activity was compared with standard drugs viz. Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin, and antifungal activity was compared with viz Greseofulvin. The zone of inhibition measured in mm.

ANTITUBERCULAR ACTIVITY

The antitubercular activity was carried out at Tubrerculosis Antimicrobial Acquisition and Co-ordinating Facility (TAACF) U.S.A.

Method	:	BACTEC 460 Radiometric system.
Bacteria	:	Mycobacterium tuberculosis H ₃₇ Rv
Concentrtion	:	6.25 μg/ml.
Standard drug	:	Rifampin

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-ARYL-3-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-2-PROPENE-1-ONES

[A] Synthesis of N-Aminophenyl- α -methyl-p-flurophenyl azomethine

A mixture of phenylhydrazine (1.08 g, 0.01M) and p-flurophenyl aceto phenone (1.38 g, 0.01M) in absolute ethanol was refluxed in water bath for 2 hrs. in presence of 1 ml glacial acetic acid. The crude product was isolated and crystallised from absolute alcohol. yield. 90%, m.p. 38° C; (C₁₄H₁₃FN₂; Found : C, 72.63%, H, 5.70%; N, 12.21%; Required : C, 73.66%; H, 5.74%; N, 12.27%)

[B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole

N-Aminophenyl- α -methyl-p-fluorophenyl azomethine (2.27g, 0.01M) was added in mixture of Vilsmeir-Haack reagent (prepared by dropwise addition of 3 ml POCl₃ in ice cooled 25 ml DMF). and refluxed for 5 hrs. The reaction mixture was poured into ice followed by neutralization using sodium bicarbonate. Crude product was isolated and crystallised from ethanol yield 75%, m.p. 155°C; (C₁₆H₁₁FN₂O; Found C, 72.11%; H, 4.12%; N, 10.48%; Required; C, 72.11%; H, 4.16%; N, 10.52%).

[C] Synthesis of 1-(p-Anisyl)-3-(1'-N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl)-2-propene-1-one

To a well stirred solution of 1,N-phenyl-3-p-fluorophenyl-4-formyl-pyrazole (2.65gm, 0.01M) and p-methoxy-acetophenone (1.5 g, 0.01M) in ethanol (25 ml), 40% KOH added till the solution become basic. The reaction mixture was stirred for 24 hrs. The contents were poured into ice, acidified, filtered and crystallised from ethanol. Yield,78%, m.p.180°C. ($C_{25}H_{19}FN_2O_2$; Found : C,75.33%; H, 4.77%; N, 6.94%; Requires : C, 75.36%; H, 4.81%; N, 7.03%).

Similarly, other substituted chalcones have prepared. The physical data are

35

recorded in Table No. 1.

[D] Antimicrobial activity of 1-Aryl-3-[1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl]-2-propene-1-ones

All the products have been evaluated by antimicrobial activity as described under.

(a) Antimicrobial activity

It was carried out by cup-plate diffusion method which has been described as under.

(I) Antibacterial activity

The purified products were screened for their antibacterial activity. The nutrient agar broth prepared by the usual method was inoculated aseptically with 0.5 ml of 24 hrs. old subcultures of B. cocous, B. subtillus, E. coli, P. *vulgaris* in separate conical flasks at 40-50°C and mixed well by gentle shaking. About 25 ml content of the flast were poured and evenly spread in a pertidish (13 cm in diameter) and allowed to set for 2 hrs. The cup (10 mm in diameter) were formed by the help of borar in agar medium and filled with 0.04 ml (40 μ g) solution of sample in DMF.

The plates were incubated at 37°C for 24 hrs. and the control was also maintained with 0.04 ml of DMF in a similar manner and the zones of inhibition of the bacterial growth were measured in millimeter and are recorded in graphical chart no.1.

(II) Antifungal activity

A. Niger was employed for testing antifungal activity using cup-plate method. The culture was maintained on Sabouraud's agar slants. Sterilised Sabouraud's agar medium was inoculated with 72 hrs. old 0.5 ml of suspension of fungal spores in a separate flask. About 25 ml of the inculated medium was

36

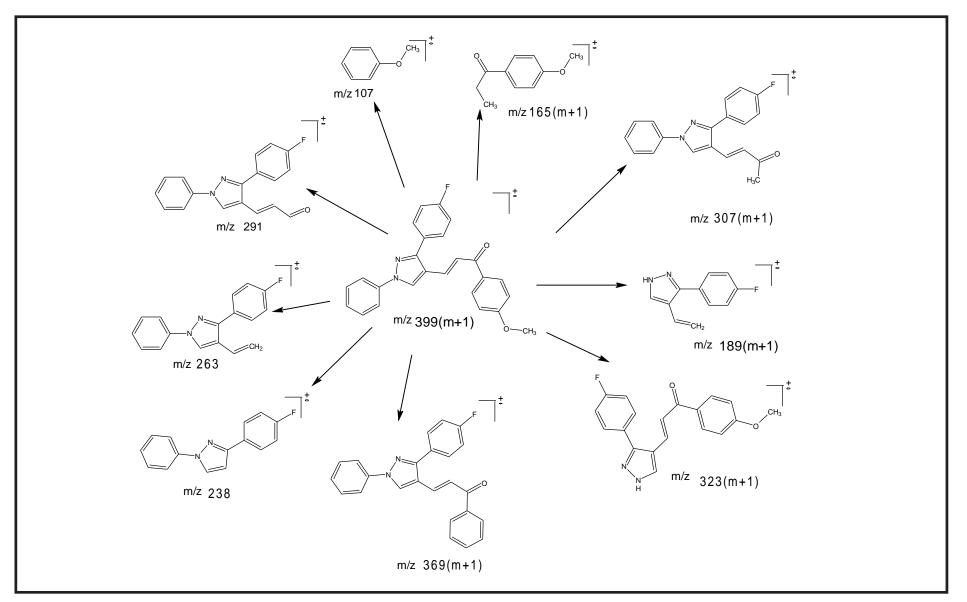
evenly spreaded in a petridish and allowed to set for two hrs. The cups (10 mm

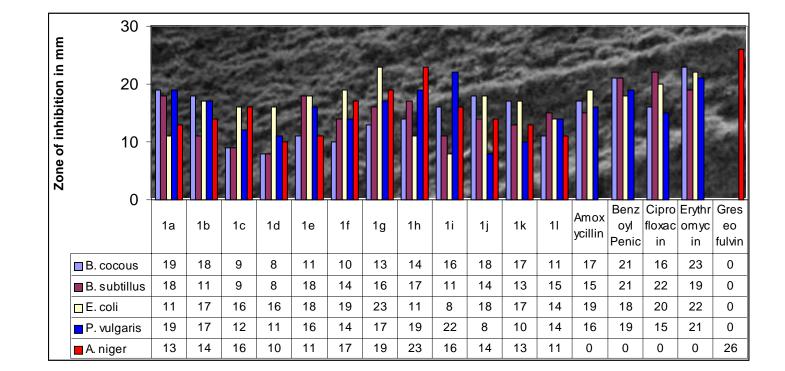
in diameter) were punched. The plates were incubated at 30°C for 48 hrs. After the completion of incubation period, the zones of inhibition of growth in the form of diameter in mm was measured Along the test solution, in each petridish one cup was filled up with solvent which acts as control. The zones of inhibition are recorded in graphical chart no.1.

(b) Antitubercular Activity

The antitubercular evaluation of the compounds was carried out at Tuberculosis Antimicrobial Acquisition and Co-ordinating Facility (TAACF), U.S.A. Primary screening of the compounds for antitubercular activity have been conducted at 6.25 µg/ml towards **Mycobacterium Tuberculosis** $H_{37}Rv$ in BACTEC 12B medium using the BACTEC 460 radiometric system. The compounds demonstrating atleast > 90%. inhibition in the primary screen have been retested at lower concentration towards **Mycobacterium Tuberculosis** $H_{37}Rv$ to determine the actual minimum inhibitory concentration (MIC) in the BACTEC 460.

The antitubercular activity data have been compared with standard drug Rifampin at 0.25 μ g/ml concentration and it showed 98% inhibition. The work is under progress.


TABLE NO. 1: PHYSICAL CONSTANTS OF 1-ARYL-3-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-
2-PROPENE-1-ONES


Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
1a	с ₆ н ₅ -	C ₂₄ H ₁₇ FN ₂ O	368	140	0.41	81	7.60	7.53
16	4-OCH ₃ -C ₆ H ₄ -	$C_{25}H_{19}FN_2O_2$	398	180	0.59	78	7.03	6.94
1c	4-CH ₃ -C ₆ H ₄ -	$\mathrm{C_{25}H_{19}FN_{2}O}$	382	193	0.47	70	7.33	7.26
1d	4-Cl-C ₆ H ₄ -	$C_{24}H_{16}CIFN_{2}O$	402	210	0.52	73	6.95	6.87
1e	4-F-C ₆ H ₄ -	$C_{24}H_{16}F_2N_2O$	386	189	0.61	86	7.25	7.16
1f	4-OH-C ₆ H ₄ -	$\mathrm{C}_{24}\mathrm{H}_{11}\mathrm{FN}_{2}\mathrm{O}_{2}$	384	240	0.73	84	7.29	7.22
1g	2-0H-C ₆ H ₄ -	$\mathrm{C_{24}H_{17}FN_2O_2}$	384	178	0.44	74	7.29	7.20
1h	4-NO ₂ -C ₆ H ₄ -	$C_{24}H_{16}FN_{3}O_{3}$	413	191	0.56	82	10.16	10.09
1i	3-NO ₂ -C ₆ H ₄ -	$C_{24}H_{16}FN_{3}O_{3}$	413	188	0.64	72	10.16	10.10
1j	4-Br-C ₆ H ₄ -	$C_{24}H_{16}BrFN_2O$	447	218	0.57	77	6.26	6.21
1k	$4-NH_4-C_6H_4$	$\mathrm{C_{24}H_{18}FN_2O}$	383	206	0.71	79	10.96	10.88
11	C_4H_3S -	$C_{22}H_{15}FSN_2O$	374	174	0.58	76	7.48	7.42

*TLC Solvent System : Acetone : Benzene

2 : 8 (1a-1e, 1g-1j, 1l)

3 : 7 (1f, 1k)

<u>GRAPHYCAL CHARTNO.1</u>: ANTIMICROBIAL ACTIVITY OF 1-ARYL-3-[1'N-PHENYL-3'-p-FLOROPHENYL PYRAZOL-4'-YL]-2-PROPENE-1-ONES.

CONCLUSION

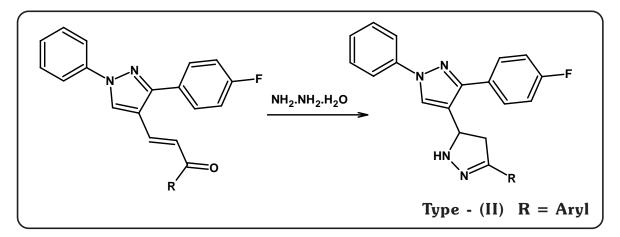
ANTIBACTERIAL ACTIVITY

The antibacterial activity of chalcones (type-I) revealed that all the compounds were able to inhibit the growth of Gram positive & Gram negative bacterial strains.

Maximum activity was observed in compounds bearing R = phenyl and 4fluorophenyl which was compared to standard drugs against Gram positive bacterial strains **B. cocous** & **B. subtillus**. Significant activity was displayed by compounds bearing R=4-methylphenyl, 4-nitrophenyl, 4-bromophenyl, thiopene except 4-chlorophenyl.

In case of Gram negative bacterial species, maximum activity was observed in compound bearing R=2-hydroxyphenyl and 3-nitrophenyl against Gram negative bacterial species **P. vulgaris** & **E. coli** singificant activity was displayed by compound bearing R=phenyl, 4-methoxyphenyl, 4-nitrophenyl, 4bromophenyl and 4-hydroxyphenyl.

ANTIFUNGAL ACTIVITY

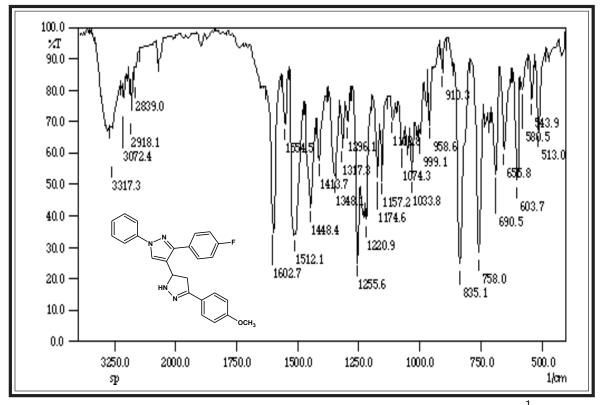

Most of the compound were mild to moderately active against fungal strain **A. niger**. Maximum activity was observed in compound bearing R=4-nitrophenyl which was compared to standard drug.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

SECTION - II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1'-N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES

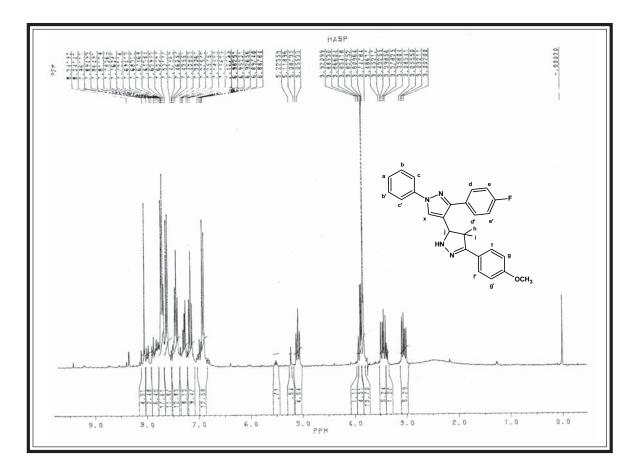
Looking at versatile therapeutic importance and with an aim to getting better drug, it was considered worthwhile to synthesise some new pyrazolines. The preparation of 3-aryl-5-(1',N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-pyrazolines (II) has been undertaken by cyclocondensation of chalcones of type (I) with hydrazine hydrate.



The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ${}^{1}\text{H}$ nuclear magnetic resonance spectroscopy and mass spectrometry also.

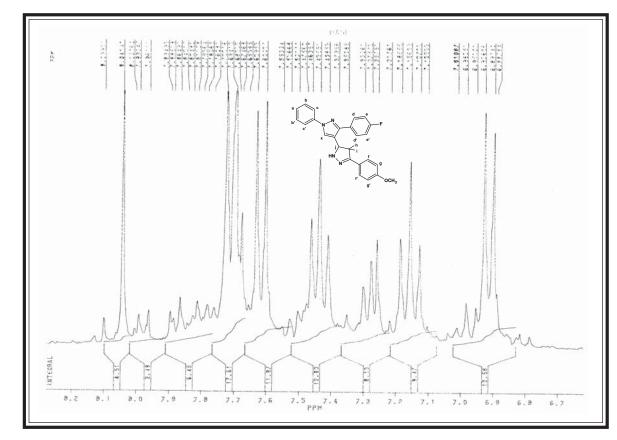
The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

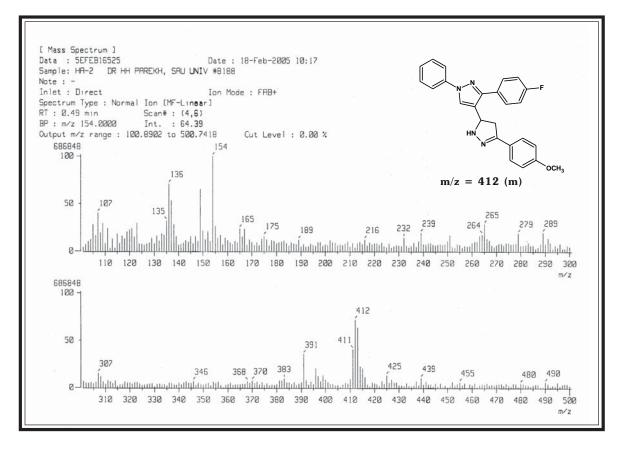
Туре	Vibration	Freque	Frequency in cm ⁻¹		
туре	mode	Observed	Reported	Ref.	
Alkane	C – H str.(asym.)	2918	2975–2920	426	
-CH ₃	C – H str. (sym.)	2839	2880–2820	"	
5	C – H i.p. (def.)	1448	1470–1435	"	
	C – H o.o.p. (def.)	1348	1385–1350	"	
Aromatic	C – H str.	3072	3080–3030	427	
	C – H i.p. (def.)	1157	1160–1090	"	
		1033	1070-1000	"	
	C – H o.o.p (def.)	835	835–810	"	
Pyrazole	C = N str.	1602	1650–1600	428	
moiety	C = C str.	1512	1585–1480	"	
	C – N str.	1317	1350–1200	"	
	C – F str.	756	760–710	"	
Ether	C – O – C (asym.)	1255	1275–1200	"	
	C – O – C (sym.)	1074	1075–1020	"	


Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 3-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-PYRAZOLINE

Pyrazoline	C = N str.	1550	1627–1550	429
	N – H str.	3317	3450–3250	"


PMR SPECTRAL STUDY OF 3-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-PYRAZOLINE



 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \quad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (& ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.00-3.08	1H	d. doublet	CHh	Jhi =
					Jhj =
2.	3.35-3.48	1H	d. doublet	CHi	Jih =
					Jij =
3.	3.83	3H	singlet	Ar-OCH ₃	-
4.	5.05-5.22	1H	d. doublet	СНј	Jih =
					Jji =
5.	6.88-6.92	2H	doublet	Ar-Hgg'	Jgf=8.7
6.	7.10-7.21	2H	triplet	Ar-Hdd'	-
7.	7.25-7.30	2H	triplet	Ar-Hbb'	-
8.	7.35-7.46	2H	triplet	Ar-Hcc'	-
9.	7.60-7.62	2H	doublet	Ar-Hee'	Jed=8.7
10.	7.67-7.72	3H	triplet	Ar-Hff'+Ha	Jfg=8.4
11.	8.04	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-PYRAZOLINES

- [A] Synthesis of N-Aminophenyl-α-methyl-2-p-anisyl-azomethine See Part-I, Section-I (A).
- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See Part-I, Section-I (B).
- [C] Synthesis of 1-(p-Anisyl)-3-(1'-N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-2-propene-1-one See Part-I, Section-I (C).

[D] Synthesis of 3-(p-Anisyl)-5-(1'-N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-pyrazoline

A mixture of 1-(p-anisyl)-3-(1',N-phenyl-3'-p-flurophenyl-pyrazol-4'-yl)-2propene-1-one (3.98 g, 0.01M) in 25 ml of absolute alcohol, add hydrazine hydrate (0.5g, 0.01M) was refluxed in water bath at temp. 80-90°C for 8 hrs. The reaction mixture was poured into ice. The product was isolated and crystallised from ethanol, yield 59%, m.p. 140°C; ($C_{25}H_{21}FN_4O$; Found : C, 7272%; H, 5.09%; N, 13.52%; Requires : C, 72.80%; H, 5.13%; N, 13.58%).

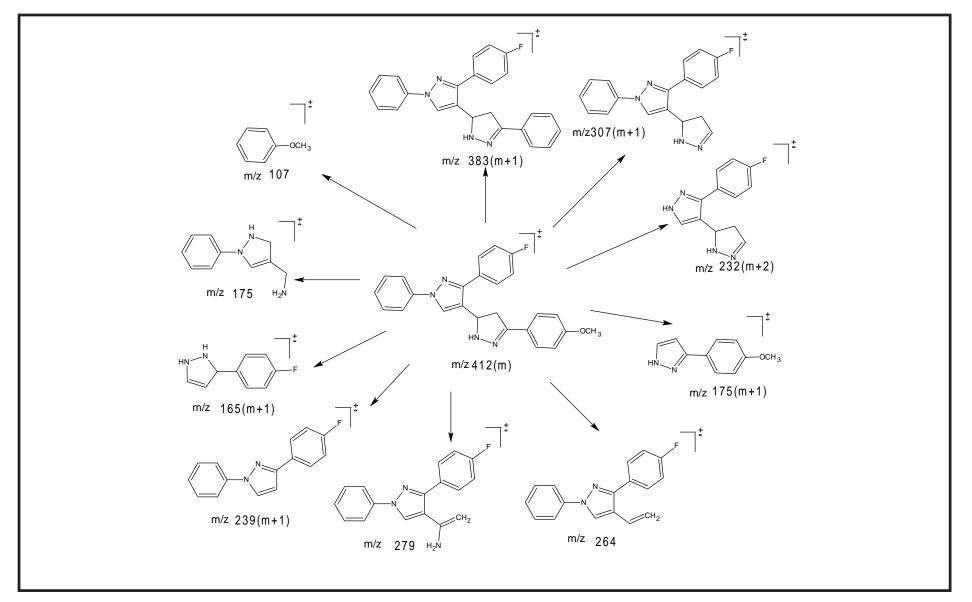
Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Table No. 2.

[E] Antimicrobial activity of 3-Aryl-5-(1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl-)pyrazolines

Antimicrobial testing was carried out as described in Part-I, Section-I (D).

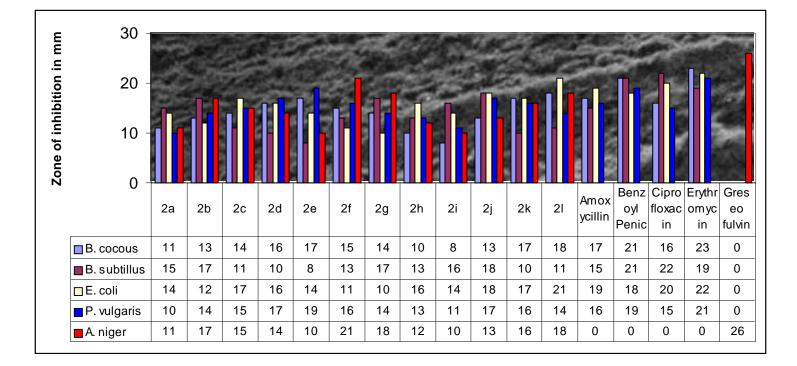
46

The zone of inhibition of the test solutions are recorded in Graphical Chart No.2.


TABLE NO. 2PHYSICAL CONSTANTS OF 3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-
PYRAZOLINES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
2a	с ₆ н ₅ -	C ₂₄ H ₁₉ FN ₄	382	246	0.51	61	14.65	14.61
2ь	4-OCH ₃ -C ₆ H ₄ -	$\mathrm{C_{25}H_{21}FN_4O}$	412	140	0.38	59	13.58	13.52
2c	4-CH ₃ -C ₆ H ₄ -	$\mathrm{C_{25}H_{21}FN_{4}}$	396	164	0.43	65	14.13	14.08
2d	4-Cl-C ₆ H ₄ -	$C_{24}H_{18}CIFN_{4}$	416	142	0.44	66	13.44	13.39
2e	4-F-C ₆ H ₄ -	$C_{24}H_{18}F_2N_4$	400	146	0.60	63	13.99	13.91
2f	4-0H-C ₆ H ₄ -	$C_{24}H_{19}FN_4O$	398	150	0.54	70	14.06	14.00
2g	2-0H-C ₆ H ₄ -	$C_{24}H_{19}FN_4O$	398	255	0.67	62	14.06	13.98
2h	4-NO ₂ -C ₆ H ₄ -	$C_{24}H_{18}FN_5O_2$	427	275	0.75	65	16.38	16.31
2i	3-NO ₂ -C ₆ H ₄ -	$C_{24}H_{18}FN_5O_2$	427	128	0.36	71	16.38	16.32
2j	4-Br-C ₆ H ₄ -	$C_{24}H_{18}BrFN_4$	461	160	0.49	64	12.14	12.07
2k	4-NH ₂ -C ₆ H ₄	C ₂₄ H ₂₀ FN ₅	397	157	0.39	68	17.62	17.56
21	C_4H_3S -	C ₂₂ H ₁₇ FSN ₄	388	184	0.52	67	14.42	14.37

*TLC Solvent System : Ethyl acetate : Hexane


2 : 8 (3a-3f, 3i-3l)

2.5 : 7.5 (3g, 3h)

GRAPHYCAL CHART NO.2:

ANTIMICROBIAL ACTIVITY OF 3-ARYL-5-[1'N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES.

CONCLUSION

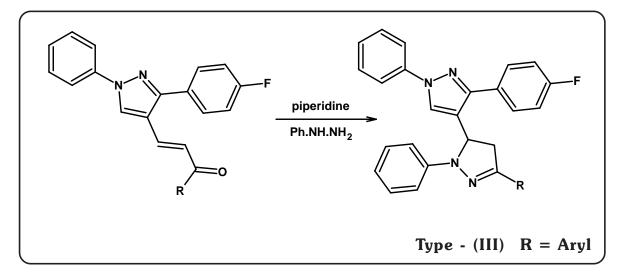
ANTIBACTERIAL ACTIVITY

It has been concluded from the experimental data that pyrazoline derivatives (type-II) were able to inhibit the growth of Gram positive and Gram negative bacterial strains.

Maximum activity was observed in compounds bearing R=4-bromophenyl & phenyl against Gram positive bacterial strains **B**. cocous & **B**. subtillus. Significant activity was observed in compounds bearing R=4-methoxyphenyl, 4-aminophenyl against Gram positive bacterial strains **B**. cocous & **B**. subtillus.

While in case of Gram negative bacterial stains, maximum activity was observed in compound bearing R=4-fluorophenyl & 3-nitrophenyl & significant activity was observed in compound bearing R=4-bromophenyl & 4-aminophenyl against *P. vulgaris* & *E. coli*. Other compounds were mild to moderately active.

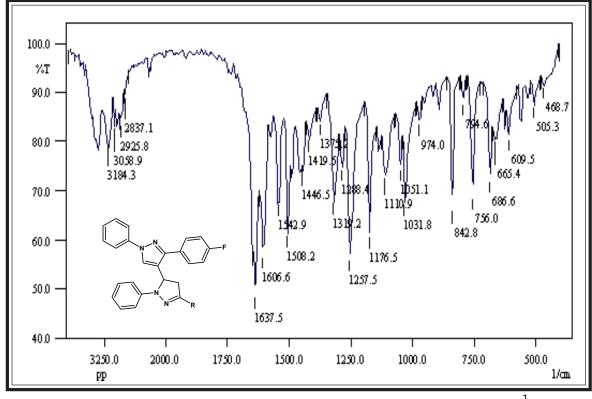
ANTIFUNGAL ACTIVITY


All the compound were mild to moderately active against fungal strain **A**. *niger* with comparable to standard drugs, while maximum activity was observed in compound bearing R=4-hydroxyphenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

SECTION - III

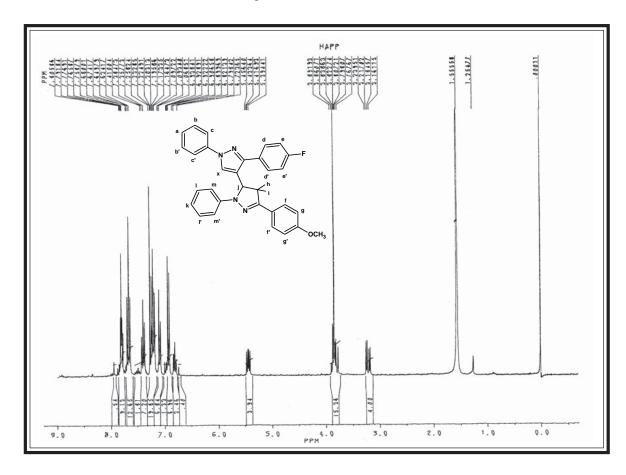
SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-PHENYL-3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-PYRAZOLINES


Looking to the interesting therapeutic activities of pyrazolines, it was considered worthwhile to synthesise compounds bearing 1-N-phenyl-3-pfluorophenyl-4-formyl-pyrazole moiety linked to the pyrazoline of type- (III) which have been prepared by the action of 1-aryl-3-(1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl)-2-propen-1-ones with phenyl hydrazine in presence of piperidine.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

IR SPECTRAL STUDY OF 1,N-PHENYL-3-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-PYRAZOLINE

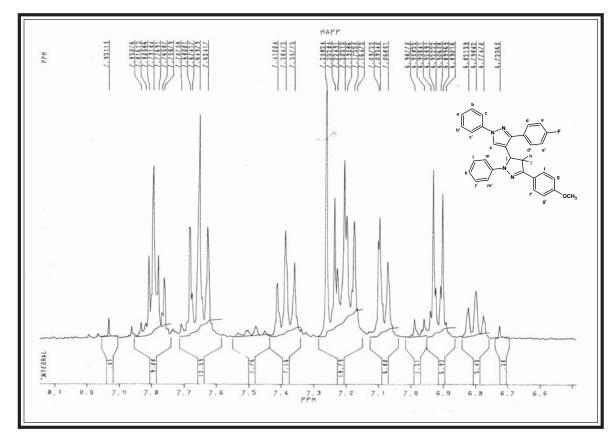


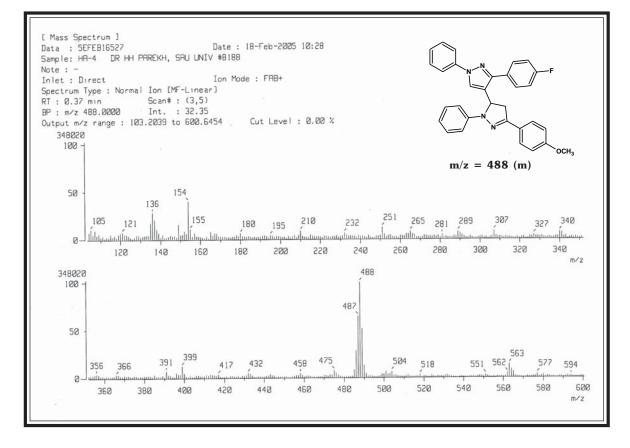
Туре	Vibration	Freque	ency in cm ⁻¹	Ref.
Туре	mode	Observed	Reported	Nel.
Alkane	C – H str.(asym.)	2925	2975–1920	426
-CH ₃	C – H str. (sym.)	2837	2880-2850	"
5	C – H i.p. (def.)	1446	1470–1435	"
	C – H o.o.p. (def.)	1375	1385–1350	"
Aromatic	C – H str.	3068	3080–3030	427
	C – H i.p. (def.)	1110	1125–1090	"
		1031	1070–1000	"
	C – H o.o.p (def.)	842	845-810	"
Pyrazole	C = N str.	1637	1650–1600	428
moiety	C = C str.	1506	1585–1480	"
	C – N str.	1286	1350–1200	"
	C – F str.	756	760–720	"
Ether	C – O – C str. (asym.)	1257	1275–1200	"
	C – O – C str. (sym.)	1061	1075–1020	"
Pyrazoline	C = N str.	1606	1627–1580	429

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

	C – H def.	686	698–680	"
--	------------	-----	---------	---

PMR SPECTRAL STUDY OF 1,N-PHENYL-3-(P-ANISYL)-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-PYRAZOLINE




 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \qquad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.16-3.23	1H	d. doublet	CHh	-
2.	3.76-3.82	1H	d. doublet	СНі	-
3.	3.83	3H	singlet	Ar-OCH ₃	-
4.	5.39-5.45	1H	d. doublet	СНј	-
5.	6.77-6.82	1H	triplet	Ar-Ha	-
6.	6.89-6.92	2H	doublet	Ar-Hgg	Jgf=6.96
7.	7.06-7.09	2H	doublet	Ar-Hdd'	Jde=8.7
8.	7.16-7.23	5H	multiplet	Ar-Hbb'+Hii+Hk	-
9.	7.35-7.41	2H	triplet	Ar-Hee'	-

10.	7.62-7.70	4H	triplet	Ar-Hmm'+Hcc'	-
11.	7.75-7.83	3H	quartet	Ar-Hff'+CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1, N-PHENYL-3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-**PYRAZOLINES**

[A] Synthesis of N-Aminophenyl-a-methyl-a-p-fluorophenylazomethine

See Part-I, Section-I (A).

- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See Part-I, Section-I (B).
- [C] Synthesis of 1-(p-Anisyl)-3-(1'-N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-2-propene-1-one See Part-I, Section-I (C).
- [D] Synthesis of 1, N-Phenyl-3-(p-anisyl)-5-(1',-N-phenyl-3'-pfluorophenyl pyrazol-4'-yl)-pyrazoline

To a mixture of 1-(p-Anisyl)-3-(1',N-phenyl)-3'-p-fluorophenyl-pyrazol-4'yl)-2-porpene-1-one (3.98g, 0.01M) in 25 ml of absolute alcohol add phenyl hydrazine (1.08g, 0.01M) was added in presence of basic catalyst like piperidine and refluxed for 12 hrs. at temp 70°C The reaction product was poured into ice. The product was isolated and crystallised from ethanol Yield 68%, m.p. 84°C $(C_{31}H_{25}FN_4O; Found : C, 76.16\%; H, 5.11\%; N, 11.42\%; Requires : C, 76.21\%;$ H, 5.16%; N, 11.47%).

Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Table No. 2.

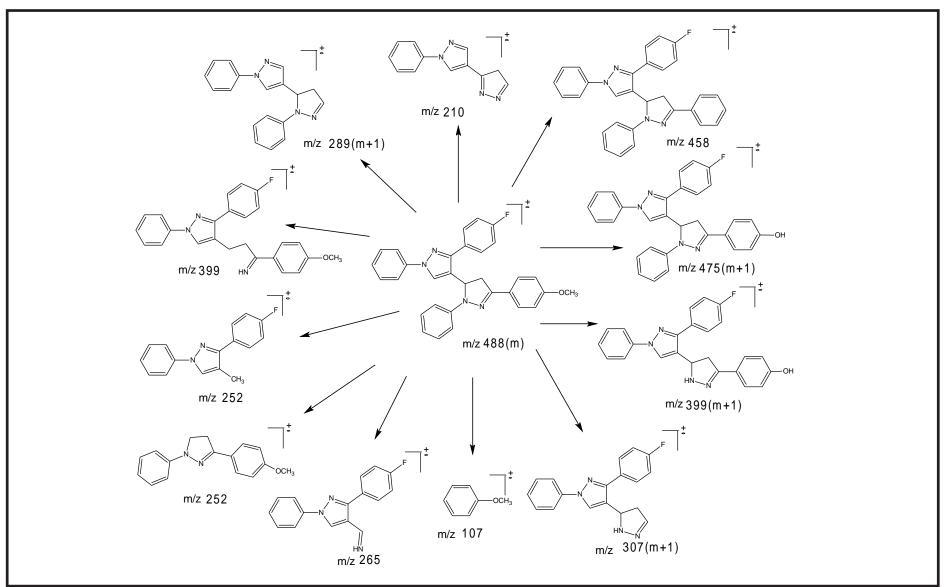
[E] Antimicrobial activity of 1,N-phenyl-3-aryl-5-(1',N-phenyl-3'-pfluorophenyl pyrazol-4'-yl)-pyrazolines

55

Antimicrobial testing was carried out as described in Part-I, Section-I (D).

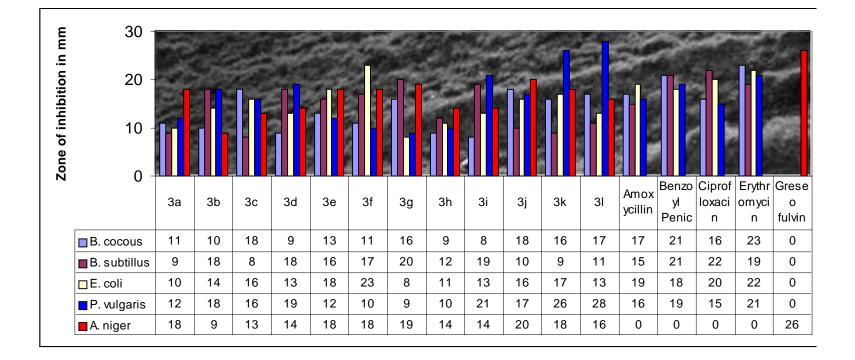
The zone of inhibition of the test solutions are recorded in Graphical Chart No.3.

56


TABLE NO. 3:PHYSICAL CONSTANTS OF 1,N-PHENYL-3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-
PYRAZOL-4'-YL]-PYRAZOLINES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of Nitrogen	
No. 1	2	Formula 3	Weight 4	°С 5	Value 6	% 7	Calcd. 8	Found 9
3a	С ₆ Н ₅ -	C ₃₀ H ₂₃ FN ₄	458	94	0.62	63	12.12	12.17
3ь	4-OCH ₃ -C ₆ H ₄ -	C ₃₁ H ₂₅ FN ₄ O	488	84	0.53	68	11.47	11.42
3c	4-CH ₃ -C ₆ H ₄ -	C ₃₁ H ₂₅ FN ₄	472	88	0.54	66	11.86	11.82
3d	4-Cl-C ₆ H ₄ -	C ₃₀ H ₂₂ CIFN ₄	492	98	0.48	70	11.37	11.33
3e	4-F-C ₆ H ₄ -	C ₃₀ H ₂₂ F ₂ N ₄	476	76	0.42	63	11.76	11.71
3f	4-OH-C ₆ H ₄ -	C ₃₀ H ₂₃ FN ₄ O	474	78	0.49	65	11.81	11.75
3g	2-OH-C ₆ H ₄ -	C ₃₀ H ₂₃ FN ₄ O	474	82	0.74	64	11.81	11.73
3h	4-NO ₂ -C ₆ H ₄ -	C ₃₀ H ₂₂ FN ₅ O ₂	503	100	0.65	67	13.91	11.86
3i	3-NO ₂ -C ₆ H ₄ -	C ₃₀ H ₂₂ FN ₅ O ₂	503	110	0.45	70	13.91	11.84
3j	4-Br-C ₆ H ₄ -	C ₃₀ H ₂₂ BrFN ₄	537	80	0.69	61	10.43	10.36
3k	4-NH ₂ -C ₆ H ₄	C ₃₀ H ₂₄ FN ₅	473	94	0.44	71	14.79	14.72
31	C ₄ H ₃ S-	C ₂₈ H ₂₁ FN ₄ S	464	91	0.54	60	12.06	12.01

*TLC Solvent System :


Acetone : Benzene

2 : 8

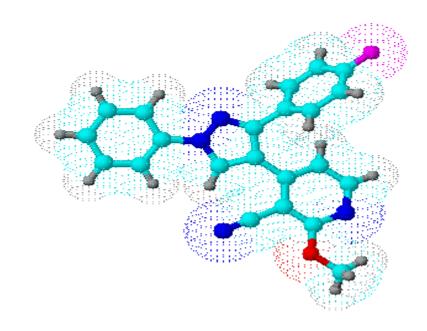
GRAPHYCAL CHART NO.3:

ANTIMICROBIAL ACTIVITY OF1,N-PHENYL 3-ARYL-5-[1'N-PHE NYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES.

CONCLUSION

ANTIBACTERIAL ACTIVITY

It has been observed from the experimental data that pyrazolines (type-III) show maximum activity against Gram positive bacterial strains and moderately active against Gram negative bacterial strain.


It has been observed that compounds bearing R=4-methylphenyl, 3nitrophenyl & 2-hydroxyphenyl shows promising activity and compounds bearing R=4-methoxyphenyl, 4-chlorophenyl, 4-hydroxyphenyl, 4-aminophenyl & thiophene shows significant activity against Gram positive bacterial strains **B. cocous** & **B. subtillus**.

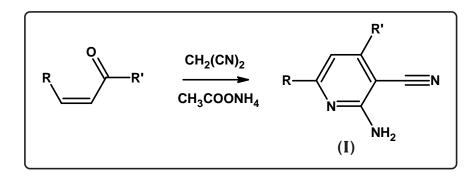
While in case of Gram negative bacterial strains, compounds were moderately active. Maximum activity was observed in compounds bearing R=4-nitrophenyl, 3-nitrophenyl & 4-fluorophenyl against Gram negative bacterial strains **E. coli** and **P. vulgaris**.

ANTIFUNGAL ACTIVITY

All the compound were mild to moderately active against fungal strain **A.** *niger*. Maximum activity was observed in compound bearing R=4-bromophenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

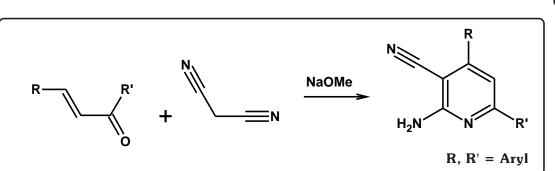
PART-II STUDIES ON CYANOPYRIDINES


INTRODUCTION

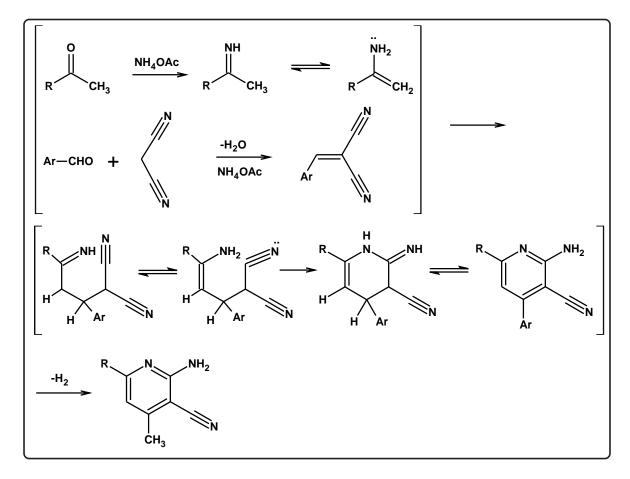
Pyridine and its derivatives are very important in pharmaceutical, agriculture and industrial chemistry. Some pyridine system is active in the metabolism in the body certain nitrogenous plant products also have pyridine class compounds. They can be parent component of many drugs. Pyridine is also used as a denaturant for antifreeze mixtures, as a dyeing assistant in textiles and fungicides. Cyanopyridines, nicotinonitriles, nicotanamide and nicotinic acid are intermediates for the preparation of pharmaceuticals and agrochemicals.

