

 Saurashtra University
 Re – Accredited Grade ‘B’ by NAAC
 (CGPA 2.93)

Vyas, Darshan G., 2005, “Design and fabrication of general purpose 8085

card and develop various interfacing cards useful in education of electronics”,

thesis PhD, Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/347

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Saurashtra University Theses Service

http://etheses.saurashtrauniversity.edu

repository@sauuni.ernet.in

© The Author

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Etheses - A Saurashtra University Library Service

https://core.ac.uk/display/11821709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://etheses.saurashtrauniversity.edu/id/eprint/347
http://etheses.saurashtrauniversity.edu/

DESIGN AND FABRICATION OF GENERAL PURPOSE 8085

CARD AND DEVELOP VARIOUS INTERFACING CARDS
USEFUL IN EDUCATION OF ELECTRONICS.

Thesis
Submitted to the Saurashtra University, Rajkot

For
The Degree of Doctor of Philosophy

(Science)
(Electronics)

By
Darshan G. Vyas

Lecturer in Physics,
Hemchandracharya North Gujarat University,

Patan-384265(North Gujarat)

Research Supervisor
Dr. H. N. Pandya

Associate Professor,
Department of Electronics / Physics

Saurashtra University,
Rajkot-360005

India

April 2005

Affectionately dedicated to
My parents

Retd. Prof. G. P. Vyas &
Mrs. Hansaben G. Vyas

and
my younger brother

Dhaval G. vyas

Statement under O.Ph.D. of Saurashtra University

 The content of this thesis is my own work
carried out under the supervision of Dr. H. N. Pandya and
leads to some contribution in Electronics supported by
necessary references.

(D.G.Vyas)

 This is to certify that the present work submitted
by Mr. Darshan G. Vyas for the Ph.D. degree of
Saurashtra University, Rajkot has been the result of about
5 years of work under my supervision and is a valuable
contribution in the field of Electronics.

Dr. H. N. Pandya,
Associate Professor,
Department of Electronics / Physics,
Saurashtra University,
Rajkot- 360 005

Acknowledgement

It is impossible to express words of thanks for my 'GURU'
Dr.H.N.Pandya, but I am trying to express my sincere thanks to him. The
name of Ph.D. student is bound with the name of his guide for lifetime, and it
is impossible to obtain this most valuable degree without the proper guidance.
Dr.H.N.Pandya helped me everywhere. He not only solved my technical
problems but also helped me in the development of my educational carrier.
For me and my family this name is unforgettable.
 I am highly indebted to my parents Retd. Prof.Ghanshyambhai P.Vyas
and Mrs. Hansaben G. Vyas who have brought up me with immense love and
helped me to get education to this stage. Their loving care and all time worries
have been a main source of my inspiration. My younger brother Dhaval Vyas
also boosted my morals and helped me at every stage of this work. During my
stay in Rajkot and crucial working hours my friend like elder brother Mr.
Jitubhai Vyas has played a key role in helping me and maintain my time
schedule by adjusting his work schedule.
 In the early stage of my research work the engineer Mr. Maheshbhai
Bhatt (Physics Department, Gujarat University, A'bad) has been kind enough
in clearing my some of the basic doubts.
 I am also thankful to Prof. B.J.Mehta, Prof. N.N.Jani for giving me
moral support. I feel happy to say that I got chance to work in the company of
Dr.M.N.Jivani and Dr.N.A.Shah.
 The moral support and affectionate concern of Mrs. Kiranben H.
Pandya in the critical moments of my research work and during my
disappointments have soothed my soul and made me to resume my work with
eternal enthusiasm.
 I am thankful to my colleague Ph.D. students Mr. Bimal Vyas and Mr.
Maulin Nanavati for helping me at various stages of my research work. I wish
to express my loving thanks to my friends Mr. Manishbhai Pandya and Mr.
Taresh Bhatt for sharing all good and "stressed" moment of my work. The
help extended by Mr. Bhaskar Anand and Harshad Chirutkar is also
appreciated.

I am also thankful to Mr. Pareshbhai M. Patel, Lab. Technician, Physics
Department, Hem. N. G. University, Patan for helping me in printing and
binding of my thesis. I am also thankful to our respectable Prof. K.N.Patel, Co-
ordinator Physics, Hem. N.G.University, Patan for boosting my enthusiasm.
 I am highly thankful to my all professors of Gujarat University, A'bad,
for giving me a knowledge and information about the subject.
 I am thankful and humbly appreciate the technical help of N.K.Modi
and C.K.Panchal, P.R.L., A’bad,
 Finally I am thankful to "GOD" and my all well wishers.

Contents

SECTION-I
BASIC 8085 CARD

Chapter-1 : Introduction 01
1.1 Objective of the present work
1.2 Literature survey

Chapter-2 : Basic understanding of 8085 05
 Microprocessor

2.1 The block diagram
2.2 Interrupts
2.3 Serial communication

Chapter-3 : Instruction set 14
3.1 Addressing modes
3.2 Instruction format
3.3 All instructions

Chapter-4 : Interfacing of EPROM and RAM 26
4.1 EPROM 2764A
4.2 Static RAM 6264
4.3 Memory map

Chapter-5 : I/O interfacing 35

5.1 Programmable keyboard display Interface
8279

5.2 Programmable peripheral interface 8255

Chapter-6 : P.C.B. designing and fabrication 70
6.1 Schematic preparation
6.2 P.C.B. layout preparation
6.3 P.C.B. fabrication
6.4 General aspects

6.4.1 List of components
6.4.2 costing

Chapter-7 : Monitor program 79

SECTION-II
Interfacing cards

Chapter-8 : Digital-to-analog converter 112
8.1 DAC-0808 chip
8.2 Basic interfacing circuit with P.C.B. aspects
8.3 Examples

Chapter-9 : Analog-to-digital converter 120
9.1 ADC-0808 chip
9.2 Basic interfacing circuit with P.C.B. aspects
9.3 Examples

Chapter-10 : Running Character display 135

10.1 Understanding basic circuit and P.C.B.
aspects

10.2 Program techniques and examples

Chapter-11 : An intelligent control panel 155
11.1 Basic circuit understanding and P.C.B.

aspects
11.2 Examples

Chapter-12 : Analog voltage measurement 166
 without using ADC

12.1 VFC-331 chip
12.2 Basic interfacing circuit with P.C.B. aspects
12.3 Examples

 Chapter-13 : Logic controller 195
13.1 Understanding of basic circuit and P.C.B.

aspects
13.2 Usage of logic controller card
13.3 Programming aspect of logic controller
13.4 Examples

Chapter-14 : Interfacing Timer 8253 206
14.1 Basics of 8253
14.2 Interfacing circuits with P.C.B. aspects
14.3 Programming aspect of 8253
14.4 Examples

Chapter-15 : Interfacing USART 8251 228

15.1 Basics of 8251
15.2 Interfacing circuits with P.C.B. aspects
15.3 Programming aspect of 8251
15.4 Examples

Chapter-16 : Interfacing PIC 8259 250
16.1 Basics of 8259
16.2 Interfacing circuits with P.C.B. aspects
16.3 Programming aspects of 8259
16.4 Examples

References 275

Abstract

 At present in colleges, the universities and other technical institutions
the microprocessor as a subject is inevitably taught. A large section of student
learners and hobbyists wish to gain in depth knowledge in the field of
microprocessor.
 We have considered a very versatile Intel microprocessor 8085 for the
present work. The designing of the basic microprocessor CPU card is
conceived and developed. The complete hardware and related software have
been developed. This has culminated into a basic trainer kit. The interfacing
aspects of buffer chips, memory chips, I/O chips along with keyboard and
display devices have been presented in detail. The P.C.B. designing was also
carried out using in-house facility. The detailed assembly language program
for this system called monitor program is indigenously developed and
successfully run on the system. The monitor program supports all basic
features of a typical microprocessor trainer kit. In this kit the commands like
Exam memory, Block move, Go and Execute, Single step, Exam register,
Next and Previous are included.
 We have used 8085A, 8279, 8255, 74373, 74245, 74155, 74138,
FNDs, push button switches and few discrete components in the present kit.
The system resources can be used for interfacing other circuits by using kit
expansion connectors. The present work gives a complete idea of developing
8085 based basic system.
 To create various applied types of interfacing gadgets, we have
presented a number of interfacing modules. In these, the interfacing design
circuits and related softwares have been discussed. This would very helpful to
learners to develop their own interfacing modules based on 8085.
 Following is the list of the interfacing modules developed by us.

 Digital-to-analog converter
 Analog-to-digital converter
 Running character display
 An intelligent control panel
 Analog voltage measurement without using ADC
 Logic controller
 Interfacing Timer 8253
 Interfacing USART 8251
 Interfacing PIC 8259

Thus the present work would be very useful to the learners because it
represents every hardware detail with the complete radiate software.

1

CHAPTER – 1 INTRODUCTION

1.1 Objective of the present work.

 The present advance technology has made the microprocessors a
routine element in the industrial & domestic applications. Today’s most of the
“Intelligent” electronic devices use microprocessors.
 The increasing usage of microprocessor in the society has aroused an
atmosphere to know & learn about microprocessors and its applications. This
has resulted in the inclusion of detailed study of microprocessors as a part of
regular & routine syllabus in the colleges, technical institutions & universities.
 Such increasing demand and inquisitiveness among the learners
sprouted this work. In essence, we planned to design and fabricate an 8085
based system, which will guide the learners to understand the
microprocessors right from the scratch. In addition to this we also planned to
present how one can utilize the basic concepts of microprocessor in
developing various interfacing circuits through representative interfacing
examples.
 In sum up, we can say that the objectives of the present work are:

1. To design the circuit of 8085 based CPU card.

2. To fabricate the 8085 based CPU card as per the above circuit design.

This will be consisting of

 8085 CPU & Supporting chips.

 Memory made up of EPROM 2764 & RAM 6264.

 I/O section comprised of 8255.

 Key board & Display interfacing section using 8279.

3. To design & fabricate various interfacing modules as follows.

 An intelligent control panel.

 Analog voltage measurement without using ADC.

 Digital to analog converter.

 Analog to digital converter.

 USART 8251.

 Programmable interval timer/counter 8253.

 Interrupt controller – 8259.

 Logic controller.

 Running character display.

Some times very interesting question arises, as why people go for the

8085 based systems? The answer to this question in our context is as follows.

2

The reasons of selecting 8085 are as follows.

1. It is a chip which includes all basic features of general

microprocessors.
2. It is very popular.
3. Its literature is available in abundance.
4. Many colleges and university departments teach 8085.
5. Large number of students and learners are interested to gain

systematic knowledge of 8085.

1.2 Literature survey

 There are number of books available serving as a text-book or
reference books on the 8085 microprocessors. Also, data books and manuals
of various manufacturers are available. The list of manufacturer is as follows.

List of manufacturers

1. EMM semiconductor

Hawthorne, CA 90250, USA
.

2. MOS technology
Norristown, PA 19401, USA.

3. Texas instruments
Houston, TX 77001, USA.

4. Mostek
Carolton, TX 75006, USA.

5. SGS – ATES
Waltham, MA 02154, USA.

6. General Instruments (GI)
Hicksville, NY 16002, USA.

7. Advanced Micro Devices (AMD)
Sunnyvale, CA 94608, USA.

8. Rockwell international
Anaheim, CA 92803, USA.

9. RCA
Sommerville, NJ 08876, USA.

10. Intel corporation
Santa Clara, CA 95051, USA.

3

11. American Microsystem (AMI)
Santa Clara, CA 95051, USA.

12. Signetics
Scottsdale, AZ 85252, USA.

13. Fairchild
 San Jose, CA 95110, USA.

14. Western digital corporation
Newport Beach, CA 92663, USA.

15. Zilog
Cupertino, CA 95014, USA.

16. Sharp
Paramus, NJ 07652, USA.

17. Motorola
Phoenix, Arizona 85006, USA.

Some of the useful books are listed as follows.

[1] Microprocessor architecture, programming and applications by
R.S.gaonkar

[2] Microprocessor data handbook, Revised Edition, BPB Publications

[3] 0000 to 8085 Introduction to microprocessors for engineers and

scientists by P.K.Ghosh and P.R.Shridhar, second edition, PHI
Publications.

[4] Printed Circuit Board by Dr.H.N.Pandya, Published by
 Gujarat Granth Nirman Board, Ahmedabad,India.

 The list of research publications is as follows.

[1] Study of interfacing module to establish communications between a

PC and a 8085 based microprocessor kit. LE, Lab Experiments,
Volume-4,No-3,September-2004.

[2] Study of 8255 through experiments using microprocessor kit.

LE, Lab Experiments, Volume-4,No-2,June-2004

[3] 8085 based novel software technique for V to F type analog to digital
conversion. Electronic Maker, June-2004

[4] Understanding interrupts of 8085 using Logic Analyzer.

ETA-2004,25th & 26th FEB.-2004, Computer Department, Saurashtra
University,Rajkot.

4

[5] Design and construction of analog to digital conversion interfacing
module for 8085 microprocessor kit. 18th Gujarat Science congress,
Physics Department, Saurashtra University, Rajkot dated 13th
March,2004.

[6] An intelligent control panel : A novel microprocessor based system.

ETA-2003, 11th , 12th ,13th July,2003, Computer Department,
Saurashtra University, Rajkot.

[7] An interfacing module for 8085 based systems for solving Boolean

equations”.(communicated)

[8] Demystifying running character display.(communicated)

 The list of web-sites of interest is as given below.

[1] www.standardproducts.philips.com

[2] www.qsl.net

[3] www.xs4all.nl

[4] www.cpu-world.com

[5] www.pearson.ch

[6] www.svnit.ac.in

[7] www.pearsoned.co.uk

[8] bookweb.kinokuniya.co.jp

[9] www.ses.co.il

[10] www.iinf.polsl.gliwice.pl

In the present work the microprocessor manufactured by Intel
Corporation is planned to be used. In the present work, the processor of 8085
family is selected.
 To design an 8085 based education microprocessor kit, the technical
information of the processor 8085 and its family chips are required. This
literature is available from the Intel Corporation.
 Many industrial microprocessor kits are available, but these kits are
having some limitations from educational point of view.
 The websites surfed are as given below.

5

CHAPTER-2 BASIC UNDERSTANDING OF 8085
MICROPROCESSOR

 The Intel corporation launched its 8-bit microprocessor series
starting with 8080.[1,2] After 8080, it introduced a series of 8085
microprocessor. This series is available as 8085, 8085A, 8085AH, 8085AH-1,
8085AH-2.
 The operating frequencies are 3MHz, 5MHz and 6MHz. Various
versions of 8085 differ only in power consumption, speed and in timing
signals. To site the difference 8085AH group has following instruction cycle
differences.
 8085AH - 1.3Microsecond instruction cycle.
 8085AH-2 - 0.8Microsecond instruction cycle.
 8085AH-1 - 0.67Microsecond instruction cycle.
 We have concentrated on 8085A. But for all practical purposes
the other versions can be used. The salient features of 8085A are as follows.

1. It needs only +5V power supply.
2. It uses single clock.
3. It is a 40-pin device.
4. It has a 16-address lines, which are divided into two groups. AD

0
 to

AD
7

and A
8
 to A

15
. The lower 8-lines AD

0
 to AD

7
 are multiplexed lines, i.e. at

one time they work as address line A
0
 to A

7
 and at other time they work

as data lines D
0
 to D

7
.

5. It has 8-addressable Registers, A, B, C, D, E, H, L, F and two 16-bit
registers SP and PC.

6. It has three status lines: IO/M, S
1
, S

0
 and three control lines: RD, WR

and INTA.
7. For DMA operation it provides two lines, HOLD and HLDA.
8. Two lines RESET IN and RESET OUT are available for Reset

operation.
9. It provides five hardware interrupts that is TRAP, RST 7.5, RST 6.5,

RST 5.5 and INTR.
10. For serial communication two lines SID and SOD are provided.
11. For slower devices a synchronizing line READY is available.

2.1 The Block diagram

For the general understanding purpose the Intel has provided the

internal working details of 8085A in turms of some basic units. We call this
pictorial presentation of units as block diagram of 8085A.
 In Figure 2.1.1 details of the block diagram of 8085A is depicted.[3]

6

Figure-2.1.1 Block diagram of 8085

The block diagram is divided into various groups as follows.

 1. ALU unit with its family registers.
 2. Internal Registers.

7

3. Instruction Decoder and Machine cycle encoder along with IR
 (Instruction Register).

 4. Timing and control unit with associated pins.
 5. Interrupt control block.
 6. Serial I/O control.
 7. Address Data Buffers.

1. ALU unit with its family registers
 The ALU unit that is Arithmetic and Logic unit is an 8-bit unit. It is useful
for performing all arithmetic and logical operations. It uses two 8-bit registers
accumulator and a temporary register as input registers. The output of this
unit generally goes to accumulator through internal bus for certain
instructions. It uses flag register to declare the outcome of arithmetic and
logical operations by Setting or Resetting the certain flags.

2. Internal Registers
 8085A has eight 8-bit registers, these are A, B, C, D, E, H, C and flag.
These are used as general purpose registers. They are used to store data
temporarily. The flag register has following flag bits.

D7 D6 D5 D4 D3 D2 D1 D0
S Z X AC X P X CY

X means don’t care.

FIGURE-2.1.2 Flag register bits

1. Carry flag (bit D0)
 This is D0 bit of flag register. When arithmetic or logical operations are
performed such that they generate Carry, this bit is set, otherwise remains
Reset. In other words, for Carry CY=1 and for NO-Carry CY=0.

2. Parity flag (P - Bit D2)
 If the number of 1’s in accumulator are even, parity flag is set (P=1). If
the number of 1’s is odd the parity flag is cleared (P=0).

3. Auxiliary Carry (AC - bit - D4)

 If Carry is generated while adding bit 3 of accumulator, AC is set
otherwise reset. This is used in BCD arithmetic.

4. Zero flag (Z - bit - D6)

 If the result of execution of an instruction is zero this flag is set (Z=1)
other wise cleared (Z=0)

5. Sign flag (S - bit - D7)

 It provides the sign of data. If S = 0 the data is positive and if S = 1 the
data is negative.

8

 Note that accumulator is used as one of the default input for arithmetic
and logical instructions. It stores the result of such instructions. For IN and
OUT instructions ,it used as default destination and source respectively.
 The two 16-bit registers SP and PC are special purpose registers. SP
takes care of the stack management, while PC always point to the instruction
codes in the memory.
 In addition to these registers, register unit has a facility to increment or
decrement the contents of SP and PC.

3. Instruction Decoder and Machine cycle encoder along with IR

(Instruction Register)
 When the codes of the instructions are fetched from the memory they
go first to the instruction register within 8085A, one at a time. After that a
series of decoder circuitry “Interprets” the codes. This interpretation will
decide how many machine cycles and which types of machine cycles are
needed for the instruction under consideration. This information is passed to
timing and control unit for proper action.

4. Timing and control unit with associated pins
 The signals received from instruction decoder and machine cycle
encoder are analyzed and proper circuits are activated with reference to the
clock and with the use of various control signals to execute the instruction.
This unit controls the over all functions of all other units and maintains the
timing among them selves. Following pins are directly associated with this
unit.
 X1, X2, CLK OUT, READY, RD, WR, ALE, S0, S1, IO/M, HOLD,

HLDA, RESET IN and RESET OUT.

5. Interrupt Control Block
 This block controls the over all management of hardware interrupts of
8085. It receives interrupts from TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.
It provides INTA signal to device interrupting on INTR. A better understanding
of interrupts can be obtained from the literature. [15]

6. Serial I/O Control Block
 8085A provides a primary facility to perform serial communication
using its SID and SOD pins. Data bits are received on SID and transmitted on
SOD. For this 8085A uses SIM and RIM instructions.

 7. Address Data Buffers
 Address on address lines is provided by PC. Before O’s and 1’s of
address appear on address lines they are buffered by address and data /
address buffers.

PIN Diagram of 8085

Here each pin has its own importance. But before use of this IC, we must
know the function of each pin. The pin diagram of 8085 is shown in Figure-
2.1.3.[4]

9

� Pin No – 1 & 2 : X1 and X2
Generally crystal is connected between these two pins as shown in figure

2.1.4. We can also connect LC or RC network instead of crystal. The external
clock source can also be given.

Here 20pf capacitors are required, if crystal frequency is bellow 4MHz.The
body of the crystal is also grounded to ground electromagnetic pickup.
This typical value of capacitance given in data book of 8085, and the

reason for these capacitors is to assure the oscillator start up at the correct
frequency. This is shown in Figure 2.1.4.

� Pin – 3 : Reset out
This signal is used to reset the peripheral ICs. When microprocessor
resets this signal activates.

� Pin – 4 & 5 : SOD & SID
These two pins are used for serial communication of data.
SOD means serial output data and SID means serial Input data.
SID is used to get data in and SOD is used to put data out serially.

� Pin – 6 :TRAP
This trap is a non-maskable interrupt. When low to high transition takes
place on this pin and high status is received till interrupt is recognized
corresponding interrupt routine will be immediately called.

� Pin – 7, 8, 9, 10 : RST 7.5, RST 6.5, RST 5.5 and INTR
These all can be considered as maskable interrupt pins but the priority is

different.
The priority of Trap is highest then RST 7.5, RST 6.5, RST 5.5 and then
INTR. When interrupt signal is received at any interrupt pin & if interrupt is
enabled, its corresponding routing will be called.

� Pin – 11 : INTA
This pin is known as interrupt acknowledge. When high status is received

at pin-10 (INTR) the microprocessor sends low signal on this pin. This signal
acknowledges that the interrupt is accepted by microprocessor.

 Pin – 12 to 19 : AD
0
 – AD

7
These eight pins are known as multiplexed address/data lines. Here AD0

means initially the pin is an address A0 and after sometime it becomes data

D0.To use Address and Data, demultiplexing is required, whenever we are

going to use 8085 in any system.

 Pin – 20 : Vss

This pin should be connected with ground.

10

Figure 2.1.3 : PIN DIAGRAM OF 8085A

11

FIGURE – 2.1.4 CRYSTAL CONNECTION

� Pin 21 to 28 : A

8
 to A

15

These 8-pins are known as upper order address pins.
Address bus is having total 16-bits and these are upper 8-bits, 8-lower bits

are available after demultiplexing by the latch.

� Pin – 29 : S
0

This is lower status pin. It is rarely used in system.

 Pin – 30 : ALE

The full form of ALE is Address Latch Enable this.
ALE signal is used for demultiplexing of AD0-7.

� Pin – 31 : WR

 This is known as write signal. This pin goes low when something is
going to write into either memory or output port.

� Pin – 32 : RD
This is known as Read signal. This pin goes low when something is going

to read from either memory or input.

Pin – 33 : S1

This is also a status signal. It is rarely used in system.

� Pin – 34 : IO/M

20pf

1

2

20pf
8085

12

This pin is used as input-output or memory selection. When this pin has
high logic microprocessor may perform Input or Output port related operation.
If this pin has low logic means microprocessor may perform memory related
operation. Sometimes it may be in high impedance state means neither high
nor low. This high impedance state is also known as tri-state.

�� The following Table – 1 shows the Status on Status signals IO/M, S1

and S0 and status on control signal RD, WR and INTA.

Table – 1

Operation Status Signals Control Signals

IO/M

S1

S0

RD

WR

INTA
Opcode
Fetch

0 1 1 0 1 1

Memory
Read

0 1 0 0 1 1

Memory
Write

0 0 1 1 0 1

Input Read 1 1 0 0 1 1
Output Write 1 0 1 1 0 1

Interrupt
Acknowledge

1 1 1 1 1 0

Halt (Low on
ready)

Tri-
state

0 0 Tri-
state

Tri-
state

1

Hold Tri-
state

X X Tri-
state

Tri-
state

1

RESET Tri-
state

X X Tri-
state

Tri-
state

1

� Pin – 35 : Ready
If this pin is high microprocessor is working normally. But when this pin will

be low, microprocessor will go into wait state for integer number of clock
pulses.

� Pin – 36 : Reset in
This is active low pin. When signal on this pin will be low the

microprocessor will be reset. On Reset the program counter starts execution
from address 0000H.

� Pin – 37 : CLK -OUT
Internal operating frequency is available on this pin. We can give this

signal to any peripheral by using this pin for synchronization.

� Pin – 38 : HLDA
 When HOLD signal is received, an acknowledgement is issued by this

pin.

13

 Pin-39 : HOLD
A high on this pin suspends normal CPU operation, and the

CPU relinquishes hold of buses.

 Pin-40 : Vcc
This pin should be connected with +5 volt.

2.2 Interrupt
Interrupts are primarily provided to reduce the burden on processor. In

this scheme processors are not supposed to continuously check the I/O
devices. Whenever I/O device gets ready to communicate with processor, It
intimates the same through any of the interrupt lines.8085 has following
interrupts.
1. TRAP
2. RST 7.5
3. RST 6.5
4. RST 5.5
5. INTR
 They are listed as per their priorities .INTR, RST 5.5 and RST 6.5 are
level sensitive, while RST 7.5 is rising edge sensitive. TRAP is sensitive to
rising edge and level both.
 RST 5.5, RST 6.5 and RST 7.5 are maskable interrupts, while TRAP is
non maskable interrupt. The former are affected by EI and DI while letter is
not affected by EI and DI.
 The vectored addresses of interrupts are as follows.
 Interrupt ISR address
 TRAP 0034h
 RST 7.5 003Eh
 RST 6.5 0034h
 RST 5.5 002Ch

2.3 Serial Communication

We know that in serial communication bits are communicated one by
one with every clock pulse. In other words for every clock pulse one bit is
communicated. This means either input or output over one channel can be
performed.
 In 8085A this is achieved in a slightly different manner. Two special
pins SID and SOD are provided, for inputting and outputting data respectively.
These pins function with the help of execution of special instructions: RIM for
inputting the data and SIM for outputting the data. Thus contrary to usual
serial communication each bit on SID or SOD is communicated every time
when RIM or SIM is executed not with reference to clock.
 Whenever RIM instruction is executed the data on SID pin (either ‘0’ or
‘1’) gets transferred to the 7th bit of accumulator i.e. A

7
. Similarly, When SIM

instruction is executed the data in 7th bit of accumulator (A
7
) gets transferred

at SOD pin.

CHAPTER-3 INSTRUCTION SET

14

 Every microprocessor understands a set of predefined
command which are nothing but typical combination of 0’s and 1’s i.e. binary
numbers. The collection of all these binary numbers or codes makes a
complete set of instructions.
 The manufacturers of the microprocessors classify this set into
various groups, based on the common functionality of the instructions. The
instruction set of 8085A also can be divided into various groups as follows.
1. Data transfer group.
2. Arithmetic group.
3. Branch group.
4. Logic group.
5. Stack input/output and machine control group.
 The instructions of 8085A also can be categorized based on the
number of bytes needed for concerned instruction. These categories are
1. 1-byte instruction.
2. 2-byte instruction.
3. 3-byte instruction.
 In microprocessors the arithmetic and logical operations are
performed on operands which we can call as Data bytes. We know that actual
operation is performed in arithmetic and logic unit of microprocessor.
 For that operand needed are to be brought to this unit. The
operands may be stored at various possible sources, that is they can be in
registers of microprocessors or they can be in external memory or they can be
in I/O device. Now to bring them to ALU, manufacturers provide different ways
(through different instructions). These ways are nothing but different
“Addressing modes”.
3.1 Addressing modes

 The 8085A has following five addressing modes.
1. Immediate.
2. Direct.
3. Register.
4. Register Indirect.
5. Inherent or implied.

1. Immediate addressing
 In this mode required operand (Data) is available in the memory
location “Immediately” after the OP-CODE location in the memory.

2. Direct addressing
 In this addressing mode address of the operand is provided
along with the instruction.
 For example LDA 5020H, in this instruction 5020H is addressing
memory where required operand is stored.

3. Register addressing

15

 In this type of addressing mode operand is contained in the
register or register pair. The register or register pair are part of the instruction.
For example MOV B,C, INX H etc.

4. Register Indirect addressing
 In this addressing mode the address of the operand is not given
by direct means but indicated indirectly i.e. address of the operand is
represented by a pair of registers. For example LDAX B. In this instruction
accumulator is to be loaded with the operand which is stored at certain
location of the memory, whose address is available in register pair BC.

5. Inherent addressing or Implied addressing mode
 In this addressing mode no operand is required. The instructions
are self sufficient regarding the operations. For example STC. In this
instruction it is clearly implied that there is no need of 8-bit operand. But
operation is to be performed on a carry bit.

3.2 Instruction Format

 In 8085A the general format of instruction can be classified
considering the number of bytes needed for a given instruction.
 These are
1. One byte instruction.
2. Two byte instruction.
3. Three byte instruction.
 In single byte format the concern byte is an op-code byte. In two
byte instruction format, the first byte is an op-code and the next is a data byte.
In three byte instruction first byte is op-code byte, second byte is lower
address byte of data and third byte is higher address byte of data.

Tables showing the instruction summary:

 Move, Load and Store instructions

Mnemonics Instruction code
D7 D6 D5 D4 D3 D2 D1 D0

MOV R1,
R2

0 1 D D D S S S

MVI R 0 0 D D D 1 1 0
LXI B 0 0 0 0 0 0 0 1
LXI D 0 0 0 1 0 0 0 1
LXI H 0 0 1 0 0 0 0 1

STAX B 0 0 0 0 0 0 1 0
STAX D 0 0 0 1 0 0 1 0
LDAX B 0 0 0 0 1 0 1 0
LDAX D 0 0 0 1 1 0 1 0

STA 0 0 1 1 0 0 1 0
LDA 0 0 1 1 1 0 1 0

SHLD 0 0 1 0 0 0 1 0

16

LHLD 0 0 1 0 1 0 1 0
XCHG 1 1 1 0 1 0 1 1

 Stack related instructions

Mnemonics Instruction code
D7 D6 D5 D4 D3 D2 D1 D0

PUSH B 1 1 0 0 0 1 0 1
PUSH D 1 1 0 1 0 1 0 1
PUSH H 1 1 1 0 0 1 0 1

PUSH PSW 1 1 1 1 0 1 0 1
POP B 1 1 0 0 0 0 0 1
POP D 1 1 0 1 0 0 0 1
POP H 1 1 1 0 0 0 0 1

POP PSW 1 1 1 1 0 0 0 1
XTHL 1 1 1 0 0 0 1 1
SPHL 1 1 1 1 1 0 0 1
LXI SP 0 0 1 1 0 0 0 1
INX SP 0 0 1 1 0 0 1 1
DCX SP 0 0 1 1 1 0 1 1

 Jump instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
JMP 1 1 0 0 0 0 1 1
JC 1 1 0 1 1 0 1 0

JNC 1 1 0 1 0 0 1 0
JZ 1 1 0 0 1 0 1 0

JNZ 1 1 0 0 0 0 1 0
JP 1 1 1 1 0 0 1 0
JM 1 1 1 1 1 0 1 0
JPE 1 1 1 0 1 0 1 0
JPO 1 1 1 0 0 0 1 0

PCHL 1 1 1 0 1 0 0 1

 Call instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
CALL 1 1 0 0 1 1 0 1
CC 1 1 0 1 1 1 0 0

CNC 1 1 0 1 0 1 0 0
CZ 1 1 0 0 1 1 0 0

CNZ 1 1 0 0 0 1 0 0
CP 1 1 1 1 0 1 0 0

17

CM 1 1 1 1 1 1 0 0
CPE 1 1 1 0 1 1 0 0
CPO 1 1 1 0 0 1 0 0

 Return instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
RET 1 1 0 0 1 0 0 1
RC 1 1 0 1 1 0 0 0

RNC 1 1 0 1 0 0 0 0
RZ 1 1 0 0 1 0 0 0

RNZ 1 1 0 0 0 0 0 0
RP 1 1 1 1 0 0 0 0
RM 1 1 1 1 1 0 0 0
RPE 1 1 1 0 1 0 0 0
RPO 1 1 1 0 0 0 0 0

 Restart, Input and output instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
RST N 1 1 A A A 1 1 1

IN 1 1 0 1 1 0 1 1
OUT 1 1 0 1 0 0 1 1

 Increment and decrement instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
INR R 0 0 D D D 1 0 0
DCR R 0 0 D D D 1 0 1
INX RP 0 0 D D 0 0 1 1
DCX RP 0 0 D D 1 0 1 1

 Addition and subtraction instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
ADD R 1 0 0 0 0 S S S
ADC R 1 0 0 0 1 S S S

ADI 1 1 0 0 0 1 1 0
ACI 1 1 0 0 1 1 1 0

DAD RP 0 0 D D 1 0 0 1
SUB R 1 0 0 1 0 S S S
SBB R 1 0 0 1 1 S S S

SUI 1 1 0 1 0 1 1 0

18

SBI 1 1 0 1 1 1 1 0

 Logical instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
ANA R 1 0 1 0 0 S S S
XRA R 1 0 1 0 1 S S S
ORA R 1 0 1 1 0 S S S
CMP R 1 0 1 1 1 S S S

ANI 1 1 1 0 0 1 1 0
XRI 1 1 1 0 1 1 1 0
ORI 1 1 1 1 0 1 1 0
CPI 1 1 1 1 1 1 1 0

 Rotate instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
RLC 0 0 0 0 0 1 1 1
RRC 0 0 0 0 1 1 1 1
RAL 0 0 0 1 0 1 1 1
RAR 0 0 0 1 1 1 1 1

 Special instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
CMA 0 0 1 0 1 1 1 1
STC 0 0 1 1 0 1 1 1
CMC 0 0 1 1 1 1 1 1
DAA 0 0 1 0 0 1 1 1

 Control instructions

Mnemonics Instruction code

D7 D6 D5 D4 D3 D2 D1 D0
EI 1 1 1 1 1 0 1 1
DI 1 1 1 1 0 0 1 1

NOP 0 0 0 0 0 0 0 0
HLT 0 1 1 1 0 1 1 0
RIM 0 0 1 0 0 0 0 0
SIM 0 0 1 1 0 0 0 0

Here DDD, SSS, AAA are three binary bits from 000 to 111. DDD shows
destination register code and SSS shows source register code. AAA
shows interrupt number. DD shows 00 to 11 as destination register pair
code.

19

3.3 All Instructions

 In this chapter in the beginning we have divided the whole
instruction set of 8085A into several groups. We will discuss the instructions
of 8085A as per these groups.[5]

1. Data Transfer Group
 The data can be transferred by the following types of instructions. The
flags are not affected by these instructions.
 MVI r1 Data - The Data is loaded into register r.
 MVI M1 Data - The Data is immediately loaded into
 memory whose address is in HL pair.
 MOV r1, r2 - The Data of register r2 is transferred into
 r1.
 MOV M, r - The Data of register is transferred into
 memory whose address is given in HL.
 MOV r, M - The Data of memory whose address is in HL
 is transferred into register.
 LXI rp1 Data - The 16-bit data is immediately loaded into
 register pair rp.
 STA address - Store content of accumulator at given
 address.
 LDA address - Load content into accumulator from given
 address.
 SHLD address - Store HL register pair directly at the given
 address and address +1 locations.
 LHLD address - Load HL register pair directly from the
 given address and address +1 locations.
 LDAX Rp - Load the accumulator with the contents of the
 memory whose address is given into register
 pair Rp.
 STAX Rp - Store the content of accumulator into the
 memory whose address is given into register
 pair Rp.

XCHG - Exchange the contents of register pair HL with
 DE.

2. Arithmetic Group
 This arithmetic group can be classified into following categories.
1. Increment & Decrement group.
2. Addition group.
3. Subtraction group.
4. Decimal Adjust Accumulator group.

 Increment & Decrement group
 INR r - The content of register is incremented by one only
 carry flag is not affected.
 INR M - Increment the content of the memory location by
 one whose address is in HL Register pair only
 carry flag is not affected.

20

 INX rp - Increment the content of the register pair rp by
 one. No flags are affected.
 DCR r - The content of register is decremented by one
 only carry flag is not affected.
 DCR M - Decrement the content of the memory location
 by one whose address is in HL Register pair only
 carry flag is not affected.
 DCX rp - Decrement the content of the register pair rp by
 one. No flags are affected.

 Addition group

 ADD r - Addition of the contents of accumulator and
 register r. The answer is stored into accumulator.
 All flags are affected.
 ADD M - Addition of the contents of accumulator and
 memory whose address is in HL pair. The answer
 is stored into accumulator. All flags are affected.

ADI Data - Addition of the contents of accumulator with
 the Data. The answer is stored into
 accumulator. All flags are affected.
 ADC r - Addition of the carry flag with the contents of
 accumulator and register. The answer is stored
 into accumulator. All flags are affected.
 ADC M - Addition of the carry flag with the contents of
 accumulator and memory (whose address is given
 in HL pair). The answer is stored into
 accumulator. All flags are affected.
 ACI Data - Addition of the carry flag with the content of
 accumulator and Data. The result is stored into
 accumulator. All flags are affected.
 DAD rp - Addition of the contents of register pair rp with
 the contents of the HL pair. The result is stored
 into HL. Only the carry flag is affected.

 Subtraction group

 In this group of instructions borrow is used for carry flag.

 SUB r - Subtract the content of register r from
 accumulator. The result is stored into
 accumulator. All flags are affected.
 SUB M - Subtract the content of memory (whose location is
 given in HL pair) from accumulator. The result is
 stored into accumulator. All flags are affected.
 SUI Data - Subtract the data from accumulator. The result
 is stored into accumulator. All flags are affected.
 SBB r - Subtract the borrow and content of register r
 rom the content of accumulator. The result is
 stored into accumulator. All flags are affected.

21

 SBB M - Subtract the borrow and the content of memory
 (whose address is given in HL pair) from the
 content of accumulator. The result is stored into
 accumulator. All flags are affected.

SBI Data - Subtract the borrow and the data from the
 content of accumulator. The result is stored into
 accumulator. All flags are affected.

 Decimal Adjust group

 DAA - A Decimal Adjust Accumulator.
 This instruction converts the binary content of
 accumulator into B.C.D. form.

