

Saurashtra University Re – Accredited Grade 'B' by NAAC (CGPA 2.93)

Patel, Siddharth C., 2004, "Design and Synthesis of Some Heterocycles of Medicinal Interest", thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/445

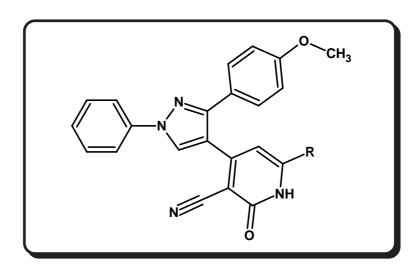
Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.


Saurashtra University Theses Service <u>http://etheses.saurashtrauniversity.edu</u> repository@sauuni.ernet.in

© The Author

Ph. D. Thesis Chemistry

Ph. D. Thesis

DESIGN AND SYNTHESIS OF SOME HETEROCYCLES OF MEDICINAL INTEREST

Siddharth C. Patel

DEPARTMENT OF CHEMISTRY SAURASHTRA UNIVERSITY RAJKOT - 360 005. GUJARAT (INDIA) 2004

2004

Gram : UNIVERSITY Fax : 0281-2578512 Phone : (R) 2577392 (O) 2578512

SAURASHTRA UNIVERSITY

University Road, RAJKOT - 360 005.

Dr. H. H. PAREKH M.Sc.; Ph. D., F. I.C.

Professor and Head, Department of Chemistry

Residence : 'RASDHARA' 32-B, University Karmachari Co. Society, University Road, RAJKOT - 360 005. GUJARAT (INDIA) Dt.

Statement under o. Ph. D. 7 of Saurashtra University

The work included in the thesis is my own work under the supervision of *Dr. H. H. Parekh* and leads to some contribution in chemistry subsidised by a number of references.

Date : - 04- 2004 Place : Rajkot

(Siddharth C. Patel)

This is to certify that the present work submitted for the Ph. D. Degree of Saurashtra University by *Siddharth C. Patel* is his own work and leads to the advancement in the knowledge of chemistry. The thesis has been prepared under my supervision.

Date : - 04- 2004 Place : Rajkot

Dr. H. H. PAREKH

Professor and Head, Department of Chemistry Saurashtra University RAJKOT

No.

ACKNOWLEDGEMENTS

First and foremost, I wish to pay my homage and devote my emotions to "Lord Shiva", "The Wonderful Chemist" of this lovely world without whose blessings this task would not have been accomplished. I bow my head in utter humility and complete dedication.

For her faith in me, her encourage, her motivation & inspiration made me to reach these heights, she is one and only Dr. (Mrs.) Hansa Parekh, Professor and Head, Department of Chemistry, Saurashtra University, Rajkot. My mentor, my guide reflects with her incredible personality and lightened up my life with indomitable determination. With her blessings, constant motivation and optimistic approach, I have achieved aims and objective of the present work.

I owe a great deal to a great Legend Dr. A. R. Parikh, Retired Professor and Head, Department of Chemistry, who is a Gem of a institute and always showed deep concern and was always approachable in time to show the silver lining in every dark cloud. I will never forget his constant inspiration with keen interest and ever vigilant guidance without which this task could not have been achieved.

I feel great pleasure to acknowledge my deepest sense of indebtedness to **Dr. N. A. Chauhan**, Professor, Department of Chemistry for his invaluable inspiration and moral support throughout the course of my research work.

As with the completion of this task, I find myself in a difficult position of attempting to express my deep indebtedness to Dr. Viral Shah, for constant eucouragement.

Above all, I bow my head with utter respect to my beloved mother Smitaben for her continuous source of inspiration, motivation and devotion to the family, and my father Chhaganbhai for the uncompromising principles that guided my life. Through the stress and strain of this study, my brothers Chaitanyabhai, Tarakbhai and bhabhi Hetal and Kajal have encouraged me to reach my destination. I am thankful to my nephew Khush and Kaxa, whose unstopping flow of love helped me to reach the goal. I also thank my beloved Anilmama and Vilasmami for their faith in me. Above all, needless to say "Thanks" to express my deep indebtedness to my seniors Dr. Ranjan, Dr. Nila, Dr. Fatema, all my seniors and jouniors who ever stood beside me with their helping hands and moral support.

I feel Lucky and very proud to have intimate friends like Kunjal, Snehal, Ashok, Ravi, Dinesh, Kanji, Harshad, Prafull, Hitarth and Ashish who have been always participating with my problems & disappointments and rebuilt my confidance at an appropriate stages.

I gratefully thank for the help and co-ordination extended by my lovely friends like Jayesh, Tapan, Niral and Kamlesh Ahir who supported me throughout the course of my study.

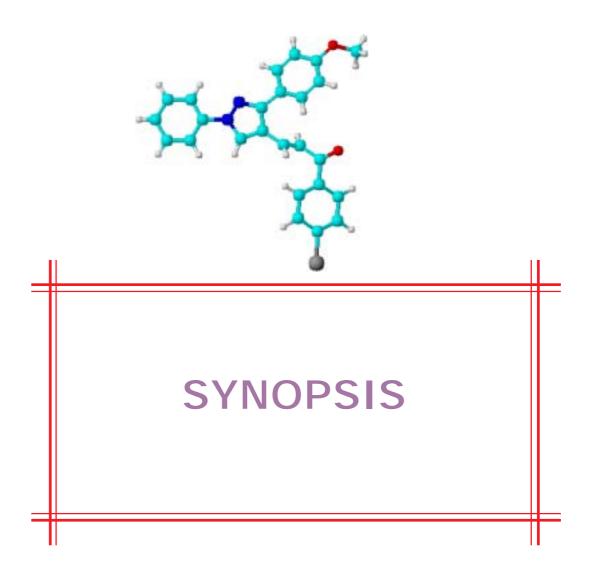
I am thankful to Mr. Harshad Joshi and Mrs. Namrata for their kind support and providing chemicals and glasswares on time. I am thankful to Mr. Devendra Goswami to magnifying the presentation of my work in the form of thesis.

I am thankful to the authorities of CIL-Chandigadh CDRI-Lucknow and Professor and Head Dept. of Chem. for providing facilities for spectral studies.

I gratefully acknowledge the most willing help and cooperation extended by TAACF, Southern Research Institute, Alabama USA.

Finally, I express my grateful acknowlegement to the authorities of Saurashtra University for providing the research facilities.

Siddharth C. Patel


CONTENTS

					Page No.
SYNOPSIS					01
DESIGN AN	D SYNTHESIS OF	SOME HETI	EROCYCLES OF MED	DICINAL INTER	EST
Introduction				••	10
[A] STUDIES	S ON PYRAZOLE I	DERIVATIVE	ES		
Introduction		••		••	13
PART - I	: STUDIES ON	ISOXAZOL	ES		
Introduction			••	••	19
Section - I :	Synthesis and biolog	gical evaluatio	on of 1-Aryl-3-		
	[1',N-phenyl-3'-p-an	isyl-pyrazol-4	4'-yl]-2-propene-1-ones.		
Introduction	••		••	••	23
Experimental	and Spectral studies	••		••	26
Graphical dat	a of In Vitro Evaluatio	on of Antimic.	robial screening		35
Section - II	: Synthesis and biolog	gical evaluatio	on of 3-Aryl-5-		
	[1'-N-phenyl-3'-p-ar	nisyl-pyrazol-4	4'-yl]-isoxazoles		
Introduction		••			36
Experimental	and Spectral studies	••		••	37
Graphical dat	a of In Vitro Evaluatio	on of Antimic.	robial screening	••	42
PART - II	: STUDIES ON	PYRAZOLY	LPYRAZOLINES		
Introduction		••			43
Section - I :	Synthesis and biolog	gical evaluatio	on of 3-Aryl-5-		
	[1',N-phenyl-3'-p-an	nisyl-pyrazol-4	1'-yl]-pyrazolines		
Introduction		••			50
Experimental	and Spectral studies	••			51
Graphical dat	a of In Vitro Evaluatio	on of Antimic.	robial screening	••	57
Section - II	: Synthesis and biolog	gical evaluatio	on of 1,N-Acetyl-3-		
	aryl-5-[1',N-phenyl-	3'-p-anisyl-py	vrazol-4'-yl]-pyrazolines		
Introduction		••		••	58
Experimental	and Spectral studies	••		••	59
Graphical dat	a of In Vitro Evaluatio	on of Antimic.	robial screening		65

Section - III :Synthesis and biological evaluation of 1,N-Phenyl-3-aryl-5-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-pyrazolines

Introduction					66
Experimental	and Spectral studies			••	67
Graphical data	a of In Vitro Evaluation	of Antimicrobial scre	eening		72
PART - III	: STUDIES ON C	YANOPYRIDINES			
Introduction		••	••	••	73
Section - I :	Synthesis and biologica	al evaluation of 2-Ar	nino-3- cyano-		
	4-[1',N-phenyl-3'-p-ani	syl-pyrazol-4'-yl]-6-a	aryl-pyridines		
Introduction	••			••	79
Experimental	and Spectral studies				80
Graphical data	a of In Vitro Evaluation	of Antimicrobial scre	eening		87
PART - IV	: STUDIES ON C	YANOPYRIDONES	S		
Introduction					88
Section - I :	Synthesis and biologica	al evaluation of 3-Cy	ano-4-		
	[1',N-phenyl-3'-p-anisy	'l-pyrazol-4'-yl]-6-ary	yl-1,2-dihydro-2-pyr	ridones	
Introduction	••			••	93
Experimental	and Spectral studies	••	••	••	94
Graphical data	a of In Vitro Evaluation	of Antimicrobial scre	eening	••	100
PART - V	: STUDIES ON T	HIAZOLIDINONES	5		
Introduction					101
Section - I :	Synthesis and biologica	al evaluation of 2-Ar	yl imino-3,N-aryl-5-	-	
	[1',N-phenyl-3'-p-anisy	l-4'-pyrazolylmethin	o]-4-thiazolidinones	5	
Introduction	••			••	106
Experimental	and Spectral studies	••	••	••	108
Graphical data	a of In Vitro Evaluation	of Antimicrobial scre	eening	••	115
[B] STUDIES	S ON TRIAZOLE DER	RIVATIVES			
Introduction				••	116
PART - I	: STUDIES ON 4	-ARYLTRIAZOLES			
Introduction		••	••	••	123
Section - I :	Synthesis and biologica	al evaluation of 3-			
	Mercapto-4,N-aryl-5-be	enzyl-1,2,4-triazoles			
Introduction					125
Experimental	and Spectral studies				127
Graphical data	a of In Vitro Evaluation	of Antimicrobial scre	eening		132

PART - II	: STUDIES ON A	ZOMETHINES			
Introduction					133
Section - I :	Synthesis and biologic	al evaluation of 4-N	I-		
	Substituted benzalami	no-3-benzyl-5-merc	apto-1,2,4-triazoles		
Introduction					138
Experimental	and Spectral studies				139
Graphical data of In Vitro Evaluation of Antimicrobial screening 14					144
PART - III	: STUDIES ON 1	,3,4-THIADIAZOI	LO TRIAZOLES		
Introduction		••	••	••	145
Section - I :	Synthesis and biologic	al evaluation of 2-A	ryl-4-		
	benzyl-1,2,4-triazolo[4	l,5-b]-1,3,4-thiadiaz	coles		
Introduction			••		151
Experimental	and Spectral studies	••	••	••	152
Graphical data of In Vitro Evaluation of Antimicrobial screening 158					158
Section - II	: Synthesis and biologic				
	benzyl-2,3-dihydro-1,2	2,4-triazolo-[4,5-b]-	1,3,4-thiadiazoles		
Introduction			••		159
Experimental	and Spectral studies		••		160
Graphical data	a of In Vitro Evaluation	of Antimicrobial sci	reening		165
REFERENCE	ES				166
LIST OF NE	W COMPOUNDS	••	••	••	188

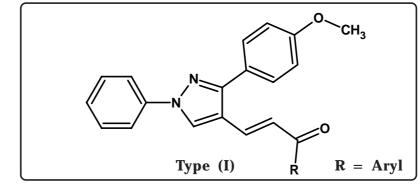
The work is incorporated in the thesis with the title "DESIGN AND SYNTHESIS OF SOME HETEROCYCLES OF MEDICINAL INTEREST" has been described as under.

[A] STUDIES ON PYRAZOLES

[B] STUDIES ON TRIAZOLES

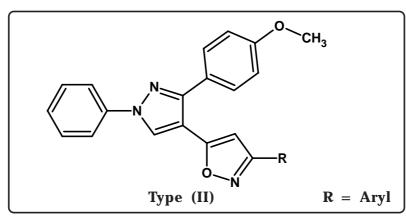
[A] STUDIES ON PYRAZOLES

Pyrazole derivatives are associated with broad spectrum of pharmacological activities like antitubercular, antimicrobial, hypnotics, antiinflammatory, antitumor, plant growth regulators and are also used as herbicidal and insecticidal.


Considering the increasing importance of pyrazole nucleus, the synthesis of some new chalcones, pyrazolines, isoxazoles, cyanopyridines, cyanopyridones and arylidenes bearing 1,N-phenyl-3-p-anisyl-4-formyl pyrazole nucleus has been undertaken.

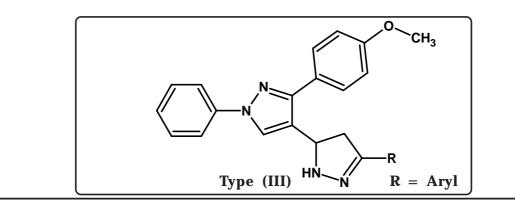
PART - I : STUDIES ON ISOXAZOLES

Isoxazoles possess remarkable pharmacological importance and biological activities such as antifungal, antibacterial, sedative and hypnotics etc. In view of there facts, it appeared of interest to design and synthesise isoxazole derivatives, which have been described as under.


SECTION - I : Synthesis and biological evaluation of 1-Aryl-3-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-2-propene-

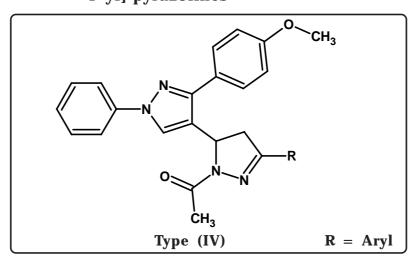
The chalcones of type (I) have been undertaken by the condensation of 1-phenyl-3-p-anisyl-4-formyl pyrazole with different aryl ketones in presence of 40% KOH.

SECTION - II : Synthesis and biological evaluation of 3-Aryl-5-[1'-N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-isoxazoles



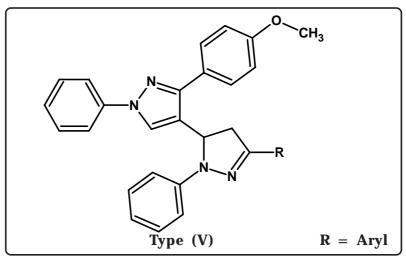
The isoxazole derivatives of type (II) have been prepared by the reaction of chalcones of type (I) with anhydrous sodium acetate and hydroxylamine hydrochloride in glacial acetic acid.

PART - II : STUDIES ON PYRAZOLYLPYRAZOLINES


Pyrazoline derivatives are associated with broad spectrum of pharmacological activities like anticancer, anthalmentic, antitubercular, antiinflammatory etc. In view of above findings, some new pyrazolines bearing 1-phenyl-3-p-anisyl-4-formyl pyrazole moiety have been prepared which have been described as under.

SECTION - I : Synthesis and biological evaluation of 3-Aryl-5-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-pyrazolines

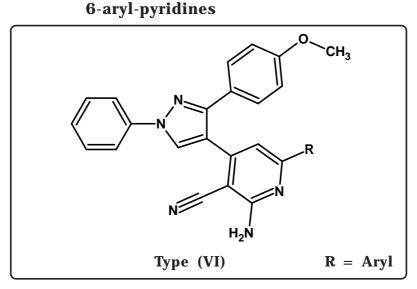
The pyrazoline derivatives of type (III) have been prepared by the reaction of chalcones of type (I) with hydrazine hydrate.


SECTION - II : Synthesis and biological evaluation of 1,N-Acetyl-3-aryl-5-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-pyrazolines

The pyrazoline derivatives of type (IV) have been undertaken by the reaction of chalcones of type (I) with hydrazine hydrate in glacial acetic acid.

SECTION - III : Synthesis and biological evaluation of 1,N-Phenyl-3-aryl-5-[1',N-phenyl-3'-p-anisyl-pyrazol-

4'-yl]-pyrazolines

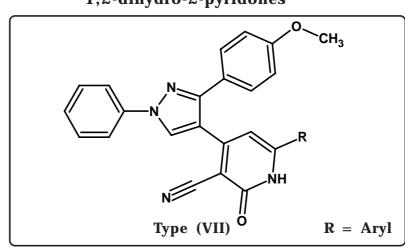


The pyrazolines of type (V) have been prepared by the reaction of chalcones of type (I) with phenyl hydrazine in presence of basic catalyst like piperidine.

PART - III : STUDIES ON CYANOPYRIDINES

Cyanopyridine plays a vital role owing to their wide range of biological activities such as antihypertensive, antibacterial, antidiabetic and anticholestemic. They have been also used as dyes for cotton and polyester fabrics, it appeared of interest to design and synthesise cyanopyridine derivatives, which have been described as under.

SECTION - I : Synthesis and biological evaluation of 2-Amino-3-cyano-4-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-

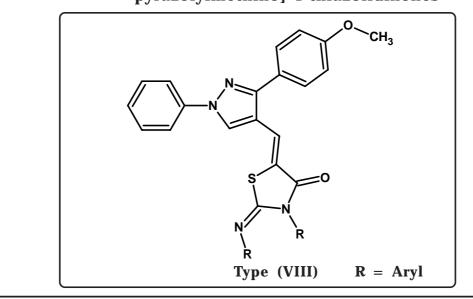


2-Amino-3-cyanopyridines of type (VI) have been under taken by the condensation of chalcones of type (I) with ammonium acetate and malononitrile.

PART - IV : STUDIES ON CYANOPYRIDONES

The group of compounds containing the cyanopyridone ring system have a prominent feature in medicinal chemistry and possess biological activities such as analgesic, antidiabetic, anticonvulsant, insecticidal and antibacterial etc. In view of these facts, it was contemplated to synthesise cyanopyridone derivatives which have been described as under.

SECTION - I : Synthesis and biological evaluation of 3-Cyano-4-[1',N-phenyl-3'-p-anisyl-pyrazol-4'-yl]-6-aryl-1,2-dihydro-2-pyridones


The cyanopyridones of type (VII) have been prepared by condensation of chalcones of type (I) with ethylcyanoacetate and ammonium acetate.

PART - V : STUDIES ON THIAZOLIDINONES

It has been reported that 5-arylidene-4-thiazolidinone derivatives are associated with wide range of biological activities like antitumor, antileprosy, antitubercular, antibacterial etc. In order to develop medicinally important compounds, we have synthesised some new arylidenes shown as under.

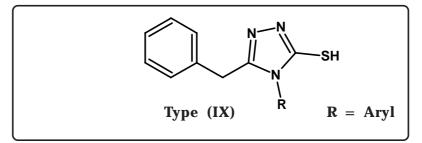
SECTION - I :

Synthesis and biological evaluation of 2-Aryl imino-3,N-aryl-5-[1',N-phenyl-3'-p-anisyl-4'pyrazolylmethino]-4-thiazolidinones

The arylidenes of type (VIII) have been prepared by condensation of 1,N-phenyl-3-p-anisyl-4-formyl-pyrazol with different thiazolidinones in glacial acetic acid.

[B] STUDIES ON TRIAZOLES

We are engaged in a programme to explore some new heterocyclic entities in order to study their pharmacological profile. Our efforts are focused on introduction of chemical diversify in the molecular frame work in order to synthesizing active molecule of widely different composition.

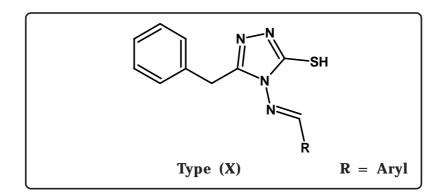

Compounds bearing 1,2,4-triazole moiety are endowed with a variety of biological activities such as antiinflammatory, CNS depressant, herbicidal, fungicidal etc.

Considering the increasing importance of triazole nucleus, it was contemplated to synthesise some new aryl triazoles, azomethines, and thiadiazoles bearing triazole nucleus, which have been described as under.

PART - I : STUDIES ON 4-ARYLTRIAZOLES

Different type of 1,2,4-triazole derivatives have drawn considerable attention due to their good pharmacological activities such as analgesic, CNS depressent, pesticidal, antiinflammatory and antihypertensive. By considering these valid observations, we have synthesised some new 1,2,4triazoles which have been described as under.

SECTION - I: Synthesis and biological evaluation of 3-Mercapto-4,N-aryl-5-benzyl-1,2,4-triazoles

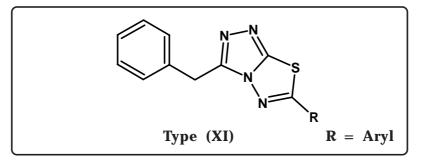


The synthesis of triazole derivatives of type (IX) have been undertaken by heating of dithiocarbamate of phenyl acetic acid hydrazide with different aromatic amines.

PART - II : STUDIES ON AZOMETHINES

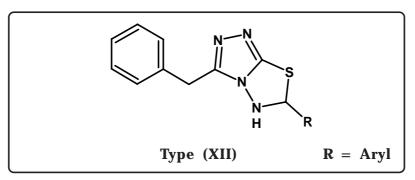
Azomethine derivatives represent one of the modest classes of compounds possessing wide range of therapeutic activities, such as antimicrobial, antibacterial, antibiotics etc. With a view to getting better therapeutic agents and to evaluate it's pharmacological profile, different type of azomethine derivatives have been prepared, which have been described as under.

SECTION - I : Synthesis and biological evaluation of 4-N-Substituted benzalamino-3-benzyl-5-mercapto-1,2,4-triazoles



The synthesis of schiff's base derivatives of type (X) have been prepared by 3-mercapto-4-N-amino-5-benzyl-1,2,4-triazole with different aromatic aldehydes in presence of sulphuric acid.

PART - III : STUDIES ON 1,3,4-THIADIAZOLO TRIAZOLES


Thiadiazole derivatives represent one of the most active classes of compounds possessing wide spectrum of biological activities such as antithyroid, antibiotic, pesticidal, antifungal etc. Some new triazoles with 1,3,4-thiadiazole ring system have been prepared as under.

SECTION - I : Synthesis and biological evaluation of 2-Aryl-4benzyl-1,2,4-triazolo[4,5-b]-1,3,4-thiadiazoles

Substituted triazolo thiadiazoles (XI) have been prepared by condensation of 3-benzyl-4-N-amino-5-mercapto-1,2,4-triazole with different aromatic acids in presence of phosphorous oxychloride.

SECTION - II : Synthesis and biological evaluation of 2-Aryl-4benzyl-2,3-dihydro-1,2,4-triazolo-[4,5-b]-1,3,4thiadiazoles



The compounds of type (XII) have been prepared by the condensation of 3-benzyl-4-N-amino-5-mercapto-1,2,4-triazole with different aromatic aldehydes in presence of p-toluenesulphonic acid.

The constitution of the newly synthesised products have been characterised using elemental analyses, Infrared and ¹H nuclear magnetic resonance spectroscopy and further supported by mass spectrometry. Purity of all the compounds have been checked by thin layer chromatography.

In vitro study on multiple biological activites:

- (i) All the compounds have been evaluated for their antibacterial activity towards Gram positive and Gram nagative bacterial strain and antifungal activity towards *Aspergillus niger* at a concentration of 40 μg/ml. The biological activity of the synthesised compounds have been compared with standard drugs.
- (ii) Selected compounds have been evaluated for their *in vitro* biological assay like antitubercular activity towards a strain of *Mycobacterium tuberculosis H37 Rv* at a cocentration of 6.25 μg/ml using Rifampin as a standard drug, which have been tested by Tuberculosis Antimicrobial Acquisition Co-ordinating Facility (TAACF), Alabama U.S.A. The work is under progress.

INTRODUCTION

With the advent of modern civilization, human learned to cure themself by plant medicine. With the development of scientific knowledge, a more advance form of drug have been evaluated. The continuous progress of drug design ranging from single molecules to giant structure is extensively driven by the insticts, intution and experience of pharmaceutical research scientists. From ancient Aryuvedas people learn to use natural drugs as a curing tool. Thus many natural products by trial and error come in to practice for combating human ailments existant during early human observations. Such ancient plant medicines are the 'base' for shaping our current drugs.

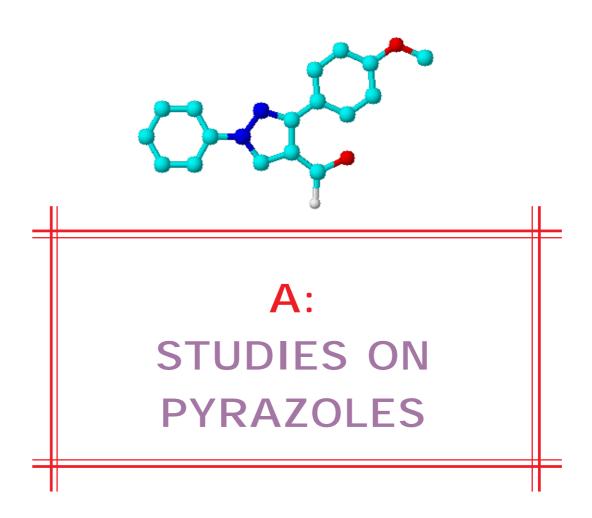
Taking in view of the applicability of heterocyclic compounds, they are predominant among the types of compounds used as pharmaceuticals, as agrochemicals, as veterinary products, as optical brightening agents, as antioxidants, as corrosion inhibitors and as additives with a variety of other function. Heterocyclic compounds are also finding an increasing use as intermediates in organic synthesis. Heterocyclic compounds possess diversified applicability in pharmaceuticals because they have specific chemical reactivity and provides false synthon in biosynthetic process or block the normal functioning of biological receptors.

Heterocyclic compounds are found as a key component in biological processes. Nucleic acid bases, which are derivatives of the pyrimidine and purine ring systems, as being crucial to the mechanism of replication. Heterocyclic compounds like ascorbic acid (vitamin C) and thiamine (vitamin B_1) are used as an essential diet ingredients.

In ancient "Aryuvedas" NEEM has been described as a antifungal and antibacterial medicine and till today it is being used against skin disease. Moreover NEEM has described as killer for "Sarkara" (blood-sugar) and acts as a antidiabetic drug in India. Similarly in China, Mauhang was in use for over 5000 years for the various types of fever & respiratory ailments.

In 1925 chemical investigations followed by pharmacological evaluation led this compound into modern medicine. Similarly during this period, urea stibamine was introduced as the first drug in 1920 for the treatment of Kala azar, in 1930 De Roywolfia prepration were first employed for sedative and hypotensive properties.

By serendipity, many such natural products have came into human observations for the treatment & curing human illness. An extraordinary chemotherapeutic properties of penicillin and it's dramatic time was developed for the treatment of wound made penicillin, almost commonly used as an inexpensive drug. The advent of sulphonamides draw attention to the different activity of various chemicals for bacterial and human cells, this important factors prompted the florey and chain in 1939 to investigate penicillins which was discovered ten years earlier by Alexander Fleming.

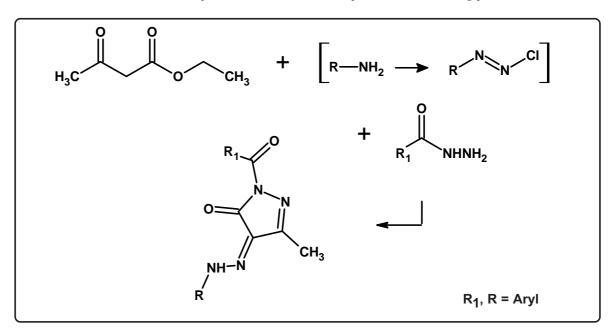

A large number of important drugs have been introduced during this period of 1940 to 1960. This period is known as 'Golden Period' of new drug discovery. Thus prontosil leading various sulpha drugs ; 1940 - Penicillin, antibiotics ; 1945 - Chloroquine, an antimalarial; 1950 - Methyldopa, antihypertensive; 1957 chlorothiazide, diuretic; 1958 - adrenergic beta blockers, coronary vasodilatory; 1960 - semi synthetic penicillin, antibacterial; 1965 - trimethoprim, antimicrobial; 1967 - disodium chromoglycoate, antiallergic; 1972 - Cimetidine, H2 - antagonist; 1975 - Verapamil, Calcium antagonist; 1981 - captopril, antihypertensive. These are some specific examples representing new therapeutics.

AIMS AND OBJECTIVES

With the consideration of the application of heterocyclic compounds, we have carried out the preparation of heterocycles bearing pyrazole and triazole nucleus. The placement of a wide variety of substituents of these nuclei have been designed in order to evaluate the synthesised products for their pharmacological profile against several strains of bacteria and fungi.

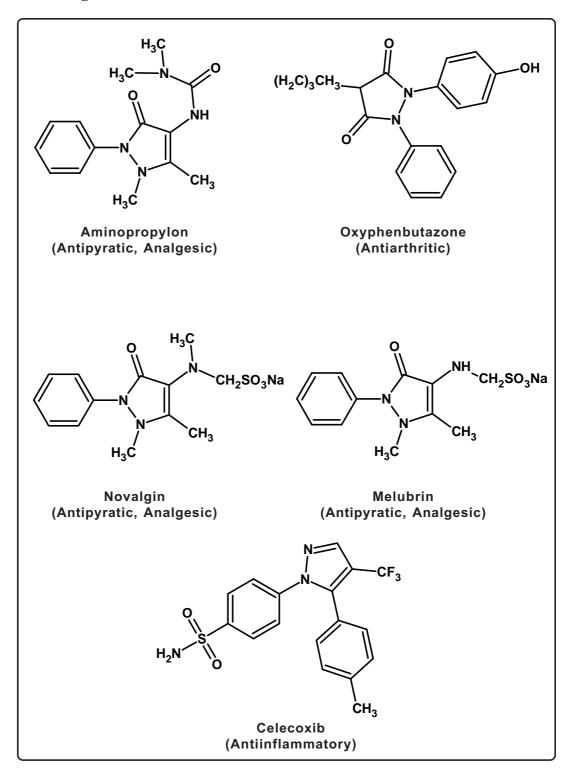
- * To generate several derivatives like chalcones, isoxazoles, pyrazolines, cyanopyridines, cyanopyridones, thiazolidinones bearing pyrazole moiety.
- To synthesise therapeutically active moieties like aryl triazoles, azomethines,
 1,3,4-thiadiazoles bearing triazole nucleus.
- * To characterise these products for structure elucidation using spectroscopic techniques like IR, PMR and Mass spectral studies.
- * Purity of all comopunds have been checked by thin layer chromatography.
- * To evaluate these new products for better drug potential against different strains of bacteria and fungi.

In a programmed research directed towards the construction of medicinally active new heterocycles bearing pyrazole and triazole has been investigated in following parts.


INTRODUCTION

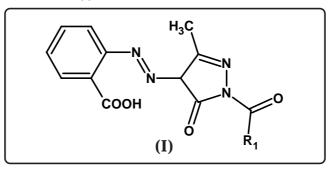
 $P_{yrazoles}$, which belong to an important group of heterocyclic compounds, have been extensively explored for their applications in the field of medicine, agriculture and industrial chemistry.

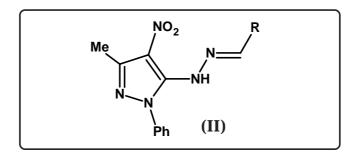
SYNTHETIC ASPECTS


Different methods of preparation are available in literature which are as under ;

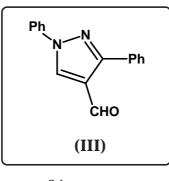
- 1. By the reaction of ethylacetoacetate with aryl hydrazines¹.
- 2. By the reaction of ethylacetoacetate with hydrazine hydrate 2 .
- 3. By the reaction of ethylacetoacetate with aroyl hydrazines 3 .
- 4. The ester group can be replaced by diazonium salt of amine and further it is condensed with hydrazine which on cyclization form pyrazolone⁴.

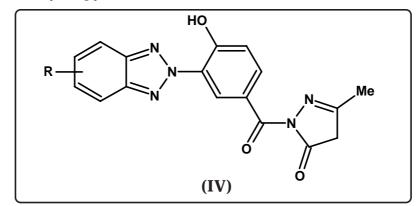
THERAPEUTIC IMPORTANCE

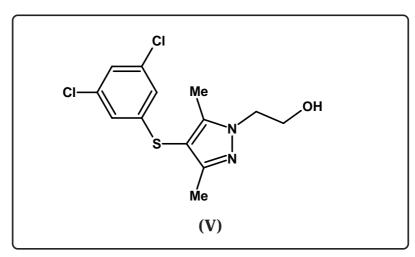

Pyrazole derivatives have been reported to be associated with diverse biological activities. Drug molecules having pyrazole nucleus with good pharmacological activities are listed below.

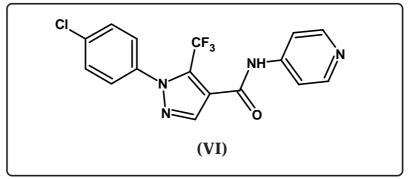

Pyrazole derivatives exhibit broad spectrum of therapeutic activity. Several biological activities associated with pyrazole derivatives have been described as under.

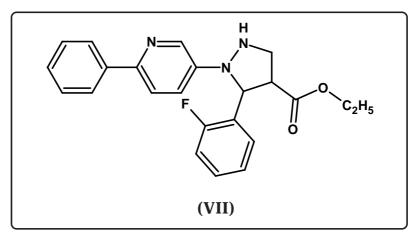
- 1. Anticancer⁵
- 2. CNS depressant⁶
- 3. Antiulcer⁷
- 4. Herbicidal^{8,9}
- 5. Antitumor¹⁰
- 6. Immunosuppresants¹¹
- 7. Antimicrobial¹²
- 8. Antiparasitic¹³
- 9. Neurotonsin receptor¹⁴
- 10. Lipoxygenase inhibitor¹⁵

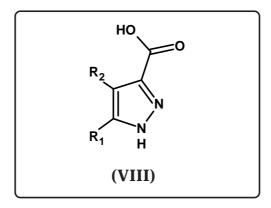

Ashok Kumar and co-workers¹⁶ have reported antibacterial activity of pyrazolones. M. Giula et. al.¹⁷ have demonstrated pyrazolone derivatives as antiinflammatory, analgesic and platelet, antiaggregating agent. S. D. Bharadwaj and co-worker¹⁸ have observed anticancer and anti-HIV activity, associated with some novel derivatives(I).


Barseiro et. al.¹⁹ have prepared pyrazole derivatives and reported them as antiinflammatory and antiedematogenic agent (II).


El-Emery et. al.²⁰ have synthesised 1,3-diphenyl pyrazole derivatives and documented their variety of bioloical activity (III).

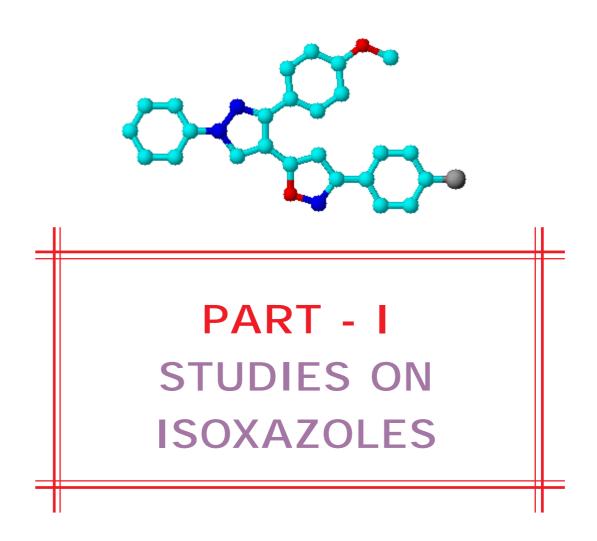

Rajeev Jain and co-worker²¹ have prepared pyrazoline derivatives and reported as potent antimicrobial agent. X. X. Chun et. al.²² have prepared substituted 3-methyl-5-pyrazoles (IV).


Havaldar Freddy et al.²³ have synthesised 4,5-dihydro-3-phenyl-1Hpyrazole and reported their biological activity. Carbau Romuald and coworkers²⁴ have reported pyrazole derivatives (V) useful as reverse transcriptase inhibitors for the treatemet of HIV infection.


Recently, Atkinson R. N. et al.²⁵ have studied pyrazoles as sodium channel blocker (VI). Murakanii Hiroshi et al.²⁶ have documented pyrazoles as antifouling agents. Gellibeat Francoise et al.²⁷ have reported purasole derivatives as TGF-13 inhibitors.

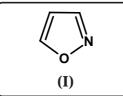
Laborde Edgardo et al.²⁸ have found that pyrazoles possess glycine transporter2-inhibitors activity. Andrew Thurkaub et al.²⁹ have synthesised high affinity C_{5a} receptor modulator pyrazoles. Nagaaki Sato et al.³⁰ have prepared pyrazoles as neuropeptide T_5 receptor antagonists. G. M. B. Yamanouch Pharma. Co³¹ has suggested pyrazoles as glycine trnsporter protein inhibitors (VII).

Jacques Dumas and co-workers³² have shown pyrazole derivatives as rafkinase and angiogenesis inhibitor agents. David L. S. et al.³³ have synthesied pyrazoles as activators of the nitrile oxide receptor and soluble guanglute cyclase agent. T. Van Herk et al.³⁴ have studied pyrazoles as nicotinic acid receptor (VIII). Barber Christopher et al.³⁵ have represented pyrazole derivatives as phosphidiesterase inhibitors.


Nishimura Tsoshihiro et al. 36 have synthesised pyrazole as inhibitors of human SGLT₂ (Sodium dependent glucose transporter-2).

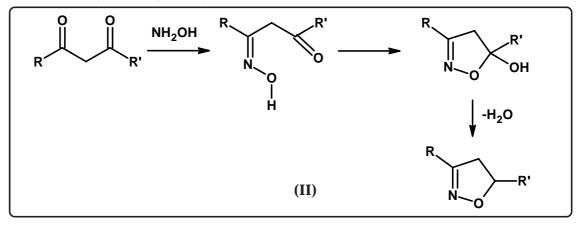
Now a days, it is found that pyrazole derivatives possesses a number of biological activities. Such as fungicidal^{37,38}, herbicidal^{39,40}, Cardiovascular⁴¹, antiinflammatory^{42,43}, anticancer⁴⁴⁻⁴⁶, antiviral⁴⁷ and protein kinase inhibitors⁴⁸.

Loking to the diversified biological activity, it appeared of interest to synthesise some Chalcones, Isoxazoles, Pyrazolines, Cyanopyridines, Cyanopyridones and Thiazolidinones bearing pyrazole moiety, in order to achieving compounds having better therapeutic importance. These study are described in following parts.

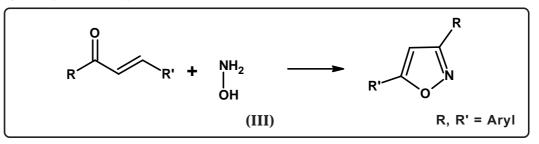

[A] STUDIES ON PYRAZOLES

PART-I	:	STUDIES ON ISOXAZOLES
PART-II	:	STUDIES ON PYRAZOLYLPYRAZOLINES
PART-III	:	STUDIES ON CYANOPYRIDINES
PART-IV	:	STUDIES ON CYANOPYRIDONES
PART-V	:	STUDIES ON THIAZOLIDINONES

INTRODUCTION


soxazoles are a group of heterocyclic compounds containing two hetero atoms : Oxygen and Nitrogen.

In 1888, Claisen first suggested an Isoxazole (I) for a product from the reaction of 1,3-diketone with hydroxylamine⁴⁹. Subsequently a solid foundation for the chemistry of isoxazoles was laid down by Claisen and his students. It was shown to possess typical properties of an aromatic system but under certain reaction conditions, particularly in reducing or basic media, it becomes highly labile. The next important contribution to the chemistry of isoxazole was made by Quilico in 1946, when he began to study the formation of isoxazoles from nitrile N-oxides and unsaturated compounds⁵⁰.


SYNTHETIC ASPECTS

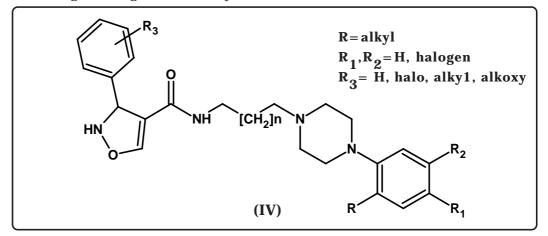
Isoxazoles may be prepared by the reaction between hydroxylamine and α , β -dicarbonyl compounds. The reaction proceeds via the formation of an oxime, which possibly undergoes cyclization.

Isoxazoles can be prepared by various methods which are described as under.

1. Fanshawe and Crawley⁵¹ prepared isoxazoles (III) from chalcones, hydroxylamine hydrochloride and KOH in methanol.

THERAPEUTIC IMPORTANCE

Isoxazoles possess wide therapeutic activities.


- 1. Antiinflammatory 52-54
- 2. Anticonvulsant^{55,56}
- 3. Muscle relaxant^{57,58}
- 4. Antipyretic⁵⁹
- 5. Anticholestermic⁶⁰
- 6. Antibacterial^{61,62}
- 7. Diabetic⁶³
- 8. Nematocidal⁶⁴
- 9. Antiviral⁶⁵
- 10. Herbicidal⁶⁶
- 11. Antileukemia⁶⁷
- 12. Antitumor⁶⁸

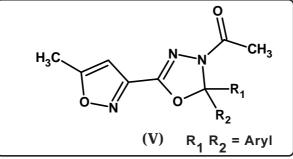
G. Daidone, Maggio et. al.⁶⁹ synthesised novel 3-(isoxazol-3-yl)-quinazolin-4(3H)-one derivatives and tested for their analgesic and antiinflammatory activities as well as for their acute toxicity and ulcerogenic effect. Some of them had a very low ulcerogenic effect.

Isoxazoles... 21

C. B. Xue et. al.⁷⁰ reported that replacement of the benzamide in XUO57 (potent inhibitor) with an isoxazole carboxamide resulted in significant improvement *in vivo* potency. More importantly, the analogue XUO65 showed an excellent oral antiplatelet effect in dogs. Masui et. al.⁷¹ have prepared isoxazoles having pesticidal activity. Some excellent herbicidal results are obtained by Reddy et. al.⁷². Moreover isoxazoles found to possess remarkable anxiolytic and antihypertesive effect, reported by Nyitrai et. al.⁷³. Mishra et. al.⁷⁴ have synthesised and reported isoxazoles as useful agents for analgesic and antiinflammatory activities. Aicher et. al.⁷⁵ cited some isoxazole derivatives possessing hypoglycemic agents.

R. Ulrich et. al.⁷⁶ have synthesised isoxazole derivatives (IV) and reported their adrenergic antagonist activity.

M. Dauria⁷⁷ studied photochemical behaviour of isoxazole derivatives. Manohara Y. N. et. al.⁷⁸ investigated thermal decomposition kinetics of Co(II) and Ni(II) complexes of substituted isoxazole and their antibacterial activity.


