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Preface 

 
 The ionospheric plasma density shows temporal variability (with time of the 

day, season and solar cycle), latitudinal variability and variations during geomagnetic 

disturbances. In addition to this there is a presence of moving ionospheric plasma 

density irregularities in the night time equatorial and low latitude ionospheric F 

region on certain days. All these result in to the degradation of the strength of the 

satellite signals coming towards the earth. Hence from the point of view of satellite 

based navigation issues such as GPS based navigation, it is important to study the 

various ionospheric variability, evolution and growth of equatorial ionospheric F 

region irregularities and associated radio wave scintillation and geomagnetic storm 

time ionospheric behavior. The present thesis deals with above mentioned objectives. 

 

 Ionosphere has been studied by various ground based techniques during the 

past 4-5 decades. With advent of satellite era, space based techniques have been 

evolving which provide better global coverage. The multitechnique studies of 

ionosphere provides diagnostic tool for better understanding of the ionospheric 

variability and various ionospheric phenomena. The present study has been carried 

out using GPS - TEC and scintillation monitor, VHF coherent back scatter radar and 

Ionosonde techniques. The in-situ measurements and optical techniques have also 

been used. 

 

 The thesis consists of six chapters:  

 

 Chapter 1 gives the brief introduction of the earth’s atmosphere and 

ionosphere.  The various ionospheric characteristics along with the various 

phenomena that are common in equatorial and low latitude ionosphere are briefly 

reviewed.  The scintillation and geomagnetic storm and its effects on ionosphere are 

highlighted.  

 



 ii

 Chapter 2 describes the various techniques used for the present study. The 

GPS – TEC and scintillation measurement technique along with the VHF coherent 

back scatter radar and ionosonde techniques are discussed in detail.  In-situ and 

optical techniques are also highlighted. 

 

 Chapter 3 describes the ionospheric variability in terms of TEC near the 

northern EIA crest region, Rajkot (22.290N 70.740E, sub-ionospheric dip latitude 

15.80N) in India for low solar activity period of 2005-2009. The diurnal and seasonal 

variations of TEC and solar activity dependence of TEC are discussed. It is seen that 

TEC shows positive solar activity dependence. The control of EEJ on EIA 

development is described. The influence of EEJ on low latitude TEC is also 

discussed. The low latitude L-band scintillation study describes that the observed 

amplitude of scintillation and occurrence frequency both remain low due to the low 

solar activity period. 

 

Chapter 4 describes multitechqniue studies of ESF irregularities. The 

evolution and growth of ESF irregularities of various scale sizes are discussed in 

detail. The inhibition of E region instability in the presence of vertically rising ESF 

plumes is observed. The detail investigation on TEC depletions and L-band 

scintillation in association with the ESF plume structures are carried out.  These 

results are presented and discussed in detail in chapter.  In addition to TEC 

depletions, TEC enhancement during ESF is also addressed and discussed in detail. 

The latitudinal extent of L-band scintillation using GAGAN GPS receivers has been 

studied. The result says that L-band scintillation maximizes at low latitudes. The ESF 

and L-band scintillation both shows positive solar activity dependence. 

 

Chapter 5 describes the geomagnetic storm time electrodynamical and neutral 

dynamical coupling between high and low latitudes and its effects on low latitude 

ionosphere – thermosphere system. The storm time ionospheric electric field 

perturbations either due to prompt penetration electric field or disturbance dynamo 

electric field redistributes the ionospheric plasma and creates positive or negative 



 iii

ionospheric storm respectively.  The prompt penetration electric field effect is 

observed to be occurred immediately while the disturbance dynamo electric field 

shows the delayed effect. It is observed that the storm time thermospheric neutral 

composition changes have great influences on ionospheric electron density. The 

prompt penetration of eastward electric field to equatorial and low latitudes leads to 

development of strong ESF where conditions was not much conducive for strong ESF 

generation before the onset of storm.   

 

Chapter 6 summarizes the main results. 

 

The results presented and discussed in this thesis bring out the significance of 

various equatorial and low latitude ionospheric phenomena which degrade the 

accuracy of satellite (for example, GPS) based positioning and navigation.   
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Chapter 1 

Introduction 

 
1.1 Introduction 

 

The age of radio communication has been started with the discovery of 

ionized medium in the earth’s upper atmosphere which contains free electrons in 

numbers sufficient to influence the propagation of the radio waves. This ionized 

medium is known as the ionosphere. The first credit to postulate the existence of 

the ionosphere goes to Stewart [1882]. Marconi [1901] had given an evidence for 

the existence of the ionosphere by conducting an experiment to transmit a radio 

signal from England to Canada. The independent evidences provided by Kennelly 

[1902] and Heaviside [1902] for the existence of the ionosphere offered more 

correct explanation for Marconi’s radio communication experiment. They 

suggested that long range propagation could be due to the reflection of the radio 

signals from the ionized medium in the upper atmosphere. The final confirmation 

for the existence of the ionosphere emerged with the radio sounding experiments 

of Appleton and Barnett [1925] in England and Breit and Tuve [1925 & 1926] in 

America.  These experiments revealed the distinct regions of the ionosphere 

conventionally designated as D (70 to 90 km), E (90- 150 km) and F (150 to not 

well defined but ~ 1000 km).  Chapman [1931] presented a theory for the 

formation of the ionospheric regions based on the action of solar UV radiation. It 

was discovered that the F region splits into two regions at different altitudes 

during the day; the lower was labeled as F1 region and the upper as F2 region. 

There was rapid progress in obtaining an overall grasp of the behavior of the 

ionosphere and its effects on the propagation of radio signals. Appleton – Hartee 

equations were established [Appleton, 1932], which gave the complex index of 

refraction and the polarization for a plane wave propagated in the ionosphere in 

the presence of the earth’s magnetic field.  

 

Conventionally, the ionosphere has been considered as good reflector - 

under suitable conditions - of long, medium and short waves used for broadcasting 
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and radio communication. But in the present scenario of satellite based 

communication and navigation, the ionosphere is the major debilitating factor. In 

general, the satellite communication systems operate at sufficiently high radio 

wave frequencies which can propagate through the ionosphere unobstructed. But 

during their propagation, the radio signals experience a group delay due to the 

presence of free electrons in their propagation path. This behavior is not tolerable 

considering the demands of the modern satellite based communication and 

navigation systems.  If the ionosphere is stationary, one could have estimated the 

number of electrons which the radio waves encounter during their propagation 

from the ionosphere and thus the group delay. With the help of this estimated 

group delay, the required correction could be done to acquire better accuracy of 

satellite based communication and navigation system. But this is not the case. 

Since the ionosphere is highly dependent on the input energy from the sun, it has 

great temporal variability ranging from min (during geomagnetic storms) to 11 

years (solar cycle) and remarkable spatial variability that depends on the geometry 

of the earth’s magnetic field. In addition to this, ionospheric plasma irregularities 

drifting in front of the satellite radio signals, scintillate the radio wave signals and 

causes unevenness of the signals at the receiver end. Therefore the behavior of the 

ionosphere under different geophysical conditions at different geographical 

locations needs to be understood carefully. The present study is centered on the 

ionospheric variability and the behavior of the ionosphere during various 

ionospheric phenomena. The thermospheric behavior during geomagnetic storms 

and its effects on the ionosphere are also presented. The following sections 

described the earth’s atmosphere and ionosphere and its various characteristics in 

detail. 

 

1.2 The structure of the neutral atmosphere  
 

The earth is enveloped by its atmosphere which is bound to it due to its 

gravity. The earth’s atmosphere which co-rotates with it can be classified 

according to various schemes based, in particular on, temperature, composition 

and state of mixing. The classification of different regions of the earth’s 

atmosphere on the basis of temperature and state of mixing along with the 
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distribution of various neutral species with respect to height is shown in Figure 

1.1. The total neutral gas density is ~1019 cm-3 near the ground and it decreases 

exponentially with height.  As shown in the Figure 1.1, on the basis of the neutral 

temperature variation with height, the atmosphere can be subdivided in the 

troposphere, stratosphere, mesosphere and the thermosphere. The average height 

of troposphere varies from ~ 15 km at the equator to ~ 8 km at the poles. 

Tropopause occurs at these values of height respectively. Troposphere is the 

region of negative lapse rate (-6 K/km) due to the decrease in infra-red radiation 

as a function of height from the surface of the earth. This region consists of about 

85-90% of the atmospheric mass. Weather occurs in the troposphere. The 

stratosphere starts after the tropopause, here the temperature increases with height 

and obtains a value of ~260 K near the stratopause (~ 50 km) from ~170 K at the 

tropopause (~15 km) due to the absorption of solar UV radiation by ozone. 

Stratosphere contains 90% of the atmospheric ozone with a peak ozone density at 

~25 km. In mesosphere, which starts after the stratopause, temperature again 

decreases with height and reaches a minimum value of ~180 K near the 

mesopause at ~85 km. In the thermosphere, temperature increases monotonically 

with height due to the direct heating from the sun and obtains its highest value. 

The energy budget of the thermosphere is highly dependent on input solar energy.  

 

The region of the atmosphere up to ~ 100 km is subjected to turbulent 

mixing. Therefore the lower atmospheric species in the atmosphere are well-

mixed and this is the region of uniform composition, known as the homosphere or 

turbosphere.  The mean free path (the average distance between successive 

collisions of the particles) is given by the following equation for molecular of 

diameter d at pressure P and temperature T. 

 

P
KT

d2
1

2m
π

=λ  

 

From the above expression the mean free path increases with altitude as 

pressure decreases. The mean free path of the major atmospheric species is small 

in the lower dense atmosphere. The upper boundary of the homosphere is known 

as the turbopause (~110 km). Above the turbopause, the mean free path becomes 

(1.1) 
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large and the molecular diffusion process becomes dominant. This region is 

known as the heterosphere. The mass discrimination is observed in the 

heterosphere and the vertical distribution of the atmospheric species is governed 

by their molecular masses and their diffusion, hence diffusive separation occurs, 

i.e. the heavier constituents start decreasing fast with altitude followed by the 

lighter species as shown in Figure 1.1. 

 

This region is gravitationally separated with height, hence the situation 

arrives where the atomic and molecular motions - which are constantly under the 

influence of gravity - becomes almost collision free. Due to this, the atoms and 

molecules with larger kinetic energy can escape from the earth’s atmosphere. This 

region is known as the exosphere and starts at ~ 600-700 km.  

 

In general the region between (0-15 km) is called the lower atmosphere, (15-90 

km) is the middle atmosphere, and the region above the 90 km is referred to as the 

upper atmosphere. Now it is known that the solar UV radiation from the sun is 

being absorbed in the altitude range of 15-60 km where the ozone concentration is 

significant.  Before getting absorbed by the ozone, solar UV photons have 

sufficient energy to break the neutral species of the atmosphere above the altitude 

of ~60 km i.e. upper atmosphere.  This reaction creates the free electrons and ions 

in the upper atmosphere and this part of the atmosphere which extends up to ~ 

1000 km is known as the ionosphere. The ionosphere will be dealt in detailed in 

section 1.3. The region of the atmosphere where the present study is centered is 

the ionized part of the upper atmosphere - ionosphere.       
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Figure 1.1: Temperature profile of the earth’s atmosphere along with the 
density distribution [reproduced after Pant, 1998] 
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1.3 Ionosphere 

 
The solar EUV photons ionize the neutral upper atmosphere through the 

process of photoionization in the day time hemisphere and creates ionosphere 

within it. In other words the ionosphere can be defined as the ionized part of the 

upper atmosphere which contains free electrons and ions. It begins at a height of 

~60 km with no well defined upper limits but ~1000 km. Since the main energy 

source for the ionosphere is the incoming solar energy, the ionosphere has strong 

solar dependence. Once absorbed the solar EUV photons (in the process of 

photoionization), the intensity of the photon-beam deceases as it penetrates further 

in the region of increasing neutral density with decreasing altitude. The peak of 

the ionization occurs ~350 km i.e. the ions and electrons are most abundant at this 

level, with value of 106cm-3 [Kelley 1989].  

 

But they represent only one thousand of the total neutral density even at 

that level, so the ionosphere can be regarded as weakly ionized plasma. The peak 

plasma density is limited by the recombination rate at which the ions and electrons 

recombine to form a neutral molecule or atom.  

 

The ionospheric radio sounding using the ionosonde revealed the distinct 

regions of the ionosphere [Appleton and Barneet, 1925, Breit and Tuve, 1925 & 

1926]. Conventionally, these regions are known as the D, E and F regions. During 

day time the F region splits into F1 and F2 regions. Though the boundary of these 

regions gradually merges into each other, the boundary between D and E regions 

is assumed ~90 km altitude and the boundary between E and F regions is ~150 

km. After sunset when the production stops, the D and E regions recombine fast 

while F1 and F2 regions merge into single F region which sustains throughout the 

night. Figure 1.2 shows electron density distribution in D, E and F regions of the 

ionosphere during day time and night time during solar maximum (maximum 

sunspot) and solar minimum (minimum sunspot) conditions.  
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Figure 1.2: Electron density distribution in different regions of ionosphere 
with respect to solar activity (a) during daytime (b) during nighttime [After 
Kelley, 1989] 
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An excellent description on formation of ionosphere is given in 

Hargreaves [1992]. The ionosphere is produced by a wide spectrum of solar 

radiation. D region ionization is highly sensitive to the phase of the solar activity. 

During solar maximum the major ionization of D region is produced by the solar 

hard X-rays (0.1-1 nm). During solar minimum Ly-α  (121.6 nm) ionizes the NO 

only and provides the major ionization source.  O2 (1∆ ) metastables ionization by 

UV radiation < 111.8 nm and cosmic rays as well contributes to D region 

ionization.  

 

The E region ionization is produced by the solar UV radiation between 

91.1 – 102.7 nm. During solar maximum soft X-rays (1-20 nm) provides an 

important source of ionization. The F region ionization is produced by the EUV 

radiation of solar spectrum in 20-91.1 nm range. He I (~30.4 nm) and He II (~58.4 

nm) are also source of ionization for F region. The negative ions exist only in D 

region and not in E and F regions.  

 

The plasma which is dominant above 150 km is represented by O+.  The 

ionospheric peak production occurs in the F2 region around 350 km for vertically 

incident solar radiation. The production rate above this altitude is limited by the 

available neutral species while that below by the available solar flux. This altitude 

has solar zenith angle dependency and it rises up with increase in solar zenith 

angle. However, the altitude of the ionization peak is much higher than the 

production peak, as the ionization is controlled by production as well as by loss 

and transport also. Due to these reasons ionization peak is highly variable with 

time of the day, season and solar activity.  

 

At lower altitudes (E and lower F regions), dissociative recombination 

reduces the plasma density during nighttime. At higher altitude (upper F region) 

the plasma i.e. O+ and H+ ions sustains throughout the night. In this region the 

ionization loss is governed by charge exchange reaction.  

 

The transition between these two regions occurs in the F region at about 

160-200 km. When this transition region coincides with F region production peak, 
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the F region splits in to F1 and F2 regions [Ratcliffe, 1956]. In the upper F region, 

the recombination rate becomes lower than the ionization rate as altitude 

increases. Hence, there will be a larger ion density at altitude above F1 region.  

 

The atmospheric dynamos are active in the ionosphere, in which the 

motions of the neutral atmosphere across the earth’s magnetic field lines produce 

the electric fields. These electric fields induce currents and motions in the 

ionospheric plasma. In E region the collision frequencies of ions with neutral (νin) 

is higher as compared to their gyrofrequencies (Ωin) and the ions move with 

neutral wind. In case of electrons, their gyrofrequencies (Ωe) are larger as 

compared to their collision frequencies with the neutrals (νe). In F region, the ion 

and electron motions are governed by geomagnetic field as their gyrofrequencies 

are higher than their respective collision frequencies with neutrals. The motions of 

the plasma initiate the various types of plasma instabilities in E and F regions at 

the time. The ionospheric E and F region’s dynamo and plasma density 

irregularities will be discussed in detail in following sections.  

  

 It is known that at the magnetic equator the earth’s magnetic field is 

horizontal, at mid latitudes it is inclined to the normal, and at polar latitudes it is 

almost vertical. Due to the difference in geometry of the earth’s magnetic field at 

the magnetic equator and elsewhere, the behavior of the equatorial and low 

latitude ionosphere differs to a great extent from that of the mid and high latitudes. 

Therefore the regular investigations on the ionosphere have become extensive. In 

general the ionosphere from 00 to ≤200 geomagnetic latitudes represents the 

equatorial and low latitude ionosphere, from 200 to 500 geomagnetic latitudes 

represents the mid latitude ionosphere and over 500 geomagnetic latitudes 

represents polar or high latitude ionosphere. India falls in the equatorial and low 

latitude zones with the magnetic equator at Trivandrum (8.50N, 770E, dip latitude 

0.50N). Due to the different magnetic field geometry with latitudes, the ionosphere 

shows great spatial variability and due to the variable solar input energy it shows 

great temporal variability. 
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1.4 Electrical conductivity of the ionosphere  

 
 Due to the presence of free electrons and ions, the ionosphere emerges as 

an excellent conductor of electricity. The conductivity of the ionosphere is 

determined from the basic equations of motion for electrons and ions under the 

action of an applied electric field E [Cowling, 1945; Baker and Martyn, 1952, 

1953; Chapman, 1956]. The ionospheric conductivity occurs due to the motions of 

free electrons and ions under the effects of two driving forces, first one is the 

presence of an electric field and the second is the neutral wind. However there are 

two complicating factors which one should consider while taking care of 

ionospheric conductivity, one is the collision between the charged and neutral 

particles and the second is the presence of geomagnetic field.  The first one is 

characterized by the collision frequency and the second one is by the 

gyrofrequency. The electric conductivity of the ionosphere in the presence of a 

geomagnetic field depends on the number density of the charged particles (Ne, 

Ni), electric charge (e), mass (m),  mean collision frequency (ν), and 

gyrofrequency (Ω = eB/m).  

 

Consider the case when the driving force F is parallel to the geomagnetic 

field B. Under this situation the drift velocity V of a charged particles can be 

approximated by equating the driving force F to the drag force due to collisions, 

mVν. 

 

V= F/mν 

 

 The effect of magnetic field is neglected since it is parallel to the direction 

of motion. On the other hand, when driving force F is perpendicular to 

geomagnetic field B, one should consider the effect of both the drag force (due to 

collisions) and the Lorentz force (due to geomagnetic field).  The motion can be 

estimated to a steady drift with a velocity V given by 

 

(F ±  eV × B -  mVν) =0 

 

(1.2) 

(1.3) 
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 The + sign corresponds to the ions and the – sign corresponds to the 

electrons. The angle between the driving force F and the resulting velocity is 

given by  

 

tanθ = Ω/ν  

Since Ω = eB/m           tanθ = eB/mν 

 

 The ratio in equation (1.4) varies with altitudes because collision 

frequencies for both electrons (νe) and ions (νi) decreases rapidly with altitudes 

while Ω remains almost constant for both of it. Thus θ varies between 00 and 900, 

being very small at lower heights and very large at higher heights.  

 

 As mentioned earlier, the driving force F is either due to electric field E (F 

=eE) or due to a wind of velocity U (F = mUν). The drift velocity obtained by a 

charged particle at any value of height, under the action of the wind of velocity U, 

is given by  

 

V = 
















Ω+ν

ν

2
1

22 )(
U  

 

 The amplitude of velocity V for both ions and electrons at any value of 

height depends on the ratio of ν/Ω.  

 Considering the case of an electric field as a driving force, the drift 

velocity can be estimated as  

 

V = 
















Ω+ν

Ω

2
1

22 )(





B
E  

 

The current produced in the ionosphere - either due to neutral wind or 

electric field - varies with altitude in direction as well as in magnitude.  

   

(1.4) 

(1.5) 

(1.6) 
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The electric conductivity can be defined as σ = I/E, where E is the electric 

field and I is the current density. In the presence of the geomagnetic field B the 

ionospheric conductivity can be categorized as (i) Longitudinal or Direct 

conductivity (σ0) for motion parallel to F, (ii) Pederson conductivity (σp) for 

motion perpendicular to B and parallel to F, (iii) Hall conductivity (σH) for motion 

perpendicular to both B and F.  The expressions for all these three are given 

below: 
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 At any height in the ionosphere, the conductivity depends on the values of 

collision frequency as well as of gyrofrequency of both electrons and ions. For 

instance below ~80 km, νe>>Ωe and νi>>Ωi, hence the motion of electrons and 

ions is controlled by the collisions. As a result, the current value is very small in 

response to an applied electric field. Above 140 km, the condition is reversed, the 

collision frequencies of both electrons and ions are very much smaller than their 

respective gyrofrequencies, νe<<Ωe and νi<<Ωi. Hence the motion of electrons 

and ions is controlled by geomagnetic field only, because the effects of collisions 

are not present.  Note that the net current is nearly zero in response to an applied 

electric field in this region because the electrons and ions have nearly the same 

Hall drift E × B/B2.    

 

In the region between ~80 km and 140 km, the collision frequency of ions 

with neutrals (νi) is higher compared to their gyrofrequency (Ωi), νi>Ωi, and the 

ions move with neutral wind. While for electrons, their gyrofrequency (Ωe) is 

larger compared to their collision frequency (νe) with the neutrals, νe<Ωe, and they 

move nearly across the wind. Therefore, electrons and ions have differential 

(1.7) 
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motion in this region.  As a result of this charge separation, an electric polarization 

field Ep is created in such a way that at steady state the current is divergence free, 

i.e., 

 

∇.J= 0 

 

The total electric current J can be stated as  

 

  J = σ E 

 

 Here E consists of polarization electric field Ep and induced component 

(U×B) due to the effect of wind U i.e.  

 

E = Ep  + (U × B) 

 

 The polarization electric field Ep and the electric current J have only 

horizontal components and Ep can be derived from an electrostatic potential φ 

produced by the charge distribution, i.e. 

 

   Ep = -∇φ 

 

Here potential φ  depends on the global distribution of wind and conductivity.  

  

 In the presence of an applied electric field perpendicular to the 

geomagnetic field, the current is mainly by the Hall drift of electrons and there is 

minor contribution by the Pederson drift of ions. This region between 80 km and 

140 km, which is highly conductive and bounded on either side by comparatively 

non conducting regions is known as the dynamo region of the ionosphere The 

current produced here is known as the Sq (solar quite) current of the ionosphere. A 

calculated height distribution of conductivity for the mid latitude ionosphere at 

noon is shown in Figure 1.3. It can be seen that the Pedersen and Hall 

conductivities peak in the E region where the direct conductivity continues to 

increase with altitude and is of much greater magnitude.  

(1.8) 

(1.9) 

(1.10)

(1.11)
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 Near the magnetic equator due to the perpendicular geometry of global 

scale dynamo electric field Ey (east – west direction) and the geomagnetic field Bz 

(north-south horizontal direction), electrons drifts vertically with respect to ions. 

Since the vertical extent of E region dynamo is bounded by comparatively non 

conducting regions, vertical polarization electric field Ez is set up. This vertical 

polarization electric field sets up a Pederson current of ions so that the Hall 

current due to electrons is balanced by the Pederson current due to ions at 

equilibrium. So,                                                                                                                                   

 

σHEy=σPEz or Ez= (σH/σP)Ey 

 

 This induced vertically directed polarization field drives a Hall current in 

the east – west direction. Thus the total horizontal current in the east–west 

direction is the summation of the Pederson current due to an applied electric field 

and the Hall current due to an induced vertical polarization field.  

 

The resultant effective conductivity is known as the Cowling conductivity, given 

by, 

 

σC =
P

2
H

P σ
σ

+σ  

 

Considering a rectangular co-ordinate system with its X-Y plane coincides with 

the ground, the positive Z-axis is vertically upward, the positive Y direction is 

eastward and positive X direction is southward. The resultant conductivity along 

the co-ordinate axes can be shown to be  

 

σ XX =
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(1.13)

(1.12)

(1.14)
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Figure 1.3: Conductivity profile calculated for middle latitude at noon [After 
Hargreaves, 1992] 
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 This leads to two main consequences. First, the very high conductivity 

along the magnetic field lines makes them electrically equipotential. Second, the 

eastward conductivity becomes very large, comparable to direct conductivity σ0. 

This results in to the intensification of east – west directed current within ±30 of 

magnetic equator. This large eastward current is known as the Equatorial 

Electrojet (EEJ).  
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1.5 Equatorial Electrojet and Counter Electrojet 
 

 Ground based magnetometer when placed near the magnetic equator 

showed abnormally large amplitude for the daily variation of the horizontal 

component (H). The enhancement was caused by a band of electric current at an 

altitude of ~ 105 km within ±30 of magnetic equator.  

 

 As we have discussed in section 1.4 that due to the special geometry of 

global scale dynamo electric field E in the east – west direction and the 

geomagnetic field B in the north – south direction over the magnetic equator, 

electros drift vertically with respect to ions and due to limitation of vertical extent 

of dynamo E region, a vertical polarization electric field sets up. This vertical 

polarization electric field results in the enhanced conductivity in the eastward 

direction. This large current is known as the Equatorial Electrojet (EEJ) 

[Chapman, 1951a].  The EEJ leads to many interesting phenomena in the 

equatorial and low latitude ionosphere.   

 

 There is an unusual reversal of EEJ current direction (westward from 

eastward) during day time on some days. This phenomenon is known as Counter 

Electrojet (CEJ).  When CEJ occurs, the ground magnetic field value during the 

day goes below the nighttime level. Gouin and Mayaud [1967] reported a negative 

depression of H in observations of daily magnetic variations when CEJ was 

present. Rastogi [1971a] confirmed the westward electric field on the days of CEJ. 

 

1.6  F region Dynamo 

 
 The F region has its own dynamo. This was first postulated by Rishbeth 

[1971]. Like the E region, the F region dynamo is also driven by the neutral winds 

which can generate the current while blowing across the magnetic field lines but 

the mode of operation are different for both of the regions. At the equatorial F 

region, around the sunrise and sunset, the pressure gradients in the neutral air 

produce zonal winds which give rise to vertical currents and polarization electric 

fields on both sides of the terminators [Rishbeth, 1971; Farely et al., 1986; Eccles, 
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1998]. The equatorial F region vertical current is mapped to the magnetically 

conjugate E region (off equatorial E region) connected to the equatorial F region 

by the electron flow via the equipotential magnetic field lines constituting a field 

aligned current as depicted in Figure 1.4(a). When the E region is sunlit, it almost 

entirely short circuits the F region polarization electric fields [Rishbeth, 1971]. 

After sunset the E region conductivity may become too small that cannot support 

the field aligned currents. This results in the development of vertical polarization 

electric field at the F region. The night time enhancement in zonal plasma drift 

can be explained in terms of this vertical polarization electric field [Rishbeth, 

1971; Heelis et al., 1974].  

 

 To understand the F region, dynamo theory let us follow the simple 

explanation given in Kelley [1989].  Consider a simple model in which the 

thermospheric wind is eastward having uniform magnitude U with height. The 

vertical component of the large scale neutral wind field in the atmosphere is 

always small. Therefore the wind driven current is vertically upward with 

magnitude  

 

Jz = σpUB  

  

As σp depends on the product nνin , it varies considerably with height. The zonal 

wind component U may also vary with height. Thus d(σpUB)/dz ≠ 0 and an 

electric field must built up in the z direction to produce a divergence free current.  

In the F region σp >> σH and σp << σ0. The horizontal magnetic field lines over the 

equator bend and enter the E region at high latitudes, which has a finite 

conductivity. During night time, the field aligned current Jy = 0.  

 

 In the post sunset equatorial F region, gravitational forces do not cause the 

plasma (more precisely collisionless plasma) to fall at the magnetic equator since 

the velocity due to gravity is perpendicular to the gravitational force. The E-region 

ionization almost dies out due to the recombination.  The situation resemblance 

the assumption of slab geometry and the F region plasma shapes a layer with a 

well defined lower boundary as shown in Figure 1.4 (b).  

(1.16)
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The F region plasma has a constant, finite Pederson conductivity σp inside 

the slab and zero elsewhere and zonal wind U is constant everywhere. The 

eastward zonal wind U forces the plasma across the magnetic field B; this 

generates a polarization electric field E. This gives rise to a zonal drift motion V 

in the F- region plasma. 

 

During night time this induced zonal motion in plasma follows the 

direction as that of the zonal wind i.e. eastward direction. Since the current is 

upward inside the layer and zero elsewhere, charges pile up at the two boundaries 

as shown in Figure 1.4 (c), which in turn generates the electric field such that  

 

Jz = σpEz + σpuB  = 0 

 

                                                                                          
This implies that 

Ez = -uB 

 

The plasma inside the slab will drift with an E × B/B2 velocity which is 

equal in magnitude and direction to the zonal wind speed. Furthermore, the 

electric field in the frame of reference of the neutral wind, E’ = E + U × B, 

vanishes. The insulating end plate assumption is valid mostly in the night time E 

region, when rapid recombination takes place between molecular ion and electron. 

The F region dynamo is supported by O+ ions which are dominant over there and 

having much longer life. However, during the day time, the E region entirely short 

circuits the magnetic field line integrated F region conductivity and the resulting 

electric fields are determined by winds in the E region. The E region tidal wind is 

weak hence the plasma drift is smaller during the day than at night. An alternative 

suggestion by Haerendel et al., [1983] says that the large vertical electric field in 

the F region is due to partial closure of the vertical equatorial electrojet current in 

the F region.    

  

(1.17)

(1.18)
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Figure 1.4: (a) Actual magnetic field lines geometry near the magnetic 
equator (b) F region slab geometry [After Kelley, 1989] (c) the schematic of 
equatorial F- region dynamo 
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1.7 Equatorial Ionization Anomaly 
 

Due to the unique geometry of horizontal north-south magnetic field and 

an east-west (zonal) electric field perpendicular to it at the geomagnetic equator, 

the equatorial ionosphere shows some characteristics phenomena, (i) EEJ that we 

have already discussed in section 1.5, (ii) Equatorial Ionization Anomaly (EIA) 

and (iii) Equatorial Spread – F (ESF) etc. 