SYNTHETIC ASPECTS

Preparation of 3-cyanopyridines is available in the literature $^{97-101}$ with different methods.


 Samour and co-workers¹⁰² have prepared substituted cyanopyridines(I) by the condensation of chalcones with malononitriles in presence of ammonium acetate.

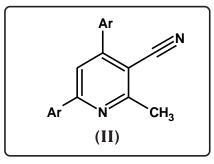
- 2. Feng Shi and co-workers¹⁰³ have prepared 2-amino-3-cyanopyridine derivative by the reaction of aromatic aldehyde, ketone, malono nitriles and ammonium acetate under microwave irradiation without solvent.
- 3. Dao-Lin & Kimiaki¹⁰⁴ have prepared 2-methoxy-3-cyano pyridine



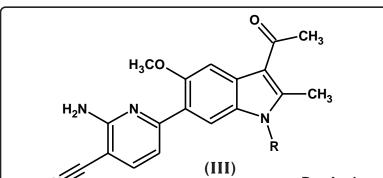
derivatives by the condensation of chalcones with malanonitrile in sodium methoxide.

MECHANISM

The reaction proceeds through conjugated addition of active methylene compounds to the α,β -unsaturated system as shown below $^{105}.$

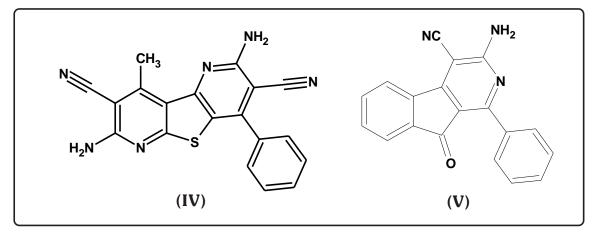

THERAPEUTIC IMPORTANCE

The extensive use of cyanopyridine derivatives have been established in medicine due to its variety of therapeutic activity shown as under.


- 1. Analgesic¹⁰⁶
- 2. Insecticidal¹⁰⁷

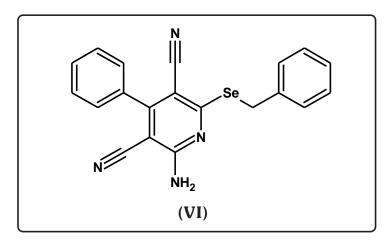
- 3. Antisoriasis¹⁰⁸
- 4. Antihypertensive¹⁰⁹
- 5. Antifungal¹¹⁰
- 6. Antiepileptic¹¹¹
- 7. Antibacterial¹¹²
- 8. Anticonvulsant¹¹³

F. Manna et. al.¹¹⁴ have prepared 3-cyano-pyridine derivatives as antiinflammatory, analgesic and antipyretic agents. Aivars Krauze et. al.¹¹⁵ have synthesised 3-cyanopyridine derivatives & shown their neurotropic activity. Fatma Goda & co-workers¹¹⁶ have synthesised 2-alkoxy pyridines (II) and studied their antimicrobial activity.


H. Yoshida et. al.¹¹⁷ have studied the antihistamic & antiallergic activity of 3-cyanopyridine derivatives. Gadaginamath and co-workers¹¹⁸ have synthesised various cyanopyridyl derivatives (III) and documented their variety of biological activities.

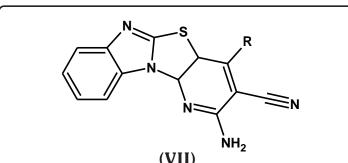
N R = Aryl

Hammana Abou and co-workers¹¹⁹ have studied the anticancer and anti-HIV activity of 3-cyanopyridines. Abdallah Navine et. al.¹²⁰ have prepared cyanopyridine derivatives which showed analgesic and antiinflammatory activity.


Abu and co-workers¹²¹ have described novel fused cyanopyridines (IV) for the treatment and preparation of systemic fungal infection.

S. V. Roman et. al.¹²² have investigated 2-amino-3-cyanopyridine derivatives and reported their biological activity. El-Taweel and co-workers¹²³ have described cyanopyridine derivatives (V) and showed their significant biological activity.

Francis and co-workers¹²⁴ have studied the effect of some substituted pyridines on the growth of the walker carcinosarcome-256 in tissue culture. H. W. Hoefling and co-workers¹²⁵ have documented 3- and 4-cyanopyridines as tuberculosis arresting agents.


Hironori et. al.¹²⁶ have prepared cyanopyridines and screened for their large conductance calcium activiated potassium channel opener activity. Pyachenko V. D. and co-workers¹²⁷ have shown some cyanopyridines (VI) which are useful in treatment of retroviral disease.

CONTRIBUTION FROM OUR LABORATORY

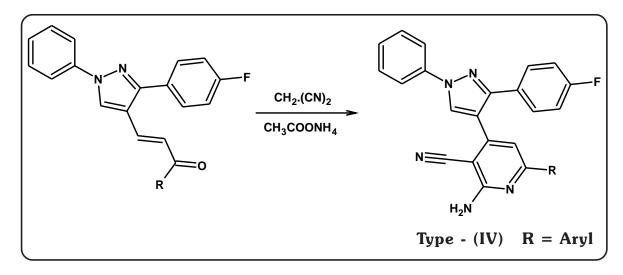
Akhil Bhatt and co-workers¹²⁸ have synthesised cyanopyridines as potential antimicrobial agents. R. C. Khunt et. al.¹²⁹ have screened cyanopyridine derivatives used as biologically active agents. Synthesis and antimicrobial activity of cyanopyridines is shown by B. P. Kansagara et. al.¹³⁰ J. R. Patel & co-workers¹³¹ have prepared cyanopyridines bearing 2-chloro-6-bromoquinoline nucleus as potential anticancer agents.

Synthesis and biological evaluation of cyanopyridines is screened by Pankaj Patel & co-workers¹³². Rajeev Doshi and co-workers¹³³ have described some novel cyanopyridines as a new class of potential antitubercular agents. Cyanopyridines have been screened by A. V. Dobaria et. al.¹³⁴ and showed their significant biological activity. Ketan Hirpara & co-workers¹³⁵ have discovered cyanopyridines as antitubercular agents (VII).

64

(• --/

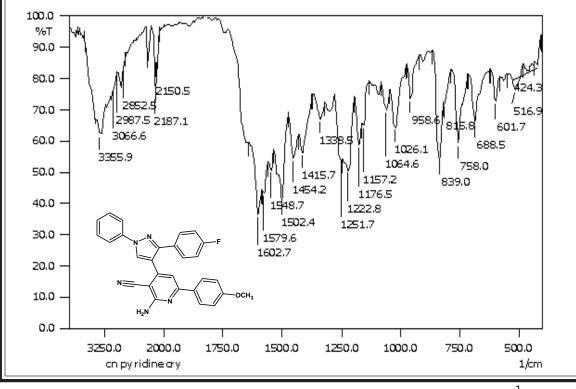
Thus, diverse biological activities have been encountered in compounds containing cyanopyridine ring system. To further assess the potential of such a type of compounds, study of cyanopyridines have been carried out as under.

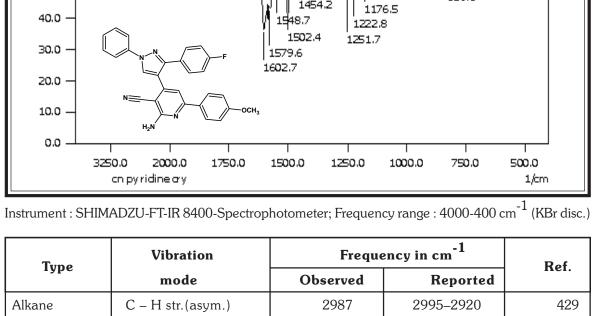

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-A M I N O - 3 - C YA N O - 4 - [1, 'N - P H E N Y L - 3' - p -FLUOROPHENYL PYRAZOL -4'-YL]-6-ARYL-PYRIDINES

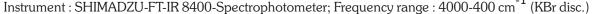
SECTION - II: SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-A M I N O - 3 - C YA N O - 4 - [1, 'N - P H E N Y L - 3' - p -FLUOROPHENYL PYRAZOL - 4'-YL]-6-ARYL-PYRIDINES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'YL]-6-ARYL-PYRIDINES

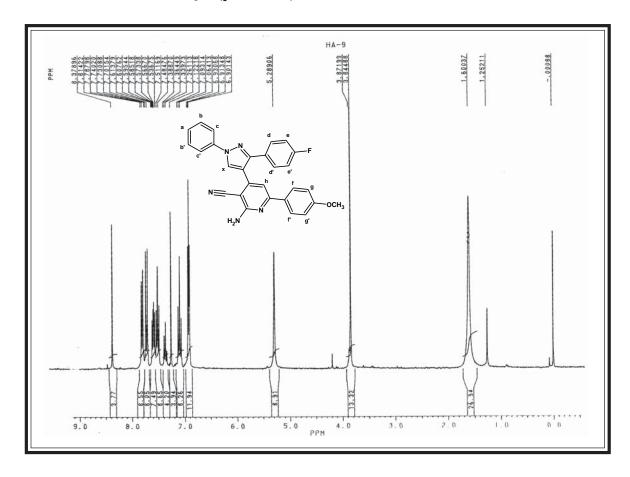

In the past years, considerable evidence has been accumulated to demonstrate the efficiency of cyanopyridines. To further assess the potential of such a class of compounds cyanopyridine derivatives of type (IV) have been synthesised by condensation of malononitrile and ammonium acetate with 1-aryl-3-[1',N-phenyl-3'-p-flourophenyl pyrazole-4'-yl]-2-propene-1-ones.




The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

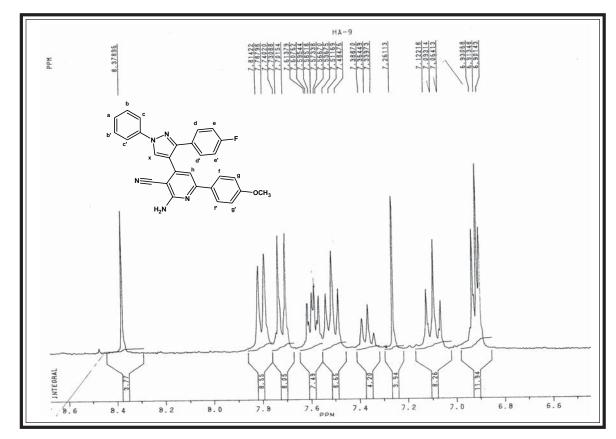
The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activity of synthesised compounds were compared with standard drugs.

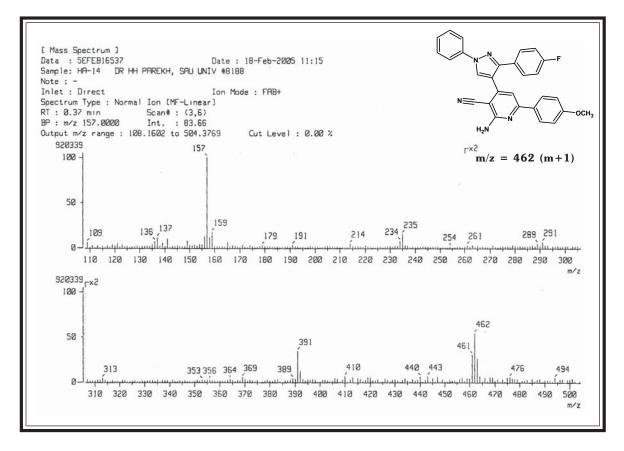
IR SPECTRAL STUDY OF 2-AMINO-3-CYANO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-
PYRAZOL-4'-YL)-6-(p-ANISYL) PYRIDINE



	mode	Observed	Reported	
Alkane	C – H str.(asym.)	2987	2995–2920	429
-CH ₃	C – H str. (sym.)	2852	2880–2850	"
5	C – H i.p. (def.)	1454	1470–1435	"
	C – H o.o.p. (def.)	1338	1385–1330	"
Aromatic	C – H str.	3066	3080–3010	427
	C – H i.p. (def.)	1026	1110–1000	"
	C – H o.o.p (def.)	839	835–810	"
Pyrazole	C = N str.	1602	1650–1600	428
moiety	C = C str.	1546	1585–1480	"
	C – N str.	1222	1350–1200	"
	C – F str.	758	760–710	"
Ether	C – O – C str. (asym.)	1251	1275–1200	"
	C – O – C str. (sym.)	1064	1075–1020	"
Pyridine	$C \equiv N \text{ str.}$	2187	2240–2120	429
ring	C = N str.	1579	1650–1600	"
	N – H str. (–NH ₂)	3355	3400–3250	"
	LL			

PMR SPECTRAL STUDY OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-p-FLUORO PHENYL PYRAZOL-4'-YL]-6-(p-ANISYL)-PYRIDINE




 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \quad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.84	3H	singlet	Ar-OCH ₃	-
2.	5.28	2H	singlet	-NH ₂	-
3.	6.90-6.93	3H	triplet	Ar-Hgg' + Hh	Jgf=8.7
4.	7.06-7.12	2H	triplet	Ar-Hdd'	-
5.	7.33-7.38	1H	triplet	Ar-Ha	-
6.	7.48-7.53	2H	triplet	Ar-Hbb'	-
7.	7.56-7.61	2H	multiplet	Ar-Hcc'	-
8.	7.70-7.74	2H	doublet	Ar-Hee'	Jed=8.7
		1			

9.	7.78-7.81	2H	doublet	Ar-Hff'	Jfg=8.1
10.	8.37	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-6-ARYL PYRIDINES

- [A] Synthesis of N-Aminophenyl-α-methyl-p-fluorophenyl azomethine See Part-I, Section-I (A).
- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See Part-I, Section-I (B).
- [C] Synthesis of 1-phenyl-3-(1'-N-phenyl-3'-p-fluorophenyl pyrazol-4'yl)-2-propene-1-one

See Part-I, Section-I (C).

[D] Synthesis of 2-Amino-3-cyano-4-[1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl]-6-(p-anisyl)-pyridine

A mixture of 1-Anisyl-3-(1',N-phenyl)-3'-p-fluorophenyl-pyrazol-4'-yl)-2-porpene-1-one (3.98 g, 0.01M), malononitrile (0.66 g, 0.01 M) and ammonium acetate (6.61g, 0.08M) dissolved in absoulte alcohol was refluxed for 10 hrs. at to mp 60-70°C The reaction product was poured into ice, crude product was isolated, crystallised from ethanol. Yield 65%, m.p. $234^{\circ}C$ ($C_{28}H_{20}FN_5O$; Found : C, 72.72%; H, 4.30%; N, 15.11%; Requires : C, 72.81%; H, 4.37%; N, 15.18%).

Similarly other cyanopyridines have been obtained. The physical data are recorded in Table No. 4.

[E] Antimicrobial activity of 2-Amino-3-cyano-4-[1',N-phenyl-3'-pfluorophenyl pyrazole-4'-yl]-6-aryl-pyridines

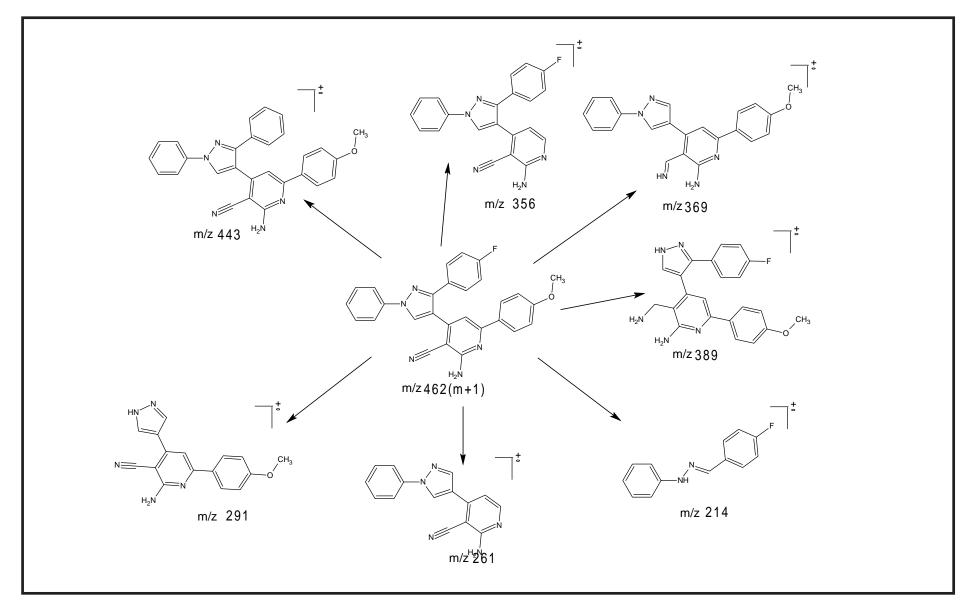
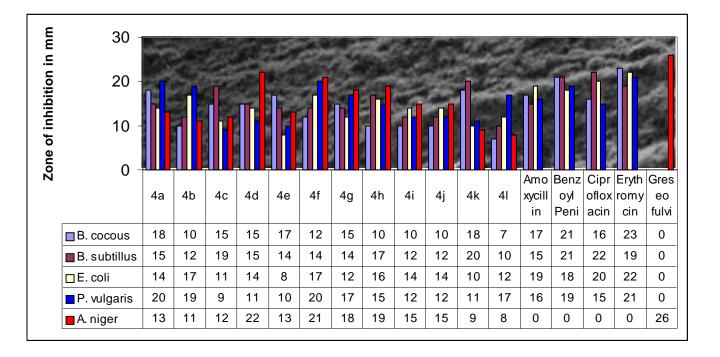

Antimicrobial testing was carried out as described in Part-I, Section-I (D). The zone of inhibition of the test solutions are recorded in Graphical Chart No.4.

TABLE NO. 4:PHYSICAL CONSTANTS OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL
PYRAZOL-4'-YL]-6-ARYL PYRIDINE

Sr.	R	Molecular	Molecular	M . P .	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
4a	с ₆ н ₅ -	C ₂₇ H ₁₈ FN ₅	431	164	0.51	67	16.23	16.16
4b	4-OCH ₃ -C ₆ H ₄ -	C ₂₈ H ₂₀ FN ₅ O	461	234	0.61	65	15.18	15.11
4c	4-CH ₃ -C ₆ H ₄ -	C ₂₈ H ₂₀ FN ₅	445	157	0.49	57	15.27	15.19
4d	4-CI-C ₆ H ₄ -	$C_{27}H_{17}CIFN_5$	465	142	0.53	63	15.03	14.96
4e	4-F-C ₆ H ₄ -	$C_{27}H_{17}F_2N_5$	449	191	0.57	59	15.58	15.52
4f	4-0H-C ₆ H ₄ -	C ₂₇ H ₁₈ FN ₅ O	447	189	0.47	72	15.65	15.57
4g	2-0H-C ₆ H ₄ -	C ₂₇ H ₁₈ FN ₅ O	447	171	0.53	67	15.65	15.58
4h	4-NO ₂ -C ₆ H ₄ -	C ₂₇ H ₁₇ FN ₆ O ₂	476	162	0.69	68	17.64	17.58
4 i	3-NO ₂ -C ₆ H ₄ -	C ₂₇ H ₁₇ FN ₆ O ₂	476	180	0.71	64	17.64	17.56
4j	4-Br-C ₆ H ₄ -	$C_{27}H_{17}BrFN_5$	510	174	0.50	66	17.72	17.65
4k	$4-NH_2-C_6H_4$	C ₂₇ H ₁₉ FN ₆	446	194	0.64	60	18.82	18.75
41	C_4H_3S -	C ₂₅ H ₁₆ FN ₅ S	437	205	0.58	69	16.01	15.94


*TLC Solvent System : Ethyl acetate : Hexane

2 : 8

GRAPHYCAL CHART NO.4:

ANTIMICROBIAL ACTIVITY OF 2-AMINO-3-CYANO- 4-[1'N-PHE NYL-3'-p-FLUOROPHENYL PYRAZOL-4'--6-ARYL-PYRIDINES.

CONCLUSION

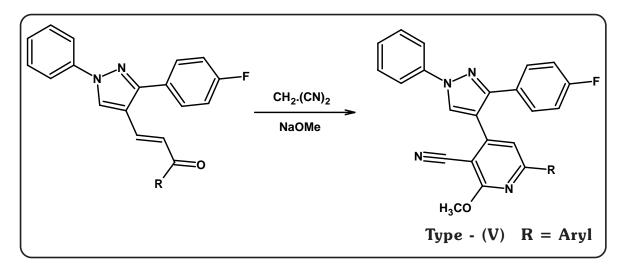
ANTIBACTERIAL ACTIVITY

The antibacterial activity of cyanopyridines (type-IV) revealed that most of the compounds were able to inhibit the growth of Gram positive and Gram negative bacterial strains.

Maximum activity was observed in compounds bearing R=4-aminophenyl, 4-methylphenyl & thienyl and significant activity was displayed by compounds bearing R=phenyl, 4-fluorophenyl and 4-bromophenyl against Gram positive bacterial strains **B. cocous** and **B. subtillus**

While in case of Gram negative bacterial strains *E. coli* & *P. vulgaris*, highest activity was observed in compounds bearing R=phenyl and 4-methoxyphenyl and significant activity was displayed by compounds bearing 4-hydroxyphenyl & thienyl.

ANTIFUNGAL ACTIVITY


Most of the cyanopyridines were mildly active against fungal strain **A**. *niger*. The maximum activity was displayed by compound bearing R=4-chlorophenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

SECTION - II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-METHOXY-3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-6-ARYL PYRIDINES

The pyridine nucleus is found in a large number of commonly used drugs which have diverse pharmacological activities. To achieving better drug potency cyano pyridine derivatives of type (V) have been prepared by the condensation of chalcones of type (I) with malononitrile in presence of sodium methoxide.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

The synthesised compounds have been screened for their in vitro biological

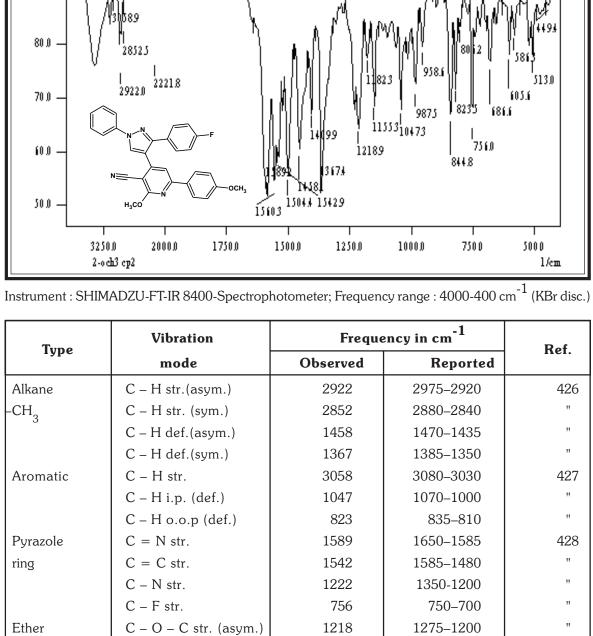
75

assay like antitubercular activity towards a strain of Mycobacterium tuberculosis

 $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.

IR SPECTRAL STUDY OF 2-METHOXY-3-CYANO-4-(1', N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-6-ANISYL PYRIDINE

1000


%I 90 D

Pyridine

ring

 $C \equiv N \text{ str.}$

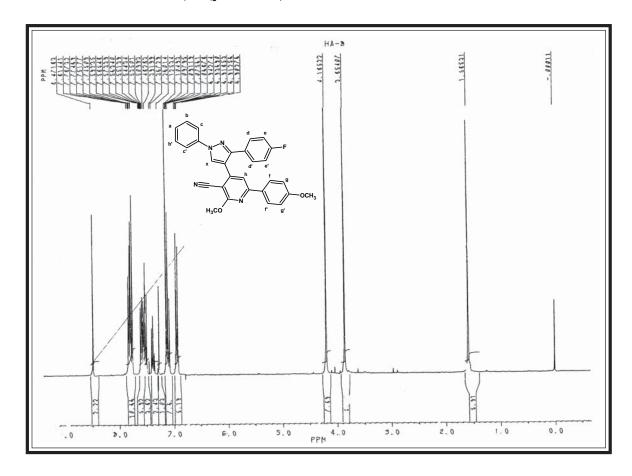
C = N str.

76

(C = C str.	1504	1585-1480	"
---	-------------	------	-----------	---

2221

1560

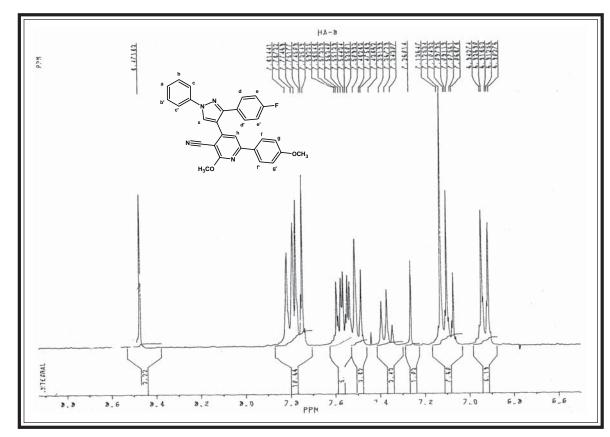

2240-2120

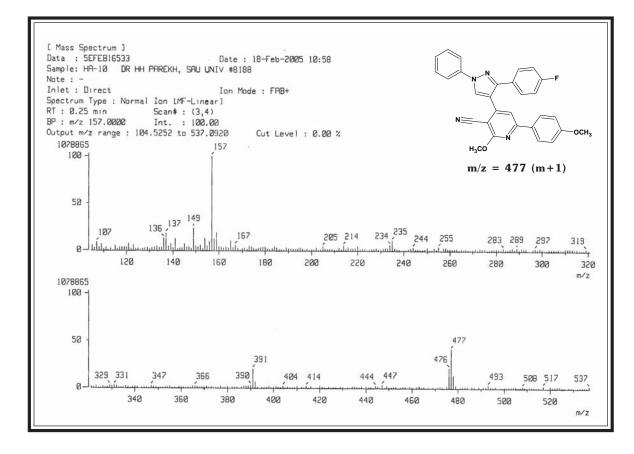
1650-1550

429

"

PMR SPECTRAL STUDY OF 2-METHOXY-3-CYANO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-YL)-6-(p-ANISYL)-PYRIDINE


 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \qquad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$


Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.85	3H	singlet	Ar-OCH ₃₍₁₎	-
2.	4.18	3H	singlet	OCH ₃₍₂₎	-
3.	6.90-6.94	2H	doublet	Ar-Hgg'	Jgf=10.2
4.	7.06-7.13	3H	triplet	Ar-Hdd'+Hh	Jde = 6.9
5.	7.34-7.39	1H	triplet	Ar-Ha	-
6.	7.47-7.50	2H	doublet	Ar-Hbb'	Jbc=10.2
7.	7.53-7.58	2H	multiplet	Ar-Hcc'	-
8.	7.73-7.81	4H	d.doublet	Ar-Hff' + Hee'	Jfg=8.1
		1			

77

					Jed=8.7
9.	8.47	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-METHOXY-3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-6-ARYL PYRIDINES

- [A] Synthesis of N-Aminophenyl-α-methyl-p-fluorophenyl-azomethine See Part-I, Section-I (A).
- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See Part-I, Section-I (B).
- [C] Synthesis of 1-phenyl-3-(1'-N-phenyl-3'-p-fluorophenyl-pyrazol-4'yl)-2-propene-1-one See Part-I, Section-I (C).
- [D] Synthesis of 2-Methoxy-3-cyano-4-[1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl]-6-anisyl-pyridine

A mixture of 1-anisyl-3-(1',N-phenyl)-3'-p-fluorophenyl pyrazol-4'-yl)-2-porpene-1-one (3.98 g, 0.01M), malononitrile (0.66 g, 0.01 M) and sodium methoxide (10 ml) (6.61g, 0.08M) dissolved in absoulte alcohol was refluxed for 10 hrs. in water bath at temp 70°C. The reaction product was poured into ice, crude product was isolated, crystallised from ethanol. Yield 70%, m.p. 270°C ($C_{29}H_{21}FN_4O_2$; Found : C, 73.04%; H, 4.36%; N, 11.68%; Requires : C, 73.10%; H, 4.44%; N, 11.76%).

Similarly other cyanopyridines have been obtained. The physical data are recorded in Table No. 5.

[E] Therapeutic activity of 2-Methoxy-3-cyano-4-[1',N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl]-6-aryl-pyridines

Antimicrobial testing was carried out as described in Part-I, Section-I (D). The zone of inhibition of the test solutions are recorded in Graphical Chart No.5.

Antitubercular screening of the compounds of type(V) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I, Section-I

79

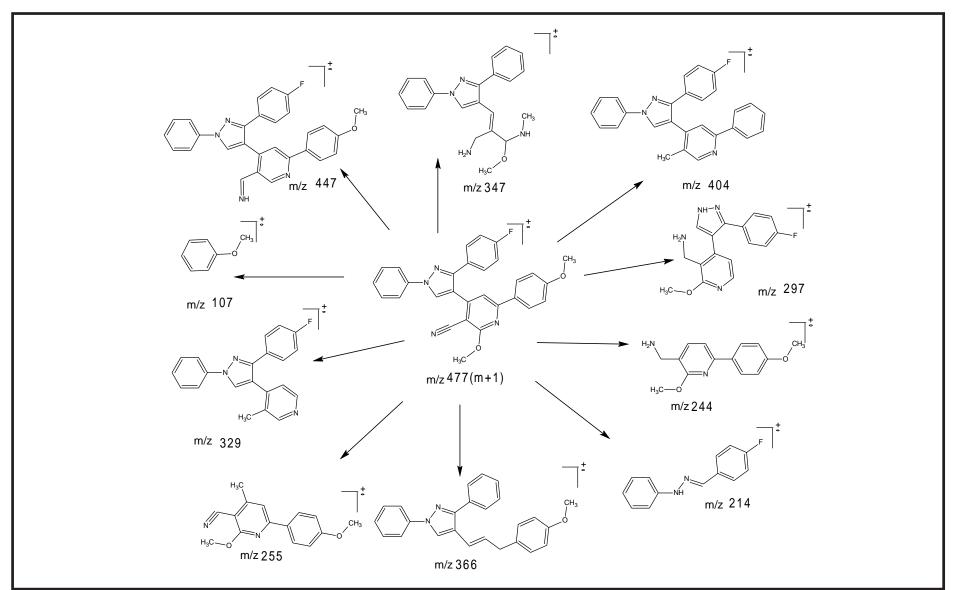
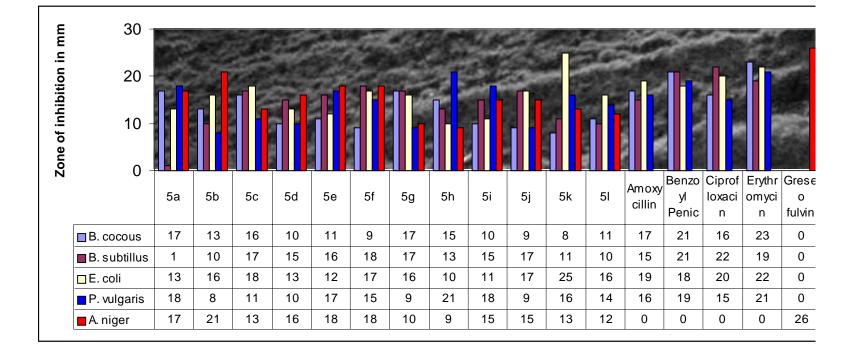

(D) and the percentage of inhibition data of the compounds are recorded in Table No. 5a.

TABLE NO. 5: PHYSICAL CONSTANTS OF 2-METHOXY-3-CYANO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-
PYRAZOL-4'-YL)-6-ARYL PYRIDINES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
5a	с ₆ н ₅ -	C ₂₈ H ₁₉ FN ₄ O	446	240	0.42	61	12.55	12.49
5b	4-OCH ₃ -C ₆ H ₄ -	$C_{29}H_{21}FN_4O_2$	476	270	0.65	70	11.76	11.68
5c	4-CH ₃ -C ₆ H ₄ -	C ₂₉ H ₂₁ FN ₄ O	460	237	0.67	60	12.17	12.10
5d	4-CI-C ₆ H ₄ -	$C_{28}H_{18}CIFN_4O$	480	231	0.57	63	11.65	10.58
5e	4-F-C ₆ H ₄ -	$C_{28}H_{18}F_2N_4O$	464	128	0.60	64	12.06	12.00
5f	4-0H-C ₆ H ₄ -	C ₂₈ H ₁₉ FN ₄ O ₂	462	148	0.47	59	12.11	12.07
5g	2-0H-C ₆ H ₄ -	C ₂₈ H ₁₉ FN ₄ O ₂	462	177	0.51	65	12.11	12.05
5h	4-NO ₂ -C ₆ H ₄ -	$C_{28}H_{18}FN_5O_3$	491	201	0.53	69	14.25	14.16
5 i	3-NO ₂ -C ₆ H ₄ -	$C_{28}H_{18}FN_5O_3$	491	211	0.49	63	14.25	14.17
5j	4-Br-C ₆ H ₄ -	C ₂₈ H ₁₈ BrFN ₄ O	525	266	0.50	64	10.66	10.59
5k	4-NH ₂ -C ₆ H ₄	C ₂₈ H ₂₀ FN ₅ O	461	166	0.59	68	15.18	15.11
51	C ₄ H ₃ S-	C ₂₆ H ₁₇ FN ₄ OS	452	243	0.67	65	12.38	12.32


*TLC Solvent System : Ethyl acetate : Hexane

2 : 8

GRAPHYCAL CHART NO.5:

ANTIMICROBIAL ACTIVITY OF 2-METHOXY-3-CYANO -4-[1'N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL] -6-ARYL-PYRIDINES.

CONCLUSION

ANTIBACTERIAL ACTIVITY

The antibacterial activity of 2-methoxy-3-cyanopyridines (type-V) revealed that most of the compounds were able to inhibit the growth of Gram positive & Gram negative bacterial strains.

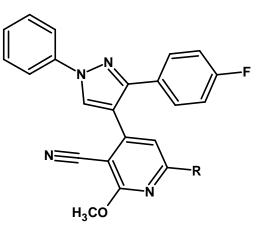
Maximum activity was displayed by compounds bearing R=phenyl & 4hydroxyphenyl and significant activity was displayed by compounds bearing R=4methylphenyl & 4-chlorophenyl against Gram positive bacterial strains **B. cocous** and **B. subtillus**

While in case of Gram negative bacterial strains, maximum activity was observed in compound containing R=4-methylphenyl and 4-nitrophenyl & significant activity was displayed by compounds bearing R=phenyl, 4-methylphenyl, 4-hydroxyphenyl and 3-nitrophenyl against *E. coli* & *P. vulgaris*.

ANTIFUNGAL ACTIVITY

All the compound are mild to moderately active against fungal strain **A.** *niger*. Maximum activity was displayed by compound bearing R=4-methoxyphenyl.

The antimicrobial activity shown by compounds was comparable with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

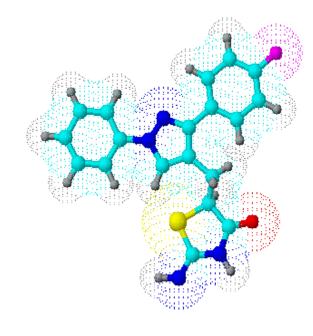

ANTITUBERCULAR ACTIVITY

All the compounds displayed activity, ranging from 2 to 95% inhibition against **Mycobacterium tuberculosis** $H_{37}Rv$. Compounds with R = 4-methoxyphenyl, 4-fluorophenyl and thienyl exhibited maximum

83

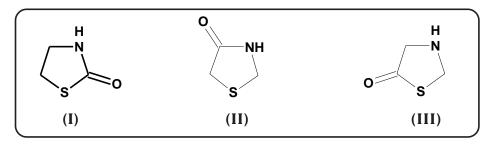
activity upto 95% inhibition.

TABLE NO. 5a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY



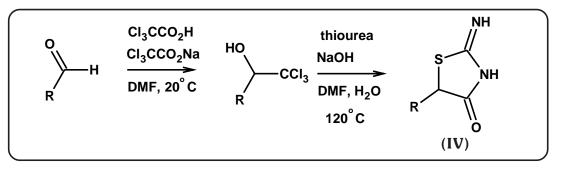
TAACF, Southern Research Institute Primary Assay Summary Report

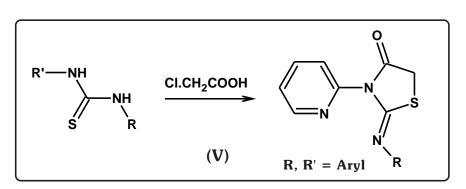
Dr. H. H. Parekh Saurashtra University


Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg∕ml	% Inhib	Activity	Comment
295634	HCV-128	C ₆ H ₅ -	Alamar	H ₃₇ Rv	>6.25	67	-	MIC Rifampin = 0.25 μg/ml @ 98% Inhibition
295635	HCV-129	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	<6.25	95	+	II
295636	HCV-130	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	2	-	"
295637	HCV-131	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	5	-	"
295638	HCV-132	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	<6.25	92	+	"
295639	HCV-133	4-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	73	-	"
295640	HCV-134	2-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	88	-	"
295641	HCV-135	4-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	15	-	"
295642	HCV-136	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	16	-	"
295643	HCV-137	4-BrC ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	12	-	"
295644	HCV-138	4-NH ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	76	-	"
295645	HCV-139	C ₄ H ₃ S-	Alamar	H ₃₇ Rv	<6.25	94	+	n

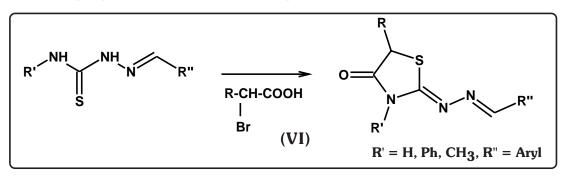
PART-III STUDIES ON THIAZOLIDINONES

INTRODUCTION

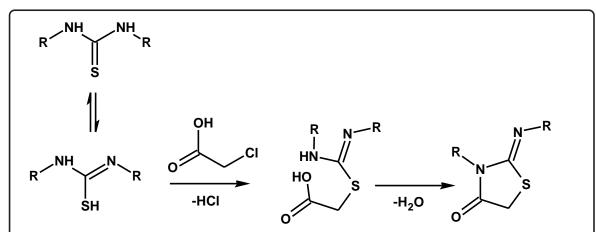

Thiazolidinones are derivatives of thiazolidines with carbonyl gp at position 2(I), 4(II) or 5(III) have been a great success in the field of chemistry and pharmacology. They are an integral part of pharmaceutically important compounds like penicillins. Substituted thiazolidinone derivatives represent important key intermediates for the synthesis of pharmacologically active drugs.


SYNTHETIC ASPECTS

Several methods for the preparation of 4-thiazolidinones are narrated in literature¹³⁶⁻¹⁴³.


 Jerome Blanchet & Jieping-Zhu¹⁴⁴ have synthesised 2-imino-4thiazolidinones (IV) derivatives by the condensation of aldehyde, chloroform and thiourea.

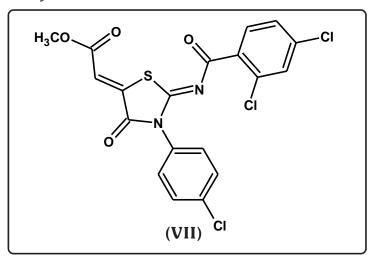
2. R. Nath and K. Shankar¹⁴⁵ have prepared 4-thiazolidinones (V) by cyclisation of N-aryl-N'-(2'-pyridyl) thiocarbamide with chloroacetic acid.


3. I. D. Shah and J. P. Trivedi¹⁴⁶ have synthesised thiazolidinones (VI) from 4aryl-thiosemicarbazones by condensed them with chloroacetic acid, α bromopropionic acid and α -bromophenyl acetic acids.

4. M. Saeda et. al.¹⁴⁷ have synthesised some new thiazolidinones.

MECHANISM

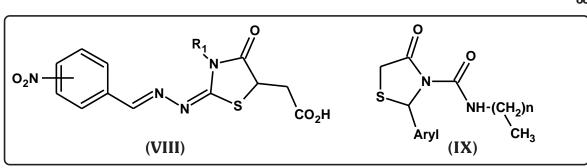
The reaction of 4-thiazolidinones proceeds by the attacks of the chloroacetic acid upon the C=S group. The tautomerism takes place with removal of HCl followed by removal of water and subsequent cyclisation.

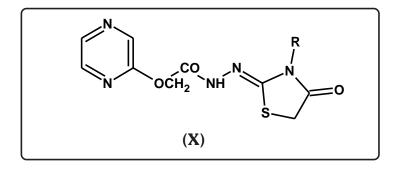


THERAPEUTIC IMPORTANCE

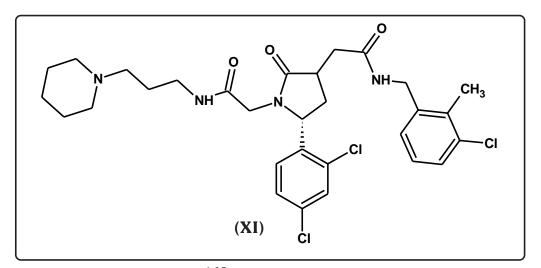
Much research has been carried out with an aim to finding therapeutic values of thiazolidinone skeleton since their discovery. The thiazolidinones, substituted at 2- and 3-positions are reported to exhibit a wide variety of biological activity.