CONTRIBUTION FROM OUR LABORATORY

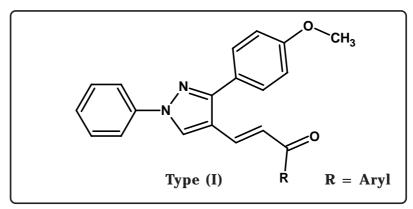
R. C. Khunt, A. R. Parikh and co-workers⁷⁹ have prepared isoxazole derivatives which possess antimicrobial activity. P. M. Patel and A. R. Parikh⁸⁰ have synthesised 3-(3'-bromo-4-acetamidophenyl)-5-aryl-isoxazoles showing antimicrobial activity. N. J. Datta et. al.⁸¹ have described the isoxazole derivatives and their use as antimicrobial agents. B. P. Kansagara et. al.⁸² have demonstrated various isoxazoles and tested their antimicrobial activity.

Isoxazoles... 22

N. A. Vekariya, M. D. Khunt and co-workers⁸³ have reported isoxazole derivatives bearing quinoxaline moiety and described their anticancer activity. Sushil Korgaokar et. al.⁸⁴ have suggested 5-Aryl-3-(3'-ρ-chlorobenzene sulphonamidophenyl)-isoxazole derivatives as antimicrobial. A. H. Bhatt and co-workers⁸⁵ have synthesised isoxazole derivatives and described them as potential antimicrobial agents. Rajeev doshi et. al.⁸⁶ have prepared some novel isoxazole derivatives and reported as a new class of potential antitubercular agents. Manish Shah and co-workers⁸⁷ have demonstrated isoxazoles from 2-hydroxy-3,4-dichloroacetophenone as potential antimicrobial agents.

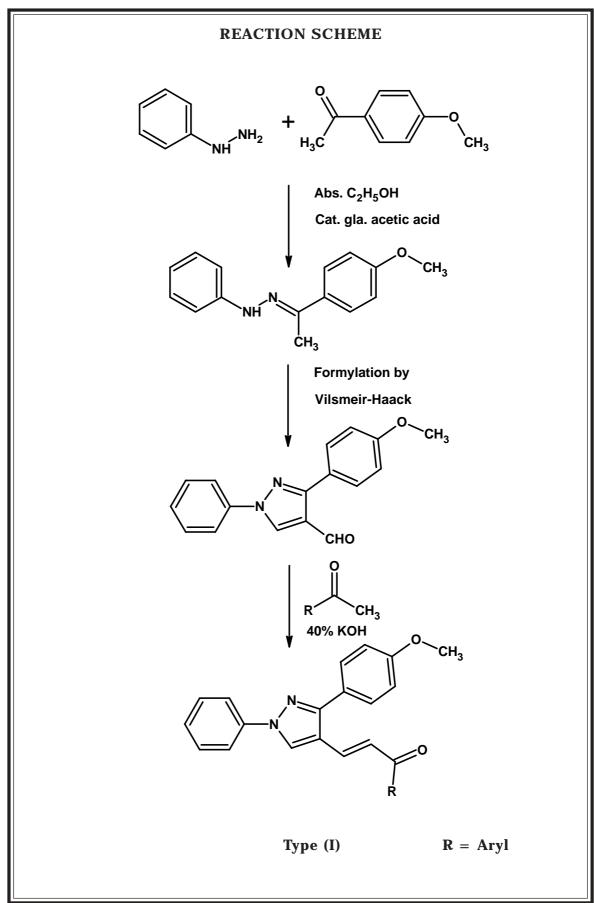
Xin-Ping Hui et. al.⁸⁸ have synthesised 1,3,4-oxadiazole derivatives (V) containing 5-methylisoxazole moiety and reported their antibacterial activity.

Chaumin, Wang, Yunfeng et. al.⁸⁹ have synthesised isoxazoles as herbicidal. Archana et. al.⁹⁰ have prepared isoxazoles as anticonvulsant agents. Wu, Chengde et. al.⁹¹ have synthesised isoxazole derivatives as endothelin activity modulators. Corolin C. and co-workers⁹² have studied isoxazoles, which have been used for the clinical trials of asthama.


With an intension of preparing the compounds possessing better therapeutic activity, we have undertaken the preparation of isoxazoles bearing pyrazole moiety which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-ARYL-3-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-2-PROPENE-1-ONES SECTION - II: SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-ISOXAZOLES

SECTION - I


SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-ARYL-3-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-2-PROPENE-1-ONES

Recently, much interest has been focused on the synthesis and biodynamic activities of chalcones and it is a good synthon for various heterocycli rings. With a view to obtain compounds having better therapeutic activity, we have synthesised 1-aryl-3-[1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl]-2-propene-1-ones by the condensation of 1-phenyl-3- ρ -anisyl-4-formyl pyrazole with various aromatic ketones.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. wehen R=p-bromophenyl, molecular weight= 459, m/z= 461(m+2).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g./ml. The biological activities of synthesised compounds were compared with standard drugs.

ANTIMICROBIAL ACTIVITY

Method	•	Cup-plate ⁹³
Gram Positive bacteria	:	Staphylococcus aureus Bacillus megaterium
Gram negative bacterial	:	Proteus vulgaris Escherichia coli
Fungi	:	Aspergillus niger
Concentration	:	40µg
Solvent	:	Dimethyl formamide
Standard drugs	:	Ampicillin, Amoxicillin, Norfloxacin, Penicillin, Greseofulvin.

The antimicrobial activity was compared with standard drug viz. Ampicillin, Amoxicillin, Norfloxacin, Penicillin and antifungal activity was compared with viz. Greseofulvin. The inhibition zones measured in mm.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1-ARYL-3-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-2-PROPENE-1-ONES

(A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine

A mixture of phenylhydrazine (1.08 g, 0.01 M) and ρ -methoxy acetophenone (1.50 g, 0.01 M) in absolute ethanol was refluxed in water bath for 2 hrs. in presence of 1 ml glacial acetic acid. The crude product was isolated and crystallised from absolute alcohol. Yield 90%, m.p. 38°C; (Anal. Found : C, 74.91; H, 6.69; N, 11.62%; C₁₅H₁₆N₂O Requires: C, 74.97; H, 6.71; N, 11.66%).

(B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazole

N-Aminophenyl-α-methyl-ρ-anisyl azomethine (2.4 g, 0.01 M) was added in mixture of Vilsmeier-Haack reagent (prepared dy dropwise addition of 3 ml POCl₃ in ice cooled 25 ml DMF) and refluxed for 5 hrs. The reaction mixture was poured into ice followed by neutralization using sodium bicarbonate. Crude product was isolated and crystallised from ethanol. Yield 75%, m.p. 164°C; (Anal. Found : C, 73.33; H, 5.02; N, 10.01%; $C_{17}H_{14}N_2O_2$ Requires: C, 73.37; H, 5.07; N, 10.07%).

(C) Synthesis of 1-(ρ-Bromophenyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2-propene-1-one

To a well stirred solution of 1-N-phenyl-3- ρ -anisyl-4-formyl pyrazol (2.78 g, 0.01 M) and ρ -bromoacetophenone (2 g, 0.01 M) in ethanol (25 ml), 40% KOH added till the solution was basic. The reaction mixture was stirred for 24 hrs. The contents were poured into ice, acidified, filtered and crystallised from ethanol. Yield 74%, m.p. 170°C; (Anal. Found : C, 65.32; H, 4.68; N, 6.03%; C₂₅H₁₉N₂O₂Br Requires: C, 65.37; H, 4.71; N, 6.10%).

Similarly other substituted pyrazolone have been prepared. The physical data are recorded in Table No. 1.

(D) Antimicrobial activity of 1-Aryl-3-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl]-2-propene-1-ones

All the products have been evaluated by antimicrobial activity as described under.

(a) Antimicrobial activity

It was carried out by cup-plate diffusion method which has been described as under.

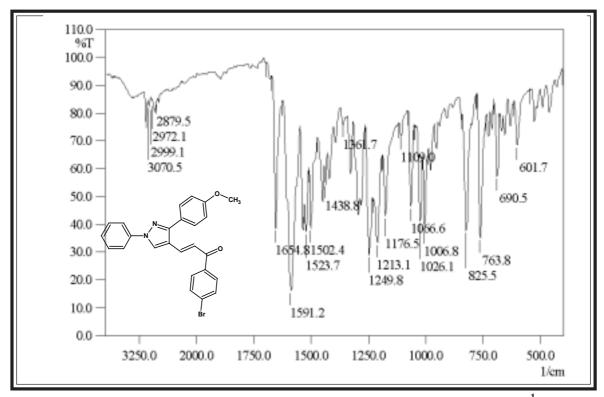
(I) Antibacterial activity

The purified products were screened for their antibacterial activity. The nutrient agar broth prepared by the usual method, was inoculated aseptically with 0.5 ml of 24 hrs. old subcultures of *B. megaterium*, *S. aureus*, *E. coli*, *P. vulgaris* in separate conical flask at 40-50°C and mixed well by gentle shaking. About 25 ml content of the flask were poured and evenly spreaded in a petridish (13 cm in diameter) and allowed to set for 2 hrs. The cups (10 mm in diameter) were formed by the help of borar in agar medium and filled with 0.04 ml (40 μ g) solution of sample in DMF.

The plates were incubated at 37°C for 24 hrs. and the control was also maintained with 0.04 ml of DMF in a similar manner and the zones of inhibition of the bacterial growth were measured in millimeter and are recorded in graphical Chart No. 1.

(II) Antifungal activity

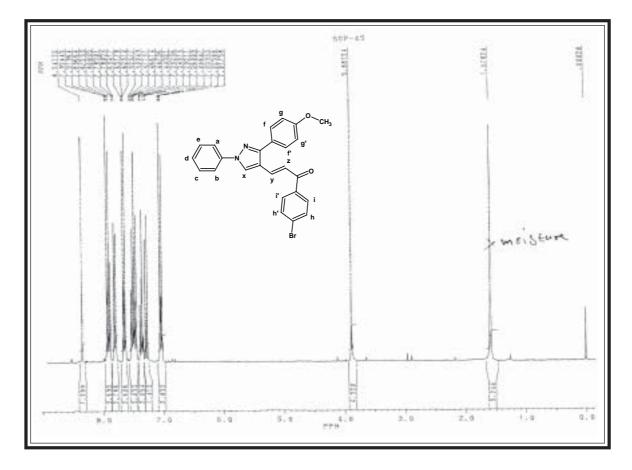
A. niger was employed for testing antifungal activity using Cup-plate method. The culture was maintained on Sabouraud's agar slants. Sterillised Sabouraud's agar medium was inoculated with 72 hrs. old 0.5 ml of suspension of fungal spores in a separate flask. About 25 ml of the inculated medium was evenly spreaded in a petridish and allowed to set for two hrs. The cups (10 mm


in diameter) were punched. The plates were incubated at 30°C for 48 hrs. After the completion of incubation period, the zones of inhibition of growth in the form of diameter in mm was measured. Along the test solution, in each petridish one cup was filled up with solvent which acts as control. The zones of inhibition are recorded in Graphical Chart No. 1.

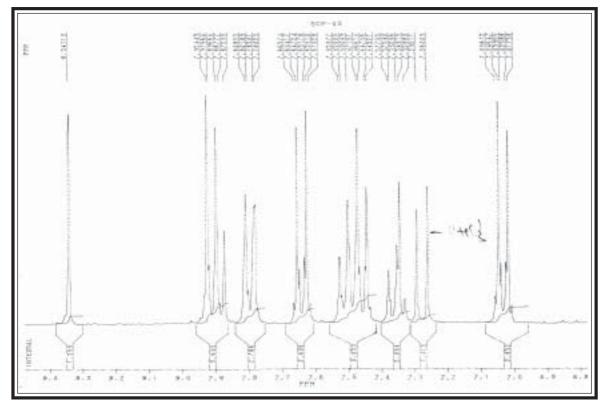
(b) Antitubercular activity

The antitubercular evaluation of the compounds was carried out at Tuberculosis Antimicrobial Acquisition and Co-ordinating Facility (TAACF), U.S.A. Primary screening of the compounds for antitubercular activity have been conducted at 6.25 µg/ml towards **Mycobacterium Tuberculosis H37Rv** in BACTEC 12B medium using the BACTEC 460 rediometric system. The compounds demonstrating atleast > 90% inhibition in the primary screen have been retested at lower concentration towards **Mycobacterium Tuberculosis H37Rv** to determine the actual minimum inhibitory concentration (MIC) in the BACTEC 460.

The antitubercular activity data have been compared with standard drug Rifampin at 0.25 μ g/ml concentration and it showed 98% inhibition. The work is under progress.

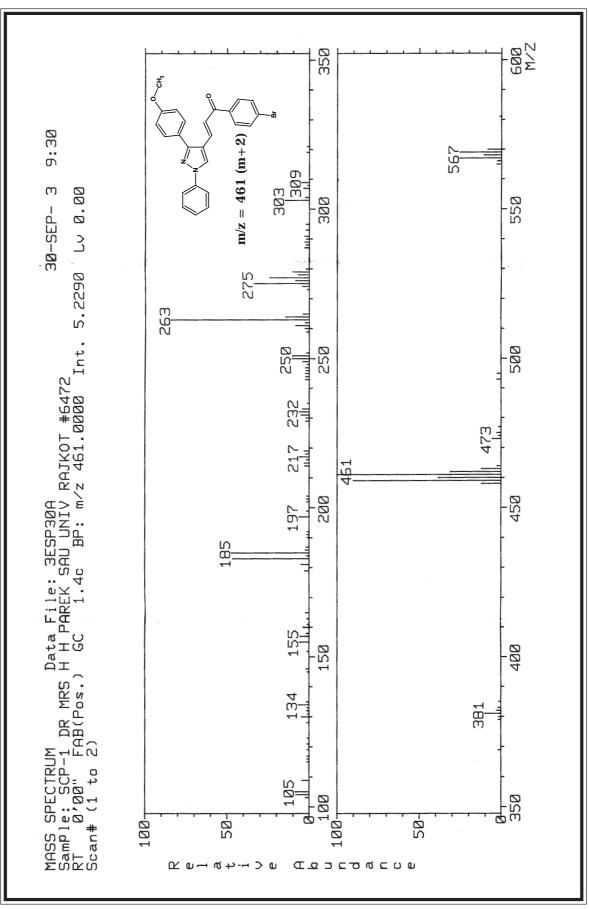

IR SPECTRAL STUDY OF 1-(ρ -BROMOPHENYL)-3-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-2-PROPENE-1-ONE

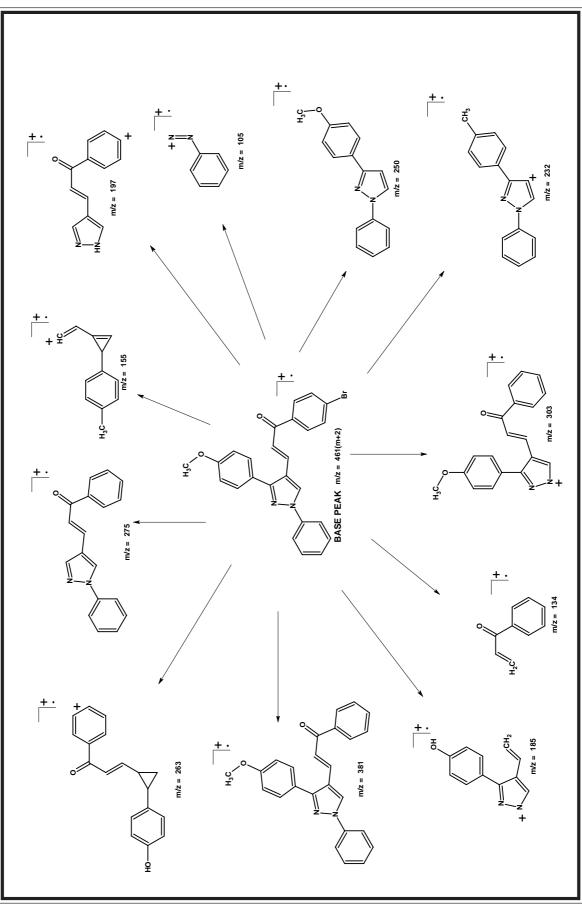
Туре	Vibration	Freque	ncy in cm ⁻¹	Ref.
Type	mode	Observed	Reported	Ren.
Alkane	C-H str.(asym.)	2972.1	2975-2950	434
-CH ₃	C-H str. (sym.)	2879.5	2880-2860	"
	C-H def. (asym.)	1438.8	1470-1435	"
	C-H def. (sym.)	1361.7	1385-1350	"
Aromatic	C-H str.	3070.5	3080-3030	435
	C = C str.	1502.4	1585-1480	"
	C-H i.p. def.	1109.0	1125-1090	"
		1066.6	1070-1000	"
	C-H o.o.p. def.	825.5	835-810	"
Pyrazole	C = N str	1502.4	1650-1600	434
moiety	C-N str.	1249.8	1350-1200	"
	C-Br		600-500	"
Ether	C-O-C str. (asym.)	1213.1	1275-1200	"
	C-O-C str. (sym.)	1026.1	1075-1020	"
Chalcone	C = O str.	1654.8	1760-1655	"
	CH=CH	2999.1	3050-3000	"


Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc)

PMR SPECTRAL STUDY OF 1-(ρ -BROMOPHENYL)-3-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-2-PROPENE-1-ONE

Internal Standard : TMS; Solvent : $CDCl_3$; Instrument : BRUKER Spectrometer (300 MHz)


Signal No.	Signal Position (ð ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.88		3H	singlet	Ar-OCH ₃
2	7.03	Jgf=8.7	2H	doublet	Ar-Hgg'
3	7.34		2H	quartret	Ar-Hc, Ar-He
4	7.44	Jhi=8.7	2H	doublet	Ar-Hhh'
5	7.46-7.50	Jzy=12.0	1H	doublet	CHz(vinylic)
6	7.51		1H	doublet	Ar-Hd
7	7.63	Jfg=8.7	2H	doublet	Ar-Hff'
8	7.79	Jih=8.7	2H	doublet	Ar-Hii'
9	7.87-7.92		2H	multiplet	Ar-Ha, Ar-Hb
10	7.88-7.92	Jyz=12.0	1H	doublet	CHy (vinylic)
11	8.34		1H	singlet	СНх



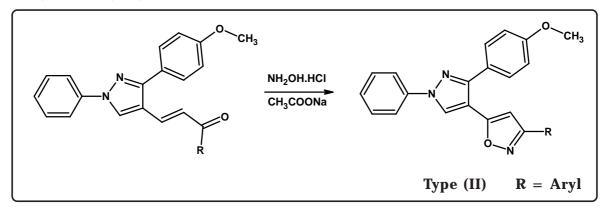
IR SPECTRAL DATA OF 1-ARYL-3-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-2-PROPENE-1-ONES

Instrument : SHIMADZU-FT-IR-8400 Spectrophotometer; Frequency range : $4000-400 \text{ cm}^{-1}$ (KBr disc)

Sr. No.	R	C=O str. Chalcones
1a	C ₆ H ₅ -	1656
1b	4-NH ₂ -C ₆ H ₄ -	1658
1 c	3-NH ₂ -C ₆ H ₄ -	1662
1d	$4\text{-Br-C}_6\text{H}_4$ -	1654.8
1e	$4 - Cl - C_6H_4$	1658.7
1g	$4 - F - C_6 H_4$	1654
1h	4-OCH ₃ -C ₆ H ₄ -	1656
1i	4-CH ₃ -C ₆ H ₄ -	1666.4
1j	$4 - NO_2 - C_6H_4$	1658
1 m	$3 - NO_2 - C_6 H_4$	1662
1n	4-OH-C ₆ H ₄ -	1666
10	2-OH-C ₆ H ₄ -	1660

Comp.	R	Molecular	Molecular	M.P.	Rf*	Yield		itrogen
No. 1	2	Formula 3	Weight 4	°С 5	Value 6	% 7	Calcd. 8	Found 9
1a	с ₆ н ₅ -	$C_{25}H_{20}N_2O_2$	380	190	0.42	82	7.36	7.32
1b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{25}H_{21}N_{3}O_{2}$	395	209	0.58	83	10.63	10.58
1c	$3-NH_2-C_6H_4-$	$C_{25}H_{21}N_{3}O_{2}$	395	214	0.48	71	10.36	10.56
1 d	$4\text{-Br-C}_6\text{H}_4$ -	$\mathrm{C_{25}H_{19}N_2O_2Br}$	459	170	0.51	74	6.10	6.03
1e	$4-Cl-C_6H_4$ -	$\mathrm{C_{25}H_{19}N_2O_2Cl}$	415	152	0.62	87	6.75	6.71
1f	$4\text{-F-C}_6\text{H}_4$ -	$\mathrm{C_{25}H_{19}N_2O_2F}$	398	169	0.72	85	4.77	4.70
1g	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$C_{26}H_{22}N_2O_3$	410	186	0.45	75	6.82	6.78
1h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$C_{26}H_{22}N_2O_2$	394	158	0.55	83	7.10	7.05
1i	$4-NO_2-C_6H_4-$	$C_{25}H_{19}N_{3}O_{4}$	425	161	0.65	71	9.88	9.82
1j	$3-NO_2-C_6H_4$ -	$C_{25}H_{19}N_{3}O_{4}$	425	181	0.56	78	9.88	9.81
1 k	4-OH-C ₆ H ₄ -	$C_{25}H_{20}N_2O_3$	396	179	0.72	82	7.07	7.04
11	2-OH-C ₆ H ₄ -	$C_{25}H_{20}N_2O_3$	396	166	0.57	78	7.07	7.01

TABLE NO. 1 :PHYSICAL CONSTANTS OF 1-ARYL-3-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-2-
PROPENE-1-ONES


*TLC Solvent System : Ethylacetate : Hexane 2 : 8 (1a-1l)

3:7 (1b, 1i)

SECTION - II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-ISOXAZOLES

With a view to achieving better drug potency, isoxazole derivatives of type (II) have been prepared by the condensation of chalcones of type (I) with hydroxylamine hydrochloride in presence of sodium acetate in glacial acetic acid. The chalcones were synthesised by the condensation of 1,N-phenyl-3- ρ -anisyl-4-formyl pyrazole with different aromatic ketones.

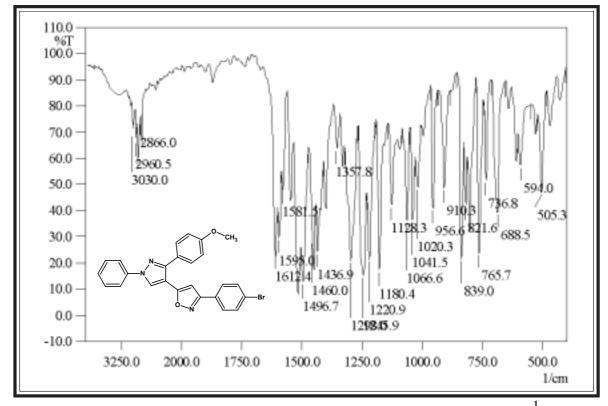
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. when R = p-bromophenyl, molecular weight= 472, m/z = 473 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-ISOXAZOLES

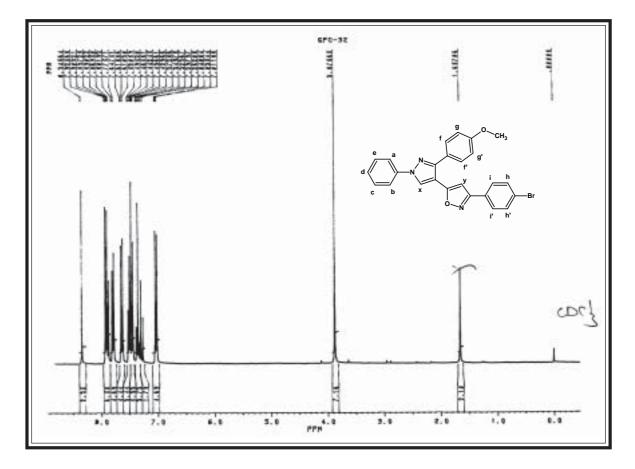
- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine
 See Part I, Section I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazole See Part - I, Section - I(B).
- (C) Synthesis of 1-(ρ-Bromophenyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2-propene-1-one
 See Part - I, Section - I(C).
- (D) Synthesis of 3-(ρ-Bromophenyl)-5-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-isoxazole


To a mixture of hydroxylamine hydrochloride (0.79, 0.01 M) in ethanol and anhydrous sodium acetate (0.82 g, 0.01 M) dissolved in minimum amount of hot acetic acid was added a solution of 1-(ρ -bromophenyl)-3-(1',N-phenyl)-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (4.59, 0.01 M) in ethanol (15 ml). The contents were refluxed on waterbath for 8 hrs. The reaction product was poured into ice and crystallised from ethanol. Yield 73%, m.p. 140°C; (Anal. Found : C, 63.52; H, 3.80; N, 8.86%; C₂₅H₁₈N₃O₂Br Requires: C, 63.57; H, 3.84; N, 8.90%).

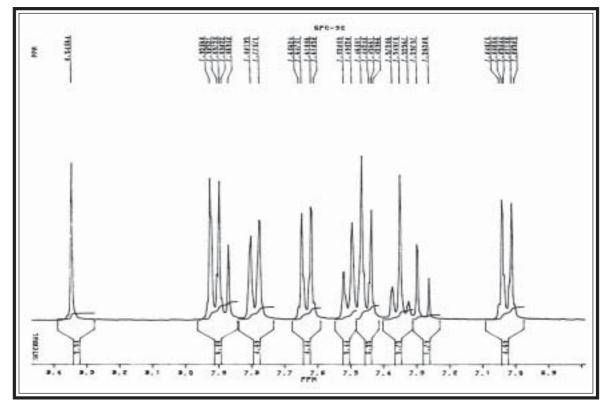
Similarly other substituted isoxazoles have been prepared. The physical data are recorded in Table No. 2

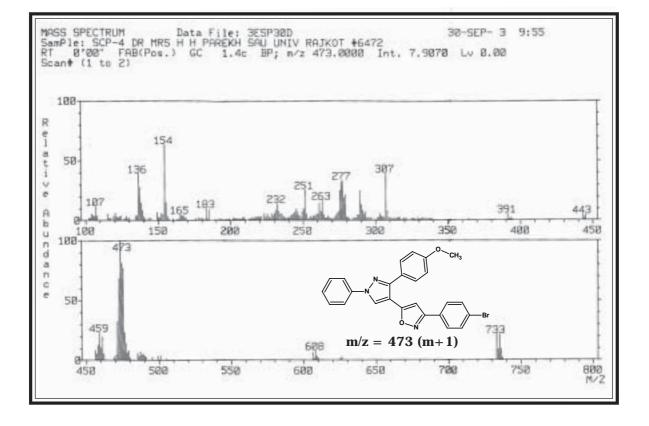
(E) Antimicrobial activity of 3-Aryl-5-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl]-isoxazoles

Antimicrobial testing was carried out as described in Part - I, Section - I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 2


IR SPECTRAL STUDY OF 3-(ρ -bromophenyl)-5-(1',N-phenyl-3'- ρ -Anisyl-pyrazol-4'-yl)-isoxazole

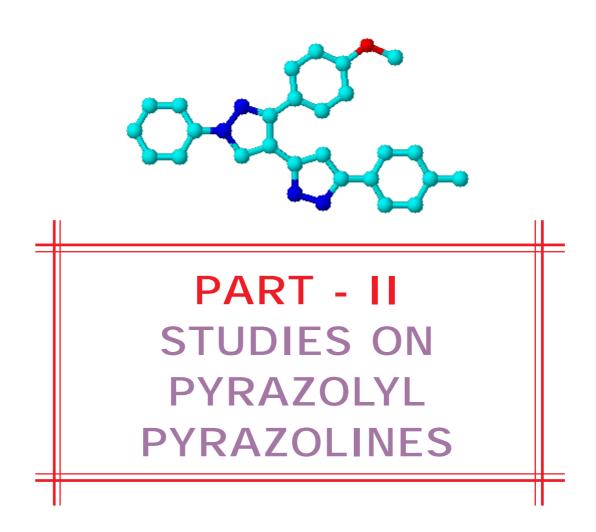
Туре	Vibration	Freque	ncy in cm ⁻¹	Ref.
Type	mode	Observed	Reported	NUI.
Alkane	C-H str.(asym.)	2960.5	2975-2950	434
-CH ₃	C-H str. (sym.)	2866.0	2880-2860	"
5	C-H def. (asym.)	1436.9	1470-1435	"
	C-H def. (sym.)	1357.8	1385-1350	"
Aromatic	C-H str.	3030.0	3080-3030	435
	C = C str.	1496.7	1585-1480	"
	C-H i.p. def.	1128.3	1125-1090	"
		1066.6	1070-1000	"
	C-H o.o.p. def.	821.6	835-810	"
Pyrazole	C = N str.	1612.4	1650-1600	434
moiety	C-N str.	1245.9	1350-1200	"
, , , , , , , , , , , , , , , , , , ,	C-Br str.	505.0	600-500	"
Ether	C-O-C str. (asym.)	1220.9	1275-1200	"
	C-O-C str. (sym.)	1020.3	1075-1020	"
Isoxazole	C = C str.	1581.5	1585-1570	"
	C = N str.	1460.0	1470-1460	"
	N-O str.	839.0	850-800	"


Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc)


PMR SPECTRAL STUDY OF 3-(ρ -bromopheyl)-5-(1',N-phenyl-3'- ρ -Anisyl-pyrazol-4'-yl)-isoxazole

Internal Standard : TMS; Solvent : $CDCl_3$; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.87		3H	singlet	Ar-OCH ₃
2	7.23	Jgf= 8.7	2H	doublet	Ar-Hgg'
3	7.34		2H	triplet	Ar-Hc, Ar-He
4	7.44	Jhi=8.7	2H	doublet	Ar-Hhh'
5	7.50		2H	doublet	Ar-Hd, CHy(isoxazole)
6	7.63	Jfg= 8.7	2H	doublet	Ar-Hff'
7	7.78	Jih=8.7	2H	doublet	Ar-Hii'
8	7.86-7.92		2H	multiplet	Ar-Ha, Ar-Hb
9	8.34		1H	singlet	СНх

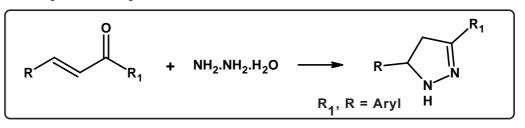


Comp. No.	R	Molecular Formula	Molecular Weight	M.P. °C	Rf [*] Value	Yield %	% of N Calcd.	litrogen Found
1	2	3	4	5	6	7	8	9
2a	с ₆ н ₅ -	$C_{25}H_{19}N_{3}O_{2}$	393	155	0.61	69	10.68	10.62
2b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{25}H_{20}N_4O_2$	408	178	0.57	70	13.72	13.69
2c	$3-NH_2-C_6H_4-$	$C_{25}H_{20}N_4O_2$	408	162	0.60	72	13.72	13.65
2d	$4\text{-Br-C}_6\text{H}_4$ -	$C_{25}H_{18}N_{3}O_{2}Br$	472	140	0.56	73	8.90	8.86
2e	4 -Cl-C $_{6}H_{4}$ -	$\mathrm{C_{25}H_{18}N_{3}O_{2}Cl}$	426.5	156	0.55	75	9.82	9.77
2f	$4-F-C_6H_4$ -	$C_{25}H_{18}N_{3}O_{2}F$	411	188	0.48	62	10.21	10.15
2g	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$C_{26}H_{21}N_{3}O_{3}$	423	159	0.69	75	9.92	9.89
2h	$4 - CH_3 - C_6H_4 -$	$C_{26}H_{21}N_{3}O_{2}$	407	148	0.72	68	10.31	10.28
2i	$4 - NO_2 - C_6 H_4 -$	$C_{25}H_{18}N_4O_4$	438	210	0.47	71	12.78	12.71
2j	$3-NO_2-C_6H_4-$	$C_{25}H_{18}N_4O_4$	438	181	0.60	64	12.78	12.73
2k	4-OH-C ₆ H ₄ -	$C_{25}H_{19}N_{3}O_{3}$	409	165	0.75	71	10.26	10.22
21	2-OH-C ₆ H ₄ -	$C_{25}H_{19}N_{3}O_{3}$	409	146	0.45	64	10.26	10.20

TABLE NO. 2 :PHYSICAL CONSTANTS OF 3-ARYL-5-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-
ISOXAZOLE

*TLC Solvent System : Ethylacetate : Hexane (3 : 7)

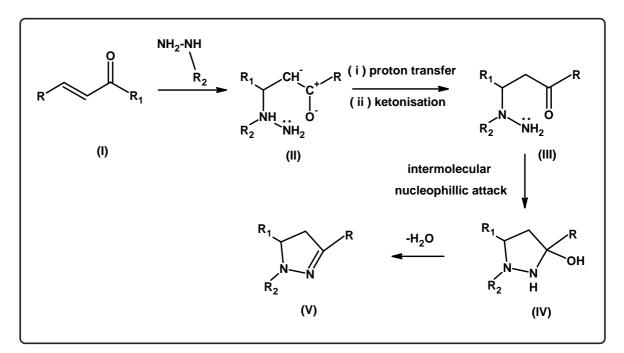
INTRODUCTION


A pharmacological study of nitrogen containing five membered heterocyle, pyrazolines have proved them to be the most important molecule for the pharmacists. A dual feature like heterocylic & pharmacologically active pyrazolines attracted attention of medicinal chemists for their biological evalution as a drug. In 1967 Jarobe, reviewed the chemistry of pyrazolines, which have been studied extensively for their biodynamic behaviour⁹⁴ and industrial applications⁹⁵.

SYNTHETIC ASPECTS

Different method for the preparation of 2-pyrazoline derivatives documented in literature are as follows.

1. 2-Pyrazolines can be constructed by the cyclocondensation of chalcones with hydrazine hydrate 96 .

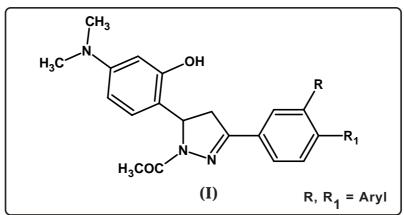


- 2-Pyrazolines can also be prepared by the condensation of chalcone dibromide with hydrazines⁹⁷.
- 3. 2-Pyrazolines can be synthesised by the cycloaddition of diazomethane to substituted chalcones⁹⁸.

- 4. Dipolar cycloaddition of nitrilimines of dimethyl fumerate, fumaronitrile and the N-aryl maleimides yields the corresponding pyrazolines⁹⁹.
- 5. Epoxidation of chalcones have epoxy ketones which reacted with hydrazine and phenyl hydrazine to give pyrazoline¹⁰⁰.

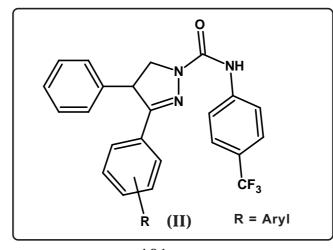
REACTION MECHANISM

The following mechanism seems to be operable for the condensation of chalcones with hydrazine hydrate 101 .

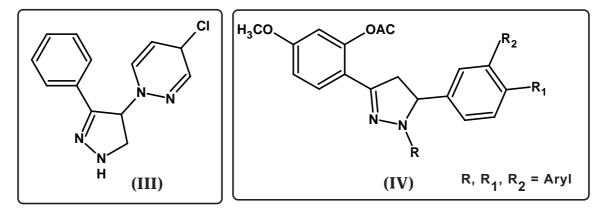

Nucleophilic attack by hydrazine at the β -carbon of the α , β -unsaturated carbonyl system forms species (II), in which the -ve charge is mainly accomodated by the electronegative oxygen atom. Proton transfer from the nitrogen to -ve oxygen produces an intermediate enol which simultaneously ketonises to ketoamine (III). Another intermolecular nucleophilic attack by the primary amino group of ketoamine on its carbonyl carbon followed by proton transfer from nitrogen to oxygen leads ultimately to carbonyl amine (IV). The later with a hydroxy group and amino group on the same carbon lose water easily to yield the pyrazolines (V).

THERAPEUTIC IMPORTANCE

From the literature survey, it was revealed that 2-pyrazoline derivatives shows following activities.


- 1. Analgesic¹⁰²
- 2. Bactericidal¹⁰³
- 3. Cardiovascular¹⁰⁴
- 4. Diuretic¹⁰⁵
- 5. Fungicidal¹⁰⁶
- 6. Herbicidal¹⁰⁷
- 7. Hypoglycemic¹⁰⁸
- 8. Insecticidal¹⁰⁹
- 9. Tranquilizing¹¹⁰
- 10. Antiallergic¹¹¹
- 11. Anticonvulsant¹¹²
- 12. Antidiabetic¹¹³
- 13. Antiimplantation¹¹⁴
- 14. Antiinflammatory¹¹⁵
- 15. Antitumor¹¹⁶
- 16. Antineoplastic¹¹⁷

F. Manna and co-workers¹¹⁸ have described 1-acetyl-5-(2'-bromophenyl)-4,5-dihydro-3-(2'-hydroxyphenyl)-1H-pyrazoline (I) and its derivatives which acts as potent antiinflammatory, analgesic and antipyretic agents.

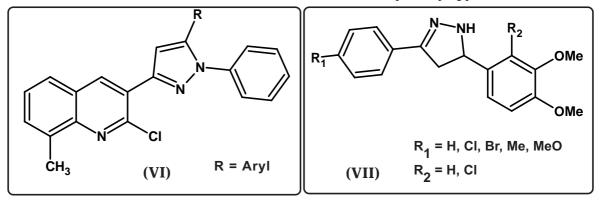


Pyrazolyl pyrazolines... 46

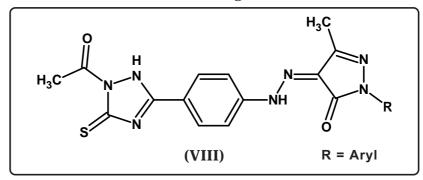

Nugent Richard¹¹⁹ investigated pyrazolines bis phosphonate ester as novel antiinflammatory and antiarthritic agents. Furthermore, Tsuboi et. al.¹²⁰ have synthesised some new (phenylcarbonyl) pyrazoline (II) as an insecticides and at 40% concentration shows 100% mortality of spodopetra litura larve after seven drops.

Tuntaway, Atif and co-workers¹²¹ have patented 3-methyl-4'-(substituted phenylazo)-pyrazol-5-ones as antibacterial agents. Fuche Rainer et. al.¹²² have prepared some 1H-pyrazoline (III) derivatives and reported them as pesticides. Johannes et. al.¹²³ have patented pyrazoline derivatives as insecticides. S. S. Sonarc et. al.¹²⁴ have synthesised 3-(2-acetoxy-4-methoxyphenyl)-5-(substitutedphenyl)-pyrazolines (IV) and tested their antimicrobial activity.

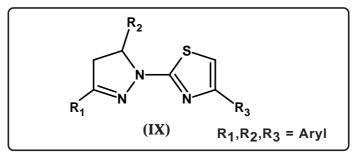
G. N. Mishirika et. al.¹²⁵ have also prepared 2-Pyrazoline derivatives of salicyclic acid (V) possessing antimicrobial properties.

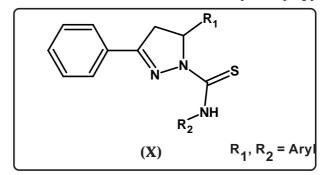


Udupi R. H. and Bhat A. R.¹²⁶ have reported the synthesis and biological activity of Mannich bases of certain 1,2-pyrazolines. Moreover, T. M. Stivenson et. al.¹²⁷ have also investigated N-Substituted pyrazoline type insecticide. Tanka Katsushori¹²⁸ et. al. have patented pyrazoline derivatives as herbicides. Moritaz Z. and Hadol¹²⁹ have demonstrated a semi emperial molecular orbital study on the reaction of amino-pyrazolinyl azo dye with singlet molecular oxygen. Shivananda M. K. and co-workers¹³⁰ have prepared pyrazolines and reported their antibacterial activity.


CONTRIBUTION FROM OUR LABORATORY

Parekh et. al.¹³¹ have prepared 1-acetyl-5-aryl-3-[3-(3,4-dihydro-2-methyl-4-one-3-quinazolinyl)-phenyl]-2-pyrazolines which possess antimicrobial activity. Several pyrazolines bearing thymol moiety were evaluated for their ability as potent antimicrobial by K. P. Roda¹³². Vikani and co-workers¹³³ have prepared pyrazoline derivatives from arsanilic acid for their antimicrobial activity. Parekh et. al.¹³⁴ have synthesised and reported the antimicrobial activity of pyrazoline derivatives.

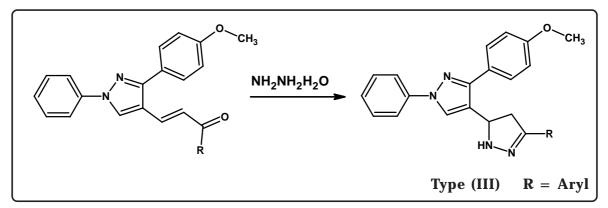

Jatin Upadhyay et. al.¹³⁵ have described by the pyrazoline derivatives and their use as antimicrobial agents. Akhil Bhatt and co-workers¹³⁶ have reported pyrazoline derivatives showing antimicrobial activity. Parekh et. al.¹³⁷ have synthesised phenyl pyrazoline derivatives bearing quinoline (VI) moiety and described their antimicrobial activity.



E. Palska et. al.¹³⁸ have prepared 3,5-diphenyl-2-pyrazoline derivatives (VII) and studied their antidepressant activity. B. Shivarama Holla et. al.¹³⁹ have prepared some fluorine containing pyrazolines and N-acetyl pyrazolines as antibacterial agents. Guinizkucukguzel et. al.¹⁴⁰ have synthesised pyrazolines (VIII) as antimicrobial and anticonvulsant agents.

Gulhan Taran-Zitouni et. al.¹⁴¹ have demonstrated 1-(4-arylthiazol-2-yl)-3,5-diaryl-2-pyrazolines (IX) as antihypertensive agents. S. P Hiremath et. al.¹⁴² have reported substituted pyrazolines as analgesic, antiinflammatory and antimicrobial agents. Malhotra et. al.¹⁴³ have prepared 1-thiocarbamoyl-2pyrazolines derivatives (X) as anticardiovascular agents.

Archana and V. K. Shrivastava et. al.¹⁴⁴ have synthesised quinazolinoyl pyrazoline as anticonvulsant agents. Almastead et. al.¹⁴⁵ have reported pyrazoline derivatives to increase erythropdietin and vascularization.


With an aim to synthesise better therapeutic agents, we have investigated some new pyrazolines, which have been described as under.

SECTION-I :	SYNTHESIS AND BIOLOGICAL EVALUATION OF 3 -
	ARYL-5-[1',N-PHENYL-3'-p-ANISYL-PYRAZOL-4'-YL]-
	PYRAZOLINES
SECTION-II :	SYNTHESIS AND BIOLOGICAL EVALUATION OF
	1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-p-ANISYL-
	PYRAZOL-4'-YL]-PYRAZOLINES
SECTION-III :	SYNTHESIS AND BIOLOGICAL EVALUATION OF
	1,N-PHENYL-3-ARYL-5-[1',N-PHENYL-3'-p-ANISYL-
	PYRAZOL-4'-YL]-PYRAZOLINES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

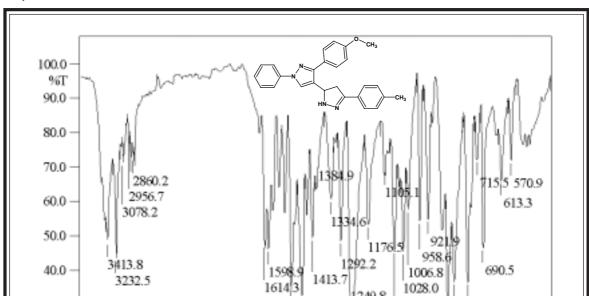
Pyrazoline derivatives are endowed with valid antimicrobial activities. Looking at their versatile therapeutic importance and with an aim to getting better drug, it was considered worthwhile to synthesise some new pyrazolines. The preparation of 3-Aryl-5-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl) pyrazolines (III) has been undertaken by cyclocondensation of chalcones of type (II) with hydrazine hydrate.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. when R=p-chlorophenyl, molecular weight= 429, m/z= 430 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES


- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine See Part - I, Section - I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazoleSee Part I, Section I(B).
- (C) Synthesis of 1-(ρ-Tolyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2propene-1-one See Part - I, Section - I(C).
- (D) Synthesis of 3-(ρ-Tolyl)-5-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)pyrazoline

A mixture of 1-(ρ -tolyl)-3-(1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (3.94 g, 0.01 M) in 25 ml of absolute alcohol, add hydrazine hydrate (0.5 g, 0.01 M) was refluxed for 8 hrs. The reaction mixture was poured into ice. The product was isolated and crystallised from ethanol. Yield 62%, m.p. 181°C; (Anal. Found : C, 69.94 H, 4.87; N, 13.68%; C₂₆H₂₄N₄O Requires: C, 70.01; H, 4.93; N, 13.72%).

Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Table No. 3

(E) Antimicrobial activity of 3-Aryl-5-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl]-pyrazolines

Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 3

IR SPECTRAL STUDY OF 3-(p-TOLYL)-5-(1',N-PHENYL-3'-p-ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm ⁻¹ (KBr o	disc)
--	-------

1500.0

1458.1

1502.4

30.0 -

20.0 -

3250.0

2000.0

1750.0

1249.8

1250.0

1066.6

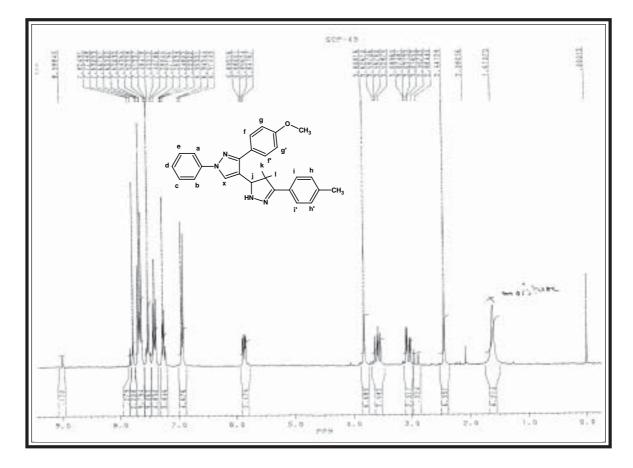
1000.0

756.0

500.0

4

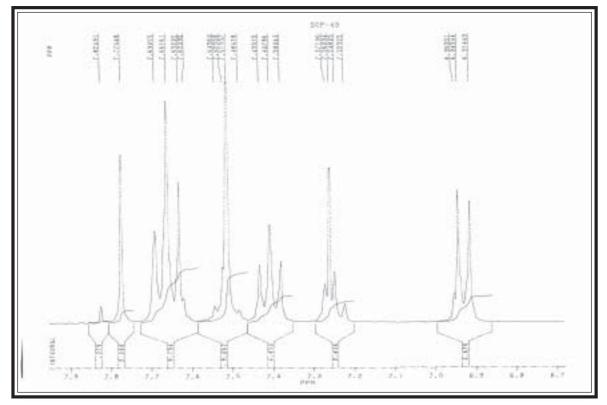
1/cm

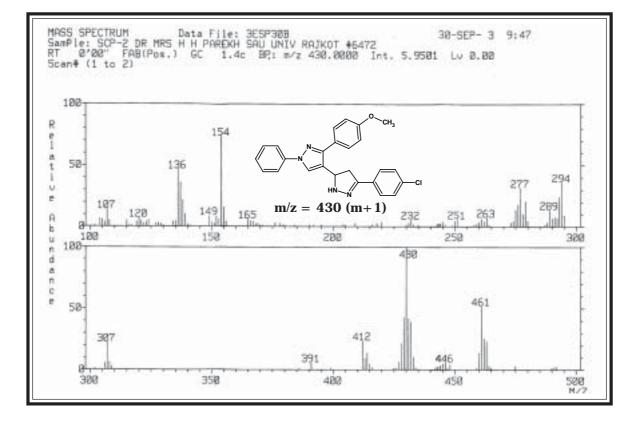

812.0

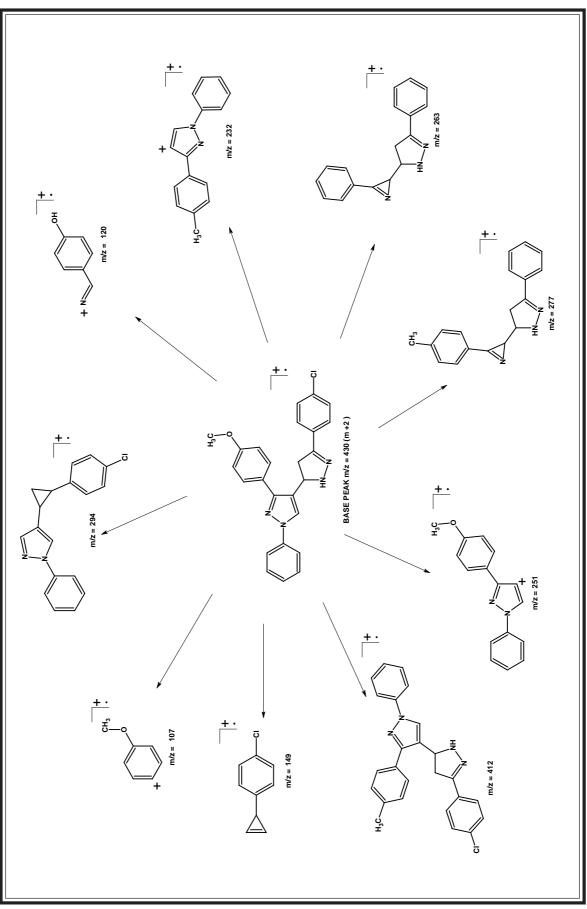
839.0

750.0

Tuno	Vibration	Freque	Frequency in cm ⁻¹		
Туре	mode			Ref.	
Alkane	C-H str.(asym.)	2956.7	2975-2950	434	
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"	
5	C-H def. (asym.)	1458.1	1470-1435	"	
	C-H def. (sym.)	1384.9	1385-1350	"	
Aromatic	C-H str.	3078.2	3080-3030	435	
	C-H i.p. def.	1105.1	1125-1090	"	
		1066.6	1070-1000	"	
	C-H o.o.p. def.	812.0	835-810	"	
Pyrazole	C = N str.	1598.9	1650-1600	434	
moiety	C = C str.	1502.4	1585-1480	"	
	C-N str.	1292.2	1350-1200	"	
Ether	C-O-C (asym.)	1249.8	1275-1200	"	
	C-O-C (sym.)	1028.0	1075-1020	"	
Pyrazoline	C = N str.	1614.3	1627-1580	437	
-	C-H def.	690.5	698-690	"	
	N-H str.	3413.8	3450-3250	434	
	N-H def.	1598.0	1650-1580	"	
		(overlapped)			

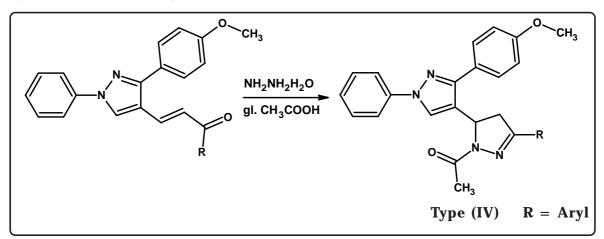

PMR SPECTRAL STUDY OF 3-(ρ -TOLYL)-5-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE




Internal Standard : TMS; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (8 ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	2.44		3H	singlet	Ar-CH ₃
2	3.04	Jlk=17.4, Jlj=4.4	1H	d. doublet	CHI
3	3.57	Jkl=17.4, Jkj=11.6	1H	d. doublet	CHk
4	3.80		3H	singlet	Ar-OCH ₃
5	5.86	Jjk=11.6, Jjl=4.4	1H	d. doublet	СНј
6	6.92	Jgf = 8.7	2H	doublet	Ar-Hgg'
7	7.26		1H	triplet	Ar-Hd
8	7.40		2H	triplet	Ar-Hc, Ar-He
9	7.48-7.54		4H	multiplet	Ar-Hhh'
					Ar-Ha, Ar-Hb
10	7.64	Jih=8.7	2H	doublet	Ar-Hii'
11	7.67	Jfg=8.7	2H	doublet	Ar-Hff'
12	7.77		1H	singlet	CHx

Comp. No.	R	Molecular Formula	Molecular Weight	M.P. °C	Rf [*] Value	Yield %	% of N Calcd.	litrogen Found
1	2	3	4	5	6	7	8	9
3a	С ₆ Н ₅ -	$C_{25}H_{22}N_{4}O$	394	131	0.52	58	14.20	14.15
3b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{25}H_{23}N_{5}O$	409	159	0.42	61	17.10	17.06
3c	$3-NH_2-C_6H_4-$	$C_{25}H_{23}N_{5}O$	409	170	0.37	65	17.10	17.04
3d	$4\text{-Br-C}_6\text{H}_4$ -	$C_{25}H_{21}N_4OBr$	473	144	0.43	64	11.84	11.78
3e	4 -Cl-C $_{6}$ H $_{4}$ -	$\mathrm{C_{25}H_{21}N_4OCl}$	429	155	0.50	66	13.06	13.01
3f	$4 - F - C_6 H_4$	$C_{25}H_{21}N_4OF$	412	141	0.61	62	13.58	13.54
3g	4-OCH ₃ -C ₆ H ₄ -	$C_{26}H_{24}N_4O_2$	424	164	0.74	60	13.20	13.17
3h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$\mathrm{C_{26}H_{24}N_4O}$	408	181	0.66	62	13.72	13.68
3i	$4-NO_2-C_6H_4-$	$C_{25}H_{21}N_5O_3$	439	149	0.48	70	15.94	15.90
3j	$3-NO_2-C_6H_4-$	$C_{25}H_{21}N_5O_3$	439	160	0.34	72	15.94	15.89
3k	4-OH-C ₆ H ₄ -	$C_{25}H_{22}N_4O_2$	410	178	0.39	64	13.65	13.62
31	2-OH-C ₆ H ₄ -	$C_{25}H_{22}N_4O_2$	410	165	0.51	68	13.65	13.59


TABLE NO. 3 :PHYSICAL CONSTANTS OF 3-ARYL-5-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-
PYRAZOLINES

*TLC Solvent System : Ethylacetate : Hexane (2 : 8)

SECTION - II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

Looking to the interesting properties of pyrazolines, it was considered worthwhile to synthesise a series of pyrazolines of type (IV) for obtaining biologically potent agents which were prepared by reacting chalcones with hydrazine hydrate in glacial acetic acid.

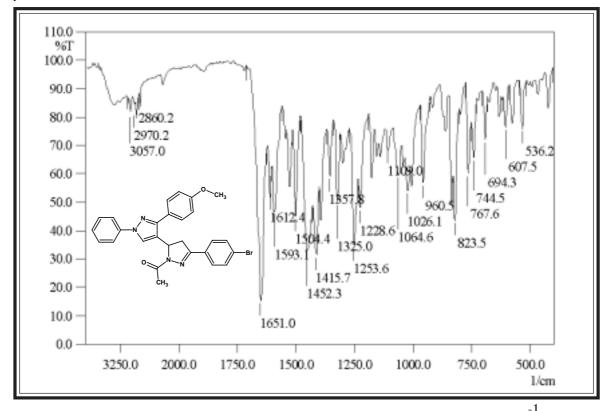
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. wehen R=p-bromophenyl, molecular weight= 516, m/z= 517(m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

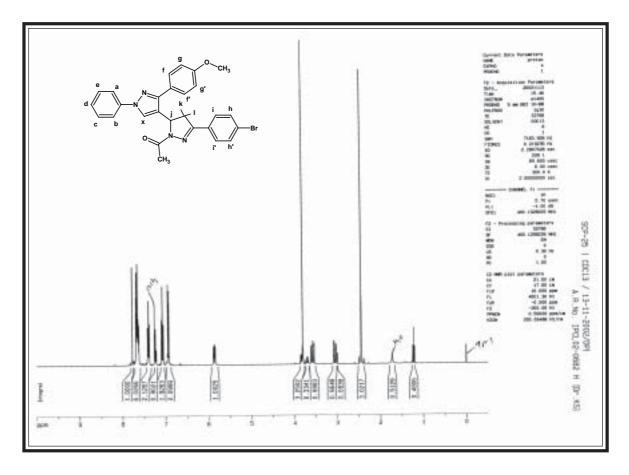
- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine
 See Part I, Section I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazoleSee Part I, Section I(B).
- (C) Synthesis of 1-(ρ-Bromophenyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2-propene-1-one
 See Part - I, Section - I(C).
- (D) Synthesis of 1,N-Acetyl-3-(ρ-bromophenyl)-5-(1'-N-phenyl-3'-ρanisyl-pyrazol-4'-yl)-pyrazoline


To a mixture of 1-(ρ -bromophenyl)-3-(1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (4.59 g, 0.01 M) in 25 ml of absolute alcohol, add hydrazine hydrate (0.5 g, 0.01 M) and glacial acetic acid 10 ml added, the contents were refluxed for 10 hrs., and poured into ice. The product was isolated and crystallised from ethanol. Yield 70%, m.p. 180°C; (Anal. Found : C, 62.88 H, 4.45; N, 10.83%; C₂₇H₂₃N₄O₂Br Requires: C, 62.92; H, 4.50; N, 10.81%).

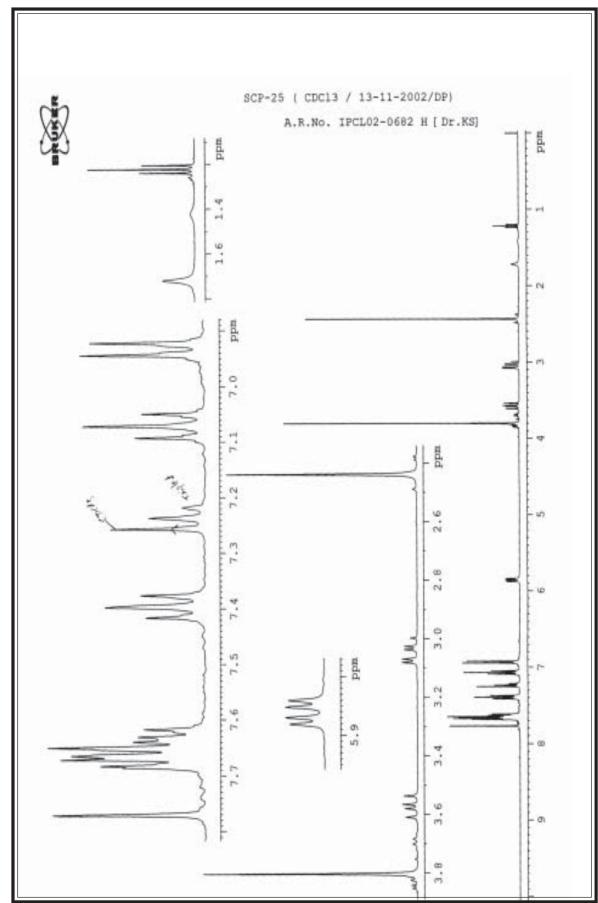
Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Table No. 4

(E) Antimicrobial activity of 1,N-Acetyl-3-aryl-5-[1',N-phenyl-3'-ρanisyl-pyrazol-4'-yl]-pyrazolines

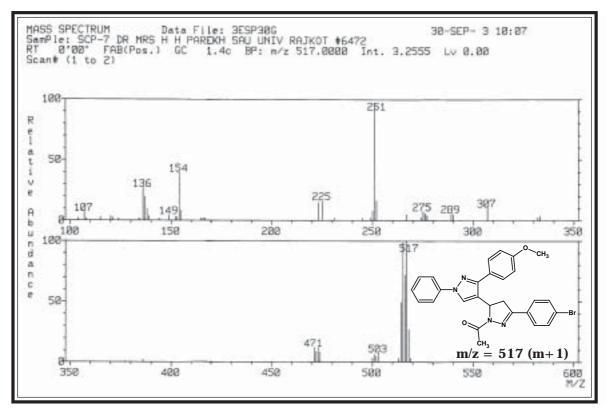
Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 4


IR SPECTRAL STUDY OF 1,N-ACETYL-3-(ρ -BROMOPHENYL)-5-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE

Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm ⁻¹ (H	KBr disc)
--	-----------


Tuno	Vibration	Freque	Ref.		
Туре	mode	Observed	Reported	Kei.	
Alkane	C-H str. (asym.)	2970.1	2975-2950	434	
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"	
5	C-H def. (asym.)	1452.3	1470-1435	"	
	C-H def. (sym.)	1357.8	1385-1350	"	
Aromatic	C-H str.	3057.0	3080-3030	435	
	C-H i.p. def.	1108.9	1125-1090	"	
	-	1064.6	1070-1000	"	
	C-H o.o.p. def.	823.5	835-810	"	
Pyrazole	C = N str.	1612.4	1650-1600	434	
moiety	C = C str.	1504.4	1585-1480	"	
	C-N str.	1253.6	1350-1200	"	
	C-Br str.	536.2	600-550	"	
Ether	C-O-C (asym.)	1228.6	1275-1200	"	
	C-O-C (sym.)	1026.1	1075-1020	"	
Pyrazoline	C = N str.	1593.7	1627-1580	437	
	C-H def.	694.5	698-690	"	
	C=0	1651.0	1760-1655	434	

PMR SPECTRAL STUDY OF 1,N-ACETYL-3-(ρ -BROMOPHENYL)-5-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE



Internal Standard : TMS; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (300 MHz)

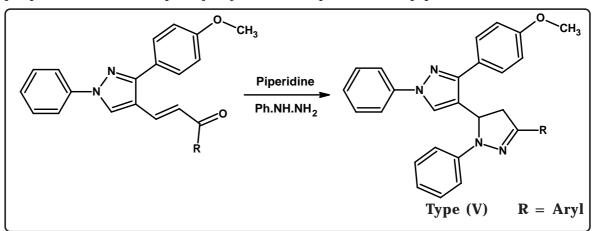
Signal No.	Signal Position (8 ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	2.43		3H	singlet	-COCH ₃
2	3.05	Jlk=13.0, Jlj=3.4	1H	d. doublet	CHI
3	3.55	Jkl=13.0, Jkj=8.7	1H	d. doublet	CHk
4	3.80		3H	singlet	Ar-OCH ₃
5	5.85	Jjk=8.7, Jjl=3.4	1H	d. doublet	СНј
6	6.93	Jgf= 6.6	2H	doublet	Ar-Hgg'
7	7.07		2H	triplet	Ar-Hc, Ar-He
8	7.25		1H	triplet	Ar-Hd
9	7.41		2H	triplet	Ar-Ha, Ar-Hb
10	7.61-7.68		6H	multiplet	Ar-Hhh'
					Ar-Hii'
					Ar-Hff'
11	7.77		1H	singlet	СНх

IR SPECTRAL DATA OF 1,N-ACETYL-3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

Instrument : SHIMADZU-FT-IR-8400 Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc)

Sr. No.	R	C=O str. Acetylpyrazolines
4a	С ₆ Н ₅ -	1660
4b	4-NH ₂ -C ₆ H ₄ -	1654
4c	3-NH ₂ -C ₆ H ₄ -	1662
4d	$4\text{-Br-C}_{6}H_{4}$ -	1651
4e	$4-\text{Cl-C}_6\text{H}_4$ -	1658.7
4g	4-F-C ₆ H ₄ -	1666
4h	4-OCH ₃ -C ₆ H ₄ -	1650
4i	4-CH ₃ -C ₆ H ₄ -	1656.8
4j	4-NO ₂ -C ₆ H ₄ -	1654
4m	3-NO ₂ -C ₆ H ₄ -	1660
4n	4-OH-C ₆ H ₄ -	1655
40	2-OH-C ₆ H ₄ -	1654

Comp. No.	R	Molecular Formula	Molecular Weight	М.Р. °С	Rf [*] Value	Yield %	% of N Calcd.	itrogen Found
1	2	3	4	5	6	7	8	9
4a	С ₆ Н ₅ -	$\mathrm{C}_{27}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{2}$	436.5	220	0.48	73	12.84	12.79
4b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{27}H_{25}N_5O_2$	451.5	212	0.55	60	15.51	15.47
4 c	$3-NH_2-C_6H_4-$	$C_{27}H_{25}N_5O_2$	451.5	185	0.39	65	15.51	15.49
4d	$4\text{-Br-C}_6\text{H}_4$ -	$\mathrm{C_{27}H_{23}N_4O_2Br}$	516	180	0.46	70	10.87	10.81
4e	$4-Cl-C_6H_4$ -	$\mathrm{C_{27}H_{23}N_4O_2Cl}$	471	155	0.74	71	11.90	11.86
4f	$4\text{-F-C}_6\text{H}_4$ -	$\mathrm{C}_{27}\mathrm{H}_{23}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{F}$	454	178	0.51	66	12.33	12.28
4g	$4\text{-OCH}_3\text{-C}_6\text{H}_4\text{-}$	$C_{28}H_{26}N_4O_3$	466.5	175	0.61	71	12.01	11.96
4h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$C_{28}H_{26}N_4O_2$	450.5	202	0.66	64	12.44	12.40
4 i	$4-NO_2-C_6H_4-$	$C_{27}H_{23}N_5O_4$	481.5	181	0.47	75	14.54	14.49
4j	$3-NO_2-C_6H_4-$	$C_{27}H_{23}N_5O_4$	481.5	190	0.78	62	14.54	14.51
4k	4-OH-C ₆ H ₄ -	$\mathrm{C}_{27}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{3}$	452.5	179	0.42	68	12.38	12.35
41	2-OH-C ₆ H ₄ -	${\rm C}_{27}{\rm H}_{24}{\rm N}_{4}{\rm O}_{3}$	452.5	168	0.58	64	12.38	12.32


TABLE NO. 4 :PHYSICAL CONSTANTS OF 1,N-ACETYL-3-ARYL-5-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-
4'-YL)-PYRAZOLINES

*TLC Solvent System : Ethylacetate : Hexane (2 : 8)

SECTION - III

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-PHENYL-3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

Looking to the interesting therapeutic activities of pyrazolines, it was considered worthwhile to synthesise compounds bearing 1,N-phenyl-3- ρ -anisyl-4-formyl pyrazole moiety linked to the pyrazoline of type (V) which have been prepared by the action of 1-aryl-3-(1',N-phenyl-3- ρ -anisyl-pyazol-4'-yl)-2propene-1-ones with phenyl hydrazine in presence of piperidine.

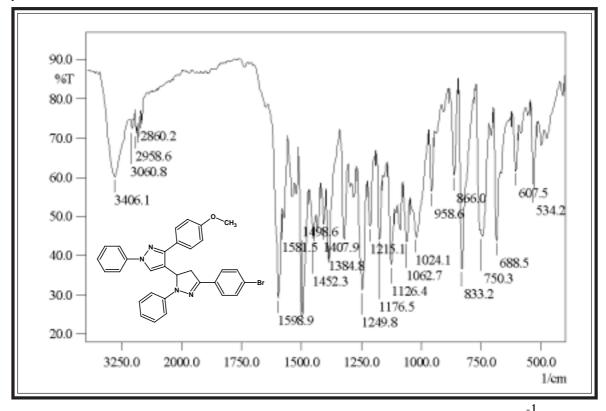
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. wehen R=p-bromophenyl, molecular weight= 549, m/z= 550 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,N-PHENYL-3-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-PYRAZOLINES

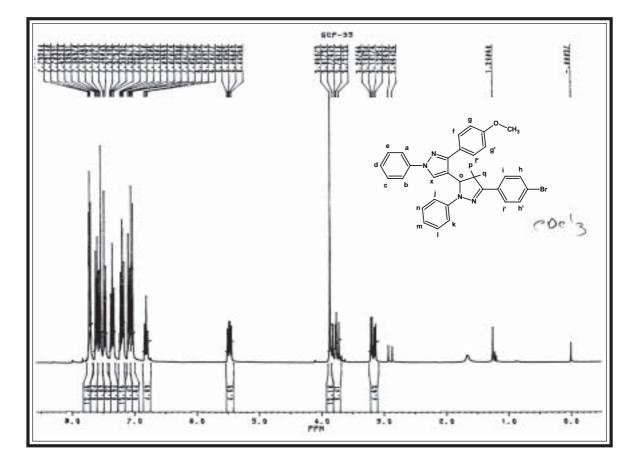
- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine See Part - I, Section - I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazoleSee Part I, Section I(B).
- (C) Synthesis of 1-(ρ-Bromophenyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2-propene-1-one
 See Part - I, Section - I(C).
- (D) Synthesis of 1,N-Phenyl-3-(ρ-bromophenyl)-5-(1'-N-phenyl-3'-ρanisyl-pyrazol-4'-yl)-pyrazoline


To a mixture of 1-(ρ -bromophenyl)-3-(1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (4.59 g, 0.01 M) in 25 ml of absolute alcohol, add phenyl hydrazine (1.08 g, 0.01 M) was added in presence of basic catalyst like piperidine and refluxed for 12 hrs. The reaction product was poured into ice. The product was isolated and crystallised from ethanol. Yield 68%, m.p. 160°C. (Anal. Found : C, 67.71 H, 4.53; N, 10.16%; C₃₁H₂₅N₄OBr Requires: C, 67.76; H, 4.59; N, 10.20%).

Similarly other substituted pyrazolines have been prepared. The physical data are recorded in Table No.5

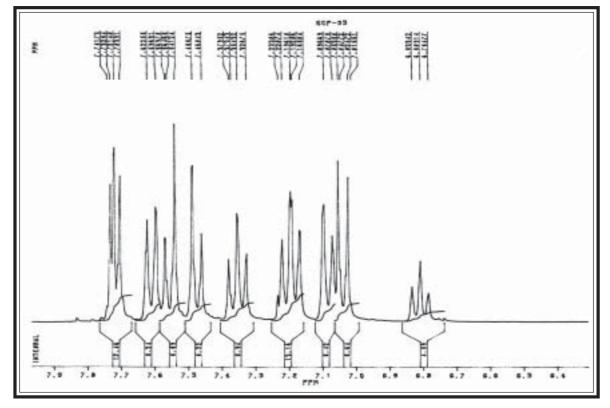
(E) Antimicrobial activity of 1,N-Phenyl-3-Aryl-5-[1',N-phenyl-3'-ρanisyl-pyrazol-4'-yl]-pyrazolines

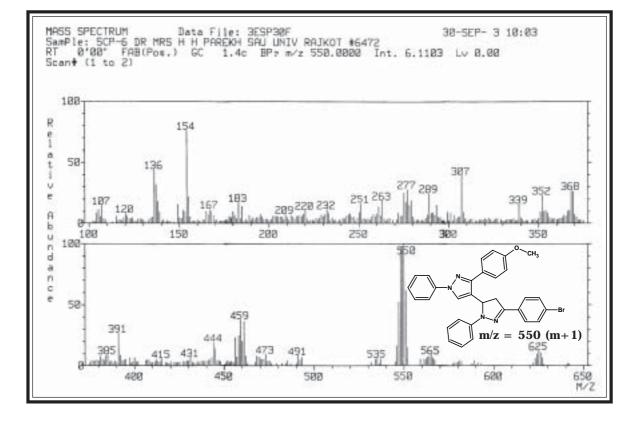
Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No.5


IR SPECTRAL STUDY OF 1, N-PHENYL-3-(ρ -BROMOPHENYL)-5-(1', N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE

Instrument : SHIMADZU-FT-IR 8400	-Spectrophotometer; Frequency	range : $4000-400 \text{ cm}^{-1}$ (KBr disc)
----------------------------------	-------------------------------	---

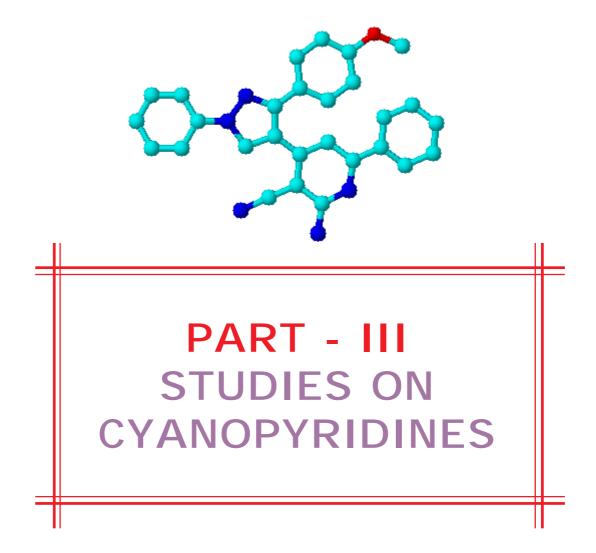
Tuno	Vibration	Frequer	Ref.	
Туре	mode	Observed	Reported	Kel.
Alkane	C-H str. (asym.)	2958.6	2975-2950	434
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"
5	C-H def. (asym.)	1452.3	1470-1435	"
	C-H def. (sym.)	1384.8	1385-1350	"
Aromatic	C-H str.	3060.8	3080-3030	435
	C-H i.p. def.	1126.4	1125-1090	"
		1062.7	1070-1000	"
	C-H o.o.p. def.	833.2	835-810	"
Pyrazole	C = N str.	1598.9	1650-1600	434
moiety	C = C str.	1498.6	1585-1480	"
	C-N str.	1249.8	1350-1200	"
	C-Br	534	600-500	"
Ether	C-O-C (asym.)	1216.1	1275-1200	"
	C-O-C (sym.)	1024.1	1075-1020	"
Pyrazoline	C = N str.	1581.5	1627-1580	437
	C-H def.	688.5	698-690	"


PMR SPECTRAL STUDY OF 1,N-PHENYL-3-(ρ-BROMOPHENYL)-5-(1',N-PHENYL-3'ρ-ANISYL-PYRAZOL-4'-YL)-PYRAZOLINE

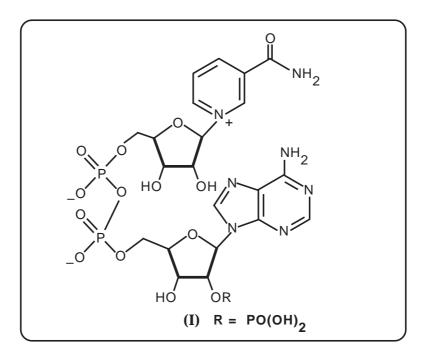


Internal Standard : TMS; Solvent : $CDCl_3$; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (ð ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.16	Jqp=16.8, Jqo=6.7	1H	d. doublet	СНq
2	3.75	Jpq=16.8, Jpo=12.0	1H	d. doublet	СНр
3	3.86		3H	singlet	Ar-OCH ₃
4	5.47	Jop=12.0, Joq=6.7	1H	d. doublet	СНо
5	6.80		1H	triplet	Ar-Hm
6	7.03	Jgf = 8.4	2H	doublet	Ar-Hgg'
7	7.08	Jhi=8.4	2H	doublet	Ar-Hhh'
8	7.16-7.23		3H	multiplet	Ar-Hj Ar-Hk, Ar-Hd
9	7.35		2H	triplet	Ar-Hc, Ar-He
10	7.47	Jfg = 8.4	2H	doublet	Ar-Hff'
11	7.55	Jih=8.4	2H	doublet	Ar-Hii'
12	7.60		2H	doublet	Ar-Hl, Ar-Hn
13	7.70-7.74		3H	multiplet	Ar-Ha, Ar-Hb, CHx



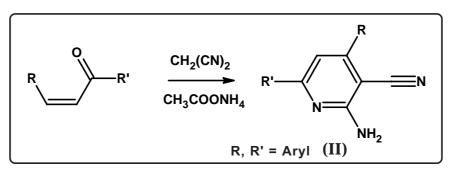
Comp.	R	Molecular	Molecular	M.P.	Rf*	Yield		litrogen
No. 1	2	Formula 3	Weight 4	о _С 5	Value 6	% 7	Calcd. 8	Found 9
5a	с ₆ н ₅ -	$C_{31}H_{26}N_4O$	470.5	154	0.61	62	11.91	11.88
5b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{31}H_{27}N_{5}O$	485	145	0.52	66	14.42	14.37
5c	$3-NH_2-C_6H_4-$	$C_{31}H_{27}N_{5}O$	485	133	0.48	62	14.42	14.36
5d	$4\text{-Br-C}_6\text{H}_4$ -	$C_{31}H_{25}N_4OBr$	549	160	0.55	68	10.20	10.15
5e	$4-Cl-C_6H_4$ -	$\mathrm{C}_{31}\mathrm{H}_{25}\mathrm{N}_{4}\mathrm{OCl}$	505	148	0.42	70	11.09	11.03
5f	$4\text{-F-C}_6\text{H}_4$ -	$C_{31}H_{25}N_4OF$	488	155	0.49	65	11.47	11.42
5g	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$C_{32}H_{28}N_4O_2$	500	164	0.65	64	11.19	11.16
5h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$\mathrm{C}_{32}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}$	484	158	0.74	65	11.56	11.51
5i	$4-NO_2-C_6H_4-$	$C_{31}H_{25}N_5O_3$	515	175	0.69	70	13.58	13.52
5j	3-NO ₂ -C ₆ H ₄ -	$C_{31}H_{25}N_5O_3$	515	184	0.45	61	13.58	13.54
5k	4-OH-C ₆ H ₄ -	$C_{31}H_{26}N_4O_2$	486	150	0.44	71	11.51	11.47
51	2-OH-C ₆ H ₄ -	$C_{31}H_{26}N_4O_2$	486	170	0.54	60	11.51	11.49


TABLE NO. 5 :PHYSICAL CONSTANTS OF 1,N-PHENYL-3-ARYL-5-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-
4'-YL)-PYRAZOLINES

*TLC Solvent System : Ethylacetate : Hexane (2 : 8)

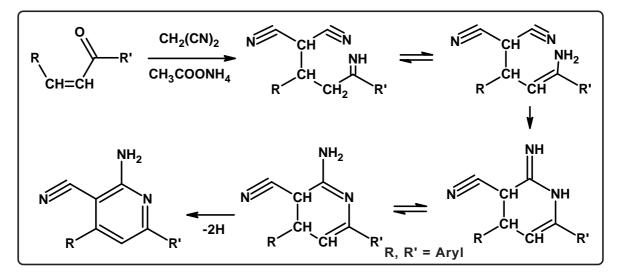
INTRODUCTION

 $P_{\rm yridine,}$ which belongs to an important group of heterocyclic compounds has been extensively explored for its applications in the field of medicine, agriculture and industrial chemistry. Pyridine 3-carboxamide occurs as a component of the structure of the important coenzymes NADP + (I). One of the B₂ complex of vitamins, occurs in red blood carpuscles and participates in biochemical redox reaction.



The availability of 3-cyanopyridine, nicotinamide and nicotinic acid make possible their use as synthetic intermediates.

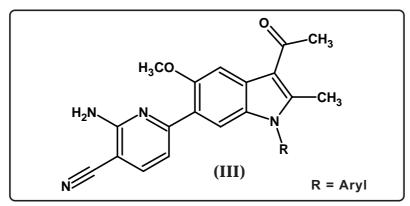
SYNTHETIC ASPECT :


Different methods for preparation of 3-cyanopyridines are available in literature $^{146-152}$. The well known method is

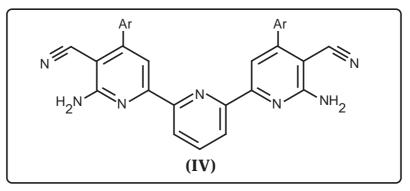
1. Sakurai and Midorikwa^{153,154} have reported that malononitrile reacts with α , β -unsaturated ketones to give 2-amino-3-cyano-4,6-disubstituted pyridines (II).

MECHANISM

The reaction proceeds through conjugated addition of active methylene compounds to the α , β -unsaturated system as shown below.

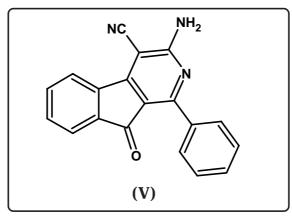


THERAPEUTIC IMPORTANCE

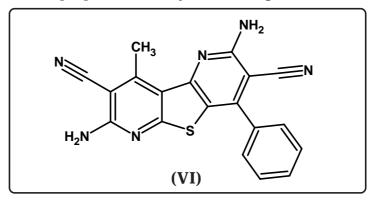

Cyanopyridines have attracted considerable attention as they appeared of interest to possess antibacterial, anticholestermic, antifungal, antihypertensive and antidiabetic activities. Kurt et. al.¹⁵⁵ have studied the analgesic activity of substituted 3-cyanopyridines. Hironori et al.¹⁵⁶ have prepared cyanopyridines and screened for their large conductance calcium acetivated potassium channel opener activity.

N. Latif and co-workers¹⁵⁷ have reported the antibacterial and antifungal activity of 2-amino-3-cyano-4,6-disubstituted pyridines. U. Teu and co-workers¹⁵⁸ have shown cyanopyridine as agrochemical fungicidies. M. Bernard and co-workers¹⁵⁹ reported the anticonvulsant properties of 3-cyanopyridines. Bhatt et. al.¹⁶⁰ have prepared 3-cyanopyridines as an immunosuppressive agent.

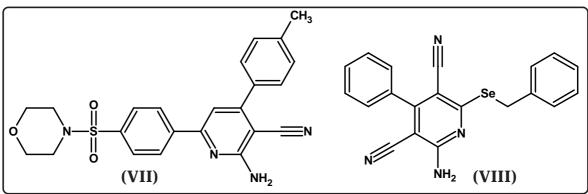
H. Yoshida et. al.¹⁶¹ have studied the antihistamic and antiallergic activity of 3-cyanopyridine derivatives. Gadaginamath and co-workers¹⁶² have synthesised various cyanopyridyl derivatives (III) and documented their variety of biological activities.



Manna Fedele and co-workers¹⁶³ have reported the antiinflammatory activity of 3-cyanopyridines. Abd El-Galil and co-workers¹⁶⁴ have prepared 3-cyanopyridines (IV) and studied their pharmacological activity.

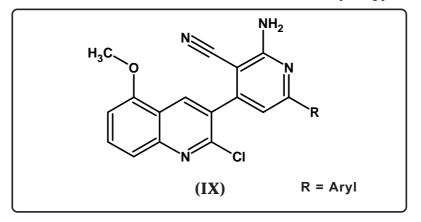


Hammana Abou and co-workers¹⁶⁵ have studied the anticancer and antiHIV activity of 3-cyanopyridines. Abdallah Navine et. al.¹⁶⁶ have prepared cyanopyridine derivatives which showed analgesic and antiinflammatory activity.


S. V. Roman et. al.¹⁶⁷ have investigated 2-amino-3-cyanopyridine derivatives and reported their biological activity. El-Taweel and co-workers¹⁶⁸ have described cyanopyridine derivatives (V) and showed their significant biological activity.

Abu and co-workers¹⁶⁹ have determined novel fused cyanopyridines (VI) for the treatment and preparation of systemic fungal infection.

Hussan M. and co-workers¹⁷⁰ have prepared 3-cyanopyridines (VII) and reported their pharmacological activity. Pyachenko U. D. and co-workers¹⁷¹ have shown some cyanopyridines (VIII) which are useful in treatment of retroviral disease.


Streightoff¹⁷² and seydal¹⁷³ have studied the bacteriostatic effect of some substituted 3-cyanopyridines. Francis and co-workers¹⁷⁴ have studied the effect of some substituted pyridines on the growth of the walker carcinosarcome-256 in tissue culture. Barton et al.¹⁷⁵ have reported fungicidal and insecticidal properties. W. Hoefling and co-workers¹⁷⁶ have documented 3-and 4-cyanopyridineds as tuberculosis arresting agents.

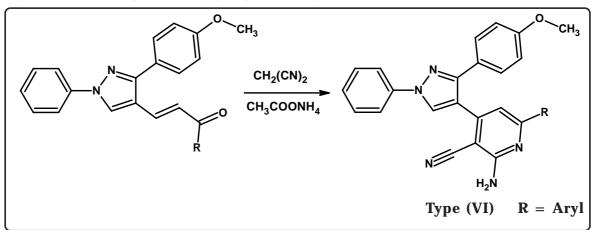
K. Kadlec and Hanslian¹⁷⁷ showed that 2-methyl-3-nitro-4-methoxyethyl-5-cyano-6-chloro pyridines caused occupational eczema in vitamin B₆ factory workers. Rigterink and Raymond¹⁷⁸ have suggested the pesticidal activity of 3cyanopyridines. N-substituted 2-aminopyridines which possess anticonvulsant property have prepared by M. R. Pavia and co-workers.¹⁷⁹ 3-cyanopyridines reported by L. Castedo et al.¹⁸⁰ showed a minimum inhibitory concentration of 1.56 µg/ml against S. aureus. W. Von Benbenburg and co-workers¹⁸¹ have synthesised 2-amino-3,6-disubstituted pyridines as antiepileptic agents.

CONTRIBUTION FROM OUR LABORATORY

Akhil Bhatt and co-workers¹⁸² have synthesised cyanopyridines as potential antimicrobial agents. R. C. Khunt et al.¹⁸³ have screened cyanopyridine derivatives used as biologically active agents. Synthesis and antimicrobial activity of cyanopyridines showed by B. P. kansagara et al.¹⁸⁴ J. R. Patel and co-workers¹⁸⁵ have prepared cyanopyridines bearing 2-chloro-6bromoquinoline nucleus as potential anticancer agents.

Synthesis and biological evaluation of cyanopyridines suggestd by Pankaj Patel and co-workers¹⁸⁶. Rajeev Doshi and co-workers¹⁸⁷ have described some novel cyanopyridines as a new class of potential antitubercular agents. Cyanopyridines have screened by A. V. Dobariya et al.¹⁸⁸ and showed their significant biological activity. B. P. Kansagara and co-workers¹⁸⁹ have reported cyanopyridines having a quinoline nucleus and compounds found to be an antimicrobial (IX).

Adriano Afouso et al.¹⁹⁰ have suggested that cyanopyridines are Fernesyl Protein transferase inhibitors. Hussain and co-workers¹⁹⁰ have prepared cyanopyridines as a antimicrobial agents. Wu Wenxue et al.¹⁹² have reported cyanopyridines as histamine H_3 antagonists. Saudi Manal N. S. et al.¹⁹³ have found that cyanopyridines have fasciolicidal property.


Thus, diverse biological activities have been encountered in compounds containing cyanopyridine ring system. To further assess the potential of such type of compounds, study of cyanopyridines have been carried out as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-p-ANISYL-PYRAZOL-4'-YL]-6-ARYL-PYRIDINES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-PYRIDINES

In the past years, considerable evidence has been accumulated to demonstrate the efficiency of cyanopyridines. To further assess the potential of such a class of compounds cyanopyridine derivatives of type (VI) have been synthesised by condensation of malanonitrile and ammonium acetate with 1-aryl-3-[1',N-Phenyl-3'- ρ -anisyl-pyrazol-4'-yl]-2-propene-1-ones.

