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Chapter 1  Nitro Functionalized Dihydropyrimidines 

1.1       INTRODUCTION 

 
 The pyrimidine fragment is present in the molecules of a series of biologically active 

compounds, many of which have found use in medical practice (soporific, anti-inflammatory, 

antitumor, and other products).1,2 In this connection, great attention has recently been paid to 

derivatives of pyrimidine, including their hydrogenation products. The first investigations 

into the synthesis of such compounds appeared more than a hundred years ago (e.g., the 

Biginelli reaction),3  and for a long time they remained unused. Only in the last decade have 

methods been developed specifically for the production of hydrogenated pyrimidine systems 

and their physicochemical properties been studied. This is explained by the high reactivity 

and wide range of biological activity with these scaffolds. Thus, for example, 2-substituted 5-

alkoxycarbonyl-4-aryl-l,4-dihydropyrimidines, which are structural analogs of hantzsch 

esters, are modulators of the transport of calcium through membranes.4-7 Many hydrogenated 

pyrimidines exhibit antimicrobial,8 hypoglemic,9  herbicidal,10 and pesticidal11 activity. 

Publications devoted to these problems have been summarized in a number of reviews.9-14  

 
Of great interest among the investigated compounds are the nitro-substituted 

dihydropyrimidines. They readily undergo various chemical transformations, among which 

the unique ability to undergo recyclization to heterocyclic and carbocyclic compounds should 

be noted in particular. The interest in the nitrodihydropyrimidines is also due to the fact that 

these compounds represent the active principle or act as metabolites responsible for the 

physiological action of nitropyrimidines. Recently, products having antimicrobial,15 

antiviral16-18 activity and also products suitable for the treatment of cardiovascular diseases19-

22 have been found among them.  

 
5-Nitrodihydropyrimidines can be described by five structures, having one (1,4-, 1,6-, and 

1,2-) or two (2,5- and 4,5-dihydropyrimidine systems) geminal centers, the carbon atoms of 

which are characterized by sp3 hybridization (Figure 1). 
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The 5-nitro-l,2-, 5-nitro-l,4-, and 5-nitro-l,6-dihydropyrimidines are cyclic enamines, in 

which the electron pair of the sp3-hybridized nitrogen atom is in conjugation with the four π 
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electrons of the C=C and C=N double bonds. On account of the mobility of the hydrogen 

atom of the NH group, the 5-nitro-1,4- and 5-nitro-1,6-dihydropyrimidines can be in 

tautomeric equilibrium. At the same time the 5-nitro-2,5- and 5-nitro-4,5-dihydropyrimidines 

are cyclic imines, in which there is no conjugation.23  

 
1.2. Methods for the preparation of nitrodihydropyrimidines  

The methods for the production of dihydropyrimidines described in the literature can 

be divided into two main groups such as: synthesis from acyclic compounds and 

transformations based on pyrimidine derivatives (Figure 2). Analysis of the published data 

makes it possible to conclude that the first methods have advantages over the other. However, 

the second methods are used more widely if an electron withdrawing group, and particularly 

a nitro group, is introduced into the pyrimidine molecule. (One of the acyclic compounds 

contains a nitro group.)  

 

 
Figure 2 

 
 Synthesis from acyclic compounds  

 Only derivatives of 5-nitro-l,4-dihydropyrimidine have been obtained from acyclic 

compounds (Figure 3). Three-component (A) and two-component (B, C) versions of 

cyclocondensation, based on the Biginelli reaction,17,24-26 and also intramolecular cyclization 

of the already prepared six-membered chain (version D) have been used for this. Nitro 

ketones (versions A, C) and 1-arylidene-l-nitropropan-2-ones (version B) are used as nitro 

components in these reactions and derivatives of urea, arninopyrazole and amidines are used 

as N-C-N fragments. 
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Figure 3 

 
The proposed methods of cyclocondensation are interrelated. As a rule, realization of the 

reactions by one of the methods leads not to the final product but to an intermediate 

compound, which is in turn the starting compound for another method of cyclization. 

 
The formation of 5-nitro-4,6-diphenyl-l,4-dihydropyrimidin-2(1H)-one (Figure 4) from 

benzylidenebisurea and α-nitroacetophenone  was first described in 1972.27 According to the 

mechanism of the Biginelli reaction,26 at the first stage the urea fragment is clearly 

substituted by the nitroketone residue, and this is followed by cyclization of the six-

membered intermediate in the acidic medium. 

 

PhCH(NHCONH2)2
PhCOCH2NO2

BuOH, HCl
HN

N
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Figure 4 
 

In the reaction of aromatic aldehydes with nitro acetone and a two-fold excess of urea or N-

methyl urea in boiling ethanol in the presence of HCI 4-aryl-6-methyl- or 4-aryl-l,6-dimethyl-

5-nitro-l,4-dihydropyrimidin-2(1H)-ones were obtained (Figure 5).23,28 The latter are also 

formed as a result of the two-component cyclization  of the respective 1-arylidene-l-

nitropropan-2-ones with urea or N-methyl urea. 
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Figure 5 
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By analysis of the spectral characteristics it is possible to assign compounds (Figure 5) the 

1,2,3,4-tetrahydropyrimidine structure. It should be noted that almost any aromatic aldehydes 

enter into the described transformations. This is important during comparison of the 
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pharmacological activity of compounds of this series with the corresponding derivatives of 4-

aryl-l,4-dihydropyridines. 

 
 Synthesis based on nitropyrimidines 

 Owing to their reactivity, nitropyrimidines, which contain accepting nitro groups and 

"pyrimidines" nitrogen atoms, have found use as synthons for the production of various 

derivatives of pyrimidine and also various other types of organic compounds whose synthesis 

by other methods is difficult or practically impossible.29-31 

 
5-Nitropyrimidines do not form covalent σ adducts with uncharged O-nucleophiles. The 

amination of highly π-deficient six-membered nitroaza aromatic compounds was conducted 

successfully in the liquid ammonia-potassium permanganate system.32 When dissolved in 

liquid NH3, depending on the temp., 5-nitropyrimidine forms σ adducts at positions 2 and 4 of 

the heterocycle, and they are detected spectrally (Figure 6).33 
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Figure 6 

 
1.3. Biological activity of some 4-aryl-1,4-dihydropyridines and  5-nitro DHPMs  

 4-Aryl-1,4-dihydropyridines (DHPs, e.g. nifedipine) are the most studied class of 

organic calcium channel modulators. More than 30 years after the introduction of nifedipine 

many DHP analogs have now been synthesized and numerous second-generation commercial 

products have appeared on the market.34,35 

 
Nowadays, interest has also focused on aza-analogs such as dihydropyrimidines (DHPMs) 

which shows a very similar pharmacological profile to classical dihydropyridine calcium 

channel modulators.5-7, 36-43 Over the past few years several lead-compounds were developed 

(i.e. SQ 32,926) that are superior in potency and duration of antihypertensive activity to 

classical DHP drugs, and compare favorable with second-generation analogs such as 

amlodipine and nicardipine (Figure 7). 
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Figure 7 
 

Barrow et al reported in vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as 

potent and selective r1A receptor antagonists for the treatment of benign prostatic hyperplasia 

(Figure 8). R1 Adrenergic receptors mediate both vascular and lower urinary tract tone, and 

R1 receptor antagonists such as terazosin are used to treat both hypertension and benign 

prostatic hyperplasia (BPH). Recently, three different subtypes of this receptor have been 

identified, with the R1A receptor being most prevalent in lower urinary tract tissue. Barrow et 

al reported 4-aryldihydropyrimidinones attached to an aminopropyl-4-arylpiperidine via a C5 

amide as selective R1A receptor subtype antagonists. In receptor binding assays, these types 

of compounds generally display Ki values for the R1a receptor subtype <1 nM while being 

greater than 100-fold selective versus the R1b and R1d receptor subtypes. Many of these 

compounds were also evaluated in vivo and found to be more potent than terazosin in both a 

rat model of prostate tone and a dog model of intra-urethral pressure without significantly 

affecting blood pressure. While many of the compounds tested displayed poor 

pharmacokinetics, one compound was found to have adequate bioavailability (>20%) and 

half-life (>6 h) in both rats and dogs. Due to its selectivity for the R1a over the R1b and R1d 

receptors as well as its favorable pharmacokinetic profile, it has the potential to relieve the 

symptoms of BPH without eliciting effects on the cardiovascular system.44,45 
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The 4-aryldihydropyrimidinone heterocycles attached to an aminopropyl-4-arylpiperidine via 

a C5 amide has proved to be an excellent template for selective R1A receptor subtype 

antagonists. These types of compounds are exceptionally potent in both cloned receptor 

binding studies as well as in vivo pharmacodynamic models of prostatic tone. 
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Atwal et al have examined a series of novel dihydropyrimidine calcium channel blockers that 

contain a basic group attached to either C5 or N3 of the heterocyclic ring (Figure 9). 

Structure-activity studies show that l-(phenylmethyl)-4-piperidinyl carbamate moiety at N3 

and sulfur at C2 are optimal for vasorelaxant activity in vitro and impart potent and long-

acting antihypertensive activity in vivo. One of these compounds was identified as a lead, and 

the individual enantiomers were synthesized. Two key steps of the synthesis were (1) the 

efficient separation of the diastereomeric ureido derivatives and (2) the high-yield 

transformation of 2-methoxy intermediate to the (p-methoxybenzyl)thio intermediates. 

Chirality’s was demonstrated to be a significant determinant of biological activity, with the 

DHP receptor recognizing the enamines ester moiety but not the carbamate moiety. DHPM is 

equipotent to nifidepine and amlodipine in vitro. In the spontaneously hypertensive rat, 

DHPM is more potent and longer acting than both nifidepine and the long-acting amlodipine 

(DHP derivative). DHPM has the potential advantage of being a single enantiomer.46,47 
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Figure 9 

 
In order to explain the potent antihypertensive activity of the modestly active (ICw = 3.2 pM) 

DHPM calcium channel blocker, Atwal et al carried out drug metabolism studies in the rat 

and found it is metabolized. Two of the metabolites (ICw = 16 nM) and (ICw = 12 nM), were 

found to be responsible for the antihypertensive activity of compound. Potential metabolism 

in vivo precluded interest in pursuing compounds related to it. Structure-activity studies 

aimed at identifying additional aryl-substituted analogues led to comparable potential in vivo, 

though these compounds were less potent in vitro. To investigate the effects of absolute 

stereochemistry on potency, authors resolved via diastereomeric ureas, prepared by treatment 

with (R)-α-methylbenzylamine. The results demonstrate that the active R-(-)-enantiomer is 

more potent and longer acting than nifedipine as an antihypertensive agent in the SHR. The in 

vivo potency and duration is comparable to the long-acting DHP amlodipine. The superior 

oral antihypertensive activity compared to that of previously described carbamates 

(R2=COOEt) could be explained by its improved oral bioavailability, possibly resulting from 

increased stability of the urea functionality (Figure 10).6 
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Figure 10 

 
Authors modified the structure of previously described DHPM i.e. 3-substituted 1,4-

dihydropyrimidines. Structure-activity studies using potassium-depolarized rabbit aorta show 

that ortho, meta-disubstituted aryl derivatives are more potent than either ortho or meta-

monosubstituted compounds. While vasorelaxant activity was critically dependent on the size 

of the C5 ester group, isopropyl ester being the best, a variety of substituents (carbamate, 

acyl, sulfonyl, and alkyl) were tolerated at N3. The results show DHPMs are significantly 

more potent than corresponding 2- heteroalkyl-l,4-dihydropyrimidines and only slightly less 

potent than similarly substituted 2-heteroalkyl-1-4-dihydropyridines (Figure 11). Where as 

DHP enantiomer usually show 10-15-fold difference in activity, the enantiomer of DHPM 

show more than a 1000-fold difference in activity. These results strengthen the requirement 

of an enaminoester for binding to the dihydropyridine receptor and indicate a nonspecific role 

for the N3-substituent. 
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2-Heterosubstituted-4-aryl-l,4-dihydro-6-methyl-5-pyrimidinecarboxylicesters (Figure 12), 

which lack the potential symmetry of DHP calcium channel blockers, were prepared and 

evaluated for biological activity. Biological assays using potassium-depolarized rabbit aorta 

and radio ligand binding techniques showed that some of these compounds are potent mimics 

of DHP calcium channel blockers.35 
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Figure 12 
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Bryzgalov A. O. et. al. have been studied the antiarrhythmic activity of 4,6-di(het)aryl-5-

nitro-3,4-dihydropyrimidin-(1H)-2-ones(Figure 13) toward two types of experimental rat 

arrhythmia. With CaCl2 induced arrhythmia model, several agents have demonstrated high 

Antiarrhythmic activity and the lack of influence on arterial pressure of rats.48 
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Figure 13 

 
Remennikov G. Y. et al,20 have been synthesized some novel 4-aryl-5-nitro substituted 

DHPMs (Figure 14) using nitroacetone and screened as calcium modulators. They have 

studied the pharmacological properties of 6-methyl- and 1,6-dimethyl-4-aryl-5-nitro-2-oxo-

l,2,3,4-tetrahydropyrimidines with different substituents in the aryl fragment, i.e. 

unsubstituted, ortho, meta, para, di, and tri-substituted compounds and observed that 5-nitro 

DHPMs bearing unsubstituted, ortho and tri-substitution on aryl moieties at C4 position 

reduced blood pressure and inhibited myocardial contractile activity. The second group 

consisted meta, para and di-substituted aryl moieties with DHPMs increased blood pressure 

and had positive inotropic effects. The compounds with the highest hypotensive activity were 

containing substituents in the ortho position of the phenyl fragment. Thus, compounds having 

substitution on aryl moieties which had pronounced vasodilator and weak cardio depressive 

actions, increased cardiac pump function (SV). When inhibition of myocardial contractile 

function predominated, there was a reduction in SV. The effect of compounds of the first 

group on heart rate was variable, though most reduced heart rate. In addition, a reflex 

increase in heart rate might be expected because of the reduction in blood pressure. The 

reference preparation for compounds of this group was the calcium antagonist nifedipine. The 

pharmacological profile of compounds of the first group were analogous to that of nifedipine. 

This suggests that they share a common mechanism of action - blockade of calcium ion 

influx 

HN

N
H

O

NO2

R1

R2

R3

R4

R1= H, OMe, NO2
R2= H, OMe, OH, Cl
R3= H, OMe
R4= H, OMe, NO2, CF3, OCHF2

 

Studies on Bioactive Heterocycles 8

Figure 14 
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1.4 Alternative synthetic routes for better yield, shorter reaction time to synthesize 

new analogs 

 Various modifications have been applied to Biginelli reaction to get better yield and 

to synthesize biologically active analogs. Different catalysts have been reported to increase 

the yield of the reaction. Microwave synthesis strategies have also been applied to shorten the 

reaction time. Solid phase synthesis and combinatorial chemistry has made possible to 

generate library of DHPM analogs. The various modifications are discussed in the following 

section. 

 
 Catalysts 

 Min Yang and coworkers49 have synthesized the different DHPMs by using different 

inorganic salts as a catalyst (Figure 15). They found that the yields of the one-pot Biginelli 

reaction can be increased from 20-50% to 81-99%, while the reaction time shorted for 18-24 

h to 20-30 min. This report a new and simple modification of the Biginelli type reaction by 

using Yb(OTf)3 and YbCl3 as a catalyst under solvent free conditions. One additional 

important feature of this protocol is the catalyst can be easily recovered and reused.  
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Figure 15 

 
Indium (III) chloride was emerged as a powerful Lewis catalyst imparting high region and 

chemo selectivity in various chemical transformations. B. C. Ranu and co-workers50 reported 

indium (III) chloride (InCl3) as an efficient catalyst for the synthesis of 3,4-dihydropyrimidn-

2(1H)-ones (Figure 16). A variety of substituted aromatic, aliphatic and heterocyclic 

aldehydes have been subjected to this condensation very efficiently.  Thiourea has been used 

with similar success to provide the corresponding dihydropyrimidin-2(1H)-thiones. 

 

R1

O

R2

O

R

NH2

XH2N

InCl3

N
H

NH

R

X

R1

R2

O

O
THF

X= O or S
 

Studies on Bioactive Heterocycles 9

Figure 16 



Chapter 1  Nitro Functionalized Dihydropyrimidines 

Majid M. Heravi et al. have reported a simple, efficient and cost-effective method for the 

synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones by one pot three-component 

cyclocondensation reaction of a 1,3-dicarbonyl compound, an aldehyde and urea or thiourea 

using 12-tungstophosphoric acid51 and 12-molybdophosphoric acid52 as  recyclable catalyst 

(Figure 17). 
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Figure 17 

 
An improved approach has been found to carry out the Biginelli reaction for the synthesis of 

3,4- dihydropyrimidine- 2(1H)-one derivatives. This synthesis was performed in the presence 

of hydrochloric acid and β-cyclodextrin in ethanol solution. Compared with the classical 

Biginelli reaction conditions, this new approach has the advantage of excellent yields and 

short reaction time.53   

 
An efficient synthesis of 3,4-DHPMs from the aldehyde, β-keto ester and urea in ethanol, 

using ferric chloride hexahydrate or nickel chloride hexahydrate as the catalyst, was 

described. Compared with the classical Biginelli reaction conditions, this new method has the 

advantage of excellent yields (53-97%) and short reaction time (4-5 hours).54  

 
5-Alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2-ones were synthesized by the one-pot 

reactions of aldehydes, β-ketoesters and urea using a catalytic amount of phosphotungstic 

acid (PTA) in ethanol. The modified Biginelli cyclocondensation not only shortens the 

reaction period and simplifies the operation, but also improves the yields.55

Ruthenium (III) chloride efficiently catalyzes the three-component Biginelli reaction of an 

aldehyde, a β-keto ester, and urea or thiourea under solvent-free conditions to afford the 

corresponding 3,4-dihydropyrimidine-2-(1H)-ones in excellent yields.56

Studies on Bioactive Heterocycles 10

The Biginelli reaction, a one-pot condensation of aldehydes, urea or thiourea and β-

dicarbonyl compounds, is efficiently catalyzed by samarium diiodide. The biologically active 

dihydropyrimidinones are easily synthesized in moderate to excellent yields under solvent-

free conditions.57
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Hydroxyapatite doped with ZnCl2, CuCl2, NiCl2 and CoCl2 efficiently catalyses the three 

components Biginelli reaction between an aldehyde, ethyl acetoacetate and urea in refluxing 

toluene to afford the corresponding dihydropyrimidinones in high yields.58

Sc(III)triflate efficiently catalyzes the three-component condensation reaction of an aldehyde, 

a β-ketoester and urea in refluxing acetonitrile to afford the corresponding 3,4-

dihydropyrimidin-2(1H)-ones in excellent yields (Figure 18). The catalyst can be recovered 

and reused, making this method friendly and environmentally acceptable.59 
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Very recently, chiral phosphoric acid is reported as highly enantioselective catalyst for 

Biginelli reaction. Reaction is reported in presence of 10 mol % of chiral phosphoric acid to 

produce desired enantioselective product. This is the first organocatalytic asymmetric 

Biginelli reaction. The optimal chiral phosphoric acid afforded the reaction in high yields 

with excellent enantioselectivities of up to 97% ee. A wide variety of substrates, including 

aldehydes and α-keto esters, could be tolerated. This reaction has an advantage of avoiding 

the contamination of transition metals in the manufacture of the medicinally relevant chiral 

3,4-dihydropyrimidin-2-(1H)-ones (Figure 19).60 
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Shkurko, O. P. et al have been synthesized 4,6-diaryl-5- nitro-3,4-dihydropyrimidin-2(1H)-

ones and N-benzoyl-N'-(1-aryl-2-nitroethyl)ureas (Figure 20) using ω-nitro acetophenone, 

aromatic aldehydes and urea in the presence of iron(III), cobalt(II), nickel(II), and copper(II) 

salts as catalyst with moderate to poor yields.61 
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Figure 20 

 
An efficient three-component synthesis of 3,4-dihydropyrimidinones using 

trichloroisocyanuric acid (TCCA) as mild, homogeneous and neutral catalyst for Biginelli 

reaction in ethanol or DMF under reflux condition.62 Many researchers63-68 have investigated 

Biginelli reaction under solvent-free conditions for one-pot synthesis of 3,4-

dihydropyrimidine-2-(1H)ones/thiones using various catalyst as described under.  

 
 Solid phase synthesis 

 The generation of combinatorial libraries of heterocyclic compounds by solid phase 

synthesis is of great interest for accelerating lead discovery and lead optimization in 

pharmaceutical research. Multi-component reactions (MCRs)29,69-75 leading to heterocycles 

are particularly useful for the creation of diverse chemical libraries, since the combination of 

any 3 small molecular weight building blocks in a single operation leads to high 

combinatorial efficiency. Therefore, solid phase modifications of MCRs are rapidly become 

the cornerstone of combinatorial synthesis of small-molecule libraries.  

 
The first solid-phase modification of the Biginelli condensation was reported by Wipf and 

Cunningham76 in 1995 (Figure 21). In this sequence, γ-aminobutyric acid derived urea was 

attached to Wang resin using standard procedures. The resulting polymer-bound urea was 

condensed with excess β-ketoester and aromatic aldehydes in THF at 55 °C in the presence of 

a catalytic amount of HCl to afford the corresponding immobilized DHPMs. Subsequent 

cleavage of product from the resin by 50 % trifluoroacetic acid (TFA) provided DHPMs in 

high yields and excellent purity. 
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Li W. and Lam Y.77 have described the synthesis of 3,4-dihydropyrimidin-2- 

(1H)ones/thiones using sodium benzenesulfinate as a traceless linker (Figure 22). The key 

steps involved in the solid-phase synthetic procedure were sulfinate acidification, 

condensation of urea or thiourea with aldehydes and sulfinic acid and traceless product 

release by a one-pot cyclization-dehydration process. Since a variety of reagents can be used, 

the overall strategy appears to be applicable to library generation. 
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Figure 22 

 

Gross et al.78 developed a protocol to increase the diversity of DHPM which based on 

immobilized α-ketoamides (Figure 23). The resulting synthetic protocol proved to be suitable 

for the preparation of a small library using different building blocks. They found that the 

aromatic aldehyde and α-ketoamide building blocks were formed the expected DHPM 

derivatives in high purity and yield. The usage of an aliphatic aldehyde leads to an isomeric 

DHPM mixture. Purities and yields were not affected, when thiourea was used instead of 

urea. 
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Figure 23 

 
 Liquid phase synthesis 
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 In the solid phase synthesis there are some disadvantages of this methodology 

compared to standard solution-phase synthesis, such as difficulties to monitor reaction 

progress, the large excess of reagents typically used in solid-phase supported synthesis, low 

loading capacity and limited solubility during the reaction progress and the heterogeneous 

reaction condition with solid phase.79 Recently, organic synthesis of small molecular 
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compounds on soluble polymers, i.e. liquid phase chemistry has increasingly become 

attractive field.80 It couples the advantages of homogeneous solution chemistry with those of 

solid phase chemistry. 

 
Moreover owing to the homogeneity of liquid-phase reactions, the reaction conditions can be 

readily shifted from solution-phase systems without large changes and the amount of 

excessive reagents is less than that in solid-phase reactions. In the recent years, Task Specific 

room temperature Ionic Liquids (TSILs) has emerged as a powerful alternative to 

conventional molecular organic solvents or catalysts. Liu Z. et al81 have reported cheap and 

reusable TSILs for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones via one-pot three 

component Biginelli reaction. 

 
Ionic liquid-phase bound acetoacetate reacts with thiourea and various aldehydes with a 

cheap catalyst to afford ionic liquid-phase supported 3,4-dihydropyrimidin-2(1H)-thiones, 

which reported by Bazureau J. P. and co-workers82 (Figure 24). 3,4-Dihydropyrimidinones 

were synthesized in one-pot, by the reaction of aldehydes, β-dicarbonyl compounds and urea, 

catalyzed by non-toxic room temperature ionic liquid 1-n-butyl-3-methylimidazolium 

saccharinate (BMImSac).83 
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 Microwave assisted synthesis 
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 In general, the standard procedure for the Biginelli condensation involves one pot 

condensation of the three building blocks in a solvent such as ethanol using a strongly acidic 

catalyst that is hydrochloric acid. One major drawback of this procedure, apart from the long 

reaction time involving reflux temperature, is the moderate yields frequently observed when 

using more complex building blocks. Microwave irradiation (MW) has become accepted tool 

in organic synthesis, because the rate enhancement, higher yields and often, improved 

selectivity with respect to conventional reaction conditions.84 The publication by Dandia A. et 

al85 described microwave-enhanced solution-phase Biginelli reactions employing ethyl 

acetoacetate, thiourea and a wide variety of aromatic aldehydes as building blocks (Figure 
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25). Upon irradiation of the individual reaction mixtures (ethanol, catalytic HCl) in an open 

glass beaker inside the cavity of a domestic microwave oven the reaction times were reduced 

from 2–24 hours of conventional heating 80 °C, reflux to 3–11 minutes under microwave 

activation (ca. 200 –300 W). At the same time the yields of DHPMs obtained were distinctly 

improved compared to those reported earlier using conventional conditions. 
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Figure 25 

 
In recent years, solvent free reactions using either organic or inorganic solid supports have 

received more attention.86 There are several advantages to perform synthesis in dry media: (i) 

short reaction times, (ii) increased safety, (iii) economic advantages due to the absence of 

solvent. In addition, solvent free MW processes are also clean and efficient. Gopalakrishnan 

M. and co-workers have reported Biginelli reaction under microwave irradiation in solvent-

free conditions using activated fly ash as catalyst, an industrial waste (pollutant) is an 

efficient and novel catalyst for some selected organic reactions in solvent free conditions 

under microwave irradiation.87 

 
 Ultrasound assisted synthesis 

 Ultrasound as a green synthetic approach has gradually been used in organic synthesis 

over the last three decades. Compared with the traditional methods, it is more convenient, 

easier to be controlled and consumes less power. With the use of ultrasound irradiation, a 

large number of organic reactions can be carried out in milder conditions with shorter 

reaction time and higher product yields.88 Ultrasound irradiated and amidosulfonicacid 

(NH2SO3H) catalyzed synthesis of 3,4-dihydropyrimidi-2-(1H)ones have reported by Li J. T. 

and co-workers89 using aldehydes, β-ketoester and urea. 

 
Liu C. et al.90 have synthesized a novel series of 4-substituted pyrazolyl- 3,4-

dihydropyrimidin-2(1H)-thiones under ultrasound irradiation using magnesium perchlorate 

[Mg(ClO4)2] as catalyst (Figure 26), by the condensation of 5-chloro/phenoxyl-3-methyl-1-

phenyl-4-formylpyrazole, 1,3-dicarbonyl compound and urea or thiourea in moderate yields. 

The catalyst exhibited remarkable reactivity and can be recycled. 
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Sonication of aromatic aldehydes, urea and ethyl acetoacetate in presence of solvent (ethanol) 

or solvent-less dry media (bentonite clay) by supporting-zirconium chloride (ZrCl4)  as 

catalyst at 35 kHz gives 6-methyl-4-substitutedphenyl-2-oxo-1,2,3,4- tetrahydropyrimidine-

5-carboxylic acid ethyl esters proficiently in high yields, which reported by Harish Kumar et 

al. (Figure 27).91 
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1.5 CURRENT RESEARCH WORK 

 
Our group is involved in the development of various synthetic methodologies for the 

synthesis of functionalized 1,4-DHPs and DHPMs for last few years. Substitution of Nitro 

functionality for COOAlk in the DHPM moiety may alters their biological action. Reports 

reveal that nitro group functionalized dihydropyrimidines which might have potential 

biological activities were less studied. Very promising results may obtain with these 

modifications to DHPM skeleton. This concept prompted us to introduce NO2 group at C5 

position in DHPM skeleton. For this modification ω-nitroacetophenone was required as a 

precursor which was synthesized by reported the procedure in literature.92  

 
During the course of our ongoing interest on the development of useful synthetic 

methodologies by utilizing acid catalysts93, we were observed that bisphosphonic acid is an 

efficient catalyst for the synthesis of pyrimidines via biginelli condensation. In extension of 

this work and to explore further, the utility of etidronic acid as a catalyst in multicomponent 

cyclocondensation reaction, we have synthesized some novel nitro group at C5 bearing 

dihydropyrimidine derivatives using 2-hydroxy-ω-nitro acetophenone instead of 1,3 diketone. 

The reaction of various aryl aldehydes, urea and substituted ω-nitro acetophenone under 

microwave irradiation using etidronic acid as a catalyst and THF as solvent afforded nitro 

functionalized novel DHPMs with excellent yield. The newly synthesized compounds were 

characterized by IR, Mass, 1H NMR, 13C NMR spectroscopy and elemental analysis. Among 

them, compound 3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one was 

confirmed by X-Ray Diffraction Technique. The detail study of X-Ray Crystallography study 

is described in chapter 6. All the synthesized compounds were screened for in vitro anti-viral 

activity against IIIB and ROD strains.  
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1.6 RESULTS AND DISCUSSION 

 
Etidronic acid [(1-hydroxyethylidene) bisphosphonic acid] is one of the 

bisphosphonic acid derivative and also known as bisphosphonate having molecular formula 

C2H8O7P2. The two PO3 (phosphonate) groups covalently linked to carbon atom (Figure 28).  
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Figure 28: Bisphosphonic acid 

 

It is differ from Polyphosphate ester and polyphosphoric acid. Various bisphosphonic acids 

are known.94,95 Etidronic acid is mild enough as compare to another strong acid such as 

polyphosphoric acid etc. moreover, the catalyst did not affect acid sensitive aldehydes.  

 

 

Scheme-1: Etidronic acid catalyzed one-pot synthesis of nitro functionalized 

dihydropyrimidines under microwave irradiation. 
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Table 1: Optimization of the reaction conditions for the synthesis of 4a 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indeed, condensation of the 1-(2-hydroxyphenyl)-2-nitroethanone 1 with benzaldehyde 2a 

and urea 3 took place smoothly in the presence of EDA in THF resulted in the formation of 

dihydropyrimidine 4a in 89% yield (entry 1, Table 1). We found that the final product 

obtained was dihydro biginelli product 4a (Scheme-1). The condensation of 1 with 2a and 3 

to generate 4a was investigated under a variety of conditions (Table 1), as a test case, to 

optimize the yield, and the results are gathered in Table 1. The condensation took place even 

with a catalytic amount of EDA (10%, entry 3). Though the condensation reaction with a 

catalytic amount of EDA was cleaned, it took a longer time (6 h). On the other hand, the 

reaction was relatively fast (4 hr) when one equiv. of EDA was employed (entry 1). However, 

the reaction carried out under microwave irradiation gave excellent yields (entry 4, 2). The 

yield of desired product 4a was moderate when methanol and ethanol was used as solvent 

(entry 5-8). 
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Entry Catalyst(equiv) Solvent Yield % Time 

1 EDA(1.0) THF 89 4.0 h 

2 EDA(1.0) THF 95 3.5 min 

3 EDA(0.1) THF 86 6.0 h 

4 EDA(0.1) THF 93 3.0 min 

5 EDA(0.1) MeOH 73 11.5 h 

6 EDA(0.1) MeOH 82 6.5 min 

7 EDA(0.1) EtOH 78 9.0 h 

8 EDA(0.1) EtOH 86 5.5 min 
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Table 2: Synthesis of nitro dihydropyrimidines 4a using various catalyst and THF 

under microwave irradiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With the optimized conditions in hand, the reactions of 1 with benzaldehyde 2a and urea 3 

with various bisphosphonic acids were examined to explore the utility of these catalysts in 

multicomponent cyclocondensation reaction under microwave irradiation in THF. We found 

that bisphosphonic acid linked with alkyl amines (Table 2, entry 2-4) or with heterocyclic 

moieties (Table 2, entry 5-8) showed very poor catalytic activity compared to EDA (Table 2, 

entry 1). This can be explained by the fact that electron donating moieties attached with 

bisphosphonic acid at C2 position may decreases the reactivity of these catalysts leading to 

moderate or poor yields of 4a. Thus, it is clear from the aforementioned experiments that the 

best yield of compound 4a could be obtained by employing catalytic amount of etidronic acid 

in THF under microwave irradiation.  
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Entry R Catalyst (equiv) Yield % Time min 

1 -H Etidronic acid (0.1) 93 3.0 

2 -CH2NH2 Pamidronic acid(0.1) 65 9.5 

3 -CH2NH2 Pamidronic acid(1.0) 68 8.0 

4 -(CH2)2NH2 Alendronic acid (0.1) 66 8.0 

5 -(CH2)2NH2 Alendronic acid (1.0) 67 9.5 

6 -3-Pyridyl Risedronic acid (0.1) 55 11.0 

7 -3-Pyridyl Risedronic acid (1.0) 59 9.5 

8 -1-imidazolyl Zoledronic acid (0.1) 45 11.5 

9 -1-imidazolyl Zoledronic acid (1.0) 51 11.0 
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Table 3: Synthesis of nitro functionalized dihydropyrimidines using etidronic acid 

(catalyst) and THF under microwave irradiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

When the reaction of the 1-(2-hydroxyphenyl)-2-nitroethanone 1 with various arylaldehydes 

2a and urea 3 was conducted it was observed that the electron deficiency and nature of the 

substituents on the aromatic ring aldehydes effect the conversion rate; aromatic aldehydes 

having electron-withdrawing groups on the aromatic ring (Table 3, entries 6, 8, 9) reacted 

faster than electron-donating groups (Table 3, entries 2, 11, 12). The synthesized compounds 

were characterized by spectroscopy analysis. In mass spectrum of 4a molecular ion peak 
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Entry  R1 Products Yields (%)  Time min  

MMS-1 H 4a 93 3.0 

MMS-2 3-Cl 4b 86 4.5 

MMS-3 4-OCH3 4c 91 4.0 

MMS-4 4-Cl 4d 89 4.0 

MMS-5 4-F 4e 90 4.5 

MMS-6 3-OCH3 4f 92 3.0 

MMS-7 2-Cl 4g 86 4.5 

MMS-8 4-NO2 4h 93 2.5 

MMS-9 3-NO2 4i 91 3.0 

MMS-10 3,4-di-OCH3 4j 93 3.5 

MMS-11 4-OH 4k 88 4.0 

MMS-12 3-OH 4l 86 4.5 

MMS-13 3-Br 4m 86 4.0 

MMS-14 2,4-di-Cl 4n 89 3.5 

MMS-15 2,5-di-OCH3 4o 91 4.5 

MMS-16 2-NO2 4p 78 3.5 

MMS-17 4-CH3 4q 88 3.0 

MMS-18 2-OH 4r 75 4.0 

MMS-19 2-OCH3 4s 82 3.5 

MMS-20 2-OCH3, 4-NO2 4t 72 4.0 
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appears at 311 m/z which reveal the formation of dihydropyrimidine. The 1H NMR spectrum 

of 4a displayed one characteristic doublet for the methane proton at 5.74 δ ppm and one –OH 

proton at 9.64 δ ppm. The overall study indicates the catalyst is efficient to synthesize nitro 

dihydropyrimidines. The anti-viral activity results are depicted in table 5. The mechanism for 

the formation of DHPM96 involves acid-catalyzed formation of an N-acyliminium ion 

intermediate of type (Figure 29) from the aldehyde (1) and urea (2) precursors. Interception 

of the iminium ion (4) by ω-nitroacetophenone (5), presumably through its active methylene 

produces an open chain ureide (6) which subsequently cyclizes to hexahydropyrimidine (7). 

Acid-catalyzed elimination of water from (7) ultimately leads to the final DHPM product (8). 
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Figure 29: Mechanism for the formation of DHPM 
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1.7 ANTIVIRAL ACTIVITY 
 
Table 5: The in-vitro anti-viral activity against HIV-1 IIIB and ROD strains using MTT method. 
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Code Name Strain Exp.no. IC50(µg/ml) CC50(µg/ml) SI 
Max Prot 

(%) 
Appr. 

Average 

IC50(µg/ml) 

Average 

CC50(µg/ml) 
SD SI Remarks 

MMS-01 IIIB P3.4836 > 57.3 57.3 1 11 1       

   P3.4842 >60.4 60.4 1 0 1 >60.95 60.95 5.36 <1   

  ROD P3.4837 >68.7 68.7 1 6 1           

    P3.4843 >57.4 57.4 1 1 1 >60.95 60.95 5.36 <1   

MMS-02 IIIB P3.4836 >22.5 22.5 1 15 1       

   P3.4842 >22.5 22.5 1 4 1 >24.28 24.28 5.20 <1   

  ROD P3.4837 >31.9 31.9 1 21 1           

    P3.4843 >20.2 20.2 1 11 1 >24.28 24.28 5.20 <1   

MMS-03 IIIB P3.4836 >20.6 20.6 1 13 1       

   P3.4842 >45.9 45.9 1 1 1 >40.18 40.18 14.23 <1   

  ROD P3.4837 >54 54 1 13 1           

    P3.4843 >40.2 40.2 1 7 1 >40.18 40.18 14.23 <1   

MMS-04 IIIB P3.4836 >10.5 10.5 1 5 1       

   P3.4842 >27 27 1 6 1 >21.88 21.88 10.16 <1   

  ROD P3.4837 >33.2 33.2 1 9 1           

    P3.4843 >16.8 16.8 1 5 1 >21.88 21.88 10.16 <1   

MMS-05 IIIB P3.4836 >15.8 15.8 1 9 1       

   P3.4842 >24.9 24.9 1 0 1 >21.03 21.03 4.01 <1   

  ROD P3.4837 >20.1 20.1 1 8 1           

    P3.4843 >23.3 23.3 1 10 1 >21.03 21.03 4.01 <1   
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MMS-06 IIIB P3.4836 >68.4 68.4 1 14 1       

   P3.4842 >65.3 65.3 1 8 1 >64.83 64.83 9.99 <1   

  ROD P3.4837 >74.6 74.6 1 19 1           

    P3.4843 >51 51 1 8 1 >64.83 64.83 9.99 <1   

MMS-07 IIIB P3.4836 >72.1 72.1 1 7 1       

   P3.4842 >61.1 61.1 1 0 1 >65.60 65.60 12.56 <1   

  ROD P3.4837 >78.9 78.9 1 11 1           

    P3.4843 >50.3 50.3 1 0 1 >65.60 65.60 12.56 <1   

MMS-08 IIIB P3.4836 >75.3 75.3 1 16 1       

   P3.4842 >59.7 59.7 1 6 1 >67.30 67.30 8.09 <1   

  ROD P3.4837 >73.2 73.2 1 10 1           

    P3.4843 >61 61 1 1 1 >67.30 67.30 8.09 <1   

MMS-09 IIIB P3.4842 >44.3 44.3 1 2 1           

   P3.4848 >50.9 50.9 1 0 1 >52.55 52.55 7.52 <1   

  ROD P3.4843 >62.5 62.5 1 10 1           

    P3.4849 >52.5 52.5 1 3 1 >52.55 52.55 7.52 <1   

MMS-10 IIIB P3.4842 >52.9 52.9 1 11 1       

   P3.4848 >53.3 53.3 1 0 1 >50.53 50.53 4.39 <1   

  ROD P3.4843 >51.9 51.9 1 9 1           

    P3.4849 >44 44 1 4 1 >50.53 50.53 4.39 <1   

MMS-11 IIIB P3.4842 >41.8 41.8 1 8 1       

   P3.4848 >41.3 41.3 1 2 1 >41.68 41.68 4.25 <1   

  ROD P3.4843 >36.6 36.6 1 17 1           

    P3.4849 >47 47 1 13 1 >41.68 41.68 4.25 <1   

MMS-12 IIIB P3.4842 >8.75 8.75 1 4 1       
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   P3.4848 >9.04 9.04 1 7 1 >10.75 10.75 2.20 <1   

  ROD P3.4843 >12 12 1 8 1           

    P3.4849 >13.2 13.2 1 6 1 >10.75 10.75 2.20 <1   

MMS-13 IIIB P3.4842 >45 45 1 7 1       

   P3.4848 >62.8 62.8 1 1 1 >61.20 61.20 11.58 <1   

  ROD P3.4843 >64.6 64.6 1 10 1           

    P3.4849 >72.4 72.4 1 9 1 >61.20 61.20 11.58 <1   

MMS-14 IIIB P3.4842 >47.2 47.2 1 9 1       

   P3.4848 >49.8 49.8 1 3 1 >49.60 49.60 2.11 <1   

  ROD P3.4843 >52.3 52.3 1 11 1           

    P3.4849 >49.1 49.1 1 30 1 >49.60 49.60 2.11 <1   

MMS-15 IIIB P3.4842 >60 60 1 6 1       

   P3.4848 >69.1 69.1 1 4 1 >66.35 66.35 6.96 <1   

  ROD P3.4843 >61.4 61.4 1 9 1           

    P3.4849 >74.9 74.9 1 4 1 >66.35 66.35 6.96 <1   

MMS-16 IIIB P3.4842 >49 49 1 5 1       

   P3.4848 >68.3 68.3 1 8 1 >57.15 57.15 8.07 <1   

  ROD P3.4843 >55.8 55.8 1 7 1           

    P3.4849 >55.5 55.5 1 0 1 >57.15 57.15 8.07 <1   

MMS-17 IIIB P3.4842 >70.7 70.7 1 12 1       

   P3.4848 >88.5 88.5 1 0 1 >83.13 83.13 10.66 <1   

  ROD P3.4843 >78.5 78.5 1 12 1           

    P3.4849 >94.8 94.8 1 16 1 >83.13 83.13 10.66 <1   

MMS-18 IIIB P3.4842 >53.7 53.7 1 10 1       

   P3.4848 >61.9 61.9 1 0 1 >57.80 57.80 6.48 <1   
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  ROD P3.4843 >51 51 1 5 1           

    P3.4849 >64.6 64.6 1 7 1 >57.80 57.80 6.48 <1   

MMS-19 IIIB P3.4842 >15.1 15.1 1 16 1       

   P3.4848 >14.8 14.8 1 2 1 >15.63 15.63 1.60 <1   

  ROD P3.4843 >14.6 14.6 1 7 1           

    P3.4849 >18 18 1 0 1 >15.63 15.63 1.60 <1   

MMS-20 IIIB P3.4842 >62.3 62.3 1 9 1     Cryst. 