- 1. Anthelmintics^{148,149}
- 2. Cardiovascular¹⁵⁰
- 3. Mosquito repellant¹⁵¹
- 4. Antiviral¹⁵²
- 5. Local anaesthetic¹⁵³
- 6. Antitumor¹⁵⁴
- 7. Antitubercular^{155,156}
- 8. Anti HIV & anticancer¹⁵⁷
- 9. Antimicrobial¹⁵⁸
- 10. Herbicidal¹⁵⁹

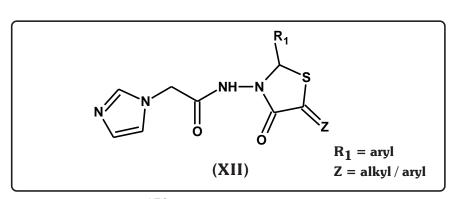

Kato Y. & co-workers¹⁶⁰ have discovered thiazolidinones (VII) as a novel non-peptide thrombin receptor anatagonist. Abbas S. F. & co-workers¹⁶¹ have synthesised thiazolidinone derivatives which have been found to possess antimicrobial activity.

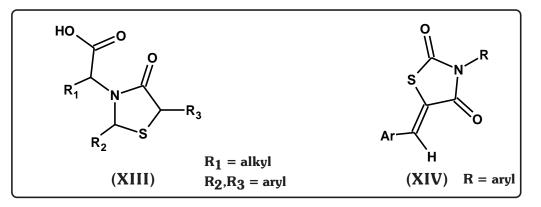

Romulo P. Tenorio et. al.¹⁶² have prepared & shown anti-toxoplasma gondii activity of thiazolidinones derivatives (VII). Veeresa Gududuru & co-workers¹⁶³

87


have synthesised thiazolidinones (IX) to study their antiproliferative activity for prostate cancer.

C. Bonde & co-workers¹⁶⁴ have synthesised pyrazine containing thiazolidinones (X) as antimicrobial agents. A. Rao & co-workers¹⁶⁵ have discovered thiazolidinones derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors.


Some antioxidant activity of thiazolidinones have been studied by Mei-Hsiu Shih & Fang-Ying Ke¹⁶⁶. Aaron S. Anderson et. al.¹⁶⁷ have prepared thiazolidinones (XI) as CCR4 antagonists.


G. S. Gadaginamath et. al.¹⁶⁸ have prepared thiazolidinones as antimicrobial agent. R. S. Lodhi and co-workers¹⁶⁹ have synthesised and studied antimicrobial,

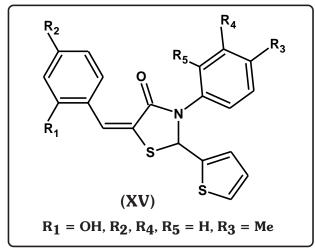
88

antiinflammatory and analgesic property of 4-thiazolidinones and aryledene derivatives (XII)

Pawar and co-workers¹⁷⁰ have reported synthesis and *in vitro* antibacterial activity of some 4-thiazolidinone derivatives. Richard E. Lee. et. al.¹⁷¹ have synthesised & shown thiazolidinones (XIII) as inhibitors of *Mycobacterium tuberculosis*. 5-Arylidene-4-thiazolidinediones (XIV) have been found as aldose reductase inhibitors by Rosanna Maccari et. al.¹⁷².

CONTRIBUTION FROM OUR LABORATORY

Parikh et. al. have synthesised variety of 4-thiazolidinone derivatives bearing s-triazine¹⁷³, sulphonamido benzylamino¹⁷⁴, aryl substituted hydroxy and β , β -dichloro ethylamino phenyl moieties of 4-thiazolidinone ring system and have reported as potent antimicrobial agent.

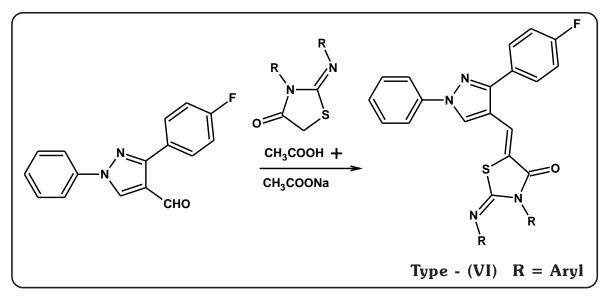

H. H. Parekh and co-workers have synthesised 4-thiazolidinones bearing acridine-9-yl¹⁷⁵, 6-hydroxy pyrimidine¹⁷⁶, 9-thiazolidinone ring system having antimicrobial activity.

D. G. Joshi & co-workers¹⁷⁷ have synthesised novel thiazolidinone derivatives as antitubercular agents. N. J. Datta & co-workers¹⁷⁸ have demonstated thiazolidinones as biologically active agent. A. H. Bapodara & co-workers¹⁷⁹ have prepared 4-thiazolidinones & showing their biological activity.

Multiple biological activities of 4-thiazolidinones have been discovered by S. B. Hirpara & co-workers¹⁸⁰.

Moreover, A. J. Baxi et. al.¹⁸¹ have synthesised some new 4-thiazolidinones which shows anti-HIV, antitumor and antihypertensive activities. Recently, A. R. Parikh and co-workers¹⁸² have assessed thiazolidinone derivatives bearing 7methoxyquinoline nucleus for antimicrobial activity.

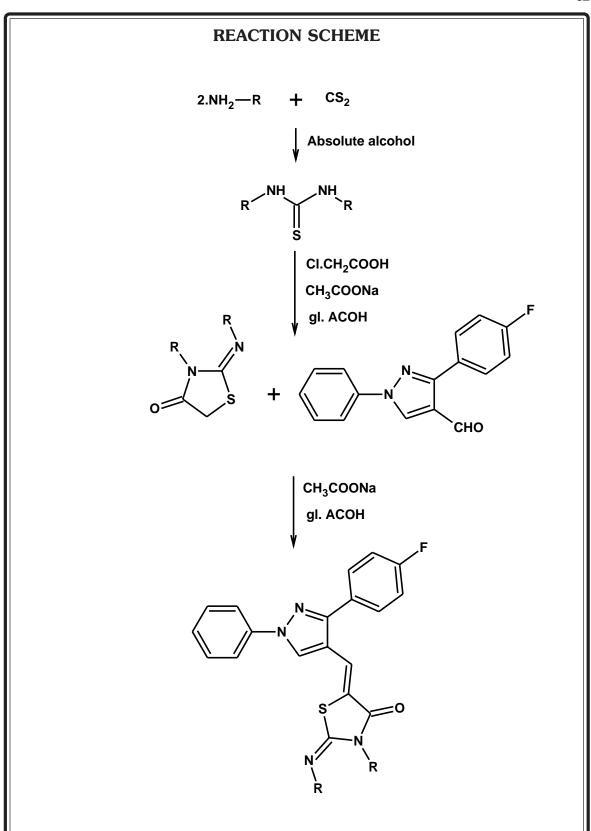
Siddique, Mohammad et. al.¹⁸³ have prepared substituted thiazolidinones and reported their antibacterial, antifungal, antithyroid and amoebicidal properties (XV).


Considerable evidence has been accumulated to demonstrate the wide applications of thiazolidinone derivatives. In view of these findings, it appeared of interest to synthesise newer thiazolidinone derivatives with better potency.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-[1,'N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYL-METHINO]-4-THIAZOLIDINONES

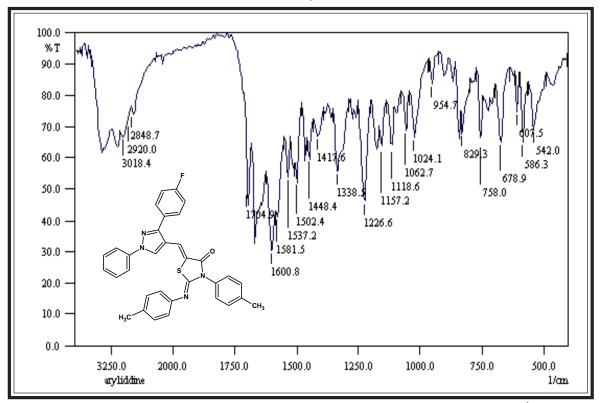
SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYL METHINO]-4-THIAZOLIDINONES

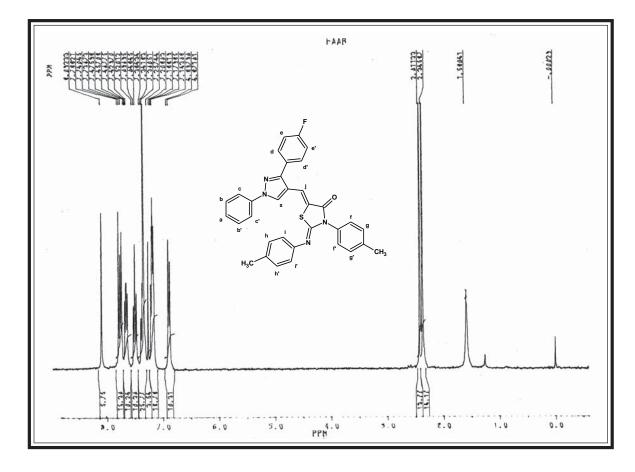

Recently much interest has been foucused on the synthesis and biodynamic activities of arylidene and it is a good synthon for various heterocyclic rings. With a view to obtaining compounds having better therapeutic activities, we have synthesised 2-arylimino-3-N-aryl-5-(1',N-phenyl-3'-p-fluorophenyl-4'-pyrazol methino)-4-thiazolidinones by the condensation of pyrazole aldehyde with various thiazolidinone derivatives.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.


The synthesised compounds have been screened for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis* $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.

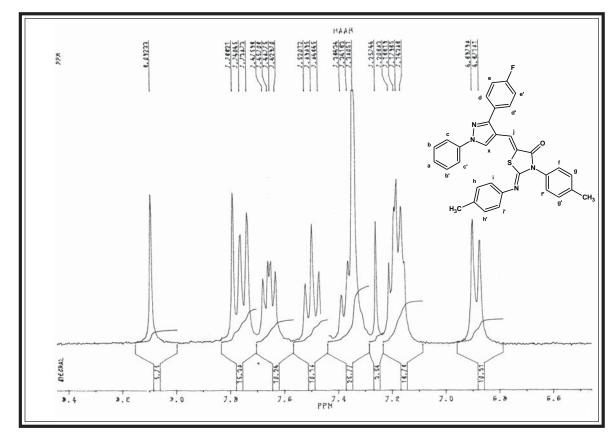
Type -
$$(VI)$$
 $R = Aryl$

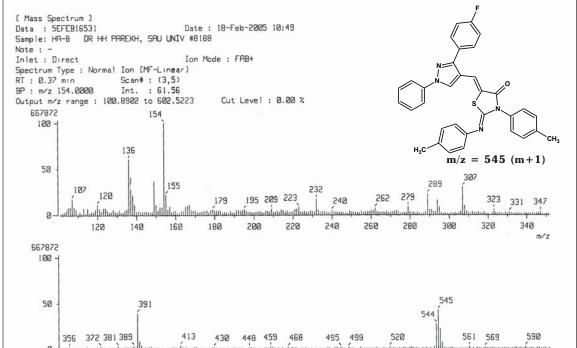

Туре	Vibration	Freque	ency in cm ⁻¹	Ref.
Туре	mode	Observed	Reported	Kel.
Alkane	C – H str.(asym.)	2920	2975–2920	426
-CH ₃	C – H str. (sym.)	2848	2880–2830	"
5	C – H def. (asym.)	1446	1470–1435	"
	C – H def. (sym.)	1338	1385–1330	"
Aromatic	C – H str.	3018	3080–3050	427
	C – H i.p. (def.)	1118	1125–1090	"
		1062	1070–1000	"
	C – H o.o.p (def.)	829	835–810	"
Pyrazole	C = N str.	1600	1650–1600	428
ring	C = C str.	1537	1585–1480	"
	C – N str.	1226	1350–1200	"
	C – F str.	758	750–700	"
Thiazolidinone	C = O str.	1104	1760–1655	430
ring	C = N str.	1581	1650–1590	"
	C – S – C str.	678	700–600	"

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 2-(p-TOLYLIMINO)-3,N-(p-TOLYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYL METHINO)-4-THIAZOLIDINONE

PMR SPECTRAL STUDY OF 2-(p-TOLYL) IMINO-3,-N-(p-TOLYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYLMETHINO)-4-THIAZOLIDINONES


 $\label{eq:Internal Standard: TMS; Solvent: CDCl_{3} \quad : Instrument: BRUKER Spectrometer (300 \text{ MHz})$


Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	2.36	ЗH	singlet	Ar-CH ₃	-
2.	2.47	ЗH	singlet	Ar-CH ₃	-
3.	6.87-6.89	2H	doublet	Ar-Hgg'	Jgf=7.8
4.	7.76-7.20	4H	quartet	Ar-Hii' + Hdd'	-
5.	7.34-7.36	5H	triplet	Ar-Hff'+Hhh'+Ha	-
6.	7.46-7.52	2H	triplet	Ar-Hbb'	-
7.	7.62-7.67	2H	quartet	Ar-Hcc'	-

94

8.	7.73-7.78	3H	triplet	Ar-Hee'+CHj	Jed=7.8
9.	8.09	1H	singlet	СНх	-

EXPANDED AROMATIC REGION

1922	360	380	400	420	440	460	480	500	520	540	560	580	600 m/z

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYL METHINO)-4-THIAZOLIDINONES

[A] Preparation of N^1 , N^3 -Bis-p-tolyl thiourea¹⁸⁴

In a round bottom flask, a mixture of p. toludine (0.2M), carbon disulphide (7ml, 0.01M) and absolute alcohol for 5-6 hrs. at temp 40°C. On completion of reaction, the excess of carbon disulphide and alcohol was removed by distillation. The product was treated with hydrochloric acid to remove excess of amine present and crude product was isolated and crystallised from ethanol. m.p. 193°C.

[B] Preparation of 2-Tolylimino-3-tolyl-5H-4-thiazolidinones¹⁸⁵

A solution of N¹, N³-bis-p-tolyl thiourea (0.01M) and chloroacetic acid (0.94g, 0.01M) in glacial acetic acid (15 ml) was refluxed with fused sodium acetate (1.25g, 0.015M) for 5 hrs. The reaction product was poured in water, kept overnight, crude product was isolated and crystallised from ethanol. m.p. 164° C.

[C] Preparation of 2-(p-Tolylimino)-3-(p-tolyl)-5-(1',N-phenyl-3'-pfluorophenyl-4'-pyrazolyl methino)-4-thiazolidinone

A mixture of 2-(p-tolylimino)-3-(p-tolyl)-5H-4-thiazolidinone (2.69g, 0.01M) 1,N-phenyl-3-p-fluorophenyl-4-formyl pyrazole (2.65g, 0.01M) and fused sodium acetate (1.25g, 0.015M) was refluxed in glacial acetic acid (15 ml) for 4-5hrs. at temp 120°C. cooled, poured into water and treated with ammonia to remove excess of glacial acetic acid. The product was isolated and crystallised from

96

ethanol. yield 75% m.p. 230°C (C₃₃H₂₅FN₄OS : Found : C, 72.72%; H, 4.58%; N, 10.25% Requires : C, 72.77%; H, 4.63%; N, 10.29%).

Similarly other substituted thiazolidinones have been prepared. The physical data are recorded in Table No. 6.

[D] Therapeutic activity of 2-Arylimino-3,N-aryl-5-(1',N-phenyl-3'-pfluorophenyl-4'-pyrazolylmethino)-4-thiazolidinones

Antimicrobial testing was carried out as described in Part-I, Section-I (D). The zone of inhibition of the test solution are recorded in Graphical Chart No.6.

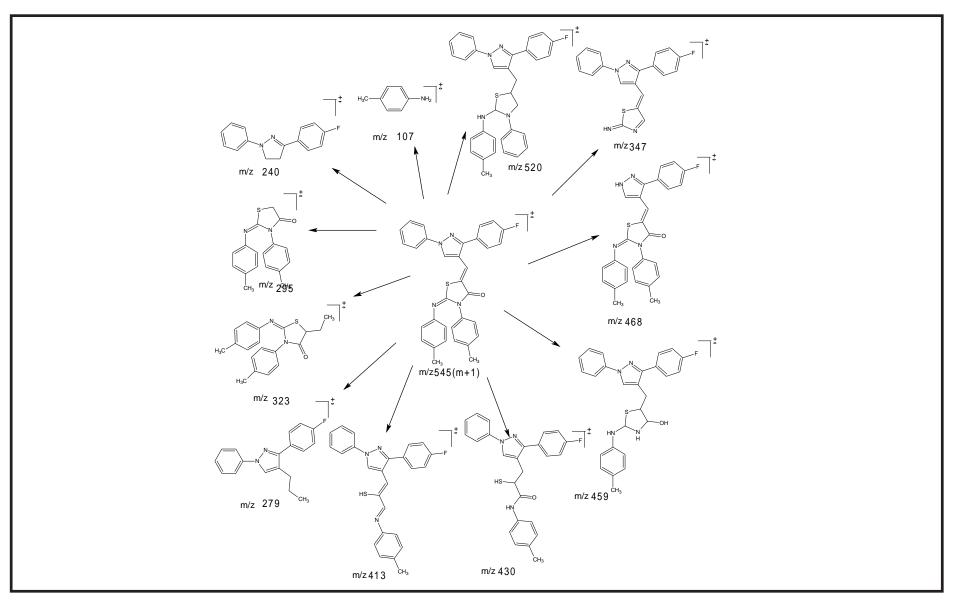

The antitubercular screening of the compounds of type(VI) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I, Section-I (D) and the percentage of inhibition data of the compounds are recorded in Table No. 6a.

TABLE NO. 6: PHYSICAL CONSTANTS OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-
4'-PYRAZOLYL METHINO]-4-THIAZOLIDINONES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
6a	С ₆ Н ₅ -	C ₃₂ H ₂₁ FN ₄ OS	516	238	0.56	68	10.85	10.79
6b	4-OCH ₃ -C ₆ H ₄ -	C ₃₃ H ₂₅ FN ₄ O ₃ S	576	208	0.51	69	9.72	9.66
6c	4-CH ₃ -C ₆ H ₄ -	C ₃₃ H ₂₅ FN ₄ OS	544	230	0.53	75	10.29	10.25
6d	4-Cl-C ₆ H ₄ -	$C_{31}H_{19}Cl_2FN_4OS$	585	211	0.64	71	9.57	9.51
6e	4-F-C ₆ H ₄ -	$C_{31}H_{19}F_3N_4OS$	552	220	0.58	70	10.14	10.09
6f	3-Cl,4-F-C ₆ H ₃ -	$C_{31}H_{17}Cl_2F_3N_4OS$	621	218	0.41	75	9.02	8.97
6g	3-NO ₂ -C ₆ H ₄ -	C ₃₁ H ₁₉ FN ₆ O ₅ S	606	214	0.72	66	13.83	13.78
6h	2-NO ₂ -C ₆ H ₄ -	C ₃₁ H ₁₉ FN ₆ O ₅ S	606	216	0.75	64	13.83	13.76
6i	3,4-(Cl) ₂ -C ₆ H ₃ -	$C_{31}H_{17}Cl_4FN_4OS$	654	201	0.65	74	8.86	8.80
6j	4-Br-C ₆ H ₄ -	C ₃₁ H ₁₉ Br ₂ FN ₄ OS	674	225	0.60	67	8.31	8.26
6k	2,4-(CH ₃) ₂ -C ₆ H ₃ -	C ₃₅ H ₂₉ FN ₄ OS	572	208	0.71	69	9.78	9.71
61	2,5-(Cl) ₂ -C ₆ H ₃	$C_{31}H_{17}Cl_4FN_4OS$	654	234	0.42	71	8.56	8.49

*TLC Solvent System : Acetone : Benzene

2.5 : 7.5

100

GRAPHYCAL CHART NO.6:

ANTIMICROBIAL ACTIVITY OF 2-ARYLIMINO-3, N-ARYL-5-[1'N-PHENYL-3'-p-FLUOROPHENYL-4'-AZOLYLMETHINO]-4-THIAZOLIDINONES

Zone of inhibition in mm	30 - 20 - 10 -				ſ	Ì				1		Î.						
Zone	0 -	6a	6b	6c	6d	6e	6f	6g	6h	6i	6j	6k	61	Amo xycill in	1		Eryth romy cin	
	B. cocous	11	13	17	15	10	9	11	17	14	15	13	9	17	21	16	23	0
	■B. subtillus	10	13	12	16	11	15	14	11	17	16	18	12	15	21	22	19	0
	E. coli	16	11	13	9	16	21	18	16	13	9	15	14	19	18	20	22	0
	P. vulgaris	14	13	12	18	17	16	15	17	14	11	9	13	16	19	15	21	0
	A. niger	12	14	18	15	13	16	9	19	15	14	11	12	0	0	0	0	26

CONCLUSION

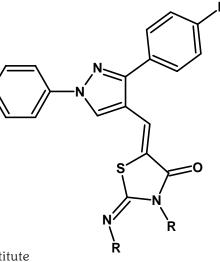
ANTIBACTERIAL ACTIVITY

The antibacterial activity of thiazolidinones (type-VI) revealed that compounds were mild to moderately active against Gram positive and Gram negative bacterial strains.

Maximum activity was displayed by compounds bearing R=4-methylphenyl and 2-nitrophenyl and 2,4-dimethyl phenyl against Gram positive bacterial strains *B. cocous* & *B. subtillus*. Other compounds were less active against these bacterial strains.

In case of Gram negative bacterail strains *E. coli* & *P. vulgaris*, maximum activity was observed in compounds bearing R=3-chloro,4-fluorophenyl and significant activity was displayed by compounds bearing R=4-chlorophenyl and 3-nitrophenyl against these bacterial strains.

ANTIFUNGAL ACTIVITY

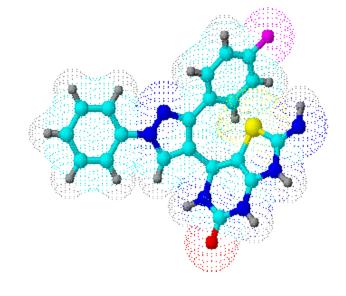

All the compounds are less active against fungal strain **A**. niger.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

ANTITUBERCULAR ACTIVITY

All the compounds displayed antitubercular activity, ranging from 8 to 95% inhibition against **Mycobacterium tuberculosis** $H_{37}Rv$. Compound with R = phenyl substituent exhibited maximum activity i.e. 95% inhibition.

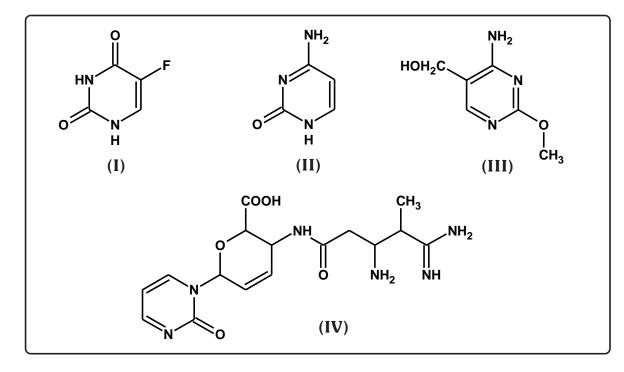
TABLE NO. 6a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY



TAACF, Southern Research Institute Primary Assay Summary Report

Dr. H. H. Parekh Saurashtra University

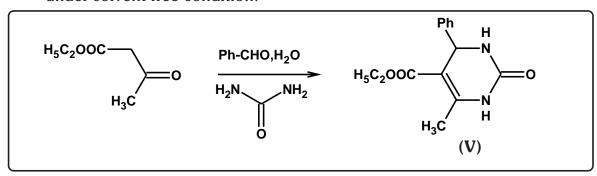
Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg/ml	% Inhib	Activity	Comment
295610	HCV-104	C ₆ H ₅ -	Alamar	H ₃₇ Rv	<6.25	95	+	MIC Rifampin =
								0.25 μg/ml @ 98% Inhibition
295611	HCV-105	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	11	-	"
295612	HCV-106	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	14	-	"
295613	HCV-107	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	8	-	"
295614	HCV-108	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	16	-	"
295615	HCV-109	3-Cl,4-F-C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	23	-	"
295616	HCV-110	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	20	-	"
295617	HCV-111	2-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	15	-	"
295618	HCV-112	3/4-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	9	-	"
295619	HCV-113	4-Br-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	15	-	"
295620	HCV-114	2/4-(CH ₃) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	22	-	"
295621	HCV-115	2/5-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	0	-	11


PART-IV STUDIES ON PYRIMIDINONES

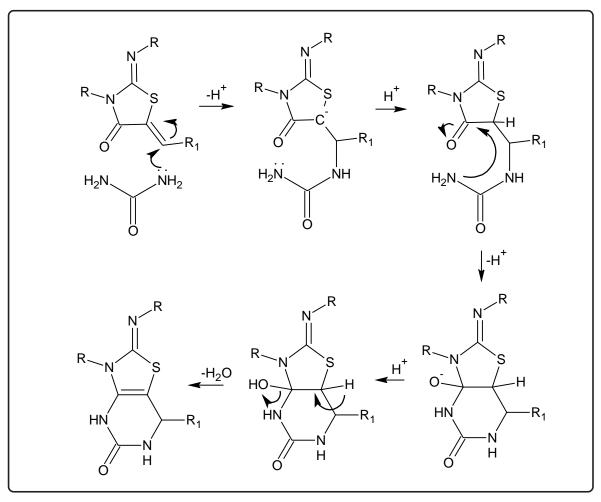
INTRODUCTION

Pyrimidine a heterocycle, containing nitrogen atoms at position 1 & 3 in six membered ring have been subject of substantial attention by synthetic & medicinal chemists because of the role of this heteroaromatic ring sustain in many biological system like nucleic acid (DNA, RNA) and co-enzymes. e.g. fluorouracil^{186,187}(I) which has been used in cancer treatment.

Some pyrimidines physiologically as well as pharmacologically important are as under. eg. cytosine (II), bedmethrin (III), blasticidine (IV).


Synthetic pyrimidinone derivatives contribute much to the searchable literature of pyrimidinone derivatives in huge libraries owing to their wide applicability in different fields.

SYNTHESIS ASPECTS

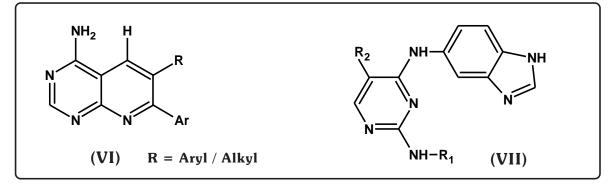

103

Different methods for the synthesis of pyrimidinones have been cited in the literature 188 are as under.

Bigi and co-worker¹⁸⁹ have synthesised pyrimidinones as shown below 1. under solvent free condition.

MECHANISM

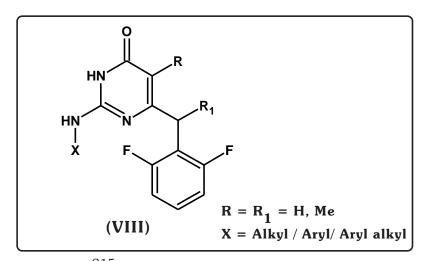
THERAPEUTIC IMPORTANCE

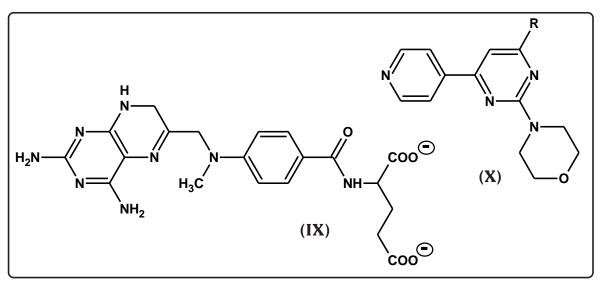

Pyrimidine derivatives have been proved to be of great importance in exhibiting and enhancing the biological activities such as

104

1. Antitumor¹⁹⁰

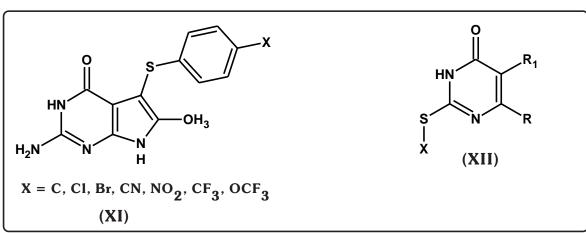
- 2. Carcinostatic¹⁹¹
- 3. Antiinflammatory and anticonvulsant^{192,193}
- 4. Antimalarial¹⁹⁴
- 5. Antithyroid¹⁹⁵
- 6. Anthelmintic¹⁹⁶
- 7. AntiHIV^{197,198}
- 8. Antilishmential¹⁹⁹
- 9. Antiviral²⁰⁰
- 10. Antimicrobial²⁰¹
- 11. Herbicidal²⁰²
- 12. Antagonists²⁰³⁻²⁰⁵

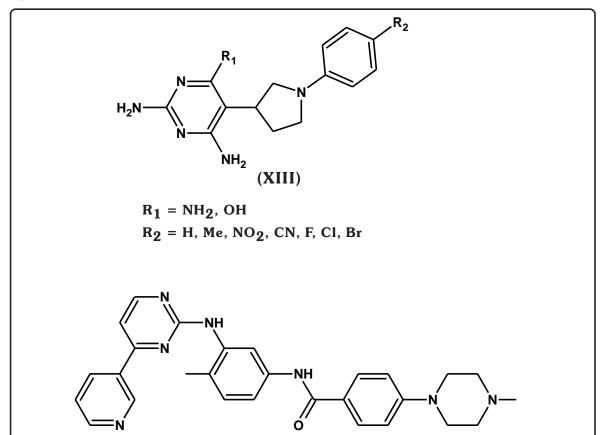

Moreover Norman M. H. et. al.²⁰⁶ have synthesised pyrimidine derivatives as neuropeptide Y5 receptor antagonists. Azaryan et. al.²⁰⁷ have synthesised pyrimidine diones as antitumor agent. Krivongov and co-workers²⁰⁸ have synthesised pyrimidinone derivatives possessing immunotropic and antiinflammatory activity. Richard J. Perneu et. al.²⁰⁹ have discovered pyrimidine derivatives (VI) as adenosine kinase inhibitors. Sharad Verma et. al.²¹⁰ have prepared pyrimidines (VII) as cyclin-dependent kinase inhibitors.

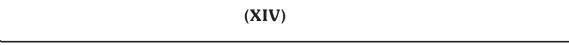

Timothy and co-workers²¹¹ have suggested imidazolyl pyrimidinones as antiviral. Amjad Ali et. al.²¹² have synthesised new fused pyrimidinones as antimicrobial agents. Antonello Mai et. al.²¹³ have synthesised pyrimidine derivative (VIII) as non-nucleoside reverse transcriptase inhibitors. Yari M. M. and

105

co-workers²¹⁴ have investigated the pyrimidinone derivatives which possess calcium antagonist activity.


Baraldi P. G. et. al.²¹⁵ have discovered triazolo [1,5-c] pyrimidine derivatives as a new class of A₂A adenosine receptor antagonists. Balis F. M. et. al.²¹⁶ has investigated pyrimidines (IX) used in the treatment of leukamia in childhood. Amuti Kofies et. al.²¹⁷ have suggested pyrimidinones as herbicidal and plant growth regulators. K. Mogilaiah et. al.²¹⁸ have prepared spiropyrimidinones as antibacterial. Anu Agarwal co-workers²¹⁹ have discovered pyrimidines (X) as antimalarial agent.

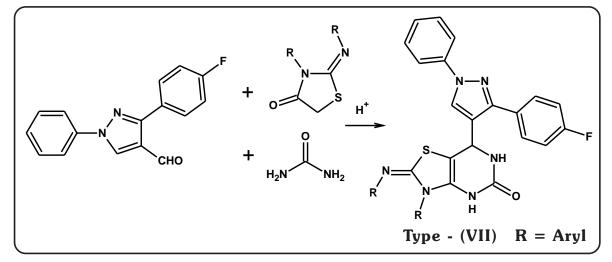

Aleem Gangiee & co-workers²²⁰ have prepared pyrimidinone derivatives (XI) as non classical antitolate inhibitors of thymidylate synthase. Bruce M. A & co-workers²²¹ have prepared the dihydro pyrimidinones as NPY antagonist. Mona Mahran and co-workers²²² have reported pyrimidine derivatives as potent


106

antimicrobial and antitumor agent. Viney Hather & A. K. Madan²²³ have prepared pyrimidinones(XII) as anti-HIV agents.

Tsann-Long Su et. al.²²⁴ have reported pyrimidines (XIII) as antitumor agents. Recently, Michael Deininger & co-workers²²⁵ have discovered pyrimidines (XIV) named (imatinib) as a therapeutic agent for chronic myloid leukemia. Saxena A. K. & co-workers²²⁶ have prepared 2,6-disubstituted pyrimidinones as CNS agent. Barbuliene M. M. et. al.²²⁷ have synthesised pyrimidinones as antiinflammatory agent.

Antitumor activity of new pyrimidinone of sesquiterpene lactones has been found by Angelina Quintero et. al.²²⁸. Patricia F. F. et. al.²²⁹ have synthesised and screened for their leukocyte functions inhibitor activity. Dumas Jacques et. al.²³⁰ have synthesised pyrimidinones and tested their hyperproliferative disorder activity.


Thus, diverse biological activities have been encountered in compounds containing pyrimidinone ring system. To further assess the potential of such type of compounds, study of pyrimidinones have been undertaken as under.

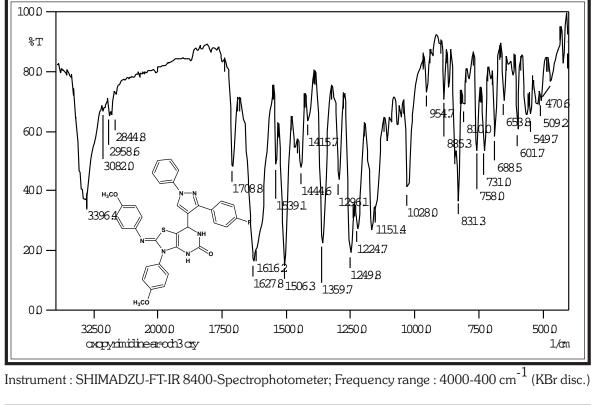
SECTION - I : SYNTHESIS AND THERAPEUTIC EVALUATION OF 6-ARYLIMINO-7,N-ARYL-2-OXO-4-(1',N-PHENYL-3'p-FLUOROPHENYL-PYRAZOL-4'-YL]-1,2,3,4-TETRAHYDROTHIAZOLIDINO-[4,5-d]-PYRIMIDINES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 6-ARYLIMINO-7,N-ARYL-2-OXO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL),1,2,3,4-TETRAHYDRO THIAZOLIDINO-[4,5-d]-PYRIMIDINES

In the past years considerable evidence has been accumulated to demonstrate the efficiency of pyrimidinones. It was considered worthwhile to synthesise compounds bearing 2-arylimino-3-aryl-5-(1',N-phenyl-3'-p-fluorophenyl-4'-pyrazolylmethino)-4-thiazolidinones of type (VII) which have been prepared by the condensation of 2-arylimino-3-aryl-5H-4-thiazolidinone, 1,N-phenyl-3-p-fluoro-phenyl-4-formyl-pyrazole and urea in presence of catalytic amount of conc. HCl as shown under.

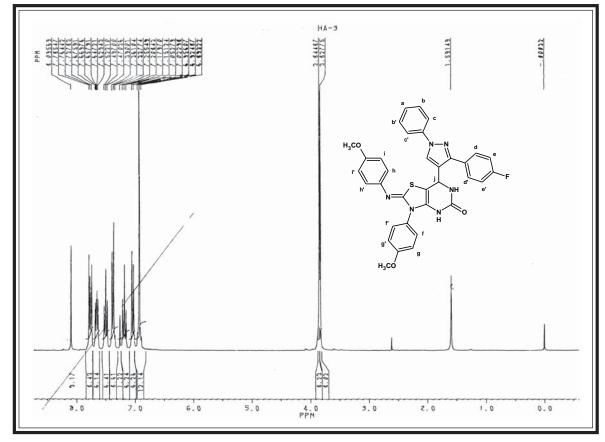
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.


The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

The synthesised compounds have been screened for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis*

109

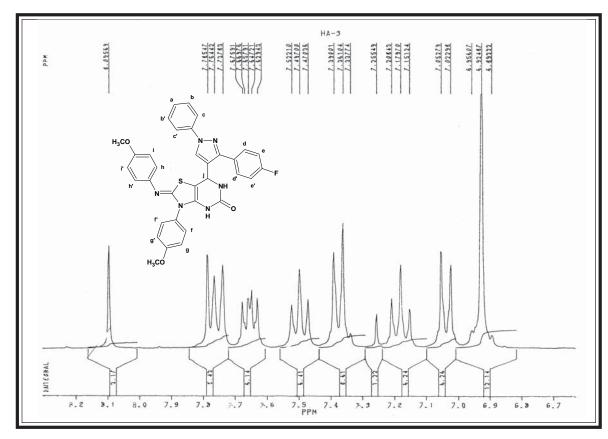
 $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.

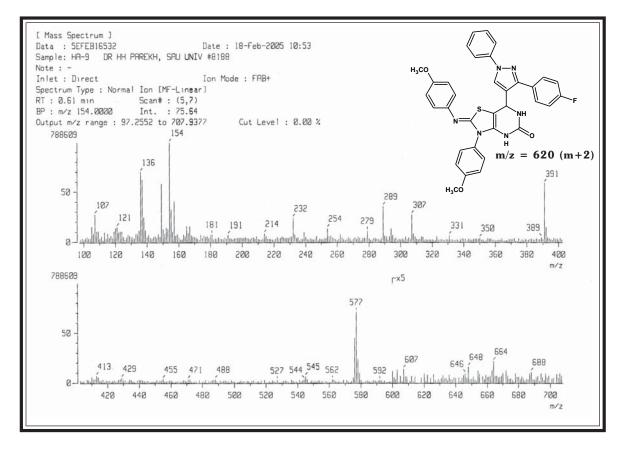

IR SPECTRAL STUDY OF 6-(p-ANISYLIMINO)-7,N-(p-ANISYL)-2-OXO-4-(1',N-PHENYL-
3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-1,2,3,4-TETRAHYDRO-THIAZOLIDINON-[4,5-
d]-PYRIMIDINE

Туре	Vibration	Freque	ency in cm ⁻¹	Ref.
туре	mode	Observed	Reported	nei.
Alkane	C – H str.(asym.)	2958	2975–2950	426
-CH ₃	C – H str. (sym.)	2844	2880-2840	"
3	C – H def. (asym.)	1444	1470–1435	"
	C – H def. (sym.)	1359	1395–1370	"
Aromatic	C – H str.	3082	3090–3030	427
	C – H str.	1444	1520–1440	"
	C – H i.p. (def.)	1151	1125–1090	"
		1028	1070-1000	"
	C – H o.o.p (def.)	831	835-810	"
Pyrazole	C = N str.	1616	1610–1590	428
ring	C – N str.	1224	1230-1020	"
	C = C str.	1444	1585-1450	"
	C – F str.	758	760-710	"
Ether	C – O – C str. (asym.)	1249	1275–1200	"
Pyrimidine	C = O str.	1708	1750–1600	431
ring	N – H str.	3396	3500–3350	"
		1(07	1650 1550	"

C = N str.	1627	1650–1550	"
C - S - C str.	758	800–700	"

PMR SPECTRAL STUDY OF 6-(p-Al	NISYLIMINO)-7,N-(p-ANISYL)-2-OXO-4-[1',N-
PHENYL-3'-P-FLUOROPHENYL	PYRAZOL-4'-YL]-1,2,3,4-TETRAHYDRO
THIAZOLIDINO-[4,5,d]-PYRIMIDINE	




Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity		J Value In Hz
1	3.82	3H	singlet	Ar-OCH ₃	-
2.	3.84	3H	singlet	Ar-OCH ₃	-
3.	6.89-6.95	4H	singlet	Ar-Hgg' + Hjj'	-
4.	7.02-7.05	2H	doublet	Ar-Hdd'	Jde=8.9
5.	7.15-7.20	2H	triplet	Ar-Hbb'	-
6.	7.33-7.39	3H	doublet	Ar-Hhh' + Ha	Jhi=8.7
7.	7.47-7.52	2H	triplet	Ar-Hff'	-
8.	7.62-7.67	2H	quartet	Ar-Hcc'	-
9.	7.73-7.78	3H	triplet	Ar-Hee' + CHj	Jed=8.1
10.	8.09	1H	singlet	CHx	

Internal Standard : TMS; Solvent : CDCl₃ : Instrument : BRUKER Spectrometer (300 MHz)

111

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 6-ARYLIMINO-7,N-ARYL-2-OXO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-1,2,3,4-TETRAHYDRO-THIAZOLIDINO-[4,5-d]-PYRIMIDINES

[A] Preparation of 2-p-anisylimino-3-anisyl-5H-4-thiazolidinone See, Part-III, Section-I (A)

[B] Preparation of 6-(p-anisylimino)-7,N-(p-anisyl)-2-oxo-4-(1',Nphenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-1,2,3,4 tetrahydro thiazolidino-[4,5-d]-pyrimidine

A mixture of 2-(p-anisylimino)-3-(p-anisyl)-5H-4-thiazolidinone (3.28g, 0.01M) 1,N-phenyl-3-p-fluorophenyl-4-formyl-pyrazole (2.65g, 0.01M) and urea (0.60g, 0.01M) were taken in methanol (30 ml) and a catalytic amount of con. HCl (0.5 ml) was added. The reaction mixture was refluxed for 5 hrs, at temp 60° - 70° C cooled, poured into water. The product was isolated and crystallised from methanol-DMF. Yield 70%, m.p. 222°C ($C_{34}H_{27}FN_6O_3S$, Found : C, 65.92%; H, 4.33%; N, 13.50% Requires : C, 66.01%; H,4.40%; N, 13.58%;).