3. Branch group

 JMP address - This instruction jumps at address
 unconditionally. All flags are unaffected.
 J cond. address - This instruction jumps at address
 conditionally. The instructions are as given
 below with conditions.
 JC Jump if C=1
 JNC Jump if C=0
 JP Jump if S=0
 JM Jump if S=1
 JPE Jump if P=1
 JPO Jump if P=0
 JZ Jump if Z=1
 JNZ Jump if Z=0

 All flags remain unaffected.

PCHL- This instruction copies the contents of HL pair
into PC. All flags remain unaffected.

 CALL address - This instruction calls the subroutine
 unconditionally, after storing content of
 PC on stack. All flags remain unaffected.
 C cond. address - This instructions call the subroutine
 conditionally, after storing content of PC
 on stack. The instructions are as given
 below with conditions.

CC - Call if C=1
 CNC- Call if C=0
 CP- Call if S=0
 CM- Call if S=1
 CPE- Call if P=1
 CPO- Call if P=0
 CZ- Call if Z=1
 CNZ- Call if Z=0

22

 All flags remain unaffected.

 Return

 RET - This instruction returns from the subroutine
 unconditionally. The address is retrieved from the
 stack. All flags remain unaffected.
 R cond - This instruction returns from the subroutine
 conditionally. The address is retrieved from the
 stack. All flags remain unaffected.
 These conditional return instructions are as given below with
conditions.
 RC Return if C=1
 RNC Return if C=0
 RP Return if S=0
 RM Return if S=1
 RPE Return if P=1
 RPO Return if P=0
 RZ Return if Z=1
 RNZ Return if Z=0
 RST n - This instruction is similar to a call instruction for
 fixed address.
 The fixed address are as given below.

Instruction Destination Address
 RST 0 - 0000H
 RST 1 - 0008H
 RST 2 - 0010H
 RST 3 - 0018H
 RST 4 - 0020H
 RST 5 - 0028H
 RST 6 - 0030H
 RST 7 - 0038H

4. Logic group

 The logical operations can be performed by using the following
instructions.
 ANA r - The content of accumulator is logically ANDed
 with content of register r. The result is stored
 into accumulator. All flags are affected. The carry
 will be cleared and the auxiliary carry will be set.
 ANA M - The content of accumulator is logically ANDed
 with content of memory (whose address is given
 in HL pair). The result is stored into accumulator.
 All flags are affected. The carry flag is cleared
 and the auxiliary carry will be set.
 ANI Data - The content of accumulator is logically ANDed
 with Data. The result is stored into accumulator.
 All flags are affected. The carry flag is cleared
 and the auxiliary carry will be set.

23

 XRA r - The content of accumulator is logically exclusive
 0Red with the content of register r. The result is
 stored into accumulator. All flags are affected.
 The carry and auxiliary carry flags are reset.
 XRA M - The content of accumulator is logically exclusive
 0Red with the content of memory (location in HL
 pair). The result is stored into accumulator. All
 flags are affected. The carry and auxiliary carry
 flags are reset.

XRI Data - The content of accumulator is logically
 exclusive ORed with the data. The result is
 stored into accumulator. All flags are affected.
 The carry and auxiliary carry flags are reset.
 ORA r - The content of accumulator is logically ORed
 with the content of register r. The result is stored
 into accumulator. All flags are affected. The carry
 and auxiliary carry flags are reset.
 ORA M - The content of accumulator is logically 0Red
 with the content of memory (whose address is
 given in HL pair). The result is stored into
 accumulator. All flags are affected. The carry and
 auxiliary carry flags are reset.

ORI Data - The content of accumulator is logically ORed
 with the data. The result is stored into
 accumulator. All flags are affected. The carry

 and auxiliary carry flags are reset.
 CMP r - This instruction compares the content of
 accumulator with content of register r. If both are
 same zero flag is set. If content of accumulator
 is less then content of register so carry flag is set.
 All fags are affected.
 CMP m - This instruction compares the content of
 accumulator with content of memory (whose
 address is given in HL pair). If both are same
 zero flag is set. If content of accumulator is less
 then content of memory carry flag is set. All
 flags are affected.
 CPI Data - This information compares the content of
 accumulator with data. If both are same so zero
 flag is set. If the content of accumulator is less
 then Data, so carry flag is set. All flags are
 affected.

STC - The carry flag can be set by this instruction.
 CMC - The carry flag is complimented by this instruction.
 CMA - The content of accumulator is complimented by this
 instruction.

 Rotate

 RLC - Rotate content of accumulator left by one position.
 The content of carry flag is lost.

24

 RRC - Rotate content of accumulator right by one position.
 The content of carry flag is lost.
 RAL - Rotate content of accumulator left by one position
 through carry.
 RAR - Rotate content of accumulator right by one position
 through carry.

5. Stack, I/O and machine control Instructions

 PUSH rp - This instruction pushes(copies) the content
 of register pair on the stack. The content of
 stack pointer is decremented by two. Flags
 are unaffected.
 PUSH PSW- The content of accumulator and flags(PSW
 means Program Status Word) are pushed on the
 stack. The content of stack pointer is
 decremented by two. Flags are unaffected.
 POP Rp - The data from the top of stack is retrieved
 into register pair Rp. The stack pointer is
 incremented by two. Flags are unaffected.
 POP PSW - The contents of accumulator and flags are
 retrieved from top of the stack. The stack
 pointer is incremented by two. Flags are
 unaffected.
 XTHL - The data at locations pointed by SP and
 SP+1 are exchanged with registers L and

H respectively. Flags are unaffected.
SPHL - The content of register pair H gets copied into

 stack pointer. Flags are unaffected.

Input / Output

IN Port - This instruction receives 8-bit data from port and stores
into accumulator Flags are unaffected.

OUT Port- This instruction puts 8-bit data from Accumulator to the
port. Flags are unaffected.

Machine Control

EI - This instruction sets the internal interrupt flip-flop
 of microprocessor. Flags are unaffected.
 DI - This instruction resets the internal interrupt flip-
 flop of microprocessor. Flags are unaffected.
 NOP - This instruction is not doing anything. It is also
 known an No-Operation. Flags are unaffected.
 HLT - The microprocessor halts by this instruction. It
 will be restarted by interrupt or reset. Flags are
 unaffected.
 SIM - The full form of this instruction is Set Interrupt
 Mask. This instruction works with the content of

25

 accumulator. The meaning of all eight bits of
 accumulator is given below.
 * D0,D1 and D2 mask RST 5.5,RST 6.5 and RST
 7.5 respectively. ‘1’ means mask and ‘0’ means
 unmask.
 * D3 should be ‘1’ to make D0,D1 and D2
 effective.
 * D4 resets RST 7.5 flip-flop.
 * D5 is not used.
 * D6 is serial output enable. It should be ‘1’ to
 enable serial output data.

 D7 bit transfers at SOD pin if D6 is ‘1’.

RIM - The full form of this instruction is Read Interrupt
 Mask. The status is copied into accumulator. The
 meaning of all eight bits of accumulator is as
 given below.

* D0,D1 and D2 set if RST 5.5,RST 6.5 and RST 7.5
respectively are masked.

 * D3 sets if IE(interrupt enable)flag is set.
 * D4,D5 and D6 set if RST 5.5,RST 6.5 and RST
 7.5 respectively are pending.

* D7 reads the logic at SID(serial input data)pin.

CHAPTER-4 INTERFACING OF EPROM AND RAM

 The 8085A processor has only a few internal register which can store
data. In real life any user’s program cannot be accommodated in such internal
register memory. Hence 8085A requires external memory.

26

 Processor alone cannot make a useful system. It requires memory and
input output facility. To be a useful microprocessor based system certain
user’s commands are to be a remembered permanently, so that every time
system is initialized it can perform execution of few user defined commands.
 For this system has to employ a sort of memory which can permanently
store these commands, EPROM is such type of memory. Hence, it becomes
very interesting to know that how one can interface such EPROMs with the
processors.
 On the other hand microprocessor based system (e.g. microprocessor
trainer kit) does not required to remember permanently users program. For
this purpose it requires some temporary memory which can perform read
write operation, in order to execute user programs. This type of memory is
available as RAM memory. So it is also interesting to know how to interface
such memory chips with processor.

4.1 EPROM 2764A

 It is a 8-bit wide memory. In the number 2764A, 64 indicates that it has
total 64 Kbit memory, In bytes, it becomes 8Kx 8 memory size.[4]

4.1.1 BLOCK DIAGRAM AND FUCTIONAL DESCRIPTION

 The block diagram of 2764A is shown in Figure 4.1.1.1.
 The heart of the chip is a cell matrix of 65536 bits. This cell matrix is
internally so arranged that it gives us 8KX8 memory. The 8K bytes require
total 13-address lines. In 2764A this lines are A0 to A12. These address lines
are internally applied to Y-decoder and X-decoder, which select the particular
cell of cell matrix. The output of the selected cells is passed to output buffers.
These buffers are again controlled by output enable pin. When OE is low the
output buffers send the data on the output pins, O0 to O7.
 The chip 2764A has four special pins VPP, OE, PGM and CE.

The functions of above pins together decides the various modes of the
operation of 2764A. Table-4.1.1.1. describes the detail of various modes of
2764A.

Table-4.1.1.1

Mode
Pins

CE

OE

PGM

VPP

VCC

Output

Read VIL VIL VIH VCC 5.0V D out
Output
disable

VIL VIH VIH VCC 5.0V High – Z

Stand by VIH X X VCC 5.0V High – Z
Programming VIL VIH VIL 12V 5.0V D In

Program
verify

VIL VIL VIH 12V 5.0V D out

Program
inhibit

VIH X X 12V 5.0V High – Z

27

 OE
 PGM

 CE

Figure 4.1.1.1 INTERNAL BLOCK DIAGRAM OF
 EPROM 2764A

 In above table VIL is the input low level voltage and VIH is the input high
level voltage.
(VIL – 0.1V to 0.8V and VIH = 2V to + VCC)
 To program the 2764A we have to select the chip (CE = VIL), inhibit the
reading operation. (OE = VIH), and PGM = VIL. At the same time VPP should be
given +12V supply and VCC should be given +5V.
 Figure 4.1.1.2. shows the pin diagram of 2764A.

4.1.2 INTERFACING OF 2764A IN THE PRESENT SYSTEM

 In the present microprocessor system design 8K byte of EPROM was
considered sufficient to store the monitor program.
 For interfacing 2764A with the 8085A a decoder 74155 and a latching
IC 74L5373 are used. The interfacing circuit for the same is shown in Figure
4.1.2.1. Note that this circuit is a part of the detailed circuit diagram of the
microprocessor trainer kit designed by us.
 IC 74373 demultiplexes the AD0 to AD7 lines of 8085A, when ALE
becomes high and it enables IC 74L5373 through its pin no.11(G), to latch the
address A0 to A7. Active low enable pin no.1, that is OC of IC 74373 is
permanently grounded. The output Q0 to Q7 of IC 74L5373 (i.e. A0 to A7
address lines.) are connected with the address lines A0 to A7 of EPROM
2764A. The rest of the address lines of 2764A, that is A8 to A12 address lines
of 8085A.

OUTPUT ENABLE
CHIP ENABLE

AND
PROG LOGIC

Y
DECODER

X
DECODER

OUTPUT BUFFERS

Y-GATING

65,536 BIT
CELL MATRIX

Vcc
GND
Vpp

A0
TO

A12

O0 TO 07

28

The EPROM IC has a pin named OE which helps to read data out. This
OE pin is directly connected with the RD of 8085A. Its PGM and Vpp are tied
up with Vcc

Figure 4.1.1.2 PIN DIAGRAM OF EPROM 2764A

The chip selection is controlled by the decoder 74155. In the present system
design this 74155 is used to select the memory chips 2764A, 6264, and I/O
chips 8279 and 8255.
 To separate the memory and I/O devices the output pins of 74155 are
divided into two groups that is 1Y0, 1Y1, 1Y2 and 1Y3 are for I/O device
selection and 2Y0, 2Y1, 2Y2 and 2Y3 are for memory chip selection.
 74155 has four enable pins out of which three are active low and one
active high. Out of three active low pins two are permanently grounded. The
remaining two (where one is active low and another is active high) are
connected with IO/M pin of 8085A. Here active high is connected with
enabling of outputs of internal decoder 1 of 74155. While active low is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 28

 27

26

25

24

23

22

21

20

19

18

17

16

15

EPROM
2764

Vpp

A12

A7

A6

A5

A4

A3

A2

A1

A0

OUT 0

OUT 1

OUT 2

GND

Vcc

PGM

NC

A8

A9

A11

OE

A10

CE

OUT 7

OUT 6

OUT 5

OUT 4

OUT 3

29

connected with the internal decoder-2 of 74155. Hence whenever IO/M pin of
8085A is high, I/O devices are selected, and when IO/M is low, memory chips
are selected.

Now the differentiation of I/O devices and memory chips is done
through the input lines A and B of 74155, these A and B input lines of 74155
are directly connected with the A14 and A15 address lines of 8085A
respectively. Following Table-4.1.2.1 explains the I/O device and memory
chips selection details.

 TABLE-4.1.2.1

IO/M

 A
(A14)

B
(A15)

Selection

0 0 0 EPROM 2764A
(2Y0)

0 0 1 Unused (2Y2)
0 1 0 RAM 6264 (2Y1)
0 1 1 Unused (2Y3)
1 0 0 PPI 8255 (1Y0)
1 0 1 External card

(1Y1)
1 1 0 KDI 8279 (1Y1)
1 1 1 Unused (1Y3)

Figure: 4.1.2.1 CONNECTION OF EPROM WITH 8085

30

4.2 STATIC RAM 6264

 It is 8-bit wide read/write memory. Its capacity is 8KX8 bits.[4]

4.2.1 BLOCK DIAGRAM AND FUCTIONAL DESCRIPTION OF
 6264

31

 Figure 4.2.1.1 shows the internal block diagram of 6264 RAM chip. It
has total 13-address lines i.e. A0 to A12.
 As shown in the block diagram the 65536 bits are arranged in three
dimensions as 8 Matrices of 256 X 32 rows & columns respectively. The
address lines A2, A3, A4, A5, A7, A8, A9 and A11 drive the row decoder while A0,
A1, A6, A10 and A12 drive the column decoder. There is unit called input data
control which accepts 8-bit input on the lines DQ0 to DQ7 under the control of
E1, E2 and W. The reading of the chip is done under the control of E1, E2, W
and G.
 Table 4.2.1.2. explains the various modes of the chip MCM 6264C.

Table – 4.2.1.2

E1

E2

G

W

Mode

Output
H X X X Not

selected
High - Z

X L X X Not
selected

High - Z

L H H H Output
disabled

High - Z

L H L L Read D out
L H X X Write High - Z

 Figure 4.2.1.2. shows the pin assignment of the 6264C.

4.2.2 INTERFACING OF 6264 IN THE PRESENT SYSTEM
 In the present system, the interfacing circuit for RAM 6264 involves
74LSs373 and 74155 and 8085. ICs 74373 and 74155 are having the same
connection details with the 8085A as discussed in section 4.1.2. The only
difference in this one is that the A and B input lines of 74155 selects 6264
through output pin 2Y, by accepting A15, A14=0,1.

The detailed circuit diagram is shown in Figure 4.2.2.1 Note that since
this is Read/Write memory one should connect RD and WR pins with 6264. In
the present design WR is connected with WR and RD is connected with OE of
6264. 6264 has two chips select lines. CS1, and CS2. CS1 is driven by 74155
while CS2 is connected with +5volt.

ROW
DECODER

A2

A3

A4
A5

MEMORY
MATRIX

256 ROWS
X32

X8 COLUMNS

Vcc

Vss

32

Figure 4.2.1.1 INTERNAL BLOCK DIAGRAM OF RAM 6264

33

Figure 4.2.1.2. The pin assignment of the 6264

Figure 4.2.2.1 : CONNECTION OF RAM WITH 8085

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 28

 27

26

25

24

23

22

21

20

19

18

17

16

15

RAM
6264

Vpp

A12

A7

A6

A5

A4

A3

A2

A1

A0

I/O 0

I/O 1

I/O 2

GND

Vcc

WR / PGM

CS2

A8

A9

A11

OE

A10

CS1

I/O 7

I/O 6

I/O 5

I/O 4

I/O 3

34

CHAPTER – 5 I/O INTERFACING

35

 For a given microprocessor system to execute the user’s program,
there should be a provision to allow the user to store these programs into
microprocessor system’s memory. This is generally done by interfacing a hex
key pad with the microprocessor. User also needs to check the results of the
execution of his program, for this purpose output device is used. Generally
seven segment LEDs or LCD display are used in microprocessor trainer kits.
 8085A based system is not just a calculating machine. It is also used
for control applications. For this some I/O port lines are needed to
communicate the control signals to and fro between microprocessor and the
device.
 Such interfacing of input device, output device and I/O port lines with
the processors is called I/O interfacing.
 In the present work the keyboard and display controller chip 8279 is
used for interfacing the hex keyboard and seven segment display. Also the
programmable peripheral interface chip 8255 is employed for interfacing I/O
port lines with 8085A.

 5.1 Programmable keyboard display interface 8279

 This chip is useful to interface the keyboard and display with 8085
microprocessor. It has been introduced by Intel. [6]
 The advantage of interfacing 8279 with 8085A over other techniques
are as follows.
 It relives microprocessor from scanning keyboard & refreshing

displays.
 It also takes care about debouncing of key and blanking display while

scanning.
 It can perform simultaneous keyboard display operation.
 The scan time for display is programmable.
 It can operate in different modes.

5.1.1. Block diagram of 8279

 Block diagram of 8279 is shown in Figure 5.1.1.
The block diagram is divided into following units.

1. Data buffer.
2. I/O control.
3. FIFO/sensor RAM status.
4. Display address Registers.
5. 16X8 Display RAM.
6. 8X8 FIFO/sensor RAM.
7. Scan counter.
8. Return.
9. Keyboard Debounce & control.
10. Display registers.
11. Control & Timing registers.
12. Timing & Control.

36

Figure 5.1.1 Block Diagram of 8279

1. Data buffer

37

 This block interfaces the data lines of 8279 with the system data
bus. It takes control words from 8085A to 8279 as well as data to and fro. It is
represented by directional arrow.

2. I/O control
 In this unit the pins CS, A0, RD and WR are associated. The
combinations of low or high status of these signals determine the direction of
data to and fro between 8085A and 8279.
 Following Table 5.1.1. explains the various conditions of input
output data communication between 8085A and 8279.

 Table – 5.1.1

Signal Conditions
Meaning

CS

A0

RD

WR
0 0 0 0 No meaning
0 0 0 1 System data

bus <= D0 –
D7 of 8279

0 0 1 0 No meaning
0 0 1 1 No meaning
0 1 0 0 Status word

=> system
data bus

0 1 0 1 Control words
from system
data bus =>
D0 – D7 of

8279
0 1 1 1 No meaning
1 X X X Chip not

selected

3. FIFO/sensor RAM status
 With this block only one pin of 8279 is associated and that is
IRQ (interrupt request).
 This block stores the status of FIFO/sensor RAM. It keeps the
track of number of entries in FIFO RAM and provides and IRQ signal when
the FIFO is not empty. In other words whenever any key is depressed and its
corresponding code gets stored into FIFO RAM, and IRQ is generated. This is
normally connected with any RST interrupt pins of 8085A. Proper service
routine is executed on IRQ, which read the FIFO RAM. As the FIFO RAM is
read the IRQ goes low.
 The status of the FIFO RAM can be checked by reading of the
status word.

4. Display address Registers

38

 8279 has a capacity to store the display codes (8-bit) of the
characters to be displayed on particular type of display. For this it contains an
internal RAM memory of 16-bytes, exclusively for display character codes.
Each location of this memory is addressed by one of the register “Display
address registers”. We can say that this block contains a group of registers,
which contains the address of various locations of display RAM. Note that
these addresses are supplied by user through software programs by using the
control words of 8279.

5. 16X8 display RAM
 It is the internal read / write memory of 8279. It has 16-locations
of 8-bits. It stores the character codes for display purpose.

6. 8X8 FIFO/sensor RAM
 8279 is able to take in the codes generated by the key
depression of the keyboard, as well as any change of sensor matrix, in lieu of
keyboard. This block stores the consecutive 8-entries of keyboard/sensor
matrix. This is a particular type of memory called FIFO.
 The content of this FIFO can be read either by status check
method or by interrupt method.

7. Scan counter
 This unit has four pins associated with it. These are scan lines
SL0 to SL3. This unit is working just like a counter and output of this counter
appears on the lines SL0 to SL3. This counter is a programmable and works
as encoded counter or decoded counter. When programmed as encoded
counter the lines SL0 to SL3 can be connected as input to external decoder
chip.
 When it is programmed as decoded counter the decoding is
done internally in the 8279 and the lines SL0 to SL3 behave as the output of
internal decoder. It has another interpretation in encoded mode 16 displays
(e.g. FNDs) can be interfaced where as in decoded mode only four display
devices can be interfaced.
 These lines are used to scan the keyboard and display.

8. Return
 This block takes the status of the keys of the keyboard or any
change of the sensor element of sensor matrix. There are ten different pins
associated with this block, these are eight return lines,RL0 to RL7 and control
and shift pins. RL0 to RL7 lines are generally connected with the columns of
the keyboard matrix. The status of all the columns is stored as three bit code
in FIFO RAM. Shift and control lines are helpful to double the keycodes of the
keyboard that means if shift key is pressed then all the keys of the keyboard
have different key codes generated. Similarly control/strobe pin also can be
used. Note that control/strobe is working as the strobed line when keyboard is
used in strobed input mode.

9. Keyboard debounce and control

39

 This block transfers the code of the key depressions with proper
debounce logic.

10. Display registers
 This block contains two registers A and B, which store the
display codes.
 Each register stores the four bit code. For 8-bit code they can be
combined. The contents of this block appear on the output pins, named as out
A0 to out A3 and out B0 to out B3.

11. Control and Timing registers
 This block contains the different types of control registers, which
are helpful to program the 8279.

12. Timing and Control
 This block controls the overall function of all the blocks along
with the control timing registers block. A special pin called BD is associated
with this block. This pin is useful for blinking the display under the program
control.

The programmable peripheral interface 8279 is a 40-pin device.

These 40-pins are divided into four categories.

1. CPU interface pins.
2. Keyboard input pins.
3. Display output pins.
4. Scan pins.

1. CPU interface pins

It consists of IRQ, DBO-DB7, RD, WR, CS, AO, RESET and CLK.

IRQ: This is output line and known as interrupt request. This signal is

activated whenever the FIFO RAM is not empty in keyboard mode or a
change in a sensor is defected in sensor matrix mode. This line is used for
interrupt driven I/O system.

DBO-DB7: These lines are bi-directional lines. All data bytes and

command bytes between microprocessor and 8279 are transferred through
these lines.

RD: This is an input line. When this pin becomes low the

microprocessor can read a byte from 8279.

WR: This is an input line. When this pin becomes low the

microprocessor can write a byte into 8279.

CS: This is an input line. When this pin becomes low the

microprocessor can read or write a byte.

40

AO: This is an input line. When A0=0 means work with Data register.

And when A0=1 means work with control/status register.

RESET: This is an input line. A high signal on this pin resets the

8279. After being reset, the IC 8279 is forced to select following modes.

1. 16 digit, 8-bit character display-left entry.
2. Encoded scan keyboard-2 key lock out.
3. The clock pre-scaler or divisor is set to 3110.
4. The clear code is set to 0000 0000. (Common Cathode Display).

CLK: This is an input line. The clock is given from microprocessor to

generate internal timing.

2. Keyboard Input Lines

This keyboard Input line category consists RL0-RL7, shift and
CNTL/STB lines. These lines are connected to the keyboard.

RL0-RL7: These are the return lines. These lines are connected to

the scan lines through the keys or sensor switches. It is having an internal
pull up registers so it remains high till the key remains unpressed. They
also serve as an 8-bit input in the strobed input mode.

Shift: This is an input line. In the scanned keyboard modes, the

status on this pin is also strobed with the key position on key closure. It
has an active internal pull-up. Hence key closure should pull it low.

CNTL/STB: For keyboard modes this line is used as a

control input and strobed like status pin on key closure.
In the strobed input mode, this line acts as STB input line. The data

on RL0-RL7 is entered into FIFO at the rising edge of this signal.

1

2

3

40

39

38

RL2

RL3

CLK

VCC

RL1

RL0

41

Figure-5.1.2(a) Pin diagram of 8279

 8279

42

 Figure-5.1.2(b) The logic symbol of 8279

3. Display output lines
This display output lines category consists of OUT A0-3, OUT B0-3 and

BD lines. These lines are connected to display.

43

OUT A0-3 & OUT B0-3
These lines are output lines. These are two, four bit output ports of the

16-byte display RAM. The data from these outputs is synchronized to the
scan lines (SL0-SL3) for multiplexed digit displays. These two ports can be
individually blanked or inhibitated.

BD: This is an output line. It is used to blank the display. This pin is
activated during digit switching or by a display blanking command.

4. Scan Lines

SL0-SL3: These are output lines. It is used to scan keyboard or sensor
matrix and display.
 These lines can be either encoded (1 of 16) or decoded (1 of 4 SL0 to
SL3).

5.1.3. Programming part of 8279

The programming of 8279 can be done using the following control word.

1. Key board/Display mode set
 MSB LSB

0 0 0 D D K K K
D D: Display Mode

0 0: Eight 8-bit character display – left entry
0 1: Sixteen 8-bit character display – left entry
1 0: Eight 8-bit character display – right entry
1 1: Sixteen 8-bit character display – right entry

K K K: Keyboard Mode
0 0 0: encoded scan keyboard – 2 key lockout
0 0 1: decoded scan keyboard – 2 key lockout
0 1 0: encoded scan keyboard – N-key rollover
0 1 1: decoded scan keyboard – N-key rollover
1 0 0: encoded scan sensor matrix
1 0 1: decoded scan sensor matrix
1 1 0: strobed input, encoded display scan

2. Program clock

 MSB LSB

0 0 1 P P P P P
This command causes the external clock to be divided by a prescaler PPPPP
(which may have values in the range 2 to 31) to generate internal timing and
multiplexing signals.

44

3. Read FIFO/Sensor RAM

 MSB LSB

0 1 0 AI X A A A
AI = Auto-Increment
AAA = RAM Address Bits
X = Don’t care

This sets up the 8279 for a read of the FIFO/sensor RAM. All subsequent
reads will be from successive locations in the FIFO (if the AI flag is set) until
another command is issued. In the Sensor Matrix mode, AAA represents one
of the eight rows of the sensor RAM. If AI = 1, subsequent Read operations
are from successive FIFO locations.

4. Read display RAM

 MSB LSB

0 1 1 AI A A A A

AI = Auto-Increment
AAAA = Row Address of Display RAM that is to be read

5. Write display RAM

 After writing this command word with A0 = 1, further write operations with A0
= 0 will be to the display RAM. The role of the AI flag is the same as in the
Read Display RAM and FIFO/Sensor RAM.

 MSB LSB

1 0 0 AI A A A A

6. Display write inhibit/Blanking

 MSB LSB

1 0 1 X IW IW BL BL

IW = Inhibit Write Flag
BL = Blank Display Flag

IW bits can be used to mask nibble A or nibble B when set to ‘1’. The BL bits,
if set to ‘1’ cause the A and B nibbles to be blanked.

45

7. Clear
 MSB LSB

1 1 0 CD CD CD CF CA
CD = Clears all rows of Display RAM to a selectable blanking code as follows:
 CD CDCD

0 X all zeros
 1 0 AB=Hex 20H
 1 1 all ones
 Enable clear display when 1
CF = FIFO status cleared, IRQ line reset
CA = Clear All (combined CD and CF)

8. End Interrupt/ Error Mode Set

 MSB LSB

1 1 1 E X X X X

In the N-key rollover mode, if the E bit is programmed to ‘1’, the chip
operates in the special Error mode. In the Sensor Matrix mode, this command
lowers the IRQ line and thus permits further writing into RAM.

9. Status word

 MSB LSB

DU S/E O U F N N N

D7: DU : Display Unavailable
D6: S/E : Sensor closure/ Error flag for multiple closure.
D5: O : Over-run Error
D4: U : Under-run Error
D3: F : FIFO Full
D2: N :
D1: N : Number of characters in FIFO
D0: N :

 The FIFO status word indicates whether there is an underrun (when the
CPU attempts to read an empty FIFO) or overrun (which occurs during the
attempted entry of an additional character when the FIFO is full), and the
number of characters in the FIFO RAM. It also provides information about
Sensor Closure, any error flag for multiple closures, and the status of the
availability of the display.

DU = Display Unavailable
S/E = Sensor Closure\Error Flag for Multiple Closures
O = error Over-run
U = error Under-run
F = FIFO Full
NNN = Number of characters in FIFO

46

5.1.4. Interfacing of 8279 in the present system

The interfacing of 8279 in the present microprocessor trainer kit is
explained in two steps.
 The first step describes the interfacing of 8279 with 8085A, while the
second step describes the interfacing of 8279 with 24-keys hex pad and 8-
FND displays.

 STEP – 1 – CPU side interfacing of 8279
Figure – 5.1.4.1(A) shows the circuit details of interfacing the 8279 with

8085A through 74LS373 and 74155. The functions of Latch IC 74LS373 and
decoder 74155 are explained earlier. The Read, Write, Clock, Reset and IRQ
pins of 8279 are directly connected with the RD, WR, CLK OUT, Reset out
and RST5.5 respectively.

The A0 pin of 8279 is connected to the AD0 pin of 8085 through a Latch
IC 74373. This suggests that for every T1 clock of every machine cycle
74LS373 connects the address line A0 with the A0 pin of 8279.

Note that address lines A14 and A15 are responsible for generating chip
select for 8279.

The following signal conditions generate the chip select for 8279.

Pin

A15

A14

IO/M

Logic state 0 1 1

 The port addresses of 8279 are decided as shown in Table 5.1.4.1.

Table – 5.1.4.1

A15 A14 A13 A12 A11 A10 A9 A8 Selection
A7 A6 A5 A4 A3 A2 A1 A0
0 1 X X X X X 1 Control/Status

register
0 1 X X X X X 0 Data register

In the hardware we have interfaced 8279 as I/O device by using IO/M

such that CS of 8279 becomes valid only when IO/M = 1. For this reason we
have to use I/O related instructions for accessing ports of 8279. We know that
when we use I/O addressing the lower byte of address is duplicating on higher
address lines. For this reason in Table 5.1.4.1 We have taken A0-A8, A1-
A9……A7-A15, as common address lines. Taking this into consideration
address line A8, A14 and A15 decide the port addresses of 8279. Unconnected
addressing lines can be taken as ‘0’ or ‘1’. This generates many duplicate
addresses of 8279 ports. But in our work we have taken unconnected lines as
zeros. So port addresses of 8279 are as follows.
 Control/Status register = 41H

Data register = 40H

47

 Step – 2 I/O devices side interfacing of 8279

Figure – 5.1.4.1(B) illustrates the circuit details of the interfacing of the
24-keys hex keypad and 8-FND display with 8279. The 8279 is configured as
follows.

1. For key board, encoded scan keyboard with 2-key lockout.
2. For display, 8-digit, 8-character display with right entry.

This configuration for key board and display makes the KB/DISP mode
set word to be 10H.

The clock for the 8279 is programmed to be system clock divided by 31
hence 3MHz/31 = 96.77KHz is the clock for 8279. This makes the program
clock word of 8279 to be 3Fh.
We have used here common anode type seven segment FND display so to
make individual display element (diode) glow, the corresponding output line of
8279 has to be zero. Keeping this in mind to clear the all display FNDs (all
eight) we have to output “all once”, on OA0 to OA3 and OB0 to OB3 output
lines of 8279. For this all rows of display RAM should be made 1’s. At the
same time we need not clear the FIFO. All these all together frames the
“Clear word” to be DDh.

The output lines of 8279 are connected to the individual elements of all
FNDs through 74LS245. To make a one way direction in 74LS245 we have
made the DIR pin of this IC to be high. The enable gate pin G which is active
low has been connected permanently to the ground.

Another important aspect of 8279 is scanning. For this four scan lines
are provided, Viz. SL0 to SL3. But due to manufacturers guideline the SL3 line
is not used. SL0 to SL2 lines are connected to the decoder 74LS138, which is
permanently enabled by connecting its active high enable pin G1 to VCC and
active low pins G2A and G2B with the ground.

The outputs of SL0 to SL2 change from 000 to 111, and selects the
outputs of 74LS138 from Y0 to Y7 in sequence. These outputs Y0 to Y7 are
connected with common anodes of individual eight FNDs. Thus when SL0 to
SL2 are 000 it makes display-0 to be selected. The Y0 output of 74138 is also
connected with Row-2 of the matrix key board. Where in keys 4, 5, 6, 7, REG-
CHK & Sing SIP are “returned” to the return lines RL1 to RL6 of 8279. In
similar way the outputs are connected with the remaining Rows of key board
& corresponding FNDs of display. Y4, Y5, Y6 & Y7 are connected with only
FNDs.

48

Figure – 5.1.4.1(A) The circuit details of interfacing the 8279 with 8085A

49

Figure – 5.1.4.1(B) The circuit details of the interfacing of the 24-keys

hex keypad and 8-FND display with 8279

50

 Circuit Function
The important aspects of this circuit function can be divided as follows.

1. How the circuit identifies the key code.
2. How the circuit displays a display character.

1. Key code identification

The key codes are identified by the arrangement of the key matrix 8279
can identify the key from maximum 8X8 key matrix. It has also facility of
assigning four different meaning to individual keys by the use of shift and
control keys. We have not used this facility.
 We have designed 4X6 matrix key board. Here rows and
columns are in decoded form in a sense that whenever any key is pressed its
corresponding position number will be transferred to FIFO RAM in encoded
form. For example, if in the present circuit “Execute” key is pressed then its
corresponding position i.e. Row-2 and Column-4 will be encoded as 100 for
return lines and 010 for scan lines as shown bellow.

CNT SHIFT
 SCAN RETURN

1 1 0 1 0 1 0 0
Code = D4H

The complete key codes of key board are given in following Table-
5.1.4.2..

Table – 5.1.4.2

Keys Scan
Line number

Return
Line number

Codes in Binary &
HEX

0 1 6 1100 1110=CE
1 1 5 1100 1101=CD
2 1 1 1100 1001=C9
3 1 2 1100 1010=CA
4 0 6 1100 0110=C6
5 0 5 1100 0101=C5
6 0 1 1100 0001=C1
7 0 2 1100 0010=C2
8 2 6 1101 0110=D6
9 2 5 1101 0101=D5
A 2 1 1101 0001=D1
B 2 2 1101 0010=D2
C 5 6 1110 1110=EE
E 5 1 1110 1101=ED
F 5 2 1110 1001=E9

FM 5 3 1110 1010=EA
NEXT 1 4 1110 1011=EB
PREV 1 3 1100 1011=CB

GO 5 4 1110 1100=EC
EXEC 2 4 1101 0100=D4

51

BM 2 3 1101 0011=D3
ER 0 3 1100 0011=C3
SS 0 4 1100 0100=C4

3. Display of character

 Which ever character we want to display on FND display its
equivalent FND code has to be generated. Following figure explains the
procedure.

Figure. 5.1.4.2. (a) The diode elements of FND

D7 D6 D5 D4 D3 D2 D1 D0
A B C D E` F G H

Figure. 5.1.4.2. (b) code generation

 As shown in Figure. 5.1.4.2.(a). the diode elements of FND
LT542 are corresponded with data bits D7 to D0 as shown in Figure.
5.1.4.2.(b).
 Suppose we want to display ‘1’ we have to make the diode
element b and c low and others high, because this is common anode type
FND. This makes the code.

D7 D6 D5 D4 D3 D2 D1 D0
A B C D E F G H
1 0 0 1 1 1 1 1

 The code is 9FH. By following this procedure the necessary numerals
and alphabets are generated as shown below.

A

B

C

D

E

F

G

H

52

 The below list given in Table-5.1.4.3 containts only the character
codes which we have used.

 Table – 5.1.4.3

Character Code Character Code
0 03 F 71
1 9f D 85
2 25 0 03
3 0d E 60
4 99 S 49
5 49 U 82
6 41 8 01
7 1f 5 49
8 01 H 91
9 09 L E3
A 11 P 31
B C1 N D5
C 63 T E1
D 85 G 08
E 61 P 30

All these codes are stored in EPROM. Now to display them they are

brought into the display RAM of 8279. Suppose we want to display the start
up message “—doe. su. 85”. Now the following instructions will bring this code
into display RAM of 8279.

START: LXI SP,5EFFH

 MVI A,10H ;8-DIGIT,8-CHARACTER RIGHT ENTRY

 OUT 41H ;ENCODED SCAN K.B. 2-KEY LOCKOUT

 MVI A,3FH ;CLK DIVIDED BY 31(11111b).
 OUT 41H

 MVI A,DDH ;COMMON ANODE CF=0 CA=1
 OUT 41H

 MVI A,00H
 LXI H,TEMP_BUF
 MVI B,25H
LOOP1: MOV M,A
 INX H
 DCR B
 JNZ LOOP1

 CALL BLK_DISP ;BLANK ALL DISPLAY MEMORY
 LXI D,FFFFH
 CALL DELAY

53

 MVI A,0EH
 SIM

 MVI A,40H ;READ FIFO IN FIXED ADDRESS MODE
 OUT 41H
 MVI A,90H ;TO WRITE DISPLAY RAM
 OUT 41H
 MVI B,08H
 LXI H,FND_CODE+19H

LOOP21: MOV A,M
 OUT 40H
 DCX H
 DCR B
 JNZ LOOP21

START1: EI
 HLT

 When codes of the start up message are transferred the scan
counter will generate the binary count starting from 000 to 111 and will display
the codes stored in display RAM.