 

EIA is the redistribution of ionospheric plasma with trough at the magnetic 

equator and crests on either side of it. In other words, EIA can be defined as 

double humped structure of ionization on either side of the magnetic equator. The 

anomalous behavior is seen as less electron density at the magnetic equator during 

the noon of a day and more on either side of it. It is confined to narrow belt of 

±150 magnetic latitudes.  Appleton [1946] first put forward the idea of a 

characteristic ‘bitten out’ look in the diurnal variation of electron density in the 

ionospheric F region over the magnetic equator. Due to transverse electric and 

magnetic field at the magnetic dip equator, plasma experiences the upward plasma 

drift i.e. E × B drift perpendicular to the plane containing electric and magnetic 

field. Due to the vertical E × B drift which is independent of charge and mass, 

both the electrons and ions lift up at the magnetic equator simultaneously to 

greater heights. The resultant is the fountain of equatorial ionospheric plasma 

under the action of vertical drift. When the meridional pressure gradients become 

strong enough, the plasma start diffusing down along the geomagnetic field lines 

away from the magnetic equator assisted by gravity and pole ward winds towards 

the low latitude ionosphere. This process creates trough at the magnetic equator 

with two crests on either side of it.  Figure 1.5 (a) shows the EIA formation with 

the involved electrodynamical processes and Figure 1.5 (b) shows pictorial 

representation of EIA with trough at the magnetic equator due to vertical transport 

of plasma and two crests on either side of it due to subsequent diffusion. 

 

The EIA was first explained by Mitra [1946], who suggested that the 

ionization produced by solar UV radiation in the upper atmosphere above the 

magnetic equator was capable of guided towards north and south along the 
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magnetic field lines of force. Martyn [1947] proposed the drift theory and showed 

that the vertical plasma drift over dip equator followed by diffusion along 

magnetic field lines is responsible for the double humped anomalous structure of 

electron density. Croom et al., [1959] first observed EIA experimentally during 

noontime at different altitudes by using a chain of ionosondes in a longitudinal 

region. Several observations have shown the day to day, seasonal and solar cycle 

dependence of EIA [Rao and Malhotra, 1964; Sivaraman et al., 1976; Rastogi 

and Klobuchar et al., 1990; Walker et al., 1994]. Rush and Richmond, [1973] 

have defined the strength of EIA as the product of the ratio of plasma at the crest 

to that at the trough of EIA and the dip latitude of the crest. EIA longitudinal 

dependence has been also investigated [Lyon and Thomas, 1963; Lockwood and 

Nelms, 1964; Walker et al., 1980; Sharma and Raghavarao, 1989]. In addition to 

the previous observations with ionosonde, TEC and vertical top sounders 

measurements, ground based optical techniques have also been used to elaborate 

various EIA characteristics [Kulkarni, 1975; Sridharan et al., 1993a; Pallam Raju 

et al., 1996]. 

  

The EIA is predominantly day time phenomenon but it can be seen well 

beyond the post sunset and predawn hours depending on the season and solar 

activity phases. During daytime, it is produced by E region dynamo electric field 

while at post sunset period it is caused by the complex compound ion-neutral 

dynamics near sunset hours when F region dynamo takes control from the day 

time E region dynamo  

 

In general, during night time when the eastward electric field reverses and 

becomes westward, the resultant downward E × B drift gives reverse fountain 

effect. This causes the retrieval of EIA. The EIA crests and their latitudinal 

movement had been observed by both ground based and satellite borne optical 

measurements of airglow emissions [Chandra et al., 1973b; Kulkarni, 1975]. 

Sridharan et al., [1993a] had shown the movement of EIA crest (high intensity 

regions) from north to south using an all sky imaging Fabry-Perot spectrometer. 
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Figure 1.5: (a) Formation of EIA with involved electrodynamical processes 
(b) pictorial representation of EIA with trough at the magnetic equator and 
two crests on either side of it due to subsequent diffusion 
(www.iiap.res.in/ihy/talks/Session8/Sridharan.pdf) 

 

 

 

(a) 

(b) 
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 Hines [1960] observed that the movements of the EIA crests trigger the 

gravity waves which in turn modulate both the neutral and ion densities.  The 

latitudinal extent of EIA crests tend to stretch farther during high solar activity 

period. During geomagnetically disturbed period the EIA development inhibits or 

enhances that depends on the polarity of penetrated solar wind electric field from 

high latitudes to low and equatorial latitudes. In addition to electric field the 

equatorial plasma distribution is controlled by the neutral winds as well. The 

trans-hemispheric neutral winds induce the hemispheric asymmetry of the EIA. 

The transequatorial meridional winds produce the north-south asymmetry in the 

EIA crests.   

 

1.8 Ionospheric irregularities 

 
The ionospheric plasma are in continuous motion due to presence of 

electric fields, neutral winds etc. At the time, it pursues various kinds of 

instabilities which can depart the ionosphere from its equilibrium state. These 

plasma instabilities arise because the plasma in space is not in their 

thermoequilibrium state and contains definite amount of free energy. To reach into 

an equilibrium state, the plasma shed some of its energy to some wave modes, 

thereby making their amplitude grow in time. A growing plasma wave is called an 

unstable mode. In other way, the plasma instability is the process by which the 

free energy of the plasma gets converted into a growing mode in a collective way.  

These instabilities create fluctuations and structures in plasma density, commonly 

known as irregularities.   These irregularities are global i.e. seen at all latitudes, 

longitudes. The scale sizes of these irregularities range from centimeters to 

kilometers. Ionospheric irregularities are grouped under E region and F region 

instability processes. In the last two decades considerable information about 

ionospheric irregularities has been obtained and considerable progress has been 

made at equatorial latitudes. 

 

Investigations on equatorial ionospheric irregularities started with 

ionosonde observations of Equatorial Spread F [Berkner and Wells, 1934; Booker 

and Wells, 1938] and Equatorial Sporadic E [Berkner and Wells, 1937]. From 
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1960s, rocket, satellite, radar and scintillation measurement techniques have been 

used extensively to update our knowledge about the irregularity structures. As 

mentioned by Patra [1997], measurements with rocket and satellite provide 

estimation of ionospheric parameters such as density, electric fields, magnetic 

fields etc. A one dimensional k-spectrum of the waves over a wide range of 

wavelength can be derived from the density data. Mitra [1949] introduced the 

spaced receiver method to estimate drift velocity of ionospheric irregularities from 

the recording of the fading from spaced receivers. High power coherent VHF 

radar scatters from irregularities having scale sizes of half of the radar 

wavelength, i.e. the scattering wavelength is one half of the transmitted 

wavelength.  Backscattered signal power is related to the strength of the 

irregularities and the Doppler shift corresponds to the drift velocity.  When the 

radio signals encounter the ionospheric irregularities in its way from satellite to 

the receiver, they suffer phase modulations. The phase modulations give rise to 

intensity fluctuations as the wave propagates further, resulting in a diffraction 

pattern at ground. The temporal fluctuations in phase and intensity arise because 

the diffraction pattern moves due to the horizontal movement of the irregularities. 

The total number of fluctuations is related to the strength of irregularities. The 

amplitude and phase scintillation both have been used to study the ionospheric 

irregularities. The following sections describe the E and F region irregularities. 

 

1.9 E region irregularities 
 

 The ionospheric E region irregularities are commonly known as Sporadic- 

E (Es). In general, Es is observed at all the latitudes and normally found between 

100 km to 120 km altitudes. In its weaker form, Es consists of cloud of ionization 

and in its most intense form consist of a thin sheet of ionization some tens or 

hundreds of meters in thickness. On ionograms Es is seen as an echo at constant 

height which extends to a higher frequency than is usual for the E region; for 

example above 5 MHz. An example of Es observed at Rajkot (22.290N 70.740E, 

sub-ionospheric dip latitude 15.80N) is shown in Figure 1.6. A thin region is 

observed at constant height of ~100 km.  The second region at ~200 km is the 
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reflection of the below region.  The observed sporadic-E completely absorbs the 

transmitted frequencies and F region is totally absent. 

 

 A brief review on different type of E-region irregularities is given by Fejer 

and Kelley [1980]. Whitehead [1970] has given a summary of Es types in all the 

three latitude regions viz. high, mid and low. As shown by Mathew [1998], at high 

latitudes such ionization is often associated with the appearance of the aurora. 

This suggests that polar Es might be caused due to particle precipitation. At mid 

latitudes, one of the prime causes of Es is believed to be horizontal wind 

movements across the earth’s magnetic field, coupled with the existence of large 

vertical gradients in velocity - “wind shears”. Berkner and Wells [1937] reported 

an anomalous scattering region in the equatorial ionospheric E region from 

ionosonde observations. This scattering region was known as the Equatorial 

Sporadic –E (Esq). The Esq is believed to be due to plasma instabilities associated 

with EEJ and present during both day and night even when the electron densities 

are greatly reduced. VHF forward scattering experiments revealed that the echoes 

from the Esq region are field aligned and are caused by scattering from electron 

density irregularity immersed in the equatorial electrojet [Bowles et al., 1960; 

Bowles and Cohen, 1962].  

 

 The occurrence of Es is mostly during daytime [Smith, 1957] as seen in the 

ionogram. Matsushita [1957] showed that the occurrence of Esq is negatively 

correlated with geomagnetic disturbances.  Occasionally, even on quiet days 

disappearance of Esq for short periods are associated with low values of 

horizontal magnetic field intensity or even the reversal of the normal electrojet 

current (CEJ) [Cohen et al., 1962;  Rastogi et al., 1971; Krishna Murthy and Sen 

Gupta, 1972]. This disappearance of Esq is attributed to the reversal of electrojet, 

i.e. CEJ [Gouin and Mayaud, 1967; Rastogi, 1972].  

 

 In general Es appears as a patchy and particularly transparent region, while 

sometime it appears in sheets which completely blankets the overlying F region 

and is known as blanketing type Es or Esb. The generation mechanism of Esb 

region at the magnetic equator has been proposed to be due to the local action of 

east west winds with large vertical shears on the electrojet plasma resulting in the 
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generation of substantial wind induced polarization electric fields perpendicular to 

the geomagnetic field in the magnetic meridional plane [Reddy and Devasia, 

1981]. The electric fields generated due to these winds can modify the vertical and 

latitudinal structure of the electrojet current and can also lead to ionization 

convergence and divergence and the eventual formation of Esb region 

[Somayajulu et al., 1993].   

 

 Radar spectral studies have shown existence of two classes of irregularities 

called type I and type II associated with the electrojet. The characteristics of the 

type I or two stream irregularities were determined in the early measurements at 

Peru [Bowles et al., 1960, 1963; Bowles and Cohen, 1962]. 

 

 

 
Figure 1.6: An example of Sporadic –E irregularities on ionograms observed 
at Rajkot  on 21 July 2009, 05:00 LT 
 

 The type II irregularities have been studied in detail with the advent of 

improved spectral measurements at Jicamaraca [Cohen and Bowles, 1967; 

Balsley, 1969]. A detailed account of these two types of E region irregularities is 

given by Fejer and Kelley [1980].   
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1.10 F region irregularities 
 

During normal ionospheric conditions, the ionograms show discrete and 

well behaved trace for ionospheric F region after sunset.  But in the presence of 

ionospheric F region irregularities, a spread is observed in radio echoe from F 

region as seen in the ionograms. This event is commonly referred to as spread- F 

[Berkner and Wells, 1934; Booker and Wells, 1938].  Figure 1.7 shows an 

example of spread-F irregularities on ionograms observed at Rajkot on 

26/12/2008. The ionospheric F region is normal at 19:45 LT. By 02:45 LT a 

spread is observed in F region echoes. 

 

It is well proved from many studies that spread-F occurs due to the 

presence of wide range of plasma density irregularities starting from few 

centimeters to few hundred kilometers. Based on observed features on ionograms 

spread-F has been divided into two types, range type spread and frequency type 

spread [Calvert and Cohen, 1961; Rastogi, 1980]. Range spread F occurs when 

there are multiple echoes at different heights related to same frequency. Frequency 

spread F occurs when there are multiple echoes at different frequencies related to 

each height.  The spread-F observed at the equatorial F region is known as the 

Equatorial spread F (ESF). The generation of spread-F can be expected at any 

latitudes i.e. equatorial/low, mid, and high. But the probability of occurrence is 

least at mid latitudes between 200 and 400.  The ESF is discussed extensively in 

the present study. The occurrence of ESF generally remains confined to the 

latitudinal extent of  ±200 around the dip equator.  

 

It is now well accepted that Rayleigh- Taylor (R-T) gravitational 

instability is the basic process for the generation of spread-F irregularities. The R-

T instability gets generated in the bottom side of the F region and grows non-

linearly encircling higher altitudes during the post sunset under favorable 

background ionospheric/thermospheric conditions. The parameters like 

background electron density gradients, electric fields, zonal winds and vertical 

winds play a very important role in the growth of R-T instability. The fully grown 

irregularities contain wide range of scale sizes which have been detected by 
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ground based radio sounders, night airglow measurements, satellite measurements 

and backscatter radar echoes. A wide number of theoretical studies have been 

carried out to understand the ESF phenomenon exclusively and these have been 

reviewed by Ossakow [1981].  Simulation studies by linear and non-linear models 

have revealed the significance of neutral parameters like vertically down ward 

winds [Sekar and Raghavarao, 1987], the role of topside plasma density gradients 

[Sekar and Raghavarao, 1995] and on the initial perturbation amplitudes in the 

triggering and evolution of ESF [Sekar et al., 1995]. A detailed discussion on ESF 

and its generative mechanism will be carried out in Chapter 4.      

 

1.11 Scintillation  

 
Radio waves coming from discrete sources such as radiostar or a satellite 

and passing through a medium containing irregularities in electron density 

distribution (such as the ionosphere at times) show fluctuations of parameters like 

amplitude, phase and polarization etc. This phenomenon is termed as scintillation. 

It is similar to twinkling of starts due to the inhomogeneties in the troposphere. 

 

 The two regions on the globe one around the aurora and the other around 

geomagnetic equator are known for intense scintillation activity arising due to 

presence of moving irregularities of varied scale sizes in the ionosphere. The 

irregularities responsible for scintillations are predominantly in the F region, at 

altitudes between 250 and 650 km. These irregularities scatter radio waves from 

satellites in the frequency range of 100 MHz – 4 GHz [Basu et al., 1988; Aarons, 

1993; Aarons and Basu, 1994).  Scintillation is observed mainly during night time 

in the Indian region and is observed more frequently during high solar activity 

equinoctial months as compared to other periods.       

 

 Figure 1.8 shows the of global scintillation occurrence pattern at L-band 

frequencies during high solar activity period and low solar activity period. It can 

be seen that during high solar activity period, scintillation is intense in auroral and 

equatorial region. During low solar activity period, the amplitude and occurrence 

of scintillation both are very less. 
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Figure 1.7: An example of Spread-F irregularities on ionograms observed at 
Rajkot on 26-12-2008. Ionogram in top panel shows well developed F –region 
at 19:45 LT while ionogram in bottom panel shows the F-region spread at 
02:45 LT due to presence of irregularities  
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 To understand scintillation, consider the medium to be equivalent to a 

diffracting screen with random density irregularities which are frozen in the 

uniform background and move with a fixed velocity. If the diffracting region is 

thin it causes phase fluctuations on the signal which when propagates beyond 

screen produces intensity fluctuations due to interference effects. Thus as a result 

of the phase fluctuations, intensity fluctuations build up as the wave propagates 

which results in a diffraction pattern at ground.  

 

 
   

Figure 1.8:  The global scintillation occurrence pattern at L-band during 
solar maximum and solar minimum [After Basu et al., 1988a] 
 
 
 These fluctuations are known as scintillation. As the irregularities have 

horizontal movement, the diffraction pattern will move giving temporal 

fluctuations in phase and intensity. The amount of fluctuations is related to the 

strength of irregularities. The scintillation strength is given by number of indices. 

For example, the normalized RMS deviation of intensity fluctuations is generally 

used to describe the amplitude scintillation which is popularly known as the S4 

index.  

 

 The phase scintillation is described by the RMS phase deviation. Both the 

phase and amplitude scintillation have been proved as one of the diagnostic tool to 
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study the ionospheric irregularities. When the depth of fading exceeds the fade 

margin of a receiver, the signal becomes buried in noise and signal loss and cycle 

slips are encountered. Phase scintillations induce a frequency shift and when this 

shift exceeds the phase lock loop bandwidth, the signal is lost and the receiver 

spends valuable time reacquiring the signal. Overall, in the presence of 

scintillation the performance of communication and navigation systems is 

degraded. A detailed account of scintillation results will be dealt in Chapter 4. 

 
 
1.12 Geomagnetic Storm 
 

 Sudden transient changes in the earth’s magnetic field after the impact of 

the solar wind on the earth’s magnetosphere are known as the geomagnetic storms 

or magnetic storms. Magnetic storm typically last for tens of hours. The total 

duration of the magnetic storm is classified in four phases each with characteristic 

features. The first phase starts when solar wind plasma arrives at the boundary of 

the magnetosphere with a speed grater than the steady solar wind speed. At the 

epoch, outer part of the magnetosphere experiences strong impact and as a result 

sudden compression of the magnetic field occurs in that region. This sudden 

compression of the magnetic field propagates inward as hydromagnetic 

perturbations and reaches the earth.  This causes a sudden increase in the 

horizontal component of the earth’s magnetic field. This is known as the storm 

sudden commencement (SSC).   

 

 The second phase is the initial phase during which the disturbance in the 

H- component of the earth’s magnetic field does not change significantly. The 

third phase is the main phase during which the value of the H-component of the 

earth’s magnetic field depresses due to the enhanced westward ring current. The 

enhancement in ring current is due to the trapped solar wind particles by the 

strong earth’s magnetic field within the magnetosphere. The main phase is 

followed by the fourth and last phase known as the recovery phase. During 

recovery phase the value of the H-component gradually recovers to the normal 

pre-storm level.  Figure 1.9 shows the difference phases of geomagnetic storm in 
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terms of SYM-H index (SYM-H is the symmetric disturbance field in H with one 

minute time resolution).  

 

 

Figure 1.9: The different phases of geomagnetic storm in terms of SYM-H 
index during 15 May 2005 storm; (S)- storm sudden commencement, (I) – 
initial phase, (M)-  main phase, (R)-recovery phase 

 

 The geomagnetic storm time ionospheric electric field perturbations 

redistribute the ionospheric plasma in some cases and in other cases they can 

create ionospheric irregularities depending on the local time of the onset of the 

storm. In addition to the ionosphere, thermosphere also undergoes drastic 

variations during geomagnetic storms. The excess energy input at high latitudes 

during geomagnetic storm lifts the neutrals their and drives them towards the low 

and equatorial latitudes. This changes the thermospheric composition globally.  As 

the ionosphere and thermosphere behave as a coupled system, the thermospheric 

variations get reflected in the ionosphere also. The details of the processes that 

take place during geomagnetic storms and its effect on the ionosphere-

thermosphere will be discussed in the Chapter 5. 
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1.13 Aim of the present study 

 

 The discussions on the various ionospheric phenomena in the above 

sections provide evidences for the complex nature of the equatorial and low 

latitude ionosphere system. The equatorial and low latitude ionospheric behavior 

during ESF and geomagnetic storms can not be predicted from the available 

ionospheric models.   In recent times, from the point of view of satellite based 

navigation issues, such as Global Positioning System (GPS) based navigation, the 

need has been felt to understand the equatorial and low latitude ionosphere 

behavior thoroughly.  In this context, the present thesis describes the significance 

of various ionospheric phenomena like EIA, ESF and geomagnetic storm time 

ionospheric behavior. The multitechnique studies provides diagnostic tool for 

better understanding of the various ionospheric phenomena. 

 

 

 

 

 

 

  

.  
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Chapter 2 

Experimental Techniques 
 

2.1 Introduction 
 

Ionosphere is one of the regions of the terrestrial atmosphere, in which 

photo-ionization creates plasma of sufficient density to have significant influence 

on dynamics of the region [Louise and Keith, 2004]. The temporal (with time of 

the day, seasons, solar cycle etc.) and spatial (with the latitude and longitude on 

the earth) variations of ionosphere have significant effect on radio waves 

propagating through it. Thus it becomes important to study the ionosphere on day 

to day basis under different geophysical conditions at different geographical 

locations. In-situ measurements using rockets give inclusive database of state and 

conditions of the ionosphere. The ground based remote sensing techniques like 

radars help to study the temporal variability of the ionosphere, but addressing 

spatial variability with this is impractical. Conversely, the study of ionosphere 

using orbiting satellites resolves the problem of spatial variability moderately 

well.   

 

Remote sensing by radio waves includes some of the major techniques for 

studying the ionosphere. These techniques are generally classified in three groups 

[Hargreaves, 1992]. (1) The radio wave may be totally reflected within the 

medium, ionosonde works on this principle, (2) Most of the energy may travel 

through the medium and a small fraction being scattered or partially reflected by 

constituents of the medium or by irregular structures, incoherent and coherent 

radar works on this principle, (3) It may pass through the medium but emerge 

altered, for e.g. passage of satellite signals from the ionosphere. 

 

The techniques in first and second groups involve a transmitter and 

receiver both sited below or above the ionosphere. Greater sensitivity is needed 

for techniques in second because the returned echoes are very weaker. Techniques 

in third group generally require a source or a receiver above the ionosphere.  
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 The multi-technique studies of ionosphere provides diagnostic tool to 

understand the ionospheric variability and various ionospheric phenomena with 

better clarity. The present thesis work has been carried out using some of the 

techniques which fall under the above groups. The following sections describe 

these techniques in detail. 

 

2.2 Radio wave propagation from the ionosphere 
 

Propagation of radio waves through the ionosphere depends on the radio 

refractive index of the medium. The radio refractive index for an ionized medium 

can be expressed by the Appleton – Hartee equation [Rishbeth and Garriott, 

1969].  This equation is based on a simple explanation of the cold plasma 

considering the electron motions only. In addition to this it is also assumed that 

the electromagnetic wave induced disturbances in the plasma are small and do not 

affect the propagation itself, i.e. the problem is linearized. 

The Appleton – Hartree equation for the complex index of refraction is 

given by  
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In general η is complex.  X, Y and Z are dimensionless quantities defined as  

 

X   =   ωp
2/ ω2 

Y   =   ωB/ ω 

YL =   ωL/ ω 

YT =   ωT/ ω 

Z   =   ν/ ω 

 

Here ωp is the angular plasma frequency, ωB is the electron gyrofrequency, 

and ωL and ωT are respectively the longitudinal and transverse components of ωB 

(2.1) 
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with respect to the direction of propagation. Here ν is the electron collision plasma 

frequency and  ω is the angular wave frequency.  

 

If θ is the angle between the propagation direction and the geomagnetic field than 

 

ωL=ωB Cosθ 

ωT= ωB Sinθ 

 

Neglecting the collisions Z = 0 and the geomagnetic field Y=0. Under this 

condition equation can be expressed as 

 

η2 =1-X 

Where X   =   ωp
2/ ω2               and            ωp 

2/1

0e

2
e

m
eN








ε

=  

 

Where Ne is the plasma density in cm-3, m is the mass of the electron and e is the 

electron charge. ε0 is the permittivity of a vacuum.  
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At the reflection level, radio refractive index η=0 therefore 

 

ωp = ω 

or 

fp = f 

 

(2.4) 

(2.2) 

(2.3) 
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Here, fp is the local plasma frequency and f is the transmitted wave frequency. 

Therefore at the reflection level the local plasma frequency in the ionosphere is 

equal to the transmitted wave frequency.  

 

The ionosphere consists of different regions. The maximum plasma 

frequency of a given region is called the critical frequency of that region. For 

vertical incidence, the maximum critical frequency of the whole ionosphere is 

called the penetration frequency. Thus, the waves whose frequency is greater than 

the penetration frequency can be received from a source in the space by a ground 

based receiver. The source may be satellite onboard transmitter, or an ascending 

rockets or the natural radio emission from the moon or galaxy. This is known as 

the trans-ionospheric propagation.   

 

The total electron content (TEC, which is the line integral of electron 

density along the line-of sight between the satellite and the receiver) 

measurements techniques are based on the trans-ionospheric radio wave 

propagation. When a radio waves travel through the ionosphere, it experiences a 

group delay and a phase advance proportional to the TEC between the transmitter 

and the receiver. As the ray passes through the ionosphere, phase speeds up and 

the ray bends in accordance with Snell’s law, as a result of the changing index of 

refraction of the ionosphere. If we ignore the bending and other higher order 

effects, we can get the TEC along the straight line between the transmitter and the 

receiver because the change in a phase is directly proportional to the TEC along 

the line of sight.  

 

From equation 2.3 

         η = 2

2
p1

ω

ω
−  

η 
2
e

0e
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m2
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η  
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Since the mid-1950s, the TEC measurements have been made, beginning 

with the Faraday rotation of the lunar reflected VHF waves. These techniques 

became popular to study the spatial variability of the ionosphere with the advent 

of artificial satellites. The following section describes the different TEC 

measurements techniques. 

 

2.3 TEC measurement techniques 
 

The conventional ground based techniques like ionosonde and radar can be 

used to investigate the various aspects of ionosphere up to F region peak and up to 

~1000 km respectively.  But with the advent of satellite orbiting round the earth it 

became possible to study the ionosphere beyond the F region peak due to the 

altitude of respective satellite in the orbits. For example geostationary satellite 

(altitude from the ground ~ 36,000 km) provides an opportunity to study the 

ionosphere as well as the plasmasphere also. By measuring some of the 

characteristics of the coherent transmissions from satellites, such as polarization, 

amplitude, phase, frequency etc., it becomes possible to study the ionospheric 

variability on short and long time scales. 

 

The measured parameter for such studies is TEC of the ionosphere which 

is comprehensively defined as the total number of free electrons in a column of 

unit cross section area along the path of the electromagnetic wave between the 

satellite and the receiver [Browne et al., 1956]. The satellite could be in low earth 

orbiting satellites, middle earth orbiting satellites for e.g. GPS etc. or Geo-

stationary satellites for e.g.  FLEETSAT (730E), MARSAT 1, ETS-II etc.  

 

The study of TEC is important at different geographical locations on short 

and long time scale, as it throws light on the physical process at work in the 

ionosphere. TEC measurements have been made by simple recording of the 

Farady rotation (Plane of polarization) or by the recording of differential phase or 

group delay. An excellent review of these different techniques is provided by 

Davies [1980]. The Faraday rotation measurement technique was extensively used 

to measure TEC till the advent of Navy Navigation Satellite System (NNSS) and 
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later from Applications Technology Satellite – 6 (ATS-6). The differential phase 

or group delay which are directly proportional to TEC that require two coherent 

beacon frequencies. By measuring this delay using a dual frequency GPS receiver, 

properties of the ionosphere can be inferred, and these properties can be used to 

even monitor space-weather events. Therefore, GPS is a predominant technique 

for TEC measurement. 

 

In view of the fact, that the ionosphere is characterized by large gradients, 

intense irregularities and equatorial anomaly conditions etc. These irregularities in 

the ionosphere produce short-time signal variations termed as scintillations. These 

scintillations affect the reliability of radio transmission between earth and 

spacecraft. Plasma irregularities in the ionosphere (like ESF, plasma bubbles etc.) 

are known to cause scintillation in VHF, UHF and L-band frequency range.  The 

fluctuations of GPS signals during scintillation event can cause degradation in 

range measurements and in severe circumstances, cause discontinuity in phase of 

the signal. This discontinuity of phase can lead to loss of lock at receiver tracking 

circuitry. Due to loss of lock, cycle slips occur in phase measurements of GPS 

data. Thus in the present age of satellite based communication and navigation, it 

becomes important to study the characteristics morphology of scintillation to 

correct these errors. 

 

2.3.1 GPS technique for TEC and scintillation measurements 
 

The NAVSTAR GPS (Navigation Satellite Timing and Ranging Global 

Positioning System) is all weather, space based navigation system established by 

US Dept. of Defense. GPS system consists of three segments. (a) space segment 

(b) control segment and (c) user segment.  Space segment consists of the GPS 

satellite constellation. Table 2.1 represents the salient features of GPS. Control 

segment consists of the master station (near Colorado Springs) which takes care of 

all data processing, worldwide network of monitor stations (Ascension Island, 

Diego Garcia, Kwajalein, Colorado Springs and Hawaii) and ground antennas. 

User segment includes the five main modules namely antennas, receiver, signal 

processing and data processing capabilities input/output device such as a control 
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display unit and a power supply. Figure 2.1 (a) shows the space segment of GPS 

system. Figure 2.1 (b), (c) and (d) are user segments of GPS system. 

 

GPS satellite transmits two radio signals. These signals consist of a C/A 

(coarse acquisition) code at 1.023 MHz and a P (precision) code at 10.23 MHz 

bandwidths. The signals are transmitted at two carrier frequencies L1 (1576.42 

MHz) wavelength ~ 19 cm and L2 (1227.60 MHz) wavelength ~24 cm. All the 

GPS users can access the C/A code. The P- code is accessible to only authorized 

users. Both C/A and P-codes are transmitted on the L1 frequency, either C/A or P-

code is transmitted on the L2 frequency depending on the ground command 

[Ananda, 1988].   

 

The user at the ground estimates the range to each satellite by measuring 

the transit time of the signal. This range is called the psuedorange, because the 

biases in the receiver clock prevent the actual range measurements. These 

pseudoranges are used to estimate the user’s position in terms of latitude, 

longitude and height from the mean sea level and also the time offset between the 

transmitter and receiver clock. 

 

The radio transmissions from GPS satellites are being used by worldwide 

ionospheric scientists groups to monitor the ionosphere. It is known that the 

ionosphere is a dispersive medium with respect to the GPS radio signal. As 

mentioned earlier, GPS radio signals when propagate through the ionosphere, the 

carrier experiences a phase advance and the codes experience a group delay. 

When the GPS code information is delayed, the measured psuedorange is quiet 

long as compared to the geometric range to the satellite [Hofmann et al., 1992].  

The group delay in the GPS code depends on the TEC along the signal path. The 

group delay due to the ionosphere is the most deleterious error in GPS 

applications. 
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The TEC can be given as 

 

TEC = dsN
satellite

receiver
∫  

 

Where , N is the electron density. The unit of the TEC is TEC Unit (TECU).  