Similarly other pyrimidines were prepared. The physical data are recorded in Table No. 7.

[C] Therapeutical activity of 6-Arylimino-7,N-aryl-2-oxo-4-(1',N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-1,2,3,4-tetrahydro-thiazolidino-(4,5-d)-pyrimidines

Antimicrobial testing was carried out as described in Part-I, Section-I(D). The zone of inhibition of the test solution are recorded in Graphical Chart No.7.

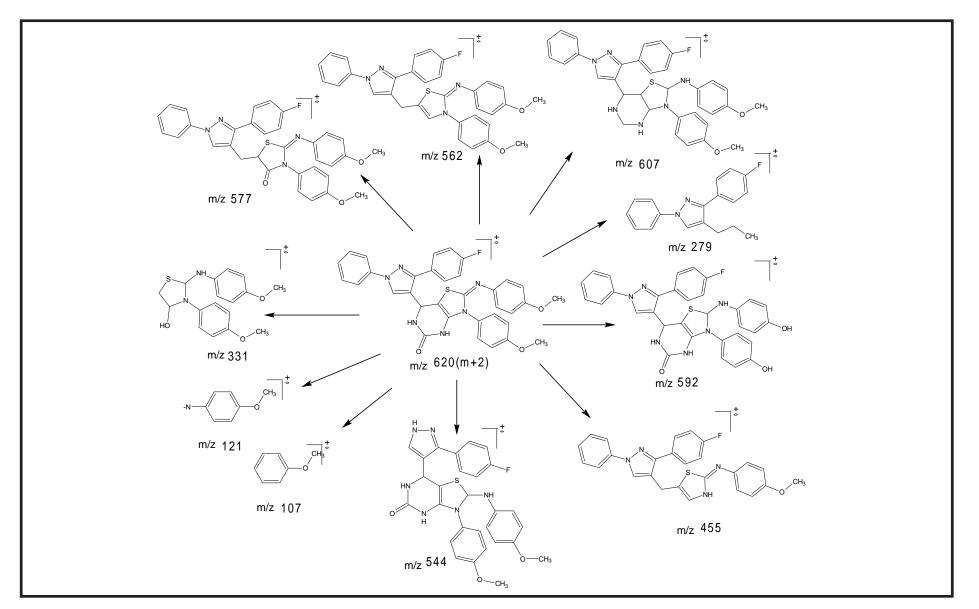
Antitubercular screening of the compounds of type(VII) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I,

113

Section-I (D) and the percentage of inhibition data of the compounds are recorded in Table No. 7a.

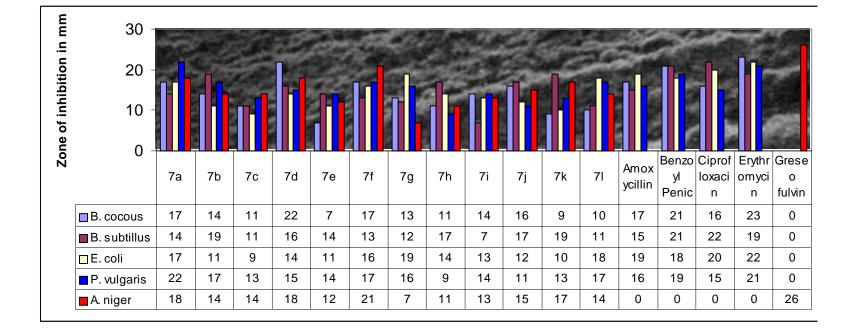
114

TABLE NO. 7 : PHYSICAL CONSTANTS OF 6-ARYLIMINO-7, N-ARYL-2-OXO-4-[1'-N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-1,2,3,4-TETRAHYDRO-THIAZOLIDINO [4,5,-d]-PYRIMIDINES


Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
7a	с ₆ н ₅ -	C ₃₂ H ₂₃ FN ₆ OS	558	194	0.57	60	15.04	14.91
7b	4-0CH ₃ -C ₆ H ₄ -	C ₃₄ H ₂₇ FN ₆ O ₃ S	618	222	0.67	70	13.58	13.50
7c	4-CH ₃ -C ₆ H ₄ -	C ₃₄ H ₂₇ FN ₆ OS	576	207	0.49	64	14.32	14.21
7d	4-Cl-C ₆ H ₄ -	$C_{32}H_{21}Cl_2FN_6OS$	627	186	0.52	65	13.39	13.26
7e	4-F-C ₆ H ₄ -	$C_{32}H_{21}F_3N_6OS$	594	178	0.53	69	14.13	14.03
7f	3-Cl,4-F-C ₆ H ₃ -	$C_{32}H_{19}Cl_2F_3N_6OS$	663	167	0.51	59	12.67	12.53
7g	3-NO ₂ -C ₆ H ₄ -	C ₃₂ H ₂₁ FN ₈ O ₅ S	648	201	0.59	60	17.28	17.10
7h	2-NO ₂ -C ₆ H ₄ -	C ₃₂ H ₂₁ FN ₈ O ₅ S	648	236	0.60	62	17.28	17.13
7i	3,4-(Cl) ₂ -C ₆ H ₃ -	C ₃₃ H ₁₉ Cl ₄ FN ₆ OS	696	190	0.56	67	12.07	11.97
7j	4-Br-C ₆ H ₄ -	C ₃₂ H ₂₁ Br ₂ FN ₆ OS	716	229	0.61	63	11.73	11.64
7k	2,4-(CH ₃) ₂ -C ₆ H ₃ -	C ₃₆ H ₃₁ FN ₆ OS	614	163	0.64	60	13.67	13.57
71	2,5-(Cl) ₂ -C ₆ H ₃ -	C ₃₂ H ₁₉ Cl ₄ FN ₆ OS	696	172	0.66	71	12.07	11.94

*TLC Solvent System : : Benzene Acetone

2


: 8 (7a-7d, 7i-7k)

3 : 7 (7e-7h, 7l)

GRAPHYCAL CHART NO.7:

ANTIMICROBIAL ACTIVITY OF 6-ARYLIMINO-7,N- ARYL-2-OXO-4-[1'N-PHE NYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL] 1,2,3,4-TETRAHYDRO-THIAZOLIDINO(4,5-d)-PYRIMIDINES.

CONCLUSION

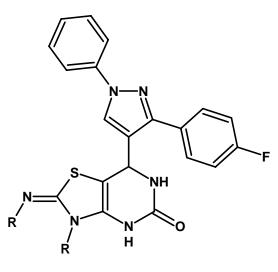
ANTIBACTERIAL ACTIVITY

The antibacterial activity of pyrimidinones (type-VII) revealed that most of the compounds were able to inhibit the growth of Gram positive and Gram negative bacterial strains.

Maximum activity was observed in compound bearing R=4-chlorophenyl and significant activity was displayed by compounds bearing R=phenyl, 4-methoxyphenyl, 4-bromophenyl & 2,4-dimethylphenyl against Gram positive bacterial strains **B. cocous** and **B. subtillus**. Other compounds were less active against these bacterial strains.

In case of Gram negative bacterial strains highest activity was displayed by compounds bearing R=phenyl and 3-nitrophenyl and significant activity was observed in compounds bearing R=4-chlorophenyl and 2,5-dichlorophenyl against *E.coli* & *P. vulgaris*.

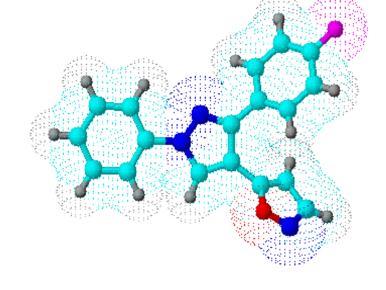
ANTIFUNGAL ACTIVITY


Most of the compounds were inactive against fungal strain **A**. *niger*. Maximum activity was observed in compounds bearing R=3-chloro, 4-fluorophenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

ANTITUBERCULAR ACTIVITY

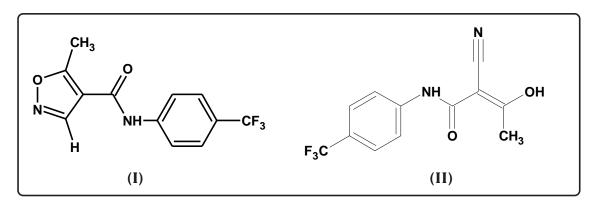
All the compounds displayed mild antitubercular activity against **Mycobacterium tuberculosis** $H_{37}Rv$ i.e. 1 to 39% inhibition.


TABLE NO. 7a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY

TAACF, Southern Research Institute Primary Assay Summary Report

Dr. H. H. Parekh Saurashtra University

Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg∕ml	% Inhib	Activity	Comment
295622	HCV-116	C ₆ H ₅ -	Alamar	H ₃₇ Rv	>6.25	13	-	MIC Rifampin =
								0.25 μg/ml @ 98% Inhibition
295623	HCV-117	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	26	-	"
295624	HCV-118	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	20	-	"
295625	HCV-119	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	12	-	n
295626	HCV-120	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	18	-	n
295627	HCV-121	3-Cl,4-F-C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	39	-	n
295628	HCV-122	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	0	-	n
295629	HCV-123	2-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	0	-	'n
295630	HCV-124	3/4-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	1	-	'n
295631	HCV-125	4-Br-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	20	-	'n
295632	HCV-126	2/4-(CH ₃) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	33	-	"
295633	HCV-127	2/5-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	22	-	"



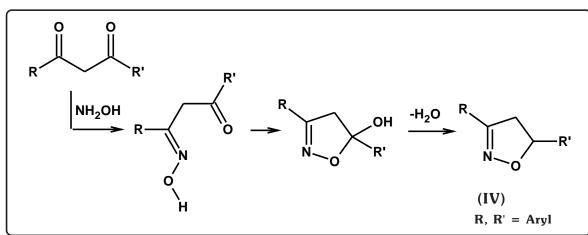
PART-V STUDIES ON ISOXAZOLES

INTRODUCTION

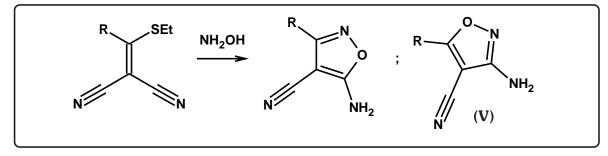
Isoxazole derivatives have recently been intensively investigated. They are interesting objects from the synthetic, as well as physiochemical, biological and theoretical points of view.

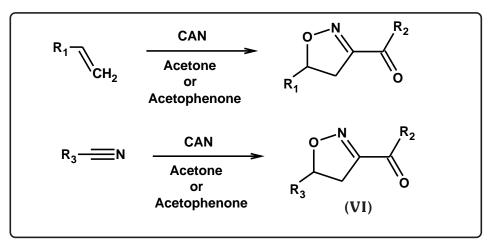
Leflunomide (I) is an isoxazole derivative with antiinflammatory and immunomodulating activity. It is also considered a prodrug, it is rapidlly metabolized **in vitro** to its active metabolite A771726(II) via opening the isoxazole ring. Most of the immunomodulating activity appears to be related to A771726. It is also used for the management of the signs and symptoms of rheumatoid arthritis and to retard structural damage associated with the disease in adults with moderate to active rheumatoid arthritis²³¹⁻²³⁵.

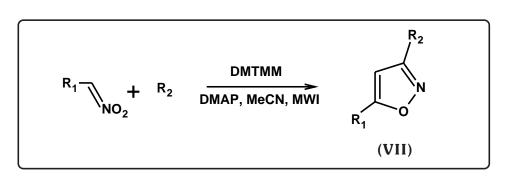
SYNTHETIC ASPECTS


Isoxazoles may be prepared by the reaction between hydroxylamine and α , β -dicarbonyl compounds. The reaction proceeds via the formation of oxime, which possibly undergoes cyclization.

Isoxazoles can be prepared by various methods. They are described as under.


1. Fanshawe and Crawley²³⁶ prepared isoxazoles (IV) from chalcones,


hydroxylamine hydrochloride and KOH in methanol.

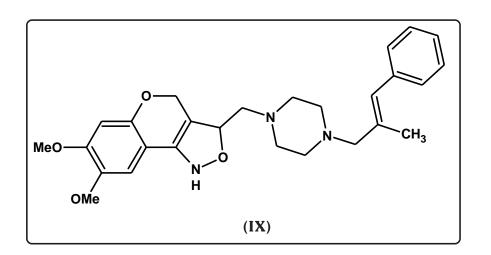

Lyubov N. Sobenina et. al.²³⁷ have synthsised isoxazole (V) by the reaction 2. of 2,2-dicyano-1-ethylthioethyl derivatives with hydroxylamine in methanol.

By the reaction of alkenes or alkynes with ammonium cerium (IV) nitrate in 3. acetone or acetophenone under reflux gave corresponding isoxazole derivative²³⁸.

By the reaction of nitroalkanes with alkynes using microwave irradiation, 4. $using \ 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholinium\ chloride$ (DMTMM) and DMAP as catalyst 239 .

THERAPEUTIC IMPORTANCE

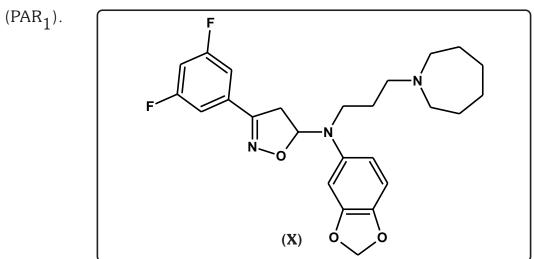
Isoxazoles possess wide therapeutic activities.


- 1. Antiinflammatory²⁴⁰⁻²⁴²
- 2. Anticonvulsant^{243,244}
- 3. Muscle relaxant^{245,246}
- 4. Antipyretic²⁴⁷
- 5. Antibacterial^{248,249}
- 6. Antiviral²⁵⁰
- 7. Anticholestermic²⁵¹
- 8. Diabetic²⁵²
- 9. Herbicidal²⁵³
- 10. Antitumor²⁵⁴
- 11. Antileukemiac²⁵⁵
- 12. Nematocidal²⁵⁶

Masui et. al.²⁵⁷ have prepared isoxazoles having pesticidal activity. Some excellent herbicidal results are obtained by Reddy et. al.²⁵⁸. Moreover isoxazoles found to possess remarkable anxiolytic and antihypertensive effect, reported by Nyitrai et. al.²⁵⁹. Aicher et. al.²⁶⁰ cited some isoxazole derivatives possessing hypoglycemic agents. R. Ulrich et. al.²⁶¹ have synthesised isoxazole derivatives and reported their adrenergic antagonist activity.

Andres J I et. al.²⁶² have discovered a new series of centrally active tricyclic isoxazoles (IX) combining serotinin (5-HT)-reuptake inhibition with alpha(2)-

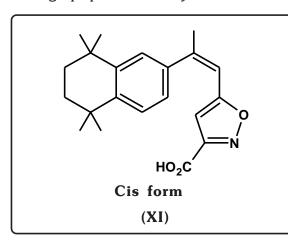
121


adreno-ceptor blocking activity which is described as potential antidepressant.

Hongwu He et. al.²⁶³ have prepared Methyl-1-(5-methyl-isoxazole-3-oxyacetoxy)alkyl-methyl phosphinates and tested for their plant growth regulatory activity.

Chaumin, Wang, Yunfeng et. al.²⁶⁴ have discovered isoxazoles as herbicidal. Wu, ahengde et. al.²⁶⁵ have synthesised isoxazole derivatives as endothelin activity modulators. Corolin and co-workers²⁶⁶ have studied isoxazoles, which have been used for the clinical trials of asthama.

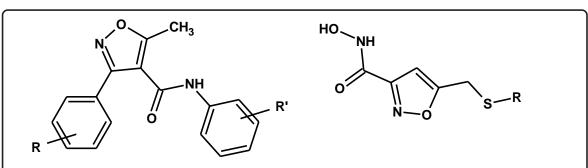
Nanterment P G et. al.²⁶⁷ have discovered a non peptidic isoxazole derivative (X) reported as antagonist of the human platelet thrombin receptor



Romero J. R.²⁶⁸ has discovered a isoxazole derivative named pleconaril as

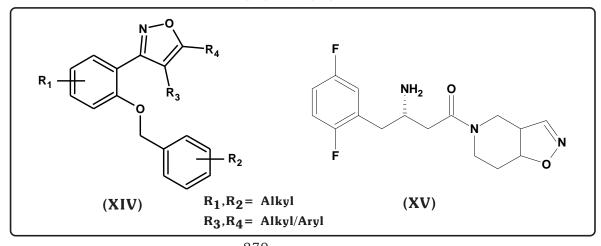
122

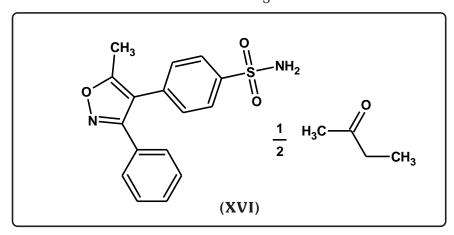
a antipicornaviral agent and promising drug for the treatment of enteroviral and rhinoviral infections.


Daniele Simoni and Manlio Tolomeo²⁶⁹ have designed a novel g1 phase targetting isoxazole derivative (XI) which is structurally related to arotinoids, was found to possess interesting apoptotic activity.

CONTRIBUTION FROM OUR LABORATORY

R. C. Khunt, A. R. Parikh and co-workers²⁷⁰ have prepared isoxazole derivatives which possess antimicrobial activity. Rajeev Doshi & co-workers²⁷¹ have discovered isoxazoles as a new class of potential antitubercular agents. Ketan Hirpara et. al.²⁷² have synthesised isoxazoles as antitubercular agents. A. V. Dobaria et. al.²⁷³ have described the isoxazole derivatives and their use as antimicrobial agents. B. P. Kansagar et. al.²⁷⁴ have demonstrated various isoxazole and testd their antimicrobial activity.


Recently, Bo Lui et. al.²⁷⁵ have discovered novel isoxazole carboxamides (XII) as growth hormone secretagogue receptor (GHS-R) antagonists. Patrizia Cali et. al.²⁷⁶ have synthesised & reported isoxazoles (XIII) as peptide deformylase inhibitors and potential antibacterial agent.


123

(XII) R, R' = Aryl/Alkyl (XIII) R = Alkyl/Aryl

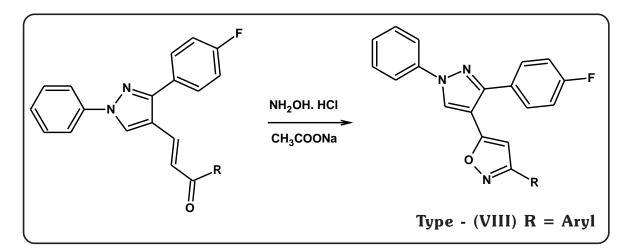
Isoxazole derivatives (XIV) as a novel class of activators for chloride conductance in the cystic fibrosis transmembrane conductance regulatorn protein has been identified by Robert Sammelson et. al.²⁷⁷. Wallace T. Ashton et. al.²⁷⁸ have found isoxazole (XV) as dipeptidyl peptidase IV inhibitors.

H. S. Yathirajan et. al.²⁷⁹ have synthesised novel 4-(5-methyl-3-phenylisoxazole-4-yl) benzene-sulfonamide ethylmethyl ketone (XVI) used as non-sterodial intiinflammatory drug. Makarov V. A. and co-workers²⁸⁰ have discovered the novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus-2 and coxsackievirus B_3 replication.

With an intension of preparing the compounds possessing better therapeutic activity, we have undertaken the preparation of isoxazoles bearing pyrazole moiety which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-

124


ARYL-5-[1'N-PHENYL-3'-p-FLUOROPHENYL-

PYRAZOL-4'-YL]-ISOXAZOLES

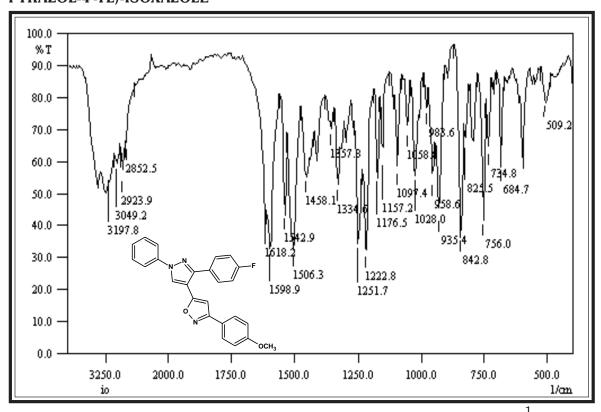
SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-ISOXAZOLES

With a view to getting better drug potency, isoxazole derivatives of type (VIII) have been prepared by the condensation of chalcones of type (I) with hydroxylamine hydrochloride in presence of sodium acetate in glacial acetic acid. The chalcones were synthesised by the condensation of 1,N-phenyl-3-p-fluorophenyl-4-formyl pyrazole with different aromatic ketones.

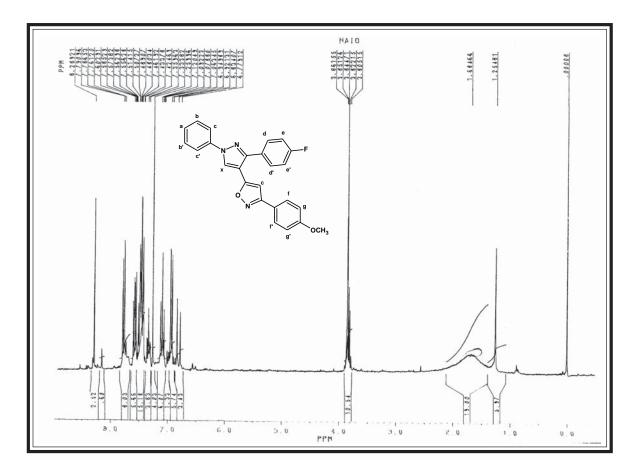
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.


The synthesised compounds have been screened for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis*

125

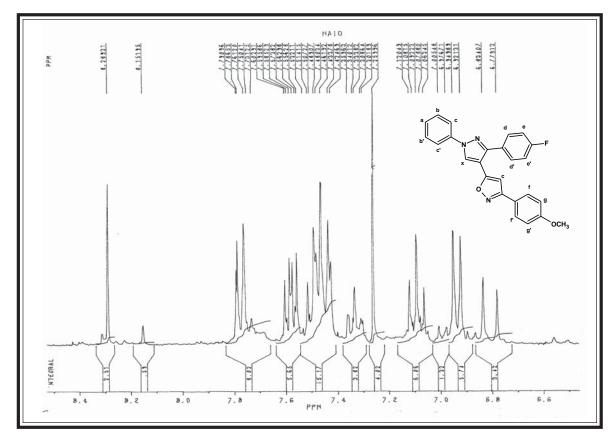
 $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.


Tuno	Vibration	Freque	Ref.	
Туре	mode	Observed	Reported	Rei.
Alkane	C – H str.(asym.)	2923	2975–2920	426
-CH ₃	C – H str. (sym.)	2852	2880-2840	"
3	C – H i.p. (def.)	1458	1470–1435	"
	C – H o.o.p. (def.)	1357	1385–1350	"
Aromatic	C – H str. (asym.)	3049	3080–3030	427
	C = C str.	1542	1585–1450	"
	C – H i.p. (def.)	1097	1125–1090	"
		1028	1070–1000	"
	C – H o.o.p. (def)	825	835-810	"
Pyrazole	C = N str.	1618	1650–1600	428
moiety	C – N str.	1334	1350–1200	"
	C – F str.	756	760–710	"
Ether	C – O – C str. (asym)	1222	1275–1200	"
	C – O – C str. (sym.)	1068	1075–1020	"
Isoxazole	C = C str.	1506	1585–1450	426
	C = N str.	1598	1650–1600	"
	N – O str.	842	850-800	"

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 3-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-ISOXAZOLE

PMR SPECTRAL STUDY OF 3-(p-ANISYL)-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-ISOXAZOLES


 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \quad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$


Signal No.	Signal Position (ð ppm)	Relative No. of Protons Multiplicit		Inference	J Value In Hz	
1.	3.84	ЗН	singlet	Ar-OCH ₃	-	
2.	6.92-6.94	2H	doublet	Ar-Hgg'	Jgf=8.4	
3.	7.06-7.12	2H	triplet	Ar-Hdd'	-	
4.	7.30-7.35	1H	triplet	Ar-Ha	-	
5.	7.42-7.50	4H	multiplet	Ar-Hbb'+Hee'	-	
6.	7.55-7.60	2H	multiplet	Ar-Hcc'	-	
7		011			10 (

127

7.	7.75-7.79	3H	triplet	Ar-Hff'+Hh	Jfg = 10.6
8.	8.28	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-ISOXAZOLES

[A] Synthesis of N-Aminophenyl-α-methyl-α-p-fluorophenylazomethine

See, Part-I, Section-I (A)

- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See, Part- I, Section-I (B).
- [C] Synthsis of 1-(p-Anisyl)-3-(1',N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl)-2-propene-1-one

See, Part-I, Section-I (C).

[D] Synthesis of 3-(p-Anisyl)-5-[1',N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl]-isoxazoles

To a mixture of hydroxy amine hydrochloride (0.79, 0.01M) in ethanol and anhydrous sodium acetate (0.82g, 0.01M) dissolved in minimum amount of hot acetic acid was added a solution of 1-(p-anisyl)-3-(1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl)-2-propene-1-one (3.98g, 0.01M) in ethanol (15 ml). The contents were refluxed on waterbath for 8 hrs. at temp 80°-90°C. The reaction product was poured into ice and crystallised from ethanol. Yield 73%, m.p. 183°C; $(C_{25}H_{18}FN_3O_2; Found : C, 72.93\%; H, 4.36\%; N, 10.16\%; Requires : C, 72.98\%;$ H, 4.41%; N, 10.21%).

Similarly other substituted isoxazoles have been prepared. The physical data are recorded in Table No. 8.

[E] Therapeutic activity of 3-Aryl-5-[1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl]-isoxazoles

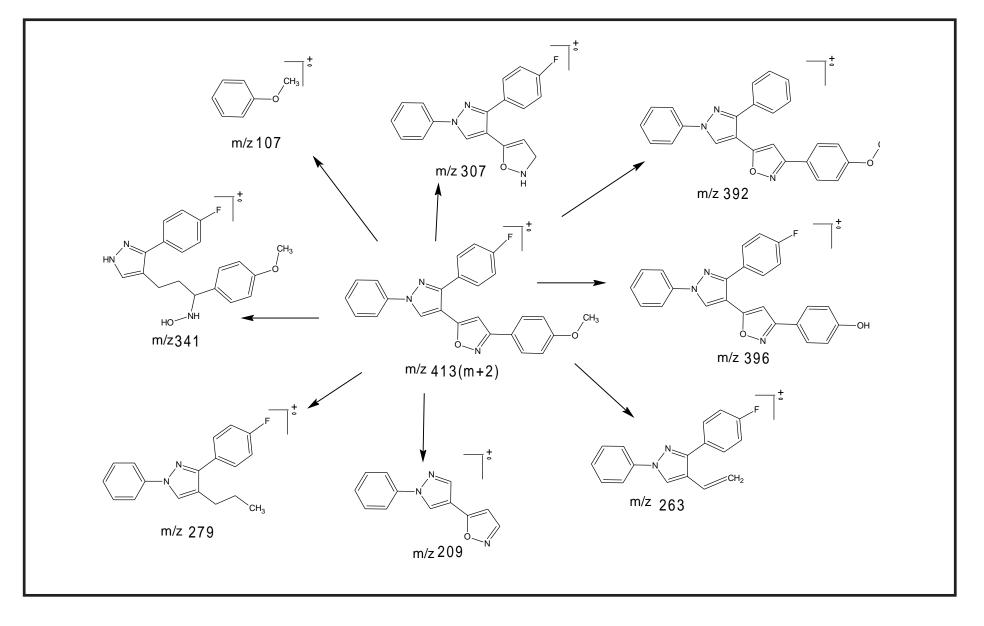
Antimicrobial testing was carried out as described in Part-I, Section-I (D). The zone of inhibition of the test solution are recorded in Graphical Chart No. 8.

Antitubercular screening of the compounds of type(VIII) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I, Section-

129

I (D) and the percentage of inhibition data of the compounds are recorded in Table No. 8a.

 TABLE NO. 8
 PHYSICAL CONSTANTS OF 3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]


 ISOXAZOLES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of Nitrogen		
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9	
8a	с ₆ н ₅ -	C ₂₄ H ₁₆ FN ₃ O	381	98	0.56	70	11.02	10.96	
8 b	4-OCH ₃ -C ₆ H ₄ -	$\mathrm{C_{25}H_{18}FN_{3}O_{2}}$	411	183	0.62	73	10.21	10.16	
8c	4-CH ₃ -C ₆ H ₄ -	$C_{25}H_{18}FN_{3}O$	395	105	0.55	69	10.63	10.56	
8d	4-Cl-C ₆ H ₄ -	$C_{24}H_{15}CIFN_{3}O$	415	119	0.61	72	10.10	10.05	
8e	4-F-C ₆ H ₄ -	$C_{24}H_{15}F_2N_3O$	399	165	0.49	75	10.52	10.47	
8 f	4-OH-C ₆ H ₄ -	$C_{24}H_{16}FN_{3}O_{2}$	397	147	0.58	62	10.57	10.51	
8g	2-OH-C ₆ H ₄ -	$\mathrm{C_{24}H_{16}FN_{3}O_{2}}$	397	127	0.71	68	10.57	10.52	
8h	4-NO ₂ -C ₆ H ₄ -	$C_{24}H_{15}FN_4O_3$	426	150	0.68	71	13.14	13.09	
8 i	3-NO ₂ -C ₆ H ₄ -	$C_{24}H_{15}FN_4O_3$	426	198	0.48	64	13.14	13.08	
8 j	4-Br-C ₆ H ₄ -	C ₂₄ H ₁₅ BrFN ₃ O	460	114	0.60	71	9.13	9.08	
8k	4-NH ₂ -C ₆ H ₄ -	C ₂₄ H ₁₇ FN ₄ O	396	162	0.74	64	14.13	14.07	
81	C4H3S-	$C_{22}H_{14}FN_3OS$	387	159	0.46	67	10.85	10.81	

*TLC Solvent System : Ethyl acetate : Hexane

2 : 8 (2a-2f, 2h-2j, 2l)

3 : 7 (2g, 2k)

	GRAPHYCAL	CHART	NO.8:
--	-----------	--------------	-------

ANTIMICROBIAL ACTIVITY OF 3-ARYL-5-[1'N-PHENYL-3'-p- FLUOROPHENYL PYRAZOL-4'-YL]-ISOXAZOLES.

in mm	30 -				1	in the	- Set	200	12		20	80	66	1	63	24	and a	
	20 -		25	-	- <mark>-</mark>	_								-1	I.	h		
Zone of inhibition	10 -																	
Zon	0 -													Amo	Benz	-	Eryth	
		8a	8b	8c	8d	8e	8f	8g	8h	8i	8j	8k	81	xycilli n	oyl Peni	oflox acin	romy cin	eo fulvin
	B. cocous	10	17	18	9	11	16	8	10	12	15	13	16	17	21	16	23	0
	B. subtillus	14	11	18	13	10	15	10	11	15	17	21	13	15	21	22	19	0
	E. coli	16	10	13	14	17	11	14	8	13	16	10	12	19	18	20	22	0
	P. vulgaris	13	16	11	18	14	10	9	11	14	17	10	14	16	19	15	21	0
	🗖 A. niger	17	13	12	14	19	15	16	9	13	18	13	15	0	0	0	0	26

132

CONCLUSION

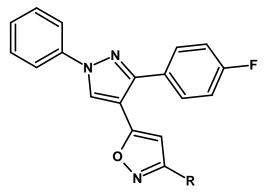
ANTIBACTERIAL ACTIVITY

The activity data shows that isoxazoles (type-VIII) were able to inhibit the growth of Gram positive & Gram negative bacterial strains.

Compounds bearing R=4-aminophenyl and 4-methylphenyl were observed to give maximum activity against Gram positive bacterial strains **B**. **subtillus** and **B**. **cocous** respectively as compared to standard drugs. Significant activity was displayed by compounds containing R=4-methoxyphenyl, 4-hydroxyphenyl, 3-nitrophenyl and thienyl.

In case of Gram negative bacterial strains, maximum activity was observed in compounds bearing 4-chlorophenyl and 4-fluorophenyl against *P*. *vulgaris* and *E*. *coli*, significant activity was displayed by compounds bearing R=4methoxyphenyl and 4-bromophenyl.

ANTIFUNGAL ACTIVITY

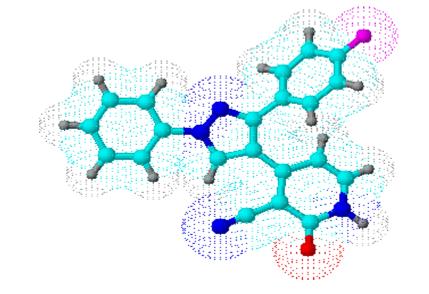

Most of the compound were mild to moderately active against fungal strain **A. niger**.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

ANTITUBERCULAR ACTIVITY

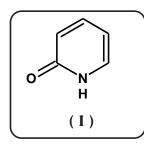
All the compounds displayed antitubercular activity against **Mycobacterium tuberculosis** $H_{37}Rv$ ranging from 16 to 99% inhibition. Compounds with R = 4-hydroxyphenyl, 2-hydroxyphenyl and 2-aminophenyl exhibited maximum activity upto 99% inhibition.

TABLE NO. 8a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY

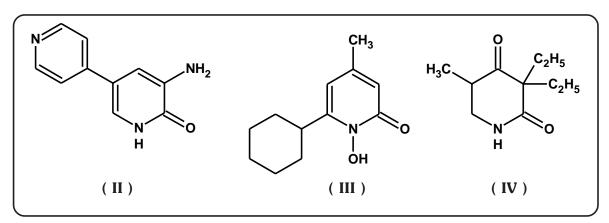


TAACF, Southern Research Institute Primary Assay Summary Report

Dr. H. H. Parekh Saurashtra University


Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg∕ml	% Inhib	Activity	Comment
295574	HCV-68	C ₆ H ₅ -	Alamar	H ₃₇ Rv	>6.25	82	-	MIC Rifampin =
								0.25 µg/ml @ 98% Inhibition
295575	HCV-69	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	78	-	"
295576	HCV-70	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	69	-	"
295577	HCV-71	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	70	-	"
295578	HCV-72	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	75	-	"
295579	HCV-73	4-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	<6.25	99	+	"
295580	HCV-74	2-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	<6.25	90	+	"
295581	HCV-75	4-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	58	-	"
295582	HCV-76	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	16	-	"
295583	HCV-77	4-BrC ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	75	-	"
295584	HCV-78	4-NH ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	<6.25	99	+	"
295585	HCV-79	C ₄ H ₃ S-	Alamar	H ₃₇ Rv	>6.25	70	-	n

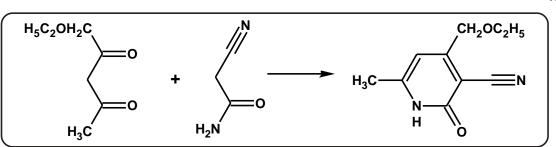
PART-VI STUDIES ON CYANOPYRIDONES



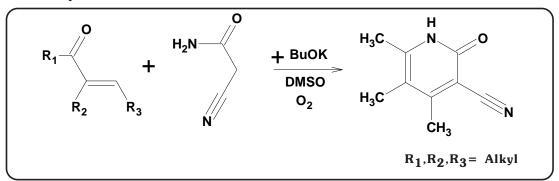
INTRODUCTION

 ${m P}$ yridones, which belongs to an important group of heterocyclic compounds have been extensively explored for their applications in the field of medicine. Pyridones, with a carbonyl group at position 2(I) have been subject of extensive study in recent past. Numerous reports have appeared in the literature which highlight their chemistry and use.

2-Pyridones are derivatives of pyridine with carbonyl group at 2-position (I). Someof the 2-pyridones are physiologically as well as pharmacologically important which are as under. eg. amrinone (II), ciclopirox (III) and methylprylon (IV).


SYNTHETIC ASPECTS

Different methods for preparation of 2-pyridones are as follows :


135

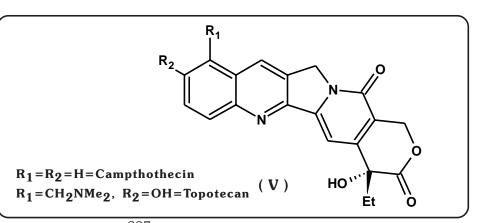
1. K. Folkers and S. A. Harris²⁸¹ have synthesised 3-cyano-2-pyridones by the

condensation of cyanoacetamide with 1,3-diketone or 3-ketoester.

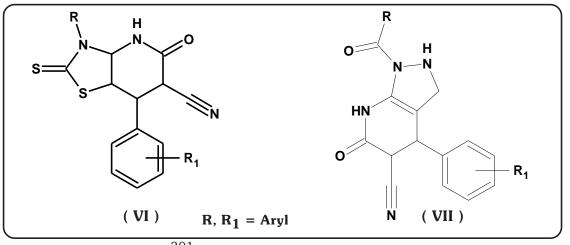
2. Rajul Jain & co-workers 282 have prepared 3-cyano-2-pyridones by reaction of enones or enals with cyanoacetamide/BuOK in DMSO under $\rm O_2$ atmosphere.

- 3. M. A. Sluyter and co-workers²⁸³ have prepared fused 2-pyridones.
- 4. G. Simchen and G. Entemman²⁸⁴ have synthesised 2-pyridones in which the ring nitrogen comes from a nitrile group in acyclic precursor.

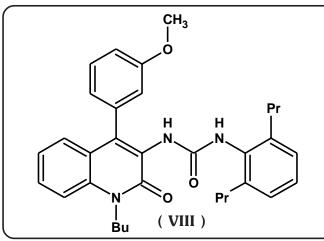
THERAPEUTIC IMPORTANCE

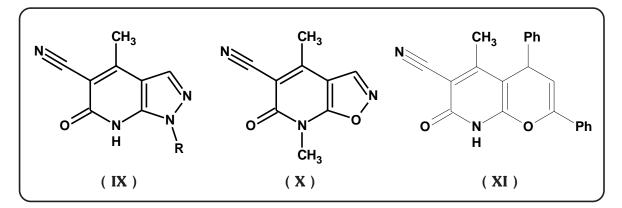

Pyridone derivatives have been found to possess variety of therapeutic activities as shown below.

- 1. Anticancer²⁸⁵
- 2. Herbicidal²⁸⁶
- 3. Pesticidal^{287,288}
- 4. Antimicrobial²⁸⁹
- 5. Angitensin II antagonist^{290,291}
- 6. Antiviral²⁹²
- 7. AntiHIV²⁹³

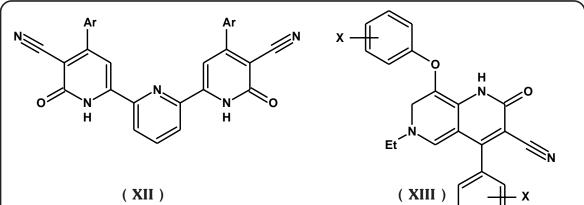

Salman A S $^{\rm 294}$ has prepared cyano pyridone derivatives as antibacterial &

136


antifungal agent. Thomas C J et. al.²⁹⁵ and M. Potmesil & H. Pinedo²⁹⁶ have prepared 2-pyridone derivatives (V) as antineoplastics, antitumor & antiviral agent.

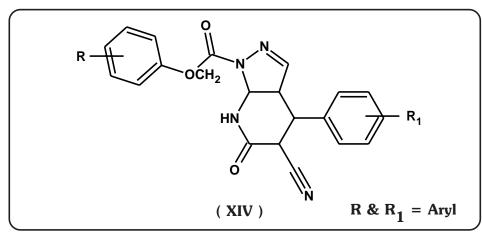

Peter and co-workers²⁹⁷ have prepared pyridinylmethyl substituted pyridines and pyridones as angitensin II antagonist. H. Posnes²⁹⁸ has synthesised 2pyridones and 2-pyrones as physiologically active compounds. Mukhtar Hussain Khan and co-workers^{299,300} have prepared 2-pyridone derivatives (VI) and (VII) which possess insecticidal and pesticidal activity.

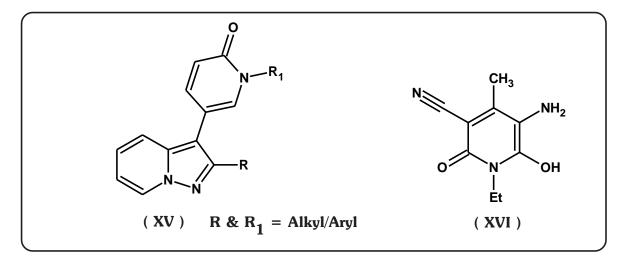
Morishita Koji et. al.³⁰¹ have synthesised m-(2-oxo-1,2-dihydropyridyl) urea derivatives (VIII) possessing cholesterol acyltransterase (ACAT) inhibitory activity and are useful for the treatment of hyperlipidemia and arteriosclerosis.



Collins et. al.³⁰² have prepared heteroaryl pyridones as GABA α_2/α_3 ligands. Pednekar³⁰³ synthesised fused 2-pyridone derivatives (IX), (X) and (XI) as useful heterocyclic moieties as they possess broad spectrum of biological activities such as antiviral, CNS depressant, bactericidal and ulcer inhibitor.