5.2 Programmable peripheral Interface 8255

 8255 is a general purpose I/O device, to perform parallel
communication. It has three I/O ports named Port-A, Port-B and Port-C. Each
consisting of eight bits. These ports can be used in three different modes that
is mode-0, mode-1 and mode-2.
 In mode-0 all three ports are used as simple input or output ports. In
mide-1, port-A and/or port-B are used as input/output under the control of the
hand shaking signals which are obtained through certain pins of port-C. In
mode-2, port-A can be used as bi-directional port while port-B can be used in
mode-0 or in mode-1. Certain pins of port-C are used by port-A as
handshaking signals.[6]

5.2.1. Block diagram of 8255
 The block diagram and pin diagram of 8255 are shown in Figure
5.2.1.1 and Figure 5.2.1.2 respectively. The block diagram of 8255 can be
divided into following blocks.

1. Data bus buffer.
2. Read/Write control logic.
3. Group-A and Group-B control.
4. Ports A, B and C.

54

1. Data bus buffer
 The pins D0 to D7 are associated with this block. It is a three
state bi-directional 8-bit buffer. It is used to interface 8255 to the system data
bus. Data is transmitted or received by the buffer upon execution of input or
output instruction of the CPU. Control Word and the Status information are
also transferred through the data bus buffer.

2. Read/Write and Control Logic
The function of this block is to manage all of the internal and external

transfers of both Data and Control or Status words. It accepts inputs from the
CPU Address and Control busses and in turn, issues commands to both of
the Control Groups.

(CS)
Chip Select. A “low” on this input pin enables the communication between the
8255A and the CPU.

(RD)
Read. A “low” on this input pin enables the 8255A to send the data or status
information to the CPU on the data bus. In essence, it allows the CPU to “read
from” the 8255A.

(WR)
Write. A “low” on this input pin enables the CPU to write data or control words
into the 8255A.

(A0 and A1)

Port Select 0 and Port Select 1. These input signals, in conjunction with the
RD and WR inputs, control the selection of one of the three ports or the
control word registers. They are normally connected to the least significant
bits of the address bus (A0 and A1).

Table-5.2.1.1 - 8255A BASIC OPERATION

A1

A0

RD

WR

CS

Input Operation (READ)

0 0 0 1 0 Port A – Data Bus
0 1 0 1 0 Port B – Data Bus
1 0 0 1 0 Port C – Data Bus
 Output Operation

(WRITE)
0 0 1 0 0 Data Bus – Port A
0 1 1 0 0 Data Bus – Port B
1 0 1 0 0 Data Bus – Port C
1 1 1 0 0 Data Bus – Control
 Dissable Function

X X X X 1 Data Bus – 3-State
1 1 0 1 0 Illegal Condition
X X 1 1 0 Data Bus – 3-State

55

Figure 5.2.1.1. Block diagram of 8255.

56

Figure 5.2.1.2. Pin diagram of 8255.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

PA3

PA2

PA1

PA0

RD

CS

GND

A1

A0

PC7

PC6

PC5

PC4

PC0

PC1

PC2

PC3

PB0

PB1

PB2

PA4

PA5

PA6

PA7

WR

RESET

D0

D1

D2

D3

D4

D5

D6

D7

VCC

PB7

PB6

PB5

PB4

PB3

 8255

57

(RESET)

A “high” on this input clears the control register and all ports (A, B, C) are set
to the input mode.

4. Group A and Group B Controls

The functional configuration of each port is programmed by the
systems software. In essence, the CPU “outputs” a control word to the 8255A.
The control word contains information such as “mode”, “bit set”, “bit reset”,
etc., that initializes the functional configuration of the 8255A.
Each of the Control blocks (Group A and Group B) accepts “commands” from
the Read/Write Control Logic, receives “control words” from the internal data
bus and issues the proper commands to its associated ports.

Control Group A-Port A and Port C upper (C7-C4)

Control Group B-Port B and Port C lower (C2-C0)

The Control Word Register can only be written into. No Read operation of the
Control Word Register is allowed.

5. Ports A, B, and C

The 8255A contains three 8-bit ports (A, B, and C). All can be
configured in a wide variety of functional characteristics by the system
software but each has its own special features or “personality” to further
enhance the power and flexibility of the 8255A.

Port A: One 8-bit data output latch/buffer and one 8-bit data input latch.

Port B: One 8-bit data input/output latch/buffer and one 8-bit data input

 buffer.

Port C: One 8-bit data output latch/buffer and one 8-bit data input buffer (no
latch for input). This port can be divided into two 4-bit ports under the mode
control. Each 4-bit port contains a 4-bit latch and it can be used for the control
signal outputs and status signal input in conjunction with ports A and B.

5.2.2 MODE – Description

MODE-0 (Basic Input output Mode)

 In this mode all three ports are used either as input or output
ports. In this mode outputs are latched but inputs are not latched. 16-different
I/O configurations are possible in this mode.

58

MODE-1 (Strobed Input/ output)

 This mode provides a means for transferring I/O data to or from a
specified port in conjunction with strobes or hand shaking signals. Port-A and
Port-B use the lines of Port-C, to generate or accept handshaking signals. In
this mode inputs and outputs are latched.

Mode-1 describes Ports-A & B in two ways input and output.

 Ports A and B as input ports in Mode-1

Figure 5.2.2.1. shows the Port-A and Port-B configuration in Mode-1. In
this input mode following signals are necessary to understand.

STB: (Strobed input): A “low” on this input loads data into the input latch.

IBF: (Input Buffer Full F/F): A “high” on this output indicates that data has
been loaded into the input latch; in essence, an acknowledgement IBF is set
by STB input being low and is reset by the rising edge of the RD input.

INTR: (Interrupt Request): A high on this output can be used to interrupt the
CPU when an input device is requesting service. INTR is set by the STB is a
“one”, IBF is a “one” and INTE is a “one”. It is reset by the falling edge of RD.
this procedure allows an input device to request service from the CPU by
simply strobing its data into the port.

INTE A: Controlled by bit set/reset of PC4.

INTE B: Controlled by bit set/reset of PC2.

 Figure 5.2.2.1. (b) explains the timing relation of above
described hand shaking signals.

59

Figure – 5.2.2.1(a)-Mode-1 INPUT

PC4

PC5

INTEA
PORT A

STBA

IBFA

INTRA

STBB

IBFB

INTRB

PORT B

PC3

 INTEB

PC2

PC1

PC0

PC6,PC7

RD

60

Figure – 5.2.2.1(b)-Mode-1 input waveform

 Port-A & B as output ports in Mode-1

 Figure 5.2.2.2. (a) describes the port-A and B configured as output
ports in mode-1, while figure 5.2.2.2.(b) Shows the Waveforms for the same.
The hand shaking signals in the output mode are as follows.

OBF (Output Buffer full F/F): The OBF output will go “low” to indicate that the
CPU has written data out to the specified port. The OBF F/F will be set by the
rising edge of the WR input and reset by ACK input being low.

ACK (Acknowledge Input): A “low” on this input informs the 8255A that the
data from port A or port B has been accepted. In essence, a response from
the peripheral device indicating that it has received the data output by the
CPU.

INTR (Interrupt request): A “high” on this output can be used to interrupt the
CPU when an output device has accepted data transmitted by the CPU. INTR
is set when ACK is a “one”, OBF is a “one” and INTE is a “one”. It is reset by
the falling edge of WR.

INTE A: Controlled by bit set/reset of PC6.

INTE B: Controlled by bit set/reset of PC2.

STB

IBF

INTR

RD

DATA

PORT A

OBFA

61

Figure – 5.2.2.2(a)-Mode-1 OUTPUT

PC4

PC5

INTEA

PC3

 INTEB

PC2

PC1

PC0

PC4,PC5

WR

62

 Figure 5.2.2.2.(b) Waveform

MODE-2 (Strobed bidirection bus I/O)

This mode provides means for transmitting and receiving data using
hand shaking signals for Port-A only.

Both inputs and outputs are latched. The Port-A configuration for
mode-2 is shown in Figure. 5.2.2.3 (A) and its waveforms in Figure
5.2.2.3(B)..
 The hand shaking signals OBF, ACK, STB, IBF have their usual
meanings. INTE-1 is controlled by PC6, while INTE-2 is controlled by PC4.
Note that in mode-2. Port-B can be programmed independently.

WR

OBF

INTR

ACK

DATA

63

FIigure-5.2.2.3(A) mode-2 configuration

PC3

PC7

PC6 INTE 1

INTE 2 PC4

PC5

PC2-PC0

INTRA

PA7-
PA0

OBFB

ACKA

STBA

IBFA

I/O

RD

WR

64

5.2.3. Programming of 8255

 The basic control words which are used to program 8255 are mode
definition format and bit Set/Reset format.

Mode definition format

 The Figure 5.2.3.1 shows the bit description of mode definition format.

WR

OBF

INTR

ACK

DATA

STB

IBF

RD

Figure-5.2.2.3(B) mode-2 waveforms

65

CONTROL WORD

D7 D6 D5 D4 D3 D2 D1 D0
1 M1 M0 PA PCU M PB PCL

D0: PCL PORT C (LOWER)
 1=INPUT
 0=OUTPUT
D1: PB PORT B
 1=INPUT
 0=OUTPUT
D2: M MODE SELECTION FOR GROUP-B
 0=MODE-0
 1=MODE-1
D3: PCU PORT C (UPPER)
 1=INPUT
 0=OUTPUT

D4:PA PORT A
 1=INPUT
 0=OUTPUT
D5,D6: M0 AND M1 MODE FOR GROUP-A

M1 M0 MODE SELECTION
0 0 MODE-0
0 1 MODE-1
1 0 MODE-2
1 1 MODE-2

D7: THIS BIT SHOULD BE ‘1’.

Figure 5.2.3.1. – Control word.

66

BSR CONTROL WORD

While Figure 5.2.3.2 shows the bit description for BSR format. Note
that BSR Format is applicable to Port-C bits only.

D7 D6 D5 D4 D3 D2 D1 D0
0 X X X B2 B1 B0 S/R

D0: S/R SER/RESET
 1=SET
 0=RESET
D1,D2,D3:B0,B1,B2 TO ACTIVATE LINE OF PORT-C

B2 B1 B0 PORT-C LINE
0 0 0 LINE-0
0 0 1 LINE-1
0 1 0 LINE-2
0 1 1 LINE-3
1 0 0 LINE-4
1 0 1 LINE-5
1 1 0 LINE-6
1 1 1 LINE-7

D4,D5,D6: THIS BITS ARE DON’T CARE BITS.

D7: THIS BIT SHOULD BE ‘0’ TO SELECT BSR MODE.

Figure 5.2.3.2 – BSR Control word.

Status Word

The status words are available for Mode-1 & Mode-2.

 Figure 5.2.3.3. describes the bit definitions for Mode-1 status word.
While Figure 5.2.3.4. explains the bit definitions for mode-2 status word.

D7 D6 D5 D4 D3 D2 D1 D0

I/O

I/O

IBFA

INTEA

INTRA

INTEB

IBFB

INTRB

Figure 5.2.3.3 (a) I/P Mode-1 Status Word.

67

D7 D6 D5 D4 D3 D2 D1 D0

OBFA

INTEA

I/O

I/O

INTRA

INTEB

OBFB

INTRB

Figure 5.2.3.3 (b) O/P Mode-1 Status Word.

D7 D6 D5 D4 D3 D2 D1 D0

OBFA

INTE1

IBFA

INTE2

INTRA

X

X

X

Figure 5.2.3.4 Status word of Mode-2

5.2.4 Interfacing of 8255 in the present system

 The interfacing of 8255 is shown in Figure 5.2.4.1. The CPU side pins
of 8255 are connected with corresponding pins of 8255 through Latch and
decoder ICs, as the case may be on the other hand the port pins of 8255 are
connected directly with a 40-pin connector.
 The D0 to D7 lines of 8255 are directly connected with AD0 to AD7 lines
of 8085 respectively. The RD and WR of 8255 are directly connected with RD
and WR pins of 8085. A0 and A1 of 8255 are connected with A0 and A1 of
8085 using Latch IC 74LS373. A Reset pin is directly connected with Reset
out. CS is connected with 1Y0 of decoder 74155. It is the same decoder
which we have discussed earlier.
 This suggests that to select 8255 ports and control word following
becomes port addresses.

Table – 5.2.4.1

Address Port
00H Port – A
01H Port – B
02H Port – C
03H CWR

 Which port pin is connected with which pin of 40-pin FRC connector is
quite clear from Figure 5.2.4.1.
 If the user wants to use 8255 he has to design his circuit as per the
details of connector.

Figure-5.2.4.1 Interfacing of 8255 in present system

68

Connector details are given in Table-5.2.4.2.

69

Table-5.2.4.2

PB2 PB3
PB1 PB4
PB0 PB5
PC3 PB6
PC2 PB7
PC1
PC0
PC4
PC5
PC6
PC7

GND GND

 VCC

PA0 PA4
PA1 PA5
PA2 PA6
PA3 PA7

5.2.5 Verification of some concepts of 8255

To test and verify the various modes of the 8255 we have developed the
small circuits. [14] For this we have used the in built facility of an 8085 based
microprocessor kit. We have made Port-A as output port and port B as input
port and configured 8255 in Mode-1. Then we have established the
interconnections of control signals using port-c and inverter chip. Similarly,
port-A was configured as bi-directional port and port-c was used for
generating proper control signals. Then for both the cases proper softwares
were prepared and tested successfully.

CHAPTER – 6 P.C.B. DESIGNING AND FABRICATION

70

6.1 Schematic preparation

 There are number of softwares available for schematic preparation.
The well known names are ORCAD, Smart Work, Protel, Easy PCB, ES –
Route, Cadence, etc.
 The first step to design the PCB is the schematic preparation.
 The software is having various in – built library functions. Various
components are available in the library. All TTL Devices are available in TTL
library, all CMOS Devices are available in CMOS library. All memory chips are
available in memory library.
 The list of components can be seen while opening the library. We can
easily place and remove any component, connection, power symbol, Ground
symbol bus, junction, entry, text, etc. These facilities may be given by different
names in different softwares.
Important commands used are given below.

Component:
 This command is used for placement of component on the current work
sheet. During placement the component may be rotated or mirrored. The
component library must be included in the library list.
 We can add or remove library from the library list. One can also use
component browse for searching component.

Wire:
 This command is used to place electrical wire connections on the
current schematic worksheet. This wire can have sub – commands like begin,
end, new, etc.

Power symbol & Ground symbol:
 This command places power port on the schematic worksheet. This
symbol shows that the connection has been established with power (VCC) or
ground. The symbols are as shown bellow.

 VCC

 Power symbol Ground symbol

Orientation can be changed by either 0 or 90 or 180 or 270 degree.

Bus:
 This command is used to place a graphical bus line on the current
worksheet. A bus line is used to represent a common path way for multiple
signals on a worksheet.

71

 Buses can be attached to ports or sheet symbols, for connection to
other schematic sheets. This bus has a sub – commands like begin, end,
new, etc.

Entry or Bus – entry:
 This command is used to place a graphical bus entry object on the
current worksheet. A bus entry is used to connect wires to a bus line.

Junction:
 In schematic circuit diagram, when two wires are crossing each other,
two situations are possible:.
1 – Both wires are contacting each other.
2 – Both wires are not contacting each other.
 If user wants to join both wires, the junction should be placed as shown
in figure.

 No contact contact

 The shape of junction is generally square or circular.

Text:
 The user can write text at any place in the schematic worksheet.

Block:
 The rectangular block can be defined to copy, delete, move, etc.
 It is to be noticed that the preparation of schematic circuit is generally
done in smallest sized sheet. If the circuit is large enough so the user can go
for large sheet or the user can put a connector between two sheets to connect
both circuits. Schematic can be saved and printed. The detailed schematic
diagram of 8085 based educational microprocessor kit is shown in Figure –
6.1.1.

72

Figure 6.1.1 Schematic circuit diagram of 8085 trainer kit

73

6.2 P.C.B. Layout Preparation

 Preparing layout means to design the layout of track, components etc.
on the P.C.B.
 After preparing schematic worksheet the P.C.B. layout can be prepared
either manually or automatically. In the present work all P.C.B.s are manually
prepared.
 The track size, via size, pad size, layer, color for track, etc. can be
changed by different commands. The scale and grid can be adjusted in mils
or mm.
 The double sided P.T.H.-P.C.B. is designed in present work. The
footprints of some components are stored in computer, while some footprints
were designed. The footprint of any component can be designed and stored
into computer in addition to the available footprints.
 Three layers bottom layer, top layer and overplay are used. The copper
tracks, pads and vias are placed on bottom layer and top layer. The actual
size of components have been drawn in overlay for proper spacing.
 The Figures-6.2.1, 6.2.2 and 6.2.3 given below show the bottom layer,
top layer & overlay.

74

Figure-6.2.1 Bottom layer of 8085 based trainer kit

75

Figure- 6.2.2 Top layer of 8085 based trainer kit

76

Figure – 6.2.3 Overlay layer of 8085 based trainer kit

77

6.3 PCB fabrication

 The process to develop single sided PCB is as follows.[7]
 To fabricate the PCB, we need to follow the given steps given
below. We need copper clad laminate and negative of the PCB layout.

Step – 1: Clean the copper clad laminate.

 The copper clad laminate should be washed by water. Then clean it
by glass – Wool. After cleaning process the copper plate should be
shining.

Step – 2: Make a thin layer of Photoresist + Thinner on a clean
copper clad laminate & dry it.
 Mix photo-resist and thinner and pour it on the clean and shiny
copper plate. By using cotton make a thin layer of this mixer.
Note: Photo resist is light sensitive liquid so do this process in dark room.
 Now dry the sheet in dark room for 15 minutes.

Step – 3: Put negative & expose under ultraviolet light.
 Now put negative on the copper sheet and expose it under
ultraviolet light. If ultraviolet light source is not available, we can work
with ordinary tube light or sunlight. This ultraviolet light will do
polymerization of the photo resist under light.
 The light cannot pass through opaque region of negative, so no
polymerization takes place in this region.

Step – 4: Developer Wash.
 Now give developer wash. In developer the un-polymerized
photoresist will dissolve.
 The polymerized pattern will be same as the PCB layout.

Step – 5: Etching.
 Then etch this PCB in liquid FeCl3. After etching we can see the
designed layout on the copper sheet.

Step – 6: Drilling.
 Now the last step is drilling, means make holes, to insert
components.

78

6.4 General aspect.

6.4.1 List of components.
 The list of components in 8085 base educational kit is as given bellow.

 IC 8085.

 IC 8279.

 IC 8255.

 IC 74155.

 IC 74245.

 IC 74373.

 IC 74138.

 IC 2764A.

 IC 6264.

 Crystal 6 MHz.

 8 – FNDS.

 8 – BC 177 PNP transistors.

 Push button – switches.

 Few resistors & capacitors.

 ZIF Socket for 2764.

 IC Sockets for all ICs.

6.4.2 costing

 The cost factor is one of the most important factor in electronics
instruments. The cost of this educational kit is approximately Rs.2500/-
(Excluding power supply).

 This cost can vary as per demand and supply of different components
in electronics market.

79

CHAPTER-7 : MONITOR PROGRAM

RESET: .EQUAL 1700H

 INT55: .EQUAL 1670H

 INT1: .EQUAL 1600H

 TEMP_BUF: .EQUAL 5F00H ;8 DISPLAYS 5F00H TO 5F07H

 DISP_COU: .EQUAL 5F08H

 DATA_MEM: .EQUAL 5F09H

 BYTE_3: .EQUAL 0050H

 BYTE_2: .EQUAL 0080H

 FND_CODE: .EQUAL 00A0H

 BYTE_ONE: .EQUAL 00E0H

 FM_RAM: .EQUAL 5F0AH ;FILL MEMORY

 SS_RAM: .EQUAL 5F0BH ;SINGLE STEP

 ER_RAM: .EQUAL 5F0CH ;EXAM REGISTER

 GO_RAM: .EQUAL 5F0DH ;GO TO ADDRESS

 EXEC_RAM: .EQUAL 5F0EH ;EXECUTE THE PROGRAM

 BM_RAM: .EQUAL 5F0FH ;BLOCK MOVE KEY

 NEXT_RAM: .EQUAL 5F10H ;NEXT KEY

 PREV_RAM: .EQUAL 5F11H ;PREVIOUS KEY

 TEMP1: .EQUAL 5F12H

 DISPDATA: .EQUAL 5F13H;8 DISPLAY SO 5F13H TO
 ;5F1AH

 DA_OR_AD: EQUAL 5F1BH;INTITIALLY 00H BUT AFTER
 ;NEXT KEY 01H

 REG_PC: .EQUAL 5F1CH;PC IS 16-BIT SO 5F1CH &
 ;5F1DH ARE USED

80

 BM_CONT: .EQUAL 5F1EH;BM IS INCREMENTED 4 TIMES

 BM_S_ADD: .EQUAL 5F1FH;BLOCK MOVE STARTING
 ;ADDRESS(2 BYTES)

 BM_E_ADD: .EQUAL 5F21H;BLOCK MOVE ENDING
 ;ADDRESS(2 BYTES)

 BM_D_ADD: .EQUAL 5F23H;BLOCK MOVE DESTINATION
 ;ADDRESS(2 BYTES)

 ER_COUNT: .EQUAL 5F25H ;EXAM REGISTER COUNT

 REGPSW: .EQUAL 5F26H ;(2 BYTES FLAG & ACC)

 REGBC: .EQUAL 5F28H ;(2 BYTES C & B)

 REGDE: .EQUAL 5F2AH ;(2 BYTES E & D)

 REGHL: .EQUAL 5F2CH ;(2 BYTES L & H)

 REGSP: .EQUAL 5F2EH ;(2 BYTES SPH & SPL)

 REGPC: .EQUAL 5F30H ;(2 BYTES PCH & PCL)

 REGTEMP: .EQUAL 5F32H ;(2 BYTES MSB & LSB)

 SS_EXE: .EQUAL 5F34H ;(6 BYTES 34H TO 39H)

 CHK_CARY: .EQUAL 5F35H ;TO CHECK CARRY FLAG

 D0: .EQUAL CEH
 D1: .EQUAL CDH
 D2: .EQUAL C9H
 D3: .EQUAL CAH
 D4: .EQUAL C6H
 D5: .EQUAL C5H
 D6: .EQUAL C1H
 D7: .EQUAL C2H
 D8: .EQUAL D6H
 D9: .EQUAL D5H
 DA: .EQUAL D1H
 DB: .EQUAL D2H
 DC: .EQUAL EEH
 DD: .EQUAL EDH
 DE: .EQUAL E9H
 DF: .EQUAL EAH
 FM: .EQUAL EBH
 NEXT: .EQUAL CCH
 PREV: .EQUAL CBH

81

 GO: .EQUAL ECH
 EXEC: .EQUAL D4H
 BM: .EQUAL D3H
 ER: .EQUAL C3H
 SS: .EQUAL C4H

ORG 0000H
 JMP START

 ORG 0008H ;RST 1 LOCATION

 JMP RST_1

 ORG 002ch

 jmp int5_5

 ORG BYTE_3

 DB 0C3H ;JMP 1
 DB 0C2H ;JNZ 2
 DB 0CAH ;JZ 3
 DB 0D2H ;JNC 4
 DB 0DAH ;JC 5
 DB 0E2H ;JPO 6
 DB 0EAH ;JPE 7
 DB 0F2H ;JP 8
 DB 0FAH ;JM 9
 DB 0CDH ;CALL A
 DB 0C4H ;CNZ B
 DB 0CCH ;CZ C
 DB 0D4H ;CNC D
 DB 0DCH ;CC E
 DB 0E4H ;CPO F
 DB 0ECH ;CPE 10
 DB 0F4H ;CP 11
 DB 0FCH ;CM 12
 DB 01H ;LXI B 13
 DB 11H ;LXI D 14
 DB 21H ;LXI H 15
 DB 31H ;LXI SP 16
 DB 2AH ;LHLD 17
 DB 22H ;SHLD 18
 DB 3AH ;LDA 19
 DB 32H ;STA 1A

82

ORG BYTE_2

 DB 3EH ;MVI A 1
 DB 06H ;MVI B 2
 DB 0EH ;MVI C 3
 DB 16H ;MVI D 4
 DB 1EH ;MVI E 5
 DB 26H ;MVI H 6
 DB 2EH ;MVI L 7
 DB 36H ;MVI M 8
 DB 0C6H ;ADI 9
 DB 0CEH ;ACI A
 DB 0D6H ;SUI B
 DB 0DEH ;SBI C
 DB 0E6H ;ANI D
 DB 0EEH ;XRI E
 DB 0F6H ;ORI F
 DB 0FEH ;CPI 10
 DB 0DBH ;IN 11
 DB 0D3H ;OUT 12

 ORG FND_CODE

 db 03h ;0
 db 9fh ;1
 db 25h ;2
 db 0dh ;3
 db 99h ;4
 db 49h ;5
 db 41h ;6
 db 1fh ;7
 db 01h ;8
 db 09h ;9
 db 11h ;A
 db c1h ;B
 db 63h ;C
 db 85h ;D
 db 61h ;E
 db 71h ;F
 db FEH ;. 10
 db FFH ;BLANK 11
 db fdh ;- 12
 db 85h ;d 13
 db 03h ;O 14
 db 60h ;E. 15
 db 49h ;S 16
 db 82h ;U. 17
 db 01h ;8 18
 db 49h ;5 19

83

 db 91h ;H 1A
 db e3h ;L 1B
 db 31h ;P 1C
 db d5h ;n 1D
 db e1h ;t 1E
 db 08H ;g. 1F
 db 30H ;P. 20

 ORG BYTE_ONE

 db c9h ;RET 1
 db c0h ;RNZ 2
 db c8h ;RZ 3
 db d0h ;RNC 4
 db d8h ;RC 5
 db e0h ;RPO 6
 db e8h ;RPE 7
 db f0h ;RP 8
 db f8h ;RM 9
 db e9h ;PCHL A

 ORG INT1

RST_1: SHLD REGTEMP ;SAVE HL IN TEMP MEMORY
 POP H ;GET ADDRESS FROM WHERE RST 1 COMES
 PUSH H ;AGAIN DECREMENT STACK POINTER
 SHLD REGPC ;STORE ADDRESS OF PC
 LHLD REGTEMP ;GET BACK ORIGINAL DATA OF HL

CALL REG_SAVE ;IT WILL SAVE ALL REGISTERS
 ;EXCEPT PC.

 JMP START
REG_SAVE: SHLD REGHL

 PUSH D
 POP H
 SHLD REGDE

 PUSH B
 POP H
 SHLD REGBC

 PUSH PSW
 POP H
 SHLD REGPSW

 LXI H,0000H
 DAD SP
 INX H

84

 INX H
 INX H
 INX H
 SHLD REGSP

 RET
REGSTORE: SHLD REGHL

 PUSH D
 POP H
 SHLD REGDE

 PUSH B
 POP H
 SHLD REGBC

 PUSH PSW
 POP H
 SHLD REGPSW

 RET

REG_LOAD: LHLD REGPSW
 PUSH H
 POP PSW
 LHLD REGBC
 PUSH H
 POP B
 LHLD REGDE
 PUSH H
 POP D

 LHLD REGHL

 RET

 ORG INT55

int5_5: PUSH PSW
 IN 40H
 STA DATA_MEM
 POP PSW
 RET

85

ORG RESET

START: LXI SP,5FFFH

 MVI A,10H ;8-DIGIT,8-CHARACTER RIGHT ENTRY
 OUT 41H ;ENCODED SCAN K.B. 2-KEY LOCKOUT

 MVI A,3FH ;CLK DIVIDED BY 31(11111b).
 OUT 41H

 MVI A,DDH ;COMMAN ANODE CF=0 CA=1
 OUT 41H

 MVI A,00H
 LXI H,TEMP_BUF
 MVI B,25H

LOOP1: MOV M,A
 INX H
 DCR B
 JNZ LOOP1

 CALL BLK_DISP ;BLANK ALL DISPLAY MEMORY
 LXI D,FFFFH
 CALL DELAY
 MVI A,0EH
 SIM

 MVI A,40H ;READ FIFO IN FIXED ADDRESS MODE
 OUT 41H

 MVI A,90H ;TO WRITE DISPLAY RAM
 OUT 41H

 MVI B,08H
 LXI H,FND_CODE+19H

LOOP21: MOV A,M
 OUT 40H
 DCX H
 DCR B
 JNZ LOOP21

START1: EI
 HLT
 LDA DATA_MEM
 CALL SU1
 JMP START1

86

BLK_DISP: LXI H,DISPDATA ;TO BLANK ALL DISPLAY MEMORY
 MVI B,08H
 MVI A,11H

LOOP2: MOV M,A
 INX H
 DCR B
 JNZ LOOP2
 RET

SU1: CPI FM ;IF FILL MEMORY KEY IS PRESSED
 JNZ NO_0 ;JNZ NO_0
 CALL F_M_SR ;FILL MEMORY SUBROUTINE
 RET

NO_0: CPI NEXT ;IF NEXT KEY IS PRESSED
 JNZ NO_1
 CALL NEXT_SUB
 RET

NO_1: CPI PREV ;IF PREVIOUS KEY IS PRESSED
 JNZ NO_2
 CALL PREV_SUB
 RET

NO_2: CPI GO ;IF GO KEY IS PRESSED
 JNZ NO_3
 CALL GO_SUB
 RET

NO_3: CPI EXEC
 JNZ NO_4
 CALL EXEC_SUB ;IF EXECUTE KEY IS PRESSED
 RET

NO_4: CPI BM ;IF BLOCK MOVE KEY IS PRESSED
 JNZ NO_5
 CALL BM_SUB
 RET

NO_5: CPI ER ;IF EXAM REGISTER KEY IS PRESSED
 JNZ NO_6
 CALL ER_SUB
 CALL DATADISP ;TO DISPLAY DATA
 MVI A,00H ;TO STORE 00H IN SS_RAM WHEN
 ;REGISTERS
 STA SS_RAM ;ARE EXAMINED.
 RET

87

NO_6: CPI SS
 JNZ NO_7
 CALL SS_SUB
 RET

NO_7: CALL CHK_0TOF
 RET

SS_SUB: LDA SS_RAM
 CPI SS
 JZ OUT_SS1 ;IF IT CALLS SECOND TIME SO GO OUT
 ;SS1
 MVI A,SS
 STA SS_RAM ;NOW STORE CODE OF SING. STEP INTO
 ;SS_RAM
 CALL DISP_SS ;TO DISPLAY SING. STEP.
 RET

OUT_SS1: LXI H,DISPDATA+5 ;TO TEST N OF SING. STEP.
 MOV A,M
 CPI 1DH ;N IS STORED AT 1DH IN FND_CODE
 JZ OUT_SS2 ;IF ADDRESS IS NOT GIVEN SO GET
 ;CALL GET_ADD
 CALL GET_ADD
 SHLD REGPC ;PREVIOUS ADDRESS

OUT_SS2: LHLD REGPC ;GET ADDRESS OF SING.STEP.

MOV A,M ;GET THE DATA TO BE EXECUTED INTO
 ;ACC.

 LXI H,SS_EXE ;RAM LOCATION WHERE ONE BYTE IS
 ;STORED
 MOV M,A ;TO EXECUTE

 LXI H,BYTE_2 ;TO CHECK 2-BYTE INSTRUCTION
 MVI B,12H ;12 2-BYTE INSTRUCTIONS ARE IN 8085

SS_LOOP1: CMP M
 JZ O_SS_2 ;OUT SING.STEP. 2-BYTE
 INX H
 DCR B
 JNZ SS_LOOP1

 LXI H,BYTE_3
 MVI B,1AH

SS_LOOP2: CMP M
 JZ O_SS_3 ;OUT SING.STEP. 3-BYTE
 INX H
 DCR B
 JNZ SS_LOOP2

88

 JMP BYTE_1

O_SS_2: LHLD REGPC
 INX H ;DATA OF 2-BYTE INSTRUCTION
 SHLD REGPC ;STORE AFTER INCREMENT
 MOV A,M ;GET DATA INTO ACC.
 LXI H,SS_EXE+1 ;POINTER TO SS_EXE+1
 MOV M,A
 INX H
 JMP RUN_IT

BYTE_1: LXI H,BYTE_ONE
 MVI B,0AH

SS_LOOP3: CMP M
 JZ O_SS_1 ;OUT SING.STEP. 1-BYTE
 INX H
 DCR B
 JNZ SS_LOOP3

 LXI H,SS_EXE ;IF 1-BYTE INSTRUCTION SO THEN JUMP
 INX H ;THEN JUMP BACK AT COMEBACK

RUN_IT: MVI M,C3H
 LXI D,COMEBACK ;ADDRESS OF COMEBACK
 INX H
 MOV M,E
 INX H
 MOV M,D
 CALL REG_LOAD
 SHLD REGHL
 LXI H,0000H
 DAD SP
 SHLD REGTEMP

 LHLD REGPSW ;CARRY IS MODIFIED BY
 ;INSTRUTION(DAD SP)
 PUSH H
 POP PSW

 LHLD REGSP
 SPHL
 LHLD REGHL
 JMP SS_EXE

COMEBACK: SHLD REGHL
 LXI H,CHK_CARY
 JNC NO_CARY
 MVI M,01H
 JMP OUT_CARY

89

NO_CARY: MVI M,00H
OUT_CARY: LXI H,0000H
 DAD SP
 SHLD REGSP
 LHLD REGTEMP
 SPHL
 LHLD REGHL
 CALL REGSTORE
 LXI H,CHK_CARY
 MOV A,M
 CPI 01H
 JNZ OUT10
 LHLD REGPSW
 MOV A,L
 ORI 01H
 MOV L,A
 SHLD REGPSW
OUT10: LHLD REGPC
 INX H
 SHLD REGPC;BACK FROM BYTE-3 SUBROUTINE
BF_BYTE3: LHLD REGPC
 CALL GET_DATA ;THE DATA OF ADDRESS IN HL IN
 ;D(MSB)
 LXI H,DISPDATA ;AND E(LSB)
 MOV M,E
 INX H
 MOV M,D
 INX H
 MVI M,12H ;CODE TO DISPLAY '-'.
 INX H
 MVI M,12H ;CODE TO DISPLAY '-'
 LXI D,DISPDATA+7
 LHLD REGPC
 MOV A,H
 ANI 0F0H
 RRC
 RRC
 RRC
 RRC
 STAX D
 DCX D
 MOV A,H
 ANI 0FH
 STAX D
 DCX D
 MOV A,L
 ANI 0F0H
 RRC
 RRC
 RRC

90

 RRC
 STAX D
 DCX D
 MOV A,L
 ANI 0FH
 STAX D

 CALL DATADISP

 RET

O_SS_1: MOV A,M
 CPI C9H ;RET
 JNZ SS_1_O1 ;SING.STEP.1-BYTE OUT-1
RET_YES: LHLD REGSP ;SP INCREMENTED BY 2 & NEW ADD.IS
 ;IN HL
 MOV A,M
 STA REGPC
 INX H
 MOV A,M
 STA REGPC+1
 INX H
 SHLD REGSP
 JMP BF_BYTE3
SS_1_O1: CPI C0H ;RNZ
 JNZ SS_1_O2 ;SING.STEP.1-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JZ RET_YES
RET_NO: LHLD REGPC
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_1_O2: CPI C8H ;RZ
 JNZ SS_1_O3 ;SING.STEP.1-BYTE OUT-3
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JNZ RET_YES
 JMP RET_NO

SS_1_O3: CPI D0H ;RNC
 JNZ SS_1_O4 ;SING.STEP.1-BYTE OUT-4
 LHLD REGPSW

91

 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JZ RET_YES
 JMP RET_NO

SS_1_O4: CPI D8H ;RC
 JNZ SS_1_O5 ;SING.STEP.1-BYTE OUT-5
 LHLD REGPSW
 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JNZ RET_YES
 JMP RET_NO

SS_1_O5: CPI E0H ;RPO
 JNZ SS_1_O6 ;SING.STEP.1-BYTE OUT-6
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JZ RET_YES
 JMP RET_NO

SS_1_O6: CPI E8H ;RPE
 JNZ SS_1_O7 ;SING.STEP.1-BYTE OUT-7
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JNZ RET_YES
 JMP RET_NO

SS_1_O7: CPI F0H ;RP
 JNZ SS_1_O8 ;SING.STEP.1-BYTE OUT-8
 LHLD REGPSW
 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JZ RET_YES
 JMP RET_NO

SS_1_O8: CPI F8H ;RM
 JNZ SS_1_O9 ;SING.STEP.1-BYTE OUT-9
 LHLD REGPSW

92

 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JNZ RET_YES
 JMP RET_NO

SS_1_O9: SHLD REGPC
 JMP BF_BYTE3

O_SS_3: MOV A,M
 CPI C3H ;JMP
 JNZ SS_3_O1 ;SING.STEP. 3-BYTE OUT-1
JUMP_YES: LHLD REGPC
 INX H
 MOV A,M
 STA REGPC
 INX H
 MOV A,M
 STA REGPC+1
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_O1: CPI C2H ;JNZ
 JNZ SS_3_O2 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JZ JUMP_YES
JUMP_NO: LHLD REGPC
 INX H
 INX H
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3
SS_3_O2: CPI CAH ;JZ
 JNZ SS_3_O3 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JNZ JUMP_YES
 JMP JUMP_NO

SS_3_O3: CPI D2H ;JNC
 JNZ SS_3_O4 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JZ JUMP_YES
 JMP JUMP_NO

93

SS_3_O4: CPI DAH ;JC
 JNZ SS_3_O5 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JNZ JUMP_YES
 JMP JUMP_NO

SS_3_O5: CPI E2H ;JPO(PARITY FLAG IS RESET)
 JNZ SS_3_O6 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JZ JUMP_YES
 JMP JUMP_NO

SS_3_O6: CPI EAH ;JPE(PARITY FLAG IS SET)
 JNZ SS_3_O7 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JNZ JUMP_YES
 JMP JUMP_NO

SS_3_O7: CPI F2H ;JP(SIGN FLAG IS RESET)
 JNZ SS_3_O8 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JZ JUMP_YES
 JMP JUMP_NO