   P3.4848 >96.3 96.3 1 11 1 >86.38 86.38 16.13 <1 observ. at 

  ROD P3.4843 >94.6 94.6 1 22 1         1 µg/ml 

    P3.4849 >92.3 92.3 1 30 1 >86.38 86.38 16.13 <1   
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From the above results, it has been concluded that the synthesized compounds are inactive against IIIB and ROD strains. 
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1.8 CONCLUSION 

 
In summary, we have demonstrated a simple route for the synthesis of nitro group containing 

dihydropyrimidines via cyclocondensation reaction using etidronic acid as an efficient 

homogeneous catalyst. The use of etidronic acid was well tolerated with a range of aldehydes. 

This protocol is general and provides dihydropyrimidines in good to excellent yields 

depending on the reactivity of arylaldehydes. Thus, the present synthesis of pyrimidines will 

serve as an exclusive method of preparative importance for this class of compounds. 

However, the newly synthesized compounds were inactive against HIV-1 IIIB and ROD 

strains. 
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1.9 EXPERIMENTAL SECTION 

 
1HNMR (400 MHz) and 13CNMR (100 MHz) spectra were recorded in DMSO, and 

TMS was used as an internal reference on a Bruker AVANCE II spectrometer. Mass spectra 

were determined using direct inlet probe on a GCMSQP2010 mass spectrometer. IR spectra 

were recorded on KBr discs, using FTIR-8400 spectrophotometer. The syntheses were 

carried out in a Questron Technologies Corporation QPro-M microwave synthesizer. Melting 

points were measured in open capillaries and are uncorrected. 

 
 General procedure for the synthesis of nitro dihydropyrimidines MMS 1-20. 

To a mixture of various aromatic aldehydes (10 mmol, 2a-n) and urea (10 mmol) in dry THF 

(5 mL) was added etidronic acid (0.1 mmol) and stirred it for 5 min at rt to this add 1-(2-

hydroxyphenyl)-2-nitroethanone (10 mmol) and subjected to microwave irradiation at 360 W 

for appropriate time (Table 3). The reaction was being monitored by TLC. After completion 

of the reaction, the reaction mixture was concentrated under reduced pressure. The separated 

solid was washed with water and followed by methanol, filtered, dried and crystallized from 

glacial acetic acid to furnish analytically pure products.  

 

 
 Spectral data of the synthesized compounds MMS 1-20 

 
3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one (MMS-1): 

Lemon yellow solid; mp 241-243 °C; IR (KBr): 3624, 3076, 2976, 1674, 1554, 1201 cm-1 ; 
1H NMR: δ 5.74 (d, 1H, J=3.16 Hz), 6.90-7.59 (m, 9H, Ar-H), 7.68 (s, 1H, NH), 8.97 (s, 1H, 

NH), 9.64 (s, 1H, OH); 13C NMR: 55.30, 114.54, 116.08, 119.31, 120.38, 126.99, 128.73, 

131.61, 142.12, 146.22, 151.53, 166.05; MS m/z: 311(M+); Anal. Calcd. for C16H13N3O4: C, 

61.73; H, 4.21; N, 13.50%. Found: C, 61.58; H, 4.08; N, 13.33%. 

 
4-(3-chlorophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-2): Yellow solid; mp 255-257 °C; IR (KBr): 3556, 3290, 2901, 1672, 1494, 1218 cm-

1; 1H NMR: δ 5.71 (d, 1H, J=3.52 Hz), 6.91-7.93 (m, 8H, Ar-H), 7.94 (s, 1H, NH), 9.17 (s, 

1H, NH), 9.78 (s, 1H, OH); 13C NMR: 54.40, 115.52, 117.18, 120.25, 122.31, 127.63, 

129.63, 134.63, 145.22, 148.34, 153.53, 163.12; MS m/z: 345(M+); Anal. Calcd. for 

C16H12ClN3O4: C,55.58; H, 3.50; N, 12.15;. Found: C, 55.42; H, 3.38; N, 12.03%. 
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3,4-dihydro-6-(2-hydroxyphenyl)-4-(4-methoxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-3): Pale yellow solid; mp 246-248 °C; IR (KBr): 3649, 3292, 2899, 1678, 1504, 1193 

cm-1; 1H NMR: δ 3.79 (s, 1H, OCH3), 5.65 (d, 1H, J=3.36 Hz), 6.86-7.49 (m, 8H, Ar-H), 7.95 

(s, 1H, NH), 9.42 (s, 1H, NH), 9.71 (s, 1H, OH); 13C NMR: 54.65, 55.28, 113.91, 115.97, 

119.24, 128.22, 128.61, 131.22, 134.45, 135.44, 136.30, 151.52, 159.28, 172.96, 181.34; MS 

m/z: 341(M+); Anal. Calcd. for C17H15N3O5: C, 59.83; H, 4.43; N, 12.31%. Found: C, 59.66; 

H, 4.32; N, 12.18%. 

 
4-(4-chlorophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-4): Lemon yellow solid; mp 250-252 °C; IR (KBr): 3610, 3088, 2928, 1714, 1531, 

1176 cm-1; MS m/z: 345(M+); Anal. Calcd. for C16H12ClN3O4: C, 55.58; H, 3.50; N, 12.15%. 

Found: C, 55.47; H, 3.38; N, 12.13%. 

 
4-(4-fluorophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-5): Yellow solid; mp 262-264 °C; IR (KBr): 3621, 3288, 2968, 1689, 1531, 1186 cm-

1; MS m/z: 329(M+); Anal. Calcd. for C16H12ClN3O4: C, 58.36; H, 3.67; N, 12.76%. Found: 

C, 58.25; H, 3.60; N, 12.65%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(3-methoxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-6): Pale yellow solid; mp 255-257 °C; IR (KBr): 3639, 3312, 2814, 1698, 1494, 1093 

cm-1; MS m/z: 341(M+); Anal. Calcd. for C17H15N3O5: C, 59.83; H, 4.43; N, 12.31%. Found: 

C, 59.69; H, 4.35; N, 12.20%. 

 
4-(2-chlorophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-7): Yellow solid; mp 248-250 °C; IR (KBr): 3567, 3308, 2941, 1721, 1587, 1162 cm-

1; MS m/z: 345(M+); Anal. Calcd. for C16H12ClN3O4: C, 55.58; H, 3.50; N, 12.15%. Found: 

C, 55.50; H, 3.37; N, 12.03%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(4-nitrophenyl)-5-nitropyrimidin-2(1H)-one (MMS-

8): Lemon yellow solid; mp 268-270 °C; IR (KBr): 3487, 3247, 2864, 1688,1499, 1057 cm-1; 
1H NMR: δ 5.82 (d, 1H, J=3.64 Hz), 6.92-7.84 (m, 6H, Ar-H), 8.14 (s, 1H, NH), 8.20-8.22 

(q, 2H, Ar-H), 9.31(s, 1H, NH), 9.76 (s, 1H, OH); MS m/z: 356 (M+); Anal. Calcd. for 

C16H12N4O6: C, 53.94; H, 3.39; N, 15.73%. Found: C, 53.75; H, 3.24; N, 15.56%. 

 
 
 

Studies on Bioactive Heterocycles 29

 



Chapter 1  Nitro Functionalized Dihydropyrimidines 

3,4-dihydro-6-(2-hydroxyphenyl)-4-(3-nitrophenyl)-5-nitropyrimidin-2(1H)-one (MMS-

9): Lemon yellow solid; mp 247-249 °C; IR (KBr): 3605, 3221, 2928, 1724, 1511, 1084 cm-1 

; MS m/z: 345(M+); Anal. Calcd. for C16H12ClN3O4: C, 55.58; H, 3.50; N, 12.15%. Found: C, 

55.46; H, 3.46; N, 12.08%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(3,4-dimethoxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-10): Yellow solid; mp 264-266 °C; IR (KBr): 3610, 3314, 2957, 1698, 1521, 1096 

cm-1; MS m/z: 371(M+); Anal. Calcd. for C18H17N3O4: C, 58.22; H, 4.61; N, 11.32%. Found: 

C, 58.17; H, 4.48; N, 11.18%. 

 

3,4-dihydro-6-(2-hydroxyphenyl)-4-(4-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-11): Yellow solid; mp 237-239 °C; IR (KBr): 3622, 3274, 2904, 1724, 1531, 1210 

cm-1; MS m/z: 327(M+); Anal. Calcd. for C16H13N3O5: C, 58.72; H, 4.00; N, 12.84%. Found: 

C, 58.59; H, 3.88; N, 12.71%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(3-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-12): Yellow solid; mp 248-250 °C; IR (KBr): 3654, 3225, 2965, 1741, 1564, 1157 

cm-1; MS m/z: 327(M+); Anal. Calcd. for C16H13N3O5: C, 58.72; H, 4.00; N, 12.84%. Found: 

C, 58.61; H, 3.86; N, 12.74% 

 
4-(3-bromophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-13): Lemon yellow solid; mp 262-264 °C; IR (KBr): 3610, 3242, 2928, 1714, 1531, 

1176 cm-1; MS m/z: 390(M+); Anal. Calcd. for C16H12BrN3O4: C, 49.25; H, 3.10; N, 10.77%. 

Found: C, 49.17; H, 2.98; N, 10.70%. 

 
4-(2,4-dichlorophenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-14): Lemon yellow solid; mp 244-246 °C; IR (KBr): 3610, 3258, 2932, 1726, 1491, 

1154 cm-1; MS m/z: 380(M+); Anal. Calcd. for C16H11Cl2N3O4: C, 50.55; H, 2.92; N, 11.05%. 

Found: C, 50.47; H, 3.04; N, 11.03%. 

 

3,4-dihydro-6-(2-hydroxyphenyl)-4-(2,5-dimethoxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-15): Yellow solid; mp 255-257 °C; IR (KBr): 3574, 3294, 2857, 1718, 1521, 1161 

cm-1; MS m/z: 371(M+); Anal. Calcd. for C18H17N3O4: C, 58.22; H, 4.61; N, 11.32%. Found: 

C, 58.15; H, 4.52; N, 11.18%. 
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3,4-dihydro-6-(2-hydroxyphenyl)-4-(2-nitrophenyl)-5-nitropyrimidin-2(1H)-one (MMS-

16): Lemon yellow solid; mp 262-264 °C; IR (KBr): 3514, 3317, 2924, 1698,1598, 1107 cm-

1; MS m/z: 356 (M+); Anal. Calcd. for C16H12N4O6: C, 53.94; H, 3.39; N, 15.73%. Found: C, 

53.77; H, 3.29; N, 15.58%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(4-methylphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-17): Pale yellow solid; mp 238-240 °C; IR (KBr): 3608, 3223, 2928, 1734, 1521, 

1167 cm-1; MS m/z: 325(M+); Anal. Calcd. for C17H15N3O4: C, 62.76; H, 4.65; N, 12.92%. 

Found: C, 62.67; H, 4.52; N, 12.83%. 

 
4-(4-(dimethylamino)phenyl)-3,4-dihydro-6-(2-hydroxyphenyl)-5-nitropyrimidin-2(1H)-

one (MMS-18): Lemon yellow solid; mp 250-252 °C; IR (KBr): 3628, 3247, 2936, 1678, 

1511, 1086 cm-1; MS m/z: 354(M+); Anal. Calcd. for C18H18N4O4: C, 61.01; H, 5.12; N, 

15.81%. Found: C, 61.05; H, 5.04; N, 15.73%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(2-methoxyphenyl)-5-nitropyrimidin-2(1H)-one 

(MMS-19): Yellow solid; mp 248-250 °C; IR (KBr): 3658, 3312, 2914, 1727, 1533, 1171 

cm-1; MS m/z: 341(M+); Anal. Calcd. for C17H15N3O5: C, 59.83; H, 4.43; N, 12.31%. Found: 

C, 59.70; H, 4.38; N, 12.25%. 

 
3,4-dihydro-6-(2-hydroxyphenyl)-4-(2-methoxy-4-nitrophenyl)-5-nitropyrimidin-2(1H)-

one (MMS-20): Lemon yellow solid; mp 258-260 °C; IR (KBr): 3605, 3373, 2934, 1722, 

1565, 1106 cm-1; MS m/z: 386(M+); Anal. Calcd. for C17H14N4O7: C, 52.85; H, 3.65; N, 

14.50%. Found: C, 52.67; H, 3.58; N, 14.43%. 
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1H NMR spectrum of compound MMS-1 

  
 

Expanded 1H NMR spectrum of compound MMS-1 
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1H NMR spectrum of compound MMS-2 

 
 
Expanded 1H NMR spectrum of compound MMS-2 
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1H NMR spectrum of compound MMS-6 

 
 

Expanded 1H NMR spectrum of compound MMS-6 
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1H NMR spectrum of compound MMS-7 

 
 

Expanded 1H NMR spectrum of compound MMS-7 
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13C NMR spectrum of compound MMS-1 

 
 

Expanded 13C NMR spectrum of compound MMS-1 
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13C NMR spectrum of compound MMS-7 

 
 

Expanded 13C NMR spectrum of compound MMS-7 
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Mass spectrum of compound MMS-1 

 
 

Mass spectrum of compound MMS-2 
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Mass spectrum of compound MMS-5 

 
 

Mass spectrum of compound MMS-8 
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IR spectrum of compound MMS-1 

 
 

IR spectrum of compound MMS-2 
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IR spectrum of compound MMS-5 

 
 

IR spectrum of compound MMS-7 
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Chapter 2       Synthesis of Trifunctionalized Pyrazoles 

2.1 INTRODUCTION   

 
 Pyrazoles are well known five member heterocyclic compounds and several 

procedures for its synthesis have been extensively studied (Figure 1). Such studies have been 

stimulated by various promising applications, especially in the case of highly substituted 

pyrazole derivatives. In fact, certain substituted pyrazoles are used as analgesic, anti-

inflammatory, antipyretic, agrochemicals whereas some others are being studied for their 

medicinal interest. The pyrazole ring system consists of a doubly unsaturated five member 

ring containing two adjacent nitrogen atoms. The knowledge of such applications has pointed 

out that trisubstituted pyrazole are important target to be prepared to our interest on synthesis 

and molecular structure determination of some types of pyrazole.  

 

N
H

N

 
Figure 1 

 
The discovery of pyrazole derivatives as antipyretic agents dates back to 1884, when the 

German chemist Ludwig Knorr1 attempted to synthesize quinoline derivatives with 

antipyretic activity and accidentally obtained antipyrine (2,3-dimethyl-1-phenyl-3-pyrazolin-

5-one), which has analgesic, antipyretic and antirheumatic activity. Aminopyrine, a more 

potent analogue was synthesized there after and these drugs were widely used in market as 

antipyretics. 

 
2.2 Biological activity of various substituted pyrazoles.  

 Pyrazole derivatives possessed diverse biological activities such as 

antihyperglycemic, analgesic, anti-inflammatory, antipyretic, antibacterial, and sedative-

hypnotic activity, cyclooxygenase-2 (Cox-2) inhibitors, IL-1 synthesis inhibitors, protein 

kinase inhibitors, as well as useful activities in conditions like schizophrenia, hypertension, 

and Alzheimer’s disease.2 In addition, they also have agrochemical properties including 

herbicidal and soil fungicidal activity; thus, they have been used as pesticides and 

insecticides3 which are described briefly as follows.  

 
Anti-inflammatory preparations are widely used in the modern clinic, as pathogenetic agents 

in the treatment of many illnesses and pathological processes, alone or more frequently in 

combination with other drugs. However many of the known anti-inflammatory agents cause a 
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range of side phenomena and complications in addition to the main effect. Consequently the 

search for and study of new more active anti-inflammatory agents of low toxicity is one of 

the urgent problems of contemporary science (Figure 2).4 

 

CH2N2
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RH2C CCCH2R

R= 4-chlorobenzoyloxy,
      3-iodobenzoyloxy

RH2CC CC CCH2R

 
Figure 2 

 
Tanitame A. et al5 have synthesized pyrazole derivatives possesses antibacterial activity and 

inhibitory activity against DNA gyrase and topoisomerase IV. They have synthesized new 

pyrazole derivatives and found that 5-[(E)-2-(5-chloroindol-3-yl)vinyl]pyrazole (Figure 3) 

possesses potent antibacterial activity and selective inhibitory activity against bacterial 

topoisomerases. Many of the synthesized pyrazole derivatives were potent against clinically 

isolated quinolone coumarin-resistant Gram-positive strains and had minimal inhibitory 

concentration values against these strains equivalent to those against susceptible strains. 
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Figure 3 

 
In 2004, Edwards P. J. et al6 have synthesized numerous highly functionalized pyrazole 

derivatives (Figure 4) using various diketone and substituted hydrazine hydrate and screened 

for HIV mediated diseases. Among them such compounds were found to useful in the 

treatment of a variety of disorders including those in which the inhibition of reverse 

transcriptase is implicated. Disorders of interest include those caused by HIV and genetically 

related reteoviruses, such as AIDS. 

 

N
N

R2

R3O

R0

OR1

R4

R0= H, C1-C6 alkylene,
R1= Ph, alkylene, OCF3, CN,
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R4= Ph, Pyridyl, arylhalide,

 
Figure 4 
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Bagley M. C. and co workers7 have synthesized substituted N-pyrazole urea under the 

microwave irradiation. The reaction of substituted hydrazines and β-ketoesters afforded 5-

aminopyrazoles in excellent yield, which can be transformed to the corresponding N-carbonyl 

derivatives by treatment with an isocyanate or chloroformate. Derivatization of 4-

nitronaphth-1-ol using predominantly microwave heating methods and reaction with an N-

pyrazole carbamate provides a rapid route to the N-pyrazole urea BIRB 796 (Figure 5) in 

high purity, as a potent and selective inhibitor of p38a mitogen-activated protein kinase for 

the study of accelerated ageing in Werner syndrome cells. 

 

N
N N

H
N
H

O
N

O

O

 
Figure 5 

 
Stein R.G. et al8 have combined the features of the pyrazole ring, a substituted quinoline, 

and an "antimalarial" side chain in one molecule for antimalarial testing. The key 

intermediate required was a 4-chloro-1H-pyrazolo [3,4-b]quinoline (Figure 6), in which the 

active C1 could be replaced with suitable amines expected to impart antimlalarial activity to 

the final products. 

  

N
N

N X

RH3C

H3C X= H, Cl,
R= Cl, OH,

 
Figure 6 

 
 

 Biologically active molecules containing alkyl, sulfone and carboxamide 

functional groups  

Pyrazoles bearing sulfones and carboxamide moieties demonstrated to have 

significant pharmacological applications which are discussed as under. 

 
The role of the cyclooxygenase-2 isoform in inflammation9 and the attractiveness of COX-2 

as a therapeutic target for the development of anti-inflammatory drugs are very well 
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recognized.10 COX-2 selective inhibitors have proven to be effective anti-inflammatory and 

analgesic medicines with lower chronic gastrointestinal (GI) toxicity than traditional non-

steroidal anti-inflammatory drugs (NSAIDs), which non-selectively inhibit COX-2 and COX-

1. Prostaglandin (PG)-dependent and PG-independent factors are responsible for NSAID 

induced GI toxicity. Decreased PG production due to COX-1 inhibition may adversely affect 

mucus-bicarbonate secretion, acid secretion, and mucosal blood flow. COX inhibition may 

also elicit an increase in 5-lipoxygenase activity that would potentiate production of 

leukotriene-B4 and vasoconstrictor peptido-leukotrienes by the lipoxygenase pathway, and 

this may also contribute to the vascular and other mucosal damage induced by 

NSAIDs11Celecoxib (Figure 7) is one of the COX-2 selective inhibitors and are currently 

prescribed for the treatment of arthritis and inflammatory diseases. They show anti-

inflammatory activity with reduced GI side effects. 
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Figure 7 

 
Sondhi S. M. et al12 were carried out anti-inflammatory and analgesic activity of some 

amidine and hydrazone derivatives which possess sulfone group (Figure 8). The anti-

inflammatory activity was carried out using carrageenin-induced paw edema assay and 

Analgesic activity evaluation was carried out using acetic acid writhing assay. 
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Figure 8 

 
Moreover, Propargylic sulfones are known as pH-dependent DNA cleaving agents. In this 

context, Nishimoto S. et al13 have designed a novel propargylic sulfone conjugated with an 

anthraquinone structure and evaluated its DNA binding and cleavage characteristics. The 

propargylic sulfone (Figure 9) showed high intercalating ability attributable to anthraquinone 

chromophore, leading to the efficient alkylation of DNA. The anthraquinone chromophore in 
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also acted as a photosensitizer and photoirradiation of this sulfone with DNA induced one-

electron oxidation, resulting in the further DNA cleavage. Evaluation of the effect of 

propargylic sulfone against EMT6/KU cells revealed that it exhibited potent cytotoxicity, 

even without photoirradiation. 

 

S
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O  
Figure 9 

 
The synthesis of a series of novel pyrazoles containing a nitrate (ONO2) moiety as a nitric 

oxide (NO)-donor functionality was reported by Ranatunge R. R. and coworkers.14 Their 

COX-1 and COX-2 inhibitory activities in human whole blood were profiled and 

demonstrates that pyrazole ring substituents play an important role in COX-2 selective 

inhibition, such that a cycloalkyl containing pyrazole was found to be a potent and selective 

COX-2 inhibitor. Other modifications at the 3 position of the central pyrazole ring enhanced 

COX-2 inhibitory potency. Among the pyrazoles synthesized, the oxime (Figure 10) was 

identified as the most potent COX-2 selective inhibitor.  
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Figure 10 

 
In addition, Bonacorso H. G. et al15 have synthesized some novel N-substituted pyrazoles 

containing sulfone and trifluoromethyl groups at N and C5 position of pyrazole ring (Figure 

11) and evaluated for antimicrobial activity. All the synthesized compounds were shown 

promising antimicrobial activity. The best activity was obtained when the structure possessed 

a 4-fluorophenyl substituent linked at the carbon-3 of the pyrazoline ring. 
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       4-BrPh, Ph, Me

 
Figure 11 
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The identification of several potent pyrazole-based inhibitors of bacterial dihydroorotate 

dehydrogenase (DHODase) via a directed parallel synthetic approach is described below 

(Figure 12). The initial pyrazole-containing lead compounds were optimized for potency 

against Helicobacter pylori DHODase.16 Using three successive focused libraries, inhibitors 

were rapidly identified with the following characteristics: Ki<10 µM against H. pylori 

DHODase, sub-µg/mL H. pylori minimum inhibitory concentration activity, low molecular 

weight, and >10 000-fold selectivity over human DHODase.  
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Figure 12 

 
Helicobacter pylori is a Gram-negative microaerophilic bacterium that infects up to 50% of 

the world’s human population.17 H. pylori resides in the acidic surroundings of the stomach, 

utilizing a high urease enzyme activity to provide a locally alkaline environment. H. pylori 

has been implicated in numerous gastrointestinal disorders and is associated with gastric 

ulcers, gastritis, and gastric cancer.18 The current treatment of H. pylori infections typically 

utilizes a multiple drug therapy involving at least one broad spectrum antibiotic 

(antimicrobial therapy) and a proton pump inhibitor (antisecretory therapy). However, a H. 

pylori specific antimicrobial would be very desirable; a specific agent should avoid many of 

the negative gastrointestinal side effects associated with a broad spectrum antibacterial 

resulting from eradication of the normal gastrointestinal flora. 

 

2.3 Synthesis of functionalized pyrazole derivatives using various synthetic 

approaches 

In 2005, Sakya S. M. et al19 have offered fluoride-mediated nucleophilic substitution 

reactions of 1-(4-methylsulfonyl (or sulfonamido)-2-pyridyl)-5-chloro-4- cyano pyrazoles 

(Figure 13) with various amines and alcohols under mild conditions. The further reaction of 

novel pyrazoles provides the 5-alkyl amino and ether pyrazoles in moderate to high yields. 
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Figure 13 

 
Recently, Dong D. and coworkers20 have developed an efficient and divergent synthesis of 

fully substituted 1H-pyrazoles using cyclopropyl oximes (Figure 14). Under Vilsmeier 

conditions (POCl3/DMF), substituted 1H-pyrazoles were synthesized from 1-carbamoyl, 1-

oximyl cyclopropanes via sequential ring-opening, chlorovinylation, and intramolecular aza-

cyclization. 
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Figure 14 

 
A novel approach to the synthesis of pyrazole derivatives from tosylhydrazones of α,β-

unsaturated carbonyl compounds possessing a β-hydrogen was proposed by Rosa R. and 

coworkers (Figure 15),21 exploiting microwave (MW) activation coupled with solvent free 

reaction conditions. The cycloaddition was studied on three ketones (trans-4-phenyl-3-buten-

2-one, β-ionone and trans-chalcone). The corresponding 3,5-disubstitued-1H-pyrazoles were 

obtained in high yields and after short reaction times. 

 

N
H
N S

Ar

O O
N N S

Ar

O O

Base
N N

N
N

H N
NH

 
Figure 15 

 
Tang L. et al22 have synthesized the pyrazole analogs (Figure 16) from a common aryl 

isocyanide intermediate. The cyclization of isocyanide with the oxime or BOC-protected 

hydrazones of ethyl bromopyruvate furnished the pyrazole carboxy esters. 
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Figure 16 

 
Kim J. N. et al23 have reported the regio-selective synthesis of 1,3,4,5-tetrasubstituted 

pyrazole derivatives from the reaction of Baylis-Hillman adducts of alkyl vinyl ketone and 

hydrazine derivatives (Figure 17). During the continuous studies on the chemical 

transformations of Baylis-Hillman adducts including the synthesis of pyrazole. 
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Figure 17 
 
Junjappa H. et al24 have developed highly efficient and regioselective synthesis of 1-aryl-3,4-

substituted/annulated-5-(methylthio)-pyrazoles and 1-aryl-3-(methylthio)-4,5-substituted/ 

annulated pyrazoles via cyclocondensation of arylhydrazines with either α-oxoketene 

dithioacetals or α-oxodithioesters (Figure 18). 
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Elgemeie G. H. et al25 were readily prepared novel ketene N,S-acetals by the reaction of 

cyanoacetamide or cyanothioacetamide with phenylisothiocyanate in the presence of 

potassium hydroxide, followed by alkylation of the produced salts with methyl iodide. 

Further, the reaction of ketene N,S-acetals with hydrazine afforded different substituted 

pyrazoles in excellent yields (Figure 19). 
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Junjappa H. et al26 have demonstrated that 1-bis(methoxy)-4-bis(methylthio)-3-buten-2-one 

has been to a useful three carbon synthon for efficient regiospecific synthesis of a variety 

pyrazoles with mask or unmask aldehyde functionality by cyclocondensation with hydrazine 

hydrate in alcohol (Figure 20). 
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Kuettel S. et al27 have synthesized 4-(3-phenylisoxazol-5-yl)morpholine derrivatives (Figure 

21) using ketene dithioacetals. The reaction of substituted acetophenones with carbon 

disulfide in the presence of base and followed by alkylation with methyl iodide afforded 4-

phenoxyphenyl-2,2- bis(methylthio)vinyl ketones, which were further reacts with hydrazine 

hydrate to give substituted pyrazoles through in situ cyclization of the resulting N,S-acetals. 
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Kurz T. et al28 have synthesized novel fluorinated ketene N,S-acetals by the reaction of 

fluorosubstituted cyanoacetamide derivatives with arylisothiocyanate in the presence of 

potassium hydroxide, followed by the alkylation with methyl iodide. The reaction of 

fluorinated ketene N,S-acetals with hydrazine afforded different fluorosubstituted pyrazole 

derivatives in good yield (Figure 22). 
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Elgemeie G. H. et al29 synthesized  variety of novel α-cyanoketene S,S-acetals, readily 

prepared by the reaction of cyanoacetanilides or cyanothioacetamide with carbon disulfide, 

followed by alkylation, react smoothly with nucleophile to afford variously substituted 

methylthio derivatives of pyrazole (Figure 23). 
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 Synthesis of functionalized pyrazoles using combinatorial chemistry approach. 

In recent decades, combinatorial chemistry tools have enabled the rapid synthesis of a 

large number of heterocyclic small molecule libraries and it is recognized now as a key 

element of early drug discovery.30 The main advantage of the combinatorial technique is the 

speed at which diverse types of organic compounds can be synthesized, formulated, and 

tested for a particular application. Moreover, in combinatorial study the quantity of required 

material is less in comparison to conventional methods, which makes it more suitable when 

the materials are expensive.31 

 
In 2009, Laborde E. et al32 have developed an efficient three-component, two-step “catch and 

release” solid-phase synthesis of 3,4,5-trisubstituted pyrazoles (Figure 24). The reaction 

involves a base-promoted condensation of a 2-sulfonyl acetonitrile derivative 1 with an 

isothiocyanate 2 and in situ immobilization of the resulting thiolate anion 3 on Merrifield 

resin. Reaction of the resin-bound sulfonyl intermediate 4 with hydrazine, followed by 

release from the resin and intramoleculer cyclization, afforded 3,5-diamino-4-(arylsulfonyl)-
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1H-pyrazoles 5. However, this methodology has some drawback such as; long reaction time, 

isolation of product and high reaction temperature.  
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Recently, Laufer, S. et al33 have synthesized structurally diverse and medicinally interesting 

series of 1, 4-dihydropyrano[2,3-c]pyrazoles via a three-component reaction using solution 

phase synthesis in excellent yields (Figure 25). 
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Ivachtchenko A. V. et al34 have reported the parallel solution-phase approach of more than 

2200 7-trifluoromethyl-substituted pyrazole[1,5-a]pyrimidine (Figure 26) and 4,5,6,7-

tetrahydropyrazolo[1,5-a]pyrimidine carboxamides on a 50-100-mg scale. The reactions were 

include assembly of the pyrazole[1,5-a]pyrimidine ring by condensation of 5-aminopyrazole 

derivatives with the corresponding trifluoromethyl-α-diketones. The libraries from libraries 

were then obtained in good yields and purities using solution-phase acylation and reduction 

methodologies. Simple manual techniques for parallel reactions using special CombiSyn 

synthesizers were coupled with easy purification procedures (crystallization from the reaction 

mixtures) to give high-purity final products.  
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Yang H. Z. et al35 have developed a small combinatorial library containing pyrazolyl- 

pyrazoles and pyrazole[1,5-a]pyrimidines (Figure 27) by traditional organic synthesis and 

parallel-liquid-phase combinatorial synthesis using α-S,S-acetal of ethyl cyanoacetate as key 

synthon and hydrazine hydrate. 
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Organ M. G. et al36 have developed a library of 4-(5-Iodo-3-Methylpyrazolyl)Phenyl- 

sulfonamide derivatives (Figure 28) via solution-phase Suzuki coupling using Pd/C as a 

solid-supported catalyst. 
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Taddei M. et al37 have developed the libraries of substituted pyrazole through in situ 

generation of polymer-bound enaminones (Figure 29). The synthetic protocol makes use of 

commercially available aniline cellulose, a low-cost and versatile biopolymer, under very 

mild conditions. This new support allowed carrying out reactions in polar solvents under both 

conventional heating and MW irradiation without degradation of the polymer. The reaction 

between cellulose-bound enaminones and hydrazine to afford the target heterocycles in high 

yields directly in solution is the key step. The support can be conveniently recycled. 
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2.4 Various oxidizing agent for oxidation of sulfide to sulfones. 

Functional group oxidation is a fundamental process in organic synthesis, and an 

enormous range of reagents, reagent combinations and conditions is available for almost 

every conceivable type of oxidative transformation. The search for new, modified and 

improved procedures continues unabated, however, driven largely by the need for higher 

efficiency and cleaner selectivity and, to an increasingly significant extent, by economic and 

environmental constraints. Exquisite selectivity can be achieved for some functional group 

oxidations,38 especially for small scale laboratory operations, but for most transformations, 

and for larger scale applications in particular, the ultimate objective of cheap, safe oxidation 

under catalytic conditions has not been reached. The use of stoichiometric amounts of 

oxidizing agents will therefore necessarily continue until that goal is attained.  

The cheapest oxidizing agents are air, chlorine and nitric acid, all of which have important 

uses. Each also has associated disadvantages and/or limitations:  

(i)Air: the need for heterogeneous catalysts or biocatalysts; often rather poor 

selectivity; and high capital plant costs.  

(ii)Chlorine: side reactions due to chlorination; environmental problems, especially in 

effluent disposal.  

(iii)Nitric acid: limited selectivity in oxidation; side reactions; generation of nitrogen 

oxides. 

 
The fourth cheapest oxidant is hydrogen peroxide, which is environmentally friendly and 

relatively easy to handle. However, it is quite a weak oxidizing agent which often requires 

specific activation towards the functional group to be transformed. The persalts such as; 

sodium percarbonate or sodium perborate one, means of providing such activation; they are 

also granular solids which can be an additional handling advantage in small to medium scale 

synthetic work.  

 
In this context recently, Habibi D. et al39 have developed a process for chemoselective 

catalytic oxidation of sulfides. A variety of aliphatic and aromatic sulfides were subjected to 

the sulfoxidation reaction by treatment of SPB and/or SPC, silica sulfuric acid (SSA) and 

catalytic amounts of KBr in the presence of wet SiO2 (50% w/w) in dichloromethane at room 

temperature with moderate to good yields (Figure 30). 
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In addition, Kappe O. et al40 were synthesized 2-substituted pyrimidines via sequential 

oxidation of 2- methylthiodihydropyrimidines with manganese dioxide and then with oxone 

to provide 2-methylsulfonyl-pyrimidines (Figure 31) which on nucleophilic displacement of 

the reactive sulfonyl group with nitrogen, oxygen, sulfur, and carbon nucleophiles afforded 

substituted pyrimidines. 
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A survey of the literature41 revealed that a adduct between H2O2 and urea (UHP) is a cheap, 

safe and stable source of pure H2O2 for oxidation. Several systems containing UHP with 

some acid anhydrides were used as efficient oxidizing agents for sulfides (Figure 32).  

 

R1
S

R
H2O2.Urea

R1
S

R

OO

R, R1 = Me, n-Pr, n-Bu, Ph, aryl  
(Figure 32) 

 
Moreover, a review42 of literature reveled that the SPB (Figure 33) has been proved an 

efficient and excellent reagent for the oxidation of thiols and selenols to disulfides and 

diselenides, and of sulfides to sulfones.  
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2.5 CURRENT RESEARCH WORK 

 
The pyrazole nucleus is present in a wide variety of biologically  interesting 

compounds, which exhibit antihyperglycemic, analgesic, anti-inflammatory, antipyretic, 

antibacterial, hypoglycemic, sedative-hypnotic activity.1-5 As we described, the tremendous 

biological potential of the sulfone group and carboxamide group bearing pyrazole scaffolds 

have attracted many chemists to synthesize this class of molecules. Thus, continuous efforts 

have been devoted to the development of general and versatile synthetic methodologies to 

this class of compounds. Many research groups have been synthesized pyrazole derivatives 

using various methods. However, the existing methods suffered with some drawbacks such 

as; long reaction time, product isolation, etc. Thus, the practical synthesis of structurally 

diverse pyrazole based small molecules is of great significance. 

 
Nowadays, a great deal of effort has been focused on the field of green chemistry in adopting 

methods and processes. As a part of this “green” concept, toxic and/or flammable organic 

solvents are replaced by alternative non-toxic and nonflammable media. In this context, many 

efforts have been made to use aqueous media. Among alternative green solvents, water has 

been the solvent of choice for a variety of transformations.21 On the other hand; 

functionalized ketene dithioacetals are versatile intermediates in organic synthesis for the 

construction of substituted heterocycles. Given the importance of sulfone and carboxamide 

groups containing pyrazoles, and our ongoing interest on the synthesis various heterocycles 

using novel ketene dithioacetals starting from acetoacetanilides, encouraged us to utilize the 

novel ketene dithioacetals for the construction of small molecule library of 3-methyl-5-

(methylsulfonyl)-N-aryl-1H-pyrazole-4-carboxamide derivatives in aqueous medium. The 

newly synthesized compounds were characterized by IR, Mass, 1H NMR, 13C NMR 

spectroscopy and elemental analysis. The biological screening of the synthesized compounds 

is under process. Chemical purity of all the newly synthesized compounds was examined by 

UPLC. 
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2.6 RESULTS AND DISCUSSION 

 

Scheme 1: Water mediated synthesis of pyrazoles containing methyl, sulfone and 
carboxamide groups. 
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A series of various α-AKDTAs 1a-w was prepared by some modification in reported 

procedure.43 Initially, condensation of α -AKDTA 1a with hydrazine hydrate 2 took place 

smoothly in isopropyl alcohol reflux to afford the 3-methyl-5-(methylsulfonyl)-N-phenyl-1H-

pyrazole-4-carboxamide 3a in good yield (Scheme 1; Table 1, entry 1). The condensation of 

1a with 2 to generate pyrazole 3a was investigated using a variety of solvents, as a part of the 

“green chemistry” concept and to optimize the yield, and the results are summarized in Table 

1. 

 

Table 1: Synthesis of 3-methyl-5-(methylthio)-N-phenyl-1H-pyrazole-4-carboxamide 

using variety of solvents. 