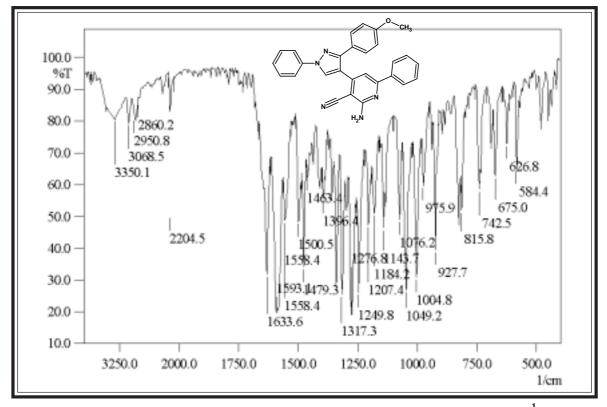
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. wehen $R = \rho$ -hydroxyphenyl, molecular weight= 459, m/z= 460 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-PYRIDINES

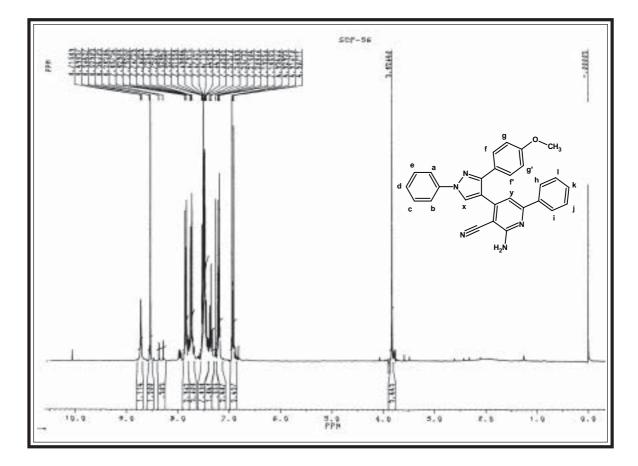
- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine
 See Part I, Section I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazole See Part - I, Section - I(B).
- (C) Synthesis of 1-Phenyl-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2propene-1-one See Part - I, Section - I(C).
- (D) Synthesis of 2-Amino-3-cyano-4-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'yl]-6-phenyl-pyridine


A mixture of 1-Phenyl-3-(1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (3.80 g, 0.01 M), malanonitrile (0.66 g, 0.01 M) and ammonium acetate (6.61 g, 0.08 M) dissolved in absolute alcohol was refluxed for 10 hrs. The reaction product was poured into ice, crude product was isolated, crystallised from ethanol. Yield 65%, m.p. 178°C. (Anal. Found : C, 75.78 H, 4.70; N, 15.73%; C₂₈H₂₁N₅O Requires: C, 75.83; H, 4.77; N, 15.79%).

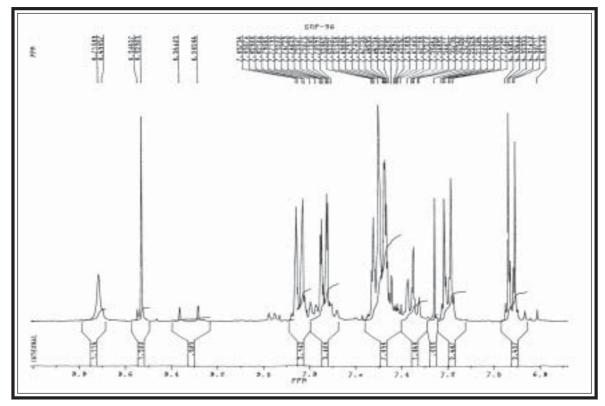
Similarly other cyanopyridines have been obtained. The physical data are recorded in Table No. 6

(E) Antimicrobial activity of 2-Amino-3-cyano-4-[1',N-phenyl-3'-ρanisyl-pyrazol-4'-yl]-6-aryl-pyridines

Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 6

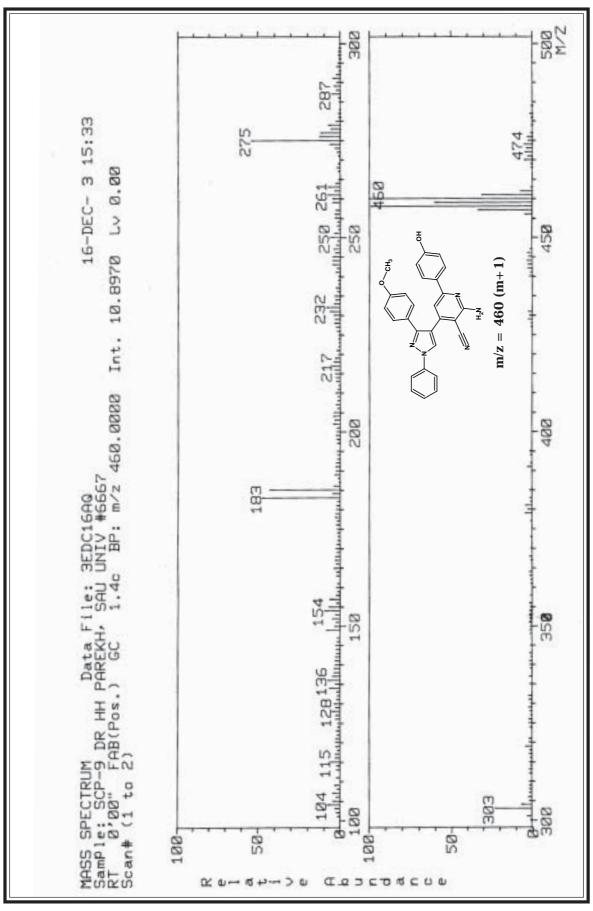

IR SPECTRAL STUDY OF 2-AMINO-3-CYANO-4-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-6-PHENYL PYRIDINE

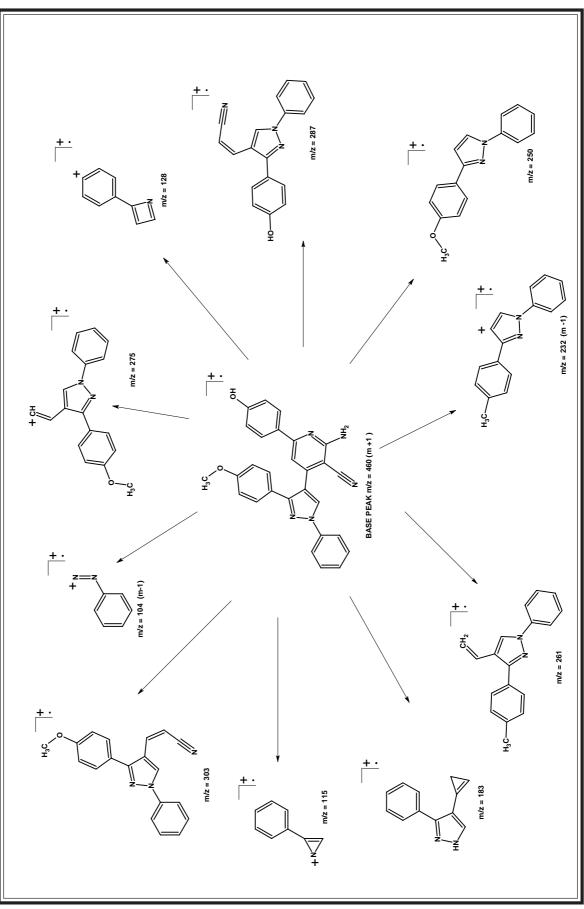
Tuno	Vibration	Freque	ncy in cm ⁻¹	Ref.	
Туре	mode	Observed	Reported	Kel.	
Alkane	C-H str. (asym.)	2950.8	2975-2950	434	
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"	
	C-H def. (asym.)	1463.9	1470-1435	"	
	C-H def. (sym.)	1342.4	1385-1350	"	
Aromatic	C-H str.	3068.5	3080-3030	435	
	C-H i.p. def.	1004.8	1070-1000	"	
	C-H o.o.p. def.	815.8	835-810	"	
Pyrazole	C = N str.	1593.1	1650-1600	434	
moiety	C = C str.	1558.4	1585-1480	"	
	C-N str.	1317.3	1350-1200	"	
Ether	C-O-C (asym.)	1276.8	1275-1200	"	
	C-O-C (sym.)	1049.2	1075-1020	"	
Pyridine ring	$C \equiv N$ str.	2204.5	2240-2120	"	
	C = N str.	1633.6	1680-1600	"	
	C = C str.	1076.2	1075-1020	"	
	N-H str. (-NH ₂)	3350.1	3350-3250	"	


Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc)

PMR SPECTRAL STUDY OF 2-AMINO-3-CYANO-4-(1',N-PHENYL-3'- ρ -ANISYL-PYRAZOL-4'-YL)-6-PHENYL PYRIDINE

Internal Standard : TMS; Solvent : $CDCl_3$; Instrument : BRUKER Spectrometer (300 MHz)


Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.82		3H	singlet	Ar-OCH ₃
2	6.93	Jgf = 9.0	2H	doublet	Ar-Hgg'
3	7.17	Jfg= 9.0	2H	doublet	Ar-Hff'
4	7.34		1H	triplet	Ar-Hd
5	7.44-7.52		6H	multiplet	Ar-Hj-l,Ar-Hc,
					Ar-He, CHy
6	7.73		2H	doublet	Ar-Hh, Ar-Hi
7	7.83		2H	doublet	Ar-Ha, Ar-Hb
8	8.52		1H	singlet	СНх



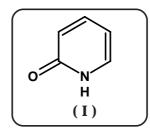
IR SPECTRAL DATA OF 2-AMINO-3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-PYRIDINES

 $Instrument: SHIMADZU-FT-IR-8400 \ Spectrophotometer; \ Frequency \ range: \ 4000-400 \ cm^{-1} \ (KBr \ disc)$

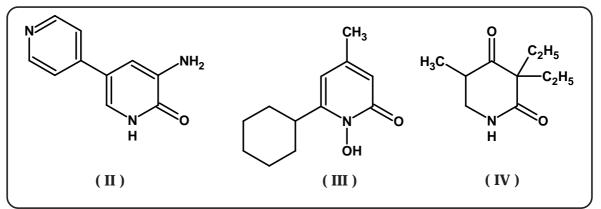
Sr. No.	R	C≡N str. Cyanopyridines
6a	C ₆ H ₅ -	2204.5
6b	$4 - NH_2 - C_6H_4$	2206
6c	3-NH ₂ -C ₆ H ₄ -	2212
6d	$4-Br-C_6H_4$ -	2202.6
6e	4-Cl-C ₆ H ₄ -	2200.4
6g	$4 - F - C_6 H_4$	2216
6h	4-OCH ₃ -C- ₆ H ₄ -	2204
6i	4-CH ₃ -C ₆ H ₄ -	2208
6j	$4 - NO_2 - C_6 H_4 -$	2206
6m	$3-NO_2-C_6H_4-$	2210
6n	4-OH-C ₆ H ₄ -	2202
60	2-OH-C ₆ H ₄ -	2212

Comp. No. 1	R 2	Molecular Formula 3	Molecular Weight 4	M.P. ^o C 5	Rf [*] Value 6	Yield % 7	% of N Calcd. 8	itrogen Found 9
6a	С ₆ Н ₅ -	C ₂₈ H ₂₁ N ₅ O	443	178	0.46	65	15.79	15.76
6b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{28}H_{22}N_{6}O$	458.5	184	0.54	62	18.33	18.28
6c	$3-NH_2-C_6H_4-$	$C_{28}H_{22}N_{6}O$	458.5	180	0.42	70	18.33	18.27
6d	$4\text{-Br-C}_6\text{H}_4$ -	$C_{28}H_{20}N_5OBr$	522	181	0.49	69	13.41	13.38
6e	4 -Cl-C $_{6}$ H $_{4}$ -	$\mathrm{C_{28}H_{20}N_5OCl}$	478	220	0.64	74	14.65	14.60
6f	$4\text{-F-C}_{6}H_{4}$ -	$C_{28}H_{20}N_5OF$	461	202	0.71	71	15.18	15.14
6g	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$C_{29}H_{23}N_5O_2$	473.5	173	0.54	71	14.79	14.73
6h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$C_{29}H_{23}N_5O$	457.5	188	0.59	68	15.31	15.29
6 i	$4\text{-NO}_2\text{-}C_6H_4\text{-}$	$C_{28}H_{20}N_6O_3$	488	190	0.45	75	17.20	17.17
6j	$3-NO_2-C_6H_4$ -	$C_{28}H_{20}N_6O_3$	488	185	0.76	64	17.20	17.15
6k	4-OH-C ₆ H ₄ -	$C_{28}H_{21}N_5O_2$	459	222	0.55	64	15.24	15.20
61	2-OH-C ₆ H ₄ -	$C_{28}H_{21}N_5O_2$	459	195	0.41	66	15.24	15.18

TABLE NO. 6 :PHYSICAL CONSTANTS OF 2-AMINO-3-CYANO-4-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-
4'-YL)-6-ARYL-PYRIDINES

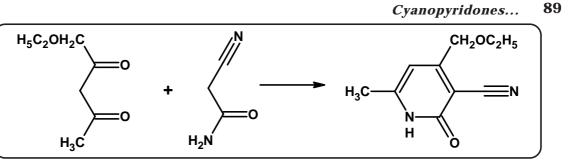

*TLC Solvent System : Ethylacetate : Hexane (2 : 8) (6a-6l)

(3:7) (6e, 6g)



INTRODUCTION

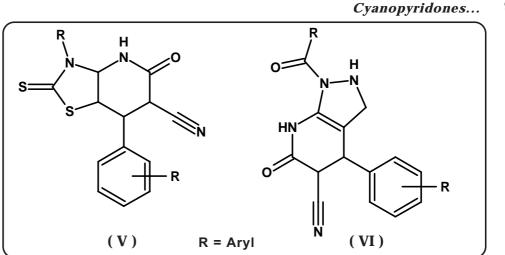
 $P_{\rm yridones}$, which belongs to an important group of heterocyclic compounds have been extensively explored for their applications in the field of medicine. Pyridones, with a carbonyl group at position 2 (I) have been subject of extensive study in recent past. Numerous reports have appeared in the literature which highlight their chemistry and use.


2-Pyridones are derivatives of pyrimidines with carbonyl group at 2-position (I). Some 2-pyridones are physiologically as well as pharmacologically important which are as under. eg. amrinone (II), ciclopirox (III) and methylprylon (IV).

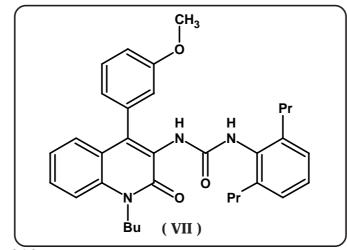
SYNTHETIC ASPECTS

Different methods for preparation of 2-pyridones are as follows :

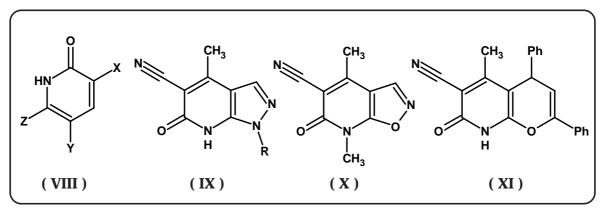
1. K. Folkers and S. A. Harris¹⁹⁴ have synthesised 3-cyano-2-pyridone by the condensation of cyanoacetamide with 1,3-diketone or 3-ketoester.


- 2. M. A. Sluyter and co-workers¹⁹⁵ have prepared fused 2-pyridones.
- 3. G. Simchen and G. Entemman¹⁹⁶ have synthesised 2-pyridone in which the ring nitrogen comes from a nitrile group in acyclic precursor.

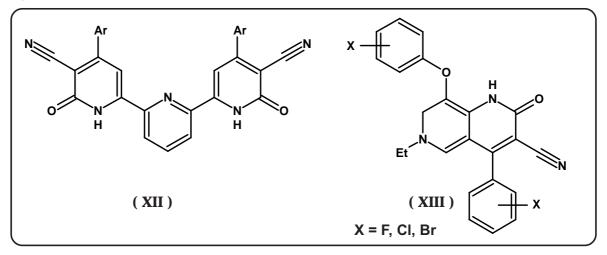
THERAPEUTIC IMPORTANCE


Pyridone derivatives have been found to possess variety of therapeutic activities as shown below.

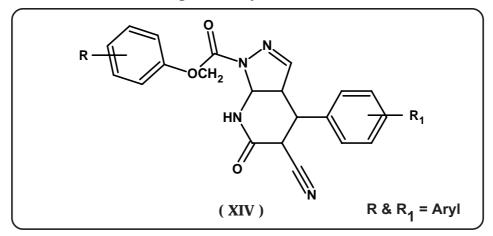
- 1. Anticancer¹⁹⁷
- 2. Herbicidal¹⁹⁸
- 3. Pesticidal^{199,200}
- 4. Antimicrobial²⁰¹
- 5. Angitensin II antagonist²⁰²⁻²⁰⁴
- 6. Antiviral²⁰⁵
- 7. AntiHIV²⁰⁶


Peter and co-workers²⁰⁷ have prepared pyridinylmethyl substituted pyridines and pyridones as angitensin II antagonist. H. Posnes²⁰⁸ synthesised 2-pyridones and 2-pyrones as physiologically active compounds. Mukhtar Hussain Khan and co-workers^{209,210} have prepared 2-pyridone derivatives (V) and (VI) which possess insecticidal and pesticidal activity.

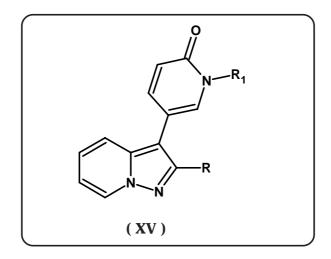
Morishita Koji et. al.²¹¹ have synthesised m-(2-oxo-1,2-dihydropyridyl) urea derivatives (VII) possessing cholesterol acyltransterase (ACAT) inhibitory activity and are useful for the treatment of hyperlipidemia and arteriosclerosis.



Collins et. al.²¹² prepared heteroaryl pyridones as GABA α_2/α_3 ligands (VIII). Pednekar²¹³ synthesised fused 2-pyridone derivatives (IX), (X) and (XI) as useful heterocyclic moieties as they possess broad spectrum of biological activities such as antiviral, CNS depressant, bactericidel and ulcer inhibitor.

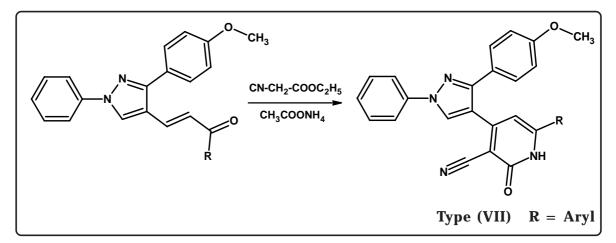


Moreover, several co-workers have prepared 2-pyridones as S_3 site of thrombin inhibitor²¹⁴, herbicidal²¹⁵, SH₂ domain inhibitor²¹⁶, antimicrobial²¹⁷, GABA-A receptor²¹⁸ and antiinflammatory²¹⁹.


Upadhyay and co-workers²²⁰ have synthesised cyanopyridone derivatives which showed antifungal and antileishmanial activities. E. Amer²²¹ prepared 3-cyano-2-pyridone derivatives (XII) displaying high antimicrobial activity. Abou El-Fotooh and co-workers²²² have demonstrated pyridones (XIII) as anticancer agent.

M. G. Nizamuddin et. al.²²³ have prepared cyanopyridone derivatives (XIV) and documented their antifungal activity.

Tanaka Akira et. al.²²⁴ have prepared pyrazolo pyridone derivatives (XV).


With an intension of preparing the compounds possessing better therapeutic activity, we have undertaken the preparation of cyanopyridones which have been described as under.

SECTION-I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-[1',N-PHENYL-3'-p-ANISYL-PYRAZOL-4'-YL]-6-ARYL-1,2-DIHYDRO-2-PYRIDONES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-1,2-DIHYDRO-2-PYRIDONES

Pyridone derivatives have remarkable therapeutic activity. Taking this into consideration, we have undertaken the preparation of pyridone derivatives by the condensation of chalcones of type (I) with ethylcyanoacetate in presence of ammonium acetate as shown under.

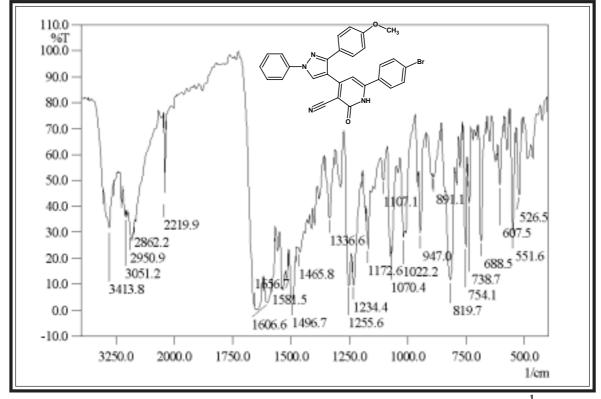
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry. In mass spectrometry the m/z value indicate the molecular weight, i.e. when $R = \rho$ -bromophenyl molecular weight = 523, m/z=523 (m).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-1,2-DIHYDRO-2-PYRIDONES

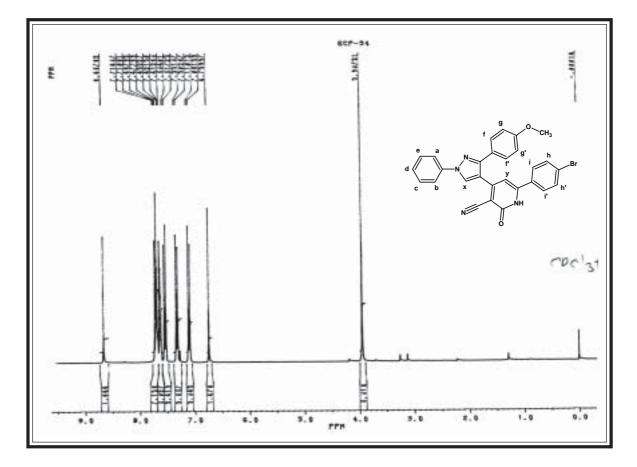
- (A) Synthesis of N-Aminophenyl-α-methyl-ρ-anisyl azomethine
 See Part I, Section I(A).
- (B) Synthesis of 1,N-Phenyl-3-ρ-anisyl-4-formyl pyrazoleSee Part I, Section I(B).
- (C) Synthesis of 1, (ρ-Bromophenyl)-3-(1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl)-2-propene-1-one
 See Part - I, Section - I(C).
- (D) Synthesis of 3-Cyano-4-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl]-6-(ρbromophenyl)-2-pyridone


A mixture of 1-(ρ -bromophenyl)-3-(1',N-phenyl-3'- ρ -anisyl-pyrazol-4'-yl)-2-propene-1-one (4.59 g, 0.01 M), ethylcyanoacetate (1.13 g, 0.01 M) and ammonium acetate (5.92 g, 0.08 M) in absolute alcohol was refluxed for 10 hrs. The reaction product was poured into ice, filtered and crystallised from ethanol. Yield 68%, m.p. 135°C. (Anal. Found : C, 64.21 H, 3.64; N, 10.65%; C₂₈H₁₉N₄O₂Br Requires: C, 64.26; H, 3.66; N, 10.70%).

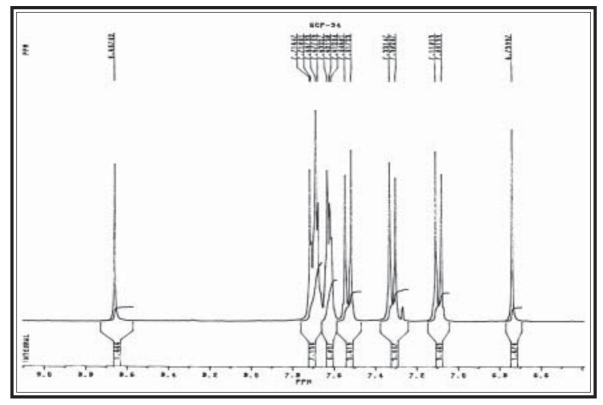
Similarly other substituted pyridones have been prepared. The physical data are recorded in Table No. 7

(E) Antimicrobial activity of 3-Cyano-4-[1',N-phenyl-3'-ρ-anisyl-pyrazol-4'-yl]-6-aryl-2-pyridones

Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 7

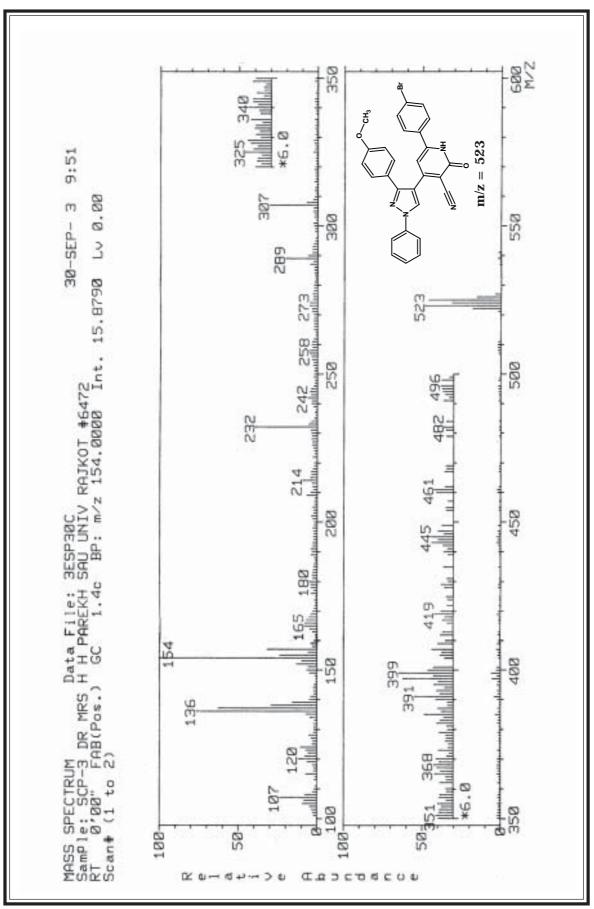

IR SPECTRAL STUDY OF 3-CYANO-4-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-6-(ρ-BROMOPHENYL)-1,2-DIHYDRO-2-PYRIDONE

Туре	Vibration	Frequency in cm ⁻¹		Ref.
-jpc	mode	Observed	Reported	
Alkane	C-H str. (asym.)	2950.9	2975-2950	434
-CH ₃	C-H str. (sym.)	2862.2	2880-2860	"
	C-H def. (asym.)	1465.8	1470-1435	"
	C-H def. (sym.)	1380.9	1385-1350	"
Aromatic	C-H str.	3051.2	3080-3030	435
	C-H i.p. def.	1107.1	1125-1090	"
	-	1070.4	1070-1000	"
	C-H o.o.p. def.	819.7	835-810	"
Pyrazole	C = N str.	1606.6	1650-1600	434
moiety	C = C str.	1496.7	1585-1480	"
	C-N str.	1256.6	1350-1200	"
	C-Br str.	526.5	600-500	"
Ether	C-O-C (asym.)	1234.4	1275-1200	"
	C-O-C (sym.)	1022.2	1075-1020	"
Pyridone ring	$C \equiv N$ str.	2219.9	2240-2120	"
	C = O str.	1656.7	1760-1655	"
	N-H str.	3413.8	3450-3250	"
	N-H def.	1581.5	1650-1580	"


Instrument : SHIMADZU-FT-IR 8400-Spectrophotometer; Frequency range : 4000-400 cm⁻¹ (KBr disc)

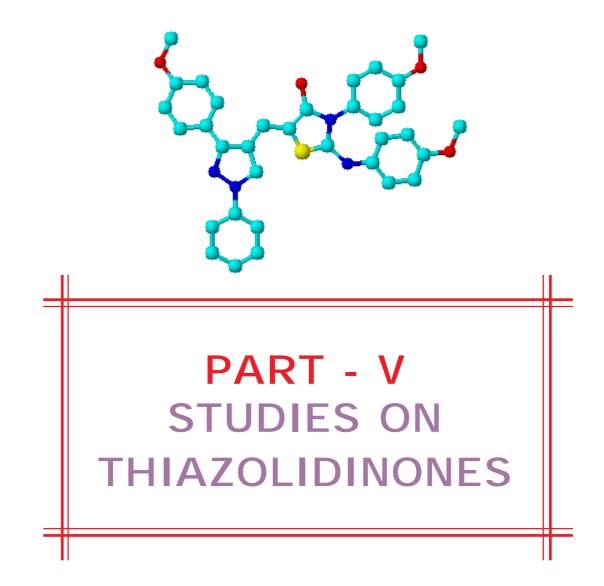
PMR SPECTRAL STUDY OF 3-CYANO-4-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-6-(ρ-BROMOPHENYL)-1,2-DIHYDRO-2-PYRIDONE

Internal Standard : TMS; Solvent : $CDCl_3$; Instrument : BRUKER Spectrometer (300 MHz)

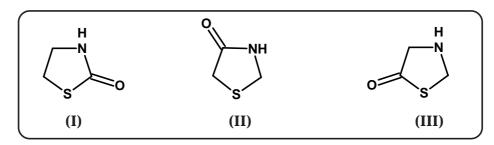

Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.94		3H	singlet	Ar-OCH ₃
2	6.73		1H	singlet	СНу
3	7.09	Jgf= 8.7	2H	doublet	Ar-Hgg'
4	7.31	Jhi=8.7	2H	doublet	Ar-Hhh'
5	7.52	Jfg= 8.7	2H	doublet	Ar-Hff'
6	7.62		3H	doublet	Ar-Hc-e
7	7.69	Jih=8.7	2H	doublet	Ar-Hii', Ar-Ha,
					Ar-Hb
7	8.65		1H	singlet	СНх

IR SPECTRAL DATA OF 3-CYANO-4-[1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL]-6-ARYL-1,2-DIHYDRO-2-PYRIDONES

Instrument :	SHIMADZU-FT-IR	-8400 Spectro	ophotometer; Fi	requency range	: 4000-400 cm ⁻	(KBr disc)


Sr. No.	R	C≡N str. Cyanopyridones	C=O str. Cyanopyridones
7a	С ₆ Н ₅ -	2204	1658
7b	4-NH ₂ -C ₆ H ₄ -	2202	1654
7c	3-NH ₂ -C ₆ H ₄ -	2233	1649
7d	$4\text{-Br-C}_6\text{H}_4$ -	2219.9	1656.7
7e	$4 - Cl - C_6 H_4 -$	2218	1652
7g	$4 - F - C_6 H_4 -$	2222	1660
7h	4-OCH ₃ -C ₆ H ₄ -	2210	1658
7i	4-CH ₃ -C ₆ H ₄ -	2216	1649
7j	$4 - NO_2 - C_6 H_4 -$	2212	1650
7m	$3 - NO_2 - C_6 H_4 -$	2218	1652
7n	4-OH-C ₆ H ₄ -	2214	1656
70	2-OH-C ₆ H ₄ -	2212	1651

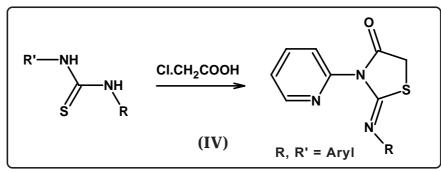
Comp. No. 1	R 2	Molecular Formula 3	Molecular Weight 4	M.P. ⁰ C 5	Rf [*] Value 6	Yield % 7	% of N Calcd. 8	itrogen Found 9
7a	С ₆ Н ₅ -	$C_{28}H_{20}N_4O_2$	444	158	0.51	60	12.60	12.57
7b	$4-NH_2-C_6H_4-$	$C_{28}H_{21}N_4O_2$	459	150	0.39	61	15.24	15.20
7c	3-NH ₂ -C ₆ H ₄ -	$C_{28}H_{21}N_4O_2$	459	152	0.46	68	15.24	15.21
7d	$4\text{-Br-C}_6\text{H}_4$ -	$C_{28}H_{19}N_4O_2Br$	523	135	0.62	68	10.70	10.65
7e	$4-Cl-C_6H_4$ -	$\mathrm{C}_{28}\mathrm{H}_{19}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{Cl}$	479	165	0.71	64	11.70	11.67
7f	$4-F-C_6H_4$ -	$C_{28}H_{19}N_4O_2F$	462	206	0.45	72	12.11	12.07
7g	4-OCH ₃ -C ₆ H ₄ -	$C_{29}H_{22}N_4O_3$	474	159	0.55	68	11.81	11.77
7h	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$C_{29}H_{22}N_4O_2$	458	161	0.59	65	12.22	12.20
7i	$4-NO_2-C_6H_4-$	$C_{28}H_{19}N_5O_4$	484	181	0.47	62	14.31	14.28
7j	3-NO ₂ -C ₆ H ₄ -	$C_{28}H_{19}N_5O_4$	484	155	0.74	71	14.31	14.29
7k	4-OH-C ₆ H ₄ -	$C_{28}H_{20}N_4O_3$	460	168	0.65	64	12.17	12.13
71	2-OH-C ₆ H ₄ -	$C_{28}H_{20}N_4O_3$	460	170	0.50	74	12.17	12.11


TABLE NO. 7 :PHYSICAL CONSTANTS OF 3-CYANO-4-(1',N-PHENYL-3'-ρ-ANISYL-PYRAZOL-4'-YL)-6-
ARYL-1,2,DIHYDRO-2-PYRIDONES

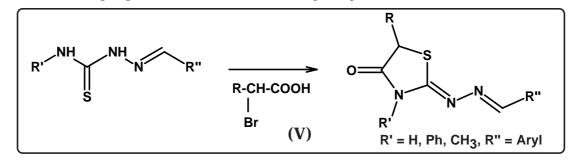
*TLC Solvent System : Ethylacetate : Hexane (2 : 8)

INTRODUCTION

Thiazolidinones, which belong to an important group of heterocyclic compounds have been extensively explored for their applications in the field of medicine. Thiazolidinones, with a carbonyl group at position 2(I), 4(II) or 5(III) have been subject of extensive study in recently.

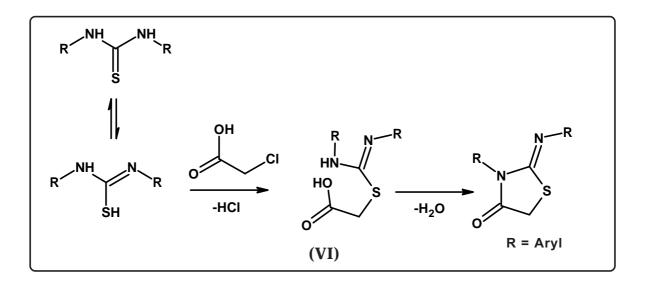


Substitutent in the 2,3 and 5 position may be varied, but the greatest difference in structure and properties is exerted by the groups attached to carbon atom at the 2-position and to nitrogen atom at the 3-position. The cyclic structure was assigned after recognisation of mercaptoacetic acid as a primary product of hydrolysis of 3-phenyl-2-phenylamino-4-thiazolidinones²²⁵.


SYNTHETIC ASPECTS

Several methods for the preparation of 4-thiazolidinones are narrated in literature $^{226-234}$.

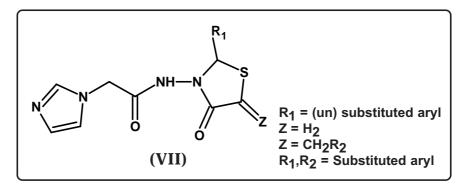
1. R. Nath and K. Shankar²³⁵ have prepared 4-thiazolidinone by cyclisation of N-aryl-N'-(2'-pyridyl) thiocarbamide with chloroacetic acid.


 I. D. Shah and J. P. Trivedi²³⁶ synthesised thiazolidinones from 4-arylthiosemicarbazones by condensed them with chloroacetic acid, α-bromopropionic acid and α-bromophenyl acetic acids.

3. M. Saeda et. al.²³⁷ synthesised some new thiazolidinones.

MECHANISM

The reaction of 4-thiazolidinones proceeds by the attacks of the chloroacetic acid upon the C=S group. The tautomerism takes place with removal of HCl followed by removal of water and subsequent cyclisation.



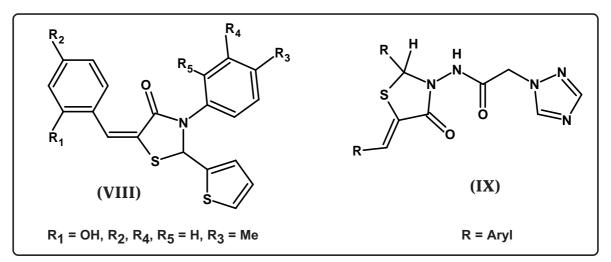
THERAPEUTIC IMPORTANCE

Much research has been carried out with an aim to finding therapeutic values of thiazolidinone moiety since their discovery. The thiazolidinones, substituted at 2- and 3-position are reported to exhibit a wide variety of biological activity.

- 1. Anthelmintics^{238,239}
- 2. $Cardiovascular^{240}$
- 3. Mosquito $repellant^{241}$
- 4. Antiviral 242
- 5. Antitumor²⁴³
- 6. Local anaesthetic²⁴⁴
- 7. Antimicrobial²⁴⁵
- 8. Antitubercular^{246,247}
- 9. Anti HIV and anticancer²⁴⁸
- 10. Insecticidal²⁴⁹
- 11. Herbicidal²⁵⁰

Hassan et. al.²⁵¹ have prepared 2-imino-4-thiazolidinones which have been found to possess antimicrobial activity. K. Mogilaiah and co-workers^{252,253} isolated some 4-thiazolidinone derivatives and tested their antibacterial activity. G. S. Gadaginamath et. al.²⁵⁴ also prepared thiazolidinone derivatives as antimicrobial agent. R. S. Lodhi and co-workers²⁵⁵ have synthesised and studied antimicrobial, antiinflammatory and analgesic property of 4-thiazolidinone and aryledene derivatives (VII).

Pawar and co-workers²⁵⁶ reported synthesis and *in vitro* antibacterial activity of some 4-thiazolidinone derivatives.

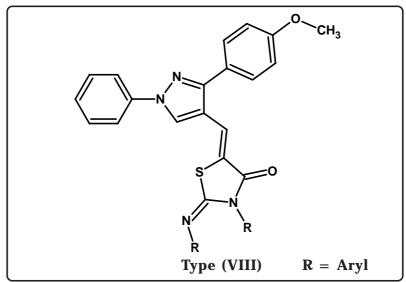

CONTRIBUTION FROM OUR LABORATORY

Parikh et. al. have synthesised variety of 4-thiazolidinone derivatives bearing S-triazine²⁵⁷, benzoylamino acetamido²⁵⁸, sulphonamido benzylamino²⁵⁹, phthalazine-1-yl-amino²⁶⁰, aryl substituted hydroxy and β , β dichloro ethylamino phenyl moieties of 4-thiazolidinone ring system and have reported as potent antimicrobial agents. H. H. Parekh and co-workers have synthesised 4-thiazolidinones bearing dapson²⁶¹, s-triazine²⁶², acridine-9yl²⁶³, thymoloxyacetamido²⁶⁴, 6-hydroxy pyrimidine²⁶⁵, 9-thiazolidinone ring system having antimicrobial activity.

Moreover, A. J. Baxi et. al.²⁶⁶ have synthesised some new 4-thiazolidinones which shows antiHIV, antitumor and antihypertensive activities. H. H. Parekh and co-workers^{267,268} have synthesised new bis 4-thiazolidinones and studied their biological activity. Recently, A. R. Parikh and co-workers²⁶⁹ have assessed thiazolidinone derivatives bearing 7-methoxyquinoline nucleus for antimicrobial activity.

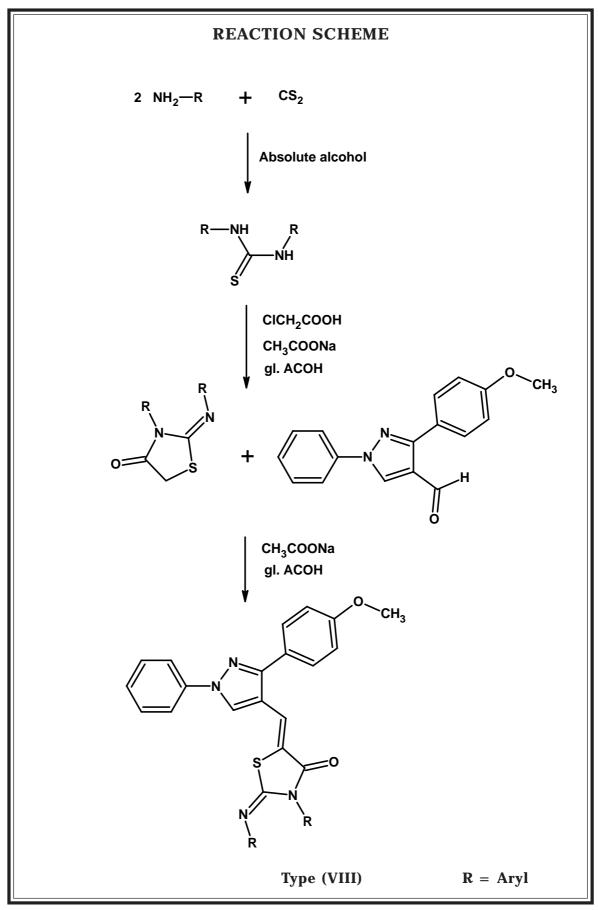
G. Bhawna et. al.²⁷⁰ have synthesised thiazolidinone derivatives and compared their antiinflammation potency, ulcerogenic liability, cardiovascular and CNS effect. In other study, some thiazolidinone derivatives have been found to be promising antibacterial agent^{271,272}.

Siddique, Mohammad et. al.²⁷³ have prepared substituted thiazolidinones and reported their antibacterial, antifungal, antithyroid and amoebicidal properties (VIII). S. K. Srivastava and co-workers²⁷⁴ have suggested new thiazolidinones (IX) and reported their diuretic, analgesic and antimicrobial activities.


Considerable evidence has been accumulated to demonstrate the wide applications of thiazolidinone derivatives. In view of these findings, it appeared of interest to synthesise newer thiazolidinone derivatives with better potency.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-4'-PYRAZOLYL-METHINO]-4-THIAZOLIDINONES

SECTION - I


SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-4'-PYRAZOLYL-METHINO]-4-THIAZOLIDINONES

Recently, much interest has been focused on the synthesis and biodynamic activities of arylidene and it is a good synthon for constructing various heterocyclic rings. With a view of obtaining compounds having better therapeutic activities, we have synthesised 2-arylimino-3,N-aryl-5-[1',N-phenyl-3'- ρ -anisyl-4'-pyrazolylmethino]-4-thiazolidinones by the condensation of 1,N-phenyl-3- ρ -anisyl-4-formyl-pyrazole with various thiazolidinone compounds.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. when $R = \rho$ -anisyl, molecular weight= 588, m/z= 589 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-4'-PYRAZOLYLMETHINO]-4-THIAZOLIDINONES

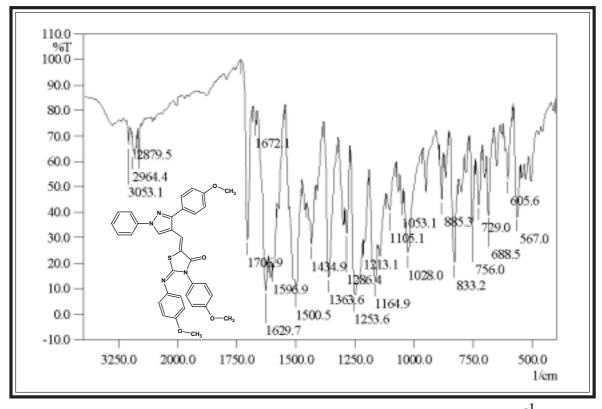
(A) Preparation of N^1 , N^3 -Bisaryl thiourea²⁷⁵

In a round bottom flask, a mixture of arylamine (0.2 M), carbon disulphide (7 ml, 0.1 M) and absolute alcohol (20 ml) was heated on waterbath for 5-6 hrs., on completion of reaction, the excess of carbon disulphide and alcohol was removed by distillation. The product was treated with dilute hydrochloric acid to remove excess of amine present and crude product was isolated and crystallised from ethanol.

(B) Preparation of 2-Arylimino-3-aryl-5H-4-thiazolidinones²⁷⁶

A solution of N^1 , N^3 -bisaryl thiourea (0.01 M) and chloroacetic acid (0.94 g, 0.01 M) in glacial acetic acid (15 ml) was refluxed with fused sodium acetate (1.25 g, 0.015 M) for 5 hrs. The reaction product was poured in water, kept overnight, crude product was isolated and crystallised from ethanol.