SS_3_O8: CPI FAH ;JM(SIGN FLAG IS SET)
 JNZ SS_3_O9 ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JNZ JUMP_YES
 JMP JUMP_NO

SS_3_O9: CPI CDH ;CALL
 JNZ SS_3_OA ;SING.STEP.3-BYTE OUT-2
CALL_YES: LHLD REGPC
 INX H
 MOV A,M
 STA REGPC
 INX H
 MOV A,M
 STA REGPC+1

94

 INX H
 XCHG
 LHLD REGSP
 DCX H
 MOV M,D
 DCX H
 MOV M,E
 SHLD REGSP
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_OA: CPI C4H ;CNZ
 JNZ SS_3_OB ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JZ CALL_YES
CALL_NO: LHLD REGPC
 INX H
 INX H
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_OB: CPI CCH ;CZ
 JNZ SS_3_OC ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 40H ;TO CHECK ZERO FLAG
 JNZ CALL_YES
 JMP CALL_NO

SS_3_OC: CPI D4H ;CNC
 JNZ SS_3_OD ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JZ CALL_YES
 JMP CALL_NO

SS_3_OD: CPI DCH ;CC
 JNZ SS_3_OE ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 01H ;TO CHECK CARRY FLAG
 JNZ CALL_YES
 JMP CALL_NO

95

SS_3_OE: CPI E4H ;CPO
 JNZ SS_3_OF ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JZ CALL_YES
 JMP CALL_NO

SS_3_OF: CPI ECH ;CPE
 JNZ SS_3_OG ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 04H ;TO CHECK CARRY FLAG
 JNZ CALL_YES
 JMP CALL_NO

SS_3_OG: CPI F4H ;CP
 JNZ SS_3_OH ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JZ CALL_YES
 JMP CALL_NO

SS_3_OH: CPI FCH ;CM
 JNZ SS_3_OI ;SING.STEP.3-BYTE OUT-2
 LHLD REGPSW
 MOV A,L
 ANI 80H ;TO CHECK CARRY FLAG
 JNZ CALL_YES
 JMP CALL_NO

SS_3_OI: CPI 01H ;LXI B,
 JNZ SS_3_OJ ;SING.STEP.3-BYTE OUT-2
 LHLD REGPC
 INX H
 MOV A,M
 STA REGBC
 INX H
 MOV A,M
 STA REGBC+1
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

96

SS_3_OJ: CPI 11H ;LXI D,
 JNZ SS_3_OK ;SING.STEP.3-BYTE OUT-2
 LHLD REGPC
 INX H
 MOV A,M
 STA REGDE
 INX H
 MOV A,M
 STA REGDE+1
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_OK: CPI 21H ;LXI H,
 JNZ SS_3_OL ;SING.STEP.3-BYTE OUT-2
 LHLD REGPC
 INX H
 MOV A,M
 STA REGHL
 INX H
 MOV A,M
 STA REGHL+1
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_OL: CPI 31H ;LXI SP,
 JNZ SS_3_OM ;SING.STEP.3-BYTE OUT-2
 LHLD REGPC
 INX H
 MOV A,M
 STA REGSP
 INX H
 MOV A,M
 STA REGSP+1
 INX H
 SHLD REGPC
 JMP BF_BYTE3 ;BACK FROM BYTE-3

SS_3_OM: LXI D,SS_EXE ;LHLD,SHLD,STA,LDA
 LHLD REGPC
 MOV A,M
 STAX D
 INX H
 INX D
 MOV A,M
 STAX D
 INX H
 INX D
 MOV A,M

97

 STAX D
 SHLD REGPC
 LXI H,SS_EXE+3
 JMP RUN_IT

DISP_SS: LXI H,DISPDATA+7
 MVI M,05H ;TO DISPLAY S
 DCX H
 MVI M,01H ;TO DISPLAY I
 DCX H
 MVI M,1DH ;TO DISPLAY n
 DCX H
 MVI M,1FH ;TO DISPLAY g.
 DCX H
 MVI M,05H ;TO DISPLAY S
 DCX H
 MVI M,1EH ;TO DISPLAY t
 DCX H
 MVI M,0EH ;TO DISPLAY E
 DCX H
 MVI M,20H ;TO DISPLAY P.
 DCX H
 CALL DATADISP
 RET

ER_SUB: STA ER_RAM ;EXAM REGISTER SUBROUTINE
 LDA ER_COUNT ;HOW MANY TIMES THIS KEY IS
 ;PRESSED.
 CPI 00H ;IS IT PRESSED FIRST TIME.
 JNZ ER_OUTBC ;EXAM REGISTER OUTPUT B & C
 CALL A_AND_F ;DISPLAY CONTENT OF ACC & FLAGS

INC_ERC: LDA ER_COUNT
 INR A
 STA ER_COUNT
 RET

ER_OUTBC: CPI 01H
 JNZ ER_OUTDE ;EXAM REGISTER OUT TO DISPLAY D &
 ;E
 CALL B_AND_C ;DISPLAY CONTENT OF B & C
 JMP INC_ERC ;INCREMENT EXAM REGISTER COUNT

ER_OUTDE: CPI 02H
 JNZ ER_OUTHL ;EXAM REGISTER OUT TO DISPLAY H &
 ;L
 CALL D_AND_E ;DISPLAY CONTENT OF D AND E

98

 JMP INC_ERC ;INCREMENT EXAM REGISTER COUNT

ER_OUTHL: CPI 03H
 JNZ ER_OUTSP ;EXAM REGISTER OUT TO DISPLAY
 ;SP(STACK POINTER)
 CALL H_AND_L ;DISPLAY CONTENT OF H AND L
 JMP INC_ERC ;INCREMENT EXAM REGISTER COUNT

ER_OUTSP: CPI 04H
 JNZ ER_OUTPC ;EXAM REGISTER OUT TO DISPLAY
 ;PC(PROGRAM COUNTER)
 CALL SP_DISP ;DISPLAY CONTENT OF STACK POINTER
 JMP INC_ERC ;INCREMENT EXAM REGISTER COUNT

ER_OUTPC: CALL PC_DISP ;DISPLAY CONTENT OF PROGRAM
 ;COUNTER
 XRA A ;TO CLEAR ACC.
 STA ER_COUNT ;RESET COUNT TO ZERO
 RET

A_AND_F: LHLD REGPSW ;LOAD HL BY PSW
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA
 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,0FH
 STAX D
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,0AH
 STAX D
 RET

B_AND_C: LHLD REGBC ;LOAD HL BY BC
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA
 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,0CH
 STAX D
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,0BH

99

 STAX D
 RET

D_AND_E: LHLD REGDE ;LOAD HL BY DE
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA
 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,0EH
 STAX D
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,0DH
 STAX D
 RET

H_AND_L: LHLD REGHL ;LOAD HL BY HL
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA
 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,1BH ;1B IS CODE TO DISPLAY L
 STAX D
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,1AH ;1A IS CODE TO DISPLAY H
 STAX D
 RET

SP_DISP: LHLD REGSP ;LOAD HL BY SP
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA
 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,1CH ;1C IS CODE TO DISPLAY P
 STAX D
 INX D
 MVI A,05H ;TO DISPLAY S
 STAX D
 RET

PC_DISP: LHLD REGPC ;LOAD HL BY PC
 CALL HL_DISP ;HL INTO DISPDATA+3 TO DISPDATA

100

 MVI A,11H ;CODE FOR BLANK DISPLAY
 STAX D ;AFTER CALLING HL_DISP
 INX D
 MVI A,11H
 STAX D
 INX D
 MVI A,0CH
 STAX D
 INX D
 MVI A,1CH ;1C IS CODE TO DISPLAY P
 STAX D
 RET

HL_DISP: LXI D,DISPDATA ;FILL UP LAST FOUR LOCATIONS
 MOV A,L ;AND POINTED TO DISPDATA+4
 ANI 0FH
 STAX D
 INX D
 MOV A,L
 ANI F0H
 RRC
 RRC
 RRC
 RRC
 STAX D
 INX D
 MOV A,H
 ANI 0FH
 STAX D
 INX D
 MOV A,H
 ANI F0H
 RRC
 RRC
 RRC
 RRC
 STAX D
 INX D
 RET

BM_SUB: STA BM_RAM

101

WRO_ADD: LDA BM_CONT
 CPI 00H ;FIRST TIME KEY IS PRESSED.(SADD)
 JNZ BM_OUT1
 CALL STAT_ADD
 JMP INC_RET ;JUMP TO INCREMENT & RETURN

BM_OUT1: CPI 01H ;SECOND TIME KEY IS PRESSED(EADD)
 JNZ BM_OUT2
 CALL GET_ADD
 SHLD BM_S_ADD ;BLOCK MOVE START ADDRESS
 CALL END_ADD
 JMP INC_RET

BM_OUT2: CPI 02H
 JNZ BM_OUT3
 CALL GET_ADD
 SHLD BM_E_ADD ;BLOCK MOVE END ADDRESS
 CALL DIST_ADD ;THIRED TIME KEY IS PRESSED(DADD)
INC_RET: LDA BM_CONT
 INR A
 STA BM_CONT
 CALL DATADISP
 RET

BM_OUT3: CALL GET_ADD
 SHLD BM_D_ADD ;BLOCK MOVE DESTINATION
 ;ADDRESS
 MVI A,00H
 STA BM_CONT

 LHLD BM_S_ADD ;GET STARTING ADDRESS
 XCHG ;PUT STARTING ADDRESS INTO DE PAIR
 LHLD BM_E_ADD ;GET ENDING ADDRESS

 MOV A,L
 SUB E
 MOV C,A
 MOV A,H
 SBB D
 JC WRO_ADD ;WRONG ADDRESS IS GIVEN SO GET
 ;AGAIN
 MOV B,A
 LHLD BM_D_ADD ;GET DESTINATION ADDRESS INTO HL
 XCHG ;PUT DESTINATION ADDRESS INTO DE
 LHLD BM_S_ADD ;GET STARTING ADDRESS

BM_LOOP1: MOV A,M
 STAX D
 INX H
 INX D

102

 DCR C
 JNZ BM_LOOP1
 MOV A,B
 CPI 00H
 JZ BM_END1
 DCR B
 JNZ BM_LOOP1
BM_END1: CALL BLK_DISP
 MVI A,0EH
 STA DISPDATA
 CALL DATADISP

 RET

STAT_ADD: LXI H,DISPDATA+7 ;STARTING ADDRESS OF BLOCK
 ;MOVE
 MVI M,05H ;5 IS EQUIVALENT TO S
 DCX H
 MVI M,0AH ;TO DISPLAY A
 DCX H
 MVI M,0DH ;TO DISPLAY D
 DCX H
 MVI M,0DH ;TO DISPLAY D
 RET

END_ADD: LXI H,DISPDATA+7 ;END ADDRESS OF BLOCK MOVE
 MVI M,0EH ;TO DISPLAY E
 DCX H
 MVI M,0AH ;TO DISPLAY A
 DCX H
 MVI M,0DH ;TO DISPLAY D
 DCX H
 MVI M,0DH ;TO DISPLAY D
 RET

DIST_ADD: LXI H,DISPDATA+7 ;DESTINATION ADDRESS OF BLOCK
 ;MOVE
 MVI M,0DH ;TO DISPLAY D
 DCX H
 MVI M,0AH ;TO DISPLAY A
 DCX H
 MVI M,0DH ;TO DISPLAY D
 DCX H
 MVI M,0DH ;TO DISPLAY D
 RET

103

EXEC_SUB: STA EXEC_RAM
 CALL GET_ADD
 SHLD REG_PC
 CALL BLK_DISP
 MVI A,0EH
 STA DISPDATA
 CALL DATADISP
 LHLD REG_PC
 PCHL ;ONLY RESET CAN STOP EXECUTION
 NOP
 NOP
 HLT

GO_SUB: STA GO_RAM
 MVI A,90H
 OUT 41H

 MVI A,FDH ;CODE TO DISPLAY '_'
 MVI C,08H

G_S_L1: OUT 40H
 DCR C
 JNZ G_S_L1 ;GO SUBROUTINE LOOP 1

 MVI A,00H ;NEXT/PREVIOUS KEY WILL BE
 STA NEXT_RAM ;PRESSED FIRST TIME AFTER
 STA PREV_RAM ;THIS GO KEY

 MVI A,00H
 STA DA_OR_AD;NOW ADDRESS NEEDS TO ROTATE FOR
 ;0 TO F
 RET

PREV_SUB: MOV B,A
 MVI A,01H
 STA DA_OR_AD;NOW DATA NEEDS TO ROTATE FOR

;0 TO F

 LDA NEXT_RAM;IF KEY IS PRESSED AFTER NEXT SO
 CMP B ;JUST DECREMENT ADDRESS & DISPLAY
 ;DATA
 JZ P_S_OUT3 ;OTHERWISE DISPLAY DATA WITHOUT
 ;DECREMENT
 LDA PREV_RAM
 CMP B
 JNZ P_S_OUT1 ;PREVIOUS SUBROUTINE OUT1

104

P_S_OUT3: LXI H,DISPDATA+4
 MVI A,0FFH
 DCR M
 CMP M
 JNZ P_S_OUT2 ;JNZ TO PREVIOUS SUBROUTINE OUT2

 MVI M,0FH
 INX H
 DCR M
 CMP M
 JNZ P_S_OUT2

 MVI M,0FH
 INX H
 DCR M
 CMP M
 JNZ P_S_OUT2

 MVI M,0FH
 INX H
 DCR M
 CMP M
 JNZ P_S_OUT2

 MVI A,0FH
 STA DISPDATA+4
 STA DISPDATA+5
 STA DISPDATA+6
 STA DISPDATA+7

P_S_OUT2: CALL GET_ADD ;TO STORE DATA INTO MEMORY
 INX H ;PREVIOUS DATA NEEDS TO STORE
 LDA DISPDATA+1 ;GET MSB DATA
 RRC
 RRC
 RRC
 RRC
 MOV C,A
 LDA DISPDATA
 ORA C
 MOV M,A ;DATA WILL BE STORED AT PREVOUS
 ;ADDRESS
P_S_OUT1: MOV A,B
 STA PREV_RAM
 LDA FM_RAM ;CHECK WHETHER FILL MEMORY KEY
 ;WAS PRESSED
 CPI FM ;OR NOT?

 JNZ P_S_E1 ;JNZ TO PREVIOUS SUBROUTINE END1

105

 CALL GET_ADD ;CALL GET ADDRESS FROM DISPDATA
 ;NOW ADDRESS IS IN HL PAIR

 CALL GET_DATA ;GET DATA OF ADDRESS IN HL INTO
 ;ACC
 ;& INTO D(MSB ONLY) & E(LSB ONLY)
 MOV A,E
 STA DISPDATA
 MOV A,D
 STA DISPDATA+1
 CALL DATADISP
P_S_E1: RET

NEXT_SUB: MOV B,A
 MVI A,01H
 STA DA_OR_AD;NOW DATA NEEDS TO ROTATE FOR

;0 TO F
 LDA NEXT_RAM
 CMP B
 JNZ N_S_OUT1 ;NEXT SUBROUTINE OUT1

 LXI H,DISPDATA+4
 MVI A,10H
 INR M
 CMP M
 JNZ N_S_OUT2 ;JNZ TO NEXT SUBROUTINE OUT2

 MVI M,00H
 INX H
 INR M
 CMP M
 JNZ N_S_OUT2

 MVI M,00H
 INX H
 INR M
 CMP M
 JNZ N_S_OUT2

 MVI M,00H
 INX H
 INR M
 CMP M
 JNZ N_S_OUT2

 MVI A,00H
 STA DISPDATA+4
 STA DISPDATA+5

106

 STA DISPDATA+6
 STA DISPDATA+7

N_S_OUT2: CALL GET_ADD ;TO STORE DATA INTO MEMORY
 DCX H ;PREVIOUS DATA NEEDS TO STORE
 LDA DISPDATA+1 ;GET MSB DATA
 RRC
 RRC
 RRC
 RRC
 MOV C,A
 LDA DISPDATA
 ORA C
 MOV M,A ;DATA WILL BE STORED AT PREVOUS
 ;ADDRESS

N_S_OUT1: MOV A,B
 STA NEXT_RAM
 LDA FM_RAM ;CHECK WHETHER FILL MEMORY KEY
 ;WAS PRESSED
 CPI FM ;OR NOT?

 JNZ N_S_E1 ;JNZ TO NEXT SUBROUTINE END1
 CALL GET_ADD ;CALL GET ADDRESS FROM DISPDATA
 ;NOW ADDRESS IS IN HL PAIR

 CALL GET_DATA ;GET DATA OF ADDRESS IN HL INTO

;ACC & INTO D(MSB ONLY) &
;E(LSB ONLY)

 MOV A,E
 STA DISPDATA
 MOV A,D
 STA DISPDATA+1
 CALL DATADISP
N_S_E1: RET

GET_DATA: MOV A,M
 MOV B,A
 ANI 0FH
 MOV E,A ;LSB ONLY

 MOV A,B
 ANI 0F0H
 RRC
 RRC
 RRC
 RRC
 MOV D,A ;MSB ONLY

 MOV A,M ;BOTH NIBBLES (BYTE)IS IN ACC

107

 RET

GET_ADD: LDA DISPDATA+7
 CPI 11H
 JNZ OUT_GA1 ;OUT GET ADDRESS 1
 MVI A,00H

OUT_GA1: RRC
 RRC
 RRC
 RRC
 MOV H,A

 LDA DISPDATA+6
 CPI 11H
 JNZ OUT_GA2 ;OUT GET ADDRESS 2
 MVI A,00H

OUT_GA2: ORA H
 MOV H,A

 LDA DISPDATA+5
 CPI 11H
 JNZ OUT_GA3 ;OUT GET ADDRESS 3
 MVI A,00H

OUT_GA3: RRC
 RRC
 RRC
 RRC
 MOV L,A

 LDA DISPDATA+4
 CPI 11H
 JNZ OUT_GA4 ;OUT GET ADDRESS 4
 MVI A,00H

OUT_GA4: ORA L
 MOV L,A

 RET

F_M_SR: STA FM_RAM
 CALL BLK_DISP

 MVI A,90H
 OUT 41H

 MVI A,FEH ;CODE TO DISPLAY '.'
 MVI C,08H

108

F_M_L_1: OUT 40H
 DCR C
 JNZ F_M_L_1 ;FILL MEMORY LOOP 1

 MVI A,00H ;NEXT/PREVIOUS KEY WILL BE
 STA NEXT_RAM ;PRESSED FIRST TIME AFTER
 STA PREV_RAM ;THIS FILL MEMORY KEY

 MVI A,00H
 STA DA_OR_AD;NOW ADDRESS NEEDS TO ROTATE FOR
 ;0 TO F

 RET

DATADISP: MVI A,90H
 OUT 41H
 MVI B,08H
 LXI H,DISPDATA

D_C_1: LXI D,FND_CODE
 MOV A,M
 ADD E
 MOV E,A
 LDAX D
 OUT 40H
 INX H
 DCR B
 JNZ D_C_1

 RET

CHK_0TOF: LDA DATA_MEM
 MVI B,00H
 CPI D0 ;IS IT ZERO?
 JNZ OUT0

 JMP LAST_1

OUT0: INR B
 CPI D1 ;IS IT ONE?
 JNZ OUT1

 JMP LAST_1

OUT1: INR B
 CPI D2
 JNZ OUT2

109

 JMP LAST_1

OUT2: INR B
 CPI D3
 JNZ OUT3

 JMP LAST_1

OUT3: INR B
 CPI D4
 JNZ OUT4

 JMP LAST_1

OUT4: INR B
 CPI D5
 JNZ OUT5

 JMP LAST_1

OUT5: INR B
 CPI D6
 JNZ OUT6

 JMP LAST_1

OUT6: INR B
 CPI D7
 JNZ OUT7

 JMP LAST_1

OUT7: INR B
 CPI D8
 JNZ OUT8

 JMP LAST_1

OUT8: INR B
 CPI D9
 JNZ OUT9

 JMP LAST_1

OUT9: INR B
 CPI DA
 JNZ OUTA

 JMP LAST_1

110

OUTA: INR B
 CPI DB
 JNZ OUTB

 JMP LAST_1

OUTB: INR B
 CPI DC
 JNZ OUTC

 JMP LAST_1

OUTC: INR B
 CPI DD
 JNZ OUTD

 JMP LAST_1

OUTD: INR B
 CPI DE
 JNZ OUTE

 JMP LAST_1

OUTE: INR B

LAST_1: LDA DA_OR_AD ;DATA OR ADDRESS
 CPI 00H ;IF ADDRESS NEEDS TO ROTATE SO
 ;DA_OR_AD=00H
 JNZ NEXT1 ;IF DATA NEEDS TO ROTATE SO
 ;DA_OR_AD=01H
 CALL ADD_ROT
 JMP LAST1

NEXT1: CALL DATA_ROT

LAST1: CALL DATADISP
 RET

DATA_ROT: LDA DISPDATA
 STA DISPDATA+1

 MOV A,B
 STA DISPDATA
 RET

ADD_ROT: LDA DISPDATA+6
 STA DISPDATA+7

111

 LDA DISPDATA+5
 STA DISPDATA+6

 LDA DISPDATA+4
 STA DISPDATA+5

 MOV A,B
 STA DISPDATA+4

 RET

DELAY: PUSH PSW
DEL1: DCX D
 MOV A,E
 ORA D
 JNZ DEL1
 POP PSW
 RET

 .END

112

CHAPTER – 8 DIGITAL TO ANALOG CONVERTER

 There are various situations where we needs to convert the digital data
into equivalent analog voltages. Such a converter chip is called digital to
analog converter, or briefly DAC. There are various DAC chips available in the
market. We have selected DAC – 0808 for interfacing with our microprocessor
trainer kit.[8]
 We have developed this circuit to illustrate that how one can interface
the popular DACs like DAC – 0808.
 In the present interfacing circuit we have converted the 8-bit digital
input to a maximum +5V analog output.

8.1 DAC – 0808 Chip

 It is a 16-pin device, available in DIP (Dual Inline Package) and SOP
(Small outline Package) packages. It is an 8-bit monolithic digital to analog
converter chip, providing current as a output. In this chip reference current
(Iref) trimming is not required, as the full scale output current is typically +1
LSB of 256 Iref/ 256. The power supply currents of the chip are independent of
bit codes, and exhibits essentially constant device characteristics over the
entire supply voltage range.
 This chip accepts TTL, DTL or CMOS logic levels. The features of DAC
– 0808 are as follows.

 Relative accuracy: + 0.19% error maximum.

 Full scale current match: + 1 LSB typical

 7 and 6-bit accuracy available

 Fast setting time: 150 ns typical

 Non inverting digital inputs are TTL and CMOS compatible

 High speed multiplying input slew rate: 8mA / microsecond

 Power supply voltage range: + 4.5V to + 18V

 Low power consumption: 33mW @ + 5V

Block diagram

 Figure 8.1.1. shows the block diagram of DAC – 0808.

113

As shown in the block diagram the binary 8-bit data is to be applied at
pins A1 to A8, such that MSB appears at A1 and LSB appears at A8.
 The block “current switches” takes care of the various types of
digital low level and high level voltages. The R-2R ladder unit provides the
weighted contribution of each input bit. In association with + Vref and – V
ref the R-2R ladder generates proper value of equivalent Iout.
 This is obtained with the help of NPN current source pair and
reference current amplifier. The bias circuit takes care of proper biasing
conditions of the internal components.
 Figure 8.1.2 shows the pin diagram of DAC – 0808.

CURRENT SWITCHES

R-2R LADDER BIAS
CIRCUIT

REFERENCE CURRENT AMP. &
NPN CURRENT SOURCE PAIR

 MSB LSB
 A1 A2 A3 A4 A5 A6 A7 A8

RANGE
CONTROL IB

GND

VCC

COMP

VREF(-)

VREF(+)

 VEE

Figure-8.1.1 BLOCK DIAGRAM OF DAC-0808

114

Pin – 1 NC:

 This is not used in the circuit. So the user can leave it
unused.

Pin – 2 GND:

 This is ground pin all potentials are measured with
respect to this pin.

Pin – 4 Iout:

 This pin gives the output current. This current is
proportional to the input digital data.

Pin – 5 to 12 A1 to A8:

 These are the eight input pins. The digital data is
received at these eight pins. These pins are capable to accept
TTL based logical signals.

Pin – 13 VCC:

 This pin is positive supply pin. The designer needs to
supply positive voltage with respect to ground at this pin.

DAC
0808

1

2

3

4

5

6

7

8

 16

 15

 14

 13

 12

 11

 10

 9

 NC

 GND

 VEE

 IOUT

MSB A1

A2

A3

A4

COMPENSATION

VREF(-)

VREF(+)

VCC

A8 LSB

A7

A6

A5

Figure-8.1.2 PIN DIAGRAM OF DAC-0808

115

Pin – 14 Vref+:
 This is positive reference pin. By varying the current at this pin
we can calibrate the output current.

Pin – 15 Vref-:
 This is negative reference pin. This pin should be connected at
ground potential.

Pin – 16 Comp:
 The capacitor of 0.01 microfarad is connected between this pin
and negative supply pin. The output current can be converted into voltage by
adding current to voltage converter.

8.2 Basic interfacing circuit with P.C.B. aspect

The interfacing details of DAC – 0808 is shown in Figure – 8.2.1. The
proper voltage conditions required and + Vref are obtained by external means
through a 9-pin D-type connector. The voltages at these pins are VEE = -
15Volt and VCC = +15Volt. In this application we need positive output voltage
so, -Vref is grounded. The 8-bit digital input is obtained from Port-A through I/O
connector, where PA0 connects with A8 (LSB) & PA7 connects with A1 (MSB).

 For compensation of phase a capacitor C1 of value 0.01Mf is
connected between COMP (pin no-16) and VEE (pin no-3). The resultant
output current at pin no-4 (Iout) is inputted to the inverting pin of OP-AMP 741
which is designed as current to voltage converter. The adjustment of the Vout
can be done with the help of feed back resistor R3.

Circuit Function

 In the present interfacing circuit digital input data is supplied
through 8255 located in the microprocessor kit. In the software 8255 is
configured such that Port-A becomes output port. The desired data is output
through Port-A at the input pins of DAC – 0808. This gets immediately
converted into equivalent analog output, which can be measured by a
Multimeter.

P.C.B. aspects
 The track layout pattern for the DAC-0808 module is designed
using computer. The track layout for the same(bottom layer) is shown in
Figure-8.2.2(a) and its overlay drawing is shown in Figure 8.2.2(b).

Software analysis
 To get the full scale output voltage the below given program
can be used.

M V I A, 80 H ; Control word
O U T 03 H

M V I A, FF H
O U T 00 H

H L T

116

 The control word 80h will initialize port-A as output port, then
send 00h/ffh at port-A, then by potentiometer adjust 0v/5v at output.
Figure 8.2.1 SCHEMATIC CIRCUIT OF DAC-0808 CARD

117

118

FIGURE 8.2.2(A) BOTTOM LAYER OF P.C.B. LAYOUT

FIGURE 8.2.2(B) OVERLAY OF P.C.B. LAYOUT

119

8.3 Examples.

1. You are given the microprocessor kit and DAC – 0808 based

interfacing module. After applying proper power supplies develop
program to get 2.5V at output. Fill up the below given table.

Input digital data Output Voltage

00H
01H
02H
04H
10H
20H
40H
80H

2. You are given the microprocessor kit and DAC – 0808 based

interfacing module. After applying proper power supplies develop
program to generate square Wave. The low Voltage will be zero and
high Voltage will be 4.5V and show it on CRO.

3. You are given the microprocessor kit and DAC – 0808 based

interfacing module. After applying proper power supplies develop
program to generate triangular wave and show it on CRO.

120

CHAPTER – 9 ANALOG TO DIGITAL CONVERTER

 Many physical entities are now measured by means of digital
equipments. For examples, digital readout of temperature, pressure etc. Such
entities are sensed through its corresponding transducer. The transducer
generates the analog voltage or current. To obtain digital representation of
these entities their transducer output analog voltage or current are to be
converted into digital format.
 There are various means to convert analog voltage or current into
equivalent digital outputs. The devices which perform this are called Analog to
digital converter. There are few different techniques being used for different
ADCs.
 Basically, the ADCs sample the data, quantaize and encode then into
digital format. The very famous technique, which is used as a part of
conversion process is successive approximation.
 Now a day ADC ICs are available, which are microprocessor
compatible.

9.1 ADC – 0808 Chip.

In the present work we have considered ADC – 0808.[8] It is an 8-bit
analog to digital converter with 8-channel in built multiplexers. It is the
monolithic CMOS device manufactured by the National Semiconductor.

The 8-bit A/D converter uses successive approximation as the
conversion technique. The converter features a high impedance chopper
stabilized comparator, a 256R voltage divider with analog switch tree and a
successive approximation register.

The 8-channel multiplexer can directly access any of 8-single-ended
analog signals.

The device eliminates the need for external zero and full scale
adjustments. Easy interfacing to microprocessor is provided by the latched
and decoded multiplexer address inputs and latched TTL TRI-STATE outputs.

The design of the ADC – 0808 has been optimized by incorporating the
most desirable aspects of several A/D conversion techniques. The ADC –
0808 offers high speed, high accuracy, minimal temperature dependence,
excellent long-term accuracy and repeatability, and consumes minimal power.
These features make this device ideally suited to applications from process
and machine control to consumer and automotive applications.

Features
 Easy interface to all microprocessors
 Operates ratiometrically or with 5 VDC or analog span adjusted voltage

reference
 No zero or full scale adjustment required
 8-channel multiplexer with address logic
 0V to 5V input range with single 5V power supply
 Outputs meet TTL voltage level specifications
 Standard hermetic or molded 28-pin DIP package
 28-pin molded chip carrier package

121

Key Specifications

 Resolution 8 Bits
 Total Unadjusted Error + ½ LSB and + 1 LSB
 Single Supply 5 VDC
 Low Power 15 mW
 Conversion Time 100 us

Block diagram

 Figure 9.1.1. illustrate the block diagram of ADC – 0808.
ADC – 0808 consists of 8-main parts.

1. 8-channel multiplexing analog switches
2. Address Latch and Decoder
3. Comparator
4. Control and Timing
5. Successive Approximation register
6. Switch tree
7. 256R resistor ladder
8. Tri-state output Latch buffer

1. 8-channel multiplexing analog switches.

 This unit receives analog voltages to be converted into digital on eight
different pins called Channel. This input can be single ended analog signal.

2. Address latch and decoder.

This block has four inputs in which three are address lines and one is
ALE (Address Latch Enable) pin. Following Table 8.1.1. shows the input
states for the address lines to select any channel. The address is latched into
the decoder on the low to high transition of the ALE Signal.

Table 9.1.1

Selected Analog

Channel
Address lines

C B A
IN 0 L L L
IN 1 L L H
IN 2 L H L
IN 3 L H H
IN 4 H L L
IN 5 H L H
IN 6 H H L
IN 7 H H H

122

Figure 9.1.1. Block diagram of ADC – 0808

3. Comparator

 This unit compares the analog input on any one channel with the
intermediate analog voltage converted by successive approximation.

4. Control and Timing
 This unit controls the various functions of other units, it has start, clock
and EOC lines. It controls the comparator, SAR and output latch buffer.

8-CHANNELS
MULTIPLEXI
NG ANALOG
SWITCHES

ADDRESS
LATCH AND

DECODER

CONTOL &
TIMING

SAR

TRI STATE

OUTPUT
LATCH
BUFFER

SWITCH
TREE

256 R
RESISTOR
LADDER

 VCC GND REF(+) REF(-) O/P
 ENABLE

START CLOCK

8
A
N
A
L
O
G
I
/
P

A
D
D

A
L
E

EOC

O
U
T
P
U
T

COMPARATOR

123

5. Successive Approximation Register

 This is an eight bit register which performs eight iterations to
approximate the input voltage.
 It is reset on the positive edge of the start conversion (SC) pulse. The
conversion begins on the falling edge of the start conversion pulse. A
conversion in process will be interrupted by receipt of a new start conversion
pulse. Continuous conversion pulse may be accomplished by tying the End of
Conversion (EOC) out to the A.C. input, if used in this mode an external start
conversion pulse should be applied after power-up. EOC will go low between
zero and eight clock pulses after the rising edge of start conversion (SC).

6. Switch tree

 This unit consists of number of in built switches. These
switches pass the voltages of 256R resistor ladder. It gives output

voltage to the comparator. This output voltage is the result of ladder
network voltage under the control of S.A.R. Figure 9.1.2. shows the

register ladder and switch tree.

7. 256-R resistor ladder

 This unit is a network of 256 resistors. Hence, it is called 256R
resistor ladder. It is better then R-2R ladder because of its inherent

monotonocity. Which guarantees no missing digital codes, it does not
cause low variations on the reference voltage. The network is shown

in Figure – 8.1.2. The bottom resistor and the top resistor of the
ladder network are not the same value as the remainder of the

network. The difference in these resistors causes the output
characteristics to be symmetrical with the zero, and full scale points

of the transfer curve.

8. Tri-state output latch buffer

 This unit is controlled by Control and Timing unit and Output Enable
(OE) pin. It outputs the final contents of S.A.R. i.e. the converted digital data
on the eight different output pins of the chip.

124

Figure 9.1.2 Resistor ladder and switch tree

Pin diagram & Timing diagram

R

R

R

R

R

R

256R
TO

COMPARATOR
INPUT

REF(-)

REF(+)

CONTROL FROM S.A.R.

125

The pin diagram of ADC – 0808 is shown in Figure 9.1.3. In pin
diagram IN0 to IN7 are 8-input pins to take in eight different analog
voltages. The selection of any of these input channel is controlled by
the address pins ADD A, ADD B and ADD C. The start pin accepts a
pulse for starting conversion. EOC pin provides the high status when
conversion is over. OE pin when receives high causes the digital data
stored in latch buffer to output on the output lines. Here output lines
are 2-1 (MSB), 2-2….2-8 (LSB). ALE is used to latch the address on
ADD A, ADD B and ADD C into the internal latch. VRef(+) and VRef(-)
accepts the positive and negative voltage respectively for the internal
256R ladder network.

Pin – 1, 2, 3, 4, 5, 26, 27, 28 : IN0 to IN7
 These pins are input channel pins. The voltage between this pin and
ground can be converted into digital.
Pin – 6 : START
 The analog to digital conversion Starts after receiving a pulse at this
pin.
Pin – 7 : E0C
 This pin is known as End of conversion pin. This pin goes low when
conversion Starts and becomes high when conversion ends.

Pin – 8, 14, 15, 17, 18, 19, 20, 21 : Data lines
 These are the data pins. The converted digital data appear at these
pins. The pin numbers and its labels are Shown in Figure 9.1.3..
Pin – 9 : 0E
 This pin is known as output Enable. After conversion the digital data
will be read if this pin is at high logic.

Pin – 10 : CLK
 This is Clock pin. To convert analog data into digital form we need to
apply Clock. The conversion time is dependent upon the frequency of the
Clock.
Pin – 11 : VCC
 This is the supply pin +5V is provided at this pin through 40 – pin FRC
connector.
Pin – 12 : REF+
 This is positive reference pin. This pin is shorted with VCC pin.
Pin – 13 : GND
 This pin is the ground pin. The voltage at all points have been
measured with respect to this pin.
Pin – 16 : REF-
 This is negative reference pin. This pin is shorted with ground pin.
Pin – 22 : ALE
 This pin is known as Address Latch Enable. The status on A0, A1 & A2
of DAC – 0808 will be latched by pulse at this pin.
Pin – 23, 24 & 25 : A2, A1 & A0

These are the three address pins. These pins select analog input
channel.

126

 Timing diagram

As shown in Figure – 9.1.4, first of all analog inputs are to be made stable
at the input channels. There after from the microprocessor proper address is
provided on address lines. This address is available for very short time in its
stable form, so a signal on ALE pin of ADC – 0808 is to be applied during this
time i.e. during the first clock pulse appearing at the clock pin of ADC – 0808.
After that microprocessor is supposed to provide a start conversion pulse.

Figure 9.1.3. – Pin diagram of ADC – 0808

When conversion is over EOC pin goes low for certain time. After this

time EOC again becomes high microprocessor should sense this last

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 28

 27

26

25

24

23

22

21

20

19

18

17

16

15

ADC
0808

IN3

IN4

IN5

IN6

IN7

START

EOC

2-5

OE

CLOCK

VCC

VREF(+)

GND

2-7

IN2

IN1

IN0

ADD A

ADD B

ADD C

ALE

2-1(MSB)

2-2

2-3

2-4

2-8(LSB)

VREF(-)

2-6

127

transition of EOC, and then should send a positive pulse on OE pin. This will
put the converted data on to the output line of ADC – 0808.

FIGURE 9.1.4 TIMING DIAGRAM

9.2. Basic interfacing circuit with P.C.B. aspects

 We have designed and developed an interfacing circuits to illustrate the
use of ADC-0808 with the 8085A microprocessor.[9]

The interfacing circuit for ADC – 0808 is shown in Figure 9.2.1.The 40
pin FRC connector connects all the pins of ADC – 0808 with 8255, VCC and
ground which is on board on the 8085 card except input channels.
 Port-A and Port-B are used as input port, while Port-C is used as
output port of 8255. Port-C generates the timing pulses for OE, ALE, Start and
CLK. It also generates address on A0, A1 and A2 pin of ADC – 0808. In the
software the proper address is generated by Set-Reset of PC5, PC6 & PC7.
 There after, ALE is generated which latches the address into ADC –
0808. Ref(+) and Ref(-) are connected with VCC and ground respectively. In the
present design we connected on channel-7 the +5V supply and its converted
data was read by Port-A. The EOC signal is sensed by Port-B. When EOC
becomes valid the software generates OE through PC2 to read the data on
Port-A. One can use any channel by considering the corresponding
proper address on A0, A1 and A2.