Entry Solvents Time h Yield % 

1 iPrOH 2.8 85 

2 MeOH 4.0 81 

3 EtOH 3.5 83 

4 THF 4.5 79 

5 CH3CN 4.0 75 

6 Dioxane 3.5 80 

7 Water 3.0 97 

 

 

Studies on Bioactive Heterocycles 61



Chapter 2       Synthesis of Trifunctionalized Pyrazoles 

The condensation reaction was clean in water and the yield of desired product was higher 

(Entry 7, Table 1). On the other hand, the reaction was relatively fast when iPrOH was used 

as a solvent with 12% lower yield (Entry 1, Table 1). The yield of desired product was 

reasonable when MeOH, EtOH and dioxane were used as a solvent (Entry 2,3,6, Table 1). 

The other solvents THF and acetonitrile gave lower yield with higher reaction time (Entry 

4,5, Table 1). Thus, it is clear from the aforementioned experiments that the best yield of 

pyrazoles 3a could be obtained by employing water as a solvent. 

 
To test generality of the condensation and to realize synthesis of a small combinatorial library 

of  substituted pyrazoles various α-AKDTAs were reacted with hydrazine hydrate to furnish 

pyrazoles 3a-w in excellent yield using water as a solvent (Scheme 1, Table 2). The 

synthesized compounds were characterized by spectral data. The 1H NMR spectra of 

compound 3c displayed characteristic singlet for methyl, mehtylthio and methoxy hydrogen, 

respectively, at δ 2.54, 2.64 and 3.92. The two singlets appeared for pyrazole NH at δ 10.12 

and amide hydrogen at δ 9.62 which revealed the formation of pyrazole ring.  

 
Table 2: 3-mehtyl, 5-methylthio, 4-carboxamide substituted pyrazoles. 

Entry R Time h Yield % mp ºC 

3a Ph 3.0 97 120-122 

3b 4-CH3Ph 3.5 95 125-127 

3c 4-OCH3Ph 3.0 96 118-120 

3d 4-FPh 2.8 94 132-134 

3e 2-OCH3Ph 2.9 92 126-128 

3f 2-CH3Ph 3.2 93 122-124 

3g 4-ClPh 3.8 94 128-130 

3h 4-EtPh 3.5 95 130-132 

3i 4-NO2Ph  2.5 91 135-137 

3j 3-Cl,4-FPh 3.2 90 128-130 

3k 5-Cl,2-MeOPh 3.0 93 136-138 

3l 2,5-diClPh 3.4 89 126-128 

3m 2,5-diCH3Ph 3.2 91 122-124 

3n 4-Cl,2-CH3Ph 2.9 94 121-123 
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3o 3,4-diFPh 3.2 93 130-132 

3p 2-ClPh 3.5 94 142-144 

3q 2-FPh 3.5 96 133-135 

3r 4-BrPh 4.0 95 121-123 

3s 3,4-diClPh 4.0 90 151-152 

3t 3-NO2Ph 3.2 88 115-117 

3u 3-CH3Ph 3.5 94 165-167 

3v 2,3-diCH3Ph 3.8 85 158-160 

3w 2-OCH3,4-NO2Ph 4.0 96 148-150 

 

 
Since, the remarkable utility of sulfone group in pharmaceutical and to develop library of 

pyrazole and isoxazole functionalized with alkyl, carboxamide and sulfone, we next planned 

to oxidize the sulfides to sulfones. Although sulfides can be easily oxidized by a wide variety 

of oxidizing reagents, but unfortunately, some of these reagents are not satisfactory for the 

oxidation of sulfide to sulfone due to low yields of products, toxicity and expensive reagents 

or catalysts.44 the reaction condition for oxidation of sulfide to sulfone was optimized with 

variety of oxidizing agent in various solvent (Table 3). 

 
Table 3: Optimization of the reaction condition for oxidation of 3a to its sulfone.  
 

Entrya Oxidant b Solvent Yieldc % Time min 

1 mCPBA CH2Cl2 74 125 

2 mCPBA Acetone 56 95 

3 mCPBA Water 65 75 

4 SPB CH2Cl2 79 110 

5 SPB Acetone 62 95 

6 SPB Water 91 60 

7 SPC CH2Cl2 59 120 

8 SPC Acetone 52 90 

9 SPC Water 75 60 
aAll solution-phase reactions were heated at reflux temperature of the solvent used. bOxidant: mCPBA-2 equiv, SPB-3 equiv 
and SPC-3 equiv. cIsolated yield after purification. 

Studies on Bioactive Heterocycles 63



Chapter 2       Synthesis of Trifunctionalized Pyrazoles 

The results gathered in table 3, indicate that when dichloromethane was used as a solvent the 

yield of sulfone was higher with mCPBA as compared to SPC and SPB, but it required high 

reaction time (Entry 1,4,7, Table 3). The yields of desired products were very poor when 

acetone was used as solvent and the products were isolated using column chromatography 

(Entry 2,5,8, Table 3). The best results were obtained when water was used as solvent with 

the SPB and the sulfide underwent oxidation to the corresponding sulfone in 45 min with 

excellent yield (Entry 6, Table 3). However, an excess amount of SPC did not improve yield. 

When the amount of SPB was reduced, the yield of desired product was lower. The above 

results indicate, the cheap, environmentally friendly and effective oxidizing agent in water 

was SPB and gave quantitatively yield of product without use of any activator. With this 

oxidizing system, all the synthesized pyrazoles were oxidized to generate sulfone containing 

pyrazoles and isoxazole based small molecule library using solution phase synthesis and the 

results are gathered in table 4.  

 
Table 4: 3-mehtyl, 5-sulfone, 4-carboxamide functionalized library of pyrazoles. 

 
Entry R Time min Yield % mp ºC 

HPMS-1 Ph 60 91 168-170 

HPMS-2 4-CH3Ph 45 92 172-174 

HPMS-3 4-OCH3Ph 55 89 166-168 

HPMS-4 4-FPh 50 88 175-177 

HPMS-5 2-OCH3Ph 60 90 170-172 

HPMS-6 2-CH3 50 94 165-167 

HPMS-7 4-ClPh 55 89 173-175 

HPMS-8 4-EtPh 65 92 177-179 

HPMS-9 4-NO2Ph 55 92 181-183 

HPMS-10 3-Cl,4-FPh 50 91 176-178 

HPMS-11 5-Cl,2-OCH3Ph 50 93 186-188 

HPMS-12 2,5-diClPh 65 88 176-178 

HPMS-13 2,5-diCH3Ph 60 87 170-172 

HPMS-14 4-Cl,2-CH3Ph 55 89 171-173 

HPMS-15 3,4-diFPh 50 85 181-183 
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HPMS-16 2-ClPh 60 91 186-188 

HPMS-17 2-FPh 50 88 172-174 

HPMS-18 4-BrPh 60 89 181-182 

HPMS-19 3,4-diClPh 55 92 167-168 

HPMS-20 3-NO2Ph 65 78 154-156 

HPMS-21 3-CH3Ph 55 86 169-171 

HPMS-22 2,3-diCH3Ph 60 90 184-186 

HPMS-23 2-OCH3,4-NO2Ph 65 92 154-156 

 
 
 
 
The chemical purity of all the newly synthesized compounds was examined using UPLC. 

Among all the final compounds, compound HPMS-11 has shown less than 95% chemical 

purity and other shown more than 95% chemical purity (Figure 34). The 1H NMR spectrum 

of pyrazole HPMS-10 displayed two characteristic singlets for methyl and methylthio proton, 

respectively, at δ 2.53 and 3.64. However, two singlets appeared for pyrazole NH at δ 12.97 

and amide hydrogen at δ 9.61. 
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Figure 34: Chemical purity of trifunctionalized pyrazoles using UPLC. 
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The mechanism (Figure 35), in ketene dithioacetal system the carbonyl carbon and β-carbon 

atoms regarded as hard and soft electrophilic centers, since the carbonyl carbon is adjacent to 

the hard-base oxygen while the β-carbon is flanked by the soft-base methylthio groups. Thus, 

the binucleophile hydrazine hydrate attack on β-carbon of systems and formed heterocyclic 

product by removal of methylthio and group as good leaving group and water molecule. The 

pyrazoles on oxidation by sodium perborate afford sulfone containing pyrazoles.  
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Figure 35: Proposed mechanism for the formation of pyrazole. 
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2.7 CONCLUSION  
 
In Summary, we have synthesized solution-phase library of pyrazoles functionalized with 

methyl, sulfone and carboxamide groups in two steps with excellent yield and chemical 

purity for biological interest. Water was emerged as an efficient and green solvent in the 

condensation reaction of various ketene dithioacetals with hydrazine hydrate. Further, the 

facile synthesis of sulfone containing pyrazoles was achieved via oxidation of sulfide to 

sulfone. A comparative study of various oxidants has been performed, and revealed that SPB 

is more efficient and effective for oxidation of sulfide to sulfone in aqueous medium. This 

procedure offers a good scope for the synthesis of a wide variety of pyrazoles containing 

caboxamide and sulfone in two steps with excellent yield, purity and simple isolation of 

products. 
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2.8 EXPERIMENTAL SECTION 

 
Melting points were determined in open capillaries and are uncorrected. Thin-layer 

chromatography was accomplished on 0.2-mm precoated plates of silica gel G60 F254 

(Merck). Visualization was made with UV light (254 and 365nm) or with an iodine vapor. IR 

spectra were recorded on a FTIR-8400 spectrophotometer using DRS prob. 1H (400 MHz) 

and 13C (100 MHz) NMR spectra were recorded on a Bruker AVANCE II spectrometer in 

CDCl3. Chemical shifts are expressed in δ ppm downfield from TMS as an internal standard. 

Mass spectra were determined using direct inlet probe on a GCMS-QP 2010 mass 

spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary evaporator. 

Chemical purity was determined on Waters Acquity UPLC with PDA Detector using Acquity 

BEH C18, 50 × 2.1, 1.7µm column at 210-400nm. 

 
 Gradient Program for UPLC 

Mobile Phase: A - 10 mM Ammonium dihydrogenphosphate pH = 2.5, 

 B – Acetonitrile 

 
Entry Time Flow %A %B 

1 Initial 0.2 mL 95 05 

2 4.0 0.2 mL 05 95 

3 4.1 0.2 mL 95 05 

4 5.0 0.2 mL 95 05 

 
 

 General procedure for the synthesis of various α-acylketene dithioacetals 1a-w. 

To a well-stirred suspension of sodium tert-butoxide (30 mmol) in THF (15 mL) at 0-

5 ºC was added CS2 (15 mmol) diluted with 10 mL THF along with N-(aryl)-3-

oxobutanamide (15 mmol) over a period of 30 min. After completion of the addition, the 

reaction mixture was stirred at 0-5 ºC for 1.0 h. Appearance of reddish solid in the reaction 

medium indicated the formation of disodium salt. To this reaction, a solution of methyl iodide 

(30 mmol) in THF (5 mL) was added dropwise within 15 min at 0-5 ºC. The mixture was 

allowed to warm to room temperature and stirred for 5 h, and then poured onto crushed ice 

under stirring. The separated solid was collected by filtration, washed with water (2 × 100 

mL), dried in vacuo and crystallized from chloroform to furnish the analytically pure 

products in excellent yield.  
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 General procedure for the synthesis of trisubstituted pyrazoles 4a-w. 

To a suspension of various α-acylketene dithioacetals 1a-w (10 mmol) in water (25 

mL), hydrazine hydrate 80% (20 mmol) was added and the reaction mixture was refluxed for 

appropriate time (Table 2) with constant stirring. After completion of the reaction, the 

reaction mixtures were cooled to room temperature and add cold water (50 mL). The 

separated solid was filtered, washed with water (2 × 50 mL), dried and crystallized from 

methanol to afford analytically pure products which were used for next step without further 

purification. 

 
 General procedure for the oxidation of sulfide to sulfones HPMS 1-23. 

The appropriate compound 3a-w (6 mmol) in water (15 mL) was added sodium per 

borate (18 mmol) and the resulting mixture was then heated to reflux for appropriate time 

(Table 2). The mixture was cooled to room temperature and extracted with ethyl acetate (2 × 

15 mL). The organic layer was washed with water (2× 20 mL) and dried over magnesium 

sulphate. The solvent was evaporated at room temperature and product was isolated by 

crystallization technique in excellent yield. 

 
3-methyl-5-(methylsulfonyl)-N-phenyl-1H-pyrazole-4-carboxamide (HPMS-1): White 

solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3250, 3230, 3032, 2926, 1647, 1548, 1281 cm-1; 
1H NMR: δ 2.54 (s, 3H, CH3), 3.63 (s, 3H, CH3), 7.11-7.15 (t, 1H, ArH), 7.68-7.73 (m, 2H, 

ArH), 7.83 (d, J=8.1 Hz, 2H, ArH), 9.60 (s, 1H, NH), 12.86 (s, 1H, NH); 13C NMR: δ 12.32, 

46.92, 111.51, 121.38, 132.86, 138.57, 143.02, 154.13, 162.55; MS (m/z): 279 (M+); Anal. 

Calcd for C12H13N3O3S: C, 51.60; H, 4.69; N, 15.05; Found: C, 51.48; H, 4.56; N, 15.12. 

 
N-(4-methylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

2): White solid; Rf 0.35 (6:4 hexane-EtOAc); IR (KBr): 3242, 3211, 3029, 1647, 1596, 1435, 

1247 cm-1; 1H NMR: δ 2.37 (s, 3H, CH3), 2.58 (s, 3H, CH3), 3.66 (s, 3H, CH3), 7.22-7.28 (t, 

2H, ArH), 7.61 (d, J=7.5 Hz, 1H, ArH), 7.63 (J=7.8 Hz. 1H, ArH), 9.79 (s, 1H, NH), 12.97 

(s, 1H, NH); 13C NMR: δ 12.37, 18.26, 46.89, 114.64, 120.03, 121.60, 129.51, 134.27, 

136.27, 138.93, 146.66, 158.36, 161.09; MS (m/z): 293 (M+); Anal. Calcd for C13H15N3O3S: 

C, 53.23; H, 5.15; N, 14.32; Found: C, 53.08; H, 5.13; N, 14.19. 

 
N-(4-methoxyphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

3): White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3252, 3214, 2985, 1675, 1598, 1548, 

1124 cm-1; MS (m/z): 309 (M+); Anal. Calcd for C13H15N3O4S: C, 50.48; H, 4.89; N,  

13.58; Found: C, 50.36; H, 4.73; N, 13.45. 
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N-(4-fluorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

4): White solid; Rf 0.37 (6:4 hexane-EtOAc); IR (KBr): 3242, 3124, 2985, 1658, 1518, 1489, 

1214 cm-1; MS (m/z): 297 (M+); Anal. Calcd for C12H12FN3O3S: C, 48.48; H, 4.07; N, 14.13; 

Found: C, 48.34; H, 3.93; N, 14.03. 

 
N-(2-methoxyphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

5): White solid; Rf 0.37 (7:3 hexane-EtOAc); IR (KBr): 3272, 3164, 2885, 1695, 1527, 1448, 

1264 cm-1; 13C NMR: δ 12.50, 46.98, 55.87, 110.27, 114.64. 120.43, 121.10, 123.60, 128.13, 

138.03, 148.62, 153.12, 161.19; MS (m/z): 309 (M+); Anal. Calcd for C13H15N3O4S: C, 50.48; 

H, 4.89; N, 13.58; Found: C, 50.38; H, 4.79; N, 13.44. 

 
N-(2-methylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

6): White solid; Rf 0.38 (6:4 hexane-EtOAc); IR (KBr): 3233, 3114, 2945, 1675, 1588, 1448, 

1164 cm-1; MS (m/z): 293 (M+); Anal. Calcd for C13H15N3O3S: C, 53.23; H, 5.15; N, 14.32; 

Found: C, 53.11; H, 5.09; N, 14.21. 

 
N-(4-chlorophenyl)-3-methyl-5-(methysulfonyl)-1H-pyrazole-4-carboxamide (HPMS-7): 

White solid; Rf 0.35 (6:4 hexane-EtOAc); IR (KBr): 3252, 3214, 2985, 1675, 1598, 1548, 

1124 cm-1; MS (m/z): 313 (M+); Anal. Calcd for C12H12ClN3O3S: C, 45.94; H, 3.85; N, 13.39; 

Found: C, 45.83; H, 3.74; N, 13.27.  

 
N-(4-ethylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-8): 

White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3242, 3224, 2985, 1676, 1578, 1518, 

1124 cm-1; MS (m/z): 307 (M+); Anal. Calcd for C14H17N3O3S: C, 54.71; H, 5.57; N, 13.67; 

Found: C, 54.64; H, 5.46; N, 13.54. 

 
N-(4-nitrophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-9): 

White solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3256, 3224, 2975, 1685, 1578, 1498, 

1227 cm-1; MS (m/z): 324 (M+); Anal. Calcd for C12H12N4O5S: C, 44.44; H, 3.73; N, 17.28; 

Found: C, 44.32; H, 3.34; N, 17.20. 

 
N-(3-chloro-4-fluorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-10): White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3274, 3104, 2958, 1656, 

1558, 1468, 1224 cm-1; 1H NMR: δ 2.53 (s, 3H, CH3), 3.64 (s, 3H, CH3), 7.12-7.16 (t, 1H, 

ArH), 7.46-7.49 (m, 1H, ArH), 7.96-7.98 (q, 1H, ArH), 9.61 (s, 1H, NH), 12.97 (s, 1H, NH); 
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MS (m/z): 331 (M+); Anal. Calcd for C12H11ClFN3O3S: C, 43.45; H, 3.34; N, 12.67; Found: 

C, 43.34; H, 3.29; N, 12.58. 

 
N-(5-chloro-2-methoxyphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-11): White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3282, 3243, 2985, 1686, 

1554, 1427, 1124 cm-1; MS (m/z): 343 (M+); Anal. Calcd for C13H14ClN3O4S: C, 45.42; H, 

4.10; N, 12.22; Found: C, 45.34; H, 4.03; N, 12.13. 

 
N-(2,5-dichlorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-12): White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3255, 3218, 3085, 1685, 

1598, 1588, 1224, 1147 cm-1; MS (m/z): 348 (M+); Anal. Calcd for C12H11Cl2N3O3S: C, 

41.39; H, 3.18; N, 12.07; Found: C, 41.26; H, 3.04; N, 11.95. 

 
N-(2,5-dimethylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS- 13): White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3251, 3171, 2817, 1735, 

1675, 1448, 1164 cm-1; 1H NMR: δ 2.33 (d, J = 7.6 Hz, 6H), 2.58 (s, 3H), 3.84 (s, 3H), 6.84-

6.87 (q, 1H), 7.08 (d, J = 7.68 Hz, 1H), 7.68 (d, J = 1.28 Hz, 1H), 9.03 (s, 1H), 12.94 (s, 1H); 

IR (KBr): 3254, 3211, 3014, 1715, 1657, 1588, 1467, 1124 cm-1; MS (m/z): 307 (M+); Anal. 

Calcd for C14H17N3O3S: C, 54.71; H, 5.57; N, 13.67; Found: C, 54.64; H, 5.44; N, 13.58. 

 
N-(4-chloro-2-methylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-14): White solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3252, 3214, 2985, 1675, 

1598, 1548, 1124 cm-1; MS (m/z): 327 (M+); Anal. Calcd for C13H14ClN3O3S: C, 47.64; H, 

4.30; N, 12.82; Found: C, 47.51; H, 4.17; N, 12.69. 

 
N-(3,4-difluorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-15): White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3242, 3194, 3085, 1695, 

1587, 1471, 1224 cm-1; MS (m/z): 315 (M+); Anal. Calcd for C12H11F2N3O3S: C, 45.71; H, 

3.52; N, 13.33; Found: C, 45.59; H, 3.38; N, 13.21. 

 
N-(2-chlorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

16): White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3232, 3094, 2865, 1795, 1687, 

1471, 1124 cm-1; MS (m/z): 313 (M+); Anal. Calcd for C12H12ClN3O3S: 45.94; H, 3.85; N, 

13.39; Found: C, 45.84; H, 3.73; N, 13.25. 
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N-(2-fluorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

17): White solid; Rf 0.36 (6:4 hexane-EtOAc); IR (KBr): 3244, 3114, 2955, 1678, 1528, 

1499, 1114 cm-1; MS (m/z): 297 (M+); Anal. Calcd for C12H12FN3O3S: C, 48.48; H, 4.07; N, 

 14.13; Found: C, 48.32; H, 3.91; N, 14.05. 

 
N-(4-bromophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

18): White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3265, 3234, 2915, 1685, 1588, 

1448, 1127 cm-1; MS (m/z): 356 (M+); Anal. Calcd for C12H12BrN3O3S: C, 40.24; H, 3.38; N, 

11.73; Found: C, 40.13; H, 3.27; N, 17.62. 

 
N-(3,4-dichlorophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-19): White solid; Rf 0.30 (6:4 hexane-EtOAc); IR (KBr): 3275, 3118, 3085, 1675, 

1558, 1488, 1224, 1047 cm-1; MS (m/z): 348 (M+); Anal. Calcd for C12H11Cl2N3O3S: C, 

41.39; H, 3.18; N, 12.07; Found: C, 41.34; H, 3.04; N, 11.91. 

 
N-(3-nitrophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

20): White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3255, 3244, 2975, 1665, 1548, 

1498, 1127 cm-1; MS (m/z): 324 (M+); Anal. Calcd for C12H12N4O5S: C, 44.44; H, 3.73; N, 

17.28; Found: C, 44.33; H, 3.31; N, 17.22. 

N-(3-methylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide (HPMS-

21): White solid; Rf 0.37 (6:4 hexane-EtOAc); IR (KBr): 3243, 3154, 2915, 1695, 1578, 

1348, 1364 cm-1; MS (m/z): 293 (M+); Anal. Calcd for C13H15N3O3S: C, 53.23; H, 5.15; N, 

14.32; Found: C, 53.10; H, 5.04; N, 14.20. 

 
N-(2,3-dimethylphenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-22): White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3253, 3174, 2815, 1725, 

1678, 1448, 1164 cm-1; MS (m/z): 307 (M+); Anal. Calcd for C14H17N3O3S: C, 54.71; H, 5.57; 

N, 13.67; Found: C, 54.65; H, 5.43; N, 13.60. 

 
N-(2-methoxy,4-nitrophenyl)-3-methyl-5-(methylsulfonyl)-1H-pyrazole-4-carboxamide 

(HPMS-23): White solid; Rf 0.34 (6:4 hexane-EtOAc); IR (KBr): 3253, 3175, 2805, 1765, 

1678, 1348, 1264, 1174 cm-1; MS (m/z): 354 (M+); Anal. Calcd for C13H14N4O6S: C, 44.06; 

H, 3.98; N, 15.81; Found: C, 44.05; H, 3.83; N, 15.66. 
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1H NMR spectrum of compound 3c 

 
 

Expanded 1H NMR spectrum of compound 3c 
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1H NMR spectrum of compound HPMS-10 

 
  

 1H NMR spectrum of compound HPMS-13 
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13C NMR spectrum of compound-3c 

 
 

 
13C NMR spectrum of HPMS-2 
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13C NMR spectrum of HPMS-5 

 
 

Mass spectrum of compound-1a 
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Mass spectrum of HPMS-4 

 
 

 
Mass spectrum of HPMS-8 
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IR Spectrum of HPMS-1 

 
 

 
IR spectrum HPMS-2 
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Chemical purity of compound HPMS-1 

 
 
 
Chemical purity of compound HPMS-9 
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3.1 INTRODUCTION   

 
Isoxazole is a five member heterocyclic compound having two hetero atoms oxygen 

at position 1 and nitrogen at position 2. In 1888, Claisen et al have first synthesized an 

isoxazole molecule (Figure 1) with the reaction of 1,3-diketone with hydroxylamine.1 

Subsequently a solid foundation for the chemistry of isoxazole was laid down by Claisen and 

his students. It was shown to possess typical properties of an aromatic system but under 

certain reaction conditions. Particularly in reducing or basic media, it becomes very highly 

labile. 

 

N
O

 
Figure 1 

 
The next important contribution to the chemistry of isoxazoles was made by Quelico.2 In 

1945, when he began to study the formation of isoxazoles from nitrile N-oxide and 

unsaturated compounds. 

 
3.2      Biological activity of various substituted isoxazole derivatives 

 The biological activity of substituted isoxazoles3 has made them a focus of medicinal 

chemistry over the years. Isoxazoles are potent, selective agonists at human cloned dopamine 

D4 receptors4 and  exhibit GABAA antagonist,5 analgesic,6 antiinflammatory,6 ulcerogenic,6 

antimicrobial,7 antifungal,7 COX-2 inhibitory,8 antinociceptive,9 and anticancer10 activity. 

 
Cushman M. et al11 have designed benzo[d]isoxazole and oxazolidine-2-one derivatives and 

evaluated as a new series of potent HIV-1 non-nucleoside reverse transcriptase inhibitors 

with anti-HIV activity. The most promising compound in this series was ADAM (Figure 2), 

with EC50 values of 40 μM (vs HIV-1RF) and 20 μM(vs HIV-1IIIB). Methyl 5-((Z)-5- 

(methoxycarbonyl)-1- (3-methoxy-7-methylbenzo [d] isoxazole-5-yl) pent-1-enyl-2-

methoxy-3-methylbenzoate also inhibited HIV-1 reverse transcriptase with an IC50 of 0.91 

μM. ADAM 4 has an antiviral EC50 of 0.6 μM in CEM-SS cells and a plasma half-life of 51.4 

min. 
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Figure 2 

 
HIV-1 is the etiological agent of AIDS, one of the world’s most serious health problems with 

about 33 million people infected worldwide in 2007. The reverse transcriptase (RT) of HIV-1 

is an essential enzyme in HIV replication and has been a key target in anti-AIDS drug 

discovery. The non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine, 

delavirdine, and efavirenz have been approved by the Food and Drug Administration (FDA) 

for the treatment of AIDS.12 They are very useful drugs in combination therapy with 

nucleoside analogues (NRTIs) and protease inhibitors (PIs)13-14 for the treatment of AIDS. 

Recently, the NNRTI etravirine was approved by the FDA for treatment of antiretroviral 

drug-resistant HIV infections. The cytotoxicities of the newly synthesized ADAMs were 

determined along with their abilities to inhibit the cytopathic effect of HIV-1 in cell culture. 

The inhibition of HIV-1 RT by the ADAMs, and their metabolic stabilities in rat plasma were 

also investigated. 

 
Liljefors T. et al15 have synthesized a series of 4-aryl-5-(4-piperidyl)-3-isoxazololes and 

evaluated for GABAA antagonists. The meta-phenyl-substituted compounds and the para-

phenoxy-substituted compound (Figure 3) all display high affinities (Ki = 10-70 nM) and 

antagonist potencies in the low nanomolar range (Ki = 9-10 nM).  
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Figure 3 

 
Shvets N. et al16 were demonstrated that the 2,3,5-substituted perhydropyrrolo[3,4-

d]isoxazole-4,6-dione (Figure 4) derivatives have potent antibacterial activity. The reaction 

involved the cycloaddition reaction of N-methyl-C-arylnitrones with N-substituted 
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maleimides. Most of the compounds exhibited high activity against Enterococcus faecalis 

(ATCC 29212) and Staphylococcus aureus (ATCC 25923). 
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Figure 4 
 

Due to the exceptional anticonvulsant activity displayed by substituted aniline enaminones, 

related pyridine derivatives17 and phenothiazines, the further investigation of various 

aromatic heterocycles was undertaken and found that the isoxazoles are important 

heterocycles for the treatment of convulsant diseases. The reaction of cyclic 1,3-diketo esters 

with  aminoisoxazole derivatives led to a series of potent anti-maximal electroshock 

analogues. Sodium channel binding studies, as well as evaluations against pentylenetetrazol, 

bicuculline, and picrotoxin on isoxazole were all negative, leading to an unknown mechanism 

of action. X-ray diffraction patterns of a representative of the 3-amino series (Figure 5) 

unequivocally display the existence of intramolecular hydrogen bonding of the nitrogen to the 

vinylic proton in the cyclohexene ring, providing a pseudo three ring structure. 
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Figure 5 

 
Giovannoni M. P. et al18 have synthesized a number of arylpiperazinylalkylpyridazinones and 

tested for their analgesic activity. They were observed that many of the tested molecules, at 

the dose of 20 mg kg-1 p.o., showed high antinociceptive activity, in particular, substituted 

lead (Figure 6) a compound which was able to reduce the number of abdominal constrictions 

by more than 50% in writhing test. They were investigated the mechanism of action of this 

compound, which shown that it carries out its analgesic action through the inhibition of 

reuptake of noradrenaline.  
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Christian Peifer et al19 have reported the discovery of isoxazole (Figure 7) as a potent dual 

inhibitor of p38α (IC50= 0.45 μM) and CK1δ (IC50= 0.23 μM). Among the synthesized 

isoxazoles, selected compounds were profiled over 76 kinases and evaluation of their cellular 

efficacy showed 18 (CKP138) to be a highly potent and dual-specific inhibitor of CK1δ and 

p38α. 

 

O
N

N

F

 
Figure 7 

 
In 2006, Johnson & Johnson Pharmaceutical Research & Development20, has been reported 

the synthesis of a series of 7-amino-3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazole 

(Figure 8) derivatives using substituted salisaldehydes and ethyl 4-bromocrotonate. Among 

the synthesized isoxazoles, some of which proved to be the most potent α2-adrenoceptor 

blockers with potent serotonin (5-HT) reuptake inhibiting activity. Serotonin is one of the 

important monoamine for human body and the deficit of 5-HT mainly lead to the depression 
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Figure 8 
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Carr J. B. et al21 have been synthesized a series of highly substituted isoxazoles (Figure 9) 

and screened for anthelmintic activity at doses ranging from 16 to 500 mg/kg orally against 

the rat roundworm, Nlppostrongjlus Erazikensis. They were found that the newly synthesized 

isoxazole derivatives have potent anthelmintic activity. 
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R2 R1

R1= Cl, Br, OH, CH3SO3, CH3CONH2
R2= H, Br, Cl

 
Figure 9 

 

 Biologically active isoxazoles containing alkyl, amide and sulfone groups 

Isoxazoles bearing sulfones and carboxamide moieties demonstrated to have 

significant pharmacological applications. For examples, COX-2 selective inhibitor, 

valdecoxib (Figure 10)22 are currently prescribed for the treatment of arthritis and 

inflammatory diseases. These COX-2 inhibitors exhibited anti-inflammatory activity with 

reduced gastrointestinal side effects. Moreover, oxacillin (Figure 10)23 and its derivatives are 

useful compounds because of their narrow spectrum anti biotic properties. 23 
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Figure 10 

 
Some N-phenyl and N-benzyl-substituted amido (Figure 11) analogs of COX-2 selective 

tricyclic non-steroidal anti-inflammatory drugs have been synthesized by Balsamo A. and 

coworkers24 with the aim to obtain information on the structural requirements for the COX-

inhibitory activity. The newly synthesized compounds were tested in vitro for their inhibitory 

properties only towards COX-2 enzyme by measuring prostaglandin E2 (PGE2) production 

on activated J774.2 macrophages. Some of the new compounds showed a modest activity, 

with percentage inhibition values near 30% at a concentration of 10 μM. The biological data 

was indicates that the N-phenyl-substituted amides present in isoxazole moiety with steric 

hindrances may prevent a good interaction with COX-2 active site. 
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Aldo Balsamo et al24 have reported several heteroaromatic analogs of (2-aryl-1-

cyclopentenyl-1-alkylidene)-(arylmethyloxy)amine COX-2 inhibitors (Figure 12), in which 

the cyclopentene moiety was replaced by pyrazole, thiophene or isoxazole ring, were 

synthesized, in order to verify the influence of the different nature of the central core on the 

COX inhibitory properties of these kinds of molecules. Among the compounds tested, only 

the 3-(p-methylsulfonylphenyl) substituted thiophene derivatives, showed a certain COX-2 

inhibitory activity, accompanied by an appreciable COX-2 versus COX-1 selectivity. Only 

one of the 1-(p-methylsulfonylphenyl) pyrazole compounds displayed a modest inhibitory 

activity towards both type of isoenzymes, while the pyrazole 1-(p-aminosulfonylphenyl) 

substituted proved to be significantly active only towards COX-1. All the isoxazole 

derivatives were inactive on both COX isoforms. 
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Figure 12 

 
Habeeb A. G. et al25 were also reported the synthesis of 4,5-diphenyl-4-isoxazolines (Figure 

13) possessing a variety of substituents (H, F, MeS, MeSO2) at the para-position of one of 

the phenyl rings and evaluated as analgesic and selective COX-2 inhibitory anti-

inflammatory agents. Although the 4,5-phenyl-4-isoxazolines (Figure 13), which do not have 

a methyl at C3, exhibited potent analgesic and anti-inflammatroy activities, those compounds 

evaluated  were not selective inhibitors of COX-2. In contrast, 2,3-dimethyl-5-(4-

methylsulfonylphenyl)-4-phenyl-4-isoxazoline exhibited excellent analgesic and anti-

inflammatory activities, and it was a potent and selective COX-2 inhibitor (COX-1, IC50) 258 

μM; COX-2, IC50) 0.004 μM).  



Chapter 3                                                                                                     Library of Trifunctionalized Isoxazoles  
  

 
Studies on Bioactive Heterocycles 
   

88
 

O
N

Me

R1

R2

R3

R1= H, Me
R2, R3=H, F, SMe, SO2Me

 
Figure 13 

 
A fluoro substituent at the para position of the 4-phenyl ring was also a selective (SI =3162) 

but less potent (IC50 =0.0316 μM) inhibitor of COX-2 than 2,3-dihydro-2,3-dimethyl-5-(4-

(methylsulfonyl)phenyl)-4-phenylisoxazole. A molecular modeling for 4-(4-fluorophenyl)-

2,3-dihydro-2,3-dimethyl-5-(4-(methylsulfonyl)phenyl)-4-phenylisoxazole showed that the S 

atom of the MeSO2 substituent is positioned about 6.46 Å  inside the entrance to the COX-2 

secondary pocket (Val523) and that a C3 Me (2,3-dihydro-2,3-dimethyl-5-(4-

(methylsulfonyl)phenyl)-4-phenylisoxazole, 4-(4-fluorophenyl)-2,3-dihydro-2,3dimethyl-5-

(4-(methylsulfonyl)phenyl)-4-phenylisoxazole) central isoxazoline ring substituent is crucial 

to selective inhibition of COX-2 for this class of compounds. 

 
Talley J. J. et al26 have synthesized sodium salt of N-[[(5-Methyl-3-phenylisoxazol-4-yl)- 

phenyl]sulfonyl]propanamide, parecoxib sodium (Figure 14) and evaluated as a potent and 

selective inhibitor of COX-2 for parenteral administration. 
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Figure 14 

 
Among the most potent and selective COX-2 inhibitors that have been identified is the 

isoxazole sulfonamide valdecoxib (Figure 10). In addition, sulfonamide valdecoxib 

possesses exceptional anti-inflammatory activity in vivo.27 Talley et al have developed an 

injectable COX-2 inhibitor with a water-soluble prodrug of sulfonamide valdecoxib that 

would undergo biotransformation in vivo.  
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Moreover, the 3-substituted phenyl-5-isoxazolecarboxaldehydes28 has been identified as 

activated aldehydes for the generation of isoxazole-based combinatorial libraries on solid 

phase through automation. Three highly functionalized isoxazole-based libraries (Figure 15) 

comprising of  compounds each have been synthesized in parallel format using Baylis 

Hillman reaction, Michael addition, reductive amination and alkylation reactions. With an 

objective of lead generation all the three libraries were evaluated for their antithrombin 

activity in vivo. All the compounds obtained were evaluated for their antithrombotic activity 

in vivo.  Swiss mice (20–25 g, from CDRI animal colony) were used in a group of at least 10 

animals each. Thrombosis was induced by infusion of a mixture of 15 mg collagen and 5 mg 

adrenaline in a volume of 100 mL into the tail vein of each mouse. The compounds were 

administered at 30 μmol/kg by oral route 1 h prior to the thrombotic challenge. The 

antithrombotic effects of these compounds were assessed by the percentage protection 

offered by these agents to mice from death or paralysis following thrombotic challenge using 

aspirin as a standard. 
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Figure 15 

 
Pruitt J. R. et al29 have evaluated trisubstituted isoxazoles for their in vitro and in vivo 

antithrombotic efficacy. They were compared to trisubstituted isoxazolines (Figure 16) for 

Factor Xa selectivity and potency. They were also compared in an arterio-venous (A-V) shunt 

model of thrombosis. Factor Xa (fXa) catalyzes the production of thrombin from prothrombin 

and sits at the junction of the intrinsic and extrinsic pathways of the coagulation cascade. It 

has recently been suggested that fXa inhibitors may be more effective as antithrombotic 

agents than direct inhibitors of thrombin and may have less bleeding risk, leading to a better 

safety-efficacy ratio. 
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Some of the biological activities described to isoxazole derivatives includes PAF antagonist, 

hypolipidemic, nootropic, immunomodulator, antiobesity and CNS modulation.30 The 

substituted isoxazoles, are also considered to be important synthons due to their versatility 

towards chemical transformations to useful synthetic intermediates such as 1,3-dicarbonyl, 

1,3-iminocarbonyl and γ-amino alcohols. The significance of this class of molecules gets 

further impetus due to their involvement as intermediates in the synthesis of various natural 

products.31  

 

3.3       Synthesis of functionalized isoxazoles using various synthetic approaches. 

 Isoxazoles can be synthesized by various methods, which are described as under. 

 
Tweedie S. R. et al.32 have synthesized a palladium-catalyzed couplings of heteroaryl amines 

with aryl halides using sodium phenolate as the stoichiometric base (Figure 17). 
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Figure 17 

 
Yavari I. et al.33

 were synthesized isoxazole derivatives (Figure 18) through the reaction of 

activated acetylenes and alkyl 2-nitroethanoates in the presence of triphenylphosphine. 

