

Saurashtra University Re – Accredited Grade 'B' by NAAC (CGPA 2.93)

Trivedi, Amit R., 2010, "Studies on Some Compounds of Medicinal Interest", thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/470

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Saurashtra University Theses Service http://etheses.saurashtrauniversity.edu repository@sauuni.ernet.in

© The Author

Studies on Some Compounds of Medicinal Interest

A Thesis Submitted in the Fulfillment of the Requirements of the Award of the Degree

Doctor of Philosophy

From

Saurashtra University

By

Amit R. Trivedi

Under the Guidance of Prof. V. H. Shah

Department of Chemistry (DST-FIST Funded & UGC-SAP Sponsored) Saurashtra University Rajkot, Gujarat India

January 2010

Studies on Some Compounds of Medicinal Interest

A Thesis Submitted in the Fulfillment of the Requirements of the Award of the Degree

Doctor of Philosophy

From

Saurashtra University

By

Amit R. Trivedi

Under the Guidance of Prof. V. H. Shah

Department of Chemistry (DST-FIST Funded & UGC-SAP Sponsored) Saurashtra University Rajkot, Gujarat India

January 2010

Statement under O.Ph.D.7 of Saurashtra University

The work included in the thesis is done by me under the supervision of Dr. V. H. Shah and the contribution made thereof is my own work.

Date:

Place: Rajkot

(Amit R. Trivedi)

Department of Chemistry

(FIST-DST Funded & UGC-SAP Sponsored)

Saurashtra University, Rajkot - 360 005. Gujarat (INDIA)

Fax : +91 281-2576802 Phone : +91 281-2589443 e-mail : <u>drvireshshah@gmail.com</u> <u>shah_v_h@yahoo.com</u>

Dr. V. H. Shah M. Sc., Ph. D., F.I.C.S. Professor

No.:

Date:

<u>Certificate</u>

This is to certify that the present work submitted for the Ph. D. degree of Saurashtra University, Rajkot, Gujarat (India) by Mr. Amit R. Trivedi has been the result of work carried out under my supervision and is a significant contribution in the field of synthetic organic chemistry.

Date: Place: Rajkot Dr. Viresh H. Shah Professor, Department of Chemistry, Saurashtra University, Rajkot-360005 Gujarat (India).

Chemistry [...] is an art, it's music, it's a style of thinking Orbitals are for mathematicians Chemistry is for people who like to cook!

Alexander Shulgin (1925-)

Table of Contents

List of Abbreviations

General Remarks

Synopsis

Chapter 1 General Introduction

1.1	Heterocycles in drug discovery	01
1.2	Nomenclature of the fused ring system	03
1.3	Objectives	04
1.4	References and notes	05

Chapter 2 Biological and medicinal significance of pyrimidines and related heterocycles

2.1	Biological significance	06
2.2	Medicinal significance	07
2.3	Conclusion	24
2.4	References and notes	25

Chapter 3 Synthesis and biological evaluation of thieno[2,3-d]pyrimidines

3.1	Introduction	30
3.2	Reported synthetic strategies	33
3.3	Current work	39
3.4	Reaction Scheme	40
3.5	Reaction Mechanism	42
3.6	Experimental	43
3.7	Spectral discussion	57
3.8	Biological evaluation	85
3.9	References and notes	88

Chapter 4 Synthesis and biological evaluation of 1,2,4-triazolo[1,5*a*]pyrimidines

92
94
100
101
102
103
118
147
150

Chapter 5Microwave assisted synthesis and biological evaluation of pyrazolo
[3,4-d][1,2,4]triazolo[1,5-a]pyrimidines

Microwave-Assisted Organic Synthesis (MAOS)-A Brief History	156
Applications of microwaves in heterocyclic ring formation	159
Biological significance of pyrazolo-triazolo-pyrimidines	170
Current work	173
Reaction Scheme	174
Reaction Mechanism	175
Experimental	176
Spectral discussion	186
Biological evaluation	201
References and notes	204
	Microwave-Assisted Organic Synthesis (MAOS)-A Brief History Applications of microwaves in heterocyclic ring formation Biological significance of pyrazolo-triazolo-pyrimidines Current work Reaction Scheme Reaction Mechanism Experimental Spectral discussion Biological evaluation References and notes

Summary

Publications

Conference/seminars participated

Acknowledgements

List of Abbreviations

NCEs	New Chemical Entities
R & D	Research & Development
Da	Dalton
HTS	High Throughput Screening
AIDS	Acquired Immune Deficiency Syndrome
DHFR	Dihydrofolate Reductase
UTIs	Urinary Tract Infections
IDU	Idoxuridine
AZT	Azidothymidine
ARC	AIDS - related complex
Hsv	Herpes simplex virus
HIV	Human Immunodeficiency Virus
5-HT	5-hydroxytryptamine
CNS	Central Nervous System
NSAID	Non-Steroidal Anti-Inflammatory Drug
COX	Cyclooxygenase
GnRH	Gonadotropin-Releasing Hormone Antagonist
PDE4 inhibitors	Phosphodiesterase inhibitor
FT-IR	Fourier Transform- Infrared spectroscopy
¹ H-NMR	¹ H- Nuclear Magnetic Resonance spectroscopy
Gl.	Glacial
TLC	Thin Layer Chromatography
$R_{\rm f}$	Retardation factor
EtOH	Ethanol
Conc.	Concentrated
h.	Hours
GC-MS	Gas Chromatograph- Mass Spectrometry
DMSO	Dimethyl sulfoxide
mL	Milliliter
MeOH	Methanol
mp	Melting Point

Ms	Mass
Anal. Calcd.	Analytical Calculated
IR	Infrared
TMS	Trimethylsilane
MHz	Megahertz
MIC	Minimum Inhibitory Concentration
MTCC	Microbial Type Culture Collection
NCCLS	National Committee for Clinical Laboratory Standards
mg	Miligram
KDR	Kinase insert Domain Receptor
CDK-2	Cyclin-Dependent Kinase -2
PPA	Polyphosphoric Acid
DMF	Dimethylformamide
MAOS	Microwave-Assisted Organic Synthesis
MW	Microwave
Min.	Minute
W	Watt
Pd	Palladium
SiO ₂	Selenium Dioxide
InCl ₃	Indium Trichloride
РТР	Pyrazolotriazolopyrimidine

General remarks

- 1. ¹H NMR spectra were recorded on Bruker avance II 400 MHz NMR spectrometer using TMS as an internal reference.
- 2. Mass spectra were recorded on GC-MS QP-2010 spectrometer.
- 3. IR spectra were recorded on Schimadzu FT-IR-8400 spectrometer.
- 4. Elemental analysis was carried out on Vario EL III Carlo Erba 1108.
- 5. Thin layer chromatography was performed on Silica Gel (Merck 60 F₂₅₄).
- 6. The chemicals used for the synthesis of compounds were purchased from Spectrochem, Merck, Thomas-baker and SD fine chemical.
- 7. Melting Points were taken in open capillary and are uncorrected.
- 8. Microwave assisted reaction were carried out in QPro-M microwave synthesizer.
- 9. All the structures are drawn according to ACS Document 1996 style.

Synopsis

The work to be presented in thesis entitled "Studies on Some Compounds of Medicinal Interest" is classified into following Chapters.

Chapter 1	General Introduction
Chapter 2	Biological and medicinal significance of Pyrimidines and related
	heterocycles
Chapter 3	Synthesis and biological evaluation of thieno[2,3-d]pyrimidines
Chapter 4	Synthesis and biological evaluation of 1,2,4-triazolo[1,5- <i>a</i>]pyrimidines
Chapter 5	Microwave assisted synthesis and biological evaluation of pyrazolo
	[3,4- <i>d</i>][1,2,4]triazolo[1,5- <i>a</i>]pyrimidines

Chapter 1 General Introduction

Nowadays, the entire pharmaceutical industry is faced with the challenge of increasing productivity and innovation. The major hurdles are the increasing costs of research and development and a simultaneous stagnating number of new chemical entities (NCEs).

Chapter 1 gives a brief introduction for the pressing need of New Chemical Entities (NCEs) for pharmaceutical industry. It also describes importance of bicyclic and tricyclic aromatic heterocycles in drug discovery. Concept of "privileged structures" is also explained in brief. Chapter 1 also describes aims and objectives of the proposed research work.

Chapter 2 Biological and medicinal significance of pyrimidines and related heterocycles

Pyrimidines have a long and distinguished history extending from the days of their discovery as important constituents of nucleic acids to their current use in the chemotherapy of AIDS.

Chapter 2 outlines the biological significance and medical significance of one of the most important heterocycles, the pyrimidine. An attempt has been made to cover most of the physiologically as well as medicinally important compounds containing pyrimidine and its derivatives.

Chapter 3 Synthesis and biological evaluation of thieno[2,3-d]pyrimidines

The chemistry of pyrimidines and its derivatives has been studied for over a century due to their diverse biological activities. Due to formal isoelectronic relationship with purines, the thieno[2,3-d]pyrimidine ring system is of special biological interest. It has numerous pharmacological and medicinal applications *viz*, antitumour, immunodilator, tuberculosis, antiallergic and radioprotective.

Keeping in mind various biomedical applications and with a view to further assess the pharmacological profile of these class of compounds, three novel series of thieno[2,3-*d*]pyrimidines (ART-111 to ART-130) are synthesized in chapter 3. The synthesis of thieno[2,3-*d*]pyrimidines (ART-111 to ART-130) was achieved by acid catalysed cyclocondensation of polysubstituted 2-aminothiophenes (ART-101 to ART-110) with formic acid, gl. acetic acid and trifluoroacetic acid, respectively. Polysubstituted 2-aminothiophenes were prepared via the Gewald reaction. The products were characterized by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds are subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

Chapter 4 Synthesis and biological evaluation of 1,2,4-triazolo[1,5*a*]pyrimidines

The biological importance of 1,2,4-triazolo[1,5-*a*]pyrimidines is well documented. Over the years, various substituted derivatives of these heterocycles have shown utility against a range of biological targets. For example, they have demonstrated activity against malaria and bronchospasm and shown activity as coronary vasodilators, antihypertensive agents, leishmanicides, antibiotics, adenosine A_{2a} antagonists, immunosuppressants, antitumor agents, fungicides, xanthine oxidase inhibitors, and phosphodiesterase inhibitors.

In chapter 4, synthesis of four new series of of 1,2,4-triazolo[1,5*a*]pyrimidines (ART-201 to ART-240) containing an acetoacetamide fragment has been undertaken. The structures of all the newly synthesized compounds are elucidated by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds are subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

Chapter 5 Microwave assisted synthesis and biological evaluation of pyrazolo [3,4-*d*][1,2,4]triazolo[1,5-*a*]pyrimidines

Flat heterocyclic structures are fundamental moieties in anticancer compounds acting as DNA intercalating agents. In this context, pyrazolotriazolopyrimidines have been the subject of intense research due to the interesting pharmacological activities found for several of their derivatives. Among the various pyrazolotriazolopyrimidine ring systems, pyrazolo[3,4-*d*][1,2,4]triazolo[1,5-*a*]pyrimidines have never been explored,

and there are no reports on the synthesis and chemical properties of these class of compounds. With the aim to extend the synthetic pathways to new planar heterocyclic ring systems we focused our studies on the pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidine core structure which was found to be absent in the literature survey (Scifinder, CA, STN search).

Chapter 5 describes synthesis of pyrazolo[3,4-*d*][1,2,4]triazolo[1,5-*a*]pyrimi dine (ART-301 to ART-330), a new ring system, which was achieved by using a one-pot, microwave-assisted, catalyst-free biginelli like condensation. All the newly synthesized compounds are characterized by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds are subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

Chapter 1 General Introduction

1.1 Heterocycles in drug discovery

Nowadays, the entire pharmaceutical industry is faced with the challenge of increasing productivity and innovation. The major hurdles are the increasing costs of research and development and a simultaneous stagnating number of new chemical entities (NCEs).

The cause of this innovation deficit is definitively not the biology. Decoding of the human genome has led to a wealth of drug targets. With more than 30,000 human genes, the assumption is that at least 1,000 are significantly involved in the emergence and course of disease. Furthermore, because each of these genes is linked to the function of between five and ten proteins, the conclusion is that there might be 5,000–10,000 targets for new drugs [1]. Despite the successful introduction of protein therapeutics and the promise of gene therapy, major pharmaceutical companies are still focused on the discovery and development of low-molecular weight compounds. Hence, the challenge is to select the most drugable targets and to find the corresponding drug-like molecules, substances that not only interact with the target, but also have specific pharmacokinetic and toxicological properties, that allow them to be developed as a drug.

Medicinal chemistry as a scientific discipline has introduced several new techniques over the last few years in order to speed up the drug discovery process, such as combinatorial chemistry, microwave-assisted organic synthesis (MAOS) and high-throughput purification [2]. Despite this steady increase in R & D, the number of NCEs reaching the market has actually decreased dramatically.

It seems clear that selecting appropriate molecules to synthesize is one of the most troublesome questions. It has been estimated that the number of possible molecules with a molecular weight of less than 500 Da is 10^{200} , of which only 10^{60}

may possess drug-like properties. The proportion of these drug-like molecules synthesized to date has been estimated as one part in 10^{57} , or roughly the ratio of the mass of one proton to the mass of the sun! The issue is therefore the selection of new molecules from this vast universe, which have the potential to be biologically active [3].

In order to start a new drug discovery project and to find biologically active compounds, different options are available. Hits can be obtained *via* a virtual screening approach or can be copied from scientific or patent literature. Very often, drug discovery projects start with a high-throughput screening campaign of commercially available compound libraries against the target of interest. It became clear in recent years that combinatorial libraries are not diverse enough. As the main interest of the laboratory of medicinal chemistry lays in the synthesis and biological evaluation of aromatic heterocycles, we performed a literature survey of commercially available combinatorial libraries. This search revealed that the number of available heterocycles is mainly limited to well-known nitrogen containing compounds, such as quinazolines (1), indoles (2) and benzimidazole (3).

These structural classes are considered to be privileged structures. The concept of "privileged structures" was first proposed by Evans *et al.* to describe selected structural types that bind to multiple, unrelated classes of protein receptors and enzymes as high affinity ligands [4]. These privileged structures are typically rigid, polycyclic heteroatomic systems capable of orienting the various substituents in a well-defined three-dimensional space. Well-known examples of privileged substructures include benzodiazepines (4), coumarins (5), quinoxalines (6), benzofurans (7) and benzothiophenes (8) [5]. In order to improve the hit rate in HTS campaigns, privileged structures provide an ideal source of lead compounds. A single library based upon privileged substructures can lead to active compounds in variety of biological assays. Several research groups have utilized these structures in such a manner. For example, Nicolau and co-workers constructed a library based on the benzopyran (9) privileged scaffold [6], whereas Schultz and co-workers made use of the purine (10) scaffold [7].

1.2 Nomenclature of the fused ring system

As the following chapters deal with the synthesis of bicyclic and tricyclic fused ring systems, its nomenclature is herewith shortly reviewed. The nomenclature follows the following rules:

- The individual components are named without any application of fused ring system.
- (2) The parent component is represented in the fusion name by citing it last in the name. The parent component is the one with highest priority according to the following criteria:

(a) A heterocyclic component containing the heteroatom occurring earliest in the order: N, F, Cl, Br, I, O, S, Se, Te, P, As, Sb, Bi, Si, Ge, Sn, Pb, B, Hg.

- (b) A component containing the larger ring
- (c) A component containing the greater number of heteroatoms.
- (d) A component containing the greater variety of heteroatoms.
- (3) The attached component is then added as a prefix to the parent component. In the name of the prefix, the terminal 'e' is changed to 'o'.
- (4) The bonds of the parent component are indicated by a, b, c...starting with the bond normally occupying the 1,2 positions. The atoms of the attached component are numbered as usual, following the order of numbers in the original heterocycle.

(5) The numbering of the final condensed heterocycle is carried out independently, starting at an atom adjacent to a bridged-head atom, whereby heteroatoms receive the smallest possible number.

1.3 Objectives

Our interest in the synthesis and biological evaluation of heterocyclic bi and tricycles and the fact that some of these compounds are not frequently used (thieno[2,3-d] pyrimidines (11), 1,2,4-triazolo[1,5-a]pyrimidines (12) and pyrazolo[3,4-d][1,2,4] triazolo[1,5-a]pyrimidines (13)) in commercial compound libraries, prompted us to elaborate this type of chemistry and to synthesize three different heterocyclic scaffolds.

1.4 References and notes

- [1] (a) Drews, J. Science 2000, 287, 1960; (b) Wess, G.; Urmann M.;
 Sickenberger, B. Angew. Chem. Int. Ed. 2001, 40, 3341.
- [2] Lombardino, J. G.; Lowe III, J. A. Nat. Rev. Drug Discov. 2004, 3, 853.
- [3] Kolbn H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
- [4] Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.; Freidinger, R. M.;
 Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.;
 Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer,
 J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235.
- [5] Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
- [6] Nicolaou, K. C.; Pfefferkorn J. A.; Roecker, A. J.; Cao, G. Q.; Barluenga, S.;
 Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939.
- [7] Ding, S.; Gray, N. S.; Ding, Q.; Schultz, P. G. *Tetrahedron Lett.* 2001, 42, 8751.

Chapter 2 **Biological and medicinal significance of pyrimidines and related heterocycles**

2.1 Biological significance

Pyrimidines have a long and distinguished history extending from the days of their discovery as important constituents of nucleic acids to their current use in the chemotherapy of AIDS.

Alloxan (1) is known for its diabetogenic action in a number of animals [1]. Uracil (2), thymine (3) and cytosine (4) are the three important constituents of nucleic acids.

The pyrimidine ring is found in vitamins like thiamine (5), riboflavin (6) and folic acid (7) [2]. Barbitone (8), the first barbiturate hypnotic, sedative and anticonvulsant are pyrimidine derivatives [1].

2.2 Medicinal significance

During the last two decades, several pyrimidine derivatives have been developed as chemotherapeutic agents and have found wide clinical applications.

2.2.1 Antineoplastics and anticancer agents

There are a large number of pyrimidine-based antimetabolites. Usually, they are structurally related to the endogenous substrates that they antagonize. The structural modification may be on the pyrimidine ring or on the pendant sugar groups. One of the early metabolites prepared was 5-fluorouracil (5-FU, 9a) [3, 4], a pyrimidine derivative. 5-Thiouracil (9b) also exhibits some useful antineoplastic activities [5].

The antineoplastic compounds [6] possessing the guanine nucleus (10) like azathioprine (11) [7], mercaptopurine (12) [8], thioguanine (13) [9], tegafur (14) [10], etc. were discovered after formulation of the antimetabolite theory by Woods and Fildes in 1940. These drugs prevent the utilization of normal cellular metabolites [6].

There are many more in recent times, like mopidamol (15) [11], nimustine (16) [12], raltitrexed (17) [13], uramustine (18) [14] and trimetrixate (19) [15]. 1- β -D-Arabinosylcytosine (Ara-C, 20) [16] is also an example of a pyrimidine antimetabolite in which the sugar is arabinose having a beta configuration. It is mainly used as an anticancer agent and also exhibits significant therapeutic effects in patients with herpes virus infections and herpes encephalitis.

Gemcitabine (21), a pyrimidine antimetabolite, shows excellent antitumour activity against murine solid tumours [17].

2.2.2 Drugs for hyperthyroidism

2-Thiouracil (9c) and its alkyl analogue, thiobarbital (9e) are effective drugs against hyperthyroidism. Propylthiouracil (9d) is used as a drug for hyperthyroidism with minimum side effects [18].

2.2.3 Antifolates, antibacterials and antiprotozoals

In 1948, Hitchings made an important observation that a large number of 2,4diaminopyrimidines and some 2-amino-4-hydroxypyrimidines are antagonists of folic acid [19]. Since then, a large number of 2,4-diaminopyrimidines have been synthesized as antifolates. It was eventually proved that these pyrimidines are inhibitors of the enzyme dihydrofolate reductase (DHFR) [20, 21]. Notable amongst the 2,4-diaminopyrimidine drugs are pyrimethamine (22), a selective inhibitor of the DHFR of malarial plasmodia; trimethoprim (23), an antibacterial drug which selectively inhibits bacterial DHFR and most importantly, the very potent but non selective DHFR inhibitors, methotrexate (24a) and aminopterin (24b), both used in cancer chemotherapy [22]. 3',5'-dichloromethotrexate (24c), which is less toxic and more readily metabolized than methotrexate, has recently been introduced for anticancer therapy [23]. Brodimoprim (25) is also found to be an effective antibacterial compound [24].

2.2.4 Sulfa drugs

Pyrimidine derivatives of sulfa drugs, namely sulfadiazine, sulfamerazine and sulfadimidine are superior to many other sulfonamides and are used in some acute UTIs, cerebrospinal meningitis and for patients allergic to penicillins [25]. Sulfonamide–trimethoprim combinations are used extensively for opportunistic infections in patients with AIDS [26]. Sulfadoxine (26a) [27], a short and intermediate acting sulfonamide with a half-life of 7–9 days is used for malarial prophylaxis. Sulfisomidine (26b) with a half-life of 7 h is used as a combination sulfa therapy in veterinary medicine [28]. Sulfadiazine (27a), sulfamerzine (27b) and sulfadimidine (27c) possess good water solubility and therefore carry minimum risk of kidney damage, which makes them safe even for patients with impaired renal functions.

In 1959, sulfadimethoxine (27d) [29] was introduced with a half-life of approximately 40 h. The related 4-sulfonamidopyrimidine, sulfamethoxine (28) [29] having two methoxy groups at 5 and 6 positions, has by far the longest half-life of about 150 h. Methyldiazine (27e) [29] has a half-life of 65 h. Also, sulfamethoxy diazine (27f) [29] possesses good half-life. A new broad-spectrum sulfonamide, sulfamethomidine (29) [29] is relatively nontoxic and patients do not need extra fluid intake or alkalization. Sulfacytine (30) has been reported to be 3–10 times more potent than sulfaisoxazole and sulfisodimidine [29].

2.2.5 Antivirals and anti-AIDS

Recently, pyrimidine derivatives have generated widespread interest due to their antiviral properties. 5-Iododeoxyuridine (31) [30] is an antiviral agent of high selectivity.

IDU (5-iodo-2'-deoxyuridine) (32a) has been extensively utilized for viral infections. 5-Trifluromethyl-2'-deoxyuridine (F3 TDR, 32b) has been found useful against infections resistant to IDU therapy [30]. Ara-A, 9- β -D-arabinofuranosyl adenine (33), a relatively new antiviral drug, is effective against herpes infections of eye, brain and skin. It is especially effective against IDU-resistant herpes virus [30].

Some purine nucleosides are equally noteworthy. Retrovir (AZT-16, 34) is a potent inhibitor of the *in vivo* replication and cytopathic effects of HIV and has been recently approved for use against AIDS and severe ARC [31]. At present, Acyclovir (35a) is the only remedy for genital herpes. The oral formulation of Acyclovir is effective against both first and second degree recurrence genital herpes with minimal

side effects [32]. Ganciclovir (35b) [33] has shown good *in vivo* activity against HCV_{1&2}.

Several members of a series of acyclic nucleosides, which contain a fused pyrimidine ring (mainly purine), are found to be effective antivirals. Famiciclovir (35c) and valaciclovir (35d) are drugs used for several DNA viruses, including HSV types 1 and 2, Varicella-zoster virus and Epstein-Barr virus [34]. Penciclovir (35e) [35] is useful for topical treatment of recurrent herpes, *Libialis*. Cidofovir (36b) [35], an antimetabolite for deoxycytosine triphosphate is used for the treatment of

cytomegalovirus (CMV) in AIDS patients. Lamivudine (36a) [35] is an effective anti-AIDS drug when used in combination with zidovudine (37) [35]. Zidovudine [36] is an analogue of thymidine in which the azido group is substituted at the 3-position of the dideoxyribose moiety. It is active against RNA tumour viruses (retroviruses) that are the causative agents of AIDS and T-cell leukaemia. It is used in AIDS and AIDSrelated complex (ARC) to control opportunistic infections by raising absolute CD4⁺ lymphocyte counts. Also, zalcitabine (38) [36] is another useful alternative drug to zidovudine. It is given in combination with zidovudine, when CD4⁺ cell count falls below 300 cells/mm³. Didanosine (39) [37] is a purine dideoxynucleoside, which is an analogue of inosine. Didanosine inhibits HIV RT and exerts a virustatic effect on the retroviruses. Combined with zidovudine, antiretroviral activity of didanosine is increased. Stavudine (40) [37] is a pyrimidine nucleoside analogue that has significant activity against HIV-1 after intracellular conversion of the drug to a D4T-triphosphate. It is more effective than zidovudine or didenosine for treatment in patients for delaying the progression of HIV infection. It is recommended for patients with advanced HIV infection. Abacavir sulfate (41) [37] was approved in 1998 as a NRTI (Nucleoside Reverse Transcriptase Inhibitor) to be used in combination with other drugs for the treatment of HIV and AIDS. The major use of abacavir appears to be in combination with other NRTIs.

2.2.6 Antibiotics

There are few examples of pyrimidine antibiotics. The simplest of all is bacimethrin (5-hydroxymethyl-2-methoxypyrimidin-4-amine) (42), which is active against several staphylococcal infections [38]. Gourgetin (43), a cytosine derivative is active against mycobacteria as well as several Gram-positive and Gram-negative bacteria [39]. There are more derivatives of cytosine, namely amicetin (44) and plicacetin (45), which exhibit activity against acid fast and Gram-positive bacteria as well as some other organisms [38]. Puromycin (46) has a wide spectrum of antitrypanosomal activity. Aminoglycoside antibiotics phleomycin (47a), bleomycin (47b) and related families are wide-spectrum antibiotics containing the pyrimidine ring. Another antibiotic tubercidine (48) is reported to exhibit antitumour properties [39]. In addition, they have antineoplastic activity. Bleomycin is already in clinical use against certain tumours like Hodgkin's lymphoma and disseminated testicular cancer [40].

2.2.7 Antifungals

Pyrimidines also exhibit antifungal properties. Flucytosine (49) [41] is a fluorinated pyrimidine used as nucleosidal antifungal agent for the treatment of serious systemic infections caused by susceptible strains of candida and Cryptococcus [42]. Hexetidine (50) [43] is mainly used for the treatment of aphthous ulceration.

2.2.8 Anthelmentics

These drugs have the ability of ridding the body of parasitic worms. Pyrantel pamoate (51) is a depolarizing neuromuscular blocking agent that causes spastic paralysis in helminthes and is employed in the treatment of infestations caused by pinworms and roundworms [44].

2.2.9 Antitubercular drugs

Capreomycin (52) produced by *Streptomyces capreolus* is a second-line bacteriostatic antituberculin drug containing pyrimidine [45, 46].

Viomycin (53) is more tuberculostatic than *p*-aminosalicyclic acid. It is effective in the treatment of experimental tuberculosis.

2.2.10 CNS active agents

2.2.10.1 Sedative/hypnotic/antiepileptic agents

Agents of the anxiolytic, sedative and hypnotic group include a wide variety of barbiturates (54a–i) used as sedative and hypnotics and are classified as drugs having short, intermediate and long duration of action [47, 48]. Allobarbital (54a), aprobarbital (54b), pentobarbital (54e), phenobarbital (54g) and secobarbital (54i) are frequently used clinically as hypnotic barbiturates [49]. Hexobarbital (54c), cyclobarbital (54d) and propallylonal (54f) are some of the current drugs in the market used as sedative hypnotics [50]. Barbiturates as sedative hypnotics have a long and fascinating history. In fact Eli Lilly [51] patented secbutabarbital (54h) in 1932, while barbitone (8), the first of the barbiturates [1] was introduced in 1903.

2.2.10.2 Anxiolytic agents

Few of the pyrimidine derivatives are also used as anxiolytics. Most important of these is buspirone (55), indicated in the management of anxiety disorders accompanied with or without depression. It lacks sedative, anticonvulsant and muscle-relaxant effects and most importantly abuse potential [52]. Buspirone lacks affinity to benzodiazepine receptors, but binds avidly to one subclass of serotonin receptors, the 5-HT_{1A} subtype [53, 54]. Ritanserin (56), a 5HT₂ antagonist with anxiolytic activity is a pyrimidine derivative [55]. A simple pyrimidine derivative, mezilamine (57) is classified as an antipsychotic agent [56]. Risoperidone (58) is an antipsychotic drug, which is a structural hybrid of butyrophenone and can be used as anxiolytic, antidepressant and antiparkinsonian drug [57].

Chapter 2

2.2.10.3 Pyrimidine anaesthetics

Thimylal (59) is a short acting general anaesthetic drug, which is also a pyrimidine analogue [58, 59].

Saxitoxin (60) [58] is a naturally occurring pyrimidine containing anaesthetic agent, but is too toxic to be of clinical use. Saxitoxin is isolated from some marine dinoflagellates.

2.2.10.4 Diuretics and uricosurics

Several xanthine derivatives (61) containing fused pyrimidine ring systems like caffeine (61a) [60], etamiphylline (61b) [61], lomiphylline (61c) [62], etophylline (61d) [63], theophylline (61e) [60] and theodrendaline (61f) [64] are known to promote a weak diuresis by stimulation of cardiac function and by a direct action on the nephron, acting as adenosine receptor antagonists [60].

Chapter 2

There are a few examples of diuretics which contain a pyrimidine ring. Noteworthy are quinethazine (62a), metolazone (62b) [65] and triamterene (63) [66].

2.2.11 Cardiac agents

2.2.11.1 Antihypertensives

Several pyrimidine ring-containing drugs have exhibited antihypertensive activity. Prazosin (64a), a quinozoline derivative, is a selective α_1 -adrenergic antagonist [67, 68]. Its related analogues bunazosin (64b) [69], terazosin (64c) [70] and trimazosin (64d) [71] are potent antihypertensive agents. Another quinazoline derivative, ketanserin (65) [72] having a similar effect is an antagonist of both a_1 -adrenergic and serotonin-S₂ receptors. Its mechanism of action however is still controversial. A triaminopyrimidine derivative, minoxidil (66), whose mechanism of action and therapeutic action are similar to Prazosin, has been introduced in therapy for its side effects, in the treatment of alopecia, male baldness [73]. Besides these, some more pyrimidine derivatives given below were found to be antihypertensives [74, 75].

Alfuzocin (67) [74], a prazosin analogue and an α_1 -adrenoceptor antagonist as well as urapidil (68) [75] are used especially in urinary obstruction caused by benign prostate hyperplasia.

2.2.11.2 Vasodilators

A series of xanthine derivatives are used as peripheral and cerebral vasodilators. Especially, pentifylline (69a) and pentoxifylline (69b) are used in cardiovascular disorders [76]. Other derivatives like xantinol nicotinate (70b) [77], a vasodilator with general properties like nicotinic acid used in cerebral and peripheral vascular disorders and pimefylline (70a) and pyridofylline (70c) [78] are noteworthy. A new dopamine receptor stimulant, pirebidil (71) [79] is reported to have produced significant improvement in ADL (Activity of Daily Living) in patients suffering from Parkinson's syndrome.

Chapter 2

2.2.11.3 Cardiotonics/bronchodialators

Several xanthine derivatives *viz*., theophylline (61e), aminophylline (72a) [80] and proxyphylline (72b) [80] exhibit good bronchodilator activity.

2.2.12 Antihistaminic pyrimidines

Theophylline (73) is ten times more potent than either astemizole or terfenadine in its affinity for H_1 -histamine binding site and appears to be devoid of CNS activity [81]. Another pyrimidine containing antihistaminic drug, temelastine (73a) is comparable to mepyramine [82]. Radiolabelled studies have indicated that it does not penetrate the CNS appreciably. Icotidine (73b), a structural analogue of temelastine lacks CNS activity and is a dual antagonist of both H_1 and H_2 receptors [83].

Pemirolast (74) [84], a new oral nonbronchodilator antihistaminic agent is also a pyrimidine derivative. It has demonstrated sufficient antihistaminic activity to warrant its use in severe asthma. Another compound, piprinhydrinate (75) [85] is also a pyrimidine derivative.

2.2.13 Analgesics and NSAID drugs

Acetiamine (76a) [86], bentiamine (76b) [86] and fursultiamine (76c) [87] are new lipid-soluble forms of thiamine (vitamin B_1) having therapeutic use in beriberi, polyneuritis, encephalopathy, pain, malnutrition and alcoholism and especially in the treatment of long-standing insulin-dependent diabetes mellitus. Fursultamine has been reported to inhibit the arachadonic acid cascade-line activation and reverse the increase in CBF (Coronary Blood Flow).