CLOCK

START

ALE

 ADD

 I/PS

 OE

 EOC

128

FIGURE 9.2.1. SCHEMATIC CIRCUIT OF ADC

129

P.C.B. aspects

 The track layout pattern for the ADC-0808 module is designed using
computer. The track layout for the same (bottom layer) is shown in Figure-
9.2.2(a) and its overlay drawing is shown in Figure 9.2.2(b). Note that in
overlay the straight lines show jumper wires.
 This interfacing module can be connected with microprocessor kit
through 40 – pin FRC connector. The tested program is given below. This
software can be loaded into memory of the kit.
Software

HL_DISP: .EQUAL 1C1CH
DATADISP: .EQUAL 1E65H
DELAY: .EQUAL 1F40H
ADC: .EQUAL 0200H

ORG ADC

 LXI SP, 5EFFH
 MVI A, 92H ;CONTROL WORD
 OUT 03H

 MVI A, 0FH ;TO SET PC7 CHANNAL ADDRESS
 OUT 03H
 MVI A, 0DH ;TO SET PC6 CHANNAL ADDRESS
 OUT 03H
 MVI A, 0BH ;TO SET PC5 CHANNAL ADDRESS
 OUT 03H

START: MVI A, 03H ;TO SET PC1 ALE PIN
 OUT 03H

 MVI A, 01H ;TO SET PC0 START PIN
 OUT 03H
 NOP
 NOP
 NOP
 MVI A, 02H ;TO RESET PC1 ALE PIN
 OUT 03H

 MVI A, 00H ;TO RESET PC0 START PIN
 OUT 03H

LOOP1: MVI A, 07H ;TO SET PC3 CLOCK PIN
 OUT 03H

 NOP
 NOP
 NOP
 MVI A, 06H ;TO RESET PC3 CLOCK PIN

130

 OUT 03H

 IN 01H
 ANI 80H ;EOC PIN IS CONNECTED WITH PB7
 JZ LOOP1

 MVI A, 05H ;TO SET OUTPUT ENABLE PIN
 OUT 03H

 NOP
 NOP
 IN 00H
 MOV L, A

 MVI A, 04H ;TO RESET OUTPUT ENABLE PIN
 OUT 03H

 MVI H, 00H
 CALL HL_DISP
 CALL DATADISP

 LXI D, FFFFH
 CALL DELAY
 LXI D, FFFFH
 CALL DELAY
 JMP START
 .END

Result

 This ADC – 0808 is capable to convert given analog data into 8- bit
digital data. To set any one bit out of eight bits, we should apply proper data,
these types of observations are shown in Table – 9.2.1.

Table-9.2.1

Observation No. Analog input voltage Digital output
1 0volt 00000000b
2 0.024 volt 00000001b
3 0.04 volt 00000010b
4 0.081 volt 00000100b
5 0.16 volt 00001000b
6 0.32 volt 00010000b
7 0.61 volt 00100000b
8 1.2 volt 01000000b
9 2.4 volt 10000000b

10 4.82 volt 11111111b

 Here it is shown that the weight of next MSB is almost double then any
bit.

131

FIGURE 9.2.2(A) BOTTOM LAYER OF ADC-0808 CARD

132

FIGURE 9.2.2(B) OVERLAY OF ADC-0808 CARD

133

Figure-9.2.3 Captured signals by Logic analyzer

134

The logic analyzer can be used to study the waveforms. The timing
signals captured by logic analyzer are shown in Figure. 9.2.3. Here we have
captured CLOCK, START, ALE, ADD0 – 2 OE, EOC and D0 – D7.
 One can see that ALE and START are generated at the beginning.
ADD – 0 to ADD – 2 are kept at high logic to select channel – IN7. The clock
signals are applied when end of conversion signals goes low, from this point
conversion starts.
 The microprocessor continuously checks the logic at EOC pin. When
EOC becomes high then OE signal is made low. The converted data FFH is
read on port – A and displayed on FND display.
 The conversion time, which is specified in the data sheet of ADC –
0808 is 100 micro – second (for CLOCK frequency of 640 KHz) and the same
is verified through logical state analyzer, and it is 1705 micro – second (for
CLOCK frequency of 40.84 KHz).

9.3 Examples

Example-1
You are given a microprocessor kit and an interfacing card of ADC – 0808.
Write software program to read analog voltage of Channel – IN7 and store this
digital data at some memory location.

Example-2
You are given a microprocessor kit and an interfacing card of ADC – 0808.
Write software program to see the digital data on FND displays and find the
Weightage of all bits.

135

CHAPTER – 10 RUNNING CHARACTER DISPLAY

 In the series of Interfacing Cards developed with our present
microprocessor trainer kit “The Running Character Display” has been included
to elucidate the fascination of numbers and alphabets running on the display.
This type of display is heavily used in commercial advertisements. Various
types of display modules are available for this. There can be verities of
displays for this purpose. But among all, the basic working principals are
almost same.
 In the present running character display design, we have considered
5x7 display module for interfacing 8085A. To drive the display LEDS of the
modules buffering was considered.

10.1. Understanding basic Circuit and P.C.B. aspects.
 Let us first understand the organization of 5x7 matrix. Figure-
10.1.1. shows the arrangement of 5X7 matrix display modules.

FIGURE-10.1.1 PIN CONFIGURATION OF 5X7

For buffering all LEDS of these three display modules all together, we

have used three 8-bit buffers, consisting of ICs 74245. All input lines of these
buffer ICs are terminated to a 40-pin FRC connector.
 The detailed interfacing circuit for running character display interfacing
module is shown in Figure 10.1.2. There are three 5x7 matrix modules, which
allow the maximum three characters to be displayed at a time.

Figure 10.1.2:Schematic diagram of Running Character Display

 R2 C1 R4 C3 C4 R1 R3
 14 13 12 11 10 9 8

 1 2 3 4 5 6 7
R5 R7 C2 C3 R4 C5 R6

136

137

The connector pin details are shown in following Table – 10.1.1.

Table – 10.1.1.

FRC pin no. Connecting pin
from 8255.

Buffer IC pin no. 5x7 matrix
module.

1 PB2 U3 – A6 C2
2 PB3 U3 – A5 C3
3 PB1 U3 – A7 C1
4 PB4 U3 – A4 C4
5 PB0 U3 – A8 C0
6 PB5 U3 – A3 C5
7 PC3 U2 – A5 C11
8 PB6 U3 – A2 C6
9 PC2 U2 – A6 C10
10 PB7 U3 – A1 C7
11 PC1 U2 – A7 C9
12 -- -- --
13 PC0 U2 – A8 C8
14 -- -- --
15 PC4 U2 – A4 C12
16 -- -- --
17 PC5 U2 – A3 C13
18 -- -- --
19 PC6 U2 – A2 C14
20 -- -- --
21 PC7 -- --
22 -- -- --
23 -- -- --
24 -- -- --
25 GND GND --
26 GND GND --
27 -- -- --
28 -- -- --
29 -- -- --
30 VCC VCC --
31 -- -- --
32 -- -- --
33 PA0 U1 – A1 R1

34 PA7 -- --
35 PA1 U1 – A2 R2

36 PA6 U1 – A7 R3

37 PA2 U1 – A3 R4

38 PA5 U1 – A6 R5

39 PA3 U1 – A4 R6

40 PA4 U1 – A5 R7

138

 This FRC connector is further connected on 8085A CPU Card on I/O
connector, which connects all the 24 I/O lines of 8255 and VCC, ground. Thus
ultimately the peripheral IC 8255 controls the display modules.
 Note that the rows of all the three 5x7 matrix module are
interconnected which is not shown in Figure. 10.1.2.
 Thus to glow for example the matrix element LED positioned at C0R0
we have to supply +5V to R0 and we have to connect C0 with the ground
through current limiting register. Which demands that in the case PA0 should
be high and PB0 should be low. This makes the partial coading character
code.

 Figure – 10.1.3. (a) and (b)shows the organization of the 1.2”
DM DOT matrix 5x7 display module. The product No. is KLP 1157I. It is
column cathode part supplied by Kwality photonics private Limited.[10]

Figure-10.1.3(a) Top view of 5x7 matrix

139

R0

R1

R2

R3

R4

R5

R6

 C4 C3 C2 C1 C0

Figure-10.1.3(b)
Internal LEDarrangement

140

Now the technique to display a character on this 5X7 matrix display is
illustrated in Figure 10.1.4.

 FIGURE 10.1.4 Character ‘A’ on 5x7 matrix display

 In this Figure-10.1.4 how to display a letter ‘A’ is explained. In this
block solid circles are to be glown. For that respective row should be supplied
with high signal and columns should be grounded.

Code generation

In running character display a character is displayed in a given display
module for very small time. There after a new character is displayed on the
same module. This way all the display modules display different character
at different time. A software program stored in microprocessor kit controls
this changing character and time.

To display any single character on a single display module, the
microprocessor sends a typical high or low signal to the corresponding
LEDs of module. This combination of high and low frames a binary word
called character codes. As shown in Figure-10.1.4 a single character will
need seven such five bit binary codes. In Figure-10.1.4 the codes for letter
‘A’ are also shown. Note that for first row R0, the code is 11H. This is
because five LEDs correspond to eight-bit data as follows.

because five LEDs correspond to eight-bit data as follows.

 x x x 1 0 0 0 1 = 11H

For other rows one can generate codes referring to Figure-10.1.4

141

These codes are sent by microprocessor through the 8255 ports to

display module. In present case the code 11H will display the three center
LEDs of R0 of display module. Next microprocessor will send the code 0E
to display the two LEDs at the ends of R1. Like these all codes are
supplied sequentially and rapidly. So for a viewer the character display is
stationary.

Up to this we have discussed for a single display module. For multi

character display the various codes of various characters are supplied to
the different display matrices maintaining the synchronization, to generate
running environment of the characters.

PCB aspects

 The track layout pattern for the running character display module is
prepared using in house laboratory facility. The track layout drawing for the
same (bottom layer) is shown in Figure 10.1.5. (a) and its overlay drawing is
shown in Figure 10.1.5. (b).
 Note that in Figure 10.1.5. (b) the small line segments indicate the
jumper wires.

10.2. Program techniques and example

 We know from Figure 10.1.2. that rows of all the three modules
together are controlled by Port-A and columns are controlled by Port-B and C,
where Port-B controls columns C0 to C7 and Port-C controls columns C8 to
C14. Note that PC7 bit is not connected as there in no C15 column.

142

Figure-10.1.5(a): Bottom layer of P.C.B.

143

Figure 10.1.5(b) : overlay of P.C.B.

144

 In the program logic following points are very well conceived.

1. For display purpose one row at a time is selected i.e. When PA0 is
made high the row R0 for all the three modules is selected.

2. Displaying starts from the Right most 5x7 display matrix module.

3. For display purpose instead of selecting group of LEDs as per the row

code the individual bit vise LEDs are selected one by one.
 This is done to reduce the power requirement at a time.

 To understand this concept consider Figure 10.1.4. In this
figure if we want to display character ‘A’ on 5x7 matrix-0, we have to
first output data 11 H on Port-B, for R0. If we do so then the middle
three LEDs of row-1 of 5x7 matrix-0 will glow. That means at one time
all the three LEDs will draw the current. To avoid this we have
designed the software such that only one LED of the row of the
character code is displayed at a time. For this the character codes for
the row have been masked for allowance of only one valid bit to glow
corresponding LED. This masked data is sent to the Port-B (And for
Port-C as well, as per the requirement). This will glow only one LED at
a time. Thus power requirement is reduced. The whole row code is
displayed by rotating and masking the row code. This technique
provides uniform and bright illumination of the character on the display.

4. All necessary character codes are stored in EPROM. Then they are

transferred to the RAM.

5. All three modules are now treated as 7x15 single matrix. This is further

divided into two: 7x7 (R0, R1, R2, R3, R4, R5, R6, C14, C13, C12, C11, C10,
C9, C8) and 7x8 (R0 to R6 and C7 – C0) for software purpose. 7x7 is
controlled by Port-C and 7x8 is controlled by Port-B.

6. In software to display on 7x8, the other part 7x7 is kept blank by

outputting FFh on Port-C and similarly vice-versa.

7. Initially the software displays on arrow as shown in Figure – 10.2.1.

 At the beginning of the program an arrow is shown because it
shows the direction of running, as well as to eliminate display of
random data.

145

Step1

Step2

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Figure-10.2.1: shifting of the character ‘DARSHAN’

8. Now we will consider how the display looks running. Consider Figure

10.2.2. in this figure 7x15 display module is represented in six different
steps.

Figure-10.2.2: shifting of the character ‘D’(P.T.O.)

-- -- D

-- D A

D A R

A R S

R S H

S H A

H A N

A N D

146

 Figure-10.2.2: shifting of the character ‘D’

In step-1 an arrow is shown on display. In step-2 the whole display is
shown shifted left by one column, one can see the two LEDs of character ‘D’
being displayed in step-2. In step-3 next column of character-‘D’ gets

147

displayed with a one more column wise left shifting makes the display
“running”. Note that program is written such that once arrow gets shifted
completely it does not reappear. Only the message “DARSHAN” gets rotated.

The complete logic of the present software is illustrated in the form of
flow chart in Figure 10.2.3.

Following is the detailed listing of the software written for “running
character Display” interface.

DELAY: .EQUAL 1F3FH
POINTER: .EQUAL 5F50H
COUNT: .EQUAL 5F40H ;5F40H
COUNT1: .EQUAL 5F41H ;5F41H
ROT_COU: .EQUAL 5F42H ;Rotate counter
TEMP_HL: .EQUAL 5F43H ;5F43H & 5F44H
TEMP_HL1: .EQUAL 5F45H ;5F45H & 5F46H
COUNT2: .EQUAL 5F47H
RCD: .EQUAL 0850H ;Running char.disp.
COD_SEQ: .EQUAL 1500H ;code seq. in EPROM

ORG RCD

 LXI SP,5EFFH
 MVI A,80H ;CONTROL WORD
 OUT 03H

 LXI H,POINTER ;FROM 5F40H TO 5F4EH
 MVI M,FFH ;CODES TO DISPLAY AN ARROW
 INX H
 MVI M,FFH
 INX H
 MVI M,FFH
 INX H
 MVI M,00H
 INX H
 MVI M,FFH
 INX H
 MVI M,FFH
 INX H
 MVI M,FFH
 INX H
 MVI M,F7H ;POINTER 7 LOCATION
 INX H
 MVI M,EFH
 INX H
 MVI M,DFH
 INX H
 MVI M,80H
 INX H

148

 MVI M,DFH
 INX H
 MVI M,EFH
 INX H
 MVI M,F7H

AGAIN: MVI A,0CH ;DARSHAN HAS 7 CHARECTERS
 STA COUNT2 ;Initialize counter 2

LXI H,COD_SEQ ;source pointer to code ;sequence in
;EPROM.

 SHLD TEMP_HL1 ;temporary storage
NEX_CHAR: LHLD TEMP_HL1

MVI B,07H ;counts to count 7 codes of ;each character
LXI D,POINTER+14 ;Destination pointer to ;next character to be

;displayed
SECOND: MOV A,M ;code of character

STAX D ;store at pointer + 14 ;location
 INX H ;increment source
 INX D ;increment destination
 DCR B
 JNZ SECOND ;if all codes are not ;transferred,

;repeat
SHLD TEMP_HL1 ;now point to next character ;group

LXI H,COUNT1 ;COUNTER TO ROTATE
 ;CHARECTERS

 MVI M,05H

BEGIN: LXI H,ROT_COU ;COUNTER TO DISPLAY
 ;CHARECTERS
 MVI M,20H ;counts to get stable display

START: MVI B,01H ;ROW SELECTOR

MVI C,FEH ;TO MASK BYTE FOR
;BITWISE ;GLOWING

 LXI H,POINTER
LOOP2: MOV D,M ;SAVE DATA IN D

 MOV A,B ;GET ROW NO.
 OUT 00H ;ACTIVATE ROW FOR ALL 3 DISPLAYS

LOOP1: MOV A,D ;GET CODE IN ACCUMULATOR
 ORA C ;MASK CODE
 OUT 01H ;PUT ON PORT-B

 MOV A,C ;TO ROTATE MASKING BYTE
 RLC

149

 MOV C,A

 PUSH D ;DELAY TO GLOW SELECTED LED
 LXI D,0015H
 CALL DELAY ;FOR FINITE TIME
 POP D
 CPI FEH ;ARE ALL LEDS IN SELECTED ROW
 ;ILLUMINATED
 JNZ LOOP1;IF NOT, REPEAT

 MVI A,FFH ;TO OFF ALL LEDS OF PORT-B
 OUT 01H ;TO OFF ALL LEDS OF PORT-B

 INX H ;INCREMENT TO POINT NEXT BYTE

 MOV A,B ;GET ROW AND ROTATE (NEXT ROW)
 RLC
 MOV B,A
 CPI 01H ;WHETHER ALL 7 ROWS HAVE BEEN
 ;ACTIVATED OR NOT?
 JNZ LOOP2

 LXI H,POINTER+7 ;POINTER WHICH USES PORT-C
LOOP21: MOV D,M ;SAVE DATA IN D

 MVI A,FFH ;TO OFF ALL LEDS OF PORT-C
 OUT 02H

 MOV A,B ;GET ROW NO.
 OUT 00H

LOOP11: MOV A,D ;GET CODE IN ACCUMULATOR
 ORA C ;MASK CODE
 OUT 02H ;PUT ON PORT-C

 MOV A,C ;TO ROTATE MASKING BYTE
 RLC
 MOV C,A
 PUSH D ;TO STORE DE
 LXI D,0015H ;TO DELAY
 CALL DELAY
 POP D ;GET-BACK DE
 CPI FEH ;ARE ALL LEDS IN SELECTED ROW
 ;ILLUMINATED.
 JNZ LOOP11

 MVI A,FFH
 OUT 02H ;TO OFF ALL LEDS OF PORT-C

150

 INX H ;INCREMENT TO POINT NEXT BYTE
 MOV A,B ;GET ROW AND ROTATE
 RLC
 MOV B,A
 CPI 01H
 JNZ LOOP21

 LXI H,ROT_COU
 DCR M
 JNZ START

 LXI H,COUNT ;TO SHIFT RAM DATA BY 1-BIT
 ;IN ROW
 MVI M,07H
 LXI H,POINTER+7+7 ;POINTER OF NEXT CHAR.

 LXI D,POINTER ;POINTER OF PORT-B
 LXI B,POINTER+7 ;POINTER OF PORT-C

 SHLD TEMP_HL
LOOPB: LHLD TEMP_HL
 PUSH B
 LDA COUNT1 ;FIVE BITS NEED TO SHIFT
 MOV B,A

 MOV A,M ;GET CODE OF NEXT CHARECTER
LOOPA: RAR ;GET PROPER BIT OF NEXT CHAR. IN CARRY
 DCR B
 JNZ LOOPA

 POP B
 LDAX D
 RAL ;GET CARRY AS LAST BIT OF PORT-B &

;PUT MSB IN CARRY
 STAX D
 LDAX B
 RAL ;GET CARRY AS LSB OF PORT-C
 STAX B

 INX B
 INX D
 INX H
 SHLD TEMP_HL

 LXI H,COUNT ;TOTAL 7 BYTES NEED TO ROTATE
 DCR M

151

 JNZ LOOPB

 LXI H,COUNT1 ;NOW 5 TO 4, 4 TO 3 AND SO ON
 DCR M
 JNZ BEGIN

 LXI H,COUNT2 ;TOTAL 7 CHARACTERS(DARSHAN)
 ;NEED TO DISPLAY
 DCR M
 JNZ NEX_CHAR
 JMP AGAIN

 ORG COD_SEQ
 db 00h ;D
 db 16h
 db 16h
 db 16h
 db 16h
 db 16h
 db 00h

 db 11h ;A
 db 0Eh
 db 0Eh
 db 00h
 db 0Eh
 db 0Eh
 db 0Eh

 db 00h ;R
 db 0Eh
 db 0Eh
 db 00h
 db 0Bh
 db 0Dh
 db 0Eh

 db 00h ;S
 db 0Fh
 db 0Fh
 db 00h
 db 1Eh
 db 1Eh
 db 00h

 db 0Eh ;H
 db 0Eh
 db 0Eh
 db 00h
 db 0Eh

152

 db 0Eh
 db 0Eh

 db 11h ;A
 db 0Eh
 db 0Eh
 db 00h
 db 0Eh
 db 0Eh
 db 0Eh

 db 0Eh ;N
 db 0Eh
 db 06h
 db 0Ah
 db 0Ch
 db 0Eh
 db 0Eh
 .END

153

Start

Display row by
scanning on port-B with

small finite delay

Initialize SP and all
ports as output

Set R0T_C0U at 20H
select first row

Set counter1 to 05H

Store seven bytes from
address in HL to

pointer +14 onwards

Load HL by code
memory address in

TEMP_HL1

Load RAM TEMP_HL1
by code memory

Initialize counter 2=7

Decrement Counter1

Decrement counter

Rotate codes left by1bit

Initialize counter = 07H

Decrement ROT_COU
by one

Again select 1st row

Increment Row number

Blank all LEDs of port-B

Is all seven rows
have been
displayed?

Is all seven rows have
been desplayed ?

Increment row number

Blank all LEDs of port-C

Display row by
scanning on port-C

with small finite delay

Is counter2 zero?

Is counter1 zero?

Is counter zero?

Is ROT_COU
zero?

Decrement counter2 by
one

No

D C

B

A

A

No

 Yes

Yes

No

Yes

No

Yes

No

NoYes

C

B

Figure-10.2.3 : FLow chart to display "DARSHAN" sequencially in running mode

D

154

10.3 EXAMLPES

Example – 1

You are given an interfacing card of “Running Character Display” with its
circuit diagram and a microprocessor kit. Write program to switch ON the LED
R1-C0, R1-C1.

Example – 2
 You are given an interfacing card of “Running Character Display” with
its circuit diagram and a microprocessor kit. Write the program to switch ON
all LEDs of ROW-1.

Example – 3
 You are given an interfacing card of “Running Character Display” with
its circuit diagram and a microprocessor kit. Write the software program to
display character-‘A’ stationary.

Example – 4
 You are given an interfacing card of “Running Character Display” with
its circuit diagram and a microprocessor kit. Write software program to display
running of character-‘A’.

Example – 5

You are given an interfacing card of “Running Character Display” with
its circuit diagram and a microprocessor kit. Write software program to display
running of massage “DARSHAN”.

155

CHAPTER – 11 AN INTELLIGENT CONTROL PANEL

 This is one more example of exemplifying the interfacing of basic
trainer kit with some useful interfacing circuit. In the present interfacing
module we have designed and developed an 8085A based intelligent control
panel.[11] Such panels are sued in the environment where extremely high
security and safety are of prime importance.

11.1. Basic circuit understanding and P.C.B. aspects

The interfacing board circuit details are shown in Figure 11.1.1. It

consists of eight code lock switches, four relays, four driving transistors, eight
LEDs and 40-pin FRC connector. The code lock switches are of push-button
type. All eight code lock switches are connected to Port-A of PPI 8255, while
indicator LEDs are connected with Port-B. Four ON-OFF relays are connected
to upper four pins of Port-C (i.e. PC4 to PC7) through four PNP driving
transistors, one for each relay. The relays need +12 Volt supply while LEDs
required +5 Volt supply.

Note that +12 Volt supply is taken from external power supply.
We have earlier discussed that EPROM 2764A occupies 0000H to

1FFFH locations while RAM 6264 occupies 4000H to 5FFFH locations. In
earlier section we have noted that 8255 port addresses are 00H, 01H, 02H
and 03H for Port-A, Port-B, Port-C and CWR respectively.

The code lock switches are named as A, B, C, D, E, F, G and Enter.
These switches get connected with indicator LEDs through software. The
connections of port pins of 8255 with other circuit port is shown in Table
11.1.1.

One terminal of all the port switches are grounded while other terminals
are connected to Port-A through pull-up resistors. Hence, when no key is
pressed Port-A reads the data FFH. The key codes of code lock keys are
shown in Table 11.1.2.

156

FIGURE 11.1.1 SCHAMATIC DIAGRAM OF AN ITELLIGENT
 CONTROL PANEL

157

Table-11.1.1
Port Pin Connected to

PA0 ENTER
PA1 G
PA2 F
PA3 E
PA4 D
PA5 C
PA6 B
PA7 A
PB0 Cathode of LED D8 through 330 ohm

resistor
PB1 Cathode of LED D7 through 330 ohm

resistor
PB2 Cathode of LED D6 through 330 ohm

resistor
PB3 Cathode of LED D5 through 330 ohm

resistor
PB4 Cathode of LED D4 through 330 ohm

resistor
PB5 Cathode of LED D3 through 330 ohm

resistor
PB6 Cathode of LED D2 through 330 ohm

resistor
PB7 Cathode of LED D1 through 330 ohm

resistor
PC0 NOT CONNECTED
PC1 NOT CONNECTED
PC2 NOT CONNECTED
PC3 NOT CONNECTED
PC4 BASE OF T4 THROUGH 10K OHM

RESISTOR
PC5 BASE OF T3 THROUGH 10K OHM

RESISTOR
PC6 BASE OF T2 THROUGH 10K OHM

RESISTOR
PC7 BASE OF T1 THROUGH 10K OHM

RESISTOR

Table-11.1.2
KEY NAME KEY CODE

A 7FH
B BFH
C DFH
D EFH
E F7H
F FBH
G FDH

ENTER FEH

158

 In the software design ON-OFF Control of all four relays is obtained
by the key combinations of the code-lock keys as shown in Table 11.1.3.

Table-11.1.3

RELAY NO. ON-OFF CODES
ON OFF

RL1 G, G, G, ENTER E, E, E, ENTER
RL2 F, F, F, ENTER A, A, A, ENTER
RL3 C, C, C, ENTER B, B, B, ENTER
RL4 E, G, F, ENTER F, G, E, ENTER

From Table 11.1.3. we learnt that if we want to turn ON RL3, we have

to press the key “C” three times and then “Enter” key once. The software
collects these four codes and compares with the stored data. If the match
occurs Port-C is activated to turn-ON Relay NO-3. Note that user presses any
key its corresponding LED will glow.

The PPI Chip 8255 is used in BSR and I/O modes in this system. One
can generate codes of one’s own choice by proper changes in the software.

P.C.B. Aspect
 The schematic drawing circuit of an intelligent control panel was used
to create the P.C.B. layout. The track layout was prepared by manual facility.
The track layout is shown in Figure 11.1.2. for bottom side. The overlay
drawing for the same is shown in Figure 11.1.3.

159

FIGURE 11.1.2 BOTTOM LAYER OF AN INTELLIGENT CONTROL PANEL

160

FIGURE 11.1.2 OVERLAY OF AN INTELLIGENT CONTROL PANEL

161

11.1.1. Assembly language program for intelligent control panel

The software initializes 8255 such that Port-A works as input port and
Port-B & Port-C work as output port. To indicate the activation of hardware
and software the LEDs corresponding to switches B, D, F and Enter are glown
through initial software port. Thereafter all relays are turned OFF as initial
condition.
 The software waits for the key pressing through a subroutine named
Key-Chk. When valid key pressing has found, it compares the key code and
stores in the RAM. A counter is used to check matching of consecutive three
key depressions. If match takes place then particular routine is called to turn
ON or OFF the respective relay.
 The detailed assembly language program is as given bellow.

SOFTWARE

 RESET: .EQUAL 1C00H
 COD_BUF: .EQUAL 5F00H
 COUNT: .EQUAL 5F10H
 TEMP: .EQUAL 5F11H

ORG RESET
START: LXI SP,5EFFH;initialize SP
 MVI A,90H ;initialize 8255;PA as I/P,PB and PC as O/P
 OUT 03H
 MVI A,AAH ;turn on LEDs corresponding to B,D,F and Enter
 OUT 01H
 MVI A,00H
 STA COUNT ;RESET counter
 STA TEMP
 MVI A,FFH ;turn off all relays
 OUT 02H
NEXT1: CALL KEY_CHK ;To check key pressing
 LDA TEMP
 CPI FEH ;TO CHECK ENTER
 JZ OUT1
 LXI H,COD_BUF
 LDA COUNT
 ADD L
 MOV L,A
 LDA TEMP
 MOV M,A

 LDA COUNT
 INR A
 STA COUNT
LOOP2: IN 00H
 CPI FFH
 JNZ LOOP2 ;WHETHER KEY IS RELEASED OR NOT?
 MVI A,FFH

162

 OUT 01H
 JMP NEXT1
OUT1: CALL PASS_CHK ;PASSWORD CHECK
 MVI A,00H
 STA COUNT
 JMP NEXT1

PASS_CHK: LXI H,COD_BUF
 CALL CHK_1ON

 LXI H,COD_BUF
 CALL CHK_1OFF

 LXI H,COD_BUF
 CALL CHK_2ON

 LXI H,COD_BUF
 CALL CHK_2OFF

 LXI H,COD_BUF
 CALL CHK_3ON

 LXI H,COD_BUF
 CALL CHK_3OFF

 LXI H,COD_BUF
 CALL CHK_4ON
 LXI H,COD_BUF
 CALL CHK_4OFF
 RET

CHK_1ON: MOV A,M
 CPI FDH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FDH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FDH ;3RD DIGIT
 RNZ
 MVI A,0EH ;BSR CW TO RESET PC7 SO RLY1=ON
 OUT 03H
 RET

CHK_1OFF: MOV A,M
 CPI F7H ;1ST DIGIT
 RNZ
 INX H

163

 MOV A,M
 CPI F7H ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI F7H ;3RD DIGIT
 RNZ
 MVI A,0FH ;BSR CW TO SET PC7 SO RLY1=OFF
 OUT 03H
 RET

CHK_2ON: MOV A,M
 CPI FBH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FBH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FBH ;3RD DIGIT
 RNZ
 MVI A,0CH ;BSR CW TO RESET PC6 SO RLY2=ON
 OUT 03H
 RET

CHK_2OFF: MOV A,M
 CPI 7FH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI 7FH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI 7FH ;3RD DIGIT
 RNZ
 MVI A,0DH ;BSR CW TO SET PC6 SO RLY2=OFF
 OUT 03H
 RET

CHK_3ON: MOV A,M
 CPI DFH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI DFH ;2ND DIGIT
 RNZ
 INX H

164

 MOV A,M
 CPI DFH ;3RD DIGIT
 RNZ
 MVI A,0AH ;BSR CW TO RESET PC5 SO RLY3=ON
 OUT 03H
 RET

CHK_3OFF: MOV A,M
 CPI BFH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI BFH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI BFH ;3RD DIGIT
 RNZ
 MVI A,0BH ;BSR CW TO SET PC5 SO RLY3=OFF
 OUT 03H
 RET

CHK_4ON: MOV A,M
 CPI F7H ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FDH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FBH ;3RD DIGIT
 RNZ
 MVI A,08H ;BSR CW TO RESET PC4 SO RLY4=ON
 OUT 03H
 RET

CHK_4OFF: MOV A,M
 CPI FBH ;1ST DIGIT
 RNZ
 INX H
 MOV A,M
 CPI FDH ;2ND DIGIT
 RNZ
 INX H
 MOV A,M
 CPI F7H ;3RD DIGIT
 RNZ
 MVI A,09H ;BSR CW TO SET PC4 SO RLY4=OFF
 OUT 03H

165

 RET

KEY_CHK: IN 00H
 CPI FFH
 JZ KEY_CHK
 STA TEMP

 MVI B,FFH
LOOP1: DCR B
 JNZ LOOP1

 IN 00H
 CPI FFH
 JZ KEY_CHK

 MOV B,A ;STORE IN B TO COMP. WITH

 ;TEMP MEMORY
 LDA TEMP
 CMP B
 JNZ KEY_CHK
 OUT 01H ;TO ILLUMINATE LED.
 RET
 .END

11.2 Examples.

Example – 1

You are given an 8085 based microprocessor trainer kit and an
interfacing card of an intelligent control panel with its circuit diagram. Write
software program to switch ON the corresponding LED till the switch remain
pressed.

Example – 2
 You are given an 8085 based microprocessor trainer kit and an
interfacing card of an intelligent control panel with its circuit diagram. Write
the software program to switch ON relay – 1 by pressing switch B.

Example – 3
 You are given an 8085 based microprocessor trainer kit and an
interfacing card of an intelligent control panel with its circuit diagram. Write
the software program to switch ON RL1, RL2, RL3 & RL4 by pressing
switches A, B, C and D respectively, and to switch – OFF by E, F, G and
Enter respectively.

Example – 4
 You are given an 8085 based microprocessor trainer kit and an
interfacing card of an intelligent control panel with its circuit diagram.
Write a software program to set passwords as per your choice.

166

CHAPTER – 12 ANALOG VOLTAGE MEASUREMENT
WITHOUT USING ADC

Introduction:
 On this interfacing module we have demonstrated the use of VFC chip
to measure analog voltage. We have avoided the use of ADC chips.

12.1. VFC Chip

LM 331 is a famous V to F converter chip.[8] It is useful for analog to
digital conversion, precision frequency to voltage conversion, long term
integration, linear frequency modulation and demodulation and many other
functions. The output, when used as a voltage to frequency converter is a
pulse train at a frequency precisely proportional to the applied input voltage. It
is ideally suited for use in digital systems at low power supply voltages.
Hence, it is suitable for microprocessor based system. It utilizes a new
temperature compensated band gap reference circuit to provide excellent
accuracy over the full operating temperature range, at power supplies as low
as 4Volt. The precision timer circuit has low bias currents without degrading
the quick response necessary for 100KHz voltage to frequency conversion.

The output is capable of driving three TTL Loads, or a high voltage
output up to 40V, yet is short circuit proof against VCC. The features of LM 331
are as follows.

Features

 Guaranteed linearity 0.01% max.
 Improved performance in existing voltage-to-frequency conversion

applications.
 Split or single supply operation.
 Operates on single 5V supply.
 Pulse output compatible with all logic forms.
 Excellent temperature stability, + 50 ppm/.C max.
 Low power dissipation, 15 mW typical at 5V.
 Wide dynamic range, 100 dB min at 10 kHz full scale frequency.
 Wide range of full scale frequency, 1 Hz to 100 kHz.
 Low cost.

Simplified Block diagram

The LM 331 is a monolithic circuit designed for accuracy and versatile
operation when applied as a voltage-to-frequency (V-to-F) converter or as a
frequency-to-voltage (F-to-V) converter. A simplified block diagram of the LM
331 is shown in Figure 12.1.1 and consists of a switched current source, input
comparator, and one-shot timer.
 The operation of these blocks is best understood by going through the
operating cycle of the basic V-to-F converter, Figure 12.1.1, which consists of
the simplified block diagram of the LM 331 and the various resistors and
capacitors connected to it.

167

Figure: 12.1.1 Simplified block diagram of LM 331

The voltage comparator compares a positive input voltage V1, at pin 7
with respect to the voltage, VX, at pin 6. If V1 is greater, the comparator will
trigger the one-shot timer. The output of the timer will turn ON both the
frequency output transistor and the switched current source for a period t=1. 1
R1C1. During this period, the current I will flow out of the switched current
source and provide a fixed amount of charge. Q=I x t. into the capacitor, CL.
This will normally charge VX up to a higher level than V1. At the end of the
timing period, the current I will turn OFF, and the timer will reset itself.
 Now there is no current flowing from pin 1, and the capacitor CL will be
gradually discharged by RL until VX falls to the level of V1. Then the
comparator will trigger the timer and start another cycle.

RT CT

SWITCHED
CURRENT
SOURCE

RS

VS

RL
INPUT
COMPARATOR

 I/P VOLTAGE

ONE
SHOT
TIMER

R

 VLOGIC

FOUT

8

2

3

4

 7

6
6

5

1

CL

168

 The current flowing into CL is exactly IAVE=I x (1.1 x R1C1) x f, and the
current flowing out of CL is exactly VX/RL or VIN/RL. If VIN is doubled, the
frequency will double to maintain this balance. Even a simple V-to-F converter
can provide a frequency precisely proportional to its input voltage over a wide
range of frequencies.
12.2 Basic interfacing circuit with P.C.B. aspect
12.2.1 Introduction
 Using LM 331 we have designed a circuit and tested the same for
converting analog voltages into digital form.[12]

In the present work I.C. LM 331 is used as voltage to frequency
converter. The output of this chip is connected with port pin PA0 of PPI I.C.
8255, which is an integral part of a microprocessor kit. The ON-time of the
frequency at PA0 is measured using a software counter.
 The accumulated counts for specific input voltage are displayed, which
should be noted for each suitable input voltage values as observations. Input
voltage (Vin) versus counts are plotted, which will give a non-linear graph.
This graph is segmented into consecutive linear pieces. For each linear
segment corresponding slope values and their corresponding constants are
calculated and stored as data in two different look-up tables respectively.
 Now for any random value of input voltage within the range 0v to 3v, its
corresponding count will fall in any one linear segment.
 The software will convert this corresponding data(which is in
hexadecimal) to decimal value and display as actual input voltage.
12.2.2 Details of the circuit used

The circuit is as shown in Figure – 12.2.2.1.The basic device used is V
to F converter I.C. LM 331. The passive components used are considered as
per data book of National Semiconductor. The gain resistor Rs is taken 10K
ohm as fixed resistor. The offset voltage adjustment is not used. The input
voltage range is taken from 0v to 3v.
 The supply voltage +5v is taken from the microprocessor kit through
FRC interfacing cable. The output of LM 331 is connected to PA0 pin of 8255
of microprocessor kit through the same interfacing cable.

12.2.3 P.C.B. aspect

 The P.C.B. making was done in three steps.
 STEP-1 : Schematic preparation
 STEP-2 : Track layout designing
 STEP-3 : P.C.B. manufacturing

 The schematic was prepared using computer software which is shown
as Figure 12.2.2.1 , the track layout (Bottom layer)was done manually and is
shown in Figure 12.2.3.1. The overlay designed is reproduced in Figure
12.2.3.2.