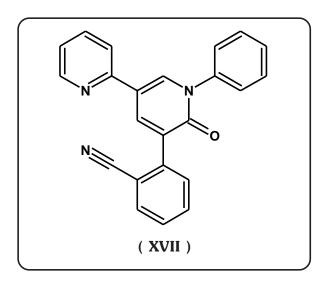
Moreover, several co-workers have prepared 2-pyridones as S_3 site of thrombin inhibitor³⁰⁴, herbicidal³⁰⁵, SH2 domain inhibitor³⁰⁶, antimicrobial³⁰⁷, GABA-A receptor³⁰⁸ and antiinflammatory³⁰⁹.


Upadhyay and co-workers³¹⁰ have synthesised cyanopyridone derivatives which showed antifungal and antileishmanial activities. E. Amer³¹¹ has prepared 3-cyano-2-pyridone derivatives (XII) displaying high antimicrobial activity. Abou El-Fotooh and co-workers³¹² have demonstrated pyridones (XIII) as anticancer agent.


138

$$X = F, Cl, Br$$

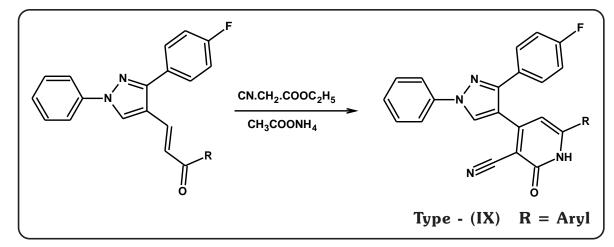
M. G. Nizamuddin et. al. 313 have prepared cyanopyridone derivatives (XIV) and documented their antifungal activity.



Recently, Tanaka Akira et. al.³¹⁴ have prepared pyrazolo pyridone derivatives (XV). Haifeng Song & co-workers³¹⁵ have synthsised 3-cyano pyridones (XVI) which are used as dyes and pigment.

Darcy Michael G. et. al.³¹⁶ have discovered pyridones as antiviral agents. Smith Terence³¹⁷ has synthesised and reported pyridones (XVII) as AMPA receptor antagonists for the treatment of demyelinating disorders and neurodenerative diseases. Recently, it is found that pyridones possess antiallergic³¹⁸, p38 MAP Kinase³¹⁹ & modulating, thrombin inhibitor³²⁰ activities.

139

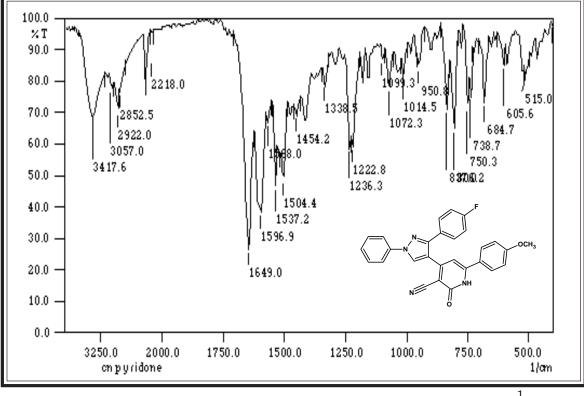

With an intension of preparing the compounds possessing better therapeutic activity, we have undertaken the preparation of cyanopyridones which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-6-ARYL-1,2-DIHYDRO-2-PYRIDONES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-6-ARYL-1,2-**DIHYDRO-2-PYRIDONES**

Pyridone derivatives possess interesting therapeutic activity. Taking this into consideration, we have undertaken the preparation of pyridone derivatives by the condensation of chalcones of type (I) with ethyl cyanoacetate in presence of ammonium acetate as shown under.

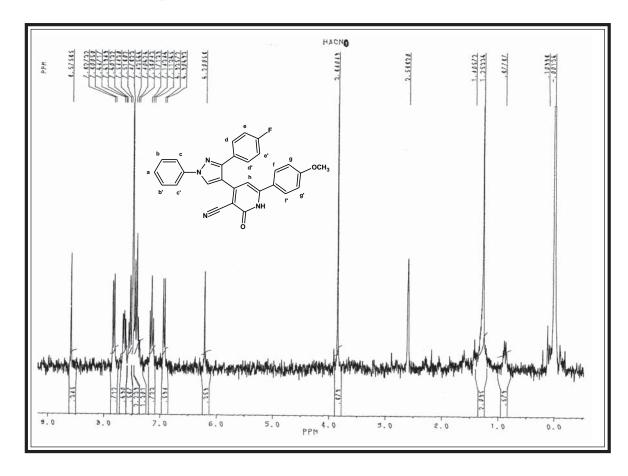


The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ${}^{1}\mathrm{H}$ nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their in vitro biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 µg/ml. The biological activities of synthesised compounds were compared with standard drugs.

The synthesised compounds have been screened for their *in vitro* biological assay like antitubercular activity towards a strain of Mycobacterium tuberculosis $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.

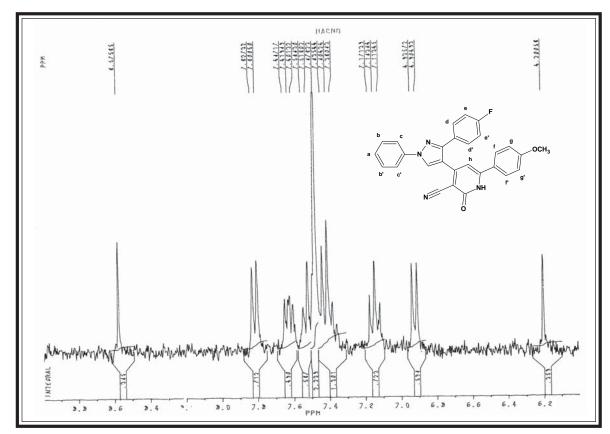
IR SPECTRAL STUDY OF 3-CYANO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-6-(p-ANISYL)-1,2-DIHYDRO-2-PYRIDONE

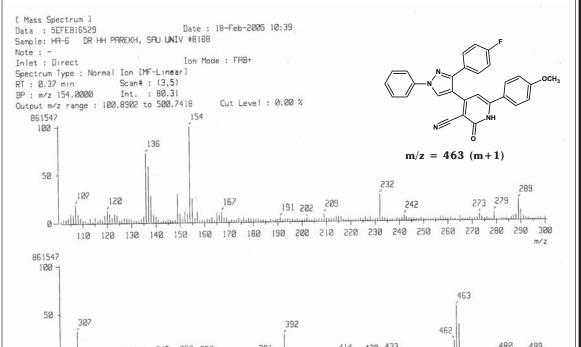


Туре	Vibration	Freque	ency in cm ⁻¹	Ref.
Туре	mode	Observed	Reported	Nel.
Alkane	C – H str.(asym.)	2922	2975–2920	426
-CH ₃	C – H str. (sym.)	2852	2880–2820	"
3	C – H i.p. (def.)	1454	1470–1435	"
	C – H o.o.p. (def.)	1338	1385–1350	"
Aromatic	C – H str.	3057	3080–3030	427
	C – H i.p. (def.)	1099	1125–1090	"
		1014	1070-1000	"
	C – H o.o.p. (def.)	837	835-810	"
Pyrazole	C = N str.	1596	1650–1590	428
moety	C = C str.	1504	1585–1480	"
	C – N str.	1236	1350–1200	"
	C – F str.	750	760–700	"
Ether	C - O - C str. (asym)	1236	1275–1200	"
	C – O – C str. (sym.)	1072	1075–1020	"
Pyridone	C = N str.	2218	2240-2120	432
ring	C = O str	16/19	1760 1655	"

	N – H str.	3417	3450–3250	"
ring	C = 0 str.	1649	1/00-1000	

PMR SPECTRAL STUDY OF 3-CYANO-4-[1'N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-6-(p-ANISYL)1,2-DIHYDRO-2-PYRIDONE




 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \qquad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	3.84	ЗH	singlet	Ar-OCH ₃	-
2.	6.20	1H	singlet	Ar-Hh	-
3.	6.90-6.93	2H	doublet	Ar-Hgg'	Jgf=8.7
4.	7.11-7.17	2H	triplet	Ar-Hdd'	-
5.	7.38-7.43	3H	triplet	Ar-Hbb' + Ha	-
6.	7.51-7.54	2H	doublet	Ar-Hee'	Jed= 7.8
7.	7.60-7.64	2H	multiplet	Ar-Hcc'	-

8.	7.80-7.82	2H	doublet	Ar-Hff'	Jig=8.1
9.	8.57	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			,328	342	352	,357		,38 		مد العدد	أستوبيت	414	428	433 	_ يېرىچى	التربي		481 	а 4 µ	199
510 520 550 560 560 560 560 m/z	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-6-ARYL 1,2-DIHYDRO-2-PYRIDONES

[A] Synthesis of N-Aminophenyl-α-methyl-2-p-fluorophenylazomethine

See, Part-I, Section-I (A)

- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See, Part- I, Section-I (B).
- [C] Synthesis of 1-(p-Anisyl)-3-(1',N-phenyl-3'-p-fluorophenyl pyrazol-4'-yl)-2-propene-1-one

See, Part-I, Section-I (C).

[D] Synthesis of 3-cyano-4-(1',N-phenyl-3'-p-fluorophenyl pyrazol-4'yl)-6-(p-anisyl)-2-pyridone

A mixture of 1-(p-anisyl)-3-(1',N-phenyl-3'-p-flurophenyl-pyrazol-4'-yl)-2propene-1-one (3.98g, 0.01M) ethyl cyano acetate (1.13g, 0.01M) and ammonium acetate (5.92g, 0.08M) in absolute alcohol was refluxed for 10 hrs. at temp 70°-80°C. The reaction product was poured into ice, filtered and crystallised from ethanol. Yield 68% m.p.> 300°C ($C_{28}H_{19}FN_4O_2$: Found : C, 72.63%; H, 4.07%; N, 12.02%; Requires : C, 72.72%; H, 4.14%; N, 12.11%).

Similarly other substituted pyridones have been prepared. The physical data are recorded in Table No. 9.

[E] Therapeutic activity of 3-Cyano-4-(1',N-phenyl-3'-p-fluorophenylpyrazol-4'-yl)-6-aryl-pyridones

Antimicrobial testing was carried out as described in Part-I, Section-I (D).

The zone of inhibition of the test solution are recorded in Graphical Chart No. 9.

Antitubercular screening of the compounds of type(IX) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I, Section-I

145

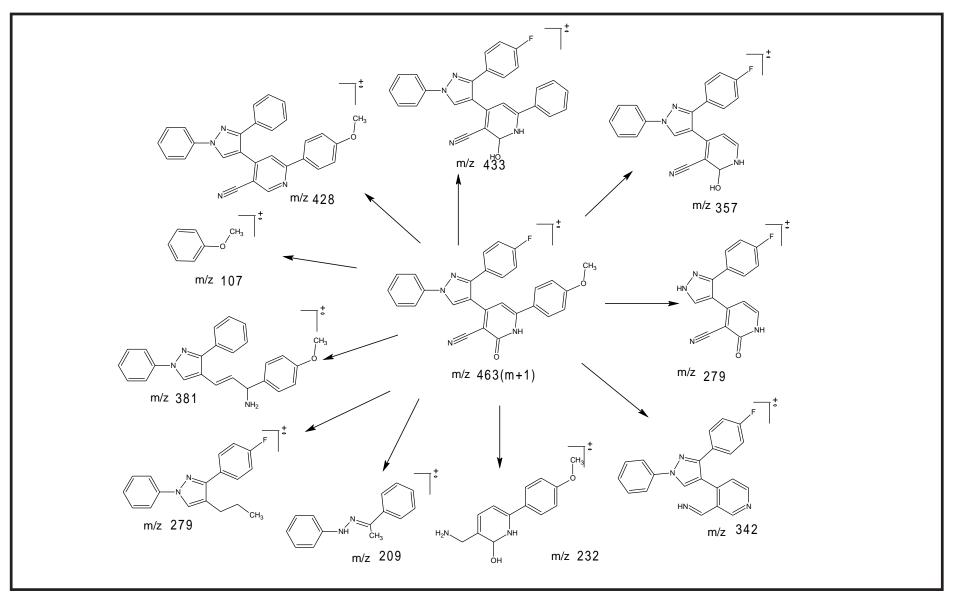
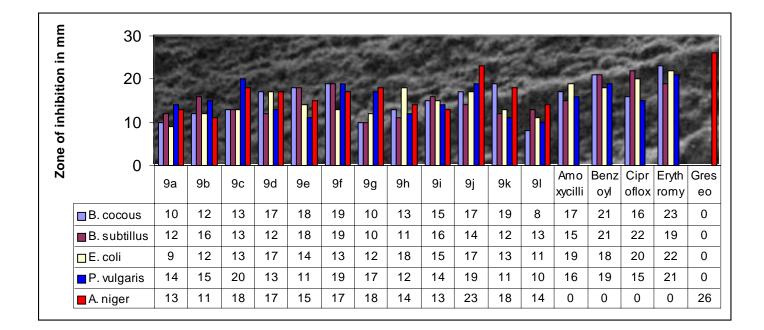

(D) and the percentage of inhibition data of the compounds are recorded in Table No. 9a.

TABLE NO. 9: PHYSICAL CONSTANTS OF 3-CYANO-4-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-
6-ARYL-1,2-DIHYDRO-2-PYRIDONES

Sr.	R	Molecular	Molecular	M . P .	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
9a	с ₆ н ₅ -	C ₂₇ H ₁₇ FN ₄ O	432	117	0.41	61	12.96	12.86
9b	4-OCH ₃ -C ₆ H ₄ -	$C_{28}H_{19}FN_4O_2$	462	>300	0.52	68	12.11	12.02
9c	4-CH ₃ -C ₆ H ₄ -	C ₂₈ H ₁₉ FN ₄ O	446	102	0.63	60	12.55	12.47
9d	4-Cl-C ₆ H ₄ -	$\mathrm{C_{27}H_{16}CIFN_{4}O}$	466	202	0.47	68	12.00	11.94
9e	4-F-C ₆ H ₄ -	$C_{27}H_{16}F_{2}N_{4}O$	450	122	0.46	64	12.44	12.38
9f	4-0H-C ₆ H ₄ -	$C_{27}H_{17}FN_4O_2$	448	192	0.72	72	12.49	12.40
9g	2-0H-C ₆ H ₄ -	$C_{27}H_{17}FN_4O_2$	448	162	0.60	65	12.49	12.38
9h	4-NO ₂ -C ₆ H ₄ -	C ₂₇ H ₁₆ FN ₅ O ₃	477	138	0.56	62	14.67	14.61
9i	3-NO ₂ -C ₆ H ₄ -	C ₂₇ H ₁₆ FN ₅ O ₃	477	182	0.75	74	16.67	14.59
9j	4-Br-C ₆ H ₄ -	C ₂₇ H ₁₆ BrFN ₄ O	511	232	0.48	71	10.96	10.88
9k	4-NH ₂ -C ₆ H ₄ -	C ₂₇ H ₁₈ FN ₅ O	447	131	0.51	64	15.65	15.57
91	C_4H_3S -	$C_{25}H_{15}FN_4O_5$	438	112	0.66	67	12.78	12.70


*TLC Solvent System : Acetone : Benzene

2 : 8

GRAPHYCAL CHART NO.9:

ANTIMICROBIAL ACTIVITY OF 3-CYANO-4-[1'N-PHENYL-3'-p- FLUOROPHENYL PYRAZOL-4'-YL] -6-ARYL-1,2-DIHYDRO-2-PYRIDONES.

CONCLUSION

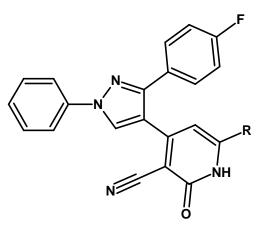
ANTIBACTERIAL ACTIVITY

From the activity data, it has been concluded that the pyridone (type-IX) derivatives were able to inhibit the growth of Gram positive and Gram negative bacterial strians.

Maximum activity was observed in compounds bearing R=4-hydroxyphenyl & 4-aminophenyl against Gram positive bacterial strains, **B. cocous** & **B. subtillus**. Significant activity was observed in compounds bearing R=4chlorophenyl, 4-bromophenyl, 4-fluorophenyl, 4-methoxyphenyl and 3nitrophenyl against Gram positive bacterial strains **B. cocous** & **B. subtillus**.

In case of Gram negative bacterial strains, maximum activity was observed in compounds bearing R=4-methoxyphenyl and 4-nitrophenyl, while other compounds were mild to moderately activity.

ANTIFUNGAL ACTIVITY

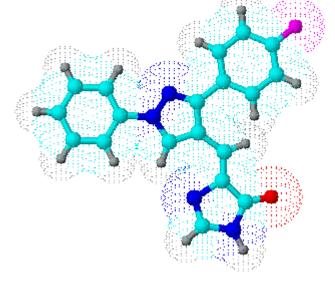

In case of fungal strain **A**. *niger*, maximum activity was observed in compound bearing R=4-bromophenyl. All the others compounds were mild to moderately active.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

ANTITUBERCULAR ACTIVITY

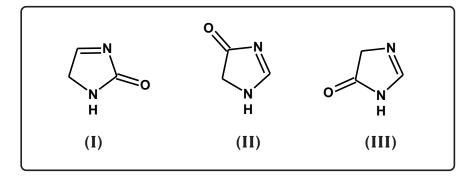
All the compounds displayed antitubercular activity against **Mycobacterium tuberculosis** $H_{37}Rv$ ranging from 5 to 83% inhibition. Compounds with R = thienyl showed maximum activity i.e. 83% inhibition.

TABLE NO. 9a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY



TAACF, Southern Research Institute Primary Assay Summary Report

Dr. H. H. Parekh Saurashtra University


Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg/ml	% Inhib	Activity	Comment
295562	HCV-56	C ₆ H ₅ -	Alamar	H ₃₇ Rv	>6.25	60	-	MIC Rifampin =
								0.25 µg/ml @ 98% Inhibition
295563	HCV-57	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	34	-	"
295564	HCV-58	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	41	-	n
295565	HCV-59	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	34	-	n
295566	HCV-60	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	34	-	'n
295567	HCV-61	4-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	37	-	'n
295568	HCV-62	2-OH- C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	12	-	"
295569	HCV-63	4-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	15	-	"
295570	HCV-64	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	5	-	"
295571	HCV-65	4-BrC ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	46	-	"
295572	HCV-66	4-NH ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	53	-	"
295573	HCV-67	C ₄ H ₃ S-	Alamar	H ₃₇ Rv	>6.25	83	-	n

PART-VII STUDIES ON IMIDAZOLINONES

INTRODUCTION

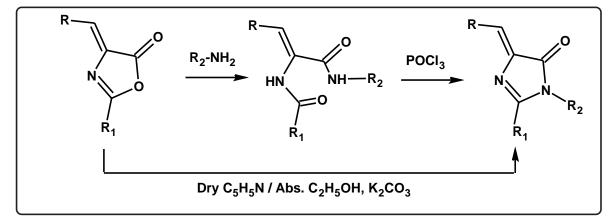
Imidazolinone, a five membered heterocycle having 2-nitrogen atoms at the 1 and 3-positions and C=O group at following positions : 2-oxo-imidazoline (I), 4-oxo-imidazoline (II), 5-oxo-imidazoline (III).

The discovery of the 2-substituted-5-imidazolines dates back to the year 1888, when A. W. Hoffman³²¹ for the first time discovered 5-oxo-imidazoline by heating N'-diacetylethylene diamine in a stream of dry hydrogen chloride. Moreover the same compound was prepared by A. Ladenburg³²² by the fusion of two equivalents of sodium acetate with one equivalent of ethylene diamine dihydrochloride.

SYNTHETIC ASPECTS

Various methods have been reported for the synthesis of imidazolinones in literature 323 are as under.

- 1. Aminolysis of oxazolone with amine leads to the formation of $imidazolinones^{324}$.
- 2. A. Saxena et. al.³²⁵ have synthesised new imidazolinones in pyridine.
- 3. Allimony et. al.³²⁶ have synthesised new imidazolinone derivatives by conventional method.


151

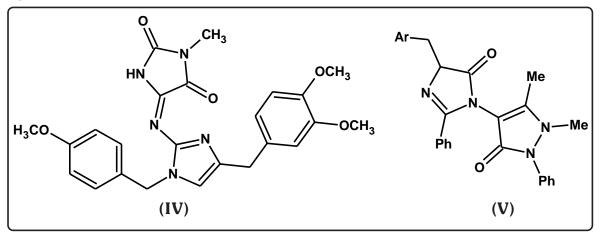
4. Feng-Jun-Cai et. al.³²⁷ have synthesised 5-imidazolinone derivatives by

microwave irradiation.

MECHANISM

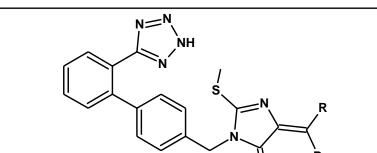
Azalactone reacts with variety of compounds such as water, alcohols, amines and hydrogen halides. Amides of α -acylamino acrylic acids obtained from the condensation of azalactone and primary amine can be converted to imidazolinones as shown under.

The ring closer can be effected under a variety of conditions. Substituted anilides have been converted to imidazolinone derivatives by the action of POCl_3 .


THERAPEUTIC IMPORTANCE

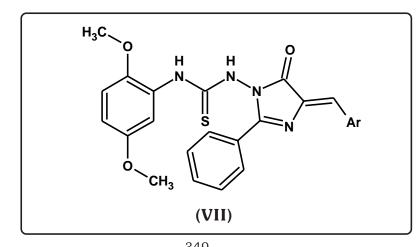
Naphazoline hydrochloride, xylometazoline hydrochloride etc are various imidazolinone derivatives which have been used as adrenergic stimulants and tolazoline and phenotolamine as adrenergic blocking agents. Various imidazolinones are known to exhibit a broad spectrum of biological activities such as,

- Antitubercular³²⁸ 1.
- Potent CNS depressant³²⁹ 2.
- Antiviral³³⁰ 3.
- Antihypertensive³³¹ 4.
- Antiinflammatory³³² 5.
- Antimicrobial³³³ 6.
- Anticonvulsant³³⁴ 7.
- 8. Fungicidal³³⁵


- Anticancer³³⁶ 9.
- 10. Antidiabetic³³⁷

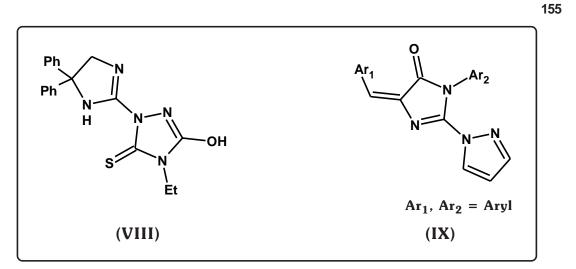
Prisinzano T. et. al.³³⁸ have synthesised & reported imidazoline derivatives as human 5-HT(1D) serotonin receptor ligands. Zhong Jin³³⁹ has found imizoline derivatives (IV) as cytoxic towards several tumor cell lines. Moutevelis-Minakakis P. et. al.³⁴⁰ have synthesised imidazolines as antihypertensive agent. Katarzyna Kiee-Knonowicz et. al.³⁴¹ have discovered imidazolinones as antimicrobial agents. Solankee A. et. al.³⁴² have prepared imidazolinones (V) as anticancer agents.

Havera Herbert J & co-workers³⁴³ have synthesised imidazolinones as antiarrhythmic agents. Some androgenic inhibitor and estrogen activities of imidazoline derivatives have been found by Saad Samir F.³⁴⁴.


Christopher Geoffrey et. al.³⁴⁵ have synthesised imidazolinones and reported their antifungal activities. T. Okasaki et. al.³⁴⁶ have discovered imidazolinone derivatives as angiotensine II receptor antagonist (VI). Kallurava B. et. al.³⁴⁷ have reported antibacterial, antiinflammatory and analgesic activity of 5-oxo-imidazoline derivatives.

$$(VI) \qquad \begin{array}{c} \mathsf{R} \\ \mathsf{O} \\ \mathsf{R} = (\mathsf{Me}, \mathsf{Et}) \end{array}$$

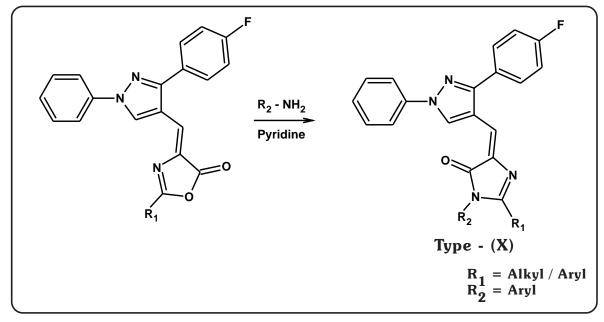
CONTRIBUTION FROM OUR LABORATORY


Dr. H. H. Parekh et. al.³⁴⁸ have suggested imidazolinones as antitubercular and anticancer (VII) agents.

H. H. Parekh and co-workers³⁴⁹ have synthesised 5-oxo-imidazolines as novel bioactive compounds derived from benzimidazole. P. H. Patel and co-workers³⁵⁰ have discovered imidazolines bearing 2-amino-thiazole moiety as antimicrobial agents. R. C. Khunt, N. J. Datta and A. R. Parikh³⁵¹ have reported 5-oxo-imidazolines as biologically active agents. Hasmukh Kanjaria and co-workers³⁵² have described imidazolinones as potential antimicrobial agents. Satyan P. Patel and co-workers³⁵³ have synthesis imidazolines as biologically active agents.

Joshi H. et. al.³⁵⁴ have synthesised imidazolinones as potent anticonvulsant agents. Parikh et. al.³⁵⁵ have reported 4-(4'-arylidene-2'-phenyl-5'-oxo-imidazolin-1'-yl)-benzophenone and screened for their antimicrobial activity.

Recently, it is found that imidazolinones possess anticancer³⁵⁶ (VIII), antibacterial³⁵⁷ (IX) and antimicrobial³⁵⁸ activities. Coleman P. et. al.³⁵⁹ have demonstrated imidazole derivatives as immune response modifiers. Essar Franz et. al.³⁶⁰ have screened imidazolidines for treatment of urinary incontinence.

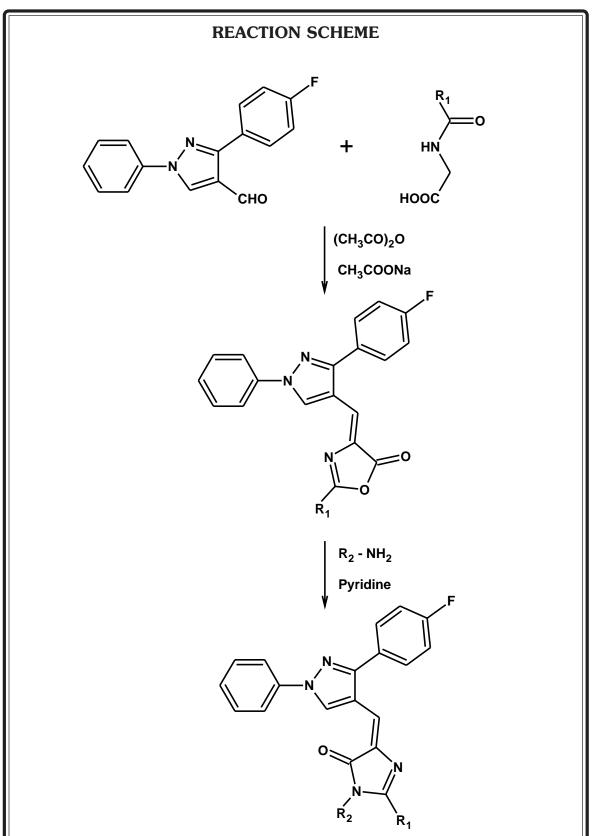

With a view to getting better therapeutic agent, it was contemplated to synthesise imidazolinones to enhance the overall drug potential of resulting compounds which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ARYL-2-ALKYL/ARYL-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYLMETHINO)-IMIDAZOLIN-5-ONES.

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ARYL-2-ALKYL/ ARYL-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYL-METHINO)-IMIDAZOLIN-5-ONES

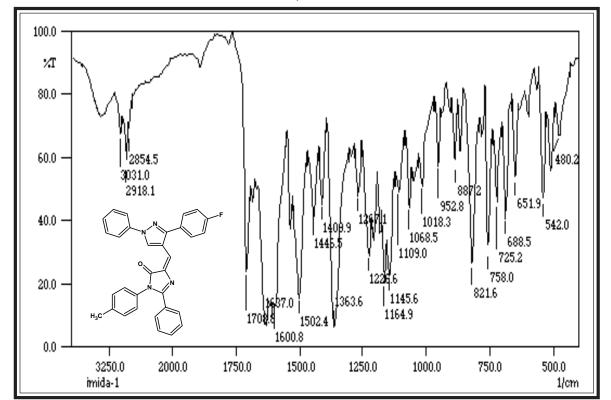
Imidazolinones represent one of the most active classes of compounds having a wide spectrum of biological activities with an aim to getting better therapeutic agent. The preparation of 5-oxo-imidazolines of type (X) have been undeartaken by the condensation of azalatone with different aromatic amines as shown in reaction scheme.



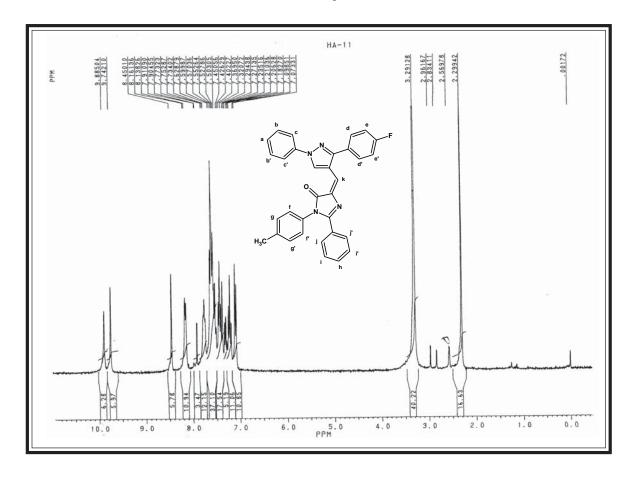
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of the synthesised compounds were compared with

156


standard drugs.

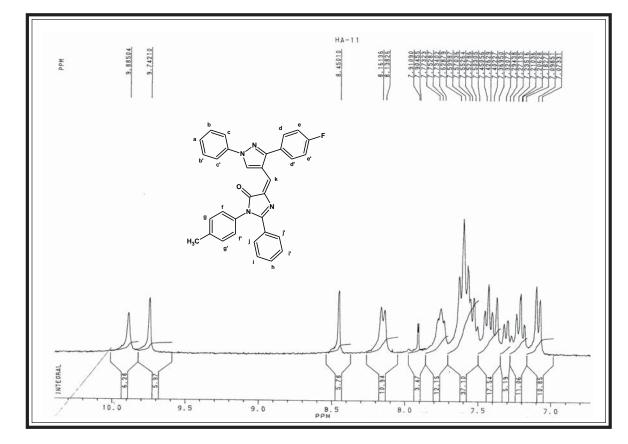
Type - (X)
$$R_{1} = Alkyl / Aryl R_{2} = Aryl$$

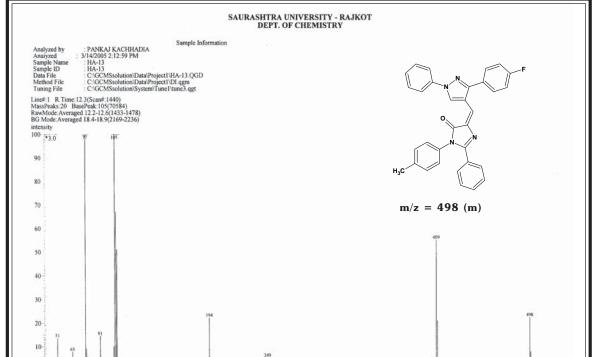

Туре	Vibration	Freque	ency in cm ⁻¹	Ref.
Type	mode	Observed	Reported	Nel.
Alkane	C – H str.(asym.)	2918	2975–2920	426
-CH ₃	C – H str. (sym.)	2854	2880–2860	"
	C – H i.p. (def.)	1446	1470–1435	"
	C – H o.o.p. (def.)	1363	1395–1370	"
Aromatic	C – H str.	3031	3090–3020	427
	C = C str.	1502	1585–1480	"
	C – H i.p. (def.)	1109	1125–1090	"
		1068	1070–1000	"
	C – H.o.o.p (def.)	821	840–810	"
Pyrazole	C = N str.	1600	1650–1590	428
moety	C = C str.	1502	1585–1480	"
	C – F	758	760–700	"
Imidazolinone	C = O str.	1708	1760–1655	426
ring	C = N str.	1637	1650–1580	"
	C – N – C str.	1145	1160–1130	"

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 1,N-p-TOLYL-2-PHENYL-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOL METHINE)-IMIDAZOLIN-5-ONE

PMR SPECTRAL STUDY OF 1,N-TOLYL-2-PHENYL-4-[1',N-PHENYL,3'-p-FLUOROPHENYL-PYRAZOL-4'-YL-METHINO]-IMIDAZOLIN-5-ONES




 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \quad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz			
1	2.29	3H	singlet	Ar-CH ₃	-			
2.	7.07-7.09	2H	doublet	Ar-Hgg'				
3.	7.18-7.21	2H	triplet	Ar-Hee'	Jef=7.6			
4.	7.23-7.29	1H	triplet	Ar-Ha	-			
5.	7.32-7.42	3Н	quarlet	Ar-Hbb'+Hh	-			
6.	7.50-7.62	6H	multiplet	Ar-Hii'+jj'+dd'	-			
7.	7.73-7.77	2H	triplet	Ar-Hcc'				
8.	8.13-8.16	2H	doublet	Ar-Hff'	Jfe=6.9			
		1	1					

9.	8.45	1H	singlet	CHx	-
10.	9.74	1H	singlet	CHk	-

EXPANDED AROMATIC REGION

		Ĩ				100 (100 (100 (100 (100 (100 (100 (100					24	19											14124124072407244		and an an an and a second of
	40	60	80 -	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500	520 m/z
L																									

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ARYL-2-ALKYL/ ARYL-4-(1',N-PHENYL-3'-p-FLUOROPHENYLMETHINO)-IMIDAZOLIN-5-ONES

- [A] Synthesis of 1,N-phenyl-3-p-fluorophenyl-4-formyl pyrazole See, Part-I, Section-I (B).
- [B] Synthesis of 2-phenyl-4-(1',N-phenyl-3'-p-fluorophenyl-4'-pyrazolyl methino)-oxazolin-5-one

A mixture of 1,N-phenyl-3-p-fluorophenyl-4-formyl pyrazole (2.65gm, 0.01M), acetic anhydride (2.5 ml, 0.025 M) sodium acetate (1.2 gm 0.015M) and hippuric acid (2.59g, 0.015M) was heated on a water bath for 4 hrs. Resulting mass wass poured into ice cold water, filtered and crystallised from MeoH. Yield, 67%, m.p. 144°C, ($C_{25}H_{16}FN_3O_2$; Found : C, 73.26%; H, 3.88%; N, 10.17%; Requires : C, 73.34%; H, 3.94%; N, 10.26%).

[C] Synthesis of 1,N-Tolyl-2-phenyl-4-(1',N-phenyl-3'-p-fluorophenyl-4'pyrazolylmethino)-imidazoline-5-one

A mixture of 2-phenyl-4-(1',N-phenyl-3'-p-fluorophenyl-4'pyrazolylmethino)-oxazolin-5-one (4.08g, 0.01M) and toludine (1.07g, 0.01M) in dry pyridine (20 ml) was refluxed for 9 hrs. at temp. 140°C in oil bath. temp Resulting mass was poured into crushed ice and neutralised with HCl, filtered and crystallized from DMF. Yield, 67%; m.p. 244°C, ($C_{32}H_{23}FN_4O$: Found : C 78.96%; H, 6.57%; N, 11.14%; Required : C, 77.09%; H, 4.65%; N, 11.24%).

Similarly, other imidazolin-5-ones have been prepared. The physical constants are recorded in Table No. 10.

[D] Antimicrobial activity of 1,N-Aryl-2-alkyl/aryl-4-(1',N-phenyl-3'-pfluorophenyl-4'-pyrazolylmethino)-imidazolin-5-ones

161

Antimicrobial activity was carried out as described in Part-I, Section-I (D).

The zone of inhibition of the test solution are recorded in Graphical Chart No.10.

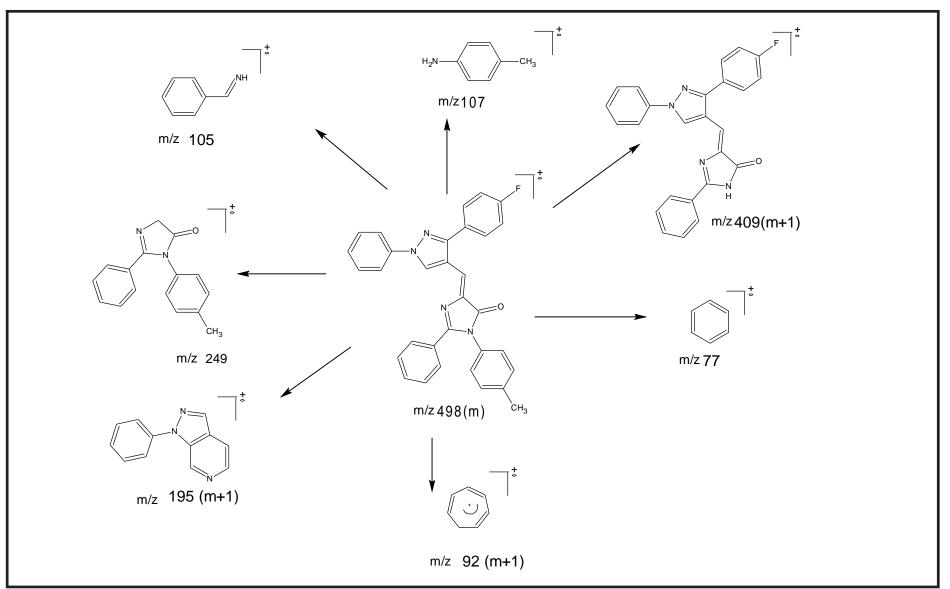
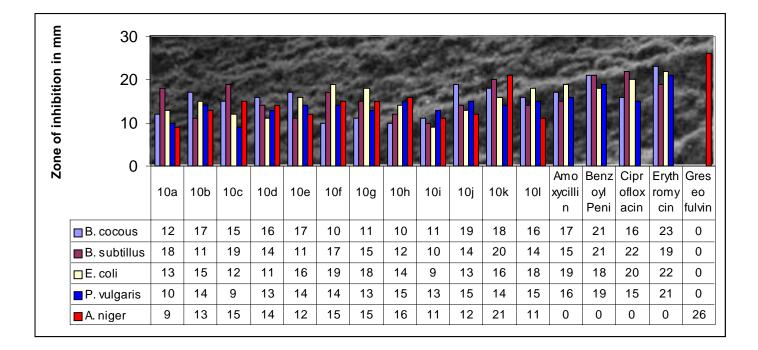


 TABLE NO. 10 :
 PHYSICAL CONSTANTS OF 1,N-ARYL-2-ALKYL/ARYL-4-(1',N-PHENYL-3'-p-FLUOROPHENYL-4'-PYRAZOLYLMETHINO)-IMIDAZOLIN-5-ONES

Sr.	R ₁	R ₂	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	3	Formula 4	Weight 5			% 8	Calcd. 9	Found 10
10a	с ₆ н ₅ -	C ₆ H ₅	$\mathrm{C_{31}H_{21}FN_4O}$	484.5	232	0.62	68	11.56	11.48
10ь	с ₆ н ₅ -	4-OCH ₃ -C ₆ H ₄ -	$C_{32}H_{23}FN_4O_2$	514.5	221	0.58	55	10.89	10.81
10c	с ₆ н ₅ -	4-CH ₃ -C ₆ H ₄ -	$\mathrm{C_{32}H_{23}FN_4O}$	498.5	244	0.61	67	11.24	11.14
10d	с ₆ н ₅ -	4-Cl-C ₆ H ₄ -	$\mathrm{C_{31}H_{20}CIFN_{4}O}$	518.9	205	0.57	63	10.80	10.72
10e	с ₆ н ₅ -	3-Cl-C ₆ H ₄ -	$\mathrm{C_{31}H_{20}CIFN_{4}O}$	518.9	228	0.55	68	10.80	10.71
10f	с ₆ н ₅ -	4-F-C ₆ H ₄ -	$C_{31}H_{20}F_2N_4O$	502.5	195	0.51	57	11.15	11.07
10g	с ₆ н ₅ -	2-F-C ₆ H ₄ -	$C_{31}H_{20}F_2N_4O$	502.5	219	0.47	71	11.15	11.05
10h	с ₆ н ₅ -	3,4-(Cl) ₂ -C ₆ H ₃ -	$\mathrm{C_{31}H_{19}Cl_2FN_4O}$	553.4	179	0.56	65	10.12	10.03
10i	с ₆ н ₅ -	3-Cl,4-F,C ₆ H ₃ -	$\mathrm{C}_{31}\mathrm{H}_{19}\mathrm{CIF}_{2}\mathrm{N}_{4}\mathrm{O}$	536.9	188	0.49	58	10.43	10.32
10j	с ₆ н ₅ -	2,4-(CH ₃) ₂ -C ₆ H ₃ -	$\mathrm{C_{33}H_{25}FN_4O}$	512.5	213	0.59	66	10.93	10.83
10k	с ₆ н ₅ -	4-Br-C ₆ H ₄ -	$\mathrm{C_{31}H_{20}BrFN_4O}$	563.4	209	0.64	59	9.94	9.87
101	с ₆ н ₅ -	4-NO ₂ -C ₆ H ₄ -	$C_{31}H_{20}FN_5O_3$	529.5	237	0.50	60	13.23	13.15


*TLC Solvent System : Ethyl acetate : Hexane

1.5 : 8.5

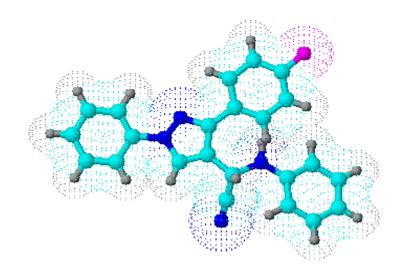
GRAPHYCAL CHART NO.10:

ANTIMICROBIAL ACTIVITY OF 1, N-ARYL-2-ALKYL/ARYL-4-[1'N- PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL] -IMIDAZOLIN-5-ONES.