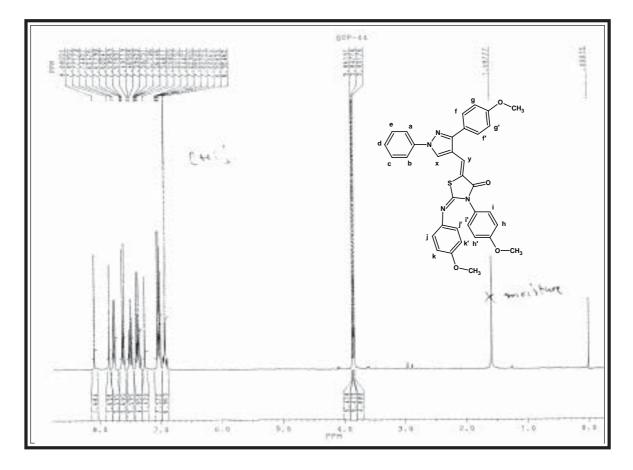
(C) Preparation of 2-(ρ-Anisylimino)-3,N-(ρ-anisyl)-5-(1',N-phenyl-3'-ρanisyl-4'-pyrazolylmethino)-4-thiazolidinones


A mixture of 2-(ρ -anisylimino)-3-(ρ -anisyl)-5H-4-thiazolidinone (3.28 g, 0.01 M), 1,N-phenyl-3- ρ -anisyl-4-formyl-pyrazole (2.78 g, 0.01 M) and fused sodium acetate (1.25 g, 0.015 M) was refluxed in glacial acetic acid (15 ml) for 4-5 hrs., cooled, poured into water and treated with ammonia to remove excess of glacial acetic acid. The product was isolated and crystallised from ethanol. Yield 75%, m.p. 190°C. (Anal. Found : C, 66.33 H, 4.73; N, 9.49%; C₃₄H₂₈N₄O₄S Requires: C, 66.37; H, 4.79; N, 9.52%).

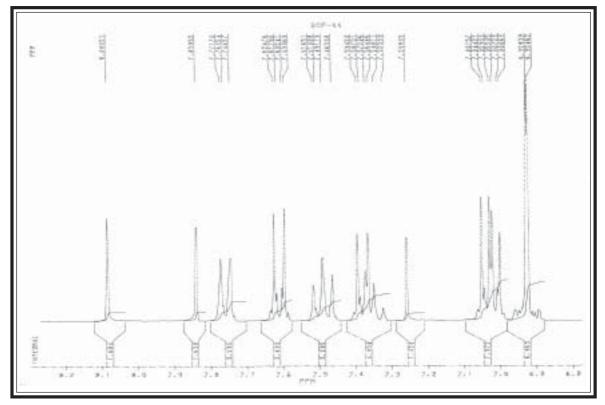
Similarly other substituted thiazolidinones have been prepared. The physical data are recorded in Table No. 8

(D) Antimicrobial activity of 2-Arylimino-3,N-aryl-5-(1',N-phenyl-3'-ρanisyl-4'-pyrazolylmethino)-4-thiazolidinones

Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 8

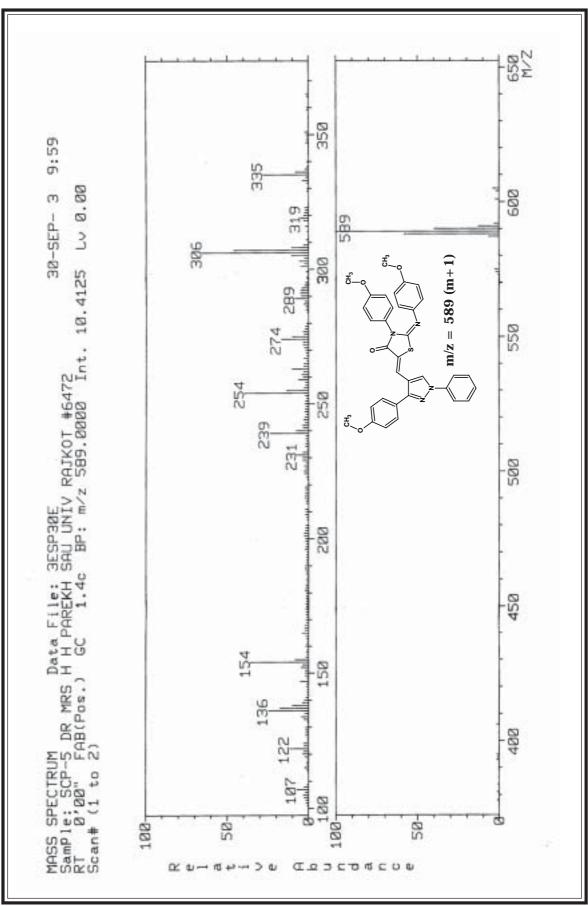

IR SPECTRAL STUDY OF 2-(ρ -ANISYLIMINO)-3,N-(ρ -ANISYL)-5-(1',N-PHENYL-3'- ρ -ANISYL-4'-PYRAZOLYLMETHINO)-4-THIAZOLIDINONE

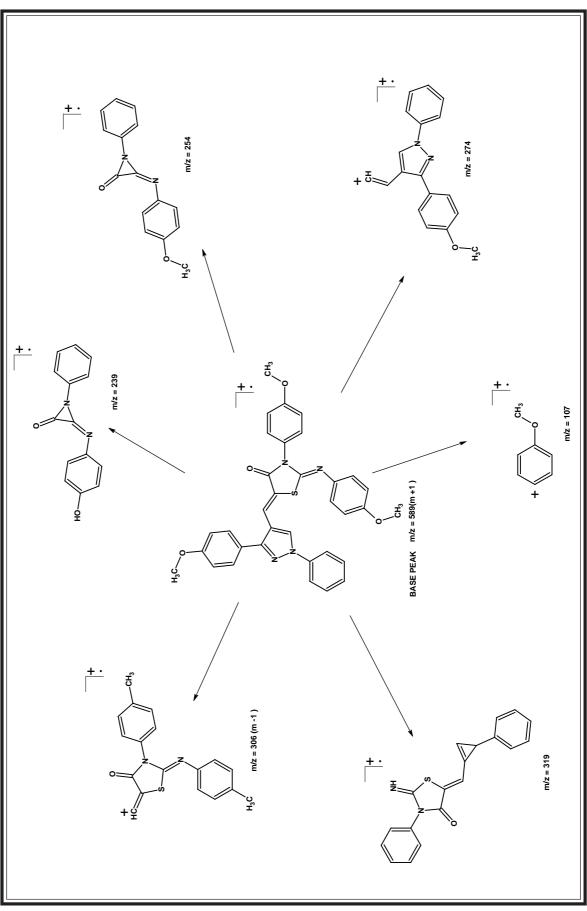
Instrument : SHIMADZU-FT-IR 8400-Sp	ectrophotometer; Frequency range :	4000-400 cm ⁻¹ (KBr disc)
-------------------------------------	------------------------------------	--------------------------------------


Vibration	Freque	Ref.	
mode	Observed	Reported	Kel.
C-H str. (asym.)	2964.0	2975-2950	434
C-H str. (sym.)	2879.5	2880-2860	"
C-H def. (asym.)	1434.9	1470-1435	"
C-H def. (sym.)	1363.6	1385-1350	"
C-H str.	3053.1	3080-3030	435
C-H i.p. def.	1105.1	1125-1090	"
-	1053.1	1070-1000	"
C-H o.o.p. def.	833.2	835-810	"
C = N str.	1596.9	1650-1600	434
C = C str.	1500.5	1585-1480	"
C-N str.	1253.6	1350-1200	"
C-O-C (asym.)	1213.1	1275-1200	"
C-O-C (sym.)	1028.0	1075-1020	"
C = O str.	1706.9	1760-1655	434
S-C=N str.	1629.7	1640-1605	436
C-S-C str.	688	700-600	"
= CH i.p.	1363.6	1420-1290	"
	(overlapped) 1672	1690-1600	"
	mode C-H str. (asym.) C-H str. (sym.) C-H def. (asym.) C-H def. (asym.) C-H str. C-H str. C-H i.p. def. C=N str. C=C str. C-O-C (asym.) C-O-C (sym.) C=O str. S-C=N str.	modeObservedC-H str. (asym.)2964.0C-H str. (sym.)2879.5C-H def. (asym.)1434.9C-H def. (sym.)1363.6C-H str.3053.1C-H i.p. def.1105.1C-H o.o.p. def.833.2C=N str.1596.9C=C str.1500.5C-N str.1253.6C-O-C (asym.)1028.0C=O str.1706.9S-C=N str.688= CH i.p.1363.6(overlapped)	modeObservedReportedC-H str. (asym.)2964.02975-2950C-H str. (sym.)2879.52880-2860C-H def. (asym.)1434.91470-1435C-H def. (sym.)1363.61385-1350C-H str.3053.13080-3030C-H str.3053.11070-1000C-H o.o.p. def.833.2835-810C=N str.1596.91650-1600C=C str.1500.51585-1480C-N str.1223.61350-1200C-O-C (asym.)1028.01075-1020C=O str.1706.91760-1655S-C=N str.1629.71640-1605C-S-C str.688700-600= CH i.p.1363.61420-1290(overlapped)1

PMR SPECTRAL STUDY OF 2-(ρ-ANISYLIMINO)-3,N-(ρ-ANISYL)-5-(1',N-PHENYL-3'-ρ-ANISYL-4'-PYRAZOLYLMETHINO)-4-THIAZOLIDINONE

 $Internal \ Standard \ : \ TMS; \ Solvent \ : \ CDCl_3 \ ; \ Instrument \ : \ BRUKER \ Spectrometer \ (300 \ MHz)$

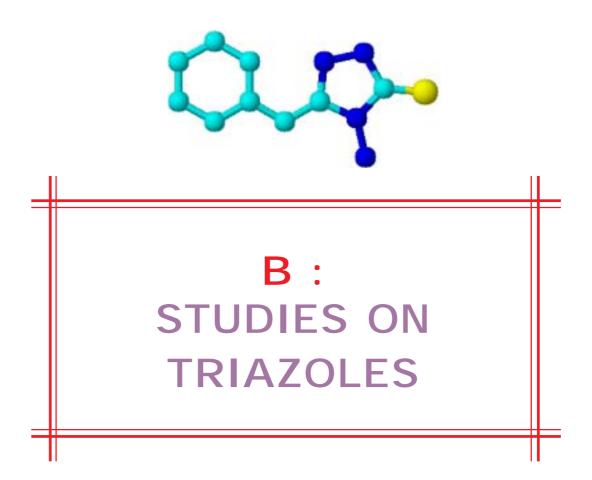

Signal No.	Signal Position (ð ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.83		3H	singlet	Ar-OCH ₃
2	3.84		3H	singlet	Ar-OCH ₃
3	3.86		3H	singlet	Ar-OCH ₃
4	6.92		4H	doublet	Ar-Hhh'
					Ar-Hkk'
5	7.01	Jjk = 6.6	2H	doublet	Ar-Hjj'
6	7.04	Jih=6.6	2H	doublet	Ar-Hii,
7	7.34		1H	doublet	Ar-Hd
8	7.37	Jgf= 8.7	2H	doublet	Ar-Hgg'
9	7.48		1H	triplet	Ar-Hc, Ar-He
10	7.61	Jfg= 8.7	2H	doublet	Ar-Hff'
11	7.75		2H	doublet	Ar-Ha, Ar-Hb
12	7.83		1H	singlet	СНу
13	8.08		1H	singlet	СНх



IR SPECTRAL DATA OF 2-ARYLIMINO-3,N-ARYL-5-[1',N-PHENYL-3'-ρ-ANISYL-4'-PYRAZOLYLMETHINO]-4-THIAZOLIDINONES

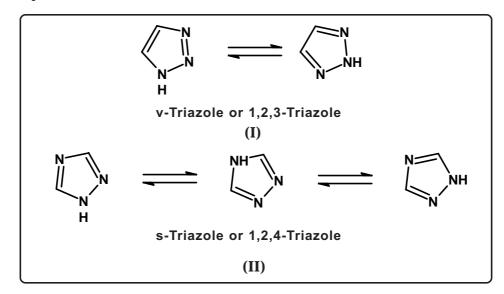
Instrument : SHIMADZU-FT-IR-8400 S	Spectrophotometer; Freque	ency range : 4000-400 cm ⁻¹ (KBr disc)

Sr. No.	R	C=O str. Thiazolidinones
8a	С ₆ Н ₅ -	1714
8b	4-COOH-C ₆ H ₄ -	1708
8c	4-Cl-C ₆ H ₄ -	1712
8d	3,4-(Cl) ₂ -C ₆ H ₃ -	1716
8e	$4 - F - C_6 H_4 -$	1710
8f	4-OCH ₃ -C ₆ H ₄ -	1706
8g	4-CH ₃ -C ₆ H ₄ -	1703
8h	3-CH ₃ -C ₆ H ₄ -	1708
8i	2-CH ₃ -C ₆ H ₄ -	1706
8j	$4 - NO_2 - C_6 H_4 -$	1700
8k	$3-N0_2-C_6H_4-$	1708
81	2-N0 ₂ -C ₆ H ₄ -	1716



Comp.	R	Molecular	Molecular	M.P. °C	Rf*	Yield		litrogen
No. 1	2	Formula 3	Weight 4	5	Value 6	% 7	Calcd. 8	Found 9
8a	с ₆ н ₅ -	$C_{32}H_{24}N_4O_2S$	529	180	0.45	75	10.60	10.55
8b	4-COOH-C ₆ H ₄ -	$\mathrm{C}_{34}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{6}\mathrm{S}$	617	185	0.61	68	9.09	9.04
8c	$4-Cl-C_6H_4$ -	$\mathrm{C}_{32}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{S(Cl)}_{2}$	597.5	214	0.42	69	9.38	9.34
8d	$3,4-(Cl)_2-C_6H_3-$	$\mathrm{C}_{32}\mathrm{H}_{20}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{SCl}_{4}$	666	202	0.56	71	8.41	8.38
8 e	$4\text{-F-C}_6\text{H}_4$ -	$\mathrm{C}_{32}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{SF}_{2}$	565	235	0.51	71	9.92	9.88
8 f	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$\mathrm{C}_{34}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}_{4}\mathrm{S}$	589	190	0.42	75	9.52	9.47
8g	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$\mathrm{C}_{34}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{OS}$	557	188	0.59	70	10.06	10.01
8h	3-CH ₃ -C ₆ H ₄ -	$\mathrm{C}_{34}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{S}$	557	195	0.74	66	10.06	10.02
8 i	2-CH ₃ -C ₆ H ₄ -	$\mathrm{C}_{34}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{S}$	557	211	0.70	65	10.06	10.04
8j	$4-NO_2-C_6H_4-$	$C_{32}H_{22}N_6O_6S$	619	198	0.62	70	13.59	13.52
8k	$3-NO_2-C_6H_4$ -	$C_{32}H_{22}N_6O_6S$	619	171	0.65	74	13.59	13.56
81	2-NO ₂ -C ₆ H ₄ -	$C_{32}H_{22}N_6O_6S$	619	225	0.59	67	13.59	13.54

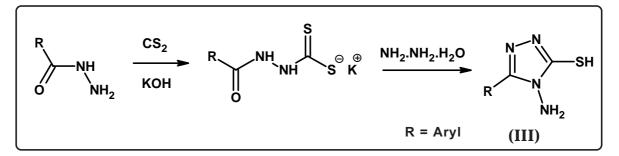
TABLE NO. 8 :	PHYSICAL CONSTANTS OF 2-ARYLIMINO-3,N-ARYL-5-(1',N-PHENYL-3'-p-ANISYL-4'-
	PYRAZOLYLMETHINO)-4-THIAZOLIDINONES


*TLC Solvent System : Ethylacetate : Hexane (2 : 8) (8a-8l)

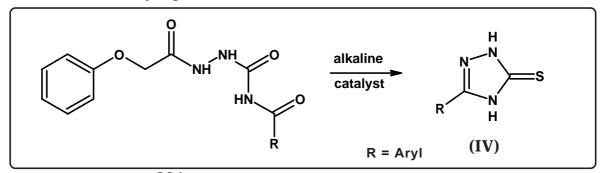
(3:7) 8e

INTRODUCTION

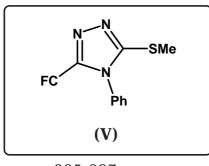
Triazoles have occupied an important place in the pharmaceutical industry. Triazole molecule is having following isomers viz. v-triazoles or 1,2,3-triazoles (I), s-triazoles or 1,2,4-triazoles (II) and their benzo derivatives. Most of the work is reported on 1,2,4-triazoles or s-triazoles.


Bladin^{277,278} a pioneer worker in the field of triazole synthesised the first derivative in 1885 and an alternative name for the ring system was coined by Andreocci²⁷⁹ a 'pyrodiazole' which is regarded as a member of a class of compounds analogous to pyrrole.

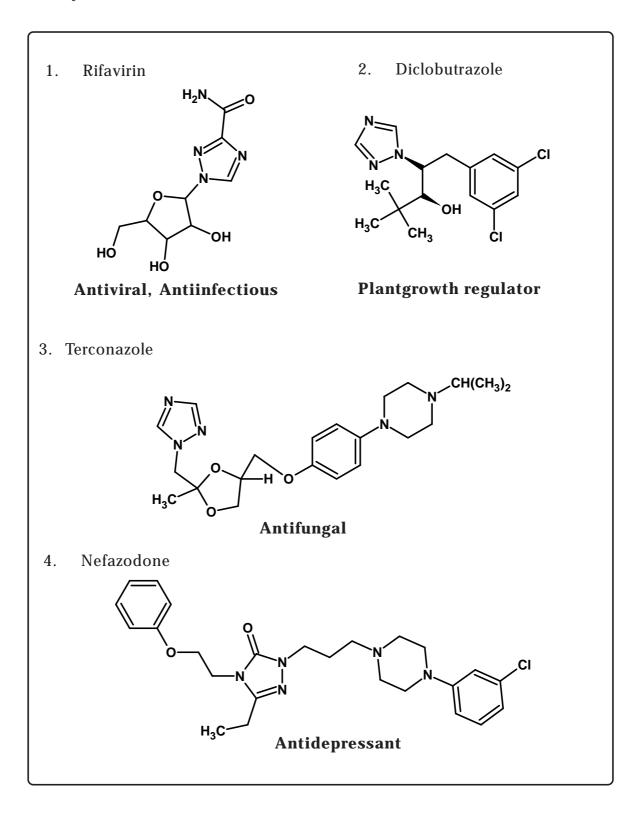
1,2,4-Triazoles are not only known for their medicinal applications, but also used as an analytical reagents 280,281, dyes and photographic chemicals and in the preparation of polymers.

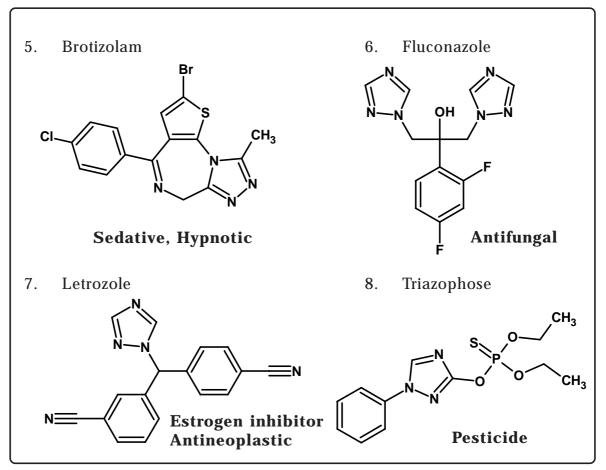

SYNTHETIC ASPECTS

Several methods have been reported in the literatures for the preparation of 1,2,4-triazoles shown as under.


1. Reid and Heindel²⁸² reported that the reaction of aryl acid hydrazide with CS_2/KOH and hydrazine hydrate furnished triazoles.

Zhang Zivi et. al.²⁸³ prepared 1,2,4-triazoles by the addition reaction of 2,4-dichlorophenoxyacetic acid hydrazide with R.CO.NCS gave aroylthiosemicarbazides. Cyclization of this in H₂O in the presence of alkaline catalyst gives triazoles.

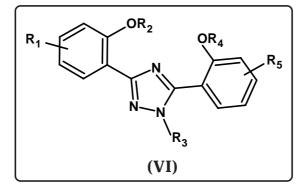

3. Yan Shiquaing²⁸⁴ prepared by the treatment of Ferrocenecarboxylic acid hydrazide with arylisothicyanate produced substituted thiosemicarbazides which on cyclisation gave 3,4-disubstituted-4H-1,2,4-triazole-5-thiol.



Different types of methods $^{285-287}$ for the preparation of 1,2,4-triazoles documented in literaturte.

THERAPEUTIC IMPORTANCE

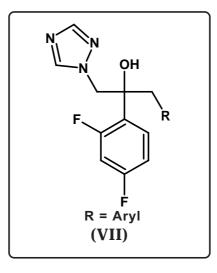
1,2,4-Triazole derivatives have been reported to be associated with diverse biological activities. Drug molecules having 1,2,4-triazole nucleus with good activity are listed below.


3-Amino-1,2,4-triazole was the first triazole manufactured on large scale from aminoguinidine formate useful as neutral herbicides 288 . Therapeutic activity of 1,2,4-triazoles are listed below.

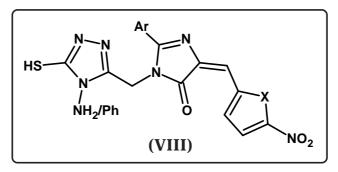
- 1. Antihypertensive²⁸⁹
- 2. Bacteriocidal²⁹⁰
- 3. Antiviral²⁹¹
- 4. Antiinflammatory²⁹²
- 5. Fungicidal²⁹³
- 6. Herbicidal²⁹⁴
- 7. Antitumor²⁹⁵
- 8. Insecticidal & Acaricidal²⁹⁶
- 9. Anticonvulsant²⁹⁷
- 10. Diuretic²⁹⁸
- 11. Anticancer & antiHIV²⁹⁹

- 12. Plant growth regulator 300
- 13. Antimicrobial³⁰¹
- 14. Antileishmanial³⁰²

1,2,4-Triazole derivatives have been used successfully in the control of fungal infection³⁰³ and also as nematicidal³⁰⁴, eosinophilla³⁰⁵ inhibitors, hypoglycemic activity³⁰⁶ and microbicides³⁰⁷ for plant protection.


Amir Mohammad³⁰⁸ have prepared 1,2,4-triazole derivatives as antiinflammatory agents. Shi Yan-Nian and co-workers³⁰⁹ have 2H, pyrazolo, 1,2,4-triazole as plant growth regulator. Bignon Eric et. al.³¹⁰ have documented N-triazolyl-2-indol carboxamides useful as CCK - A agonists. Lattmann Rene et. al.³¹¹ have reported 3,5-bis-hydroxylphenyl-1,2,4-triazoles (VI) useful as pharmaceutical chelators.

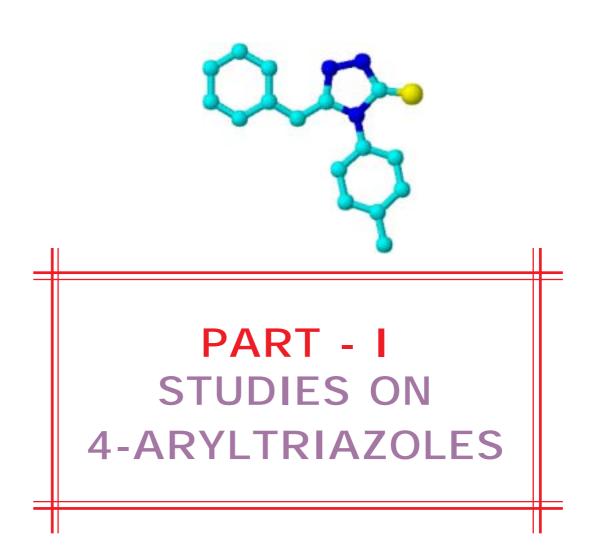
Slawinski³¹² have prepared triazole as potent cardiovascular agent. A number of 1H-1,2,4-triazole³¹³ derivatives have been synthesised for their broad spectrum of biological activities. Some of them were commerciallized as agrochemical, fungicides, insecticides, herbicides and plant growth regulators. Jautelat et. al.³¹⁴ have reported 1,2,4-triazoles as 100% inhibitor of Erisyphe graminis on barley. Sikorski³¹⁵ have determined triazoles useful for inhibiting cholesteryl ester transfer protein activity.


Triazoles... 121

Varvaresou Athanasia and co-workers³¹⁶ have suggested indoyl-1,2,4triazole and reported them as antidepressant and antimicrobial agents. Baba Alsuo et. al.³¹⁷ documented triazole useful as antiheumatic agents. Laddi U. V and co-workers³¹⁸ have prepared triazoles for antiinflammatory activity, ulcerogenic liability, antimicrobial and antitubercular agents. Sun-Qingyan et. al.³¹⁹ have determined triazoles (VII) and reported their antifungal activity.

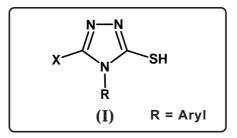
Some new 1H,1,2,4-triazoles possessing antiviral (antiinfluenza virus), antibacterial and antifungal agents synthesised by Sproula et. al. 320 Jag Mohan et. al. 321 have synthesised thiazolo-triazoles and studied for their antimicrobial activity.

Abdelal Ali et. al.³²² have investigated some 1,2,4-triazole derivatives as potential antitumor agents. Rollas Sevim et. al.³²³ have screened 1,2,4-triazoles as antimicrobial and anticonvulsant agents. El.Sayed et. al.³²⁴ have reported triazoles (IIX) as potent fungicides and bactericides.


Triazoles... 122

MariMakoto et. al.³²⁵ have synthesised water soluble triazoles as fungicides. Ladawahetty et. al.³²⁶ have prepared triazoles as selective human GABA receptor for the treatment of anxiety and enhancing cognition. Giorgia Pastorin et. al.³²⁷ have documented 1,2,4-triazoles as adenosine receptor antagonist and also as human A₃ and A_{2B} adenosine receptor. B. Shivarama Holla et. al.³²⁸ have screened 1,2,4-triazoles as anticancer. Uesaka et. al.³²⁹ documented triazoles as adrenergic α_2 C receptor antagonists.

Looking to the diversified pharamacological activity, it appeared of interest to synthesise some 4-aryl triazoles, azomethines and 1,3,4-thiadiazolo triazoles bearing triazole moiety, in order to achieving compounds having better therapeutic importance. These study are described in following parts.


STUDIES ON TRIAZOLES

PART - I	:	STUDIES ON ARYLTRIAZOLE
PART - II	:	STUDIES ON AZOMETHINES
PART - III	:	STUDIES ON 1,3,4-THIADIAZOLO TRIAZOLES

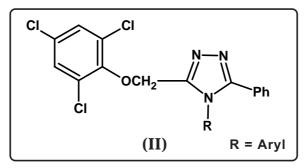
INTRODUCTION

Amongst the five membered nitrogen containing heterocycles, the position of nitrogen atom on 1,2 and 4 position activates the ring and proved to be most important pharmacological drugs. The scientists all over the world have focused their attention to evaluate 4-Aryltriazole ring system (I).

SYNTHETIC ASPECTS

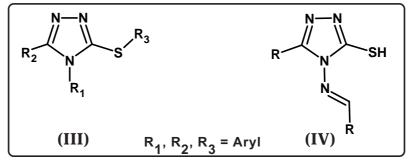
Several methods have been reported in the literatures for the preparation of 4-aryltriazoles.

By the reaction of acid hydrazide with


- (a) Carbon disulphide, Al. KOH under cyclisation with different amine, hydrazine.
- (b) Thiosemicarbazide derivatives followed by ring closure with NaOH.

THERAPEUTIC IMPORTANCE

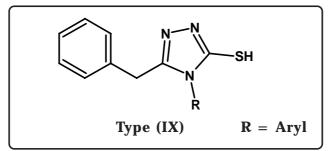
4-Aryltriazoles have attracted considerable attention as they appeared of interest to possess wide range of therapeutic activities. Different activity of 1,2,4-triazoles have been already discussed.


Aryltriazoles... 124

Furthermore Chambers et. al.³³⁰ have investigated 4-aryl triazoles useful in the treatment of neurogenerative disease. Pier et. al.³³¹ reported as irreversible antagonist at the A_3 , A_2A adenosine receptor³³². Patel K. D. et. al.³³³ have prepared triazoles (II) as antimicrobial agents.

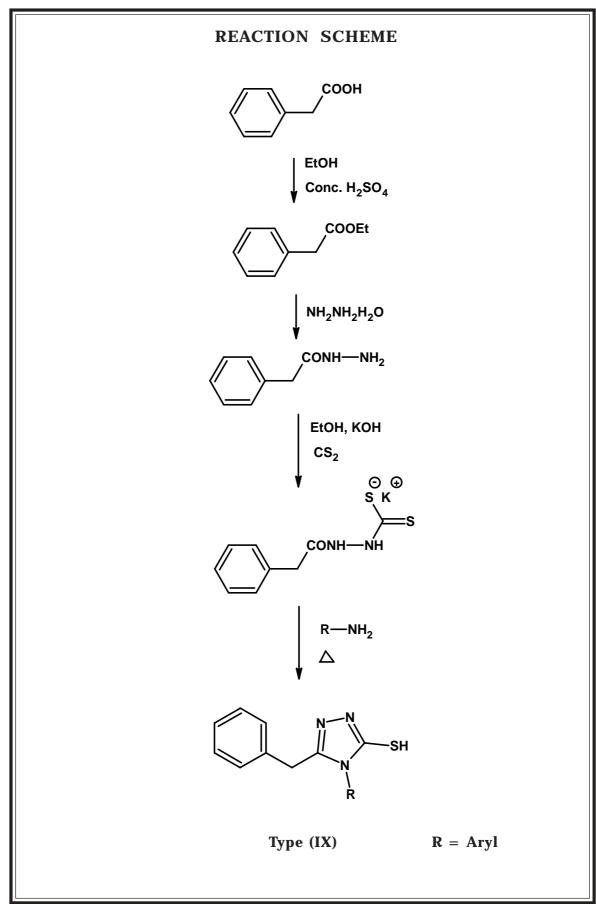
Many co-workers have reported 4-aryl triazoles as aromatase-steroid sulfatase inhibitors³³⁴, GSK-3 inhibitors³³⁵, anticancer³³⁶, fungicidal³³⁷, antibacterial³³⁸, antiinflammatory³³⁹, PKB (Protein Kinase B) inhibitors³⁴⁰, Herbicidal Agents³⁴¹⁻³⁴³.

Recently Galcera et. al.³⁴⁴ have screened 4-aryltriazoles (III) as somatostatin receptors. Other co-workers have studied activity of triazoles like adenosine receptor antagonists^{345,346}, anticancer³⁴⁷, analgesic and diuretics³⁴⁸ and in the treatment of diseases caused due to excess of metal³⁴⁹ in body. Heindel and co-workers³⁵⁰ have synthesised 4-aryl triazoles (IV) useful as nitric oxide synthatase inhibitors.


With an aim to synthesise better therapeutic agents, we have investigated some new 4-aryltriazole derivatives which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-MERCAPTO-4,N-ARYL-5-BENZYL-1,2,4-TRIAZOLES

SECTION - I


SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-MERCAPTO-4,N-ARYL-5-BENZYL-1,2,4-TRIAZOLES

The growing potent literature of recent years demonstrates that the triazole derivatives are useful as better therapeutic agents. These findings prompted us to synthesise 3-mercapto-4,N-aryl-5-benzyl-1,2,4-triazoles. The synthesis of triazole derivatives of type (IX) has been undertaken by heating potassium phenyl acetic acid hydrazide dithiocarbamate with different aromatic amines.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry. In mass spectrometry m/z value indicates the molecular weight, i.e. when $R = \rho$ -tolyl, molecular weight = 281, m/z=282 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-MERCAPTO-4,N-ARYL-5-BENZYL-1,2,4-TRIAZOLES

(A) Synthesis of Ethylphenyl acetate³⁵¹

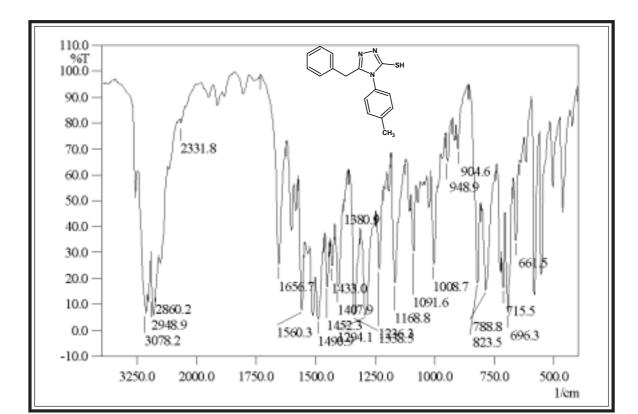
Phenyl acetic acid (1.36 g, 0.01 M) in 25 ml ethanol and 1 ml conc. sulfuric acid was refluxed for 15 hrs. and poured into ice. The product was isolated and treated with sat. sodium bicarbonate solution. Yield 85%, b.p. 229° C.

(B) Synthesis of Phenylacetic acid hydrazide 351

A mixture of Ethylphenylacetate (1.64 g, 0.01 M) and hydrazine hydrate (0.5 g, 0.01 M) was heated for 6 hrs. and poured into ice. The product was isolated and crystallised from water. Yield 80%, m.p. 184°C.

(C) Synthesis of Potassium phenyl acetic acid hydrazide dithiocarbamate

A mixture of phenyl acetic acid hydrazide (1.5 g, 0.01 M), KOH (0.84 g, 0.015 M) and CS_2 1.5 ml in absolute alcohol was stirred for 24 hrs. and poured into ice. The product was isolated from diethyl ether.

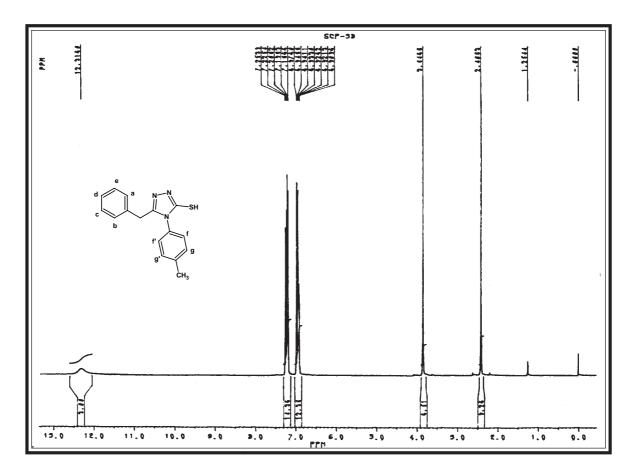

(D) Synthesis of 3-Mercapto-4, N-(ρ-tolyl)-5-benzyl-1,2,4-triazole

A mixture of (2.5 g, 0.01 M) potassium salt and ρ -toludine (1.07, 0.01 M) was heated upto evolution of H₂S gas caused nearly 10 hrs., DMF was added (20 ml) and contents were poured into ice. The crude product was filtered and crystallised from ethanol. Yield 64%, m.p. 180°C. (Anal. Found : C, 68.26 H, 5.54; N, 14.86%; C₁₆H₁₅N₃S Requires: C, 68.30; H, 5.57; N, 14.93%).

Similarly other 4-aryl triazoles were synthesised. The physical data are recorded in Table No. 9

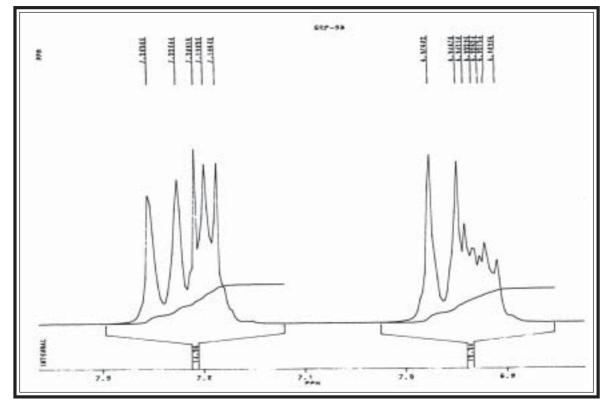
(E) Antimicrobial activity of 3-Mercapto-4,N-aryl-5-benzyl-1,2,4triazoles

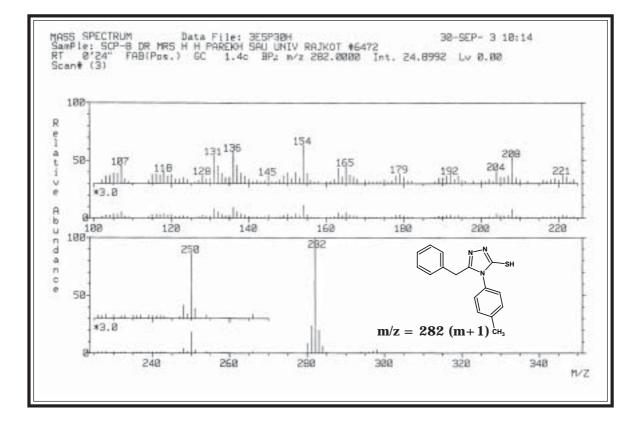
Antimicrobial testing was carried out as described in Part - I, Section - I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 9



IR SPECTRAL STUDY OF 3-MERCAPTO-4,N-(ρ-TOLYL)-5-BENZYL-1,2,4-TRIAZOLE

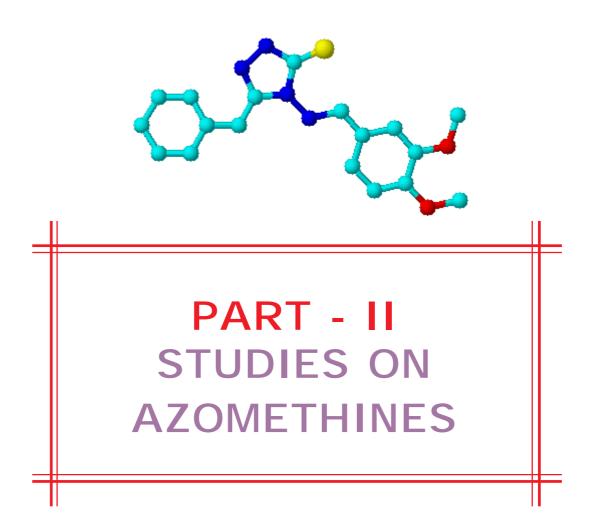
				-1
Instrument : SHIMADZU-FT-IR 8400-S	nectronhotomete	r. Fraguancy ran	$100 \cdot 1000 - 100 cm$	n ¹ (KBr disc)
Instrument . STIMADZO-PT-IN 0400-S	pechopholomete	i, mequency ran	ige . 4000-400 th	(Indianse)


Terre	Vibration	Freque	Ref.	
Туре	mode	Observed	Reported	Kel.
Alkane	C-H str. (asym.)	2948.9	2975-2950	434
-CH3	C-H str. (sym.)	2860.2	2880-2860	"
	C-H def. (asym.)	1433.0	1470-1435	"
	C-H def. (sym.)	1380.9	1385-1350	"
Aromatic	C-H str.	3078.2	3080-3030	435
	C = C str.	1560.3	1585-1480	"
	C-H i.p. def.	1091.7	1125-1090	"
		1028.0	1070-1000	"
	C-H o.o.p. def.	823.5	835-810	"
Triazole	C = N str.	1656.7	1650-1600	434
	C-N str.	1168.8	1220-1020	"
	N-N str.	1008.7	1050-1010	"
	S-H str.	2331.8	2400-2300	438
	C-S str.	696.3	700-600	"


PMR SPECTRAL STUDY OF 3-MERCAPTO-4,N-(ρ-TOLYL)-5-BENZYL-1,2,4-TRIAZOLE

Internal Standard : TMS; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	2.40		3 H	singlet	Ar-CH ₃
2	3.64		2H	singlet	-CH ₂
3	6.90-6.94		2H	multiplet	Ar-Hc, Ar-He
4	6.95	Jgf=8.4	2H	doublet	Ar-Hgg'
5	7.16-7.20		3H	multiplet	Ar-Ha, Ar-Hb,
					Ar-Hd
6	7.23	Jfg= 8.4	2H	doublet	Ar-Hff'

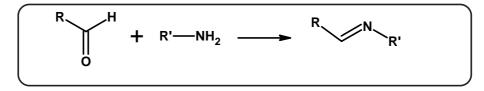


Comp. No.	R 2	Molecular Formula 3	Molecular Weight	M.P. °C	Rf [*] Value	Yield % 7	% of N Calcd. 8	litrogen Found
1	2	3	4	5	6	/	0	9
9a	C_6H_5 -	$C_{15}H_{13}N_{3}S$	267	188	0.49	55	15.72	15.65
9b	4-COOH-C ₆ H ₄ -	$\mathrm{C_{16}H_{13}N_{3}O_{2}S}$	311	168	0.42	55	13.50	13.45
9c	4 -Cl-C $_{6}$ H $_{4}$ -	$C_{15}H_{12}N_{3}SCl$	302	178	0.61	68	13.92	13.88
9d	$3,4-(Cl)_2-C_6H_3-$	$\mathrm{C_{15}H_{11}N_{3}SCl_{2}}$	336	195	0.55	70	12.50	12.47
9e	$4\text{-F-C}_6\text{H}_4$ -	$C_{15}H_{12}N_3SF$	285	191	0.56	60	14.41	14.36
9f	4-OCH ₃ -C ₆ H ₄ -	$C_{16}H_{15}N_3OS$	297	181	0.47	55	14.13	14.11
9g	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$C_{16}H_{15}N_{3}S$	281	180	0.75	64	14.93	14.89
9h	3-CH ₃ -C ₆ H ₄ -	$C_{16}H_{15}N_{3}S$	281	223	0.59	60	14.93	14.90
9i	2-CH ₃ -C ₆ H ₄ -	$C_{16}H_{15}N_{3}S$	281	170	0.45	54	14.93	14.87
9j	$4-NO_2-C_6H_4-$	$C_{15}H_{12}N_4O_2S$	312	198	0.67	58	17.94	17.90
9k	3-NO ₂ -C ₆ H ₄ -	$C_{15}H_{12}N_4O_2S$	312	207	0.61	64	17.94	17.88
91	2-NO ₂ -C ₆ H ₄ -	$C_{15}H_{12}N_4O_2S$	312	164	0.58	63	17.94	17.91

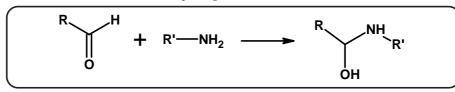
 TABLE NO. 9 :
 PHYSICAL CONSTANTS OF 3-MERCAPTO-4,N-ARYL-5-BENZYL-1,2,4-TRIAZOLES

*TLC Solvent System : Ethylacetate : Hexane (2 : 8)

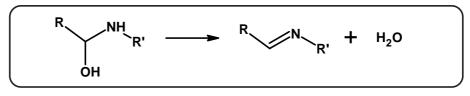
INTRODUCTION


Azomethine derivatives have been found to be potent drug in pharmaceutical industries and possess a wide spectrum of biological activity. Azomethines are also known as schiff bases and they are well known intermediate for the preparation of azetidinone, thiazolidinone, formazan, arylacetamide and many other derivatives. These are the compounds containing characteristic -C=N-group.

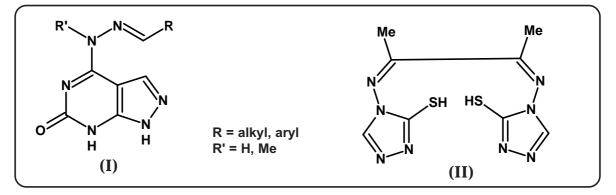
Azomethines are obtained mainly by heating the aldehyde & aromatic amine together. However, it is sometimes more convenient to work in a solvent such as alcohol, dilute acetic acid or glacial acetic acid. Sometimes the reaction is aided by trace of acid; in other cases the hydrochloride of the amines can be used in the synthesis. In general schiff bases do not react further with either of the reagent used for their preparation, as do most of the other types of simple intermediates.