169

Figure:12.2.2.1 Schematic diagram of VFC card

170

12.2.4 Data collection and Analysis

 Initially the input voltage (vin) is applied in steps of 0.25v from 0v to 3v.
Each voltage input displayed the output frequency waveform on the
oscilloscope whose ON-time and OFF-time were measured and are shown in
Table-12.2.4.1. From Table-12.2.4.1 the graphs of Vin versus F and Vin
versus T exhibit the linear and non-linear behavior respectively and are shown
in Figure–12.2.4.1 and Figure-12.2.4.2.
 One can also learn from Table-12.2.4.1 that the OFF-time of the
frequency almost remains constant. So in the microprocessor interface
software only ON-time is considered.
 As the ON-time of the frequency represents the equivalent input
voltage, the same is measured by using the microprocessor kit. For this
special software is executed, which constantly checks the high state of pin
PA0 or in other words the ON-time of the frequency.

Till the PA0 pin is high the counts in the counter of the software is kept
on increasing. The moment PA0 becomes low the counts of the counter is
displayed which a user is supposed to note as an observation. Thus, different
values of counts for different input voltages are observed as shown in Table-
12.2.4.2.

171

FIGURE-12.2.3.1 BOTTOM LAYER OF VFC

172

FIGURE-12.2.3.1 OVERLAY LAYER OF VFC

173

The graph of Vin versus count as shown in Figure – 12.2.4.3, exhibits
non-linear behavior. It is necessary to convert its non-linear behavior such
that any input voltage can be directly represented as decimal equivalent value
in the display.

 Table-12.2.4.1

Input

Voltage

Volts

ON-

time

sec.

OFF-

time

sec.

Total

Time

sec.

Frequency

Hertz

0.25 2300 80 2380 420.16

0.5 1100 80 1180 847.45

0.75 740 80 820 1219.5

1 540 80 620 1612.9

1.25 410 80 490 2040.81

1.5 330 80 410 2439.02

1.75 275 80 355 2816.9

2 230 80 310 3225.8

2.25 200 80 280 3571.42

2.5 170 80 250 4000

2.75 150 80 230 4347.82

3 125 80 205 4878.04

3.27 110 80 190 5263.15

174

0

1000

2000

3000

4000

5000

6000

0.
25

0.
75

1.
25

1.
75

2.
25

2.
75

3.
27

Input Voltage

F
re

q
u

en
cy

Figure–12.2.4.1 Input voltage Vs Frequency

0

500

1000

1500

2000

2500

0.
25

0.
75

1.
25

1.
75

2.
25

2.
75

3.
27

Input Voltage

T
im

e

Figure–12.2.4.2 Input voltage Vs Time

175

0

1000

2000

3000

4000

5000

6000

7000

0.02 0.5 1 1.5 2 2.5 3

Input Voltage

D
ec

im
al

 c
o

u
n

ts

Figure – 12.2.4.3 : Input voltage Vs Counts

176

 Table-12.2.4.2

Input

Voltage

Volts

Hexadecimal

Counts

Decimal

counts

0.02 17A0H 6048

0.5 376H 886

1 1DDH 477

1.5 140H 320

2 EBH 235

2.5 B8H 184

3 93H 147

For this the graph of Fig. – 12.2.4.3 is divided in segments as 0.02v to

0.5v,0.5v to 1.0v,1.0v to 1.5v,1.5v to 2.0v,2.0v to 2.5v and 2.5v to 3.0v. Here
each segment is assumed to be linear so each segment can be represented
with straight line equation

Y=mX + c
Where
Y=Input Voltage
m = slope
X=count value
c = line constant

 From Table – 12.2.4.2 we can find-out the slope and constant of all
segments. One representative calculation for 1st segment is shown as follows.

 m1 =Y2 – Y1 / X2- X1
 =17120H – 4E20H / 376H – 17A0H
 =- 75300 / 142A
 m1 =-5CH
 For X1 and Y1,
 Y1 =m1X1 + C1
 4E20H =(-5CH)(17A0H) + C1
 4E20H + (5CH)(17A0H) =C1
 C1 =8CBA0H

177

 Table – 12.2.4.3 shows various values of slopes and constants for
various segments. The values of slopes and constants are stored in two
different look-up tables as per software convenience.

Table-12.2.4.3

Segment Slope Constant

20,000v to 5,00,000v m1 = -5Ch c1 = 8CBA0h

5,00,000v to 10,00,000v m2 = -4C6h c2 = 182664h

10,00,000v to 15,00,000v m3 = -C70h c3 = 266EF0h

15,00,000v to 20,00,000v m4 = -16Fah c4 = 339BE0h

20,00,000v to 25,00,000v m5 = -264Bh c5 = 41AB59h

25,00,000v to 30,00,000v m6 = -34C9h c6 = 4C1618h

12.2.5 Software logic and software program

 The graph of Fig. – 12.2.4.3 is now considered as calibration graph i.e.
if the user keeps any input voltage value its corresponding count value will fall
in this graph.
 The software which is represented will take this count value as input
data and will check, in which segment of look up table it falls. Then software
will multiply this count with the slope of that segment and the product will be
subtracted from the constant(because slope is negative). This will give the
number in hexadecimal which is nothing but voltage itself. This hexadecimal
number is then converted into decimal number for display of the input voltage.
 The software uses typical routines of the microprocessor kit, which has
been indigenously developed by us.
 The detailed software is as given.

SOFTWARE
HL_DISP: .EQUAL 1C1CH

DATADISP: .EQUAL 1E65H

DELAY: .EQUAL 1F40H

COUNTER: .EQUAL 5F40H ;5F40H TO 5F43H

X_POINT: .EQUAL 5F44H ;5F44H TO 5F45H

178

ADD1_BFR: .EQUAL 5F46H ;5F46H TO 5F49H

ADD2_BFR: .EQUAL 5F4AH ;5F4AH TO 5F4DH

ADD_ANS: .EQUAL 5F4EH ;5F4EH TO 5F51H

ADD_TEMP: .EQUAL 5F52H ;5F52H & 5F53H

MUL1_BFR: .EQUAL 5F54H ;5F54H & 5F55H

MUL2_BFR: .EQUAL 5F56H ;5F56H & 5F57H

BCD_BFR: .EQUAL 5F58H ;5F58H TO 5F5CH

SEG_NO: .EQUAL 5F5DH ;5F5DH TO FIND SEGMENT

TEMP_BFR: .EQUAL 5F5EH ;5F5EH & 5F5FH

DISPDATA: .EQUAL 5F13H

VFC: .EQUAL 0B00H

 ORG VFC

 LXI SP,5EFFH

 MVI A,90H

 OUT 03H

START: LXI H,COUNTER

 MVI B,04H

LOOP1: MVI M,00H

 INX H

 DCR B

 JNZ LOOP1

 LXI H,COUNTER

 MVI B,20H

LOOP2: IN 00H

 ANI 01H

179

 JZ LOOP2

 LXI D,FFFFH

AGAIN: DCR E

 JNZ NO_ZERO

 DCR D

 JNZ NO_ZERO

 MVI B,04H ;IT EXECUTES AT 0 VOLT ONLY

ZERO_VLT: MVI M,00H

 INX H

 DCR B

 JNZ ZERO_VLT

 JMP DISP_FFH

NO_ZERO: IN 00H

 ANI 01H

 JZ OUT1

 MVI A,01H

 ADD M

 MOV M,A

 JNC AGAIN

 INX H

 MVI A,01H

 ADD M

 MOV M,A

 DCX H

 JNC AGAIN

180

 INX H

 INX H

 MVI A,01H

 ADD M

 MOV M,A

 DCX H

 DCX H

 JNC AGAIN

 INX H

 INX H

 INX H

 INR M

 DCX H

 DCX H

 DCX H

 JMP AGAIN

OUT1: DCR B

 JNZ LOOP2

 CALL CONT_DIV

 CALL CONT_DIV

 CALL CONT_DIV

 CALL CONT_DIV

 CALL CONT_DIV

 LXI H,COUNTER

 MOV E,M

181

 INX H

 MOV D,M

 LXI H,X_PARA

 SHLD X_POINT

NXT_PONT: LHLD X_POINT

 MOV C,M

 INX H

 MOV B,M

 INX H

 SHLD X_POINT

 CALL MINUS ;BC-DE=HL

 JC OUT2

 JMP NXT_PONT

OUT2: LHLD X_POINT

 DCX H

 DCX H

 DCX H

 DCX H

 SHLD ADD1_BFR

 LXI H,ADD1_BFR+2

 MVI C,0AH

LOOP_A1: MVI M,00H

 INX H

 DCR C

 JNZ LOOP_A1

182

 LXI H,X_PARA

 SHLD ADD2_BFR

 CALL SUB_TION

 LHLD ADD_ANS

 DCX H

 DCX H ;TO AVOID FFFFH (ZER0 VOLT)

 MOV A,L

 STA SEG_NO

 LXI H,SLOPE

 ADD L

 MOV L,A

 MVI A,00H

 ADC H

 MOV H,A

 MOV E,M

 INX H

 MOV D,M

 XCHG

 SHLD MUL1_BFR

 LHLD COUNTER

 SHLD MUL2_BFR

 CALL MULTIPLY

 LHLD ADD_ANS

 SHLD ADD2_BFR

 LHLD ADD_ANS+2

183

 SHLD ADD2_BFR+2

 LDA SEG_NO

 STC

 CMC

 RAL ;TO DOUBLE THE CONTENT BECAUSE CONSTANT

IS 4- BYTE

 LXI H,CONSTANT

 ADD L

 MOV L,A

 MVI A,00H

 ADC H

 MOV H,A

 MOV E,M

 INX H

 MOV D,M

 SHLD TEMP_BFR

 XCHG

 SHLD ADD1_BFR

 LHLD TEMP_BFR

 INX H

 MOV E,M

 INX H

 MOV D,M

 XCHG

 SHLD ADD1_BFR+2

184

 CALL SUB_TION

 CALL HEX_BCD

 LHLD BCD_BFR

 CALL HL_DISP

 LHLD BCD_BFR+2

 CALL HL1_DISP

 JMP OUT3

DISP_FFH: LHLD COUNTER

 CALL HL_DISP

 LHLD COUNTER+2

 CALL HL1_DISP

OUT3: CALL DATADISP

 LXI D,FFFFH

 CALL DELAY

 JMP START

HL1_DISP: LXI D,DISPDATA+4 ;FILL UP FIRST FOUR LOCATIONS

 MOV A,L ;AND POINTED TO DISPDATA+4

 ANI 0FH

 STAX D

 INX D

 MOV A,L

 ANI F0H

 RRC

 RRC

 RRC

185

 RRC

 STAX D

 INX D

 MOV A,H

 ANI 0FH

 STAX D

 INX D

 MOV A,H

 ANI F0H

 RRC

 RRC

 RRC

 RRC

 STAX D

 INX D

 RET

CONT_DIV: LXI H,COUNTER+3

 STC

 CMC

 MOV A,M

 RAR

 MOV M,A

 DCX H

 MOV A,M

 RAR

186

 MOV M,A

 DCX H

 MOV A,M

 RAR

 MOV M,A

 DCX H

 MOV A,M

 RAR

 MOV M,A

 RET

MINUS: STC

 CMC

 MOV A,C

 SUB E

 MOV L,A

 MOV A,B

 SBB D

 MOV H,A

 RET

X_PARA: DB FFH

 DB FFH

 DB A0H

 DB 17H

 DB 76H

 DB 03H

187

 DB DDH

 DB 01H

 DB 40H

 DB 01H

 DB EBH

 DB 00H

 DB B8H

 DB 00H

 DB 93H

 DB 00H

 DB 00H

 DB 00H

ADDITION: LXI H,ADD_ANS ;Z=X+Y X=ADD1_BFR Y=ADD2_BFR

Z=ADD_ANS

 MVI D,04H

AD_LOOP1: MVI M,00H

 INX H

 DCR D

 JNZ AD_LOOP1

 LXI H,ADD2_BFR

 LXI D,ADD1_BFR

 LXI B,ADD_ANS

 STC ;TO SET CARRY

 CMC ;TO RESET CARRY(BY COMPLIMENT)

 PUSH PSW ;TO STORE CARRY

188

 MVI A,04H ;COUNTER TO ADD 4-BYTES

AD_LOOP2: STA ADD_TEMP

 POP PSW

 LDAX D

 ADC M

 STAX B

 PUSH PSW

 INX H

 INX B

 INX D

 LDA ADD_TEMP

 DCR A

 JNZ AD_LOOP2

 POP PSW ; PUSH PSW EXECUTED 1 MORE TIME

 RET

SUB_TION: LXI H,ADD_ANS ;Z=X-Y X=ADD1_BFR Y=ADD2_BFR

Z=ADD_ANS

 ;SAME MEMORY IS USED FOR ADD & SUB

 MVI D,04H ;TO STORE 00H IN ANSWER

SU_LOOP1: MVI M,00H

 INX H

 DCR D

 JNZ SU_LOOP1

 LXI D,ADD1_BFR ;X IN X-Y

 LXI H,ADD2_BFR ;Y IN X-Y

189

 LXI B,ADD_ANS ;TO STORE ANSWER

 STC

 CMC

 PUSH PSW

 MVI A,04H

 SU_LOOP2: STA ADD_TEMP

 POP PSW

 LDAX D

 SBB M

 STAX B

 PUSH PSW

 INX H

 INX B

 INX D

 LDA ADD_TEMP

 DCR A

 JNZ SU_LOOP2

 POP PSW ; PUSH PSW EXECUTED 1 MORE TIME

 RET

MULTIPLY: LXI H,ADD1_BFR ;MUL1_BFR X MUL2_BFR = ADD_ANS

 ;ADDITION SUBROUTINE WILL USE

 MVI B,0CH ;TO STORE 00H IN ALL MEMORY WHICH

 ;ARE USED IN ADDITION SUBROUTINE

MU_LOOP1: MVI M,00H

 INX H

190

 DCR B

 JNZ MU_LOOP1

 LHLD MUL1_BFR ;GET DATA1 IN HL

 SHLD ADD2_BFR ;STORE HL(DATA1)IN ADD2_BFR

 MVI B,10H ;COUNTER TO MULTIPLY 16-BITS

MU_LOOP2: MVI C,04H ;TO ROTATE LEFT 4-BYTES

 LXI H,ADD_ANS ;STARTING ADDRESS OF BUFFER

 LDA ADD_ANS+3 ;GET MSB IN ACC.('CONT. OF C'-1)

 RAL ;GET D7 OF MSB IN CARRY

 CALL ROT_LEFT

 LHLD ADD_ANS

 SHLD ADD1_BFR

 LHLD ADD_ANS+2

 SHLD ADD1_BFR+2

 MVI C,02H ;TO ROTATE LEFT 2-BYTES

 LXI H,MUL2_BFR ;DATA2 IS GOING TO ROTATE

 LDA MUL2_BFR+1 ;GET D7 OF MSB IN CARRY

 RAL

 CALL ROT_LEFT

 PUSH B ;TO SAVE BC,IN ADDITION ALL REGISTERS

 ;WILL BE USED.

 CC ADDITION

 POP B

 DCR B

 JNZ MU_LOOP2

191

 RET

ROT_LEFT: MOV A,M

 RAL

 MOV M,A

 INX H

 DCR C

 JNZ ROT_LEFT

 RET

HEX_BCD: MVI B,20H

 MVI C,05H

 LXI H,BCD_BFR ;5-BYTES

HB_LOOP1: MVI M,00H

 INX H

 DCR C

 JNZ HB_LOOP1

HB_LOOP3: MVI C,04H

 LXI H,ADD_ANS

 LDA ADD_ANS+3

 RAL

 CALL ROT_LEFT

 LXI H,BCD_BFR

 MVI C,05H

HB_LOOP2: MOV A,M

 ADC M

 DAA

192

 MOV M,A

 INX H

 DCR C

 JNZ HB_LOOP2

 DCR B

 JNZ HB_LOOP3

 RET

SLOPE: DB 5CH ;2-BYTES

 DB 00H

 DB C6H

 DB 04H

 DB 70H

 DB 0CH

 DB FAH

 DB 16H

 DB 4BH

 DB 26H

 DB C9H

 DB 34H

CONSTANT: DB A0H ;4-BYTES

 DB CBH

 DB 08H

 DB 00H

 DB 64H

 DB 26H

193

 DB 18H

 DB 00H

 DB F0H

 DB 6EH

 DB 26H

 DB 00H

 DB E0H

 DB 9BH

 DB 33H

 DB 00H

 DB 59H

 DB ABH

 DB 41H

 DB 00H

 DB 18H

 DB 16H

 DB 4CH
 DB 00H

 .END

194

12.3 Examples

Example – 1
 You are given a microprocessor kit and a VFC module. Vary the input
voltages from 0V to 3V in steps of 0.25V and measure ON – Time and OFF –
Time by using either C.R.O. or Logic Analyzer.

Example – 2
 You are given a microprocessor kit and a VFC module. Vary the
input voltages from 0V to 3V in steps of 0.5V and display the counts of ON –
Time on the display of microprocessor kit.

Example – 3
 You are given a microprocessor kit and a VFC module. Vary the
input voltages from 0V to 3V in steps of 0.5V and note down the counts of ON
– Time as observations and find the slope and constants for different
segments of 0.5V and calculate voltage for some value of count.

195

CHAPTER-13 LOGIC-CONTROLLER

 Solving Boolean equations using microprocessor kit is one of the
popular way of understanding microprocessor capabilities. In the present
paper one interfacing circuit is designed, constructed and tested for such
purpose. This interfacing module accepts four variable inputs at a time and
can display output of eight variables, but with proper software any number of
input variables can be assigned as well as any number of output variables can
be displayed. The actual Boolean equations are solved by 8085 based
software which user can develop him self.

13.1 Understanding of basic circuit and P.C.B. aspects

13.1.1 : Introduction

The interfacing module is designed using PPI 8255 ,74LS245 bi-
directional buffer, five push button switches and eight LEDs. The inputs are
given through four switches S1, S2, S3 and S4. Pressing these switches each
time toggles the input logic state. Switch S5 allows the input to be loaded into
the processor. These switches are interfaced with port-A of 8255. The port-C
of 8255 feeds the output to the LEDs through buffer chip 74LS245.
 In the present module user can input any number of inputs through four
switches S1, S2, S3 and S4. For example, if user wants twelve variables to
input, he has to do so in three steps. First, set the switches S1, S2, S3 and S4
and then press enter(S5) switch. The user software now should wait for
second set of data. Now as second set, user should set switches S1, S2, S3
and S4 as per his variables and then press enter(S5).
 Similarly, third set of input variables is to be entered. Same is true for
displaying the output.

13.1.2 : Circuit and Discussion with P.C.B. aspects

The detailed interfacing circuit is shown in Figure-13.1.2.1. The
8255 interfaces the microprocessor system (kit) with the logic control
circuit. At the CPU side the RD, WR, RESET and data bus pins of 8255
are directly connected with the corresponding pins of 8085. The port-C of
8255 is connected with the input pins of buffer chip 74LS245. The output
of this buffer chip is connected with the LEDs through current limiting
resistors. The switches are directly connected with the port-A of 8255.
The same information is shown in Table-13.1.2.1 and Table-13.1.2.2.

 Here 40-pin FRC connector interfaces the microprocessor kit
and the module. The P.C.B. layout of the circuit shown in Fig.-13.1.2.1 is
shown in Fig.-13.1.2.2. (bottom layer) and Fig.-13.1.2.3(overlay). In order to
understand the function of the module, consider the following illustration.

196

Table-13.1.2.1 :Connection details of I/O LEDs and Port C of 8255
LED Port pin

OUT3 PC0
OUT2 PC1
OUT1 PC2
OUT0 PC3

IN3 PC4
IN2 PC5
IN1 PC6
IN0 PC7

Table-13.1.2.2 : Connection details of switches with Port A of 8255

Switch No. Port pin
S1 PA3
S2 PA2
S3 PA1
S4 PA0

S5 (ENTER) PA4

Suppose we want to solve the following Boolean equations.

Y0 = A0 + B0

Y1 = A1 B1

Y2 = A2 B2

Y3 = A3
 In above Boolean equations we have seven input variables as A0, B0,
A1, B1, A2, B2 AND A3. Suppose we want all the inputs to be ‘1’. To enter
them into the module, press switches S1, S2, S3 and S4 such that they all
represent logic ‘1’, this situation is displayed on the input LEDs by glowing.
 Now press enter switch S5. This process will transfer the high states of
input variables A0, A1, A2 and A3 to the program. Now again rearrange S1,
S2 and S3 such that they represent input variables B0, B1 and B2 to their
high state and then press enter switch S5.
 Now user should develop a program which will perform above logical
function and displaying the result on LEDs. For guiding purpose a
representative flow-chart of above Boolean equations is given in Fig.-13.1.2.4.
Note that it is for the above equations only. One can take any Boolean
equations and develop a software. In flow-chart, the rectangular box
containing Boolean equations of the above program needs to be modified for
other sets of equation.

Note that one has to use port addresses and memory location
addresses as per one’s microprocessor kit.

197

FIGURE-13.1.2.1 : SCHEMATIC CIRCUIT OF LOGIC-CONTROLLER

198

FIGURE-13.1.2.2 : BOTTOM LAYER OF LOGIC CONTROLLER

199

FIGURE-13.1.2.3 : OVERLAY OF LOGIC CONTROLLER

200

 IS
 KEY NO

 PRESSED?

 YES

 STILL NO

 KEY
 PRESSED?

 YES

 IS
 IT YES

 TOGGLE
 KEY?

 NO

FIGURE- 13.1.2.4 (A) FLOW-CHART OF SOLUTION

START

INITIALIZE
8255&
 RESET FLAG

CALL
DELAY

TOGGLE
CORRESPONDING

LED

 A

B

201

 IS
 FLAG YES
 RESET?

 NO

FIGURE- 13.1.2.4 (B) FLOW-CHART OF SOLUTION

 A

ACCEPT
A0,A1,A2 &
A3 AND
SET FLAG

B

ACCEPT
B0,B1,B2 &
B3

CALCULATE
Y0=A0+B0
Y1=A1·B1
Y2=A1 O B1

Y3=A3

PUT RESULT ON OUTPUT
LEDS
AND
RESET FLAG

B

202

13.2 Usage of logic controller card

 The present interfacing module is useful in different ways. It helps to
understand the capability of microprocessor to solve various logical problems.
Apart from this the circuit design of this module explains how one can use the
input output functions of a typical microprocessor based system. This is
clarified by switches S1 to S4, which are interfaced as input. Similarly, LED’s
interfacing helps to understand the output device connecting concepts.

13.3 Programming aspects of logic controller

 The general concepts of programming are understood with the help of
flow-chart illustrated in Figure-13.1.2.4.
 Initially the flag is reset and the 8255 is initialized, then program waits
for the key depression. After receiving a valid key, the program checks,
whether it is toggle key or enter key, if it is toggle key, program toggles the
corresponding LED by changing the data. And if it is enter key the program
checks for flag. If flag is reset A0,A1,A2 and A3 are accepted and the flag is
set , otherwise it would accept the data as B0,B1,B2 and B3.
 Then the Boolean equation is solved by the program and the result is
put on output LEDs. The flag is reset again to repeat the process.
 The software program is as given below.

SOFTWARE

DATA1: .EQUAL 5F40H
DATA2: .EQUAL 5F41H
PORTC: .EQUAL 5F42H
FLAG: .EQUAL 5F43H
DELAY: .EQUAL 1F40H
LC: .EQUAL 1100H

 ORG LC
 LXI SP,5EFFH ;Initialize stack pointer
 LXI H,DATA1 :Initialize register pair HL
 MVI A,90H :Initialize register A by 90h

 OUT 03H ;send this 90h at 03h
 MVI A,00H ;TO RESET ALL BITS OF PORT C
 OUT 02H ;send this 00h at 02h
 MVI A,00H ;FLAG
 STA FLAG ;store 00h in flag
 STA PORTC ;store 00h in portc
LOOP1: IN 00H ;read porta
 ANI 1FH ;mask by 1fh
 CPI 1FH ;compare with 1fh
 JZ LOOP1 ;if zero flag is set so go to loop1

203

 LXI D,FFFFH ;Initialize register pair by ffffh
 CALL DELAY ;call delay subroutine

 IN 00H ;read porta
 ANI 1FH ;mask by 1fh
 CPI 1FH ;compare with 1fh
 JZ LOOP1 ;if zero flag is set so go to loop1
 MVI C,04H ;COUNTER
 MVI B,10H ;TO SEND DATA ON PC4
LOOP2: RAR ;rotate right through carry

JNC SW_PRESSED ;if carry is reset so jump to its
 ;subroutine

 MOV D,A ;to store [A] temporarily
 CMC ;compliment carry
 MOV A,B ;to manipulate port c data
 RAL ;rotate left through carry
 MOV B,A ;get back after rotation
 MOV A,D ;retrieve stored data
 DCR C ;decrement counter
 JNZ LOOP2 ;if counter is zero so go out of the
 ;loop
 LDA FLAG ;get flag into accumulator
 RAL ; TO CHECK WHETHER DATA1 OR
 ;DATA2
 JC OUT1 ;if flag is set so go to out1
 LDA PORTC ;get entered variables
 ANI F0H ;NOW WE NEED ONLY A,B,C & D
 RRC ; four time rotate to interchange nibbles
 RRC
 RRC
 RRC

 MOV M,A ;H&L HAVE ADDRESS OF DATA1
 LXI H,DATA2 ;NOW 2ND DATA WILL IN DATA2
 MVI A,80H
 STA FLAG ;SET FLAG FOR 2ND DATA
 MVI A,00H
 STA PORTC ;put 00h in portc
 OUT 02H ;ALL LEDS ARE OFF AFTER ACCEPTING
 ;DATA
 JMP LOOP1 ;go back to loop1
OUT1: LDA PORTC ;get entered data
 ANI F0H ;NOW WE NEED ONLY A,B,C & D NOT FLAG
 RRC ; four time rotate to interchange nibbles
 RRC
 RRC
 RRC

 MOV M,A ;to store [A] temporary
 LXI H,PORTC ;pointer to portc
 MVI M,00H ;ANS WILL BE IN PORTC

204

 LDA DATA2 ;get second set of data
 MOV C,A ;to store [A] into [C]
 LDA DATA1 ;get first set of data
 MOV B,A ;to store [A] into [B]
 ORA C ;TO CALCULATE A0+B0
 ANI 01H ;Y0=A0+B0
 ORA M ;to put Y0
 MOV M,A ;STORE ANS IN PORTC
 MOV A,B ;get first data
 ANA C ;TO CALCULATE A1*B1
 ANI 02H ;Y1=A1*B1
 ORA M ;to put Y1
 MOV M,A ;STORE ANS IN PORTC
 MOV A,B ;get first data
 XRA C ;TO CALCULATE A2 EX-OR B2
 ANI 04H ;Y2=A2 EX-OR B2
 ORA M ;to put Y2
 MOV M,A ;STORE ANS IN PORTC
 MOV A,B ;get first data
 CMA ;Y3=compliment of A3
 ANI 08H ;TO MASK Y3 ONLY
 ORA M ;TO GET ALL 4 BITS
 OUT 02H ;send answer
 MVI A,00H ;FOR NEXT DATA1 2ND CYCLE
 STA FLAG ;reset flag
 LXI H,DATA1 ;to get first data in second cycle
 JMP LOOP1 ;jump to loop1
SW_PRESSED:

 LDA PORTC ;get all bits
 XRA B ;ex-or with 1 to toggle
 STA PORTC ;store result
 OUT 02H ;send result to 02h
 JMP LOOP1 ;jump to loop1
 .END

13.4 Examples

Example – 1
 You are given a logic controller module and 8085 based
microprocessor kit. Write software to ON – LED by pressing its corresponding
key.

Example – 2
 You are given a logic controller module and 8085 based
microprocessor kit. Write software program to toggle LED by each press of its
corresponding switch.

205

Example – 3
 You are given a logic controller module and 8085 based
microprocessor kit. Write software to solve following Boolean equation and
develop program to get output.

Y0 = A0

 Y1 = A1

 Y2 = A2

 Y3 = A3

Example – 4
 You are given a logic controller module and 8085 based
microprocessor kit. Write software to solve following Boolean equations
and develop program to get output.
 Y0 = A0 + B0
 Y1 = A1 B1
 Y2 = A2 + B2
 Y3 = A3

206

CHAPTER – 14 INTERFACING TIMER 8253

 To generate accurate time delays and different types of rectangular
waveforms this Timer IC 8253 is used. The user can vary the delay by
changing software. This IC 8253 can work in six different modes, and it is
having three independent counters. The counters are able to count in binary
or in BCD.[6]

14.1 Basics of 8253.

This programmable Interval Timer/counter 8253 is designed by Intel
corporation. This 8253 is compatible with 8085 microprocessor. Each 16-bit
counter can work with a count rate up to 2MHz. All modes of operation are
software or hardware programmable.
 Because of this facility in IC 8253, the microprocessor becomes free
from loops in system software. This facility allows the CPU to carry out other
tasks in the mean time.
 Figure 14.1.1 and 14.1.2 show the functional block diagram and the pin
diagram of 8253 respectively.

Data bus Buffer:

 To interface 8253 data bus with system bus this tristate bi-directional 8-
bit buffer is used. The direction of data buffer is decided by read / write control
signals.
 When write signal is activated, this buffer receives data from system
data bus. When read is activated, this buffer transmits data to system data
bus.

Read/Write Logic:

 This Read/Write Logic block has five input signals, these signals are
Read, Write, Chips select, A1 and A0.
 This block accepts input from system control bus and address bus. A1
and A0 are activated specific part of 8253 and Read or Write decides whether
data is to be read or written respectively.

Control Word Register:

 This register of 8253 gets selected when A0=1 and A1=1. It is used to
write command word, which specifies the counter to be used, its mode of
operation and the data transfer to be used i.e. read or write the data bytes
(LSB, MSB or LSB & MSB). The data cannot be read from control register.

207

Figure – 14.1.1 Functional block diagram of 8253.

208

Table-14.1.1 Counter/Control Register Selection

CS

RD

WR

A1

A0

SELECTION

0 1 0 0 0 LOAD COUNTER NO. 0
0 1 0 0 1 LOAD COUNTER NO. 1
0 1 0 1 0 LOAD COUNTER NO. 2
0 1 0 1 1 WRITE MODE WORD
0 0 1 0 0 READ COUNTER NO. 0
0 0 1 0 1 READ COUNTER NO. 1
0 0 1 1 0 READ COUNTER NO. 2
0 0 1 1 1 NO-OPERATION (TRI-STATE)
1 X X X X DISABLE(TRI-STATE)
0 1 1 X X NO-OPERATION(TRI-STATE)

Counter – 0, 1 and 2:
 Here these all are independent 16-bit down counters. These counters
can be programmed separately. Each counter is having three pins Clock,
Gate and Output.
 The loaded value in the counter will be decremented by counter at
each clock input pulse.

Pin Description

D0-D7 Data bus:
 To transfer data between 8085 and 8253 these 8-bit data bus is used.
These 8-bit data bus should be connected with 8-bit system data bus of 8085.

CS: Chip Select:
 To select 8253 IC this pin should be low. If this pin is high, 8253 will be
in de-active state.

RD: Read:
 This is an active low input signal. This signal is used in co-ordination
with other signals to transfer data into 8085 from 8253.

WR: Write:
 This is an active low input signal. This signal is used in co-ordination
with other signals to transfer data into 8253 from 8085.

209

Figure – 14.1.2 Pin diagram of 8253

210

A0-A1: Address Lines:
 These are active high input lines. To distinguish different parts of 8253
these address lines are used. These lines are internally used by 8253 to
generate addresses as follows.:

A1 A0 Select Part
0 0 Counter – 0
0 1 Counter – 1
1 0 Counter – 2
1 1 Control Register

CLK0, CLK1, CLK2: Clock input:
 These lines are clock input to counters. CLK0, CLK1 and CLK2 are input
clocks of Counter-0, Counter-1 & Counter-2 respectively. Respective counters
will count the pulses applied at its pin.

Gate-0, Gate-1, Gate-2: Gate Control:
 By using this pin, an external hardware can control the counter. The
Gate-0, Gate-1 and Gate-2 are control pins for Counter-0, Counter-1 and
Counter-2 respectively. These pins are having different functions in different
modes.

OUT 0, OUT 1, OUT 2: Output Pins:
 These lines are active high output lines, used to give output of the
counters. The OUT-0, OUT-1 and OUT-2 are output pins for Counter-0,
Counter-1 and Counter-2 respectively.

14.2 Interfacing circuits with P.C.B. aspects.

Figure 14.2.1 shows the expansion 40-pin FRC connector with pin

label. This connector is used to connect the circuit of 8253 with
microprocessor kit.
 The detailed circuit diagram of this peripheral card is given in Figure –
14.2.2.
 In Figure – 14.2.2 we can see three buffer ICS 74LS245, one
programmable Interval Timer IC 8253, nine LEDS and nine current limiting
resistors, one 40-pin FRC male connector and some socket pins to provide
external signals or to read the status through logic analyzer.
 Here the data bus buffer IC 74245 is directed by RD signal. When RD
becomes low, the direction will be from B to A otherwise A to B.
 All the signals like RD, WR, A0, A1, CS and AD0-AD7 are buffered by
using buffer IC 74LS245.
 The same type of buffer IC also buffers the clock, gate & output
signals.

211

AD7

A8

AD6

A9

AD5

A10

AD4

A11

AD3

A12

AD2

A13

AD1

A14

AD0

A15

INTA

ALE

RD

WR

IO/M

VCC

RESET OUT
INTR

CS

GND

RST 6.5

RST 7.5

CLK

TRAP

A7

A6

A5

A4

A3

A2

A1

A0

Figure – 14.2.1 Expansion FRC connector of microprocessor kit.

212

Figure – 14.2.2 The schematic circuit diagram of 8253

Figure-14.2.3(A) The bottom layer of interfacing card of timer IC 8253
(inserted on page no. 212_1)

Figure-14.2.3(A) The overlay layer of interfacing card of timer IC 8253
(inserted on page no. 212_1)

213

The port addresses are as given in Table-14.2.1.

Table – 14.2.1

No. Counter/CWR Address
1 Counter – 0 80H
2 Counter – 1 81H
3 Counter – 2 82H

4 CWR 83H

 Figure-14.2.3(A) is showing the PCB layout of the bottom layer of the
Figure–14.2.2.
 Figure-14.2.3(B) is showing the top view (overlay) of the interfacing
card and all the straight lines are showing jumper wires.

Input & Output Observation:
 The input means the clock and gate signals and output means out pin
of the counter.
 The slow changes can be observed on LEDS but the fast changes can
be observed either by CRO or Logic analyzer.
 To test this interfacing card we have captured the waveforms of all the
six-modes. By analyzing this waveform the user can get clear idea about
different modes.
 Procedure to work with this card

 Connect this card with 8085 based microprocessor kit.

 Connect any pin of port-B of 8255 (microprocessor kit) at gate-
0 pin, and any pin of port-C at Clock-0 pin.

 Load the given software in RAM/EPROM area of
microprocessor kit .

 Execute the software in single-step to see the LED ON-OFF
States or execute directly software and capture the waveforms
by using CRO or Logic analyzer.

Here in the present experiment we are generating clock by using
software in microprocessor kit. In software the clock is generated
continuously, and a high signal is provided to gate.

14.3 Programming aspect of 8253

 Control Word & explanation.

The control word and its explanation is shown in Figure-14.3.1.

214

Figure-14.3.1 control word with explanation

 Mode, explanation and Timing diagram.

 Detailed Mode Description

In this section the six modes are described in detail; mode setting and count
loading operations are described.

Mode 0: Interrupt On Terminal Count

Figure 14.3.2 shows the operation of a counter in Mode 0.

D7 D6 D5 D4 D3 D2 D1 D0
SC1 SC0 RL1 RL0 M2 M1 M0 BCD

SC1 SC0 SELECTION
0 0 COUNTER-0
0 1 COUNTER-1
1 0 COUNTER-2
1 1 ILLEGAL

M2 M1 M0 MODE
0 0 0 0
0 0 1 1
X 1 0 2
X 1 1 3
1 0 0 4
1 0 1 5

RL1 RL0 OPERATION
0 0 COUNTER LATCHING OPERATION
0 1 READ/LOAD LSBYTE ONLY
1 0 READ/LOAD MSBYTE ONLY
1 1 READ/LOAD LSBYTE FIRST AND

THEN MSBYTE

BCD MEANING
0 BINARY COUNTER

16-BIT
1 BCD COUNTER 4-

DECADES

215

Figure-14.3.2 :MODE-0 :Interrupt On Terminal Count

OUTPUT
After the mode is set, the output becomes low and remains low while the
selected counter is loaded with the count. The counter decrements the loaded
count starting from the falling edge of the clock pulse which occurs just after
the completion of the loading operation (WR goes high at the end of the
loading operation) and continues to decrement the count at each subsequent
clock pulse. When the terminal count is reached, the output becomes high
and stays high till the count register is loaded with a new count or the mode of
operation is changed.

GATE
If the Gate pin is made low while the counter decrements, the counting stops,
and then current contents are held. The process resumes only after the Gate
pin is made high again. The counter decrement starts again from the time of
the falling edge of the clock pulse subsequent to the rising edge of the Gate
signal.
 Further; if the count register is reloaded while the counting is on, then
(i) after the first byte of the count is written, the current counting stops, and (ii)
after the second byte of the count is written, the counting restarts with the new
count number.

3 0

CLK

WR

O/P

GATE

O/P

2 2 2 1 0

3

216

Mode 1: Programmable One-Shot (A Negative Pulse of
Controllable

 Width)

Fig. 14.3.3 shows the operation of a counter in Mode 1.

Figure-14.3.3 :MODE 1: Programmable One-Shot (A Negative
 Pulse Of Controllable Width)

OUTPUT
The output remains high while the mode is set and the count is loaded. It goes
low after the rising edge of the Gate input (as shown in Fig. 14.3.3, the trigger
goes high between the 4th and 5th clock pulse, while the output goes low on
the falling edge of the 5th clock pulse). The output remains low till the terminal
count is reached at which it becomes high again.