Afloqualone (77) [88] has been evaluated as a successful anti-inflammatory agent with lower back pain patients. Epirizole (78) [89], another NSAID, is suggested to be a COX-2 inhibitor. Ademetionine (79) [90] is primarily used in conjunction to glucosamine and chondroitin therapy. Octotiamine (80) [91], a vitamin B_1 derivative also exhibits anti-inflammatory activity. Proquazone (81) [92], a condensed pyrimidin-2-one derivative has been reported to exhibit good NSAID potential.

2.2.14 Metabolic electrolytes

Orotic acid (82) [93], a simple pyrimidine derivative and its mineral forms are used in metabolic therapy, especially for cardiovascular patients to prevent heart failure in cardiomyopathy. Oroate is needed as a key intermediate in biosynthesis of pyrimidine nucleotides, which are building blocks for DNA and RNA required for the final protein synthesis.

2.3 Conclusion

Pyrimidines occupy a distinct and unique place in our life. This heterocyclic moiety has great biological and medicinal significance. A large array of pyrimidine drugs possesses a variety of medicinal properties. These properties include anticancer, antibacterial, antiprotozoal, antimicrobial, antiviral, antihypertensive, antihistaminic, anti-inflammatory, analgesic, CNS-active to metabolic adjuvant.

Keeping in mind various biomedical applications and with a view to further assess the pharmacological profile of bi/tricyclic aromatic heterocycles related to pyrimidines, three different heterocyclic scaffolds related to pyrimidines (thieno[2,3-d]pyrimidines, 1,2,4-triazolo[1,5-a]pyrimidines and pyrazolo[3,4-d][1,2,4]triazolo [1,5-a]pyrimidines) have been synthesized in the framework of this doctoral thesis.

2.4 References and notes

- [1] Eussell, J. A. Annu. Rev. Biochem. 1945, 14, 309.
- [2] Cox, R. A. Quart. Rev. 1968, 22, 499.
- [3] Cox, R. A. Quart. Rev. 1968, 22, 934.
- [4] Callery, P.; Gannett, P. Cancer and cancer chemotherapy. In *Foye's Principles of Medicinal Chemistry* (eds Williams, D. A., Lemke, T. L.), Lippincott Williams and Wilkins, Philadelphia, 2002, 934.
- [5] Al Safarjalani, O. N.; Zhou, X. J.; Ras, R. H.; Shi, J.; Schinazi, R. F.; Naguib,
 F. N.; El Kouni, M. H. *Cancer Chemother. Pharmacol.* 2005, 55, 541.
- [6] Remers, W. A. Antineoplastic agents. In Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry (eds Delgado, J. N.; Remers, W. A.), Lippincott Williams and Wilkins, Philadelphia, 1998, 366.
- [7] Elion, G. B. Fed. Proc. **1967**, 26, 898.
- [8] Burchenal, J. H. et al. Blood, **1953**, *8*, 965.
- [9] Clarkson, B. D. *Cancer* **1970**, *5*, 227.
- [10] Giller, S. A.; Zhuk, R. A.; Lidak, M. I. U. Dokl. Akad. Nauk. SSR 1967, 176, 332.
- [11] Ambrus, J. L.; Stadler, I.; Kulaylat, M.; Koreshi, A.; Akhtar, S. J. Med. Chem.
 1996, 27, 21.
- [12] Weller, M.; Muller, B.; Koch, R.; Bamberg, M.; Krauseneck, P. J. Clin. Oncol. 2003, 21, 3276.
- [13] Horton, T. M. et al. Clin. Cancer Res. 2005, 11, 1884.
- [14] Kennedy, B. J.; Torkelson, J. L.; Torlakovic, E. Cancer 1999, 85, 2265.
- [15] Bertino, J. R. et al. Biochem. Pharmacol. 1979, 28, 1983.
- [16] Chris, H. T. *The Oncologist* **1996**, *1*, 68.
- [17] Hertel, L. W.; Border, G. B.; Kroin, J. S.; Rinzel, S. M.; Poore, G. A.; Todd,
 G. C.; Grindey, G. B. *Cancer Res.* 1990, *50*, 4417.
- [18] Cheng, C. C.; Roth, B. In *Progress in Medicinal Chemistry* (eds Ellis, G. P.; West, G. B.), Butterworths, London, **1971**, *8*, 61.
- [19] Hitchings, G. H.; Elion, G. B.; Wanderers, H.; Falco, E. A. J. Biol. Chem.
 1948, 174, 765.
- [20] Futterman, S. J. Biol. Chem. 1957, 228, 1031.
- [21] Werkheiser, W. C. J. Biol. Chem. 1961, 236, 888.

[22]	Cheng, C. C. and Roth, B. In Progress in Medicinal Chemistry (eds Ellis, G.
	P.; West, G. B.), Butterworths, London, 1982, 19, 267.
[23]	Montgomery, J. A.; Johnston, T. P.; Shealy, Y. F. In Burgers Medicinal
	Chemistry, Part II (ed. Wolf, M. E.), Wiley-Interscience, New York, 1979,
	595.
[24]	Kompis, I.; Wick, A. Helv. Chim. Acta. 1977, 60, 3025.
[25]	Shinogi, US Patent, 2 888 455, 1959.
[26]	MacDonald, L.; Kazanijan, P., Formulary 1996, 31, 470.
[27]	White, N. J. N. Engl. J. Med. 1996, 335, 800.
[28]	Von Zabern, I.; Nolte, R.; Przyklenk, H.; Vogt, W. Int. Arch. Allergy Appl.
	Immunol. 1985, 76, 205.
[29]	Huges, J.; Roberts, L. C.; Coppridge, A. J. J. Urol. 1975, 114, 912.
[30]	Kwee, M. S. L.; Stolk, L. M. L. Pharm. Weekbl. (Sci.) 1984, 6, 101.
[31]	Mitsuya, H. Proc. Natl. Acad. Sci. USA 1985, 82, 7096.
[32]	Mansuri, M. M.; Martin, J. C. Annu. Rep. Med. Chem. 1987, 22, 147.
[33]	Sullivan, V.; Talarico, C. L.; Stanat, S. C.; Davis, M.; Coen, D. M.; Biron, K.
	K. Nature 1992, 358, 162.
[34]	Johnson, M. A.; Verpooten, G. A.; Daniel, M. J.; Plumb, R.; Moss, J.; Van
	Caesbroeck, D.; De Broe, M. E. Br. J. Clin. Pharmacol. 1998, 46, 21.
[35]	Van Leeuwen, R. J. Infect. Dis. 1995, 171, 1161.
[36]	Mitsuya, H. (ed.) Anti-HIV Nucleosides: Past, Present and Future, Chapman
	and Hall, New York, 1997.
[37]	Gorbach, S. L.; Barlett, J. G.; Blacklow, N. R. Infectious Diseases, Saunders
	and Company, Philadelphia, 1998, 1154.
[38]	Reddick, J. J.; Saha, S.; Lee, J.; Melnick, J. S.; Perkins, J.; Begley, T. P.
	Bioorg. Med. Chem. Lett. 2001, 11, 2245.
[39]	Singh, P.; Kumar, R.; Sharma, B. K. J. Enzyme Inhib. Med. Chem. 2003, 18,
	395.
[40]	Wakelin, L. P. G.; Waring, M. J. DNA intercalating agents. In
	Comprehensive Medicinal Chemistry, Drug Compendium (ed. Sammers, P.
	G.), Pergamon Press, 1990 , <i>2</i> , 731.
[41]	Polak, A.; Scholer, H. J. Chemotherapy 1975, 21, 113.

[42]	Hunter, P. A., Darby, K. G., Russel, N. J. Fifty years of antimicrobials: Past					
	perspectives and future trends. In Symposia of the society for General					
	Microbiology (ed. Collins, M.), Cambridge University Press, Cambridge,					
	1995.					
[43]	Chadwick, B.; Addy, M., Walker, D. M. Br. Dent. J. 1991, 71, 83.					

- [44] Hunziker, F. *Helv. Chim. Acta* **1967**, *50*, 1588.
- [45] Nomoto, S. J. Antibiot. 1977, 30, 955.
- [46] Gale, E. F.; Cundliffe, E.; Reynolds, P. E.; Richmond, M. H.; Waring, M. J. *The Molecular Basis of Antibiotic Action*, Wiley and Sons, **1981**, *2*, 500.
- [47] Daniels, T. C.; Jorgensen, E. C.; Central nervous system depressants. In Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry (ed. Doerge, R. F.), J. B. Lippincott, Philadelphia, 1982, 33.
- [48] Furukawa, S. et al. J. Vet. Med. Sci. 2000, 62, 23.
- [49] Threlkeld, D. S. Facts and Comparisons 1998, pp. 269.
- [50] Vida, J.; Yevich, J. Sedative hypnotics. In *Burger's Medicinal Chemistry and Drug Discovery* (ed. Abrahim, D. J.), John Wiley, New Jersy, 2003, 6, 203.
- [51] Eli Lilly, US Patent, 1 856 792, **1932**.
- [52] Taylor, D. P.; Allen, L. E.; Becker, J. A.; Crane, M.; Hyslop, D. K.; Riblet, L.
 A. *Drug Rev. Res.* 1984, *4*, 95.
- [53] Temple, D. L.; Yevich Jr. J. P., Now, J. S. J. Clin. Psychiatry 1982, 43, 4.
- [54] Peroutka, S. S. Biol. Psychiatry 1985, 20, 971.
- [55] Coalpaert, F. C.; Meert, T. F.; Niemegens, C. J. E.; Janssen, P. A. J. Psychopharmacology 1985, 86, 45.
- [56] Fur, G.; Le Burgerin, M. C.; Malgoures, C.; Uzan, A. Neuropharmacology 1979, 18, 591.
- [57] Howard, H. R.; Seeger, T. F. Annu. Rep. Med. Chem. 1993, 28, 39.
- [58] Abott, US Patent, 2 153 729, **1939**.
- [59] Abott, US Patent, 2 153 729, **1934**.
- [60] Arnaud, M. J. Products of metabolism of caffein. In *Caffein, Perspectives* from Recent Research (ed. Dews, P. B.), Springer-Verlag, New York, **1984**, 3.
- [61] Klosa, J. Arch. Pharm. Ber. Dtsch. Pharm. Ges 1955, 288, 301.
- [62] Chemische Werke Albert *DOS* **1973**, 2 330 741.
- [63] Gane's Chem. Works, US Patent, 2 715 125, 1955.

- [64] Degussa, DE, 1 119 868, **1959**.
- [65] Wallace, Tiernan, US Patent, 3 360 518, **1967**.
- [66] Spickett, R. G. W.; Timmis, G. M. J. Chem. Soc. 1954, 2887.
- [67] Pfizer, US Patent, 3 511 836, **1970**.
- [68] Koshy, M. M.; Mickey, D. Circulation 1977, 55, 533.
- [69] Hara, H.; Ichikawa, M.; Oku, H.; Shimazawa, M.; Araie, M. Cardiovasc. Drug Rev. 2005, 23, 43–56.
- [70] Honkanen, E.; Pipuri, A.; Kairisalo, P.; Nore, P.; Karppaness, H.; Paakari, I.*J. Med. Chem.* **1983**, *26*, 143.
- [71] Meredith, P. A.; Scott, P. J.; Kelman, A. W.; Hughes, D. M.; Reid, J. L.; Am. J. Ther. 1995, 2, 541.
- [72] Ganzevoort, W.; Rep, A.; Bonsel, G. J.; de Vries, J. I.; Wolf, H. *Hypertension* 2004, 22, 1235.
- [73] Wong, W. M. Ann. Pharmacother. 1994, 28, 290.
- [74] Jargon, A. Lancet 1991, 337, 1457.
- [75] Langtry, H. D. Drugs 1989, 38, 900.
- [76] Reynolds, J. E. F. (ed.), *Martindale, The Extra Pharmacopoeia*, Council of The Royal Pharmaceutical Society of Great Britain, London, **1996**, *31*, 926.
- [77] Wulfing, J. A. US Patent, 2 924 598, **1960**.
- [78] Debarge, J. FE-M, 828, **1960**.
- [79] Engel, J.; Granerus, A. K.; Svanborg, A. Eur. J. Clin. Pharmacol. 1975, 8, 223.
- [80] Reynolds, J. E. F. (ed.), *Martindale, The Extra Pharmacopoeia*, Council of The Royal Pharmaceutical Society of Great Britain, London, **1996**, *31*, 1651.
- [81] Gane's ChemWorks, US Patent, 2715 125, **1955**.
- [82] Brown, E. A.; Griffith, R.; Harvey, C. A.; Owen, D. D. A. *Brit. J. Pharmacol.* 1986, 87, 569.
- [83] Ganellin, C. R. et al., Engl. Reg. Allergy Proc., 1986, 7, 126.
- [84] Bristol-Myer, US Patent, 4 122 274, **1978**.
- [85] Promonta, DE, 934 890, **1951**.
- [86] Gauthier, B. Ann. Pharm. Fr. 1963, 21, 655.
- [87] Takeda, US Patent, 3 016 380, **1962**.
- [88] Tani, J. J. Med. Chem. 1979, 22, 95.

- [89] Vanderhaeghe, H.; Claesen, M. Bull. Chim. Belg. 1959, 68, 30.
- [90] Schlenk *Enzymologia* **1965**, *29*, 283.
- [91] Fujisawa, US Patent, 3 098 856, **1963**.
- [92] Clissold, S. P.; Beresford, R. *Drugs* **1984**, *33*, 478.
- [93] Jones, M. E. Annu. Rev. Biochem. **1980**, 49, 233.

Chapter 3 Synthesis and biological evaluation of thieno[2,3-d]pyrimidines

3.1 Introduction

Fused pyrimidines continue to attract considerable attention of researchers in different countries because of their great practical usefulness, primarily, due to a very wide spectrum of their biological activities. Thienopyrimidines occupy a special position among these compounds. Along with some other pyrimidine systems containing an annelated five membered hetero aromatic ring, thienopyrimidines are structural analogues of biogenic purines and can be considered as potential nucleic acid antimetabolites.

There are three isomeric thienopyrimidines corresponding to the three possible types of annulation of thiophene to the pyrimidine ring: thieno[2,3-d]pyrimidine (1), thieno[3,4-d]pyrimidine (2), and thieno[3,2-d]pyrimidine (3).

From the standpoint of biological activity, fused heteroaromatic systems are often of much greater interest than the constituent monocyclic compounds. Antiallergic [1], antiatherosclerotic [2], antibacterial [3], antidepressive [4], antidiabetic [5], antihypertensive [6], antihistaminic [7], analgesic and antiinflammatory [8], antiviral [9] and spasmolytic [10] activities have been reported for certain thienopyrimidine derivatives. Some examples of published derivatives of thienopyrimidine with their biological activities are as following.

The similarity between the physicochemical properties of benzene and thiophene is striking. For example, the boiling point of benzene is 81.1 °C and the one

of thiophene is 84.4 °C (at 760 mm Hg) and therefore, thiophene and benzene is a well known example of bioisosterism. The change of a benzene moiety into a thiophene often results in superior pharmacodynamic, pharmacokinetic, or toxicological properties. For example, the thiophene analogue of piroxicam (a non-steroidal anti-inflammatory agent used in arthritis patients) has the same biological activity, with the same mechanism of action as piroxicam, and even displayed a longer plasma half-life than piroxicam [17]. Thiophene isosteres of mianserin (a tetracyclic antidepressive agent) also act as serotonin receptor (5-HT) antagonists (16 and 17) [18].

The exchange of a phenyl ring by a thiophene ring in bicyclic derivatives can generate three regioisomers. For example, Blair and co-workers described the replacement of the phenyl ring of N,N-dimethyltryptamine (18) by a thiophene moiety,

giving rise to three isomers: thieno[3,2-*b*]pyrrole (19), thieno[2,3-*b*]pyrrole (20) and thieno[3,4-*b*]pyrrole (21) [19]. Biological evaluation demonstrated that both thieno[3,2-*b*]pyrrole and thieno[2,3-*b*]pyrrole showed similar activity as the parent indole analogue, and whereas thieno[3,4-*b*]pyrrole lost activity.

As a logical consequence of thiophene – phenyl isosterism, thienopyrimidines (23, 24 and 25) can be considered as bioisosteres of quinazolines (22), which are extensively described in scientific and patent literature as displaying a plethora of biological activities. The synthesis of thienopyrimidine derivatives as potential surrogates for the quinazoline core structure has therefore become a routine strategy in modern drug design and development.

Thienopyrimidines (29) can also be considered as structural analogues of fivemembered heterocycles such as purines (26) and thiazolopyrimidines (27) and (28).

3.2 Reported synthetic strategies

Synthetic approaches towards thienopyrimidines can be divided into two main groups according to the type of starting material. Either, the synthesis starts from a pyrimidine derivative and a thiophene ring is then constructed, or a thiophene analogue is used as starting material, followed by the formation of a pyrimidine ring (30).

3.2.1 Synthesis of thienopyrimidines from a thiophene moiety

For the synthesis of thienopyrimidines from a thiophene moiety, an appropriately substituted aminothiophene serves as the starting material. 2-aminothiophene derivatives, which are the starting materials for thieno[2,3-*d*]pyrimidines, can be easily synthesized by Gewald reaction [20]. The first step of this multicomponent reaction is the Knoevenagel-Cope condensation of carbonyl compound (ketone or aldehyde) with an activated nitrile (α -cyanoester), yielding an α , β -unsaturated nitrile. This intermediate is then thiolated at the methylene group by elemental sulfur, followed by an intramolecular cyclization yielding a polysubstituted-2-aminothiophene (Scheme 3.1).

The Thorpe-Ziegler reaction is one of the most efficient methods for the synthesis of 5-membered heterocycles containing an amino group at C-3 position [21]. 3-aminothiophene derivatives are useful building blocks for the construction of thieno[3,2-*d*]pyrimidines and thieno[3,4-*d*]pyrimidines.

The alkylthio olefin intermediates, generated by the reaction of *vic*cyanodimethylaminoethylenes or *vic*-bromocyanoethylenes or cyanoacetylenes [22] with mercapto compounds of general formula HSCH₂Y (Y is an electron withdrawing group) in the presence of base, undergo a Thorpe-Ziegler cyclization yielding polysubstituted 3-aminothiophenes.

The construction of a pyrimidine ring system from a 2-amino- or 3-aminothiophene derivative follows the same reaction sequence. One of the most popular approaches to construct the pyrimidine ring is *via* the synthesis of thienylureas or thienylthioureas. In a first step, the amino group of the thiophene moiety is converted into a urea by treatment with an isocyanate [23], potassium cyanate hydrochloride [24], or chlorosulfonyl isocyanate [25] and into a thiourea by reaction with an isothiocyanate [26], or thiophosgene and an amine [27]. The resulting thienylureas and thienylthioureas readily undergo an intramolecular cyclization upon treatment with bases or acids to afford thienopyrimidines (Scheme 3.3).

The synthesis of thienopyrimidin-4(3H)-ones is well studied and can be categorized into 4 groups according to the functional groups on the thiophene moiety and the structures of the intermediates (Scheme 3.4).

- (1) Thienopyrimidinones can be prepared *via* cyclization of diamides intermediates, which are generated from *vic*-aminocarbamoylthiophenes by reaction with acylating agents such as orthoesters [28], acid anhydrides and acid chlorides [29], formic acid [30] and diethyl oxalate [31].
- (2) Alternatively, the synthesis of thienopyrimidinones can be achieved from *vic*aminoalkoxycarbonylthiophenes. Amidine intermediates, formed by the

reaction of thiophenes with amides [32], nitrites under acidic conditions [33], orthoesters and amines [34], undergo an intramolecular cyclization to afford thienopyrimidinones.

- (3) A third procedure is based on the recyclization of thieno-oxazinones, which are generated by reaction of *vic*-aminocarboxylic acids or esters with acid chlorides or orthoesters [35]. The recyclization proceeds through the diamide intermediate which is generated upon treatment with amines [36].
- (4) Vic-aminocyanothiophenes also serve as valuable starting materials for the synthesis of thienopyrimidinones. Initially, the thieno-oxazinimine interme diates are generated by the acylation of the amino group and then recyclization in the presence of an acid occurs to afford thienopyrimidinones [37].

3.2.2 Synthesis of thienopyrimidines from a pyrimidine moiety

Due to the poor availability of appropriately substituted pyrimidines, the synthesis of thienopyrimidines from pyrimidines is much less described in literature. In general,

thieno[2,3-*d*]pyrimidines and thieno[3,2-*d*]pyrimidines can be obtained by the intramolecular cyclization of pyrimidine (Scheme 3.5). This pyrimidine derivative can be obtained by the substitution of the mercaptoacetic acid residue for the chlorine [38].

Alkylation of pyrimidinethiones with a chloroacetic acid derivative [39] is also a possibility. Depending on the substituents of the pyrimidine ring (X) and of mercapto side chain (Y), thienopyrimidines with a different substitution pattern on the thiophene moiety can be synthesized. When $X = CO_2R$, 5-hydroxythieno pyrimidines (which exist predominantly as the oxo form) are formed. In case of X =CN, the Thorpe-Ziegler reaction, affords amino substituted pyrimidines. When X and Y are a ketone or an aldehyde, the Claisen-Schmidt condensation affords R substituted thienopyrimidines.

Alternatively, thienopyrimidines can be prepared by the reaction of *vic*chloroalkynylpyrimidines with sodium sulphide [40] (Scheme 3.6). The alkynylpyrimidines are obtained *via* a Sonogashira reaction.

Sigmatropic rearrangement is a useful method to construct 5-membered nitrogen and sulphur containing heterocycles [41]. The thio-Claisen rearrangement of propargylic sulfides affords thienopyrimidines *via* an allene intermediate followed by tautomerization, which then ring closes yielding the thiophene analogue [42] (Scheme

3.7). Another approach of sigmatropic rearrangement involves the oxidation of sulfide to sulfoxide. The sulfoxide undergoes an initial [2,3] sigmatropic rearrangement to generate the allene intermediate which then undergoes a Claisen-like [3,3] sigmatropic rearrangement through the S-O bond, followed by tautomerization to produce intermediate. An intramolecular Michael type addition followed by aromatization gives access to the desired thienopyrimidines.

3.3 Current work

The chemistry of pyrimidines and its derivatives has been studied for over a century due to their diverse biological activities. Due to formal isoelectronic relationship with purines, the thieno[2,3-d]pyrimidine ring system is of special biological interest. It has numerous pharmacological and medicinal applications *viz*, antitumour, immunodilator, tuberculostic, antiallergic and radioprotective.

Keeping in mind various biomedical applications and with a view to further assess the pharmacological profile of these class of compounds, three novel series of thieno[2,3-*d*]pyrimidines (ART-111 to ART-130) are synthesized. The synthesis of thieno[2,3-*d*]pyrimidines (ART-111 to ART-130) was achieved by acid catalysed cyclocondensation of polysubstituted 2-aminothiophenes (ART-101 to ART-110) with formic acid, gl. acetic acid and trifluoroacetic acid, respectively. Polysubstituted 2-aminothiophenes were prepared via the Gewald reaction [43]. The products were characterized by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds were subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

3.4 Reaction scheme

Code	R ₁	R ₂	M.F.	M.W.	M.P. °C	Yield %	R _{f1}	R _{f2}
ART-101	Н	-	C ₁₃ H ₁₁ N ₃ OS	257	156-158	64	0.46	0.67
ART-102	4-OCH ₃	-	$C_{14}H_{13}N_3O_2S$	287	203-205	69	0.48	0.70
ART-103	2-OCH ₃	-	$C_{14}H_{13}N_3O_2S$	287	221-223	63	0.52	0.73
ART-104	$4-NO_2$	-	$C_{13}H_{10}N_4O_3S$	302	179-181	72	0.54	0.75
ART-105	2,5-CH ₃	-	C ₁₅ H ₁₅ N ₃ OS	285	182-184	79	0.46	0.68
ART-106	4-Cl	-	C13H10ClN3OS	291	199-201	73	0.51	0.71
ART-107	3-Cl	-	C13H10ClN3OS	291	181-183	65	0.56	0.75
ART-108	4-F	-	C13H10FN3OS	275	254-256	51	0.50	0.65
ART-109	2-F	-	C ₁₃ H ₁₀ FN ₃ OS	275	153-155	58	0.58	0.68
ART-110	3-CF ₃	-	$C_{14}H_{10}F_3N_3OS$	325	223-225	62	0.48	0.77
ART-111	Н	Н	$C_{14}H_{11}N_3O_2S$	285	128-130	68	0.53	0.61
ART-112	$4-OCH_3$	Η	$C_{15}H_{13}N_3O_3S$	315	241-243	74	0.58	0.67
ART-113	2-OCH ₃	Н	$C_{15}H_{13}N_3O_3S$	315	178-180	70	0.49	0.58
ART-114	$4-NO_2$	Н	$C_{14}H_{10}N_4O_4S$	330	239-241	80	0.53	0.60
ART-115	2,5-CH ₃	Η	$C_{16}H_{15}N_3O_2S$	313	256-258	69	0.59	0.70
ART-116	4-Cl	Η	$C_{14}H_{10}ClN_3O_2S$	319	263-265	56	0.51	0.59
ART-117	3-C1	Н	$C_{14}H_{10}ClN_3O_2S$	319	229-231	63	0.54	0.61
ART-118	4-F	Η	$C_{14}H_{10}FN_3O_2S$	303	234-236	68	0.56	0.63
ART-119	2-F	Н	$C_{14}H_{10}FN_3O_2S$	303	173-175	52	0.48	0.57
ART-120	$3-CF_3$	Н	$C_{15}H_{10}F_3N_3O_2S$	353	238-240	50	0.58	0.68
ART-121	Н	CH_3	$C_{15}H_{13}N_3O_2S$	299	208-210	68	0.49	0.57
ART-122	$4-OCH_3$	CH_3	$C_{16}H_{15}N_3O_3S$	329	243-245	78	0.51	0.63
ART-123	2-OCH ₃	CH_3	$C_{16}H_{15}N_3O_3S$	329	253-255	70	0.54	0.65
ART-124	$4-NO_2$	CH_3	$C_{15}H_{12}N_4O_4S$	344	237-239	78	0.48	0.56
ART-125	2,5-CH ₃	CH_3	$C_{17}H_{17}N_3O_2S$	327	261-263	66	0.56	0.60
ART-126	4-Cl	CH_3	$C_{15}H_{12}CIN_3O_2S$	333	265-267	71	0.52	0.65
ART-127	3-C1	CH_3	$C_{15}H_{12}CIN_3O_2S$	333	223-225	59	0.54	0.67
ART-128	4-F	CH_3	$C_{15}H_{12}FN_3O_2S$	317	270-272	74	0.51	0.64
ART-129	2-F	CH_3	$C_{15}H_{12}FN_3O_2S$	317	261-263	59	0.49	0.57
ART-130	3-CF ₃	CH_3	$C_{16}H_{12}F_3N_3O_2S$	367	256-258	60	0.53	0.61
ART-131	Н	CF ₃	$C_{15}H_{10}F_3N_3O_2S$	353	192-194	59	0.55	0.63
ART-132	$4-OCH_3$	CF ₃	$C_{16}H_{12}F_3N_3O_3S$	383	198-200	68	0.53	0.65
ART-133	2-OCH ₃	CF ₃	$C_{16}H_{12}F_3N_3O_3S$	383	188-190	65	0.49	0.69

ART-134	$4-NO_2$	CF ₃	$C_{15}H_9F_3N_4O_4S$	398	118-120	74	0.56	0.66
ART-135	2,5-CH ₃	CF_3	$C_{17}H_{14}F_3N_3O_2S$	381	194-196	76	0.58	0.62
ART-136	4-Cl	CF_3	C ₁₅ H ₉ ClF ₃ N ₃ O ₂ S	387	108-110	68	0.54	0.60
ART-137	3-Cl	CF_3	$C_{15}H_9ClF_3N_3O_2S$	387	261-263	72	0.50	0.68
ART-138	4-F	CF_3	$C_{15}H_9F_4N_3O_2S$	371	242-244	61	0.52	0.67
ART-139	2-F	CF_3	$C_{15}H_9F_4N_3O_2S$	371	250-252	63	0.56	0.65
ART-140	3-CF ₃	CF ₃	$C_{16}H_9F_6N_3O_2S$	421	131-133	59	0.58	0.64

 $\begin{array}{l} TLC \ Solvent \ system \ R_{f1}: \ Hexane: \ Ethyl \ acetate - 6:4, \\ TLC \ Solvent \ system \ R_{f2}: \ Chloroform: Methanol - 9:1. \end{array}$

3.5 Mechanism

It is likely that the first step of reaction is Knoevenagel-cope condensation of a carbonyl compound with activated nitrile yielding an α,β -unsaturated nitrile. This intermediate is then thiolated at the methylene group by electrophilic elemental sulphur, following by ring closure to afford thiophene derivatives (step-1).

Polysubstituted 2-aminothiophenes obtained from first step are cyclised to thienopyrimidines *via* formation of two intermediates as per mechanism suggested by S. Hesse *et al.* [44] (step-2).

3.6 Experimental

3.6.1 Materials and Methods

Melting points were determined in open capillary tubes and are uncorrected. Formation of the compounds was routinely checked by TLC on silica gel-G plates of 0.5 mm thickness and spots were located by iodine. IR spectra were recorded Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. ¹H NMR was determined in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer. Elemental analysis of the all the synthesized compounds was carried out on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements with the structures assigned.

3.6.2 Synthesis of N-(aryl)-3-oxobutanamides

Synthesis of *N*-(aryl)-3-oxobutanamides was achieved using previously published methods [45].

3.6.3 General procedure for the synthesis of 5-amino-4-cyano-N-(aryl)-3methylthiophene-2-carboxamides (ART 101-110)

0.01 mol of an appropriate *N*-(aryl)-3-oxobutanamide was dissolved in 10 mL of EtOH and 0.01 mol each of malononitrile and powdered sulphur were added to the same solution. 1 gm of K_2CO_3 was added to the resulting solution as inorganic basic support. The heterogeneous mixture was stirred at room temperature for 14-16 h. After the completion of the reaction as monitored by TLC, the reaction mixture was filtered off to separate K_2CO_3 as residue and the filtrate was poured onto 50 mL of ice-cold water. The product got precipitated out, which was filtered and recrystallized from methanol.

3.6.3.1 5-amino-4-cyano-N-(phenyl)-3-methylthiophene-2-carboxamide (ART-101)

Yield: 64%; mp 156-158 °C; MS: *m/z* 257; Anal. Calcd. for C₁₃H₁₁N₃OS: C, 60.68; H, 4.31; N, 16.33. Found: C, 60.55; H, 4.20; N, 16.21

3.6.3.2 5-amino-4-cyano-N-(4-methoxyphenyl)-3-methylthiophene-2-carboxamide

(ART-102) Yield: 69%; mp 203-205 °C; IR (cm⁻¹): 3397 and 3335 (N-H stretching of primary amine), 3221 (N-H stretching of amide), 3032 (C-H stretching of aromatic ring), 2985 (C-H asymmetrical stretching of CH₃

group), 2837 (C-H symmetrical stretching of CH₃ group), 2210 (C=N stretching of nitrile group), 1701 (C=O stretching of amide), 1616 (N-H deformation of NH₂ group), 1548, 1494 and 1440 (C=C stretching of aromatic ring), 1408 (C-H asymmetrical deformation of CH₃ group), 1336 (C-H symmetrical deformation of CH₃ group), 1238 (C-O-C stretching), 700 (C-S-C stretching); ¹H NMR (DMSO-*d*₆) δ ppm: 2.42 (s, 3H, H_a), 3.76 (s, 3H, H_b), 6.80-6.83 (d, 2H, H_{cc'}, *J* = 8.96 Hz), 7.28 (s, 2H, H_d) 7.48-7.51 (d, 2H, H_{ee'}, *J* = 8.92 Hz), 9.10 (s, 1H, H_f); MS: *m/z* 287; Anal. Calcd. for C₁₄H₁₃N₃O₂S: C, 58.52; H, 4.56; N, 14.62. Found: C, 58.49; H, 4.30; N, 14.48%.

3.6.3.3 5-amino-4-cyano-N-(2-methoxyphenyl)-3-methylthiophene-2-carboxamide

(ART-103) Yield: 63%; mp 221-223 °C; IR (cm⁻¹): 3427 and 3323 (N-H stretching of primary amine), 3213 (N-H stretching of amide), 3020 (C-H stretching of aromatic ring), 2964 (C-H asymmetrical stretching of CH₃ group), 2839 (C-H

symmetrical stretching of CH₃ group), 2206 (C=N stretching of nitrile group), 1701 (C=O stretching of amide), 1620 (N-H deformation of NH₂ group), 1539, 1500 and 1494 (C=C stretching of aromatic ring), 1410 (C-H asymmetrical deformation of CH₃ group), 1344 (C-H symmetrical deformation of CH₃ group), 1251 (C-O-C stretching), 740 (C-S-C stretching): ¹H NMR (DMSO- d_6) δ ppm: 2.49 (s, 3H, H_a), 3.91 (s, 3H, H_b), 6.89-6.97 (m, 2H, H_{cd}), 7.02-7.06 (t, 1H, H_e), 7.48 (s, 2H, H_f), 8.18 (s, 1H, H_g), 8.20 (d, 1H, H_h); MS: *m/z* 287; Anal. Calcd. for C₁₄H₁₃N₃O₂S: C, 58.52; H, 4.56; N, 14.62. Found: C, 58.49; H, 4.30; N, 14.48%.