SYNTHETIC ASPECTS

Several methods $^{352-355}$ for the preparation of azomethine derivatives are documented in literature.


1. General account of the summary of reaction of aldehydes with amine.

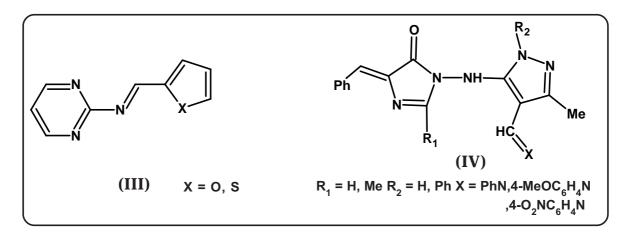
- 2. Imine formation involves two steps.
 - (a) Addition of the amine to the carbonyl group of the aldehyde gives aldol. The aldol is rarely capable of isolation.



(b) The loss of water to give an imine (azomethine), this corresponds to the "crotonaldehyde stage" of the aldol condensation.

THERAPEUTIC IMPORTANCE

Smalders et. al.³⁵⁶ documented some new azomethines like benzylidene naphthylamine which reacts with HP (O) $(OCH_2CH_2Cl)_2$ to give potential antitumor reagent phosphonates. Nagamatsu et. al.³⁵⁷ have prepared some azomethines (I) by the condensation of 4-mercapto-1H-pyrazolo [3,4-d] pyrimidine-6(7H)-one with hydrazine hydrate to give (I), useful as xanthine oxidase inhibitors.

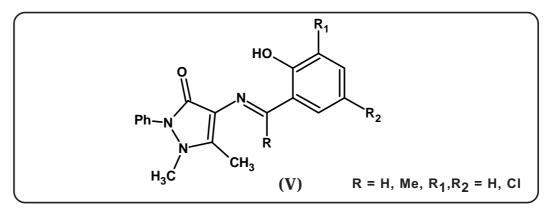

Yadawe M. S. and Patil S. A.³⁵⁸ have prepared azomethines (II). which were screened for their antibacterial and antifungal activities.

A series of 4-[5-(halophenyl)-2-furfurylidene]-amino-3-mercapto-5substituted-1,2,4-triazoles were synthesised by Holla B. et. al.³⁵⁹ and reported their antibacterial activity.

Azomethines... 135

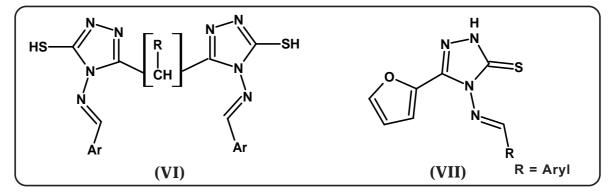
Mehta R. H. et. al.³⁶⁰ have synthesised coumarin azomethine derivatives and reported their antibacterial activity. Khalafallah A. and Hassan M. ³⁶¹ have suggested some styryl schiff's bases as potential antibacterial and antifungal agents. Sharat El-Din and Nabaweya³⁶² have described compound having good antibacterial activity.

Chohan et. al.³⁶³ have reported azomethines of type (III), which have been screened and compared for their antibacterial action against bacterial species.

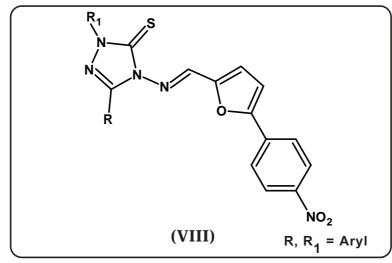


De, Biplab and co-workers³⁶⁴ have synthesised azomethines (IV) by the condensation of (imidazolinylamino) pyrazole carboxaldehydes with arylamines. Some of them were found to exhibit significant antibacterial and antifungal activities. Deshmukh M. and Doshi A. ³⁶⁵ have synthesised some new azomethines show good antimicrobial activity against test organism.

Wang, Yangang and co-workers³⁶⁶ have screened some azomethines having good plant harmone activity. Das, and co-workers³⁶⁷ have prepared schiff base of aminohydroxyguanidine (SB-ASHGS) & were tested for antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus type 5 (Ad₅) alone with other heterocyclic SB-AHGS. Solankee Anjani et. al.³⁶⁸ have suggested addition of 3,4,5-trimethoxybenzaldehyde to 4-thiazolidinones resulted in benzylidene derivatives having potential antibacterial activity.


Azomethines... 136

Ram Tilak et. al.³⁶⁹ have synthesised some schiff bases, thiazolidinones Δ^2 -triazolines and formazans bearing 2-chlorophenothiazines and screened against carrageenin induced edema in albino rats. The thiazolidinones showed promising antiinflammatory activity. Cascaval Alexandru; et. al.³⁷⁰ have synthesised azomethine of type (V) which exhibited antipyretic properties.

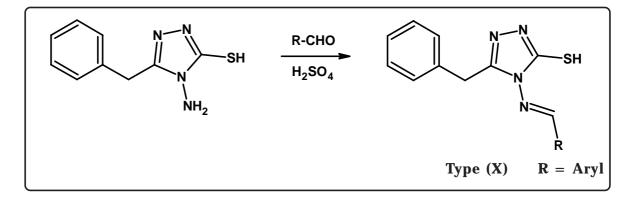

Ali, Yousif et. al.³⁷¹ have reported some schiff's base derivatives of glucose contg. acetylenic bond were also prepared hydroxybenzaldehydes were first converted to o-prop-2-ynyl-benzaldehyde followed by their condensation with glucosamine. The compounds possess bactericidal activity. Pandeya V. et. al.³⁷² have prepared schiff bases showing good activity against vibrio cholerae.

Omar and et. al.³⁷³ have described cyclocondensation of azomethines having good antischistosomal activity. Pawar R. P. et. al.³⁷⁴ have synthesised azomethines by the condensation of iodovanillin with different substituted aromatic amines showing good antibacterial activity. A novel class of acetyl ferrocene derived from schiff bases possess antimicrobial activity by Chohan and co-workers³⁷⁵. Holla, B. S. et. al.³⁷⁶ have documented azomethine (VI) bearing triazole moiety which possess good antibacterial activity. Ergenc and

Azomethines... 137

co-workers³⁷⁷ have synthesised azomethine derivatives (VII) showing antifungal activity. Holla, B. S. et. al.³⁷⁸ have prepared Mannich bases of type (VIII) as under.

B. Shivarama et. al.³⁷⁹ have synthesised azomethines which were found to possess antibacterial and antiinflammatory activity. Pascal Rotheist et. al.³⁸⁰ have reported some new azomethines as antiparasitic agents. Adnan A. et. al.³⁸¹ studied the antiinflammatory activity of some azomethines. Dimmock J. et. al.³⁸² have suggested azomethines as cytotoxic agent.


Thus with an effort to capitalize the biological potential of the heterocyclic system and to provide more interesting compounds for biological study, we have undertaken the synthesis of azomethines bearing triazole moiety.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 4,N-SUBSTITUTED BENZALAMINO-3-BENZYL-5-MERCAPTO-1,2,4-TRIAZOLES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 4,N-SUBSTITUTED BENZALAMINO-3-BENZYL-5-MERCAPTO-1,2,4-TRIAZOLES

Considerable evidence has been accumulated to demonstrate the wide applications of azomethines and also have drawn the attention of chemists due to diversified biological activities associated with it. In view of these findings, it appeared of interest to synthesise newer azomethines with better potency. Azomethines of type (X) have been prepared by the condensation of 3-mercapto-4-N-amino-5-benzyl-1,2,4-triazole with different aromatic aldehydes in presence of sulphuric acid.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, i.e. When R = 1. 3, 4-dimethoxyphenyl, molecular weight = 354, m/z = 355 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

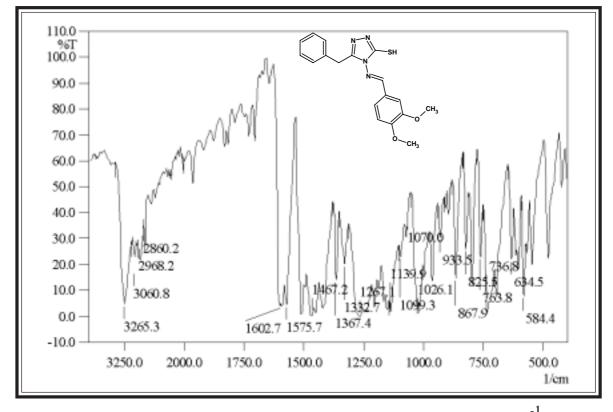
EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 4,N-SUBSTITUTED BENZALAMINO-3-BENZYL-5-MERCAPTO-1,2,4-TRIAZOLES

(A) Synthesis of Potassium phenylaceticacid hydrazide dithiocarbamate
 Part - I, Section - I(C).

(B) Synthesis of 3-Mercapto-4, N-amino-5-benzyl-1, 2, 4-triazole

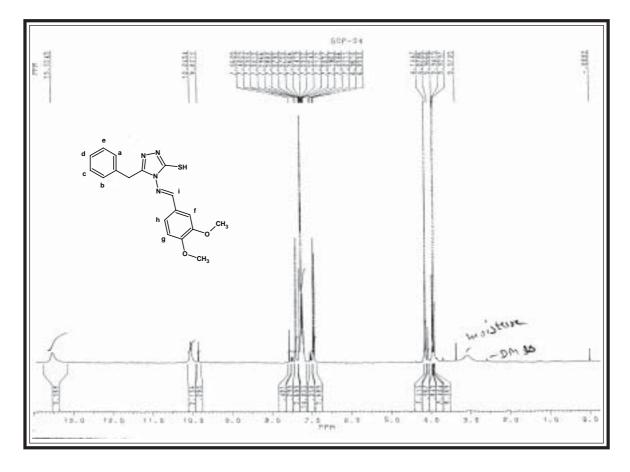
A mixture of (2.5 g, 0.01 M) potassium salt and hydrazine hydrate (0.75 g, 0.015 M) in 25 ml absolute alcohol was refluxed for 5 hrs. The reaction mixture was poured onto crushed ice and treated with gla. acetic acid. The product was filtered and crystallised from ethanol. Yield 65%, m.p. 140°C. (Anal. Found : C, 52.38 H, 4.84; N, 27.12%; $C_9H_{10}N_4S$ Requires: C, 52.41; H, 4.89; N, 27.16%).


(C) Synthesis of 4,N-(3,4-Dimethoxybenzalamino)-3-benzyl-5mercapto-1,2,4-triazole

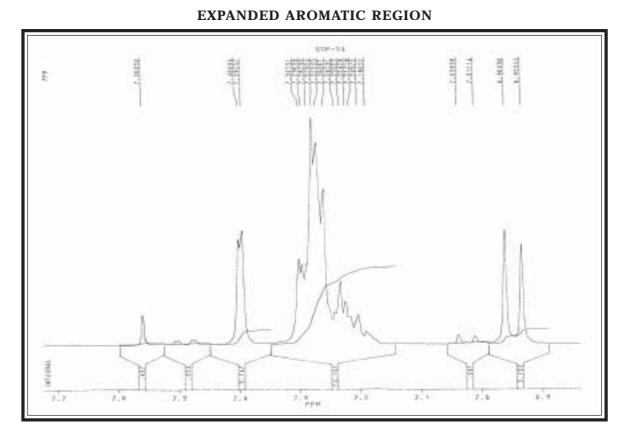
A mixture of 3-mercapto-4,N-amino-5-benzyl-1,2,4-triazole (2.06 g, 0.01 M) and veratraldehyde (1.66 g, 0.01 M) in 25 ml absolute alcohol in presence of sulphuric acid as a catalyst were refluxed for 10 hrs. The resulting mixture was poured into ice and the product was isolated and crystallised from ethanol. Yield 64%, m.p. 224°C. (Anal. Found : C, 60.96 H, 5.09; N, 15.76%; $C_{18}H_{18}N_4O_2S$ Requires: C, 61.00; H, 5.12; N, 15.81%).

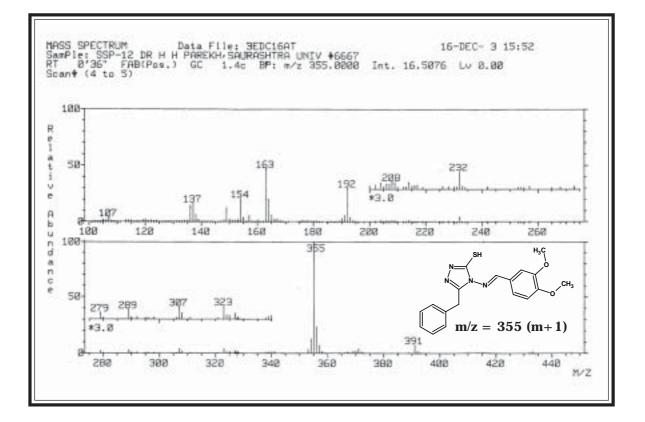
Similarly other azomethines have been synthesised. The physical data are recorded in Table No. 10

(D) Antimicrobial activity 4,N-Substituted benzalamino-3-benzyl-5mercapto-1,2,4-triazoles


Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 10

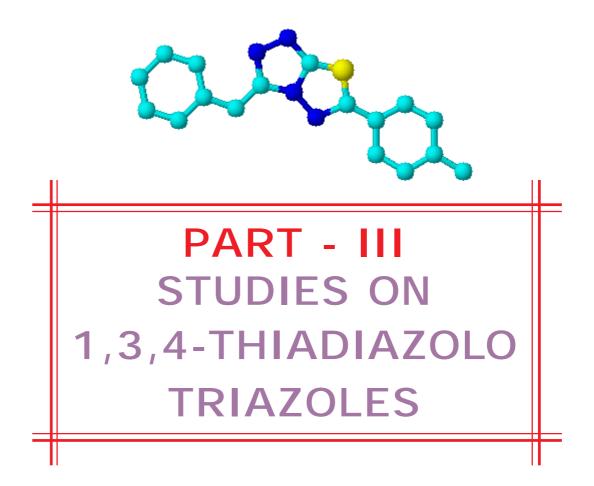
Instrument : SHIMADZU-FT-IR 8400-Spe	ctrophotometer; Frequency range	: 4000-400 cm ⁻¹ (KBr disc)
--------------------------------------	---------------------------------	--


	Vibration	Freque	D.C	
Туре	mode	Observed	Reported	Ref.
Alkane	C-H str. (asym.)	2968.2	2975-2950	434
-CH3	C-H str. (sym.)	2860.2	2880-2860	"
0	C-H def. (asym.)	1467.2	1470-1435	"
	C-H def. (sym.)	1365.5	1385-1350	"
Aromatic	C-H str.	3060.8	3080-3030	435
	C = C str.	1573.8	1585-1480	"
	C-H i.p. def.	1099.3	1125-1090	"
		1070.0	1070-1000	"
	C-H o.o.p. def.	825.5	835-810	"
Triazole	C = N str.	1602.7	1650-1600	434
	C-N str.	1332.7	1350-1200	"
	N-H str.	1026.1	1050-1010	"
	C-S str.	698.2	700-600	438


PMR SPECTRAL STUDY OF 4,N-(3,4-DIMETHOXYPHENYLAMINO)-3-BENZYL-5-MERCAPTO-1,2,4-TRIAZOLE

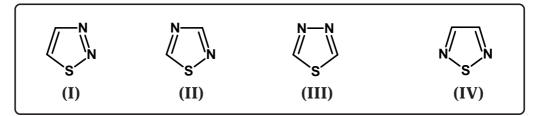
Internal Standard : TMS; Solvent : $CDCl_3 + DMSO_6$; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.92		3H	singlet	Ar-OCH ₃
2	3.94		3H	singlet	Ar-OCH ₃
3	4.14		2H	singlet	-CH ₂
4	6.94	Jgh=8.1	1H	doublet	Ar-Hg
5	7.19-7.30		6H	multiplet	Ar-Ha-e, Ar-Hh
6	7.39	Jfh=1.5	1H	doublet	Ar-Hf
7	10.04		1H	singlet	СНі



Comp. No.	R	Molecular Formula	Molecular Weight	M.P. °C	Rf [*] Value	Yield %	% of N Calcd.	itrogen Found
1	2	3	4	5	6	7	8	9
10a	С ₆ Н ₅ -	$\mathrm{C_{16}H_{14}N_{4}S}$	294	186	0.52	60	19.03	19.01
10b	$-CH = CH - C_6H_5$	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{S}$	306	181	0.63	61	18.29	18.24
10c	$2-Cl-C_6H_4$ -	$C_{16}H_{13}N_4SCl$	329	191	0.50	74	17.04	17.00
10d	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$\mathrm{C_{18}H_{18}N_4O_2S}$	354	224	0.49	64	15.81	15.76
10e	4-OH,3-OCH ₃ -C ₆ H ₃ -	$C_{17}H_{16}N_4O_2S$	340	189	0.48	60	16.46	16.41
10f	4-OH-C ₆ H ₄ -	$C_{16}H_{14}N_4OS$	310	195	0.55	64	18.05	18.01
10g	3-OH-C ₆ H ₄ -	$C_{16}H_{14}N_4OS$	310	>250	0.59	58	18.05	18.02
10h	2-OH-C ₆ H ₄ -	$C_{16}H_{14}N_4OS$	310	211	0.62	55	18.05	17.98
10i	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$C_{17}H_{16}N_4OS$	324	205	0.65	71	17.27	17.22
10j	2-OCH ₃ -C ₆ H ₄ -	$C_{17}H_{16}N_4OS$	324	178	0.73	54	17.27	17.21
10k	$3-NO_2-C_6H_4-$	$C_{16}H_{13}N_5O_2S$	339	177	0.60	66	20.64	20.61
10l	$2-NO_2-C_6H_4$ -	$C_{16}H_{13}N_5O_2S$	339	170	0.64	65	20.64	20.59

TABLE NO. 10 :PHYSICAL CONSTANTS OF 4-N-SUBSTITUTED BENZALAMINO-3-BENZYL-5-MERCAPTO-
1,2,4-TRIAZOLES

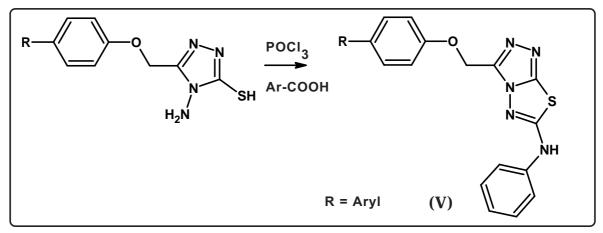

*TLC Solvent System : Ethylacetate : Hexane (2 : 8) (10a-10l)

(3:7) (10c,10d,10e)

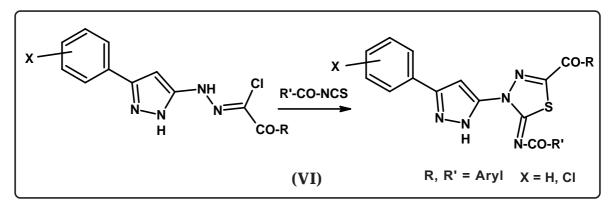
INTRODUCTION

1,3,4-Thiadiazole derivatives have been found to be potent drug in pharmaceutical industries and possess a wide spectrum of biological activities. Thiadiazole ring system consists of one sulphur and two nitrogen atoms present in a five membered ring. According to their position, thiadiazole system can be classified as 1,2,3-thiadiazoles (I), 1,2,4-thiadiazoles (II), 1,3,4-thiadiazoles (III) and 1,2,5-thiadiazoles (IV).

Fischer has described the 1,3,4-thiadiazoles in 1882, for the first time which was further developed by Bush & co-workers.Due to wide range of therapeutic activities, the compounds having thiadiazole nucleus have greatly accelerated the rate of progress in the field of pharmaceutical.


The literature of 1,3,4-thiadiazoles has been extensively reviewed by Sandstrom³⁸³ 1947, Sherman³⁸⁴ 1948, Bambas³⁸⁵ 1952.

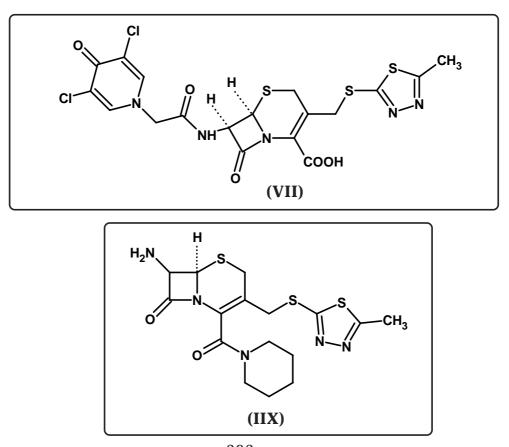
SYNTHETIC ASPECTS


Literature survey reveals that several publications and patents³⁸⁶ described the synthesis of 1,3,4-thiadiazoles as under.

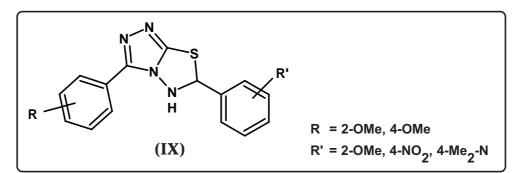
Thiadiazolotrialzoles... 146

1. Q. Bano and co-workers³⁸⁷ have synthesised 6-phenylamino 1,3,4-thiadiazoles.

2. M. K. Albrahim et. al.³⁸⁸ have synthesised thiadiazoles from hydrazinyl chloride.

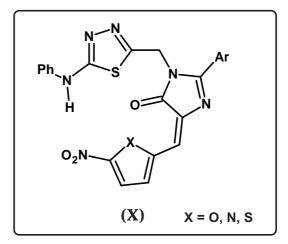

THERAPEUTIC IMPORTANCE

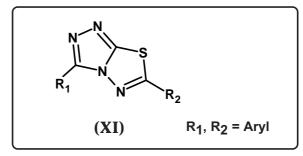
Extensive research has been carried out to enhance the activity and reduce toxicity of thiadiazole drugs. Various thiadiazole derivatives have resulted in many potential drugs and are known to exhibit a broad spectrum of biological activity.


Miller et. al.³⁸⁹ have discovered 1,3,4-thiadiazole-2-sulphonamides and this compound has been extensively investigated for its effect on salt excretion, eye pressure and as anticonvulsant³⁹⁰. R. Gerike³⁹¹ have prepared Cefazedone (VII), a thiadiazole analog of cephalosporanic acid, useful as antibacterial agent. Recently Kidwai Mazaahir et. al.³⁹² have synthesised cephalosporin derivatives

Thiadiazolotrialzoles... 147

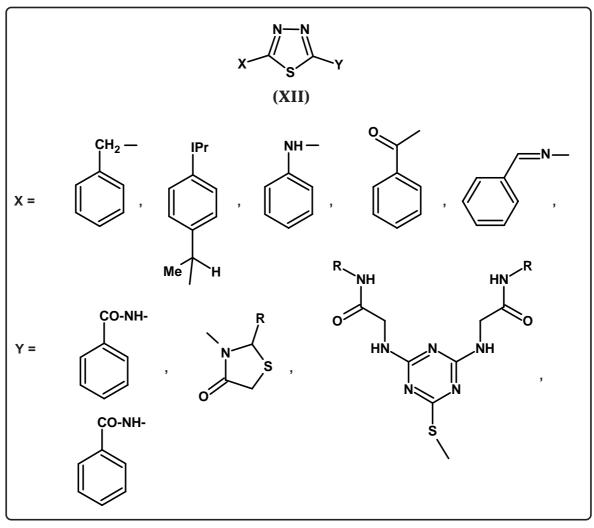
(IIX) by microwave irradiation using solid support and reported them as antimicrobial agents.


Wang Zhong-Yi and co-workers³⁹³ have synthesised some 3,6-diaryl-5,6dihydro-triazolo [3,4-b]-1,3,4-thiadiazoles (IX) and documented thier *in vivo* antibacterial and antifungal properties.

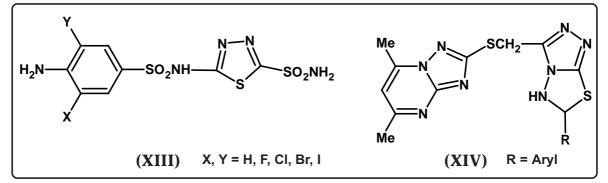

The manifold implications of 1,3,4-thiadiazoles are well proved by a large number of patents available on it as therapeutic agents. Thiadiazole derivatives are having numerous pharmacological activities like,

- 1. Insecticidal³⁹⁴
- 2. Antiviral³⁹⁵
- 3. CNS depressant³⁹⁶
- 4. Antibacterial³⁹⁷
- 5. Antifungal^{398,399}
- 6. Hypoglycemic⁴⁰⁰
- 7. Antiinflammatory^{401,402}
- 8. Antihypertensive^{403,404}
- 9. Antitumor⁴⁰⁵
- 10. Antitubercular⁴⁰⁶
- 11. Antipyretic⁴⁰⁷
- 12. Anthalmentic⁴⁰⁸

El. Sayed et. al. 409 have reported thiadiazoles (X) as potent fungicides and bactericides.



Several co-workers have reported thiadiazole derivatives having fungicidal⁴¹⁰, plant growth regulators⁴¹¹, insecticidal⁴¹², antibacterial⁴¹³ and metalloproteinase inhibitors⁴¹⁴ activity. Karimian et. al.⁴¹⁵ have prepared thiadiazole as inhibitors of cysteine activity dependant enzyme. Zhang et. al.⁴¹⁶ shown antimicrobial activity of thiadiazole derivatives where as Manjunath et. al.⁴¹⁷ reported antimicrobial and antiinflammatory activity (XI).

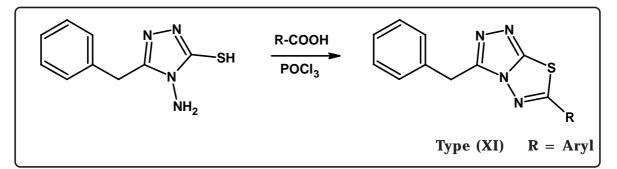

CONTRIBUTION FROM OUR LABORATORY

Parikh et. al. have used substituted thiadiazolinone⁴¹⁸, benzthiazole and s-triazine^{419,420}, 4-pyridyl⁴²¹ moieties at 5-position (Y) in 1,3,4-thiadiazole ring system and at 2-position (X) was substituted aryl, amino and s-triazine⁴²². H. H. Parekh et. al. have synthesised 1,3,4-thiadiazole having dapson^{423,424}, bis moiety at 5-position (Y) and benzalamino, benzoylamino and sulphonamido⁴²⁵, aryl⁴²⁶ moiety substituted at 2-position (X). General structure for above references are as under.

Thiadiazolotrialzoles... 150

Marc and co-workers⁴²⁷ have investigated thiadiazoles (XIII) as antitumor agents. Nalan et. al.⁴²⁸ have prepard some thiadiazoles and reported as anticancer. Some biological active thiadiazoles have synthesied by Pandey V. K. et al.⁴²⁹. Ma, Zhong et. al.⁴³⁰ have screened thiadiazoles (XIV) as fungicides.

Many co-workers have reported 1,3,4-thiadiazole derivatives as antitumor 431 , nicotinic α_7 receptor 432 and antiinflammatory agents 433 .


In view of the therapeutic activities of 1,3,4-thiadiazoles, it was contemplated to synthesise 1,3,4-thiadiazolo triazoles in search of agents possessing higher biological activity with least side effects, which have been described as under.

SECTION - I : SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES SECTION - II: SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES

SECTION - I

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES

The study of 1,3,4-thiadiazoles have revealed that thiadiazole derivatives are valuable drugs for various diseases. These observations led us to synthesise 1,3,4-thiadiazolo-triazoles of type (XI) by the cyclisation of 3-mercapto-4-N-amino-5-benzyl-1,2,4-triazole with different aromatic acids in presence of phosphorous oxychloride.

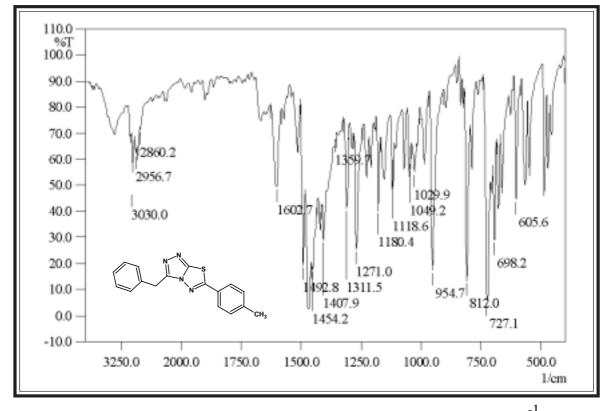
The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, When i.e. $R = \rho$ -tolyl, molecular weight = 306, m/z = 307 (m+1).

The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES

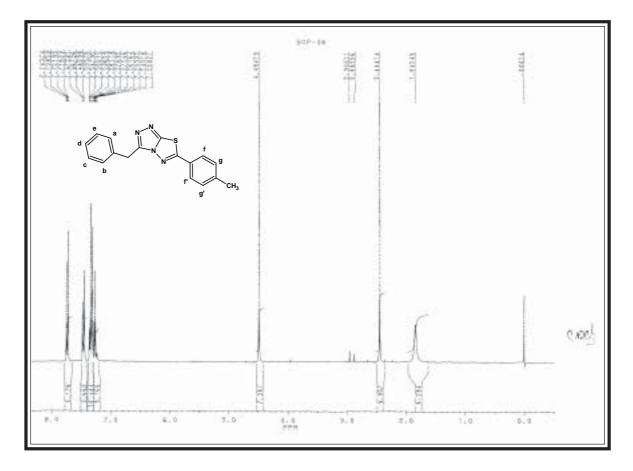
- **(A)** Synthesis of Potassium phenylacetic acid hydrazide dithiocarbamate Part - I, Section - I(C).
- (B) Synthesis of 3-Mercapto-4, N-amino-5-benzyl-1, 2, 4-triazole
 Part II, Section I(B).
- (C) Synthesis of 2-(ρ-Tolyl)-4-benzyl-1,2,4-triazolo [4,5-b]-1,3,4-thiadiazole


A mixture of 3-mercapto-4,N-amino-5-benzyl-1,2,4-triazole (2.06 g, 0.01 M) and ρ -toluic acid (1.36 g, 0.01 M) in 20 ml phosphorous oxychloride were refluxed for 10 hrs in oilbath. The resulting mixture was poured into ice and neutralised with sodium bicarbonate. The product was isolated and crystallised from ethanol. Yield 65%, m.p. 164°C. (Anal. Found : C, 66.59 H, 4.56; N, 18.26%; C₁₇H₁₄N₄S Requires: C, 66.64; H, 4.61; N, 18.29%).

Similarly other 1,3,4-thiadiazolo-triazole derivatives have been synthesised. The physical data are recorded in Table No. 11

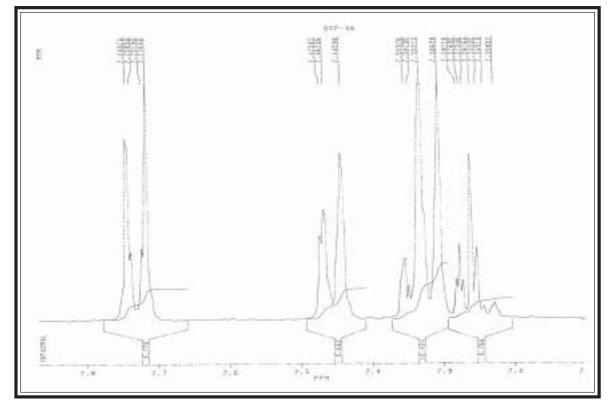
(D) Antimicrobial activity 2-Aryl-4-benzyl-1,2,4-triazolo [4,5-b]-1,3,4thiadiazoles

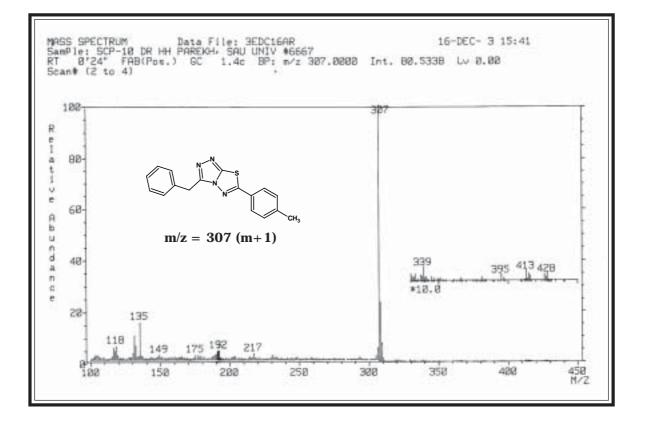
Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 11

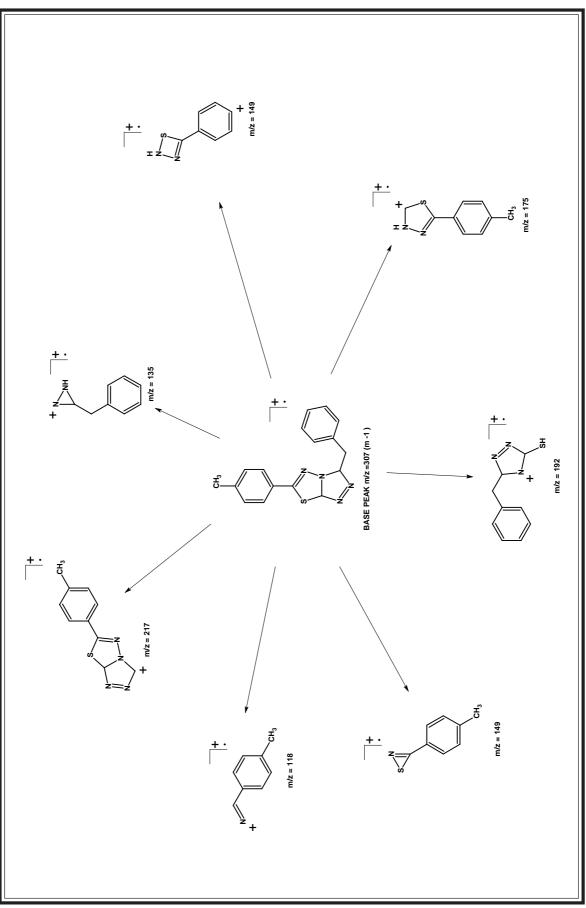

IR SPECTRAL STUDY OF 2-(ρ -TOLYL)-4-BENZYL-1,2,4-TRIAZOLO-[4,5-b]-1,3,4-THIADIAZOLE

Instrument : SHIMADZU-FT-IR 8400-Sp	ectrophotometer; Frequency range :	$: 4000-400 \text{ cm}^{-1}$ (KBr disc)

Trans	Vibration	Freque	Frequency in cm ⁻¹			
Туре	mode	Observed	Reported	Ref.		
Alkane	C-H str. (asym.)	2956.7	2975-2950	434		
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"		
5	C-H def. (asym.)	1454.2	1470-1435	"		
	C-H def. (sym.)	1359.7	1385-1350	"		
Aromatic	C-H str.	3030.0	3080-3030	435		
	C = C str.	1492.8	1585-1480	"		
	C-H i.p. def.	1118.6	1125-1090	"		
		1029.9	1070-1000	"		
	C-H o.o.p. def.	812.0	835-810	"		
Triazole	C = N str.	1602.7	1650-1600	434		
	C-N str.	1311.5	1350-1200	"		
	N-H str.	1029.0	1050-1010	"		
		(overlapped)				
	C-N-C str.	1049.2	1070-1000	"		
Thiadiazole	C-S-C str.	605.6	720-570	"		


PMR SPECTRAL STUDY OF 2-(ρ -TOLYL)-4-BENZYL-1,2,4-TRIAZOLO-[4,5-b]-1,3,4-THIADIAZOLE



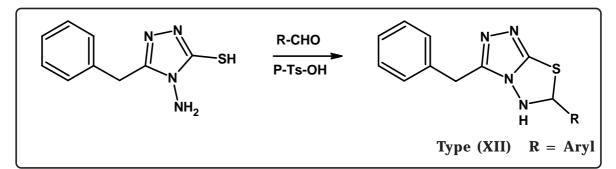

Internal Standard : TMS; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (δ ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	2.44		3H	singlet	Ar-CH ₃
2	4.48		2H	singlet	-CH ₂
3	7.27		2H	doublet	Ar-Hc, Ar-He
4	7.30-7.35		3H	multiplet	Ar-Ha, Ar-Hb,
					Ar-Hd
5	7.45	Jgf= 7.5	2H	doublet	Ar-Hgg'
6	7.73	Jfg= 8.1	2H	doublet	Ar-Hff'

EXPANDED AROMATIC REGION

Comp.	R	Molecular	Molecular	M.P.	Rf*	Yield		litrogen
No. 1	2	Formula 3	Weight 4	о _С 5	Value 6	% 7	Calcd. 8	Found 9
11a	2-0AC-C ₆ H ₅ -	$C_{18}H_{14}N_4O_2S$	346	181	0.48	64	15.99	15.92
11b	$4-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	$C_{16}H_{13}N_{5}S$	307	170	0.69	72	22.78	22.72
11c	$2-NH_2-C_6H_4-$	$C_{16}H_{13}N_{5}S$	307	127	0.65	70	22.78	22.74
11d	$-CH = CH - C_6H_5$	$C_{18}H_{14}N_{4}S$	318	158	0.58	58	17.60	17.56
11e	$4-Cl-C_6H_4$ -	$C_{16}H_{11}N_4SCl$	327	151	0.42	70	17.14	17.11
11f	$2 - F - C_6 H_4$ -	$C_{16}H_{11}N_4SF$	310	138	0.55	65	17.65	17.59
11g	2-OH-C ₆ H ₄ -	$C_{16}H_{12}N_4OS$	308	155	0.61	60	18.17	18.14
11h	$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{OS}$	322	166	0.54	54	17.38	17.32
11i	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4\text{-}$	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{S}$	306	164	0.50	65	18.29	18.26
11j	$2-CH_3-C_6H_4-$	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{S}$	306	178	0.52	61	18.29	18.23
11k	-CH ₂ -C ₆ H ₅ -	$\mathrm{C}_{17}\mathrm{H}_{14}\mathrm{N}_{4}\mathrm{S}$	306	145	0.58	72	18.29	18.25
111	$-C_5H_4N$	$C_{15}H_{11}N_{5}S$	293	144	0.60	64	23.87	23.84

TABLE NO. 11 : PHYSICAL CONSTANTS OF 2-ARYL-4-BENZYL-1,2,4-TRIAZOLO (4,5-b)-1,3,4-
THIADIAZOLES


*TLC Solvent System : Ethylacetate : Hexane (2 : 8) (11a-11l)

(3:7) (11a,11k)

SECTION - II

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES

1,3,4-Thiadiazole derivatives are associated with broad spectrum of pharmacological activity. In view of these findings, it appeared of interest to synthesise newer 1,3,4-thiadiazole derivatives with better potency. 1,3,4-thiadiazoles of type (XII) have been prepared by the condensation of 3-mercapto-4,N-amino-5-benzyl-1,2,4-triazole with different aromatic aldehydes in presence of ρ -toluene sulphonic acid.

The constitution of the synthesised products have been characterised by using elemental analyses, infrared and ¹H nuclear magnetic resonance spectroscopy and mass spectrometry also. In mass spectrometry the m/z value indicate the molecular weight, when i.e. R = 3,4-dimethoxyphenyl, molecular weight = 354, m/z=355 (m+1).

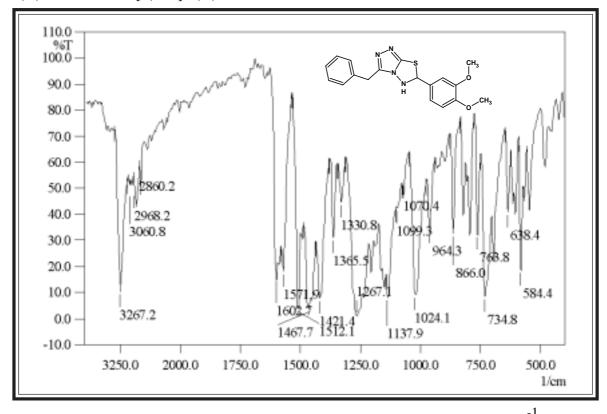
The products have been screened for their *in vitro* biological assay like antibacterial activity towards Gram positive and Gram negative bacterial strains and antifungal activity towards *Aspergillus niger* at a concentration of 40 μ g/ml. The biological activities of synthesised compounds were compared with standard drugs.

EXPERIMENTAL

SYNTHESIS AND BIOLOGICAL EVALUATION OF 2-ARYL-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO [4,5-b]-1,3,4-THIADIAZOLES

- **(A)** Synthesis of Potassum phenylacetic acid hydrazide dithiocarbamate Part - I, Section - I(C).
- (B) Synthesis of 3-Mercapto-4, N-amino-5-benzyl-1, 2, 4-triazole
 Part II, Section I(B).
- (C) Synthesis of 2-(3,4-Dimethoxyphenyl)-4-benzyl-2,3-dihydro-1,2,4triazolo [4,5-b]-1,3,4-thiadiazole

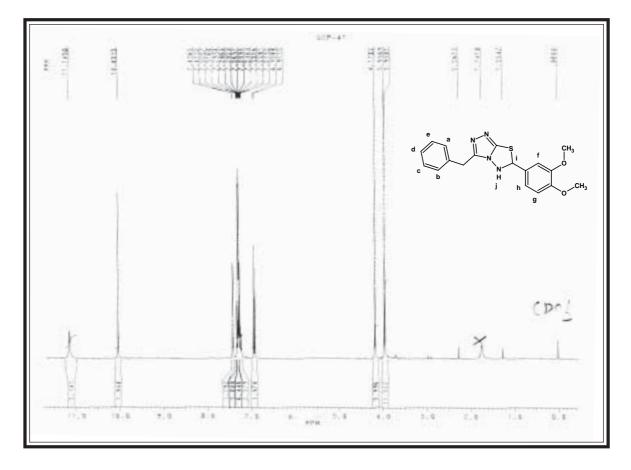
A mixture of 3-mercapto-4,N-amino-5-benzyl-1,2,4-triazole (2.06 g, 0.01 M) and veratraldehyde (1.66 g, 0.01 M) in 20 ml dry DMF and ρ -toluenesulphonic acid (50 mg) were refluxed for 12 hrs. The resulting mixture was poured into ice. The product was isolated and crystallised from ethanol. Yield 74%, m.p. 144°C. (Anal. Found : C, 60.94 H, 5.08; N, 15.78%; C₁₈H₁₈N₄O₂S Requires: C, 61.00; H, 5.12; N, 15.81%).