CONCLUSION

ANTIBACTERIAL ACTIVITY

The activity data shows that all the imidazolinones (type-X) were able to inhibit the growth of Gram positive & Gram negative bacterial strains.


Compounds bearing R=4-methyphenyl 4-bromophenyl & 2,4dimethylphenyl were observed to give the promising activity against Gram positive bacterial strains **B. cocous** & **B. subtillus** respectively, as compared to standard drugs. Significant activity was displayed by compounds bearing R=4methoxyphenyl, 2-fluorophenyl, 4-chlorophenyl and 4-nitrophenyl.

In case of Gram negative bacterial strains, maximum activity was observed in compounds bearing R=4-fluorophenyl and 3-nitrophenyl against **E. coli** and **P. vulgaris**. Significant activity was displayed by compounds bearing R=2fluorophenyl and 3,4-dichlorophenyl against these Gram negative bacterial strains.

ANTIFUNGAL ACTIVITY

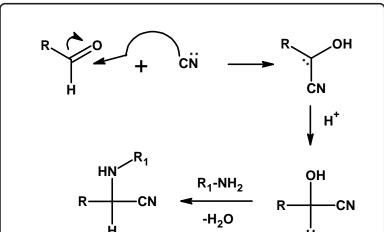
All the compounds were mild to moderately active against fungal strain **A.** *niger*. Maximum activty was observed in compound bearing R=4-bromophenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

PART-VIII STUDIES ON NITRILES

INTRODUCTION

Nitriles are reported to possess various therapeutic activities, but due to their high toxicity, they have low therapeutic importance. The term "Nitrile" was first introduced by Febung³⁶¹ in 1844. The first synthesis of nitrile has been reported by Wohler and Liebig³⁶² in 1832 and Poleuze³⁶³ in 1834. They are very much useful as intermediates for various products such as acrylonitrile for plastic, synthetic rubber and fibers, phthalonitrile for dye stuff.


SYNTHETIC ASPECTS

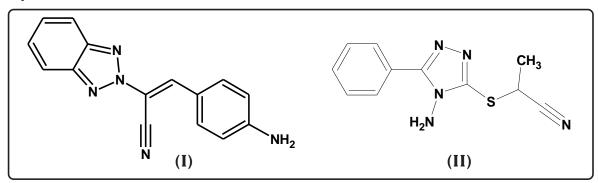
D. Mowry³⁶⁴ reviewed various methods of preparation of nitrile. Few recent methods are as mentioned below.

- 1. From alkylhalides using KCN tetraalkyl ammonium salt³⁶⁵ and water in trace.
- 2. The pyrolysis of schiff's $base^{366}$
- 3. MOhanakrishna A. K. and co-worker³⁶⁷ have synthesised nitrile derivatives

MECHANISM

The mechanism of nitrle is shown as under.

	н


THERAPEUTIC EVALUATION

They shows various therapeutic activities, which are described as under.

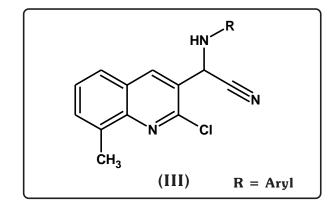
- 1. Antihypertensive³⁶⁸
- 2. Central nervous system agent³⁶⁹
- 3. Antimicrobial³⁷⁰
- 4. Antihypoxic 371
- 5. Antiinflammatory³⁷²
- 6. Antiarrytheymic 373
- 7. Pesticidal³⁷⁴
- 8. Fungicidal³⁷⁵

Kobayashi Shigco et. al.³⁷⁶ have synthesised new derivatives of nitriles. Nitriles with fused pyridine ring were reported as ulcer inhibitors³⁷⁷. Cardenalide nitrile showed moderate biological activity in rats³⁷⁸. M. C. Dougal³⁷⁹ have synthesised nitriles and studied their pharmacological activities.

Parlo Sanna et. al.³⁸⁰ have synthesised nitriles(I) and screened for their antitubercular activity. Iwanowicz E. J. et. al.³⁸¹ have prepared nitriles (II) and found to preventing and treating IMPDH associated disorders, such as transplant rejection and autoimmune disease.

V. Juliya et. al.³⁸² synthesised some new nitriles and reported them as anticonvulsant agent. Shibata Yasushi and co-workers³⁸³ have synthesised nitrile derivatives associated with insecticidal activity. Nosyrava et. al.³⁸⁴ have prepared novel nitriles which have been shown to possess muscle relaxant activity. Yagihara

167

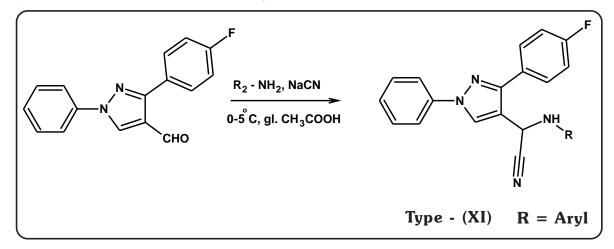

and co-workers³⁸⁵ have prepared nitrile which possess antimicrobial and antiinflammatory activity.

Altmann Eva et. al.³⁸⁶ have discovered dipeptide nitriles as inhibitors of cysteine cathepsins. Shibata Yasushi et. al.³⁸⁷ have synthesised and reported nitrile derivatives as insectisides and miticides.

Recently, Colin Xavier and co-workers³⁸⁸ have synthesised antifungal acetonitriles. Bernard M. et. al.³⁸⁹ have prepared nitriles as thromboxane receptor antagonists. Alwal K. S. et. al³⁹⁰ have prepared nitriles as inhibitors of mitochondrial F_1F_{10} AT pase. Murakkami Hiroshi et. al.³⁹¹ have synthesised some new nitriles and screened for their pesticidal and marine antifouling activity.

CONTRIBUTION FROM OUR LABORATORY

F. M. Bharmal et. al.³⁹² have synthesised newer acetonitriles bearing quinoline moiety and tested as antimicrobial agents (III).


Looking to the interesting properties of nitriles, we have synthesised some new nitriles, which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF α-ARYLAMINO-1,N-PHENYL-3-p-FLUOROPHENYL-PYRAZOL-4-YL-ACETONITRILES

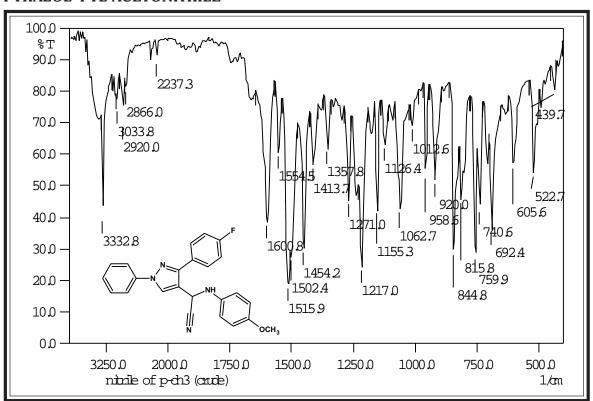
SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF α-ARYLAMINO-1,N-PHENYL-3-p-FLUOROPHENYL PYRAZOL-4-YL-ACETONITRILES

In view of the therapeutic activities of nitriles it was contemplated to synthesise some new nitriles in search of agents possessing higher biological activity. Nitrles of type (XI) have been synthesised by the reaction of 1,N-phenyl-3-p-fluorophenyl-4-formyl-pyrazole with different aromatic amines by the presence of sodium cyanide and glacial acetic acid at 0-5°C.

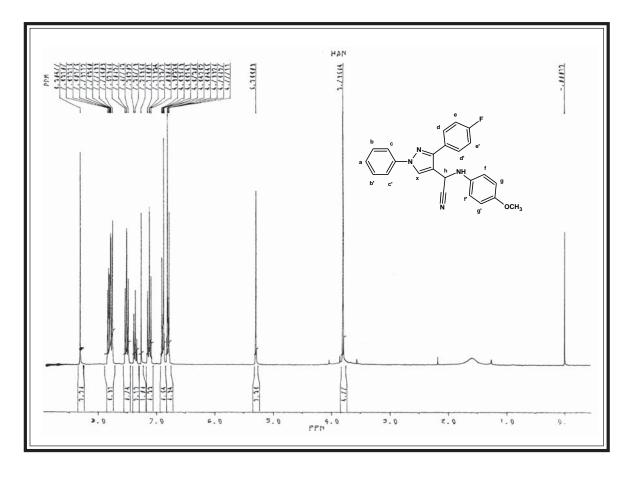
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

The products have been screened for their **in vitro** biological assay like antimicrobial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of the synthesised compounds were compared with standard drugs.


The synthesised compounds have been screened for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis*

169

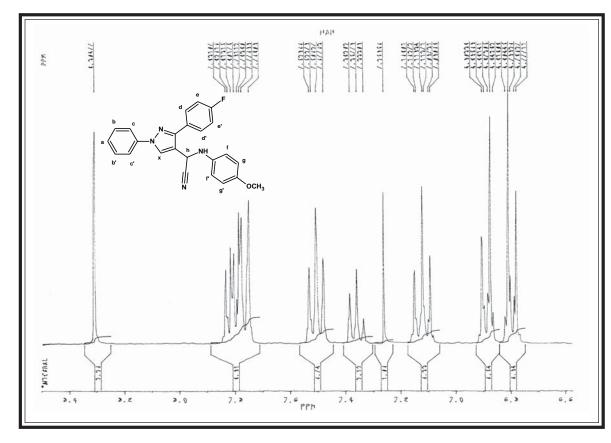
 $H_{37}Rv$ at concentration of 6.25 µg/ml using Rifampin as standard drug.

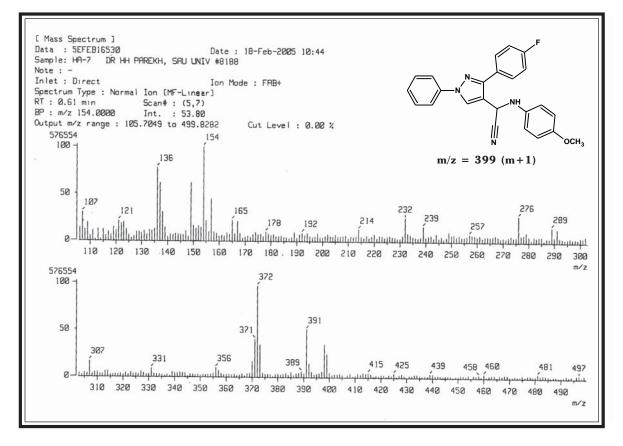

Tuno	Vibration	Freque	ency in cm ⁻¹	Ref.	
Туре	mode	Observed	Reported	nei.	
Alkane	C – H str.(asym.)	2920	2975–2920	426	
-CH ₃	C – H str. (sym.)	2866	2880–2860	"	
5	C – H i.p. (def.)	1454	1470–1435	"	
	C – H o.o.p. (def.)	1357	1395–1370	"	
Aromatic	C – H str.	3033	3090–3030	427	
	C = C str.	1554	1520–1480	"	
	C – H i.p. (def.)	1126	1125–1090	"	
		1062	1070–1000	"	
	C – H.o.o.p (def.)	815	835-810	"	
Pyrazole	C = N str.	1600	1610–1590	428	
moety	C – N str.	1217	1230–1220	"	
	C = C str.	1515	1585–1480	"	
	C – F	759	760–710	"	
Nitrile	$C \equiv N \text{ str.}$	2237	2240–2220	432	
	N – H str. (sym.)	3332	3450–3200	"	

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF α -(p-ANISYLAMINO)-1,N-PHENYL-3-p-FLUOROPHENYL-PYRAZOL-4-YL-ACETONITRILE

PMR SPECTRAL STUDY OF α -(p-ANISYLAMINO)-1,N-PHENYL-3-p-FLUOROPHENYL-PYRAZOL-4-YL ACETONITRILE




 $Internal \ Standard: \ TMS; \ Solvent: \ CDCl_{3} \quad : \ Instrument: \ BRUKER \ Spectrometer \ (300 \ MHz)$

Signal No.	Signal Position (ð ppm)	Relative No. of Protons		Inference	J Value In Hz
1.	3.79	3H	singlet	Ar-OCH ₃	-
2.	5.28	1H	1H singlet CHh		-
3.	6.77-6.80	2H	doublet Ar-Hgg'		Jgf=8.7
4.	6.87-6.90	2H	doublet	Ar-Hdd'	Jde=9
5.	7.09-7.14	2Н	triplet	Ar-Hbb'	-
6.	7.33-7.36	1H	triplet	Ar-Ha	-
7.	7.47-7.52	2H	triplet	Ar-Hee'	-

8.	7.74-7.83	4H	multiplet	Ar-Hff' + Hcc'	-
9.	8.30	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF α-ARYLAMINO-1,N-PHENYL-3-p-FLUOROPHENYL-PYRAZOL-4-YL-ACETONITRILES

[A] Synthesis of N-Phenylamino-α-methyl-α-p-fluorophenylazomethine

See, Part-I, Section-I (B).

- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl-pyrazole See, Part-I, Section-I (B).
- [C] Synthesis of α-(p-Anisylamino)-1,N-phenyl-3-p-fluorophenylpyrazol-4-yl-acetonitrile

1,N-Phenyl-3-p-fluorophenyl-4-formyl-pyrazole (2.65g, 0.01M) dissolved in ethanol (20 ml) was added to sodium cyanide (0.48g, 0.01M) dissolved in water (5 ml) followed by glacial acetic acetic acid (5 ml). The contents were then stirred for 5 minutes to form cyanohydrin at 0°C. p-Anisidine (1.23g, 0.01M) dissolved in methanol was added to the reaction mixture, contents were kept at room temp. for 24 hrs. and poured into ice. The solid product was crystallized from DMF. Yield, 70%, m.p. 199°C ($C_{24}H_{19}FN_4O$; Found : C, 72.28%; H, 4.74%; N, 13.98%; Requires : C, 72.35%; H, 4.81%; N, 14.06%).

Similarly, other nitriles were prepared. The physical constants are recorded in Table No. 11.

[D] Therapeutic activity of α-Arylamino-1, N-phenyl-3-p-fluorophenylpyrazole-4-yl-acetonitriles

Antimicrobial testing was carried out as described in Part-I, Section-I (D). The zone of inhibition of the test solution are recorded in Graphical Chart No. 11.

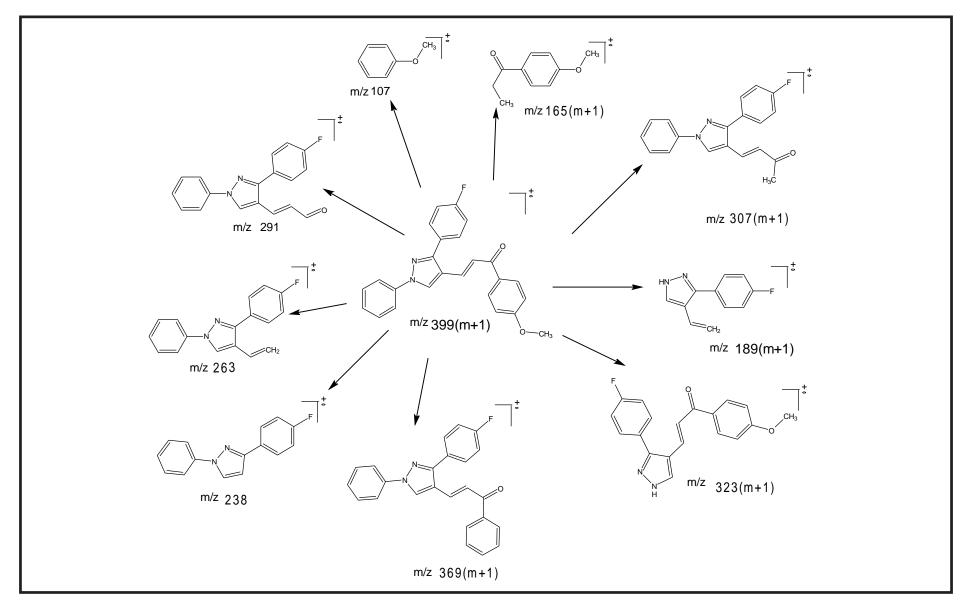
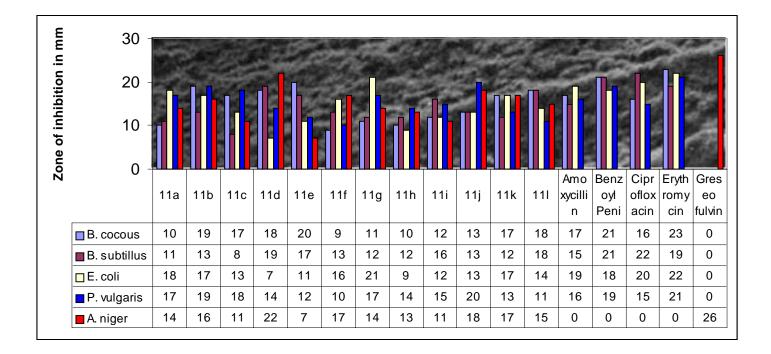

Antitubercular screening of the compounds of type(XI) were carried out by TAACF, the Southern Research Institute, U.S.A. as described In Part-I, Section-I (D) and the percentage of inhibition data of the compounds are recorded in Table No. 11a.

TABLE NO.11 : PHYSICAL CONSTANTS OF α -ARYLAMINO-1,N-PHENYL-p-FLUOROPHENYL PYRAZOL-4-YL-ACETONITRILES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	° C 5	Value 6	% 7	Calcd. 8	Found 9
11a	с ₆ н ₅ -	C ₂₃ H ₁₇ FN ₄	368.4	167	0.48	64	15.21	15.16
11b	4-OCH ₃ -C ₆ H ₄ -	C ₂₄ H ₁₉ FN ₄ O	398.4	199	0.47	70	14.06	13.98
11c	4-CH ₃ -C ₆ H ₄ -	C ₂₄ H ₁₉ FN ₄	382.4	141	0.50	62	14.65	14.57
11d	2-CH ₃ -C ₆ H ₄ -	C ₂₄ H ₁₉ FN ₄	382.4	172	0.52	58	16.65	16.56
11e	4-Cl-C ₆ H ₄ -	$C_{23}H_{16}CIFN_4$	402.8	189	0.57	71	13.91	13.85
11f	3-Cl-C ₆ H ₄ -	C ₂₃ H ₂₆ CIFN ₄	402.8	177	0.60	67	13.91	13.83
11g	4-F-C ₆ H ₄ -	$C_{23}H_{16}F_{2}N_{4}$	386.3	154	0.63	61	14.50	14.42
11h	3,4-(Cl) ₂ -C ₆ H ₃ -	$\mathrm{C}_{23}\mathrm{H}_{15}\mathrm{Cl}_{2}\mathrm{FN}_{4}$	437.2	180	0.65	68	12.81	12.76
11i	2,3-(Cl) ₂ -C ₆ H ₃ -	$C_{23}H_{15}Cl_2FN_4$	437.2	193	0.53	63	12.81	12.73
11j	3-Cl,4-F-C ₆ H ₃ -	$C_{23}H_{15}CIF_{2}N_{4}$	420.8	202	0.56	59	13.31	13.24
11k	3-NO ₂ -C ₆ H ₄ -	$C_{23}H_{16}FN_5O_2$	413.4	162	0.55	69	16.94	16.87
111	4-Br-C ₆ H ₄ -	$C_{23}H_{18}BrFN_4$	447.3	175	0.49	67	12.53	12.45


*TLC Solvent System : Acetone : Benzene

1.8 : 8.2

GRAPHYCAL CHART NO.11:

ANTIMICROBIAL ACTIVITY OF a-ARYLAMINO-1,N-PHENYL-3-p- FLUOROPHENYL PYRAZOL-4-YL -ACETONITRILES.

CONCLUSION

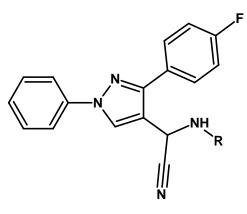
ANTIBACTERIAL ACTIVITY

The antibacterial activity of acetonitriles (type-XI) revealed that many compounds were able to inhibit the growth of Gram positive and Gram negative bacterial strains.

Maximum activity was observed in compounds bearing R=2-methylphenyl and 4-chlorophenyl against Gram positive bacterial strains **B**. cocous and **B**. subtillus. Significant activity was displayed by compounds bearing R=4methylphenyl, 4-methoxyphenyl 3-nitrophenyl and 4-bromophenyl.

While in case of Gram negative bacterial strains, highest activity was displayed by compounds bearing R=4-methoxyphenyl and 4-fluorophenyl against *E. coli* & *P. vulgaris*. Significant activity was observed in compounds bearing R=phenyl, 2,3-dichlorophenyl and 3-chloro-4-fluorophenyl.

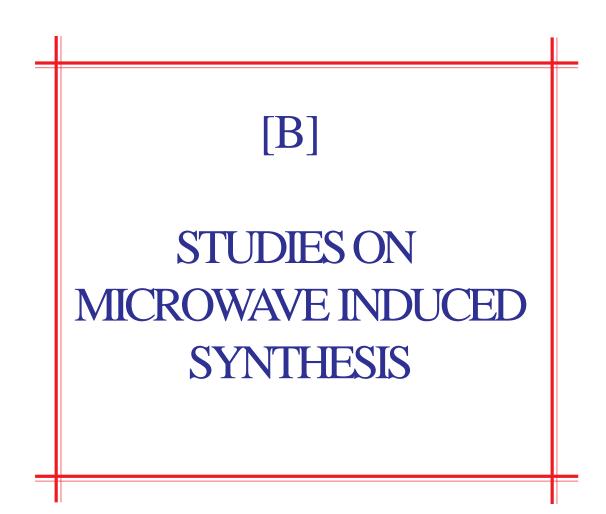
ANTIFUNGAL ACTIVITY


All the compounds were mild to moderately active against **A**. *niger* fungal strain. Maximum activity was displayed by compound bearing R=2-methylphenyl.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoylpenicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

ANTITUBERCULAR ACTIVITY

All the compounds were found to be less active against **Mycobacterium tuberculosis** $H_{37}Rv$ ranging from 3 to 41% inhibition.


TABLE NO. 11a : PRIMARY ASSAY OF ANTITUBERCULAR ACTIVITY

TAACF, Southern Research Institute Primary Assay Summary Report

Dr. H. H. Parekh Saurashtra University

Sample ID	Corp ID	Where, R =	Assay	MTb Strain	MIC µg∕ml	% Inhib	Activity	Comment
295598	HCV-92	C ₆ H ₅ -	Alamar	H ₃₇ Rv	>6.25	0	-	MIC Rifampin =
								0.25 μg/ml @ 98% Inhibition
295599	HCV-93	4-OCH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	15	-	'n
295600	HCV-94	4-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	12	-	"
295601	HCV-95	2-CH ₃ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	23	-	"
295602	HCV-96	4-Cl-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	3	-	'n
295603	HCV-97	3-Cl-C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	4	-	'n
295604	HCV-98	4-F-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	4	-	'n
295605	HCV-99	3/4-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	41	-	"
295606	HCV-100	2/3-(Cl) ₂ -C ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	0	-	"
295607	HCV-101	3-Cl,4-FC ₆ H ₃ -	Alamar	H ₃₇ Rv	>6.25	8	-	"
295608	HCV-102	3-NO ₂ -C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	14	-	"
295609	HCV-103	4-Br-C ₆ H ₄ -	Alamar	H ₃₇ Rv	>6.25	0	-	11

INTRODUCTION OF PYRAZOLINES

See Part-I

MICROWAVE INDUCED SYNTHESIS

INTRODUCTION

In the last few years Microwave induced Organic Reaction Enhancement (MORE) chemistry has gained popularity as a non-conventional technique for rapid organic synthesis 393 & many researchers have described accelerated organic reaction and a large number of papers has appeared proving the synthetic utility of MORE chemistry in routing organic synthesis. It can be termed as "e-chemistry' because it is easy, effective, economical and eco-friendly and is believed to be a step to-wards green chemistry.

Microwave assisted synthesis in general is likely to have a large impact on synthetic organic chemistry in particular the medicinal/combinatorial chemistry communities compared to tradition processing of organic synthesis, microwave enhanced chemistry saves significant time and very offen improves yields.

GENERAL PRINCIPLES

 $m{T}$ he microwave region of the electromagnetic spectum lies between 1 cm and 1 m and in order to aviod interfering with radar and telecommunication activities which operate within this region, most domestic and commercial microwave instruments operate at 2.45 GHz. The heating effect utilised in microwave assisted organic transformations is due in the main, to dielectric polarisation, although conduction losses can be important particularly at higher temperatures. Whilst the polarisability of a molecule (determined by the Debye

179

equation) is the sum of a number of contributions, only dipolar and interfacial

polarisation are important to heating effects associated with microwave irradiation. When a molecule is irradiated with microwaves it rotates to align itself with the applied field. The frequency of molecular rotation is similar to the frequency of microwave radiation and consequently the molecule continually attempts to realign itself with the changing field and energy is absorbed. It is particularly convenient that qualitatively, the larger the dielectric constant the great the coupling with microwaves. Thus solvents such as water, methanol, DMF, ethyl acetate, acetone, chloroform, acetic acid and dichloromethane are all heated when irradiated with microwaves. Solvents such as hexane, toluene, diethyl ether, CCl_4 , do not couple and therefore do not heat with microwave irradiation although it is of course possible to use mixtures comprising microwave active/microwave inactive solvents.

POWER SOURCES

The development of electron in tubes including those for the most microwave range, has been a mature field. Today it is feasible to generate almost any desired power level for microwave frequencies of practical interest limited only by cost.

Power sources in the millimeter wave range are mostly in the category of extended interaction Klystrons or narrow band backward wave oscillators. They are quite expensive and suffer from low life and efficiency. The most dramatic evolution of a microwave power is one of the cooker magnetron for microwave ovens. These tubes generate well over 700 Watt 2450 MHz into a matched load and exhibit a tube efficiency on the order of 70%. It is feasible to utilize a number of such tubes to generate large total power eq. 25 or 50 Kw.

APPLICATIONS IN ORGANIC SYNTHESIS

The first applications of microwave ovens in organic synthesis began very recently. In the first experiments, Gedye³⁹⁴ and then Giguere³⁹⁵, provided

180

evidence for dramatic accelerations in some classical organic reactions and these

were ascribed to temperature and pressure effects, when performed in closed teflon

vessels. Since solvents were used in these experiments, some problems with safe operation appeared, and explosions sometimes resulted. Further developments demonstrated the potential of solvent free reactions to solve these problems and to facilitate the scale up of preparative runs.

Three types of solvent free procedures can be coupled with microwave activation.

- (i) reactions between heat reactants, needing at least one polar molecule, as liquid-liquid or liquid solid systems. In this later case, reactions presumably occur at the interface due to absoprtion of the liquid reactant at the surface of the solid one.
- (ii) Reactions between supported reagents on solid mineral supports in dry media by impregnation of compounds on alumina, silicas or clays.
- (iii) Phase Transfer Catalysis (PTC) conditions in the absence of organic solvent,
 i.e. when a liquid reagent acts both as a reactant and an organic phase. This
 last methodology can also be improved under sonochemical activation.

Microwaves constitutes very original procedure for heating materials, clearly different from the classical ways. Their main adavntages derive from the almost instantaneous "in core" heating of materials, in an homogeneous and selective manner. Especially those with poor neat conduction properties. This technique proves to be excellent in case where traditional heating has a low efficiency because of poor heat transmission and hence local overheating is a major inconvenience.

The main interests can thus be listed as the rapid transfer of energy into the bulk of the reaction mixture, without inertia since only the products is heated and the ease of utilization. Furthermore as the depth of penetration in materials in of the same order of magnitude as the wavelengh, microwaves interact with

181

substance of appreciable thickness (about 10 cm).

Microwave heating has emerged as a powerful technique to promote a variety of chemical reactions.³⁹⁶ Microwave reaction under solvent-free conditions are attractive in offering reduced pollution and offer low cost together with simplicity in processing and handling³⁹⁷. The recent introduction of microwave synthesis has gained acceptance and popularity among the synthetic chemist community & it includes virtually all types of chemical reactions such as Diels-Alder³⁹⁸, Claisen³⁹⁹, Vilsmeier⁴⁰⁰, Oxidation⁴⁰¹, Substitution^{402,403}, Cyclisation^{404,405}, Catalytic transfer hydrogenation^{406,407}, Knoevenagel condensation⁴⁰⁸, oxime synthesis⁴⁰⁹, alkylation⁴¹⁰, decarboxylation⁴¹¹, etc.

Malhotra V. et. al.⁴¹² have demonstrated one-pot condensation of chalcones with thiosemicarbazide in ethanol under strogly basic condensation. Microwave enhanced esterification of α , β -unsaturated acids have been carried out by Kumar Mitra & co-workers⁴¹³. Microwave assisted fungicidal 1,2,4-traizines, 1,2,4tetrazoles, pyrazoles and triazoles have been synthesised by Mazahir Kidwai & co-workers⁴¹⁴.

Some other organic synthesis like 1,2-dihydropyridines⁴¹⁵, phthalimide⁴¹⁶, & quinazolinone⁴¹⁷ derivatives etc. also enhanced by the microwave irradiation.

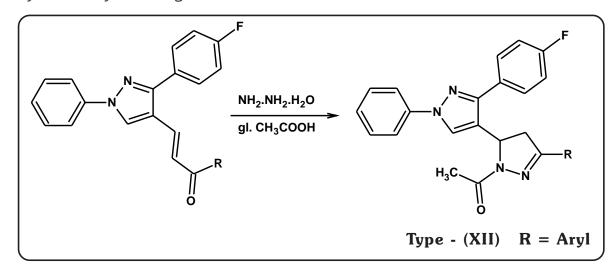
Recently, microwave assisted some new organic reactions have been carried out which include synthesis of pyrazolines^{418,419}, isoxazoles⁴²⁰, cyano-pyridines⁴²¹, quinoxalines and heterocyclic pyrazines⁴²², N-aryl phtalamic acids⁴²³, substituted 2-pyridones⁴²⁴ and sulfonylbenzimidazole-4,7-diones⁴²⁵ with better biological activities.

As a part of ongoing research towards the non-traditional approach to the

182

experimental setup of organic reaction, the concept of microwave enhanced

reaction has been utilised from rapid and efficient synthesis of 1,N-Acetyl-3-aryl-5-[1',N-phenyl-3'-p-flurophenyl-pyrazol-4'-yl]-pyrazolines. Microwave oven is used as a microwave irradiation source and compared in terms of yield and reaction period and have been cited in Talbe No. 12a.

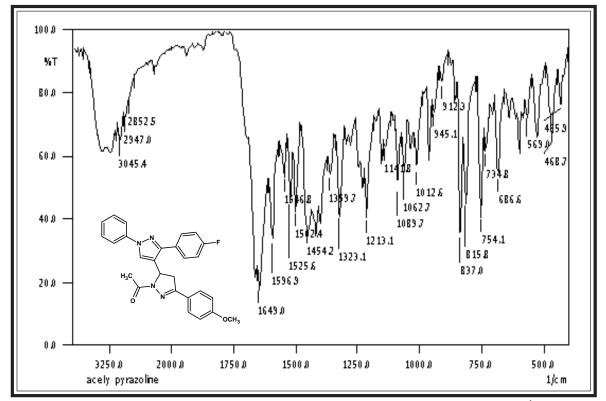

SECTION-I : SYNTHESIS OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL]-PYRAZOLINES USING CONVENTIONAL METHOD

SECTION-II : SYNTHESIS OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZO-4'-YL]-PYRAZOLINES USING MICROWAVE INDUCED SYNTHESIS

SECTION - I

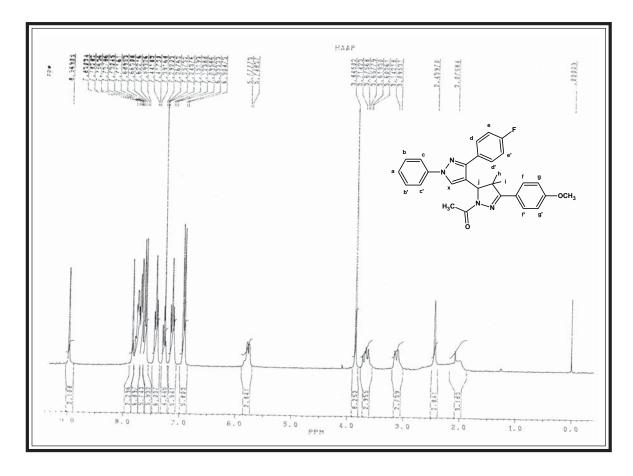
SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ACETYL-3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-PYRAZOLINE USING CONVENTIONAL METHOD

Looking to the interesting properties of pyrazolines, it was considered worthwhile to synthesise a series of pyrazolines of type (IV) for obtaining biologically potent agents which were prepared by reacting chalcones with hydrazine hydrate in glacial acetic acid.



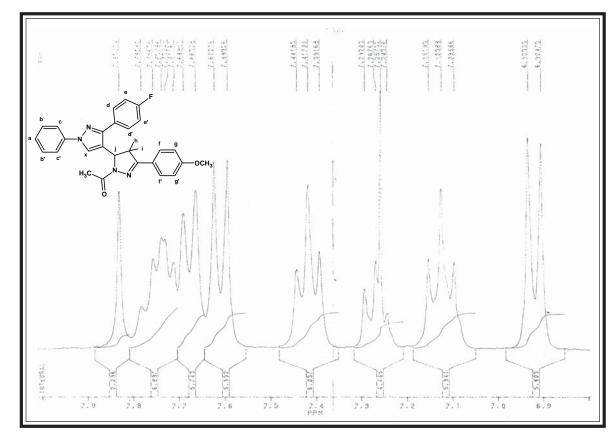
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and 1 H nuclear magnetic resonance spectroscopy and mass spectrometry also.

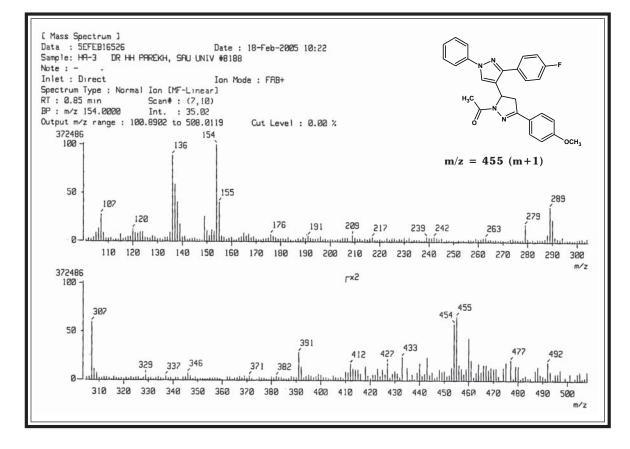
The products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strain and antifungal activity towards **Aspergillus niger** at a concentration of 40 μ g/ml. The biological activities of the synthesised compounds were compared with standard drugs.


Tuno	Vibration	Freque	ency in cm ⁻¹	Ref.
Туре	mode	Observed	Reported	Rel.
Alkane	C – H str.(asym.)	2947	2975–2920	426
-CH ₃	C – H str. (sym.)	2852	2880–2860	"
5	C – H i.p. (def.)	1454	1470–1435	"
	C – H o.o.p. (def.)	1359	1385–1350	"
Aromatic	C – H str.	3045	3080–3030	427
	C – H i.p. (def.)	1089	1125–1090	"
		1012	1070–1000	"
	C – H.o.o.p (def.)	837	840-810	"
Pyrazole	C = N str.	1596	1650–1585	428
moiety	C = C str.	1546	1585–1480	"
	C = N str.	1323	1350–1200	"
	C – F	754	760–710	"
Ether	C – O – C str. (asym.)	1213	1275–1200	"
	C – O – C str. (sym.)	1062	1075–1020	"
Pyrazoline	C = N str.	1596	1627–1580	429
	C – H def.	686	698–680	"
	C = O	1649	1760–1650	"

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc.)

IR SPECTRAL STUDY OF 1,N-ACETYL-3-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL)-PYRAZOLINE


PMR SPECTRAL STUDY OF 1,N-ACETYL-3'-(p-ANISYL)-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-PYRAZOLINE



 $\label{eq:Internal Standard: TMS; Solvent: CDCl_{3} \quad : Instrument: BRUKER Spectrometer (300 \text{ MHz})$

Signal No.	Signal Position (& ppm)	Relative No. of Protons	Multiplicity	Inference	J Value In Hz
1.	2.07	3H	singlet	COCH3	-
2.	3.09-3.14	1H	d. doublet	CHh	-
3.	3.61-3.71	1H	d. doublet	CHi	-
4.	3.84	3Н	singlet	Ar-OCH ₃	-
5.	5.74-5.77	1H	d. doublet	CHj	-
6.	6.90-6.93	2H	doublet	Ar-Hgg'	Jgf=8.7
7.	7.09-7.15	2H	triplet	Ar-Hdd'	-
8.	7.39-7.44	2H	triplet	Ar-Hbb'	-
9.	7.59-7.62	2H	doublet	Ar-Hee'	Jef=8.7
10.	7.68-7.71	2H	doublet	Ar-Hff'	Jfg=7.9
11.	7.73-7.78	3H	multiplet	Ar-Hcc'+Ha	-
12.	7.83	1H	singlet	CHx	-

EXPANDED AROMATIC REGION

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ACETYL-3-ARYL-5-(1',N-PHENYL-3'-p-FLUOROPHENYL PYRAZOL-4'-YL)-**PYRAZOLINE**

[A] Synthesis of N-Aminophenyl a-methyl-a-p-fluorophenyl azomethine

See, Part-I, Section-I (A).

- [B] Synthesis of 1,N-Phenyl-3-p-fluorophenyl-4-formyl pyrazole See, Part-I, Section-I (B).
- [C] Synthesis of 1-(Anisyl)-3-(1'-N-phenyl-3'-p-fluorophenyl pyrazol-4'yl)-2-propene-1-one See Part-I, Section-I (C).
- [D] Synthesis of 1, N-Acetyl-3-(p-anisyl)-5-(1', N-phenyl-3'-pfluorophenyl pyrazol-4'-yl) pyrazoline

To a mixture of 1-(p-Anisyl)-3-(1',N-phenyl-3'-p-fluorophenyl-pyrazole-4'yl)-2-propene-1-one (3.98g, 0.01M) in 25 ml of absolute alcohol add hydrazine hydrate (0.5g, 0.01M) and glacial acetic acid 10 ml added, the contents were refluxed for 10 hrs. at temp 120°C. and poured into ice. The product was isolated and crystallised from ethanol. Yield 70% m.p. $200^{o}C~(C_{27}H_{23}FN_{4}O_{2}~;~Found$: C, 71.31%; H, 5.06%; N, 12.28%; Requires : C, 71.35%; H, 5.10%; N, 12.33%).

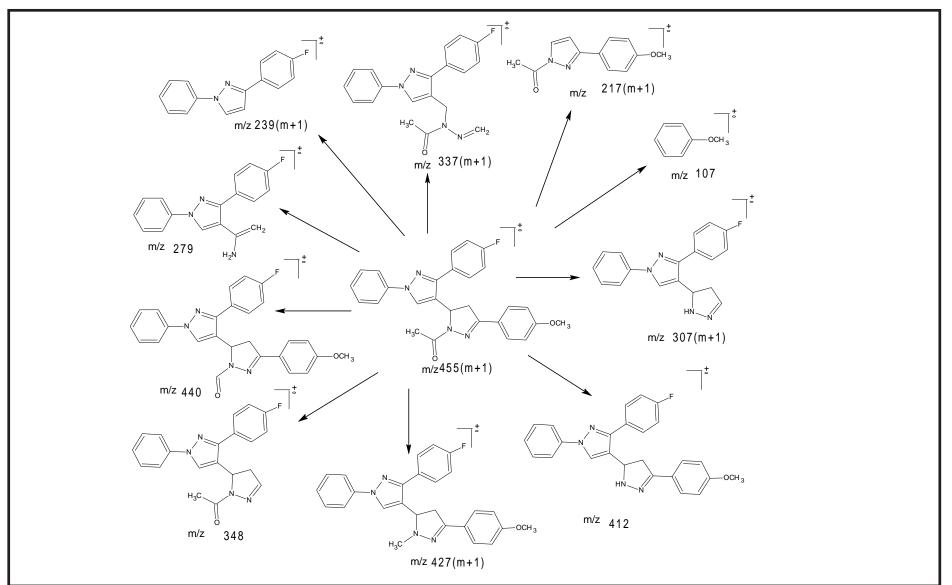
Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Total No. 12.

(E) Antimicrobial activity of 1,N-Acetyl-3-aryl-5-(1',N-phenyl-3'-pfluorophenyl-pyrazol-4'-yl)-pyrazolines

188

Antimicrobial testing was carried out as described in Part-I, Section-I(D).