3.6.3.4 5-amino-4-cyano-N-(4-nitrophenyl)-3-methylthiophene-2-carboxamide

(*ART-104*) Yield: 72%; mp 179-181 °C; MS: *m/z* 302; Anal. Calcd. for C₁₃H₁₀N₄O₃S: C, 51.65; H, 3.33; N, 18.53. Found: C, 51.55; H, 3.39; N, 18.25%.

3.6.3.5 5-amino-4-cyano-N-(2,5-methylphenyl)-3-methylthiophene-2-carboxamide

(ART-105) Yield: 79%; mp 182-184 °C; IR (cm⁻¹): 3331 and 3300 (N-H stretching of primary amine), 3184 (N-H stretching of amide), 3025 (C-H stretching of aromatic ring), 2978 (C-H asymmetrical stretching of CH₃ group),

2914 (C-H symmetrical stretching of CH₃ group), 2208 (C=N stretching of nitrile group), 1701 (C=O stretching of amide), 1627 (N-H deformation of NH₂ group), 1527, 1491 and 1446 (C=C stretching of aromatic ring), 1410 (C-H asymmetrical deformation of CH₃ group), 1319 (C-H symmetrical deformation of CH₃ group), 717 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.18 (s, 3H, H_a), 2.25 (s, 3H, H_b), 2.47 (s, 3H, H_c), 6.89-6.91 (d, 1H, H_d), 7.06-7.08 (d, 1H, H_e), 7.34 (s, 1H, H_f), 8.32 (s, 1H, H_g); MS: *m*/*z* 285; Anal. Calcd. for C₁₅H₁₅N₃OS: C, 63.13; H, 5.30; N, 14.73. Found: C, 63.03; H, 5.19; N, 14.62%.

3.6.3.6 5-amino-4-cyano-N-(4-chlorophenyl)-3-methylthiophene-2-carboxamide

(*ART-106*) Yield: 73%; mp 199-201 °C; MS: *m/z* 291; Anal. Calcd. for C₁₃H₁₀ClN₃OS: C, 53.52; H, 3.45; N, 14.40. Found: C, 53.46; H, 3.29; N, 14.30%.

3.6.3.7 5-amino-4-cyano-N-(3-chlororphenyl)-3-methylthiophene-2-carboxamide

(ART-107) Yield: 65%; mp 181-183 °C; MS: *m/z* 291; Anal. Calcd. for C₁₃H₁₀ClN₃OS: C, 53.52; H, 3.45; N, 14.40. Found: C, 53.44; H, 3.30; N, 14.32%.

3.6.3.8 5-amino-4-cyano-N-(4-fluorophenyl)-3-methylthiophene-2-carboxamide

(ART-108) Yield: 51%; mp 254-256 °C; MS: *m/z* 275; Anal. Calcd. for C₁₃H₁₀FN₃OS: C, 56.72; H, 3.66; N, 15.26. Found: C, 56.62; H, 3.59; N, 15.21%.

3.6.3.9 5-amino-4-cyano-N-(2-fluorophenyl)-3-methylthiophene-2-carboxamide

(*ART-109*) Yield: 58%; mp 153-155 °C; MS: *m/z* 275; Anal. Calcd. for C₁₃H₁₀FN₃OS: C, 56.72; H, 3.66; N, 15.26. Found: C, 56.65; H, 3.60; N, 15.16%.

3.6.3.10 5-amino-4-cyano-N-(3-trifluorophenyl)-3-methylthiophene-2-carboxamide

(ART-110) Yield: 62%; mp 223-225 °C; MS: *m/z* 325; Anal. Calcd. for C₁₄H₁₀F₃N₃OS: C, 51.69; H, 3.10; N, 12.92. Found: C, 51.52; H, 3.03; N, 12.82%.

3.6.4 General procedure for the synthesis of 3,4-dihydro-N-(aryl)-5-methyl-4oxothieno[2,3-d]pyrimidine-6-carboxamides (ART 111-120)

A mixture of an appropriate 5-amino-4-cyano-N-(aryl)-3-methylthiophe ne-2carboxamide (0.01 mol) and formic acid (20 mL) was stirred under reflux for 12- 14 h. in the presence of catalytic amount of concentrated H₂SO₄ (under TLC analysis). The reaction mixture was allowed to cool to room temperature and was poured onto crushed ice. The solid thus formed was collected by filtration, washed with ethanol (20 mL), dried and crystallized from dimethylformamide to afford the desired products ART 111-120.

3.6.4.1 3,4-dihydro-N-(phenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-carboxami

de (ART-111) Yield: 68%; mp 128-130 °C; MS: *m/z* 285; Anal. Calcd. for C₁₄H₁₁N₃O₂S: C, 58.93; H, 3.89; N, 14.73. Found: C, 58.56; H, 3.79; N, 14.66%.

3.6.4.2 3,4-dihydro-N-(4-methoxyphenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-

carboxamide (ART-112) Yield: 74%; mp 241-243 °C; IR (cm⁻¹): 3294 (N-H stretching of secondary amine), 3070 (C-H stretching of aromatic ring), 2962 (C-H asymmetrical stretching of CH₃ group), 2897 (C-H

asymmetrical stretching of OCH₃ group), 2829 (C-H symmetrical stretching of CH₃ group), 1697 (C=O stretching of amide), 1660 (C=O stretching of pyrimidine ring), 1624 (C=N stretching of pyrimidine ring), 1600 and 1537 (C=C stretching of aromatic ring), 1435 (C-H asymmetrical deformation of OCH₃ group), 1415 (C-H asymmetrical deformation of CH₃ group), 1296 (C-H symmetrical deformation of CH₃ group), 1114 (C-O-C stretching), 696 (C-S-C stretching); ¹H NMR (DMSO-*d*₆) δ ppm: 2.78 (s, 3H, H_a), 3.78 (s, 3H, H_b), 6.85-6.87 (d, 2H, H_{cc}, *J* = 9.04 Hz), 7.59-7.61 (d, 2H, H_{dd}, *J* = 8.96 Hz), 8.02 (s, 1H, H_e), 9.87 (s, 1H, H_f), 12.45 (s, 1H, H_g); MS: *m/z* 315; Anal. Calcd. for C₁₅H₁₃N₃O₃S: C, 57.13; H, 4.16; N, 13.33. Found: C, 57.03; H, 4.09; N, 13.29%.

3.6.4.3 3,4-dihydro-N-(2-methoxyphenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-

carboxamide (ART-113) Yield: 70%; mp 178-180 °C; MS: *m/z* 315; Anal. Calcd. for C₁₅H₁₃N₃O₃S: C, 57.13; H, 4.16; N, 13.33. Found: C, 57.06; H, 4.10; N, 13.26%.

3.6.4.4 3,4-dihydro-N-(4-nitrophenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-car

boxamide (ART-114) Yield: 80%; mp 239-241 °C; MS: *m/z* 330; Anal. Calcd. for C₁₄H₁₀N₄O₄S: C, 50.91; H, 3.05; N, 16.96. Found: C, 50.82; H, 2.99; N, 16.88%.

3.6.4.5 3,4-dihydro-N-(2,5-methylphenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-

carboxamide (ART-115) Yield: 69%; mp 256 258 °C; IR (cm⁻¹): 3275 and 3244 (N-H stretching of secondary amine), 3022 (C-H stretching of aromatic ring), 2960 (C-H asymmetrical stretching of CH₃ group), 2860

(C-H asymmetrical stretching of CH₃ group), 1691 (C=O stretching of amide), 1670 (C=O stretching of pyrimidine ring), 1626 (C=N stretching of pyrimidine ring), 1577, 1539 and 1485 (C=C stretching of aromatic ring), 1421 (C-H asymmetrical deformation of -CH₃ group), 1313 (C-H symmetrical deformation of CH₃ group), 694 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.23 (s, 3H, H_a), 2.30 (s, 3H, H_b), 2.82 (s, 3H, H_c), 6.95-6.97 (d, 1H, H_d), 7.10-7.12 (d, 1H, H_e), 7.23 (s, 1H, H_f), 8.05 (s, 1H, H_g), 9.48 (s, 1H, H_h), 12.52 (s, 1H, H_i); MS: *m*/*z* 313; Anal. Calcd. for C₁₆H₁₅N₃O₂S: C, 61.32; H, 4.82; N, 13.41. Found: C, 61.25; H, 4.76; N, 13.31%.

3.6.4.6 3,4-dihydro-N-(4-chlorophenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-

6-carboxamide (ART-116) Yield: 56%; mp 263-265 °C; IR (cm⁻¹): MS: *m/z* 319; Anal. Calcd. for C₁₄H₁₀ClN₃O₂S: C, 52.59; H, 3.15; N, 13.14. Found: C, 52.50; H, 3.05; N, 13.07%.

3.6.4.7 3,4-dihydro-N-(3-chlorophenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-ca

rboxamide (ART-117) Yield: 63%; mp 229-231 °C; 3259 (N-H stretching of secondary amine), 3066 (C-H stretching of aromatic ring), 2937 (C-H asymmetrical stretching of CH3 group), 2879 (C-H symmetrical stretching of CH3 group), 1680 (C=O stretching of amide),

1658 (C=O stretching of pyrimidine ring), 1591 (C=N stretching of pyrimidine ring), 1560, 1550 and 1502 (C=C stretching of aromatic ring), 1406 (C-H asymmetrical deformation of -CH₃ group), 1313 (C-H symmetrical deformation of CH₃ group), 692 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.78 (s, 3H, H_a). 7.01-7.06 (t, 2H,

H_{bb}'), 7.69-7.72 (m, 2H, H_{cc}'), 8.00 (s, 1H, H_d), 10.00 (s, 1H, H_e), 12.43 (s, 1H, H_f); MS: m/z 319; Anal. Calcd. for C₁₄H₁₀ClN₃O₂S: C, 52.59; H, 3.15; N, 13.14. Found: C, 52.49; H, 3.07; N, 13.03%

3.6.4.8 3,4-dihydro-N-(4-fluorophenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-ca

rboxamide (ART-118) Yield: 68%; mp 234-236 °C; MS: *m/z* 303; Anal. Calcd. for C₁₄H₁₀FN₃O₂S: C, 55.44; H, 3.32; N, 13.85. Found: C, 55.36; H, 3.24; N, 13.78%.

3.6.4.9 3,4-dihydro-N-(2-fluorophenyl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-ca

rboxamide (ART-119) Yield: 52%; mp 173-175 °C; MS: *m/z* 303; Anal. Calcd. for C₁₄H₁₀FN₃O₂S: C, 55.44; H, 3.32; N, 13.85. Found: C, 55.32; H, 3.26; N, 13.71%.

3.6.4.10 3,4-dihydro-N-(3-trifluoromethylphenyl)-5-methyl-4-oxothieno[2,3-d]pyrim

idine-6-carboxamide (ART-120) Yield: 50%; mp 238-240 °C; MS: *m/z* 353; Anal. Calcd. For C₁₅H₁₀F₃N₃O₂S: C, 50.99; H, 2.85; N, 11.89. Found: C, 50.90; H, 2.78; N, 11.79%.

3.6.5 General procedure for the synthesis of 3,4-dihydro-N-(aryl)-2,5-dimethyl-4oxothieno[2,3-d]pyrimidine-6-carboxamides (ART 121-130)

A mixture of an appropriate 5-amino-4-cyano-N-(aryl)-3-methylthiophe ne-2carboxamide (0.01 mol) and glacial acetic acid (20 mL) was stirred under reflux for 14-16 h. in the presence of catalytic amount of concentrated H₂SO₄ (under TLC analysis). The reaction mixture was allowed to cool to room temperature and was poured onto crushed ice. The solid thus formed was collected by filtration, washed with ethanol (20 mL), dried and crystallized from dimethylformamide to afford the desired products ART 121-130.

3.6.5.1 3,4-dihydro-N-(phenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine-6-carbox

amide (ART-121) Yield: 68%; mp 208-210 °C; MS: *m/z* 299; Anal. Calcd. for C₁₅H₁₃N₃O₂S: C, 60.18; H, 4.38; N, 14.04. Found: C, 60.10; H, 4.29; N, 13.99%.

3.6.5.2 3,4-dihydro-N-(4-methoxyphenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidi-

ne-6-carboxamide (ART-122) Yield: 78%; mp 243-245 °C; MS: *m/z* 329; Anal. Calcd. for C₁₆H₁₅N₃O₃S: C, 58.34; H, 4.59; N, 12.76. Found: C, 58.27; H, 4.51; N, 12.70%.

3.6.5.3 3,4-dihydro-N-(2-methoxyphenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidi-

ne-6-carboxamide (ART-123) Yield: 70%; mp 253-255 °C; MS: m/z 329; Anal. Calcd. For C₁₆H₁₅N₃O₃S: C, 58.34; H, 4.59; N, 12.76. Found: C, 58.28; H, 4.49; N, 12.68%.

3.6.5.4 3,4-dihydro-N-(4-nitrophenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine-6-

carboxamide (ART-124) Yield: 78%; mp 237-239 °C; MS: *m/z* 344; Anal. Calcd. For C₁₅H₁₂N₄O₄S: C, 52.32; H, 3.51; N, 16.27. Found: C, 52.23; H, 3.45; N, 16.19%.

3.6.5.5 3,4-dihydro-N-(2,5-methylphenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine

-6-carboxamide (ART-125) Yield: 66%; mp 261-263 °C; MS: *m/z* 327; Anal. Calcd. For C₁₇H₁₇N₃O₂S: C, 62.36; H, 5.23; N, 12.83. Found: C, 62.26; H, 5.12; N, 12.75%.

3.6.5.6 3,4-dihydro-N-(4-chlorophenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine-

6-carboxamide (ART-126) Yield: 71%; mp 265-267 °C; MS: *m/z* 333; Anal. Calcd. For C₁₅H₁₂ClN₃O₂S: C, 53.97; H, 3.62; N, 12.59. Found: C, 53.88; H, 3.56; N, 12.51%.

3.6.5.7 3,4-dihydro-N-(3-chlorophenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine-

6-carboxamide (ART-127) Yield: 59%; mp 223-225 °C; MS: *m/z* 333; Anal. Calcd. For C₁₅H₁₂ClN₃O₂S: C, 53.97; H, 3.62; N, 12.59. Found: C, 53.89; H, 3.58; N, 12.49%.

3.6.5.8 3,4-dihydro-N-(4-fluorophenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine-

6-carboxamide (ART-128) Yield: 74%; mp 270-272 °C; IR (cm⁻¹): 3298 (N-H stretching of secondary amine), 3066 (C-H stretching of aromatic ring), 2960 (C-H asymmetrical stretching of CH₃ group), 2833 (C-H

symmetrical stretching of CH₃ group), 1685 (C=O stretching of amide), 1643 (C=O stretching of pyrimidine ring), 1608 (C=N stretching of pyrimidine ring), 1548, 1518 and 1502 (C=C stretching of aromatic ring), 1404 (C-H asymmetrical deformation of -CH₃ group), 1311 (C-H symmetrical deformation of CH₃ group), 700 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.41 (s, 3H, H_a), 2.76 (s, 3H, H_b), 7.02-7.08 (t, 2H, H_{cc'}), 7.68-7.72 (q, 2H, H_{dd'}), 10.02 (s, 1H, H_e), 12.40 (s, 1H, H_f) ; MS: *m/z* 317; Anal. Calcd. for C₁₅H₁₂FN₃O₂S: C, 56.77; H, 3.81; N, 13.24. Found: C, 56.69; H, 3.73; N, 13.18%.

3.6.5.9 3,4-dihydro-N-(2-fluorophenyl)-2,5-dimethyl-4-oxothieno[2,3-d]pyrimidine

-6-carboxamide (ART-129) Yield: 59%; mp 261-263 °C; IR (cm⁻¹): 3282 (N-H stretching of secondary amine), 3070 (C-H stretching of aromatic ring), 2885 (C-H asymmetrical stretching of CH₃ group), 2729 (C-H

symmetrical stretching of CH₃ group), 1697 (C=O stretching of amide), 1639 (C=O stretching of pyrimidine ring), 1597 (C=N stretching of pyrimidine ring), 1539, 1487 and 1454 (C=C stretching of aromatic ring), 1420 (C-H asymmetrical deformation of -CH₃ group), 1332 (C-H symmetrical deformation of CH₃ group), 657 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.44 (s, 3H, H_a), 2.87 (s, 3H, H_b), 7.15-7.18 (m, 3H, H_{c-e}), 7.90-7.92 (m, 1H, H_f), 9.15 (s, 1H, H_g), 12.41 (s, 1H, H_h); MS: *m/z* 317; Anal. Calcd. for C₁₅H₁₂FN₃O₂S: C, 56.77; H, 3.81; N, 13.24. Found: C, 56.68; H, 3.71; N, 13.16%.

3.6.5.10 3,4-dihydro-N-(3-trifluoromethylphenyl)-2,5-dimethyl-4-oxothieno[2,3-d]

pyrimidine-6-carboxamide (ART-130) Yield: 60%; mp 256-258 °C; IR (cm⁻¹): 3408 and 3308 (N-H stretching of secondary amine), 3066 (C-H stretching of aromatic ring), 2956 (C-H asymmetrical stretching of CH₃ group), 2891

(C-H symmetrical stretching of CH₃ group), 1718 (C=O stretching of amide), 1641 (C=O stretching of pyrimidine ring), 1593 (C=N stretching of pyrimidine ring), 1537 and 1518 (C=C stretching of aromatic ring), 1410 (C-H asymmetrical deformation of -CH₃ group), 1320 (C-H symmetrical deformation of CH₃ group), 686 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.43 (s, 3H, H_a), 2.80 (s, 3H, H_b), 7.35-7.37 (d, 1H, H_c), 7.47-7.51 (t, 1H, H_d), 7.93-7.95 (d, 1H, H_e), 8.14 (s, 1H, H_f), 10.24 (s, 1H, H_g), 12.41 (s, 1H, H_h); MS: *m/z* 367; Anal. Calcd. for C₁₆H₁₂F₃N₃O₂S: C, 52.31; H, 3.29; N, 11.44. Found: C, 52.22; H, 3.20; N, 11.36%.

3.6.6 General procedure for the synthesis of 2-(trifluoromethyl)-3,4-dihydro-N-(aryl)-5-methyl-4-oxothieno[2,3-d]pyrimidine-6-carboxamides (ART 131-140)

A mixture of an appropriate 5-amino-4-cyano-N-(aryl)-3-methylthiophe-2-carbo xamide (0.01 mol) and trifluoroacetic acid (20 mL) was stirred under reflux for 15-17 h. in the presence of catalytic amount of Concentrated H₂SO₄ (under TLC analysis). The reaction mixture was allowed to cool to room temperature and was poured onto water (100 mL). The solid thus formed was collected by filtration, washed with ethanol (20 mL), dried and crystallized from dimethylformamide to afford the desired products ART 131-140.

3.6.6.1 2-(trifluoromethyl)-3,4-dihydro-N-(phenyl)-5-methyl-4-oxothieno[2,3-d]pyri

midine-6-carboxamide (ART-131) Yield: 59%; mp 192-194 °C; MS: *m/z* 353; Anal. Calcd. For C₁₅H₁₀F₃N₃O₂S: C, 50.99; H, 2.85; N, 11.89. Found: C, 50.90; H, 2.76; N, 11.81%.

3.6.6.2 2-(trifluoromethyl)-3,4-dihydro-N-(4-methoxyphenyl)-5-methyl-4-oxothieno

[2,3-d]pyrimidine-6-carboxamide (ART-132) Yield: 68%; mp 198-200 °C; IR (cm⁻¹): 3292 (N-H stretching of secondary amine), 3103 (C-H stretching of aromatic ring), 2999 (C-H asymmetrical stretching of CH₃ group), 2869

(C-H asymmetrical stretching of OCH₃ group), 2837 (C-H symmetrical stretching of CH₃ group), 1720 (C=O stretching of amide), 1647 (C=O stretching of pyrimidine ring), 1629 (C=N stretching of pyrimidine ring), 1580 and 1532 (C=C stretching of aromatic ring), 1458 (C-H asymmetrical deformation of OCH₃ group), 1404 (C-H asymmetrical deformation of CH₃ group), 1290 (C-H symmetrical deformation of CH₃ group), 1166 (C-O-C stretching), 705 (C-S-C stretching); ¹H NMR (DMSO-*d*₆) δ ppm: 2.68 (s, 3H, H_a), 3.77 (s, 3H, H_b), 6.84-6.86 (d, 2H, H_{cc}', *J* = 9.00 Hz), 7.57-7.59 (d, 2H, H_{dd'}, *J* = 8.96 Hz), 9.84 (s, 1H, H_e), 13.61 (s, 1H, H_f) ; MS: *m/z* 383; Anal. Calcd. for C₁₆H₁₂F₃N₃O₃S: C, 50.13; H, 3.16; N, 10.96. Found: C, 50.06; H, 3.09; N, 10.90%.

3.6.6.3 2-(trifluoromethyl)-3,4-dihydro-N-(2-methoxyphenyl)-5-methyl-4-oxothieno

[2,3-d]pyrimidine-6-carboxamide (ART-133) Yield: 65%; mp 188-190 °C; MS: *m/z* 383; Anal. Calcd. for C₁₆H₁₂F₃N₃O₃S: C, 50.13; H, 3.16; N, 10.96. Found: C, 50.05; H, 3.05; N, 10.92%.

3.6.6.4 2-(trifluoromethyl)-3,4-dihydro-N-(4-nitrophenyl)-5-methyl-4-oxothieno[2,3

-d]pyrimidine-6-carboxamide (*ART-134*) Yield: 74%; mp 118-120 °C; MS: *m/z* 398; Anal. Calcd. for C₁₅H₉F₃N₄O₄S: C, 45.23; H, 2.28; N, 14.07. Found: C, 45.18; H, 2.19; N, 13.99%.

3.6.6.5 2-(trifluoromethyl)-3,4-dihydro-N-(2,5-methylphenyl)-5-methyl-4-oxothieno

[2,3-d]pyrimidine-6-carboxamide (ART-135) Yield: 76%; mp 194-196 °C; IR (cm⁻¹): 3300 and 3223 (N-H stretching of secondary amine), 3020 (C-H stretching of aromatic ring), 2874 (C-H asymmetrical stretching of CH₃ group),

2820 (C-H asymmetrical stretching of CH₃ group), 1707 (C=O stretching of amide), 1647 (C=O stretching of pyrimidine ring), 1626 (C=N stretching of pyrimidine ring), 1556, 1529 and 1504 (C=C stretching of aromatic ring), 1400 (C-H asymmetrical deformation of -CH₃ group), 1301 (C-H symmetrical deformation of CH₃ group), 659 (C-S-C stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.21 (s, 3H, H_a), 2.29 (s, 3H, H_b), 2.70 (s, 3H, H_c), 6.94-7.24 (m, 3H, H_{d-f}), 9.42 (s, 1H, H_g), 13.42 (s, 1H, H_h); MS: *m/z* 381; Anal. Calcd. for C₁₇H₁₄F₃N₃O₂S: C, 53.54; H, 3.70; N, 11.02. Found: C, 53.47; H, 3.69; N, 10.94%. 3.6.6.6 2-(trifluoromethyl)-3,4-dihydro-N-(4-chlorophenyl)-5-methyl-4-oxothieno[2, 3-dlpvrimidine-6-carboxamide (ART-136)

3-d]pyrimidine-6-carboxamide (*ART-136*) Yield: 68%; mp 108-110 °C; MS: *m/z* 387; Anal. Calcd. for C₁₅H₉ClF₃N₃O₂S: C, 46.46; H, 2.34; N, 10.84. Found: C, 46.39; H, 2.27; N, 10.75%.

3.6.6.7 2-(trifluoromethyl)-3,4-dihydro-N-(3-chlorophenyl)-5-methyl-4-oxothieno[2,

 3-d]pyrimidine-6-carboxamide
 (ART-137)

 Yield: 72%; mp 261-263 °C; MS: m/z 387; Anal

 Calcd. for C₁₅H₉ClF₃N₃O₂S: C, 46.46; H, 2.34; N,

 10.84. Found: C, 46.70; H, 2.26; N, 10.77%.

3.6.6.8 2-(trifluoromethyl)-3,4-dihydro-N-(4-fluorophenyl)-5-methyl-4-oxothieno[2,

3-d]pyrimidine-6-carboxamide (*ART-138*) Yield: 61%; mp 242-244 °C; MS: *m/z* 371; Anal. Calcd. for C₁₅H₉F₄N₃O₂S: C, 53.97; H, 3.62; N, 12.59. Found: C, 53.89; H, 3.58; N, 12.49%.

3.6.6.9 2-(trifluoromethyl)-3,4-dihydro-N-(2-fluorophenyl)-5-methyl-4-oxothieno[2,

3-d]pyrimidine-6-carboxamide(ART-139)Yield: 63%; mp 250-252 °C; MS: m/z 371;Anal. Calcd. for C15H9F4N3O2S: C, 53.97; H, 3.6;N, 2.59. Found: C, 53.90; H, 3.56; N, 12.50%.

3.6.6.10 2-(trifluoromethyl)-3,4-dihydro-N-(3-trifluoromethylphenyl)-5-methyl-4-ox

othieno[2,3-d]pyrimidine-6-carboxamid (ART -140) Yield: 59%; mp 131-133 °C; IR (cm⁻¹): 3387 and 3300 (N-H stretching of secondary amine), 3026 (C-H stretching of aromatic ring), 2991 (C-H asymmetrical stretching of CH₃ group), 2897 (C-H symmetrical stretching of CH₃ group), 1720 (C=O stretching of amide), 1647 (C=O stretching of pyrimidine ring), 1564 (C=N stretching of pyrimidine ring), 1492 and 1450 (C=C stretching of aromatic ring), 1400 (C-H asymmetrical deformation of CH₃ group), 1334 (C-H symmetrical deformation of CH₃ group), 696 (C-S-C stretching). ¹H NMR (DMSO-*d*₆) δ ppm: 2.73 (s, 3H, H_a), 7.34-7.36 (d, 1H, H_b), 7.44-7.48 (t, 1H, H_c), 7.93-7.95 (d, 1H, H_d), 8.09 (s, 1H, H_e), 10.10 (s, 1H, H_f), 13.60 (s, 1H, H_g); MS: *m/z* 421; Anal. Calcd. for C₁₆H₉F₆N₃O₂S: C, 45.61; H, 2.15; N, 9.97. Found: C, 45.55; H, 2.06; N, 9.89%.

3.7 Spectral discussion

3.7.1 Mass spectral study

Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. Systematic fragmentation pattern was observed in mass spectral analysis. Molecular ion peak was observed in agreement with molecular weight of respective compound. Mass fragmentation pattern for a representative compound of each series is depicted below.

3.7.1.1 Mass fragmentation pattern for ART-102

3.7.1.2 Mass fragmentation pattern for ART-112

3.7.1.3 Mass fragmentation pattern for ART-128

3.7.1.4 Mass fragmentation pattern for ART-132

3.7.2 IR spectral study

IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. Various functional groups present in molecule were identified by characteristic frequency obtained for them. For thiophenes ART-101 to 110, a characteristic band of nitrile group was observed in the range of 2206-2210 cm⁻¹. Confirmatory bands for primary amine, amide and amidic carbonyl groups were observed at 3300-3427 cm⁻¹, 3184-3281 cm⁻¹ and 1701 cm⁻¹ respectively. For pyrimidines ART-111 to 140, the characteristic nitrile absorption band at 2206-2210 cm⁻¹ was found to be absent confirming the cyclisation from corresponding thiophenes. Another characteristic carbonyl stretching band of pyrimidine was observed at 1658-1670 cm⁻¹ suggesting formation of desired products ART-111 to 140.

3.7.3 ¹H NMR spectral study

¹H NMR spectra were recorded in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer using TMS as an internal standard. Number of protons and their chemical shifts were found to support the structure of the synthesized compounds.

For thiophenes ART-101 to 110, characteristic singlets were observed for methyl and amide group at 2.18-2.49 δ ppm and 8.18-9.10 δ ppm respectively. The aromatic ring protons were observed at 6.80-8.32 δ ppm and *J* value were found to be in accordance with substitution pattern on phenyl ring. The primary amine proton peak was observed as a broad singlet around 7.28-7.48 δ ppm.

While, for pyrimidines ART-111 to 140, characteristic singlets were observed for methyl, amide and secondary amine protons at 2.68-3.32, 9.15-10.24 and 12.40-12.61 δ ppm. The appearance of secondary amine proton peak confirmed the conversion of thiophenes to pyrimidines. In addition to that, characteristic methine proton peak was observed at 8.00-8.05 δ ppm for pyrimidines ART-111 to 120, which further confirmed the cyclisation. While, the appearance of a characteristic methyl singlet at 2.41-2.43 δ ppm suggested the formation of pyrimidines ART-121 to 130. The aromatic ring protons were observed at 6.84-8.14 δ ppm and *J* value were found to be in accordance with substitution pattern on phenyl ring.

Mass spectrum of ART-102

Expanded ¹H NMR spectrum of ART-102

Mass spectrum of ART-103

Expanded ¹H NMR spectrum of ART-103

Mass spectrum of ART-105

Expanded ¹H NMR spectrum of ART-105

Mass spectrum of ART-112

Expanded ¹H NMR spectrum of ART-112

Mass spectrum of ART-115

Expanded ¹H NMR spectrum of ART-115

Mass spectrum of ART-117

Expanded ¹H NMR spectrum of ART-117

Mass spectrum of ART-128

Expanded ¹H NMR spectrum of ART-128

Mass spectrum of ART-129

Expanded ¹H NMR spectrum of ART-129

Mass spectrum of ART-130

Expanded ¹H NMR spectrum of ART-130

Mass spectrum of ART-132

Expanded ¹H NMR spectrum of ART-132

Mass spectrum of ART-135

Expanded ¹H NMR spectrum of ART-135

Mass spectrum of ART-140

Expanded ¹H NMR spectrum of ART-140

3.8 Biological evaluation

3.8.1 Antimicrobial evaluation

All of the synthesized compounds (ART-101 to 140) were tested for their antibacterial and antifungal activity (MIC) *in vitro* by broth dilution method [46-48] with two Gram-positive bacteria *Staphylococcus aureus* MTCC-96, *Streptococcus pyogenes* MTCC 443, two Gram-negative bacteria *Escherichia coli* MTCC 442, *Pseudomonas aeruginosa* MTCC 441 and three fungal strains *Candida albicans* MTCC 227, *Aspergillus Niger* MTCC 282, *Aspergillus clavatus* MTCC 1323 taking ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin, and griseofulvin as standard drugs. The standard strains were procured from the Microbial Type Culture Collection (MTCC) and Gene Bank, Institute of Microbial Technology, Chandigarh, India.

The minimal inhibitory concentration (MIC) values for all the newly synthesized compounds, defined as the lowest concentration of the compound preventing the visible growth, were determined by using microdilution broth method according to NCCLS standards [46]. Serial dilutions of the test compounds and reference drugs were prepared in Muellere-Hinton agar. Drugs (10 mg) were dissolved in dimethylsulfoxide (DMSO, 1 mL). Further progressive dilutions with melted Muellere-Hinton agar were performed to obtain the required concentrations of 1.56, 3.12, 6.25, 10, 12.5, 25, 50, 62.5, 100, 125, 250, 500 and 1000 μ g mL⁻¹. The tubes were inoculated with 10⁸ cfu mL⁻¹ (colony forming unit/mL) and incubated at 37 °C for 24 h. The MIC was the lowest concentration of the tested compound that yields no visible growth (turbidity) on the plate. To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions as used in the experiments and it was observed that DMSO had no effect on the microorganisms in the concentrations studied. The results obtained from antimicrobial susceptibility testing are depicted in Table 1.