 

PPh3
COMe

COMe
EtO

O

NO2

P(Ph)3

reflux
O

N

MeOC CO2Et

MeOC
 

Figure 18 
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Burkhart D. J. et al.34 have synthesized the 4-acetyl-5-methyl-3-isoxazoyl carboxylate 

(Figure 19) by the reaction of α-halo oxime with 1,4-diketone in presence of base. Further, 

the isoxazole smoothly lithiated at the 5-methyl position and followed by quenched the anion 

with a variety of electrophiles such as alkyl halides, aldehyde, TMSCl and Me3SnCl in good 

to excellent yields. 
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Figure 19 

 
Suzuki K. et al.35 have synthesized functionalized isoxazole derivatives (Figure 20) by 

cyclocondensation of C-chlorooximes with cyclic 1,3-diketones in the presence of base. 
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Figure 20 
 

Lauten M. et al.36 have synthesized highly substituted isoxazole derivatives (Figure 21) by 

the reaction of N-acetoacetyl derivatives and hydroxyl amine hydrochloride in methanol 

using sodium acetate. 
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Figure 21 

 
Kislyi V. P. et al.37 were prepared 4-amino-5-benzoyl (acetyl) isoxazole-3-carboxamides 

(Figure 22) by the cyclization of α-hydroxyimino nitriles o-alkylated with bromo 

acetophenones (bromoacetone) in presence of lithium salt.  
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Figure 22 
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Holzer W. et al.38 have synthesized 1,3-disubstituted 4-benzoyl-5-hydroxypyrazoles with 

phosphorusoxytrichloride affords the corresponding 4-benzoyl-5-chloropyrazoles. Reaction 

of the latter with hydroxylamine leads to oximes, which can be cyclized to novel 3-phenyl-

6H-pyrazolo [4, 3-d] isoxazoles (Figure 23) by treatment with sodium hydride in 

dimethylformamide. 
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Figure 23 

 
Bourbeau M. P. et al.39 have synthesized series of 4-alkyl-5-aminoisoxazoles (Figure 24) in 

high yield by nucleophilic addition of lithiated alkyl nitriles to α-chlorooximes. The scope 

and limitations of this reaction were examined by varying the nature of the nitrile and 

chloride oxime. 
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Figure 24 

 
Recentyl, Dong D. and coworkers40 have developed an efficient and divergent synthesis of 

highly substituted isoxzoles using cyclopropyl oximes (Figure 25). Under Vilsmeier 

conditions (POCl3/CH2Cl2), substituted isoxazoles were synthesized from 1-carbamoyl, 1-

oximyl cyclopropanes via sequential ring-opening, chlorovinylation, and intramolecular aza-

cyclization. 
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Duan H. et al.41 have reported a catalytic cascade synthesis of isoxazoline-N-oxide (Figure 

26) through proline-catalyzed nitroalkene activation. A large substrate scope was obtained 
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with good to excellent yields. Mechanistic studies were revealed that intramolecular 

cyclization as the rate-determining step, giving only trans isomers in all cases. 
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Figure 26 

 
Daidone G. et al.42 were obtained N-(5-methylisoxazol-3-yl)-2-aminobenzamide derivatives 

(Figure 27) starting from the 2-nitroaroyl chlorides and 3-amino-5-methylisoxazole in 

presence of stannous chloride and hydrochloric acid.  
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Figure 27 
 

In 1995, Junjuppa H. et al43 have synthesized some novel isoxazole fused estrone (Figure 28) 
derivatives via α-oxoketene dithioacetal.  
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Figure 28 

 
Moreover, 10,11-Dihydro-11-[bis(methylthio)methylene]dibenzoxepin-10-one (I) has been 

utilized as a useful three carbon synthon for the efficient regiospecific annulation of a 

isoxazole derivatives (Figure 29) by Junjappa H. and coworkers.44 The reaction involves 

cyclocondensation of I with hydroxylamine in EtOH/NaOEt gave 72% fused isoxazoles. 
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Kuettel S. et al45 have synthesized 4-(3-phenylisoxazol-5-yl)morpholine derivatives (Figure 

30) by two synthetic routes, in which substituted acetophenones were reacted with carbon 

disulfide and methyl iodide in the presence of sodium hydride to give 4-phenoxyphenyl-2,2-

bis(methylthio)vinylketones, followed by in situ cyclization of the resulting N,S-acetals with 

hydroxylamine. 
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Figure 30 

 
Mahata P. K. et al46 have synthesized 3-dimethoxymethyl-5-(methylthio) isoxazole 

derivatives (Figure 31) with mask or unmask aldehyde functionality by cyclocondensation 

reaction of 1,1-dimethoxy-4,4-bis(methylthio)but-3-en-2-one as three carbon synthon with 

hydroxylamine in alcohol. 
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Figure 31 

 
Dieter R. K. et al47 have demonstrated that α-oxoketene dithioacetals derived from various 

aliphatic or aromatic ketones afforded oximes, upon treatment with hydroxylamine in ethanol 

at reflux. They were further converted the oximes into isoxazoles upon treatment with 

Amberlyst 15 ion exchange resin (Figure 32). 
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 Synthesis of functionalized isoxazoles using combinatorial chemistry approach. 

Recently, Tu S. J. et al48 have developed a series of new polycyclic-fused isoxazole 

[5,4-b]pyridines (Figure 33) through a one-pot tandem reaction under microwave irradiation 

in water without any use of additional reagent or catalyst. The synthetic protocol represents a 

green one and makes this methodology suitable for library synthesis in drug discovery efforts.  
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Figure 33 

 
Laborde E. et al49 have developed an efficient three-component, two-step “catch and release” 

solid-phase synthesis of 3,4,5-trisubstituted isoxazoles (Figure 34). The reaction involves a 

base-promoted condensation of a 2-sulfonyl acetonitrile derivative 1 with an isothiocyanate 2 

and in situ immobilization of the resulting thiolate anion 3 on Merrifield resin. Reaction of 

the resin-bound sulfonyl intermediate 4 with hydroxylamine, followed by release from the 

resin and intramoleculer cyclization, afforded 3,5-diamino-4-(arylsulfonyl)-isoxazoles 5. 

However, this methodology has some drawback such as; long reaction time, isolation of 

product and high reaction temperature.  
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Figure 34 

 
In 2008, Waldo J. P. et al50 have reported solution phase synthesis of a diverse library of 

highly substituted isoxazoles (Figure 35). The reaction involved iodocyclization of o-

methyloximes of 2-alkyn-1-ones affords 4-iodoisoxazoles, which undergo various palladium-

catalyzed reactions to yielded 3,4,5-trisubstituted isoxazoles. The palladium-catalyzed 

processes have been adapted to parallel synthesis utilizing commercially available boronic 

acid, acetylene, styrene, and amine sublibraries. Accordingly, a diverse 51-member library of  

3,4,5-trisubstituted isoxazoles has been generated. 
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Kurth M. J. et al51 have constructed a library of 3-Aryl-4,5-dihydroisoxazole-5-carboxamides 

(Figure 36). They were investigated the reaction order (nitrile oxide 1,3-dipolar 

cycloaddition followed by amide formation, or vice versa) both experimentally and 

computationally to determine which route would result in the highest yields, minimize 

purification efforts, and give higher 1,3-dipolar cycloaddition regioselectivity.  
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In addition, Taddei M. et al.52 have developed libraries of substituted isoxazole through in- 

situ generation of polymer-bound enaminones (Figure 37). The synthetic protocol makes use 

of commercially available aniline cellulose, a low-cost and versatile biopolymer, under very 

mild conditions. This new support allowed carrying out reactions in polar solvents under both 

conventional heating and MW irradiation without degradation of the polymer. The reaction 

between cellulose-bound enaminones and hydroxylamine to afford the target heterocycles in 

high yields directly in solution is the key step. The support can be conveniently recycled. 
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Figure 37 
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3.4 CURRENT RESEARCH WORK 

 
The isoxazole nucleus is present in a wide range of biologically interesting molecules, which 

show anti HIV, analgesic, anti-inflammatory, antibacterial, hypoglycemic, sedative-hypnotic 

activities.3-21 As we discussed, the remarkable biological potential of the sulfone group and 

carboxamide group bearing isoxazole scaffolds have attracted many chemists to synthesize 

this class of molecules. Thus, continuous efforts have been devoted to the development of 

more general and versatile synthetic methodologies for this class of compounds. Many 

research groups have been synthesized isoxazole derivatives using various methods. 

However, the existing methods suffered with some drawbacks such as; long reaction time, 

product isolation, etc. Thus, the practical synthesis of structurally diverse isoxazole based 

small molecules is of great significance. 

 
Nowadays, a great deal of effort has been focused on the field of green chemistry in adopting 

methods and processes. As a part of this “green” concept, toxic and/or flammable organic 

solvents are replaced by alternative non-toxic and nonflammable media. In this context, many 

efforts have been made to use aqueous media. Among alternative green solvents, water has 

been the solvent of choice for a variety of transformations. On the other hand; functionalized 

ketene dithioacetals are versatile intermediates in organic synthesis for the construction of 

substituted heterocycles. Given the importance of sulfone and carboxamide groups containing 

isoxazoles, and our ongoing interest on the synthesis various bioactive heterocycles using 

novel ketene dithioacetals starting from acetoacetanilides, encouraged us to utilized these 

ketene dithioacetals for the construction of small molecule library of 3-methyl-5-

(methylsulfonyl)-N-arylisoxazole-4-carboxamide derivatives in aqueous medium. The newly 

synthesized compounds were characterized by IR, Mass, 1H NMR, 13C NMR spectroscopy 

and elemental analysis. The biological screening of the synthesized compounds is under 

process. The chemical purity of all the synthesized compounds was examined by UPLC. 
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3.5 RESULTS AND DISCUSSION 

 
 Various substituted 3-oxo-N-arylbutanamide were prepared by refluxing substituted 

amines and ethyl acetoacetate in toluene with a catalytic amount of NaOH or KOH (Scheme 

1). The reaction mixtures were refluxed for 12-15 h. The synthesized acetoacetanilides were 

further converted to 2-(bis(methylthio)methylene)-3-oxo-N-arylbutanamide 1a-w through the 

reaction with carbon disulfide, base and followed by methylation.  

 

Scheme 1: Synthesis of various acetoacetanilides  
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Scheme 2: Water mediated synthesis of isoxazoles containing methyl, sulfone and 
carboxamide groups 
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Under the optimized condition (described in chapter 3), the various  ketene dithioacetals were 

reacted with hydroxyl amine hydrochloride 2 and potassium hydroxide to furnished 

isoxazoles in excellent yields using water as a solvent. (Scheme 2, Table 1). The synthesized 

compounds were characterized by spectral data. In the 1H NMR of isoxazole 3b a 

characteristic singlet for amide proton appeared at δ 9.19 and hydrogen of methylthio group 

displayed a singlet at δ 2.63. 
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Table 1: 3-mehtyl, 5-methylthio, 4-carboxamide substituted isoxazoles. 
 

Entry R Time h Yield % mp ºC 

3a Ph 2.5 94 135-137 

3b 4-CH3Ph 2.8 92 141-142 

3c 4-OCH3Ph 3.0 92 128-130 

3d 4-FPh 3.2 90 142-144 

3e 2-OCH3Ph 2.6 88 136-138 

3f 2-CH3 3.0 87 133-135 

3g 4-ClPh 2.9 89 145-147 

3h 4-EtPh 3.3 90 147-148 

3i 4-NO2Ph  2.5 87 149-151 

3j 3-Cl,4-FPh 3.4 88 134-136 

3k 5-Cl,2-OCH3Ph 3.6 90 151-153 

3l 2,5-diClPh 2.8 89 142-144 

3m 2,5-diCH3Ph 2.9 98 136-138 

3n 4-Cl,2-CH3Ph 3.0 87 137-139 

3o 3,4-diFPh 3.2 91 146-148 

3p 2-ClPh 3.1 94 142-144 

3q 2-FPh 3.3 96 140-142 

3r 4-BrPh 3.5 95 151-153 

3s 3,4-diClPh 2.8 90 137-139 

3t 3-NO2Ph 3.2 88 125-127 

3u 3-CH3Ph 3.0 94 130-132 

3v 2,3-diCH3Ph 3.7 85 138-140 

3w 2-OCH3,4-NO2Ph 2.8 96 124-126 

 
 

As we described the significant utility of sulfone group in medicinal chemistry and to develop 

library of isoxazole functionalized with alkyl, carboxamide and sulfone groups, we next 

planned to oxidize the sulfides to sulfones. With the optimized condition in hand for 
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oxidation, all the isoxazoles were oxidized to make sulfone group containing isoxazole 

derivatives and the results are gather in table 2. 

 
 
Table 2: 3-mehtyl, 5-sulfone, 4-carboxamide functionalized library of isoxazoles. 
 

Entry R Time min Yield % mp ºC 

OPMS-1 Ph 60 94 186-188 

OPMS-2 4-CH3Ph 50 95 192-194 

OPMS-3 4-OCH3Ph 60 93 188-190 

OPMS-4 4-FPh 55 91 191-193 

OPMS-5 2-OCH3Ph 65 94 184-186 

OPMS-6 2-CH3 55 96 179-181 

OPMS-7 4-ClPh 60 92 185-187 

OPMS-8 4-EtPh 65 95 192-194 

OPMS-9 4-NO2Ph  60 93 196-198 

OPMS-10 3-Cl,4-FPh 55 92 188-190 

OPMS-11 5-Cl,2-OCH3Ph 55 91 195-197 

OPMS-12 2,5-diClPh 60 90 188-190 

OPMS-13 2,5-diCH3Ph 55 91 181-183 

OPMS-14 4-Cl,2-CH3Ph 50 88 187-189 

OPMS-15 3,4-diFPh 65 89 189-191 

OPMS-16 2-ClPh 60 93 191-192 

OPMS-17 2-FPh 55 87 182-184 

OPMS-18 4-BrPh 65 85 162-164 

OPMS-19 3,4-diClPh 60 82 155-157 

OPMS-20 3-NO2Ph 60 90 164-166 

OPMS-21 3-CH3Ph 65 94 185-187 

OPMS-22 2,3-diCH3Ph 60 92 188-190 

OPMS-23 2-OCH3,4-NO2Ph 55 97 172-174 
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The chemical purity of all the newly synthesized compounds was examined using UPLC. 

Among all the final compounds, compound OPMS 12 has shown less than 95% chemical 

purity and other shown more than 95% chemical purity (Figure 38). The 1H NMR of 

compound OPMS-1 displayed a characteristic singlet for amide proton at δ 9.88 and two 

singlets for methyl and mehtylthio hydrogen, respectively, at δ 2.69 and 3.33. The overall 

study indicates that this is the simple and facile methodology to introduce sulfone and 

caboxamide group to isoxazole scaffold in excellent yield and chemical purity. 
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Figure 38: Chemical purity of trifunctionalized isoxazoles using UPLC 

 

In ketene dithioacetal system the carbonyl carbon and β-carbon atoms regarded as hard and 

soft electrophilic centers, since the carbonyl carbon is adjacent to the hard-base oxygen while 

the β-carbon is flanked by the soft-base methylthio groups. Thus, the nucleophile of 

hydroxylamine hydrochloride attack on β-carbon of systems and formed heterocyclic product 

by removal of methylthio group as good leaving group (Figure 39).   
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Figure 39: Mechanism for the formation of Isoxazole. 
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3.6 CONCLUSION 

 
In Summary, we have synthesized solution-phase library of isoxazoles functionalized with 

methyl, sulfone and carboxamide moieties in two steps with excellent yield and chemical 

purity for medicinally interesting molecules. Water was emerged as an efficient and green 

solvent in the condensation reaction of various ketene dithioacetals with hydroxyl amine 

hydrochloride. Further, the facile synthesis of isoxazole containing sulfone group was 

achieved via oxidation of sulfide to sulfone. SPB was more efficient and effective oxidizing 

agent for oxidation of sulfide to sulfone in aqueous medium. This procedure offers a good 

scope for the synthesis of a wide variety of isoxazoles containing caboxamide and sulfone in 

two steps.  
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3.7 EXPERIMENTAL SECTION 

 
 Melting points were determined in open capillaries and are uncorrected. Thin-layer 

chromatography was accomplished on 0.2-mm precoated plates of silica gel G60 F254 

(Merck). Visualization was made with UV light (254 and 365nm) or with an iodine vapor. IR 

spectra were recorded on a FTIR-8400 spectrophotometer using DRS prob. 1H (400 MHz) 

and 13C (100 MHz) NMR spectra were recorded on a Bruker AVANCE II spectrometer in 

CDCl3. Chemical shifts are expressed in δ ppm downfield from TMS as an internal standard. 

Mass spectra were determined using direct inlet probe on a GCMS-QP 2010 mass 

spectrometer (Shimadzu). Solvents were evaporated with a BUCHI rotary evaporator. 

Chemical purity was determined on Waters Acquity UPLC with PDA Detector using Acquity 

BEH C18, 50 × 2.1, 1.7µm column at 210-400nm. 

 

 Gradient Program for UPLC: (Same as chapter 2)  

 General synthesis of 3-oxo-N-arylbutanamide AAA 1-23. 

 A mixture containing the primary amine (10 mmol), ethyl acetoacetate (10 mmol), 

and catalytic amount of sodium or potassium hydroxide lie (10 %) was reflux at 110 oC for 

the approximately 12-15 h. The reaction was monitored by TLC. After completion of 

reaction, the solvent was removed under vaccuo and the solid or oil was crystallized from 

methanol which afforded pure products.  

 
 General procedure for the synthesis of trisubstituted isoxzoles 3a-w. 

To a well stirred solution of hydroxyl amine hydrochloride (15 mmol), potassium 

hydroxide (15 mmol) in water (25 mL) was added suspension of various ketene dithioacetals 

1a-w and refluxed the resulting mixture for appropriate time (Table 1) with constant stirring. 

After completion of the reaction, the reaction mixture was allowed to come to room 

temperature and add cold water (50 mL). The separated suspension was filtered, washed with 

water (2 × 50 mL), dried and crystallized from methanol to afford analytically pure products 

which were used for next step without further purification. 

 
 General procedure for the oxidation of sulfide to sulfones OPMS 1-23. 

The appropriate compound 3a-w (6 mmol) in water (15 mL) was added sodium per 

borate (18 mmol) and the resulting mixture was then heated to reflux for appropriate time 

(Table 2). The mixture was cooled to room temperature and extracted with ethyl acetate (2 × 

15 mL). The organic layer was washed with water (2× 20 mL) and dried over magnesium 
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sulphate. The solvent was evaporated at room temperature and product was isolated by 

crystallization technique in excellent yield. 

 
3-methyl-5-(methylsulfonyl)-N-phenylisoxazole-4-carboxamide (OPMS-1): White solid; 

Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3207, 2922, 1647, 1496, 1406, 1207 cm-1;  1H NMR: 

δ 2.69(s, 3H, CH3), 3..33 (s, 3H, CH3), 7.09-7.15 (q, 1H, ArH), 7.66-7.73 (t, 2H, ArH), 7.75-

7.97 (t, 2H, ArH), 9.88 (s, 1H, NH); 13C NMR: δ 12.47, 40.97, 111.18, 121.41, 122.76, 

132.52, 132.24, 140.19, 159.75, 169.74; MS (m/z): 280 (M+); Anal. Calcd for C12H12N2O4S: 

C, 51.42; H, 4.32; N, 9.99; Found: C, 51.29; H, 4.24; N, 9.89.  

 
N-(4-methylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-2): 

White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3275, 2822, 1687, 1526, 1406, 1284 cm-

1; 1H NMR: δ 2.32 (s, 3H, CH3), 2.69 (s, 3H, CH3), 3.32 (s, 3H, CH3), 7.13-7.16 (q, 2H, 

ArH), 7.52-7.56 (t, 2H, ArH), 9.79 (s, 1H, NH); 13C NMR: δ 12.43, 25.99, 40.59, 111.38, 

124.74, 124.95, 132.59, 137.43, 138.16, 138.24, 142.32, 159.47, 159.98, 169.05, 169.96; MS 

(m/z): 294 (M+); Anal. Calcd for C13H14N2O4S: C, 53.05; H, 4.79; N, 9.52; Found: C, 53.06; 

H, 4.65; N, 9.44. 

 
N-(4-methoxyphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-3): 

White solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3319, 3034, 1663, 1514, 1423, 1251 cm-

1; MS (m/z): 310 (M+); Anal. Calcd for C13H14N2O5S: C, 50.31; H, 4.55; N, 9.03; Found: C, 

50.27; H, 4.43; N, 9.09. 

 
N-(4-fluorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-4): 

White solid; Rf 0.36 (6:4 hexane-EtOAc); IR (KBr): 3210, 2921, 1675, 1547, 1458, 1284, 

1105 cm-1; MS (m/z): 298 (M+); Anal. Calcd for C12H11FN2O4S: C, 48.32; H, 3.72; N, 9.39; 

Found: C, 48.21; H, 3.60; N, 9.31. 

 
N-(2-methoxyphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-5): 

White solid; Rf 0.34 (6:4 hexane-EtOAc); IR (KBr): 3266, 2741, 1674, 1529, 1444, 1124 cm-

1; MS (m/z): 310 (M+); Anal. Calcd for C13H14N2O5S: C, 50.31; H, 4.55; N, 9.03; Found: C, 

50.29; H, 4.44; N, 9.07. 

 
N-(2-methylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-6): 

White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3314, 2844, 1714, 1629, 1481, 1224 cm-
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1; MS (m/z): 294 (M+); Anal. Calcd for C13H14N2O4S: C, 53.05; H, 4.79; N, 9.52; Found: C, 

53.03; H, 4.67; N, 9.45. 

 
N-(4-chlorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-7): 

White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3214, 2787, 1841, 1681, 1482, 1124 cm-

1; MS (m/z): 314 (M+); Anal. Calcd for C12H11ClN2O4S: C, 45.79; H, 3.52; N, 8.90; Found: C, 

45.71; H, 3.43; N, 8.82.  

 
N-(4-ethylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-8): 

White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3334, 2781, 1681, 1481, 1242 cm-1; MS 

 (m/z): 308 (M+); Anal. Calcd for C14H16N2O4S: C, 54.53; H, 5.23; N, 9.08; Found: C, 54.41; 

H, 5.11; N, 8.98. 

 
N-(4-nitrophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-9): 

White solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3215, 2741, 1658, 1511, 1411, 1174 cm-

1; 13C NMR: δ 13.24, 40.41, 113.38, 125.51, 127.43, 132.39, 135.06, 136.40, 141.56, 144.50, 

164.49, 171.75; MS (m/z): 325 (M+); Anal. Calcd for C12H11N3O6S: C, 44.31; H, 3.41; N, 

12.92; Found: C, 44.20; H, 3.29; N, 12.81. 

 
N-(3-chloro-4-fluorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide 

(OPMS-10): White solid; Rf 0.54 (7:3 hexane-EtOAc); IR (KBr): 3210, 2754, 1711, 1629, 

1511, 1124 cm-1; MS (m/z): 332 (M+); Anal. Calcd for C12H10ClFN2O4S: C, 43.32; H, 3.03; 

N, 8.42; Found: C, 43.19; H, 2.90; N, 8.44. 

 
N-(5-chloro-2-methoxyphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide 

(OPMS-11): White solid; Rf 0.34 (6:4 hexane-EtOAc); IR (KBr): 3114, 2914, 1619, 1577, 

1481, 1141 cm-1; MS (m/z): 344 (M+); Anal. Calcd for C13H13ClN2O5S: C, 45.29; H, 3.80; N, 

8.13; Found: C, 45.16; H, 3.71; N, 8.08. 

 
N-(2,5-dichlorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-

12): White solid; Rf 0.51 (7:3 hexane-EtOAc); IR (KBr): 3210, 2754, 1681, 1229, 1581, 1142 

cm-1; MS (m/z): 349 (M+); Anal. Calcd for C12H10Cl2N2O4S: C, 41.28; H, 2.89; N, 8.02; 

Found: C, 41.19; H, 2.76; N, 7.92. 

 
N-(2,5-dimethylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-

13): White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3110, 2741, 1617, 1529, 1311, 1124 
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cm-1; MS (m/z): 308 (M+); Anal. Calcd for C14H16N2O4S: C, 54.53; H, 5.23; N, 9.08 Found: 

C, 54.44; H, 5.10; N, 8.97. 

 
N-(4-chloro-2-methylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide 

(OPMS-14): White solid; Rf 0.34 (6:4 hexane-EtOAc); IR (KBr): 3224, 2871, 1658, 1519, 

1311, 1121 cm-1; MS (m/z): 328 (M+); Anal. Calcd for C13H13ClN2O4S: C, 47.49; H, 3.99; N, 

8.52; Found: C, 47.38; H, 3.87; N, 8.39. 

 
N-(3,4-difluorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-

15): White solid; Rf 0.32 (6:4 hexane-EtOAc); IR (KBr): 3147, 2871, 1611, 1531, 1321, 1124 

cm-1; MS (m/z): 316 (M+); Anal. Calcd for C12H10F2N2O4S: C, 45.57; H, 3.19; N, 8.86; 

Found: C, 45.44; H, 3.07; N, 8.72. 

 
N-(2-chlorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-16): 

White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3221, 2851, 1895, 1684, 1371, 1118 cm-

1; MS (m/z): 314 (M+); Anal. Calcd for C12H11ClN2O4S: 45.79 H, 3.52; N, 8.90; Found: C, 

45.84; H, 3.43; N, 8.85. 

 
N-(2-fluorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-17): 

White solid; Rf 0.35 (6:4 hexane-EtOAc); IR (KBr): 3247, 2851, 1678, 1499, 1281, 1245 cm-

1; MS (m/z): 298 (M+); Anal. Calcd for C12H11FN2O4S: C, 48.32; H, 3.72; N, 9.39; Found: C, 

48.21; H, 3.61; N, 9.27. 

 
N-(4-bromophenyl)-3-methyl-5-(methylsulfonyl) isoxazole-4-carboxamide (OPMS-18): 

White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3277, 2811, 1581, 1448, 1227 cm-1; MS 

(m/z): 359 (M+); Anal. Calcd for C12H11BrN2O4S: C, 40.13; H, 3.09; N, 7.80; Found: C, 

40.11; H, 3.07; N, 7.68. 

 
N-(3,4-dichlorophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-

19): White solid; Rf 0.29 (6:4 hexane-EtOAc); IR (KBr): 3182, 2841, 1675, 1458, 1368, 1147 

cm-1; MS (m/z): 349 (M+); Anal. Calcd for C12H10Cl2N2O4S: C, 41.28; H, 2.89; N, 8.02; 

Found: C, 41.14; H, 2.75; N, 8.11. 

 
N-(3-nitrophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-20): 

White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3265, 2835, 1679, 1428, 1221 cm-1; MS 
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(m/z): 325 (M+); Anal. Calcd for C12H11N3O6S: C, 44.31; H, 3.41; N, 12.92; Found: C, 44.22; 

H, 3.30; N, 12.82. 

 
N-(3-methylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-21): 

White solid; Rf 0.34 (6:4 hexane-EtOAc); IR (KBr): 3243, 2813, 1685, 1477, 1118 cm-1; MS 

(m/z): 294 (M+); Anal. Calcd for C13H14N2O4S: C, 53.05; H, 4.79; N, 9.92; Found: C, 52.92; 

H, 4.66; N, 9.84. 

 
N-(2,3-dimethylphenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide (OPMS-

22): White solid; Rf 0.33 (6:4 hexane-EtOAc); IR (KBr): 3274, 2817, 1688, 1478, 1311, 1264 

cm-1; MS (m/z): 308 (M+); Anal. Calcd for C14H16N2O4S: C, 54.53; H, 5.23; N, 9.08; Found: 

C, 54.45; H, 5.21; N, 8.98. 

 
N-(2-methoxy,4-nitrophenyl)-3-methyl-5-(methylsulfonyl)isoxazole-4-carboxamide 

(OPMS-23): White solid; Rf 0.31 (6:4 hexane-EtOAc); IR (KBr): 3157, 2872, 1765, 1668, 

1348, 1274 cm-1; MS (m/z): 355 (M+); Anal. Calcd for C13H13N3O7S: C, 43.94; H, 3.69; N, 

11.83; Found: C, 43.81; H, 3.55; N, 11.71. 
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1H NMR spectrum of 3a 

 
 

 

1H NMR spectrum of 3b 
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Expanded 1H NMR spectrum of 3b  

 
 

1H NMR spectrum OPMS-1 
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1H NMR spectrum of OPMS-2 

 
 

13C NMR of compound OPMS-2 
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13C NMR spectrum OPMS-9 

 
 

Mass spectrum of 3h 
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Mass spectrum of 3i 

 
 

Mass spectrum of 3k 
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Mass spectrum of OPMS-1 

 
 

Mass spectrum OPMS-3 
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Mass spectrum of OPMS-10 

 
 

IR spectrum of OPMS-1 
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IR spectrum of OPMS-3 

 
 
Chemical purity of OPMS-2 
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Chemical purity of OPMS-6 
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4.1 INTRODUCTION 

 
Flavonoids are a group of polyphenolic compounds, which are widely distributed 

through out the plant kingdom. To date about 3000 varieties of flovonoids are known.1 

Flavonoids occur as aglycones, glycosides and methylated derivatives. The flavonoid 

aglycone consists of a benzene ring (A) condensed with a sixmembered ring (C), which in the 

2-position carries a phenyl ring (B) as a substituent (Figure 1). Six-member ring condensed 

with the benzene ring is either a γ-pyrone (chromenols 3 and chromenones 4) or its 

dihydroderivative (1, 2). The position of the benzenoid substituent divides the flavonoid class 

into flavonoids (1-4) and isoflavonoids (5, 6). Chromenols (1) differ from chromenones (4) 

by hydroxyl group the 3-position and C2-C3 double bonds.2  

 

O

O

OH
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O
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O

O

O
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Ph Ph
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Isoflavonoids R= H, OH  
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Many flavonoids possess low toxicity in mammals and some of them are widely used in 

medicine for maintenance of capillary integrity.3 Concerning the chromenone moiety, besides 

forming the basic nucleus of an entire class of natural products, i.e. flavones,4 it also forms 

the important component of pharmacophores for a large number of molecules of medicinal 

significance.5 Consequently, considerable attention is being devoted to isolation from natural 

resources, chemistry and synthesis of chromenone derivatives, and evaluation of their 

biological activity with emphasis on their potential medicinal applications.5–8 
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4.2     Biological activity of various chromenone derivatives. 

In recent decades, chromenone and its derivatives have attracted considerable 

attention from medicinal and synthetic organic chemists because of a wide range of 

biological activities displayed by this class of compounds which is described below. The 

corresponding 2-substituted-3-nitro chromenones are molecules of current interest as they 

have potent biological activity. It is well recognized that incorporation of nitro group into the 

chromenone skeleton have significant biological activity.9,10  

 
Vasselin A. D. et al11 have synthesized a new series of fluoro, methoxy and amino substituted 

isoflavones (Figure 2) and demonstrated as potent antitumor agents. The substituted 

isoflavones were synthesized using palladium catalyzed coupling methodologies to construct 

the central aryl carbon-carbon single bond. The new isoflavone derivatives were tested for in 

vitro activity in human breast (MDA-MB-468 and MCF-7) and colon (HT29 and HCT-116) 

cancer cell lines. Low micromolar GI50 values were obtained in a number of cases, with the 

MDA-MB-468 cell line being the most sensitive overall. This study is suggesting that 

isoflavone derivatives can act as substrates for CYP1A1 bioactivation. 

 

O

O
R1

R

R= F, OMe, diF, diOMe
R1= NO2, OMe, diOMe

 
Figure 2 

 
Chen S. F. et al9 have developed a series of nitrocoumarin and nitrochromene derivatives 

(Figure 3) and shown to inhibit the phosphatidylinositol-specific phospholipase C(PLC) 

(ICW C 10 pg/mL) isolated from human melanoma. The inhibition of PLC by nitrocoumarin 

was time-dependent and irreversible. The inhibition of PLC was shown to interfere with 

inositide metabolism in whole cells in a manner consistent with their proposed mode of 

activity.  
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Dauzonne D. et al10 have synthesized some novel flavone-8-acetic acid derivatives and 

evaluated for reversible inhibitors of aminopeptidase N(APN/CD13) activity. The cell surface 

APN/CD13, overexpressed in tumor cells, plays a critical role in angiogenesis. In this 

context, they have tested a series of novel flavone-8-acetic acid derivatives and found that the 

2’, 3-dinitroflavone-8-acetic acid proved to be the most efficient and exhibited an IC50 of 25 

µM which is 2.5 times higher than that of bestatin, the natural known inhibitor of 

APN/CD13. The presence of other substituents such as OMe groups at the 3 or 4 position of 

the A phenyl group, or the existence of steric constraints, did not improve selectivity and 

potency. The results were indicated that derivatives, which bear a CH2COOH group in the 8-

position and two NO2 substituents in both 2’ and 3 positions (Figure 4), inhibited efficiently 

APN activity and this to the same extent as bestatin. Deletion or replacement of the NO2 

group in the 2’-position gave compounds with a lesser degree of potency against APN 

activity whereas the presence of an electron-donating methoxy group in the ortho or para 

position of the nitro substituent led to slightly lowered inhibitory effects. 

 

O

NO2

O2N

O

HOOC
A

 
Figure 4 

 
Balbi A. et al,13 have synthesized some chromenone derivatives (Figure 5) having nitro 

group and amine linkage at 3 and 2 positions, respectively, and demonstrated that they were 

potent stabilization agents for oligonucleotides. The newly synthesized chromenones having 

tri or pentamethylenamine linkers were tested and the Tm data and thermodynamic parameters 

for complex formation confirmed the ability of chromone (c-pyrone) derivatives to stabilize 

strongly the 7-mer/8-mer complementary complex. Moreover, benzochromone derivatives 

showed the capacity of stabilizing this 7-mer/8-mer complementary complex. The effect of 

all these chromenones on the stability of the oligonucleotide complexes (ΔΔG at 37 ºC 

ranged from -1.2 to -2.0 kcal/mol) was shown to be comparable to the effect of one 

nucleotide base pair and similar to the effect (ΔΔG at 37 ºC ranged from -1.5 to -2.0 

kcal/mol) found for acridine oligonucleotide conjugates, which served as a reference in this 

study.   
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Figure 5 

 
Cantello C. C. et al14 have synthesized some substituted 4-hydroxy-3-nitrocoumarins and 

found these compounds possess potent antiallergic activity (Figure 6). The antiallergic 

activity was measured by the homocytotropic antibody-antigen induced passive cutaneous 

anaphylaxis reaction in the rat.    

 

O

OH

NO2

O

R= H, Me, Halo, NH2, NO2, OH, OMe

R

 
Figure 6 

 
The design and synthesis of a small library of 8-amidoflavone, 8-sulfonamidoflavone, 8-

amido-7-hydroxyflavone (Figure 7) and heterocyclic analogs of flavopiridol was reported by 

Georg G. I. and coworker.15 The potential activity of these compounds as kinase inhibitors 

was evaluated by cytotoxicity studies in MCF-7 and ID-8 cancer cell lines and inhibition of 

CDK2-Cyclin A enzyme activity in vitro. The antiproliferative and CDK2- Cyclin A 

inhibitory activity of these analogs was significantly lower than the activity of flavopiridol. 

They were carried out molecular docking simulations for those molecules and these studies 

suggested a different binding orientation inside the CDK2 binding pocket for these analogues 

compared to flavopiridol. 
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Figure 7 

 
Griffin R. J. et al16 have synthesized a diverse range of chromen-2-one, chromen-4-one and 

pyrimidoisoquinolin-4-one derivatives and evaluated for inhibitory activity against the DNA 
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repair enzyme DNAdependent protein kinase (DNA-PK), with a view to elucidating 

structure-activity relationships for potency and kinase selectivity. DNA-PK inhibitory activity 

varied widely over the series of compounds evaluated (IC50 values ranged from 0.19 to >10 

µM), with excellent activity being observed for the 7,8-benzochromenone and pyrimido[2,1-

a]isoquinolinone templates. They have revealed a very constrained structure-activity 

relationship at the 2-position of the benzopyranone and pyrimido[2,1-a]-isoquinolin-4-one 

pharmacophore, with only a 2-morpholino or 2-(2’-methylmorpholino) group being tolerated 

at this position. More detailed biological studies conducted with the most potent inhibitor 

NU7163 demonstrated ATP-competitive DNA-PK inhibition, with a Ki value of 24 nM, and 

compound (Figure 8) exhibited selectivity for DNA-PK compared with the related enzymes 

ATM, ATR, mTOR, and PI 3-K (p110alpha). This study was identify these structural classes 

as novel DNA-PK inhibitors and delineated initial structure activity relationships against 

DNA-PK. 
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X

N

X, Y= O or S

Y

 
Figure 8 

 
Dauzonnel D. et al17 have synthesized some new 3-aminoflavones (Figure 9) using various 

aromatic aldehydes. They have also demonstrated these chromenones possess potent 

cytotoxic activity in vitro. Those results in the 3-aminoflavones series indicated that the 4’-

methoxy group was important for cytotoxic activity. Moreover, they were observed that the 

flavone analogs bearing 3-amino of 3-nitro group have potent cytotoxic activity. Methoxy 

groups on the 6 and 7 positions of flavonoids also appear to be important for antiproliferative 

activity. 
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O
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R1= H, OMe, NO2,Me  

Figure 9 
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Chen K. et al18 have studied three-dimensional quantitative structure-activity relationship 

(3D-QSAR) for flavone (Figure 10) template in GABAA receptors. A reasonable 

pharmacophore model was built through CoMFA, CoMSIA, and HQSAR analyses and 

electrostatic potential calculations. A plausible binding mode for flavonoids with GABAA 

receptors was rationalized on the basis of commonly recognized binding site and the specific 

S1 and S2 subsites relating to substituent positions.  

 

O

O

R

R1

R, R1= H, OMe, Halo, Me, NO2  
Figure 10 

 
In 2008,19 several fused chromenones (Figure 11) have been synthesized and found useful in 

the modulation of potassium channel activity in cells, in particular the activity of Kv1.3 

channels found in T cells. These chromenone derivatives were also useful in the prevention 

of autoimmune and inflammatory diseases, including multiple sclerosis. 
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Lewin C. et al20 have synthesized several aminoflavones and examined its antiproliferative 

activity, activation of apoptosis and inhibition of tubulin assembly. These flavones mostly 

contained 5,6,7,8-tetra- or 5,7-dioxygenated groups on A ring. Among them, flavones having 

5-hydroxy-6,7,8-trimethoxy substitution pattern on the A-ring exhibited promising 

antiproliferative activity (Figure 12). 
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A new series of flavonoid derivatives have been designed, synthesized and evaluated as 

potent AChE inhibitors by Hua Y. and coworkers.21 Most of them showed more potent 

inhibitory activities to AChE than rivastigmine. The most potent inhibitor isoflavone 

derivative (Figure 13) inhibit AChE with an IC50 of 4 nM and showed high BChE/AChE 

inhibition ratio (4575-fold), superior to donepezil (IC50 = 12 nM, 389-fold). They were also 

performed molecular docking studies to explore the detailed interaction with AChE. 
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Figure 13 

 
In search for a new antibacterial agent with improved antimicrobial spectrum and potency, 

Shingare M. S. et al22 have designed and synthesized a series of novel 3-((Z)-2-(4-

nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones (Figure 14) by convergent 

synthetic approach. All the synthesized compounds were assayed for their in vitro 

antibacterial activities against gram-negative and gram-positive bacteria. They were 

performed preliminary structure activity relationship to elucidate the essential structure 

requirements for the antimicrobial activity. Amongst the synthesized chromenones, few 

compounds were found to possess activity against methicillin resistant S. aureus in addition 

to the activity against other bacterial strains such as E. faecalis, S. pneumoniae, and E. coli. 
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Moreover, a new series of quinoxaline fused chromenones have been synthesized and 

evaluated for antibacterial and antifungal activities.23 The results of the antimicrobial 

screening showed the compound (Figure 15) being the most effective among the various 

treatments in antimicrobial screening. However, other molecules showed moderate activity 

against the microorganisms tested. 
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Figure 15 

 

4.3 Synthesis of various chromenone derivatives. 

Numerous methods have been developed for the synthesis of substituted chromenone 

molecules. The two most important methods for the synthesis of chromenone derivatives are 

due to Perkin W. H.24 and Pechmann V25. The naturally occurring chromenones26 have been 

obtained either (i) by the closure of the lactonic ring with the necessary substitutents in the 

benzene nucleus, or (ii) by the introduction of the aliphatic acid and its anhydride on an o-

hydroxy aldehyde with the intermediate formation of the o-hydroxy cinnamic acid (Perkin’s 

method) and the action of malic acid on phenols in the presence of sulphuric acid 

(Pechmann’s method) have been very convenient methods for the synthesis of naturally 

occurring chromenones. The o-hydroxy cinnamic acids have also been prepared by other 

methods and them easily lactonize to chromenones. 

 
The phenols have been used by Ruhemann S.27 and Simonis H.28 for the synthesis of 

chromone derivatives. Ruhemann condensed sodium phenolates with ethyl chloro fumarate, 

ethyl phenyl propiolate and ethyl β-chloro crotonate and treated the intermediate products, 

thus obtained, with con. H2SO4 or better with PCl5 and AlCl3 whereby the desired chromones 

were obtained (Figure 16). 
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Figure 16 
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The only attempt at synthesizing chromones from o-hydroxy acid was made by Kostanecki S. 