1 TECU = 1016 electrons / m2.  

 

 The TEC is proportional to the ionospheric differential delay between L1 

and L2 signals and can be written as  

 

2f
TEC3.40II ×

=ϕ−=ρ  

  

Here Iρ represent the ionospheric delay term in measurements of pseudorange and 

Iϕ represents the ionospheric delay term in measurements of carrier phase. The 

differential phase and group delay methods for TEC measurements are explained 

in later in the chapter. 

  

 GPS receiver computes the TEC from combined L1 and L2 pseudorange 

and carrier phase measurements. The carrier to noise (C/No) measurements can be 

used to calculate the amplitude scintillation. In the present wrok, the ionospheric 

TEC and S4 measurements have been carried out with the GSV 4000B GPS 

ionospheric scintillation and TEC monitor (GISTM). The detail description of 

GISTM receiver is given in the next section. 

 

 

 

 

 

 

 

 

(2.6) 

(2.7) 
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Features Specifications 

Number of Satellites  30 satellites 

Orbital planes 6 circular orbital planes 

Orbit inclination 550  

Orbital Period  11 hrs. 58 min. 

Altitude  ~20,150 km 

Velocity ~3.9 km/sec 

GPS satellites transmit on two L-band 

frequencies 

L1 (1576.42 MHz)  

L2 (1227.60 MHz) 

[As the ionosphere is a dispersive 
medium, there is a time delay at 
receiving end of both these frequencies. 
This time delay is directly proportional 
to the total number of free electrons 
encountered to the signals during their 
passage through the ionosphere]     

Ionospheric Parameters derived from 

the GPS measurements 

(i)  Total Electron Content ( TEC) 

(ii) Scintillation Indices (S4) 

(iii) TEC rate 

Table 2.1: Specifications of Satellite Navigation System – GPS 

 

2.3.2 GISTM GSV4004B receiver  
 

The GISTM system provides the true amplitude, single frequency carrier 

phase measurements and dual frequency TEC measurements from 8 to 11 GPS 

satellites in view. The receiver and recording system estimate phase and amplitude 

scintillation parameters and compute TEC from the combined L1 and L2 pseudo 

ranges and carrier phases. The receiver uses wide band-width tracking loops and 

an internal phase stable, crystal oscillator to compare the phase measurements 

with the actual carrier phase GPS observations. Thus the real time values of the 

amplitude scintillation index, S4, and the phase scintillations index computed over 

periods of 1, 3, 10, 15, 30 and 60s are obtained. 
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In addition to that, 4 pairs of TEC and TEC rate computed every 15s are 

also obtained. Thus the equipment is ideally suited for studies of TEC, TEC rate 

and S4 index simultaneously. While TEC represents the total number of electrons 

along the signal path, the TEC rate and S4 represent the plasma irregularity 

structures weighted by F region.  

 

 In practice, STEC is obtained from the dual frequency code measurements, 

given by 

 

STEC = CAL21

1

2
2

2
1

TEC)PP(*
L
1

L
1*

3.40
1

+−









−

−

 

 

P1 = Pseudo range at L1 in meters 

P2 = Pseudo range at L2 in meters 

 

 For our purpose we use STEC measured by the receiver at every 30 

seconds. The parameter TECCAL in equation 2.8 represents the bias error 

correction and is different for different satellite–receiver pairs. In the present 

study, the receiver part of the above bias is corrected by taking the value of 0.793 

TECU supplied by the manufacturer by calibrating the receiver against Wide Area 

augmentation system (WAAS). As we are mainly concerned with variations of 

TEC, the above approach is satisfactory.  This procedure gives the corrected slant 

TEC. As slant TEC is dependent on the ray path geometry through the ionosphere, 

it is desirable to calculate an equivalent vertical value of TEC which is 

independent of the elevation of the ray path.  

 

 

 

 

 

 

 

 

(2.8) 
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Figure 2.1: GPS includes (a) NAVSTAR Satellites Orbits Arrangement (b) 
L1/L2 GPS Antenna (NovAtel’s Model GPS702) (c) GPS Ionospheric 
Scintillation and TEC Monitor (GISTM) GSV4004B (d) GPS setup at Rajkot 
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 The Vertical TEC (VTEC) is obtained by taking the projection from the 

slant to vertical using the thin shell model assuming a height of 350 km, following 

the technique given by [Klobuchar, 1986] 

 

VTEC = STEC* cos [arc sin ( Re cos θ / Re + hmax)]    

 

Where Re = 6378km, hmax = 350km and θ = satellite elevation angle at the ground 

station. 

 

 The amplitude scintillation index (S4) is defined as the normalized 

standard deviation of the received signal strength. The receiver collects the C/No 

measurements at 50 Hz rate to compute the S4 index. The formula for S4 

calculation can be written as, 

 

 

 

 

2

22

SI

SISI −
 

 

Here, C/NL1 is the carrier to Noise ratio at L1 

         C/NL2 is the carrier to Noise ratio at L2 

 

 Here, < > denotes the average values of the detrended signal intensities 

over a 60 second period. In our study we have considered only amplitude 

scintillation. The signal intensities C/No are detrended with a 6th order 

Butterworth low pass filter (with a cutoff frequency specified by user). If the 

cutoff frequency is zero or not specified then the signal intensities C/No are 

detrended with the measurement, averaged over the 60-second interval. This is the 

total S4 which also includes the effects of ambient noise as well as multipath. This 

is recorded every minute by the receiver for further analysis [GSV 4004/GISTM 

User’s Manual].   

Standard deviation of C/NL1 or C/NL2 S4 = 
Mean of C/NL1 or C/NL2 

(2.10)S4 = 

(2.9) 
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The phase scintillation can be derived from dual frequency carrier phase 

measurements by calculating [Doherty et al., 2000] 

 

)1t(2L,1L)t(2L,1L)t( −φ−φ=φ∆  

( ))t(1L)t(2L)t(2L,1L C φ−φ=φ  

 

 Here )t(1Lφ , )t(2Lφ  represents the L1 and L2 carrier phase measurements 

respectively. C is a constant and it is used to calculate ionospheric phase delay.  

)t(φ∆ at L1 and L2 are calculated using the 50 Hz raw carrier phase measurements 

at L1 and L2. The raw phase measurements are detrended with a 6th order 

Butterworth high pass filter (with a cutoff frequency specified by user). Then, for 

every minute on the minute, the statistics of the residuals called phase sigma (of 

the previous 3000 detrended phase measurements) are computed over periods of 1 

second, 3 seconds, 10 seconds, 30 seconds and 60 seconds. Thus for every 60 

seconds, 5 values (1-sec, 3-sec, 10-sec and 60-sec phase sigma’s) are recorded by 

the receiver [GSV 4004/GISTM User’s Manual].  

 

A MATLAB programme is developed to perform the data sorting and 

analysis for the long term study. To obtain the VTEC at any place we restrict to 

longitude grid of ±20 and latitude grid of ±20 from the observing station.   Figure 

2.2 represents GPS observations measured by PRN 8 at Rajkot on 01 June 2007.  

 

The two subplots at the top reveal the elevation of the satellite from the 

GPS observational site and the variations in the amplitude scintillation given by 

scintillation index S4.  The first subplot in the lower panel shows the temporal 

variations of the VTEC corrected from the slant-path values of the line-of-sight 

electron content for the GPS satellites in view. The second subplot in the lower 

panel reveals latitudinal/longitudinal coverage of the satellite. The VTEC will be 

denoted as TEC in rest of the thesis.  The detail account of GPS observations will 

be dealt in detail in following chapters.  

 

 

(2.11)
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Figure 2.2: GPS observations at Rajkot measured by PRN 8 on 01 June 2007 

 

 

2.3.3 Other TEC measurement techniques  

 

(i) Farady Rotation 
 When a plane polarised radio wave travels through the magnetoionic 

medium like ionosphere, polarisation angle of it rotates depending approximately 

on the average magnetic field component in the direction of propagation and on 

the total number of free electrons along the ray path. This angular rotation of the 

plane of polarization is known as the Faraday rotation. The value of the earth’s 

magnetic field is known. Therefore, the measurements of the angle of rotation of 

the plane of polarisation of a wave of known frequency gives direct measure of 

total number of free electrons in a unit column along the ray path from the satellite 

to a receiver at the ground. From this the vertical columnar electron content can be 

derived.   

 

 

 

PRN 8 on 01 June 2007 at Rajkot 
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(ii) Differential Phase 
 When the radio waves propagate through the ionosphere their phase 

refractive index decreases due to the presence of plasma density in their 

propagation path. As a result of this, there is an increase in phase velocity of radio 

waves.  If a radio wave travels a distance s in an ionized medium, its phase 

changes by phase φ of the carrier frequency f at the receiver can be expressed as  

 

φ =   - ds
v
1f2 ∫
φ

π  

      φ =   - ds
c

f2 ∫
η

π       

 

Here, vφ is the phase velocity and ηφ is the phase refractive index. From 

equation (2.3), in the absence of collision and magnetic field the refractive index 

for a radio frequency f much higher than the plasma frequency fp is given by  
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Here, n is the electron density in m-3, f is in cycles/s. Now, from equation (2.8),  

 

φ =   - ds
f

n3.401
c
1f2 2∫ 



 −π  

(2.12)

(2.13)

(2.14)
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=   - ds
f

n3.401
c
1f2 2∫ 



 −π  

     =   - ds
cf

n3.402ds
c
1f2 ∫∫ π−π  

 

The advance in phase is also frequency dependent. Therefore if two phase 

coherent transmissions are used, the differential phase is a measure of total 

columnar electron content from satellite to receiver. If there are two phase 

coherent transmissions at frequencies f and ηf respectively, and if the higher 

frequency divided by η, then the differential phase changes are, 

 

∆ φ = φ1 - φ2 

∆ φ = 







η

π+πη−
η

−



 π+π− ∫∫∫∫ ds

fc
n3.402ds

c
1f21ds

cf
n3.402ds

c
1f2  

∆ φ = dsn
cf

3.40*21
2

2

∫







η
−η  radians 

 

Here, η is known, the measurement of ∆φ gives the value of TEC in a unit 

column along the line of propagation. It can be said that the differential phase 

changes are proportional to the TEC. The TEC values derived from the 

differential phase measurements are relative and need calibration. 

 

(iii) Group Delay  
The presence of electron density in the propagation path of radio waves 

from satellite to receiver at ground also results in to the decrease of group velocity 

of radio waves. The group delay from satellite to receiver is  

 

t = ∫
gv

ds  

    = ds
c

g∫
η

 

 

(2.17)

(2.15)

(2.16)
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Here, vg is the group velocity and ηg is the group refractive index.  

Following the same procedure as is done in the differential phase method, if there 

are two phase coherent signals transmitted from satellite at two different 

frequencies, then the differential group delay is proportional to TEC. This method 

gives absolute measurements of TEC.  

 

2.4 VHF coherent back scatter radar technique 

 
Ionosonde works on the principle of total reflection of radio frequency 

signals which occurs when transmitted frequency (f) is equal to the local plasma 

frequency (fp). For f >> fp, the waves almost pass through the ionosphere with a 

small amount of energy being scattered by random thermal motions of ionospheric 

plasma and this is incoherent in nature. This small amount of scattered energy is 

used by the incoherent scatter radar (ISR) technique.  The total power in returned 

echo is proportional to the number density of electrons in the volume irradiated.  

As the electrons are consistently in thermal motion, the radiation is Doppler 

shifted from the incident frequency. The result is a spread in the returned echo 

spectrum which gives substantial information about the velocities in the medium. 

In addition to this, the returned echo spectrum contains the information of electron 

temperature and ion temperature also. 

 

ISR technique sounds the ionosphere up to ~1000 km. As of now the 

lowest frequency used in ISR technique is ~50 MHz [Kelley, 1989]. These 

frequencies are almost unattenuated by the ionosphere and small amount of 

energy is scattered by the ionospheric electrons which is received back and used 

by the ISR.  

 

This technique can be applied to the neutral atmosphere also because the 

turbulence within the homosphere – below about 100 km is able to scatter the 

radio wave signals. But in the case of neutral atmosphere the scattering 

mechanism is different from that of ionosphere, which gives incoherent scatter 

echoes. The radar primarily designed to study the echoes from the neutral air, in 
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other words to investigate the Mesosphere, Stratosphere and Troposphere is 

known as the MST radar.  

 

The major disadvantage of ISR is that it has to work with a very weak 

signal. Therefore, it requires a transmitter of high power, a large antenna, and the 

most sensitive receiver and sophisticated data processing available, all of which 

add up to major technique and considerable expense.  

 

If there is plasma irregularities present in the ionosphere, the electron 

density fluctuations in the medium can grow to values much greater than the 

thermal fluctuations.  Radio signals backscattered from plasma irregularities with 

a spacing of half a radar wavelength will reinforce by constructive interference in 

the direction back to the radar and can produce signal strong enough to detect by 

smaller radar system. This phenomenon is known as the coherent backscatter and 

can be detected by coherent back scatter radar. Coherent back scatter radar is 

actually designed to receive echoes from physical structures within the 

ionosphere.  

 

In last three decades, the high power VHF and UHF backscatter radars 

have been emerged to probe the ionosphere in order to provide better 

understanding of basic plasma processes associated with the ionosphere and to 

study the generation and dynamics of the small scale ionospheric irregularities. 

The observations at VHF and UHF frequencies correspond to irregularities with 

scale sizes of few meters to few centimeters.  The investigations using Jicamarca 

radar (operating at  50 MHz), Altair and Tradex radars (155.5 MHz, 415 MHz, 

1320 MHz) at Kwajalein, high power VHF radar (53 MHz) at Gadanki, India, HF 

and VHF radar (54.95 MHz) at Trivandrum, India, Portable Radar Interferometer 

(50 MHz) at Cornell University have contributed significant information to 

understand the low latitude ionospheric plasma processes.  

 

 

 

 



 52

2.4.1 Principle of Coherent backscatter 
 

The atmosphere either ionized or not, contains irregularities of various 

scale sizes. It is to be believed that at each edge a small fraction of the incident 

energy scatters in all directions. If the numbers of field aligned irregularities are 

present, with spacing between them of, half of the transmitted wavelength then the 

resulting scattered signals will reinforce in the direction back to the radar. Thus, 

even the scattered energy is very weak, they can add up and the resulted signals 

will be strong enough to be detected by small radar system. Figure 2.3 represents 

the principle of volume scattering.  It is not necessary for the electron density 

irregularities to be regularly spaced. The radar of wavelength λT will effectively 

select the spatial component of period λT/2, ignoring the others. Scatter in other 

directions will select some other spatial period. The signals from two scattering 

planes reinforce when their path difference is λT.  

 

When the scattering is from structures within the medium then the 

coherence time is high, because the structures tend to vary more slowly in 

comparison to radar’s ability to resolve those changes. Due to the high coherence, 

echoes will have the same amplitude and phase, as a result are added coherently.        

 

The radar scatters from the irregularities in the medium, KMED, according 

to the relationship 

KT =  KS+ KMED 

 

Here, KT is the transmitted wave and KS is the scattered wave. For backscatter,  

KS = - KT. 

KMED = 2KT 

 

 

 

 

 

 

(2.20)

(2.21)
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Figure 2.3: Principle of volume scattering 

 

Equation 2.21 represents the conservation of momentum. Where |KT| = |KS|= 

2π/λT, |KMED| = 2π/λIRR. The backscattered wave vector will follow the Bragg 

condition i.e. 

 

λT = 2 λIRR sin (θ/2) 

 

From the above equation it also follows that the transmitted wavelength or 

radar wavelength determines the scale size of the irregularities that can be 

observed by this radar. For monostatic backscatter (θ = 1800), which is usually 

applicable for ionospheric experiments, λIRR = λT/2.  Thus, the scattering 

wavelength is one half of the transmitted wavelength.  

 

In backscatter radar, the scattering volume is determined by the antenna 

beamwidth, the transmitted pulse width as well as the vertical extent of the 

(2.22)
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echoing region under study. The mobility of the electrons is much higher along 

the magnetic field than perpendicular to it therefore the irregularities are elongated 

along the geomagnetic field lines. This fact leads to high aspect sensitivity in the 

backscatter. Thus, the radar line of sight has to be close to a direction normal to 

the field line. The radar power spectra provide information on the signal strength, 

mean Doppler shift and Doppler spectral width which correspond to the strength 

of the irregularities, line of sight phase velocity, and its variance respectively 

[Patra, 1997].      

 

 

2.4.2 VHF coherent back scatter radar at Gadanki, India 
 

Indian MST radar, situated at Gadanki (13.50N, 79.20E, dip latitude 6.30N) 

India, can be operated in ionospheric mode to study the ionospheric E and F 

region plasma irregularities. This high power VHF coherent backscatter radar has 

been established as MST (Mesosphere–Stratosphere–Troposphere) radar, 

primarily to study the lower and middle atmospheric dynamics. In addition to 

these studies, it was also meant for the coherent backscatter studies of the 

ionospheric irregularities. Accordingly, the phased antenna array has been aligned 

along the geomagnetic axis, 20 away from the geographic axis in anticlockwise 

direction [Patra, 1997]. The radar is highly sensitive, pulse coded, coherent VHF 

phased array radar operating at 53 MHz with a peak power aperture product of  3 

× 1010 Wm2.  
 

To detect the backscatter from ionospheric field aligned irregularities, the 

radar beam has to be made transverse to the magnetic field lines. Thus the tilt of      

14.80 N from the zenith has been given to the radar beam to satisfy the 

perpendicularity condition at 350 km. Since it is possible to orient the radar beam 

anywhere within 200 zenith angle, this condition can be satisfied easily. The radar 

beam geometry at Gadanki for the study of F region irregularities is shown in 

Figure 2.4. The beamwidth of radar is 2.80 in both east- west and north-south 

planes. Table 2.2 represents the main specifications of the MST radar [Patra, 

1997].  
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The major subsystems of the MST radar can be listed as (i) the antenna 

and feeder network (ii) transmitters (iii) exciter and radar controller and (iv) the 

receiver and signal processor. The details of the radar and its subsystems are 

discussed by Rao et al., [1995] and Patra, [1997]. 

 

The radar power spectra provide information on the signal strength, mean 

Doppler shift and Doppler spectral width which corresponds to the strength of the 

irregularities, line of sight phase velocity and its variance respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Geometry of the MST radar beam located at Gadanki for 
studying the ionospheric F region irregularities [reproduced after Patra, 
1997] 
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Features Specifications 

Location Gadanki (13.50N, 79.20E, Geomagnetic 

Latitude 6.30N) 

Frequency 53 MHz 

Peak Power 2.5 MW 

Peak Power-aperture Product 3×1010 Wm2 

Maximum duty ratio 2.5% 

Number of Yagi antennas 32 × 32, 3-element orthogonal Yagi arrays 

Beam width  2.80 

Beam position (zenith angle) ± 200 in both E-W and N-S planes in steps 

10; 13.20 N and 14.80 N for ionospheric 

application  

Receiver bandwidth 1.7 MHz 

Receiver gain 120 dB 

Receiver dynamic range 70 dB 

Pulse width 1,2,4,8,16,31 µs uncoded; 16,32 µs coded 

with 1 µs baud 

Pulse repetition frequency  62.5 Hz – 8 KHz 

Maximum number of coherent 

integrations 

512 

Maximum number of range bins 512 

Maximum number of FFT points 1024 

Radar Controller PC-AT Pentium – IV featuring 

programmable experiment specification file 

Computer System PC-AT Pentium – IV system with ADSP 

21060 DSP processors for data acquisition 

and processing 

Table 2.2: Main specifications of the Indian MST radar 
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The direction of arrival of the echoes being close to vertical, the line of 

sight phase velocity of the irregularities represents mostly the vertical component. 

The Range Time Intensity (RTI) map of ESF irregularities observed by VHF 

radar, Gadaki on 07 February 2008 is shown in Figure 2.5. The color code in the 

plot represents the strength of the irregularities in dB. The detail account of radar 

ESF observations will be dealt in Chapter 4. 

 

 

Figure 2.5: RTI map observed on 07 Feb 2008 using Indian MST radar. The 
color code in the plot represents the strength of the irregularities in dB 
 

 

2.5 Ionosonde 
 

An ionospheric sounder or ionosonde is the oldest ground based 

experimental technique for investigating the terrestrial ionosphere by means of 

radio waves. Ionosonde is basically variable frequency radar which transmits a 

signal vertically whose frequency varies from 1 to 22 MHz and measures the time 

delay between the transmission of radio frequency pulse and echo from a 

reflecting layer in the ionosphere. The limitation of the ionosonde is it can sound 

dB
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the ionosphere only up to hpF2 (peak of the F region) height only.  Thus there is a 

lack of information above the hpF2 height. The satellite based miniature 

ionosonde can provide the information above the F2 peak. This is called the top 

side sounding in contrast to the pervious one which is known as the bottomside 

sounding. In top side sounding also the information will be up to hpF2 only from 

topside. Thus, the combined observations, topside and bottomside, can give 

complete profile of the terrestrial ionosphere.  

The topside sounding helps to study spatial variability but temporal 

variability is not visible with this. The bottomside sounding helps to study 

temporal variability but in general unable to address the spatial variability. 

Ionosonde operates on the principal of total reflection of radio signals from a 

reflecting level in the ionosphere.   

 

2.5.1 Principle of ionosonde 
 

The basic principle of the ionosonde is the reflection of radio signals by 

the ionospheric plasma when transmitted radio frequency f is equal to the local 

plasma frequency fp. At the occasion of reflection the transmitted frequency is 

known as the critical frequency. The plasma frequency (fp) is related to the 

electron density (Ne) of the reflecting layer as 

 

fp = 
2/1

0e

2
e

m
eN

2
1









επ

 

By substituting the standard values, 

   

fp =9 (Ne)1/2 MHz 

 

From this the plasma density can be given by the following expression,  

  

Ne=1.24×104 fp
2                    

 

As the electron density in the ionosphere increases monotonically with 

height, the reflection takes place for the higher values of plasma frequency fp as 

(2.23)

(2.24)

(2.25)
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the height increases. Since the peak electron density in the ionosphere is few times 

106 cm-3, the plasma frequency fp ≤ 12 MHz. [Kelley, 1989]. If the transmitted 

frequency is higher than the peak plasma frequency (frequency corresponds to the 

peak electron density), the radio wave signals will penetrate through the 

ionosphere and escape in to the space. The lowest frequency which just penetrated 

the ionospheric layer, the penetration frequency, would provide a measure of the 

electron density at the peak. If there is a dense E region it can block the F region 

entirely by absorbing the transmitted radio frequencies as we have observed in 

Chapter 1-section 1.9. 

 

The time delay measured by the ionosonde is converted in to the height. 

As the ionosphere is not vacuumed, the velocity of the radio waves in the 

ionosphere is not similar to that of the velocity of light. Therefore, the height 

measured by the ionosonde will not be a real height but it will be a virtual height. 

The plot of the transmitted frequency Vs virtual height is known as the ionogram. 

The ionograms are scaled for the different ionospheric parameters like virtual 

height of the ionospheric regions, critical frequency of the ionospheric regions etc. 

The typical ionogram recorded using CADI digisonde at Rajkot is shown in 

Figure 2.6. The different ionospheric regions can be observed. The E region is 

visible at ~100 km. F1 and F2 splitting is observed at ~ 325 km.  

 

The virtual height can be converted into real height if required. The typical 

expression for the virtual height can be given by  

 

hv =
2
tc  

 

Here t is the time delay of the echoes. The group velocity of the radio 

waves is less than the velocity of light in the ionosphere due to the presence of 

free electrons in their path. Hence the virtual height hv is always greater than the 

real height.  

 

 

 

(2.26)
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Figure 2.6: An example of typical ionogram at Rajkot 

 

2.5.2 KEL IPS-42 ionosonde system 
 

In the present study, the ionosonde data is obtained from KEL IPS-42 

(Ionosphere Prediction Service) which has been in operation at Trivandrum. The 

instrument is a solid state, sweep frequency, pulsed ionosonde designed for 

routine vertical incidence sounding of the ionosphere. It employs a digital 

frequency synthesizer and programming control, signal processing and display 

technique. The main specifications of KEL ionosonde are given in Table 2.3 
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Features Specifications 

Frequency range 1 to 22.5 MHz 

Frequency generation Digital synthesizer 

Frequency sweep time 12s 

Transmitter pulse power 5 kW 

Transmitter pulse width 41.67 µs 

Pulse interval 5.33 ms, three on each channel 

Maximum virtual height 800 km 

Height marker interval 100 km 

Programming options (1)  Ionograms at 15, 5 or 1 minute 

interval 

(2)  3 per minute (optional) 

Date/Time identification Recorded with each ionogram 

Video display High resolution green phosphor (12 cm)  

Video card extra 18 Kbytes of R.A.M. 

Table 2.3:  Main specifications of KEL IPS-42 ionosonde 

 

2.6 Other techniques 

2.6.1 In situ measurements 
 

Instruments have been designed for the direct measurements of many 

variables of the atmosphere and ionosphere. A variety of instruments are used to 

measure the temperature, concentration, and drift velocity of either the ambient 

thermal electron or the thermal ions.  When instruments are mounted on satellites 

they are most useful for long term monitoring above about 200 km. The 

parameters most frequently sought are the vertical distribution of each of the 

electrons and the ions and neutral species. To determine the composition one 

requires a mass spectrometer, but much information about concentrations and 

temperatures can be obtained from simpler devices variously known as ‘probes’, 

‘traps’ and ‘analyzer’, and many such instruments have been flown on rockets and 

on satellites over the years. These instruments are mounted on satellites and 
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rockets that are moving through the plasma at velocities between 1 and 9 km/s 

[Kelley, 1989].  

 

A probe is projected into the medium and draws from it an electric current 

of electrons or ions depending on the sign and magnitude of the potential applied 

to it. A trap collects ions from the medium because the vehicle in orbit moves 

faster than the ions and so sweeps them up from its path. Additional electrodes are 

often incorporated to enable a more detailed analysis to be made in real time, the 

results being transmitted to a ground station by telemetry. The examples of in situ 

instruments are Langmuir Probes, Retarding Potential Analyzer, and Drift Meters 

etc.  

 

2.6.2 TIMED satellite 
 

 The thermospheric neutral composition variations in terms of [O]/[N2] 

presented in the present study have been obtained from Thermosphere, 

Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) onboard Global 

Ultraviolet Imager (GUVI) instrument. The TIMED satellite is launched by 

NASA under Solar Terrestrial Probes Program. The purpose is to study the sun-

earth system more thoroughly. The TIMED satellite is placed in a circular orbit at 

an altitude of ~625 km to observe the Mesosphere and Lower 

Thermosphere/Ionosphere (MLTI) region. It employs advance instruments in 

remote sensing technology. The parameters such as temperature, pressure, wind 

and chemical composition, along with its energy inputs and outputs of MLTI 

region’s are acquired. The more details on TIMED satellite can be found on 

http://www.timed.jhuapl.edu/WWW/index.php 

 

 In the imaging mode the GUVI instrument of the TIMED satellite gives 

far ultraviolet images of thermosphere composition and temperature below about 

625 km altitude. The details of the GUVI instrument, operation and example of 

data products are presented by Paxton et al., [1999], Christensen et al., [2003] and 

Paxton et al., [2004]. The atomic oxygen to molecular nitrogen vertical column 

density ratio (∑O/N2) is one of the geophysical parameter obtained from data 
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products of the GUVI imager. The ratio of vertical column density of atomic 

oxygen (135.6 nm) to that of molecular nitrogen (174.3 nm) is proportional to 

ratio of emission rates within the airglow layer, extending from about 140 km to 

250 km [Meier et al., 2005]. A more detail on GUVI can be found on 

http://guvi/jhuapl.edu/. 

 

2.6.3 Optical techniques 
 

The study of atomic and molecular emissions in the upper atmosphere 

using optical techniques provides information on the chemical and physical 

processes going on in the atmosphere. These emissions are known as the airglow 

emissions.  Optical investigations have a tremendous potential in inferring the 

behavior of the upper atmosphere. As the ionosphere is the part of the upper 

atmosphere, optical investigation of different emissions gives wealth of 

information on different chemical processes which plays a major role in sustaining 

the ionosphere during different time of the day. Optical techniques have been 

developed on different platform such as ground based, balloons, rockets and 

satellites.  

 

Airglow emissions variability at any given place provides plenty of 

information on the behavior of the ionosphere – thermosphere system at the 

respective emitting altitudes. The ideal condition to study the airglow emission is 

the moon less clear night sky (no clouds). Dayglow study is the challenging task 

due to the presence of strong sunlight background. But with the development of 

unique Dayglow Photometer (DGP) and Multiwavelength Dayglow Photometer 

(MWDPM) [Narayanan et al., 1989; Sridharan et al., 1993, 1998], an 

investigation on various characteristics of dayglow emissions have been carried 

out. 

 

The optical techniques observe fundamentally the total incoming photon 

flux at a particular wavelength and the variations of the photon flux with varying 

wavelength. The former is called the photometry while the later is called the 

spectrometry.  
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The basic parameter in the airglow study is the intensity of the emissions. 

The major optical instruments to study the airglow emissions at different altitude 

at a given place are (i) photometer (ii) imager and (iii) spectrometer. The intensity 

i.e. total or specific line emission of radiations is measured by photometers (with 

small field of view ~100 or less). The scanning photometer scans the sky at fixed 

angle to study the dynamics of the upper atmosphere. The schematic of night 

airglow photometer is shown in Figure 2.7. The different parts of the photomere 

are shown there.  

 

Photometer measures integrated airglow brightness over its field of view. 

The photometer mainly consists of three major parts (i) front optics (ii) filter 

assembly (iii) detector section. The front end optics collects light from a small 

field of view. Collimating lens makes the light rays parallel hence a normal 

incidence to the filter. Narrow band interference filter is used to isolate unwanted 

wavelengths. Focusing lens directs all light towards the detector. Thus light is 

refocused on to detector (for example photomultiplier tube) which measures the 

intensity of incoming light. In case of scanning photometer, the scanning mirror 

scans the different parts of the sky at a given interval of time. The detector section 

has to be connected to the data acquisition system.  