Code	Minimum inhibition concentration (µg mL ⁻¹)						
	Gram-positive		Gram-negative		Fungal species		
	S.a.	<i>S. p.</i>	<i>E.c.</i>	<i>P.a.</i>	С. а.	A. n.	A.c.
ART-101	500	500	500	500	500	500	>1000
ART-102	1000	1000	1000	1000	1000	500	500
ART-103	>1000	500	250	500	1000	250	250
ART-104	100	62.5	125	100	500	500	500
ART-105	1000	1000	1000	1000	1000	>1000	500
ART-106	25	100	200	100	1000	500	500
ART-107	125	200	500	250	500	500	250
ART-108	100	125	100	100	1000	500	500
ART-109	50	100	25	100	>1000	500	1000
ART-110	25	50	100	50	500	500	1000
ART-111	1000	500	100	1000	>1000	500	>1000
ART-112	500	>1000	500	100	500	250	1000
ART-113	500	500	500	1000	>1000	500	125
ART-114	125	100	50	250	250	1000	500
ART-115	500	>1000	500	500	500	500	1000
ART-116	50	125	100	200	>1000	500	>1000
ART-117	125	100	250	125	500	500	>1000
ART-118	125	250	125	50	500	1000	500
ART-119	100	125	100	250	500	1000	>1000
ART-120	50	125	250	100	100	1000	500
ART-121	>1000	1000	500	500	500	1000	500
ART-122	500	500	500	500	500	500	500
ART-123	1000	250	500	1000	500	>1000	500
ART-124	250	125	100	125	1000	500	>1000
ART-125	>1000	500	>1000	>1000	500	500	500
ART-126	125	62.5	125	50	500	1000	>1000
ART-127	250	200	100	125	100	1000	250
ART-128	25	250	125	100	500	1000	>1000
ART-129	250	125	250	125	500	1000	250
ART-130	50	62.5	125	62.5	1000	1000	>1000
ART-131	500	500	500	500	1000	500	>1000
ART-132	>1000	500	500	250	500	500	1000
ART-133	500	500	125	1000	500	100	1000
ART-134	125	125	100	125	250	>1000	500
ART-135	500	1000	1000	>1000	500	100	500
ART-136	100	125	225	50	100	250	1000
ART-137	250	50	125	250	100	1000	1000
ART-138	62.5	250	125	500	500	1000	>1000
ART-139	250	125	125	100	100	1000	100
ART-140	12.5	125	62.5	25	250	500	500
Ampicillin	250	100	100	100	-	-	-
Chloramphenicol	50	50	50	50	-	-	-
Ciprofloxacin	50	50	25	25	-	-	-
Nortloxacin	10	10	10	10	-	-	-
Nystatın	-	-	-	-	100	100	100
Griseofulvin	-	-	-	-	500	100	100

Table 1. Antibacterial and antifungal activity of synthesized compounds ART-101 to 140

3.8.2 Antimycobacterial, anticancer and antiviral evaluation

Antimycobacterial, anticancer and antiviral screening of all the newly synthesized compounds ART-101 to ART-140 is currently under investigation and results are awaited.

3.9 References and notes

- [1] (a) Vinogradoff, A. P. EP0234557, 1992; (b) Temple, D. L. US4054656, 1977; (c) Janssens, F. E.; Torremans, J. L. G.; Hens, J. F.; VanOffenwert, T. EP 0144101, 1991; (d) Eggenweiler, H. M.; Eiermann, V. DE10063223, 2002; (e) Gillespie, E.; Dungan, K. W.; Gomol, A. W.; Seidehamel, R. J. Int. J. Immunopharmacol. 1985, 7, 655; (f) Gomoll; A. W.; Temple, D. L. Drug Dev. Res. 1987, 10, 57.
- [2] (a) UCB SA, BE769844, 1972; (b) Eggenweiler, H. M.; Eiermann, V. EP1337256, 2003.
- [3] 1) Bousquet, E.; Romeo, G.; Guerrera, F.; Caruso, A.; Amico-Roxas, M. *Farmaco, Ed. Sci.*, 1985, 40, 869; (b) Khalil, Z. H.; Geies, A. A. *Phosphorus, Sulfur, Silicon Relat. Elem.* 1991, 60, 223; (c) Roth, B. US3470183, 1969; (d) Woitun, E.; Reuter, W. DE1959402, 1971; (e) Woitun, E.; Reuter,W. DE1959403, 1971; (f) Sauter, R.; Maier, R. DE2039662, 1989; (g) Laliberte, R. US3644357, 1972; (g) Armstrong, S. A.; Berge, J. M.; Brown, P.; Elder, J. S.; Forrest, A. K.; Hamprecht, D. W.; Jarvesr, R. L. WO00/71524, 2000.
- [4] (a) Ninomya, K.; Nitsuta, K.; Tobe, A.; Egawa, M.; Kikumoto, R.
 JP06016557, 1994; (b) Press, J.; Russel, R. K. US4835157, 1996.
- [5] (a) Shiroki, M. JP52046095, 1977; (b) Seico, Y.; Tanaka, H.; Goto, S.;
 Amano, Y. JP200038350, 2000.
- [6] (a) Press, J. B.; Russel, R. K. US4670560, 1987; (b) De Laszlo, S. E.; Patchett, A. A.; Allen, E. E.; Greenlee, W. J. EP502725, 1992; (c) Unverferth, K. *Pharmazie* 1990, 45, 545; (d) Russel, P. K.; Press, J. B.; Rampulla, R. A.; McNally, J. J.; Falotico, R.; Keiser, J. A.; Brigcht, D. A.; Tobia A. J. Med. *Chem.* 1988, 31, 1786.
- [7] (a) Darias, V.; Fernandez-Tome, M. P.; Mardonero, R.; Del-Rio, J.;
 VillaCoro, G. *Chim. Ther.* 1972, *4*, 224; (b) Shishoo, C. J.; Shirsath, V. S.;
 Rathod, I. S.; Yande, V. D. *Eur. J. Med. Chem.* 2000, *35*, 351.
- [8] (a) Gerhard, O.; Eberhard, W. US3272811, 1966; (b) Thomae, K. GB1057612, 1977; (c) Thomae, K. GB1048986, 1966; (d) Sauter, F. DE2104435, 1980; (e) Sauter, F. DE2264222, 1973; (f) Devani, M. B.; Shishoo, C. J.; Pathak, U. S.; Shah, G. F.; Padjya, A. C. J. Pharm. Sci. 1976, 65, 660; (g) Perrissin, M.; Favre, M.; Luu-Duc, C.; Bakri-Logeais, F.; Huguit,

F.; Narcisse, G. *Eur. J. Med. Chem.* 1984, *19*, 420-; (h) Russo, F.; Santagati,
A.; Santagati, M.; Caruso, A.; Leone, M. G.; Felice, A.; Amico-Roxas, M. *Eur. J. Med. Chem.* 1989, *24*, 91; (i) Rathod, I. S.; Pillei, A. S.; Shirsath, V. S. *Indian J. Heterocycl. Chem.* 2000, *10*, 93; (j) Stewart, A. O.; Bhatia, P. A.;
McCarty, C. M.; Meena, M. V.; Staeger, M. A.; Arendsen, D. L.;
Gunawardana, I. W.; Melcher, L. M.; Zhu, G. D.; Boyd, S. A.; Fry, D. G.;
Cool, B. L.; Kifle, L.; Lartey, K.; Marsh, K. S.; Kempf-Grote, A. J.;
Kilgannon, P.; Wisdom, W.; Meyer, J.; Gallatin, W. M.; Okasinski, G. F. J. *Med. Chem.* 2001, *44*, 988; (k) Cannito, A.; Perrissin, M.; Luu Duc, C.;
Huguet, F.; Gaultier, C.; Narcisse, G. *Eur. J. Med. Chem.* 1990, *25*, 635; (l)
Santagati, A.; Modica, M.; Santagati, M.; Caruso, A.; Cutuli, V. *Pharmazie* 1994, *49*, 64; (m) Perrissian, M.; Farve, M.; Cuong, L. D.; Huguet, F.;
Gaultier, C.; Narcisse, G. *Eur. J. Med. Chem.* 1988, *23*, 453.

- [9] (a) Kaplina, N. V.; Grinev, A. N.; Bogdanova, G. A.; Alekseeva, L. N.; Pushkina, T. V.; Fomina, A. N. *Khim.-farm. Zh.* 1987, 21, 197; (b) Kharizomenova, I. A.; Grinev, A. N.; Samsonova, N. V.; Panisheva, E. K.; Kaplina, N. V.; Nikolaeva, I. S.; Pushkina, T. V.; Pershin, G. N. *Khim.-farm. Zh.* 1981, 15, 40.
- [10] Mkrtchyan, A. P.; Kazaryan, S. G.; Noravyan, A. S.; Dzhagattsparyan, I. A.; Nazaryan, I. M.; Akopyan, A. G. *Khim.-farm. Zh.* **1998**, *32*, 15.
- [11] Guo, Z.; Chen, Y.; Wu, D.; Zhu, Y.; Struthers, R. S.; Saunders, J.; Xieb, Q.;
 Chen, C. *Bioorg. Med. Chem. Lett.* 2003, *13*, 3617.
- [12] Chakraborti, A. K.; Gopalakrishnan, B.; Sobhia, M. E.; Malde, A. *Bioorg. Med. Chem. Lett.* 2003, 13, 1403.
- [13] Donkor, I. O.; Li, H.; Queener, S. F. Eur. J. Med. Chem. 2003, 38, 605.
- [14] Modica, M.; Romeo, G.; Materia, L.; Russo, F.; Cagnotto, A.; Mennini, T.;Gaspar, R.; Falkayc, G.; Fulopd, F. *Bioorg. Med. Chem.* 2004, *12*, 3891.
- [15] Gillespie, R. J.; Cliffe, I. A.; Dawson, C. E.; Dourish, C. T.; Gaur, S.; Giles,
 P. R.; Jordan, A. M.; Knight, A. R.; Lawrence, A.; Lerpiniere, J.; Misra, A.;
 Pratt, R. M.; Todd, R. S.; Upton, R.; Weissa, S. M.; Williamson, D. S. *Bioorg. Med. Chem. Lett.* 2008, 18, 2920.
- [16] Tavares, F. X.; Al-Barazanji, K. A.; Bishop, M. J.; Britt, C. S.; Carlton, D. L.; Cooper, J. P.; Feldman, P. L.; Garrido, D. M.; Goetz, A. S.; Grizzle, M. K.;

Hertzog, D. L.; Ignar, D. M.; Lang, D. G.; McIntyre, M. S.; Ott, R. J.; Peat, A. J.; Zhou, H. J. Med. Chem. 2006, 49, 7108.

- [17] Binder, D.; Hromata, O.; Geissler, F.; Schmied, H.; Noe, C. R.; Burry, K.;
 Pfister, R.; Srtub, K.; Zeller, P. J. Med. Chem. 1987, 30, 678.
- [18] Ives, J. L.; Heym, J. J. Ann. Rep. Med. Chem., 1989, 24, 21.
- Blair, J. B.; Marona-Lewicka, D.; Kanthasamy, A.; Lucaites, V.; Nelson, D.
 V.; Nichols, D. E. J. Med. Chem. 1999, 42, 1106.
- [20] Gewald, K. Khim. Geterotsikl. Soedin. 1976, 1299.
- [21] Ryndina, S. A.; Kadushkin, A. V.; Solov'eva, N. P.; Granik, V. G. Russian Chem. Bull. 2002, 51, 854.
- [22] Ren, W. Y.; Rao, K. V. B.; Klein, R. S. J. Heterocycl. Chem. 1986, 23, 1757.
- [23] Russel, P. K.; Press, J. B.; Rampulla, R. A.; McNally, J. J.; Falotico, R.;
 Keiser, J. A.; Brigcht, D. A.; Tobia, A. J. Med. Chem. 1988, 31, 1786.
- [24] Croisier, P. BE769843, **1992**.
- [25] Wamhoff, H.; Ertas, M. Synthesis 1985, 190.
- [26] Ibrachim, Y. A.; Elwahy, A. H. M.; Kadry, A. M. Adv. Heterocycl. Chem. 1996, 65, 235.
- [27] Boehm, R.; Mueller, R.; Pech, R. Pharmazie 1990, 45, 827.
- [28] Clark, J.; Hitiris, G. J. Chem. Soc. Perkin Trans. 1 1984, 2005.
- [29] Hassan, K. M.; El-Dean, A. M. K.; Youssef, M. S. K.; Atta, F. M.; Abbady,
 M. S. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 47, 181.
- [30] Gewald, K.; Hain, U.; Gruner, M. Chem. Ber. 1988, 121, 573.
- [31] Kretzschmar, E.; Laban, G.; Meisel, P.; Lohmann, D.; Kirsten, W. DD 272079, 2003.
- [32] Ram, V. J.; Pandey, H. K.; Vlietinek, A. J. J. Heterocycl. Chem. 1981, 18, 1277.
- [33] Madding, G. D.; Thompson, M. D. J. Heterocycl. Chem. 1987, 24, 581.
- [34] El-Telbany, F.; Hutchins, R. O. J. Heterocycl. Chem. 1985, 22, 401.
- [35] Wamhoff, H.; Herrmann, S.; Stoelben, S.; Nieger, M. *Tetrahedron* 1993, 49, 581.
- [36] Wagner, G.; Vieweg, H.; Leistner, S. *Pharmazie* 1993, 48, 667.
- [37] Sekumaran, P.; Rajasekharan, K. N. Indian J. Chem. 1990, 29B, 1070.
- [38] Kohra, S.; Tominaga, Y.; A. J. Heterocycl. Chem. 1988, 25, 959-968.

- [39] S. El-Bahaie; M. G. Assy; Hosomi, Y. A. Ibrahim, Sulfur Lett. 1988, 8, 199.
- [40] Sakamoto, T.; Kondo, Y.; Watanabe, R.; Yamanaka, H. *Chem. Pharm. Bull.* **1986**, *34*, 2719.
- [41] Thyagarajan, B. S.; Hillard, J. B.; Reddy, K. V.; Majumdar, K. C. Tetrahedron Lett. 1974, 23, 1999.
- [42] Spada, M. R.; Klein, R. S.; Otter, B. A. J. Heterocycl. Chem. 1989. 26, 1851.
- [43] Sabnis, R. W.; Rangnekar, D. W.; Sonawane, N. D. J. Heterocyclic Chem. 1999, 36, 333.
- [44] Hesse, S.; Perspicace, E.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5261.
- [45] Miriyala, B.; Williamson, J. S. Tetrahedron Lett. 2003, 44, 7957.
- [46] National Committee for Clinical and Laboratory Standards, Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, fourth ed. NCCLS, Villanova, Italy, 1997, Document M 100-S7. S100-S157.
- [47] D.H. Isenberg, Essential Procedure for Clinical Microbiology, American Society for Microbiology, Washington, 1998.
- [48] Zgoda, J. R.; Porter, J. R. Pharm. Biol. 2001, 39, 221.

Chapter 4 Synthesis and biological evaluation of 1,2,4-triazolo[1,5-*a*]pyrimidines

4.1 Introduction

The condensation of a ring of 1,2,4-triazole and another one of pyrimidine gives rise to the formation of bicyclic heterocycles known as 1,2,4-triazolopyrimidines. Four different possibilities exist for the relative orientation of both rings, so four different isomeric families of compounds are defined: 1,2,4-triazolo[1,5-*a*]pyrimidine (1), 1,2,4-triazolo[1,5-*c*]pyrimidine (2), 1,2,4-triazolo[4,3-*a*]pyrimidine (3) and 1,2,4-triazolo[4,3-*c*]pyrimidine (4).

Among these isomeric families of compounds, 1,2,4-triazolo[1,5-a]pyrimidine derivatives are thermodynamically more stable and, thus, the most studied ones [1], a few of them being commercially available. Revisions surveying the synthesis, reactivity, spectroscopic characterization and crystallographic studies of 1,2,4-triazolo[1,5-c]pyrimidines [2], 1,2,4-triazolo[4,3-a]pyrimidines [3] and 1,2,4-triazolo [4,3-c]pyrimidines [4] have also been published.

From the standpoint of biological activity, fused heteroaromatic systems are often of much greater interest than the constituent monocyclic compounds. Recently, 1,2,4-triazolo[1,5-a]pyrimidines have aroused increasing attention from the chemical and biological view points, due to their diverse pharmacological activities, such as antitumor potency [5, 6], inhibition of KDR kinase [7], antifungal effect [8] and macrophage activation [9]. They have proved to be promising anticancer agents with dual mechanisms of tubulin polymerization promotion [5, 6] as well as cyclin dependent kinases 2 inhibition [10]. Some examples of published derivatives of 1,2,4-triazolo[1,5-a]pyrimidine with their biological activities are as following.

4.2 Reported synthetic strategies

4.2.1 Amino-1,2,4-triazole and 1,3-bifunctional synthons

4.2.1.1 Principle and Conditions

By far the most triazolo[1,5-*a*]pyrimidine synthesis are condensations of dinucleophilic 5-amino-1,2,4-triazoles with 1,3-bifunctional synthons as shown in the formation of triazolo[1,5-*a*]pyrimidine (15) (Scheme 4.1) [21-24]. New synthetic conditions recently described involve melting under microwave irradiation, a reaction that is environmental friendly and gives higher yields than conventional heating in solvent [25]. Furthermore, certain lithium 1,3-diketonates have proven to be better synthons than the corresponding diketones [26].

Previous mechanistic conclusions have been confirmed by isolating stable intermediate 5-amino-1,2,4-triazole derivatives such as enamine (16) (Scheme 4.2) on reacting 5-amino-1,2,4-triazoles with 3-ketovinyl ethers [27], 3-ketoenamines [28], 3-ketoaldehydes [29], enamine-2-carboxylic esters [30] or ethoxymethylene malonates [31].

That means, the overall reaction starts with the interaction of the amino-1,2,4triazole amino group and the enolic (or analogous) functionality of the three-carbon synthon. In the two-step examples, just mentioned, the first step proceeds under milder conditions (sometimes just in ethanol at room temperature), but the final cyclization (or the one-step reaction, if the intermediate is not trapped) requires stronger means (e.g., PPA or boiling acetic acid). Under extreme conditions, triazolylamide (17) was subject to flash vacuum pyrolysis between 300 and 450 °C to give about 50% triazolo[1,5-a]pyrimidine (18) (Scheme 4.3) [32]. Libraries of fused 3-aminopyrimidin-4-ones (19) and other compounds were just recently prepared by the solid-phase and by the solution-phase parallel synthesis [33]. The latter method turned out to be advantageous with respect to yield and purity.

4.2.1.2 Use of Modified 5-Amino-1,2,4-triazoles

Scheme 4.4 shows two parallel paths of pyrimidine ring annulation: the conventional method, route A and a route B using a reactive amino-1,2,4-triazole derivative [34]. Amidine (22), formed from 5-amino-1,2,4-triazole and DMF dimethylacetal, can be regarded as the result of incorporating one carbon of the three-carbon synthon (20) into the 5-amino-1,2,4-triazole molecule; condensation with a reactive two-carbon component leads to target triazolo[1,5-*a*]pyrimidine (21).

Path B also serves in confirming the structure of product (21). Similar syntheses of 7-aryl and 7-heterocyclyl triazolo[1,5-*a*]pyrimidines have been described [35-37], for example, that of an antipyrine derivative [38].

4.2.1.3 The diversity of 1,3-bifunctional synthons

Examples of triazolo[1,5-*a*]pyrimidine synthesis published in the relevant period are listed in Table 1, arranged according to the bifunctional synthons used and to the substituents entering the positions 5 and 7. Triazolo[1,5-*a*]pyrimidines are included in reviews dealing with heterocyclic synthesis by the use of enamines [39], enamine-2-carboxylic esters [40] and ketene mercaptals [41].

Table 1. Syntheses of triazolo[1,5-a]pyrimidines from 1,3-bifunctional synthons and 5-amino-1,2,4-triazoles

Bifunctional	R-5 ^b	R-7 ^b	Bifunctional	R-5 ^b	R-7 ^b
Synthons		,	Synthons		,
1,3-Dialdehyde [42]	Н	Н	Enamine-2-carboxylate [59]	Н	OH
2-Formylacetal [43]	Formylacetal [43] H H		Acetylenedicarboxylate [60]	CO ₂ Me	OH
1,3-Diacetal [44]	Н	Н	3-Ketocarboxylate [61]	R	OH
2-Formylvinyl ether [45]	Н	Н	3-Alkoxyacrylate [62]	OH	R
2-Formylvinylchloride [46]	Н	R	Alkoxyalkylene malonate [63]	R	OH
3-Iminiovinylchloride [47]	Н	R	2-Chloroacrylate [64]	OH	R
2-Formylenamine [48]	Н	R	Malonic ester [65]	OH	OH
3-Iminioenamine [49]	Н	R	Malonyl chloride [66]	OH	OH
3-Ketoaldehyde [50]	R	Н	2-Acylketene mercaptal [67]	SR	R'
3-Ketoacetal [51]	R	Н	2-Cyanoketene mercaptal [68]	SR	NH_2
3-Ketovinyl ether [52]	Н	R	Alkoxyalkylene cyanoacetate [69]	R	NH_2
3-Ketovinyl sulfone [53] ^c	R	Н	Alkoxyalkylene malonitrile [70]	R	NH_2
3-Ketoenamine [54]	Н	R	2-Formylnitrile [71]	Н	NH_2
1,3-Diketone [55]	R	R'	2-Cyanoenamine [72]	Н	NH_2
3-Ketoalkyne [56]	\mathbf{R}^{d}	Н	Malonitrile [73]	NH ₂	NH_2
2-Formylcarboxylate [57]	R	OH	2-Thiocarbamylcarboxylate [74]	NHR	OH
2-Alkoxycarbonylacetal [58]	OH	Н			

^aor tautomeric form.

^bSubstituents on C-5 and C-7, respectively; R and R' mean (possibly substituted) alkyl, aryl, heterocyclyl and H; OH means hydroxy or tautomeric oxo form.

^cAnd regioisomeric 7-R compound.

^dDeoxyaltrose derivative relating C-glycosides [75].

In recent years, 3-ketoenamines have growing interest as building blocks for 7-aryl triazolo[1,5-*a*]pyrimidines (Scheme 4.4, Path A) [76, 77]. They also serve to synthesize 7-heterocyclyl triazolo[1,5-*a*]pyrimidines [78, 79]. In addition to usual *N*,

N-dimethyl compounds also analogues having a free amino group can be used as in the synthesis of 7-trifluoromethyl derivatives [80]. Enaminones can be formed in situ, for instance, from dimedone and DMF dimethylacetal [81].

In the course of the cyclization of the stable tetrafluorobenzoyl derivative (23) (Scheme 4.5) fluorine at the *o*-position is involved in the reaction and is replaced to give trifluorobenzo triazolo[1,5-a]pyrimidine (24) [82]. Acetonyl is introduced as substituent into the 7-position by the use of triketone heptan-2,4,6-trione [83].

The electron acceptor tetracyanoethylene on interaction with amino-1,2,4triazole first forms a charge transfer complex that after loss of hydrocyanic acid is transformed into dicyano triazolo[1,5-a]pyrimidine (25) [84]. Fusion of 1,4naphthoquinone or indenone onto triazolo[1,5-a]pyrimidine can in a similar way be performed by the use of 2,3-dicyano-1,4-naphthoquinone or dicyanomethylene indane-1,3-dione, respectively. Another indeno triazolo[1,5-a]pyrimidine is accessible from triketone 2-acetylindane-1,3-dione [85]. On the other hand, acetoacetic ester (26) with 5-amino-1,2,4-triazole suffers ester group cleavage to form anilino triazolo[1,5-a]pyrimidine (27) [86].

4.2.2 Other pyrimidine ring synthesis

The annulation of pyrimidine onto the triazole ring can be accomplished by the use of heterocyclic precursors that can be regarded as masked 1,3-bifunctional reagents. This way, triacetic acid lactone (27) (Scheme 4.6) reacts as a masked 1,3-diketone and transforms 5-amino-1,2,4-triazole to triazolo[1,5-*a*]pyrimidine (28) together with ring isomer (29) and decarboxylation product (30) [87]. Oxazolones play a similar part [88-90]. Thus, enol ether (31) behaves as a masked 3-ethoxyacrylate and yields, through intermediate (32), benzamido TP (33) that, under harsher conditions, directly forms from compound [30].

4.2.3 2-Hydrazinopyrimidines and one-carbon synthons

A second common triazolo[1,5-a]pyrimidine synthesis consists in the condensation of a C₁-synthon with a 2-hydrazinopyrimidine derivative (e.g., 34, Scheme 4.7). A triazolo[4,3-a]-pyrimidine (35) initially forms that often can be isolated [91]. Harsher conditions allow it to isomerize to the target triazolo[1,5-a]pyrimidine (36) by Dimroth rearrangement.

4.2.4 Other triazole ring synthesis

Most cyclization of 2,3-diaminopyrimidones (37) [92] or corresponding quinazolones proceed with the participation of carboxylic acids or their derivatives (esters, anhydrides, chlorides, or orthoesters) as shown in Scheme 4.8. Noncyclized or saturated intermediates (38, 39) can frequently be found during synthesis of triazolo[1,5-*a*]pyrimidines.

4.3 Current work

The biological importance of 1,2,4-triazolo[1,5-*a*]pyrimidines is well documented. Over the years, various substituted derivatives of these heterocycles have shown utility against a range of biological targets. For example, they have demonstrated activity against malaria and bronchospasm and shown activity as coronary vasodilators, antihypertensive agents, leishmanicides, antibiotics, adenosine A_{2a} antagonists, immunosuppressants, antitumor agents, fungicides, xanthine oxidase inhibitors, and phosphodiesterase inhibitors.

One of the synthetic pathways to 1,2,4-triazolo[1,5-*a*]pyrimidines is based on the Biginelli like cyclocondensation of aromatic aldehydes and acetoacetic acid derivatives with aminoazoles containing a guanidine fragment. There are literary data about the synthesis of triazolopyrimidines by treatment of 5-amino-1,2,4-triazole or 5aminotetrazole with aldehydes and ethyl acetoacetate or cyclic β -diketones [93]. The cyclocondensations were realized by heating of the starting materials in ethanol with catalytic amounts of hydrochloric acid under reflux conditions [93a-c] or using DMF as solvent [93d-e]. The use of acetoacetamides in these or similar reactions has not been described.

Recognizing these facts, we have synthesised four new series of 1,2,4triazolo[1,5-*a*]pyrimidines (ART-201 to ART-240) containing an acetoacetamide fragment. The structures of all the newly synthesized compounds were elucidated by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds were subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