V.,29a who condensed ethyl o-methoxy benzoate with acetone and acetophenone and obtained 

the chromones on heating the intermediate β-diketones with HCl (Figure 17). 
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Figure 17 

 

The o-hydroxy acetophenones have been largely used for the synthesis of chromone 

derivatives. Kostanecki29b et al have condensed o-hydroxy acetophenones with aldehydes 

giving rise to chalkones, the dibromides of which on treatment with alkali form chromones 

(Figure 18). 
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Figure 18 

 
Moreover, Kostanecki29c et al have synthesized chromenones by the reaction of esters with o-

methoxy acetophenones and the resulted intermediate β-diketones then heated with 

hydroiodic acid (Figure 19). 
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Figure 19 

 
Spath E.30 et al have condensed o-hydroxy phenyl benzyl ketones with ethyl formate and the 

intermediate oxymethylene ketones gave isoflavones on ring closure with HCl (Figure 20).  
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Nagai W. N.31a and Tahara Y.31b et al have utilized resacetophenone and phenol for the 

synthesis of chromenones in the presence of sodium acetate and acetic anhydride (Figure 

21). However, this method was further developed by Robinson32 et al and used by them in 

synthesizing a large number of chromones and chromonols occurring in nature by heating 

various o-hydroxy aryl ketones with the anhydrides and the corresponding sodium salts of 

aliphatic and aromatic acids.  
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Recently, Alfredo C. et al33 have synthesized flavones via a microwave assisted, One-Pot 

Sonogashira-carbonylation-annulation reaction starting from 2-iodo phenol and acetylene 

(Figure 22). They were observed that palladium complexes of 1,3,5,7-tetramethyl-2,4,8-

trioxa-6-phenyl-6-phosphaadamantane are shown to be effective catalytic systems facilitating 

the sequential application of a microwave-assisted Sonogashira and carbonylative annulation 

reaction.    

 

CO

Me3Si C CH I

OH O

O

DBU, Ph2pentadienone Pd,
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Figure 22 

 
In addition, Zhen Y. et al34 have developed a Pd-catalyzed copper-free carbonylative 

Sonogashira coupling reaction to synthesize alkynyl ketones and flavones from terminal 

alkynes and aryl iodides using water as a solvent (Figure 23).  The reaction was carried out at 

room temp under balloon pressure of CO with Et3N as a base.  The developed method was 

successfully applied to the synthesis of flavones. 
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Figure 23 

 
In 2002, Rao V. K. et al35 have demonstrated the utility of o-hydroxy benzoylacetone for the 

synthesis of some substituted chromenones, chelating agents and related materials. The 

synthesis of 3-nitro chromenone was achieved by the reaction of o-hydroxy 

nitroacetophenone and ethyl orthoformate using pyridine (Figure 24).  
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Figure 24 

 

Chen S. F. et al9 have synthesized 4-(3-nitro-2H-chromen-2-yl)morpholine (Figure 25) with 

the reaction of salisaldehyde and 4-((Z)-2-nitrovinyl)morpholine refluxing in morpholine. 

The synthesized chromenes further substituted at 2-position with various primary and 

secondary amines and evaluated as potent phospholipase C inhibitors.  
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Figure 25 
 

In 1976, Ellis G. P. et al36 have first synthesized some substituted 3-nitro chromones by the 

reaction of nitroacetophenone and acetic formic anhydride (Figure 26).  
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Figure 26 

 
In addition, et al37 have utilized substituted 2-hydroxy-ω-nitroacetophenone and chromenone-

3-carbaldehyde for the synthesis of various 2-substituted-3-nitro chromenones in good yields 

(Figure 27).  
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Figure 27 

 
Balbi A. et al13 have synthesized substituted 2-amino-3-nitro chromenone derivatives starting 

from various phenols and ethyl 2-(dimethylcarbamoyl) acetate followed by POCl3 mediated 

cycliczation and nitration (Figure 28). The synthesized chromenones were evaluated as 

potent stabilizing agents for oligonucleotides. 
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Figure 28 

 
In 1995, Dauzonne D. et al38 have described an efficient synthesis of 3-nitrochromones. The 

reaction of 2-hydroxy-2-nitroacetophenone with acetic formic anhydride and sodium formate 

without external heating or cooling gave an almost quantitative yield of 3-nitrochromone 

(Figure 29). 

 

O
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Figure 29 

 

Moreover, Dauzonne D. et al10 have synthesized flavone-8-acetic acid using 3-allyl-2-

hydroxybenzaldehyde 1 and 1-((Z)-2-chloro-2-nitrovinyl) benzene 2. Further, the product 3 

was treated with PCC in DCM for 19 h then reaction of 4 with DBU afforded 2-aryl-3-nitro 

chromenone 5. Compound 5 on reaction with ruthenium chloride, sodium hypoiodate in 

acetonitrile and CTC afforded product 6 which on reduction gave the target molecule 7 

(Figure 30).   
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Figure 30 
 

Recently, an efficient route to a new class of tetrahydrochromeno[2,3-b]carbazoles and 

tetrahydrochromeno[3,2-f]indazoles has been developed by Tsoleridis A. et al.39 The 

cycloaddition reactions of chromones 1 and pyrazole-o-quinodimethane 2 were more 

regioselective giving only cycloadducts 3 (Figure 31).  
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Figure 31 

 
Hu W. et al40 have synthesized, and examined crystal and molecular structure of 3-chloro-

3,6-dinitro-2,2- dimethyl-4-chromanone 3, the first 3-chloro-3-nitro-4-chromanone by 

nitrating its corresponding 4-chromanone 1 at the 3 position and then chlorinating the 

nitration product 2. They were observed that the nitro group at the 6 position conjugates with 
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the benzene ring. The pyranone ring has a half-chair conformation; the chloro group occupies 

the pseudoequatorial position, and the nitro group occupies the pseudoaxial position. The 2 

and 3 positions are essentially antiperiplanar, minimizing steric interaction (Figure 32). 
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Figure 32 

 
Recently, Rao H. S. et al51a have developed a combinatorial library of the 2-alkylamino-3-

nitro 4-alkylsufanyl-4H-chromenes (Figure 33). They were demonstrates the reaction of 

nitroketene N,S-acetals and substituted salisaldehydes afforded the nitrochromenes in the 

presence of base with excellent yields. Further, they have replaced the C4 methylthio group 

with various thiols to obtained substituted chromenones in good yields. 
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Figure 33 
 

 Nitro group in various chemical transformation reactions. 

Nitro group can be converted to amine functionality using various reducing agents. As 

we described above,10 the 3-nitroflavone-8-acetic acid on reaction with palladium and carbon 

at 20 oC for 16 h gave 3-aminoflavone-8-acetic acid by reduction of nitro group (Figure 34).   
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Figure 34 

 
Fringuelli F. et al41 have utilized 3-nitrocoumarins as dienophiles in the Diels-Alder reaction 

in water. They were described new approach to the Synthesis of nitrotetrahydrobenzo[c]- 

chromenones and dihydrodibenzo[b,d]furans (Figure 35). The reactions of 8-hydroxy-3-
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nitrocoumarins with various diene were investigated in aqueous medium, in organic solvent 

and under solventless conditions. The reactions performed in water occurred in 

heterogeneous phase but were faster than those executed organic solvents. 
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Figure 35 

Vinokurov V. G. et al42 have synthesized 6,7,8,13-tetrahydro[l]benzopyrano-[4,3-b][l,4]- 

benzodiazepine-6,8-dione by the condensation of 3-nitro-4-chlorocoumarin and anthranilic 

acid. Thus, the obtained amides were reduced to N-(3-amino-4-coumarinyl)anthranilic acid 

amides and further cyclized in the presence of catalytic amount of hydrochloric acid to 

diazepines (Figure 36). 
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Figure 36 

 
Junjappa H. et al43 have developed a novel highly regioselective synthesis of substituted 

quinoxalines (Figure 37) through POCl3 mediated heteroannulation of nitroketene N,S-

arylaminoacetals. The 3-chloro-2-(methylthio)quinoxalines further substituted with various 

nucleophiles. 
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A new synthesis of 2-substituted[1]benzopyrano[3,4-d]imidazol-4(3H)-ones, starting from 3-

nitrocoumarin N-functionalized amidines 3, has been developed by Trimarco P. et al.44 When 

the 3-nitro-amidines 3 were treated with NaBH4 in the presence of 10% palladium on 

charcoal, 2-substituted [1]benzopyrano[3,4-d]imidazol-4(3H)-ones 4 were produced. 

Structure elucidation of compounds 4 revealed that they exist as one of the three possible 

tautomeric structures (Figure 38).  
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4.4 CURRENT RESEARCH WORK 

 
The chromenone and its derivatives have attracted considerable interest to medicinal 

and synthetic organic chemists because of a wide range of biological activities. As we 

mentioned, the corresponding 2-substituted-3-nitro chromenones are molecules of current 

interest as they have potential biological activity. Moreover, Chromenones bearing nitro 

group at C3, afford the possibility of further modifications through which, one can generate, a 

large number of pharmacologically important compounds. Given the biological significance 

of 2,3-substituted chromenones, several routes are reported in the literature for the synthesis 

of substituted chromenone via [4+2] annulation,45 [5+1] addition,36,46 [4+1+1] addition 

reaction,47 or electrophilic substitution reactions over the preconstructed chromone motifs. 

However, these potentially useful methods have not been thoroughly explored. Further more, 

the existing few examples are rather limited in scope and suffer from several practical 

disadvantages such as extremely vigorous conditions or low yields.48 Therefore, developing a 

simple and effective method to synthesize 2-substituted-3-nitro chromenones via readily 

available starting material is essential. 

 

In chapter 1, we have demonstrates the utility of ω-nitro acetophenone for the synthesis of 

nitro functionalized pyrimidine derivatives. Nowadays, functionalized ketene dithioacetals 

are versatile intermediates in organic synthesis for the synthesis of substituted heterocycles 

(Chapter 2). These studies motivated us to utilize the 2HNA as a versatile synthon to make 

new nitro ketene dithioacetals and to study its utility for the synthesis of novel NO2 group 

functionalized chromenones. The newly synthesized compounds were characterized by IR, 

Mass, 1H NMR, 13C NMR spectroscopy and elemental analysis. In addition the newly 

synthesized 2-methylthio-3-nitro-4H-chromen-4-one was confirmed by X-Ray diffraction 

technique. The detail study of X-Ray crystallography is described in chapter 6. The biological 

screening of the newly synthesized compounds is under process.  
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4.5 RESULTS AND DISCUSSION 

 
The reaction of 2HNA 1 with carbon disulfide in the presence of base and followed 

by methylation with methyl iodide, to our surprise, the product isolated was not the expected 

2 but was characterized as 2-methylthio-3-nitro-4H-chromen-4-one 3. In addition the 

structure of 3 was confirmed unequivocally by the analysis of single crystal X-Ray 

diffraction technique (Chapter 6). 

 
 
Scheme 1: Synthesis of novel 2-methylthio-3-nitro-4H-chromen-4-one (3) through 

intramoleculer heteroannulation of 2. 
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Having discovered a facile synthesis of chromenone 3, we next planned to optimize the 

reaction condition using various bases and solvents (Table 1). The yield of desired product 3 

was poor when strong bases such as, NaOi-Pr and NaOMe were used in THF and DMF 

(Table 1, entry 1-4). However, the reaction of 1 with KF in THF and DMF did not improve 

the yield and the reaction needed longer time (Table 1, entry 7,8). It was found that the 

reaction proceeded smoothly in the presence of K2CO3 and THF to furnish the product 3 in 

excellent yield (Table 1, entry 5). 

 
Further, to develop facile route for 2-substituted-3-nitro chromenones through nucleophilic 

substitution of 2-methylthio group, we carried out the reaction of compound 3 with various 

amines. Extensive literature survey revealed, the elimination of methylthio group from 

aromatic or heterocyclic moieties required more drastic conditions.49-52 It is important to note 

that nucleophilic displacement at C2 possessing methylthio group for C-N bond formation 

required either oxidation of sulfide to sulfone then reaction with nucleophiles or transition 

metal catalysts.43,49a However, our studies revealed that elimination of methylthio group by 

various amines in the chromenone 3 was simple and required neither oxidation nor transition 
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metal catalysts. This can be explained by the fact that the adjacent electron-withdrawing 

effect of nitro and carbonyl groups makes the labile methylthio moiety a good leaving group. 

 

Table 1: Optimization of the reaction condition for the synthesis of 3. 

 
Entry Base(2 equiv) Solvent Time h Yield (%) 

1 NaOi-Pr THF 1.5 52 

2 NaOi-Pr DMF 1.7 48 

3 NaOMe THF 2.0 64 

4 NaOMe DMF 2.3 60 

5 K2CO3 THF 1.5 88 

6 K2CO3 DMF 1.5 80 

7 KF THF 3.0 68 

8 KF DMF 3.2 66 

 

 

 

Scheme 2: Reaction of chromenone 3 with primary alkyl/aryl and secondary amines. 
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Thus, under the optimized condition, the reaction of primary alkyl/aryl amines with 

chromenone 3 in isopropyl alcohol afforded substituted 2-aryl/alkylamine-3-nitro-4H-

chromenones FPMS 1-23 in excellent yields (Table 2, Scheme 2). However, the reaction of 

various secondary amines with chromenone was conducted using dioxane as solvent which 

afforded chromenones FPMS 24-29 with good to excellent yields (Table 3, Scheme 2).  
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Table 2: Synthesis of 2-aryl/alkylamine-3-nitro-4H-chromen-4-ones FPMS 1-23. 

 
Entry R Yield % mp oC Purity % 

FPMS-1 Ph 97 220-222 97.89 

FPMS-2 3-CH3Ph 95 165-167 95.49 

FPMS-3 4-OCH3Ph 94 174-176 97.75 

FPMS-4 2-FPh 94 186-188 95.56 

FPMS-5 3,4-diClPh 95 185-187 98.91 

FPMS-6 4-CH3Ph 92 155-157 95.56 

FPMS-7 4-FPh 97 160-162 99.73 

FPMS-8 3,4-diFPh 92 191-193 94.89 

FPMS-9 4-EtPh 95 210-312 92.78 

FPMS-10 2-OCH3,4-NO2Ph 88 188-190 94.88 

FPMS-11 3-Cl,4-FPh 92 154-156 91.37 

FPMS-12 3-BrPh 93 182-184 96.78 

FPMS-13 4-NO2Ph 96 177-179 96.24 

FPMS-14 2,3-diCH3Ph 95 181-183 94.99 

FPMS-15 2-OCH3Ph 91 170-172 96.65 

FPMS-16 2,4-diCH3Ph 91 185-187 98.80 

FPMS-17 4-ClPh 90 161-163 93.38 

FPMS-18 3-OCH3Ph 94 167-168 93.56 

FPMS-19 3-NO2Ph 93 172-174 95.82 

FPMS-20 2-ClPh 92 151-153 96.71 

FPMS-21 CH3 96 186-188 94.70 

FPMS-22 Cyclo propyl 97 196-198 95.52 

FPMS-23 Furfuryl 96 178-180 94.07 
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Table 3: Synthesis of novel chromenones FPMS 24-30. 

 
Entry N  Yield % mp oC Purity % 

FPMS-24 
N

 
93 133-135 99.49 

FPMS-25 
N

O  
94 136-138 97.54 

FPMS-26 
N

NMe  
97 126-128 96.77 

FPMS-27 
N

NEt  
93 132-134 96.17 

FPMS-28 N
Me

Me  
95 141-143 95.68 

FPMS-29 N
 

96 124-126 96.10 

FPMS-30 N
 

91 142-144 97.03 

 

 

 
The plausible mechanism for the formation of chromenone 4 from 1 may involve initial 

formation of nitroketene dithioacetals 2 and followed by intramoleculer heteroannulation 

(Scheme 3). The o-hydroxy group appears to undergo nucleophilic attack on suitably located 

β-C atom, which mainly activated by the presence of nitro group at the α-position of ketene 

dithioacetals and followed by elimination of methylthio group 3 to furnish the corresponding 

chromenone in good yields (scheme 1). The mechanism for the direct nucleophilic addition 

with chromenone involves activation of C2 which is triggered by NO2 and carbonyl groups 

present at C3. The excellent electron-withdrawing effect of nitro and carbonyl groups create 

the C2═C3 bond as polarized push-pull alkene with electron delocalizing from methylthio to 

nitro group. Due to this polarization effect, the C2 exhibits electrophilic characteristics. In 

addition, the C2 is adjacent to oxygen and methylthio groups which are electronegative (El-ve) 

atom and good leaving group (GL), respectively 4. As a result of these entire affects the C2 

act as hard electrophile, which resulted in facile C-N bond formation with various 
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nucleophiles through elimination of the methylthio group 5 and furnished novel 2-substituted 

chromenones 6. 

 

Scheme 3: Proposed mechanism for the formation of novel chromenone. 
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4.6 CONCLUSION 

 
In summary, we have developed a novel synthetic strategy for the synthesis of 2-

substituted 3-nitro-4H-chromen-4ones through [5+1] heteroannulation of readily accessible 

2-hydroxy-ω-nitro acetophenone with carbon disulfide and followed by straightforward 

nucleophilic addition through elimination of methylthio with various amines. The direct C-N 

bond formation reaction at C2 was achieved by the presence of nitro functionality at C3 

position of chromenone. The newly developed methodology allows direct access to 2-

substituted-3-nitro chromenone in excellent yield and high chemical purity. The presence of 

nitro functionality further makes them useful substrates for various transformations for 

biological interest.  
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4.7 EXPERIMENTAL SECTION 

 
The solvents and chemicals were analytical grade. THF was distilled over 

sodium/benzophenone prior to use and anhydrous K2CO3 was used. Analytical thin layer 

chromatography (TLC) was performed on 0.2-mm precoated plates of Silica Gel 60 F254 

precoated plates. 1H (400 MHz) and 13C NMR (100 MHz) spectra were recorded in DMSO, 

and TMS was used as an internal reference on a Bruker AVANCE II spectrometer. Mass 

spectra were determined using direct inlet probe on a GCMSQP2010 mass spectrometer. 

Chemical purity was determined on Waters Acquity UPLC with PDA Detector using Acquity 

BEH C18, 50 × 2.1, 1.7µm column at 210-400nm. Melting points were measured in open 

capillaries and are uncorrected. 

 
 Gradient Program for UPLC 

Mobile Phase: A - 10 mM Ammonium dihydrogenphosphate, 

 B – Acetonitrile 

 
Entry Time Flow %A %B 

1 Initial 0.2 mL 90 10 

2 5.0 0.2 mL 10 90 

3 5.1 0.2 mL 90 10 

4 6.0 0.2 mL 90 10 

 

 
 General method for the synthesis of substituted ω-nitro acetophenone:   

To a suspension of substituted 4-hydroxycoumarin (26 mmol) in glacial acetic acid 10 ml 

was added slowly a solution of con. HNO3 (2.20 mL) in glacial acetic acid 2 ml. the reaction 

mixture was then heated to 80 ºC at which a vigorous reaction starts. The reaction mix was 

cooled in ice-cold water to keep the reaction mix under control. After completion of the 

reaction, crushed ice was added to the reaction mixture. The separated substituted 3-nitro-4-

hydrxycoumarin was filtered and washed with water and dry it in oven. The product of 

substituted 3-nitro-4-hydroxycouamarin (12 mmol) was dissolved in sodium hydroxide 

solution (5%, 75 mL) and the reaction mixture was kept at rt for 24 h. insoluble material was 

filtered and the clear filtrate acidified with con. HCl. The separated product was filtered and 

washed with water. It is crystallized from methanol.  
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 A typical procedure for the synthesis of 2-(methylthio)-3-nitro-4H-chromen-4-one  

To a well-stirred suspension of K2CO3 (55 mmol) in dry THF (15 mL) at 0-5 ºC was 

added CS2 (27.5 mmol) diluted with 10 mL THF along with substituted 2-hydroxy-ω-

nitroacetophenone (27.5 mmol) over a period of 30 min. After completion of the addition, the 

reaction mixture was stirred at 0-5 ºC for 30 min and rt for 30 min. Appearance of orange 

yellow solid in the reaction medium indicated the formation of disodium salt. To this 

reaction, a solution of methyl iodide (55 mmol) in THF (7 mL) was added dropwise within 

15 min at 0-5 ºC. The mixture was allowed to warm to room temperature and stirred for 5-6 

h, and then poured onto crushed ice under stirring. The separated solid was collected by 

filtration, washed with water (2 × 100 mL) then hexane, dried in vacuo and crystallized from 

chloroform to furnish the analytically pure products in excellent yield which were used for 

next step without further purification. 

 
2-(methylthio)-3-nitro-4H-chromen-4-one (3): Yellow solid; Rf 0.41 (6:4 hexane-EtOAc); 

Yield 98 %; purity 98.91%; mp 185-187 °C; IR (KBr): 3088, 1656, 1512, 1448, 1366, 1321, 

1222, 989; MS m/z: 237(M+); 1H NMR (400 MHz): δ 3.13(s, 3H, CH3), 7.56-7.61(t, 1H, 

ArH), 7.79(d, J = 8.8Hz, 1H, ArH), 7.85-7.91(t, 1H, ArH), 8.11(d, J = 8.6 Hz, 1H, ArH); 

Anal. Calcd. for C10H7NO4S: C, 50.63; H, 2.97; N, 5.90%. Found: C, 50.57; H, 2.90; N, 

5.84%. 

 
 General procedure for the reaction of various alkyl/aryl amines with 

chromenone 3. 

To a solution of various amines (1.15 mmol) in isopropyl alcohol (5 mL) was added 

suspension of 3 (1.05 mmol) and reflux the resulting mixture for 45-60 min. After completion 

of the reaction, the reaction mixture was allowed to come to room temperature then cooled it 

at 0-5 ºC in ice bath. The separated suspension was filtered, washed with water (20 mL), 

dried in vacuo and crystallized from methanol to afford analytically pure products. 

 
3-nitro-2-(phenylamino)-4H-chromen-4-one (FPMS-1): Creamish solid; Rf 0.51 (6:4 

hexane-EtOAc); IR (KBr): 3439, 3377, 1645, 1510, 1213, 1093; MS m/z: 282(M+); 1H NMR 

(400 MHz): δ 7.24(d, J = 0.76Hz, 1H, ArH), 7.40-7.55(m, 6H, ArH), 7.61-7.66 (t, 1H, ArH), 

8.29(dd, J = 7.92Hz, 1H, ArH), 11.65(s, 1H, NH); 13C NMR (100 MHz): 88.17, 116.84, 

118.21, 122.19, 125.00, 125.76, 125.87, 126.93, 128.96, 134.18, 134.88, 151.01, 158.83, 

167.32, Anal. Calcd. for C15H10N2O4: C, 63.83; H, 3.57; N, 9.93%. Found: C, 63.77; H, 3.50; 

N, 9.86%. 
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2-(m-tolylamino)-3-nitro-4H-chromen-4-one (FPMS-2): White solid; Rf 0.52 (6:4 hexane-

EtOAc); IR (KBr): 3389, 3105, 1685, 1478, 1233, 1124, 985; MS m/z: 296(M+); Anal. Calcd. 

for C16H12N2O4: C, 64.86; H, 4.08; N, 9.46%. Found: C, 64.79; H, 4.01; N, 9.40%. 

 
2-(4-methoxyphenylamino)-3-nitro-4H-chromen-4-one (FPMS-3): Creamish solid; Rf 

0.49 (6:4 hexane-EtOAc); IR (KBr): 3274, 3160, 1698, 1491, 1171, 1024; MS m/z: 312(M+); 
13C NMR (100 MHz): 55.33, 87.64, 117.58, 118.51, 122.18, 125.79, 126.66, 134.88, 149.37, 

154.56, 167.54, Anal. Calcd. for C16H12N2O5: C, 61.54; H, 3.87; N, 8.97%. Found: C, 61.49; 

H, 3.82; N, 8.93%. 

 
2-(2-fluorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-4): White solid; Rf 0.51 (6:4 

hexane-EtOAc); IR (KBr): 3591, 3300, 1658, 1512, 1435, 1402, 1288; MS m/z: 300(M+); 

Anal. Calcd. for C15H9FN2O4: C, 60.01; H, 3.02; N, 9.33%. Found: C, 59.89; H, 3.04; N, 

9.21%. 

 
2-(3,4-dichlorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-5): Yellowish solid; Rf 

0.50 (6:4 hexane-EtOAc); IR (KBr): 3287, 3087, 1696, 1436, 1296, 1114; MS m/z: 351(M+); 

Anal. Calcd. for C15H8Cl2N2O4: C, 51.31; H, 2.30; N, 7.98%. Found: C, 51.19; H, 2.18; N, 

7.86%. 

 
2-(p-tolylamino)-3-nitro-4H-chromen-4-one (FPMS-6): Pale yellow solid; Rf 0.50 (6:4 

hexane-EtOAc); IR (KBr): 3419, 3115, 1665, 1489, 1265, 1214, 1174; MS m/z: 296(M+); 

Anal. Calcd. for C16H12N2O4: C, 64.86; H, 4.08; N, 9.46%. Found: C, 64.79; H, 4.01; N, 

9.40%. 

2-(4-fluorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-7): Creamish solid; Rf 0.51 

(6:4 hexane-EtOAc); IR (KBr): 3468, 3160, 1666, 1590, 1375, 1232, 1188; MS m/z: 

300(M+); Anal. Calcd. for C15H9FN2O4: C, 60.01; H, 3.02; N, 9.33%. Found: C, 59.89; H, 

3.04; N, 9.21%. 

 
2-(3,4-difluorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-8): White solid; Rf 0.48 

(6:4 hexane-EtOAc); IR (KBr): 3337, 3027, 1696, 1590, 1417, 1392, 1258, 1172; MS m/z: 

318(M+); Anal. Calcd. for C15H8F2N2O4: C, 56.61; H, 2.53; N, 8.80%. Found: C, 56.49; H, 

2.41; N, 8.68%. 

 
2-(4-ethylphenylamino)-3-nitro-4H-chromen-4-one (FPMS-9): Yellowish solid; Rf 0.51 

(6:4 hexane-EtOAc); IR (KBr): 3328, 3120, 1676, 1500, 1385, 1242, 1088; MS m/z: 
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310(M+); Anal. Calcd. for C17H14N2O4: C, 65.80; H, 4.55; N, 9.03%. Found: C, 65.69; H, 

4.41; N, 8.91%. 

 
2-(2-methoxy,4-nitrophenylamino)-3-nitro-4H-chromen-4-one (FPMS-10): Yellow solid; 

Rf 0.48 (6:4 hexane-EtOAc); IR (KBr): 3389, 3360, 1693, 1507, 1473, 1312, 1288; MS m/z: 

357(M+); Anal. Calcd. for C16H11N3O7: C, 53.79; H, 3.10; N, 11.76%. Found: C, 53.67; H, 

2.94; N, 11.62%. 

 
2-(3-chloro,4-fluorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-11): White solid; Rf 

0.51 (6:4 hexane-EtOAc); IR (KBr): 3467, 3068, 1714, 1530, 1477, 1392, 1198; MS m/z: 

334(M+); Anal. Calcd. for C15H8ClFN2O4: C, 53.83; H, 2.41; N, 8.37%. Found: C, 53.71; H, 

2.28; N, 8.25%. 

 
2-(3-bromophenylamino)-3-nitro-4H-chromen-4-one (FPMS-12): Creamish solid; Rf 0.53 

(6:4 hexane-EtOAc); IR (KBr): 3472, 3116, 1694, 1526, 1485, 1337, 1174; MS m/z: 

361(M+); Anal. Calcd. for C15H9BrN2O4: C, 49.89; H, 2.51; N, 7.76%. Found: C, 49.77; H, 

2.37; N, 7.62%. 

 
2-(4-nitrophenylamino)-3-nitro-4H-chromen-4-one (FPMS-13): Yellowish solid; Rf 0.51 

(6:4 hexane-EtOAc); IR (KBr): 3357, 3071, 1695, 1541, 1351, 1237, 1108; MS m/z: 

327(M+); Anal. Calcd. for C15H9N3O6: C, 55.05; H, 2.77; N, 12.84%. Found: C, 54.91; H, 

2.64; N, 12.72%. 

 
2-(2,3-dimethylphenylamino)-3-nitro-4H-chromen-4-one (FPMS-14): White solid; Rf 

0.51 (6:4 hexane-EtOAc); IR (KBr): 3392, 3070, 1681, 1470, 1335, 1221, 1108; MS m/z: 

310(M+); Anal. Calcd. for C17H14N2O4: C, 65.80; H, 4.55; N, 9.03%. Found: C, 65.67; H, 

4.42; N, 8.89%. 

 
2-(2-methoxyphenylamino)-3-nitro-4H-chromen-4-one (FPMS-15): Creamish solid; Rf 

0.50 (6:4 hexane-EtOAc); IR (KBr): 3368, 3170, 1657, 1413, 1271, 1224; MS m/z: 312(M+); 

Anal. Calcd. for C16H12N2O5: C, 61.54; H, 3.87; N, 8.97%. Found: C, 61.48; H, 3.83; N, 

8.91%. 

 
2-(2,4-dimethylphenylamino)-3-nitro-4H-chromen-4-one (FPMS-16): White solid; Rf 

0.52 (6:4 hexane-EtOAc); IR (KBr): 3424, 3187, 1697, 1584, 1335, 1231, 1192; MS m/z: 

310(M+); Anal. Calcd. for C17H14N2O4: C, 65.80; H, 4.55; N, 9.03%. Found: C, 65.68; H, 

4.42; N, 8.88%. 
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2-(4-chlorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-17): Yellowish solid; Rf 0.53 

(6:4 hexane-EtOAc); 3487, 3018, 1734, 1680, 1577, 1439, 1108; MS m/z: 316(M+); Anal. 

Calcd. for C15H9ClN2O4: C, 56.89; H, 2.86; N, 8.85%. Found: C, 56.84; H, 2.81; N, 8.78%. 

 
2-(3-methoxyphenylamino)-3-nitro-4H-chromen-4-one (FPMS-18): White solid; Rf 0.51 

(6:4 hexane-EtOAc); IR (KBr): 3416, 3117, 1671, 1541, 1427, 1224; MS m/z: 312(M+); 

Anal. Calcd. for C16H12N2O5: C, 61.54; H, 3.87; N, 8.97%. Found: C, 61.48; H, 3.83; N, 

8.91%. 

 
2-(3-nitrophenylamino)-3-nitro-4H-chromen-4-one (FPMS-19): Yellow solid; Rf 0.50 

(6:4 hexane-EtOAc); IR (KBr): 3471, 3301, 1699, 1513, 1322, 1230, 1047; MS m/z: 

327(M+); Anal. Calcd. for C15H9N3O6: C, 55.05; H, 2.77; N, 12.84%. Found: C, 54.88; H, 

2.69; N, 12.75%. 

 
2-(2-chlorophenylamino)-3-nitro-4H-chromen-4-one (FPMS-20): Yellow solid; Rf 0.53 

(6:4 hexane-EtOAc); IR (KBr): 3420, 3310, 1788, 1687, 1514, 1490, 1170; MS m/z: 

316(M+); Anal. Calcd. for C15H9ClN2O4: C, 56.89; H, 2.86; N, 8.85%. Found: C, 56.81; H, 

2.72; N, 8.78%. 

 
2-(methylamino)-3-nitro-4H-chromen-4-one (FPMS-21): Yellow solid; Rf 0.49 (6:4 

hexane-EtOAc); IR (KBr): 3357, 3147, 1689, 1523, 1272, 1130, 1017; MS m/z: 220(M+); 1H 

NMR (400 MHz): δ 3.33(d, J = 5.16Hz, 3H, CH3), 7.35(d, J = 8Hz, 1H, ArH), 7.41-7.45(t, 

1H, ArH), 7.63-7.67(t, 1H, ArH), 8.28(dd, J = 7.88Hz, 1H, ArH), 10.06(s, 1H, NH); Anal. 

Calcd. for C10H8N2O4: C, 54.55; H, 3.66; N, 12.72%. Found: C, 54.49; H, 3.61; N, 12.75%. 

 
2-(cyclopropylamino)-3-nitro-4H-chromen-4-one (FPMS-22): Yellow solid; Rf 0.52 (6:4 

hexane-EtOAc); IR (KBr): 3315, 3170, 1698, 1517, 1401, 1373, 1270; MS m/z: 232(M+); 

Anal. Calcd. for C11H8N2O4: C, 56.90; H, 3.47; N, 12.06%. Found: C, 56.78; H, 3.35; N, 

11.98%. 

2-(furan-2-ylamino)-3-nitro-4H-chromen-4-one (FPMS-23): Yellow solid; Rf 0.51 (6:4 

hexane-EtOAc); IR (KBr): 3320, 3240, 1788, 1587, 1314, 1280, 1170; MS m/z: 272(M+); 

Anal. Calcd. for C13H8N2O5: C, 57.36; H, 2.96; N, 10.29%. Found: C, 57.24; H, 2.84; N, 

10.17%. 
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 General procedure for the reaction of various secondary amines with 

chromenone 3: 

To a solution of various secondary amines (1.15 mmol) in dioxane (5 mL) was added 

suspension of 3 (1.05 mmol) and reflux the resulting mixture for 75-80 min. After completion 

of the reaction, the reaction mixture was allowed to come to room temperature then add water 

20 mL and extracted with chloroform (2 × 10 mL). The separated organic layer was dried 

over MgSO4 and evaporated under reduced pressure to afforded analytically pure products. 

 
3-nitro-2-(piperidin-1-yl)-4H-chromen-4-one (FPMS-24): Reddish brown solid; Rf 0.27 

(4:6 hexane-EtOAc); IR (KBr): 3061, 1662, 1591, 1508, 1492, 1421, 1178; MS m/z: 

274(M+); 13C NMR (100 MHz): 22.82, 24.83, 48.09, 87.32, 117.16, 121.56, 125.65, 134.07, 

151.46, 158.20, 168.89, Anal. Calcd. for C14H14N2O4: C, 61.31; H, 5.14; N, 10.21%. Found: 

C, 61.27; H, 5.09; N, 10.17%. 

 
2-morpholino-3-nitro-4H-chromen-4-one (FPMS-25): Reddish brown solid; Rf 0.28 (4:6 

hexane-EtOAc); MS m/z: 276(M+); IR (KBr): 3074, 1681, 1574, 1443, 1403, 1167; Anal. 

Calcd. for C13H12N2O5: C, 56.52; H, 4.38; N, 10.14%. Found: C, 56.48; H, 4.39; N, 10.17%.  

 
2-(4-methylpiperazin-1-yl)-3-nitro-4H-chromen-4-one (FPMS-26): Brown solid; Rf 0.26 

(4:6 hexane-EtOAc); IR (KBr): 3049, 1679, 1587, 1463, 1280, 1140; MS m/z: 289(M+); 

Anal. Calcd. for C14H15N3O4: C, 58.13; H, 5.23; N, 14.53%. Found: C, 58.10; H, 5.18; N, 

14.58%. 

 
2-(4-ethylpiperazin-1-yl)-3-nitro-4H-chromen-4-one (FPMS-27): Reddish solid; Rf 0.25 

(4:6 hexane-EtOAc); IR (KBr): 2932, 1682, 1574, 1325, 1248, 1109; MS m/z: 303(M+); 1H 

NMR (400 MHz): δ 1.11-1.14(t, 3H, CH3), 2.48-2.52(q, 2H, CH2), 2.62-2.64(t, 4H, CH2), 

3.60-3.63(t, 4H, CH2), 7.31(d, J = 8.28Hz, 1H, ArH), 7.38-7.42(t, 1H, ArH), 7.61-7.66(t, 1H, 

ArH), 8.23(dd, J = 7.84Hz, 1H, ArH); Anal. Calcd. for C15H17N3O4: C, 59.40; H, 5.65; N, 

13.85%. Found: C, 59.37; H, 5.59; N, 13.81%. 

 

2-(dimethylamino)-3-nitro-4H-chromen-4-one (FPMS-28): Reddish brown solid; Rf 0.24 

(4:6 hexane-EtOAc); IR (KBr): 3071, 1688, 1495, 1326, 1105, 1030; MS m/z: 234(M+); 

Anal. Calcd. for C11H10N2O4: C, 56.41; H, 4.30; N, 11.96%. Found: C, 56.29; H, 4.18; N, 

11.83%. 
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3-nitro-2-(1H-pyrrol-1-yl)-4H-chromen-4-one (FPMS-29): Brown solid; Rf 0.25 (4:6 

hexane-EtOAc); IR (KBr): 3022, 1679, 1571, 1430, 1221, 1109; MS m/z: 256(M+); Anal. 

Calcd. for C13H8N2O4: C, 60.94; H, 3.15; N, 10.93%. Found: C, 60.81; H, 3.02; N, 10.81%. 

 
3-nitro-2-(pyrrolidin-1-yl)-4H-chromen-4-one (FPMS-30): Reddish solid; Rf 0.25 (4:6 

hexane-EtOAc); IR (KBr): 3019, 1697, 1572, 1483, 1237, 1103; MS m/z: 260(M+); Anal. 

Calcd. for C13H12N2O4: C, 60.00; H, 4.65; N, 10.76%. Found: C, 59.91; H, 4.58; N, 10.68%. 
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1H NMR spectrum of compound 3  

 
 

 

1H NMR spectrum of compound FPMS 01 
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1H NMR spectrum of compound FPMS 21 

 
 
 

1H NMR spectrum of FPMS 27 

 



Chapter 4                                                                              Synthesis of Novel 2-substituted-3-nitro Chromenones 

Studies on Bioactive Heterocycles 152

13C NMR spectrum of compound FPMS-1 

 
 

 

Expanded 13C NMR spectrum of compound FPMS-1 
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13C NMR spectrum of compound FPMS-3 

 
 

13C NMR spectrum of compound FPMS-24 
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Mass spectrum of compound 3 

 
 

Mass spectrum of compound FPMS-1 
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Mass spectrum of compound FPMS-27 

 
 
 

Mass spectrum of compound FPMS-21 
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IR spectrum of compound 3  

 
 
 

IR spectrum of compound FPMS 01  
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IR spectrum of compound FPMS 04 

 
 

IR spectrum of compound FPMS-24 
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5.1 INTRODUCTION 

 
Biaryls and heterobiaryls have attracted significant attention from the scientific 

community because of their relevance in medicinal chemistry. Heterobiaryls frequently can 

be observed in numerous bioactive small molecules, and in particular, heterobiaryls fused 

with various heterocycles, such as pyrazole, pyridine, and pyrimidine, have been used as key 

pharmacophores.1 As shown in Figure 1, a blockbuster drug, sildenafil citrate (1),2 and a 

potent anticancer agent (2),3 contain heterobiaryls fused with privileged heterocycles as core 

skeletons. In addition, 1H-pyrazolo[3,4-b]pyridine is recognized as a privileged substructural 

motif of drug-like molecules and potential drugs. Compound 3, which contains the 

heterobiaryl pyrazolopyridine substructure, stimulates soluble guanylate cyclase via a nitric 

oxide independent regulatory site and induces vasodilation.4 6-Aryl pyrazolo[3,4-b]pyridines 

are also reported as potentinhibitors of glycogen synthase kinase-3 (4).5 These examples 

emphasize the importance of pyrazol-fused heterobiaryls, as well as pyrazolopyridines, as 

key pharmacophores in bioactive small molecules.  
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5.2 Biological activity of several fused pyrazolopyridine and pyrazolopyrimidine 

derivatives. 

 
Several diverse biological activities have been reported for condensed 

polyazaaromatic ring systems which are described as below. 