The zone of inhibition of the test solutions are recorded in Graphical Chart No. 12.


TABLE NO.12: PHYSICAL CONSTANTS OF 1,N-ACETYL-5-ARYL-3-(1',N-PHENYL-3'-p-FLUOROPHENYL-
PYRAZOL-4'-YL)-PYRAZOLINES

Sr.	R	Molecular	Molecular	M.P.	Rf*	Yield	% of N	itrogen
No. 1	2	Formula 3	Weight 4	°C 5	Value 6	% 7	Calcd. 8	Found 9
12a	с ₆ н ₅ -	$C_{26}H_{21}FN_4O$	424	220	0.49	60	13.20	13.14
12b	4-OCH ₃ -C ₆ H ₄ -	$C_{27}C_{23}FN_4O_2$	454	200	0.56	70	12.33	12.28
12c	4-CH ₃ -C ₆ H ₄ -	$C_{27}H_{20}FN_4O_2$	454	234	0.39	65	12.78	12.71
12d	4-Cl-C ₆ H ₄ -	$\mathrm{C_{26}H_{20}CIFN_{4}O}$	458	240	0.47	71	12.21	12.15
12e	4-F-C ₆ H ₄ -	$C_{26}H_{20}F_2N_4O$	442	216	0.73	70	12.66	12.61
12f	4-0H-C ₆ H ₄ -	$\mathrm{C_{26}H_{21}FN_4O_2}$	440	258	0.52	64	12.72	12.73
12g	2-0H-C ₆ H ₄ -	$\mathrm{C_{26}H_{21}FN_4O_2}$	440	212	0.62	66	12.72	12.71
12h	4-NO ₂ -C ₆ H ₄ -	C ₂₆ H ₂₀ FN ₅ O ₃	469	138	0.66	75	14.92	14.88
12i	3-NO ₂ -C ₆ H ₄ -	C ₂₆ H ₂₀ FN ₅ O ₃	469	160	0.48	62	14.92	14.85
12j	$4\text{-Br-C}_6\text{H}_4\text{-}$	$C_{26}H_{20}BrFN_4O$	503	230	0.78	68	11.13	11.08
12k	4-NH ₂ -C ₆ H ₄ -	C ₂₆ H ₂₂ FN ₅ O	439	187	0.43	64	15.94	15.90
121	C ₄ H ₃ S-	$C_{24}H_{19}FN_4SO$	430	207	0.59	72	13.01	12.95

*TLC Solvent System : Ethyl acetate : Hexane

1 : 9 (4c, 4k)

2 : 8 (4a-4b, 4d-4j, 4l)

SECTION-II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-p-FLUOROPHENYL-PYRAZOL-4'-YL]-PYRAZOLINES USING MICROWAVE INDUCED SYNTHESIS

EXPERIMENTAL

A mix of 1-anisyl-3-(1',N-phenyl-3'-p-fluorophenyl-pyrazol-4'-yl)-2propene-1-one (3.98g, 0.01M), hydrazine hydrate (0.5g, 0.01M) and glacial acetic acid (15 ml) was irradiated in a Q-Pro-M Microwave oven (220 VAC, 60Hz) [Questron Technologies Corporation-CANADA] at temp. 120°C for 9 min. under power level of 40% taking care not to heat the contents longer than 2 min at a time to avoid boiling off the reaction mixture. The contents were cooled and poured into ice cold. water. product was isolated & crystallised from ethanol, yield 74%, m.p. 201°C. ($C_{27}H_{23}FN_4O_2$ Found : C, 71.31%; H, 5.06%; N,12.28%; Requires : C, 71.35%; H, 5.10%; n, 12.33%)

Similarly other substituted pyrazolines have been prepared.

The constitution of the synthesised products have been characterised by using elements have been characterised by using elemental analyses, infrared and ¹H nuclear spectrometry.

The synthesised products have been screened for their **in vitro** biological assay like antibacterial activity towards Gram positive & Gram negative bacterial strians and antifungal activity to wards **Aspergillus niger** at a concentration of 40 mg/ml. The biological activities of synthesised compounds were compared with standard drugs.

Comparision of the convention and microwave induced synthesis of pyrazolines in terms of yield and reaction preiod have been eited in Table

191

pyrazennee in terme of yrera and reaction prefet and e eeen enea in racie

No. 12a.

Comp.	R	Theri	nal	Microv	vave	M.P.
No.		Reaction Period (hr.)	Yield %	Reaction Period (min.)	Yield %	°C
12a	с ₆ н ₅ -	10	60	9	63	220
12b	4-OCH ₃ -C ₆ H ₄ -	10	70	10	72	200
12c	4-CH ₃ -C ₆ H ₄ -	10	65	9	68	234
12d	4-Cl-C ₆ H ₄ -	10	71	9	73	240
12e	4-F-C ₆ H ₄ -	10	70	8	72	216
12f	4-OH-C ₆ H ₄ -	10	64	9	66	258
12g	2-OH-C ₆ H ₄ -	10	66	10	69	212
12h	4-NO ₂ -C ₆ H ₄ -	10	75	7	77	138
12i	3-NO ₂ -C ₆ H ₄ -	10	62	9	64	160
12j	4-Br-C ₆ H ₄ -	10	68	9	70	230
12k	4-NH ₂ -C ₆ H ₄ -	10	64	8	67	187
121	C_4H_3S -	10	72	7	74	207

TABLE NO. 12a : COMPARISION OF CONVENTIONAL AND MICROWAVEENHANCED SYNTHESIS OF PYRAZOLINES

GRAPHYCAL CHART NO.12:

ANTIMICROBIAL ACTIVITY OF1,N-ACETYL-3-ARYL-5-[1'N-PHE NYL- 3'-p-FLUOROPHENYL PYRAZOL-4'-YL] -PYRAZOLINES.

um r	30 -	danati			1	j¢,	-	é.			6		23				9 1 1	
oition ir	20 -			ſ		••	-			I.					I -1			1
Zone of inhibition in mm	10 -								H									
Zone	0 -													Amo	Benz	Cipr	Eryth	Gres
		12a	12b	12c	12d	12e	12f	12g	12h	12i	12j	12k	121	xycill in	oyl Peni	oflox	romy cin	
	B. cocous	18	16	13	12	10	11	17	18	9	16	13	11	17	21	16	23	0
	■B. subtillus	11	19	21	18	17	11	10	12	21	13	16	9	15	21	22	19	0
	E. coli	21	19	10	18	16	13	12	10	17	14	11	10	19	18	20	22	0
	P. vulgaris	18	10	11	19	18	17	10	13	13	13	16	9	16	19	15	21	0
	A. niger	18	17	14	15	18	19	13	12	14	11	10	18	0	0	0	0	26

CONCLUSION

ANTIBACTERIAL ACTIVITY

From the experimental data, it was revealed that most of acetyl pyrazoline derivatives (type-XII), were able to inhibit the growth of Gram positive and Gram negative bacterial strains.

It has been observed that maximum activity was displayed by the compounds bearing R=phenyl, 4-methoxyphenyl and 3-nitrophenyl against Gram positive bacterial strains **B**. **Cocous** and **B**. **Subtillus**. While significant activity was displayed by the compound bearing R=4-nitrophenyl, 2-hydroxyphenyl and thienyl against these Gram positive bacterial strains.

While in case of Gram negative bacterial strains, maximum activity was displayed by compounds bearing R=phenyl & 4-chlorophenyl against *E. Coli* & *P. Vulgaris*. While significant activity was observed in compounds bearing R=4-methoxyphenyl, 4-fluorophenyl & 4-aminophenyl against these Gram positive bacterial strains.

ANTIFUNGAL ACTIVITY

All the compounds were less active against fungal strain **A**. niger.

The antimicrobial activity shown by compounds was compared with known antibiotics like Amoxycillin, Benzoyl Penicillin, Ciprofloxacin, Erythromycin & Greseofulvin.

REFERENCES

- 195
- 1. Knorr ; Ger. Pat., 26, 429 (1983). [Fried and er, 1, 208]. Knorr ; Ber., 16, 2597 (1887). pp. 378-385. T. L. Jacobs, Heterocyclic Compounds, 5, 70, (1957). F. Gabrera Escribano, M. P. Deyri Alcantara and A. Gomez-Senchez, Tetrahydron hetters, Vol. 29, No. 46, pp. 6001-3004, (1988). Fatima Al-Omran, Osama-Yousef Abd El-Hay and Abou El-Khair; J. Heterocyclic Chem., 57, 1617 (2000). Radhakrishnan Sridhar et. al., Bioorg & Med. Chem., hett, 14(24), p., 6035-6040 (2004). Tetrahedron Lett., 45(46), p. 8587-8590 (2004). J. of Flourine Chem., 125(9), Sep-2004, p. 1299-1304. J. Med. Chem., 45, 1402 (2002). J. Med. Chem., 45, 2994 (2002). Biorg & Med. Chem. Lett., 2002, 19, 2994. J. Med. Chem., 44, 2601 (2001). 14. L. Paalo, M. Stefano, S. Daniele, P. Alssandra; (1997). Takashima, Yoriyaki, Nasumo Ichiro and Yamamoto Hiroshi; Chem. Abstr., 126, 7984 (1997). 16. A. I. Eid and S. Rashad ; Egypt J. Pharm. Sci., 20 (1-4), 107 (1997); Chem. Abstr., 109, 170344b (1988). Ikeda Masazumi, Maruyama Kazumi, Nobuhara Youichi, Yamado Toshihiro; Chem. Pharm. Bull., 44(9), 170; (1996). Y. Zikan and S. Rad ; 18.
- Chem. Abstr., 109, 170344b (1988).
- 19. E. V. Pimenova, R. A. Khamatgaleev and E. V. Voronina;

Khim-Farm. Zh., 32(8), 272g (1998); Chem. Abstr., 130, 66441d (1999).

- 2.
- 3. M. H. Palmey, Structure and Reactions of Heterocyclic compounds (Arnold, London, 1967),
- 4.
- 5.
- 6.
- 7.
- 8. J. S. Yadav, B. V. S. Reddy, G. Satheesh, P. Nagahakshmi, S. Kiran Kumar and A. C. Kunwar;
- Aline Touzot, Mustapha Soufyane, Hatice Berber Loic Toupet and Catherine Mirand; 9.
- 10.
- 11.
- 12.
- 13.
 - PCT Int. Appl. WO 96, 40, 704 (Cl. CO7416/04), 19 Dec. 1996; Chem. Abstr., 126, 118161b
- 15.
- 17.

20. Banks Beynard Joseph, Webster Richard Andrew Bentley;

Eur. Pat. Appl. EP 95, 9071 (1998); Chem. Abstr., 131, 351325w (1999).

21.	S. D.	Bhardwaj,	V.	S.	Jolly	;
-----	-------	-----------	----	----	-------	---

Oriental J. Chem., 1996; 12(2), 185-187 (Eng.), Chem. Abstr., 126, 1442174, (1997).

- L. Paalo, M. Stefano, S. Daniele, P. Alssandra;
 PCT Int. Appl. WO 96, 40, 704 (Cl.CO7419/04), 19 Dec. 1996; Chem. Abstr., 126, 118161b (1997).
- M. D. Treadway and W. U. Tai Teh ;
 PCT Int. Appl. WO 98, 56767; Chem. Abstr., 130, 52416n (1999).
- 24. John M. Venditti, emill Frei and Abraham Goldin;
 (Natl. Cancer Inst., Bethesda, Md.) Cancer 13, 959-66 (1960), Chem. Abstr., 84, 25320a (1960).
- 25. Antonio Bellottil;

(Univ. Pharma., Italy), Ann. Chim. (Rome), **50**, 1406-12 (1960)., Chem. Abstr., **5**, 11395b (1961).

- L. Villa and C. B. Ballalsio;
 Congr. Intern. Therap., 6th, strasbourg, (1959), 321-73, Chem. Abstr., 56, 9364f (1962).
- 27. Yoshiro Usui and Chikashi Matsymura;
 Yakugaku Zasshi, 87(1), 43-65 (1967). Cf. CA., 67, 11452h; Chem. Abstr., 67, 32382a, (1967).
- 28. Bruderer Hans, Richie Rolf, Ruegg Rudolf,
 U.S. 3, 822, 283, (Cl. 260, 310R, CO7d), (1974), Appl. 296-691, (1972), app. Chem. Abstr.,
 81, 105495r (1974).
- M. M. El-Kerdawy, A. A. Sammour and A. A. El-Agancey;
 Pharmazie, **30**, (1975), 70.; Chem. Abstr., **84**, (1975), 59477.
- Young Choon Moon, U. S. Pat. Appl. Publ.. US 2003, 144, 309 (Cl.,514-275; CO7D417/14) (2003). Chem. Abstr., 139(10), 149624c (2003).
- T. L. El-Emery, E. A. Bakhite;
 Chem. Abstr., 130, 252289k (1999).
- Feid Allah Hassan;
 Pharmazie, 1981, 36(11), 754-6; Chem. Abstr., 96, 104104u (1982).
- 33. E. Akio, O. Satory;
 PCT Int. Appl. WO 98, 32, 739 (Cl. CO7D 231/12); Chem. Abstr., 128, 154079f (1998).
- 34. Atkinson R. N., Gross M. F.;
 PCT Int. Appl. WO 03, 37, 274 (Cl. ACl.K) (2003); Chem. Abstr., 138, 368888z (2003).
- 35. Murakani Hiroshi, Masuzawa Yashihide, Takil Shinji;

196

Chem. Abstr., **139,** 117421t (2003).

36. G. Mamalo, D. Zapieri, V. Fallagiani, V. L. Banfi;

Chem. Abstr., 136, 200135m (2002).

37.	Carbau, Romuld; Mowhray Clholes Erie; Perros, Manou Ssos; Shipple Paul Anthens, Wood
	Anthony;
	PCT Int. Appl. WO 02, 04, 424 (Cl. CO7D231/12); Chem. Abstr., 136, 118445d (2002).
38.	Giuseppe Daidone, Demetrio Raffa, Fabiana Plescia, Benedeffa Maggio, Ansela Roccaro,
	ARKIVDOC. (xi) 227-235 (2002).
39.	Murad, S. Pinnel, S. R. PCT Int. Appl. (1992),
	WO 9217065 15. 10. 1002.
40.	Laborde Edgardo, Villar Hugo O;
	PCT Int. Appl. WO 02, 64135 (Cl. A61 K31/41) (2002); Chem. Abstr., 137, 169526j (2002).
41.	Andrew Thurkaub, Zhang Xiaoyen, Hexia Shu, Chliger Robeat;
	PCT Int. Appl., WO 02, 49993 (Cl. CO7D) (2002); Chem. Abstr., 137, 78952d (2002).
42.	Nagaaki Sato, Toshiyuki Thakahush, Takanoba Shibata;
	J. Med. Chem., 46 , 666 (2003).
43.	Merck Patent, G. M. B. Hi Yamanouch Pharma CO;
	Gen. Affen DE 10 149370 (Cl.CO7D 403/14) (2003); Chem. Abstr., 138, 304276r (2003).
44.	Ohki H, Hirotani K, Naito H, Ohsuki S., Minami M, Ejima A, Koiso Y, Hashimoto Y.,
	Bioorg Med. Chem. hett., 4, 12(21): 3193-3 (2002) .
45.	Jun Sun, Ying R. Huang, William R., Harringrton, Shubin Sheng, John A. Katzenellenbogen
	and Benita G. Katzenellenbogen;
	Endocrinology, 143(3) , 941-947 (2002).
46.	J. S. Dileep Kumar, et al.;
	Bioorganic & Medicinal Chemistry Letters, 14(10) , 17 p. 2393-2396 (2004).
47.	Gabriele Murineddu et. al.;
	Bioorg & Med Chem., 13(9) , p.3309-3320 (2005).
48.	S. Prasama, E. Manivannan and S. C. Chaturvedi.
	BioOrg & Med. Chem. Lett.; 15(8) , p. 2091-2102 (2005).
49.	Frank Wiist, Torsten Khiess, Marion Kreizschmar and Ralf Bergmann;
	Bioorg & Med. Chem., Lett, 15(5), p. 1303-1306 (2005).
50.	Toshio Nakamura, Hiroyuki Kakinama Hideaki Amada, et. al.,
	Bioorg & Med. Chem., 12(23) , p. 6209-6219 (2004).
51.	Zhaochony J. Jia et. al.,
	Bioorg & Med. Chem. Lett., Vol. 14(5), p.1229-1234 (2004).
52.	J. Elguero; In Comprehensive

. ...

197

Heterocyclic Chemistry eds., A. R. Katritzky and C. W. res., Vol. 5, Ch. 404.

53. R. S. Theobald;

Rodd's Chemistry of Carbon compounds, Ed. M. F. Ansell, Vol IV, Part C, Ch. 16 and edition,

(Elsenier Science publishers B. V., Amsterdam) 59 (1998).

54.	A. M. Fahmy, M. Hassan, A. A. Khalf, R. A. Ahmed;
	Rev. Roum. Chim. 33(7) , 755-61 (1998); Chem. Abstr., 111 77898 (1989).
55.	Lars O. Lungso and John Nielsen;
	Tetrahedron hetters, Vol. 39(32), 6 Aug. 1998, p. 5845-5848.
56.	Vimesh M. Patel and Kishor R. Desai;
	<i>ARKIVOC</i> (2004) (i) 123-129.
57.	M. Hassanen Hamdi, A. E. Hamad,
	A. H. M. Hiyam; Salter Lett., 8(5) , 27582 (1989); Chem. Abstr., 111 , 57611 (1989).
58.	M. A. El-Hashah, M. El-Kady, M. A. Saiyed, A. A. Elsawy;
	Egypt. J. Chem., 27(6) , 715-21 (1985); Chem. Abstr., 105 , 20868u (1986).
59.	A. K. Reda, A. A. Khalaf, M. T. Zimaltu, A. M. Khalil, A. M. Kaddah and H. A. Al-Rifuie;
	J. Indian Chem. Soc. 68 , 47-51 (1991).
60.	Delay Francois (Feymenich S.A.) Patent Schrift (switz);
	Chem. Abstr., 117, 90276f (1992).
61.	P. Desaea; A. Nunrich; M. Carderny and G. Devaux;
	Eur. J. Med. Chem., 25 , 285 (1990).
62.	Y. Hiroyuti, o. Mocoto, et. al.;
	Eur. Pat. Appl. EP 295695 (Cl. CO7D 40/16) (1988) ; Chem. Abstr., 111, 23510 (1989).
63.	K. Zalgislaw, and A. Seffan;
	Acta. Pol. Pharm. 36(6) 645. (1979); Chem. Abstr., 93 , 204525e (1980).
64.	S. S. Nayal and C. P. Singh;
	Asian J. Chem., 11 , 1, 207-212 (1999).
65.	K. Trena and Zolzislaw;
	Acta Pol. Pharm., 36(3) , 227 (1979); Chem. Abstr., 93 , 4650r (1980).
66.	K. Wellinga, H. H. Eussen Jacobus;
	Eur. Pat. ep. 269, 141 (Cl. CO7D 231/06) (1988); Chem. Abstr., 110, 8204 (1989).
67.	D. Bhaskar Reddy, T. Senshama, B. Sechaina and M. V. Ramma Reddy;
	Indian J. Chem., 30(B), 46 (1991).
68.	B. Hans, R. Rolf and R. Rudolf;
	US Pat 3 , 822, 283 (1974); Chem. Abstr., 81 , 105494r (1974).
69.	B. Roman;
	Pharmazie, 45 , 214 (1990).
70.	Z. Brozozowsk, E. Pormarnacka;

Acta Pol. Pharm., **37(4)**, 1378, 80 (1980); Chem. Abstr., **25**, 80807 (1981)

198

71. H. G. Garg and P. P. Singh;

J. Chem. Soc., **2**, 1141 (1936).

72.	D. B. Reddy, T. Senshama and M. V. Ramma Reddy;
	Indian J. Chem., 30(B), 46(1991).
73.	Ashok Kumar, R. S. Verma and B. P. Jagu;
	J. Ind. Chem., Soc., 67, 120, (1990).
74.	W. I. Ronald, A. Adriano;
	Chem. Abstr., 126 , 181346f (1997).
75.	H. M. Mokhtar, H. M. Faidallah;
	Pharmazie, 42 , 482 (1987).
76.	Ekta Bansal, V. K. Srivastava and Ashok Kumar,
	Eur. J. of Med. Chem., 36(1), Jan. (2001), p. 81-82.
77.	F. Chimenti, B. Bizzarri, F. Manna et. al.;
	Bioorg and Med. Chem. Letters, 15(3), Feb (2005), p. 603-607.
78.	N. Richard, M. Megan et. al.
	J. Med. Chem., 36(1), 134-139 (1993); Chem. Abstr., 118, 191847u (1993).
79.	Tsuboi-Shiniehiwada, Katshaki et. al.;
	Eur. Pat. Appl. EP 537-580 (Cl. CO7D 401/64) (1993); JP Appl. 91/297; 772 (1991), Chem.
	Abstr., 119 , 139220r (1993).
80.	Gulhan T. Z. Pierre Chevallet, Fatma S. K., Kesveq Eral;
	Eur. J. Med. Chem., 35 , 635-41 (2000).
81.	S. P. Hiremath, K. Rudresh and A. R. Saundane;
	Indian J. Chem., 41(B) , 394-399 (2002).
82.	Malhotra V., Pathak S., Nath R., Mukharjee D., Shanker K.,
	Indian J. Chem., 41(B) , 1310-13 (2002); Chem. Abstr., 137 , 370021j (2002).
83.	Nesrin Gokhan, Akgul Yesilada, Gulberk Usar, Kesvey Erol, A. Altan Bilgin,
	Archiv per Phazmizie, 336(8), Sep. (2003), P. 362-371.
84.	Jin Hee Ahn, Hye-Min Kim et. al.;
	Bioorg & Med. Chem. Lett., 14(17) Sep (2004), p. 4461-65.
85.	Maria Celoni M. Godoy et. al.,
	European J. of Pharmacology, 496(1-3), Aug. (2004), 93-97.
86.	Tae-Sook Jeong, Kyung, Soon Kim et. al.;
	Bioorg & Med. Chem., Lett., 14(11), June (2004). p. 2119-23.
87.	Adnan A. Bekhit and Tarek Abdel-Azlem;

Bioorg & Med. Chem., 12(8), April (2004), 1935-45.
88. Mahammad Abid and Amir Azam;

199

Bioorg & Med. Chem., **13(6),** Mar. (2005); 2213-20.

- 89. Abbas Shafiee, Margam Bagheri, Martam Shekarchi, Mohammad Abdollahi;
 - J. Pharm. Pharmaceut Sci (www.ualberta.ca/N(sps), 6(3); 360-362, (2003).

		20
90.	Oza Haresh, Joshi Darti, Parekh Hansa;	
	J. Inst. Chem., (India) (1998); Chem. Abstr., 130 , 139682 (1999).	
91.	Tejas A. Upadhyay, Jawalant A. Shastri & H. H. Parekh	
	Orient. J. Chem., 18(1), 175-76, (2002).	
92.	Sohit Rajvaidya, Jaladhi Vasavada & H. H. Parkh,	
	Ind. J. Chem., 42B , 906-908, (2004).	
93.	A. V. Dobaria, J. R. Patel & H. H. Parekh	
	Ind. J. of Chem., 42B , 2019, (2003).	
94.	Jatin Upadhyay, Utpal Dave and Hansa Parekh;	
	Chem. Abstr., 116 , 128768n (1992).	
95.	Akhil bhatt, H. H. Parekh & A. R. Parikh;	
	Hetero. Commun., 4(4) , 361-366 (Eng.) Chem. Abstr., 130 , 25006x (1999).	
96.	A. L. Barry;	
	The Antimicrobial susceptibility Test principle and practises edited By illus Lea and Febige	r;
	(Philadelphia pel. U.S.A.) 180; Bio Abstr., 64, 25183 (1970).	
97.	M. L. Crossley, V. L. King, L. H. Northey and T. E. Scholz;	
	US 2, 491, 253 Dec. 13 (1949); Chem. Abstr., 45, 4746 (1961).	
98.	S. G. Krivokolysko;	
	Chem. Heterocylc. Comp (N. Y.) (1999).	
99.	U. P. Dayochenko;	
	Russ. J. Org. Chem., 34(4) , 554-556, (1998); Chem. Abstr., 130 , 223222c (1999).	
100.	G. H. Sayed, R. R. Kassab;	
	Bull. Fac. Pharm., (1998); Chem. Abstr., 131, 15727p (1999).	
101.	Okazoe Takashi;	
	PCT Int. Appl. WO 0006, 547; Chem. Abstr., 132, 321784y (2002).	
102.	A. Samour, Y. Akhnookh and H. Jahine;	
	(Pac. Sci. Ain Sharm Uni. Cario UAK) J. Chem. 13(4) 421-37 (1971); Chem. Abstr., 77,	
	101348 (1972).	
103.	Feng Shi, Shujiang Tu, Fung Fung and Tuanjie Li;	
	ARKIVOC, 2005 (i). p. 137-142.	
104.	Dao-Lin Wang & Kimiaki Imafuky; J. Heterocyclic Chem., 37(NOS 5-6) (2000), p.1019-10)32.
105.	Feng Shi, Shujiang Tu, Fung Fung and Tuanjie Li;	

ARKIVOC, 2005 (i). p. 137-142.

106. Thiele Kurt, Von Be Benburg and Walter E;

200

S. African **6**, 905, 06, 13 Feb: (1970).

107. B. John ED., Preeman and Petey F. M.;

Ger. Offen, 2, 029, 079 (Cl. A 01 N007d) (1971); Brist. Appl., 74, 99891d (1971).

- 108. V. Scott and Joseph, Jap Pat., 2, 803, 592 (1979); Chem. Abstr., 92, 472-16 (1980). 109. J. J. Baldwin, A. Scrialrine, G. S. Ponticeello, E. L. Engelhardt and C. S. Sweeti; J. hetero. Chem., 17(3), 425 (1980); Chem. Abstr., 93, 186222, (1980). 110. N. Latif, M. Mishrky and N. S. Girgis; Indian J. Chem., 20B, 147-149 (1981). 111. W. Von Behenburg, J. Engel, J. Heese and K. Thiele; Gey. Offen., D.E. 3, 337, 593 (Cl CO7D 213/12) 1984; Chem. Abstr., 101, 130595n (1984). 112. L. Castedo, J. M. Quintela and R. Riguers; Eur. J. Med. Chem., Chim ther., 19(6), 555 (1984); Chem. Abstr., 103, 37337 (1985). 113. M. R. Pavia, C. P. Taylor, F. M. Hershenson and S. J. Lobbe Stael; J. Med. Chem., 30, 1210 (1987). 114. F. Manna et. al.; Eur. J. of Med. Chem., 27(6), (1992), p. 627-632. 115. Aivars Kruaze, Gunars Duburs, et. al.; Eur. J. of Med. Chem., 34(4), (1999), p. 301-310. 116. Fatma E. Goda, Alaa A. M. Abdel-Aziz & Omer A. Altef; Bioorg & Med. Chem., 12(8), (2004), p. 1848-1852. 117. H. Yoshida, K. Omori, Y. Yasuyuki, F. Kensaku; Jpn. Kokai Tokkyo Koho, JP 10, 120, 677; Chem. Abstr., 129, 160629 (1998). 118. G. S. Gadaginamath, A. S. Shya Digeri and R. R. Kavali; Indian J. Chem., 37(B), 1137C (1998). 119. E. G. Hammung Abou, El-Hafezu Najia A. Abd, Midarus Wandall; Z. Naturforsch. B., Chem. Sci., (2000). 120. N. A. Abdallah, E. A. Zakimagdi; Acta Pharm (Cagreb) (1999); Chem. Abstr, 132, 137287n (2000). 121. Abu-Shana B, Fathi A, Satyed Ahmed Z., El-Gaby; Al-Azhar Bulletin of Sci, (1999), 10(1), 63-70 (Eng.); Chem. Abstr., 136, 85768f (2002). 122. S. V. Roman, V. D. Dyachenko; Chem. Abstr., 136, 8670x (2002).
 - F. M. A. El-Tawell, M. A. Soton;
 Chem. Abstr., 137, 63154w (2002).
 - 124. Francis E. Reinhart, J. H. Gray and Willam G. Bgtt;

J. Franklin Inst., 261, 669-70 (1966); Chem. Abstr., 50, 10930c (1956).

201

125. VEB Keuna-Werke, "walter Ulbricht' (by Wl. Hoefling, D. Elhaner and G. Reckling); Ger. 1,

193, 506, (Cl. CO7D) May 26 (1965); Chem. Abstr., 63, 6979 (1965).

126.	Harada Hironori, Takuwa Tomofumi, Okazaki Toshio, Hiranu Yusuke;
	JPN Kokai. Tokkyo Koho JP 03 , 2, 06, 230 (2003); (Cl. A61K 031-4418) ; Chem. Abstr.,
	139, 111663 (2003).
127.	Pyachenko U. D., Roman S. V. ;
	Visnik Kharkivs Kogo, National Nogo, Uni. 495-59-64 (Russ); Chem. Abstr., 136(21), p.
	807, 325448x (2002).
128.	Akhil Bhatt, K. A. Parikh
	Ind. J. Chem., 40(B) , 157, (2001).
129.	R. C. Khunt, Neela J. Datta, A. R. Parikh,
	Oriental J. Chem., 18(1) , 131, (2002).
130.	B. P. Kansagara, H. H. Parekh, A. R. Parikh;
	Ind. J. of Heterocyclic Chem., 12, 61-64 (2002).
131.	J. R. Patel, A. V. Dobaria, A. R. Parikh;
	Ind. J. of hetero. Chem., 12 , 237, (2003).
132.	Pankaj Patel, S. Korgaokar, H. H. Parekh;
	I. L. Pharma Co., 51(1), 59-63, (1996).
133.	Rajeev Doshi, Preeti Kagathara, H. H. Parekh,
	Ind. J. of Chem., 38(B) , 348-52 (1999).
134.	A. V. Dobari, J. R. Patel, H. H. Parekh;
	J. Indian Chem. soc., 79, 772-773, (2002).
135.	Ketan Hirpara, Satyan Patel, Asutosh Joshi, and Hansa Parekh;
	Ind. J. of Hetero. Chem., 13, Jan.Mar (2004), p-221-224.
136.	W. Davies;
	J. Chem. Soc., 2633 (1949); Chem. Abstr., 44 , 2977 (1953).
137.	A. R. Surry;
	J. Amer, Chem. Soc., 74 , 3450 (1952); Chem. Abstr., 48 , 3348s (1954).
138.	H. Erlenmeyers;
	Helv. Chem. Acta., 39 , 1156 (1956); Chem. Abstr., 51 , 1148d (1954).
139.	A. R. A. Raouf, M. T. Omar and M. M. ed-Aottal;
	Acta. Chim. Acad. Sci. Hung, 87, 187 (1975); Chem. Abstr., 84, 14185 (1976).
140.	D. R. Patel, P. S. Satpanthi, P. B. Patel & J. J. Trivedi;
	J. Inst. Chem. Calcutta, 48 , 305 (1976).
141.	E. Fisher, I. Hartmann & H. Priebs;
	Z. Chem., 15 , 480 (1975); Chem. Abstr., 84 , 16553f (1976).

142. J. Rogere & M. Audibert;

Bull. Soc. Chim Fr., **4021** (1971).

143.	R. R. Astik,	G. B. Joshi & K	. A. Thakey;

J. Indian Chem. Soc., 52, 1071 (1975).

- 144. Jerome Blanchet & Jieping Zhu.Tetrahedron Letlers, vol. 45(23), May. (2004), 4449-52.
- R. Nath, K. Shanker, R. C. Gupta & K. Kishor;
 J. Ind. Chem. soc., 55, 832-834 (1978).
- 146. I. D. Shah & J. P. Trivedi;

J. Ind. Chem. Soc., **40**, 889-893 (1963).

- M. Saeda, M. Abdel-Megid and I. M. El-Deeen; Indian J. Heterocyclic Chem., 3, 81-86 (1993).
- 148. R. Govindon;

Fr. Demande, 21, 08 834 (1972); Chem. Abstr., 19, 32040k (1973).

- 149. M. I. Husain & S. K. Agarwal; Indian J. Pharm; **37** 89 (1975).
- S. P. Singh, S. K. Anyoung & S. S. Parmar;
 J. Pharm. Sci, 63, 960 (1974).
- W. A. Skinner, H. H. C. Tony, G. Bardy & T. E. Edward; Chem. Abstr., 83, 189351t (1975).
- T. Takematsu, K. Yokohama, K. Ideda, Y. Hayashi and E. Taniyamal;
 Jpn. Patent, 7 (51), 21 431 (1975); Chem. Abstr., 84, 26880w (1976).
- 153. A. K. El-Shafi, K. M. Hassan;
 Curr. Sci., 52(13), 633-5 (1983); Chem. Abstr., 100, 514974 (1984).
- 154. P. Montorte, S. Grasso, A. Chimiri, G. French;
 Pharmaco Ed. Sci., 36(2), 109-15 (1981); Chem. Abstr., 94 208754x (1981).
- 155. M. D. Joshi, M. K. Jani; B. P. Shah, N. K. Undavia, P. B. Trivedi,
 J. Ind. Chem. Soc., 67(11), 925-7 (1990); Chem. Abstr., 115, 49489y (1991).
- 156. A. Solankee & K. Kapadia;
 Orient. J. Chem., 10(1), 70-8 (1994); Chem. Abstr., 122, 55939f (1995).
- 157. J. J. Bhatt, B. R. Shah, H. P. Shah, P. B. Trivedi & N. C. Desai;
 Ind. J. Chem., **33(B)**, 189-92 (1994); Chem. Abstr., **121**, 9214x (1994).
- E. Picscopo, M. V. Diruno, R. Gagliardi, O. Mazzoni C. Parill and G. Veneruso;
 Bull. Soc. Ital Bio. Sper., 65(2), 131-6 (1989); Chem. Abstr., 111, 170938g (1989).
- 159. G. Mayer, V. L. F. Misslitz;
 PCT Int. Appl. WO 02, 48, 140 (Cl. CO7D 413/60); Chem. Abstr., 137, 33290v (2002).

203

160. Kato Y, Kita Y, Nishio M, Hirasawa Y., Ito K, Yamanaka T., Motoyama Y. Seki J.; (1999),

Eur. J. Pharmacol, 384; 197-202.

161.	Abbs. S. E., Hanna M. M. Abou Sier A. H.;
	Egypt. J. Pharm Soc., (1993), 34, 195.
162.	Romulo P. Tenorio, Cristiane S. Carvalho et. al.;
	Bioorg & Med. Chem. Lett; 9 April 2005, Article in press.
163.	Veeresa Gududuru, Eunju Hurh, James T. Dalton & Duane D. Miller;
	Bioorg & Med. Chem. Lett., 14(21), 1 Nov (2004), 5289-93.
164.	Chandrakant G. Bonde and Naresh J. Gaikwad.
	Bioorg & Med. Chem., Vol 12(9), 1 May (2004) 2151-2161.
165.	A. Rao, J. Balzarini; A. Carbone;
	Antiviral Research, 63(2) , Aug (2004), p. 19-84.
166.	Mei-Hsiu Shih and Fang-Ying Ke,
	Bioorg & Med. Chem., 12(17), Sep. (2004), 4633-43.
167.	Aaron S. Anderson et. al.;
	Bioorg & Med. Chem Lett., 14(7), April (2004), p. 1619-24.
168.	G. S. Gadaninamath, A. S. Shyadligeri and R. R. Kavali;
	Ind. J. Chem., 38(B) , 156-159 (1999).
169.	R. S. Lodhi, S. D. Srivasatava and S. K. Srivastava;
	Ind. J. Chem., 37(B) , 899-03 (1998); Chem. Abstr., 130 , 110190x (1999).
170.	R. P. Pawar, N. M. Andukar and Y. B. Vibhute;
	J. Ind. Chem. Soc., 16(5), 171-2 (1999); Chem. Abstr., 131, 271829y (1999).
171.	Richard E. Lee, et. al.;
	Bioorg & Med. Chem. Lett; 13(19), Oct (2003), 3227-30.
172.	Rosama Maccuri, Rosaria Ottane et. al.;
	Bioorg & Med. Chem., 13(8) , 15 Ap. (2005), 2809-23.
173.	G. C. Kamdar, A. C. Chawda & A. R. Parikh;
	J. Ind. Chem. Soc., 64, 298 (1987); Chem. Abstr., 108, 131655p (1988).
174.	P. M. Parashrya and A. R. Parikh;
	J. Inst. Chem., 63, 63 (1991); Chem. Abstr., 115 256053s (1991).
175.	V. L. Pachhamia and A. R. Parikh;
	Acta Ciencia Indica, 17(C)1, 67 (1991); Chem. Abstr., 117, 26399w (1992).
176.	S. B. Bhawsar, R. G. Shah & H. R. Parikh;
	J. Inst. Chem., 64 , 62 (1992).
177.	U. Dave, K. Ladva F. H. Parekh;

J. Inst. Chem., **64**, 74 (1992).

204

178. C. L. Patel & H. H. Parekh;

J. Ind. Chem. Soc., **65**, 282 (1988).

179.	K. P. Roda, R	R. N. V	Jansdadia	and H.	Parekh;

- J. Inst. Chem. Soc., **64**, 109 (1988). 180. K. Ladva, U. S. Dave & H. Parekh;
 - J. Ind. Chem. Soc., **68**, 370-71 (1991).
- H. D. Joshi, P. S. Upadyay & A. J. Baxi;
 Ind. J. Chem., **39(B)2**, 967-70 (2000).
- R. C. Khunt, Neela Datta, Fatema Bharmal and A. R. Parikh;
 J. Ind. Chem. Soc., 78, 47 (2001).
- 183. M. Siddique, M. Indress, A. G. Doshi;
 Asian J. of Chem., 14(1), 181-84, (2002), (Eng.) Chem. Abstr., 136, 386059t (2002).
- 184. Vogel's Text book of practical organic chemistry,5th Addition, method No. 6, 97, Page No. 964.
- M. Saeda, M. Abdel-Megid and I. M. El-Deen;
 Indian J. of Heterocycl. Chem., 3, 81-86. (1993).
- Salman SE S.
 Principle of Cancer theraphi, U. Knjizi; Wyngaarden/Smith/Bennett. Cecil textbook of medicine, 19th Edition, Saunders, (1992), 1049-10617.
- Madey RM, Muller M, Steger GG. Resistance to 5-fluorouracil, Gen. Pharmacol (1998); 31(5); 661-66.
- Y. S. Sodannadam, M. M. Shetty, P. V. Diwan;
 J. Med. Chem., 27, 87-92 (1999).
- 189. F. Bigi; C. Silvia; F. Betting, M. Raimando; S. Giovanni; Petrahedron. hett., 40(17), 3465-68 (1999).
- C. C. Heidelberger, N. C. Chaudhari, P. Dannberg, D. Mooren, L. Griesbach, R. Duchinsky, R. T. Schnitzer, E. Pleven; Scheiner (1957), Nature, 179, 663.
- 191. F. French;

Proc. Am. Ass. Cancer Res. 3, 319 (1962).

- W. Hepworth, T. W. Thompson;
 Chem. Abstr., 69, 7724 (1968).
- 193. G. E. Hardtmann;
 U.S. 8, 663, 698 (Cl. 424-251; 1972). Appl. 779, 200; Chem. Abstr., 77, (1972).
- 194. N. Tokutake;Brit. Pat 146836B, Chem. Abstr., 87, 102370 (1977).
- 195. D. S. Maheson, M. S. Bleenbaum. R. A. Bechtold, R. J. Willsek.,

205

J. Org. Chem., 43, 950 (1978).

196. M. Akhtar, Shamin, M. Seth, A. Baduri;

(Div. Med. Chem. Centre Drug) Res. Ints. Lucknow. India; Chem. Abstr., 108, 15408b (1988).

197.	J. A. Martin, D. J. Bushnell, Duncan;
	J. Med. Chem., 33, 2137 (1990).

- K. A. Watanabe, K. Hurado, J. Zeidler;
 J. Med. Chem., 33, 2145 (1990).
- 199. V. J. Ram, N. Haque, P. Y. Guru; Eur J. Med. Chem., 27, 851 (1992).
- 200. Liu, Xungyong, Xu, Lijiun, Shandong;
 Yike Daxue Xuebuo, **31(2)**, 176-9 (1993).
- 201. M. T. Omer, H. H. Fahmy, H. S. Mohamad,; Egypt J. Pharm Sci, **37(1-6)**, 609-620 (1996).
- 202. W. P. John, M. M. Christopher, R. R. Anthony, C. M. Vernie;
 PCT Int. Appl WO, 99, 14, 216 (Cl. CO7D 403/10) 1996; Chem. Abstr., 130, 252370e (1999).
- 203. Nagarathnam, Dhanapalam,; Wong Wai C; Maio Shou Wu,
 PCT Int. Appl. WO 97, 17, 969 (Cl. A61K 31/505); Chem. Abstr., 127, 65783t (1997).
- 204. M. A. Patane, M. G. Bock, H. G. Selnick;
 PCT Int. Appl. WO 98, 57, 641, (Cl. A61K 51/445); 1998, Chem. Abst., 130, 81519x (1999).
- 205. K. Nicholas, M. Premji, T. Stephen;
 PCT Int. Appl. WO 98, 54, 180 (Cl. CO7D 417/06) 1998; Chem. Abstr., 130, 38394 (1999).
- 206. Norman M. H., Chen N. et. al.;
 J. Med. Chem., (2000), Nov. 2, 43(22), 4288-4312.
- 207. L. V. Azaryan, S. A. Avetisyan, A. A. Chachoyan, N. S. Buyukyan; *Khim. Farm. Zh.*, **31(6)**, 8-10 (1997); *Chem. Abstr.*, **127**, 262648d (1997).
- 208. V. P. Krivongov, G. A. Tolstiko, Ju. I. Murinov, F. A. Zarudil;
 Khim. Furm. Ch, **31(6)**, 23-27 (1997); *Chem. Abstr.*, **127**, 262649e (1997).
- Richard J. Perner et. al.
 Bioorg & Med. Chem., Lett., 15(11), (2005).
- Sharad Verma et. al.
 Bioorg & Med. Chem. Letter., 15(8), April (2005), pp. 1973-77.
- 211. C. D. Timothy, M. Healtherl, J. Juanc, J. P. Poweys;
 PCT Int. Appl. WO 99, 41, 253 (Cl. CO7D 403/04); Chem. Abstr., 131, 10013 (1999).
- Amjad Ali, Gayle E. T. Ken Ellsworth, Georgiana Harris Ronald Painter, Lunn L. Silver, and Katherine Young;
 JMC, 46(10), 1824-30, (2003).