4.4 Reaction Scheme

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \hline & & & & \\ R_{1} + & & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & & \\ R_{2} & & \\ R_{1} + & \\ R_{1} + & \\ R_{1}$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Code	R ₁	R ₂	M.F.	M.W.	M.P. °C	Yield %	R _{f1}	R _{f2}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-201	4-0CH	4-0CH2	CarHarNcOa	391	219-221	78	0.56	0.71			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-202	4-0CH	4-CH	$C_{21}H_{21}N_{2}O_{2}$	375	179-181	70	0.50	0.69			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-202	4-0CH	4 CH3 4-F	C ₂₁ H ₂₁ H ₃ O ₂	379	257_259	82	0.31	0.67			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-205	4-0CH	4-1 4-Cl	$C_{20}H_{18}\Gamma N_5O_2$	395	179-181	69	0.40	0.64			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-205	4-0CH	4-NO2	$C_{20}H_{18}N_{c}O_{4}$	406	261-263	80	0.53	0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-205	4-0CH	3-NO2	$C_{20}H_{18}N_{c}O_{4}$	406	183-185	75	0.33	0.70			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-207	4-0CH ₂	3-Cl	$C_{20}H_{18}CIN_{\epsilon}O_{2}$	395	244-246	69	0.11	0.70			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-208	4-0CH ₂	3 4 5-0CH ₂	$C_{20}H_{18}O_{5}O_{5}$	451	274-276	76	0.50	0.63			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-209	4-0CH	3 4-0CH	$C_{23}H_{23}N_5O_4$	421	169-171	82	0.20	0.62			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-210	4-0CH ₂	2-Cl	$C_{22}H_{23}C_{30}U_{4}$	395	183-185	70	0.49	0.74			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-211	4-F	4-0CH2	$C_{20}H_{18}EN_{5}O_{2}$	379	256-258	73	0.52	0.69			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-212	4-F	4-CH ₂	$C_{20}H_{18}FN_{5}O$	363	227-229	85	0.56	0.69			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-213	4-F	4-F	$C_{10}H_{15}F_{2}N_{5}O$	367	257-259	78	0.50	0.66			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-214	4-F	4-C1	C ₁₀ H ₁₅ ClFN ₂ O	383	247-249	70	0.50	0.60			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-215	4-F	4-NO2	C10H15EN(O2	394	273-275	76	0.61	0.77			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-216	4-F	$3-NO_2$	$C_{10}H_{15}FN_{4}O_{2}$	394	242-244	66	0.54	0.61			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-217	4-F	3-Cl	C10H16CIEN6O	383	233-235	78	0.53	0.71			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-218	4-F	2-NO2	C ₁₀ H ₁₅ EN ₂ O ₂	394	196-198	70	0.64	0.78			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-219	4-F	2-Cl	C10H15CIENCO	383	207-209	65	0.48	0.62			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-220	4-F	3 4-0CH ₂	$C_{21}H_{20}FN_{\epsilon}O_{2}$	409	217-219	79	0.61	0.72			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-221	$3-CF_2$	4-0CH ₂	$C_{21}H_{20}F_{1}N_{5}O_{2}$	429	208-210	68	0.45	0.56			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-222	$3-CF_2$	4-CH ₂	$C_{21}H_{18}F_{2}N_{5}O$	413	233-235	74	0.55	0.62			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-223	$3-CE_2$	4-F	$C_{20}H_{16}E_4N_6O$	417	215-217	82	0.52	0.70			
ART 225 $3 \cdot CF_3$ $4 \cdot NO_2$ $C_{20}H_{15}Gr_3N_6O_3$ 444 $253 \cdot 255$ 79 0.58 0.73 ART-226 $3 \cdot CF_3$ $3 \cdot NO_2$ $C_{20}H_{15}F_3N_6O_3$ 444 $236 \cdot 238$ 68 0.43 0.55 ART-227 $3 \cdot CF_3$ $3 \cdot Cl$ $C_{20}H_{15}ClF_3N_6O_3$ 444 $236 \cdot 238$ 68 0.43 0.55 ART-228 $3 \cdot CF_3$ $2 \cdot NO_2$ $C_{20}H_{15}ClF_3N_6O_3$ 444 $238 \cdot 240$ 72 0.52 0.67 ART-229 $3 \cdot CF_3$ $2 \cdot Cl$ $C_{20}H_{15}ClF_3N_5O$ 433 $258 \cdot 260$ 67 0.53 0.61 ART-230 $3 \cdot CF_3$ $2 \cdot Cl$ $C_{20}H_{15}ClF_3N_5O$ 433 $258 \cdot 260$ 67 0.53 0.61 ART-231 $2 \cdot F$ $4 \cdot OCH_3$ $C_{22}H_{20}F_3N_5O_3$ 459 $220 \cdot 222$ 68 0.48 0.68 ART-232 $2 \cdot F$ $4 \cdot OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228 \cdot 230$ 75 0.51 0.59 ART-232 $2 \cdot F$ $4 \cdot CH_3$ $C_{20}H_{18}FN_5O_3$ 363 $229 \cdot 231$ 76 0.45 0.63 ART-233 $2 \cdot F$ $4 \cdot Cl$ $C_{19}H_{15}F_2N_5O$ 367 $281 \cdot 283$ 71 0.47 0.60 ART-234 $2 \cdot F$ $4 \cdot Cl$ $C_{19}H_{15}FN_6O_3$ 394 $277 \cdot 279$ 82 0.49 0.67 ART-235 $2 \cdot F$ $4 \cdot OL$ $C_{19}H_{15}FN_6O_3$ 394 $277 \cdot 279$ 82 0.49 0.67 <t< td=""><td>ART-224</td><td>$3-CF_2$</td><td>4-C1</td><td>$C_{20}H_{15}CIE_2N_5O$</td><td>433</td><td>248-250</td><td>71</td><td>0.50</td><td>0.58</td></t<>	ART-224	$3-CF_2$	4-C1	$C_{20}H_{15}CIE_2N_5O$	433	248-250	71	0.50	0.58			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-225	$3-CF_2$	4-NO2	$C_{20}H_{15}F_{2}N_{4}O_{2}$	444	253-255	79	0.58	0.20			
ART 227 $3-CF_3$ $3-Cl$ $C_{20}H_{15}CIF_3N_5O$ 433 $239-241$ 66 0.53 0.69 ART-228 $3-CF_3$ $2-NO_2$ $C_{20}H_{15}F_3N_6O_3$ 444 $238-240$ 72 0.52 0.67 ART-229 $3-CF_3$ $2-Cl$ $C_{20}H_{15}CIF_3N_5O$ 433 $258-260$ 67 0.53 0.61 ART-230 $3-CF_3$ $2-Cl$ $C_{20}H_{15}CIF_3N_5O$ 433 $258-260$ 67 0.53 0.61 ART-230 $3-CF_3$ $3,4-OCH_3$ $C_{22}H_{20}F_3N_5O_3$ 459 $220-222$ 68 0.48 0.68 ART-231 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-CH_3$ $C_{20}H_{18}FN_5O_3$ 363 $229-231$ 76 0.45 0.63 ART-233 $2-F$ $4-CH_3$ $C_{20}H_{18}FN_5O_3$ 367 $281-283$ 71 0.47 0.60 ART-234 $2-F$ $4-Cl$ $C_{19}H_{15}CIFN_5O_3$ 394 $277-279$ 82 0.49 0.67 ART-236 $2-F$ $3-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $277-279$ 82 0.48 0.55 ART-237 $2-F$ $3-Cl$ $C_{19}H_{15}CIFN_5O_3$ 383 $256-258$ 72 0.48 0.55 ART-238 $2-F$ $2-NO_2$ $C_{19}H_{15}CIFN_5O_3$ 394 $275-277$ 78 0.43 0.59 ART-239 $2-F$ $2-Cl$ $C_{19}H_{15}CIFN_5O_3$ <td>ART-226</td> <td>$3-CE_2$</td> <td>$3-NO_2$</td> <td>$C_{20}H_{15}F_{2}N_{2}O_{2}$</td> <td>444</td> <td>236-238</td> <td>68</td> <td>0.43</td> <td>0.55</td>	ART-226	$3-CE_2$	$3-NO_2$	$C_{20}H_{15}F_{2}N_{2}O_{2}$	444	236-238	68	0.43	0.55			
ART 228 $3-CF_3$ $2-NO_2$ $C_{20}H_{15}F_3N_6O_3$ 444 $238-240$ 72 0.52 0.67 ART-229 $3-CF_3$ $2-Cl$ $C_{20}H_{15}ClF_3N_5O$ 433 $258-260$ 67 0.53 0.61 ART-230 $3-CF_3$ $3,4-OCH_3$ $C_{22}H_{20}F_3N_5O_3$ 459 $220-222$ 68 0.48 0.68 ART-231 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_3$ 363 $229-231$ 76 0.45 0.63 ART-233 $2-F$ $4-CH_3$ $C_{20}H_{18}FN_5O_3$ 367 $281-283$ 71 0.47 0.60 ART-234 $2-F$ $4-Cl$ $C_{19}H_{15}ClFN_5O_3$ 383 $276-278$ 81 0.57 0.64 ART-235 $2-F$ $4-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $277-279$ 82 0.49 0.67 ART-236 $2-F$ $3-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $259-261$ 74 0.52 0.65 ART-237 $2-F$ $3-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $256-258$ 72 0.48 0.55 ART-238 $2-F$ $2-NO_2$ $C_{19}H_{15}ClFN_5O$ 383 $225-277$ 78 0.43 0.59 ART-239 $2-F$ $2-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $221-223$ 68 0.50 0.68 ART-240 $2-F$ $3.4-OCH_3$ $C_{21}H_{20}FN_5O_3$ 40	ART-227	$3-CF_2$	3-Cl	$C_{20}H_{15}CIF_2N_5O$	433	239-241	66	0.53	0.69			
ART-229 $3-CF_3$ $2-Cl$ $C_{20}H_{15}CIF_{3}N_{5}O$ 433 $258-260$ 67 0.53 0.61 ART-230 $3-CF_3$ $3,4-OCH_3$ $C_{22}H_{20}F_{3}N_{5}O_3$ 459 $220-222$ 68 0.48 0.68 ART-231 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-CH_3$ $C_{20}H_{18}FN_5O_3$ 363 $229-231$ 76 0.45 0.63 ART-233 $2-F$ $4-F$ $C_{19}H_{15}F_2N_5O_3$ 367 $281-283$ 71 0.47 0.60 ART-234 $2-F$ $4-Cl$ $C_{19}H_{15}CIFN_5O_3$ 394 $277-279$ 82 0.49 0.67 ART-235 $2-F$ $4-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $277-279$ 82 0.49 0.67 ART-236 $2-F$ $3-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $259-261$ 74 0.52 0.65 ART-237 $2-F$ $3-Cl$ $C_{19}H_{15}CIFN_5O$ 383 $256-258$ 72 0.48 0.55 ART-238 $2-F$ $2-NO_2$ $C_{19}H_{15}CIFN_5O$ 383 $221-223$ 68 0.50 0.68 ART-239 $2-F$ $2-Cl$ $C_{19}H_{15}CIFN_5O$ 383 $221-223$ 68 0.50 0.68 ART-240 $2-F$ $3.4-OCH_3$ $C_{21}H_{20}FN_5O_3$	ART-228	$3-CF_2$	$2-NO_2$	$C_{20}H_{15}F_{2}N_{4}O_{2}$	444	238-240	72	0.52	0.67			
ART-230 $3-CF_3$ $3,4-OCH_3$ $C_{22}H_{20}F_3N_5O_3$ 459 $220-222$ 68 0.48 0.68 ART-231 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-OCH_3$ $C_{20}H_{18}FN_5O_2$ 379 $228-230$ 75 0.51 0.59 ART-232 $2-F$ $4-CH_3$ $C_{20}H_{18}FN_5O$ 363 $229-231$ 76 0.45 0.63 ART-233 $2-F$ $4-F$ $C_{19}H_{15}F_2N_5O$ 367 $281-283$ 71 0.47 0.60 ART-234 $2-F$ $4-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $276-278$ 81 0.57 0.64 ART-235 $2-F$ $4-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $277-279$ 82 0.49 0.67 ART-236 $2-F$ $3-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $259-261$ 74 0.52 0.65 ART-237 $2-F$ $3-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $256-258$ 72 0.48 0.55 ART-238 $2-F$ $2-NO_2$ $C_{19}H_{15}ClFN_5O$ 383 $225-277$ 78 0.43 0.59 ART-239 $2-F$ $2-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $221-223$ 68 0.50 0.68 ART-240 $2-F$ $3.4-OCH_3$ $C_{21}H_{20}FN_5O_3$ 409 $256-258$ 72 0.54 0.64	ART-229	$3-CF_2$	2-Cl	$C_{20}H_{15}CIF_2N_5O$	433	258-260	67	0.53	0.61			
ART 2312-F4-OCH3 $C_{20}H_{18}FN_5O_2$ 379228-230750.510.59ART-2322-F4-CH3 $C_{20}H_{18}FN_5O$ 363229-231760.450.63ART-2332-F4-CH3 $C_{20}H_{18}FN_5O$ 363229-231760.450.63ART-2342-F4-Cl $C_{19}H_{15}F_2N_5O$ 367281-283710.470.60ART-2352-F4-Cl $C_{19}H_{15}CIFN_5O$ 383276-278810.570.64ART-2362-F3-NO2 $C_{19}H_{15}FN_6O_3$ 394277-279820.490.67ART-2372-F3-Cl $C_{19}H_{15}FN_6O_3$ 394259-261740.520.65ART-2382-F2-NO2 $C_{19}H_{15}CIFN_5O$ 383256-258720.480.55ART-2392-F2-Cl $C_{19}H_{15}CIFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-230	$3-CF_2$	3 4-0CH ₂	$C_{20}H_{13}C_{13}H_{3}C_{2}$	459	220-222	68	0.48	0.68			
ART-2322-F4-CH3 $C_{20}H_{18}FN_5O$ 363229-231760.450.63ART-2332-F4-F $C_{19}H_{15}F_2N_5O$ 367281-283710.470.60ART-2342-F4-Cl $C_{19}H_{15}ClFN_5O$ 383276-278810.570.64ART-2352-F4-NO2 $C_{19}H_{15}ClFN_5O$ 383276-278810.570.64ART-2362-F3-NO2 $C_{19}H_{15}FN_6O_3$ 394277-279820.490.67ART-2372-F3-Cl $C_{19}H_{15}ClFN_5O$ 383256-258720.480.55ART-2382-F2-NO2 $C_{19}H_{15}ClFN_5O$ 383256-258720.430.59ART-2392-F2-Cl $C_{19}H_{15}ClFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-231	2-F	4-OCH ₂	$C_{22}H_{20}F_{3}F_{5}O_{2}$	379	228-230	75	0.51	0.59			
ART-2332-F4-F $C_{19}H_{15}F_{2}N_{5}O$ 367281-283710.470.60ART-2342-F4-Cl $C_{19}H_{15}ClFN_{5}O$ 383276-278810.570.64ART-2352-F4-NO2 $C_{19}H_{15}ClFN_{5}O$ 394277-279820.490.67ART-2362-F3-NO2 $C_{19}H_{15}FN_{6}O_3$ 394259-261740.520.65ART-2372-F3-Cl $C_{19}H_{15}ClFN_{5}O$ 383256-258720.480.55ART-2382-F2-NO2 $C_{19}H_{15}FN_{6}O_3$ 394275-277780.430.59ART-2392-F2-Cl $C_{19}H_{15}ClFN_{5}O$ 383221-223680.500.68ART-2402-F3.4-OCH ₃ $C_{21}H_{20}FN_{5}O_3$ 409256-258720.540.64	ART-232	2-F	4-CH ₂	$C_{20}H_{18}FN_5O$	363	229-231	76	0.45	0.63			
ART-2342-F4-Cl $C_{19}H_{15}ClFN_5O$ 383276-278810.570.64ART-2352-F4-NO2 $C_{19}H_{15}ClFN_5O$ 394277-279820.490.67ART-2362-F3-NO2 $C_{19}H_{15}FN_6O_3$ 394259-261740.520.65ART-2372-F3-Cl $C_{19}H_{15}ClFN_5O$ 383256-258720.480.55ART-2382-F2-NO2 $C_{19}H_{15}FN_6O_3$ 394275-277780.430.59ART-2392-F2-Cl $C_{19}H_{15}ClFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH_3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-233	2-F	4-F	$C_{10}H_{15}F_{2}N_{5}O$	367	281-283	71	0.47	0.60			
ART-2352-F4-NO2 $C_{19}H_{15}FN_6O_3$ 394277-279820.490.67ART-2362-F3-NO2 $C_{19}H_{15}FN_6O_3$ 394259-261740.520.65ART-2372-F3-Cl $C_{19}H_{15}FN_6O_3$ 394259-261740.520.65ART-2382-F3-Cl $C_{19}H_{15}CIFN_5O$ 383256-258720.480.55ART-2392-F2-NO2 $C_{19}H_{15}FN_6O_3$ 394275-277780.430.59ART-2392-F2-Cl $C_{19}H_{15}CIFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH_3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-234	2-F	4-C1	C ₁₀ H ₁₅ ClFN ₆ O	383	276-278	81	0.57	0.64			
ART-2362-F $3-NO_2$ $C_{19}H_{15}FN_6O_3$ 394 $259-261$ 74 0.52 0.65 ART-2372-F $3-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $256-258$ 72 0.48 0.55 ART-2382-F $2-NO_2$ $C_{19}H_{15}ClFN_5O$ 394 $275-277$ 78 0.43 0.59 ART-2392-F $2-Cl$ $C_{19}H_{15}ClFN_5O$ 383 $221-223$ 68 0.50 0.68 ART-240 $2-F$ $3.4-OCH_3$ $C_{21}H_{20}FN_5O_3$ 409 $256-258$ 72 0.54 0.64	ART-235	2-F	4-NO2	$C_{10}H_{15}FN_{2}O_{2}$	394	277-279	82	0.49	0.67			
ART-2372-F3-Cl $C_{19}H_{15}ClFN_5O$ 383256-258720.480.55ART-2382-F2-NO2 $C_{19}H_{15}ClFN_5O$ 394275-277780.430.59ART-2392-F2-Cl $C_{19}H_{15}ClFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-236	2-F	$3-NO_2$	$C_{10}H_{15}FN_{2}O_{2}$	394	259-261	74	0.52	0.65			
ART-2382-F2-NO2 $C_{19}H_{15}FN_6O_3$ 394275-277780.430.59ART-2392-F2-Cl $C_{19}H_{15}ClFN_5O$ 383221-223680.500.68ART-2402-F3.4-OCH_3 $C_{21}H_{20}FN_5O_3$ 409256-258720.540.64	ART-237	2-F	3-Cl	C ₁₀ H ₁₅ ClFN ₅ O	383	256-258	72	0.48	0.55			
ART-239 2-F 2-Cl $C_{19}H_{15}ClFN_5O$ 383 221-223 68 0.50 0.68 ART-240 2-F 3.4-OCH ₃ $C_{21}H_{20}FN_5O_3$ 409 256-258 72 0.54 0.64	ART-238	2-F	2-NO2	$C_{10}H_{15}FN_{c}O_{2}$	394	275-277	78	0.43	0.59			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ART-239	2-F	2-Cl	C10H15CIFNEO	383	221-223	68	0.50	0.68			
	ART-240	2-F	3.4-OCH ₂	$C_{21}H_{20}FN_{\epsilon}O_{2}$	409	256-258	72	0.54	0.64			

TLC Solvent system R_{f1} : Hexane: Ethyl acetate – 6:4; TLC Solvent system R_{f2} : Chloroform: Methanol - 9:1.

4.5 Reaction Mechanism

The reaction mechanism of this three-component condensation is probably similar to the described [94] mechanism for the "classical" Biginelli reaction (Pathway 1). The first step is a nucleophilic addition of N_2 of the aminoazole to a carbonyl carbon of aldehyde, followed by subsequent cyclization with acetoacetamide to form the dihydropyrimidine ring. An alternate sequence is also possible and cannot be excluded [95] (Pathway 2), which is the initial formation of an enamine by reaction of aminoazole with the acetoacetamide followed by cyclocondensation. The third alternative involving the formation of 2-benzylidene-*N*-aryl-3-oxobutanamide derivatives as intermediates requires the presence of a strong base [96] and is most likely not possible for the case described herein.

4.6 Experimental

4.6.1 Materials and Methods

Melting points were determined in open capillary tubes and are uncorrected. Formation of the compounds was routinely checked by TLC on silica gel-G plates of 0.5 mm thickness and spots were located by iodine. IR spectra were recorded Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. ¹H NMR was determined in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer. Elemental analysis of the all the synthesized compounds was carried out on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements with the structures assigned.

4.6.2 Synthesis of N-(aryl)-3-oxobutanamides

Synthesis of *N*-(aryl)-3-oxobutanamides was achieved using previously published methods [97].

4.6.3 General procedure for the synthesis of 7-(aryl)-4,7-dihydro-N-(4-methoxy phenyl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (ART 201-210)

A mixture of the aminoazole (0.01 mol), *N*-(4-methoxyphenyl)-3-oxobutanamide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 0.4 mL of DMF for 12-15 min. After cooling, methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight and then filtered to give the solid triazolopyrimidine products ART 201-210, which were crystallized from ethanol and subsequently dried in air.

4.6.3.1 7-(4-methoxyphenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]

(ART-201) Yield: 78%; mp 219-221 °C; IR (cm⁻¹): 3259 (N-H stretching of secondary amine), 3032 (C-H stretching of aromatic ring), 2920 (C-H asymmetrical stretching of CH₃ group), 2875 (C-H asymmetrical stretching of

triazolo[1,5-a]pyrimidine-6-carboxamide

CH₃ group), 1668 (C=O stretching of amide), 1606 (C=N stretching of triazole ring), 1550 (N-H deformation of pyrimidine ring), 1514 and 1480 (C=C stretching of aromatic ring), 1440 (C-H asymmetrical deformation of CH₃ group), 1410 (C-H symmetrical deformation of CH₃ group), 1330 (C-N stretching), 1247 (C-O-C stretching), 1028 (C-H in plane deformation of aromatic ring), 821 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.27 (s, 3H, H_a), 3.74 (s, 2×3H, H_b), 6.52 (s, 1H, H_c), 6.75-6.77 (d, 2H, H_{dd'}, *J* = 9.14 Hz), 6.80-6.82 (d, 2H, H_{ee'}, *J* = 8.68 Hz), 7.24-7.27 (d, 2H, H_{ff'}, *J* = 8.64 Hz), 7.36-7.38 (d, 2H, H_{gg'}, *J* = 8.96 Hz), 7.56 (s, 1H, H_h), 9.15 (s, 1H, H_i), 10.02 (s, 1H, H_j); MS: *m/z* 391; Anal. Calcd. for C₂₁H₂₁N₅O₃: C, 64.44; H, 5.41; N, 17.89. Found: C, 64.38; H, 5.29; N, 17.75%.

4.6.3.2 7-(4-methylphenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-202*) Yield: 72%; mp 179-181 °C; MS: *m/z* 375; Anal. Calcd. for C₂₁H₂₁N₅O₂: C, 67.18; H, 5.64; N, 18.65. Found: C, 67.10; H, 5.54; N, 18.49%.

4.6.3.3 7-(4-flourophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]triazo

Yield: 82%; mp 257-259 °C; IR (cm⁻¹): 3269 (N-H stretching of secondary amine), 3024 (C-H stretching of aromatic ring), 2922 (C-H asymmetrical stretching of CH₃ group), 2868 (C-H asymmetrical stretching of CH₃ group),

lo[1,5-a]pyrimidine-6-carboxamide (ART-203)

1666 (C=O stretching of amide), 1618 (C=N stretching of triazole ring), 1550 (N-H deformation of pyrimidine ring), 1510, 1479 and 1442 (C=C stretching of aromatic ring), 1413 (C-H asymmetrical deformation of CH₃ group), 1329 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1247 (C-O-C stretching), 1033 (C-H in plane deformation of aromatic ring), 825 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.28 (s, 3H, H_a), 3.74 (s, 3H, H_b), 6.59 (s, 1H, H_c), 6.76-6.78 (d, 2H, H_{dd'}, *J* = 8.84 Hz), 6.96-7.00 (t, 2H, H_{ee'}), 7.32-7.38 (m, 4H, H_{f-i}), 7.57 (s, 1H, H_j), 9.26 (s, 1H, H_k), 10.06 (s, 1H, H_l); MS: *m/z* 379; Anal. Calcd. for C₂₀H₁₈FN₅O₂: C, 63.32; H, 4.78; N, 18.46. Found: C, 63.32; H, 4.78; N, 18.46%.

4.6.3.4 7-(4-chlorophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]triazo

lo[1,5-a]pyrimidine-6-carboxamide (ART-204) Yield: 69%; mp 179-181 °C; MS: *m/z* 395; Anal. Calcd. for C₂₀H₁₈ClN₅O₂: C, 60.68; H, 4.58; N, 17.69. Found: C, 60.61; H, 4.50; N, 17.54%.

4.6.3.5 7-(4-nitrophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-205) Yield: 80%; mp 261-263 °C; IR (cm⁻¹): 3217 (N-H stretching of secondary amine), 3045 (C-H stretching of aromatic ring), 2964 (C-H asymmetrical stretching of CH₃ group), 2872 (C-H asymmetrical stretching of CH₃ group), 2872

1666 (C=O stretching of amide), 1595 (C=N stretching of triazole ring), 1516 (N-H deformation of pyrimidine ring), 1440, 1400 (C=C stretching of aromatic ring), 1411 (C-H asymmetrical deformation of CH₃ group), 1344 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1247 (C-O-C stretching), 1033 (C-H in plane deformation of aromatic ring), 819 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.41 (s, 3H, H_a), 3.74 (s, 3H, H_b), 6.72 (s, 1H, H_c), 6.76-6.78 (d, 2H, H_{dd'}, *J* = 8.96 Hz Hz), 7.36-7.39 (d, 2H, H_{ce'}, *J* = 8.96 Hz), 7.50-7.52 (d,

2H, H_{ff^*} , J = 8.68 Hz), 7.57 (s, 1H, H_g), 8.12-8.14 (d, 2H, H_{hh^*} , J = 8.68 Hz), 9.36 (s, 1H, H_i), 10.14 (s, 1H, H_j); MS: m/z 406; Anal. Calcd. for $C_{20}H_{18}N_6O_4$: C, 59.11; H, 4.46; N, 20.68. Found: C, 59.05; H, 4.38; N, 20.51%.

4.6.3.6 7-(3-nitrophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-206) Yield: 75%; mp 183-185 °C; MS: *m/z* 406; Anal. Calcd. for C₂₀H₁₈N₆O₄: C, 59.11; H, 4.46; N, 20.68. Found: C, 59.08; H, 4.39; N, 20.61%.

4.6.3.7 7-(3-chlorophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-207*)Yield: 69%; mp 244-246 °C; MS: *m/z* 395; Anal. Calcd. for C₂₀H₁₈ClN₅O₂: C, 60.68; H, 4.58; N, 17.69. Found: C, 60.56; H, 4.45; N, 17.58%.

4.6.3.8 7-(3,4,5-methoxyphenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6-carboxamide

(*ART-208*) Yield: 76%; mp 274-276 °C; MS: *m/z* 451; Anal. Calcd. for C₂₃H₂₅N₅O₅: C, 61.19; H, 5.58; N, 15.51. Found: C, 61.09; H, 5.48; N, 15.44%.

4.6.3.9 7-(3,4-methoxyphenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]

Yield: 82%; mp 169-171 °C; MS: *m/z* 421; Anal. Calcd. for C₂₂H₂₃N₅O₄: C, 62.70; H, 5.50; N, 16.62. Found: C, 62.61; H, 5.39; N, 16.57%.

triazolo[1,5-a]pyrimidine-6-carboxamide (ART-209)

4.6.3.10 7-(2-chlorophenyl)-4,7-dihydro-N-(4-methoxyphenyl)-5-methyl[1,2,4]triazo

lo[1,5-a]pyrimidine-6-carboxamide (ART-210) Yield: 70%; mp 183-185 °C; MS: *m/z* 395; Anal. Calcd. for C₂₀H₁₈ClN₅O₂: C, 60.68; H, 4.58; N, 17.69. Found: C, 60.59; H, 4.47; N, 17.60%.

4.6.4 General procedure for the synthesis of 7-(aryl)-4,7-dihydro-N-(4-flourophenyl) -5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (ART 211-220)

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), *N*-(4-flourophenyl)-3-oxobutana mide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 0.4 mL of DMF for 12-15 min. After cooling, methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight and then filtered to give the solid triazolopyrimidine products ART 211-220, which were crystallized from ethanol and subsequently dried in air.

4.6.4.1 7-(4-methoxyphenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo[1,5-a]

pyrimidine-6-carboxamide (ART-211) Yield: 73%; mp 256-258 °C; MS: *m/z* 379; Anal. Calcd. for C₂₀H₁₈FN₅O₂: C, 63.32; H, 4.78; N, 18.46. Found: C, 63.25; H, 4.68; N, 18.39%.

4.6.4.2 7-(4-methylphenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-212) Yield: 85%; mp 227-229 °C; IR (cm⁻¹): 3267 (N-H stretching of secondary amine), 3032 (C-H stretching of aromatic ring), 2980 (C-H asymmetrical stretching of CH₃ group), 2862 (C-H asymmetrical stretching of CH₃ group), 2862 (C-H asymmetrical stretching of CH₃ group), 1666 (C=O stretching of amide), 1602 (C=N

stretching of triazole ring), 1516 (N-H deformation of pyrimidine ring), 1510 and

1450 (C=C stretching of aromatic ring), 1404 (C-H asymmetrical deformation of CH₃ group), 1329 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1014 (C-H in plane deformation of aromatic ring), 831 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.25-2.27 (2×s, 2×3H, H_a), 6.58 (s, 1H, H_b), 6.90-6.96 (t, 2H, H_{cc'}), 7.07-7.09 (d, 2H, H_{dd'}, *J* = 7.96), 7.16-7.18 (d, 2H, H_{ce'}, *J* = 8.08), 7.47-7.51 (m, 3H, H_{ff'-g}), 9.52 (s, 1H, H_h), 10.00 (s, 1H, H_i); MS: *m/z* 363; Anal. Calcd. for C₂₀H₁₈FN₅O: C, 66.10; H, 4.99; N, 19.27. Found: C, 65.99; H, 4.92; N, 19.21%.

4.6.4.3 7-(4-flourophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-213) Yield: 78%; mp 257-259 °C; IR (cm⁻¹): 3279 (N-H stretching of secondary amine), 3047 (C-H stretching of aromatic ring), 2989 (C-H asymmetrical stretching of CH₃ group), 2864 (C-H asymmetrical stretching of CH₃ group), 2864

1658 (C=O stretching of amide), 1602 (C=N stretching of triazole ring), 1558 (N-H deformation of pyrimidine ring), 1514, 1494 and 1446 (C=C stretching of aromatic ring), 1420 (C-H asymmetrical deformation of CH₃ group), 1323 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1060 (C-H in plane deformation of aromatic ring), 827 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.27 (s, 3H, H_a), 6.61 (s, 1H, H_b), 6.91-7.00 (m, 4H, H_{cc'-dd'}), 7.30-7.33 (m, 2H, H_{ee'}), 7.46-7.49 (m, 2H, H_{ff'}), 7.71-7.72 (s, 1H, H_g), 9.49 (s, 1H, H_h), 10.05 (s, 1H, H_i); MS: *m/z* 367; Anal. Calcd. for C₁₉H₁₅F₂N₅O: C, 62.12; H, 4.12; N, 19.06. Found: C, 62.03; H, 4.06; N, 19.00%.

$4.6.4.4 \ \ 7-(4-chlorophenyl)-4, 7-dihydro-N-(4-flourophenyl)-5-methyl [1,2,4] triazolo$

[1,5-a]pyrimidine-6-carboxamide (ART-214) Yield: 72%; mp 247-249 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.36; H, 3.83; N, 18.17%.

4.6.4.5 7-(4-nitrophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-215) Yield: 76%; mp 273-275 °C; IR (cm⁻¹): 3230 (N-H stretching of secondary amine), 3034 (C-H stretching of aromatic ring), 2910 (C-H asymmetrical stretching of CH₃ group), 2856 (C-H asymmetrical stretching of CH₃ group), 2856

1666 (C=O stretching of amide), 1602 (C=N stretching of triazole ring), 1550 (N-H deformation of pyrimidine ring), 1529, 1510 and 1450 (C=C stretching of aromatic ring), 1406 (C-H asymmetrical deformation of CH₃ group), 1344 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1014 (C-H in plane deformation of aromatic ring), 823 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.25 (s, 3H, H_a), 6.72 (s, 1H, H_b), 6.93-6.98 (t, 2H, H_{cc'}), 7.48-7.51 (m, 4H, H_{dd'-ec'}), 7.56 (s, 1H, H_f), 8.14-8.16 (d, 2H, H_{gg'}, *J* = 8.40), 9.74 (s, 1H, H_h), 10.32 (s, 1H, H_i): MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.79; H, 3.75; N, 21.19%.

4.6.4.6 7-(3-nitrophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-216) Yield: 66%; mp 242-244 °C; MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.77; H, 3.78; N, 21.21%.

4.6.4.7 7-(3-chlorophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-217) Yield: 78%; mp 233-235 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.38; H, 3.85; N, 18.15%.

4.6.4.8 7-(2-nitrophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-218) Yield: 71%; mp 196-198 °C; MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.74; H, 3.75; N, 21.23%.

4.6.4.9 7-(2-chlorophenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-219) Yield: 65%; mp 207-209 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.36; H, 3.82; N, 18.17%.

4.6.4.10 7-(3,4-methoxyphenyl)-4,7-dihydro-N-(4-flourophenyl)-5-methyl[1,2,4]

220) Yield: 79%; mp 217-219 °C; MS: *m/z* 409; Anal. Calcd. for C₂₁H₂₀FN₅O₃: C, 61.61; H, 4.92; N, 17.11. Found: C, 61.55; H, 4.82; N, 17.03%.

triazlo[1,5-a]pyrimidine-6-carboxamide (ART-

4.6.5 General procedure for the synthesis of 7-(aryl)-4,7-dihydro-N-(3triflouromethylphenyl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (ART 221-230)

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), *N*-(3-triflouromethylphenyl)-3oxobutanamide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 0.4 mL of DMF for 12-15 min. After cooling, methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight and then filtered to give the solid triazolopyrimidine products ART 221-230, which were crystallized from ethanol and subsequently dried in air.

4.6.5.1 7-(4-methoxyphenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,

4]triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-221*) Yield: 68%; mp 208-210 °C; IR (cm⁻¹): 3246 (N-H stretching of secondary amine), 3045 (C-H stretching of aromatic ring), 2926 (C-H asymmetrical stretching of CH₃ group), 2837 (C-H asymmetrical stretching of

CH₃ group), 1668 (C=O stretching of amide), 1602 (C=N stretching of triazole ring), 1552 (N-H deformation of pyrimidine ring), 1516 and 1489 (C=C stretching of aromatic ring), 1442 (C-H asymmetrical deformation of CH₃ group), 1332 (C-H symmetrical deformation of CH₃ group), 1282 (C-N stretching), 1251 (C-O-C stretching), 1031 (C-H in plane deformation of aromatic ring), 831 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.29 (s, 3H, H_a), 3.73 (s, 3H, H_b), 6.59 (s, 1H, H_c), 6.78-7.74 (m, 8H, H_{dd'-i}), 7.93 (s, 1H, H_j), 9.71 (s, 1H, H_k), 10.07 (s, 1H, H_l); MS: *m/z* 429; Anal. Calcd. for C₂₁H₁₈F₃N₅O₂: C, 58.74; H, 4.23; N, 16.31. Found: C, 58.68; H, 4.15; N, 16.26%.

4.6.5.2 7-(4-methylphenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

(ART-222) Yield: 74%; mp 233-235 °C; IR (cm⁻¹): 3246 (N-H stretching of secondary amine), 3041 (C-H stretching of aromatic ring), 2924 (C-H asymmetrical stretching of CH₃ group), 2833 (C-H asymmetrical stretching of

triazolo[1,5-a]pyrimidine-6-carboxamide

CH₃ group), 1664 (C=O stretching of amide), 1626 (C=N stretching of triazole ring), 1600 (N-H deformation of pyrimidine ring), 1525 and 1489 (C=C stretching of aromatic ring), 1444 (C-H asymmetrical deformation of CH₃ group), 1330 (C-H symmetrical deformation of CH₃ group), 1276 (C-N stretching), 1070 (C-H in plane deformation of aromatic ring), 792 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.27 (s, 3H, H_a), 2.31 (s, 3H, H_b), 6.60 (s, 1H, H_c), 7.08-7.10 (d, 2H, H_{dd'}, *J* = 7.92 Hz), 7.19-7.21 (d, 2H, H_{ee'}, *J* = 8.08 Hz), 7.24-7.26 (d, 2H, H_f), 7.35-7.38 (t, 2H, H_g), 7.54 (s, 1H, H_h), 7.72-7.74 (d, 1H, H_i), 7.93 (s, 1H, H_j), 9.68 (s, 1H, H_k), 10.09 (s, 1H, H_l); MS: *m/z* 413; Anal. Calcd. for C₂₁H₁₈F₃N₅O: C, 61.01; H, s4.39; N, 16.94; Found: C, 61.01; H, 4.39; N, 16.94%.

4.6.5.3 7-(4-flourophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

(*ART-223*) Yield: 82%; mp 215-217 °C; MS: *m/z* 417; Anal. Calcd. for C₂₀H₁₅F₄N₅O: C, 57.56; H, 3.62; N, 16.78. Found: C, 57.48; H, 3.56; N, 16.71%.

triazolo[1,5-a]pyrimidine-6-carboxamide

4.6.5.4 7-(4-chlorophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6carboxamide (*ART-224*) Yield: 71%; mp 248-250 °C; MS: *m/z* 433; Anal. Calcd. for C₂₀H₁₅ClF₃N₅O: C, 55.37; H, 3.49; N, 16.14. Found: C, 55.37; H, 3.49; N, 16.14%.

4.6.5.5 7-(4-nitrophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

(*ART-225*) Yield: 79%; mp 253-255 °C; MS: *m*/*z* 444; Anal. Calcd. for C₂₀H₁₅F₃N₆O₃: C, 54.06; H, 3.40; N, 18.91. Found: C, 53.96; H, 3.30; N, 18.85%.

triazolo[1,5-a]pyrimidine-6-carboxamide

4.6.5.6 7-(3-nitrophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-226*) Yield: 68%; mp 236-238 °C; MS: *m/z* 444; Anal. Calcd. for C₂₀H₁₅F₃N₆O₃: C, 54.06; H, 3.40; N, 18.91. Found: C, 53.99; H, 3.32; N, 18.81%.

4.6.5.7 7-(3-chlorophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-227*) Yield: 66%; mp 239-241 °C; IR (cm⁻¹): 3248 (N-H stretching of secondary amine), 3051 (C-H stretching of aromatic ring), 2972 (C-H asymmetrical stretching of CH₃

group), 2835 (C-H asymmetrical stretching of CH₃ group), 1666 (C=O stretching of amide), 1626 (C=N stretching of triazole ring), 1599 (N-H deformation of pyrimidine ring), 1552, 1527 and 1514 (C=C stretching of aromatic ring), 1442 (C-H asymmetrical deformation of CH₃ group), 1330 (C-H symmetrical deformation of CH₃ group), 1274 (C-N stretching), 1070 (C-H in plane deformation of aromatic ring), 777 (C-H out of plane bending of 1,3-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.28 (s, 3H, H_a), 6.62 (s, 1H, H_b), 7.22-7.30 (m, 5H, H_{c-g}), 7.38-7.42 (t, 1H, H_h), 7.56 (s, 1H, H_i), 7.33-7.50 (d, 1H, H_j), 7.94 (s, 1H, H_k), 9.90 (s, 1H, H_l), 10.25 (s, 1H, H_m); MS: *m/z* 433; Anal. Calcd. for C₂₀H₁₅ClF₃N₅O: C, 55.37; H, 3.49; N, 16.14. Found: C, 55.31; H, 3.42; N, 16.06%.