 
Mitogen-activated protein kinases (MAP) are a family of praline-directed serine/threonie 

kinases that activate their substrates by dual phosphorylation. The kinases are activated by a 

variety of signals including nutritional and osmotic stress, UV light, growth factors, 

endotoxin and inflammatory cytokines. One group of MAP kinases is the p38 kinase group 

that includes various isoforms (ex. p38α, p39β, p38γ and p38δ). The p38 kinases are 

responsible for phosphorylating and activating transcription factors as well as other kinases, 

and are activated by physical and chemical stress, pro-inflammatory cytokines and bacterial 

lipopolysaccharide. More importantly, the products of the p38 phosphorylation have been 

shown to mediate the production of inflammatory cytokines, including TNF and IL-1, and 

cyclooxygenae-2. Each of these cytokines has been implicated in numerous disease states and 

conditions. The inhibition of these cytokines by inhibition of the p38 kinases of benefit in 

controlling, reducing and alleviating many of this disease states. In this context, some novel 

substituted pyrazolopyridones (Figure 2) have been synthesized and found potent for the 

treatment of disease associated with p38 MAP kinase.6 
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Recently, Yassin F. A.7 has synthesized some pyrazolopyridine derivatives (Figure 3) and 

evaluated for their antimicrobial activity.  
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Echevarri A. et al8 have developed three series of 4-anilino-1H-pyrazolo[3,4-b]pyridine-5-

carboxylic esters to study potential anti-Leishmania activity. These compounds were obtained 

by a condensation reaction of 4-chloro-1H-pyrazolo[3,4-b]pyridine with several aniline 

derivatives. Some of them were also obtained by an alternative pathway involving a 

Mannich-type reaction. They were determined the hydrophobic parameter, log P, by shake-

flask methodology, and using the Hansch-Fujita addictive hydrophobic fragmental constants. 

Among them, compound (Figure 4) shown most promising activity (IC50) 0.39 and 0.12 íM.  

 

N
H

N
N

R2

R1

NH O

O

HO N

R1= Ph,
R2= Me, Ph

 
Figure 4 

 
Green N. J. et al9 have studied structure-activity relationship of a series of dipyrazolo[3,4-

b:3’,4’-d]pyridin-3-ones binding to the immune regulatory protein B7.1. The interaction of 

co-stimulatory molecules on T cells with B7 molecules on antigen presenting cells plays an 

important role in the activation of naive T cells. Consequently, agents that disrupt these 

interactions should have applications in treatment of transplant rejection as well as 

autoimmune diseases. They have identified several leads that prevented the interaction of 

B7.1 with CD28 with activities in the nanomolar to low micromolar range. One of these, the 

dihydrodipyrazolopyridinone (Figure 5), was subsequently shown to bind the V-like domain 

of human B7.1 at equimolar stoichiometry. 
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Phosphodiesterase 9A (PDE9A) is one member of the wide family of phosphodiesterases 

(PDE). These kinds of enzymes modulate the levels of the cyclic nucleotides 5’-3’ cylic 

adenosine monophosphate (cAMP) and 5’-3’ cyclic guanosine monophosphate (cGMP). 

These cyclic nucleotides (cAMP and cGMP) are important second messengers and therefore 

play a central role in cellular signal transduction cascades. Each of them reactivates inter alia, 

but not exclusively, protein kinases. The protein kinase activated by cAMP is called protein 

kinase A (PKA), and the protein kinase activated by cGMP is called protein kinase G (PKG). 

Activated PKA and PKG are able in turn to phosphorylate a number of cellular effector 

proteins. It is possible in this way for the second messengers cAMP and c GMP to control a 

wide variety of physiological processes in a wide variety of organs. However, the cyclic 

nucleotides are also able to act directly on effector molecules. Thus, it is known, for example, 

the cGMP is able to act directly on ion channels and thus is able to influence the cellular ion 

concentration. The phosphodiesterases are a control mechanism for controlling the activity of 

cAMP and cGMP and thus in turn for the corresponding physiological processes. Thus, 

several phyrazolopyrimidones (Figure 6) have been synthesized and found potent PDE 

inhibitors.10 
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Fossa P. et al11 have synthesized substituted pyrazolopyridine and pyrazolopyrimidine 

derivatives and demonstrated its molecular modeling studies and pharmacological activity of 

selective A1 receptor antagonists (Figure 7). They were applied an approach combining 

pharmacophore mapping, molecular alignment, and pseudoreceptor generation to derive a 

hypothesis of the interaction pathway between a set of A1 AR antagonists taken from a 

model of the putative A1 receptor. The pharmacophore model consists of seven features and 

represents an improvement of the N6-C8 model, generally reported as the most probable 

pharmacophore model for A1 AR agonists and antagonists. It was used to build up a 

pseudoreceptor model able to rationalize the relationships between structural properties and 

biological data. All the synthesized compounds were tested for their affinity toward A1, A2a, 

and A3 AR, showing interesting antagonistic activity and A1 selectivity. 
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Moreover, pyrazolopyrimidinones and their salts are also (Figure 8) important heterocycles 

due to their application for the treatment of impotency.12 Pyrazolopyrimidones are also useful 

in the treatment of such diseases and adverse conditions as angina, hypertension, congestive 

heart failure, reduced blood vessel patency, peripheral vascular disease, stroke, bronchitis, 

chronic asthma, allergic asthma, allergic rhinitis, glaucoma, and gut motility (Figure 8).13 
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Das S. K. et al14 have designed, synthesized and evaluated several dual PPAR α/γ agonists 

with three different heterocycles, viz. pyrazolo[4,3-d]pyrimidin-7-one, quinazolin-4-one and 

benzo[e][1,3]oxazine-4-one for the treatment of type 2 diabetes and associated dyslipidemia. 

Among them, compounds (Figure 9) were found to possess a potent dual PPAR α/γ agonist 

property. It significantly reversed diabetic hyperglycemia while improving overall lipid 

homeostasis in preclinical animal models. 
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Voelter W. et al15 have developed a simple high-yielding procedure for the synthesis of 

pyrazolopyrimidinones (Figure 10). They have also demonstrated its considerable utility for 

the production of intermediates for potential phosphodiesterase inhibitors. 
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Dumaitre B. et al16 have synthesized a series of 6-phenylpyrazolo[3,4-d]pyrimidones for 

inhibitors of cGMP specific (type V) phosphodiesterase. Enzymatic and cellular activity as 

well as in vivo oral antihypertensive activity is evaluated. They have found that a n-propoxy 

group at the 2-position of the phenyl ring is necessary for activity. This position can 

accommodate many unrelated groups. Amino derivatives were very potent but lacked 

metabolic stability. Substitution by carbon-linked small heterocycles provided both high 

levels of activity and stability. Cellular activity very often correlated with in vivo activity. 

Among the compounds, 1,3-dimethyl-6-(2-propoxy-5-methanesulfonamidophenyl)-1,5-

dihydropyrazolo[3,4-d]pyrimidin-4-one and 1-ethyl- 3-methyl-6-(2-propoxy-5-(4-

methylthiazol-2-yl)phenyl)-1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one (Figure 11) 

displayed outstanding in vivo activities at 5 mg/kg/os and good metabolic stabilities.  
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Synthesis of sildenafil analogues (Figure 12) from anacardic acid and their 

phosphodiesterase-5 inhibition activity have been reported by Rao S. A. and coworkers.17 

Anacardic acid (6-pentadecylsalicylic acid), a major component of cashew nut shell liquid, 

consists of a heterogeneous mixture of monoenes, dienes, and trienes. The enes mixture of 

anacardic acid was hydrogenated to a saturated compound. Using saturated anacardic acid as 
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a starting material, analogues of sildenafil [a potent phosphodiesterase-5 (PDE5) inhibitor 

and an orally active drug for the treatment of erectile dysfunction] were synthesized, to 

observe the effect of the pentadecyl side chain on PDE5 inhibition. 
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Magedov I. V. et al18 have synthesized some 4-aza-2,3-didehydro podophyllotoxin analogues 

(Figure 13). They were implementing a bioisosteric replacement of the 

methylenedioxybenzene subunit with a pyrazole moiety to afford tetracyclic 

dihydropyridopyrazoles. Libraries of these structurally simple analogues were prepared by a 

straightforward one-step multicomponent synthesis and demonstrated to display 

antiproliferative properties in a number of human cancer cell lines. These new heterocycles 

potently induce apoptosis in cancerous Jurkat cells even after a short 24 h exposure. The ease 

of synthesis and encouraging biological activities make the presented library of 

dihydropyridopyrazoles promising new leads in anticancer drug design. 
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Claudia M. et al19 have synthesized a series of ethyl-4-amino-1-(2-chloro-2-phenylethyl)-6-

oxo-6,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylates (Figure 14) as potential A1 

adenosine receptor (A1 AR) ligands.  Binding affinities of these compounds were determined 

for adenosine A1, A2A and A3 receptors.  Among these, two molecules showed good affinity 

(Ki = 299 μM and 517 μM) and selectivity towards A1 AR, whereas some showed good 

affinity for A2A AR (Ki = 290 μM), higher than towards A1 AR (Ki = 1000 μM).  The only 
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arylamino derivatives of the series displayed high affinity (Ki = 4.6 nM) and selectivity for 

A3 AR.   
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5.3 Various synthetic approaches for substituted pyrazolopyridines and 

pyrazolopyrmidines.  

 
Condensed polyazaaromatic ring systems are present in a variety of biologically 

active compounds (both naturally-occurring and synthetic). Although a large number of 

methods for their synthesis have been documented in the literature, many of them require 

multistep procedures using intermediates which are not readily available. Among them, few 

methods are discussed here.  

 
Adamo M. F. A. et al20 have described the preparation of two novel heterocyclic nuclei 

isoxazolopyridone and pyrazolopyridone (Figure 15) starting from NO2 substituted 

isoxazole, arylaldehydes and nitro methane. The syntheses were modular in nature and fast to 

execute. The title compounds were obtained pure without intervention of chromatography. 
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Sayed G. L. et al21 have prepared bifunctional pyrazolopyridine (2) derivatives by the 

reaction of 2-(2,4-dinitrophenyl)-5-methyl-2,4-dihydro-3H-pyrazol-3-one (1) with p-

methoxybenzaldehyde, malononitrile in the presence of ammonium acetate (Figure 16). 

Further, compound 2 was used as the key intermediate to prepare the pyrazolo-pyrido-

pyrimidine derivatives through its reaction with formic acid, formamide-formic acid-DMF, 
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ammonium thiocyanate or reaction with triethyl orthoformate followed by cyclization with 

hydrazine hydrate. 
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Attaby F. A. et al22 have synthesized some pyrazolopyridone derivatives (Figure 17). The 

reaction of α-β unsaturated nitrile derivatives with S-methylisothiourea was afforded the 

propene derivatives 1. Cyclization of 1 using ethanolic hydrochloric acid afforded the 

pyridine derivatives in good yields. This on reactions with hydrazine hydrate and of 

phenylhydrazine afforded the corresponding pyrazolopyridine derivatives 2.  

 
NC X

H2N
Y

HN NH2

EtOH,  HCl

N
H

NN

O

NH2

R

Y

H2N

X, Y= CN, COOEt R= H, Ph
1

2
 

Figure 17 
 

Junjappa H. et al23 have developed a novel process for the synthesis of substituted N-

methylpyrazolopyridones (Figure 18). The pyrazolopyridones were prepared by alkylation of 

the pyridones with dimethyl sulphate, followed by heating the mixture of N-methyl products 

with methyl iodide. Treatment of the pyridones (1) with hydrazine in refluxing propanol 

yielded the respective pyrazolo-[4,3-c]pyridone (2) derivatives in excellent yields. 
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Moreover, a variety of novel α-cyanoketene S,S-acetals, were readily prepared by the reaction 

of cyanoacetanilides or cyanothioacetamide with carbon disulfide, followed by alkylation, 

react smoothly with nucleophiles to afford variously substituted methylthio derivatives of 

pyrazolepyridine (Figure 19).24 
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Additionally, a novel and efficient method for the synthesis of substituted 4-alkylthio-N-

arylsulphonylamino-2-pyridons via the reaction of ketene-S,S-acetals with N-

cyanoacetoarylsulfonylhydrazides has been developed by Elgemeie G. H. and coworkers.25 

The arylsulfonylamino-pyrazolo[3,4-c]pyridine-2(1H)-ones have also been prepared from the 

reaction of 4-alkylthio-N-arylsulfonylamino-2-pyridones with hydrazines (Figure 20).  
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Lacova M. et al26 have developed one-pot and facile preparations of 6-(2-hydroxy-5-R-

benzoyl)-4-methyl-2-aryl-pyrazolo[3,4-b]pyridines (Figure 21), using the reaction of 3-

formyl chromones 1 with 5-amino-1-aryl-pyrazoles 2. An enamine-intermediate 2-ethyloxy-

6-R-3-(3-methyl-1-phenylpyrazol-5-ylaminomethylene)chroman-4-one 3 was isolated at 

lower temperatures. They were observed that reactions under microwave irradiation 

proceeded significantly faster and with high yields. 
 



Chapter 5                                                                                Synthesis and antiviral activity of Pyrazolopyridones 

Studies on Bioactive Heterocycles   171

O

O

CHOR

N
N

NH2

R1 EtOH, H
-10 oC

O

O

R

N
N

R1

H

OH

O

R

N
N

R1

(OEt)2

OEt

Reflux

N N
N

O

OH

R

R= H, Me, OH, OMe
R1= Aryl

1 2 3

 
Figure 21 

 
Abass M. has synthesized several fused pyrazolopyrimidones (Figure 22) with quinolone 

scaffold. He has described the synthesis of amino-ester, its hydrolysis and chloroacetylatio, 

which were utilized for the synthesis of pyrazoloyridones.27 
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Hassanein E. M. et al28 have synthesized some pyrazolopyridone derivatives via the reaction 

of compound 1 with ketene dithioacetal 2, yielded compound 3 in good yields (Figure 23). 

Further, the reaction of 3 with hydrazine afforded pyrazolopyridones 4 in high yield. 
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A mild one-step synthetic method to access privileged pyrazolearylpyrazole[3,4-b]pyridines 

(Figure 24) from indole-3-carboxaldehyde derivatives and a variety of aminopyrazoles has 
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been developed by Park S. B. and coworker.29 This novel method constructs heterobiaryls 

with the wide scope of substrate generality and excellent regioselectivity via indole ring 

opening.  
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Rodrigues L. M. et al30 have synthesized some pyrazolopyridine derivatives (Figure 25). The 

reaction of N-substituted-5-amino-4-cyanopyrazoles with malononitrile occurs with 

formation of 6-substituted pyrazole[3,4-b]pyridines respectively.  
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Recently, Yao H. et al31 have developed a synthesis of indeno[2’,1’:5,6]pyrido[2,3-

d]pyrazoles by the three-component reaction of aldehyde, 5-amino-3-methyl-1-phenyl- 

pyrazole and 1,3-indenedione in the presence of SDS in aqueous media (Figure 26).  
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Li J. R. et al32 have developed synthesis of pyrazolopyrimidinones under microwave 

irradiation (Figure 27). They have demonstrated that the direct reaction of o-

aminopyrazocarbonitriles and carbonyl compounds afforded pyrazolopyrimidinones under 

microwave irradiation with high yields. 
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Mekheimer R. et al33 have synthesized some benzoannulated pyrazolopyridones 2 by the 

reaction of 1 with hydrazine hydrate (Figure 28).  
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Swett L. R. et al34 have synthesized two isomeric pyrazolopyridones (Figure 29) which were 

identified as their tetrahydropyrazolopyridine derivatives by the reaction of 5-amino-1,3-

dimethylpyrazole with ethyl acetoacetate.  
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5.4 CURRENT RESEARCH WORK 

 
The pyrazolopyridine and pyrazolpyrimidine derivatives have considerable chemical 

and pharmacological importance because of a broad range of biological activities displayed 

by these classes of molecules. As we demonstrated, the tremendous biological potential of 

pyrazolopyridine derivatives encouraged us to synthesize some pyrazolopyridine derivatives. 

Various methodologies have been described for the synthesis of pyrazolopyridone 

derivatives. However, the existing methods are suffer with some drawbacks, such as; yield, 

time, product isolation, isomer formation.  

 
During the course of our ongoing interest on the synthesis of various heterocyclic compounds 

using ketene dithioacetals, we observed that ketene dithioacetals are versatile intermediate for 

the synthesis of pyrazolopyridone derivatives. Thus, to synthesized target molecules, the 

reaction of various ketene dithioacetals with cyanoacetamide in the presence of base was 

afforded pyridones. Further, the pyridones on reaction with hydrazine hydrated in isopropyl 

alcohol furnished the novel pyrazolopyridone derivatives in excellent yields. The synthesized 

compounds were characterized by IR, Mass, 1H NMR, 13C NMR spectroscopy and elemental 

analysis. All the synthesized compounds were evaluated for in vitro anti-viral activity against 

HIV-1 IIIB and ROD strains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5                                                                                Synthesis and antiviral activity of Pyrazolopyridones 

Studies on Bioactive Heterocycles   175

5.5 RESULTS AND DISCUSSION 

 

Initially, the reaction of 2-(bis(methylthio)methylene)-3-oxo-N-phenylbutanamide (1a) with 

cyanoacetamide 2 was carried out using sodium methoxide in methanol. The reaction of 1a 

with 2 in sodium methoxide was afforded the product 3a in 75 % yield with long reaction 

time (Table 1). To optimize the reaction condition for the synthesis of compound 3a, various 

sodium alkoxides were utilized in respective alcohol. As a result, we found the reaction of 1a 

with 2 was faster and afforded the pyridone 3a in good yield in the presence of sodium 

isopropoxide and isopropyl alcohol.  

 

Scheme 1: Synthesis of substituted pyrazolopyridones using ketene dithioacetals. 
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Table 1: Reaction of 1a with 2 using various bases. 

 
Entry Base Time h Yield % 

1 NaOMe 7 75 

2 NaOEt 6 82 

3 NaOiPr 4 88 

 

 

The resulting pyridones 3a-w were further reacted with hydrazine hydrate in isopropyl 

alcohol to afford the pyrazolopyridone derivatives in excellent yield with short reaction time. 

The results are gathered in table 2. The synthesized compounds were confirmed by IR, Mass, 
1H and 13C NMR spectroscopy and elemental analysis. All the synthesized compounds were 

evaluated for their in vitro anti-viral activity using HIV-1 IIIB and ROD strains. 
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Table 2: Synthesis of various pyrazolpyridones PPMS 1-23. 

 
Entry R Time min Yield % mp oC 

PPMS-1 Ph 50 96 312-314 

PPMS-2 4-CH3Ph 65 95 > 320 

PPMS-3 4-OCH3Ph 40 96 > 320 

PPMS-4 4-FPh 45 97 > 320 

PPMS-5 2-OCH3Ph 55 88 > 320 

PPMS-6 2-CH3 65 89 > 320 

PPMS-7 4-ClPh 60 91 > 320 

PPMS-8 4-EtPh 45 93 > 320 

PPMS-9 4-NO2Ph  50 95 > 320 

PPMS-10 3-Cl,4-FPh 60 85 > 320 

PPMS-11 5-Cl,2-OCH3Ph 65 87 > 320 

PPMS-12 2,5-diClPh 70 88 > 320 

PPMS-13 2,5-diCH3Ph 60 89 > 320 

PPMS-14 4-Cl,2-CH3Ph 70 83 > 320 

PPMS-15 3,4-diFPh 75 92 > 320 

PPMS-16 2-ClPh 75 84 > 320 

PPMS-17 2-FPh 60 85 > 320 

PPMS-18 4-BrPh 55 92 > 320 

PPMS-19 3,4-diClPh 60 94 > 320 

PPMS-20 3-NO2Ph 55 84 > 320 

PPMS-21 3-CH3Ph 65 88 > 320 

PPMS-22 2,3-diCH3Ph 65 89 > 320 

PPMS-23 2-OCH3,4-NO2Ph 70 91 > 320 
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In mechanism, the cyanoacetamide on the treatment with base generate an anion at active 

methylene group which attack on β carbon of ketene dithioacetal. The amine nucleophile 

attack on carbonyl carbon and form sodium salt of pyridine moiety by removal of methylthio 

and water molecule. The sodium salt on acidification affords pyridone. The binucleophile 

hydrazine hydrate on reaction with pyridone form pyrazolopyridone. 
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Figure 30: Proposed mechanism for the formation of pyrazolopyridone. 
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5.6 ANTI-VIRAL SCEREENING 

 
Antiviral activity was examined by Tetrazolim-based colorimetric (MTT) assay35 using the 

human T-lymphotropic virus type I (HTLV-I)-transformed MT-4 cell line7. The method is 

based on HIV-induced cytopathogenic effect (CPE) and measures the degree of cell killing 

on HIV infection. The replication of HIV in MT-4 cells was monitored 5 days after infection. 

Stock solutions of compounds were made in DMSO (generally at 10 mg/ ml). Final DMSO 

concentration in the test should not exceed 1% (v/v). Nevirapine was used as reference 

standard. 

 
 Materials and reagents 

• ‘Complete medium’: RPMI-1640 medium with 20 mM HEPES buffer, supplemented 

with 10% (v/v) heat-inactivated FCS, 2 mM L-glutamine, 0.1% sodium bicarbonate and 

20 μg/ml gentamicin. 

• Virus stock (see Steps 1–13)  

• A solution of 30 ml Triton X-100 and 2 ml methanesulfonic acid or 2 ml concentrated 

hydrochloric acid in 500 ml isopropanol. 

 
 Equipments 

• Titertek multidrop dispenser (ThermoFisher Scientific) 

• Biomek 3000 robot (Beckman) 

• Microplate washer (Biotek EL404, Beun-de Ronde and Serlabo) 

• Multiskan Ascent reader (ThermoFisher Scientific) 

• An invert light microscope (magnification: ocular ×10 and objective × 20) 

 
 Reagent setup 

MTT 7.5mg/ml of MTT in PBS was prepared as follows: put 10 g MTT (powder) in a 

2-liter bottle, add 1.333 ml of PBS and cover the bottle with tin foil (to protect against light). 

Sonicated it until MTT was dissolved. The solution was filtered over an easy flow filter (0.22 

mm cellulose acetate membrane for tissue culture applications) under reduced pressure and 

stored it in dark-brown plastic bottles (±150 ml). The bottles of cleared MTT were placed 

inside a -20 oC freezer. 

 

 (Note: Do not fill the bottles completely as the aqueous solution will expand during the 

freezing process) 
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 Preparation of the stock solution of test compounds 

DMSO, water, buffer solutions (e.g., PBS) and, a mixture of these solvents were used 

as solvents to make homogeneous aliquots (solution, suspension or emulsion) of the test 

compounds. 

 
 Growing virus stock 

1|  The quality of the cells was examined by microscopically. 

2|  Placed the 300,000 number of cells per ml of final culture in a 50-ml tube. 

3|  PBS was added to the tube to obtain a final volume of 40 ml. 

4|  Pellet the cells by centrifugation (5 min, 220g at room temperature).  

5|  The cells were resuspended by adding the required volume of an adequate culture in 

the complete medium. 

6|  The required volume of virus stock was added to the cell suspension.  

7|  The treated cells were transferred in an appropriate culture flask. 

8|  Incubated at 37 oC, 5% CO2 (≥95% relative humidity (RH)). 

9|  The cell culture was inspected microscopically everyday for the presence of 

cytopathogenic effect. 

10|  The content of the culture flask was transferred to a 50-ml tube. 

11|  The cells were pellet by centrifugation (5 min, 220g). 

12|  Carefully labeled the required number of cryotubes. 

13|  Dispensed the supernatant (virus stock) in aliquots of 0.5 or 1 ml in cryotubes.  

 
 Titration of virus stock 

14|  The infected MT-4 cells were cultivated in a humidified atmosphere (≥95% RH) at 37 
oC and 5% CO2 in air. Subcultivated the cells every 3 to 4 d. Seed the cells at 6×105 

cells per ml before starting the experiment.  

15|  96-well microtiter plates were filled with 100 ml of complete medium. 

16|  Virus stock was added in 25-μl volume to the six middle cups (2B–G) of the 

microtiter plate. The actual volume in the cups 2B–G was 125 μl. 

17|  The wells 2B–G were diluted using the Biomek 3000 robot or a multichannel pipette.  

18|  The exponentially growing MT-4 cells were centrifuged for 5 min at 220g and 

discarded the supernatant by pouring into bleach solution. 

19|  Resuspended the cells at 6×105 cells per ml in complete medium in a flask that was 

connected to an autoclaved dispensing cassette of a Titertek multidrop dispenser. 

20|  Dispensed 50 ml of cell suspension to the microtiter plate wells. 
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21|  The microtiter plates were incubated in a humidified atmosphere (≥95% RH) at 37 oC 

and 5% CO2 in air for 5 d. 

22|  After the 5-d incubation, the cells were examined by microscopically for eventual 

HIV-induced CPE. A well was scored positive if any trace of CPE was observed. The 

50% cell culture infective dose (CCID50) value was calculated using the Reed and 

Muench method36. The calculation is as follows: M ¼ inv log{x1 + [(x2 _ x1)((y1 _ 

50) / y1 _ y2)]} where y1 ¼ percent of wells scored positive closest to, but higher 

than, 50% at a certain virus dilution, y2 ¼ percent of wells scored positive closest to, 

but lower than, 50% at a certain virus dilution, x1 ¼ the log(dilution of the virus 

where y1 was observed), x2 ¼ the log(dilution of the virus where y2 was observed) 

and M ¼ dilution of virus stock for 1 CCID50 

 
 Assessing the anti-HIV activity and cytotoxicity of compounds 

23|  The MT-4 cells were cultivated in a humidified atmosphere (≥95% RH) at 37 oC and 

5% CO2. Subcultivated the cells every 3–4 d, seeding at 6×105 cells per ml. 

24|  96-well microtiter plates were filled with 100 ml of complete medium. 

25|  The stock solutions of compounds were added in 25-ml volumes to the six middle 

cups of the second column of the microtiter plate (2B–G). The actual volume in the 

cups 2B–G was 125 μl. 

26|  50 ml of HIV was added at 100–300 CCID50 and medium, respectively. 

27|  The exponentially growing MT-4 cells were centrifuged for 5 min (220g) and 

discarded the supernatant. 

28|  Resuspended the MT-4 cells at 6×105 cells per ml in complete medium in a flask 

which was connected with an autoclavable dispensing cassette of a Titertek multidrop. 

29|  50 ml of cell suspension was dispensed to the microtiter plate wells.  

30|  The plates were incubated at 37 oC in a humidified atmosphere of 5% CO2 in air. 

31|  Five days after infection, the viability of HIV and mock infected cells was examined 

spectrophotometrically by the MTT method. 

 
 MTT assay 

32|  The 20 ml of MTT (7.5 mg/ml) solution (warmed to 37 oC) was added to each well of 

the microtiter plates using the Titertek multidrop dispenser. 

33|  The trays were incubated at 37 oC in a CO2 incubator for 1 h. 

34|  A constant volume of medium was removed (e.g., 150 ml) from each cup using a 

multichannel pipette or a microplate washer (Biotek EL404, a double, aspiration and 
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dispensing, 96-channel washer) without disturbing the MT-4 cell clusters containing 

the formazan crystals. 

35|  Lyse the cells (and infectious virus) and solubilize the formazan crystals by adding 

100 ml of the acidified Triton X-100 isopropanol solution to each cup using the 

microplate washer (or a multichannel pipette). 

36|  The formazan crystals were completely dissolved by placing the plates on a vibrating 

platform shaker for 10 min. 

37|  The absorbance was examined in an eight-channel computer-controlled Multiskan 

Ascent reader and stacker at two wavelengths (540 and 690 nm). Subtract the 

absorbance measured at 690 nm from the absorbance at 540 nm to eliminate the 

effects of scattering by cell debris.  

38|  Calculated the 50% cytotoxic concentration (CC50) and 50% inhibitory concentration 

(IC50); CC50 is the concentration of compound that reduced the absorbance (OD540) 

of the mock-infected control sample by 50%.  

 

Calculated the protection achieved by the compounds in HIV-infected cells using the 

formula: ((ODT)HIV 
_ (ODC)HIV) / ((ODC)mock _ (ODC)HIV)× 100.  

 

where (ODT)HIV is the OD measured with a given concentration of the test compound in the 

HIV-infected cells; (ODC)HIV is the OD measured for the control untreated, HIV-infected 

cells, which stands for 100% infection-related CPE; and (ODC)mock is the OD measured for 

the control untreated, mock-infected cells, which stands for 0% infection-related CPE. The 

concentration achieving 50% protection according to the above formula is defined as IC50. 

The OD ratio, defined as (ODC)mock/(ODC)HIV, should be at least 5. The OD ratio is low when 

either the cells are not in optimal condition or when not enough virus is added.  
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Table 3: The in-vitro anti-viral activity against HIV-1 IIIB and ROD strains using MTT method. 

 

Code Name Strain Exp.no. IC50(µg/ml) CC50(µg/ml) SI 
Max Prot 

(%) 
Appr. 

Average 

IC50(µg/ml) 

Average 

CC50(µg/ml) 
SD SI Remarks 

PPMS-01 IIIB P3.4842 >101 =101 <1 8 1      
  P3.4848 >125 >125 X1 0 1 >94.70 ≥94.70  ≤1  
 ROD P3.4843 >94.7 =94.7 <1 9 1      
  P3.4849 >125 >125 X1 0 1 >94.70 ≥94.70  ≤1  

PPMS-02 IIIB P3.4842 >125 >125 X1 12 1     Cryst. 
  P3.4848 >125 >125 X1 9 1 >125.00 >125.00  X1 observ. at 

 ROD P3.4843 >125 >125 X1 4 1     125 
µg/ml 

  P3.4849 >125 >125 X1 1 1 >125.00 >125.00  X1  
PPMS-03 IIIB P3.4842 >88.8 =88.8 <1 11 1   19.78  Cryst. 

  P3.4848 >113 =113 <1 0 1 >103.93 91.87  <1 observ. at 

 ROD P3.4843 >73.8 =73.8 <1 2 1   19.78  125 
µg/ml 

  P3.4849 >125 >125 X1 0 1 >103.93 91.87  <1  
PPMS-04 IIIB P3.4842 >89 =89 <1 8 1   18.27  Cryst. 

  P3.4848 >107 =107 <1 4 1 >100.98 100.98  <1 observ. at 
 ROD P3.4843 >83.9 =83.9 <1 6 1   18.27  25 µg/ml 
  P3.4849 >124 =124 <1 14 1 >100.98 100.98  <1  

PPMS-05 IIIB P3.4842 >125 >125 X1 16 1     Cryst. 
  P3.4848 >125 >125 X1 2 1 >125.00 >125.00  X1 observ. at 

 ROD P3.4843 >125 >125 X1 6 1     125 
µg/ml 

  P3.4849 >125 >125 X1 0 1 >125.00 >125.00  X1  
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PPMS-06 IIIB P3.4842 >83.3 =83.3 <1 12 1   6.76  Cryst. 
  P3.4848 >92.7 =92.7 <1 0 1 >92.73 92.73  <1 observ. at 

 ROD P3.4843 >96.1 =96.1 <1 11 1   6.76  125 
µg/ml 

  P3.4849 >98.8 =98.8 <1 10 1 >92.73 92.73  <1  
PPMS-07 IIIB P3.4842 >92.6 =92.6 <1 8 1   9.80   

  P3.4848 >110 =110 <1 0 1 >109.50 98.70  <1  
 ROD P3.4843 >93.5 =93.5 <1 6 1   9.80   
  P3.4849 >125 >125 X1 1 1 >109.50 98.70  <1  

PPMS-08 IIIB P3.4842 >125 >125 X1 10 1     Cryst. 
  P3.4848 >125 >125 X1 10 1 >125.00 >125.00  X1 observ. at 
 ROD P3.4843 >125 >125 X1 3 1     25 µg/ml 
  P3.4849 >125 >125 X1 5 1 >125.00 >125.00  X1  

PPMS-09 IIIB P3.4842 >56.8 =56.8 <1 8 1   23.60  Cryst. 
  P3.4848 >103 =103 <1 0 1 >99.83 77.10  <1 observ. at 
 ROD P3.4843 >71.5 =71.5 <1 7 1   23.60  25 µg/ml 
  P3.4849 >125 >125 X1 3 1 >99.83 77.10  <1  

PPMS-10 IIIB P3.4842 >31.4 =31.4 <1 11 1   15.42  Cryst. 
  P3.4848 >57.2 =57.2 <1 6 1 >36.30 36.30  <1 observ. at 

 ROD P3.4843 >20.4 =20.4 <1 19 1   15.42  125 
µg/ml 

  P3.4849 >36.2 =36.2 <1 23 1 >36.30 36.30  <1  
MMS-11 IIIB P3.4842 >75.5 =75.5 <1 9 1   9.92   

  P3.4848 >73.1 =73.1 <1 3 1 >69.60 69.60  <1  
 ROD P3.4843 >54.8 =54.8 <1 6 1   9.92   
  P3.4849 >75 =75 <1 5 1 >69.60 69.60  <1  

PPMS-12 IIIB P3.4842 >51.1 =51.1 <1 8 1   15.02  Cryst. 
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  P3.4848 >68 =68 <1 0 1 >66.95 66.95  <1 observ. at 

 ROD P3.4843 >61.8 =61.8 <1 7 1   15.02  125 
µg/ml 

  P3.4849 >86.9 =86.9 <1 13 1 >66.95 66.95  <1  
PPMS-13 IIIB P3.4842 >55.6 =55.6 <1 10 1   7.46   

  P3.4848 >63.1 =63.1 <1 0 1 >58.55 58.55  <1  
 ROD P3.4843 >49.5 =49.5 <1 3 1   7.46   
  P3.4849 >66 =66 <1 2 1 >58.55 58.55  <1  

PPMS-14 IIIB P3.4842 >75 =75 <1 5 1   6.12  Cryst. 
  P3.4848 >68.6 =68.6 <1 5 1 >68.65 68.65  <1 observ. at 
 ROD P3.4843 >60.4 =60.4 <1 2 1   6.12  25 µg/ml 
  P3.4849 >70.6 =70.6 <1 3 1 >68.65 68.65  <1  

PPMS-15 IIIB P3.4842 >100 =100 <1 16 1   1.67   
  P3.4848 >100 =100 <1 0 1 >99.03 99.03  <1  
 ROD P3.4843 >97.1 =97.1 <1 27 1   1.67   
  P3.4849 >125 >125 X1 24 1 >99.03 99.03  <1  

PPMS-16 IIIB P3.4842 >58.7 =58.7 <1 11 1   8.99  Cryst. 
  P3.4848 >65.9 =65.9 <1 7 1 >62.65 62.65  <1 observ. at 
 ROD P3.4843 >52.6 =52.6 <1 3 1   8.99  25 µg/ml 
  P3.4849 >73.4 =73.4 <1 13 1 >62.65 62.65  <1  

PPMS-17 IIIB P3.4842 >98.9 =98.9 <1 8 1   8.55  Cryst. 
  P3.4848 >101 =101 <1 0 1 >92.88 92.88  <1 observ. at 
 ROD P3.4843 >82.9 =82.9 <1 15 1   8.55  25 µg/ml 
  P3.4849 >88.7 =88.7 <1 0 1 >92.88 92.88  <1  

PPMS-18 IIIB P3.4842 >116 =116 <1 13 1   11.82  Cryst. 
  P3.4848 >94.6 =94.6 <1 9 1 >108.20 108.20  <1 observ. at 
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 ROD P3.4843 >114 =114 <1 7 1   11.82  5 µg/ml 
  P3.4849 >125 >125 X1 13 1 >108.20 108.20  <1  

PPMS-19 IIIB P3.4842 >78.1 =78.1 <1 14 1   6.53   
  P3.4848 >74 =74 <1 0 1 >71.08 71.08  <1  
 ROD P3.4843 >62.9 =62.9 <1 2 1   6.53   
  P3.4849 >69.3 =69.3 <1 2 1 >71.08 71.08  <1  

PPMS-20 IIIB P3.4842 >106 =106 <1 5 1     Cryst. 
  P3.4848 >125 >125 X1 7 1 >106.00 ≥106.00  ≤1 observ. at 
 ROD P3.4843 >106 =106 <1 7 1     25 µg/ml 
  P3.4849 >125 >125 X1 4 1 >106.00 ≥106.00  ≤1  

PPMS-21 IIIB P3.4842 >80.1 =80.1 <1 6 1   5.85   
  P3.4848 >67.2 =67.2 <1 0 1 >72.05 72.05  <1  
 ROD P3.4843 >68.3 =68.3 <1 2 1   5.85   
  P3.4849 >72.6 =72.6 <1 3 1 >72.05 72.05  <1  

PPMS-22 IIIB P3.4842 >50.8 =50.8 <1 8 1   11.09   
  P3.4848 >67.7 =67.7 <1 6 1 >57.85 57.85  <1  
 ROD P3.4843 >46 =46 <1 7 1   11.09   
  P3.4849 >66.9 =66.9 <1 10 1 >57.85 57.85  <1  

PPMS-23 IIIB P3.4844 >116 =116 <1 5 1   21.57  Cryst. 
  P3.4848 >86.7 =86.7 <1 0 1 >102.20 102.20  <1 observ. at 
 ROD P3.4845 >125 =125 <1 8 1   21.57  25 µg/ml 
  P3.4849 >81.1 =81.1 <1 5 1 >102.20 102.20  <1  
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5.7 CONCLUSION 

 

In summary, we have described the synthesis substituted pyrazolopyridone derivatives in 

excellent yields. The reaction of various ketene dithioacetals with cyanoacetamide was 

afforded the pyridone derivatives with good yields in the presence of base. Sodium 

isopropoxide was found as an efficient base for the synthesis of pyridones. The pyridones 

were further reacted with hydrazine hydrate to furnished pyrazolopyridones in excellent 

yields with short reaction time. Unfortunately, the synthesized compounds were found 

inactive against HIV-1 IIIB and ROD strains. 
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5.8 EXPERIMENTAL SECTION 

 
The solvents and chemicals were analytical grade. Analytical thin layer 

chromatography (TLC) was performed on 0.2-mm precoated plates of Silica Gel 60 F254 

precoated plates. 1H (400 MHz) and 13C NMR (100 MHz) spectra were recorded in DMSO, 

and TMS was used as an internal reference on a Bruker AVANCE II spectrometer. Mass 

spectra were determined using direct inlet probe on a GCMSQP2010 mass spectrometer. IR 

spectra were recorded on a FTIR-8400 spectrophotometer using DRS prob. Melting points 

were measured in open capillaries and are uncorrected. 

 

 General procedure for the synthesis of pyridones 3a-w. 

To a well stirred mixture of cyanoacetamide (10 mmol) and sodium isopropoxide (10 

mmol) in isopropyl alcohol was added the solution of ketene dithioacetals 1a-w (10 mmol) in 

isopropyl alcohol within 10-15 min. The resulting reaction mixture was further stirred at rt 

for 15 min. Then, reflux the reaction mixtures for 4-5 h on water bath. After completion of 

the reaction, the solvent was evaporated under vacuuo and the resulting solid was treated with 

dilute HCl solution. Thus, the obtained solid was filtered, wash with water and dried at rt to 

afford analytically pure products. The solid products were used for next step without further 

purification.  

 

 General procedure for the synthesis of pyrazolopyridones PPMS 1-23. 

The mixture of substituted pyridones 3a-w (5 mmol) and hydrazine hydrate (10mmol) 

in isopropyl alcohol was refluxed for appropriate time on water bath (Table 2). After 

completion of the reaction, solid product was appeared in the reaction. Cool the reaction 

mixture upto rt and filter the separated product washed with iPA and dried at rt to furnished 

analytically pure products. 