 

The bi-directional (zenith and 450 elevation towards west) measurements 

of night airglow emission at OI 777.4 nm are used to calculate the night time 

plasma drift. This drift value is used in the case study presented in section 4.4 of 

Chapter 4. These airglow emission measurements are done by Physical Research 

Laboratory group, Ahmedabad at low latitude station Gadanki. This is a 

multiwavelength photometer. The details of this photometer are described by 

Sekar et al., [2004, 2008]. 
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Figure 2.7: Schematic of night airglow photometer [CSSTEAP course 
material, Prof H.S. S. Sinha’s notes] 

 

 

2.7 Summary 
 

 In the present chapter the radio wave propagation from the ionosphere and 

the effects of ionosphere on it is discussed. The core part of the chapter contains 

the discussions on various techniques for studying the ionosphere. The GPS TEC 

and scintillation measurement technique is discussed in detail.  The sample 

observations from the satellite (PRN 8) are shown and explained. The other TEC 

measurement techniques are also discussed.  The VHF coherent back scatter radar 

technique for studying the F region irregularities is discussed along with the 
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principle. The ionosonde technique is also discussed along with its principle.   The 

In situ techniques are highlighted. The thermospheric variation in terms of 

[O]/[N2] ratio are studied using TIMED/GUVI data. The glimpse of 

TIMED/GUVI system is given. At the end the optical technique to study the night 

time ionospheric variations is also highlighted.    
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Chapter 3 

TEC variations during low solar activity period (2005-

2009) near the EIA crest region in India  

 
3.1 Introduction  

 

As mentioned earlier, when the GPS satellite signals propagate through the 

ionosphere, the carrier experiences a phase advance and the code experiences a 

group delay due to the total number of free electrons along the path of the signals 

from the satellite to receiver at the ground. Therefore, the carrier phase 

pseudoranges are measured too short and the code pseudoranges are measured too 

long compared to the geometric range between the satellite and the receiver. This 

results in the degradation of the positional accuracy provided by the GPS receiver 

[Hofmann-Wellenhof et al., 1992]. The domain of the effect on the range may vary 

from the furthest distance of more than hundreds of meters (at mid day, during the 

period of maximum sunspot activity, with the satellite near the horizon of the 

observer) to the closest distance of less than a few meters (at night, during the 

period of minimum solar activity, with the satellite at the zenith). Among the 

different sources of GPS positional errors, ionospheric delay, which is 

proportional to the TEC, is the highest contributor. Therefore, in order to get 

better GPS positional accuracy, it is necessary to have a precise knowledge of the 

accurate values and variations of the TEC at different geographical locations 

under different geophysical conditions. 

 

3.2 Historical background 
 

During past few decades an extensive study of TEC variations with local 

time, seasons, and solar activity has been made [Rastogi et al., 1971; da Rosa et 

al., 1973; Van Velthoven, 1990; Feitcher and Leitinger, 1997; Warnant et al., 

2000; Gupta and Singh, 2000; Wu et al., 2008]. In the past three decades, several 

individual measurements of TEC at various locations in India have been made 

using the available low earth orbiting satellites as well as geostationary satellites 
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[Rastogi and Sharma, 1971; Das Gupta and Basu, 1973; Rastogi et al., 1975; 

Rama Rao et al., 1977; Davies et al., 1979]. All these studies have shown the 

characteristic features of the TEC for the Indian region. 

  

Equatorial Ionosphere exhibits large spatial gradients in electron density 

due to the well-known EIA with a trough at the equator and a crest at ±150 north 

and south geomagnetic latitudes of it. Rastogi and Klobuchar [1990], using ATS-

6 TEC measurements from India, have shown a large day to day variability in the 

location of  EIA crest in the Indian sector and its dependence on the EEJ and CEJ. 

Sethia et al., [1980] and Balan and Iyer [1983] have shown that the EEJ has a 

pronounced influence on the development of EIA in TEC, based on the sparse 

data of previous satellites of opportunity.  

 

With the advent of GPS satellites, a network of GPS stations monitoring 

TEC and scintillations in the Indian subcontinent have been established jointly by 

Indian Space Research Organisation (ISRO) and Airport Authority of India (AAI). 

This network is known as the GAGAN (GPS Aided Geo Augmented Navigation). 

Using GAGAN GPS TEC measurements [Rama Rao et al., 2006] and other 

individual GPS TEC measurements [e.g. Pandey and Dashora, 2006], ionospheric 

TEC variations have been investigated at few Indian stations.  

 

The dual frequency GPS signals recorded at Rajkot near the EIA northern 

crest in India have been analyzed to study the ionospheric variations in terms of 

TEC during the low solar activity period of April 2005 to April 2009. In this 

study, we describe the diurnal and seasonal variations of TEC, solar activity 

dependence of TEC. Some limited data set from the GAGAN GPS receivers is 

used to study the control of EEJ on EIA. The details of GAGAN GPS stations 

used in the present study are given in Appendix I (Table I.1). The observed low 

latitude L-band scintillation during the descend phase of the solar activity is also 

discussed  
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3.3 Diurnal variations of TEC 
 

The diurnal variations of TEC exhibit a steady increase from about sunrise 

to an afternoon maximum and then fall to attain a minimum just before sunrise. 

The diurnal characteristics of TEC have seasonal, solar activity, geomagnetic 

activity and latitudinal dependence. Figure 3.1 shows the diurnal pattern for a 

typical quiet day of 17 April 2005 (Ap=4) derived from per minute TEC values. It 

is derived for ±20 latitude and ±20 longitude bin from the Rajkot for all the visible 

satellites. The variations can be divided into three different regions, namely: the 

build up region, the day time plateau and the decay region. The diurnal variations 

in TEC at Rajkot exhibits many characteristics typical to low latitude ionosphere 

such as TEC minimum at pre-dawn hours and gradual increase with the time of 

the day, attaining maximum in the afternoon and gradual decrease after sunset. 

The daily peak occurs around 14:00 IST hours (IST=UT+5.5 hrs).  

 

At low latitude ionosphere the highest daytime peak TEC values greatly 

depend on the strength of the EIA. Figure 3.2 (a) and (b) shows the mass plots of 

TEC diurnal variations for the months of years 2005 to 2009.  
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Figure 3.1: Diurnal variations of TEC observed for a ±20 latitude and ±20 
longitude bin from the observing station Rajkot  
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Figure 3.2 (a) : Mass plot of Diurnal variation of TEC at Rajkot from April 
2005 to May 2007 with the exception of May to August 2006 due to 
instrument failure 
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Figure 3.2 (b) : Mass plot of Diurnal variation of TEC at Rajkot from June 
2007 to May 2009 with the exception of February to March 2008 (because 
during this period, GPS receiver operated from Gadanki for ESF campaign) 
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These curves show appreciable day to day variability. The day to day 

variability of TEC is contributed by the various parameters like EUV flux, 

geomagnetic activity [Dabas et al., 1984], EEJ strength and local atmospheric 

conditions in the thermosphere [Rama Rao et al., 1980] etc. It can be noticed that 

the day to day variability in TEC decreases with the phase of the solar activity. 

During 2005 to 2007 significant day to day variability is observed while during 

2008 and 2009 the day to day variability is less. This is may be due to the 

variations of EUV flux with the phase of the solar activity. 

 

3.4 Seasonal variations of TEC 
 

The mean diurnal TEC variations during different seasons recorded at 

Rajkot for the years of 2005–2009 are shown in Figure 3.3. The equinox 

represents March, April, September, and October; the summer represents May, 

June, July, August; and the winter represents the January, February, November 

and December. 

  

It can be seen from Figure 3.3 that TEC values are high in equinoctial 

months followed by summer and winter. Seasonal variations of TEC depend not 

only on production and loss of ionization but also on the transport of plasma 

through winds and on thermospheric neutral composition variations. The higher 

values of TEC in equinox months are due to high values of solar flux. During 

summer the meridional winds are equatorward. The equatorward winds push the 

plasma along the geomagnetic field lines i.e. at higher altitudes where production 

and loss ratio is high. This behavior increases the electron density at low latitudes 

[for e.g. Ramarao et al., 1996].  During winter the meridional winds are poleward. 

The poleward winds push the plasma to lower altitudes where production and loss 

ratio is comparatively low. This behavior decreases the electron density.  

 

The changes in the ratio of thermospheric [O]/[N2] due to differential 

heating between two hemispheres also influences the seasonal variations of TEC 

[for e.g. Bhuyan and Borah, 2007 ; Mukherjee et al., 2010]. It is observed that at 

Rajkot, the winter anomaly is absence. Winter anomaly represents the higher 
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values of electron density in the winter months than in the summer. The detail 

description on winter anomaly can be found in literature.                                                                 

 

There is a sharp daily maximum during 2005–2006 for all the seasons 

which is not seen for other observations. During the low solar activity period the 

seasonal variability of daily peak TEC is comparatively low. This agrees with the 

results shown by Modi and Iyer [1989]. One more interesting point here is that 

during 2008-2009 the observed TEC values for each season are little higher than 

the values observed during 2007-2008. This may be because the sun is 

approaching the next active solar cycle period and TEC at low latitudes has started 

to show the signatures of its.  Figure 3.4 shows the month to month variations of 

monthly mean diurnal peak TEC values. This monthly mean diurnal peak TEC 

shows semiannual variations with a peak during the equinox period and a trough 

during the solstice period.  
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 Figure 3.3: Seasonal mean diurnal variations of TEC during (a) 2005–2006 
and (b) 2006–2007 at Rajkot  
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Figure 3.3: Seasonal mean diurnal variations of TEC during (c)2007 -2008 
and (d) 2008–2009 at Rajkot  
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Figure 3.4: Month-to-month Variations of TEC, daily mean peak, (2005– 
2009) at Rajkot 
 
 
 
3.5 Solar activity dependence of TEC 

 

The sun emits a wide spectrum of radiation along with the high energy 

particles. In addition to the sunspot number, the flux of the sun’s radio emission at 

a wavelength of 10.7 cm (2.8 GHz) is also a useful indicator to show the phase of 

the solar activity. We have used the solar F10.7 flux values to observe the 

variations of the present solar cycle. Figure 3.5 shows the correlation between the 

yearly mean daytime peak TEC and respective year’s average solar flux values. 

The yearly mean TEC is derived from the average of the each month’s daily peak 

TEC.  

 

Rama Rao et al., [1985] reported the direct control of solar activity on the 

ionization level, with high electron density values during a high solar activity 
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period and low values during a low solar activity period. Although the range of 

solar flux variations during the present study is very limited but Figure 3.5 shows 

high positive correlation (Correlation Coefficient R=0.97) between daytime peak 

TEC and the solar F10.7 flux.  

 

During the period of low sunspot numbers, TEC builds up quite slowly, 

resulting in the low values of day maximum. This can also be observed in Figure 

3.4 where TEC values are decreasing consistently with the period of the years. But 

for the year of 2008-2009 it is observed that TEC values are increasing gradually. 

This shows clearly the solar activity dependence of electron density. Warnant et 

al., [2000] have reported higher values of TEC with increasing solar activity. 

 

 

 
Figure 3.5: Solar cycle dependence of TEC observed at low latitude station 
Rajkot 
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3.6 EEJ control on development of EIA 

 

In order to see the EIA development and influence of EEJ on it we have 

derived the contour plots of TEC with respect to local time and magnetic latitudes 

on three quiet days for different EEJ conditions, using GAGAN GPS data of five 

stations: Trivandrum (0.50 N Geomagnetic), Bangalore (4.320 N Geomagnetic), 

Hyderabad (9.220 N Geomagnetic), Bhopal (14.210 N Geomagnetic) and Delhi 

(20.320 N Geomagnetic). All these stations are around the common longitude belt 

of 77–780 E. The details of these stations are given in Appendix-I (Table I.1). 

 

In Figure 3.6, the first panel represents the contour TEC plot on 25 

December 2005 along with the diurnal variations of EEJ on the day. It can be seen 

that due to the presence of CEJ, EIA peak occurred at lower value of ~35 TECU at 

~1600 IST. This is the case of morning counter Electrojet. On the day anomaly is 

totally inhibited with a spatial extent of ~60 N. Due to inhibition of EIA, plasma 

does not get transfer to more extended latitudes. Hence maximum of EIA occurs 

at lower latitude with low magnitude. 

 

The second panel represents the contour TEC plot on 23 October 2005 

along with the diurnal variations of EEJ on the day. This is the case of weak EEJ 

and EEJ peak value is ~ 31 nT.  On the day, the EIA peak occurred at ~45 TECU 

at ~15:00 IST and it extended up to 100 N. 

  

The third panel represents the contour TEC plot on 20 October 2005 along 

with the diurnal variations of EEJ on the day. This is the case of strong EEJ and 

EEJ peak values is 78 nT. On the day, the EIA peak occurred at ~55 TECU at 

~13:00 IST. The latitudinal extent of EIA is up to ~140 N.  

 

The observed results clearly show the control of EEJ on development of 

EIA Dabas et al., [1984] also reported that EEJ has a pronounced influence on 

TEC over a large latitudinal belt starting from the equator to 250N dip latitude. 

Rama Rao et al., [2005] have shown that EEJ controls the altitude of the lifted 

plasma over the equator and hence the location of the crest of EIA. The higher the 
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EEJ strength, the higher the altitude to which plasma gets lift over the equator and 

farther the location of the crest of the EIA. They have shown the spatial variation 

of TEC and dependence of EIA on EEJ using GPS data of seven stations of the 

GAGAN network. Our results agree with this and showing positive dependence of 

EIA on EEJ. 

 
 

Figure 3.6: EIA development during three different EEJ conditions 
 

The statistical correlation between EIA strength and EEJ strength is 

presented in Figure 3.7.  The correlation (correlation coefficient (R) value of 0.71) 

shows that EIA strength increases with EEJ strength. There is a good linear 

correlation between EIA strength and EEJ peak value. The scattered points around 

the regression line may be due to other factors contributing to the day-to-day 

variability of TEC, although only magnetically quiet days are considered in this 

analysis. 

25 December 2005 23 October 2005 20 October 2005 
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Figure 3.7: Statistical correlation between EIA strength and EEJ peak values. 
R shows the value of Correlation Coefficient 
 
 
 
3.7 EEJ control on low latitude TEC 

 

As discussed in the previous section, the strong EEJ results in to the strong 

E×B drift. Hence, EIA strength increases and more plasma will get transfer at low 

latitudes from equatorial latitudes. This process increases the low latitudes TEC. 

Now, in order to see the low latitude TEC variations during different EEJ 

conditions we have plotted the diurnal variations of TEC at Rajkot during strong, 

weak and counter EEJ conditions. Figure 3.8 shows these results. 

 

Figure 3.8 (a) represents the diurnal variations of TEC on 9 April 2005 

(Ap=3), a strong EEJ day with EEJ peak value of 81 nT. TEC attains the peak 

value of ~70 TECU on the day and the daily peak occurred at ~13:00 IST. On 

strong EEJ day, obviously the EIA strength will be high. The observed high value 

of TEC diurnal peak on 9 April 2005 is in agreement with this. 
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Figure 3.8 (b) represents the diurnal variations of TEC on 5 December 

2005 (Ap=3), a day of weak EEJ. The TEC diurnal variations show two peaks one 

at ~12:30 IST with value of ~35 TECU and other at 16:30 IST with value of ~41 

TECU on the day.  As observed in the case of 23 October 2005 in the previous 

section, the EIA peak occurs at delayed time of ~15:00 IST. The observed two 

TEC peaks on 5 December 2005 day require further investigations.  

 

Figure 3.8 (c) represents the diurnal variations of TEC on 3 July 2005 

(Ap=7), an afternoon CEJ day. Here also two peaks have been observed with very 

short time gap. Diurnal TEC maximum occurred at 14:00 IST with value of ~50 

TECU. Figure 3.8 (d) represents the diurnal variation of TEC on 31 December 

2006 (Ap=2), a morning CEJ day. On the day, prominent daytime TEC peak has 

not seen. The broad and flat TEC curve is observed. This may be due to the 

inhibition of EIA on this day. The morning CEJ results in to the downward E×B 

drift in the fore noon hours.  

 

On strong EEJ days, EIA intensifies and transfers more plasma in to the 

crest regions. On CEJ days, EIA suppressed and TEC shows low values near the 

crest region.  Thus the results suggest that EEJ fully controls the EIA 

development, and hence the distribution of F region plasma in the low latitude 

ionosphere. This agrees with the results shown by Rama Rao et al. [1983] and 

Rastogi and Klobuchar [1990]. 
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Figure 3.8: EEJ influence on diurnal variations of TEC on the day of (a) 9 
April 2005, (b) 5 December 2005, representing strong and weak EEJ 
conditions respectively 
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Figure 3.8: EEJ influence on diurnal variations of TEC on the day of (c) 3 
July 2005 (d) 31 December 2006, representing afternoon CEJ and morning 
CEJ conditions respectively 
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3.8 Low Latitude L-band scintillation and  associated TEC 
depletion  
 

When a radio wave propagates through electron density irregularities 

presence in the ionosphere, it suffers from phase and amplitude fluctuations. As 

we have discussed in Chapter 1, if the ionospheric irregularities are present in the 

path of the radio wave signals, they experience phase and amplitude fluctuations, 

onset angle variations and also the signal loss on some occasions. The 

understanding of these signal fluctuations i.e. ionospheric scintillation is necessary 

in order to provide the better and accurate GPS positioning and navigation and 

also to study the nature and dynamics of ionospheric irregularities. The detailed 

discussion on ionospheric F region irregularities i.e. ESF responsible for radio 

wave scintillation is given in Chapter 4. In this section we present GPS L-band 

scintillation and associated TEC depletion observed at low latitude station Rajkot 

during April-2005 to April-2009. 

 

The GPS observations from April – 2005 to April - 2009 at Rajkot show 

only 30 scintillation days. Almost all the events are observed during post-sunset- 

pre-midnight hours. The observed scintillation by different PRN’s for four 

different days during April 2005 to April 2009 are presented in Figure 3.9. The 

left panel of each figure shows the temporal variations of TEC and scintillation 

index S4.  The right panel of each figure shows the temporal variations of satellite 

elevation angle and geomagnetic latitude (solid line) and geographic longitude 

(broken line) of the ionospheric pierce point (IPP) computed from the elevation 

and azimuth angles of the satellite at each instant of its pass, as seen from Rajkot. 

For IPP computations a thin ionospheic shell at an altitude of 350 km has been 

understood. The observations below 300 have been omitted in order to take care 

the effect of multipath reflections.   

 

Figure 3.9 (a) represents the scintillation event observed by PRN 5 on 06 

October 2005.  It can be seen that TEC depletion of magnitude ~3 TECU has been 

observed between 2125 IST and 2150 IST. On the occasion S4 enhanced up to the 

magnitude of ~0.18. At 2150 IST, TEC enhancement is observed. The noteworthy 

feature here is that TEC enhancement is associated with the depletion in S4 to 
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~0.025. After this again TEC depletion of ~4 TECU is seen with S4 enhancement 

up to ~0.24. The elevation information describes that the depletion is observed at 

high elevation angles (between 450 and 650). The latitude-longitude (lat-long) 

information describes that the depletion is observed at lower latitudes than the 

Rajkot i.e. equatorward and west of Rajkot. 

    

Figure 3.9 (b) represents the scintillation event observed by PRN 31 on 24 

December 2006. TEC depletion of magnitude ~1 TECU and S4 enhancement of 

~0.12 is observed between 2200 IST and 2300 IST. The temporal variations of 

elevation angle describes that the depletion is observed at elevation angles 

between 650 and 500. The lat-long variations describe that depletion is observed 

between 80 N and 130N and east of Rajkot.   

 

The strongest scintillation event observed during 2005-2009 is on 25 

September 2007 which is shown in Figure 3.9 (c) and Figure 3.9 (d).  TEC 

depletion of ~6 TECU and S4 enhancement up to 0.29 is observed by PRN 5 

between 2075 IST hrs and 2125 IST hrs as shown in Figure 3.9(c).  TEC depletion 

of ~2 TECU and S4 enhancement up to 0.12 is observed by PRN 30 in Figure 

3.9(d) almost at the same time. The elevation angle variations of PRN 5 show that 

the depletion is occurred at elevation angles between 550 and 400. The latitude - 

longitude curves of PRN 5 shows that the depletion is occurred between latitude 

range of ~120N to ~110N and west of Rajkot. The elevation variations of PRN 30 

describes that the depletion is occurred at elevation angles between 550 and 500. 

The lat-long variations of PRN 5 describes that the depletion is occurred between 

latitude range of 13.50N and 12.50N and west of Rajkot. PRN 30 has come across 

of two TEC depletions. The second is observed at quite low elevation angle of 

~300-350. The depletion magnitude is ~4 TECU which is accompanied by S4 

value of ~0.18. It is observed at lower latitudes than the Rajkot and west of it.  
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Figure 3.9: Low latitude L-band scintillation observed on (a) 06 October 2005 
(b) 24 December 2006 at Rajkot 

06 October 2005 PRN 5

(a) 

Geomag. Lat. 
Geogra. Long. 

24 December 2006, PRN 31

(b) 

Geogra. Long. 
Geomag. Lat. 
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Figure 3.9: Low latitude L-band scintillation observed on (c) and (d) 25 
September 2007 at Rajkot 

25 September 2007 PRN 30 

25 September 2007, PRN 5 

Geogra. Long.
Geomag. Lat.

Geogra. Long.
Geomag. Lat.

(d) 

(c) 
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Figure 3.9: Low latitude L-band scintillation observed on (e) 08 September 
2008 at Rajkot 
 
 

Figure 3.9 (e) represents the scintillation event observed by PRN 24 on 08 

September 2008. Three clear depletions are observed between 2200 IST and 2350 

IST. The magnitude of TEC depletion is ~ 1 TECU. The S4 values are not 

showing any noticeable enhancement during this event. The depletions are at quite 

high elevation angles and higher latitudes than the Rajkot. The low S4 values 

indicate that the observed TEC depletions might be due to some ionospheric wave 

like features which require further investigations.  

 

In this investigation, it has been observed that on most of the days 

scintillation is observed between 21:00 to 22:00 IST.  The observed scintillation 

amplitude is very low and only 30 events of scintillation are observed during 

2005-2009. One of the reasons for the low scintillation amplitude and less 

occurrence frequency is the current low solar activity period.  Due to the low solar 

activity period, the occurrence frequency of ESF also becomes low .Even if the 

irregularities occur at the equator, the height which they attain over the equator 

08 September 2008 PRN 24 

Geogra. Long. 
Geomag. Lat. 

(e) 
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that only decides the latitudinal extent of irregularities and hence scintillation if 

any.    

 

An attempt has been made to describe the latitudinal extent of L-band 

scintillation in Chapter 4. The results from the multitechnique campaign 

conducted for the study of ESF irregularities are discussed in Chapter 4.  During 

the campaign period, it is observed by radar, located at off equatorial station 

Gadanki (13.50N, 79.20E; geomagnetic dip 6.50N) in India, that the ESF 

irregularities’ height mostly confined to 500-600 km.  Thus, due to this lower 

confined height of ESF irregularities, they may not expand up to Rajkot latitude 

and die out over lower latitudes only. The observed lower occurrence frequency of 

L-band scintillation at Rajkot may be due to this reason.   

 

Dasora and Pandey [2005] reported the UHF scintillation and associated 

TEC depletions near the northern crest region of EIA, Udaipur (26.40N 73.70E, 

Geographic, 15.60N Geomagnetic), in India. They have shown a one to one 

correspondence between the TEC depletion and the increase in S4 index. 

 

3.9 Conclusion 
 

The present chapter describes the temporal and spatial variations of GPS 

derived TEC during the low solar activity period (2005–2009).The temporal 

variations are recorded at Rajkot (22.290N 70.740E, sub-ionospheric dip latitude 

15.80N) near the northern crest of EIA. The diurnal variations of TEC show a 

steady increase from about sunrise to an afternoon maximum and then fall to 

attain a minimum just before sunrise. A significant day to day variability in 

diurnal pattern has been observed which decreases with descend phase of solar 

activity. The seasonal variations of TEC show that TEC values are high in 

equinoctial months followed by summer and winter. The month to month 

variations of mean diurnal peak TEC shows semiannual variations with a peak 

during the equinox period and a trough during the solstice period. The high 

positive correlation between TEC peak and solar F10.7 flux shows high solar 
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cycle dependence of TEC. The gradual increase in TEC observed in the year 2009 

provides the indication of the starting of new solar cycle.  

 

 The latitudinal variations of TEC derived from the GAGAN GPS stations, 

further show that the EIA parameters, viz, the anomaly peak value, time and 

latitudinal extent are greatly controlled by EEJ. Our results indicate that low 

latitude TEC magnitude and daily peak time depends on the EEJ conditions. EIA 

is completely inhibited on the day of morning CEJ, resulting in a lower TEC value 

at Rajkot. The low latitude L-band scintillation is low both in amplitude as well as 

occurrence frequency due to the low solar activity period. Most of scintillation 

events are observed between post sunset and pre-midnight hours.    
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Chapter 4 

A Multitechnique investigation on ESF irregularities 
 

4.1 Introduction 
 

The sunset in the equatorial and low latitude ionosphere is characterized 

by the pre-reversal enhancement (PRE) in vertical drift velocity/eastward electric 

field before it turns to westward [Fejer, 1991]. The rapid bites out of E-region 

ionization due to fast chemical recombination of dominant molecular ions after 

sunset and the PRE in vertical drift velocity create steep plasma density gradient 

at the bottom side of equatorial F region.  This plasma density gradient is anti-

parallel to gravity and provides platform for the generation of wide spectrum of 

field aligned plasma density irregularities in the night time equatorial F-region 

[Haerendel, 1974; Woodman and LaHoz, 1976].  These irregularities are known 

as Equatorial Spread-F (ESF). 

 

The ESF was first discovered by Booker and Wells [1938] as diffuse 

echoes on ionograms. With the advancement of time, it was understood that the 

ESF manifests itself as spread in range or frequency on the ionograms [Booker 

and Wells, 1938], plume like structures in coherent backscatter radar echoes 

[Woodman and LaHoz, 1976], intensity bite-outs in OI 630.0 nm night airglow 

[Weber et al., 1978], and scintillations on amplitude and phase of VHF, UHF and 

L bands [Su. Basu and Kelley, 1977; Yeh and Liu, 1982; Aarons, 1982].  

 

Booker and Wells [1938] associated the occurrence of spread F with post 

sunset rise of the F region. Number of studies revealed that the E×B drift is the 

primary mechanism [Fejer et al., 1999; Whalen, 2002; Lee et al., 2005] which 

directly uplifts the F region and creates required electron density gradient. The 

PRE in the vertical drift results in to the decrease of the collision effect [Kelley, 

1989] which positively takes part in ESF development. Spencer [1955] was the 

first to suggest that ESF is a manifestation of the field aligned irregularities. 
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Though spread-F can occur at any latitudes, the maximum and intense 

occurrence is around ±200 geomagnetic latitudes. The ESF shows variability with 

season, local time, geographical location and solar activity. [Chandra and Rastogi, 

1970; Woodman and LaHoz, 1976; Fejer and Kelley 1980; Basu and Coppi, 1999; 

Hysell and Burcham, 2002]. The maximum probability of occurrence of ESF is 

during equinoxes, moderate during summer and minimum during winter.  

 

Generation mechanism of ESF 

 

The primary mechanism which plays role in the initiation of ESF is 

collisional Rayleigh-Taylor instability. This instability perturbs the bottom side of 

the F region followed by secondary instabilities, one feeding on the other. An 

excellent explanation of these processes is given by Kelley [1989]. Figure 4.1 

shows the schematic representation of the processes playing roles in the ESF 

generation. 

 

  As mentioned earlier, the steep plasma density gradient at the bottom side 

of the F region, a combined effect of PRE and rapid recombination of E-region 

ionization, is anti-parallel to gravity. The situation is analogues to a heavier fluid 

supported by a lighter fluid. In case of ionosphere, the magnetic field is the ‘light 

fluid’. This configuration of plasma density builds the platform for the generation 

of well known Rayleigh - Taylor (R-T) instability. This plasma density 

configuration is same for all the nights.  But on some nights, when both the 

conditions i.e. steep plasma density gradient at the bottom side of the F region and 

F region height, along with the other background conditions are conducive, a 

small perturbation in the bottom side of the F region can give rise to R-T 

instability.  

 

The expression for the linear growth rate ‘ gγ ’ for the collisional R-T 

instability has been shown [Haerendel, 1973; Ossakow et al., 1979] to be 

 

K
kg

L
x

in
g

21
ν

γ =  (4.1)
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Figure 4.1: Schematic representation of the processes playing roles in the 
ESF generation 

 

   

 

 

 

 

 

Sunset in Equatorial and Low Latitude Ionosphere 

Rapid bites out of E-region ionization due to fast 

chemical recombination 

+ 

Pre-reversal enhancement of eastward electric field 

Steep Electron Density Gradient on the bottomside 

of the nighttime F layer (heavier fluid is supported 

by lighter fluid) 

Rayleigh-Taylor Instability 

The increase of 

the vertical drift 

indirectly results 

in the decrease of 

the collision 

effect [Kelley, 

1989; Lee, 2006] 

which positively 

takes part in ESF 

development. These instabilities in linear system perturbs only the 

bottom side of the F-region while in nonlinear 

system the plasma bubbles (region of low plasma 

density compared to the ambient plasma) associated 

with these instabilities go through the peak electron 

density in the F-region and well above. 

Equatorial Spread-F 
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where inν  is the ion-neutral collision frequency, g is the acceleration due to 

gravity, L  is the ambient plasma density scale length which is inversely 

proportional to the plasma density gradient dn0/dz and is given by 
1

0

0

1
−















=

dz
dn

n
L . The zonal component of the total wave vector K , whose 

magnitude represents the wave number, is denoted by xk . 

The collision Rayleigh-Taylor instability can be described as follows. 