4.6.5.8 7-(2-nitrophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

(ART-228) Yield: 72%; mp 238-240 °C; MS: *m/z* 444; Anal. Calcd. for C₂₀H₁₅F₃N₆O₃: C, 54.06; H, 3.40; N, 18.91. Found: C, 54.00; H, 3.30; N, 18.79%.

triazolo[1,5-a]pyrimidine-6-carboxamide

4.6.5.9 7-(2-chlorophenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl[1,2,4]

3.40; N, 16.06%.

triazolo[1,5-a]pyrimidine-6-carboxamide (*ART-229*) Yield: 67%; mp 258-260 °C; MS: *m/z* 433; Anal. Calcd. for C₂₀H₁₅ClF₃N₅O: C, 55.37; H, 3.49; N, 16.14; Found. C, 55.26; H,

4.6.5.10 7-(3,4-methoxyphenyl)-4,7-dihydro-N-(3-triflouromethylphenyl)-5-methyl

[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxami
de (ART-230) Yield: 68%; mp 220-222 °C;
MS: m/z 459; Anal. Calcd. for C₂₂H₂₀F₃N₅O₃:
C, 57.51; H, 4.39; N, 15.24. Found: C, 57.45;
H, 4.32; N, 15.16%.

4.6.6 General procedure for the synthesis of 7-(aryl)-4,7-dihydro-N-(2-flourophenyl) -5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamides (ART 231-240)

A mixture of the 5-amino-1,2,4-triazole (0.01 mol), *N*-(2-flourophenyl)-3-oxobuta namide (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) was refluxed in 0.4 mL of DMF for 12-15 min. After cooling, methanol (~10 mL) was added. The reaction mixture was allowed to stand overnight and then filtered to give the solid triazolopyrimidine products ART 231-240, which were crystallized from ethanol and subsequently dried in air.

4.6.6.1 7-(4-methoxyphenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-231) Yield: 75%; mp 228-230 °C; IR (cm⁻¹): 3282 (N-H stretching of secondary amine), 3014 (C-H stretching of aromatic ring), 2966 (C-H asymmetrical stretching of CH₃ group), 2837 (C-H asymmetrical stretching of CH₃ group), 2837

1658 (C=O stretching of amide), 1599 (C=N stretching of triazole ring), 1562 (N-H deformation of pyrimidine ring), 1516 and 1446 (C=C stretching of aromatic ring), 1410 (C-H asymmetrical deformation of CH₃ group), 1336 (C-H symmetrical deformation of CH₃ group), 1284 (C-N stretching), 1257 (C-O-C stretching), 1028 (C-H in plane deformation of aromatic ring), 839 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.33 (s, 3H, H_a), 3.75 (s, 3H, H_b), 6.50 (s, 1H, H_c), 6.82-7.69 (m, 8H, H_{dd'-i}), 7.80 (s, 1H, H_j), 8.86 (s, 1H, H_k), 10.13 (s, 1H, H_l); MS: *m/z* 379; Anal. Calcd. for C₂₀H₁₈FN₅O₂: C, 63.32; H, 4.78; N, 18.46. Found: C, 63.29; H, 4.61; N, 18.35%.

4.6.6.2 7-(4-methylphenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-232) Yield: 76%; mp 229-231 °C; IR (cm⁻¹): 3267 (N-H stretching of secondary amine), 3014 (C-H stretching of aromatic ring), 2968 (C-H asymmetrical stretching of CH₃ group), 2870 (C-H asymmetrical stretching of CH₃ group),

1662 (C=O stretching of amide), 1599 (C=N stretching of triazole ring), 1558 (N-H deformation of pyrimidine ring), 1529, 1506 and 1479 (C=C stretching of aromatic ring), 1450 (C-H asymmetrical deformation of CH₃ group), 1325 (C-H symmetrical deformation of CH₃ group), 1284 (C-N stretching), 1028 (C-H in plane deformation of aromatic ring), 839 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.29 (s, 3H, H_a), 2.30 (s, 3H, H_b), 6.52 (s, 1H, H_c), 7.03-7.63 (m, 9H, H_{dd'-j}), 9.06 (s, 1H, H_k), 10.12 (s, 1H, H_l); MS: *m/z* 363; Anal. Calcd. for C₂₀H₁₈FN₅O: C, 66.10; H, 4.99; N, 19.27. Found: C, 66.01; H, 4.88; N, 19.15%.

4.6.6.3 7-(4-flourophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-233) Yield: 71%; mp 281-283 °C; IR (cm⁻¹): 3214 (N-H stretching of secondary amine), 3045 (C-H stretching of aromatic ring), 2968 (C-H asymmetrical stretching of CH₃ group), 2831 (C-H asymmetrical stretching of CH₃ group), 2831

1662 (C=O stretching of amide), 1600 (C=N stretching of triazole ring), 1556 (N-H deformation of pyrimidine ring), 1525 and 1506 (C=C stretching of aromatic ring), 1448 (C-H asymmetrical deformation of CH₃ group), 1325 (C-H symmetrical deformation of CH₃ group), 1280 (C-N stretching), 1012 (C-H in plane deformation of aromatic ring), 823 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.31 (s, 3H, H_a), 6.58 (s, 1H, H_b), 6.99-7.58 (m, 9H, H_{cc'-i}), 9.13 (s, 1H, H_j), 10.18 (s, 1H, H_k); MS: *m/z* 367; Anal. Calcd. for C₁₉H₁₅F₂N₅O: C, 62.12; H, 4.12; N, 19.06. Found: C, 62.01; H, 4.02; N, 19.03%.

4.6.6.4 7-(4-chlorophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-234) Yield: 81%; mp 276-278 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.38; H, 3.84; N, 18.14%.

4.6.6.5 7-(4-nitrophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-235) Yield: 82%; mp 277-279 °C; MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.78; H, 3.73; N, 21.17%.

4.6.6.6 7-(3-nitrophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-236) Yield: 74%; mp 259-261 °C; MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.74; H, 3.80; N, 21.25%.

4.6.6.7 7-(3-chlorophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

Yield: 72%; mp 256-258 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.40; H, 3.81; N, 18.12%.

[1,5-a]pyrimidine-6-carboxamide (ART-237)

4.6.6.8 7-(2-nitrophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-238) Yield: 78%; mp 275-277 °C; MS: *m/z* 394; Anal. Calcd. for C₁₉H₁₅FN₆O₃: C, 57.87; H, 3.83; N, 21.31. Found: C, 57.75; H, 3.76; N, 21.21%.

4.6.6.9 7-(2-chlorophenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triazolo

[1,5-a]pyrimidine-6-carboxamide (ART-239) Yield: 68%; mp 221-223 °C; MS: *m/z* 383; Anal. Calcd. for C₁₉H₁₅ClFN₅O: C, 59.46; H, 3.94; N, 18.25. Found: C, 59.39; H, 3.85; N, 18.12%.

4.6.6.10 7-(3,4-methoxyphenyl)-4,7-dihydro-N-(2-flourophenyl)-5-methyl[1,2,4]triaz

Yield: 72%; mp 256-258 °C; MS: *m/z* 409; Anal. Calcd. for C₂₁H₂₀FN₅O₃: C, 61.61; H, 4.92; N, 17.11. Found: C, 61.57; H, 4.79; N, 17.01%.

olo[1,5-a]pyrimidine-6-carboxamide (ART-240)

4.7 Spectral discussion

4.7.1 Mass spectral study

Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. Systematic fragmentation pattern was observed in mass spectral analysis. Molecular ion peak was observed in agreement with molecular weight of respective compound. Mass fragmentation pattern for a representative compound of each series is depicted below.

4.7.1.1 Mass fragmentation pattern for ART-203

4.7.1.3 Mass fragmentation pattern for ART-221

4.7.1.4 Mass fragmentation pattern for ART-233

4.7.2 IR spectral study

IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. Various functional groups present in molecule were identified by characteristic frequency obtained for them. For triazolopyrimidines ART-201 to 240, confirmatory bands for secondary amine and amidic carbonyl groups were observed at 3214-3282 cm⁻¹ and 1658-1668 cm⁻¹ respectively. Another characteristic C=N stretching band of triazole ring was observed at 1595-1626 cm⁻¹, which suggested formation of desired products ART-201 to 240.

4.7.3 ¹H NMR spectral study

¹H NMR spectra were recorded in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer using TMS as an internal standard. Number of protons and their chemical shifts were found to support the structure of the synthesized compounds.

¹H NMR spectra confirmed the structures of triazolopyrimidines ART-201 to 240 on the basis of following signals: a singlet for the methine proton of pyrimidine ring at 6.50-6.72 δ ppm, a singlet for the methine proton of triazole ring at 7.50-7.94 δ ppm and singlets for amino and amide group protons at 8.86-9.90 and 10.02-10.32 δ ppm, respectively. The aromatic ring protons and *J* value were found to be in accordance with substitution pattern on phenyl ring.

IR spectrum of ART-201

Mass spectrum of ART-201

¹H NMR spectrum of ART-201

Expanded ¹H NMR spectrum of ART-201

IR spectrum of ART-203

Mass spectrum of ART-203

Chapter 4

¹H NMR spectrum of ART-203

Expanded ¹H NMR spectrum of ART-203

IR spectrum of ART-205

Mass spectrum of ART-205

¹H NMR spectrum of ART-205

Expanded ¹H NMR spectrum of ART-205

IR spectrum of ART-212

Mass spectrum of ART-212

Chapter 4

Expanded ¹H NMR spectrum of ART-212

Mass spectrum of ART-213

Expanded ¹H NMR spectrum of ART-213

Mass spectrum of ART-215

Expanded ¹H NMR spectrum of ART-215

Mass spectrum of ART-221

Expanded ¹H NMR spectrum of ART-221

Mass spectrum of ART-222

Expanded ¹H NMR spectrum of ART-222

Mass spectrum of ART-227

Expanded ¹H NMR spectrum of ART-227

Mass spectrum of ART-231

Expanded ¹H NMR spectrum of ART-231

Mass spectrum of ART-232

Expanded ¹H NMR spectrum of ART-232

Mass spectrum of ART-233

Chapter 4

Expanded ¹H NMR spectrum of ART-233

4.8 Biological evaluation

4.8.1 Antimicrobial evaluation

All of the synthesized compounds (ART-201 to 240) were tested for their antibacterial and antifungal activity (MIC) *in vitro* by broth dilution method [98-100] with two Gram-positive bacteria *Staphylococcus aureus* MTCC-96, *Streptococcus pyogenes* MTCC 443, two Gram-negative bacteria *Escherichia coli* MTCC 442, *Pseudomonas aeruginosa* MTCC 441 and three fungal strains *Candida albicans* MTCC 227, *Aspergillus Niger* MTCC 282, *Aspergillus clavatus* MTCC 1323 taking ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin, and griseofulvin as standard drugs. The standard strains were procured from the Microbial Type Culture Collection (MTCC) and Gene Bank, Institute of Microbial Technology, Chandigarh, India.

The minimal inhibitory concentration (MIC) values for all the newly synthesized compounds, defined as the lowest concentration of the compound preventing the visible growth, were determined by using microdilution broth method according to NCCLS standards [98]. Serial dilutions of the test compounds and reference drugs were prepared in Muellere-Hinton agar. Drugs (10 mg) were dissolved in dimethylsulfoxide (DMSO, 1 mL). Further progressive dilutions with melted Muellere-Hinton agar were performed to obtain the required concentrations of 1.56, 3.12, 6.25, 10, 12.5, 25, 50, 62.5, 100, 125, 250, 500 and 1000 μ g mL⁻¹. The tubes were inoculated with 10⁸ cfu mL⁻¹ (colony forming unit/mL) and incubated at 37 °C for 24 h. The MIC was the lowest concentration of the tested compound that yields no visible growth (turbidity) on the plate. To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions as used in the experiments and it was observed that DMSO had no effect on the microorganisms in the concentrations studied. The results obtained from antimicrobial susceptibility testing are depicted in Table 1.

Code	Minimum inhibition concentration (µg mL ⁻¹)						
	Gram-positive		Gram-negative		Fungal species		
	S.a.	<i>S. p.</i>	<i>E.c.</i>	P.a.	С. а.	A. n.	A.c.
ART-201	500	1000	500	100	1000	500	500
ART-202	1000	500	1000	1000	500	500	1000
ART-203	500	500	250	500	>1000	1000	500
ART-204	250	62.5	125	250	1000	500	250
ART-205	125	100	1000	500	100	1000	500
ART-206	500	1000	250	1000	500	500	>1000
ART-207	1000	250	500	500	500	100	250
ART-208	100	125	100	62.5	>1000	1000	1000
ART-209	100	>1000	500	1000	>1000	500	1000
ART-210	25	500	250	100	500	1000	>1000
ART-211	1000	100	100	500	250	100	250
ART-212	125	100	100	500	500	250	1000
ART-213	500	500	1000	>1000	1000	500	125
ART-214	125	100	50	250	500	1000	500
ART-215	100	1000	250	1000	1000	500	1000
ART-216	50	500	250	250	>1000	1000	>1000
ART-217	500	1000	500	1000	500	500	100
ART-218	125	25	100	100	500	>1000	500
ART-219	125	500	500	250	100	1000	250
ART-220	>1000	250	>1000	500	1000	1000	500
ART-221	1000	500	1000	500	>1000	1000	1000
ART-222	500	>1000	500	1000	500	500	1000
ART-223	500	1000	1000	>1000	100	>1000	>1000
ART-224	250	125	250	500	500	500	1000
ART-225	1000	500	>1000	1000	250	500	500
ART-226	50	25	125	500	1000	1000	500
ART-227	250	250	100	500	100	500	500
ART-228	100	500	125	1000	500	1000	1000
ART-229	250	1000	250	500	500	250	250
ART-230	50	125	250	62.5	1000	1000	500
ART-231	500	500	500	>1000	100	500	250
ART-232	1000	500	1000	1000	500	500	100
ART-233	500	1000	1000	500	500	100	500
ART-234	62.5	100	250	125	1000	>1000	1000
ART-235	1000	500	500	1000	500	100	500
ART-236	100	125	500	500	250	500	100
ART-237	250	1000	1000	250	500	1000	1000
ART-238	100	250	100	500	500	1000	1000
ART-239	250	125	250	250	100	1000	250
ART-240	62.5	100	100	250	250	500	250
Ampicillin	250	100	100	100	-	-	-
Chloramphenicol	50	50	50	50	-	-	-
Ciprofloxacin	50	50	25	25	-	-	-
Norfloxacin	10	10	10	10	-	-	-
Nystatin	-	-	-	-	100	100	100
Griseofulvin	-	-	-	-	500	100	100

Table 1. Antibacterial and	antifungal	activity of	f synthesized	compounds A	RT-201 to 240
		•	•	1	

4.8.2 Antimycobacterial, anticancer and antiviral evaluation

Antimycobacterial, anticancer and antiviral screening of all the newly synthesized compounds ART-201 to ART-240 is currently under investigation and results are awaited.

4.9 References and notes

- [1] Fischer, G. Adv. Heterocycl. Chem. 1993, 57, 81.
- [2] Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 77, 345.
- [3] Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 73, 131.
- [4] Shaban, M.A.E.; Morgan, A.E.A. Adv. Heterocycl. Chem. 2000, 75, 243.
- [5] Zhang, N.; Semiramis, A. K.; Thai N. et al. J. Med. Chem. 2007, 50, 319.
- [6] Havlicek, L.; Fuksova, K.; Krystof, V. et al. Bioorg. Med. Chem. 2005, 13, 5399.
- [7] Fraley M. E., Hoffman W. F., Rubino R. S. Bioorg. Med. Chem. Lett. 2002, 12, 2767.
- [8] Chen, Q.; Zhu, X. L.; Liu, Z. M. et al. Eur. J. Med. Chem. 2008, 43, 595.
- [9] Uryu, S.; Tokuhiro, S.; Murasugi, T. et al. Brain Research 2002, 946, 298
- [10] Fairfield, B. J.; Andrew, C.; Allan, J. WO2004108136, 2004.
- [11] Peng, H.; Kumaravel, G.; Yao, G.; Sha, L.; Wang, J.; Van Vlijmen, H.;
 Bohnert, T.; Huang, C.; Vu, C. B.; Ensinger, C. L.; Chang, H.; Engber, T. M.;
 Whalley, E. T.; Petter, R. C. J. Med. Chem. 2004, 47, 6218.
- [12] Ram, V.; Srivastava, P.; Singh, S. K.; Kandpal, M.; Tekwani, B. L. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1087.
- Beyer, C. F.; Zhang, N.; Hernandez, R.; Vitale, D.; Lucas, J.; Nguyen, T.;
 Discafani, C.; Ayral-Kaloustian, S.; Gibbons, J. J. *Cancer Res* 2008, 68, 2292.
- [14] Chen, Q.; Zhu, X.; Jiang, L.; Liu, Z.; Yang, G. European Journal of Medicinal Chemistry 2008, 43, 595.
- [15] Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Jewell, T.; Patel, L.; Ludlum, S.; Drowns, M.; Rahavendran, S. V.; Skor, H.; Hunter, R.; Shi, S. T.; Herlihy, K. J.; Parge, H.; Hickey, M.; Yu, X.; Chau, F.; Nonomiya, J.; Lewis, C. J. Med. Chem. 2009, 52, 1255.
- [16] Chen, C.; Lv, L.; Ji, F.; Chen, Q.; Xu, H.; Niu, C.; Xi, Z.; Yang, G. Bioorg. Med. Chem. 2009, 17, 3011.
- [17] Richardson, C. M.; Williamson, D. S.; Parratt, M. J.; Borgognoni, J.;
 Cansfield, A. D.; Dokurno, P.; Francis, G. L.; Howes, R.; Moore, J. D.;
 Murray, J. B.; Robertson, A.; Surgenor, A. E.; Torrance, C. J. *Bioorg. Med. Chem. Lett.* 2006, 16, 1353.

- [18] Shaaban, M. R.; Saleh, T. S.; Mayhoub, A. S.; Mansour, A.; Farag, A. M. Bioorg. Med. Chem. 2008, 16, 6344.
- [19] Xin, Z.; Cun-long, Z.; Lei, H.; Qi, L.; Jiu-liang, W.; Xiao-li, S.; Ping, G. CHEM. RES. CHINESE UNIVERSITIES 2009, 25, 474.
- [20] Liekfeld, H. Pharmazeut. Ztg. 1994, 139, 34.
- [21] Yamashkin, S. A.; Kucherenko, N. Y.; Yurovskaya, M. A. Chem. Heterocycl. Compd. (Engl. Transl.) 1997, 33, 499.
- [22] Fischer, G. Adv. Heterocycl. Chem. 1993, 57, 81.
- [23] Krasovsky, A. L.; Moiseev, A. M.; Nenajdenko, V. G.; Balenkova, E. S. Synthesis 2002, 901.
- [24] Hammouda, M. H.; Etman, E.; M. Metwally, A. J. Serb. Chem. Soc. 1992, 57, 165.
- [25] Al-Schiekh, M. A.; El-Din, A. M. S.; Hafez, E. A.; Elnagdi, M. H. J. Chem. Res. 2004, 174.
- [26] Kuznetsova, O. A.; Filyakova, V. I.; Pashkevich, K. I.; Ulomskii, E. N.; Plekhanov, P. V.; Rusinov, G. L.; Kodess, M. I.; Rusinov, V. L. Russ. Chem. Bull. (Engl. Transl.) 2003, 52.
- [27] Lipunova, G. N.; Nosova, E. V.; Kodess, M. I.; Charushin, V. N.; Rozin, Y. A.; Chasovskikh, O. M. *Russ. J. Org. Chem. (Engl. Transl.)* 2001, *37*, 570.
- [28] Hassaneen, H. M.; Abdallah, T. A.; Abdelhadi, H. A.; Hassaneen, H. M. E.;Pagni, R. M. *Heteroat. Chem.* 2003, 14, 491.
- [29] Al-Zaydi, K. M.; Borik, R. M.; Elnagdi, M. H. Molecules 2003, 8, 910.
- [30] Kanno, H.; Yamaguchi, H.; Ichikawa, Y.; Isoda S. *Chem. Pharm. Bull.* 1991, 39, 1099.
- [31] Pelaez, W.; Gafarova, I. T.; Yranzo, G. I. ARKIVOC 2003, 10, 262.
- [32] Su, J.; Ye, C.; Zheng, N. CP1537853, 2004.
- [33] Ebas^{*}ek, P. C^{*}; Bevk, D.; Pirc, S.; Stanovnik, B.; Svete, J. J. Comb. Chem.
 2006, 8, 95.
- [34] Al-Zaydi, K. M.; Al-Shiekh, M. A. A.; Hafez, E. A. J. Chem. Res. (S) 2000,
 13.
- [35] Dawood, K. M.; Farag, A. M.; Kandeel, Z. E. J. Chem. Res. (S) 1999, 88.
- [36] Al-Afaleq, E. I. Synth. Commun. 2000, 30, 1985.

[37]	Hassaneen, H. M.; Abdallah, T. A.; Abdelhadi, H. A.; Hassaneen, H. M. E.;
	Pagni, R. M. Heteroat. Chem. 2003, 14, 491.
[38]	Yang, G.; Lu, R.; Fei, X.; Yang, H. Chin. J. Chem. 2000, 18, 435.
[39]	Granik, V. G.; Makarov, V. A.; Parkanyi, C. Adv. Heterocycl. Chem. 1998, 72, 283.
[40]	Stanovnik, B. Progr. Heterocycl. Chem. 1993, 5, 34.
[41]	Tominaga, Y. Trends Heterocycl. Chem. 1991, 2, 43.
[42]	Gonzalez, J.; Jewell, T. M.; Li, H.; Linton, A.; Tatlock, J. H. WO018725,
	2006.
[43]	Vartanyan, M. M.; Eliseev, O. L.; Solov'eva, T. Y.; Petukhov, V. A. Russ.
	Chem. Bull. (Engl. Transl.) 1993, 42, 1921.
[44]	Bishop, B. C.; Marley, H.; Preston, P. N.; Wright, S. H. B. J. Chem. Soc.
	Perkin Trans. 1 1999, 1527.
[45]	Liu, Z.; Yang, G.; Xu, H.; Xiang, J. Huazhong Shifan Daxue Xuebao
	Zirankexueban 2001, 35, 180.
[46]	Smith, S. L.; Thompson, K. S. J.; Sargent, B. J.; Heal, D. J. CNS Drug Rev.
	2001 , 7, 146.
[47]	Petrich, S. A.; Qian, Z.; Santiago, L. M.; Gupton, J. T. Tetrahedron 1994, 50,
	12113.
[48]	Al-Saleh, B.; Makhseed, S.; Hassaneen, H. M. E.; Elnagdi, M. H. <i>Synthesis</i> 2006 , 59.
[49]	Petrich, S. A.; Qian, Z.; Santiago, L. M.; Gupton, J. T. Heterocycles 1995, 40,
	729.
[50]	Elgemeie, G. H.; Fathy, N. M.; Farrag, D. A. <i>Egypt. J. Pharm. Sci.</i> 1998 , <i>38</i> , 351.
[51]	Costales, M. J.; Kleschick, W. A.; Gerwick, B. C. ACS Symp. Ser. 1992, 504, 26.
[52]	Kofman, T. P.; Kartseva, G. Y. Russ. J. Org. Chem. 2000, 36, 866.
[53]	Krasovsky, A. L.; Moiseev, A. M.; Nenajdenko, V. G.; Balenkova, E. S.
	Synthesis 2002, 901.
[54]	Al-Schiekh, M. A.; El-Din, A. M. S.; Hafez, E. A.; Elnagdi, M. H. J. Chem.
	<i>Res.</i> 2004 , 174.
[55]	Selby, T. P.; Andrea, T. A.; Denes, L. R.; Finkelstein, B. L.; Fuesler, T. P.;
	Smith, B. K. ACS Symp. Ser. 1992, 504, 91.

Спари	1,2,4-uiazoio[1,5- <i>a</i>]pyrimdines
[56]	Otero, I.; Feist, H.; Michalik, D.; Michalik, M.; Quincoces, J.; Peseke, K. Z.
	Naturforsch. 2005, 60B, 1175.
[57]	Shiota, T.; et al. Chem. Pharm. Bull. 1999, 47, 928.
[58]	Su, J.; Ye, C.; Zheng, N. CP1,537,853, 2004.
[59]	Kolar, P.; Tis'ler, M. J. Heterocycl. Chem. 1993, 30, 1253.
[60]	Bayomi, S. M.; Abdelal, A. M.; El Ashry, S. M.; Ghoneim, O. A. M. Boll.
	Chim. Farm. 1999, 138, 227.
[61]	Rusinov, V. L.; Chupakhin, O. N.; "Nitroazini", Nauka, Sib. Otd.
	Novosibirsk 1991.
[62]	Takano, M. EP947516, 1999 .
[63]	Elnagdi, M. H.; Khalafalla, A. K.; Kandeel, Z. E.; Farag, A. M.; Negm, A.
	M.; Rassian, M. A. M. Aswan Sci. Technol. Bull. 1994, 15, 71.
[64]	Lipson, V. V.; Desenko, S. M.; Orlov, V. D.; Shishkin, O. V.; Shirobokova,
	M. G.; Chernenko, V. N.; Zinov'eva, L. I. Chem. Heterocycl. Compd. (Engl.
	Transl.) 2000, 36, 1329.
[65]	Al-Khamees, H. A.; Al-Deeb, O. A.; Bayomi, S. M. Indian J. Heterocycl.
	Chem. 1993, 2, 237.
[66]	Shankar, R. B.; Pews, R. G. J. Heterocycl. Chem. 1993, 30, 169.
[67]	Selby, T. P.; Andrea, T. A.; Denes, L. R.; Finkelstein, B. L.; Fuesler, T. P.;
	Smith, B. K. ACS Symp. Ser. 1992, 504, 91.
[68]	Kato, F.; Kimura, H.; Omatsu, M.; Yamamoto, K.; Kazuhiro, M.; Miyamoto,
	R. WO040485. 2002 .
[69]	Ram, V. J.; Srivastava, P. S.; Singh, K.; Kandpal, M.; Tekwani, B. L. Bioorg.
	Med. Chem. Lett. 1997, 7, 1087.
[70]	Srivastava, R. P.; Kumar, V. V.; Bhatia, S.; Sharma, S. Indian J. Chem. Sect.
	<i>B</i> 1995 , <i>34</i> , 209.
[71]	Abd El-Latif, F. M.; Khalil, M. A.; Helmy, I.; Solieman, H. A. Heterocycl.
	Commun. 2001, 7, 485.
[72]	Al-Afaleq, E. I. J. Saudi Chem. 2002, 6, 59.
[73]	Kandeel, Z. E. J. Chem. Res. (S) 1995, 290.
[74]	Hammouda, M. H.; Etman, E.; Metwally, M. A. J. Serb. Chem. Soc. 1992, 57,
	165.
[75]	Shaban, M. A. E. Adv. Heterocycl. Chem. 1998 , 70, 163.

[76]	Mustazza, C.; del Giudice, M. R.; Borioni, A.; Gatta, F. J. Heterocycl. Chem.
	2001 , <i>38</i> , 1119.
[77]	Masuda, A.; Satoh, Y.; Akiyama, Y.; Saiga, K.; Toyoda, E. WO108729,
	2004.
[78]	Al-Mousawi, S.; John, E.; Al-Kandery, N. J. Heterocycl. Chem. 2004, 41, 381.
[79]	Dawood, K. M.; Farag, A. M.; Ragab, E. A. J. Chin. Chem. Soc. (Taipei)
	2004 , <i>51</i> , 853.
[80]	Kuznetsova, O. A.; Filyakova, V. I.; Pashkevich, K. I.; Ulomskii, E. N.;
	Plekhanov, P. V.; Rusinov, G. L.; Kodess, M. I.; Rusinov, V. L. Russ. Chem. Rull (Engl. Transl.) 2003, 52, 1190
[81]	Shikhaliev K S \cdot Kryl'skii D V \cdot Yu Potanov A \cdot Yu Krysin M Russ
[01]	Chem. Bull. (Int. Ed.) 2005. 54. 2903.
[82]	Lipunova, G. N.; Nosova, E. V.; Laeva, A. A.; Kodess, M. I.; Charushin, V.
	N. Russ. J. Org. Chem. (Engl. Transl.) 2005, 41, 1071.
[83]	Reiter, J.; Pongo', L.; Ko" vesdi, I.; Pallagi, I. J. Heterocycl. Chem. 1995, 32,
	407.
[84]	Hassan, A. A.; Mohamed, N. K.; Aly, A. A.; Mourad, A. E. Pharmazie 1997,
	52, 23.
[85]	Hammouda, M.; Metwally, M. A.; Abou-Zeid, Z. M.; Zimaity, T. Indian J. Chem. Sect. B, 1993, 32, 440.
[86]	Hammouda, M.; Etman, H. E.; Metwally, M. A. J. Serb. Chem. Soc. 1992, 57,
	165.
[87]	Elotmani, B.; El-Mahi, M.; Essassi, E. M. C. R. Chim. 2002, 5, 517.
[88]	Kepe, V.; Koc'evar, M.; Polanc, S. Heterocycles 1993, 35, 955.
[89]	Kandeel, Z. E.; Farag, A. M.; Negm, A. M.; Khalafalla, A. K.; Rassian, M. A.
	M.; Elnagdi, M. H. J. Chem. Res. (S) 1994, 416.
[90]	Elnagdi, M. H.; Khalafalla, A. K.; Kandeel, Z. E.; Farag, A. M.; Negm, A.
	M.; Rassian, M. A. M. Aswan Sci. Technol. Bull. 1994, 15, 71.
[91]	El Ashry, E. S. H.; El Kilany, Y.; Rashed, N.; Mousaad, A.; Assafir, H. Z.
	Naturforsch. 1998, 53B, 1203.
[92]	Kishida, M.; Natsume, F.; Kawaguchi, S. Jpn. Kokai 2004, 107, 228.

- [93] (a) Drizin, I.; Holladay, M. W.; Yi, L.; Zhang, H. Q.; Gopalakrishnan, S.; Gopalakrishnan, M.; Whiteaker, K. L.; Buckner, S. A.; Sullivan, J. P.; Carrol, W. A. *Bioorg. Med. Chem. Lett.* 2002, *12*, 1481; (b) Fedorova, O. V.; Zhidovinova, M. S.; Rusinov, G. L.; Ovchinnikova, I. G. *IzV. Akad. Nauk. Ser. Khim.* 2003, 1677; *Russ. Chem. Bul.* 2003, *52*, 1768; (c) Pryadeina, M. V.; Burgart, Y. V.; Saloutin, V. I.; Kodess, M. I.; Ulomsky, E. N.; Rusinov, V. L. *Zh. Org. Khim.* 2004, *40*, 938; *Russ. J. Org. Chem.* 2004, *40*, 902; (d) Lipson, V. V.; Desenko, S. M.; Shirobokova, M. G.; Borodina, V. V. *Khim. Geterotsikl. Soedin.* 2003, *39*, 1383; *Chem. Heterocycl. Compd. (Engl. Transl.)* 2003, *39*, 1213; (e) Lipson, V. V.; Desenko, S. M.; Shishkina, S. V.; Shirobokova, M. G.; Shishkin, O. V.; Orlov, V. D. *Khim. Geterotsikl. Soedin.* 2003, *39*, 1194; *Chem. Heterocycl. Compd. (Engl. Transl.)* 2003, *39*, 1041.
- [94] Kappe, C. O. J. Org. Chem. 1997, 62, 7201.
- [95] Shaban, M. A. E.; Morgaan, A. E. A. AdV. Heterocycl. Chem. 1999, 73, 131.
- [96] Babichev, F. S.; Kovtunenko, V. A. Khim. Geterotsikl. Soedin. 1977, 2, 147.
- [97] Miriyala, B.; Williamson, J. S. Tetrahedron Lett. 2003, 44, 7957.
- [98] National Committee for Clinical and Laboratory Standards, Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, fourth ed. NCCLS, Villanova, Italy, 1997, Document M 100-S7. S100-S157.
- [99] D.H. Isenberg, Essential Procedure for Clinical Microbiology, American Society for Microbiology, Washington, 1998.
- [100] Zgoda, J. R.; Porter, J. R. Pharm. Biol. 2001, 39, 221.