 
3-amino-4,5-dihydro-6-methyl-4-oxo-N-phenyl-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-1): Creamish solid; IR (KBr): 3367, 3138, 2897, 1667, 1494, 1342, 

1159, 854 cm-1; 1H NMR: δ 2.59 (s, 3H, CH3), 5.60 (s, 2H, NH2), 7.06-7.71 (m,  5H, ArH), 

9.93 (s, 1H, NH), 11.15 (s, 1H, NH), 11.68 (s, 1H, NH); 13C NMR: δ 18.60, 94.71, 110.01, 

119.45, 123.07, 125.62, 128.76, 139.20, 148.51, 159.93, 163.53; MS (m/z): 283 (M+); Anal. 

Calcd for C14H13N5O2: C, 59.36; H, 4.63; N, 24.72; Found: C, 59.29; H, 4.54; N, 24.64. 
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3-amino-4,5-dihydro-6-methyl-4-oxo-N-p-tolyl-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-2): Creamish solid; IR (KBr): 3425, 3369, 2899, 1664, 1506, 1354, 

1157, 839 cm-1; 1H NMR: δ 2.22 (s, 3H, CH3), 2.51 (s, 3H, CH3), 5.16 (s, 2H, NH2), 7.17 (d, 

J = 8.16, 2H, ArH), 7.51 (d, J = 7.4, 2H, ArH), 10.16 (s, 1H, NH), 11.02 (s, 1H, NH), 11.78 

(s, 1H, NH); MS (m/z): 297 (M+); Anal. Calcd for C15H15N5O2: C, 60.60; H, 5.09; N, 23.56; 

Found: C, 60.49; H, 5.01; N, 23.49. 

 
3-amino-4,5-dihydro-N-(4-methoxyphenyl)-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-

7-carboxamide (PPMS-3): Creamish solid; IR (KBr): 3379, 3024, 2902, 1651, 1516, 1332, 

1166, 954 cm-1; 1H NMR: δ 2.58 (s, 3H, NH), 3.78 (s, 3H, OCH3), 5.78 (s, 2H, NH2), 6.85 (d, 

J = 8.92, 2H, ArH), 7.57 (d, J = 8.88, 2H, ArH), 10.39 (s, 1H, NH), 11.00 (s, 1H, NH), 11.94 

(s, 1H, NH); 13C NMR: δ 14.49, 55.14, 95.11, 113.83, 121.10, 132.29, 148.51, 155.36, 

159.85, 164.93; MS (m/z): 313 (M+); Anal. Calcd for C15H15N5O3: C, 57.50; H, 4.83; N, 

22.35; Found: C, 57.41; H, 4.74; N, 22.29. 

 
3-amino-N-(4-fluorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-4): Creamish solid; IR (KBr): 3347, 3104, 2842, 1681, 1496, 1331, 

1152, 857 cm-1; 1H NMR: δ 2.54 (s, 3H, CH3), 5.18 (s, 2H, NH2), 7.14 (d, J = 8.92, 2H, ArH), 

7.66 (d, J = 8.12, 2H. ArH), 10.24 (s, 1H, NH), 11.07 (s, 1H, NH), 11.82 (s, 1H, NH); MS 

(m/z): 301 (M+); Anal. Calcd for C14H12FN5O2: C, 55.81; H, 4.01; N, 23.25; Found: C, 55.74; 

H, 3.94; N, 23.19. 

 
3-amino-4,5-dihydro-N-(2-methoxyphenyl)-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-

7-carboxamide (PPMS-5): Creamish solid; IR (KBr): 3309, 3014, 2908, 1671, 1563, 1287, 

1246, 927 cm-1; MS (m/z): 313 (M+); Anal. Calcd for C15H15N5O3: C, 57.50; H, 4.83; N, 

22.35; Found: C, 57.43; H, 4.73; N, 22.26. 

 
3-amino-4,5-dihydro-6-methyl-4-oxo-N-o-tolyl-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-6): Creamish solid; IR (KBr): 3406, 3115, 2902, 1660, 1514, 1280, 

1178, 952 cm-1; MS (m/z): 297 (M+); Anal. Calcd for C15H15N5O2: C, 60.60; H, 5.09; N, 

23.56; Found: C, 60.51; H, 5.02; N, 23.48. 

 
3-amino-N-(4-chlorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-7): Creamish solid; IR (KBr): 3330, 3142, 2830, 1688, 1489, 1241, 

1118, 827 cm-1; MS (m/z): 317 (M+); Anal. Calcd for C14H12ClN5O2: C, 52.92; H, 3.81; N, 

22.04; Found: C, 52.84; H, 3.74; N, 21.96. 
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3-amino-N-(4-ethylphenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-8): Creamish solid; IR (KBr): 3324, 3143, 2812, 1675, 1532, 1298, 

1114, 897 cm-1; MS (m/z): 311 (M+); Anal. Calcd for C16H17N5O2: C, 61.72; H, 5.50; N, 

22.49; Found: C, 61.64; H, 5.44; N, 22.41. 

 
3-amino-4,5-dihydro-6-methyl-N-(4-nitrophenyl)-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-9): Creamish solid; IR (KBr): 3369, 3020, 2897, 1685, 1573, 1494, 

1157, 854 cm-1; MS (m/z): 328 (M+); Anal. Calcd for C14H12N6O4: C, 51.22; H, 3.68; N, 

25.60; Found: C, 51.19; H, 3.61; N, 25.49. 

 
3-amino-N-(3-chloro-4-fluorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-10): Creamish solid; IR (KBr): 3341, 3158, 2957, 1687, 

1471, 1282, 1206, 956 cm-1; MS (m/z): 335 (M+); Anal. Calcd for C14H11ClFN5O2: C, 50.09; 

H, 3.30; N, 20.86; Found: C, 50.01; H, 3.21; N, 20.81. 

 
3-amino-N-(5-chloro-2-methoxyphenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-11): Creamish solid; IR (KBr): 3317, 3142, 2870, 1671, 

1418, 1266, 1107, 897 cm-1; MS (m/z): 347 (M+); Anal. Calcd for C15H14ClN5O3: C, 51.81; 

H, 4.06; N, 20.14; Found: C, 51.76; H, 3.94; N, 20.09. 

 
3-amino-N-(2,5-dichlorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-12): Creamish solid; IR (KBr): 3347, 3031, 2810, 1681, 

1546, 1322, 1183, 974 cm-1; MS (m/z): 352 (M+); Anal. Calcd for C14H11Cl2N5O2: C, 47.75; 

H, 3.15; N, 19.89; Found: C, 47.69; H, 3.04; N, 19.81. 

 
3-amino-4,5-dihydro-6-methyl-N-(2,5-dimethylphenyl)-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-13): Creamish solid; IR (KBr): 3358, 3108, 2920, 1698, 

1543, 1248, 1198, 854 cm-1; MS (m/z): 311 (M+); Anal. Calcd for C16H17N5O2: C, 61.72; H, 

5.50; N, 22.49; Found: C, 61.62; H, 5.45; N, 22.40. 

 
3-amino-N-(4-chloro-2-methylphenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-14): Creamish solid; IR (KBr): 3342, 3017, 2902, 1616, 

1471, 1236, 1087, 874 cm-1; MS (m/z): 331 (M+); Anal. Calcd for C15H14ClN5O2: C, 54.30; 

H, 4.25; N, 21.11; Found: C, 54.14; H, 4.18; N, 21.08. 
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3-amino-N-(3,4-difluorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-15): Creamish solid; IR (KBr): 3369, 3124, 2837, 1685, 

1426, 1212, 1106, 854 cm-1; MS (m/z): 319 (M+); Anal. Calcd for C14H11F2N5O2: C, 52.67; 

H, 3.47; N, 21.94; Found: C, 52.59; H, 3.41; N, 21.87. 

 
3-amino-N-(2-chlorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-16): Creamish solid; IR (KBr): 3369, 3124, 2802, 1657, 1566, 1432, 

1216, 874 cm-1; MS (m/z): 317 (M+); Anal. Calcd for C14H12ClN5O2: C, 52.92; H, 3.81; N, 

22.04; Found: C, 52.86; H, 3.76; N, 21.96. 

 
3-amino-N-(2-fluorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-17): Creamish solid; IR (KBr): 3352, 3124, 2922, 1658, 1506, 1323, 

1066, 827 cm-1; MS (m/z): 301 (M+); Anal. Calcd for C14H12FN5O2: C, 55.81; H, 4.01; N, 

23.25; Found: C, 55.71; H, 3.93; N, 23.17. 

 
3-amino-N-(4-bromophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-18): Creamish solid; IR (KBr): 3369, 3104, 2824, 1657, 1416, 1232, 

1096, 924 cm-1; MS (m/z): 362 (M+); Anal. Calcd for C14H12BrN5O2: C, 46.43; H, 3.34; N, 

19.34; Found: C, 46.36; H, 3.28; N, 19.29. 

 
3-amino-N-(3,4-dichlorophenyl)-4,5-dihydro-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-19): Creamish solid; IR (KBr): 3298, 2949, 2810, 1678, 

1511, 1336, 1174, 852 cm-1; MS (m/z): 352 (M+); Anal. Calcd for C14H11Cl2N5O2: C, 47.75; 

H, 3.15; N, 19.89; Found: C, 47.68; H, 3.05; N, 19.80. 

 
3-amino-4,5-dihydro-6-methyl-N-(3-nitrophenyl)-4-oxo-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-20): Creamish solid; IR (KBr): 3391, 2902, 2802, 1692, 1596, 1473, 

1176, 974 cm-1; MS (m/z): 328 (M+); Anal. Calcd for C14H12N6O4: C, 51.22; H, 3.68; N, 

25.60; Found: C, 51.17; H, 3.58; N, 25.51. 

 
3-amino-4,5-dihydro-6-methyl-4-oxo-N-m-tolyl-1H-pyrazolo[4,3-c]pyridine-7-

carboxamide (PPMS-21): Creamish solid; IR (KBr): 3364, 2927, 1674, 1533, 1281, 1112, 

873 cm-1; MS (m/z): 297 (M+); Anal. Calcd for C15H15N5O2: C, 60.60; H, 5.09; N, 23.56; 

Found: C, 60.52; H, 4.98; N, 23.49. 
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3-amino-4,5-dihydro-6-methyl-N-(2,3-dimethylphenyl)-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-22): Creamish solid; IR (KBr): 3288, 3038, 2992, 1698, 

1584, 1224, 1186, 854 cm-1; MS (m/z): 311 (M+); Anal. Calcd for C16H17N5O2: C, 61.72; H, 

5.50; N, 22.49; Found: C, 61.64; H, 5.44; N, 22.41. 

 

3-amino-4,5-dihydro-N-(2-methoxy-4-nitrophenyl)-6-methyl-4-oxo-1H-pyrazolo[4,3-c] 

pyridine-7-carboxamide (PPMS-23): Creamish solid; IR (KBr): 3375, 3024, 2802, 1684, 

1516, 1395, 1236, 894 cm-1; MS (m/z): 358 (M+); Anal. Calcd for C15H14N6O5: C, 50.28; H, 

3.94; N, 23.45; Found: C, 50.21; H, 3.87; N, 23.39. 
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1H NMR spectrum of compound PPMS-1 

 
 

Expanded 1H NMR spectrum of compound PPMS-1 
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1H NMR spectrum of compound PPMS-2 

 
 

1H NMR spectrum of compound PPMS-3 
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Expanded 1H NMR spectrum of compound PPMS-3 

 
 

 

1H NMR spectrum of compound PPMS-4 
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13C NMR spectrum of compound PPMS-1 

 
 

 
Expanded 13C NMR spectrum of compound PPMS-1 
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13C NMR spectrum of PPMS-3 

 
 
 

Mass spectrum of compound PPMS-8 
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Mass spectrum of compound PPMS-10 

 
 

 
IR spectrum of compound PPMS-2 
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IR spectrum of compound PPMS-3 
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Chapter 6 
 
 
X-Ray Diffraction Study of 3,4-dihydro-6-(2-

hydroxyphenyl)-5-nitro-4-phenylpyrimidin-

2(1H)-one and 2-(methylthio)-3-nitro-4H-

chromen-4-one 

 

 
H N

N
H

N O 2

O

H O

O

O
NO2

S
CH3



Chapter 6  Single Crystal X-Ray Diffraction Study 
  

6.1 Crystal and Molecular Structure of 3,4-dihydro-6-(2-hydroxy phenyl)-5-

nitro-4-phenylpyrimidin-2(1H)-one 
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 Growth and Characterization of 3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-

phenylpyrimidin-2(1H)-one. 

Dihydropyrimidines, especially NO2 functionalized pyrimidine finds applications in 

medicinal chemistry due to their important pharmacological and therapeutic properties1-3. 

Due to the medicinal properties of pyrimidine derivatives, the crystal growth of organic 

material compound 4 has been carried out.  

 

 

6.2 Procedure for the development of single crystals. 

In the present study, the pure, single spot (on TLC) compound was taken in glacial 

acetic acid and heated with stirring till it dissolved. A small quantity of charcoal was added 

for decolorizing. The solution was then heated to boiling and immediately filtered while hot 

in corkable 50 ml conical flask using Whatmann filter paper. The flask was corked and kept 

for several days. The crystals thus grown by thin film evaporation technique were isolated 

and washed with chilled methanol. The constitution of 3,4-dihydro-6-(2-hydroxyphenyl)-5-

nitro-4-phenylpyrimidin-2(1H)-one was supported by IR, 1H & 13C NMR and Mass spectral 

studies. 
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Figure 1: Photographs of the grown crystal of DHPM 4 
 

 
 

Good quality single crystals with maximum dimension 0.2 cm X 0.2 cm were obtained. 

Figures 1 show the types of crystals grown. The crystals were lemon yellow in color. 

 

6.3 SINGLE CRYSTAL X-RAY DIFFRACTION ANALYSIS 

 

Single crystal X-ray diffraction is the most common experimental method for 

obtaining a detailed picture of a small molecule that allows resolution of individual atoms. It 

is performed by analyzing the diffraction of x-rays from an ordered array of many identical 

molecules. Many molecular substances, including proteins, polymers and other solidify in to 

crystals under the proper conditions. When solidifying in to the crystalline state, these 

individual molecules typically adapted as one of only a few possible orientations. A crystal is 

a three dimensional array of those molecules that are held together by Van der Waals and 

noncovalent bonding. The smallest representative unit of this crystal is referred to as the unit 

cell. Understanding the unit cell of these arrays simplifies the understanding of a crystal as a 

whole. 

 

 Single Crystal X-ray Diffraction and Structure Determination 
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 A single crystal of suitable size was chosen for X-ray diffraction studies. The data 

were collected at room temperature on a DIPLabo Image Plate system with graphite 

monochromated radiation MoKα. Each exposure of the image plate was set to a period of 400 

s. Thirty-six frames of data were collected in the oscillation mode with an oscillation range of 

5˚ and processed using Denzo.4 The reflections were merged with Scalepack. All the frames 
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could be indexed using a primitive monoclinic lattice. The structure was solved by direct 

methods using SHELXS-975. Least-squares refinement using SHELXL-975 with isotropic 

displacement parameters for all the non-hydrogen atoms converged the residual to 0.1402. 

Subsequent refinements were carried out with anisotropic thermal parameters for the non-

hydrogen atoms. After eight cycles of refinement the residuals converged to 0.0470. The 

hydrogen atoms were fixed at chemically acceptable positions and were allowed to ride on 

their parent atoms. The details of crystal data and refinement are given in Table 1. The bond 

lengths and bond angles of all the non-hydrogen atoms (Table 2) are in good agreement with 

the standard values6. Figure 1 represents the ORTEP7 diagram of the molecule with thermal 

ellipsoids drawn at 50% probability. 

 

In the title compound C16H13N3O4, the heterocyclic ring adopts a flattened boat conformation, 

with a puckering amplitude8 Q=0.3833(2)Å, θ=106.2(3)˚ and Φ=352.1(3)˚. The phenyl ring 1 

(C7-C8-C9-C10-C11-C12) adopts an axial conformation with the heterocyclic ring whereas 

the phenyl ring 2 (C18-C19-C20-C21-C22-C23) adopts an equatorial conformation, as 

indicated by the dihedral angle values of  39.38(8)˚ and 81.12(1)˚ respectively. The nitro 

group C6-C5-N15-O17 is almost coplanar with the pyrimidine ring as indicated by the 

torsion angle value of 12.6(3)˚. The carbonly group C2=O14 is oriented in +anti-periplanar 

conformation, as indicated by the torsion angle value of 163.58(1)˚ for C6-N1-C2-O14. The 

hydroxyl group of phenyl ring 1 makes an angle of 121.74(2)° with the C11 and 119.25(2)° 

with the C7 atoms. The observed bond length of O13 atom of hydroxyl group with C12 was 

1.343(2). The hydrogen atom H13 of hydroxyl group makes intramolecular hydrogen bond 

with O14 of heterocyclic ring with the bond length 2.799(2)Å and bond angle 172˚. The bond 

lengths N15-O16, N15-O17, N1-C6, N1-C2, N3-C2, N3-C4 are comparable with other 

reported compounds.9 The  structure exhibits intermolecular hydrogen bonds of the type N-

H…O and O-H…O, which bind the molecules into one-dimensional polymeric chains. The 

observed hydrogen bonds are listed in Table 3. The packing of the molecules down b-axis is 

shown in the Figure 2. 
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Figure 2: ORTEP of the molecule with thermal ellipsoids drawn at 50% probability. 

 

 

 
Figure 3: Packing of the molecules when viewed down the b-axis. The dashed lines 

represent the hydrogen bonds. 
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Table 1: Experimental details and other measurement data  
 

Empirical formula C16H13N3O4

Formula weight 311.29 

Temperature 293 k 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P21/c 

Cell dimensions a = 11.1070(10)Å 

 b = 8.8210(4)Å 

 c = 15.1110(13)Å 

 β=106.193(2)˚ 

Volume 1421.76(2)Å3

Z 4 

Density (calculated) 1.454 Mg/m3

Absorption coefficient 0.107 mm-1

F000 648 

Crystal size 0.270 x 0.250 x 0.230 mm 

Theta range for data collection 2.70 to 25.03˚ 

Index ranges -13<=h<=13, -9<=k<=9, -17<=l<=17 

Reflections collected 4326 

Independent reflections 2351 

Absorption correction  None 

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2351 / 0 / 209 

Goodness-of-fit on F2 1.023 

Final R indices [I > 2σ(I)] R1 = 0.0470, wR2 = 0.1344 

R indices (all data) R1 = 0.0526, wR2 = 0.1422 

Extinction coefficient 0.045(8) 

Largest diff. peak and hole 0.238 and -0.265 e.Å-3

Deposition number CCDC 743221 
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Table 2: Various Bond lengths (Å) and Bond angles (˚) 
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Atoms Length (Å) Atoms Length (Å) 

N1-C2 1.376(2) C9-C10 1.380(3) 

N1-C6 1.382(2) C10-C11 1.377(3) 

C2-O14 1.239(2) C11-C12 1.388(3) 

C2-N3 1.332(2) C12-O13 1.343(2) 

N3-C4 1.460(2) N15-O17 1.223(2) 

C4-C5 1.513(2) N15-O16 1.229(2) 

C4-C18 1.528(2) C18-C23 1.381(3) 

C5-C6 1.352(2) C18-C19 1.386(3) 

C5-N15 1.435(2) C19-C20 1.384(3) 

C6-C7 1.477(2) C20-C21 1.383(4) 

C7-C8 1.387(3) C21-C22 1.371(4) 

C7-C12 1.407(2) C22-C23 1.382(3) 

C8-C9  1.376(3)   

Atoms Angle(˚) Atoms Angle(˚) 

C2-N1-C6 123.67(1) C8-C9-C10 119.27(2) 

O14-C2-N3 123.97(1) C11-C10-C9 120.69(2) 

O14-C2-N1 120.70(1) C10-C11-C12 120.57(2) 

N3-C2-N1 115.32(1) O13-C12-C11  121.74(2) 

C2-N3-C4 122.82(1) O13-C12-C7 119.25(2) 

N3-C4-C5 106.58(1) C11-C12-C7 118.98(2) 

N3-C4-C18 112.46(1) O17-N15-O16  122.50(1) 

C5-C4-C18 113.67(1) O17-N15-C5 120.23(1) 

C6-C5-N15 121.88(1) O16-N15-C5 117.21(1) 

C6-C5-C4 120.65(1) C23-C18-C19 118.20(2) 

N15-C5-C4 117.36(1) C23-C18-C4 119.40(2) 

C5-C6-N1 116.27(1) C19-C18-C4 122.40(2) 

C5-C6-C7 130.54(1) C20-C19-C18 120.9(2) 

N1-C6-C7 113.19(1) C21-C20-C19 119.9(2) 

C8-C7-C12 119.16(2) C22-C21-C20 119.6(2) 

C8-C7-C6 118.23(1) C21-C22-C23 120.3(2 

C12-C7-C6 122.36(1) C18-C23-C22 121.1(2) 
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C9-C8-C7 121.31(2)   

 

 

 

 

 

 
Table 3: Geometry of intermolecular hydrogen interactions 
 

Atoms Length (Å) Angle(˚) Symmetry codes 

N1-H1…O14  2.892(2) 170 2-x,1-y,-2 

O13-H13…O14 2.799(2) 172 x,1+y,z 
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6.4 Crystal and Molecular Structure of 2-(methylthio)-3-nitro-4H-chromen-4-

one 

 

 

SCHEME 

 

OH

O

NO2

1

     CS2/Base,
 0 oC rt, 1h
MeI,
0 oC rt, 6-7 h O

O

NO2

S

2  

 

 

 

6.5 Procedure for the development of single crystals. 

In the present study, the pure, single spot (on TLC) compound was taken in 

chloroform and heated with stirring till it dissolved. A small quantity of charcoal was added 

for decolorizing. The solution was then heated to boiling and immediately filtered while hot 

in corkable 50 ml conical flask using Whatmann filter paper. The flask was corked and kept 

for several days. The crystals thus grown by thin film evaporation technique were isolated 

and washed with chilled methanol. The constitution of 2-(methylthio)-3-nitro-4H-chromen-4-

one was supported by IR, 1H & 13C NMR and Mass spectral studies. 

 

 

 

 

 

 

 

 

 

 

 

Studies on Bioactive Heterocycles  208 

 



Chapter 6  Single Crystal X-Ray Diffraction Study 
  

 

 
 

Figure 1: Photograph of the grown crystals of compound 2 

 
 

Good quality single crystals with maximum dimension 1.0 cm X 0.2 cm were obtained. 

Figures 1 show the types of crystals grown. The crystals were yellowish in color. 

 

6.6 Single Crystal X-ray Diffraction and Structure Determination 
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 A single crystal of the title compound with dimensions 0.30 x 0.25 x 0.25 mm was 

chosen for the X-ray diffraction study. The data were collected on a DIPLabo Image Plate 

system equipped with a normal focus, 3KW sealed X-ray source (graphite monochromated 

MoKα). The crystal to detector distance was fixed at 120 mm with the detector area of 441 x 

240 mm2. Thirty six frames of data were collected at room temperature by the oscillation 

method. Each exposure of the image plate was set to 400 seconds. Successive frames were 

scanned in steps of 5º per minute with an oscillation range of 5º. Image processing and data 

reduction were done using Denzo.4 The reflections were merged with Scalepack.13 All the 

frames could be indexed using a monoclinic lattice. Absorption correction was not applied. 

The structure was solved by direct methods using SHELXS-97.14 Least-squares refinement 

using SHELXL-9715 with isotropic temperature factors for all the non-hydrogen atoms 

converged the residual R1 to 0.0528. Subsequent refinements were carried out with 

anisotropic thermal parameters for non-hydrogen atoms and isotropic temperature factors for 

the hydrogen atoms which were placed at chemically acceptable positions. The hydrogen 
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atoms were allowed to ride on their parent atoms. After eight cycles of refinement the 

residual converged to 0.0446. The details of crystal data and refinement are given in Tables 1. 

Tables 2 give the list of bond lengths and bond angles respectively which are in good 

agreement with the standard values. Table 3 gives atomic coordinates and equivalent thermal 

parameters of the non-hydrogen atoms and Table 4 gives hydrogen-bonding geometry. The 

ORTEP of the molecule with thermal ellipsoids drawn at 50% probability is shown in Fig. 2 

and Fig. 3 shows packing of the molecules down along b-axis. 

 

The title compound shows planar conformation. The dihedral angle between the least squares 

planes O1-C2-C3-C4-C5-C10 and C5-C6-C7-C8-C9-C10 is 1.13(1)º. Total puckering 

amplitude Q for ten membered ring O1-C2-C3-C4-C5-C6-C7-C8-C9-C10 is 0.045(2)Å. The 

torsion angles about C3-C2-S11-C12 and C2-C3-C4-O16 being 168(2)º and 179.3(2)º show 

anti-periplanar  and anti-periplanar conformations. The molecule exhibits inter-molecular 

hydrogen bonds of the type C-H...O. The inter-molecular hydrogen bonds C9-H9...O15 and  

C12-H12A...O16, have lengths of 3.341(3)Å and 3.332(3)Å, with angles of 161º and 144º  

respectively, with the symmetry codes x,  y, 1+z  and -x, 1-y, -z. 
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Figure 2: ORTEP of the molecule with thermal ellipsoids drawn at 50% probability. 
 
 
 

 
 

Figure 3: Packing of the molecules when viewed down the b-axis. The dashed lines 
represent the hydrogen bonds. 
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Table 1: Experimental details and other measurement data  
 

Empirical formula C10H7NO4S 

Formula weight 237.23 
Temperature 293(2) K 
Wavelength 0.71073 Å 
Crystal system Monoclinic 
Spacegroup P21/c 
Cell dimensions a = 7.7940(8)Å 

b = 17.3990(16)Å 
c = 8.1600(7)Å 
β = 117.998(6)° 
 

Volume 977.05(16)Å3

Z 4 
Density(calculated) 1.613 Mg/m 3

Absorption coefficient 0.328 mm -1

F000 488 
Crystal size 0.3 x 0.25 x 0.25 mm 

θ range for data collection 2.34° to 25° 

Index ranges -9 ≤ h ≤ 9 
-20 ≤  k ≤ 20 
-9 ≤  l ≤ 8 
 

Reflections collected 2713 
Independent reflections 1530 [R int = 0.0239] 
Refinement method Full-matrix least-squares on F 2

Data / restraints / parameters 1530 / 0 / 147  
Goodness-of-fit on F2 1.23 

Final R indices [I>2σ(I)] R1 = 0.0446, wR2 = 0.1162 

R indices (all data)  R1 = 0.0528, wR2 = 0.1312 
Extinction coefficient 0.43(4) 
Largest diff. peak and hole 0.412 and -0.376  e.Å -3

CCDC Deposition 760004 
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Table 2: Various Bond lengths (Å) and Bond angles (˚) 
 

Atoms Length (Å) Atoms Length (Å) 

O1-C2  1.338(2) C5-C6 1.404(3) 

 O1-C10 1.387(2)  C6-C7 1.371(3) 

C2-C3 1.375(3) C7-C8 1.392(4) 

C2-S11 1.734(2)  C8-C9  1.380(3) 

 C3-N13 1.441(3) C9-C10 1.381(3) 

C3-C4 1.467(3) S11-C12 1.797(3) 

C4-O16  1.218(2)  N13-O15 1.220(2) 

C4-C5 1.473(3) N13-O14 1.233(2) 

C5-C10 1.381(3)   

Atoms Angle(˚) Atoms Angle(˚) 

C2-O1-C10  120.83(2) C6-C5-C4  121.08(2)  

O1-C2-C3 121.13(2) C7-C6-C5 120.3(2) 

O1-C2-S11  112.59(1) C6-C7-C8 120.4(2) 

C3-C2-S11 126.27(2) C9-C8-C7 120.6(2) 

C2-C3-N13 118.22(2) C8-C9-C10 117.9(2) 

C2-C3-C4 122.83(2) C5-C10-C9  123.15(2) 

N13-C3-C4 118.95(2) C5-C10-O1 121.17(2) 

O16-C4-C3 125.45(2) C9-C10-O1 115.67(2) 

 O16-C4-C5 121.89(2) C2-S11-C12  101.66(1)  

C3-C4-C5 112.66(2)  O15-N13-O14  123.00(2) 

C10-C5-C6 117.63(2) O15-N13-C3 119.17(2) 

C10-C5-C4 121.29(2) O14-N13-C3 117.83(2) 
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Table 3: Atomic coordinates and equivalent thermal parameters of the non-hydrogen 
atoms. 
 

Atom x y z Ueq

O1 0.2126(2) 0.5367(7) 0.3081(2) 0.0404(4) 
C2 0.1982(3) 0.5767(1) 0.1622(3) 0.0357(5) 
C3 0.2395(3) 0.5435(1) 0.0319(3) 0.0370(5) 
C4  0.3097(3)  0.4642(1) 0.0473(3) 0.0368(5) 
C5 0.3291(3) 0.4251(1)  0.2152(3) 0.0370(5) 
C6 0.3984(3) 0.3494(1) 0.2565(3) 0.0465(5) 
C7 0.4119(3) 0.3134(1) 0.4116(4) 0.0522(6) 
C8 0.3586(3)  0.3517(1) 0.5304(3) 0.0499(6) 
C9 0.2923(3)  0.4265(1) 0.4947(3) 0.0436(5) 
C10 0.2789(3) 0.4614(1) 0.3371(3)   0.0365(5) 
S11 0.1206(8) 0.6704(3) 0.1594(8) 0.0443(3) 
C12 0.0475(4) 0.6672(1)  0.3379(4) 0.0501(6) 
N13 0.2147(3)  0.5892(1) -0.1251(3) 0.0444(5) 
O14  0.2283(3) 0.6596(9) -0.1058(3)  0.0668(6) 
O15 0.1811(3)  0.5571(1) -0.2701(2) 0.0649(6) 
O16 0.3500(2) 0.4323(8) -0.0631(2)  0.0467(4)  

 

 

 

 

 

 
Table 4: Geometry of intermolecular hydrogen interactions 

 
Atoms D-H H-A Length (Å) Angle(˚) Symmetry codes 

 C9-H9...O15 0.93 2.45 3.341(3) 161 x, y, 1+z 

C12-H12A...O16 0.96 2.51 3.332(3) 144 -x,1-y,-z 
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6.7 CONCLUSION 

 

We have demonstrated the crystal and molecular structure of newly synthesized compounds 

3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one and 2-(methylthio)-

3-nitro-4Hchromen-4-one by the singly crystal x-ray diffraction technique. In compound 3,4-

dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one, the pyrimidine ring 

adopts a flattened boat conformation and the phenyl ring 1 (C7-C8-C9-C10-C11-C12) and 

phenyl ring 2 (C18-C19-C20-C21-C22-C23) adopts an axial and equatorial conformations 

with the pyrimidine ring, respectively. The nitro group is almost coplanar with the pyrimidine 

ring. The structure exhibits intermolecular hydrogen bonds of the type N-H…O and O-H…O, 

which bind the molecules into one-dimensional polymeric chains. The compound 2-

(methylthio)-3-nitro-4Hchromen-4-one shows planar conformation and molecule exhibits 

inter-molecular hydrogen bonds of the type C-H...O.  
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Summary 
 
 

The work presented in the Thesis entitled “Studies on Bioactive Heterocycles” can be 

summarized as below. 

 
Chapter 1, we have demonstrated the utility of ω-nitro acetophenone for the synthesis of 

pyrimidine heterocycle via cyclocondensation using bisphosphonic acid (EDA) as a catalyst. 

We have examined the catalytic utility of various bisphosphonic acids and found the 

etidronic acid was efficient for the synthesis of nitro bearing pyrimidines. The use of 

etidronic acid was well tolerated with a range of aldehydes. This protocol is general and 

provides dihydropyrimidines in good to excellent yields depending on the reactivity of 

arylaldehydes. Thus, the present synthesis of pyrimidines will serve as an exclusive method 

of preparative importance for this class of compounds. However, the newly synthesized 

compounds were inactive against HIV-1 IIIB and ROD strains. 

 
Chapter 2 and 3, we have exhibited a solution-phase library of pyrazoles/isoxazoles 

functionalized with methyl, sulfone and carboxamide groups in two steps with excellent 

yield and chemical purity for biological interest. Water was emerged as an efficient and 

green solvent in the condensation reaction of various ketene dithioacetals with binucleophile 

such as; hydrazine hydrate and hydroxyl amine. Further, the oxidation of sulfide was 

achieved by sodium perborate to synthesized sulfone group containing pyrazoles/isoxazoles. 

Sodium perborate is more efficient and effective for oxidation of sulfide to sulfone in 

aqueous medium. This procedure offers a good scope for the synthesis of a wide variety of 

pyrazoles containing caboxamide and sulfone in two steps with excellent yield, purity and 

simple isolation of products. The biological screening of the synthesized compounds is under 

process.  

 
Chapter 4, we have demonstrated a novel synthetic strategy for the synthesis of substituted 

3-nitro-4H-chromen-4-ones through [5+1] heteroannulation of readily accessible 2-hydroxy-

ω-nitro acetophenone with carbon disulfide and followed by straightforward nucleophilic 

addition through elimination of methylthio with various amines. The direct C-N bond 

formation reaction at C2 was achieved by the presence of nitro functionality at C3 position 

of chromenone. The newly developed methodology allows direct access to 2-substituted-3-

nitro chromenone in excellent yield and high chemical purity. The presence of nitro 

functionality further makes them useful substrates for various transformations for biological 
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interest. Thus, the ω-nitro acetophenone has been useful for the synthesis of nitro group 

containing chromenones. The biological screening of the synthesized compounds is under 

process.  

 
Chapter 5, we have described the synthesis substituted pyrazolopyridone derivatives in 

excellent yields. The reaction of various ketene dithioacetals with cyanoacetamide was 

afforded the pyridone derivatives in the presence of base with good yields. Sodium 

isopropoxide was found as an efficient base for the synthesis of pyridones. The pyridones 

were further reacted with hydrazine hydrate to furnished pyrazolopyridones in excellent 

yields with short reaction time. The synthesized compounds were found inactive against 

HIV-1 IIIB and ROD strains. 

 
Chapter 6, We have demonstrated the crystal and molecular structure of newly synthesized 

compounds 3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one and 2-

(methylthio)-3-nitro-4H-chromen-4-one by the singly crystal x-ray diffraction technique. In 

compound 3,4-dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenylpyrimidin-2(1H)-one, the 

pyrimidine ring adopts a flattened boat conformation and the phenyl ring 1 (C7-C8-C9-C10-

C11-C12) and phenyl ring 2 (C18-C19-C20-C21-C22-C23) adopts an axial and equatorial 

conformations with the pyrimidine ring, respectively. The nitro group is almost coplanar 

with the pyrimidine ring. The structure exhibits intermolecular hydrogen bonds of the type 

N-H…O and O-H…O, which bind the molecules into one-dimensional polymeric chains. 

The compound 2-(methylthio)-3-nitro-4H-chromen-4-one shows planar conformation and 

molecule exhibits inter-molecular hydrogen bonds of the type C-H...O.  
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A small molecule library of alkyl, sulfone, and carboxamide functionalized pyrazoles and isoxazoles has
been developed via a rapid sequential condensation of various R-acylketene dithioacetals (1a-o) with
hydrazine hydrate or hydroxylamine hydrochloride, followed by oxidation of sulfide to sulfone using water
as the reaction medium. An efficient and safe oxidation of sulfides (4/5a-o) to the corresponding sulfones
(6/7a-o) using sodium per borate system in aqueous medium is reported. The concise and two step synthesis
of trisubstituted pyrazoles and isoxazoles was investigated under variety of reaction condition. The newly
developed methodology has the advantage of excellent yield and chemical purity with short reaction time
using water as a solvent.

Introduction

In recent decades, combinatorial chemistry tools have
enabled the rapid synthesis of a large number of heterocyclic
small molecule libraries and it is recognized now as a key
element of early drug discovery.1 The main advantage of
the combinatorial technique is the speed at which diverse
types of organic compounds can be synthesized, formulated,
and tested for a particular application. Moreover, in com-
binatorial study the quantity of required material is less in
comparison to conventional methods, which makes it more
suitable when the materials are expensive.2

The development of new methods for the synthesis of five
member heterocyclic compound libraries, both in solution
and in solid phase, is an ever-expanding area in combinatorial
chemistry. Specifically, those containing the pyrazole and
isoxazole nucleus have been widely used as key building
blocks for pharmaceutical agents. Its derivatives are endowed
with high pharmacological properties, for example, hypogly-
cemic, analgesic, anti-inflammatory, antibacterial, anti-HIV,
and anticancer activity,3 as well as useful activities in
conditions like schizophrenia, hypertension, and Alzheimer’s
disease.4 In addition, they also have agrochemical properties
including herbicidal and soil fungicidal activity; thus, they
have been used as pesticides and insecticides.5 Recently,
pyrazoles containing aryl substituted emerged as p38 Kinase
inhibitors, antiparasitic activities.6

Among these, pyrazoles and isoxazoles bearing sulfone
and carboxamide moieties demonstrated to have significant
pharmacological applications. For examples, cyclooxyge-
nase-2 (COX-2) selective inhibitors, celecoxib (1),7 rofecoxib
(2),8 and valdecoxib (3)9 are currently prescribed for the
treatment of arthritis and inflammatory diseases (Figure 1,
1-3). These COX-2 inhibitors exhibited anti-inflammatory

activity with reduced gastrointestinal side effects. Oxacillin
and its derivatives are useful compounds because of their
narrow spectrum anti biotic properties10 (Figure 1, 4).
Recently, pyrrolyl aryl sulfones have been reported by
Silvestri et al.11 and Artico et al.12 as a new class of human
immunodeficiency virus type 1 (HIV-1) RT inhibitors acting
at the non-nucleoside binding site of this enzyme. Haruna
et al.,13 have synthesized the propargylic sulfones with
various planar molecules and evaluated their DNA binding
properties and DNA cleavage activity. Moreover, the 1-(4-
methylsulfonyl)benzene and 4-(4-methylsulfonyl)benzene
substituted pyrazole compounds containing a nitric oxide
donating group at the 3-position of the pyrazole ring,
respectively, have been synthesized and evaluated for their
ability to inhibit COX isoenzymes in human whole blood.14

Pyrazoles containing a sulfone group at N position have been
exhibited promising antimicrobial activity.15 Furthermore,
amide groups linked with isoxazole derivatives are found to

* To whom correspondence should be addressed. E-mail: naliaparachem@
yahoo.co.in. Phone: +91 9428036310. Fax: +91 281 2576802.

Figure 1. Biologically active pyrazoles and isoxazoles containing
alkyl, sulfone, and carboxamide groups (1-5).
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have combined R2-adrenoceptor antagonistic and serotonine
reuptake inhibiting activities.16 The isoxazoles containing aryl
and carboxamide (Figure 1, 5) were also shown to have
potent in vivo antithrombotic efficacy.17

As described above, the tremendous biological potential
of the sulfone group and carboxamide group bearing pyrazole
and isoxazole scaffolds have attracted many chemists to
synthesize this class of molecules. The classical methods to
synthesized pyrazoles and isoxazoles involves the condensa-
tion of a 1,3-dicarbonyl compound or its synthetic equivalent
with hydrazine in appropriate organic solvent.18 On the other
hand, functionalized ketene dithioacetals are versatile inter-
mediates in organic synthesis for the construction of sub-
stituted heterocycles such as pyrazoles and isoxazole. The
nucleophilic displacement of one of the alkylthio groups from
ketene dithioacetals either in an organic solvents or using
microwave irradiation which followed by cyclization to
afforded the heterocycles.19 The sulfone group containing
synthesis of pyrazoles and isoxazoles library from 2-sulfo-
nylacetonitriles using solid-phase strategy is reported. How-
ever, it required a long reaction time, 40 h, and a lengthy
workup process.20 Thus, the practical synthesis of structurally
diverse isoxazole/pyrazole based small molecules is of great
significance.