Consider a sinusoidal perturbation in the ion and electron densities ( )n′ , over the 

steady state value ( )0n  in the F- region along the zonal direction as depicted in 

Figure 4.2.  The 0n∇ is directed anti-parallel to the gravity. The magnetic field B is 

into the plane of the paper.  Under the action of gravitational drift, perturbations in 

ion and electron densities move eastward and westward with a gravitational drift 

velocity of ig Ω  and eΩg respectively; iΩ and eΩ being the ion and electron 

gyro frequencies respectively. Since gravitational drift is inversely proportional to 

the gyro frequency, the perturbation in ion densities moves faster than those of 

electron and lead to the charge separation. Due to this charge separation, 

polarization electric fields get generated which are directed eastward in the 

density depleted and westward in the enhanced regions. These polarization 

electric fields make the depleted region to drift upward and bring the enhanced 

density region downward, amplifying the density perturbation. In order to sustain 

the growth, this process should be faster than the effective lifetime of the ions i.e. 

Rν1  ( Rν  is the recombination rate), otherwise the ions would be lost by 

recombination inhibiting the growth of the perturbation. The plasma-depleted 

region is called a bubble in analogy to the hydrodynamic case. The upward drift of 

the plasma ceases at the altitudes where the ambient electron density becomes 

equal to that inside the bubble. This determines the maximum altitude of plasma 

bubbles and the altitudinal extent of ESF. 
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Figure 4.2: Schematic diagram of the plasma analog of the R-T instability in 
the equatorial geometry (b) Sequential sketches from photos of the 
hydrodynamic R-T instability. A lighter fluid is initially supports a heavy 
fluid [After Fejer and Kelley, 1980] 

 

The growth rate is shown to be maximum when the perturbation is along 

the zonal direction and becomes independent of wavelength for horizontally 

propagating wave [Ossakow, 1979] and hence the equation 4.1 becomes 

in
g

g
L ν

γ 1
=  

Apart from gravity, eastward electric field also contributes to the growth of 

the amplitude of the density perturbation.  However, the mechanism is slightly 

different. Due to the Hall drift (E × B/B2) the plasma is lifted up to higher 

altitudes to a region of smaller ion neutral collision frequencies, thereby 

increasing the growth rate of the R-T instability.  This drift is independent of the 

mass and charge of the species; however a charge separation does occur along the 

direction of the electric field due to the differences in the Pederson mobility 









Ωα

αν n

eB
1  of ions and electrons. Here, ‘ nαν ’ can be either ion-neutral or electron-

(4.2) 
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neutral collision frequency ( )enin νν ,  as the case may be. Due to this charge 

separation, eastward polarization electric fields get set up in the density troughs 

and westward in the density crests.  This results in the differential vertical drifts as 

discussed in the case of gravity, affecting the growth of the perturbation 

amplitude.  The effect of the primary eastward electric field xE   [Ossakow, 1979; 

Kelley, 1989] in enhancing the growth rate of the R-T instability is written as 

B
E

L
x

E
1

=γ  

In addition to the electric field, neutral parameters like eastward zonal 

wind xW  can also drive the instability when the background electron density 

gradient is westward. The growth rate is given as:  









Ω

=
i

in
xw W

Lx

ν
γ 1  

  The vertical wind (Wz), though small in magnitude, exists in the equatorial 

ionosphere [Biondi and Sipler, 1985; Raghavarao et al., 1987; Raghavarao et al., 

1993; Sekar and Raghavarao 1987]. Thus an expression for the growth rate of the 

generalized R-T instability including all the above-mentioned parameters is given 

as [Sekar and Raghavarao, 1987] : 
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  However, this expression takes care of the linear growth of the R-T 

instability, which is the primary mechanism for the generation of ESF. A 

‘hierarchy of plasma instabilities’ is believed to be the cause for the observed 

wide range of scale sizes, extending to shorter scale lengths through secondary 

plasma processes [Haerendel, 1973; Chaturvedi and Kaw, 1976; Costa and 

Kelley, 1978]. The hierarchy is as follows: 

(1) Collisional R-T instability mechanism driven by the zero order electron 

density gradient 

(4.3) 

(4.4) 

(4.5) 
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(2) The (E × B) gradient drift instability due to the sharp density gradients set 

up by the collisional R-T instability mechanism 

 

(3) Collisionless R-T instability in the region where collisions become 

negligible and grows due to the sharp density gradients, and finally 

 

(4) Kinetic drift waves grow off these irregularities as they attain large 

amplitudes 

 

The basic idea of the multi-step (hierarchy) process for the growth of ESF 

irregularities is now well accepted though there are some differences regarding the 

details of the processes. By far, the nonlinear theories of ESF have been very 

successful in explaining different kinds of observations on ESF irregularities at 

various altitudes from different longitude regions across the globe. 

 

Plasma bubbles are the manifestation of non linear irregularities 

development. The bubbles are magnetic flux tubes aligned and cover north-south 

distances across the magnetic equator of several thousand kilometers, with east-

west dimensions of up to a few hundred kilometers. As plasma bubbles buoyantly 

rise upwards, they become highly elongated in the vertical direction [Tsunoda & 

Towle, 1979], sometimes attaining very high altitudes (>1500 km) at the magnetic 

equator [Mendillo & Tyler, 1983], and the depleted regions extend poleward in the 

flux tubes [Sales et al., 1996], reaching dip latitudes of over ±150 [Rohrbaugh et 

al., 1989]. The regions of the strong plasma density gradients are known as 

plasma bubble walls, separating the inside and outside of the plasma bubble 

structures. The steep plasma density gradient of the walls of a developing plasma 

bubble becomes unstable under secondary instability processes, this provides 

platform for the development of a spectrum of irregularities falling into a smaller 

scale sizes.   

 

Satellite signals, during their earth-space propagation path, experience 

amplitude and phase fluctuations due to the presence of these plasma bubble 

irregularities in their propagation way. If the level of the irregularity is low, only 
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the phase and angle of arrival are changed (thin phase screen). If the level of 

structuring is strong, the amplitude of the signal also varies (thick phase screen). 

After crossing the phase screen, the electromagnetic wave makes a diffraction 

pattern in both intensity and phase at the ground. These fluctuations of the radio 

signals are known as scintillations.  

 

The scintillations vary widely with frequency, time of the day, season, 

geographical place and magnetic as well as solar activity, [Basu and Kelley, 1979; 

Aarons, 1982; Das Gupta et al., 1982]. According to Sripathi et al., [2008] if 

irregularities are confined to a layer of less than ~100 km thickness, only phase 

fluctuations get emerged and further propagation of radio waves to the plane of 

the receiver produces amplitude fluctuations also.  

 

Fluctuations of GPS signals cause in some cases an additional error in 

finding the exact position of an object, which could be as large as tens of meters. 

In other cases a complete loss of the navigation signal also may occur. Since these 

plasma bubble irregularities cause disruptions/degradations of the navigation 

signals, understanding the evolution and dynamics of this phenomenon and its 

variability are of considerable practical importance.  

 

In this context, the present chapter deals with the multitechnique 

investigation on ESF phenomenon. The multitechnique campaign from India 

involving VHF radar at low latitude station Gadanki (13.50N, 79.20E, dip latitude 

6.50N), GPS TEC and scintillation monitor from the similar place and digital 

ionosonde at equatorial station Trivandrum (8.550N, 76.90E, dip latitude 0.50N) is 

conducted during the equinox season of 2005 to 2008 to further elucidate the 

evolution and dynamics of ESF irregularities.  TEC enhancement associated with 

ESF plume structures is observed during the investigation. GAGAN GPS TEC 

and L-band scintillation data has been used to investigate the latitudinal extent of 

ESF associated L-band scintillation. Solar activity dependence of L-band 

scintillation is also presented. 
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4.2 Historical background 

In past few decades, ESF has been extensively studied using various 

techniques, like VHF radars [for example, Woodman and LaHoz, 1976; Patra et 

al., 1997; Hysell and Burcham, 1998 and references therein, Rao and Patra, 

1998], incoherent scatter radars [Tsunoda, 1980], probes on-board satellites 

[McClure et al., 1977; Valladares et al., 1983], airglow photometers [Mendillo 

and Baumgardner, 1982], scintillation receivers [Krishnamoorthy et al., 1979; 

Aarons, 1982, 1993; Basu and Basu, 1985; Basu et al., 1996], HF radars 

[Jayachandran et al., 1993, Tiwari et al., 2004] and numerical modeling 

[Ossakow, 1979; Zalesak and Ossakow, 1980].  

Haerendel [1973] postulated that the largest scales of spread F were 

produced by a gravitational instability as proposed by Dungey [1956] and that the 

smaller scales resulted from a cascade of instabilities all the way down to meter 

scales responsible for the radar coherent echoes.  He also invoked the role of flux 

tube integrated, rather than local, density gradients and conductivities in the 

instability mechanism but even that could not explain the irregularities observed 

in the topside ionosphere.  Woodman and La Hoz [1976] proposed that a large (in 

size) perturbation in the gravitationally unstable bottomside F region would grow 

non-linearly into a bubble, similar to R-T instability in a neutral fluid.  The bubble 

will rise by the effect of buoyancy and will continue to do so even in regions with 

gravitationally stable gradients such as in topside ionosphere. This qualitative 

theory was soon supported by numerical simulations [Scannapeico and Ossakow, 

1976, Zalezak et al., 1982, Sekar et al., 1997 etc] which reproduce many of the 

observed features of the bubbles/radar plumes including the role of seed 

perturbations. 

 

The observation of ESF irregularity structure using two dimensional echo 

power mapping technique with the Jicamarca VHF backscatter radar by Woodman 

and La Hoz [1976] showed for the first time that ESF can occur either in the 

bottomside or topside F region when the vertical drift is upward or downward and 

when density gradient is stabilizing or destabilizing, thereby challenging then 

existing theories of causative instability mechanisms for ESF.  Subsequent long 
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term Jicamarca radar studies (JULIA) have shown different manifestations of ESF 

which are classified as topside, bottomside, bottom-type and valley type [Hysell 

and Burcham, 2002] with distinct characteristics (such as spectral widths) and 

distinct associations with other phenomena.  For example, bottom type and valley 

type spread F do not produce significant spread traces on ionograms or 

scintillations.  Considerable work has been done with in-situ probes on rockets 

and satellites showing the intensity of the associated plasma depletions by ~ 3 

orders of magnitude [Hanson and Sanatani, 1971], their composition that is 

typical of lower altitudes thus revealing their origin [McClure et al., 1977] and 

their clear temporal and spatial associations with radar plumes [Tsunoda et al., 

1982], using the east-west scanning capability of the ALTAIR VHF (155.5MHz) 

radar at Kwajalein. The Gadanki (6.50 N dip) VHF (53MHz) radar in India has 

revealed many characteristics of spread F irregularities such as spectral 

characteristics, updrafting and downdrafting structures etc. [Patra, 1997].  The 

EAR in Indonesia (10.360 S dip) has the capability to steer to preselected positions 

in the east - west from pulse to pulse. This enables one to see a Field Aligned 

Irregularities (FAI) formation west of the radar site before it shifts eastward to the 

vertical beam and further its development to the east.  With this potential, 

Yokoyama et al., [2004] have observed that plumes start to form very nearer to the 

E region sunset terminator.  

 

Both ionosonde and scintillation receivers have been used at different 

locations to determine the temporal, seasonal and geographical distribution of 

spread F [Aarons, 1977, Basu and Basu, 1981, Abdu et al., 1988]. The relationship 

between ionosonde spread F and VHF radar coherent echoes was not established 

in detail until the work of Rastogi and Woodman, [1978].   

 

All such above-mentioned studies have nevertheless given clues of the 

various possibilities which have led to the present understanding of the gross 

behavior, but on a case to case basis, the exact mechanism or combination of 

mechanisms that gives rise to the observed effects is very difficult to pin-point. 

 

Multi-technique observations may considerably improve our 

understanding of factors responsible for the generation, growth and dynamics of 
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the destabilized night time F region plasma irregularities.  Earlier multi -technique 

investigations of ESF, such as the CONDOR campaign [Basu et al., 1986] 

addressed a comparison of vertical wave number spectrum obtained by rocket and 

UHF scintillation spectrum.  More recent Multi - Instrumented Studies of 

Equatorial Thermosphere Aeronomy (MISETA) campaign in South America 

[Basu et al., 1996, Valladares et al., 1996, Mendillo et al., 2001] focused on 

neutral and plasma dynamics. Kelley et al., [1996] were the first to use GPS TEC 

measurement and VHF backscatter radar measurements at Kwajalein (dip latitude 

4.40 N) to infer the characteristics of upwelling structures. Musman et al., [1997] 

used portable radar (CUPRI) and GPS measurements at Alcantara, Brazil near the 

magnetic equator to bring out clear association between radar plumes and TEC 

fluctuations.  Valladares et al., 2004 have used the observations of Jicamarca 

radar and a latitudinally distributed chain of GPS receivers to study the altitude-

latitude extension of ESF structures. De Paula et al., [2004a, b] used collocated 

VHF backscatter radar, GPS scintillation and digital ionosonde observations to 

study ESF manifestations at different spatial scales.  

 

The morphology of equatorial scintillations based primarily on 250 MHz 

observations and some 1.5 GHz geostationary satellite measurements is reported 

in several publications [for example, Aarons, 1982, 1993; Basu et al., 1980]. The 

radio beacon satellites transmitting signals in the VHF range have been used to 

study the scintillations in the Indian longitudes [Chandra et al., 1979, Krishna 

Moorthy et al., 1979; Rastogi and Aarons, 1980, Dabas et al., 1998; Rama Rao et 

al, 2005]. The L-band scintillation measurements using GPS are also used to study 

the morphology and variability of ionospheric scintillations [For example, Groves 

et al., 1997; Beach and Kintner, 1999; Valladares et al., 2004; Rama Rao et al., 

2006a,b].   

 

The general morphology of TEC depletions and their association with 

strong levels of VHF scintillation, over the South American zone, were described 

by Das Gupta et al., [1983]. Several studies on scintillation phenomena have been 

carried out with the results that the scintillation mainly occurred during night time, 

mostly seen during post-sunset and pre-midnight hours, with increased amplitudes 
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and high occurrence probability during equinoctial months of high solar activity 

periods and lower amplitudes and minimum occurrence probability during 

summer months of low solar activity periods [Das Gupta et al., 1981; Somayajulu 

et al., 1984; Rama Rao et al., 1985].  

 

Kelley et al., [1996] observed the onset of disruptions (in GPS TEC 

measurements) due to severe irregularity progress from east to west following the 

terminator. Existence of strong backscatter from regions of low electron density 

(as seen by TEC depletions) is very important to understand what happens when 

GPS signals propagate through such a structure. The upwelling turbulent 

structures lead to severe disruptions (cycle slips or severe scintillations) of GPS 

signals. Numbers of ESF studies using GPS and radar have been reported in 

literature.  For example Rodgrigues et al., [2004] presented ESF observations 

using GPS and radar at equatorial station in Brazil. Aggarwal et al., [2007] 

presented the investigation on dynamics of electron density irregularities of 

different scale sizes using multi technique observations. They have shown that the 

plasma bubble irregularities are observed first at Trivandrum (station located at 

the magnetic equator in India), thereafter by GPS receiver and later by VHF radar 

(both co-located at off equatorial station), this indicates that the observed plasma 

bubble is drifting eastward. Sripathi et al., [2008] have presented the simultaneous 

observations of ESF irregularities using radar and GPS over Indian region.   

 

As mentioned earlier, the similar multitechnique campaign using VHF 

radar, GPS and TEC scintillation monitor and ionosonde have been conducted to 

investigate the various characteristics of ESF during equinox season of the years 

2005 to 2008 in India.  The following sections represent the obtained results and 

details discussion on it. 
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4.3 Experimental Setup  
 

Mesosphere-Stratosphere-Troposphere (MST) radar at Gadanki in the 

ionospheric mode and GPS –TEC and scintillation monitor are operated 

simultaneously for 4 equinoctial periods during September - 2005 to February - 

2008.  

 

 The MST radar operated at 53 MHz in ionospheric coherent back 

scatter mode is used to capture the features of ESF irregularities, if any. As 

discussed earlier in chapter 2, the nominal beam zenith angle chosen for F regoin 

experiments is 14.80. This beam is perpendicular at 350 km altitudes in the 

ionosphere. Data recorded from all the satellites visible in view during nighttime 

with elevation angle higher than 300 have been used for the present work. The 

scintillation index S4 is calculated at every 1 min for all satellites being tracked.  

Figure 4.3 shows the experimental sites with position of ionosonde, MST radar 

and GPS receiver in terms of geographical latitudes and longitudes. The red dot in 

the figure shows the oriented radar beam position.  The big black circle shows the 

coverage by GPS satellite above 300 elevations. In addition to the GPS and VHF 

radar measurements, height of the bottom-side of F-region, h’F and vertical 

plasma drift are obtained from digital ionosonde, (KEL IPS 42) operated from 

Trivandrum. The temporal resolution of the ionograms obtained for the present 

experiments is 15 minutes. 
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Figure 4.3: Experimental sites showing position of Ionosonde, MST radar 
and GPS receiver 
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4.4 A case study to understand an evolution and dynamics of ESF  
4.4.1 Observations from the magnetic equator (Trivandrum) 

 

On 21/3/2007, ionosonde observations at Trivandrum revealed that spread 

F started at 1945 IST, initially as range type spread F and lasted till 2045 IST. 

Then it became complete spread F from 2100 IST to midnight. From 0030 IST to 

0145 IST only range type spread F was observed. From 0200 IST to ~0400 IST 

frequency spread F was observed.   

 

The height of the base of the F layer (h’F) over Trivandrum during post-

sunset period obtained from digisonde data with 15 minute resolution on 21/03/07 

is shown in Figure 4.4 (a). The h’F shows a clear evening rise and reached pre 

reversal peak value of ~300 km at 1930-1945 IST, coinciding with the starting of 

spread-F on ionogram. The vertical drift velocity (Vz) turns out to be 21 m/s at 

1900 IST just before the initiation of ESF as can be seen in the Figure 4.4(b).  The 

vertical drift is computed using dh’F/dt for 15 minutes period. Basu et al., [1996] 

reported that during solar minimum if drift velocity exceeds 20 m/s then the 

probabilities of spread-F occurrence are more. Thus, in the present case the 

observed Vz value of 21 m/s at 1900 IST is sufficient to assist the irregularity 

generation. The upward and downward movement of h’F can be correlated with 

the eastward and westward electric field i.e. upward and downward vertical drift 

velocity respectively in Figure 4.4(a) and (b).  

 

4.4.2 Observations from the low latitude (Gadanki) 

 

The VHF radar at Gadanki can be steered in the N-S directions in order to point 

the radar 30 beam perpendicular to the geomagnetic field at F region heights.  The 

radar beam then intersects the F region (~350 km) over 14.80 N and 79.20 E 

(geographic) as shown by the blur circle in Figure 4.5 thus giving an opportunity 

to probe off magnetic equatorial F region plasma irregularities at ~3 m scale size.  

Figure 4.5 shows the radar beam position at F region along with the azimuth – 

elevation path of three satellites (PRN 20, 23, 25) on 21/03/07 over Gadanki.  
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Figure 4.4: Variations of (a) ionospheric F-region height (h’F) in top panel 
and (b) vertical drift velocity in the bottom panel between 1800 and 2600 IST 
on 21/03/07 over Trivandrum 
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The blue dots in each path indicate the epoch when the satellite detects the 

scintillation (S4) greater than 0.1.  

 

The radar RTI map on 21/3/2007 is shown Figure 4.6 (a). The radar has 

started to detect the irregularity structures from ~1945 IST onwards i.e. almost 

simultaneously with Trivandurm ionosonde.  According to Patra [1997], ESF 

irregularities appear simultaneously at equatorial station Trivandrum and low 

latitude station Gadanki. The observed variations on 21/03/07 agree with this. 

 

  Figure 4.6 (b) shows the variations of Doppler velocity with height and 

time and Figure 4.6 (c) shows the variations of spectral width with height and 

time. The RTI map shows sudden vertically growing plume structures from about 

2000 IST. Radar plumes are interpreted as ionospheric bubbles that originate at 

the base of the F region and may extend over several hundred kilometers in 

altitude. The striated or elongated blob like multiple plumes are observed in eight 

different patches (Figure 4.6 (a)). The plumes are extended from about 250 km to 

425 km in heights in the beginning. As time progresses, both the bottom and top 

heights of the plumes are descended by about 50 km by ~ 2245 IST.   

 

A noteworthy feature is that the radar plumes are almost vertical, without 

any significant tilt, which implies the absence of vertical electric field in the frame 

of the neutrals that result from a differential motion in the zonal direction between 

ions and neutrals. The average periodicity of the striations is about 20 minutes. 

 

The periodicity of the upwelling regions (radar bloblike structures of 

period ~20 min as seen in this case) suggests a wavelike seed process. Such 

sinusoidal structures organize the plumes in the rest of the radar map. It is 

interesting to note that a much longer wave length (~700km) modulates the 

bottomside i.e. h’F and possibly the top of the plumes.  
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Figure 4.5: Radar beam position at F region along with the azimuth – 
elevation path of three satellites (PRN 20, 23, 25) on 21/03/07. 
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Figure 4.6: (a) Range Time Intensity (RTI) map showing periodic multiple 
plumes (b) Doppler velocity variations with height and time during the event 
and (c) Spectral width variations with height and time during the event on 
21/03/07, over Gadanki 
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The multiple plumes seen may be a consequence of the intermodulation of 

this long wavelength with the shorter wavelengths as also reported by Kelley et 

al., [1981], Tsunoda and White, [1981].  The non linear instability study by Huang 

et al., [1993] and Huang and Kelley [1996] show that periodic seeding of the 

ionospheric boundary is required for multiple large scale structures to evolve as a 

result of R-T instability. What we see in the radar maps is the drifting of periodic 

upwellings across the field of view, essentially unchanged in form –frozen drift 

effect. 

 

It can be seen from RTI map in Figure 4.6 (a) that when the explosive F 

region echo development takes place at about 1955 IST, the E region echo 

disappears and remains absent or weak till about 2130 IST.  Weakening of E 

region field aligned irregularities in association with the F region plume structures 

have been observed earlier by Hysell et al., [1994] and Rao et al., [1997]. 

Recently, using Gadanki MST radar observations, Patra et al., [2004] reported 

that the E region echoes weaken or disappear during the growth phase of the 

topside F region irregularities at the equator. Using HF and VHF radar 

observations from equatorial stations, Patra et al., [2005] reported that in the 

initial phase of plasma bubbles the spectral width is found to be high. The high 

spectral width values in Figure 4.6 (c) in the intial part of the irregularities 

between 2000 IST and 2130 IST indicates that these plumes are in development 

phase. The corresponding high Doppler velocity values also suggest the 

development phase of irregularities. 

 

As mentioned earlier, here it is observed that the growth of ESF 

irregularities happens simultaneously along the same magnetic flux tube i.e. 

simultaneously at low latitude station Gadanki and at the equator. Under these 

conditions, the mapping of electric field from equatorial valley region to E region 

over Gadanki may be responsible for the weakening of E region irregularities 

during the growth phase of ESF at the equator. This agrees with Patra et al., 

[2004]. They have shown that the weakening or disappearance of E region signals 

are not directly coupled with the F region irregularities overhead, but linked with 

the instability processes over the magnetic equator through the magnetic field 

lines. 
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The weakening of E region echoes in the later part as can be seen from 

Figure 4.6 (a), between 2140 IST and 2210 IST and between 2320 IST and 2350 

IST, is also correlated with the high Doppler velocities and high spectral width in 

Figure 4.6(b) and (c) respectively.  Though the weakening of E-region is not much 

clear between 2320 IST and 2350 IST.   It can be observed that the correlation 

between ESF irregularity velocities and E-region echo strength is clearer in the 

earlier phase than in the later phase. This suggests the local time dependence of 

the Doppler velocities and also the E region echo strength.These results also agree 

with the Patra et al., [2004].    

 

GPS receiver to measure TEC and scintillation at L1-frequency 

(1.575GHz) is simultaneously operated from Gadanki on the day. Figure 4.7 

shows the temporal variations of TEC and S4 index observed by three satellites, 

(a) PRN 20, (b) PRN 23 (c) and PRN 25 on 21/03/07. The latitude and longitude 

converge of these satellites are also shown in the respective figures. Their ground 

tracks are shown in Figure 4.5 indicating the IPP being probed by the GPS 

technique. 

 

PRN 20 shows seven clear depletions in TEC of magnitude ~5-6 TECU 

between 2100 and 2245 IST. The simultaneous S4 enhancements are also 

observed. From longitude coverage of PRN 20, it can be seen that PRN 20 is 

moving in a nearly constant longitudinal path during its passage over Gadanki. 

The depletions can be associated with the seven clear radar echo structures 

(patches 2, 3, 4 and 5 in Figure 4.6(a)) between 2130 and 2300 IST. PRN 23 

(Figure 4.7 (b)) shows two depletions, though not as deep as in PRN 20, between 

2200 and 2300 IST, again associated with strong S4 enhancements. These 

depletions can be associated with the patches 3 and 4 in Figure 4.6(a).  

 

The first two depletions shown by PRN 23 from ~2115 IST to 2159 IST at 

the beginning of path in Figure 4.7(b) are at considerably low elevation angles 

(~30-45, figure not shown here). Thus might be affected through the multipath 

effect so not taken into consideration.  
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PRN 25 (Figure 4.7 (c)) also shows multiple depletions and associated S4 

enhancments between 2130 IST and 2235 IST at east of Gadanki as can also be 

seen from its ground tracks in Figure 4.5. From the lat-long information, it appears 

that PRN 25 is detecting irregularities at quite higher latitudes. It can be seen that 

at higher latitudes the amplitude of observed L-band scintillation and TEC 

depletion is more. PRN 20 which is west of radar has detected the irregularities 

from 2100 IST onwards, almost simultaneously with radar. PRN 25 is observing 

from 2130 IST but at higher latitudes and east of Gadanki. This infers that the ESF 

irregularities are drifting east ward and also increasing in zonal dimensions.  

 

PRN 20 and radar are simultaneously observing the plume structures 2 to 5 

(Figure 4.6(a)) between 2100 and 2245 IST.  PRN 23 and radar are observing the 

plume structure 3 and 4 between 2224 and 2246 IST simultaneously. PRN 23 has 

not detected any irregularities after this, though there is an exact path of PRN 23 

over the Gadanki at this time. This suggests that the Fresnel scale size 

irregularities have been decayed and radar is detecting the 3 m scale irregularities 

generated at the walls of the Fresnel size irregularities through the secondary 

mechanism.  

 

Plume structures 1, 6, 7, and 8 in Figure 4.6(a) have not been detected by 

any of the PRNs. As we have discussed earlier, structures 1 and 6 are in initial 

phase, thus they might not have developed up to Fresnel scale size that can create 

the L-band scintillation. The post mid night plume structures 7 and 8 can be 

considered as dead bubbles, it requires further investigation. 

 

 Thus, the different scale sizes of ESF irregulariits manifest themselves on 

different instruments i.e. ionosonde, radar and GPS. Spectral width and Doppler 

velocity informations reveal the different phases of irregularities i.e. development 

phase etc. Still, the growth and decay rate of irregularity pattern that can produce 

the GHz are needed to find out. 
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Figure 4.7(a):  L-band scintillation and associated TEC depletion as observed 
by PRN 20 over Gadanki 
 
 

 
 
Figure 4.7(b): L-band scintillation and associated TEC depletion as observed 
by PRN 23 over Gadanki 
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Figure 4.7(c): L-band scintillation and associated TEC depletion as observed 
by PRN 25 over Gadanki 
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4.5 TEC enhancement during multiple ESF plume structures 
 

In situ plasma depletions and associated ESF irregularity structures have 

been studied over the years [e.g. Hanson and Sanatani, 1973; McClure et al., 

1977; Tsunoda et al., 1982; Kelley, 1989; Kil and Heelis, 1998]. The observations 

of localized regions of plasma density enhancements, in addition to plasma 

depletions, in the night time low latitude F region were reported for the first time 

by Oya et al., [1986] and Watanabe and Oya [1986] using Hinotori satellite 

measurements. This was substantiated by other satellite measurements [e.g. Le et 

al., 2003; Park et al., 2003]. These measurements [Oya et al., 1986; Watanabe 

and Oya, 1986] revealed that the density enhancements have similar longitudinal 

dimensions as plasma depletions and that the enhancements are about a factor of 

two higher than the background plasma density. The occurrences of these 

enhancement structures were generally found to maximize at ±200 magnetic 

latitude. However, the exact mechanism that would give rise to plasma 

enhancements was not known. Sekar et al., [2001] had shown through numerical 

simulation of ESF that plasma enhancement can be generated by the interacting 

electric fields generated by the growth of the R-Taylor instability initiated by large 

and small scale size perturbations. Subsequently, the presence of plasma 

enhancements was inferred [Pimenta et al., 2004] using ground based 630.0 nm 

airglow imager and ionosonde in the anomaly crest region over Brazilian sector. 

However, Sekar et al., [2004] had shown the evidence for the plasma 

enhancements associated with ESF extending from base of F- region to beyond 

350 km altitude using co-ordinated VHF radar and airglow measurements from 

Gadanki in India. This evidence was substantiated with subsequent observations 

using the same techniques [Sekar et. al., 2008]. 

 

These plasma depletion and enhancement structures associated with ESF 

are expected to leave their signatures in TEC measurements. Tsunoda and Towle 

[1979] reported TEC depletions associated with ESF from the dip equatorial 

region for the first time. Using GPS satellite measurements, a number of 

investigations [e.g. Basu and Kelley, 1979; Aarons et al., 1996; Kelley et al., 

1996; Beach and Kintner, 1999; Bhattacharyya et al., 2000; Valladares et al., 
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2004] were carried out to understand TEC depletions and associated scintillations 

over the low latitude region in the American sector. Chen et al., [2008] presented 

the night time TEC enhancement near the EIA crest region in China. Dashora and 

Pandey [2005] brought out an evidence for the TEC enhancement during night-

time near the EIA crest region. They, however, did not observe any significant 

scintillation associated with it.  

 

In the present study, a case of TEC enhancement over Gadanki in the 

Indian zone during an ESF event is reported based on the observations using a 

number of techniques like TEC measurements (GPS), VHF radar and ionosonde. 