Chapter 5 **Microwave assisted synthesis and biological evaluation of pyrazolo**[3,4-*d*] [1,2,4]triazolo[1,5-*a*]pyrimidines

5.1 Microwave-Assisted Organic Synthesis (MAOS) – A Brief History

While fire is now rarely used in synthetic chemistry, it was not until Robert Bunsen invented the burner in 1855 that the energy from this heat source could be applied to a reaction vessel in a focused manner. The Bunsen burner was later superseded by the isomantle, the oil bath or the hot plate as a means of applying heat to a chemical reaction. In the past few years, heating and driving chemical reactions by microwave energy has been an increasingly popular theme in the scientific community [1, 2].

Microwave energy, originally applied for heating foodstuffs by Percy Spencer in the 1940s, has found a variety of technical applications in the chemical and related industries since the 1950s, in particular in the food-processing, drying and polymer industries. Other applications range from analytical chemistry (microwave digestion, ashing and extraction) [3] to biochemistry (protein hydrolysis, sterilization) [3], pathology (histoprocessing, tissue fixation) [4] and medical treatments (diathermy) [5]. Somewhat surprisingly, microwave heating has only been implemented in organic synthesis since the mid-1980s. The first reports on the use of microwave heating to accelerate organic chemical transformations (MAOS) were published by the groups of Richard Gedye (Scheme 5.1) [6] and Raymond J. Giguere/George Majetich [7] in 1986.

In those early days, experiments were typically carried out in sealed teflon or glass vessels in a domestic household microwave oven without any temperature or pressure measurements. The results were often violent explosions due to the rapid uncontrolled heating of organic solvents under closed-vessel conditions. In the 1990s, several groups started to experiment with solvent-free microwave chemistry (so-called dry-media reactions), which eliminated the danger of explosions [8]. Here, the reagents were pre-adsorbed onto either an essentially microwave-transparent (i.e., silica, alumina or clay) or strongly absorbing (i.e., graphite) inorganic support, that additionally may have been doped with a catalyst or reagent. Particularly in the early days of MAOS, the solvent-free approach was very popular since it allowed the safe use of domestic microwave ovens and standard open-vessel technology. While a large number of interesting transformations using "dry-media" reactions have been published in the literature [8], technical difficulties relating to non-uniform heating, mixing and the precise determination of the reaction temperature remained unresolved, in particular when scale-up issues needed to be addressed.

Alternatively, microwave-assisted synthesis has been carried out using standard organic solvents under open-vessel conditions. If solvents are heated by microwave irradiation at atmospheric pressure in an open vessel, the boiling point of the solvent typically limits the reaction temperature that can be achieved. In order to nonetheless achieve high reaction rates, high-boiling microwave-absorbing solvents have been frequently used in open-vessel microwave synthesis [9]. However, the use of these solvents presented serious challenges in relation to product isolation and recycling of the solvent. Because of the recent availability of modern microwave reactors with on-line monitoring of both temperature and pressure, MAOS in dedicated sealed vessels using standard solvents-a technique pioneered by Christopher R. Strauss in the mid-1990s [10]-has been celebrating a comeback in recent years. This is clearly evident surveying the recently published (since 2001) literature in the area of controlled microwave-assisted organic synthesis (MAOS). It appears that the combination of rapid heating by microwaves with sealed-vessel (autoclave) technology will most likely be the method of choice for performing MAOS on a laboratory scale in the future. Importantly, recent innovations in microwave reactor technology now allow controlled parallel and automated sequential

processing under sealed-vessel conditions, and the use of continuous- or stop-flow reactors for scale-up purposes.

Since the early days of microwave synthesis, the observed rate accelerations and sometimes altered product distributions compared to oil-bath experiments have led to speculation on the existence of so-called "specific" or "non-thermal" microwave effects [11]. Historically, such effects were claimed when the outcome of a synthesis performed under microwave conditions was different from that of the conventionally heated counterpart at the same apparent temperature. Reviewing the present literature [12], it appears that today most scientists agree that in the majority of cases the reason for the observed rate enhancements is a purely thermal/kinetic effect, i.e., a consequence of the high reaction temperatures that can rapidly be attained when irradiating polar materials in a microwave field, although effects that are caused by the unique nature of the microwave dielectric heating mechanism ("specific microwave effects") clearly also need to be considered. While for the medicinal chemist in industry this discussion may seem largely irrelevant, the debate on "microwave effects" is undoubtedly going to continue for many years in the academic world. Regardless of the nature of the observed rate enhancements, microwave synthesis has now truly matured and has moved from a laboratory curiosity in the late 1980s to an established technique in organic synthesis, heavily used in both academia and industry.

The initially slow uptake of the technology in the late 1980s and 1990s has been attributed to its lack of controllability and reproducibility, coupled with a general lack of understanding of the basics of microwave dielectric heating. The risks associated with the flammability of organic solvents in a microwave field and the lack of available dedicated microwave reactors allowing for adequate temperature and pressure control were major concerns. Important instrument innovations now allow for careful control of time, temperature and pressure profiles, paving the way for reproducible protocol development, scale-up and transfer from laboratory to laboratory and from scientist to scientist. Today, microwave chemistry is as reliable as the vast arsenal of synthetic methods that preceded it. Since 2001, therefore, the number of publications related to MAOS has increased dramatically, to such a level that it might be assumed that, in a few years, most chemists will probably use microwave energy to heat chemical reactions on a laboratory scale [1, 2]. Not only is direct microwave heating able to reduce chemical reaction times significantly, but it is also known to reduce side reactions, increase yields and improve reproducibility. Therefore, many academic and industrial research groups are already using MAOS as a technology for rapid reaction optimization, for the efficient synthesis of new chemical entities or for discovering and probing new chemical reactivity.

5.2 Applications of microwaves in heterocyclic ring formation

5.2.1 Five-membered heterocyclic rings

5.2.1.1 Pyrroles

The classical Paal-Knorr cyclization of 1,4-diketones to give pyrroles is dramatically speeded- up under microwave irradiation and high yields are obtained as shown in Scheme 5.2 [13].

5.2.1.2 Pyrazoles

Another recent application of microwaves in cyclization is the preparation of pyrazoles from hydrazones using the Vilsmeier cyclization method by treatment with

 $POCl_3$ and DMF [14]. As shown in Scheme 5.2, once again the reaction is speeded-up by factors of several 100-fold.

5.2.1.3 Imidazoles

An important classical preparation of imidazoles is from an α -diketone, an aldehyde and ammonia. Here again, excellent yields can be obtained in reaction times of a few minutes as shown in Scheme 5.4 [15].

5.2.1.4 Oxazolines

The example of Scheme 5.5, the preparation of oxazolines shows that partially saturated five-membered rings can also be prepared advantageously using microwaves [16].

5.2.1.5 Triazoles and Tetrazoles

Schemes 5.6 and 5.7 continue the overview of five-membered rings with illustrations of the advantageous preparation of 1,2,4–triazoles (Scheme 4.6) [17] and tetrazoles (Scheme 5.7) [18] using microwaves. Notice that in Scheme 5.6 the starting aryl

cyanides are also made by a Pd-catalyzed but microwave-enhanced replacement of aryl bromides using zinc cyanide.

5.2.1.6 Oxadiazoles

The dehydration of unsymmetrical diacylhydrazines (themselves prepared by a conventional Mitsunobu reaction) using Burgess's reagent is shown in Scheme 5.8 to give 1,3,4-oxadiazoles rapidly under microwave irradiation [19].

5.2.1.7 Isoxazolines and pyrazolines

The acceleration of 1,3-dipolar cycloaddition reactions to give isoxazolines and pyrazolines by the addition of activated olefins to nitrile oxides or nitrile imides, respectively, is illustrated in Scheme 5.9; the resulting compounds are obtained in far high yield than under conventional conditions [20].

5.2.2 Benzo-derivatives of five-membered rings

5.2.2.1 Benz-imidazoles, -oxazoles, and -thiazoles

Ring closure reactions of appropriate *o*-substituted anilines to give benzimidazoles, benzoxazoles, and benzthiazoles takes place much faster and in significantly high yield under microwave conditions than conventionally [21] as shown in Scheme 5.10.

5.2.2.2 Indoles

The classical Fischer-indole synthesis from an aryl hydrazine and a ketone is speededup by several 100-fold as documented in Scheme 5.11 [22].

5.2.2.3 γ-Carbolines

The Graebe-Ullmann synthesis which converts 1-arylbenzotriazoles into carbazoles or their heterocyclic analogs is also accelerated under microwave conditions as shown in Scheme 5.12 where the 1-(4-pyridyl)benzotriazole is converted into a γ -carboline [23].

5.2.3 Six-membered rings

5.2.3.1 Dihydropyridines

Chapter 5

The Hantzsch dihydropyridine synthesis remains one of the most important routes to pyridine ring systems. Under conventional conditions long periods of heating are required and yields are poor to moderate. Microwaves dramatically reduce the heating times and also significantly increase the yields as shown in Scheme 5.13 [24].

5.2.3.2 Dihydropyridopyrimidinones

Dihydropyridopyrimidinones have been produced by ring annulations of aminopyrimidinones. Once again the reaction time is dramatically reduced and yields are much better with the solvent-free microwave conditions (Scheme 5.14) [25].

5.2.3.3 Dihydropyrimidines

The Biginelli reaction is important for the preparation of dihydropyrimidine derivatives and excellent results are found for reactions carried out with microwave enhancement (Scheme 5.15) [19].

5.2.3.4 Tetrazines

The Diels-Alder reaction between aza-olefins and aza-dicarboxylic ester to give tetrazines is speeded-up by a factor of 1000 by microwave enhancement as shown in Scheme 5.16 [26].

5.2.4 Polycyclic six-membered rings

5.2.4.1 Quinolines

The Skraup synthesis has a bad reputation as it involves very messy conditions and gives only low yields of quinolines when carried out conventionally. Recently, it has been reported that microwave enhancement reduces the reaction time to a few minutes and allows high yields to be isolated (Scheme 5.17) [27].

5.2.4.2 Pyrimido[1,2-a]pyrimidines

Pyrimido[1,2-*a*]pyrimidines are prepared from dihydroaminopyrimidines and chromone-3-aldehydes as is shown in Scheme 5.18 [28]. Although the conventional reaction must proceed in refluxing ethanol, reactions are much faster and better yields have been obtained with microwaves.

5.2.5 Nucleophilic Substitutions

5.2.5.1 Heterocyclic C-alkylations

Nucleophilic substitution reactions can be speeded-up very considerably as is illustrated in Scheme 5.19 for a chloro-naphthyridine derivative [29].

5.2.5.2 Heterocyclic N-alkylations

Another class of nucleophilic substitution is involved in heterocyclic *N*-alkylation which we have illustrated in Scheme 5.20. This shows that nucleophilic substitution on the nitrogen atom of saccharin is significantly speeded-up by microwave irradiation [19].

5.2.5.3 Selective-alkylation

In Scheme 5.21, the results presented indicate that selectivity is achieved in the N alkylation of 1,2,4-triazole under microwave conditions where only the N₁-alkyl derivative was formed in contradistinction to the conventional conditions which give a considerable amount of the di-1,4-substituted compound [30].

5.2.5.4 Transition metal cross-coupling

An important type of nucleophilic substitution reactions which are recently much exploited are comprised of transition metal cross-coupling. A Suzuki coupling is shown at the top of Scheme 5.22 to give significantly better yield in the presence of

microwave irradiation [31]. At the bottom of Scheme 4.22 another Suzuki coupling is speeded-up by a factor of 100 [32].

5.2.6 Hetero-Diels-Alder reactions

5.2.6.1 Intramolecular reactions

We have already seen one example of a hetero-Diels–Alder reaction involving acyclic components. Hetero-Diels–Alder reactions involving cyclic components which lead to polycyclic ring systems are of great importance. An intramolecular example shown in Scheme 5.23 indicates that the reaction was accelerated by a factor of around 1000 by microwave irradiation [33].

5.2.6.2 Intermolecular reactions

Scheme 5.24 shows two impressive examples of rate enhancement for intermolecular hetero-Diels–Alder reactions [33]. In the first example on the top of Scheme 4.24 the

initial reaction is followed by elimination thus involving the conversion of a pyrazine derivative into a pyridine. Perhaps more impressive is the lower example in Scheme 5.24 where an autoclave is required under conventional conditions but which can be dispensed with when microwave acceleration is utilized.

5.2.7 1,3-Dipolar cycloaddition reactions

5.2.7.1 Synthesis of C-carbamoyl-1,2,3-triazoles

We now turn to some of our own recent work which has involved microwave induced 1,3-dipolar cycloaddition of organic azides to acetylenic amides. As shown in Scheme 4.25 we were able to achieve these reactions under microwave conditions in a reasonable time at temperatures of around 70 ± 15 °C [34]. Under conventional conditions the times were roughly 100 times as long and the temperature had to be taken up to 120 °C [35].

5.2.8 Oxidation

The osmium-catalyzed dihydroxylation reaction, the addition of osmium tetroxide to olefins to produce a vicinal diol, is one of the most selective and reliable organic transformations. Recent work by Sharpless, Fokin, and coworkers [36] has uncovered that electron-deficient olefins can be converted into the corresponding diols much more efficiently when the reaction medium is kept acidic (Scheme 5.26).

5.3 Biological significance of pyarazlo-triazolo-pyrimidines

In recent years pyrazolotriazolopyrimidines have been the subject of intense research due to the interesting pharmacological activities found for several of their derivatives [37-39].

Pyrazolo-triazolo-pyrimidine nucleus (1) represents an attractive key intermediate for obtaining adenosine receptor antagonists due to its strong structural correlation with the nonselective adenosine receptor antagonist CGS15943 (2) [40]. The great advantage of this nucleus with respect to the reference compound (2) is related to a large number of substitutions that could be done on this nucleus, such as in positions N_7 , N_8 , N_5 , C_9 , or C_2 opening kaleidoscopic possibilities for different substituted heterocycles as adenosine receptor antagonists. Structures and binding affinities of various pyrazolo-triazolo-pyrimidines as adenosine receptors are as following.

5.4 Current work

Flat heterocyclic structures are fundamental moieties in anticancer compounds acting as DNA intercalating agents [46]. In fact, they play a determinant role in the π - π stacking interactions with the DNA base pairs. Consequently, the modulation of their electronic and steric features by the presence of opportune substituents or heteroatoms, could improve this capability.

In this context, pyrazolotriazolopyrimidines have been the subject of intense research due to the interesting pharmacological activities found for several of their derivatives. Among the various pyrazolotriazolopyrimidine ring systems, pyrazolo [3,4-d][1,2,4]triazolo[1,5-a]pyrimidines have never been explored, and there are no reports on the synthesis and chemical properties of these class of compounds.

With the aim to extend the synthetic pathways to new planar heterocyclic ring systems, we focused our studies on the pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidine core structure which was found to be absent in the literature survey (Scifinder, CA, STN search).

Synthesis of pyrazolo[3,4-*d*][1,2,4]triazolo[1,5-*a*]pyrimidine (ART-301 to ART-330), a new ring system, was achieved by using a one-pot, microwave-assisted, catalyst-free biginelli like condensation. All the newly synthesized characterized by FT-IR, mass spectra, ¹H NMR and elemental analysis. The newly synthesized compounds were subjected to various biological activities *viz.*, antimicrobial, antimycobacterial, anticancer and antiviral.

5.5 Reaction Scheme

Code	R ₁	\mathbf{R}_2	M.F.	M.W.	M.P. °C	Yield %	R _{f1}	R _{f2}
ART-301	CH ₃	4-OCH ₃	$C_{14}H_{14}N_{6}O$	282	204-206	69	0.52	0.68
ART-302	CH_3	4-F	$C_{13}H_{11}FN_{6}$	270	158-160	68	0.49	0.59
ART-303	CH_3	4- NO ₂	$C_{13}H_{11}N_7O_2$	297	185-187	75	0.55	0.66
ART-304	CH_3	4-Cl	$C_{13}H_{11}CIN_6$	286	221-223	74	0.41	0.69
ART-305	CH_3	4- CH ₃	$C_{14}H_{14}N_6$	266	205-207	56	0.43	0.59
ART-306	CH_3	4-OH	$C_{13}H_{12}N_6O$	268	216-218	72	0.42	0.69
ART-307	CH_3	3-NO ₂	$C_{13}H_{11}N_7O_2$	297	226-228	58	0.49	0.66
ART-308	CH_3	3-Cl	$C_{13}H_{11}CIN_6$	286	188-190	68	0.54	0.62
ART-309	CH_3	3-OH	$C_{13}H_{12}N_6O$	268	198-200	75	0.43	0.68
ART-310	CH_3	3-Br	$C_{13}H_{11}BrN_6$	331	212-214	72	0.50	0.70
ART-311	CH_3	3,4-OCH ₃	$C_{15}H_{16}N_6O_2$	312	148-150	68	0.42	0.59
ART-312	CH_3	$2-NO_2$	$C_{13}H_{11}N_7O_2$	297	235-237	72	0.51	0.66
ART-313	CH_3	2-Cl	$C_{13}H_{11}CIN_6$	286	208-210	69	0.55	0.65
ART-314	CH_3	2-OH	$C_{13}H_{12}N_6O$	268	201-203	70	0.39	0.66
ART-315	CH_3	Н	$C_{13}H_{12}N_6$	252	193-195	59	0.44	0.64
ART-316	NH_2	$4-OCH_3$	$C_{13}H_{13}N_7O$	283	238-240	66	0.40	0.62
ART-317	NH_2	4-F	$C_{12}H_{10}FN_7$	271	213-215	71	0.41	0.63
ART-318	NH_2	4- NO ₂	$C_{12}H_{10}N_8O_2$	298	218-220	63	0.38	0.70
ART-319	NH_2	4-Cl	$C_{12}H_{10}CIN_7$	287	221-223	79	0.39	0.68
ART-320	NH_2	4- CH ₃	$C_{13}H_{13}N_7$	267	179-181	78	0.42	0.70
ART-321	NH_2	4-OH	$C_{12}H_{11}N_7O$	269	167-169	82	0.45	0.66
ART-322	NH_2	3-NO ₂	$C_{12}H_{10}N_8O_2$	298	148-150	78	0.51	0.66
ART-323	NH_2	3-Cl	$C_{12}H_{10}CIN_7$	287	207-209	75	0.48	0.65
ART-324	NH_2	3-OH	$C_{12}H_{11}N_7O$	269	208-210	71	0.37	0.64
ART-325	NH_2	3-Br	$C_{12}H_{10}BrN_7$	332	229-231	61	0.46	0.71
ART-326	NH_2	3,4-OCH ₃	$C_{14}H_{15}N_7O_2$	313	177-179	72	0.44	0.67
ART-327	NH_2	$2-NO_2$	$C_{12}H_{10}N_8O_2$	298	183-185	68	0.41	0.65
ART-328	NH_2	2-Cl	$C_{12}H_{10}CIN_7$	287	213-215	68	0.40	0.71
ART-329	NH_2	2-OH	$C_{12}H_{11}N_7O$	269	238-240	75	0.39	0.68
ART-330	NH_2	Н	$C_{12}H_{11}N_7$	253	186-188	70	0.36	0.63

 $TLC \ Solvent \ system \ R_{f1}: \ Hexane: \ Ethyl \ acetate - 6:4; \ TLC \ Solvent \ system \ R_{f2}: \ Chloroform: \ Methanol - 9:1.$

5.6 Reaction Mechanism

The reaction mechanism of this three-component condensation is probably similar to the described [47] mechanism for the "classical" Biginelli reaction (Pathway 1). The first step is a nucleophilic addition of $N_{(2)}$ of the aminoazole to a carbonyl carbon of aldehyde, followed by subsequent cyclization with 3-sub-1*H*-pyrazol-5(4*H*)-one to form the dihydropyrimidine ring. An alternate sequence is also possible and cannot be excluded [48] (Pathway 2), which is the initial formation of an enamine by reaction of aminoazole with the 3-sub-1*H*-pyrazol-5(4*H*)-one followed by cyclocondensation. The third alternative involving the formation of 3-sub-4-benzylidene-1*H*-pyrazol-5(4*H*)-one derivatives as intermediates requires the presence of a strong base [49] and is most likely not possible for the cases described herein.

5.7 Experimental

5.7.1 Materials and Methods

Melting points were determined in open capillary tubes and are uncorrected. Formation of the compounds was routinely checked by TLC on silica gel-G plates of 0.5 mm thickness and spots were located by iodine. Microwave assisted reaction were carried out in QPro-M microwave synthesizer. IR spectra were recorded Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. ¹H NMR was determined in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer. Elemental analysis of the all the synthesized compounds was carried out on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements with the structures assigned.

5.7.2 Synthesis of 3-sub-1H-pyrazol-5(4H)-ones

Syntheses of 3-substituted-1*H*-pyrazol-5(4*H*)-ones were achieved using previously published methods [50].

5.7.3 General procedure for the synthesis of 4-(aryl)-3-methyl-4,9-dihydro-1Hpyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidines (ART 301-315)

A mixture of the aminoazole (0.01 mol), 3-methyl-1*H*-pyrazol-5(4*H*)-one (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) in ethanol (5 mL) was irradiated under microwave conditions at 120 °C for 10-12 min. The microwave irradiation was operated in 30-second cycles. The reaction mixture was allowed to stand overnight at room temperature and was then filtered to give the solid triazolopyrazolopyrimidine products ART 301-315, which were washed with ethanol and dried in air. Triazolopyrazolopyrimidine were obtained in high purity and did not require further purification by recrystallization.

5.7.3.1 4-(4-methoxyphenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-301) Yield: 69%; mp 204-206 °C; MS: *m/z* 282; Anal. Calcd. for C₁₄H₁₄N₆O: C, 59.56; H, 5.00; N, 29.77. Found: C, 59.45; H, 4.92; N, 29.70%.

5.7.3.2 4-(4-fluorophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-302) Yield: 68%; mp 158-160 °C; MS: *m/z* 270; Anal. Calcd. for C₁₃H₁₁FN₆: C, 57.77; H, 4.10; N, 31.10. Found: C, 57.66; H, 4.00; N, 31.01%.

 $5.7.3.3\ 4-(4-nitrophenyl)-3-methyl-4, 9-dihydro-1H-pyrazolo[3,4-d][1,2,4] triazolo$

[1,5-a]pyrimidine (ART-303) Yield: 75%; mp 185-187 °C; MS: *m/z* 297; Anal. Calcd. for C₁₃H₁₁N₇O₂: C, 52.52; H, 3.73; N, 32.98. Found: C, 52.40; H, 3.66; N, 32.89%.

5.7.3.4 4-(4-chlorophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-304) Yield: 74%; mp 221-223 °C; MS: *m/z* 286; Anal. Calcd. for C₁₃H₁₁ClN₆: C, 54.46; H, 3.87; N, 29.31. Found: C, 54.32; H, 3.76; N, 29.22%.

5.7.3.5 4-(4-methylphenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-305) Yield: 56%; mp 205-207 °C; IR (cm⁻¹): 3356 (N-H stretching of secondary amine), 3095 (C-H stretching of aromatic ring), 2974 (C-H asymmetrical stretching of CH₃ group), 2889 (C-H asymmetrical stretching of CH₃ group), 1693 (C=N stretching), 1606 (N-H deformation of pyrimidine ring),

1506, 1471 and 1400 (C=C stretching of aromatic ring), 1440 (C-H asymmetrical deformation of CH₃ group), 1352 (C-H symmetrical deformation of CH₃ group), 1352 (C-N stretching), 812 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 2.37 (s, 2×3H, H_a), 7.18-7.20 (d, 2H, H_{bb'}, *J* = 8.00 Hz), 7.39 (s, 1H, H_c), 7.51-7.53 (d, 2H, H_{dd'}, *J* = 7.96 Hz), 7.93 (s, 1H, H_e), 11.47 (s, aH, H_f); MS: *m*/*z* 266; Anal. Calcd. for C₁₄H₁₄N₆: C, 63.14; H, 5.30; N, 31.56. Found: C, 63.01; H, 5.22; N, 31.48%.

5.7.3.6 4-(4-hydroxyphenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-306) Yield: 72%; mp 216-218 °C; MS: *m/z* 268; Anal. Calcd. for C₁₃H₁₂N₆O: C, 58.20; H, 4.51; N, 31.33. Found: C, 58.10; H, 4.39; N, 31.25%.

5.7.3.7 4-(3-nitrophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-307) Yield: 58%; mp 226-228 °C; IR (cm⁻¹): 3261 (N-H stretching of secondary amine), 3080 (C-H stretching of aromatic ring), 2999 (C-H asymmetrical stretching of CH₃ group), 2862 (C-H asymmetrical stretching of CH₃ group), 1699 (C=N stretching), 1614 (N-H deformation of pyrimidine ring),

1566, 1525 and 1494 (C=C stretching of aromatic ring), 1440 (C-H asymmetrical deformation of CH₃ group), 1388 (C-H symmetrical deformation of CH₃ group), 1350 (C-N stretching), 705 (C-H out of plane bending of 1,3-disubstituion); ¹H NMR (DMSO- d_6) δ ppm: 2.57 (s, 3H, H_a), 7.63-7.68 (t, 1H, H_b), 8.04-8.06 (d, 1H, H_c), 8.10

(s, 1H, H_d), 8.20-8.22 (d, 2H, H_e), 8.30 (s, 1H, H_f), 8.45-8.46 (s, 1H, H_g), 11.95-12.04 (s, 1H, H_h); MS: *m*/*z* 297; Anal. Calcd. for C₁₃H₁₁N₇O₂: C, 52.52; H, 3.73; N, 32.98. Found: C, 52.45; H, 3.64; N, 32.90%.

5.7.3.8 4-(3-chlorophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-308) Yield: 68%; mp 188-190 °C; MS: *m/z* 286; Anal. Calcd. for C₁₃H₁₁ClN₆: C, 54.46; H, 3.87; N, 29.31. Found: C, 54.34; H, 3.77; N, 29.20%.

5.7.3.9 4-(3-hydroxyphenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-309) Yield: 75%; mp 198-200 °C; MS: *m/z* 268; Anal. Calcd. for C₁₃H₁₂N₆O: C, 58.20; H, 4.51; N, 31.33. Found: C, 58.12; H, 4.41; N, 31.22%.

5.7.3.10 4-(3-bromophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-310) Yield: 72%; mp 212-214 °C; MS: *m/z* 331; Anal. Calcd. for C₁₃H₁₁BrN₆: C, 47.15; H, 3.35; N, 25.38. Found: C, 47.02; H, 3.21; N, 25.57%.

5.7.3.11 4-(3,4-methoxyphenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triaz

olo[1,5-a]pyrimidine (ART-311) Yield: 68%; mp 148-150 °C; MS: *m/z* 312; Anal. Calcd. for C₁₅H₁₆N₆O₂: C, 57.68; H, 5.16; N, 26.91. Found: C, 57.59; H, 5.02; N, 26.82%. 5.7.3.12 4-(2-nitrophenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-312) Yield: 72%; mp 235-237 °C; MS: *m/z* 297; Anal. Calcd. for C₁₃H₁₁N₇O₂: C, 52.52; H, 3.73; N, 32.98. Found: C, 52.41; H, 3.66; N, 32.89%.

 $5.7.3.13\ 4-(2-chlorophenyl)-3-methyl-4, 9-dihydro-1H-pyrazolo[3,4-d][1,2,4] triazolo[3,4-d][1,2,4] triazolo[3,4-d][1,3,4-d][1,3,4] triazolo[3,4-d][1,3,4-d][1,3,4] triazolo[3,4-d][1,3,4] triazolo[3,4] triazolo[3,4,4] triazolo[3,4,4] triazolo[3,4,4] triazolo[3,4,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4$

[1,5-a]pyrimidine (ART-313) Yield: 69%; mp 208-210 °C; MS: *m/z* 286; Anal. Calcd. for C₁₃H₁₁ClN₆: C, 54.46; H, 3.87; N, 29.31. Found: C, 54.38; H, 3.74; N, 29.24%.

 $5.7.3.14\ 4-(2-hydroxyphenyl)-3-methyl-4, 9-dihydro-1H-pyrazolo [3,4-d] [1,2,4] triazolo$

[1,5-a]pyrimidine (ART-314) Yield: 70%; mp 201-203 °C; MS: *m/z* 268; Anal. Calcd. for C₁₃H₁₂N₆O: C, 58.20; H, 4.51; N, 31.33. Found: C, 58.10; H, 4.43; N, 31.20%.

5.7.3.15 4-(phenyl)-3-methyl-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]

pyrimidine (ART-315) Yield: 59%; mp 193-195 °C; IR (cm⁻¹): 3213 (N-H stretching of secondary amine), 3080 (C-H stretching of aromatic ring), 2949 (C-H asymmetrical stretching of CH₃ group), 2882 (C-H asymmetrical stretching of CH₃ group), 1689 (C=N stretching), 1602 (N-H deformation of pyrimidine ring),

1560, 1520 and 1491 (C=C stretching of aromatic ring), 1448 (C-H asymmetrical deformation of CH₃ group), 1384 (C-H symmetrical deformation of CH₃ group), 1340 (C-N stretching); ¹H NMR (DMSO- d_6) δ ppm: 2.53 (s, 3H, H_a), 7.37-7.73 (m, 6H, H_{bb'-f}), 11.73 (s, 1H, H_g); MS: m/z 252; Anal. Calcd. for C₁₃H₁₂N₆: C, 61.89; H, 4.79; N, 33.31. Found: C, 61.80; H, 4.68; N, 33.21%.

5.7.4 General procedure for the synthesis of 4-(aryl)-3-amino-4,9-dihydro-1Hpyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidines (ART 316-330)

A mixture of the aminoazole (0.01 mol), 3-amino-1*H*-pyrazol-5(4*H*)-one (0.01 mol) and an appropriate aromatic aldehyde (0.01 mol) in ethanol (5 mL) was irradiated under microwave conditions at 120 °C for 10-12 min. The microwave irradiation was operated in 30-second cycles. The reaction mixture was allowed to stand overnight at room temperature and was then filtered to give the solid triazolopyrazolopyrimidine products ART 316-330, which were washed with ethanol and dried in air. Triazolopyrazolopyrimidine were obtained in high purity and did not require further purification by recrystallization.

5.7.4.1 4-(4-methoxyphenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-316) Yield: 66%; mp 238-240 $^{\circ}$ C; IR (cm⁻¹): 3412 (N-H stretching of primary amine), 3215 (N-H stretching of secondary amine), 3090 (C-H stretching of aromatic ring), 2964 (C-H asymmetrical stretching of CH₃ group), 2835 (C-H asymmetrical stretching of CH₃ group), 1691 (C=N stretching), 1668

(N-H deformation of primary amine), 1608 (N-H deformation of pyrimidine ring), 1568, 1516, 1465 (C=C stretching of aromatic ring), 1425 (C-H asymmetrical deformation of CH₃ group), 1384 (C-H symmetrical deformation of CH₃ group), 1336 (C-N stretching), 837 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 3.84 (s, 3H, H_a), 3.94 (s, 2H, H_b), 6.90-6.92 (d, 2H, H_{cc'}, *J* = 8.8 Hz), 7.57-7.59 (d, 2H, H_{dd'}, *J* = 8.8 Hz), 7.71 (s, 1H, H_e), 7.93 (s, 1H, H_f), 11.62 (s, 1H, H_g); MS: *m*/*z* 283; Anal. Calcd. for C₁₃H₁₃N₇O: C, 55.12; H, 4.63; N, 34.61. Found: C, 55.02; H, 4.56; N, 34.52%.

5.7.4.2 4-(4-fluorophenyl)-3 amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-317) Yield: 71%; mp 213-215 °C; IR (cm⁻¹): 3466 (N-H stretching of primary amine), 3290 (N-H stretching of secondary amine), 3090 (C-H stretching of aromatic ring), 1691 (C=N stretching), 1674 (N-H deformation of primary amine), 1602 (N-H deformation of pyrimidine ring), 1564, 1546, 1510 (C=C

stretching of aromatic ring), 1430 (C-H asymmetrical deformation of CH₃ group), 1373 (C-H symmetrical deformation of CH₃ group), 1340 (C-N stretching), 837 (C-H out of plane bending of 1,4-disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 3.94 (s, 3H, H_a), 7.35-7.38 (d, 2H, H_{bb}), 7.58-7.62 (d, 2H, H_{cc}), 7.65 (s, 1H, H_d), 7.96 (s, 1H, H_e), 11.79 (s, 1H, H_f); MS: *m*/*z* 271; Anal. Calcd. for C₁₂H₁₀FN₇: C, 53.13; H, 3.72; N, 36.15. Found: C, 53.01; H, 3.61; N, 36.03%.