Nowadays, a great deal of effort has been focused on the
field of green chemistry in adopting methods and processes.
As a part of this “green” concept, toxic and/or flammable
organic solvents are replaced by alternative non-toxic and
nonflammable media. In this context, many efforts have been
made to use aqueous media. Among alternative green
solvents, water has been the solvent of choice for a variety
of transformations.21 Given the importance of sulfone and
carboxamide group containing pyrazoles and isoxazoles, we
set out to prepare a small molecule library of 3-methyl-5-
(methylsulfonyl)-N-aryl-1H-pyrazole/isoxazole-4-carboxam-
ide derivatives using ketene dithioacetals in aqueous medium
(Figure 1, 6/7a-o).

Herein, we wish to report a novel synthesis of alkyl,
methylsulfonyl, and carboxamide functionalized pyrazole or
isoxazole heterocyles via condensation of R-acylketene
dithioacetals (R-AKDTAs) with hydrazine hydrate or hy-
droxyl amine hydrochloride and followed by oxidation of
sulfide to sulfone using sodium per borate (SPB) in aqueous
medium. To our knowledge, this is the first attempt to
construct 3-methyl-5-(methylsulfonyl)-N-aryl-1H-pyrazole/
isoxazole-4-carboxamide in solution phase.19a,22

Results and Discussions

A series of various R-AKDTAs 1a-o was prepared by
some modification in reported procedure.23 Initially, con-
densation of R-AKDTA 1a with hydrazine hydrate 2 took
place smoothly in isopropyl alcohol reflux to afford the
3-methyl-5-(methylsulfonyl)-N-phenyl-1H-pyrazole-4-car-
boxamide 4a in good yield (Scheme 1; Entry 1, Table 1).
The condensation of 1a with 2 to generate pyrazole 4a was
investigated using a variety of solvents, as a part of the “green
chemistry” concept and to optimize the yield, and the results
are summarized in Table 1.

The condensation reaction was clean in water, and the
yield of desired product was higher (Entry 7, Table 1). On
the other hand, the reaction was relatively fast when iPrOH
was used as a solvent with 12% lower yield (Entry 1, Table
1). The yield of desired product was reasonable when MeOH,
EtOH, and dioxane were used as a solvent (Entry 2,3,6, Table
1). The other solvents, tetrahydrofuran (THF) and acetoni-
trile, gave lower yield with higher reaction time (Entry 4,5,
Table 1). Thus, it is clear from the aforementioned experi-
ments that the best yield of pyrazoles 4a could be obtained
by employing water as a solvent without using any phase
transfer catalyst.

To test the generality of the condensation and to realize
the synthesis of a small combinatorial library of substituted
pyrazoles and isoxazoles, 15 R-AKDTAs 1a-o were reacted
with hydrazine hydrate 2 or hydroxyl amine hydrochloride
3 and potassium hydroxide to furnish pyrazoles 4a-o and
isoxazoles 5a-o in excellent yield using water as a solvent
(Scheme 1, Table 2). The synthesized compounds were
characterized by spectral data. The 1H NMR spectra of
compound 4c displayed characteristic singlet for methyl,
mehtylthio, and methoxy hydrogen, respectively, at δ 2.54,
2.64, and 3.92. The two singlets appeared for pyrazole NH
at δ 10.12 and amide hydrogen at δ 9.62 which revealed
the formation of pyrazole ring. However, in 1H NMR of
isoxazole 5b a characteristic singlet for amide proton
appeared at δ 9.19 and hydrogen of methylthio group
displayed a singlet at δ 2.63.

Because of the remarkable utility of sulfone group in
pharmaceuticals and to develop a library of pyrazole and
isoxazole functionalized with alkyl, carboxamide, and sul-
fone, we next planned to oxidize the sulfides to sulfones.
Although sulfides can be easily oxidized by a wide variety
of oxidizing reagents, unfortunately some of these reagents
are not satisfactory for the oxidation of sulfide to sulfone
because of low yields of products, toxicity, and expensive
reagents or catalysts.24 The reaction condition for oxidation
of sulfide to sulfone was optimized with a variety of
oxidizing agent in various solvent (Table 3, Scheme 2).

Scheme 1. Synthesis of Trisubstituted Pyrazoles and
Isoxazoles in Aqueous Medium

Table 1. Synthesis of 3-Methyl-5-(methylthio)-N-phenyl-1H-
pyrazole-4-carboxamide 4a Using Variety of Solvents

entrya solvents time, h yieldb %

1 iPrOH 2.8 85
2 MeOH 4.0 81
3 EtOH 3.5 83
4 THF 4.5 79
5 CH3CN 4.0 75
6 dioxane 3.5 80
7 water 3.0 97

a All solution-phase reactions were conducted at reflux temperature of
the solvent used. b Isolated yield after purification.
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The results gathered in Table 3 indicate that when
dichloromethane was used as a solvent the yield of sulfone
was higher with m-chloroperbenzoic acid (mCPBA) as
compared to sodium per carbonate (SPC) and SPB, but it
required high reaction time (Entry 1,4,7, Table 3). The yields
of desired products were very poor when acetone was used
as solvent, and the products were isolated using column

chromatography (Entry 2,5,8, Table 3). The best results were
obtained when water was used as solvent with the SPB, and
the sulfide underwent oxidation to the corresponding sulfone
in 45 min with excellent yield (Entry 6, Table 3). However,
an excess amount of SPC did not improve yield. When the
amount of SPB was reduced, the yield of desired product
was lower. The above results indicate, the cheap, environ-
mentally friendly and effective oxidizing agent in water was
SPB and gave quantitatively yield of product without use of
any activator. With this oxidizing system, all the synthesized
compounds 4/5a-o were oxidized to generate sulfone
containing pyrazoles and isoxazole based small molecule
library using solution phase synthesis, and the results are
gathered in Table 4. The chemical purity of all newly
synthesized compounds was examined using UPLC at 254
nm. Among all the final compounds, compounds 6k and 7l
shown less than 95% chemical purity and other showed more
than 95% chemical purity (Figure 2). The 1H NMR spectrum
of pyrazole 6j displayed two characteristic singlets for the
methyl and mehtylthio proton, respectively, at δ 2.53 and
3.64. However, two singlets appeared for pyrazole NH at δ
12.97 and amide hydrogen at δ 9.61. Compound 7a displayed
a characteristic singlet for amide proton at δ 9.88 and two
singlets for methyl and mehtylthio hydrogen, respectively,
at δ 2.69 and 3.33. The overall study indicates that this is
the simple and facile methodology to introduce sulfone and
caboxamide group to pyrazole and isoxazole scaffold in
excellent yield and chemical purity.

Conclusion

In summary, we have synthesized a solution-phase library
of pyrazoles and isoxazoles functionalized with methyl,

Table 2. 3-Methyl, 5-Methylthio, 4-Carboxamide Substituted
Pyrazoles and Isoxazoles

entry R time, h yielda % mp, °C

4a Ph 3.0 97 120-122
4b 4-CH3Ph 3.5 95 125-127
4c 4-CH3OPh 3.0 96 118-120
4d 4-FPh 2.8 94 132-134
4e 2-CH3OPh 2.9 92 126-128
4f 2-CH3 3.2 93 122-124
4g 4-ClPh 3.8 94 128-130
4h 4-EtPh 3.5 95 130-132
4i 4-NO2Ph 2.5 91 135-137
4j 3-Cl,4-FPh 3.2 90 128-130
4k 5-Cl,2-CH3OPh 3.0 93 136-138
4l 2,5-diClPh 3.4 89 126-128
4m 2,5-diCH3Ph 3.2 91 122-124
4n 4-Cl,2-CH3Ph 2.9 94 121-123
4o 3,4-diFPh 3.2 93 130-132
5a Ph 2.5 94 135-137
5b 4-CH3Ph 2.8 92 141-142
5c 4-CH3OPh 3.0 92 128-130
5d 4-FPh 3.2 90 142-144
5e 2-CH3OPh 2.6 88 136-138
5f 2-CH3 3.0 87 133-135
5g 4-ClPh 2.9 89 145-147
5h 4-EtPh 3.3 90 147-148
5i 4-NO2Ph 2.5 87 149-151
5j 3-Cl,4-FPh 3.4 88 134-136
5k 5-Cl,2-CH3OPh 3.6 90 151-153
5l 2,5-diClPh 2.8 89 142-144
5m 2,5-diCH3Ph 2.9 98 136-138
5n 4-Cl,2-CH3Ph 3.0 87 137-139
5o 3,4-diFPh 3.2 91 146-148
a Isolated yield after purification.

Table 3. Optimization of the Reaction Condition for Oxidation
of 4a and 5a to Its Sulfone

entrya oxidantb solvent yieldc % 6a: 7a time, min

1 mCPBA CH2Cl2 74:76 125
2 mCPBA acetone 56:60 95
3 mCPBA water 65:64 75
4 SPB CH2Cl2 79:82 110
5 SPB acetone 62:64 95
6 SPB water 91:94 60
7 SPC CH2Cl2 59:60 120
8 SPC acetone 52:55 90
9 SPC water 75:77 60

a All solution phase reactions were heated at reflux temperature of the
solvent used. b Oxidant: mCPBA-2 equiv, SPB-3 equiv, and SPC-3
equiv. c Isolated yields after purification.

Scheme 2. Water Mediated Synthesis of Pyrazoles and
Isoxazoles Containing Methyl, Sulfone, and Carboxamide
Groups

Table 4. 3-Methyl, 5-Sulfone, 4-Carboxamide Functionalized
Library of Pyrazoles and Isoxazoles

entry R time, min yielda % mp, °C

6a Ph 60 91 168-170
6b 4-CH3Ph 45 92 172-174
6c 4-CH3OPh 55 89 166-168
6d 4-FPh 50 88 175-177
6e 2-CH3OPh 60 90 170-172
6f 2-CH3 50 94 165-167
6g 4-ClPh 55 89 173-175
6h 4-EtPh 65 92 177-179
6i 4-NO2Ph 55 92 181-183
6j 3-Cl,4-FPh 50 91 176-178
6k 5-Cl,2-CH3OPh 50 93 186-188
6l 2,5-diClPh 65 88 176-178
6m 2,5-diCH3Ph 60 87 170-172
6n 4-Cl,2-CH3Ph 55 89 171-173
6o 3,4-diFPh 50 85 181-183
7a Ph 60 94 186-188
7b 4-CH3Ph 50 95 192-194
7c 4-CH3OPh 60 93 188-190
7d 4-FPh 55 91 191-193
7e 2-CH3OPh 65 94 184-186
7f 2-CH3 55 96 179-181
7g 4-ClPh 60 92 185-187
7h 4-EtPh 65 95 192-194
7i 4-NO2Ph 60 93 196-198
7j 3-Cl,4-FPh 55 92 188-190
7k 5-Cl,2-CH3OPh 55 91 195-197
7l 2,5-diClPh 60 90 188-190
7m 2,5-diCH3Ph 55 91 181-183
7n 4-Cl,2-CH3Ph 50 88 187-189
7o 3,4-diFPh 65 89 189-191
a Isolated yield after purification.
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sulfone and carboxamide moieties in two steps with excellent
yield and chemical purity for medicinally interesting mol-
ecules. Water emerged as an efficient and green solvent in
the condensation reaction of various ketene dithioacetals with
hydrazine hydrate or hydroxyl amine hydrochloride. Further,
the facile synthesis of sulfone containing pyrazoles and
isoxazoles was achieved via oxidation of sulfide to sulfone.
A comparative study of various oxidants has been performed,
and revealed that SPB is more efficient and effective for
oxidation of sulfide to sulfone in aqueous medium. This
procedure offers a good scope for the synthesis a wide variety
of pyrazoles and isoxazoles containing caboxamide and
sulfone in two steps. The present procedure is significant
over the existing methods to develop this class of molecules
with excellent yield, purity, and simple isolation of products.
Currently, we are engaged to make further diversification
of pyrazoles and isoxazoles at the C-3 position.
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Abstract A simple, convenient and efficient one-pot

cyclocondensation reaction of 1-(2-hydroxyphenyl)-2-

nitroethanone, arylaldehydes and urea using etidronic acid

to furnish nitro dihydropyrimidine derivatives is described.

A new and efficient protocol is developed as a homogenous

catalyst for the synthesis of dihydropyrimidines using

substituted x-nitro acetophenone. Various bisphosphonic

acids were examined to synthesized pyrimidines via mul-

ticomponent cyclocondensation reaction. This methodol-

ogy has the advantage of excellent yields with short

reaction time.

Keywords Etidronic acid � Homogenous catalyst �
Cyclocondensation � Nitro-dihydropyrimidine �
Multicomponent

1 Introduction

The Biginelli reaction [1], one of the most useful multi-

component reactions, offers an efficient way to access

multifunctionalized 3,4-dihydropyrimidin-2-(1H)-ones (DH

PMs) and related heterocyclic compounds [2]. However, in

biginelli reaction 1,3 diketone is used as a synthone. The

ability of nitro group to enhance biological and therapeutic

activities of certain organic compounds has led to wide-

spread interest in the selective introduction of nitro groups

into organic compounds [3] especially those heterocyclic

molecules which possess potential biological activities. For

example, DHPMs are important heterocycles in both natural

and synthetic compounds, which exhibit various pharma-

cological properties such as calcium channel blockers,

antihypertensive agents, antitumor, anti-inflammatory and

neuropeptide antagonists [3, 4]. Dihydropyridines and

dihydropyrimidinones contain an ester group in the position

5 of the heterocycle [2, 5]. However, Substitution of NO2 for

COOAlk in the dihydropyridines alters their biological

action. Reports reveal that nitro group functionalized dihy-

dropyrimidines which might have potential biological

activities were less studied [6].

A major drawback to Biginelli’s original reaction was

poor to moderate yields [7]. Recently, many improved

procedures have been reported using InBr3 [8], InCl3 [9],

LiClO4 [10], FeCl3�6H2O or NiCl2�6H2O [11], p-TsOH

[12], LaCl3�7H2O [13], IR radiation [14], Bi(OTf)3 [15],

La(OTf)3 [16], BF3 OEt2 [17], ionic liquids (BMIm PF6

and BMIm BF4) [18], TEBA [19], natural HEU type zeolite

[20], I2 [21], N-bromosuccinimide (NBS) [22], polyani-

line–bismoclite complex [23] and other Lewis acids [24]

heteropoly acid [25], sulfated zirconia [26], Sr(NO3)2 [27],

and covalently anchored sulfonic acid onto silica [28], PPE

[29], Phosphoric acid [30]. However, some of the newer

reported methods also suffer from drawbacks such as

unsatisfactory yields, cumbersome product isolation pro-

cedures, and environmental pollution. Moreover, the main

disadvantage of almost all existing methods is that the

catalysts are destroyed in the workup procedure and cannot

be recovered or reused. Therefore, still there is need for

versatile, simple, and environmentally friendly processes

whereby DHPMs may be formed under milder and prac-

tical conditions.

In continuation of our work on the development of

useful synthetic methodologies by employing solid acid

catalysts [31], we observed that bisphosphonic acid is an
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efficient catalyst for the synthesis of pyrimidines via bigi-

nelli condensation. To explore further, the utility of this

catalyst in multicomponent cyclocondensation, herein we

report some new nitro group containing dihydropyrimidine

derivatives from substituted x-nitro acetophenone instead

of 1,3 diketone with excellent yield under various reaction

conditions.

2 Experimental Section

2.1 Materials

Chemicals were supplied by E. Merck (Germany) and S. D.

Fine Chemicals (India) and used without purification. The

solvents were analytical grade. THF was distilled over

sodium/benzophenone prior to use. Analytical thin layer

chromatography (TLC) was performed on Silica Gel 60

F254 precoated plates. Silica gel (Loba, 100–200 mesh,

60 Å) for column chromatography was used as received.

2.2 Instrumentation

1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were

recorded in DMSO, and TMS was used as an internal ref-

erence on a Bruker AVANCE II spectrometer. Mass spectra

were determined using direct inlet probe on a GCMS-

QP2010 mass spectrometer. IR spectra were recorded on

KBr discs, using FTIR-8400 spectrophotometer. The syn-

theses were carried out in a Questron Technologies Corpo-

ration QPro-M microwave synthesizer. Melting points were

measured in open capillaries and are uncorrected.

2.3 General Procedure for the Synthesis of Nitro

dihydropyrimidines 4a–n

To a mixture of various aromatic aldehydes (10 mmol, 2a–n)

and urea (10 mmol, 0.60 g) in dry THF (5 mL) was added

etidronic acid (0.1 mmol, 0.2 g) and stirred it for 5 min at r.t.

to this add 1-(2-hydroxyphenyl)-2-nitroethanone (10 mmol,

0.18 g) and subjected to microwave irradiation at 360 W for

appropriate time (Table 3). The reaction being monitored by

TLC. After completion of the reaction, the reaction mixture

was concentrated under reduced pressure. The separated

solid was washed with water and followed by methanol,

filtered, dried and crystallized from glacial acetic acid to

furnish analytically pure products. The water layer is evap-

orated to recycle the catalyst.

2.3.1 Spectral Data for Selected Compounds

2.3.1.1 3,4-Dihydro-6-(2-hydroxyphenyl)-5-nitro-4-phenyl-

pyrimidin-2(1H)-one (4a) Lemon yellow solid; mp

241–243 �C; IR (KBr): 3,624 (–OH), 3,076 (–NH), 1,674

(C=O) cm-1; 1H NMR: d 5.74 (d, 1H, J = 3.16 Hz), 6.90–

7.59 (m, 9H, Ar–H), 7.68 (s, 1H, NH), 8.97 (s, 1H, NH), 9.64

(s, 1H, OH); 13C NMR: 55.30, 114.54, 116.08, 119.31, 120.38,

126.99, 128.73, 131.61, 142.12, 146.22, 151.53, 166.05; MS

m/z: 311(M?); Anal. calcd. for C16H13N3O4: C, 61.73; H,

4.21; N, 13.50%. Found: C, 61.58; H, 4.08; N, 13.33%.

2.3.1.2 3,4-Dihydro-6-(2-hydroxyphenyl)-4-(3-chlorophe-

nyl)-5-nitropyrimidin-2(1H)-one (4b) Yellow solid; mp

255–257 �C; IR (KBr): 3,556 (–OH), 3,290(–NH), 1,672

(C=O) cm-1; 1H NMR: d 5.71 (d, 1H, J = 3.52 Hz), 6.91–

7.93 (m, 8H, Ar–H), 7.94 (s, 1H, NH), 9.17 (s, 1H, NH),

9.78 (s, 1H, OH); 13C NMR: 54.40, 115.52, 117.18, 120.25,

122.31, 127.63, 129.63, 134.63, 145.22, 148.34, 153.53,

163.12; MS m/z: 345(M?); Anal. calcd. for C16H12ClN3O4:

C, 55.58; H, 3.50; N, 12.15. Found: C, 55.42; H, 3.38; N,

12.03%.

2.3.1.3 3,4-Dihydro-6-(2-hydroxyphenyl)-4-(4-methoxyph-

enyl)-5-nitropyrimidin-2(1H)-one (4c) Pale yello solid;

mp 246–248 �C; IR (KBr): 3,649 (–OH), 3,292 (–NH),

1,678 (C=O) cm-1; 1H NMR: d 3.79 (s, 1H, OCH3), 5.65

(d, 1H, J = 3.36 Hz), 6.86–7.49 (m, 8H, Ar–H), 7.95

(s, 1H, NH), 9.42 (s, 1H, NH), 9.71 (s, 1H, OH); 13C NMR:

54.65, 55.28, 113.91, 115.97, 119.24, 128.22, 128.61,

131.22, 134.45, 135.44, 136.30, 151.52, 159.28, 172.96,

181.34; MS m/z: 341(M?); Anal. calcd. for C17H15N3O5:

C, 59.83; H, 4.43; N, 12.31%. Found: C, 59.66; H, 4.32; N,

12.18%.

2.3.1.4 3,4-Dihydro-6-(2-hydroxyphenyl)-4-(4-nitrophenyl)-

5-nitropyrimidin-2(1H)-one (4h) Lemon yellow solid;

mp 268–270 �C; IR (KBr): 3,487 (–OH), 3,304 (–NH),

1688 (C=O) cm-1; 1H NMR: d 5.82 (d, 1H, J = 3.64 Hz),

6.92–7.84 (m, 6H, Ar–H), 8.14 (s, 1H, NH), 8.20-8.22

(q, 2H, Ar–H), 9.31(s, 1H, NH), 9.76 (s, 1H, OH); MS m/z:

356 (M?); Anal. calcd. for C16H12N4O6: C, 53.94; H, 3.39;

N, 15.73%. Found: C, 53.75; H, 3.24; N, 15.26%.

3 Results and Discussions

Etidronic acid [(1-hydroxyethylidene) bisphosphonic acid]

is one of the bisphosphonic acid derivative and also known

P
O

OH

P
O

OHHO

HO
OHR

Fig. 1 Bisphophonic acid
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as bisphosphonate having molecular formula C2H8O7P2.

The two PO3 (phosphonate) groups covalently linked to

carbon atom (Fig. 1).

It differs from Polyphosphate ester and polyphosphoric

acid. Various bisphosphonic acids are known [32, 33].

Etidronic acid is mild enough as compare to another strong

acid such as polyphosphoric acid etc. moreover, the cata-

lyst did not affect acid sensitive aldehydes.

Indeed, condensation of the 1-(2-hydroxyphenyl)-

2-nitroethanone 1 with benzaldehyde 2a and urea 3 took

place smoothly in the presence of EDA in THF resulted in

the formation of dihydropyrimidine 4a in 89% yield (entry 1,

Table 1). We found that the final product obtained was

dihydro biginelli product 4a (Scheme 1). The condensation

of 1 with 2a and 3 to generate 4a was investigated under a

variety of conditions (Table 1), as a test case, to optimize the

yield, and the results are gathered in Table 1. The conden-

sation took place even with a catalytic amount of EDA (10%,

entry 3). Though the condensation reaction with a catalytic

amount of EDA was cleaned, it took a longer time (6 h). On

the other hand, the reaction was relatively fast (4 h) when

one equiv. of EDA was employed (entry 1). However, the

reaction carried out under microwave irradiation gave

excellent yields (entry 4, 2). The yield of desired product 4a

was moderate when methanol and ethanol was used as sol-

vent (entry 5–8) and in this case product 4a was separated by

column chromatography over silica gel using hexane/EtOAc

(7:3) as an eluent.

With the optimized conditions in hand, the reactions of 1

with benzaldehyde 2a and urea 3 with various bisphos-

phonic acids were examined to explore the utility of these

catalysts in multicomponent cyclocondensation reaction

under microwave irradiation in THF. We found that bis-

phosphonic acid linked with alkyl amines (Table 2, entry

2–4) or with heterocyclic moieties (Table 2, entry 5–8)

showed very poor catalytic activity compared to EDA

(Table 2, entry 1). This can be explained by the fact that

electron donating moieties attached with bisphosphonic

acid at C2 position may decreases the reactivity of these

catalysts leading to moderate or poor yields of 4a. Thus, it

is clear from the aforementioned experiments that the best

yield of compound 4a could be obtained by employing

catalytic amount of etidronic acid in THF under microwave

irradiation.

When the reaction of the 1-(2-hydroxyphenyl)-2-nitro-

ethanone 1 with various arylaldehydes 2a and urea 3 was

conducted it was observed that the electron deficiency and

nature of the substituents on the aromatic ring aldehydes

effect the conversion rate; aromatic aldehydes having

electron-withdrawing groups on the aromatic ring (Table 3,

Table 1 Optimization of the reaction conditions for the synthesis of

4a

Entry Catalyst

(equiv.)

Solvent Yield

(%)

Time

1 EDA (1.0) THFa 89c 4.0 h

2 EDA (1.0) THFb 95d 3.5 min

3 EDA (0.1) THFa 86c 6.0 h

4 EDA (0.1) THFb d

5 EDA (0.1) MeOHa 73e 11.5 h

6 EDA (0.1)) MeOHb 82e 6.5 min

7 EDA (0.1) EtOHa 78e 9.0 h

8 EDA (0.1) EtOHb 86e 5.5 min

a All solution-phase reactions were conducted at reflux temperature

of the solvent used All solution-phase reactions were conducted at

reflux temperature of the solvent used
b The reaction was conducted under microwave irradiation (360 W)
c After 4–6 h reflux
d Isolated yield after purification
e After column chromatography

NO2

O H O

R1

H2N O

NH2

+
THF

Etidronic Acid
N
H

NH

O

4a-n
1

2a-n

3

mw

R1

OH

O2N
HO

Scheme 1 Etidronic acid

catalyzed one-pot synthesis

of nitro functionalized

dihydropyrimidines under

microwave irradiation

Table 2 Synthesis of nitro dihydropyrimidines 4a using various cat-

alyst and THF under microwave irradiation

Entry R Catalyst (equiv.) Yield

(%)

Time

(min)

2 –CH2NH2 Pamidronic acid (0.1) 65 9.5

3 –CH2NH2 Pamidronic acid (1.0) 68 8.0

4 –(CH2)2NH2 Alendronic acid (0.1) 66 8.0

5 –(CH2)2NH2 Alendronic acid (1.0) 67 9.5

6 -3-Pyridyl Risedronic acid (0.1) 55 11.0

7 -3-Pyridyl Risedronic acid (1.0) 59 9.5

8 -1-Imidazolyl Zoledronic acid (0.1) 45 11.5

9 -1-Imidazolyl Zoledronic acid (1.0) 51 11.0
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entries 6, 8, 9) reacted faster than electron-donating groups

(Table 3, entries 2, 11, 12). The synthesized compounds

were characterized by spectroscopy analysis. In mass

spectrum of 4a molecular ion peak appears at 311 m/z

which reveal the formation of dihydropyrimidine. The 1H

NMR spectrum of 4a displayed one characteristic doublet

for the methane proton at 5.74 d ppm and one –OH proton

at 9.64 d ppm. The overall study indicates the catalyst is

efficient to synthesize nitro dihydropyrimidines.

4 Conclusions

In summary, we have demonstrated a simple route for the

synthesis of nitro group containg dihydropyrimidines via

cyclocondensation reactions using etidronic acid as an

efficient homogeneous catalyst. The use of etidronic acid

was well tolerated with a range of aldehydes. This protocol

is general and provides dihydropyrimidines in good to

excellent yields depending on the reactivity of arylalde-

hydes. Thus, the present synthesis of pyrimidines will serve

as an exclusive method of preparative importance for this

class of compounds. We are currently engaged in the

application of this catalyst for the electrophilic substitution.
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Abstract 
The three component reaction between 4-hydroxycoumarin, malononitrile and carbonyl 
compounds in ethanol in the presence of morpholine as a catalyst was studied. Only cyclic 
aliphatic ketones afford spiro 2-amino-3-cyanopyrano[3,2-c]chromene derivatives. 
 
Keywords: 4-Hydroxycoumarin, malononitrile, cyclic aliphatic ketone, spiro, pyrano[3,2-
c]chromene  

 
 
 
Introduction 
 
A key intermediate in the synthesis of warfarin (rodenticide, a blood anticoagulant) is 2-amino-3-
cyano-5-oxo-4-phenyl-4,5-dihydropyrano[3,2-c]chromene 3 prepared by heating  4-
hydroxycoumarin 1 with benzylidenemalononitrile 2 in pyridine1 or water.2 Acid hydrolysis of 
the pyrano[3,2-c]chromene 3 affords compound 4, which is subsequently transformed into 
warfarin 5.1-5 
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CN O
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 2-Amino-4-aryl-3-(thiocarbamoyl, alkoxycarbonyl, or cyano)-5-oxo-4,5-dihydropyrano[3,2-
c]chromenes were also obtained3,6 by morpholine catalyzed reaction between 4-
hydroxycoumarin with arylidenecyanothioacetamide, alkyl arylidenecyanoacetates, or 
arylidenemalononitrile in hot benzene or ethanol. Despite modest achievements in recent years 
for the synthesis of compounds of  type 3 having substituents in position 4, the preparation and 
isolation of unsaturated nitriles 2, which are analogs of toxic agents (2-
chlorobenzylidene)malononitrile (CS),7-23 may substantially complicate the aforementioned 
synthesis (Figure1). In some cases, the condensation does not yield the target unsaturated nitrile 
at all. For instance reaction between pyridine-4-carbaldehyde and malononitrile yields 1-amino-
2,4,4,6,6-pentacyano-3,5-di(4-pyridyl)cyclohex-1-ene.24 This precludes the synthesis of 
pyrano[3,2-c]chromenes containing the 4-pyridyl substituent in position 4. 
 N-Substituted piperidine-4-one derivatives were failed to afford spiro[piperidine-4,4´-
pyrano[3,2-c]chromenes],25 while proficient to afford spiro[piperidine-4,4´-pyrano[3,2-
c]quinoline]26 derivatives by one-pot multicomponent reaction of 4-hydroxyquinolone, 
cyanoacetic acid derivatives and substituted piperidine-4-one derivatives. However, isatin 
derivatives are proficient as cyclic ketone to afford spiro[2–amino–5–oxo–4,5–
dihydropyrano[3,2–c]chromenes]25 by cross coupling reaction of 4-hydroxycoumarin, 
cyanoacetic acid derivatives and isatin derivatives. 
 In further investigations of cross coupling between cyanoacetic acid derivatives and 
carbonyl compounds with the aim of developing one step syntheses of functionalized 
heterocycles, we studied three component system reactions of 4-hydroxycoumarin, 
malononitrile, and carbonyl compounds (cyclic and non-cyclic aliphatic ketones). 
 
 
Results and Discussion 
 
Brief heating of 4-hydroxycoumarin 1(a,b) with cyclic aliphatic ketones (cyclopentanone, 
cyclohexanone, and cycloheptanone) 6(a-c) and malononitrile 7 in boiling ethanol in the 
presence of morpholine as a catalyst gave 2-amino-3-cyanopyrano[3,2-c]chromene derivatives 
8(a-f) in high yields (65–85%). The observed high regioselectivity is most probably associated 
with the reaction sequence outlined in scheme 1. Initial Knoevenagel  reaction between cyclic 
ketones 6 and malononitrile 7 produces the unsaturated nitrile 9, which, undergoes a Michael 
reaction with the base derived coumarin anion 10. The resulting Michael adduct 11 then 
undergoes intramolecular cyclization producing the annelated iminopyran 12. Subsequent 
tautomeric [1,3]sigmatropic shift gives compound 8 (Scheme 1). 
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Scheme 1. Mechanistic pathway towards 8(a-f). 
 
 Under these conditions, the reaction proceeds sufficiently rapidly and smoothly to afford the 
target chromenes 8(a-f) in high yields without Michael adducts 11 being  detected. However, the 
proposed mechanism is supported to some degree by isolation of analogous Michael adducts in 
the previously studied reaction of 4-hydroxycoumarin with arylidenecyanoacetamides.3 
 On the other hand the three component reaction system of 4-hydroxycoumarin 1a, 
malononitrile 7 and substituted acetophenones 13(a-c) as the carbonyl compound under 
analogous conditions failed to produce any chromenes 15(a-c). It was found that the 
acetophenones 13(a-c) did react with malononitrile 7 to give unsaturated nitriles 14(a-c) but 
these did not undergo Michael reaction with the coumarin anion. The plausible reason for the 
formation of spiro molecules with cyclic ketones is, in cyclic ketone the electrons are not 
localized in C−C bond but are actually spread out over the whole system, moreover the C in 
cyclic saturated ketones has sp3 hybridization. While in aromatic ketones C in benzene ring has 
sp2 hybridization due to this effect it may be cannot take part in cyclization. 
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Scheme 2. Synthetic approach towards spiropyrano[3,2-c]chromene using acetophenones as 
carbonyl compounds. 
 
 The pyranochromenes 8(a-f) obtained are air stable and colorless solid powders, which are 
well soluble in acetone, DMF and DMSO. The structures of these compounds were confirmed by 
IR, Mass spectrometry, 1H NMR, 13C NMR spectroscopy and elemental analysis. The IR spectra 
of pyranochromene 8(a-f) exhibit characteristic absorption bands of the amino, nitrile, and 
methylene fragments: ν (NH2) 3300-3500 cm-1, ν (CN) 2200-2350 cm-1, and ν (CH2) 2800-2900 
cm-1. The IR spectra of pyranochromenes show a particular absorption band of the lactone group 
at 1680-1720 cm-1. All the mass spectra show a molecular ion peak in agreement with the 
molecular weight of the respective compound. The 1H NMR spectra show signals for the proton 
of amino group and methylene group at 5.6 to 5.8 δ ppm and 1.5 to 2.8 δ ppm, respectively. The 
signals for the benzenoid protons of coumarin are observed at in the interval 7.3 to 7.8 δ ppm. 
The 13C NMR spectral data for compound 8a are consistent with the assigned structure. 
 
 
Conclusions 
 
In the three component system between 4-hydroxycoumarin, malonitrile and ketones for the 
formation of spiro 2-amino-3-cyanopyrano[3,2-c]chromene derivatives the ketones have to be 
cyclic in nature. 
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Experimental Section  
 
General. Melting points were determined on an electro thermal apparatus using open capillaries 
and are uncorrected. Thin-layer chromatography was performed on 0.2-mm precoated plates of 
silica gel G60 F254 (Merck).  Visualization was made with UV light (254 and 365nm) or with 
iodine vapor. IR spectra were recorded on a FTIR-8400 spectrophotometer using DRS (diffusion 
reflectant spectroscopy) probe. 1H NMR spectra were recorded on a Bruker AVANCE II (400 
MHz) spectrometer in DMSO. Chemical shifts are expressed in δ ppm downfield from TMS as 
an internal standard. Mass spectra were determined using a direct inlet probe on a GCMS-QP 
2010 mass spectrometer (Shimadzu).  All reagents were purchased from Fluka, Sigma Aldrich, 
Merck and Rankem and used without further purification. 
 
Preparation of spiro pyrano[3,2-c]chromene derivatives: General procedure 
A stirred mixture of 4-hydroxycoumarin 1(a,b) (10 mmol), carbonyl compound 6(a-c) 
(cyclopentanone, cyclohexanone, and cycloheptanone) (10 mmol), malononitrile 7 (10 mmol), 
and morpholine (0.5 mmol) in anhydrous EtOH (50 mL) was heated under reflux for  20 min and 
allowed to crystallize at 4 °C for 12 h. The precipitate that formed was filtered off, washed with 
ethanol and hexane, and recrystallized from 1,4-dioxane to give compounds 8(a-f) as  white 
powders. 
Spiro(2–amino–3–cyano pyrano[3,2–c]chromene–4,1’–cyclopentane) (8a). White solid; mp 
230-232°C; Yield – 83%. IR (KBr): 3450, 2928, 2904, 2865, 2845, 2360, 1724, 1602, 1558, 
1313 cm-1. 1H NMR: δ = 7.82 (d, 1H, Ar), 7.60–7.55 (m, 1H, Ar), 7.34–7.30 (m, 2H, Ar), 5.78 
(s, 2H, NH2), 2.39–2.33 (m, 2H, CH2), 2.06–1.90 (m, 4H, CH2), 1.89–1.64 (m, 2H, CH2). 13C 
NMR: δ = 159.7, 154.6, 152.4, 152.2, 132.3, 124.3, 122.3, 119.2, 116.5, 113.0, 109.3, 70.9, 43.1, 
41.0, 27.6. Mass: m/z = 295 [M++1], 294 [M+]. Anal. Calcd for C17H14N2O3: C, 69.38; H, 4.79; 
N, 9.52. Found: C, 69.19; H, 4.51; N, 9.43. 
Spiro(2–amino–3–cyano pyrano[3,2–c]chromene–4,1’–cyclohexane) (8b). White solid; mp 
230-232 °C; Yield – 78 %. IR (KBr): 3595, 2928, 2368, 1718, 1678, 1649, 1539, 1321, 1084 cm-

1. 1H NMR: δ = 7.78 (m, 1H, Ar), 7.60–7.54 (m, 1H, Ar), 7.29–7.28 (m, 2H, Ar), 5.78 (s, 2H, 
NH2), 2.41–2.35 (m, 4H, CH2), 2.12–2.01 (m, 4H, CH2), 1.89–1.61 (m, 2H, CH2). Mass: m/z = 
308 [M+]. Anal. Calcd for C18H16N2O3: C, 70.12; H, 5.23; N, 9.09. Found: C, 70.06; H, 4.56; N, 
8.82. 
Spiro(2–amino–3–cyano pyrano[3,2–c]chromene–4,1’–cycloheptane) (8c). White solid; mp 
225-226 °C; Yield – 66 %. IR (KBr): 3458, 2930, 2868, 2344, 1720, 1649, 1545, 1080 cm-1. 1H 
NMR: δ = 7.78 (m, 1H, Ar), 7.68–7.63 (m, 1H, Ar), 7.36–7.29 (m, 2H, Ar), 5.79 (s, 2H, NH2), 
2.41–1.69 (m, 12H, CH2). Mass: m/z = 322 [M+]. Anal. Calcd for C19H18N2O3: C, 70.79; H, 5.63; 
N, 8.69. Found: C, 70.23; H, 5.34; N, 8.51. 
 
Spiro(2–amino–3–cyano–9–methyl pyrano[3,2–c]chromene–4,1’–cyclopentane (8d). White 
solid; mp 228-230 °C; Yield–85 %. IR (KBr): 3464, 2983, 2928, 2856, 2846, 2364, 1690, 1645, 
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1554, 1371, 1317, 1024 cm-1. 1H NMR: δ = 7.83–7.65 (m, 1H, Ar), 7.34–7.21 (m, 2H, Ar), 5.77 
(s, 2H, NH2), 2.37–2.33 (m, 4H, CH2), 2.31 (s, 3H, CH3), 2.12–1.88 (m, 4H, CH2). Mass: m/z = 
308 [M+]. Anal. Calcd for C18H16N2O3: C, 70.12; H, 5.23; N, 9.09. Found: C, 69.94; H, 5.08; N, 
8.98. 
Spiro(2–amino–3–cyano–9–methyl pyrano[3,2–c]chromene–4,1’–cyclohexane) (8e). White 
solid; mp 231-232 °C; Yield–72 %. IR (KBr): 3502, 2960, 2956, 2845, 2304, 1678, 1649, 1545, 
1368, 1321, 1045 cm-1. 1H NMR: δ =  7.68–7.54 (m, 1H, Ar), 7.41–7.28 (m, 2H, Ar), 5.78 (s, 
2H, NH2), 2.40–2.31 (m, 4H, CH2), 2.31 (s, 3H, CH3), 2.12–1.75 (m, 6H, CH2). Mass: m/z = 322 
[M+]. Anal. Calcd for C19H18N2O3: C, 70.79; H, 5.63; N, 8.69. Found: C, 70.55; H, 5.48; N, 8.51. 
Spiro(2–amino–3–cyano–9–methyl pyrano[3,2–c]chromene–4,1’–cycloheptane) (8f). White 
solid; mp 220-222 °C; Yield–70 %. IR (KBr): 3478, 2928, 2910, 2300, 1692, 1664, 1539, 1380, 
1308, 1023 cm-1. 1H NMR: δ = 7.65–7.52 (m, 1H, Ar), 7.40–7.29 (m, 2H, Ar), 5.78 (s, 2H, NH2), 
2.32 (s, 3H, CH3), 2.34–1.60 (m, 12H, CH2). Mass: m/z = 336 [M+]. Anal. Calcd for C20H20N2O3: 
C, 71.41; H, 5.99; N, 8.33. Found: C, 71.30; H, 5.76; N, 8.24. 
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