Similarly other 1,3,4-thiadiazolo triazole derivatives have been synthesised. The physical data are recorded in Table No.12

(D) Antimicrobial activity 2-Aryl-4-benzyl-2,3-dihydro-1,2,4-triazolo[4,5-b]-1,3,4-thiadiazoles

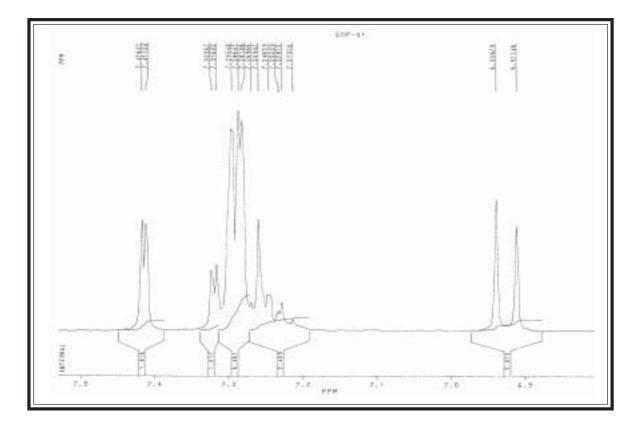
Antimicrobial testing was carried out as described in Part - I, Section-I(D). The zone of inhibition of the test solutions are recorded in Graphical Chart No. 12

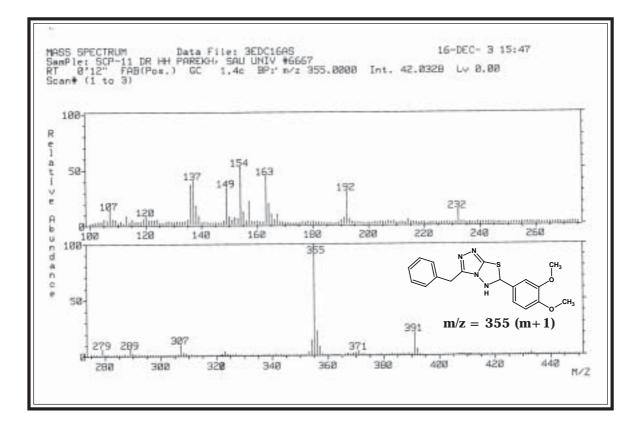
161


IR SPECTRAL STUDY OF 2-(3,4-DIMETHOXYPHENYL)-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO-[4,5-b]-1,3,4-THIADIAZOLE

Instrument : SHIMADZU-FT-IR 8400-S	ectrophotometer; Frequency range	$: 4000-400 \text{ cm}^{-1}$ (KBr disc)

Trans	Vibration	Freque	Frequency in cm ⁻¹			
Туре	mode	Observed	Reported	Ref.		
Alkane	C-H str. (asym.)	2968.2	2975-2950	434		
-CH ₃	C-H str. (sym.)	2860.2	2880-2860	"		
5	C-H def. (asym.)	1467.7	1470-1435	"		
	C-H def. (sym.)	1365.5	1385-1350	"		
Aromatic	C-H str.	3060.8	3070-3030	435		
	C = C str.	1512.1	1585-1480	"		
	C-H i.p. def.	1099.3	1125-1090	"		
		1070.4	1070-1000	"		
Triazole	C = N str.	1602.7	1650-1600	434		
	C-N str.	1330.8	1350-1200	"		
	N-H str.	1024.1	1050-1010	"		
Thiadiazole	C-S-C str.	584.4	720-570	"		
	N-H str.	3267.2	3450-3250	"		
	N-H def.	1571.9	1650-1580	"		

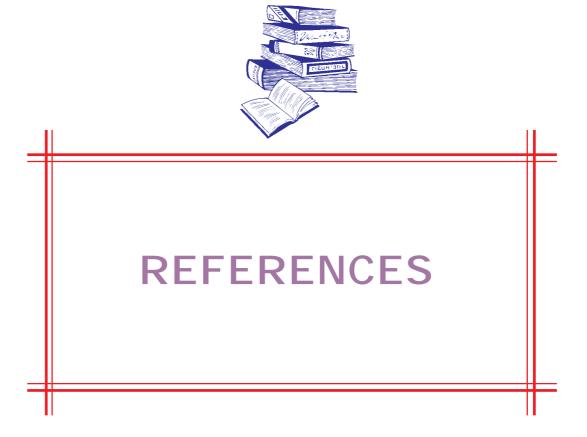

PMR SPECTRAL STUDY OF 2-(3,4-DIMETHOXYPHENYL)-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO-[4,5-b]-1,3,4-THIADIAZOLE



Internal Standard : TMS; Solvent : CDCl₃ ; Instrument : BRUKER Spectrometer (300 MHz)

Signal No.	Signal Position (ð ppm)	J. Value in Hz	Relative No. of Protons	Multiplicity	Inference
1	3.95		3H	singlet	Ar-OCH ₃
2	3.95		3H	singlet	Ar-OCH ₃
3	4.17		2H	singlet	-CH ₂
4	6.92	Jgh=8.1	1H	doublet	Ar-Hg
5	7.25		1H	singlet	Ar-Ha
6	7.28-7.29		4H	multiplet	Ar-Hc, Ar-Hd,
					Ar-e, Ar-Hh
7	7.31		1H	doublet	Ar-Hb
8	7.41	Jfh = 1.6	1H	doublet	Ar-Hf
9	10.03		1H	singlet	СНі
10	11.14		1H	singlet	СНј

EXPANDED AROMATIC REGION



Comp. No.	R 2	Molecular Formula	Molecular Weight	M.P. °C	Rf [*] Value	Yield %	% of N Calcd. 8	litrogen Found
1	2	3	4	5	6	7	8	9
12a	С ₆ Н ₅ -	$C_{16}H_{14}N_4S$	294	158	0.54	71	19.03	19.00
12b	$-CH = CH - C_6H_5$	$C_{18}H_{16}N_{4}S$	320	132	0.59	73	17.49	17.43
12c	$2-Cl-C_6H_4$ -	$C_{16}H_{13}N_4SCI$	329	128	0.65	65	17.04	17.01
12d	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{18}H_{18}N_4O_2S$	354	144	0.71	74	15.81	15.78
12e	4-OH,3-OCH ₃ -C ₆ H ₃ -	$C_{17}H_{16}N_4O_2S$	340	185	0.68	64	16.46	16.42
12f	4-OH-C ₆ H ₄ -	$C_{16}H_{16}N_4OS$	310	150	0.50	70	18.05	18.03
12g	3-OH-C ₆ H ₄ -	$C_{16}H_{16}N_4OS$	310	164	0.61	61	18.05	18.01
12h	2-OH-C ₆ H ₄ -	$C_{16}H_{16}N_4OS$	310	161	0.49	65	18.05	17.99
12i	$4\text{-OCH}_3\text{-C}_6\text{H}_4\text{-}$	$C_{17}H_{16}N_4OS$	324	178	0.62	69	17.27	17.22
12j	2-OCH ₃ -C ₆ H ₄ -	$C_{17}H_{16}N_4OS$	324	165	0.74	64	17.27	17.24
12k	3-NO ₂ -C ₆ H ₄ -	$C_{16}H_{13}N_5O_2S$	339	140	0.69	60	20.64	20.61
121	$2-NO_2-C_6H_4$ -	$C_{16}H_{13}N_5O_2S$	339	135	0.78	68	20.64	20.59

TABLE NO. 12 : PHYSICAL CONSTANTS OF 2-ARYL-4-BENZYL-2,3-DIHYDRO-1,2,4-TRIAZOLO (4,5-b)-1,3,4-
THIADIAZOLES

*TLC Solvent System : Ethylacetate : Hexane (2 : 8) (12a-12l)

- C. P. Singh and A. C. Ojha; 1. J. Indian Chem. Soc., 27, 1172 (1980). 2. A. I. Vogel; "A Text Book of Practical Organic Chemistry", Edition IV, 807 (1989). 3. A. I. Vogel; "A Text Book of Practical Organic Chemistry", Editon IV, 1205 (1989). M. Giula, Ni. Luisa and F. Paola; 4. J. Heterocycl. Chem., 34, 963 (1997). Y. Zikan and S. Rad; 5. Chem. Abstr., 109, 170344b (1988). 6. A. I. Eid and S. Rashad; Egypt J. Pharm. Sci., 20(1-4), 107 (1979); Chem. Abstr., 109, 170344b (1988). 7. Ikeda Masazumi, Maruyama Kazumi, Nobuhara Youichi, Yamado Toshihiro; Chem. Pharm. Bull., 44(9), 1700 (1996). 8. Takashima, Yoriyaki, Nasumo Ichiro and Yamamoto Hiroshi; Chem. Abstr., 126, 7984 (1997). S. Sharma and M. S. Bhatia; 9. J. Indian Chem. Soc., 66, 116 (1989); Chem. Abstr., 112, 98439d (1992). 10. Y. Zikan and S. Rad; J. Heterocycl. Chem., 34, 601 (1997). 11. M. D. Treadway and Wu Tai Teh; PCT Int. Appl. WO 98, 56767; Chem. Abstr., 130, 52416n (1999). E. V. Pimenova, R. A. Khamatgaleev and E. V. Voronina; 12. Khim-Farm. Zh., 32(8), 272g (1998); Chem. Abstr., 130, 66441d (1999). 13. Haiza Mohammed; Al. Azhar Bull. Sci., 8(2), 445 (1997). 14. Banks Bernard Joseph, Webster Richard Andrew Bentley; Eur. Pat. Appl. EP. 95, 9071 (1998); Chem. Abstr., 131, 351325w (1999). 15. S. sharma and M. S. Bhatia; J. Indian Chem. Soc., 66, 116 (1989); Chem. Abstr., 112, 98439d (1992). 16. Ashok Kumar, Pratibha Sharma and Aradhana Nigam; Indian J. Chem., 36(B), 445 (1997). 17. M. Giula, Nl. Luisa and F. Paola; J. Heterocycl. Chem., 34, 963 (1997). S. D. Bhardwaj and V. S. Jolly; 18. Orient J. Chem., 12, 185 (1996); Chem. Abstr., 126, 144217u (1997). 19. E. J. Barseiro, E. J. Freitas Antonio; Quim. Nova, 1995, 18(2), 138-43; Chem. Abstr., 128, 154079f (1998). T. L. El-Emery, E. A. Bakhite; 20. Chem. Abstr., 130, 252289k (1999). R. P. Jain, P. Padmaja, J. Bhadauria and S. Tomar; 21.
 - J. Indian Chem. Soc., 77, 42 (2000).

22. X. X. Chun, Xu Xue-Yu, Li. Xio-Lu Meng, Ji-Ben; Chin J. Chem., 19(4), 398-403 (Eng) (2001); Chem. Abstr., 135, 76829d (2001). 23. Freddy Havaldar, P. S. Fernandes ; J. Indian Chem. Soc., 65(10), (1988), 619-624 (Eng.); Chem. Abstr., 110, 231507b (1989). Carbau, Romuald : Mowhray Clhorles Erie ; Perros, Manoussos ; Shipple Paul Anthens ; Wood, 24. Anthony; PCT Int. Appl, WO 02 04, 424 (Cl. CO7D 231/12); Chem. Abstr., 136, 118445d (2002). 25. Atkinson R. N. Gross M. F.; PCT Int. Appl., WO 03 37, 274 (Cl. A cl k) (2003) ; Chem. Abstr., 138, 368888z (2003). 26. Murakanii, Hiroshi, Masuzawa Yoshihide, Takii Shinji ; Chem. Abstr., 139, 117421f (2003). 27. Gellibert Francoise, Jeanne Glaxo ; PCT Int. Appl., WO 02, 62781 (Cl. CO7D401/14) (2002) ; Chem. Abstr., 137, 169514d (2002). Laborde Edgardo, Villar Hugo O; 28. PCT Int. Appl., WO 02, 64135 (Cl. A 61 K 31/41) (2002) ; Chem. Abstr., 137, 169526j (2002). 29. Andrew Thurkaub, Zhang Xiaoyen, Hexia Shu, Chliger Robeat ; PCT Int. Appl., WO 02 49993 (Cl. CO7D) (2002); Chem. Abstr., 137, 78952d (2002). 30. Nagaaki Sato, Toshiyuki Thakahush, Takanoba Shibata ; J. Med. Chem., 46, 666 (2003). 31. Merck Patent, G. M. B. Hi Yamanouch Pharama Co.; Gen. Offen DE 10 149370 (Cl. CO7D 403/14) (2003) ; Chem. Abstr., 138, 304276r (2003). 32. Jacques Dumas, Scott W. J., Elting James, Hatoum M. H.; PCT Int. Appl., WO 03 68223 (Cl. A 61 K 31/415) (2003) ; Chem. Abstr., 139, 197476c (2003). 33. David L. S., David G. Brummell et. al.; J. Med. Chem., 44, 78-93 (2001). 34. T. Van Herk, J. Brussec, A. M. C. H. Vanden, Nienwendisk ; J. Med. Chem., 46, 3945 (2003). 35. Barber Christopher, Gordon Maw, Graham Nigel; Eur. Pat. Appl., EP 1241170 (Cl. CO7D 487/14) (2002); Chem. Abstr., 137, 232664v (2002). 36. Nishimura Tsohihiro, Fushimi Nobuniko, Fujikura Hideki ; PCT Int. WO 02 68439 (Cl. CO7H 17/02) (2002); Chem. Abstr., 137, (2002). 37. Okada Itara, Kikutake Kazuhiko ; Chem. Abstr., 138, 401728x (2003). Wardakhan W. W., Agami S. M.; 38. Egypt. J. Chem., 44 (4-6), 315-33 (2001); Chem. Abstr., 137, 125103q (2002). Chernons V. A., Bratenko M. K., Bukachuk O. M., Baranov L. Y.; 39. Chem. Abstr., 139, 52931n (2003).

- 40. Hirai Kenji, Uchida Atsushi, Watanabe Atsuko, Abe Tacko, Ueda Taknya ;
 PCT Int. Appl. WO 02 66439 (Cl. CO7D 231/20) (2002) ; *Chem. Abstr.*, 137, 201304g (2002).
- Deninno M. P., Hugher Berna dettle, Kemp M. I., Palman M. J.;
 PCT Int. Appl. WO 03 37899 (Cl. CO7D 481/04) (2003); *Chem. Abstr.*, 138, 368907e (2003).
- Adnan A. Bekhil, Hesham T. U. Fahmy, Azzaim Baraka ; Eur. J. Med. Chem., 38, 27-36 (2003.)
- Brown D. L., Grameto M. J., Ladwig C. L. John J.;
 Eur. Pat. Appl. EP 1251126 (Cl. CO7D 231/12) (2002) ; *Chem. Abstr.*, 137, 310913s (2002).
- Berta Daniela, Felder Eduard, Vulpetti Anna, Villa Marzia ;
 PCT Int. Appl. WO 02 62804 (Cl. CO7D 498/04) (2002) ; *Chem. Abstr.*, 137, 169517g (2002).
- Pevarello Paolo, Orsini Paolo, Traquandi Gabriell, Varasi Mario, Longo Antonio ;
 PCT Int. Appl. WO 02 48114 (Cl. CO7D 231/40) (2002) ; *Chem. Abstr.*, 137, 41193c (2002).
- 46. Drysolale M. J., Dymock B. W., Workman Paul et al.;
 PCT Int. Appl. WO 03 55860 (Cl. CO7D 231/12) (2003); *Chem. Abstr.*, 139, 101122k (2003).
- 47. Yu Kuolong, Civiello R. L., Combrink K. D, Gulgere H. B., Sinny, Wang Xiang Dang;
 U. S. US Pat. Appl. US 99208 (Cl. CO7D 417/20) (2002); Chem. Abstr., 137, 125159n (2002).
- Anantonarayan Ashok, Clare Michael, Collins P. W., Crich J. Z.; Chem. Abstr., 138, 137307t (2003).
- L. Claisen and O. Lowmann; Chem. Ber., 21, 1149 (1988).
- 50. A. Quelico; Chem. Heterocycl. Compd. 17, 1 (1962).
- L. S. Crawley and W.J. Fanshawe ;
 J. Heterocycl. Chem., 14, 531 (1977).
- 52. Vamanouchi Pharm. Co. Ltd.;
 Jpn. Kokai koho JP 58, 148, 858 (1982) (Cl. 107D 207/333) (1983) Appl 82/30045 (1982);
 Chem. Abstr., 100, 34538 (1984).
- P. T. Gallagher, T. A. Hicka and G. W. Mullier (Lilly Ind. Ltd.);
 Eur. Pat. EP 2, 57, 882 (1988); *Chem. Abstr.*, 108, 6499k (1988).
- 54. A. Ando and R. W. Stevens;
 PCT Int. Appl. WO 94, 12, 481 (Cl. C07 D 261/04); Chem. Abstr., 122, 56037x (1995).
- T. Tochiro, K. Shrji, I. Shinji, M. Hiroshi, S. Akira and V. Hiroshi ;
 Ger. Offen. DE 3, 237, 149 (Cl. C07 A 261/14); (1983); Chem. Abstr., 99, 88188 (1984).
- 56. T. U. Quazi ;
 Pak. J. Sci. Ind. Res., 27, 326 (1984); Chem. Abstr., 103, 12339m (1985).
- 57. Nippon Chemiphar Co. Ltd.;
 Jpn. Kokai Tokkyo koho JP 58, 46, 077 (83,46, 077) (Cl. C07 A 261/14) (1983); Chem. Abstr.,
 99, 17574 (1984).
- T. Taate, K. Natira and H. Fukhola ;
 Chem. Pharm. Bull. 35(9), 37769 (1987); Chem. Abstr., 108, 186621e (1988).
- 59. B. Victor J. Safir and Sidney R.
 (American Cyanamid Co.) Brit. 1, 178064 (Cl C07D) (1970); *Chem. Abstr.*, 72, 79017d (1970).

- 60. R. Maior, B. Eisele, P. Mutler and H. Grube;
 Ger., Offen. DE 3621372 (1988); *Chem. Abstr.*, 108, 67456p (1988).
- 61. S. Suzuki, K. Ueno and K. Mori ;
 Yakugaku Kenkua, 34, 224-31 (1962); Chem. Abstr., 57, 16754 (1962).
- G. P. Reddy, E. Rajendra and A. K. Murthy ; Indian J. Heterocycl. 3, 233 (1994); Chem. Abstr., 122, 105724e (1995).
- 63. K. Hass Duane, B. Carr John;
 U.S. 3,879,532 (Cl 242-272 A 61k) (1975); Chem. Abstr., 83, 108626n (1975).
- 64. D. J. David, D. B. Allon and E. A. Frederick ;
 Ger. Offen. 2, 723688 (CE A 01 N9/28) 22 DCI, 1977 ; Chem. Abstr., 88, 132015k (1978).
- 65. C. P. Alfred, C. David, Herman, D. Nancy, B. Daniel;
 PCT. Int. Appl. WO 95 22, 9103 (1995); US Appl. 202, 394, 42 pp (1994); *Chem. Abstr.*, 124, 3055m (1996).
- H. Katsumasa, N. Shigehide, H. Kenji; Chem. Abstr., 136, 340672j (2002).
- 67. M. Scobie and M. D. Threadojill;
 J. Org. Chem., 59, 7008 (1994); Chem. Abstr., 122, 10090f (1995).
- R. Jain, D. D. Agarwal and Damodharan;
 J. Ind. Chem. Soc. 72, 825-827 (1995).
- B. Maggio, G. Daidone, D. Raffa, F. Plescia, VMC Cutuli; Archiv Der Pharmazic, 332(2), 50-54 (1999).
- C. B. Xue, J. Roderick, S. Mousa, R. E. Olason, W. F. Degrado;
 Bio-organic and Medicinal Chemistry Letters, 8(24), 3499-3504 (1998).
- M. Masui, H. Yasushi; *Chem. Abstr.*, **128**, 13256z (1998).
- 72. K. V. Reddy, S. G. Rao, A. V. Subba;
 Indian J. Chem., Sec. B; Org. Chem., Ind. Med. Chem., 37(B)7, 677-699 (1988); Chem. Abstr., 129, 260397p (1998).
- J. Nyitrai, N. Joseph, S. Gyala et al.; Chem. Abstr., 128, 294778h (1998).
- 74. A. Mishra, J. K. Sanmati, J. Asthana;
 Orient J. Chem., 14(1), 151-152 (1998); Chem. Abstr., 128, 216538m (1998).
- 75. T. D. Aicher, B. Balkam, P. A. Bell, L. J. Brand et al.;
 J. Med. Chem., 41(23), 4556-4566 (1998); Chem. Abstr., 129, 343429b (1998).
- R. Ulrich, H. Rolf; Chem. Abstr., 134, 311203k (2001).
- 77. M. Dauria;
 Heterocycles, 50(2), 1115-1136 (1999).
- Y. N. Manohara, P. V. Nayak, S. Mohan;
 Asian J. Chem., 11(1), 253-256 (1999).
- R. C. Khunt, N. J. Datta, F. M Bharmal, G. P. Mankad and A. R. Parikh Ind. J. Chem., 10, 97, (2000).

- 80. P. M. Patel, A. R. Parikh,
 - J. Inst. Chemists (India). 72(5), 193, (2000).
- N. J. Datta, N. S. Shah, R. C. Khunt, A. R. Parikh, J. Inst. Chemists (India), 72(5), 193, (2000).
- B. P. Kansagara, H. H. Bhatt, A. R. Parikh, Ind. J. Heterocyclic Chm., 12, 61-64, (2002).
- N. A. Vekariya, M. D. Khunt, A. R. Parikh Ind. J. Chem., 42(B), 421, (2003).
- Sushil Korgaokar, Pankaj Patel, M. Shah, Hansa Parekh, J. Inst. Chem., 68(V), 143 (1996).
- A. H. Bhatt, H. H. Parekh, A. R. Parikh, *Heterocyclic Communication.*, Vol.4, No.4, (1998).
- Rajeev Doshi, Preeti Kagathara, Hansa Parekh,
 I. J. Chem., Vol. **38(B)**, 348-352, (1999).
- Manish Shah, Pankaj Patel, Sushil Korgaokar, Hansa Parekh Ind. J. Chem., Vol. 35(B), 1282-1286, (1996).
- Xin-Ping Hui, Chang-Hu Chu & Zi-Yi Zhang;
 Indian. J. Chem., 41(B), 2176-2179, Oct (2002).
- Ori, Chananamin; Wang, Yangeng; Zhang, Guanxin; Feng, Shujuan; Chem. Abstr., 137, 370004f, (2002).
- Archana, V. K. Srivastava, Ramesh Chandra & Ashok Kumar Indian J. Chem., 41(B), 2371-2375, Nov. (2002).
- Wu, Chengde; Raju, Bore Gowda; Krgan, Timothy; Blok, Natalie; Chem. Abstr., 137, 93741e No.7 (2002).
- Caraline Charlier, Catherin Michaux ;
 Eur. J. Med. Chem., 38, 645-659 (2003).
- 93. A. L. Barry;
 The Antimicrobial Susceptibility Test Principle and Practises edited by Illus Lea and Febiger;
 (Philadelphia Pel. U.S.A.) 180; Bio. Abstr., 64, 25183 (1970).
- 94. J. Elguero; In Comprehensive Heterocyclic Chemistry, eds., A. R. Katritzky and C. W. res., Vol 5, Ch. 404.

95. R. S. Theobald; *Rodd's Chemistry of Carbon Compounds*, Ed. M. F. Ansell, Vol. IV, Part C, Ch. 16 2nd Edition, (Elsenier Science Publishers B. V., Amsterdam) 59 (1998).

- A. M. Fahmy, M. Hassan, A. A. Khalf, R. A. Ahmed;
 Rev. Roum. Chim. 33(7), 755-61 (1998); *Chem. Abstr.*, 111 77898 (1989).
- A. K. Padya, K. Jaggi, V. Lakshminarayana, C. S. Pande; J. Indian Chem. Soc. 75(2), 104-105 (1998).
- V. Gohanmukkala, A. Subbaraju, R. Naykula and D. Parmeswara, Indian J. Heterocyclic Chem., 4, 87-92 (1994).
- M. Hassaneen Hamdi, A. E. Hamad, A. H. M. Hiyam;
 Salter Lett., 8(5), 27582 (1989); Chem. Abstr., 111, 57611 (1989).

References... 171

- 100. M. A. El. Hashah, M., El-Kady, M. A. Saiyed, A. A. Elsawy;
 Egypt. J. Chem., 27(6), 715-21 (1985); Chem. Abstr., 105, 20868u (1986).
- 101. A. K. Reda, A. A. Khalaf, M. T. Zimaltu, A. M. Khalil, A. M. Kaddah and H. A. Al-Rifuie; *J. Indian Chem. Soc.* 68, 47-51 (1991).
- 102. Delay Francois (Fermenich S. A.) Patent Schrift (Switz); Chem. Abstr., 117, 90276f (1992).
- 103. P. Desaea; A. Nunrich; M. Carderny and G. Devaux; Eur. J. Med. Chem., 25, 285 (1990).
- 104. Y. Hiroyuti, O. Mocoto, et al.;
 Eur. Pat. Appl. Ep 295695 (Cl. C07D 40/16) (1988); Chem. Abstr., 111, 23510 (1989).
- 105. K. Zalgislaw, and A. Seffan ;
 Acta. Pol. Pharm. 36(6), 645 (1979); Chem. Abstr., 93, 204525e (1980).
- 106. S.S. Nayal and C.P. Singh;Asian J. Chem. 11, 1, 207-212 (1999).
- 107. K. Wellinga, H. H. Eussen Jacobus;
 Eur. Pat. Ep. 269 141 (Cl C07D 231/06) (1988); *Chem. Abstr.*, 110 8204 (1989).
- 108. K. Trena and Zolzislaw;
 Acta. Pol. Pharm., 36 (3), 227 (1979); Chem. Abstr., 93, 4650r (1980).
- D. Bhaskar Reddy, T. Senshama, B. Seehaina and M.V. Ramma Reddy; Indian J. Chem., 30(B), 46 (1991).
- 110. B. Hans, R. Rolf and R. Rudolf;
 US. Pat. 3, 822, 283 (1974); Chem. Abstr., 81, 105494r (1974).
- 111. B. Roman; Pharmazie, **45**, 214 (1990).
- 112. Z. Brozozowsk, E. Pormarnacka;
 Acta. Pol. Pharm., 37(4), 1378, 80 (1980); Chem. Abstr., 25, 80807 (1981).
- H. G. Garg and P. P. Singh;
 J. Chem. Soc., 2, 1141 (1936).
- D. B. Reddy, T. Senshama and M. V. Ramma Reddy; *Indian J. Chem.*, **30(B)**, 46 (1991).
- Ashok Kumar, R. S. Verma and B. P. Jagu;
 J. Ind. Chem. Soc., 67, 120 (1990).
- W. I. Ronald, A. Adriano; Chem. Abstr., 126, 181346f (1997).
- H. M. Mokhtar, H. M. Faidallah; *Pharmazie*, **42**, 482 (1987).
- F. Manna, F. Chiments, A. Belasco, Cenicola M. L., D'Amico et al.; Chem. Abstr., 118, 80902p (1993).
- 119. N. Richard, M. Megan et al.
 J. Med. Chem., 36(1), 134-139 (1993); Chem. Abstr., 118, 191847u (1993).
- 120. Tsuboi-Shinichiwada, Katshaki et. al.;
 Eur. Pat. Appl. EP. 537-580 (Cl C07D 401/64) (1993); JP Appl. 91/297; 772 (1991); Chem. Abstr., 119, 139220r (1993).

121. Tuntaway, Atif, E. Fatema, A. M. Abdela; Chem. Pharm. J. 47(1), 37-45 (1995); Chem. Abstr., 123, 228016d (1995). 122. F. Rainer, E. Christoph; Ger. Offen. DE 4, 336, 307 (Cl. C07D 231/16) (1995); Chem. Abstr., 123, 256703u (1995). 123. K. Johannes, J. Fuchs, R. Erdelen; U.S. US 5, 525, 622 (Cl. 514-403; AN 43/56) Jun. 1996 DE Appl. 4, 128, 564 Aug. 1991); 574; Chem. Abstr., 125, 1427199 (1996). 124. S. S. Sonarc; Asian J. Chem., 10(3), 591-593 (1998); Chem. Abstr., 129, 633, 54317j (1998). 125. G. N. Mishrika, N. Assad, F. M. Fawzy; Pharmazie, 53(8), 543-547 (1998); Chem. Abstr., 129, 260380 (1998). 126. R. H. Udupi, A. R. Bhat, K. Kumar; Indian J. Hete. Chem., 8(2), 143-146 (1998); 127. T. M. Stivenson, D. W. Piotrowski, M. A. H. Fahmy, R. L. Lowe, K. L. Monaco; American Chemical Socety, 217, MAR Part - I, 29 AGRO (1999). 128. T. Katsushori, A. Hiroyuki, K. Masumij; PCT Int. Appl. WO 98, 56, 760; Chem. Abstr., 130, 66492w (1999). 129. Z. Moritaz; S. Hadol; Dyes and Pigmenta, 41, 1-2, 1-10 (1999). 130. M. K. Shivananda, P. M. Akberali, B. Holla, Shivarama, M. Shenoy, Shalini; Indian J. Chem. Sec. B. Org. Chem. Incl. Med. Chem. 39(B)(6), 440-447 (Eng.); Chem. Abstr., 134, 86195n (2000). 131. Oza Haresh, Joshi Dharti, Parekh Hansa; J. Inst. Chem., (India), (1998); Chem. Abstr., 130, 139682 (1999). 132. K. P. Roda, R. V. Vansdadia and Hansa Parekh; J. Inst. Chem., (India), 64, 74 (1988). 133. H. J. Vikani, K. P. Ladva and Hansa Parekh; J. Of Science Islamic Republic of Iran, 4, 3 (1993). 134. P. Patel, S. Koregaokar, M. Shah and H. Parekh; IL Pharma Co., 51(1), 59-63 (1996). 135. Jatin Upadhyay, Utpal Dave and Hansa Parekh; Chem. Abstr., 116, 128768n (1992). 136. Akhil Bhatt, H. H. Parekh and A. R. Parikh; Heterocycl. Commun., 4(4), 361-366 (Eng.) Chem. Abstr., 130, 25006x (1999). 137. F. M. Bharamal, D. J. Kaneria and H. H. Parekh; I. J. H. Chem., Vol.10, 189 (2001). 138. E. Palaska, M. Aytemir, I. T. Uzboy, D. Erol; Europian Journal of Medicinal Chemistry, 36(6), 539-543 (Eng), 2001; Chem. Abstr., 136, 18374v (2002). 139. B. Shivarama Holla, M. K. Shivananda, P. M. Akabar Ali, M. Shalini Shenoy; Indian J. Chem., 39(B), 440-47 (2000).

- Gunizkacukguzel, Sevin Rollas, Habibe Erdeniz, Muammer Kiraz, A. Cevdet Ekinci, Aylin Vidin; Eur. J. Med. Chem., 35, 761-77 (2000).
- 141. Gulhan T. Z., Pierre Chevallet, Fatma S.K., Kevser Eral.; Eur. J. Med. Chem., 35, 635-41 (2000).
- 142. S. P. Hiremath, K. Rudresh and A. R. Saundane; Indian J. Chem., 41(B), 394-399 (2002).
- 143. Malhotra V., Pathak S., Nath R., Mukherjee D., Shanker K.;
 Indian J. Chem., 41(B)6, 1310-13 (2002); Chem. Abstr., 137, 370021j (2002).
- Archana, Shrivastava V. K.; Chandra Ramesh, Kumar Ashok;
 Indian J. Chem., 41(B), 2371-75 (2002); Chem. Abstr., 138, 271582 (2003).
- 145. Almstead Ji In Kim, Izzo, Nicholas John, Jones, David Robert.;
 PCT Int. Appl. WO 02, 89, 799 (Cl. A61K31/4439) (2002); Chem. Abstr., 137, 370086j (2002).
- 146. M. L. Crossley, V. L. King, L. H. Northey and T. E. Scholz;
 US 2,491, 253 Dec. 13 (1949); *Chem. Abstr.*, 45, 4746 (1961).
- 147. A. Samour, Y. Akhnookh and H. Jahine;
 J. Chem., 13(4), 421-37 (1971); Chem. Abstr., 77,101348 (1972).
- 148. S. G. Krivokolysko; Chem. Heterocycl. compd. (N. Y.) (1999).
- 149. U. P. Dayochenko;
 Russ. J. Org. Chem., 34(4), 554-556, (1998); Chem. Abstr., 130, 223222c (1999).
- G. H. Sayed, R. R. Kassab;
 Bull. Fac. Pharm., 1998; Chem. Abstr., 131, 15727p (1999).
- 151. Okazoe Takashi;
 PCT Int. Appl. WO 00 06, 547; Chem. Abstr., 132, 321784y (2000).
- M. Kanded Ez-el-din;
 Chin. Pharm. J. 1999; Chem. Abstr., 132, 321784y (2000).
- A. Sakurai and H. Midorikaw ;
 Bull. Chem. Soc. Japan 40, 1680 (1967), Chem. Abstr., 67, 9021d (1967).
- A. Sakurai and H. Midorikaw ;
 Bull. Chem. Soc. Japan, 41(2), 430 (1968); Chem. Abstr., 69, 18985 (1968).
- 155. Thiele Kurt, V. B. Benburg, E. Walter;
 (Dentsche Gold and Silver- Scheideanstalt Varm Roessler); S. African 6, 905, 06, 13 Feb. (1970).
- 156. Harada Hironori, Takuwa Tomofumi, Okazaki Toshio, Hiranu Yusuke;
 Jpn. Kokai Tokkyo Koho JP 03 2, 06, 230 (2003); (Cl. A61K 031-4418); Chem. Abstr., 139, 111663 (2003).
- N. Latif, N. Mishry and N. S. Girgis ; Indian J. Chem., 20(B), 147-149 (1981).
- U. Teu, K. M. Takuro, M. Shinya, K. Seiikhi;
 Jpn. Kokai Tokkyo Koho JP, 09, 95, 489 (1997); Chem. Abstr., 127, 17699y (1997).
- 159. M. Bernard, W. Johan, P. lionel, L. Didier;
 J. Med. Chem., 41(17), 3239-3244 (1998); Chem. Abstr., 129, 202846y (1998).

- 160. D. G. Bhatt, J. J. Petraitis, S. R. Sherk, R. A. Copeland;
 Bio. Org. Med. Chem., Lett., 8(13), 1745-1750 (1998); Chem. Abstr., 129, 202848a (1998).
- 161. H. Yoshida, K. Omori, Y. Yasuyuki, F. Kensaku;
 Jpn. Kokai Tokkyo Koho JP 10, 120, 677; Chem. Abstr., 129, 16062q (1998).
- 162. G. S. Gadaginamath, A. S. Shya digeri and R. R. Kavali; *Indian J. Chem.*, **37(B)**, 1137c (1998).
- 163. M. Fedele, C. Franco, B. Adriana, B. Bruna, F. Walter, F. Amelia, G. Luigi; Eur. J. Med. Chem., 34(3), 245-254 (1999); Chem. Abstr., 130, 352178s (1999).
- 164. A. El-Galil and E. Amr;
 Indian J. Heterocyclic Chem., **10**, 49-54 (2000).
- E. G. Hammana Abou, El-Hafeza Nagla A. Abd, Midurus Wandall; Z. Naturforsch. B. Chem. Sci., (2000).
- 166. N. A. Abdallah, E. A. Zakimagdi; Acta Pharm (Zagreb) 1999; Chem. Abstr., 132, 137287n (2000).
- 167. S. V. Roman, V. D. Dyachenko; Chem. Abstr., 136, 8670x (2002).
- 168. F. M. A. El-Taweel, M. A. Sofan; Chem. Abstr., 137, 63154w (2002).
- 169. Abu-Shana B, Fathi A, Satyed Ahmed Z, El-Gaby;
 Al-Azhar Bulletin of Sci. (1999), 10(1), 63-70 (Eng.);
 Chem. Abstr., 136, 85768f (2002).
- 170. Hussans M., Eman H. A., El-maghruby A. A.; Chem. Abstr., 127, 638p, 190698 (1997).
- 171. Pyachenko U. D., Roman S. V.;
 Visnik Kharkivs Kogo. National Nogo. Uni 495-59-64 (Russ); *Chem. Abstr.*, 136(21)., p-807, 325448x (2002).
- 172. A. Streightoff;
 J. Bacterio., 85, 42-8 (1963); Chem. Abstr., 58, 4836a (1963).
- 173. J. Seydel;
 Antibiot. Chemotherapia, 12, 137-47 (1946) (Ger.); Chem. Abstr., 61, 4833a (1964).
- 174. Francis E. Reinhart, J. H. Gray and William G. Bgtt;
 J. Franklin Inst., 261, 669-70 (1966); Chem. Abstr., 50, 10930c (1956).
- 175. Barton, John ED, Freeman, Peter F. M;
 Ger. Offen, 2, 029, 079 (Cl. AOINOO7d), 21 Jan 1971, Brit, Appl. 12 Jane (1969);
 Chem. Abstr., 74, 99891d (1971).
- 176. VEB Keuna-Werke, "Walter Ulbricht" (by Wl. Hoetling, D. Elhaner and G. Reckling);
 Ger. 1, 193, 506 (Cl. CO7D) May 26 (1965); *Chem. Abstr.*, 63, 6979 (1965).
- 177. K. Kadlec and L. Hanslian ;
 Symp. Dermatol Corpus Lecteonum Uni., Carolia Prague, 1, 302-13 (1960) (Ger.);
 Chem. Abstr., 61, 7596 (1964).
- 178. Rigterink, Raymond H. (Don Chemical Co.);
 US 3, 899, 205 (CE 260-294-8) 27 Aug (1968); Chem. Abstr., 69, 96483h (1969).

- 179. M. R. Pavia, C. P. Taylor, F. M. Hershenson and S. J. Lobbestael; J. Med. Chem., 30, 1210 (1987).
- 180. L. Castedo, J. M. Quintela and R. Rignera;
 Eur. J. Med. Chem. Chim. Ther., 19(6), 555 (1984); Chem. Abstr., 103, 37337 (1985).
- 181. W. Von Behenburg, J. Engel, J. Heese and K. Thiele;
 Ger. Offen, D. E, 3, 337, 593 (Cl. CO7D 213/72) (1984); Chem. Abstr., 101, 130595n (1984).
- 182. Akhil Bhatt, K. A. Parikh, Indian J. Chem., 40(B), 157, (2001).
- 183. R. C. Khunt, Neela J. Datta, A. R. Parikh, Oriental J. Chem., 18(1), 131, (2002).
- 184. B. P. Kansagara, H. H. Parekh, A. R. Parikh, Indian. J. of Heterocyclic Chem., 12, 61-64, (2002).
- 185. J. R. Patel, A. V. Dobaria, A. R. Parikh, Indian J. of Heterocyclic Chem., 12, 237, (2003).
- 186. Pankaj Patel, S. Korgaokar, H. H. Parekh, *I. L. Pharma co.*, **51(1)**, 59-63, (1996).
- 187. Rajeev Doshi, Preeti Kagathara, H. H. Parekh, Indian J. of Chem., Vol, 38(B), 348-352 (1999).
- 188. A. V. Dobaria, J. R. Patel, H. H. Parekh, J. Indian, Chem. Soc., 79, 772-773, (2002).
- 189. B. P. Kansagara, H. H. Bhatt, A. R. Parikh, *I. J. H. C.*, Vol.12, July-Sep-(2002).
- Afonso Adriano, Kelly J. M, Weinstein J., Wolin R. L., Rosenblum S. B.;
 PCT Int. Appl. WO 98, 59, 950 (Cl. CO7D 401/04); *Chem. Abstr.*, 130, 81408s (1999).
- 191. Hussain M. M. M. and Ml K. Moha ; Indian J. Chem., 42(B), 2136-2141 (2003).
- 192. Wu Wenxue, Liao Hongbiao, Tsai D. J. S.;
 PCT Int. Appl. WO 03 33488 (2003) (Cl. CO7D 401-06) ; *Chem. Abstr.*, 138, 337996 (2003).
- 193. Saudi Manal N. S., El-Sayad M. H., El-Hoda M. A. ;
 Alexandria J. Pharm. Sic., 16(2), 75-82 (2002) ; Chem. Abstr., 138, 385269 (2003).
- 194. K. Folkers, S. A. Harris;
 J. Am. Chem. Soc., 61, 1245 (1939).
- 195. M. A. Sluyter, U. K. Pandit, W. N. Speckamp and H. O. Huisman; *Tetranedron Lett.*, 87 (1966).
- 196. G. Simchen and G. Entenmann; Angew. Chem. Int. Edn Engl., 12, 119 (1973).
- 197. Hu Zhiyong, Wang Huicai; *Chem. Abstr.*, **119**, 72465d (1993).
- 198. U. Toru, T. Susumu, E. Masayuki and S. M. Saharu;
 Eur. Pat. Appl. EP. 4 88, 220 (Cl. C07D 413/04) (1992); *Chem. Abstr.*, 118, 80944d (1993).
- 199. R. W. Hartann, N. Reichert and S. Gozhring;
 Eur. J. Med. Chem., 29(11), 807-17 (1994); *Chem. Abstr.*, 122, 239500n (1995).

- 200. K. Jonhannes, F. Rainer, J. R. Jansen and S. Nichael; Ger. Offen. DE 4, 309, 552 (Cl. C07/D 213/85); Chem. Abstr., 122, 9877m (1995). 201. D. D. Erol, N. Yulung and A. Turk; Eur. J. Med. Chem., 29(11), 893-7 (1994); Chem. Abstr., 122, 13650a (1995). 202. P. Fey, H. K. Rudolf, H. Walter and K. Thomas; Eur. Pat. Appl. Ep. 62, 3611, (Cl. C07D 401/14); Chem. Abstr., 122, 55897r (1995). 203. H. Rudolf, H. Walter, D. Juergen and F. Peter; Eur. Pat. Appl. Ep. 5 57, 843 (Cl. C07D 401/12); Chem. Abstr., 120, 8478d (1994). 204. H. Michael, Haesslein Jean-Iuc and H. Bertrand ; PCT Int. Appl. WO 93 16, 149 (Cl. C07D211/86); Chem. Abstr., 120, 106778w (1994). 205. R. Bernd, P. A. Schirwan, R. Dieter, R. Guenther; PCT. Int. Appl. WO 96 30, 342 (Cl. C07D 213/89); Chem. Abstr., 126, 7993e (1997). 206. F. Al-Omar, A. Abdul Zahar, A. El-Khair, A. Adel; Chem. Abstr., 136, 309834q (2002). 207. F. Peter, D. Juergem, H. Rudolf, H. Walter and K. Thomas; Eur. Pat. Appl. EP. 62 3611 (Cl. C07D 401/14); Chem. Abstr., 122, 55897r (1995). 208. H. Posnes; Org. Synth. 177 (1994); Chem. Abstr., 123, 167349g (1996). 209. Mukhtar Hussain Khan, Raizul Haque and Nizamuddin; Indian J. Chem., 37(B), 1069 (1998). 210. Mukhtar Hussain Khan, Raizul Haque, Taruna Agrawal and Nizamuddin; Indian J. Chem., 38(B), 452-456 (1999). 211. M. K. Morishita, A. Nagisa and J. Masashi; PCT Int. Appl. WO 99 43, 659 (Cl. C07D 213/72); Chem. Abstr., 131, 170353h (1999). 212. I. J. Collins, L. P. David and M. C. Richard; PCT Int. Appl. WO 98 55, 480 (1998); Chem. Abstr., 130, 38376t (1999). 213. Pedneker: PCT Int. Appl. WO 98 30, 342 (1998); Chem. Abstr., 130, 48719t (1999). 214. J. E. Reiner, Lim-Wilby, R. S. Marge, T. K. Brunck and Ha-Vong; Chem. Lett., 9(6), 895-900 (1999); Chem, Abstr., 131, 286379a (1999). 215. Y. Mikio, I. Voshiniro, S. Atsushi, Y. Mitsuhiro and H. Rgo; Jpn. Kokai Tokkyo Koho JP 11 140, 054 (Cl. C07D 213/64); Chem. Abstr., 131, 44738a (1999).
- 216. R. Betageri, L. Beaulieu, B. Pierrel;
 PCT Int. Appl. WO 99 31, 066 (Cl. C07D213/75); Chem. Abstr., 131, 59136a (1999).
- 217. S. Asmaa, S. Salem;
 Pharmazie 54(3), 178-183 (1993); Chem. Abstr., 130, 281907k (1999).
- 218. H. Timothy, M. Christopher, R. laewis, R. Thomas;
 PCT Int. Appl. WO 98 10, 384 (Cl. C07D 471/14); Chem. Abstr., 130, 13918h (1999).
- 219. B. Shivakumar and L. G. Nargund; Indian J. Heterocyclic Chem., 8(1), 27-36 (1998); Chem. Abstr., 130, 66428e (1999).
- 220. D. N. Upadhyay, V. J. Ram;
 I. J. Chem. Sec. (B), Org. Chem., Chem. Abstr., 131, (1999).