The observations from PRN 20 on 21/03/07 are reproduced in Figure 4.8. The two 

subplots at the top reveal the elevation from the GPS observational site and the 

latitudinal/longitudinal coverage of the satellite. The ray path from the IPP of the 

PRN20 satellite to the receiver is within 4.10N geomagnetic latitude and 77.70E 

geographic longitude (Figure 4.8b) that is 20 west of Gadanki, the radar site. 

 

As mentioned in previous section, a few depletions of magnitude ~5 - 6 

TECU from 2100 IST to 2245 IST are observed. It can be seen fron Figure 4.8 (c) 

that after 2142 IST, TEC recovers to the background level (TEC before 2100 IST) 

close to 25 TECU and subsequently decreases to 20 TECU at 2154 IST  

Thereafter, a gradual enhancement of VTEC reaching a maximum of 24 TECU at 

2206 IST is noticed. In the present section, this enhancement event is focused.  

The lowermost subplot (d) depicts the variation in the S4 index, the change in the 

S4 index during enhancement event (2154 IST - 2206 IST boxed region) is not 

substantial.  

 

The top two panels of Figure 4.9 depict the RTI and RTV maps of ESF 

irregularities during 2200 – 2300 IST on 21/03/07. It is to be noted that the TEC 

variations shown in Figure 4.9(c) is time shifted by 30 min in order to take care of 

the travel time for the plasma structure from the longitude of TEC measurement 

(77.70E) to the longitude (79.20E) of the coordinated VHF radar.  The time-shift is 

estimated based on the eastward plasma drift of ~80 m/s as deduced from the bi-

directional 777.4 nm airglow measurements (zenith and 450 elevation towards 

west in this campaign). 
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Figure 4.8:  The temporal variations of (a) elevation of PRN 20 from the 
observational site (b) geomagnetic latitude, geographic longitude coverage of 
it   (c) TEC and (d) S4 index as observed by PRN 20  
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Figure 4.9:  (a) RTI map (b) RTV map between 22-23 IST on 21/03/07. The 
temporal variations of (c) TEC observed by PRN 20 (d) h’F variations over 
Trivandrum between 22-23 IST on 21/03/07    
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 The 777.4 nm airglow observations are taken using multi-wavelength 

photometer from the same place on the day by Physical Research Laboratory, 

Ahmedabad group. A multi-wavelength scanning photometer, with a narrow 

spectral band capability and a narrow field-of-view, was developed at Physical 

Research Laboratory to study the nighttime airglow emission intensities from the 

thermosphere. The details of this photometer can be found in Sekar et al., [2004, 

2008]. 

 

As mentioned earlier, the plasma enhancements were observed from the 

regions closer to magnetic equator [Sekar et al., 2004; 2008] and low latitude 

stations [e.g. Oya et al., 1986]. On the other hand, enhancements in TEC were 

observed [Dashora and Pandey, 2005] closer to the EIA crest region. Further, the 

origin of that TEC enhancement was believed, not to be associated with ESF as 

the S4 scintillation index was weak. In contrast to these measurements, the present 

study provides an evidence for TEC enhancement nearer to the dip equatorial 

region. Further, the origin of TEC enhancement was shown to be associated with 

ESF.  

 

In order to understand the enhancement in TEC reported in the present 

study, VHF radar maps of the corresponding ESF structures are examined. It is 

rather well known that the echo strength of VHF radar in coherent mode is 

proportional to square of the electron density fluctuations. Therefore, unequivocal 

identification of depleted or enhanced plasma regions is not possible using the 

radar technique alone. The velocity maps obtained from the radar can indicate the 

nature of the plasma structure as the depleted structures move upward and the 

enhanced structure move downward. However, the “fossil bubbles” which turn 

active are also shown [Sekar et al., 2007] to move downward. Thus the VHF radar 

technique is not sufficient to identify the nature of plasma structure. Combining 

with TEC observations, the plasma enhancement structure can be identified, as 

any localized plasma variations in the night time ionosphere should get reflected 

in TEC.  

 

The observations of VHF radar reveals structures at 200-250 km altitude 

region that are predominantly moving downward as seen from the RTV maps in 
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Figure 4.9(b) at around 22.64 IST. It is of interest to note that there are upward 

and downward velocity variations inside the structure in the boxed region that 

have correspondence with the modulations in TEC values.  The structures in the 

boxed region corresponding to the plasma enhancements are not stronger and thus 

the S4 index is weak. The h’F variation in boxed region in Figure 4.9(d) suggests 

that the height of the equatorial F region is relatively stable ~ 260 km during this 

time. Finally, in spite of the difficulty in measurement of TEC in vertical direction 

in the presence of plasma structures, the present set of measurements reveals that 

the enhancement seen in TEC over equatorial region corresponds to plasma 

enhancement associated with ESF.  

 

4.6 A case study to understand the latitudinal extent of L-band 
scintillation 

 
L-band scintillations are mainly due to scattering from Fresnel scale 

irregularities and it maximizes in amplitude as well as in occurrence around the 

EIA crests whereas the VHF scintillations are most intense at equatorial regions. 

The field aligned ESF irregularities are mapped to higher latitudes along with the 

non-linear evolution of the irregularities in to topside ionosphere [e.g. Whalen, 

2002]. Using GPS and radar observations recently, Sripathi et al. [2008] have 

shown that when irregularities reach to higher altitudes as observed by the 

Gadanki Indian MST radar during pre mid-night periods, strong L-band 

scintillations are present at higher latitudes. In contrast to this, when the radar 

echoes are observed at lower altitudes, weak L-band scintillations are present with 

small latitudinal extent.  

 

To derive the latitudinal extent of L-band scintillations we have used 

observations of GAGAN GPS receivers. The details of GAGAN stations can be 

found in Appendix- I (Table I.1). Figure 4.10 (a) shows the virtual height of the 

base of the F layer (h’F) over Trivandrum during post-sunset period obtained from 

digisonde data with 15 minute resolution on 15 September 2005. The h’F starts 

rising around 1915 IST and goes high up to ~320 km around 2015 IST, indicating 

that the plasma is drifting upwards and the ambient horizontal electric field is 

eastward. Thereafter the base started drifting downwards (indicating a reversal of 
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the ambient electric field) and by 2130 IST the h’F came down to ~260 km. As 

observed by the ionosonde, the spread F appeared at about 1915 IST at 

Trivandrum and became strong by 2015 IST. The vertical drift is computed using 

dh’F/dt for 15 minutes period. Figure 4.10(b) shows that vertical drift is upward 

and is high, ~25 m/s ~1930 IST at Trivandrum and then becomes downward 

~2100 IST indicating a strong eastward electric field around 1930 IST and then 

electric field becomes westward and the downward drift is also high (~40 m/s). 

The larger upward EXB drift velocity, late reversal time, and smaller early night 

downward drift velocity can provide favorable conditions for the generation of 

spread F [Fejer et al., 1999]. 

 

Figure 4.11 shows the RTI map of an ESF event observed on 15 

September 2005 over Gadanki. A low altitude thin layer of 3 m irregularities 

developing from ~220 km at 2145 IST is exploded into a high altitude plume. A 

steady, vertical, fully grown, strong irregularity region is observed between 250-

420 km at ~2200-2240 IST for 40 minutes duration and later confining into a thin 

layer of about 130 km thickness.  

 

Figure 4.12 (a) shows the spectral width characteristics and (b) shows the 

Doppler velocity variations with height and time on 15 September 2005. The 

observed spectral width for the first patch is little high (~40 m/s) between 330 and 

350 km in the initial stage with gradual decrease with height and time both. 

Plasma inside the first patch is descending with the velocity of ~10 m/s in the 

initial stage as seen in Figure 4.12 (b).  The second patch is observed at the lower 

altitudes up to post midnight with descending velocity. Spectral width and 

Doppler velocity information says that the bubbles are not freshly generated but 

drifted in from west.  

 

The day was magnetically active day and characterized by substorm 

followed by the storm of 11 September 2005 which had prolonged recovery 

phase. Thus, the generation of ESF on 15 September 2005 may due to storm time 

prompt penetration electric field during this prolong recovery phase. The prompt 

penetration phenomenon will be discussed in detail in Chapter 5.  
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Figure 4.10: Variations of (a) virtual height of the base of the ionospheric F-
region (h’F) (b) vertical drift velocity, between 1800 and 2400 IST on 15 
September 2005 over Trivandrum 

 

 

 

Figure 4.11: RTI map observed on 15 September 2005 over Gadanki 
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Figure 4.12: Height Time variation of the (a) spectral width and (b) Doppler 
velocities of the irregularities observed on 15 September 2005  
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Figure 4.13 (a), (b), (c) and (d) shows observations of PRN 2, 9, 30 and 29 

respectively, from GAGAN GPS stations along with the GPS observations from 

low latitude station Gadanki on 15 September 2005. In Figure 4.13(a), PRN 2 

shows the L-band scintillation with S4-index value of ~0.17 at ~2005 IST at 

Trivandrum. This scintillation is associated with the TEC depletion of ~ 6 TECU.  

After this, small TEC fluctuations are observed and S4 enhanced to ~0.24 at 2065 

IST. At Bangalore, TEC depletion is observed little later at ~2055 IST with value 

of ~6 TECU and associated L –band scintillation is observed of ~0.24. PRN 2 is 

not observing any scintillation or TEC depletion beyond Bangalore latitudes.  

 

Figure 4.13(b) shows TEC and S4 variations observed by PRN 9 at 

Trivandrum, Bangalore, Gadanki and Hyderabad. It can be seen that TEC 

depletion is observed first at Trivandrum at ~1975 IST and then ~2010 IST and 

~2025 IST at Bangalore and Gadanki respectively. The maximum TEC depletion 

is observed at Bangalore with value of ~ 9 TECU for the first observed structure 

and associated scintillation is 0.29. But scintillation maximizes at Gadanki with 

value of ~0.36.  This may be due to the fact that Gadanki is surrounded by hilly 

area and the observed scintillation is at the beginning of the path (elevation ~35), 

thus may be affected from the multipath effect.   

 

The second structure observed by PRN 9 is of ~7 TECU ~2075 IST at 

Trivandrum, of ~5 TECU ~2080 IST at Bangalore and of ~10 TECU at ~2080 IST 

at Gadanki. The observed S4 values are 0.16, 0.21 and 0.37 respectively at 

Trivandrum, Bangalore and Gadanki.  Finally at Hyederabd, TEC depletion of ~ 4 

TECU at 2090 IST is observed. This depletion is associated with the S4 value of 

~0.17. Beyond this latitude, PRN 9 observations are not showing any scintillation 

signature e.g. at Delhi. Thus, the plasma bubbles extended up to 17.480N 

(Geographic Lat, 9.480N Geomagnetic) i.e. Hyderabad.  These observations are 

pointing towards the fact that scintillation index S4 is consistently increasing from 

Trivandrum to Gadanki i.e. L-band scintillation maximizes at low latitudes.    

 

Figure 4.13(c), PRN 30 is observing TEC depletion of ~1 TECU at ~2460 

IST over Trivandrum, of ~ 1.5 TECU at ~2465 IST over Bangalore and of ~1.5 

TECU at ~2475 IST over Gadanki. Here also, the highest scintillation is observed 
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at low latitude station Gadanki. In Figure 4.13 (d), PRN 29 has observed the 

depletion and scintillation over Trivandrum only. The L-band scintillation/TEC 

depletion are found to be absent at other stations, e.g. Gadanki observations are 

shown in bottom panel of the figure.  

 
Figure 4.14 shows the azimuth-elevation coordinates for GPS satellite 

PRN 2, PRN 30, PRN 9, and PRN 29 as observed from Gadanki on 15 September 

2005. It is obvious that for rest of the stations also the geometry of the satellite 

will be similar, as all the stations are situated within ±20 longitude difference. It 

can be said that PRN 2 and PRN 9 are observing pre-midnight L-band scintillation 

in the east of observing stations while PRN 29 and PRN 30 are observing post-

midnight L-band scintillation in east and west of observing stations respectively. 

The scintillation and TEC depletion are observed to be intensed during pre-

midnight hours. During post-midnight hours, the scintillation and TEC depletion 

are observed to be less intensed.  

 

PRN 29 has detected irregularities only at Trivandrum ~0090 IST. At 

Gadanki, PRN 29 has not detected any irregularity signatures, but radar is still 

detecting the irregularities.  This says that the irregularity pattern which can create 

the L-band scintillation might have decayed but 3 m size irregularities are still 

exist and giving backscatter of radar signals.The irregularities are observed first at 

Trivandrum (equatorial station) around 1915 IST, then is observed by GPS 

receiver and then by VHF radar (off-equatorial station) indicating that the 

observed bubble is drifting eastward.  

 

One more interesting point here is that the general TEC variations as 

observed by PRN 29 shows decrease from 14 TECU to 8 TECU at Trivandrum. 

At Gadanki, TEC is observed to be enhanced up to ~0030 IST after an initial 

decrease. After 0030 IST, a gradual decrease is seen. This may be due to resurge 

of EIA or due to some wave kind of structures which requires further 

investigations.   
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Figure 4.13 (a): L-band scintillation and associated TEC depletion as shown 
by PRN 2 on 15 September 2010 at Trivandrum, Bangalore and Gadanki 
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Figure 4.13 (b): L-band scintillation and associated TEC depletion as shown 
by PRN 9 on 15 September 2010 at Trivandrum, Bangalore, Gadanki and 
Hyderabad 
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Figure 4.13 (c): L-band scintillation and associated TEC depletion as shown 
by PRN 30 on 15 September 2010 at Trivandrum, Bangalore and Gadanki 
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Figure 4.13 (d): L-band scintillation and associated TEC depletion as shown 
by PRN 29 on 15 September 2010 at Trivandrum and Gadanki 
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Figure 4.14: Azimuth-elevation coordinates for GPS satellite PRN 2, PRN 30, 
PRN 9, and PRN 29 as observed from Gadanki on 15 September 2005 
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4.7 Solar activity dependence of L-band scintillation 
 

The morphology of ESF associated L-band scintillation during solar 

maximum and solar minimum period was reported by Basu et al., [1988]. They 

have shown that L-band scintillations are most intense in the low latitude region, 

moderate at high latitudes and generally absent at mid-latitudes. The occurrence 

frequency of scintillation is highest during high solar activity period for all 

latitude regions.   

 

In this section we have tried to study the ESF associated L-band 

scintillation variations during the descending phase of the solar activity (2005-

2008) by using the scintillation data recorded at Gadanki. Figure 4.15(first panel) 

shows the RTI map observed on 15 September 05. Figure 4.15 (second panel) and 

Figure 4.15 (third panel) shows the TEC observations and S4 index variations 

respectively from all the visible satellite in view between 1800 IST and 3000 IST. 

The elevation mask of 30 degree has been applied to reduce the multipath effect if 

any. The RTI map on 15 September 2005 is already discussed in the previous 

section. We can see that only one PRN is showing significant TEC depletion of ~6 

TECU accompanied by S4 value of 0.25 at ~20:00 LT and of ~10 TECU 

accompanied by S4 value of ~0.37 at ~2080 LT.  

 

Figure 4.16(first panel) shows the RTI map on 21 March 2007. The almost 

vertical periodic multiple plumes creates strong GHz scintillation and associated 

TEC depletions in multiple PRNs as can be seen in Figure 4.16 (third panel) and 

4.16 (second panel) respectively. The plumes recorded by radar between 1900 and 

2100 LT are accompanied by disruption of E region irregularities. But the 

irregularities observed after 2200 LT are accompanied by E region instabilities 

with descending of plumes towards the E region after mid night.  One of the 

plumes extended to ~450 km of altitude. This event is already discussed in detail 

in section 4.4 of this chapter.  The highest TEC depletion observed on the day is 

of ~ 8 TECU which accompanied by S4 value of ~0.31.   
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Figure 4.17(first panel) shows the RTI map observed on 05 February 2008. 

The ascending westward tilted plume with velocity of ~ 97 m/s is observed 

between 2000 LT and 2200 LT. The second patch which is connected to the E 

region in the beginning is raised up to ~ 420 km. This patch is also slightly tilted 

to the west. The E region irregularities are very weak during most of the time of 

the event.  This ESF event is associated with very weak GHz scintillation as can 

be seen in Figure 4.17(third panel). There is no significance TEC depletion as can 

be seen in Figure 4.17 (second panel). The TEC depletion of ~ 1 TECU with S4 

value of ~0.15 is observed.  

  

As we have already discussed in chapter 3, that the phase of the solar 

activity is going down since 2005. The solar flux values presented in Figure 3.5 

decreases continuously since 2005. The presented results say that the intensity of 

GHz scintillation is also decreasing after 2005 showing positive co-relation with 

solar activity. The magnitude by which the phase of the radio wave signals gets 

perturbs depends on integrated electron density which in turn controlled by 

irregularity amplitude and background electron density and its distribution in the 

ionosphere. It is known from the satellite In situ measurements that though the 

irregularity amplitude remains almost constant, the background electron density in 

some regions of the ionosphere experiences a drastic variation with the solar 

activity variations. This ultimately affects the phase and amplitude scintillation 

[Basu et al., 1988].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 134

 
 

Figure 4.15: RTI map, TEC and S4 observations from all the PRNs in view 
between 18:00 IST to 30:00 IST on 15 September 2005  
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Figure 4.16: RTI map, TEC and S4 observations from all the PRNs in view 
between 18:00 IST to 30:00 IST on 21 March 2007  
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` 

Figure 4.17: RTI map, TEC and S4 observations from all the PRNs in view 
between 18:00 IST to 30:00 IST on 5 February 2008  
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4.8 Conclusion 

 

A multitechnique investigation on various characteristics of ESF has been 

carried out using VHF radar, GPS –TEC and scintillation monitor and ionosonde 

in India.  The evolution of different scale sizes of irregularities manifests 

themselves on different instruments. On 21/3/07, the ionosonde observations 

located at equatorial station Trivandrum shows the conditions necessary for ESF 

irregularity generation. VHF coherent back scatter radar located at low latitude 

station Gadanki starts showing striated/elongated blob like multiple plumes of 

irregularities between 1955 and 2600 IST almost simultaneously with the onset of 

irregularities at Trivandrum. The periodicity of the upwelling regions (radar 

bloblike structures of period ~20 min) suggests a wavelike seed process. When the 

explosive F region echo development takes place, the E region echo disappears 

and remains absent or weak. From the spectral width and Doppler velocity 

variations, it emerges that the disruption of E region is during the initial phase of 

ESF. The mapping of electric field from equatorial valley region to E region over 

Gadanki may be responsible for the weakening of E region instabilities during the 

growth phase of ESF at the equator.  

 

The multiple depletions which can be associated with the multiple radar 

plumes are observed in PRN 20 which is moving in a nearly constant longitudinal 

path during its passage over the Gadanki between 2100 and 2245 IST. PRN 25 has 

detected irregularities at higher latitudes with higher values of S4 index and strong 

TEC depletion. The absence of scintillation in PRN 23 after 2246 IST, though it is 

passing exactly above the Gadanki during this time, reveals that Fresnel scale size 

irregularities have been decayed and radar is detecting 3 m scale irregularities 

generated at the walls of the Fresnel size irregularities through the secondary 

mechanism. The absence of scintillation in PRN 23 after 2300 IST may 

correspond to the initial phase of ESF irregularities, as inferred from spectral 

width and Doppler velocity values, which yet not developed to Fresnel scale sizes.  

 

Using multi-technique observations, it is shown that the TEC enhancement 

observed over Gadanki during an ESF night is due to the plasma enhancement 
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structure associated with ESF. This suggests the generation of substantial 

localized plasma enhancement during ESF events that can alter TEC in the 

ionosphere over dip-equatorial region. The study of latitudinal extent of ESF 

associated L-band scintillation as observed by a chain of GPS receivers indicates 

that the maximum of L-band scintillation occurs at low latitudes. The solar 

activity dependence of L-band scintillation has been clearly seen. The highest 

scintillation for the span of observations (2005 to 2008) is observed in 2005. The 

intensity of scintillation has been decreased since 2005 onwards, and minimum of 

its observed in 2008. 
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Chapter 5 

Low Latitude ionospheric-thermospheric response to 

storm time electrodynamical coupling between high and 

low latitudes 

 
5.1 Introduction 
 

The sun’s outer atmosphere, the solar corona, is not in hydrostatic 

equilibrium unlike the earth’s atmosphere. It continuously expands with plasma 

leaving the sun and flowing into interplanetary space.  This flow of plasma is 

known as the solar wind. The solar wind plasma is very tenuous and thus almost 

collision free. As a result the electrical conductivity of solar wind is very large. It 

is the case similar that when a perfect conductor moves into the magnetic field, it 

generates currents that hold the steady internal magnetic field inside the 

conductor. This says that the solar wind plasma will continue to hold the original 

magnetic field or in other words the magnetic field is frozen to the solar wind 

plasma. This magnetic field is known as the Interplanetary Magnetic Field (IMF).   

The fast solar wind emerges from the Coronal holes. Coronal hole is the region of 

very low density and the magnetic field in the coronal hole has a single polarity, 

i.e., the magnetic field lines from it go out in to the interplanetary space rather 

than looping back to the sun.  Thus, the plasma can flow easily along it and this 

causes fast solar wind streams to develop. The close field line configurations 

provide a source of slower solar wind. In addition to this, earthward Coronal Mass 

Ejections (CMEs) and associated solar flares from the coronal hole also produce 

large fluxes of energetic particles and generate geomagnetic disturbances. These 

disturbances are known as the geomagnetic storms. However, all storm events 

cannot be associated with solar flares.  

 

 The severity of disturbance depends on the orientation of the meridional 

component (Bz) of the IMF. If the IMF Bz is southward, reconnection occurs 

between the earth’s magnetic field lines and IMF lines at the magnetopause. Due 

to the dayside reconnection process, energy, momentum and mass get transferred 
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from solar wind to the earth’s magnetosphere. As the magnetosphere – 

ionosphere- thermosphere are threaded by the same magnetic field lines, huge 

amount of energy and momentum is swapped between them at the time of 

magnetic reconnection process during the geomagnetically disturb conditions.  

Some of the solar wind energy directly gets transferred to the ionosphere over 

polar latitudes through polar cusp region and via field aligned currents.  

 

 The magnetotail region stores solar wind energy in the form of kinetic and 

thermal plasma and this is known as one of the major consumers of solar wind 

energy. There is also a direct precipitation of solar wind particles through the open 

geomagnetic field lines at the polar ionosphere. Significant part of the magnetic 

energy gets transferred to the ring current which flows in the equatorial plane due 

to the trapped solar wind particles by earth’s magnetic field.  The trapped solar 

wind particles drift from one field line to another one, gradually moving across the 

magnetic field lines all the way around the earth. Ions move westward and 

electrons move eastward forming westward ring current.   The magnetic field 

produced due to the ring current is anti parallel to the existing earth’s magnetic 

field, therefore this causes a decrease in the measured geomagnetic field.  

 

 The transferred storm time solar wind electric field at high latitude 

ionosphere enhances the heat budget there. This electric field when penetrates to 

low and equatorial latitudes alters the electrodynamics and thus electron density 

distribution at low and equatorial latitudes. The enhanced heat at high latitudes 

alters the thermospheric neutral composition globally. Thus the input solar wind 

energy, especially during geomagnetically disturb conditions, alters the heat 

budget of magnetosphere, ionosphere and thermosphere globally. All these effects 

are highly time dependent and their occurrence is totally rely on the local time of 

SSC at any place on the earth.  

 

 In this chapter we have tried to investigate the low latitude ionospheric – 

thermospheric response to geomagnetic storm time electrodynamical coupling 

between high and low latitudes. The ionospheric variations are discussed in terms 

of GPS-TEC. The thermospheric neutral composition variations, mainly a delayed 

effect of geomagnetic storm, are discussed in terms of [O]/[N2] ratio, measured 
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onboard TIMED/GUVI satellite. The different aspects of the observed TEC 

behavior will be discussed in detail in terms of the responsible physical processes 

to bring out the storm time electrodynamical coupling between high and low 

latitudes more comprehensively. The three storms 15 May 2005, 24 August 2005 

and 8-9 May 2005 are considered for the present study.  

 

5.2 Historical background 

 
During geomagnetically disturbed conditions, ionospheric electric fields 

and currents at equatorial and low latitudes have been observed to be modulated 

by the direct prompt penetration of a dawn-dusk electric field to equatorial and 

low latitude ionosphere [Nishida, 1968, Spiro et al., 1988, Sastri et al., 1997] and 

by the ionospheric disturbance dynamo electric field [Blanc and Richmond, 1980; 

Fejer and Scherliess, 1997]. The storm time ionospheric electric field 

perturbations often affect the distribution of ionospheric plasma by creating 

positive ionospheric storm (increased electron density) and/or negative 

ionospheric storm (decreased electron density) and the occurrence of plasma 

density irregularities at equatorial and low latitudes [for e.g., Fejer, 1986; Abdu et 

al., 1991, 1997; Sobral et al., 1997; Sastri et al., 2000; Basu et al., 2001].       

 

The direct prompt penetration of solar wind/magnetospheric electric fields 

to low latitudes is short lived (time scales < 1 hour) [e.g., Kelley et al., 1979; 

Fejer, 1986; Fejer et al., 1990a; Kikuchi et al., 1996; Sastri et al., 1997, 2002]. It 

generally occurs during the period of large and rapid changes in magnetospheric 

convection and at the time of preliminary geomagnetic sudden commencement 

and sudden changes in the dynamic solar wind pressure. It creates a dawn-dusk 

electric field in the equatorial ionosphere which is in general eastward in the 

dayside and westward in the nightside. Therefore, it enhances the daytime 

eastward dynamo electric field and vertical drifts at equatorial and low latitude 

ionosphere which lifts the plasma to higher altitudes, where the ratio of production 

to loss is large, leading to enhanced electron densities in the dayside sector. The 

dayside ionospheric response to the prompt penetration electric field is seen as 

huge enhancement in TEC [Maruyama et al., 2004; Tsurutani et al., 2004] and the 
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night side response is often observed as a depletion in the TEC [Abdu et al., 

2007].  In addition to this, the EIA is found to intensify in amplitude as well as in 

latitudinal extent in association with the prompt penetration electric field [Linn et 

al., 2005; Mannucci et al., 2005; Zhao et al., 2005; Balan et al., 2010].   

 

In contrast to prompt penetration electric fields, disturbance dynamo 

electric fields resulting from the enhanced energy deposition into the high latitude 

ionosphere are more slowly varying (time scales from a few to several hours) and 

perturb low latitude electric fields and currents during and up to about a day or 

two after the onset of geomagnetic storm i.e. long lived electrodynamical 

disturbances. [Blanc and Richmond, 1980; Fejer et al., 1983; Sastri, 1988; 

Mazaudier and Venkateswaran, 1990; Fejer, 1997].  Disturbance dynamo electric 

field perturbations are westward in dayside i.e. opposite to the daytime 

ionospheric dynamo electric field and eastward in the nightside. Hence, it can 

cause depletion of TEC in dayside [Tsurutani et al., 2004] by generating negative 

ionospheric storm and also cause suppression of EIA, while on nightside, results 

are reported showing huge F layer uplift at night time and even resurgence of 

strong EIA [Fuller-Rowell et al., 2002].   

 

Since the ionosphere and thermosphere behave as a coupled system, the 

storm time electrodynamical perturbations in ionosphere get reflected in the 

thermospheric dynamics also and this makes the situation bit complex. Direct 

particle precipitation in the polar region increases the auroral electrojet (AE) 

current which results in the generation of atmospheric gravity waves (AGWs) 

owing to the joule heating by the AE current system. These waves which are 

known as Traveling Atmospheric Disturbances (TADs) [Hines,1960, 1974; 

Richmond 1978; Jing and Hunsucker, 1993; Balthazor and Moffer, 1997] 

propagate towards the equator and redistribute the energy and momentum through 

viscous interactions, heat conduction, and frictional loss due to ion drag with a 

time delay of 24 hour or more [Prolss, 1997; Fuller-Rowell et al., 2002]. The 

enhanced joule heating over polar latitudes lifts the neutrals and drives them 

towards the low and equatorial latitudes, thereby changing thermospheric 

composition globally. The atomic species e.g., O being  lighter lifts up first and 

reaches to lower latitudes earlier, contributing in positive ionospheric storm [e.g. 
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Burns et al., 1995; Field et al., 1998] while molecular species eg. N2, O2 etc. 

being a heavier reaches later and can cause negative ionospheric storm. The 

meridional wind circulation changes both in magnitude and direction following a 

storm.  In general, meridional winds flow from the equator to polar region during 

daytime and the reverse happen during nighttime. During geomagnetic storm 

these patterns change drastically and wind flows from the poles to the equatorial 

region during daytime.  

 

In the dusk sector, the zonal electric field perturbations at the equator 

during geomagnetic storms lead to development/inhibition of ESF irregularities 

which is determined by the local time dependence of the polarity and amplitude of 

electric field perturbations due to again prompt penetration and disturbance 

dynamo electric fields.  There are a number of studies reported which explain the 

development/inhibition of ESF during geomagnetic storm and the role of storm 

time electric fields perturbations during last three decades [Aarons, 1991; Abdu et 

al., 1995; Fejer et al., 1999; Basu, Su et al., 2001; Basu, S  et al., 2001, 2005; 

Ram et al., 2008].   