TRIGGER
If a trigger (Gate) signal appears while the output is low, the count is
automatically reloaded into the counter and it is decremented from the full
count again. The output remains low for the full count after an intermediate
rising edge of the Gate input.
 A new count may be added while the output is low, but it will not affect
the duration of the one-shot pulse until the next trigger. Also, the current count
can be read at any time and it will not affect the one-shot pulse.

CLK

WR

TRIGGER
(GATE)

5 0

5 5 3 0

O/P

TRIGGER
(GATE)

O/P

217

Mode 2: Rate Generator

Fig. 14.3.4 shows the operation of a counter in Mode 2.

Figure-14.3.4 :MODE 2 :Rate Generator

OUTPUT
In this mode, depending on what is loaded for n as the count, after n pulses,
the output goes low for one clock period (clock ON time + clock OFF time).
Then it again becomes high for n pulses and low for one clock period and so
on. It therefore works as divide by n counter. If the counter is working in this
mode and a new n value is loaded, the current output pulse timing is not
affected; the next one is, according to the new value of n.

GATE
When the Gate input (Reset) goes low, it forces the output to go high and
inhibits the counting. When the Gate goes high, the output starts its count
from that point onwards. The Gate input can therefore be used to synchronize
the counter with the Gate input pulse. The output can also be synchronized
through software. The output goes high as soon as the mode is set. The count
needs to be loaded and it starts counting only after the count is loaded.

Mode 3: Square Wave Rate Generator

This is similar to Mode 2 with the exception that the output remains low for
half the count and is high for the other half (for even n).
 There are two possibilities depending on whether n is even or odd.

CLK

WR

O/P

(N=3) (N=4)

3 2 1 0/3 2 1 0/4 3 2 1 0/4 3 4 3

RESET
(GATE)

218

(I) If n is even
The counter is decremented by two on the falling edge of each clock pulse

till the Terminal Count is reached. The state of the output changes at this time
(high to low or vice-versa), the count is then reloaded with the full count and
the process is again repeated. Figure 14.3.5 shows the output of counter in
Mode 3.

(ii) If n is odd
When the output is high, the first clock pulse decrements the count by one
and subsequent clock pulses decrement the count by two till the Terminal
Count is reached. The output then is made low and the full count is reloaded.
When the output is low, the first clock pulse decrements the count by three
and subsequent clock pulses decrement the count by two till the Terminal
Count is reached (see Figure 14.3.5).
 In summary, if the count is odd, for (n+1)/2 pulses the output is high,
and for (n-1)/2 pulses the output is low.

Figure-14.3.5 :MODE 3: Square Wave Rate Generator

Mode 4: Software Triggered Strobe

OUTPUT
A software-controlled delayed negative pulse of one clock period duration with
or without synchronization is generated in this mode. Figure 14.3.6 shows a
counter operation in Mode 4. In this mode, after the mode is set, the output
becomes high. Counting starts after the counter is loaded. On reaching
Terminal Count, the output goes low for one clock period and goes high
again. If during counting, the count register is reloaded, the new count is
loaded during the next clock pulse.

CLK

O/P
(N=8)

O/P
(N=7)

 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4

 7 6 4 2 7 4 2 7 6 4 2 7 4 2 7

219

GATE
The counting is inhibited for the time the Gate input stays low. The Gate input
can therefore be used for synchronization.

Figure 14.3.6 :MODE 4 :Software Triggered Strobe

Mode 5: Hardware Triggered Strobe

In this mode of operation, a delayed negative pulse with a width of one

clock period is generated following a positive going trigger input at the Gate.
Figure 14.3.7 shows the output of a counter in Mode 5.

OUTPUT
The counting starts after the rising edge of the Gate input, and on Terminal
Count, the output goes low for one clock period. The counter can be re-
triggered. After the rising edge of an trigger, the output does not go low until
the full count.

 The control words are different for different modes. The modes and its
corresponding control words are given in Table 14.3.

CLK

WR

O/P

(N=3)

3 2 1 0

(N=3)

LOAD

GATE

 3 3 2 1 0

O/P

220

Figure-14.3.7 :MODE 5: Hardware Triggered Strobe

Table-14.3
Mode Control Word

Mode-0 10H
Mode-1 12H
Mode-2 14H
Mode-3 16H
Mode-4 18H
Mode-5 1AH

The software for all these modes can be verified by capturing and

comparing the waveforms.
 Here clock is also generated by the software so WR signal is come so
many times, so in captured waveform we have connected CS pin in place of
WR. Figure 14.3.8 to Figure 14.3.13 shows output on logic analyzer of this
interfacing card. Software for Mode-0 to Mode-5.

 MOV A,80H ;CONTROL WORD OF 8255 ;CLOCK
 OUT 03H
 MVI A,10H/12H/14H/16H/18H/1AH;CONTROL WORD ;OF 8253
 OUT 83H
 MVI A,04H ;COUNTS
 OUT 80H
 MVI A,FFH
 OUT 01H ;FOR GATE PIN
LOOP: OUT 00H ;FOR CLOCK
 CMA
 NOP
 JMP LOOP
 .END

CLK

GATE

 4 3 2 1 0
O/P (N=4)

GATE

 4 3 4 3 2 1 0

O/P (N=4)

221

Figure 14.3.8 Mode-0 output on logic analyzer

222

Figure 14.3.9 Mode-1 output on logic analyzer

223

Figure 14.3.10 Mode-2 output on logic analyzer

224

Figure 14.3.11 Mode-3 output on logic analyzer

225

Figure 14.3.12 Mode-4 output on logic analyzer

226

Figure 14.3.13 Mode-5 output on logic analyzer

227

 14.4 Examples

Experiment – 1:
 You are given a microprocessor kit and an interfacing module of
counter IC 8253. Write programs to check working of counter_______ (0, 1 or
2) in mode________ (0 to 5) and capture waveforms by using Logic analyzer.

Experiment – 2:
 You are given a microprocessor kit and an interfacing module of
counter IC 8253. Write programs to check working of counter_______ (0, 1 or
2) in modes_______ (0 to 5) and see logics of all pins (Gate, Clock & Output)
of the counter on LEDS.

228

CHAPTER-15 INTERFACING USART 8251

This USART (Universal Synchronous / Asynchronous Receive
Transmit) 8251 chip is used for serial communication. [6] The COM port of the
PC can be used to interchange data between a PC and our microprocessor
trainer kit through this interfacing card.

15.1 Basics of 8251

 Features of USART 8251

 It is compatible with 8085 MPU.

 It supports both synchronous & asynchronous modes of operation.

 It needs single +5V power supply.

 It can detect an error like parity, over run and framing.

 Synchronous baud rate is possible from DC to 64 K.

 Asynchronous baud rate is possible from DC to 19.2 K.

 All inputs / outputs are TTL compatible.

 5 to 8 bit data transmission is being possible.

The block diagram of USART 8251 is given in Figure 15.1.2.

 The block diagram in Figure – 15.1.2 consists of following blocks.

1. Data bus buffer.
2. Read / Write control logic.
3. Transmitter section.
4. Receiver section.
5. Modem Control.

1. Data bus buffer
 This is a tri – state bi-directional buffer. This buffer is used to connect
internal data bus of USART 8251 to the system bus of microprocessor 8085.
The direction of buffering is decided by Read or Write signal.
2. Read / Write Control Logic:
 This block is controlling all blocks. This block accepts different control
signals like Read, Write, Control / Data, Chip Select, Clock etc.
 The Table – 15.1 summarizes the functions of different control signals.

229

Figure 15.1.2 Block diagram of USART 8251
3. Transmitter Section
 Figure – 15.1.3 is showing blocks of Transmitter Section.
 This Transmitter Section consists of the transmitter buffer
register, an output shift register and Transmit Control logic.
 The transmitter buffer register accepts parallel data from the data bus
buffer. The contents of the transmitter buffer are automatically transferred to
the serial output register, when the output register becomes empty.
 The control on both these blocks are provided by Transmit Control
logic.
Table – 15.1

C / D

RD

WR

CS

Function

0 0 1 0 8251 Data
port to Data
bus

0 1 0 0 Data Bus

DATA
BUS

BUFFER

READ/
WRITE

CONTRO
L LOGIC

MODEM
CONTRO

L

TRANSMI
T BUFFER

TRANSMIT
CONTROL

RECEIVE
BUFFER

RECEIVE
CONTROL

D7-D0

RD
WR

CLK
RESET

C/D

CS

DSR
DTR
CTS
RTS

TxD

TxRDY

TxE

TxC

RxD

RxRDY

RxC

SYNDET

230

contents to
8251 Data
port

1 0 1 0 Status read
1 1 0 0 Control

register write
X 1 1 0 Data Bus Tri-

stated
X X X 1 Data Bus Tri-

stated

4. Receiver Section
 Figure – 15.1.4 is showing block diagram of receiver section.

This Receiver section consists of a Receiver buffer register,
a serial input register and control logic. The USART accepts serial
data in input register. The input register block also converts this
serial data into parallel form. This parallel data is loaded into
receiver buffer register under influence of receiver control logic
block.

5. Modem Control
 When data needs to be sent on telephone line, it becomes necessary
to convert digital data into analog form while transmission and vise versa
while reception. MODEM means Modulation and Demodulation of signals.
 The pins DTR, DSR, RTS and CTS are used to control modem by
8251. These pins are also used to communicate with personal computer.
The pin diagram of 28 – pin DIP USART 8251 is shown in Figure 15.1.1

Pin Description of USART 8251

Data Bus: D0 – D7 Pin numbers: 27, 27, 1, 2, 5, 6, 7, 8
 These are bi-directional data lines connected to data bus of

microprocessor 8085. The microprocessor can send or receive data
and/or command from 8251 on these lines.

RxD: Receive data – pin no.- 3
 This is an input pin. This pin is used to receive the serial stream

of data. This pin is generally connected with the transmitter pin of the
transmitter.

GND: Ground – pin no.- 4
 This pin is connected with ground terminal of the power supply.
TxC: Transmitter Clock – pin no.- 9
 This input pin is used to provide clock to the transmitter block of

USART. This pin decides the rate at which data is transmitted.
 In Synchronous mode the baud rate is same as the frequency at this

pin.
 In Asynchronous mode the baud rate is variable, means the baud rate

is frequency divisible by either 64 or 16 or 1.In both the modes the data
bit is transmitted on falling edge of TxC Clock.

231

Figure: 15.1.3 Transmitter section

 Figure:15.1.4 Receiver scetion

WR: Write pin no.- 10
 This is an input pin. This is used to write data into 8251. When
this pin becomes low, the data bus buffer accepts data from system
data bus. This pin is connected with write output signal of
microprocessor 8085.

DATA
BUFFER

REGISTER

SERIAL

INPUT REGISTER

RECEIVER
BUFFER

REGISTER

RECEIVER
CONTROL

LOGIC

INTERNAL
DATABUS

D0

D7

RxD

RxC

RxRdy

DATA
BUFFER

REGISTER

SERIAL

OUTPUT REGISTER

TRANSMITTER
BUFFER

REGISTER

TRANSMITTER
CONTROL

LOGIC

INTERNAL
DATABUS

D0

D7

TxD

TxC

TxR

TxE

232

CS: Chip Select
 This is an input pin. The signal on this pin is used to select 8251

chip. When signal on this pin is low, so 8251 is selected, and if this pin
high 8251 is not selected.

C / D: Control / Data – pin no.- 12
 This is an input pin. This pin is used to differentiate between

control section and Data Section. When this pin is at logic high, the
Control Section is selected. Similarly, when this pin is at logic low, the
Data Section is selected. Generally, this pin is connected to the
address line A0 of microprocessor kit.

RD: Read: pin no.- 13
 This pin is an input pin. By using this pin microprocessor kit can

read data from 8251. When this pin is low, the data bus buffer accepts
data from selected part and sends it to microprocessor kit.

RxRDY: Receiver Ready pin no.- 14
 This is an output signal. This signal is used to interrupt CPU.

When this pin is enabled means the data is ready in 8251 to transfer in
microprocessor 8085. If this pin is not connected with interrupt, then
microprocessor can get information about the status of this pin by
status read. In both asynchronous and synchronous modes when data
is transferred to data output register then RxRDY is set.

TxRDY: Transmitter Ready pin no.- 15
 This is an output signal. This signal is used to inform the

microprocessor 8085 that the transmitter is ready to accept data.
Generally, this TxRDY pin is connected with interrupt of 8085. If this pin
is not connected with interrupt, then microprocessor can get
information about the status of this pin by status read. This pin is
automatically reset by write signal.

SYNDET / BD: Synchronous detect or break detect: pin no.- 16
 This pin is bi-directional pin. The direction of this pin is decided

by the mode selection.
 In synchronous mode this pin is used as synchronous detection.

When 8251’s internal synchronous detection circuit is used, so this pin
behaves as output pin. If external synchronous detection circuit is
used, this pin behaves as input pin. This is programmed through mode
word. When external SYNDET is connected, then the internal SYNDET
circuit will be disabled.

 In Asynchronous mode this pin behaves as output pin. It is now
known as break detect. The output of this pin is activated to indicate
break in character.

 The status of this pin can also be read by status word read.
CTS: Clear To Send pin.- 17
 This is an input pin. If TxE bit in command byte is set to one and

the 8251 is enabled to transmit serial data. If this pin becomes high,
8251 will stop transmitting data.

TxE: Transmitter Empty: pin no.- 18
 This is an output signal. This signal indicates that a transmitter

has no character to transmit. The TxE is automatically reset upon
receiving a character from microprocessor.

233

TxD: Transmit Data: pin no.- 19
 This is an output pin. This pin is used to output the serial stream

of data. When data is not transmitting, then this pin is held in high logic.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 28

 27

26

25

24

23

22

21

20

19

18

17

16

15

8251

D2

D3

RxD

GND

D4

D5

D6

D7

TxC

WR

CS

C/D

RD

RxRDY

D1

D0

VCC

RxC

DTR

RTS

DSR

RESET

CLK

TxD

TxEMPT

CTS

SYD/BD

TxRDY

Figure 15.1.1 PIN DIAGRAM OF 8251

234

CLK: Clock pin no.- 20
 This is an input pin. This clock input is used for communication

between microprocessor 8085 and USART 8251. This clock frequency
must be greater then 30 times the receiver and transmitter clock
frequencies.

RESET: Reset pin no.- 21
 This is an input pin. This pin is used to reset 8251. Generally,

this pin is connected with Reset out pin of 8085. To reset 8251, the
status on this pin should remain low for at least 6 – clock pulses.

DSR: Data Set Ready pin no.- 22
 This is an input signal. This is general purpose, 1 – bit inverting

input port. This pin is used to test MODEM, whether Data set is ready
or not? The information about the logic at this pin can also achieve by
status read.

RTS: Request to Send pin no.- 23
 This is an output pin. This pin is used to signal the MODEM that

8251 has data which is to be transmitted. The status of this pin can be
controlled by setting or resetting bit D5 of the command instruction
word.

DTR: Data Terminal Ready: pin no.- 24
 This is an output pin. This pin is used to signal the MODEM

about 8251’s readiness to accept or transmit serial data. The status of
this pin can be controlled by setting or resetting bit D1 of the command
instruction word.

RxC: Receiver Clock: pin no.- 25
 This is an input pin. This pin is used to give clock to receiver.

The receiving baud rate is decided by frequency given at this pin. In a
synchronous mode the baud rate is either divided by 64 or 16 or 1 to
the Receiver Clock Frequency. While in synchronous mode baud rate
is same as receiver clock frequency.

VCC: Supply Voltage pin no.- 26
 This pin should be connected with +5V with respect to ground.

15.2 Interfacing circuits with P.C.B. aspects

 For interfacing 8251 and creating a useful application a circuit was
designed to establish communication between a PC and 8085 microprocessor
based trainer kit.[13] The software for the communication is prepared using C-
language.
 To establish Serial Communication between microprocessor kit and
Personal Computer this interfacing circuit is designed. This circuit includes
Max – 232 IC and USART 8251 with few connectors and capacitors.
 Figure 15.2.1 is showing as interfacing module as a schematic circuit
diagram.
 This module is based on serial communication protocols. Here we can
see that the module connected with microprocessor kit via 8251 and module
connected with PC via MAX – 232.
 The port addresses for USART 8251 are 80H and 81H for data and
control registers respectively.

235

Figure 15.2.1 Schematic diagram of an interfacing module of USART 8251

236

Figure 15.2.2 Schematic circuit diagram of on-board clock

237

Figure 15.2.3 Bottom layer of USART 8251 module

238

Figure 15.2.4 Overlay layer of USART 8251 module

239

Figure 15.2.5 Pin-to Pin connection of 25-pin D-type connector

240

The interfacing of module with PC is done through a D – type 25 – pin
connector.
 Here 1 to 1 cable is used between module to PC and module to kit.
 Here in Figure 15.2.1 the transmitter and receiver clocks are not shown
connected with any clocks. For this an option is given that user can use any
external clock of his choice or can use on board clock. The circuit diagram of
on – board clock is given in Figure 15.2.2.
 Figure – 15.2.3 is the bottom layer of actual sized P.C.B. layout of the
module, and Figure 15.2.4 is the overlay of actual sized P.C.B. All the straight
lines in overlay are showing jumpers.
 On the module if user wants on board clock, he should insert IC 555 at
its location. If user wants to use external clock then he should remove IC 555
and should connect external clock at points A and B in Figure – 15.2.3.
 The pin – to – pin connection of interfacing module and communication
port is as shown in Figure 15.2.5.
 The Figures 15.2.1 and 15.2.2 are put on the same P.C.B., which is
shown in Figure 15.2.3.

15.3 Programming aspect of 8251.

To transmit or receive data mode and command instructions
must be loaded into USART 8251.

The Mode – instruction format for an asynchronous operation is shown
in Figure 15.3.1.

D7 D6 D5 D4 D3 D2 D1 D0

S2 S1 EP PEN L2 L1 B2 B1

Figure:15.3.1 Mode Instruction Format : Asynchronous Operation

Explanation of Figure 15.3.1 is as given below.
D0 AND D1: BAUD RATE FACTOR

D1 D0 MEANING
0 0 SYNCHRONOUS MODE
0 1 CLK/1
1 0 CLK/16
1 1 CLK/64

D2 AND D3: CHARACTER LENGTH
D3 D2 BITS PER

CHARACTER
0 0 5-BITS
0 1 6-BITS
1 0 7-BITS
1 1 8-BITS

D4: PARITY ENABLE(PEN)
 1=PARITY ENABLE

0=PARITY DISABLE

241

D5: EVEN PARITY GENERATION/CHECK(EP)
 1=EVEN PARITY
 0=ODD PARITY
 D6 AND D7: NUMBER OF STOP BITS

D7 D6 NUMBER OF STOP
BITS

0 0 INVALID
0 1 1-BIT
1 0 1 ½ -BITS
1 1 2-BITS

The mode instruction format for synchronous operation is shown in
Figure 15.3.2.

D7 D6 D5 D4 D3 D2 D1 D0

SCS ESD EP PEN L2 L1 0 0

Figure:15.3.2 Mode Instruction Format : Synchronous Operation

Explanation of Figure 15.3.2 is as given below.

D0 AND D1: BOTH MUST BE 0.

D2 AND D3: CHARACTER LENGTH

D3 D2 BITS PER
CHARACTER

0 0 5-BITS
0 1 6-BITS
1 0 7-BITS
1 1 8-BITS

D4: PARITY ENABLE(PEN)
 1=PARITY ENABLE

0=PARITY DISABLE

D5: EVEN PARITY GENERATION/CHECK(EP)
 1=EVEN PARITY
 0=ODD PARITY

D6: EXTERNAL SYNCHRONOUS DETECTION(ESD)
 1= SYNDET IS AN INPUT
 0=SYNDET IS AN OUTPUT

D7: SIGNAL CHARACTER SYNCHRONIZATION
 1=SINGLE SYNCHRONIZATION CHARACTER
 0=DOUBLE SYNCHRONIZATION CHARACTER

242

The command instruction Format is shown in Figure – 15.3.3.

D7 D6 D5 D4 D3 D2 D1 D0

EH IR RTS ER SBRK RxE DTR TxEN

Figure: 15.3.3 COMMAND INSTRUCTION FORMAT

Explanation of Figure 15.3.3 is as given below.

D0: TRANSMIT ENABLE
 1=ENABLE
 0=DISABLE

D1: DATA TERMINAL READY
 HIGH WILL FORCE DTR OUTPUT TO ZERO

D2: RECEIVE ENABLE
 1=ENABLE
 0=DISABLE

D3: SEND BREAK CHARACTER
 1= IT FORCES TxD LOW
 0= NORMAL OPERATION

D4: ERROR RESET
 1=IT RESETS ERROR FLAGS PE,OE AND FE
 0=NORMAL OPERATION

D5: REQUEST TO SEND
 HIGH WILL FORCE RTS OUTPUT TO ZERO.

D6: INTERNAL RESET

HIGH RETURNS 8251 TO MODE INSTRUCTION FORMAT

D7: ENTER HUNT MODE

1 = ENABLES SEARCH FOR
 SYNCHRONIZATION CHARACTERS.

 0 = NORMAL OPERATION
 IT HAS NO EFFECT IN ASYNCHRONOUS MODE.

The status word format is shown in Figure – 15.3.4.

243

D7 D6 D5 D4 D3 D2 D1 D0

DSR

SYNDET
BRKDET

FE

OE

PE

TxEMPTY

RxRDY

TxRDY

Figure: 15.3.4 STATUS WORD FORMAT

Explanation of Figure 15.3.4 is as given below.
D0: TxRDY STATUS BIT HAS DIFFERENT MEANING FROM THE

TxRDY OUTPUT PIN. THE FORMER IS NOT CONDITIONED BY CTS AND
TxEN; THE LATTER IS CONDITIONED BY BOTH CTS AND TxEN.
i.e. TxRDY STATUS BIT= DB BUFFER EMPTY

TxRDY PIN OUT= DB BUFFER EMPTY · (CTS=0) · (TxEN=1)
D1: RxRDY
 THIS IS USED TO INTERRUPT CPU. WHEN THIS IS

ENABLED MEANS THE DATA IS READY IN 8251 TO TRANSFER IN
MICROPROCESSOR 8085.

D2: TxEMPTY
THIS INDICATES THAT A TRANSMITTER HAS NO CHARACTER TO

TRANSMIT. THE TxEMPTY IS AUTOMATICALLY RESET UPON
RECEIVING A CHARACTER FROM MICROPROCESSOR.

D3: PARITY ERROR
 THE PE FLAG IS SET WHEN A PARITY ERROR IS

DETECTED. IT IS RESET BY THE ER OF THE COMMAND INSTRUCTION.
PE DOES NOT INHIBIT OPERATION OF THE 8251.

D4: OVER-RUN ERROR
 THE OE FLAG IS SET WHEN THE CPU DOES NOT READ A

CHARACTER BEFORE THE NEXTONE BECOMES AVAILABLE. IT IS
RESET BY THE ER OF THE COMMAND INSTRUCTION. OE DOES NOT
INHIBIT OPERATION OF THE 8251. HOWEVER, PREVIOUSLY OVERRUN
CHARACTER IS LOST.

D5: FRAMING ERROR
 THE FE FLAG IS SET WHEN A VALID STOP BIT IS NOT

DETECTED AT THE END OF EVERY CHARACTER. IT IS RESET BY THE
ER OF THE COMMAND INSTRUCTION. FE DOES NOT INHIBIT
OPERATION OF THE 8251.

D6: SYNDET/BRKDET
 IN SYNCHRONOUS MODE THIS IS USED AS SYNCHRONOUS
DETECTION. WHEN 8251’S INTERNAL SYNCHRONOUS DETECTION
CIRCUIT IS USED, SO THIS PIN BEHAVES AS OUTPUT PIN. IF
EXTERNAL SYNCHRONOUS DETECTION CIRCUIT IS USED, SO THIS PIN
BEHAVES AS INPUT PIN. THIS IS PROGRAMMED THROUGH MODE
WORD. WHEN EXTERNAL SYNDET IS CONNECTED, THEN THE
INTERNAL SYNDET CIRCUIT WILL BE DISABLED.

 IN ASYNCHRONOUS MODE THIS PIN BEHAVES AS OUTPUT
PIN. IT IS NOW KNOWN AS BREAK DETECT.

D7: DATA SET READY
 INDICATES THAT THE DSR IS AT A ZERO LEVEL.

244

To check working of this module, two test experiments have been
performed. In these experiments C – compiler have been used.
 The programming aspect of this 8251 card with C – programming is
given in detail in test experiments 1 & 2.

1. To establish communication from PC to 8085 based microprocessor
kit.

2. To establish the communication from 8085 based microprocessor kit to
PC.

1. To establish communication from PC to 8085 based microprocessor
kit.

In this experiment the user is supposed to enter the desired 8 bit
data (Hex format) from the ASCII keyboard of PC and let the same data
be displayed on the seven segment display of the microprocessor kit.
For this user has to load proper C programming in the computer and the
matching program written in the assembly language in the
microprocessor kit. These programs are as follows

PCTOKT1.C

#include <bios.h>
#include <conio.h>
#include<stdio.h>

#define COM1 1
#define DATA_READY 0x30
#define SETTINGS (0x20 | 0x00 | 0x04| 0x03)

int main(void)
{
 int in, out, status, DONE = 0xdd;

 bioscom(0, SETTINGS, COM1);
 cprintf("... BIOSCOM [ESC] to exit ...\n");
 loop:
 status = bioscom(3, 0, COM1);
 printf("status=%x",status);
 if (status & DATA_READY)
 {
 bioscom(1,DONE, COM1);
 }

 printf("Enter hex no. & 111 to come out of the program\n");
scanf(" %x",&DONE);
if(DONE!=0x111)
 goto loop;

 return 0;
}

245

PC_TO_KT.ASM

HL_DISP: .EQUAL 1C1BH
DATADISP: .EQUAL 1E64H
DELAY: .EQUAL 1F3FH
A8251: .EQUAL 0390H

 ORG A8251
 MVI A,00H
 OUT 81H
 OUT 81H
 OUT 81H
 MVI A,40H
 OUT 81H ;FOR MASTER RESET
 MVI A,CEH ;2-STOPBITS,NOPARITY,;8-BIT
 ;DATA,BAUD=CLK/16
 OUT 81H
 MVI A,36H ;RTS=0,ER=0,RxEN=1,DTR=0,TxEN=0
 OUT 81H

LOOP: IN 81H ;READ STATUS
 ANI 02H ;IF RxRDY=0 WAIT
 JZ LOOP
 IN 80H ;READ DATA
 MOV L,A
 CALL HL_DISP ;TO UNPACK DATA
 CALL DATADISP ;TO DISPLAY DATA
 JMP LOOP
 END

Discussion of the program

The program PCTOKT1.C written in C-language used a very important
function called

bioscom (int cmd, char abyte, int port)

The detail of this function is as explained bellow.

cmd
Value Exlanation

0 Sets the communication parameters like baud rate, parity,
stop bits and Number of data bits.

1 Sends the character in abyte out over the communication
line

2 Receives a character from the communication line
3 Returns current status of the communications port.

246

abyte
 0x20 : 0x00 : 0x04 : 0x03

 150 baud No Parity 2-stop bits 8-bit data
port
0 = COMPORT – 1
1 = COMPORT – 2

here we have used com port –2.

In the program PCTOKT1.C the statement

 bioscom(0,SETTING,COM1);
is used to set the communication parameters of comport-1, as define in the
statement.

define SETTING (0x20 | 0x00 | 0x04 | 0x03);
 the the statement

 status=bioscom(3,0,COM1);

read the current status of comport1 and assigned this value to variable status.

If the status and the Data-ready values are matched, the statement
 bioscom (1.DONE,COM1);
Sends the character from com1 to the communication channel.

To stop the execution of this program enter 111H from the keyboard.

Now the program PC-TO-KT reads the character sent by PC by proper
configuration of 8251 and display on the seven segment display.

Note that in this program (PC-TO-KT) subroutines and HL-DISP and
DATADISP have been used as per our microprocessor kit. The user should
use such routines as per his kit.

procedure

 Connect the interfacing module with the proper cable.
 Connect interfacing module with PC on COM2.
 Load program PC-TO-KT in the microprocessor kit. And execute it.
 Load the program PCTOKT1.C and execute it.
 At this moment the seven segment display of microprocessor kit will

show the character DD.
 And the monitor of PC will display “Enter hex no. 111 to come out of

the program”
 Now the system is ready for communication

247

 Enter the 8-bit hex data of your choice and press enter key to observe
it on the seven segment of the kit.

Thus you have performed the communication

3. To establish the communication from 8085 based microprocessor kit to

personal computer.

In this experiment more than one data byte is transferred from the
memory of the microprocessor kit to PC. For this, user is supposed to
enter the required data byte in the memory of microprocessor kit, before
executing the programs in kit as well as in the PC.

The user has to enter the following programs in the microprocessor kit
and PC.

KTTOPC1.C

#include <bios.h>
#include <conio.h>

#define COM1 1
#define DATA_READY 0x100
#define TRUE 1
#define FALSE 0

#define SETTINGS (0x20| 0x00 | 0x04 | 0x03)

int main(void)
{
 int in, out, status, DONE = FALSE,a[10],i=0;

 bioscom(0, SETTINGS, COM1);
 clrscr();
 cprintf("... BIOSCOM [ESC] to exit ...\n");
 bioscom(1, 0x00, COM1);
 while (!DONE)
 {
 status = bioscom(3, 0, COM1);
 if (status & DATA_READY)
 {
 out = bioscom(2, 0, COM1);
 a[i++]=out;
 bioscom(1, 0x55, COM1);
 if(i==5)
 goto end;
 }

 }
 end:

248

 for(i=0;i<5;i++)
 printf("\ndata=%x\n",a[i]);
 getch();
 return 0;
}

KT_TO_PC.ASM

HL_DISP: .EQUAL 1C1BH
DATADISP: .EQUAL 1E64H
DELAY: .EQUAL 1F3FH
A8251: .EQUAL 0290H

 ORG A8251
 MVI A,00H
 OUT 81H
 OUT 81H
 OUT 81H
 MVI A,40H ;FOR SOFTWARE RESET
 OUT 81H
 MVI A,CEH ;2 STOP BITS,NO PARITY,8-BIT DATA,BAUD=CLK/16
 OUT 81H
 MVI A,37H ;RTS=0,ER=0,RxEN=1,DTR=0,TxEN=1
 OUT 81H

 LXI H,4200H
 MVI B,05H

LOOP:
 IN 81H ;READ STATUS
 ANI 01H ;IF TxRDY=0 WAIT
 JZ LOOP

 MOV A,M ;TRANSMIT DATA
 OUT 80H

LOOP2:
 IN 81H ;READ STATUS
 ANI 02H ;IF RxRDY=0 WAIT
 JZ LOOP2

 IN 80H ;READ DATA
 STA 4300H ;STORE DATA
 INX H
 DCR B
 JNZ LOOP
 RST 1

 END

249

Discussion of the program

This program is written in C-language uses the bioscom() as the main
tool. Which is explained earlier in detail. This program prepares the PC to
receive the data bytes from the microprocessor kit with the proper
parameter.

SETTINGS decides this parameter. The bioscom(), when encountered
first time in program configure the COM1. at the second time of its
appeareance of bioscom() the dummy byte is transferred. Then the third
statement
 status = bioscom(3,0,COM1);
Check the status while the statement
 out = bioscom(2,0,COM1);
receives the byte from the communication channel.

Lastly the statement bioscom(1,0x55,COM1); transmit dummy
character to take care of the handshake signals.

Program KT-TO-PC.ASM written in assembly language configures
8251 in asynchronous mode for 2-stop bits, No-parity, 8-bit data and baud =
CLK / 16 . then after checking the proper protocol signals the program
transmits the data stored from 4200H onward.

In the last few instructions the program stores the dummy character
transmited by PC to location 4300H.

After the data communication RST1 instruction hands over the control
to the monitor routine of the microprocessor kit.

15.4 Examples

Example-1

You are given the microprocessor kit and module of USART 8251.
Write a program to transmit 55H and Catch the Waveforms by logic
analyzer.

Example-2

You are given the microprocessor kit and module of USART 8251. The
personal computer with C – compiler is also given. Send five data from
RAM of microprocessor kit and show it on screen of PC. To do this write
programs in assembly and in C.

Example-3

You are given the microprocessor kit and module of USART 8251. The
personal computer with C – compiler is also given. Develop program in kit
and in PC by which entered 8 – bit hex data from key board of PC will be
displayed on FNDS of microprocessor kit.

250

CHAPTER – 16 INTERFACING PIC 8259

 PIC means Priority Interrupt Controller. The IC 8259 works as PIC. It
manages the interrupts in interrupt driven system environment. Basically, it
receives interrupts from peripheral devices, resolves their priorities and
generates an interrupt to the 8085A on INTR pin. On receiving interrupt on
INTR, 8085A generates three INTA signals: one for code of the CALL
instruction and next two for the address of the subroutine for the interrupting
device.
 A single 8259 can handle eight different interrupts. The eight
interrupting pins of 8259 can be connected with eight different 8259 chips.
This is known as cascading. Full cascading provides maximum 64-levels of
interrupts.[5]
 The 8259 is used by proper programming. For this a set of initialization
command words (ICWs) is used to configure 8259 as per users specification.
The ICWs are used to specify addresses for concern interrupts, single or
cascaded, level or edge triggered mode, master or slave, call address interval
etc.
 Operational command words (OCWs) are used to operate the 8259 in
various modes. Which can be fully nested mode, rotating priority mode,
special mask mode or polled mode. OCWs are also useful to mask specific
interrupts and status read operation.

16.1. Basics of 8259

Basically 8259 is used to enhance the interrupt handing capacity of the
system. It is a 28-pin device.

The internal block diagram of 8259 is shown in Figure – 16.1.1.
Interrupts and Control Logic Section

 This section consists of: (a) Interrupt Request Register (IRR), (b) In-
Service Register (ISR), (c) Priority Resolver, (d) Interrupt Mask Register
(IMR), and (e) Control Logic Block.
(a) Interrupt Request Register (IRR)
 The eight interrupt inputs set corresponding bits of the Interrupt
Request Register. The IRR is used to store information about the interrupt
inputs requesting service.
 (b) In-Service Register (ISR)
 The In-Service Register is used to store information about the
interrupts currently being serviced.

251

INT

INTA

Figure 16.1.1 The internal block diagram of 8259

(c) Priority Resolver
 This determines the priorities of the interrupts requesting service
(which set corresponding bits of the IRR). The resolver determines the
priorities as dictated by the priority mode set by the OCWs. The bit

252

corresponding to the highest priority interrupt input is set in the ISR during the
INTA input.
(d) Interrupt Mask Register (IMR)
 This register can be programmed by an OCW to store the bits which
mask specific interrupts. The IMR operates on the IRR. An interrupt which is
masked by software (by programming the IMR) will not be recognized and
serviced even if it sets the corresponding bit in the IRR.
(e) Control Logic
 This block has an input and an output line. The 8259, after resolving its
input interrupt request priorities, puts out an interrupt request to the CPU, on
the INT output. This is directly connected to the CPU interrupts input. In the
8085A, the INT output is connected to the INTR. The CPU responds to the
request by putting out an INTA. This signal is given to the 8259 on the INTA
input. The 8259 then places the operation code for the CALL instruction on
the data bus. This is read by the CPU and perceives that two additional INTAs
are required to read the address (vectoring data) of the service routine. The
8259 places the two address bytes on the data bus when the two additional
INTA signals are received.
Data Bus Buffer
 This 8-bit bi-directional tri-state buffer is used to interface the 8259 to
the system data bus. Control words for the 8259, status words, and vectoring
data are all passed through the data bus buffer.
Read/Write Control Logic Section
 This contains the Initialization Command Word Registers (ICW
registers) and the Operation Command Word Registers (OCW registers)
which are programmed by the CPU to set up the 8259, and to operate it in
various modes. This section also accepts Read commands from the CPU to
permit the CPU to read status words. The pins associated with this section
are described below.
Chip Select CS
 This is an active low input which is used to select the device.
WRITE (WR)
 This is an active low input and is used to write OCWs and ICWs onto
the 8259.
Read (RD)
 This is also an active low input. It is used by the CPU to read the status
of the IRR, ISR, IMR or the interrupt level.
Cascade Buffer Comparator
 This section generates control signals necessary for cascade
operations. It also generates Buffer-Enable signals. As stated earlier, the
8259 can be cascaded with other 8259s in order to expand the interrupt
handling capacity to sixty-four levels. In such a case, the former is called a
master, and the latter are called slaves. The 8259 can be set up as a master
or a slave by the SP/EN pin in the non-buffered mode, or by software if it is to
be operated in the buffered mode of operation (buffered and non-buffered
modes of operation are describes later in this Section).
CAS 0-2
 For a master 8259, the CAS0-CAS2 pins are outputs, and for slave
8259s, these are inputs. When the 8259 is a master (that is, when it accepts
interrupt requests from other 8259s), the CALL opcode is generated by the

253

Master puts out an identification code of three-bits (to select one out of the
eight possible slave 8259s) on the CAS0-CAS2 lines. The slave 8259s accept
these three signals as inputs (on their CAS0-CAS2 pins) and compare the
code put out by the master with the codes assigned to them during
initialization. The slave thus selected (which has originally placed an interrupt
request to the master 8259) then puts out the address of the interrupt service
routine during the second and third INTA pulses from the CPU.
SP/EN (Slave Program/Enable Buffer)
 This pin is used to specify whether the 8259 is to act as a master or a
slave. If this pin is kept at 5V the 8259 understands that it is to function as a
master, and if it is kept at 0V, the 8259 understands that it is to function as a
slave.
 In large systems where buffers are used to drive the data bus, the data
put out by the 8259 is response to INTA cannot be accessed by the CPU (due
to the data bus buffer being disabled). If an 8259 is used in the buffered mode
(buffered or non-buffered modes of operation can be specified at the time of
initializing the 8259), the SP/EN pin is used as an output which can be used to
enable the system data bus buffer whenever the 8259’s data bus outputs are
enabled (when it is ready to put out data).
 To summarize, in non-buffered mode, the SP/EN pin of an 8259 is
used to specify whether the 8259 is to operate as a master or as a slave, and
in the buffered mode, the SP/EN pin is used as an output to enable the data
bus buffer of the system.
Figure 16.1.2 shows the pin diagram of 8259A.