221.	Abd El-Galil and E. Amer;
	Indian J. Heterocyclic Chem., 10, 49 (2000).
222.	Abou El-Fotooh, G. Hammam, M. A. Sharaf and N. A. Abd El-Hafeza;
	Indian J. Chem., 40(B), 213-221 (2001).
223.	M. G. Nizamuddin, K. S. Manoj;
	Chem. Abstr., 136 , 279375x (2002).
224.	Tanaka Akira, Minagawa Masatoshi, Akahane Atsyshi;
	<i>Chem. Abstr.</i> , 139 , 22210j No. 2 (2003).
225.	C. Libermann and A. Lange;
	Ann., 207 , 121 (1881).
226.	A. Mystafa, W. Asker, A. F. A. Shalaby & M. E. E. Shobby;
	J. Org. Chem., 23, 1992 (1958).
227.	W. Davies;
	J. Chem. Soc., 2633 (1949); Chem. Abstr., 44, 2977t (1953).
228.	A. R. Surry;
	J. Amer. Chem. Soc., 74, 3450 (1952); Chem. Abstr., 48, 3348s (1954).
229.	H. Erlenmeyers;
	Helv. Chem. Acta., 39, 1156 (1956); Chem. Abstr., 51, 1148d (1957).
230.	A. R. A. Raouf, M. T. Omar and M. M. ed-Aottal;
	Acta. Chim. Acad. Sci. Hung, 87, 187 (1975); Chem. Abstr., 84, 74185 (1976).
231.	D. R. Patel, P. S. Satpanthi, P. B. Patel and J. J. Trivedi;
	J. Inst. Chem. Calcutta, 48, 305 (1976).
232.	E. Fisher, I. Hartmann & H. Priebs;
	Z. Chem., 15, 480 (1975); Chem. Abstr., 84, 15553f (1976).
233.	J. Rogere and M. Audibert;
	Bull. Soc. Chim. Fr., 4021 (1971).
234.	R. R. Astik, G. B. Joshi and K. A. Thaker;
	J. Indian Chem. Soc., 52, 1071 (1975).
235.	R. Nath, K. Shanker, R. C. Gupta and K. Kishor;
	J. Indian Chem. Soc., 55, 832-834 (1978).
236.	I. D. Shah and J. P. Trivedi;
	J. Indian Chem. Soc., 40, 889-893 (1963).
237.	M. Saeda, M. Abdel-Megid and I. M. El-Deen;
	Indian J. Heterocyclic Chem., 3, 81-86 (1993).
238.	R. Govindon;
	Fr. Demande, 21 08 834 (1972); Chem. Abstr., 79, 32040k (1973).
239.	M. I. Husain & S. K. Agarwal;
	Indian J. Pharm; 37, 89 (1975).
240.	S. P. Singh, S. K. Anyoung & S. S. Parmar;
	J. Pharm. Sci., 63, 960 (1974).
241.	W. A. Skinner, H. H. C. Tong, G. Bordy & T. E. Edward;

Chem. Abstr., **83**, 189351t (1975).

- Z42. T. Takematsu, K. Yokohama, K. Ideda, Y. Hayashi and E. Taniyamal; Jpn. Patent., 7 51, 21 431 (1975); Chem. Abstr., 84, 26880w (1976).
- P. Monforte, S. Grasso, A. Chimiri, G. French;
 Pharmaco Ed. Sci., 36(2), 109-15 (1981); Chem. Abstr., 94, 208754x (1981).
- 244. A. K. El-Shafi, K. M. Hassan;
 Curr. Sci., 52(13), 633-5 (1983); Chem. Abstr., 100, 514974 (1984).
- E. Picscopo, M. V. Diruno, R. Gagliardi, O. Mazzoni, C. Parrill and G. Veneruso; Bull. Soc. Ital. Biol. Sper., 65(2), 131-6 (1989); Chem. Abstr., 111, 1709389 (1989).
- 246. M. D. Joshi, M. K. Jani; B. R. Shah, N. K. Undavia, P. B. Trivedi;
 J. Ind. Chem. Soc., 67(11), 925-7 (1990); Chem. Abstr., 115, 49489y (1991).
- 247. A. Solankee and K. Kapadia;
 Orient J. Chem., 10(1), 70-8 (1994); Chem. Abstr., 122, 55939f (1995).
- 248. J. J. Bhatt, B. R. Shah, H. P. Shah, P. B. Trivedi, N. C. Desai; Indian J. Chem., 33(B), 189-92 (1994); Chem. Abstr., 121, 9214x (1994).
- 249. P. Schauen, A. Krbarae, M. Tisler and M. Likar;
 Experimental, 22, 304 (1996); *Chem. Abstr.*, 65, 4440h (1966).
- 250. G. Mayer, V. L. F. Misslitz;
 PCT. Int. Appl. WO 02, 48, 140 (Cl. C07 D 413/60); Chem. Abstr., 137, 33290v (2002).
- H. V. Hassan, N. A. El-Koussi, Z. S. Farghaly;
 Chem. Pharm. Bull., 46(5), 863-866 (1998); Chem. Abstr., 129, 95436r.
- 252. K. Mogilaiah, R. Babu Rao and K. N. Reddy; Indian J. Chem., 38(B), 818 (1999).
- 253. K. Mogilaiah and R. Babu Rao; *Indian J. Chem.*, **37(B)**, 894 (1998).
- 254. G. S. Gadaginamath, A. S. Shyadligeri and R. R. Kavali; Indian J. Chem., 38(B), 156-159 (1999).
- 255. R. S. Lodhi, S. D. Srivasatava and S. K. Srivastava;
 Indian J. Chem., 37(B), 899-903 (1998); Chem. Abstr., 130, 110190x (1999).
- 256. R. P. Pawar, N. M. Andukar and Y. B. Vibhute;
 J. Indian Chem. Soc., 76(5), 171-2 (1999); Chem. Abstr., 131, 271829y (1999).
- 257. G. C. Kamdar, A. C. Chawda and A. R. Parikh;
 J. Indian Chem. Soc., 64, 298 (1987); Chem. Abstr., 108, 131655p (1988).
- 258. P. M. Parashrya and A. R. Parikh;
 J. Inst. Chem., 63, 63 (1991); Chem. Abstr., 115, 256053s (1991).
- 259. V. L. Pachhamia and A. R. Parikh;
 Acta Ciencia Indica, 17(C)1, 67 (1991); Chem. Abstr., 117, 26399w (1992).
- 260. S. B. Bhawsar, R. G. Shah and A. R. Parikh; J. Inst. Chem., 64, 62 (1992).
- U. Dave, K. Ladva and H. Parekh;
 J. Inst. Chem., 64, 74 (1992).
- C. L. Patel and H. H. Parekh;
 J. Indian Chem. Soc., 65, 574 (1988).

263. C. L. Patel and H. H. Parekh;

```
J. Indian Chem. Soc., 65, 282 (1988).
```

- 264. K. P. Roda, R. N. Vansdadia and H. Parekh; J. Inst. Chem. Soc., 64, 109 (1988).
- K. Ladva, U. S. Dave and H. Parekh;
 J. Ind. Chem. Soc., 68, 370-71 (1991).
- 266. H. D. Joshi, P. S. Upadhyay and A. J. Baxi; Indian J. Chem., **39(B)2**, 967-70 (2000).
- 267. Nailesh Joshi, Pankaj Patel and H. H. Parekh; Indian J. Chem., Aug. (1996).
- Haresh Oza, Dharti Joshi, Hansa Parekh; Indian J. of Chemistry, 37(B), 1998.
- R. C. Khunt, Neela Datta, Fatema Bharmal and A. R. Parikh;
 J. Ind. Chem. Soc., 78, 47 (2001).
- 270. G. Bhawna, R Tilak, T Ritu, A. Kumar, E. bansal;
 Eur. J. Med. Chem., 34(3), 256-59 (1999); Chem. Abstr., 131, 87859g (1999).
- 271. V. S. Ingle, R. D. Ingle and R. A. Mave; Indian J. Chem., 40(B), 124 (2001).
- 272. G. G. Bhatt and C. D. Daulatabad; *Indian J. Heterocycl. Chem.*, 9, 157-158 (1999).
- 273. M. Siddique, M. Indress, A. G. Doshi;
 Asian J. of Chem., 14(1), 181-84 (2002); (Eng.); Chem. Abstr., 136, 386059t (2002).
- 274. Srivastva S. K., Soumya Srivastava and Srivastava S. D.;
 Indian. J. Chem., 41(B), 1937-1945 (2002); Chem. Abstr., 138, 153485e (2003).
- 275. Text Book of Practical Organic Chemistry by A. I. Vogel ; 5th Edition, 964.
- M. Saeda, M. Abdel-Megil, I. M. El-Deen; Indian J. Heterocycle Chem., 3, 81-86 (1993).
- 277. Bladin, J. A.; Ber., **18**, 1544 (1885).
- Bladin, J. A.;
 Ber., 19, 2598 (1886).
- Andreocci A.;
 Gazz. Chim. Ital., 19, 948 (1889).
- 280. C. Temple;
 J. Chem. Heterocyclic comp., 37, 1, (1981).
- 281. Sh. J. Chiou; Dept. Chem. Kangas State Univ. Report 1979, W 80-05462; *Chem. Abstr.*, 94, 48103 (1981).
 282. Jack. R. Reid and Ned D. Heindel;
 - J. Heterocyclic Chem., 13, 925 (1976).
- 283. Zhang Zivi and Lin Haixia;
 Gaodeng Xuexiao Huaxue Xuebao, 7, 936 (1992); Chem. Abstr., 118, 10888f (1993).

284.	Yan Shiquaing, Chen ning and Wa Hui;
	He Cheng Huaxue 4(3), 220 (1996); Chem. Abstr., 126, 171680w (1997).
285.	B. J. Rai and R. Lakhan;
	Tetrahedron; Asymmetry 7(6), 16-21-1630 (1996).
286.	Vershilov S. V., Popova L. M. and Munglov V. E.;
	2h, Prikl, Khim. (S-Peterburg) 67(7), 1124 (1994); Chem. Abstr., 122, 265316h (1995).
287.	Yassin S., Abd El-Aleem A. H., El-Sayed I. E., Hashem A. I.;
	Rev. Roum. Chim., 41, 989 (1996); Chem. Abstr., 127, 121679c (1997).
288.	K. T. Potta;
	J. Chem. Soc., 3461 (1954).
289.	Reigz D. B.;
	Eur. Pat. EP 508445 (Cl. A61k 31/44); Chem. Abstr., 118, 59716w (1993).
290.	Pourmorad F.; Shafiee A.;
	J. Sci. Islamic Repub. Iran, 9, 30 (1998); Chem. Abstr., 129, 175593e (1998).
291.	Archana Jyoti S., Sanjay S., Saxena V. K.;
	J. Indian Chem. Soc., 68, 103 (1991).
292.	Bozo Eva, Szilagyi Geza, Janky Judit;
	Arch. Pharm. (Weinheim. Ger.) 322, 583 (1989); Chem. Abstr., 112, 55731a (1990).
293.	Itoh Katsumi, Kitazaki Tomoyuki, Matsushita Yoshihiro;
	Eur. Pat Appl. EP 884311; Chem. Abstr., 130, 66505c (1999).
294.	Fusaka Takafumi, Ujikawa Osamu, Kajiwara Takeshi, Tanaka Yasushi;
	PCT Int. Appl. WO 97, 11, 075; Chem. Abstr., 126, 293354p (1997).
295.	Ellis, Michael J.; Stevens, Malcolm F. G.;
	J. Chem. Soci., 23, 3180-3185 (Eng.) (2001); Chem. Abstr., 137, 185433g (2002).
296.	Shibata Yasushi, Aoyagi Koichiro, Ichikawa Naomi;
	PCT Int. Appl. Wo. 99 02507; Chem. Abstr., 130, 95554y (1999).
297.	Karali N., Capan G., Ergene N., Gursoy A.;
	Sci. Pharm., 65, 277 (1997); Chem. Abstr., 128, 167389g (1998).
298.	Chekovskaya L. G., Khush E. G., Rogyllchenko G. K.;
	Farm. 2h (kiev) 5, 67-8 (1989); Chem. Abstr., 112, 198233a (1990).
299.	Mark D. Abel, Randy T. Hewgill, Katherine J. Malczylc, Ronald G. Micetich;
	J. Heterocycl. Chem., 35, 193 (1998).
300.	Chu Chang Hu, Sun Xiao Wen, Zhang Zi Yi, Li Zhi Chun;
	Chin Chem. Lett., 10, 361 (1999).
301.	Murthy Sreenivasa, Nagappa V. A. N., Nargund L. V. G.;
	Indian J. Hetrerocycl. Chem., 8, 23 (1998); Chem. Abstr., 130, 66448m (1999).
302.	R. S. Verma, Vinita Bajpai and A. Kapil;
	Indian J. Heterocycl. Chem., 10, 117 (2000).
303.	S. J. B. Hay;
	Proc. 6 th Brit. Crop. Prof. Council Insect. Fungic., 597 (1972).
304.	A. Sirohi, Siyanand;
	Indian J. Nematol., 22, 134 (1992).

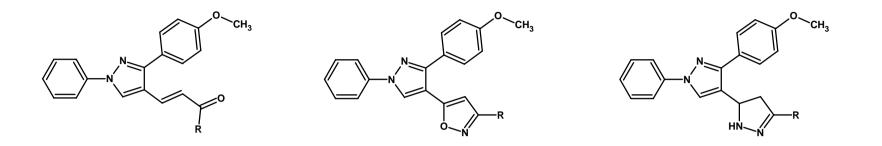
- Youichiro Naito, Fumihika Akahoshi, Shinji Takeda and Takehiro Okada;
 J. Med. Chem., 39, 3019 (1996).
- 306. Abd-Elhafez A. A., Mohamed H. M., Hassan H. Y. and El-Karamany G. S.; Bull. Pharm. Sci., Assiut Univ., 20(1), 47 (1997); Chem. Abstr., 128, 22870x (1998).
- 307. Jautelat Manfred, Dutzmann Stefan, Stenzen Ktaus; Ger. Offen. DE. 19, 620, 407; Chem. Abstr., 128, 48227t (1998).
- 308. Amir Mohammad; Shahani Shalini;
 Indian J. Chem., 37(B), 502 (1998); Chem. Abstr., 129, 175600e (1998).
- Shi Yan-Nian, Yang Yang, Fang Jianxin, Luwen-Shuo;
 Gaodeng Xuexiao Huaxue Xuebao, 17, 1578 (1996); Chem. Abstr., 126, 199501n (1997).
- Bignon Eric, Bras Jean-Pierre, De-Cointel Paul;
 PCT Int. Appl. WO 98 51686; *Chem. Abstr.*, 130, 25074t (1999).
- 311. Lattmann, Rene; Acklin, Piere;
 U.S. US 6465504 (Cl. 514-383; A 61K43/653), (2002); Chem. Abstr., 137, 294961y (2002).
- 312. Slawinski Jarosiaw;
 Acta. Pol. Pharma., 55 129 (1998); Chem. Abstr., 129, 260396n (1998).
- Shaber S. H., Flynn K. E and Fujimoto T. T.; Eur. Pat. Appl. EP. 529973; Chem. Abstr., 119, 7261z (1993).
- Jautelat Manfrad, Dutzmann Stefan, Stenzel Klaus;
 PCT Int. Appl. WO. 97 43269; *Chem. Abstr.*, 128, 22912n (1998).
- 315. Sikorski James A.,
 PCT Int. Appl. Wo, 99 14204; Chem. Abstr., 130, 237570b (1999).
- Varvaresou Athanasia, Siatra Papastaikoudi, Theodora Tsotinis Andrew; Farmaco., 53(5), 320 (1988); Chem. Abstr., 129, 175595g (1998).
- Baba Alsuo, Makino Haruhiko, Ohta Yoshikazu, Sohda Takushi; Chem. Abstr., 129, 216560n (1998).
- Laddi U.V., Desai S. R., Somannavar Y. S., Bennur R. S.; Indian J. Chem. 37(B), 5, 502 (1998); Chem. Abstr., 129, 175598k (1998).
- 319. Sun-Qingyan; Liu, Chaomei, Zhao; Hangbing, Cao; Youngbing, Zhang; Dazhi, Zhao; Jingxia; Lu, Shan; Dier, Janyi Dexue Xuebao 22(9), 871-874 (Ch) (2001); Chem. Abstr., 137, 216911t (2002).
- Papalconstantinou Garoufalias Sproula, Filipptos Evangelos and Todouloa Ourania; Farmaco, 52, 707 (1997); Chem. Abstr., 128, 294753w (1998).
- 321. Jag Mohan, GSR Anjaneywill, Pratima Verma and V. S. Yamini; Indian J. Chem., 29(B), 88 (1990).
- 322. Abdelal Ali M. M.; Kheira Samy m.m., Badria Farid A;
 Sci. Pharm., 65(3), 99-108 (1997); Chem. Abstr., 128, 3639n (1998).
- Rollas Sevim, Kiraz Muammer Ekinci Ahmetc. Vidin Aylin; Farmco, 52, 641 (1997); Chem. Abstr., 128, 282807d (1998).
- 324. El-Sayed, Ali S.;
 Al-Azhar Bulletin of Science 11(2), 15-16 (Eng.) (2000).

- 325. Mari Makoto, Kagoshima, Yohiko, Uchida, Takaya;
 PCT Int. Appl. WO 02 66465 (Cl. CO7D405/12) (2002); Chem. Abstr., 137, 201316d (2002).
- 326. Laddawahetty, Tamara; Merchant, Kevinjohn, Sternfeld, Francine, Street, Leslie Joseph; Chem. Abstr., 137, 201339p (2002).
- Giorgia Pastorin, Tatiana Da Ros, Giampiero Spalluto, Francesea Deflorian, Stefano Moro; J. Med. Chem., 46, 4287 (2003).
- B. Shivarama Holla, B. Veerendra, M. K. Shivananda, Boja Poojary; Eur. Jou. Med. Chem., 38, 759-769 (2003).
- 329. Uesaka, Noriak, Imma Hironori; Kashima, Hajime; Kurokawa, Masako; PCT Int. Appl. WO 03 28732 (Cl. A61K31/519) (2003).
- Chambers, Mark Staurt; Jones, Philip; Macleod; Angus Munay; Maxey, Helen Jane;
 PCT Int. Appl. WO 02, 42305 (Cl. CO7D487/04) (2002); Chem. Abstr., 137(1), 61871k (2002).
- Pier Giovanni Barald; Barbara Cacciori, Stephano moro, Romeo Ramagnoli, Xiano-duoji et al.; J. Med. Chem., 44, 2735-2742 (2001).
- 332. Imma, Hironori; Watanabe, Tomokazu; Shimada, Junichi;
 PCT Int. Appl. WO 03, 68776 (Cl. CO7D487/04) (2003). *Chem. Abstr.*, 139(13), 197509r (2003).
- 333. Patel K. D.; Mistry B. D.; Desai K. R.;
 J. Indian Chem. Soc., 79(12), 964-965 (Eng.) (2002). Chem. Abstr., 138(24), 368821x (2003).
- L. W. Lawrence Woo, Oliver B. Sulcliffe, Christian Bebert, Anna Grasso, Surinder K. Chander.; J. Med. Chem., 46(15), 3793 (2003).
- Preben H. Oleson, Ander R. Sorensen, Brigitte Urso, Peter Kurtzhals, Andrew N. Bowler; J. Med. Chem., 46(15), 3333 (2003).
- 336. B. Shivarama Holla, B. Veerendra, M. K. Shivananda Boja Poojary,.
 Eur. J. Med. Chem., **38**, 759-769 (2003)
- 337. Setsu, Fumihito; Umemura, Eijirou; Sasaki, Kazue; Tadauchi, Kaori;
 PCT Int. Appl. WO 03, 42188 (Cl. CO7D249/08) (2003); *Chem. Abstr.*, 138(26), 401733v (2003).
- B. Shivarama Holla, Shridhar K., M. K. Shivananda Indian J. Chem., 41(B) 6, 1257-1262 (2002).
- 339. Crisan O., Bojta M., Varea Manoz Teresa, Terencio Mari Carmen, Asensio Aguilas Gregorio, Zaharia V.
 - Farmaco., 49(5), 15-22 (2001). Chem. Abstr., 137(23), 337861k (2002).
- 340. Barnett Stanley F., Owens Andrew Pate; Chem., Abstr., 137(23), 337903a (2002).
- 341. Wang Sheng, Liu Dan, Feng Gui-Rong, Gong Yin-Xiang, Wang Yan Gang; Chem. Abstr., 137(19), 279157x (2002).
- 342. Mueller Haus Helmut, Gesing Ernst R., Kluth Joadrim, Drewes Mark Wilhelm, Dahmen Peter, Rontzen Rolf;

Chem. Abstr., 137(19), 279199n (2002).

- 343. Kido, Yastuhiro; Okita, Hiroyuki; Morita, Takeshi; Okamura, Mitsayasu; Takeuchi Takashi; Jpn. Kokoi Tokkyo Koho JP 275, 178 (2002); Chem. Abstr., 137(17), 247703f (2002).
- Glacera Contour Marie-Odile; Sidhu Alban; Roubert Pierre; Thurian Chris Tophe; Chem. Abstr., 139(2), 22215q (2003).

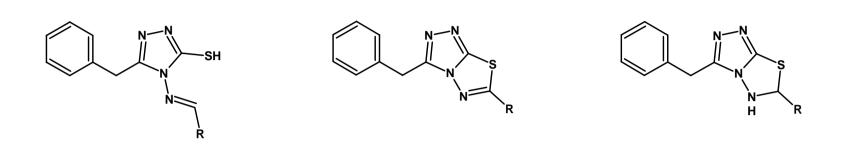
- 345. Neustadt Bernard R.; Liu Hong; Chem. Abstr., 139(2), 22227v (2003).
- Nettekoven Matthias, Heinrich, Schmitt, Sebastien; Chem. Abstr., 138(21), 321280e (2003).
- 347. Krueger Martin, Petrov Orlin; Thierauch Karl Heinz; Siemeister Gerhard; *Chem. Abstr.*, 138(1), 4620t (2003).
- Shrivastava S. K; Shrivastava Soumya; Shrivastava S. D.;
 Indian J. Chem., 41(B) 9, 1937-1945 (2002); Chem. Abstr., 138(11), 153485e (2003).
- 349. Lattman Rene; Waldmeier Felix. Chem. Abstr., 138(25), 385430m (2003).
- Heindel Ned H.; Laskin Jeffrey D.; Heck Diene E.; Guillon Christophe; Rapp Robert D.; Chem. Abstr., 139(6), 85356g (2003).
- 351. Sobin, Bachmann;J. Am. Chem. Soc., 57, 2458 (1935).
- 352. M. S. Murray, Chemical Review **26**, 297-338 (1940).
- 353. Strache, Bre. 21, 2361 (1888).
- 354. Van Alphen, Dec. Tran Chim. **54**, 93 (1935).
- 355. Oddo & Tognacchini, Gazz. Chim. Ital. 52, II, 347, (1922).
- 356. Smalders, Robert Rene, Brunin, Dominique, Sarten, Frederic;
 Bull. Soc. Chim. Belg. (1988), 97 (11-12), 941-4 (Fr); Chem. Abstr., 112, 511, 21055t (1990).
- 357. Nagamatsu, Tomofumi ; Eudo, Kazuki
 Jpn. Kokai, Tokkyo, Koho JP 11, 140, 086 (99 140, 086) (Cl. CO7D 484/04) (1999).
 Chem. Abstr., 130(25), 338121m (1999).
- 358. Yadawe, M. S., Patil, S. A.;
 Indian J. Heterocycl. Chem. (1992), 2(1), 41-2 (Eng).; Chem. Abstr., 118, 688, 22189q (1993).
- 359. Holla, B. Shivarama ; Shivananda, M. K. Shenoy, M. Shalini Antony, Georgy Farmaco, 53 (8-9), 531-535 (Eng.) (1998). *Chem. Abstr.*, 130(23), 311741b (1999).
- 360. Mehta R. H., Shah, Sonal, Vyas Rajeev.;
 J. Indian. Chem. Soc., (1992), 69(9), 590-2 (Eng.); Chem. Abstr., 119, 1088, 95268f (1993).
- 361. Khalafallah A. K. and Hassan M. E.;
 Aswan Sci. Technol. Bull. (1991), 12, 82-90 (Eng.); Chem. Abstr., 118, 918, 191392s (1993).
- 362. Sharat El-Din, Nabaweya;
 Delta J. Sci., (1991), 15(1), 47-56; Chem. Abstr., 118, 168756e (1993).
- 363. Chohan, Zahid Hussain, Kusuar, Somina; Chem. Pharm., Bull., (1993), 41(5), 951-3 (Eng.); Chem. Abstr., 120, 1034, 134406s (1994).
 364. De, Biplab ; Sarma, G. V. s. Rama
 - Indian J. Pharm. Sci., 60(3), 136-139 (Eng.) (1998). Chem. Abstr., 130(12), 153604c (1999).
- 365. Deshmukh, M. D., Doshi, A. G.;
 Orient. J. Chem., (1995), 11(1), 85-6 (Eng.); Chem. Abstr., 123, 1111, 256269g (1995).


- Wang, Yangang, Ye, Wenfa, Yang Jun., Lou, Aihong;
 Wuhan Daxue Xuebao, Ziran Kexueban (1996), 191-194 (Ch.);
 Chem. Abstr., 125(13), 167488b (1996).
- Das, Arima; Lien, Eric J., Trousdale, Melvin D.;
 Chin. Pharm. J. (Taipei.), (1997), 49(2), 89-102 (Eng).; Chem. Abstr., 128(18), 217259n (1998).
- Solankee, Anjani, Mistry Pankaj, Patel V. M.;
 Orient. J. Chem., (1997), 13(3), 289-292 (Eng).; Chem. Abstr., 128, 16, 192584z (1998).
- Ram Tilak, Tyagi Ritu, Goel Bhawna, Saxena K. K., Shrivastava V. K., Kumar Ashok; Indian Drugs., (1998), 35(4), 216-221 (Eng.); Chem. Abstr., 129, 9, 641, 109052r (1998).
- 370. Cascaval Alexandru, Stocia, Gheorghe-Zaharia, Berdan, Ioan; *Rom. RO*, **106**, 403, (Cl. C07D 231/04), (1993), Appl. 143, 707, 15, (1990). *Chem. Abstr.*, **129**, 2, 491, 16120g (1998).
- 371. Ali, Yousif, Al-Rawi, Annis, Al-Rawi Muna S.; Dirasat Nat.;
 Eng. Sci., (1998), 25(1), 94-99 (Eng.); Chem. Abstr., 129, 21, 753, 276168q (1998).
- 372. Pandeya S. N., Sriram, D.;
 Acta. Pharm. Ture., (1998), 40(1), 33-38 (Eng.); Chem. Abstr., 129, 9, 641, 109060, (1998).
- 373. Omar, Mahmoud T.;
 Egypt J. Pharm. Sci., (1997), 38(4-6), 271-280 (Eng.) Chem. Abstr., 131, 645, 257474x (1999).
- 374. Pawar R. P., Anduskary N. M., Vibhute V. B.;
 J. Indian. Chem. Soc., (1999), 76(5), 271-72 (Eng). Chem. Abstr., 131, 677, 271829y (1999).
- 375. Chohan, Zahid H., Praveen M.;
 Net Based Drugs. (1999), 6 (3), 149-152 (Eng.) Chem. Abstr., 131, 511, 310722e (1999).
- 376. Holla, B. S., Gonzalves, R.;
 Boll. Chim. Farm. 137 (11), 467-472 (1998). Chem. Abstr., 131, 6, 73606k (1999).
- 377. Ergenc, Nedime, Uinsoy, Nuray, Capangultate, Soruis, Aulten o tuk; Kiraz, Mnammer;
 Arch. Pharm. 329 (8-9), 427-430 (1996); Chem. Abstr., 126, 1, 8031b (1997).
- 378. Holla B. S., Shivananda M. K., Shenoy, S., Antony, A.;
 Boll. Chim. Farm. 137(7), 233-238 (1998); Chem. Abstr., 131, 23, 310543p (1999).
- 379. B. Shivarama Holla, K. V. Malini, B. Sooryanarayan, Raw, B. K. Sarojini, N. Suchetha Kumari; Eur. J. Med. Chem., 38, 313-318 (2003).
- Pascal Rathelst, Nadine Azos, Hussain El-Kashef, Forence Delwas; Eur. J. Med. Chem., 57, 671-679 (2002).
- 381. Adnan A. Bekhil, Heshan T. U. Fahwy, Azzaim Baraka et. al.; Eur. J. Med. Chem., 38, 27-56 (2003).
- 382. Dimmock J. R.; Jha A.; Zello; G. A.; Allen T. M.; Santos, C. L.; et. al.; Pharmazie, 58(4), 227-232 (Eng). (2003); Chem. Abstr., 139, 149383 (2003).
- J. Sandstrom; Adv. Heterocycl. Chem., 9, 165 (1968).
- 384. W. R. Shermen; In Hetercyclic Compounds, ed. R. C. Elderfield, Wiley NY. Vol. 7, Chap., 7, 579 (1961).
- 385. L. L. Bambas; Chem. Heterocyclic Compounds, 4, 81 (1952).

- 386. Howard Sard, Peter C. Meltzer and Raj K. Razdan; J. Heterocyclic Chem., 22, 361 (1985).
- 387. Q. Bano, N. Tiwari, S. Giri and Nizammuddin; Indian J. Chem., 32(B), 399-403 (1993).
- 388. M. K. Albrahim, A. H. H. Elghandour, S. M. M. El Shikh and S. A. Michael; *Indian J. Chem.*, **36(B)**, 91-95 (1997).
- 389. Miller;
 - J. Indian. Chem. Soc., 72, 74893 (1950).
- 390. E. Gores; Actaphysiol. Acad. Sci. Huges., 10, 95 (1961).
- R. Gerike;
 Ger. Pat., 2, 345, 402; Cidem. U.S. Pat., 4, 153, 693; Chem. Abstr., 88, 5093, 105383, 121213 (1978): Arzeneimittal-Fersch., 29, 361-462 (1979).
- 392. Kidwai, Mazaahir; Sapra, Pooja; Bhusan, Kumar Ranjan; Meena; Bio. Inorg. Chem., 29(6), 380-386 (Eng.) (2001). Chem. Abstr., 137(2), 20240d (2002).
 393. Wang-Zhong-Yi, You Tian-Pa, You Ling-Feng;
 - Youji Huaxue, 19(3), 288-292 (1999); Chem. Abstr., 131, 199657w (1999).
- 394. Madhukar S. Chande, Rajendra S. Jagtap and Rabindranath N. Sharma; Indian J. Chem., 36(B), 199-202 (1997).
- 395. F. Malinoski and V. Stoller;
 Virology, 110, 281 (1981); Chem. Abstr., 94, 186145v (1981).
- 396. M. R. Mody, A. R. Prasad, T. Ramlingam and P. B. Sattur; *Ibid.*, **59**, 769 (1982); *Chem. Abstr.*, **97**, 2161310 (1982).
- Wang Zhong-Yi, You Tian-Pa, You Ling-feng;
 Youji Huaxue., 19(3), 288-292 (1999); Chem. Abstr., 131, 199657w (1999).
- 398. Chen Han Song, Li Zheng Ming, Han Yu Feng, Wang Zhong Wen;
 Chin. Chem. Lett., **10(5)**, 365-366; *Chem. Abstr.*, **131**, 257492b (1999).
- 399. Joshi P. C., Rautela R.;
 Asian J. Chem., 10(4), 871-873 (1998); Chem. Abstr., 129, 343452d (1999).
- 400. Galad A. K., Khaji I. M., Mahajan Shetti C. S.; Indian J. Heterocycl. Chem., 2(1), 207-56 (1992).
- 401. Amir Mohammad, Oberoi Anta, Alam Shah;
 Indian J. Chem., 38(B), (2), 237-239 (1999); Chem. Abstr., 131, 5225k (1999).
- 402. Amir Mohammad, Shahani Shalini;
 Indian J. Heterocycl. Chem., 8(2), 237-239 (1999); Chem. Abstr., 130, 182418a (1999).
- 403. Pathak U.S., Alagarsamy V.;
 Acta. Pharm. Turc., 41(1), (1999); Chem. Abstr., 131, 13625v (1999).
- 404. Inoue Satoshi, Nishimura Kouji, Yakomoto Masaharu, Sakae Nobuya, Hirata Terukage; *PCT Int. Appl. WO.* 97, 01, 557 (1997); *Chem. Abstr.*, 126, 144281k (1997).
- 405. Mahram Mond A., El-Sherbeny Magda, El-Obaid Abdul-Rahman M.A.; Badria Farid A.; Alexandria J. Pharm. Sci., 12(1), 39-44 (1998); Chem. Abstr., 129, 67756b (1998).

- 406. Kidwai Mazaahir, Kumar Rajesh, Shrivastava Anil, Gupta H. D;
 Bio. Org. Chem., 26(5), 289-294 (1998); Chem. Abstr., 131, 237538x (1999).
- 407. Schenone Silvia, Bruno Olga, Ranise Angelo, Bondvalli Francesco;
 Framaco, 53, (8-9), 586-589 (1998); Chem. Abstr., 130, 296650q (1999).
- 408. Lee Byung H., Dutton Fred E., Clotheir Michael F., Bowman Jerry W.; Bio. Org. Med. Chem. Lett., 9(12), 1727-1732 (1999).
- 409. El-Sayed, Ali. S.;
 Al-Azher Bulletin of Sci., 11(2), 15-16 (Eng.) (2002); Chem. Abstr., 137(20), 294111q (2002).
- 410. Zhang Yan, Wang. Shobing, Zhang Linmei;
 Lanzhou Oaxue Xu ebao Zivan Kexqeban (2000); Chem. Abstr., 133, 164026g (2000).
- 411. Wang Xi-Can, Yu-Tian-Zhi, Lizheng; Chem. Abstr., **131**, 322591z (1999).
- 412. Okada Itary, Fukuji Toshiki;
 Jpn. Kokai Tokkyo Koho JP 00 725, 389; Chem. Abstr., 133, 135317u (2000).
- 413. Gui Xin-Ping, Zhang Lin Mei Zhang;
 Indian J. Heterocycl. Chem., Sect. B. (1999); Chem. Abstr., 132, 207803c (2000).
- 414. Jacobson E. John, Mitchell Mark A., Hendges Susan K.;
 J. Med. Chem., 42(9), 1525-1536 (1999); Chem. Abstr., 131, 31909f (1999).
- 415. Karimian, Khushayar; Tam, Tim Fat; Leung-Toung; Regis C.S.H.; Jolanta Maria;
 U.S. US 6468977 (Cl. 514-19; CO7D285/88) (2002); Chem. Abstr., 137(21), (2002).
- 416. Zhang, Yan; Sun, Xiaowen; Hui, Xin-ping; Zhang Zi-Yi; Wang, Qin; Zhang, Qi;
 Chi. J. Chem., **20(2)**, 168-173 (Eng.) (2002). *Chem. Abstr.*, **137(1)**, 6131n (2002).
- 417. Manjunath, Ghate D.; Shreenivasa A.; *Indian J. Heterocycl. Chem.*, **11(3)**, 255-256 (Eng.) (2002); *Chem. Abstr.*, **137(4)**, 47159w (2002).
- 418. B. Kalaiya & A. R. Parikh;
 J. Inst. Chem., (India), 63, 161, (1985); Chem. Abstr., 104, 109527u (1986).
- 419. P. M. Parasharya V. H. Shah & A. R. Parikh;
 J. Inst. Chem., (India), 65, 106 (1993).
- 420. P. M. Parasharya & A. R. Parikh;
 J. Inst. Chem. (India), 63, 196, (1991); Chem. Abstr., 117, 171386u (1992).
- 421. V. L. Panchhamia & A. R. Parikh;
 J. Inst. Chem. (India), 61, 54 (1989); Chem. Abstr., 112, 198229d (1990).
- P. M. Parasharya & A. R. Parikh;
 J. Inst. Chem. (India), 64, 140 (1992).
- 423. R. N. Vansdadia, K. P. Roda and Hansa Parekh;
 J. Inst. Chemists (India), 60, 232-34 (1988).
- 424. H. J. Vikani and Hansa parekh;
 J. Indian Chem. Soc., 67, 859-861 (1990).
- R. N. Vansdadia, K. P. Roda and Hansa Parekh;
 J. Inst. Chemists (India), 61, 89-92 (1989).

- 426. Ladwa Kartik, Khunt Ranjan; Parekh Hansa;
 Oriental J. Chem., 18(1), 135-138 (Eng.) (2002); Chem. Abstr., 137 (21), 310873d (2002).
- Marc A. Ilies, Deniela Vullo; Jaromir Pasterek; Andrea, Scozzafuva; Monic allies; J. Med. Chem., 46(11), 2187 (2003).
- Nalan Terzioglu, Aysel Gursoy;
 Eur. J. Med. Chem., 38, 781-786 (2003).
- Pandey V. K; Negi H. S.; Joshi M. N.; Bajpai S. K;
 Org. Chem. Inclu. Med. Chem., 42B(1), 206-210 (Eng.) (2003). Chem. Abstr., 138(24), 368833c (2003).
- 430. Ma, Zhong-Hua; Chen. Wu; Liu, Zhi-Wei; Yang, Guang-Fu; Chem. Abstr., 138(10), 137251v (2003).
- Ilies, Marc A; Vallo, Daniel U.; Pastorek Juromir; Scozzafuva, Andra; Claudia T.; Chem. Abstr., 139(4), 52952v (2003).
- 432. Galli, Frederic, Leclerc, Odile; Lochead, Alistair;
 PCT Int. Appl. WO 03 44020 (Cl. CO7D471/08) (2003); *Chem. Abstr.*, 138(26), 401767j (2003).
- Shulabh Sharma, Vireendra Kishor, Shrivastava, Ashok Kumar;
 Eur. J. Med. Chem., 37, 689-697 (2002).
- 434. V. M. Parikh;
 "Absorption Spectroscopy of Organic Molecule" Addition Wesley Pub. Co. London, 243-256 (1978).
- 435. A. R. Kartizky and R. Alon Jones; J. Chem. Soc., 2942 (1960).
- 436. "Strukturaufklarang Organischer Verbindungen" Mit Spektroskopishen MethodenZweite, Ubeyarbeitefe and erganzte Auflage (Springer-Verlag, Berlin Heidelberg, New York-1981).
- 437. C. N. R. Rao;"Chemical application of Infrared Spectroscopy" Academic Press, New York (1963).
- 438. Silverstein Dasler and Mosill; Spectroscopy Identification of Organic Compounds (1981).



R	R	R	
С ₆ Н ₅ -	с ₆ н ₅ -	с ₆ н ₅ -	
$4-NH_2-C_6H_4-$	4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -	
$3-\mathrm{NH}_2-\mathrm{C}_6\mathrm{H}_4-$	3-NH ₂ -C ₆ H ₄ -	3-NH ₂ -C ₆ H ₄ -	
$4\text{-Br-C}_6\text{H}_4$ -	$4\text{-Br-C}_6\text{H}_4$ -	$4\text{-Br-C}_{6}H_{4}$ -	
$4-Cl-C_6H_4$ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	Е
4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	$4-F-C_6H_4$ -	ist o
$4\text{-OCH}_3\text{-}C_6\text{H}_4\text{-}$	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	List of New
4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	
$4-\mathrm{NO}_2-\mathrm{C}_6\mathrm{H}_4-$	4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -	Compounds
$3-NO_2-C_6H_4-$	3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	oun
$4 - OH - C_6H_4$ -	4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -	ds
2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -	188

($)$ $($ $)$ $()$ $($		H_2N
R	R	R
с ₆ н ₅ -	с ₆ н ₅ -	C ₆ H ₅ -
$4-NH_2-C_6H_4-$	4-NH ₂ -C ₆ H ₄ -	4-NH ₂ -C ₆ H ₄ -
3-NH ₂ -C ₆ H ₄ -	3-NH ₂ -C ₆ H ₄ -	3-NH ₂ -C ₆ H ₄ -
$4-Br-C_6H_4$ -	4-Br-C ₆ H ₄ -	4-Br-C ₆ H ₄ -
4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -
4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -
4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -
4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -
4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -	4-NO ₂ -C ₆ H ₄ -
3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -
4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -	4-OH-C ₆ H ₄ -
2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -	2-OH-C ₆ H ₄ -

	CH3 N N R R	N N N SH R	
R	R	R	
С ₆ Н ₅ -	с ₆ н ₅ -	С ₆ Н ₅ -	
4-NH ₂ -C ₆ H ₄ -	4-COOH-C ₆ H ₄ -	4-COOH-C ₆ H ₄ -	
3-NH ₂ -C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	4-Cl-C ₆ H ₄ -	
$4\text{-Br-C}_6\text{H}_4$ -	3,4-(Cl) ₂ -C ₆ H ₃ -	3,4-(Cl) ₂ -C ₆ H ₃ -	
4-Cl-C ₆ H ₄ -	4-F-C ₆ H ₄ -	4-F-C ₆ H ₄ -	Li
4-F-C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	st of
4-OCH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	Nev
$4-CH_3-C_6H_4-$	3-CH ₃ -C ₆ H ₄ -	3-CH ₃ -C ₆ H ₄ -	v Co
$4 - NO_2 - C_6 H_4 -$	2-CH ₃ -C ₆ H ₄ -	2-CH ₃ -C ₆ H ₄ -	List of New Compounds
3-NO ₂ -C ₆ H ₄ -	$4 - NO_2 - C_6 H_4 -$	$4-NO_2-C_6H_4-$	und
4-OH-C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	3-NO ₂ -C ₆ H ₄ -	S
2-OH-C ₆ H ₄ -	2-NO ₂ -C ₆ H ₄ -	$2-NO_2-C_6H_4-$	190

R	R	R	
C ₆ H ₅ -	2-0AC-C ₆ H ₅ -	C ₆ H ₅ -	
$CH = CH - C_6 H_5 -$	4-NH ₂ -C ₆ H ₄ -	-CH=CH-C ₆ H ₅ -	
2-Cl-C ₆ H ₄ -	2-NH ₂ -C ₆ H ₄ -	2-Cl-C ₆ H ₄ -	
3,4-(OCH ₃) ₂ -C ₆ H ₃ -	-CH=CH-C ₆ H ₅ -	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	
4-ОН,3-ОСН ₃ -С ₆ Н ₃ -	4-Cl-C ₆ H ₄ -	4-OH,3-OCH ₃ -C ₆ H ₃ -	Li
4-OH-C ₆ H ₄ -	2-F-C ₆ H ₄ -	4-OH-C ₆ H ₄ -	st of
3-ОН-С ₆ Н ₄ -	2-OH-C ₆ H ₄ -	3-OH-C ₆ H ₄ -	Nev
2-OH-C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	2-OH-C ₆ H ₄ -	List of New Compounds
4-OCH ₃ -C ₆ H ₄ -	4-CH ₃ -C ₆ H ₄ -	4-OCH ₃ -C ₆ H ₄ -	mpo
2-OCH ₃ -C ₆ H ₄ -	2-CH ₃ -C ₆ H ₄ -	2-OCH ₃ -C ₆ H ₄ -	und
3-NO ₂ -C ₆ H ₄ -	-CH ₂ -C ₆ H ₅ -	3-NO ₂ -C ₆ H ₄ -	S
2-NO ₂ -C ₆ H ₄ -	$-C_5H_4N$	2-NO ₂ -C ₆ H ₄ -	191