 

A comparatively less explained aspect is the significant enhancement in 

electron density a day before the onset of geomagnetic activity with an amplitude 

comparable to F2-layer storm effect and termed as prestorm enhancement 

[Buresova and Lastovicka, 2007] or positive phase before the onset of 

geomagnetic activity [Danilov, 2001; Kane, 1973]. Liu et al., [2008] showed 

prestorm enhancement in maximum electron density (NmF2) and TEC at low 

latitudes. They suggested enhanced zonal electric field or vertical plasma drift as 

the causative mechanism for it. But they were not able to explain the exact cause 

for the zonal electric field or vertical plasma drift enhancement. Apart from this 

Kutiev et al., [2006, 2007] observed strong TEC enhancement at the end of 

recovery phase of geomagnetic storm and they suggested that it can appear 1-3 

days after the main phase of the storm. They reported that most of the 

enhancements are part of the EIA crest region during nighttime and with 

structures in the whole latitude range considered at daytime. The following 

sections describe the low latitude ionospheric –thermospheric variations before, 

during and after the geomagnetic storms. 
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5.3 Data and Method of analysis 
 

GPS – TEC measurements from low latitude station Rajkot located near 

the EIA crest, and the GPS - TEC from a chain of ISRO GAGAN GPS receivers 

along the 77-780E longitude extending from magnetic equator to the EIA crest and 

beyond, also in the Indian region, and from Arequipa Laser Station (AREQ), 

Galapagos Permanent Station (GLPS), Taal Volcano Station (TVST) have been 

used to study the effects of geomagnetic storm at low and equatorial latitude 

ionosphere during day and night sectors during 15 May 2005 storm. The details of 

all these stations are given in Appendix –I (Table I.1 and Table I.2).  Jicamarca (-

11.570N, 283.80E, geomagnetic latitude -1.610N) radar and ionosonde data 

(http://jro.igp.gob.pe/madrigal) have also been used to see the behavior of night 

time ionospheric F-region during 15 May 2005 storm. GPS-TEC measurements 

from Rajkot are used to study the low latitude ionospheric variations during 

another two storms i.e. 24 August 2005 and 8-9 May 2005.  

 

For Indian GPS stations, the slant TEC data have been recorded at a 

sampling rate of 60 seconds and then converted in to the VTEC according to the 

method described in Bagiya et al., [2009].  The mean of VTEC data from all the 

visible satellites with elevation mask of 300 has been derived at every 15 minutes 

for a given IPP and presented as a single TEC value for that IPP. Diurnal profiles 

for that IPP are then derived from the above TEC values with a temporal 

resolution of 15 minutes. The temporal resolution for AREQ, GLPS and TVST 

GPS data is 30 seconds. For GLPS and AREQ stations, the TEC values are plotted 

along with the standard deviation of rate of TEC change index (ROTI) with 5 

minutes temporal resolution to show the presence of scintillation if any.  

 

Symmetric ring current index SYM-H values are used to represent the 

evolution of the storm. The dawn to dusk component of IEF i.e. IEFy, for the SSC 

day has been calculated using the IMF Bz component and the solar wind velocity 

Vx. The IMF Bz and Vx values are obtained from Advanced Composition Explorer 

(ACE) satellite (located at L1 point). The IEFy can be expressed as  
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IEFy = Vx × Bz        (5.1) 

 

To translate the electric field values to the earth’s ionosphere, appropriate 

time delay is incorporated by the method described in detail in Chakrabarty et al., 

[2005]. The time delay comprises of three components. The travel time of the 

solar wind from the spacecraft to the subsolar bow shock (t1), propagation time 

from the bow shock to the magnetopause (t2), and the Alfven transit time (t3) 

along the magnetic field lines from the subsolar magnetopause to the ionosphere. 

The total time delay during the present storm is found to be varying from 61 

minutes to 25 minutes. 

 

The absolute values of the horizontal magnetic field H component from 

four magnetic observatories extending from equator to mid latitudes around the 

longitude belt of 77±50E have been replotted at a resolution of 1 minute for the 

SSC day during 15 May 2005 storm to see the signature of prompt penetration 

electric field to equatorial and low latitudes. The details of these observatories are 

given in Appendix I (Table I.3).  The EEJ strength (∆H (TIRUNELVELI) - ∆H (ALIBAG)) 

has been derived from the ∆H values at Alibag (low latitude) and Trivandrum 

(magnetic equator) during the storm period as per the method adopted by Rastogi 

and Klobuchar [1990]. 

 

To examine the thermospheric neutral composition changes during the 

storm period, TIMED/GUVI measurements have been extracted for [O]/[N2] ratio 

(http://guvi.jhuapl.edu/levels/level3/guvi_on2/plot/gif/2005) and replotted for 

Indian latitudes-longitudes (lat-long) sectors during 15 May 2005, 24 August 2005 

and 8-9 May 2005 storms. As the GUVI observations are not continuous for 

particular lat-long sector, the exact timing information for these observations is 

difficult to provide. But we have tried to derive the average time period of the 

presented GUVI [O]/[N2] observations and that falls in between 11:30 IST to 

14:30 IST   during 15 May storm, 10:50 IST to 12:50 IST during 24 August storm 

and  12:45 IST to 16:30 IST during 8-9 May storm for Indian lat – long sectors. 
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5.4 Storm of 15 May 2005  
 

The active region 759 of the sun triggered M-8 (Medium Sized) X-ray 

flare and a CME on 13 May 2005 at 22:30 IST. The MDI image of the sun, Figure 

5.1(a), shows the large sunspot active region 759. Figure 5.1 (b) shows the EIT 

195 Angstrom (green) image of the sun’s corona. The bright area shows the M-8 

flare.  Figure 5.1(c) shows the Halo CME which was directed towards the earth 

and impacted on it on 15 May 2005. As a result the earth was influenced the 

passage of a magnetic cloud which started at 10:50 IST on 15 May and ended at 

04:00 IST on 16 May.  

 

The geomagnetic storm of 15 May 2005 is unique in itself as the IEFy on 

occasion boosted to abnormally high values.  Figure 5.2 (a), 5.2(b), 5.2(c) and 

5.2(d) show the temporal variations of appropriately time shifted IMF Bz, AE 

index, Sym-H Index, and appropriately time shifted dawn to dusk component of 

IEFy respectively on 15 May 2005. The shaded area in Figure 5.2 shows the 

disturbed period on the day. The storm started with SSC at 08:02 IST  (02:30 UT) 

just after the forward shock with amplitude of 39 nT synchronized with sudden 

increase in AE index on 15 May 2005.  

 

During  the initial phase of the storm the SYM-H values remained steady 

at the raised value up to 11:53 IST, after this SYM-H started to decrease very fast 

indicating the commencement of the main phase, and reaching a minimum value 

of -305 nT at 13:51 IST. The main phase onset coincided in time with the 

southward turning of IMF Bz (negative), large AE index and a large IEFy values 

of ~42 mV/m. The data are not available for Vx for the time period when sudden 

increase in AE index occurred (08:04 IST to 10:45 IST), therefore the initial 

variation of IEFy, when SSC occurred, cannot be presented. The ionospheric-

thermospheric variations before, during and after 15 May 2005 storm are 

discussed in the following subsections. 
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Figure 5.1: (a) Yellow MDI image of the sun shows the active region 759 from 
which a major class M-8 flare spawned.(b) the EIT 195 Angstrom (green) 
image of the sun’s corona, the bright area shows the flare (c) SOHO satellite 
image of 13 May 2005 Halo CME 
 

 

(a) 

(b) 

(c) 
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Figure 5.2: Interplanetary and geomagnetic conditions during 15 May 2005 
storm. From top the temporal variations of (a) IMF Bz (b) AE index (c) 
SYM-H index (d) IEFy with time lag correction respectively on 15 May 2005  
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5.4.1 TEC enhancements on the day preceding the occurrence of 
SSC 

 

The TEC variation on 14 May 2005, a day before the SSC day for Rajkot 

and for five GAGAN GPS stations along with the quiet days’ (Ap<4) TEC mean 

of the month is shown in Figure 5.3. It is pertinent to note that on a day prior to 

the storm (14 May), TEC enhancements  of ~ 20 TECU , ~ 15 TECU and ~10 

TECU with respect to quiet days’ TEC are observed at EIA trough latitudes 

Trivandrum and Bangalore as well as at Hyderabad respectively. The observed 

TEC enhancements gradually decrease with increasing latitudes from the equator. 

At near EIA crest latitudes i.e. Delhi and Rajkot TEC is almost following the quiet 

days’ values. TEC enhancements on 14 May started at ~ 10:00 IST at Trivandrum 

and ~ 13:00 IST at Bangalore and Hyderabad. At Hyderabad, the enhancement 

lasted up to ~ 19:30 IST, at Bangalore up to 20:30 IST and at Trivandrum up to 

almost midnight.   

 

Figure 5.4(a) represents the development of EIA on 14 May at different 

daytime hours. The corresponding day’s EEJ peak value and Ap value are also 

indicated in it. It can se seen that development of EIA started from 10:30 IST. The 

EIA maximum occurred at 14:30 IST with peak value of ~50 TECU at 140N 

latitude (geomagnetic).  After 14:30 IST, EIA gets weakened gradually. There is 

one to one correlation between EEJ and EIA i.e. enhanced EEJ results in the 

strong EIA [Raghavarao et al., 1978].   The moderate EEJ value of ~ 52 nT on 

quiet day of 14 May as indicated in Figure 5.4(a) also supports the observed 

moderate EIA behavior. The maximum TEC value is found at Trivandrum (trough 

latitudes) instead of crest latitudes on the day. TEC enhancement lasted up to 

almost mid night at Trivandrum which also emphasise that most of the plasma 

remained on the trough latitudes rather than getting transferred to crest latitudes. 

The thermospheric response on this day as observed by GUVI in Figure 5.4(b), 

which represents the variations of [O]/[N2] for Indian lat-long sectors on 14 May 

2005, shows that there is an enhancements in thermospheric [O]/[N2] below 180N 

(geographic) latitudes around 77-78 0E longitudes. TEC enhancements below 

180N (geographic) well coincides with [O]/ [N2] enhancements. 
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Figure 5.3: Diurnal variation of TEC over the stations, extending from 
equator to low latitude and beyond it on 14 May 2005 along with quiet days’ 
(Ap<4) mean TEC of the month 
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Figure 5.4: (a) Latitudinal profiles of TEC starting from equatorial station 
Trivandrum (0.50 N, Geomagnetic) to low latitude station Delhi (20.380 N, 
Geomagnetic) on 14 May 2005 (b) [O]/[N2] values between 11:50 IST to 14:50 
IST replotted for Indian lat-long sector on 14 May 2005 derived from  the 
observations of GUVI  onboard the TIMED NASA satellite 
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Liu et al., [2008] reported low latitude prestorm enhancements with 

simultaneous depletion at equatorial latitudes using ionosonde and GPS- TEC 

measurements along the longitude of 1200E in the Asia/Australia sectors. They 

explained that the enhancements were due to enhanced zonal electric field or 

vertical drifts and the reason for the strong zonal electric fields or vertical plasma 

drift might be the aftermath of previous geomagnetic activity or direct mapping to 

the equatorial ionosphere from the solar wind electric fields, effects of planetary 

waves etc. The present study revealed prestorm enhancements at equatorial 

latitudes in contrast to what reported by Liu et al., [2008] and  moderate EIA with 

absence of any low latitude TEC enhancements.                                                                                

 

On the other hand, [Kutiev et al., 2006, 2007] reported the strong TEC 

enhancements at the end of recovery phase of geomagnetic storms. They 

speculated that these poststorm enhancements are emerged mainly by disturbance 

dynamo electric field and some cases which appeared at the end of prolonged 

period of low geomagnetic activity can be related to direct prompt penetration of 

IEFy in the equatorial ionosphere.  

 

A double main phase storm is occurred on 8-9 May 2005 which has 

prolonged recovery phase; seen up to 14 May 2005. This storm is discussed in 

brief in the later part of the chapter. TEC enhancement on 14 May is more 

pronounced at equatorial latitudes and less pronounced at low latitudes.  EIA is 

also not showing any remarkable increase. Thus, the observed enhancements 

might not be due to IEFy penetration as in cases reported by [Kutiev et al., 2006, 

2007]. But the enhancements can be projected as the effect of penetration of long 

lived disturbance dynamo electric field during the prolonged recovery phase of 8-

9 May 2005 storm which is westward during daytime. This results in the enhanced 

electron density at trough latitudes. 

 

In addition to this, enhanced AE index of ~ 1100 nT at 14:00 IST on 13 

May 2005 might have resulted in storm time thermospheric circulation which 

redistributes the neutral species in equatorial and low latitude ionosphere. The 

excess energy deposition over high latitudes changes the neutral composition and 

temperature globally by producing large scale perturbation in the thermospheric 
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circulation. Due to the direct precipitation of energetic particles in the polar region 

through polar cusp, the strength of AE current increases and thus Joule heating 

enhances. The enhanced Joule heating in the polar region produces large pressure 

gradients and the resultant is the development of equatorward neutral wind. These 

neutral winds carry molecular rich air towards mid and low latitudes. N2 being 

heavier than O, takes longer time to reach to mid and low latitudes.  

 

The consistent behavior of TEC, [O]/[N2], and AE index (on 13 May) 

indicate the post storm thermospheric circulation effect of previous storm. Further 

the longer duration of enhancements up to midnight may be due to longer life time 

of chemical changes.  The observed TEC enhancements on 14 May can be taken 

as post storm effect produced by storm time thermospheric neutral composition 

changes which might have triggered due to geomagnetic active condition of 13 

May 2005. But the role of disturbance dynamo electric field penetration, if any, 

during the recovery phase of 8-9 May storm can not be ruled out. 

 

5.4.2. Positive ionospheric storm on 15-16 May  2005 
 

Figure 5.5 illustrates diurnal variations of TEC over the latitude belt 

(0.290N to 20.300N, magnetic) starting from Trivandrum (trough) to Bhopal 

(crest) and Delhi (beyond the crest) on  15 May 2005 along with the quiet days’ 

(Ap<4) TEC mean of the month. Accompanying the SSC, a remarkable 

enhancement in TEC appeared almost simultaneously at all the stations. The 

maximum amplitude of TEC enhancements about 40 TECU with respect to quiet 

day’s TEC appeared at EIA crest region Bhopal. Unfortunately, the data for 

Rajkot station is not available on this day, so could not be presented. The observed 

TEC enhancements from the equator to the low latitudes show strong positive 

ionospheric storm on 15 May. Pandey and Dashora [2006] have also observed 

daytime peak TEC of 100 TECU on 15 May 2005 from Udaipur (26.40N 73.70E, 

Geographic, 15.60N Geomagnetic), India, another EIA crest station. Manucci et 

al., [2005] reported the penetration of IEFy to the low and equatorial ionosphere 

causing ionospheric positive storm during the super storm of 29-30 October 2003.  
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Figure 5.5: Diurnal variation of TEC over the stations, extending from 
equator to low latitude and beyond it on 15 May 2005 along with quiet days’ 
(Ap<4) mean TEC of the month 
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Kelley et al. [2003] invoked the penetration of strong high latitude electric field to 

the mid and low latitudes to explain the resultant day time midlatitude TEC 

enhancements. 

 

EEJ strength (∆H (TIRUNELVELI) - ∆H(ALIBAG)) along with the magnetograms 

recorded on 15 May 2005 at stations spreading from equator to mid latitudes 

along the 77±50E longitudes are plotted in Figure 5.6.  Accompanying the IEFy 

increase (Figure 5.2(d)), EEJ increase started at 11:00 IST, reached to its 

maximum values at 11:20 IST, and started to decrease gradually at 11:25 IST. The 

evolution of EEJ strength indicates that, EEJ maximum of ~220 nT occurred after 

the epoch when the IEFy increase is started. The absolute horizontal magnetic 

field values for Tirunelveli (Figure 5.6) also show sharp and significant increase 

which also almost coincides in time with maximum IEFy values at ~11:45 IST. 

The observed EEJ strength of ~ 220 nT and simultaneous sharp increase in 

horizontal magnetic field values at Tirunalveli on 15 May 2005 provide evidence 

for the daytime prompt penetration of IEFy at low and equatorial latitudes. The 

penetrated electric field raises the F- region upward over the entire latitude belt, 

starting from equator to low latitudes. At higher altitudes, the recombination rate 

will be slow the resultant is the higher electron density at F-region altitudes.  

 

The low and mid latitude magnetograms (Alibag, Alma Ata and 

Novosibirsk in Figure 5.6) are not showing any significant IEFy signatures. It is 

known that the low and mid latitude conductivity is low in comparison to the high 

and equatorial latitudes. Reddy et al., [1978] have stated that the high latitude 

electric field perturbations penetrate to the equatorial latitudes with reduction 

factors of ~10 in the longitude sector of the source region. Consequently, smaller 

electric field perturbations do not produce any significant surface magnetic field 

variations at mid latitudes. In the present case we can see that the IEFy values 

boosted to very high amplitude, but still we are not able to see any signatures of it 

at mid latitudes. The significant depression of H is progressively reduced with 

increasing distance from the equatorial station. The afternoon CEJ is seen shortly 

after the EEJ peak value of ~ 220 nT which coincides with the main phase of the 

storm.  
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Figure 5.6: From top the diurnal variations of (1) EEJ (2) absolute values of 
H at equatorial station Tirunelveli (3) absolute values of H at low latitude 
station Alibag (4) absolute values of H at mid latitude station Alma Ata (5) 
absolute values of H at another mid latitude station Novosibirsk respectively 
on 15 May 2005  
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Rastogi, [1999] suggested that a regular westward electric field is imposed 

in the equatorial latitudes during the midday hours of geomagnetically disturbed 

days. This can cause CEJ. As seen in Figure 5.5, depletion in TEC appeared at 

~13:00 IST at Trivandrum and Bangalore, simultaneous TEC enhancements 

developed at Hyderabad, Bhopal and Delhi.  

 

After 13:00 IST, TEC increases at Trivandrum and Bangalore and 

simultaneous depletion is observed at Hyderabad, Bhopal and Delhi. The observed 

decrease in TEC at crest regions with simultaneous increase at trough regions on 

15 May 2005 may be the effect of CEJ observed in the afternoon on 15 May 2005 

(Figure 5.6). The westward electric field during CEJ reverses E × B drifts thus 

plasma will start to return at trough latitudes due to reverse fountain effect. CEJ 

started to recover after 14:00 IST. The second and gradual TEC increase at 

Hyderabad and Bhopal shortly after the depletion at ~ 13:00 IST (Figure 5.5) may 

be due to recovery of CEJ to the normal condition.  The prompt variations of TEC 

with respect to CEJ show the strong electrodynamical coupling between equatorial 

and low latitudes. Finally, observed TEC increase at equatorial latitudes is 

followed by gradual decrease after 16:00 IST. At crest latitudes, the observed TEC 

depletion is followed by sharp increase between 15:00 and 16:00 IST, after 16:00 

IST, TEC shows regular daytime decrease at near crest and crest latitudes also. 

 

Figure 5.7(a) shows the development of EIA on 15 May 2005.  EIA gets 

started to develop after 10:30 IST. The strongest of the EIA occurred at ~12:30 

IST shortly after the maximum of EEJ and EIA extended up to ~210 N (magnetic) 

latitudes. The presence of intense EEJ on 15 May 2005 is an indirection of strong 

vertical E × B drift over the equator required for strong EIA development.  As a 

result, TEC at the EIA crest i.e. Bhopal and beyond crest i.e. Delhi shows 

remarkable increase with respect to quiet days’ mean, with maximum amplitude at 

Bhopal on the day. The strongest of the EIA on the day at ~12:30 IST is depressed 

by 13:30 IST. The depressed EIA again redeveloped at ~14:30 IST and then 

finally gets weakened gradually by ~16:30 IST.   
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Figure 5.7: (a) Latitudinal profiles of TEC starting from equatorial station 
Trivandrum (0.50 N, Geomagnetic) to low latitude station Delhi (20.380 N, 
Geomagnetic) on 15 May 2005 (b) [O]/[N2] values between 11:50 IST to 14:50 
IST replotted for Indian lat-long sector on 15 May 2005 derived from the 
observations of GUVI  onboard the TIMED NASA satellite 
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The depression of EIA at 13:30 IST also agrees with the reversal of zonal 

electric field at the equator. Due to the presence of afternoon CEJ, EIA strength 

reduces therefore electron density at trough latitudes increases and that at crest 

latitudes decreases. In latitudinal TEC profile on 15 May (Figure 5.7(a)) TEC 

values are greater ~13:30, ~14:30 and ~15:30 IST than the values at 12:30 IST at 

trough latitudes and are lesser at crest latitudes TEC than the values at 12:30 IST. 

This indicates that intensity of EIA is decreasing after 12:30 IST due to CEJ.  

 

The enhanced Joule heating in the polar region results in the development 

of equatorward neutral wind. These neutral winds carry molecular rich air towards 

mid and low latitudes, O being lighter arrives first. Hence, initially an increase in 

[O]/[N2] is expected. The storm time thermospheric variations in terms of [O]/[N2] 

is shown in Figure 5.7(b). There is significant increase in [O]/[N2] over the 

complete latitude belt starting from 80N to 360N geographic around 77-780E 

longitudes. As O is the major species which builds the F- region ionization, the 

increased value of [O]/[N2] contributes positively into the observed TEC 

enhancements.  

 

In addition to Indian longitude sectors, this study has been extended to 

other longitude sector also where SSC occurred in day time. Figure 5.8(a) and 

5.8(b) represents the TEC diurnal profiles for TVST on 14 and 15 May 

respectively. Light and dark gray shadows represent nighttime at ionospheric 

heights. At TVST, the time of SSC is ~10:30 LT (local time). TEC profile on 15 

May 2005 at TVST shows that TEC has been increasing gradually after the SSC 

and the delayed day maximum occurred at ~ 16:00 LT. The maximum TEC values 

observed are ~120 TECU at ~16:00 LT which is higher by ~ 30 TECU than the 

TEC values observed on 14 May 2005. The gradual increase in TEC after the SSC 

is followed by a depletion of ~ 40 TECU at 15:30 LT. This depletion is coincided 

with the minimum of main phase at TVST. As TVST falls under equatorial 

latitudes, this depletion is due to transport of plasma from TVST to crest latitudes 

during fountain effect. This depletion is followed by sharp increase at ~16:00 LT. 

This may be the effect of penetration of regular westward electric field in the 

equatorial latitudes [Rastogi, 1999] which pulls back the plasma from the crest 
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latitudes towards the equatorial latitudes, similar to what we have observed for 

Indian region.     

 

Figure 5.9 shows the diurnal TEC profiles on 16 May 2005 along with 

quiet days’ (Ap<4) mean TEC of the month for Rajkot and GAGAN stations, 

5.10(a) represents the latitudinal TEC profiles for different hours of the day on the 

day and 5.10(b) represents the [O]/[N2] variations for the Indian lat- long sectors 

on the day.  On 16 May 2005, the day after the SSC event, significant daytime 

TEC enhancements are seen over the magnetic belt (0.290N to 20.300N, magnetic) 

starting from Trivandrum to Delhi with increase of ~20 TECU at Bhopal and ~12 

TECU at Rajkot. But on 16 May 2005, increase over trough latitudes is clearer 

than the crest latitudes.  

 

The observed EIA profile on 16 May 2005, Figure 5.10(a), shows that the 

EIA developed less pronouncedly with delayed peak at ~13:30 IST. The neutral 

composition variations in Figure 5.10(b) on 16 May show considerable increase of 

[O]/[N2] at trough latitudes around 77-780E longitudes and this increase is more 

clearer at trough latitudes. TEC enhancements have also been seen more effective 

at trough latitudes than the crest latitudes on 16 May 2005. This indicates that 

TEC enhancements on 16 May are caused by enhancement of O due to storm time 

neutral composition changes. From moderate EEJ values of 16 May 2005, it 

appears that there might be penetration of storm time disturbance dynamo electric 

field which gets activated ~ 4 hours after the SSC phase and lasts up to about a 

day or two after the onset of geomagnetic storm [Fejer et al., 2002 and reference 

there in].  The moderate EIA in Figure 5.10(a) agrees with the observed EEJ 

variations. 
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Figure 5.8: (a) Diurnal TEC variations at TVST on 14 May 2005(b) Diurnal 
TEC variations at TVST on 15 May 2005 
 

 

 

15 May 2005 (b) 

TVST(14.030N, 121.0 0E ;  4.30N  geomagnetic ) 

14 May 2005 (a) 
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Figure 5.9: Diurnal variation of TEC over the stations, extending from 
equator to low latitude and beyond it on 16 May 2005 along with quiet days’ 
(Ap<4) mean TEC of the month 
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Figure 5.10: (a) Latitudinal profiles of TEC starting from equatorial station 
Trivandrum (0.50 N, Geomagnetic) to low latitude station Delhi (20.380 N, 
Geomagnetic) on 16 May 2005 (b) [O]/[N2] values between 11:50 IST to 14:50 
IST replotted for Indian lat-long sector on 16 May 2005 derived from  the 
observations of GUVI  onboard the TIMED NASA satellite  
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5.4.3 Negative ionospheric storm on 17 May 2005 
 

Figure 5.11(a) illustrates TEC variations over the latitude belt (0.290N to 

20.300N, magnetic) starting from Trivandrum (trough) to Bhopal (crest) and Delhi 

(beyond the crest) on  17 May 2005 along with the quiet days’ (Ap<4) TEC mean 

of the month. Figure 5.12(a) and 5.12(b) represents the EIA development and 

thermospheric neutral composition variations on 17 May 2005 respectively. It can 

be seen that clear increase in TEC on 16 May 2005 is followed by TEC depletion 

on 17 May 2005 at Rajkot of ~10 TECU and at Delhi of ~20 TECU. The observed 

TEC depletions represent the negative ionospheric storm and it appeared over low 

latitudes only and not observed below it 

 

In Figure 5.7(b), the value of [O]/[N2] was ~ 0.68 on 15 May  2005 over 

Rajkot region.  But on 17 May it decreased to 0.54 from 0.68. The [O]/[N2] 

depletion extended up to low latitude region of ~160 N (magnetic) from the pole 

along the longitude belt of 77-780 indicating an enhancement of N2. Electron loss 

at F2 peak depends upon the recombination/attachment with N2; as N2 density 

increases, electron density decreases. Thus the observed negative storm at low 

latitudes on 17 May may be due to storm time neutral composition changes. On 17 

May 2005 EIA did not develop due to negative storm effect as seen in Figure 

5.12(a).  
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Figure 5.11: Diurnal variation of TEC over the stations, extending from 
equator to low latitude and beyond it on 17 May 2005 along with quiet days’ 
(Ap<4) mean TEC of the month 
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Figure 5.12: (a) Latitudinal profiles of TEC starting from equatorial station 
Trivandrum (0.50 N, Geomagnetic) to low latitude station Delhi (20.380 N, 
Geomagnetic) on 17 May 2005 (b) [O]/[N2] values between 11:50 IST to 14:50 
IST replotted for Indian lat-long sector on 17 May 2005 derived from  the 
observations of GUVI  onboard the TIMED NASA satellite 
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5.4.4 Local time dependent response of ESF/Scintillations  
 

A study has been carried out on the effects of geomagnetic storm over the 

equatorial and low latitude ionosphere where local time of SSC falls after 

postsunset hours on 15 May 2005. At Jicamarca the local time of SSC is ~21:30 

LT i.e. during pre-midnight hours. Figure 5.13(a) and 5.13(b) shows JULIA RTI 

map on 13-14 May 2005 (a day before the onset of geomagnetic storm) and on 14-

15 May 2005 respectively.  On 13-14 May ESF irregularities started to appear 

from ~19:30 LT in valley-type format between 200 and 300 km with small 

updrafting patch at ~ 22:00 LT.  The ionosonde observations from Jicamarca 

(Figure 5.14(a)) on 13-14 May 2005 shows pre evening rise in h’F after 18:00 LT. 

Between 18:00 LT and 19:05 LT, an increase of ~50 km is seen in h’F. This pre-

reversal enhancement creates necessary condition for the generation of ESF on the 

day. GPS observations from AREQ in Figure 5.15 are not showing any significant 

scintillation on 13-14 May 2005.  But at GLPS in Figure 5.17, TEC depletion in 

multiple PRNs which is associated with the high values of ROTI index is 

observed.  

 

On 14-15 May 2005 (SSC at ~21:30 LT), Jicamarca ionosonde 

observations shows gradual rise in h’F after local sunset but significant clear 

increase is seen at ~21:30 LT which coincides with the onset of geomagnetic 

storm (Figure 5.14 (b)). In radar backscattere map in Figure 5.13(b), it can be seen 

that after 21:30 LT, irregularities start to become strong and rising plume structure 

is seen between 22:00 and 23:00 LT with altitude range of 300 to 450 km. This 

coincides with the SSC. The rising plume started to descend after 22:45 LT and 

again a strong band structure is seen up to 00:45 LT. This band structure is ended 

with huge rising plume at ~ 01:00 LT which coincides with the main phase of the 

storm.  This second plume drifted up to more than 1000 km vertically.   

 

At AREQ the local time of SSC is ~21:45 LT and at GLPS is ~ 20:30 LT. 

When we look into the GPS observations at AREQ and GLPS, it can be seen that 

AREQ GPS observation in Figure 5.16 shows significant scintillation and TEC 

depletion between 23:15 LTand 2:15 LT which coincides with the local time of  
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main phase at AREQ and second rising plumes of RTI map at Jicamarca.  At 

GLPS TEC depletion and associated scintillation in ROTI values are seen after 

~21:00 LT i.e. half an hour after the local SSC time at GLPS (Figure 5.18).  On 15 

May 2005, the scintillation is absent up to 21:00 LT at GLPS, after 21:00 LT only 

scintillation is started to develop and significant signatures are seen in ROTI index 

which are associated with the TEC depletion between 21:00 LT and 01:00 LT. 

This significant scintillation and associated TEC depletion coincided with the 

local time of main phase of the storm at GLPS and also with the second rising 

ESF plume at Jicamarca.   

 

The h’F rise at 21:30 LT and simultaneous generation of ESF as shown in 

RTI map at Jicamarca instantaneously at SSC time indicates that prompt 

penetration of eastward electric field immediately after SSC provides platform for 

ESF generation on 14-15 May at Jicamarca. The second huge plume at 00:45 LT, 

significant L-band scintillation at AREQ and GLPS before and after midnight 

provides evidence for the penetration of intense eastward electric fields over the 

equator which prevailed over the ambient westward electric fields leading to 

development of strong ESF after mid night. This corroborates with the previous 

report by Ram et al., [2008]. Using the data from different longitude sectors,   they 

explained the role of storm time prompt penetration of electric field in the 

occurrence of ESF.  
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Figure 5.13: JULIA RTI map on (a) 13-14 may 2005 (b) on 14-15 May 2005 
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Figure 5.14: (a) h’F variations at Jicamarca on 13-14 May 2005 (b) h’F 
variations at Jicamarca on 14-15 May 2005 
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SSC 
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Figure 5.15: Diurnal TEC and ROTI variations at AREQ on 14 May 2005 
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Figure 5.16: Diurnal TEC and ROTI variations at AREQ on 14 May 2005 
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Figure 5.17: Diurnal TEC and ROTI variations at GLPS on 14 May 2005 
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Figure 5.18: Diurnal TEC and ROTI variations at GLPS on 15 May 2005 
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5.5 Storm of 24 August 2005 

 
The storm of 24 August 2005 probably is the last intense storm of the solar 

cycle 23. Figure 5.19 shows the interplanetary and geomagnetic conditions during 

24 August 2005 storm.  The shaded region shows the disturbed condition. The 

storm started with Bz value of ~-5 nT at ~ 11:18 IST (Figure 5.19(a)).  The 

appropriate time delay is incorporated by the method described in detail in 

Chakrabarty et al., [2005] to translate the Bz values and IEFy values to the earth’s 

ionosphere. The time delay varies from 30 minutes to 1 hour for the present storm. 