213. Antonello. Mai. et. al;

Bioorg & Med. Chem., 13(6), Mar (2005), p. 2005-2077.

214.	M. M. Yari, S. S. Durac, M. Erfan, Batu O, Erol K;
	Farmaco, 54(6) ,
215.	Baradi P. G. et. al.;
	II Famaco, (1996), 51, 297-300.
216.	Balis F. M. et. al.;
	Blood, (1998), 92(10); 3569-77.
217.	A. Koties, H. Wonpyo, J. E. Semple;
	US US 5, 602, 077 (Cl. 504-243, CO7D 239/553); Chem. Abstr., 126, 199577s (1997).
218.	K. Mogilaiah and S. Baburao;
	Indian J. Chem., 37(B), 139 (1998).
219.	Anu Agarwal, Kumkum Srivastava, S. K. Puri & Prem M. S. Chauhan., 15(7), April (2005),
	Bioorg & Med. Chem. Lett., 1881-1883.
220.	Aleem Gangjee, Hitesh Kumar, D. Jain & Roy L. K. Kishuk,
	Bioorg & Med. Chem. Lett, 15(9) , May (2005), 2225-30.
221.	M. A. Bruce, G. S. Poindercter, G. Johnson;
	U.S. US 5, 889, 016 (Cl. 514-274 A 61K 31/505) 1999; Chem. Abstr., 130, 237586m
	(1999).
222.	A. Mona Mohran, El-Sherbeny, A. Magda, El-Obaid, M. A. Abdul-Rahman, Badria Farid;
	J. Pharm. Sci., 12(1) , 39-44 (1998); Chem. Abstr., 129 , 58397w (1998).
223.	Vinay Lathey & A. K. Madan,
	Bioorg & Med. Chem., 13(5) , March (2005), p. 1599-04.
224.	Tsann-Long Su, et. al.
	Bioorg & Med. Chem., 11(1), Jun (2003), p. 145-47.
225.	Michael Deininer, Elisabeth Buchdanger and Brain J. Bruker,
	BLOOD, 1 April 2005, 105(7), p. 2640-53.
226.	Saxena A. K. Gupta K. A., Jain P. C., Dua P. R., Prasad C. R., Anand Nitya;
	Indian J. Chem., 22B , 189-94 (1983), Chem. Abstr., 100 , 103282f (1984).
227.	Barbuliene M. M., Udrenaite E., Gaidelis P., Vainila V. P.;
	Polish J. Chem., 76(4), 557-63 (2002); Chem. Abstr., 137, 154892b (2002).
228.	Angelina Quintero et. al.;
	J. Pharm Pharmaceut Sci., 2(3); 108-12, (1999).
000	

- Patricia F. F. Amalia U. I., Guillen J. L., M. Eugenia G. R.;
 Eur. J. Med. Chem., 38, 289-96 (2003).
- 230. Dumas Jacques, Icluender Harald C. E., Zhang Chengzhi;

PCT Int. Appl. WO **03** 40, 141 (Cl. CO7D 413/14) (2003); Chem. Abstr., **138**, 860 (2003).

no.8.

	208
231.	Micromedex Drug Information
	http:// healthcare micromedex.com
232.	AHFS (American Hospital Formulary Service)
	Drug Information 2001 (P. 3609-3615).
233.	USPDI 2001 21 st Edition Vol.I ,
	(Drug Information For the Health Professional) Page (1875-1877).
234.	Physician Desk Reference, 5 th Edition 2002 (p. 1354-1357).
235.	Amit S. Kalgutkar, Hung, T. Ngugen, Alfin D. N. Vaz., Anke Doan, Deepak K. Dalvie, Date G.
	Mcleod, and John C. Murry,
	American Society for Pharmacology and Experimental Therapeutic, (Drug metabolism and
	Disposition), vol.31 , No. 10, 1175/1049470.
236.	L. S. Crawley and W. J. Fanshawe;
	J. Heterocyl, Chem., 14, 531 (1977).
237.	Lyubov N. Sobenina, Vladislav N. Drichcov, et. al.;
	Tetrahedron. Article in Press, Availabel online 31 March 2005.
238.	Ken ichi Itoh and C. Akira Horiuchi,
	Tetrahedron, vol 60(7), 9, Feb. 2004, p. 1671-1681.
239.	Giampaolo Giacomelli, Lidia De luca & Adrea Porcheddu;
	Tetrahedron, Vol.59(29), 14 July 2003; p. 5437-5440.
240.	Vamanouchi Pharm. Co. Ltd.
	Jpn. Kokai Koho JP 58 , 148, 858 (1982). (Cl. 107D 207/333) (1983) Appl 82/30045 (1982);
	Chem. Abstr., 100 , 34538 (1984).
241.	P. T. Gallaghey, T. A. Hicka and G. w. Mullier (Lilly Ind. Ltd.)
	Eur. Pat EP 2, 57, 882 (1988); Chem. Abstr., 108, 6499k (1988).
242.	A. Ando adn R. W. Stevens;
	PCT Int. Appl. WO 94, 12, 481 (Cl. CO7D 261/04); Chem. Abstr., 122, 56037x (1995).
243.	Eddington N. D., Cox D. S., Robert R. R., Butchey R. J., Edatiogho I. O., Stables J. P., Cooke
	N., Goodwin A. M. Smith C. A. and Scott K. R.,
	Eur. J. Med. Chem., 37 , 635 (2002).
244.	T. U. Quazi;
	Pak J. Sci. Ind. Res., 27, 326 (1984); Chem. Abstr., 103, 12339m (1985).
245.	Nippon Chemiphar Co. Ltd.,

JPN Kokai. Tokkyo Koho JP **58**, 46, 077 (83, 46, 077) (Cl. CO7 A 261/14) (1983); Chem. Abstr., **99**, 17574 (1984).

246. T. Tate, K. Natira and Fukhola;

Chem. Pharm. Bull **35(9)**, 37769 (1987); Chem. Abstr., **108**, 186621e (1988).

247. B. Victor, J. Safir and Sidney R. (American Cyanamid Co.) Brit 1, 178064 (Cl. CO7D) (1970); Chem. Abstr., 72, 79017d (1970). 248. Kung Y. K., Shin K. J., Yoo H. K., Seo K. J., Hong C. Y., Lee C., Park S. Y., Kim D. J. and Park S. W., Bioorg. Med. Lett., 10, 95 (2002). 249. G. P. Reddy, E. Rajendra and A. K. Murthy; Indian J. Hetrocycl, 3, 233, (1994); Chem. Abstr., 122, 105724e (1995). 250. Lee Y. and Kim B. H., Bioorg Med. Chem., Lett., 12, 1395 (2002). 251. R. Maior, B. Eisele, P. Mutley and H. Grube; Gey., offen DE 3621372 (1988); Chem. Abstr., 108, 67456p (1988).q 252. K. Hass Dyane, B. Carr John; U.S. 3, 879,532 (Cl. 242-272 A 61K) (1975); Chem. Abstr., 83, 108626n (1975). 253. H. Katsumasa, N. Shigehide, H. Kenji; Chem. Abstr., 136, 340672j (2002). 254. R. Jain, D. D. Agarwal and Damodharan; J. Ind. Chem. Soc., 72, 825-827 (1995). 255. M. Scobie and M. D. Threadojill; J. Org. Chem., 59, 7008 (1994); Chem. Abstr., 122, 10090f (1995). 256. D. J. David, D. B. Allon and E. A. Frederick; Ger. Offen. 2, 723688 (CE A 01 Ng/28) 22 DCI, (1971); Chem. Abstr., 88, 132015k (1978). 257. M. Masui, H. Yasushi; Chem. Abstr., 128, 13256z (1998). 258. K. V. Reddy, S. G. Rao, A. V. Subba; Indian J. Chem. Soc., B; Org. Chem., Ind. Med. Chem., 37(B)7, 677-699 (1988); Chem. Abstr., 129, 260397p (1998). 259. J. Nyitrai, N. Joseph, S. Gyala et. al; Chem. Abstr., 128, 294778h (1998). 260. T. D. Aicher, B. Balkam, P. A. Bell, L. J. Brand et. al.; J. Med. Chem., 41(23), 4556-4566 (1998); Chem. Abstr., 129, 343429b (1998). 261. R. Ulrich, H. Rolf; Chem. Abstr., 134, 311203k (2001). 262. Andres JI. et. al.

J. Med. Chem., **2005.** Mar 24,48(6) : 2054-2071.

209

263. Hongwu He, Meiquing Li, Aihong Lu, Zhaojie Liu,

Taylor & Francis, Volume 177, Number 6-7/June- 2002, 1651-1655.

264.	Ori, Chananamin; Wang, Yangeng; Zhang, Guanxin; Feng, Shujuan;
	Chem. Abstr., 137, 370004f, (2002).
265.	Wu, Chengde, Raju, Bore Gowda; Krgan, Timothy; Blok, Natalie,
	Chem. Abstr., 137, 93741e No 7 (2002).
266.	Caraline Charliey, Catherin Michaux;
	Eur. J. Med. Chem., 38 , 645-659 (2003).
267.	Nanteymet P. G. et. al.;
	Bioorg Med. Chem. Lett., 12 (2002). p. 319-323.
268.	Romeyo J. R. ;
	Expert Opinion on Investigational Drugs, Feb-(2001), vol.10, No.2, p-369-379 (11).
269.	Daniele Simoni and Manlio Tolomeo;
	Current Pharmaceutical Design, 2001, 7, 1823-1837.
270.	R. C. Khunt, N. J. Datta, F. M. Bharmal, G. P. Mankad and A. R. Parikh;
	Ind. J. Chem., 10 , 97, (2000).
271.	Rajeev Doshi, Preeti Kagthara & Hansa Parekh
	Ind. J. Chem., 38B. , 348-352 (1999).
272.	Ketan Hirpara, Satyan Patel, Ashutosh Joshi and Hansa Parekh
	Ind. J. Of Heterocyclic Chem., 13(3) , (2004), 221.
273.	A. V. Dobaria, J. R. Patel & H. H. Parekh;
	Ind. J. of Chem., 42B , 2019 (2003).
274.	B. P. Kansagara, H. H. Bhatt, A. R. Parikh;
	Ind. J. Heterocyclic Chem., 12 , 61-64, (2002).
275.	Bo. Liu, Gang Liu, Zhili Xin, et. al.;
	Bioorganic & Med. Chem., Letters, 15(4) , 15 Feb (2005), p-1201-1204.
276.	Patrizia Cali, Lars Naerum, Seema Mukhija and Andeys Hjelmencrantz.;
	Bioorg & Med. Chem. Letters, 14(24) , 20 Dec (2004), p. 5997-6000.
277.	Robert E. Sammelson, T. Ma., Luis J. V. Galietta, A. S. Veykman and Mark J. Kurth;
	Bioorg & Med. Chem. Letters, vol.13(15), 4 Aug. 2003, p. 2509-2512.
278.	Wallace T. Ashton et. al.;
	Bioorg & Med. Chem. Letters, Available online 6 April 2005.
279.	H. S. Yathirajan, R. S. Narasegowda, P. Nagaraja and M. Bolte.,
	Acta. Cryst. (2005) E61, 0179-0181. (doi; 10. 1107-51600 536804033598).
280.	Makarov V A, Rlabova OB, Granik VG, Wutzley P, Schmidtke M.;

J. Antimicrob. Chemothy, **2005**, March 2.

210

281. K. Folkeys, S. A. Harris;

J. Ame. Chem. Soc., **61**, 1245 (1939).

282.	Rajul Jain, Frank Roschangar and Marco A. Ciutolini;
	Tetrahedron Lett., 36(19) , (1995), 3307-10.
283.	M. A. Sluyty, U. K. Pandit, W. N. Speckamp and H. O. Huisman;
	Tetrahetron Lett., 87 , (1966).
284.	G. Simchen and Entenmann;
	Angew. Chem. Int. Edn. Engl. 12 , 119 (1973).
285.	Hu Zhiyong, Wang Huicai;
	Chem. Abstr., 119, 72465d (1993).
286.	U. Tory, T. Susumy., E. Masayuki and S. M. Saharu;
	Eur. Pat. Appl. EP. 4, 88, 220, (Cl. CO7D 413/04) (1992); Chem. Abstr., 118, 80944d (1993).
287.	
	Eur. J. Med. Chem., 29(11) , 807-17 (1994); Chem. Abstr., 122 , 239500n (1995).
288.	K. Johnannes, F. Rainer, J. R. Jasen and S. Nichael;
	Ger. Offen DE 4, 309, 552 (Cl. CO7/D 213/85); Chem. Abstr., 122, 9877m (1995).
289.	D. D. Erol, N. Yulung and A. Turk;
	Eur. J. Med. Chem., 29(11), 893, 7 (1994); Chem. Abstr., 122, 13650a (1995).
290.	P. Fey H. K. Rudolf, H. Waltey and K. Thomas;
	Eur. Pat. Appl. Ep 62, 3611, (Cl. CO7D. 401/14); Chem. Abstr., 122, 55897r (1995).
291.	H. Rudolf, H. Waltey, D. Juergen & F. Petey;
	Eur. Pat. Appl. EP, 5(57), 843 (Cl. CO7D 401/12); Chem. Abstr., 120, 8478d (1994).
292.	R. Bernd, P. A. Schirwan, R. Dietey, R. Guenther;
	PCT Int. Appl. WO 96,(30), 342 (Cl. CO7D 213/89); Chem. Abstr., 126, 1993e (1997).
293.	F. Al-Omar, A. Abdul Zahar, A-El-Khair,
	A. Adel, Chem. Abstr., 136, 309834q (2002).
294.	Salman A. S.;
	Pharmazie, 1999 Mar; 54(3), 178-83.
295.	Thomas C. J. et. al;
	"Camptothecin Current Perspectives" Bioorg. Med. Chem., 12, 1585-1604 (2004).
296.	M. Potmesil and H. Pinedo;
	Camptothecin: S, New Anticancer Agents, CRC Press, Boca Raton, Florida, (1995).

- 297. F. Patel, D. Juergem, H. Rudolf, H. Walfey & K. Thomas,
 Eur. Pat. Appl. EP. 62, 3611 (Cl. CO7D 401/14) Chem. Abstr., 122, 55897r (1995).
- 298. H. Posnes;

Org. Synth. (1994); Chem. Abstr., **123**, 167349g (1996).

299. Mukhtar Hussain Khan, Raizul Haque, Taruna Agrawal and Nizamuddin;

Indian J. Chem., **38(B)**, 452-456 (1999).

		2
300.	Mukhtar Hussain Khan, Raizul Haque and Nizamuddin;	
	Ind. J. Chem., 37(B) , 1069 (1998).	
301.	M. K. Morishita, A. Nagisa and J. Masashi;	
	PCT Int. Appl. WO 99, 43, 659 (Cl. CO7D 213/72); Chem. Abstr., 131, 170353h (1999).	
302.	I. J. Collins, L. P. David and M. C. Richard;	
	PCT Int. Appl. WO 98 55, 480 (1998); Chem. Abstr., 130, 38376t (1999).	
303.	Pedneker;	
	PCT Int. Appl WO 98 30, 342 (1998), Chem. Abstr., 130, 48719t (1999).	
304.	J. E. Reiney, Lim-Wilby, R. S. Marge, T. K. Bounck and Ha-Vong;	
	Chem. Lett., 9(6), 895-900 (1999); Chem. Abstr., 131, 286379a (1999).	
305.	Y. Mikio, I. Voshiniro, S. Atsushi, Y, Mitsuhiro and H. Rgo;	
	Jpn Kokai Tokkyo Koho JP 11, 140, 054 (Cl. CO7D 213/64); Chem. Abstr., 131, 44738a	L
	(1999).	
306.	R. Betageyi, L. Beaulieu, B. Pierrel;	
	PCT Int. Appl. WO 99 31, 066 (Cl. CO7D213/75); Chem. Abstr., 131, 59136a (1999).	
307.	S. Asmaa, S. Salem;	
	Pharmazie 54(3) , 178-183 (1993); Chem. Abstr., 130 , 281907k (1999).	
308.	H. Timothy, M. Christopher, R. Laewis, R. Thomas	
	PCT Int. Appl. WO 98, 10, 384 (Cl. CO7D 471/14); Chem. Abstr., 130, 13918h (1999).	
309.	B. Shivakumar and L. G. Nargund;	
	Ind. J. Hetro. Chem., 8(1), 27-36 (1998); Chem. Abstr., 130, 66428e (1999).	
310.	D. N. Upadhyay, V. J. Ram;	
	I. J. Chem. Sec(B), Org. Chem., Chem. Abstr., 131 (1999).	
311.	Abd El-Galil and El Amer;	
	Indian J. Heterocylcic Chem., 10 , 49 (2000).	
312.	Abou El-Fotooh, G. Hammam, M. A. Sharaf and N. A. Abd El-Hafeza;	
	Ind. J. Chem., 40(B) , 213-21 (2001).	
313.	M. G. Nizamuddin, K. S. Manoj;	
	Chem. Abstr., 136 , 279375x (2002).	
314.	Tanaka Akira, Minagawa Masatoshi,	
	Akahane Atsyshi; Chem. Abstr., 139, 22210j No.2 (2003).	
315.	Haifeng Song, Kong Chang Chen & He Tian;	
	Dyes & Pigment, 53(3), June (2002), p. 257-262.	

316. Darcy Michael G. et. al.

PCT Int. Appl. WO 03, 59, 356 (Cl. A61 K31/542) (2003), Chem. Abstr., 139(9), 133573c (2003).

317. Smith Terence;

PCT Int. Appl. WO **03** 47, 577 (Cl. A61 K31/44) (2003), Chem. Abstr., **139(13)**, 36439c (2003).

318. Devdas Balekudra et. al.

PCT Int. Appl. WO **03 68**, 230 (Cl. A61K31/4412) (2003), Chem. Abstr., **139(13)**, 197377g (2003).

- 319. Coburn Craig, Vacca Joseph, William Peter D.
 PCT Int Appl. WO. 99 15, 169 (Cl. A61K31/435) (1999) Chem. Abstr., 130(18), 237554z (1999).
- Xi. Qi, Chang Jian-Hua, Ding Yi-Xiang.
 Youji Huaxue, 21(D), 755-758 (Ch.) (2001), Chem. Abstr., 136(9), 134840; (2002).
- 321. A. W. Hoffman;

Ber., **21,** 2332 (1880).

322. A. Ladenburg;

Ibid. 27, 2952 (1894).

- 323. Zednikova Gabriela, Nalepa Karela;
 Acta Univ. Palacki Olumuc., Fac. Retum Nat. Chem., 1998; Chem. Abstr., 131, 116188v (1999).
- 324. C. Granachey and G. Gulbas;
 Helo. Chem. Acta. 10, 818-26 (1927); Chem. Abstr., 22, 781 (1928).
- 325. A. Saxena, N. C. Desai, Kesha K. Awasthi;

Ind. J. Chem., **40(B)**, 201 (2001).

- 326. H. A. Allimony, Sadd H. A. and F. A. A. el-Mariah; Ind. J. Chem., **38(B)**, 445(1999).
- 327. Feng Jun-Cai, Meng Qing-Hua, Liu Yang, Dai-Li;
 Org. Prep. Proceed Int., (1997); Chem. Abstr., 128, 61455k (1998).
- 328. B. S. Vashi, D. S. Mehta and V. H. Shah;
 Ind. J. of Chem., 34B, 802 (1995); Chem. Abstr., 123, 339793z (1995).
- 329. E. Bousquet, G. Romeo, N. A. Santasati, T. Lancetta, A. Caruso, V. Leone and A. Felice; Farmaco., 44(9), 851-63 (1989); Chem. Abstr., 112, 191378t (1990).
- 330. A. J. Srivastava, Sanjay Swaroop, V. K. Saxena and P. Srivastava, Ind. J. Pharma. Soc., 51(6), 23 (1989).
- 331. Hussieny Hamed Mohanam, R. Samiya El-Amin and Ahmed El-Dawany;
 J. Serb. Chem. Soc., 54(7), 335-42 (1989); Chem. Abstr., 114, 101822x (1991).

213

332. M. Verma, A. K. Chaturvedi, A. Chaudhari, S. S. Parmar;

J. Phar. Sci., 63, 1740-44 (1974); Chem. Abstr., 82, 51358y (1975).

333.	K. K. Kataryna, El Szymanska, M. Matyl, W. Holzer, A. Biatecka, Kasprowicze;
	Pharmazine, 53(10) , 680-84 (1988); Chem. Abstr., 103 , 3606f (1999).
334.	A. Sudhir and P. C. Dandiya;
	Proc. Dec. Conf. Ind. Pharmacal. Soc. No.88 (1977).
335.	V. K. Pandey and (Ms.) Meenal Tandon;
	Ind. J. Chem., 40B , 527-29 (2001).
336.	Desalns S Jane, Shaw Antony W;
	PCT Int. Appl WO 99 8, 096 (Cl. CO7P401/02) (1999); Chem. Abstr., 131, 167431c (1998).
337.	K. Kawaski, H. Kobayashi, S. Ehara, Hideaki, Sato;
	PCT Int. Appl. WO 98 32, 740 (Cl. CO7D 233/06) (1998); JP. Appl. 97, 110, 114 (1997);
	Chem. Abstr., 114 148945h (1998).
338.	Prisinzano T., Dukat M. Law H, Slassi A, Machean N., Delannoy I., Glennon R. A.
	Bioorg & Med. Chem. Lett., (2004), 14(18) , 4679-09.
339.	Zhong Jin;
	Nat. Prod. Rep. (2003), 20 , 584-605.
340.	Moutevelis-Minakakls P. et. al.;
	Bioorg & Med. Chem. Lett., (2003), 13(10) , 1737-40, Chem. Abstr., 139(10) , 149569p
	(2003).
341.	Katarzyna Kiee-Knonowicz, E. Szymanska, M. Matyl, W. Holzey, Bialecka A., A. Kosprowicz.
	Pharmazie, (1998), 53(10), 680-84 (Eng.) Chem. Abstr., 130(1), 3806f (1999).
342.	Solankee A., Kapadia K., Upadhyay K., Patel J.;
	Oriental J. of Chem. (2001), 17(2) , 315-18, Chem. Abstr., 136(12) , 183758x (2002).
343.	Havera Herbert J. Strycker Wallace G.,
	U.S. 3, 835, 151, (Cl. 260/3095;CO7d) (1974), Chem. Abstr., 81, 152224m (1974).
344.	Saad. Samir F.
	Bull Fac. Pharm. Cairo Univ. 1972, 11(1) , 55-62, Chem. Abstr., 81 , 99542k (1974).
345.	Christopher Geoffrey Earnshaw, Thomas Lawley Hough, Dale Robeut Mitchell.
	PCT Int. Appl. WO 98, 51, 673 (Cl. CO7D233/54); (1998), Chem. Abstr., 130(2), (1999),
	13990a.
346.	T. Okasaki, K. Kikuchi, T. Watanabe, A. Suga M. Shibasaki, A. Fujirnori, O. Inagaki, I.
	Yanagisawa;
	Chem. Pharm. Bull., (1998), 46, 777.

347. Kalluraya B., Gungga P., Banji D., Isloor A. M;Boll. Chim. Farm., (2001), 140(6), 428-32.

214

348. S. B. Hirpara, K. A. Parikh, B. C. Merja and H. H. Parekh;

Ind. J. Chem., **42B**, 1172-1175 (2003).

349.	Preeti Kagthara, Niraj Shah, Rajeev Doshi & Hansa Parekh;
	Heterocyclic Communication, 4(6) , (1998).
350.	P. H. Patel, S. Koregaokar and Hansa Parekh;
	Ind. J. of Hetero. Commun. Sep (1997).
351.	R. C. Khunt, N. J. Datta and A. R. Parekh;
	Ind. J. of Pharm. Sci., 170 , (2002).
352.	Hasmukh Knjariya, Devendra Verma and Hansa Parekh;
	Orient. J. of Chem., 18(3), 583, (2002).
353.	Satyan P. Patel, Ashutosh M. Joshi, Ketan V. Hirpara and H. H. Parekh.
	Orient J. of Chem., 19(2), 435, (2003)
354.	Joshi H., Upadyay P., Karia D., Baxi A. J.,
	Eur. J. Med. Chem., 38(9) , 837-840, (2003).
355.	A. H. Bhatt, K. A. Parikh and A. R. Parikh;
	Ind. J. Chem., 38(5)B , 628-631 (1999).
356.	Datar Prasanna A., Sirodkar P. Y., Panikkar K. R.;
	Ind. J. Chem.(B). Org. Chem. Including Med. Chem., (2003), 42(B) , 690-94, Chem. Abstr.,
	139(4), 52951u (2003).
357.	Ding Mingwu, Liu Zhaojie, Su, Yali, Zhulin;
	Chem. Abstr., 139(17) , 261296y (2003).
358.	Rajesh N. Mistry and K. R. Desai;
	Eur. J. of Chem., Vol 2(6) , 2005.
359.	Coleman Patrick L. et. al.;
	U.S. Pat. Appl. Publ. US 2003 144, 283 (Cl. 514-228 5; CO7D421/02), 2003, US Appl. 589,
	580, 2000, 85pp Chem. Abstr., 139(10), 149629h (2003)
360.	Essey Franz, Kitagawa Hisoto, Muramatsu Ikunobu, Ishiguro Xiaoki, Pouzet Pascale;
	Eur. Pat Appl. EP 1, 333, 028 (Cl. CO7D233/50), 2003 Chem. Abstr., 139(10), 149634f
	(2003).
361.	Febung Anon;
	Ber. 18, 1814 (1885).
362.	Wohler F and Liebig;
	J. Ann. 3 , 249, 267 (1932).

- 363. Pelouze;J. Ann. 10, 249 (1934).
- 364. Mowry D. T.;

Chem. Rev., **2,** 189 (1948).

365. Pram G. Loupy A., Pedouassaut M:,

Bull. Soc. Chim. Fr., 1, 124-8 (1986), Chem. Abstr., 105, 190460g (1986).

	216
366.	Maible A. and Goden F.
	De Compt Rend, 165, 557 (1917); 166-215 (1918); n.n. Chim., 13, 216, (1919), Bull Soc.
	Chim., 4, 23, 18 (1918); 25, 588 (1919), 27, 229 (1920).
367.	Mohan Krishna A. K., Lakshmikantham M. C., Dugal Caral;
	Chem. Abstr., 128 , 282754j, (1999).
368.	Unlenclrof Jaochim, Gabbey Haimed Grof Erich, Doppe Feld, Illestephanie;
	Ger. Offen DE, 3, 024, 836 (1982); Chem. Abstr., 96, 142481p (1982).
369.	Voigt Hans;
	Chem. Abstr., 58, 1412b (1963).
370.	Bimbey Russell M.;
	Chem. Abstr., 74, 87655s (1971).
371.	Stechko T. V., Granik V. G., Glushokov R. G., Roshehina L. F., Polezhaeva A. I., Mashakovkii M. O.;
	Kim Farm Zh., 18(3) , 296-7 (1984) (Russ); Chem. Abstr., 101 , 90704p (1984).
372.	Uhlendorf Jachim, Leyck SIgurd, Naffermann A;
	Chem. Abstr., 103 , 59761 (1985).
373.	Bremanis G., Kolvins, I., Acena I., Lukevics E., Vevreris M., Kauss V., Trapentsiey P., Lierins E.,
	Chem. Abstr., 103 , 59761 (1985).
374.	Tanaka Masuto; Sakakura Toshi Yasu;
	Chem. Abstr., 104, 88317h (1986).
375.	Lai Hoi Kiong, Davis Robe ut Allah; Relyea Douglas Irving;
	Chem. Abstr., 131, 170273q (1999).
376.	Kobayashi, Shigco, Tsuchida, Hiroyuki, Yinno Atusushit,
	Jpn. Kokai Tokkyo Koho JP 10 , 30035 (98, 30, 035) (Cl. CO82 13/011)3, Feb, 1998 (96/203.
	0232 Jul 1996pp Japan). Chem. Abstr., 128 , 155352b (1998).
377.	Shepherd R. G.;
	U.S. 727149; Chem. Abstr., 111, 9710h (1998).
378.	Makarenich I. F., Mokrouz M. V., Topchif L., Kovalev I. P., Sakolova V. E., Gubin Yu I., Bublik
	N. P., Poplyalov V. A.;
	Chim. Prir Soedin (5), 608-12 (1983); (Russ); Chem. Abstr., 100, 156894p (1984).
379.	M. C. Dougal Caral Lakshikanthan, Mohan Krishna A. K.;
	Chem. Abstr., 128(23) , 28275j (1999).
380.	Paralo Sanna, Antonio Carta, Mohamma E. Rahbar,

Eur J. Med. Chem., 35, 535-43, (2000).

216

U.S. US 6, 420, 403, (Cl. 514-374; CO7D 263/34) (2002); Chem. Abstr., 139, 245956h (2003).

^{381.} Iwanowicz E. J.; Dhar J. G. M; Leftheyis K., Liu C.,

	217
382.	Valmajey Juliya, Toplak Renata, Mujeen Le Marechal;
	Fak. Za. Strojnistro Uni. 26, 138 (2001); Chem. Abstr., 134, 207662y (2001).
383.	Shibata Yasushi, Yagihara Tomics Kashahari Ismmy;
	Chem. Abstr., 134 , 602 353299q (2001).
384.	Norsyrava V. U. Trotimov B. A.;
	PCT Int. Appl. WO 49, 148 (Cl. CO7D 87422); Chem. Abstr., 136, 216684a (2002).
385.	Yagihara, Tomio; Kuchi Tetsushi;
	PCT. Int. Appl. WO, 02 , 64, 554 (Cl. CO7C: 327/44) (2002); Chem. Abstr., 137 , 169325t
	(2002).
386.	Altmann Eva, Betschart Claudia, Gohda Keigo, Horiachi Miyuki,
	PCT Int. Appl. WO 99, 24, 460 (Cl. CO7KS/00) (1999), Chem. Abstr., 130, (26), 352553k
	(1999).
387.	Shibata Yasushi, Tiantaho Renpei, Iwasa Takao; Makita Satoru, Hanai Daisuke;
	PCT Int. Appl. WO 02, 36, 550 (Cl. CO7C 255/63), (2002), Chem. Abstr., 136(4), 369708m
	(2002).
388.	Collin Xavier, Sauleay A., Coulon Joel;
	Bioorg and Med. Chem. Lett. 13(15), 260/5 (2003); Chem. Abstr., 139, 245956h (2003).
389.	Bernard M., John Wouters, Francios D., Catherin M;
	Eur. J. Med. Chem., 38 , 703-10 (2003).
390.	Alwal K. S., Grover G. J. Ding C. Z., Stein P. P., Woyd John, Ferrara F. N.;
	PCT Int. Appl. WO 03, 50, 261 (Cl. C12N) (2003); Chem. Abstr., 139, 53018g (2003).
391.	Murakkami Hiroshi, Masuzuwa Y., Takii S., Ito. Toshinori;
	Jpn. Kokai Tokkyo Koho JP (2003), 206, 281 (Cl. CO7D 231/12) (2003); Chem. Abstr., 139,
	117421t (2003).
392.	F. M. Bharmal, D. J. Kaneria and H. H. Parekh;
	Ind. J. Heterocyl. Chem., 12 , (2002), 12(3) , 279-280., Chem. Abstr., 139(9) , 133448n
	(2003).
393.	Varma S.; Green Chem., 1, 43, (1999).
394.	Gedye R.; Smith F., Westaway K., Ali H., Baldisera L.;
	Tetrahedron Lett., 27, 279-282, (1986).

- 395. Giguere R. J., Bray T., Duncan S. M., Majetich G.; Tetrahedron Lett., **27**, 4945-4948, (1986).
- 396. Caddick S., Tetrahedron, **51**, 10403, (1995). Perreux L; Loupy A.; Tetrahydron, 57, 9199 (2001),

Lidstom P., Tierney J., Wathey B., Westman J.;

Tetrahydron, 57, (2001) 9225 Larhed M., Hallberg A., Drug Discovery Today, 6, 406 (2001),

Fini A., Breccia A.; Pure Appl. Chem., **71**, 573 (1999).

Lupy A., Petit A., Hamelin J., Texier Boullet F., Jacquault P., Mathe D.,
Synthesis, 1213, (1998), Varma R. S.; Green Chem., 1, 43, (1999) Kuhneut N., Danks T. NI;
Green Chem., 3 , 68 (2001), Tanaka K., Toda F.; Chem Rev. 100 , 1025 (2000).
Stambouli A., Chastrette M. Soufiaoui M.;
Tetrahedron Lett., 32, 1723, (1991).

- 399. Srikrishna A., Nagaruju S.,J. Chem., Soc., Perkin Trans., 1, 311 (1992).
- 400. K. Dinakaran and P. T. Perumal; Ind. J. of Chem., **39B**, 135-136 (2000).

397.

398.

- Gedye R., Smith F., Westaway K., Humera A., Baldisera L., Laberge L., Rousell; Tetrahedron Lett., 26, 279, (1986).
- 402. Laurent R., Laporteria A., Dubac J.; Organometallics, **13**, 2493 (1994).
- 403. Yuncheny Y., Dabin G., Yulin J.;Synth. Commun, 22, 2117 (1992).
- 404. Rama Rao A. V., Gurjar M. K., Kaiwar V., Tetrahydron Asymm., **3**, 859 (1992).
- 405. Puclova M., Ertl P., Toma S., Collect Czech Chem. Commun., **59**, 175 (1994).
- 406. Gordon E. M., Gaba D. C., Jebber K. A., Zacharis D. M., Organometallics, **12**, 5020 (1993).
- 407. Bose A. K., Banik B. K., Barakat K. J., Manhas M. S., Synlett., 575 (1993).
- 408. Ayoubi S. A., Texier-Boullet F., Hamelinb J.; Synthesis, 258 (1994).
- 409. Puciova M., Toma S.; Collect. Czech Chem. Commun., 57, 2407 (1992).
- 410. Runhua D., Yuliang W., Yaozhong J.,
 Sunth. Commn. 24, 111; (1994). Runhua D., Yuling W., Yaozhong J., Sunth Commun. 24,
 1917; (1994). Yuling W., Yaozhong J., Sunth. Commun., 22, 2287 (1992).
- 411. Loupy A., Pieon P., Ramdani M., Jacquault P.;J. Chem. Research (5), 36, (1993).
- 412. Malhotra V., Pathak S., Nath R., Mukerjee D., Shanker K.,

218

Ind. J. Chem., **41B**, 1310, (2002).

413.	Kumar	Mitra,	Aparna	De	& Nila	y Karchauc	lhuri
------	-------	--------	--------	----	--------	------------	-------

Ind. J. of Chem., SecB, 311-312, (2002).

- 414. Mazaahir Kidwai, Yogesh Goel & Rajesh Kumar.,*Ind. J. of Chem.*, **37B**, 174-179, (1998).
- 415. Alajarin R., Vaquero J. J., Garcia Navio J. L., Alvarez-Builla, J. Synlett., 297 (1992).
- Abdol Reza Hajipoor, Shadpour E. Mallakpour and Gholamhasan Imanzadeh;
 Ind. J. of Chem., 40B, 250-251 (2001).
- 417. K. Santa Deepthi, D. Sahadeva Reddy, P. Pratap. Reddy & R. S. N Reddy., Ind. J. of Chem., **39(B)**, 220-222 (2000).
- 418. Vimesh M. Patel and Kishor R. Desai; ARKIVOC, 123-129 (2004) (i).
- 419. Werner-Seebacher, Giinther Michl, Ferdinand Belaj, Reto Brun, Robert Saf and Robert Weis, Tetrahedron, 59(16), 2811-2819, (2003).
- 420. Giampaolo Giacomelli, Lidia De Lucca & Andrea Porcheddy; Tetrahedron, **59(29)**, 5437-5440, (2003).
- 421. Feng Shi, Shujiang Tu, Fung Fang & Tuanjie Li;ARKIVOC 137-142, (2005) (i).
- 422. Zhijian Zhao, David D. Wisnoski, Scott E. Wolkenberg, William H. Leistey, Yi Wang and Craig W. Lindsley;
 Tetrahydron Letters., 45(25), 4873-4876 (2004).
- 423. Vera L. M. Sena, Rajendra M. Srivastava, Shalom P. Oliveira and Vera L. M. Lima;

Bioorg. & Med. Chem. Lett., **11(20)**, 2671-2674 (2001).

- 424. Nikolay Yu, Gorobets, Behrooz H., Yousefi, Ferdinand Belaj and C. Olivey Kappe; Tetrahedron, 60(39), 8633-8644, (2004).
- 425. Narimene Boufatah, Armand Gellis, Jose Maldonado and Patrice Vanelle; *Tetrahedron*, **60(41)**, 9131-9137, (2004).
- 426. V. M. Parikh;
 "Absorption Spectroscopy of Organic Molecule" Addition Westey Pub. Co. London, 243-256 (1978).
- 427. C. N. R. Rao; "Chemical application of infrared spectroscopy' Acadamia Press, New York (1963).
- 428. A. R. Kootizky and R. Alon JOnes;

219

J. Chem. Soc., 2942 (1960).

429. Silverstein Dasley and Mosil;

Spectroscopy identitication of Organic Compound (1981).

- 430. F. C. Brown; Chemical Review, 446-511 (1961).
- 431. N. B. Colthup, L. H. Daly and S. E. Wiber;

Introduction to IR and Raman Spectroscopy, "Academic Press Inter Edn. (1964)".

432. F. V. Lotte;

Khim. Geterokeiki Sodein, 6, 1089, Chem. Abstr., 70, 72338 (1986).

220

R	R	R
с ₆ н ₅ -	с ₆ н ₅ -	С ₆ Н ₅ -
4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -
4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -
4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -
4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -
4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -
2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -
4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -
3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -
4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -
4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -
C ₄ H ₃ S-	C ₄ H ₃ S-	C ₄ H ₃ S-

H_2N	N N H_3CO F	
R	R	R
C ₆ H ₅ -	C ₆ H ₅ −	C ₆ H ₅ −
4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -
4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -
4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -
4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -
4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -	3-Cl, 4-F-C ₆ H ₃ -
2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -
4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -	2-NO ₂ -C ₆ H ₄ -
3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	3,4-(Cl) ₂ -C ₆ H ₃ -
4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -
4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -	2,4- (CH ₃) ₂ -C ₆ H ₃ -
C ₄ H ₃ S-	C ₄ H ₃ S-	2,5- (Cl) ₂ -C ₆ H ₃ -

R	R	R
C ₆ H ₅ -	C ₆ H ₅ −	с ₆ н ₅ -
-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -
I-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -
4-CI-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -
4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -
3-Cl, 4-F-C ₆ H ₃ -	4-OH-C ₆ H ₄ -	4-0H-C ₆ H ₄
3-NO ₂ -C ₆ H ₄ -	2-OH-C ₆ H ₄ -	2-0H-C ₆ H ₄ -
2-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -
3,4-(Cl) ₂ -C ₆ H ₃ -	3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₃ -
1-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -
2,4-(CH ₃) ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -
,5-(Cl) ₂ -C ₆ H ₃ -	C ₄ H ₃ S-	C ₄ H ₃ S-

223

R

ŃН

N F	F N	F
R_1 R_2	 N	

R ¹	R ²	R	R
с ₆ н ₅ -	С ₆ Н ₅ -	C ₆ H ₅ -	с ₆ н ₅ -
с ₆ н ₅ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -
с ₆ н ₅ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -
с ₆ н ₅ -	4-Cl-C ₆ H ₄ -	2-CH ₃ -C ₆ H ₄ -	4-Cl-C ₆ H ₄ -
с ₆ н ₅ -	3-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-F-C ₆ H ₄ -
с ₆ н ₅ -	4-F-C ₆ H ₄ -	3-Cl-C ₆ H ₄ -	4-OH-C ₆ H ₄
с ₆ н ₅ -	2-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	2-OH-C ₆ H ₄ -
с ₆ н ₅ -	4-Br-C ₆ H ₄ -	3,4-(Cl) ₂ -C ₆ H ₃ -	4-NO ₂ -C ₆ H ₄ -
с ₆ н ₅ -	4-NO ₂ -C ₆ H ₄ -	2,3-(Cl) ₂ -C ₆ H ₃ -	3-NO ₂ -C ₆ H ₄ -
с ₆ н ₅ -	3,4-(Cl) ₂ -C ₆ H ₃ -	3-Cl,4-F-C ₆ H ₃ -	4-Br-C ₆ H ₄ -
с ₆ н ₅ -	2,4-(CH ₃) ₂ -C ₆ H ₃ -	3-NO ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -
с ₆ н ₅ -	3-Cl-4-F-C ₆ H ₃ -	4-Br-C ₆ H ₄ -	C ₄ H ₃ S-