5.7.4.3 4-(4-nitrophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-318) Yield: 63%; mp 218-220 °C; IR (cm⁻¹): 3412 (N-H stretching of primary amine), 3254 (N-H stretching of secondary amine), 3086 (C-H stretching of aromatic ring), 1695 (C=N stretching), 1589 (N-H deformation of pyrimidine ring), 1518 and 1483 (C=C stretching of aromatic ring), 1450 (C-H

asymmetrical deformation of CH₃ group), 1377 (C-H symmetrical deformation of CH₃ group), 1346 (C-N stretching), 852 (C-H out of plane bending of 1,4disubstituion); ¹H NMR (DMSO-*d*₆) δ ppm: 3.96 (s, 2H, H_a), 7.55 (s, 1H, H_b), 7.82-7.85 (d, 2H, H_{cc}), 8.08 (s, 1H, H_d), 8.23-8.25 (d, 2H, H_{ee}), *J* = 7.68 Hz), 12.07 (d, 2H, H_f); MS: *m*/*z* 298; Anal. Calcd. for C₁₂H₁₀N₈O₂: C, 48.32; H, 3.38; N, 37.57. Found: C, 48.21; H, 3.29; N, 37.48%. H_2N

5.7.4.4 4-(4-chlorophenyl)-3- amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-319) Yield: 79%; mp 221-223 °C; MS: m/z 287; Anal. Calcd. for C₁₂H₁₀ClN₇: C, 50.10; H, 3.50; N, 34.08. Found: C, 50.00; H, 3.39; N, 34.00%.

5.7.4.5 4-(4-methylphenyl)-3- amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo CH₃ [1,5-a]pyrimidine (ART-320) Yield: 78%; mp 179-181 °C; MS: *m/z* 267; Anal. Calcd. for C₁₃H₁₃N₇: C, 58.42; H,

4.90; N, 36.68. Found: C, 58.31; H, 4.88; N, 36.59%.

 $5.7.4.6\ 4-(4-hydroxyphenyl)-3-amino-4, 9-dihydro-1H-pyrazolo[3,4-d][1,2,4] triazolo[3,4-d][1,2,4] triazolo[3,4-d][1,3,4] triazolo[3,4] triazolo[3,4-d][1,3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] triazolo[3,4] tr$

[1,5-a]pyrimidine (ART-321) Yield: 82%; mp 167-169 °C; MS: *m/z* 269; Anal. Calcd. for C₁₂H₁₁N₇O: C, 53.53; H, 4.12; N, 36.41. Found: C, 53.48; H, 4.01; N, 36.29%.

5.7.4.7 4-(3-nitrophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-322) Yield: 78%; mp 148-150 °C; MS: *m/z* 298; Anal. Calcd. for C₁₂H₁₀N₈O₂: C, 48.32; H, 3.38; N, 37.57. Found: C, 48.23; H, 3.27; N, 37.49%.

5.7.4.8 4-(3-chlorophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-323) Yield: 75%; mp 207-209 °C; MS: *m/z* 287; Anal. Calcd. for C₁₂H₁₀ClN₇: C, 50.10; H, 3.50; N, 34.08. Found: C, 50.01; H, 3.39; N, 33.99%.

5.7.4.9 4-(3-hydroxyphenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-324) Yield: 71%; mp 208-210 °C; MS: *m/z* 269; Anal. Calcd. for C₁₂H₁₁N₇O: C, 53.53; H, 4.12; N, 36.41. Found: C, 53.44; H, 4.03; N, 36.30%.

5.7.4.10 4-(3-bromophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-325) Yield: 61%; mp 229-231 °C; MS: *m/z* 332; Anal. Calcd. for C₁₂H₁₀BrN₇: C, 43.39; H, 3.03; N, 29.52. Found: C, 43.27; H, 2.95; N, 29.40%.

5.7.4.11 4-(3,4-methoxyphenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triaz

olo[1,5-a]pyrimidine (ART-326) Yield: 72%; mp 177-179 °C; MS: *m/z* 313; Anal. Calcd. for C₁₄H₁₅N₇O₂: C, 53.67; H, 4.83; N, 31.29. Found: C, 53.56; H, 4.77; N, 31.21%.

5.7.4.12 4-(2-nitrophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo [1,5-a]pyrimidine (ART-327) Yield: 68%; mp 183-185 °C; MS: *m*/z 298; Anal. Calcd. for C₁₂H₁₀N₈O₂: C, 48.32;

H, 3.38; N, 37.57. Found: C, 48.22; H, 3.27; N, 37.49%.

5.7.4.13 4-(2-chlorophenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-328) Yield: 68%; mp 213-215 °C; MS: *m/z* 287; Anal. Calcd. for C₁₂H₁₀ClN₇: C, 50.10; H, 3.50; N, 34.08. Found: C, 50.01; H, 3.39; N, 33.99%.

5.7.4.14 4-(2-hydroxyphenyl)-3-amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo

[1,5-a]pyrimidine (ART-329) Yield: 75%; mp 238-240 °C; MS: *m/z* 269; Anal. Calcd. for C₁₂H₁₁N₇O: C, 53.53; H, 4.12; N, 36.41. Found: C, 53.42; H, 4.01; N, 36.29%.

5.7.4.15 4-(phenyl)-3- amino-4,9-dihydro-1H-pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]

pyrimidine (ART-330) Yield: 70%; mp 186-188 °C; MS: *m/z* 253; Anal. Calcd. for C₁₂H₁₁N₇: C, 56.91; H, 4.38; N, 38.71. Found: C, 56.79; H, 4.26; N, 38.60%.

5.8 Spectral discussion

5.8.1 Mass spectral study

Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. Systematic fragmentation pattern was observed in mass spectral analysis. Molecular ion peak was observed in agreement with molecular weight of respective compound. Mass fragmentation pattern for a representative compound of each series is depicted below.

5.8.1.1 Mass fragmentation pattern for ART-305

5.8.1.2 Mass fragmentation pattern for ART-318

5.8.2 IR spectral study

IR spectra were recorded on Shimadzu FT-IR-8400 model using KBr pellet method. Various functional groups present in molecule were identified by characteristic frequency obtained for them. For pyrazolo-triazolo-pyrimidines ART-301 to 315, confirmatory bands for secondary amine and C=N stretching band was observed at 3213-3356 cm⁻¹ and 1689-1693 cm⁻¹ respectively, which suggested formation of desired products ART-301 to 315.

While, for pyrazolo-triazolo-pyrimidines ART-316 to 330 confirmatory bands for secondary amine and C=N stretching band was observed at 3215-3290 cm⁻¹ and 1691-1695 cm⁻¹ respectively, along with a characteristic stretching band for primary amine at 3412-366 cm⁻¹ suggested formation of desired products ART-316 to 330.

5.8.3 ¹H NMR spectral study

¹H NMR spectra were recorded in DMSO- d_6 solution on a Bruker Ac 400 MHz spectrometer using TMS as an internal standard. Number of protons and their chemical shifts were found to support the structure of the synthesized compounds.

¹H NMR spectra confirmed the structures of pyrazolo-triazolo-pyrimidines ART-301 to 330 on the basis of following signals: a singlet for the methine proton of pyrimidine ring at 7.39-8.10 δ ppm and a singlet for the methine proton of triazole ring at 7.93-8.30 δ ppm. The aromatic ring protons and *J* value were found to be in accordance with substitution pattern on phenyl ring.

IR spectrum of ART-305

Mass spectrum of ART-305

Chapter 5

¹H NMR spectrum of ART-305

Expanded ¹H NMR spectrum of ART-305

IR spectrum of ART-307

Mass spectrum of ART-307

Expanded ¹H NMR spectrum of ART-307

IR spectrum of ART-315

Mass spectrum of ART-315

Chapter 5

¹H NMR spectrum of ART-315

Expanded ¹H NMR spectrum of ART-315

IR spectrum of ART-316

Mass spectrum of ART-316

¹H NMR spectrum of ART-316

Expanded ¹H NMR spectrum of ART-316

IR spectrum of ART-317

Mass spectrum of ART-317

¹H NMR spectrum of ART-317

Expanded ¹H NMR spectrum of ART-317

IR spectrum of ART-318

Mass spectrum of ART-318

¹H NMR spectrum of ART-318

Expanded ¹H NMR spectrum of ART-318

5.9 Biological evaluation

5.9.1 Antimicrobial evaluation

All of the synthesized compounds (ART-301 to 330) were tested for their antibacterial and antifungal activity (MIC) *in vitro* by broth dilution method [51-53] with two Gram-positive bacteria *Staphylococcus aureus* MTCC-96, *Streptococcus pyogenes* MTCC 443, two Gram-negative bacteria *Escherichia coli* MTCC 442, *Pseudomonas aeruginosa* MTCC 441 and three fungal strains *Candida albicans* MTCC 227, *Aspergillus Niger* MTCC 282, *Aspergillus clavatus* MTCC 1323 taking ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin, and griseofulvin as standard drugs. The standard strains were procured from the Microbial Type Culture Collection (MTCC) and Gene Bank, Institute of Microbial Technology, Chandigarh, India.

The minimal inhibitory concentration (MIC) values for all the newly synthesized compounds, defined as the lowest concentration of the compound preventing the visible growth, were determined by using microdilution broth method according to NCCLS standards [51]. Serial dilutions of the test compounds and reference drugs were prepared in Muellere-Hinton agar. Drugs (10 mg) were dissolved in dimethylsulfoxide (DMSO, 1 mL). Further progressive dilutions with melted Muellere-Hinton agar were performed to obtain the required concentrations of 1.56, 3.12, 6.25, 10, 12.5, 25, 50, 62.5, 100, 125, 250, 500 and 1000 μ g mL⁻¹. The tubes were inoculated with 10⁸ cfu mL⁻¹ (colony forming unit/mL) and incubated at 37 °C for 24 h. The MIC was the lowest concentration of the tested compound that yields no visible growth (turbidity) on the plate. To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions as used in the experiments and it was observed that DMSO had no effect on the microorganisms in the concentrations studied. The results obtained from antimicrobial susceptibility testing are depicted in Table 1.
Chapter 5

Code	Minimum inhibition concentration (µg mL ⁻¹)								
	Gram-positive		Gram-n	Gram-negative		Fungal species			
	S.a.	<i>S. p.</i>	<i>E.c.</i>	<i>P.a.</i>	С. а.	A. n.	A.c.		
ART-301	1000	500	500	1000	250	1000	500		
ART-302	250	1000	100	500	500	250	>1000		
ART-303	50	500	250	500	>1000	100	500		
ART-304	125	100	500	125	250	500	500		
ART-305	500	500	1000	500	1000	1000	250		
ART-306	500	500	>1000	1000	500	1000	>1000		
ART-307	62.5	250	500	125	1000	100	500		
ART-308	100	500	1000	1000	500	500	100		
ART-309	1000	1000	250	>1000	500	250	1000		
ART-310	250	250	500	500	1000	100	1000		
ART-311	250	1000	1000	250	>1000	1000	500		
ART-312	125	500	>1000	1000	500	250	500		
ART-313	100	500	500	500	125	250	250		
ART-314	500	1000	250	1000	500	1000	500		
ART-315	250	100	500	>1000	1000	500	1000		
ART-316	1000	500	250	500	500	500	1000		
ART-317	100	100	1000	250	1000	100	1000		
ART-318	250	250	1000	1000	250	>1000	500		
ART-319	500	25	500	125	100	100	250		
ART-320	>1000	500	1000	1000	500	1000	500		
ART-321	1000	500	250	250	>1000	>1000	1000		
ART-322	250	500	500	1000	250	500	250		
ART-323	1000	1000	500	>1000	1000	1000	500		
ART-324	>1000	1000	250	500	500	500	500		
ART-325	1000	500	1000	500	125	250	1000		
ART-326	500	250	500	100	500	100	250		
ART-327	250	100	1000	500	250	1000	500		
ART-328	1000	500	500	500	500	500	>1000		
ART-329	250	1000	62.5	250	500	250	500		
ART-330	500	250	250	500	>1000	500	500		
Ampicillin	250	100	1000	100	-	-	-		
Chloramphenicol	50	50	50	50	-	-	-		
Ciprofloxacin	50	50	25	25	-	-	-		
Norfloxacin	10	10	10	10	-	-	-		
Nystatin	-	-	-	-	100	100	100		
Griseofulvin	-	-	-	-	500	100	100		

Table 1.	Antibacterial	and antifungal	activity of s	synthesized c	compounds Al	RT-301 to 330
				.,		

5.9.2 Antimycobacterial, anticancer and antiviral evaluation

Antimycobacterial, anticancer and antiviral screening of all the newly synthesized compounds ART-301 to ART-330 is currently under investigation and results are awaited.

5.10 References and notes

- [1] Leadbeater, N. Chemistry World 2004, 1, 38.
- [2] Adam, D. *Nature* **2003**, *421*, 571.
- [3] Kingston, H. M.; Haswell S. J. (Eds.) Microwave- Enhanced Chemistry. Fundamentals, Sample preparation and Applications, American Chemical Society, Washington DC, 1997.
- [4] Giberson, R. T.; Demaree R. S. (Eds.) Microwave Techniques and Protocols, Humana Press, T otowa, New Jersey, 2001.
- [5] Prentice, W. E. Therapeutic Modalities for Physical Therapists, McGraw-Hill, New York, 2002.
- [6] Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. *Tetrahedron Lett.* 1986, 27, 279.
- [7] Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. *Tetrahedron Lett.* 1986, 27, 4945.
- [8] (a) Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathk, D. Synthesis 1998, 34, 1213; (b) Varma, R. S. Green Chem. 1999, 43; (c) Kidawi, M. Pure Appl. Chem. 2001, 73, 147; (d) Varma, R. S. Pure Appl. Chem. 2001, 73, 193; (e) Varma, R. S. Tetrahedron 2002, 58, 1235; (f) Varma, R. S. Advances in Green Chemistry: Chemical Syntheses Using Microwave Irradiation, Kavitha Printers, Bangalore, 2002.
- [9] (a) Bose, A. K.; Banik, B. K.; Lavlinskaia, N.; Jayaraman, M.; Manhas, M. S.
 Chemtech 1997, 27, 18; (b) Bose, A. K.; Manhas, M. S.; Ganguly, S. N.;
 Sharma, A. H.; Banik, B. K. *Synthesis* 2002, 1578.
- [10] (a) Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48, 1665; (b) Strauss,
 C. R. Aust. J. Chem. 1999, 52, 8; (c) Strauss, C. R. in Microwaves in Organic
 Synthesis (Ed.: A. Loupy), Wiley-VCH, Weinheim, 2002, 35.
- [11] (a) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199; (b) Kuhnert, N. Angew. Chem. Int. Ed. 2002, 41, 1863; (c) Strauss, C. R. Angew. Chem. Int. Ed. 2002, 41, 3589.
- [12] Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
- [13] Danks, T. N. Tetrahedron Lett. 1999, 40, 3957.
- [14] Selvi, S.; Perumal, P. T. J. Heterocycl. Chem. 2002, 39, 1129.
- [15] Usyatinsky, A. Ya.; Khmelnitsky, Y. L. *Tetrahedron Lett.* **2000**, *41*, 5031.

- [16] Marrero-Terrero, A. L.; Loupy, A. Synlett 1996, 245.
- [17] Bentiss, F.; Lagrenée, M.; Barbry, D. Tetrahedron Lett. 2000, 41, 1539.
- [18] Alterman, M.; Hallberg, A. J. Org. Chem. 2000, 65, 7984.
- [19] Single-mode cavities offer more consistent and predictable energy distribution. Single-mode instruments produce one homogeneous, intense pocket of energy that is highly reproducible. Due to their uniform energy distribution and higher power density, these systems typically couple more efficiently with small samples. Hayes, B. L. *Microwave Synthesis: Chemistry at the Speed of Light*; CEM Publishing: Matthews, NC, **2002**.
- [20] Kaddar, H.; Hamelin, J.; Benhaoua, H. J. Chem. Res.(S) 1999, 718.
- [21] (a) Chandra Sheker Reddy, A.; Shanthan Rao, P.; Venkataratnam, R. V. *Tetrahedron* 1997, *53*, 5847. (b) Narsaiah, B.; Sivaprasad, A.; Venkataratnam, R. V. *J. Fluorine Chem.* 1994, *66*, 47.
- [22] Sridar, V. Indian J. Chem. 1997, 36B, 86.
- [23] Molina, A.; Vaquero, J. J.; Garcia-Navio, J. L.; Alvarez-Builla, J. Tetrahedron Lett. 1993, 34, 2673.
- [24] Öhberg, L.; Westman, J. Synlett 2001, 1296.
- [25] Quiroga, J.; Cisneros, C.; Insuasty, B.; Abonia, R.; Nogueras, M.; Sánchez, A. *Tetrahedron Lett.* 2001, 42, 5625.
- [26] Avalos, M.; Babiano, R.; Cintas, P.; Clemente, F. R.; Jimenez, J. L.; Palacios, J. C.; Sanchez, J. B. J. Org. Chem. 1999, 64, 6297.
- [27] Ranu, B. C.; Hajra, A.; Jana, U. Tetrahedron Lett. 2000, 41, 531.
- [28] Eynde, J. J. V.; Hecq, N.; Kataeva, O.; Kappe, C. O. *Tetrahedron* 2001, 57, 1785.
- [29] Ding, J.; Gu, H.; Wen, J.; Lin, C. Synth. Commun. 1994, 24, 301.
- [30] Abenhaïm, D.; Díez-Barra, E.; de la Hoz, A.; Loupy, A.; Sánchez-Migallón,A. *Heterocycles* 1994, *38*, 793.
- [31] Villemin, D.; Gómez-Escalonilla, M. J.; Saint-Clair, J.-F. *Tetrahedron Lett*. 2001, 42, 635.
- [32] Combs, A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S. *Tetrahedron Lett.* 1999, 40, 1623.
- [33] Van der Eycken, E.; Appukkuttan, P.; De Borggraeve, W.; Dehaen, W.;Dallinger, D.; Kappe, C. O. J. Org. Chem. 2002, 67, 7904.

- [34] Katritzky, A. R.; Singh, S. K. J. Org. Chem. 2002, 67, 9077.
- [35] (a) Häbich, D.; Barth, W.; Rösner, M. *Heterocycles* 1989, 29, 2083. (b) Mearman, R. C.; Newall, C. E.; Tonge, A. P. J. Antibiot. 1984, 37, 885. (c) Olesen, P. H.; Nielsen, F. E.; Pedersen, E. B.; Becher, J. J. Heterocycl. Chem. 1984, 21, 1603.
- [36] Dupau, P.; Epple, R.; Thomas, A. A.; Fokin, V. V.; Sharpless, K. B. Adv. Synth. Catal. 2002, 344, 421.
- [37] Treuner, U. D.; Breuer, H. US4C124764, **1976**.
- [38] Russo, F.; Guccione, S.; Romeo, G.; Scolaro, L. M.; Pucci, S.; Caruso, A.; Cutuli, V. et al. *Eur. J. Med. Chem.* **1992**, 27, 73.
- [39] Guccione, S.; Raffaelli, A.; Barretta, G. Eur. J. Med. Chem. 1995, 30, 333.
- Baraldi, P. G.; Cacciari, B.; Borea, P. A.; Varani, K.; Pastorin, G.; Da Ros, T.;
 Tabrizi, M. A.; Fruttarolo, F.; Spalluto, G. *Curr. Pharm. Des.* 2002, 8: 2299.
- [41] (a) Gatta. F.; Del Giudice, M. R.; Borioni, A.; Borea, P. A.; Dionisotti, S.; Ongini, E. *Eur. J. Med. Chem.* 1993, 28, 569; (b) Dionisotti. S.; Conti, A.; Sandoli, D.; Zocchi, C.; Gatta, F.; Ongini. E. *Br. J. Pharmacol.* 1994, 112, 659.
- [42] Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Pineda de las Infantas y Villatoro,
 M. J.; Zocchi, C.; Dionisotti, S.; Ongini, E. J. Med. Chem. 1996, 39, 1164.
- [43] Baraldi. P.G.; Cacciari, B.; Spalluto, G.; Bergonzoni, M.; Dionisotti, S.;Ongini, E.; Varani, K.; Borea, P. A. J. Med. Chem. 1998, 41, 2126.
- [44] Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Monopoli, A.;Ongini, E.; Varani, K.; Borea, P. A. J. Med. Chem. 2002, 45, 115.
- [45] Kim, Y. C.; de Zwart, M.; Chang, L.; Moro, S.; Jacobien, K.; Frijtag, D. K.; Melman, N.; IJzerman, A. P.; Jacobson, K. A. J. Med. Chem. 1998, 41, 2835.
- [46] Snyder, R. D. Mutat. Res. 2007, 623, 72–82.
- [47] Kappe, C. O. J. Org. Chem. 1997, 62, 7201.
- [48] Shaban, M. A. E.; Morgaan, A. E. A. AdV. Heterocycl. Chem. 1999, 73, 131.
- [49] Babichev, F. S.; Kovtunenko, V. A. Khim. Geterotsikl. Soedin. 1977, 2, 147.
- [50] Mojtahedi, M. M.; Jalali, M. R.; Abaee, M. S.; Bolourtchian, M. Heterocyclic Communications 2006, 12, 225.
- [51] National Committee for Clinical and Laboratory Standards, Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow

Aerobically Approved Standard, fourth ed. NCCLS, Villanova, Italy, **1997**, Document M 100-S7. S100-S157.

- [52] D.H. Isenberg, Essential Procedure for Clinical Microbiology, American Society for Microbiology, Washington, 1998.
- [53] Zgoda, J. R.; Porter, J. R. *Pharm. Biol.* **2001**, *39*, 221.

Summary

The work presented in the Thesis entitled "Studies on Some Compounds of Medicinal Interest" can be summarized as below.

Chapter 1 briefly introduces importance of bicyclic and tricyclic aromatic heterocycles in drug discovery as well as concept of "privileged structures". Chapter 1 further describes aims and objectives of the proposed research work.

Chapter 2 outlines the biological significance and medical significance of pyrimidines. Also, an attempt has been made to include most of the physiologically as well as medicinally important compounds containing pyrimidine and its derivatives to further elaborate the importance of these class of compounds.

In Chapter 3, synthesis of thirty novel thieno[2,3-*d*]pyrimidines is reported, which occupy a special position among fused pyrimidines due to a very wide spectrum of their biological activities. The synthesis of these derivatives was affected from novel 2-aminothiophenes containing an acetoacetamide fragment by acid catalysed cyclocondensation with formic acid, gl. acetic acid and trifluoroacetic acid, respectively.

Recently, 1,2,4-triazolo[1,5-*a*]pyrimidines have aroused increasing from the standpoint of biological activity, due to their diverse pharmacological activities. Chapter 4 includes the brief review of the reported synthetic strategies for the synthesis of these classes of compound. Forty 1,2,4-triazolo[1,5-*a*]pyrimidines were synthesized by Biginelli like cyclocondensation of aromatic aldehydes and acetoacetanilide derivatives with aminoazole. The synthesis was accomplished by refluxing in small amount of DMF within a very short period of time of just 12-15 min.

Chapter 5 describes applications of microwaves in heterocyclic ring formation. Pyrazolo-triazolo-pyrimidines have been the subject of intense research due to the interesting pharmacological activities found for several of their derivatives. Chapter 5 includes synthesis of thirty novel pyrazolo[3,4-d][1,2,4]triazolo[1,5-a]pyrimidines with the aim to extend the synthetic pathways to new planar heterocyclic ring systems, chemistry of which have never been explored, and there are no reports on the synthesis and chemical properties of these class of compounds. The synthesis was achieved by using a one pot, microwave-assisted, catalyst-free biginelli like

condensation of aminoazole, 3-substituted-pyrazol-5(4H)-ones, and an appropriate aromatic aldehyde in ethanol. Thus, a new green chemistry approach was developed leading to the improvement in the reaction time, yield and simplicity of work up procedure.

All the synthesized compounds were characterized by IR, Mass, ¹H NMR spectroscopy and elemental analyses.

Thus, 110 compounds are synthesized and characterized in entire thesis work. The synthesized compounds are screened for antimicrobial activity, results of which are incorporated in the thesis. Looking at the antimicrobial activity results (i.e. antibacterial and antifungal), remarkable number of compounds have demonstrated excellent antimicrobial activity as compared to the standard drugs.

All the newly synthesized compounds are also under antimycobacterial, anticancer and antiviral evaluation and their results are awaited.

Publications

- Synthesis and antimycobacterial evaluation of various 6-substituted pyrazolo[3,4d]pyrimidine derivatives, by Amit R. Trivedi, Shailesh J. Vaghasiya, Bipin H. Dholariya, Dipti Dodiya and Viresh H. Shah. *Journal of Enzyme Inhibition and Medicianl Chemistry*, Accepted, In Press.
- Synthesis, characterization and biological screening of some novel tetrahydroquinazoline derivatives, by S. J. Vaghasia, D. K. Dodiya, A. R. Trivedi, H. K. Ram and V. H. Shah. *Indian Journal of Chemistry (Section B)*, Accepted, In Press.
- Synthesis and antimicrobial evaluation of novel benzo[b]thiophenes comprising βlactam nucleus, by Amit R. Trivedi, Jignesh M Desai, Bipin H. Dholariya, Dipti Dodiya and Viresh H. Shah. *Medicinal Chemistry Research*, Under Revision.
- 4. Synthesis, Biological Evaluation and Molecular Docking studies of pyrimidine, pyran and pyridine derivatives as potential CDK-1 and GSK-3 inhibitors, by Amit R Trivedi, Ketan H Shikotra, Kishor J Aahir, Naresh R Ravat, Viresh H Shah, Raghuvir RS Pissurlenkar and Evans C Coutinho. *Chemical Biology & Drug Design*, Under Revision.
- Synthesis and anti-tubercular evaluation of some novel pyrazolo[3,4-*d*]pyrimidine derivatives, by Amit R. Trivedi, Arif B. Siddiqui, Bipin H. Dholariya and Viresh H. Shah. *Chemotherapy*, Submitted, Under Review.
- Synthesis, Characterization, Crystal and Molecular Structure Analysis of 2,6-Dimethyl-3-acetyl-5-carbomethoxy-4-phenyl-1,4-dihydropyridine, by Amit Trivedi, Neetha Gowda, Yogesh Naliapara, M. Sridhar, J. Shashidhara prasad, Anamik Shah. *Journal of Chemical Crystallography*, Submitted, Under Review.
- Novel dihydropyrimidines as a potential new class of antitubercular agents, by Amit R. Trivedi, Vimal R. Bhuva, Bipin H. Dholariya, Dipti K. Dodiya and Viresh H. Shah. Manuscript Under Preparation.
- A facile Synthesis of some indolylazetidinones and substituted indolylthioazetidinones, by P. R. Vachharajani, Bhavin Trivedi, Gaurang Dubal, Manish Solanki, Amit Trivedi. Organic Chemistry (Rajkot, India), 5(3), 266-269, 2009.

- A new synthetic approach and biological evaluation of novel phenothiazines bearing *tert*-butyl group, by Amit R. Trivedi; Arif B. Siddiqui; Dipti K. Dodiya; Manish J. Soalnki; Viresh H. Shah. *Journal of Sulfur Chemistry*. 30(6), 590-595, 2009, DOI: 10.1080/17415990903173511.
- Synthesis and Biological Evaluation of 1-aryl-3-methyl-4-(5'-chloro-3'-methyl-1'-phenylpyrazilo-4'-yl)-4,4adihydro-6*H*-pyrazolo[3,4-*d*]-1,3-thiazolidino[3,2-*a*] pyrimidine-5-ones, by A. R. Trivedi, N. R. Ravat and V. H Shah *J. Inst. Chemists* (*India*). 81(1), 2009.
- Design, synthesis, characterization and antitubercular activity of some 2heterocycle-substituted phenothiazines, by Trivedi, Amit R.; Siddiqui, Arif B.; Shah, Viresh H. ARKIVOC. 2, 210-217, 2008.
- Facile one pot synthesis and antimycobacterial evaluation of pyrazolo[3,4d]pyrimidines, by Amit Trivedi, Dipti Dodiya, Janak Surani, Samir Jarsania, Hitesh mathukia, Naresh Ravat, Viresh shah. *Archiv der Pharmazie*. 341(7), 435-439, 2008.
- Synthesis and biological evaluation of some new pyrimidines via a novel chalcone series, Trivedi, Amit R.; Dodiya, Dipti K.; Ravat, Naresh R.; Shah, Viresh H. *ARKIVOC*, (11), 131-141, 2008.
- 14. Synthesis and biological screening of some novel pyrazolo[3',4':4,5]thieno[2,3d]pyrimidin-8-ones via Gewald reaction, by Shailesh J. Vaghasiya, Dipti K. Dodiya, Amit R. Trivedi and Viresh H. Shah. *ARKIVOC*. 12, 1-8, 2008.
- Synthesis and biological screening of some novel pyrazolo[3',4':4,5]thieno[2,3d]pyrimidin-5-ones via a Gewald reaction, by Shailesh J. Vaghasiya, Dipti K. Dodiya, Amit R. Trivedi, and Viresh H. Shah. J. Serb. Chem. Soc., 73(7), 683-690, 2008.
- Synthesis and biological screening of some novel pyrazolo[3,4-d]pyrimidines, by Vaghasia, S. J.; Dodiya, D. K.; Shah, V. H. *Indian Journal of Heterocyclic Chemistry*, 18(1), 9-12, 2008.
- A facile synthesis of pyrazolo[3,4-*d*]pyrimidines, by Trivedi, A. R.; Dubal, G. G.; Ravat, N. R.; Shah, V. H. *Indian Journal of Heterocyclic Chemistry*, 17(4), 385-386, 2008.

- Synthesis and biological studies of pyrazolo[3,4-*d*]pyrimidines, by A. R. Trivedi, N. R Ravat, V. H. Shah. *International Journal of Synthesis and Characterization*. 1(1), 67-72, 2008.
- Synthesis, characterization and biological screening of some new 2-pyrazolin-5ones, by A. R. Trivedi, D. S. mehta, V. H. Shah. *International Journal of Synthesis and Characterization*. 1(1), 113-118, 2008.
- Simple and efficient synthetic routes to bioactive s-triazinyl dithiocarbamate derivatives, by R. M. Desai, D. K. Dodiya, A. R. Trivedi and V. H. Shah. *Medicinal Chemistry Research*, 17, 495. 2008, DOI: 10.1007/s00044-008-9093-4.
- Synthesis and biological evaluation of 4-aryl-3-methyl-1-phenyl-4,4*a*-dihydro-6*H*-pyrazolo[3,4-*d*]-1,3-thiazolidino[3,2-*a*]pyrimidine-5-ones, by Trivedi, A. R.; Ravat, N. R.; Shah, V. H. Organic Chemistry (Rajkot, India), 3(4), 180-184, 2007.

Conferences/Seminars participated

- National seminar on "Recent Advances in Chemical Sciences & An Approach to Green Chemistry" jointly organized by Department of Chemistry & Gujarat Council on Science and Technology (GUJCOST)-Gandhinagar at Rajkot, India (October 11-13, 2006).
- National Workshop on Management and Use of Chemistry Databases and Patent Literature jointly organized by Department of Chemistry & Gujarat Council on Science and Technology (GUJCOST)-Gandhinagar at Rajkot, India (February 27-29, 2008).
- "National Workshop on Updates in Process & Medicinal Chemistry" jointly Organized by Department of Chemistry, Saurashtra University, Rajkot and National Facility for Drug Discovery Through NCE's Development & Instrumentation Support to Small Manufacturing Pharma Enterprises and Think Pharma USA (March 3-4, 2009).
- "National Conference on Spectroscopy & Stereochemistry" Organized by Department of Chemistry, Saurashtra University, Rajkot Sponsored by UGC, New Delhi and Gujarat Council on Science and Technology (GUJCOST)-Gandhinagar (March 18-20, 2009).
- 5. "Two Days National Workshop on Patents & IPR Related Updates" Organized by Technology Information, Forecasting Assessment Council (TIFAC)-New Delhi, Gujarat Council on Science and Technology (GUJCOST)-Gandhinagar and National Facility for Drug Discovery Through NCE's Development & Instrumentation Support to Small Manufacturing Pharma Enterprises at Department of Chemistry, Saurashtra University, Rajkot (September 19-20, 2009).
- 6. "International Seminar on Recent Developments in Structure and Ligand Based Drug Design" jointly organized by Schrodinger LLC, USA & Department of Chemistry and National Facility for Drug Discovery Through NCE's Development & Instrumentation Support to Small Manufacturing Pharma Enterprises at Department of Chemistry, Saurashtra University, Rajkot (December 23, 2009).

Acknowledgements

I would like to thank all people who have helped and inspired me during my doctoral study. I especially want to thank my advisor, Prof. V. H. Shah, for his guidance during my research and study at Saurashtra University. I am highly thankful to University Grant Commission, New Delhi for UGC Meritorious fellowship.