The AE index started to show the storm signature at ~11:27 IST (Figure 5.19(b)).  

From SYM-H index variations (Figure 5.19(c)), it can be said that SSC occurred 

at ~11:55 IST and SYM-H values raised to 62 nT at 12:06 IST. After this, SYM-H 

values fluctuated for ~2 hours and then descending of SYM- H is started. At 13:55 

IST a second commencement in SYM-H is occurred which is accompanied by 

sudden increase in Bz of ~49 nT at ~14:30 IST. After this Bz turned southward 

and reached to minimum value of -51 nT at ~15:00 IST. The second 

commencement in SYM-H reached to 74 nT at ~ 14:55 IST. This increase in 

SYM-H is followed by initiation of main phase of this storm. A sudden increase in 

AE of 3078 nT is occurred almost at the same time. During main phase the 

minimum of SYM-H is occurred at ~17:40 IST with value of -179 nT. The IEFy 

values boosted to ~31 mV/m on occasion at 15:31 IST. This value decreased to      

-14 mV/m at ~ 17:00 IST incorporation with northward turning of Bz. Again an 

increase in IEFy is seen ~17:30 IST and it has reached to value of ~20 mV/m 

which is incorporation with southward turning of Bz. Finally this IEFy 

enhancement again decreases to ~17 mV/m at ~18:26 IST and then slowly 

recovered to normal level by 22:36 IST. These fluctuations of IEFy coincide with 

the main phase of the storm. The recovery of the main phase started ~18:30 IST.  

 

5.5.1 Low Latitude ionospheric - thermospheric behavior during 
24-27 August 2005 

 

The low latitude ionosphere – thermosphere response to the disturbed 

condition of 24 August 2005 has been analyzed using GPS TEC data recorded at 

Rajkot and [O]/[N2] variations observed by GUVI respectively. Figure 5.20 shows 
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the diurnal variation of TEC at low latitude station Rajkot during 23 to 27 August 

2005 along with the quiet days’ (Ap<4) mean TEC of the month. On 23 August, 

on day before the SSC day, TEC almost follows the quiet days’ TEC values. 

 

On 24 August, TEC shows an enhancement of 21 TECU at ~15:30 IST 

with respect to average quiet days’ values. This is just after the minimum of Bz 

and initiation of main phase of the storm. The maximum of IEFy is occurred 

almost at the same time. The observed TEC enhancement is attributed to prompt 

penetration of storm time electric field to low latitudes. The rate of change of 

SYM-H exhibits a sharp negative excursion of -35 nT/10 min at 15:10 IST.  The 

sudden increase in AE index and marked decrease in SYM-H index under 

southward orientation of IMF Bz creates favorable conditions for the prompt 

penetration to occur. Figure 5.21 shows the diurnal variations of EEJ on (a) 24 

August 2005 (b) 25 August 2005 and (c) 26 August 2005 (d) 27 August 2005. The 

observed strong EEJ with maximum strength of 69 nT on 24 August (Figure 

5.21(a)) also incorporates the IEFy penetration. It can be seen from EEJ variations 

on 24 August that the diurnal pattern has already started to decrease after 12:00 

IST. But at 14:00 IST a sudden increase in EEJ is observed which reached to day 

maximum of 69 nT at 15:00 IST. The Bz minimum, second commencement and 

large increase in IEFy are occurred between 14:00 IST and 15:00 IST only. We 

could not present the EEJ values with high time resolution for this storm. Thus the 

exact timing information cannot be found. But it can be said that the enhancement 

in EEJ after 14:00 IST may be due to prompt penetration of storm time electric 

field to low latitudes.  

 

As it is discussed in the previous case of 15 May 2005 storm that prompt 

penetration of eastward electric field in the dayside sector results into the 

development of strong EIA and thus electron density at low latitudes enhances.  In 

addition to this, the penetrated electric field raises the whole ionosphere upward 

where the recombination rate is low thus the electron density increases.  
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Figure 5.19: Interplanetary and geomagnetic conditions during 24 August 
2005 storm. From top the temporal variations of (a) IMF Bz (b) AE index (c) 
SYM-H index (d) IEFy with time lag correction respectively on 24 and 25 
August 2005 
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Figure 5.20: Diurnal variations of TEC at low latitude station Rajkot during 
23 to 27 August 2005 along with quiet days’ (Ap<4) mean TEC of the month 
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Figure 5.21: Diurnal variations of EEJ on (a) 24 August 2005 (b) 25 August 
2005 (c) 26 August 2005 (d) 27 August 2005 
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On 25 August, TEC decreases with respect to average quiet day’s values 

(Figure 5.20). The maximum depletion is observed of ~18 TECU at 13:00 IST.  

The observed negative storm is attributed to either long lived disturbance dynamo 

electric field penetration to low latitudes or neutral composition changes. The EEJ 

variations on 25 August show the presence of CEJ and day maximum occurred at 

17 nT only. The inhibition of EEJ on 25 August is the clear evidence of 

penetration of storm time disturbance dynamo electric field to low latitudes. Due 

to the weak EEJ, EIA might not have developed strong. Thus low latitude TEC 

decreases with respect to average quiet day’s values.  

 

To examine the neutral composition [O]/[N2] variations we have looked in 

to the TIMED/GUVI images for the day.  The continuous TIMED/GUVI data is 

not available, the temporal domain of the data which we have extracted for this 

event varies from 10:50 IST to 12:50 IST for Indian region. Figure 5.22 shows 

[O]/[N2] variations over Indian region during (a) 24 August 2005 (b) 25 August 

2005 (c) 26 August 2005  (d) 27 August 2005 as observed by GUVI  onboard the 

TIMED NASA satellite.  On 24 August a clear enhancement in [O]/[N2] is 

observed. On 25 August the [O]/[N2] values are decreasing to 0.411 from 0.683 

observed on 24 August 2005. The enhancement in [O]/[N2] contributes to the 

observed positive ionospheric storm on 24 August while the depletion in [O]/[N2] 

contributes to the observed negative ionospheric storm on 25 August. Thus the 

observed storm time TEC behavior on 24 and 25 August 2005 is controlled by the 

electrodynamical as well as neutral dynamical coupling between high and low 

latitudes. 

 

TEC enhancements on 26 and 27 August with respect to average quiet 

day’s values (Figure 5.20) are the point of special interest in this storm. These 

enhancements are during the recovery phase of the storm. It can be seen from EEJ 

variations in Figure 5.21 that on both the days EEJ strength is strong.  On 26 

August, TEC enhancement of ~6 TECU with respect to quite day’s average values 

is observed. On 27 August, TEC enhancement of ~15 TECU is observed.  
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Figure 5.22: [O]/[N2] variations for Indian lat- long sectors during (a)  24 
August 2005  (b) 25 August 2005 observed by GUVI  onboard the TIMED 
NASA satellite 
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From Figure 5.22(c) and (d) it is observed that [O]/[N2] values are getting 

recovery on 26 and 27 August, after decreasing significantly on  25 August at low 

latitudes. But still on 26 August the effect of excess molecular species is observed 

in TEC at low latitudes.  In the presence of strong EEJ (97 nT), EIA might have 

developed strongly but the neutral composition variations are dominating the TEC 

behavior at low latitudes on 26 August.  

 

On 27 August, TEC enhancement is strong. The observed EEJ strength on 

27 August is also high (Figure 5.21(d)) which results in to the strong EIA and thus 

TEC at low latitudes increases. In addition to this, there is a clear increase in 

[O]/[N2] around Rajkot region which also contributes in to the observed TEC 

enhancement.  
 

Fejer and Emmert, [2003] reported low latitude ionospheric electric field 

perturbations due to both prompt penetration and disturbance dynamo electric 

fields during the recovery phase of the storm. The observed positive storm on 26 

and 27 August may due to prompt penetration electric field during the recovery 

phase of the storm. The observed strong EEJ strength on both the days also 

provides strong evidences of prompt penetration electric fields. In addition to this, 

the recovery in neutral composition variations, after decreasing on 25 August, 

[O][N2] values are gradually increasing on 26 August and 27 August, also 

contributes in to the TEC enhancements at low latitudes.    
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Figure 5.22: [O]/[N2] variations for Indian lat- long sectors during (a)  26 
August 2005  (b) 27 August 2005 observed by GUVI  onboard the TIMED 
NASA satellite  
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5.6 Storm of 8-9 May 2005 

 
This storm has occurred with two main phases first on 8 May and the second 

on 9 May as shown in Figure 5.23. The interplanetary and geomagnetic conditions 

during the storm are shown in Figure 5.23. The first panel from the top shows the 

temporal variations of IMF Bz, second panel shows the temporal variations of AE 

index, third panel shows the temporal variations of SYM-H, and fourth panel 

shows the temporal variations of IEFy at the ionosphere. The IEFy is corrected for 

the time delay from ACE spacecraft to the earth’s ionosphere as per the method 

described in Chakrabarty et al., [2005].  

 

The IMF Bz turned southward at 20:45 IST on 7 May and first SSC impact 

for the storm occurred at 01:51 IST on 8 May. The main phase is started with this 

and SYM-H minimum occurred at 8:52 IST on 8 May with value of -102 nT. The 

recovery phase is started after this and continued up to 18:00 IST on 8 May. After 

showing recovery up to 18:00 IST, the second main phase is started and SYM-H 

reached to a minimum value of -117 nT at 02:30 IST on 9 May. After this 

prolonged recovery phase started and remained continue up to the date of 13 May 

(figure not shown here). The main phase on 8 May is accompanied by AE 

increase of ~1250 nT and main phase of 9 May is accompanied by AE increase of 

~2079 nT. The IEFy varies between -15 mV/m to 14 mV/m during this storm. 

 

5.6.1 Low latitude ionospheric- thermospheric response to the  
 storm 
 

To examine the low latitude TEC variations during the storm we have 

plotted diurnal TEC variations recorded at Rajkot from 7 to 11 May 2005 along 

with the quiet days’ (Ap<4) mean TEC of the month as shown in Figure 5.24. 

TEC on 7 May follows almost quiet days’ values. On 8 May, TEC increase of 8 

TECU with respect to quiet days’ mean TEC is seen. On 9 May, TEC depletion of 

14 TECU with respect to quiet days’ mean TEC is observed. On 10 and 11 May, 

TEC increase of 16 and 11 TECU is observed respectively.  
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Figure 5.23: Interplanetary and geomagnetic conditions during 8-9 May 2005 
storm. From top the temporal variations of (a) IMF Bz (b) AE index (c) 
SYM-H index (d) IEFy with time lag correction respectively during 7 to 9 
May 2005 
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Figure 5.24:  Diurnal variations of TEC at Rajkot during 7 May 2005 to 11 
May 2005 along with the quiet days’ (Ap<4) mean TEC of the month 
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Figure 5.25 shows the diurnal variations of EEJ on (a) 8 May 2005 (b) 9 

May 2005 (c) 10 May 2005 (d) 11 May 2005. To examine the neutral composition 

[O]/[N2] variations we have looked in to the TIMED/GUVI images during 8 to 11 

May 2005. The continuous TIMED/GUVI data is not available, the temporal 

domain of the data which we have extracted for this event varies from 12:45 IST 

to 16:00 IST for Indian region. Figure 5.26 shows the [O]/[N2] variations for 

Indian lat- long sectors during (a)  8 May 2005  (b) 9 May 2005 (c) 10 May 2005 

and (d) 11 May 2005 as observed by GUVI  onboard the TIMED NASA satellite.  

 
Diurnal TEC variations on 8 May shows depletion in TEC with respect to 

quiet day’s mean between 8:00 IST and 12:00 IST. From diurnal pattern of EEJ in 

Figure 5.25(a), the morning counter electrojet is observed on 8 May. This may be 

due to penetration of disturbance dynamo electric field which is westward in 

general and hence reduces the EIA strength.  Thus the percentage values of 

plasma at crest latitudes decrease. The disturbance dynamo electric field usually 

gets activated after 4-5 hrs of SSC, the SSC for this storm occurred at 01:51 IST 

on 8 May, the observed EEJ and TEC behavior in morning hours hence provides 

evidence for the penetration of disturbance dynamo electric field. TEC pattern 

between 14:00 and 18:00 IST shows noticeable increase in TEC with respect to 

quite days’ mean.This may be due to resurge of EIA in the afternoon hours as the 

EEJ strength increases with the day time. The [O]/[N2] variations (Figure 5.26(a)) 

show the distribution almost equal to quiet period.  

 

The night time L-band scintillation and TEC depletion are observed on 8-9 

May 2005 at Rajkot. Figure 5.27(a) – (d) shows the L-band scintillation and TEC 

depletion as observed by different PRNs on 8-9 May 2005. In Figure 5.27(a), 

scintillation detected by PRN 23 between 20:58 and 21:20 IST, in Figure 5.27(b) 

scintillation detected by PRN 13 between 20:25 IST and 21:45 IST are shown. In 

Figure 5.27(c), scintillation detected by PRN 8 with S4 value of 0.24 and TEC 

depletion of ~ 5 TECU at ~23:09 IST is shown. In Figure 5.27(d), PRN 28 is also 

showing significant scintillation around and after the midnight. The observed 

scintillation is post sunset and seen after the starting of second main phase and 

second sudden increase in AE index.  The prompt penetration of IEFy of 5 mV/m 
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at ~19:15 IST on 8 May (Figure 5.23 (d)) may be responsible for generation of 

low latitude spread-F irregularities and hence L-band scintillation.   

 

On 9 May negative ionospheric storm is observed as shown in Figure 5.24. 

This may be the result of again long lived electrodynamic disturbances due to the 

disturbance dynamo electric field which is in general westward during day. The 

moderate EEJ value of 57 nT (Figure 5.25(b)) also aggress with this. The neutral 

composition variation in terms of [O]/[N2] ratio show enhancement on 9 May in 

comparison to 8 May (Figure 5.26(b)) . But no major effects are seen of its in TEC 

variations.  

 

The strong EEJ values of 74 nT and 72 nT on 10 and 11 May respectively 

(when storm was in recovery phase) might have resulted in strong EIA. Thus 

significant TEC increase is seen in terms of positive ionospheric storm on both 10 

and 11 May at Rajkot.  As discussed in the previous case of 24 August storm, here 

also the observed positive ionospheric storms during recovery phase on 10 and 11 

May might be due to eastward prompt penetration of IEFy. The strong EEJ on 

both the days also agrees with this.  As we have discussed in section 5.4, TEC 

enhancement on 14 May resulted during the prolonged recovery phase of 8 May 

storm.   

 

The [O]/[N2] values are enhanced on 10 May (Figure 5.26(c)) and 

decreased on 11 May (Figure 5.26 (d)) at low latitudes. The enhanced [O]/[N2] 

may be one of the reasons for TEC enhancement on 10 May.  Thus for the case of 

10 and 11 May, how much neutral composition variations have contributed in 

positive ionospheric storm that still requires further investigation.  
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Figure 5.25: Diurnal variations of EEJ on (a) 8 May 2005 (b) 9 May 2005 (c) 
10 May 2005 (d) 11 May 2005 
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Figure 5.26: [O]/[N2] variations for Indian lat- long sectors during (a)  8 May 
2005  (b) 9 May 2005 observed by GUVI  onboard the TIMED NASA satellite  
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Figure 5.26: [O]/[N2] variations for Indian lat-long sectors during (c) 10 May 
2005 (d) 11 May 2005 observed by GUVI  onboard the TIMED NASA 
satellite  
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Figure 5.27: L-band scintillation and associated TEC depletion as observed 
by (a) PRN 23 and (b) PRN 13 on 8 - 9 May 2005 

(a) 
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Figure 5.27: L-band scintillation and associated TEC depletion as observed 
by (c) PRN 8 and (d) PRN 28 on 8 - 9 May 2005 

 

(d) 
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5.7 Conclusion 
 

A detailed investigation is carried out on storm time electrodynamical and 

neutral dynamical coupling and its influences on the equatorial and low latitude 

ionosphere – thermosphere system for 15 May 2005, 24 August 2005 and 8-9 May 

2005 storm. The results and discussions presented in above sections have shown 

the storm time ionospheric perturbations due to either prompt penetration electric 

field or storm time neutral composition changes/disturbance dynamo electric field 

which leads to positive or negative ionospheric storms respectively. The prompt 

penetration of eastward electric field to equatorial and low latitude leads to 

development of strong ESF where conditions was not much conducive for strong 

ESF generation before the onset of storm. It is shown that storm time 

thermospheric neutral composition variations have great influence on ionospheric 

electron density.   

 

 The main results of this study can be concluded as follow: 

 

The storm of 15 May: 

(1) TEC enhancements at EIA trough latitudes are observed on day before 

SSC i.e. 14 May 2005 which may be the post effect of high auroral activity on 13 

May 2005 in terms of neutral composition variations. But the role of aftermath of 

previous geomagnetic activity of 8-9 May 2005 in terms of penetration of 

disturbance dynamo electric field during prolonged recovery phase of 8-9 May 

can not be ruled out. (2) The prompt penetration of electric field from high to low 

latitudes on 15 May 2005 as evident by intensified EEJ and sharp rise in absolute 

horizontal magnetic field values for Tirunelveli results in to strong positive 

ionospheric storm in different longitude sectors during daytime. The prompt 

response of the equatorial and low latitude TEC to CEJ variations on 15 May 2005 

between 13:00 IST hrs and 16:00 IST hrs shows strong electrodynamical coupling 

between low and equatorial latitudes. The sharp and correlated fluctuations in AE, 

H values, EEJ strength and TEC are clear evidence of high-low latitude 

electrodynamical coupling during the storm. (3) On 16 May 2005, storm time 

neutral composition variation results in to higher [O]/[N2]  values along 77-780E 
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longitudes with more clearer increase at trough latitudes than crest latitudes. (4) 

Low latitudes TEC shows negative storm effect on 17 May 2005.  Delayed effects 

as on 16 and 17 May 2005 are evidences of thermosphere / neutral dynamic 

coupling. It is emphasized by the observations that positive effect of neutral 

composition variations is seen more clearly at equatorial latitudes i.e. atomics 

species can penetrate up to equatorial latitudes while negative phase is seen only 

at Delhi and Rajkot, but not at lower latitudes, indicating that the effect of 

molecular enhancements does not penetrate beyond some limiting latitudes. (5) 

Vertically rising strong plume at Jicamarca after midnight as on RTI map and L-

band scintillation and associated TEC depletion before and after midnight at 

AREQ and GLPS GPS observations provide evidence for the prompt penetration 

of intense eastward electric field over the equator which prevailed over the strong 

westward electric fields leading to development of strong ESF plumes and 

significant L-band scintillation after midnight.   

 

The storm of 24 August: 

(1) The observed TEC enhancement is attributed to prompt penetration of 

storm time electric field to low latitudes. The rate of change of SYM-H exhibits a 

sharp negative excursion of -35 nT/10 min at 15:10 IST.  The sudden increase in 

AE index and marked decrease in SYM-H index under southward orientation of 

IMF Bz creates favorable conditions for the prompt penetration to occur. (2) The 

negative storm on 25 August is due to the disturbance dynamo electric field 

penetration to low latitudes. The observed CEJ on the day also provides evidences 

for the penetration of storm time disturbance dynamo electric field. In addition to 

this enhanced molecular species at low latitudes also contributes in to the TEC 

depletion on 25 August. (3) The positive ionospheric storm and strong EEJ on 26 

and 27 August may due to prompt penetration of electric field during recovery 

phase of the storm. The recovery of neutral composition variations towards the 

normal level on 26 and 27 August also contributes in to the TEC enhancements.  

 

The storm of 8-9 May: 

(1) The daytime TEC at Rajkot shows depletion due to storm time 

disturbance dynamo electric field penetration in the morning hours on 8 May. The 

resurge of EIA in the afternoon hours enhances the TEC at low latitudes with 
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respected to quiet days’ mean. During 8 May storm SSC occurred in night time. 

The prompt penetration of storm time IEFy following the SSC causes low latitude 

L-band scintillation on 8 May. The prompt penetration of storm time IEFy during 

the second main phase causes the low latitude L-band scintillation on 8-9 May. (2) 

The negative ionospheric storm on 9 May may be the delayed effect of the storm 

in terms of disturbance dynamo electric field.  (3) On 10 and 11 May the positive 

ionospheric storm may be due to prompt penetration of IEFy during recovery 

phase of the storm. The recovery phase extended up to 14 May. Discussions based 

on the evidences bring out that during 8 May storm electrodynamical coupling 

between high and low latitudes dominant the low latitude ionosphere and TEC 

behavior. The storm time neutral composition variations have no major influences 

on low latitude TEC.  

 

The multi-instrumental and multistation data presented in this chapter 

shows all the effects of geomagnetic storms over equatorial and low latitude 

ionosphere-thermosphere system, and it is also seen that the prompt penetration of 

eastward electric fields into low latitudes and subsequent development of ESF 

occurred 
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Chapter 6 

Summary 

 
6.1 Summary 
 

 Regular studies on the behavior of the ionosphere from the low latitude 

station Rajkot (22.290N 70.740E Geographic, sub-ionospheric dip latitude 15.80N) 

in India have been carried out. The major emphasises of the present work are on 

studying the temporal and spatial variability of ionospheric electron density using 

the GPS TEC and scintillation monitor technique, understanding the evolution and 

growth of ESF irregularities and associated L-band scintillation using 

multitechnique and further elucidating the geomagnetic storm time low latitude 

ionospheric – thermospheric variations.  

 

 Rajkot (22.290N 70.740E Geographic, sub-ionospheric dip latitude 15.80N) 

is situated near the crest region of the EIA and therefore is one of the most 

suitable locations to investigate the behavior of the low latitude ionosphere during 

the passage of crest of the EIA overhead. Using GPS-TEC measurements recorded 

at Rajkot, the low latitude ionospheric variability during low solar activity period 

(2005-2009) is investigated. The diurnal variations of TEC show a steady increase 

from about sunrise to an afternoon maximum and then fall to attain a minimum 

just before sunrise. A significant day to day variability in diurnal pattern has been 

observed which decreases with descend phase of solar activity. The seasonal 

variations of TEC show that TEC values are high in equinoctial months followed 

by summer and winter. The month to month variations of mean diurnal peak TEC 

shows semiannual variations with a peak during the equinox period and a trough 

during the solstice period. The high positive correlation between TEC peak and 

solar F10.7 flux shows high solar cycle dependence of TEC. The gradual increase 

in TEC observed in the year 2009 provides the indication of the starting of new 

solar cycle. The EIA development and EEJ controls on it are explained using the 

chain of GPS - TEC measurements (starting from equator to north crest of EIA) 

deployed under GAGAN project in India. Our results indicate that low latitude 
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TEC magnitude and daily peak time depends on the EEJ conditions. EIA is 

completely inhibited on the day of morning CEJ, resulting in a lower TEC value at 

Rajkot. The low latitude L-band scintillation is low both in amplitude as well as 

occurrence frequency due to the low solar activity period. Most of scintillation 

events are observed between post sunset and pre-midnight hours.    

 

 In the present age of satellite based communication and navigation, the 

presence of ESF irregularities sometime results into the signal loss of lock and in 

most of the cases degradation of signal amplitudes. Therefore it is very important 

to understand the various characteristics of the ESF irregularities in detail.  

 

 A multitechnique investigation on ESF irregularities has been carried 

during 2005 to 2008 using VHF coherent back scatter radar, GPS TEC and 

scintillation monitor and ionosonde in India. The simultaneous onset of strong 

ESF irregularities is observed at equatorial (Trivandrum) and off equatorial station 

(Gadanki) on 21/03/07. The ESF irregularities manifest themselves as periodic 

multiple plume structures on radar RTI map on this day. These periodic ESF 

plume structures create multiple TEC depletions and associated L-band 

scintillation in more than one PRNs in view from the observational site Gadanki. 

From the spectral width and Doppler velocity information it emerges that the 

initial phase of ESF irregularities does not affect the L-band signals. The electric 

field from equatorial valley region might be getting mapped to E region over 

Gadanki and inhibiting the E region instabilities at Gadanki during the growth 

phase of ESF at the equator as observed on 21/03/07 as well as on 05/02/08. The 

TEC enhancement associated with the ESF is also addressed. It is observed that 

the noticeable localized plasma enhancements during ESF events can occur which 

can alter the TEC in the ionosphere over dip-equatorial region. The latitudinal 

extent of L-band scintillation during the presence of ESF is brought out using 

GAGAN GPS –TEC observations.  It is observed that GHz scintillation 

maximizes at low latitude station. The intensity of GHz scintillation decreases 

with descending phase of ESF irregularities.  

 

 During geomagnetic storm the solar wind electric field directly gets 

transferred to high latitude ionosphere which enhances the heat budget there. This 
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electric field when penetrates to low and equatorial latitudes alters the 

electrodynamics and thus electron density distribution over there. During 

geomagnetic storm, the ionospheric electron density shows large enhancement 

(depression) with respect to their quiet days’ values which is termed as positive 

(negative) ionospheric storm. In addition to this, night time ionosphere during 

storm shows the presence of spread-F irregularities and associated L-band 

scintillations. The enhanced heat budget at high latitudes changes the 

thermospheric neutral composition globally. This also affects the ionospheric 

electron density. The detail studies on low latitude ionosphere-thermosphere 

response to storm time electrodynamical coupling between high and low latitudes 

are brought out. All these effects are highly time dependent and their occurrence is 

totally rely on the local time of SSC at any place on the earth.  

 

The present investigation describes that the storm time ionospheric 

perturbations are either due to prompt penetration electric field or disturbance 

dynamo electric field which leads to positive or negative ionospheric storms 

respectively. The storm time neutral composition changes in terms of 

enhancements in atomic species shortly after the SSC contributes in to the positive 

ionospheric storm. The delayed effects of storm time neutral composition changes 

in terms of enhancements in molecular species are responsible for the negative 

ionospheric storm. The prompt penetration of eastward electric field to equatorial 

and low latitudes leads to development of strong ESF where conditions was not 

much conducive for strong ESF generation before the onset of storm. Discussions 

based on the evidences bring out that the storm time electrodynamical and neutral 

dynamical coupling between high and low latitudes dominant the ionospheric – 

thermospheric behavior at low and equatorial latitudes. 

 

6.2 Suggestions for the future Work     

 

The present work deals with the some of the ionospheric problems 

associated with satellite based navigation. The TEC which is directly proportional 

to the delay in satellite signals vary significantly with time and place as we have 

observed in the presented work also. The presented TEC variability is studied 



 200

during the solar minimum. This study can be extended to solar maximum period 

and the TEC variations during a complete solar cycle can be obtained. This long 

term data base can be useful to prepare model for ionosphere over low latitudes or 

even making necessary corrections in the existing ionospheric models.  

 

 The presented characteristics of ESF irregularities suggest that the 

conditions under which the irregularities pattern that creates GHz scintillation 

exists are still needed to find out. The growth and decay rate of irregularity pattern 

that can create GHz scintillation is needed to bring out. The present investigation 

is during the equinox season only, during summer and winter seasons also the ESF 

investigation is required. A detail investigation on latitudinal variability of L-band 

scintillation using long term data base during solar maximum and solar minimum 

up to more extended latitudes are needed in view of the GPS based navigation. 

The longitudinal variability of L-band scintillation using a chain of global GPS 

receivers can give clearer picture of global scintillation over equatorial and low 

latitudes.  

 

From the geomagnetic storm point of view, there are many possible 

extensions for the present work.  For example, the storm time low latitude 

ionosphere-thermosphere variations presented here are during the summer season 

only. For better understanding of the equatorial and low latitude ionosphere-

thermosphere system variability during the geomagnetic storm, extended 

investigations under different seasons and different geomagnetic disturbance 

levels are needed. Further investigation is required to find out the role of neutral 

composition variations in positive and negative ionospheric storm during the 

geomagnetic disturbed conditions.  

 

 The extension of present investigation up to solar maximum conditions can 

give clear picture of low latitude ionosphere during different geophysical 

conditions which is very important from the point of view of satellite based 

positioning and navigation.   
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Appendix – I 
 

I.1: Details of GAGAN GPS TEC observation stations 

Name of Station Geographic 
Latitude 

Geographic 
Longitude 

Geomagnetic 
Latitude 

Trivandrum(TRI) 8.550N 76.90E 0.50N

Bangalore (BNG) 12.580N 77.40E 4.320N

Hyderabad (HYD) 17.480N 78.40E 9.220N

Bhopal (BHP) 23.170N 77.20E 14.210N

Delhi (DEL) 28.580N 77.20E 20.320N

 
I.2: Details of other GPS TEC observation stations 

Name of Station Geographic 
Latitude 

Geographic 
Longitude 

Geomagnetic 
Latitude 

Arequipa Laser Station 
(AREQ) 

-16.470N 288.50E -6.480N

Galapagos Permanent 
Station (GLPS) 

-0.740N 269.70E 8.750N

Taal Volcano Station 
(TVST) 

14.030N 121.00E 4.30N

 
I.3: Details of Magnetic observatories  

Name of Station Geographic 
Latitude 

Geographic 
Longitude 

Geomagnetic 
Latitude 

Tirunelveli 8.7 0N 77.8 0E 0.32 0N

Alibag 18.46 0N 72.87 0E 10.19 0N

Alma Ata 43.25 0N 76.92 0E 34.29 0N

Novosibirsk 55.03 0N 82.90 0E 45.57 0N
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