16.2. Interfacing circuit with P.C.B. aspect

To understand the important features of 8259, we developed an
interfacing circuit. This circuit detail is shown in Figure – 16.2.1.

To understand the concept of cascading we have considered two 8259A
out of which one is working as MASTER and another is working as SLAVE.

We have used the nomenclature for this two 8259 as “MASTER” for the
master 8259A and “SLAVE” for the slave 8259A.

The master is connected with the 8085 through a buffer IC 74LS245
and a 40-pin FRC connector. A0, RD and WR are connected with A0, RD and
WR of 8085A. SP/EN pin is connected with VCC for MASTER. The INT and
INTA pins are connected with INTR and INTA pins of 8085A respectively
through buffer. The chip selects of MASTER and SLAVE are obtained through
decoder 74155.

The input lines of decoder A and B are connected with address lines A4
and A5 of 8085A. Out of three active low enable inputs of 74155, two are
connected with the CS output of decoder 74155 of the CPU.

This decoder of CPU circuit decodes the addresses as shown in the
following Table 16.2.1.

254

Table 16.2.1:CPU decoder information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 28

 27

26

25

24

23

22

21

20

19

18

17

16

15

8259A

CS

WR

RD

D7

D6

D5

D4

D3

D2

D1

D0

CAS 0

CAS 1

GND

VCC

A0

INTA

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

INT

SP/EN

CAS 2

Figure 16.1.2 PIN DIAGRAM OF 8259A

255

A15 A14 A13 A12 A11 A10 A9 A8 Used Hex
addresses

Selection
 A7 A6 A5 A4 A3 A2 A1 A0

0 0 X X X X X X 00H to
03H

8255

0 1 X X X X X X 40H &
41H

8279

1 0 X X X X X X 80H, 81H,
90H, 91H

External
Peripheral

 From the Table – 16.2.1, it becomes clear that the Port - addresses for
MASTER are 80H and 81H. While for SLAVE Port – addresses are 90H and
91H.
 The device side connection of MASTER includes pins IR0 to IR7 and
CS0 to CS2. In the present circuit IR0 to IR7 are connected to eight external
push button type switches through NAND gates.
 The switches SW9 to SW15 constitute one input of each respective
NAND gate. The MASTER switch becomes the second input to the all NAND
gates. Note that the NAND gate connected with IR7 interrupt line is getting as
input the INT of SLAVE through an inverter made of NPN transistor.
 For the SLAVE data lines D0 to D7 are connected with AD0 to AD7
through 40-pin FRC connector, just like the MASTER. RD, WR and INTA are
connected to RD, WR and INTA pins of 8085A through buffer. The SP/EN pin
is grounded to suggest that it is a SLAVE. The cascade lines are directly
connected with cascade lines of MASTER. The interrupt lines of SLAVE are
connected to eight different push-button type switches through NAND gates.
These eight switches SW1 to SW8 become one of the inputs for respective
NAND gates. The other inputs of all the NAND gates are connected to a
switch called SLAVE switch.

Circuit Function
 To understand the 8259 in Master mode switches SW9 to SW15 can be
used, to generate interrupts on the IR0 to IR6 lines. Similarly to understand the
8259 in slave mode switches SW1 to SW8 can be used to generate the
interrupts on IR0 to IR7 lines of SLAVE. The INT line of SLAVE is connected to
the IR7 level of master through an INVERTER and a NAND gate. This NAND
gate is controlled by master switch and status of INT pin. In the present
design we have selected the level sensitive types of interrupts.
To understand the concepts of priority and masking, either for MASTER or
SLAVE one can use the MASTER switch or Slave switch respectively as the
case may be. If master switch is pressed, it makes one of inputs of all NAND
gates low. This in consequence makes interrupt pin IR0 to IR7 high. In other
word by pressing the master switch we generate simultaneous interrupt
requests on all interrupt lines. This forces us to decide the priority. One can
selectively mask these interrupts. The same is true for SLAVE 8259. if one
wants to generate interrupts on special interrupt line, individual switch can be
pressed, saving slave and master switches.

256

Figure – 16.2.1. Schematic circuit of PIC 8259A card

 In the present software we have chosen default priority mode
(Fully Nested mode) for the MASTER i.e. When we press master switch IR0

line will assume highest priority. The subroutine associated with IR0 will get

257

executed. In the present case the subroutine for IR0 is supposed to display the
characters “0000”. In other words, for MASTER 8259 if one presses the
master switch the kit will display “0000”. For rest of the interrupts, whenever
interrupt takes place it will display numbers as indicated in the following Table
16.2.2.

Table – 16.2.2: Corresponding display for interrupt lines.

MASTER SLAVE

Interrupt line Display data Interrupt line Display data
IR0 0000 IR0 DD00
IR1 1111 IR1 DD11
IR2 2222 IR2 DD22
IR3 3333 IR3 DD33
IR4 4444 IR4 DD44
IR5 5555 IR5 DD55
IR6 6666 IR6 DD66
IR7 7777 IR7 DD77

Note that to understand the priority concept we have selected the

specific rotation mode for SLAVE 8259, where the control word (0CW2) is
selected as C4H, which makes the IR4 line to assume lowest priority. In this
mode the immediate next higher interrupt line assumes highest priority. So in
present case when a slave switch is pressed, it generates all eight interrupts
simultaneous, on slave 8259, but because of the priority selected in software
IR5 line will assume as highest priority and hence, its subroutine will be
excited to display the message “DD55”.
 The present interfacing module can be used to test almost all concepts
of 8259 through proper control words.

P.C.B. aspects

 The schematic for the present circuit was prepared using computer
software, there after the track layout was prepared manually using the
software. The schematic and track layout design is shown in Figure 16.2.1.
and Figure 16.2.2.
 Here Figure 16.2.2 shows the bottom layer and figure 16.2.3 shows
the overlay of P.C.B. design.
 Here straight lines in overlay show the jumpers.

258

Figure 16.2.2 Bottom layer of PIC-8259 card

259

Figure 16.2.3 overlay of PIC-8259 card

260

8259 Programming

 The 8259 is programmed by the CPU by loading a set of

(i) Initialization Command Words, and
(ii) Operation Command Words.

Each 8259 in the system must first be initialized by loading a set
of ICWs. OCWs can be loaded after initialization.

Initialization Command Word 1 (ICW1)

 A write command issued to 8259 with A0=0 and D4=1 is interpreted as
ICW1, which starts the initialization sequence. During ICW1, the following
steps occur:

(a) The edge-sense circuit is reset. This implies that after initialization, an
interrupt must make a low-to-high transition for it to perceived by the
8259.

(b) The IMR is cleared (all interrupts are disabled).
(c) The IR7 input is assigned the lowest priority.
(d) The slave mode address is set to 7.
(e) Status Read is set to IRR, the Special Mask Mode is cleared, and
(f) If bit D0 in ICW1 (IC4) is set to ‘0’, all functions in ICW4 are set to ‘0’.

The format of the byte to be loaded for ICW1 is shown in Figure. 16.2.4
A5-A7
 A0-A4 of the vectoring address are automatically inserted by the 8259
for all the IR inputs for an interval spacing of four; A0-A5 are inserted
automatically for an interval spacing of eight A5-A7 are programmable as set
by bits D5-D7 of ICW1.

LTIM
 This bit determines if the interrupts are to be recognized in the level-
triggered mode or in the edge-triggered mode.

ADI
 This sets the CALL address interval to either four or eight.

SINGL
 This is used to inform the 8259 if it is the only 8259 in the system, or if
additional 8259s are present.

IC4
 This is used to specify whether ICW4 is required or not required. If it is
set ‘0’, the 8259 is set in the non-buffered mode, non-Auto EOI, and for
operation with 8080/8085 systems by default.

261

Figure-16.2.4: 8259 Initialization flow chart

ICW1

ICW2

IN
CASCADE

MODE

NO(SNGL=1)

ICW3

 IS
 ICW4

NEEDED

ICW4

READY TO ACCEPT
INTERRUPT REQUESTS

NO(ICW4=0)

262

A0 D7 D6 D5 D4 D3 D2 D1 D0
0 A7 A6 A5 1 LTIM ADI SNGL IC4

D0: IC4
 1=ICW4 IS NEEDED.
 0=ICW4 IS NOT NEEDED.
D1: SNGL
 1=SINGLE MODE
 0=CASCADE MODE
D2: ADI (CALL ADDRESS INTERVAL)
 1=INTERVAL OF 4-ADDRESSES
 0=INTERVAL OF 8-ADDRESSES
D3: LTIM (LEVEL TRIGGERED MODE)
 1=LEVEL TRIGGERED MODE
 0=EDGE TRIGGERED MODE
D4: THIS BIT SHOULD BE ‘1’.

D5,D6,D7: A5,A6 AND A7 BITS OF INTERRUPT VECTOR ADDRESS.

A0: THIS ADDRESS LINE SHOULD BE LOW TO SELECT ICW1

Figure-16.2.5(a) : initialization command word 1

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 A15 A14 A13 A12 A11 A10 A9 A8

D7 to D0: A15 TO A8 OF INTERRUPT VECTOR ADDRESSES.

A0: THIS ADDRESS LINE SHOULD BE HIGH TO SELECT ICW2.

Figure-16.2.5(b) initialization command word-2

Initialization Command Word 2 (ICW2)
 A write command following ICW1, with A0=1, is interpreted as ICW2.
The format of the byte to be loaded as ICW2 is shown in Figure-16.2.5(b).This
is used to load the high-order byte of the interrupt vector address of all the
interrupts. It should be noted that this byte is common for all the interrupts.

Initialization Command Word 3 (ICW3)
 ICW3 is required only if there is more than one 8259 and if they are
cascaded. An ICW3 operation loads a slave register in the 8259. The format
of the byte to be loaded as an ICW3 for master 8259 or a slave 8259 is shown
in figure16.2.6.

 ICW3 FOR MASTER DEVICE

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 S7 S6 S5 S4 S3 S2 S1 S0

263

D7 TO D0: S7 TO S0
 1=IR INPUT HAS A SLAVE.
 0=IR INPUT DOESNOT HAVE A SLAVE.

A0: THIS ADDRESS LINE SHOULD BE HIGH TO SELECT ICW3.

 ICW3 FOR SLAVE DEVICE

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 0 0 0 ID2 ID1 ID0

D0 TO D2: ID0 TO ID2

ID2 ID1 ID0 SLAVE ID
0 0 0 SLAVE –0
0 0 1 SLAVE –1
0 1 0 SLAVE –2
0 1 1 SLAVE –3
1 0 0 SLAVE –4
1 0 1 SLAVE –5
1 1 0 SLAVE –6
1 1 1 SLAVE –7

D3 TO D7: THESE BITS SHOULD BE ZERO.

A0: THIS ADDRESS LINE SHOULD BE ‘1’.

Figure-16.2.6 Initialization Command Word-3

MASTER MODE ICW3

 If the 8259 currently being initialized is a master (as determined by its
SP/EN pin being high in a non-buffered environment, or by M/S = 1 in ICW4 in
a buffered environment), each bit in ICW3 is used to specify to the master
whether it has a slave 8259 attached to it on its corresponding IR (Interrupt
Request) input. A ‘1’ is used to specify the presence of a slave at that input,
and a ‘0’ is used to specify the absence of a slave.
 Later, after initialization, if one of the slave 8259s (say, the slave 8259
whose INTR output is connected to the IR2 input of the master 8259) raises
its INTR output, the master generates the CALL instruction Opcode, and puts
out the identification number of the slave (in this case, 010) on the CAS0-
CAS2 lines; all the slaves compare the code on their common CAS0-CAS2
lines (the CAS0-CAS2 outputs of the master are connected to the CAS0-
CAS2 inputs of all the slave 8259s for cascaded operation) with the Slave
Identification code loaded into them during initialization. The slave which had
originally placed the interrupt request to the master is enabled by the CAS0-
CAS2 lines and it releases the appropriate vector address during the second
and third INTA cycles.

264

SLAVE MODE ICW3
 If the 8259 currently being initialized is a slave (as determined by its
SP/EN pin being low in a non-buffered system environment, or by M/S=0 in
ICW4 in a buffered environment), bits D0-D2 of ICW3 are used to assign a
slave identification code (slave ID) to the 8259. It should be noted that the
slave ID is equivalent to the master IR input to which the INTR output of the
slave is connected. Later, after initialization, the slave compares this code
with the CAS0-CAS2 inputs in order to release the address vector.

Initialization Command Word 4 (ICW4)
 As shown in Figure-16.2.5(A), ICW4 only if the D0 bit of ICW1 (IC4) is
set. The format of ICW4 is shown in Figure-16.2.7.

SFNM

 If this bit is set, the Special Fully Nested Mode is programmed.
BUF
 This is used to indicate to the 8259 whether it is in a buffered or non-
buffered environment. If BUF=1, the SP/EN pin is used as an output to enable
the data bus buffer of the system. The 8259 can be configured as a master or
a slave by the M/S bit.

M/S
 In the buffered mode of operation, M/S=1 sets up the 8259 being
initialized as a master, and M/S=0 sets it up as a slave. In the non-buffered
mode, M/S has no significance as the master/slave selection is dependent on
the status of the SP/EN pin.

AEOI
 If the AEOI mode is set to ‘1’, the Automatic End Of Interrupt mode is
programmed.

PM
 This is used to specify whether the 8259 is to operate in an
8080/8085A environment or in an 8088/8086 environment.

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 0 SFNM BUF M/S AEOI MPU

D0: MPU
 1=8086/8088 MODE
 0=8085/8080 MODE
D1: AEOI
 1=AUTOMATIC EOI
 0=NORMAL EOI

D2 & D3: M/S & BUF

 BUF=0 NON BUFFERED MODE

265

 BUF=1 BUFFERED MODE
 M/S=1 MASTER
 M/S=0 SLAVE
D4: SFNM
 1=SPECIAL FULLY NESTED MODE
 0= NOT SPECIAL FULLY NESTED MODE

 Figure-16.2.7 Initialization Command Word-4

Operation Command Words (OCWs)
 After initialization, the 8259 is ready to process interrupt requests.
However, during operation, it might be necessary to change the manner of
processing the interrupts. Operation Command Words (OCWs) are used for
this purpose. They may be loaded anytime after the 8259’s initialization to
dynamically alter the priority modes. Figure-16.2.8. shows the format of the
Operation Control Words.
OCW1

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 M7 M6 M5 M4 M3 M2 M1 M0

OCW2

A0 D7 D6 D5 D4 D3 D2 D1 D0
0 R SL EOI 0 0 L2 L1 L0

OCW3

A0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 ESMM SMM 0 1 P RR RIS

Figure-16.2.8 Operation Command Words

Operation Command Word 1 (OCW1)
 A Write command to the 8259 with A0=1 (after ICW2) is interpreted as
OCW1. OCW1 is used for enabling or disabling the recognition of specific
interrupt requests by programming the IMR. M=1 indicates that the interrupt is
to be masked, and M=0 indicates that it is to be unmasked as shown in figure
16.2.9(A).

Operation Command Word 2 (OCW2)
 A Write command with A0=0, and D4D3=00 is interpreted as OCW2.
The R (Rotate), SL (Select-Level), EOI bits control the Rotate and End Of
Interrupt Modes, and combinations of two. Figure16.2.9(B) shows the
Operation Command Word format. L2-L0 are used to specify the interrupt level
to be acted upon when the SL bit is active.

266

OCW1

A0 D7 D6 D5 D4 D3 D2 D1 D0
1 M7 M6 M5 M4 M3 M2 M1 M0

INTERRUPT MASK
 1=MASK SET
 0=MASK RESET

Figure 16.2.9(A) Format of OCW1

OCW2

A0 D7 D6 D5 D4 D3 D2 D1 D0
0 R SL EOI 0 0 L2 L1 L0

D0 TO D2: IR LEVEL TO BE ACTED UPON

L2 L1 L0 IR LEVEL
0 0 0 LEVEL–0
0 0 1 LEVEL–1
0 1 0 LEVEL–2
0 1 1 LEVEL–3
1 0 0 LEVEL–4
1 0 1 LEVEL–5
1 1 0 LEVEL–6
1 1 1 LEVEL–7

D5,D6 & D7: EOI,SL & R

R SL EOI MEANING

0 0 0 ROTATE IN AEOI MODE(CLEAR)
0 0 1 NON SPECIFIC EOI COMMAND
0 1 0 NO OPERATION
0 1 1 SPECIFIC EOI COMMAND
1 0 0 ROTATE IN AEOI MODE(SET)
1 0 1 ROTATE IN NON SPECIFIC EOI COMMAND
1 1 0 SET PRIORITY COMMAND
1 1 1 ROTATE ON SPECIFIC EOI COMMAND

A0: THIS ADDRESS LINE SHOULD BE LOW TO SELECT OCW2

Figure 16.2.9(B) Format of OCW2

267

Operation Command Word 3 (OCW3)
 OCW3 is used to read the status of the registers, and to set or reset
the Special Mask and Polled modes as shown in Figure-16.2.10.

8259 INTERRUPT MODES
 The various modes of operation of the 8259 are:

(i) Fully Nested Mode,
(ii) Rotating Priority Mode,
(iii) Special Masked Mode, and
(iv) Polled Mode.

Fully Nested Mode (FNM)
 This is the default mode setting after initialization. The 8259 continues
to operate in the Fully Nested Mode until the mode is changed through
Operation Command Words.
 In this mode, the highest priority (Priority 0) is assigned to IR0 and the
lowest priority (Priority 7) is assigned to IR7. When as interrupt request is
acknowledged, the 8259 determines the interrupt of the highest priority and
sets its corresponding bit in the ISR. The vector address corresponding to this
interrupts is then put out. The ISR bit remains set until an End Of Interrupt

OCW3
A0 D7 D6 D5 D4 D3 D2 D1 D0
0 0 ESMM SMM 0 1 P RR RIS

D0 & D1:RIS AND RR

D1(RR) D0(RIS) MEANING
0 0 NO ACTION
0 1 NO ACTION
1 0 READ IRR
1 1 READ ISR

D2: POLL COMMAND
 1=POLL COMMAND
 0=NO POLL COMMAND
D3: THIS BIT SHOULD BE ‘1’.
D4: THIS BIT SHOULS BE ‘0’.
D5 & D6: SMM ESMM

D6(ESMM) D5(SMM) MEANING
0 0 NO ACTION
0 1 NO ACTION
1 0 RESET SPECIAL

MASK
1 1 SET SPECIAL MASK

D7: THIS BIT SHOULD BE ‘0’.
A0: THIS ADDRESS LINE SHOULD BE LOW TO SELECT OCW3.

Figure16.2.10 Format of OCW3

(EOI) command through an OCW is issued by the CPU before exiting from
the interrupt service routine. However, if the AEOI mode is set in ICW4 during

268

initialization, the ISR bit is automatically reset on the trailing edge of the last
INTA pulse.
 While as ISR bit is set, all lower interrupt levels and another interrupt of
the same level are inhibited. However, an interrupt level higher than the ISR
bit currently being serviced will cause the 8259 to generate an INTR. This
interrupt can however be acknowledged only if the Interrupt Enable flip-flop of
the microprocessor has been enabled through software (in the interrupt
service routine of the current interrupt).
 The EOI and AEOI commands are described below.

End Of Interrupt (EOI)
 The IS bit can be reset by an End Of Interrupt command issued by the
CPU, usually just before exiting from the interrupt routine.
 In the Fully Nested Mode, the highest level in the ISR would
necessarily correspond to the last interrupt acknowledged and serviced. In
such a case, a non-specific EOI command may be issued by the CPU (by an
OUT instruction to the 8259, with A0=0, D7D6D5D4D3 being 00100, D2D1D0
being of no significance, as can be derived from OCW2 in figure-16.2.9)
before exiting from the routine. The 8259 then resets the highest level IS bit
(among those that are set).
 However, if the FNM is not used, the 8259 may not be able to
determine the last interrupt acknowledged. In such a case, a specific EOI
command will have to be issued by the CPU (by an OUT instruction to the
8259 with A0=0, D7D6D5D4D3 being 00100, D2D1D0 specifying the level on
which the EOI command is to act, as shown in OCW2 in figure-16.2.9) before
exiting from the interrupt service routine. The 8259 then resets the IS bit of the
level specified by the EOI command.
 It should be noted that in the cascade mode, the EOI command must
be issued twice, once for the master and once for the slave.

Automatic End Of Interrupt (AEOI)
 The AEOI mode is set by ICW4. If the AEOI mode is set, the 8259 will
perform a non-specific EOI on its own on the trailing edge of the third INTA
pulse. The AEOI mode can only be used for a master 8259 and not for a
slave. If the interrupt system is enabled (by software) in the service routine, it
is open to fresh interrupts from any level (as dictated by the ISR) since the bit
corresponding to the interrupt being serviced is reset in the ISR.

Special Fully Nested Mode (SFNM)
 In the FNM, on the acknowledgement of an interrupt, further interrupts
from the same level are disabled. However, in large systems which use
cascaded 8259s and where the interrupt levels within each slave have to be
considered, this creates a problem. An interrupt input to a slave, in turn
causes the slave to place an interrupt request to the master on one of the
master’s inputs. Further interrupts to the slave will cause the slave to place
requests to the master on the same input to the master, but these will not be
recognized because further interrupts on the same input level are disabled by
the master.

269

 The Special Fully Nested Mode (SFNM) is used to surmount this
problem. The SFNM is set up by ICW4 during initialization. It is similar to the
FNM except for the following differences:

(a) When an interrupt request from a slave is being serviced, the slave
is allowed to place further requests (these requests are of a higher
priority than the request currently being serviced). These interrupts
are recognized by the master and it initiates interrupt requests to
the CPU.

(b) Before exiting from the interrupt service routine, a non-specific EOI
must be sent to the slave and its ISR must be read to determine if it
was the only interrupt to the slave. If the ISR is empty, a non-
specific EOI command can be sent to the master. If it is not empty,
it implies that the same IR level input to the master is to be serviced
again due to more than one interrupt being presented to the slave,
and an EOI must not be sent to the master.

Rotating Priority Mode
 The Rotating Priority mode can be set in (a) Automatic Rotation, and
(b) Specific Rotation.
(a) Automatic Rotation
 This mode is used in an interrupt structure where the interrupts must
be assigned equal priority. In this mode the last serviced interrupt level IRX (X
can vary from 0 to 7) is automatically assigned the lowest priority and the
interrupt level IR (X + 1) is assigned the highest priority. For example, if the
ISR status and the priority status are as shown in Figure-16.2.11(a) (IR3 and
IR5 are being serviced, but IR3 service routine is being executed, as it is of a
higher priority), after an EOI from the IR3 routine, the priorities will be as
shown in Figure-16.2.11(b). Automatic rotation is possible by a non-specific
EOI or by an AEOI. For automatic rotation on non-specific EOI, and OCW2
with R=1, SL=0, and EOI=1 must be written into the 8259. Automatic rotation
mode on an AEOI is set by loading an OCW2 with R=1, SL=0, and EOI=0,
and is reset by loading an OCW2 with R=0, SL=0, and EOI=0 (see Figure
16.2.9).

BEFORE ROTATE (IR3, IR5 BEING SERVICED,IR3 ACTOVE)

 IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0
IS STATUS

 LOWEST PRIORITY HIGHEST PRIORITY

PRIORITY STATUS

Figure-16.2.11(a) : Priority status before rotation

0 0 1 0 1 0 0 0

7 6 5 4 3 2 1 0

270

AFTER EOI FROM IR3 ROUTINE

 IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0
IS STATUS

 LAST SERVOCED

 HIGHEST PRIORITY LOWEST PRIORITY

PRIORITY STATUS

Figure-16.2.11(B) : Priority status after rotation

(b) Specific Rotation
 In the Automatic Rotation mode, the interrupt request last serviced is
assigned the lowest priority, whereas in the Specific Rotation mode, the
lowest priority can be assigned to any level IRX (X can vary from 0 to 7) as
specified by OCW2. I(X + 1) is then assigned the highest priority.
 This mode is set by the CPU by issuing an OUT instruction with A0=0,
D7D6D5D4D3 set to 11000, with D2-D0 specifying the interrupt level IRX that is
to be assigned the lowest priority. It should be noted that this operation is
independent of an EOI command. However, specific rotation can be
accomplished by using the Rotate on Specific EOI option in OCW2 (R=1,
SL=1, EOI=1, L2-L0 specify the interrupt level IRX that is to assigned the
lowest priority on an EOI: see figure 13.13). In such a case, the priority
changes are automatically made after the EOI command.
Special Mask Mode
 It may be sometimes desirable to selectively enable lower priority
interrupts. Usually, if an EOI command is not given to the 8259, the IS bit of
the last serviced interrupt is not reset, and consequently all lower priority
interrupts are kept disabled.
 The Special Mask Mode can be set by making the ESMM and SMM
bits ‘1’ in OCW3. When a mask bit is set in OCW1, all further interrupts at that
level are inhibited, while interrupts on all other levels that are not masked by
OCW1 (both lower and higher) are enabled. It is thus possible to selectively
enable interrupts by programming the mask register.
 The Special Mask Mode can be cleared by loading an OCW3 with
ESMM=1 and SMM=0.

Polled Mode
 In the Polled Mode of operation, the INT output of the 8259 is either not
connected to the INTR input of the 8085A, or the system interrupts are kept
disabled by software. The devices are then serviced by the 8085A by polling
the interrupt requests.

0 0 1 0 0 0 0 0

3 2 1 0 7 6 5 4

271

 The Polled mode is set by making P=1 in OCW3. A subsequent Read
command issued to the 8259 (with RD=0, and CS=0) is treated as an INTA by
the 8259. It then sets the ISR bit corresponding to the highest level interrupt in
the IRR and puts out a byte (the format of this type is shown in Figure-
16.2.12) on the data bus. The 8085A can examine the status of D7 to check if
an interrupt needs to be serviced (D7=1 implies that an interrupt is to be
serviced, and D7=0 implies that no interrupt has occurred). W0-W2 give the
code of the highest priority interrupt level requesting service.
 If an interrupt is detected, the software must include a CALL to an
interrupt service routine (the address is dependent on the level of the
interrupt, as detected by W0-W2). Since the INTR line is not used in this mode,
more than one 8259 may be connected in the master mode; it is thus possible
to have more than sixty-four levels of interrupts in this mode.
 D7 D6 D5 D4 D3 D2 D1 D0

I - - - - W2 W1 W0

Figure 16.2.12 Polled Mode Output Word

8259 STATUS READ OPERATION
 The status of the Interrupt Request Register, the In-Service Register,
and the Interrupt Mask Register of the 8259 may be read by issuing
appropriate Read commands as described below.

IRR Status Read
 An OCW3 with RR=1 (Read Register) and RIS=0 (Read ISR) sets up
the 8259 for a status read of the Interrupt Request Register. A subsequent
Read command issued to the 8259 (with RD, CS=0) causes the 8259 to put
out the contents of the IRR. When the 8259 is not in the Polled mode, after it
is set up for an IRR status read operation, all Read commands with A0=0
cause the 8259 to put out the IRR status word (the OCW3 needs to be written
onto the 8259 only once).

ISR Status Read
 An OCW3 with RR=1 and RIS=1 sets up the 8259 for a status read of
the In-Service Register. A subsequent read command issued to the 8259 will
cause the 8259 to put out the contents of the ISR onto the data bus. When the
8259 is not in the Polled Mode, after it is set up for an ISR status read
operation, all Read commands with A0=0 cause the 8259 to put out the ISR
status word (the OCW3 needs to be written onto the 8259 only once).

IMR Status Read
 A Read command issued to the 8259 with A0=1 (with RD, CS=0)
causes the 8259 to put out the contents of the Interrupt Mask Register. OCW3
is not required for a status read of the IMR.
 It should be noted that after initialization, the default status read
operation involves the IRR, unless the ISR status read is set up. Also, if P=1,
RR=1 in OCW3, the status read operation is overridden by the Poll operation.

272

DEFAULT IR7 ROUTINE
 If an interrupt input does not remain high until after the falling edge of
the first INTA pulse, it is treated as an invalid input (this may occur due to a
noise glitch). The 8259 then generates a default CALL to the IR7 routine. A
valid IR7 input generates a normal CALL to the IR7 routine. A default IR7
operation does not set the corresponding ISR bit while a normal IR7 operation
sets it.
 The IR7 service routine is therefore generally used to execute only a
RET instruction (in order to return the Stack Pointer to its initial value). If
however, the IR7 routine is needed for other purposes, a default IR7 operation
may be checked by including a status read operation of the ISR at the
beginning of the interrupt service routine for IR7. If the bit corresponding to
the IR7 input is set, it implies that it is a valid interrupt; and an invalid interrupt
otherwise.

SOFTWARE

HL_DISP: .EQUAL 1C1bH
DATADISP: .EQUAL 1E64H
DELAY: .EQUAL 1F3fH
MASTER: .EQUAL 0E00H
SLAVE: .EQUAL 0F00H
PROG: .EQUAL 1000H

 ORG MASTER
 LXI H,0000H ;TO DISPLAY 0000H
 JMP DISP
 ORG MASTER+8
 LXI H,1111H ;TO DISPLAY 1111H
 JMP DISP
 ORG MASTER+16
 LXI H,2222H ;TO DISPLAY 2222H
 JMP DISP
 ORG MASTER+24
 LXI H,3333H ;TO DISPLAY 3333H
 JMP DISP
 ORG MASTER+32
 LXI H,4444H ;TO DISPLAY 4444H
 JMP DISP
 ORG MASTER+40
 LXI H,5555H ;TO DISPLAY 5555H
 JMP DISP
 ORG MASTER+48
 LXI H,6666H ;TO DISPLAY 6666H
 JMP DISP
 ORG MASTER+56
 LXI H,7777H ;TO DISPLAY 7777H

DISP: CALL HL_DISP
 CALL DATADISP

273

 LXI D,FFFFH
 CALL DELAY
 MVI A,20H ;END OF INTERRUPT
 OUT 80H
 RET

 ORG SLAVE
 LXI H,DD00H ;TO DISPLAY DD00H
 JMP DISP1
 ORG SLAVE+8
 LXI H,DD11H ;TO DISPLAY DD11H
 JMP DISP1
 ORG SLAVE+16
 LXI H,DD22H ;TO DISPLAY DD22H
 JMP DISP1
 ORG SLAVE+24
 LXI H,DD33H ;TO DISPLAY DD33H
 JMP DISP1
 ORG SLAVE+32
 LXI H,DD44H ;TO DISPLAY DD44H
 JMP DISP1
 ORG SLAVE+40
 LXI H,DD55H ;TO DISPLAY DD55H
 JMP DISP1
 ORG SLAVE+48
 LXI H,DD66H ;TO DISPLAY DD66H
 JMP DISP1
 ORG SLAVE+56
 LXI H,DD77H ;TO DISPLAY DD77H

DISP1: CALL HL_DISP
 CALL DATADISP
 LXI D,FFFFH
 CALL DELAY
 MVI A,20H ;END OF INTERRUPT FOR MASTER
 OUT 80H
 MVI A,20H ;END OF INTERRUPT FOR SLAVE
 OUT 90H
 RET

 ORG PROG
 LXI SP,5EFFH

 MVI A,18H ;ICW1 FOR MASTER
 OUT 80H
 LXI H,MASTER
 MOV A,H ;ICW2 FOR MASTER
 OUT 81H
 MVI A,80H ;ICW3 FOR MASTER

274

 OUT 81H

 MVI A,18H ;ICW1 FOR SLAVE
 OUT 90H
 LXI H,SLAVE
 MOV A,H ;ICW2 FOR SLAVE
 OUT 91H
 MVI A,07H ;ICW3 FOR SLAVE
 OUT 91H

 MVI A,C4H ;TO SET HIGHEST PRIORITY TO IR5 OF SLAVE
 OUT 90H

LOOP: LXI H,FFFFH ;TO DISPLAY FFFFH
 CALL HL_DISP
 CALL DATADISP
 LXI D,FFFFH
 CALL DELAY
 EI
 HLT
 JMP LOOP

 .END

 16.4 Examples.

Experiment – 1
 You are given a microprocessor kit and a peripheral module of PIC
8259. Write a program to see 0000 on display initially, and when we press any
key of MASTER PIC means SW9, SW10….SW15 or ‘MASTER’, so FFFF will
be displayed for few second.

Experiment – 2
 You are given a microprocessor kit and a peripheral module of PIC
8259. Write a program to see FFFF on display initially. When we press any
key of MASTER PIC means SW9, SW10….SW15 so on display we can see
0000, 1111….6666 respectively.

Experiment – 3
 In experiment – 2 add the program to prove that when we press
‘MASTER’ key so PIC accepts IR7. Explain about default priority of PIC 8259.

Experiment – 4
 You are given a microprocessor kit and a peripheral module of PIC
8259. Write a program to see FFFF on display initially. When we press any
key of SLAVE PIC means SW1, SW2…. SW8 so on display we can see
DD00, DD11….DD77. Set highest priority for IR5 and show by pressing
‘SLAVE’ key. CDD55 should display when we press ‘SLAVE’ key.

275

References

[1] “8080 microcomputer user’s manual.” Intel corporation, Santa Clara,

CA, September 1975.

[2] Intel corporation “MCS - 80/80 family user’s manual”, Santa Clara, CA,

1979.

[3] Microprocessor architecture, programming and applications by

R.S.gaonkar

[4] Microprocessor data handbook, Revised Edition, BPB Publications

[5] 0000 to 8085 Introduction to microprocessors for engineers and

scientists by P.K.Ghosh and P.R.Shridhar, second edition, PHI
Publications.

[6] Intel Component Data Catalog, 1979, Santa clara, California 95051.

[7] Printed Circuit Board by Dr.H.N.Pandya, Published by
 Gujarat Granth Nirman Board, Ahmedabad,India.

[8] Special Purpose Linear Devices, Databook, National Semiconductor.

[9] Design and construction of analog to digital conversion interfacing

module for 8085 microprocessor kit. 18th Gujarat Science congress,
Physics Department, Saurashtra University, Rajkot dated 13th
March,2004.

[10] Data sheet 38, 1.2" DM DOTMATRIX 5x7 KLP1157I-CC, Kwality

Photonics Pvt. Ltd., Hyderabad, INDIA.

[11] An intelligent control panel : A novel microprocessor based system.

ETA-2003, 11th , 12th ,13th July,2003, Computer Department,
Saurashtra University, Rajkot.

[12] 8085 based novel software technique for V to F type analog to digital

conversion. Electronic Maker, June-2004

[13] Study of interfacing module to establish communications between a

PC and a 8085 based microprocessor kit. LE, Lab Experiments,
Volume-4,No-3,September-2004.

[14] Study of 8255 through experiments using microprocessor kit.LE, Lab

Experiments, Volume-4,No-2,June-2004

[15] Understanding interrupts of 8085 using Logic Analyzer.

ETA-2004,25th & 26th FEB.-2004, Computer Department, Saurashtra
University, Rajkot.

	Title Page
	Statement
	Acknowledgement
	Contents
	Abstract
	CHAPTER – 1 INTRODUCTION
	1.1 Objective of the present work.
	1.2 Literature survey

	CHAPTER-2 BASIC UNDERSTANDING OF 8085 MICROPROCESSOR
	2.1 The Block diagram
	2.2 Interrupt
	2.3 Serial Communication

	CHAPTER-3 INSTRUCTION SET
	3.1 Addressing modes
	3.2 Instruction Format
	3.3 All Instructions

	CHAPTER-4 INTERFACING OF EPROM AND RAM
	4.1 EPROM 2764A
	4.2 STATIC RAM 6264

	CHAPTER – 5 I/O INTERFACING
	5.1 Programmable keyboard display interface 8279
	5.2 Programmable peripheral Interface 8255

	CHAPTER – 6 P.C.B. DESIGNING AND FABRICATION
	6.1 Schematic preparation
	6.2 P.C.B. Layout Preparation
	6.3 PCB fabrication
	6.4 General aspect.

	CHAPTER-7 MONITOR PROGRAM
	CHAPTER – 8 DIGITAL TO ANALOG CONVERTER
	8.1 DAC – 0808 Chip
	8.2 Basic interfacing circuit with P.C.B. aspect
	8.3 Examples.

	CHAPTER – 9 ANALOG TO DIGITAL CONVERTER
	9.1 ADC – 0808 Chip.
	9.2. Basic interfacing circuit with P.C.B. aspects
	9.3 Examples

	CHAPTER – 10 RUNNING CHARACTER DISPLAY
	10.1. Understanding basic Circuit and P.C.B. aspects.
	10.2. Program techniques and example

	CHAPTER – 11 AN INTELLIGENT CONTROL PANEL
	11.1. Basic circuit understanding and P.C.B. aspects
	11.2 Examples.

	CHAPTER – 12 ANALOG VOLTAGE MEASUREMENT WITHOUT USING ADC
	12.1. VFC Chip
	12.2 Basic interfacing circuit with P.C.B. aspect
	12.3 Examples

	CHAPTER-13 LOGIC-CONTROLLER
	13.1 Understanding of basic circuit and P.C.B. aspects
	13.2 Usage of logic controller card
	13.3 Programming aspects of logic controller
	13.4 Examples

	CHAPTER – 14 INTERFACING TIMER 8253
	14.1 Basics of 8253.
	14.2 Interfacing circuits with P.C.B. aspects.
	14.3 Programming aspect of 8253
	14.4 Examples

	CHAPTER-15 INTERFACING USART 8251
	15.1 Basics of 8251
	15.2 Interfacing circuits with P.C.B. aspects
	15.3 Programming aspect of 8251.
	15.4 Examples

	CHAPTER – 16 INTERFACING PIC 8259
	16.1. Basics of 8259
	16.2. Interfacing circuit with P.C.B. aspect
	Examples.

	References

