Saurashtra University

Re - Accredited Grade 'B’ by NAAC
(CGPA 2.93)

Kumar, Binod, 2009, "Study and analysis of knowledgebase of molecular systems and to develop model for prediction of molecular structure", thesis PhD , Saurashtra University

http://etheses.saurashtrauniversity.edu/id/eprint/333

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Saurashtra University Theses Service
http://etheses.saurashtrauniversity.edu
repository@sauuni.ernet.in

STUDY AND ANALYSIS OF KNOWLEDGEBASE OF MOLECULAR SYSTEMS AND TO DEVELOP MODEL FOR PREDICTION OF MOLECULAR STRUCTURE

A Thesis Submitted to
SAURASHTRA UNIVERSITY
For the award of the degree of

DOCTOR OF PHILOSOPHY

IN
COMPUTER SCIENCE
IN THE FACULTY OF SCIENCE

Submitted by
BINOD KUMAR
Assistant Professor in Computer Science - MCA
Institute of Science \& Tech. For Advanced Studies \& Research (ISTAR)
Vallabh Vidyanagar, Anand

Under the Guidance of
Dr. N. N. JANI
Ex. Prof. \& Head, Computer Science Department,
Saurashtra University
DIRECTOR - MCA PROGRAMME, SKPIMCS
DEAN - FACULTY OF COMPUTER \& IT
KADI SARVA VISHWAVIDYALAYA, GANDHINAGAR
AUGUST - 2009

Guide’s Certificate

I hereby certify that Mr. Binod Kumar has completed his thesis for the doctorate degree entitled "Study and Analysis of Knowledgebase of Molecular Systems and to Develop Model for Prediction of Molecular Structure". I further certify that the research work done by him is of his own and original and carried out under my guidance and supervision. For the thesis that he is submitting, he has not been conferred any degree, diploma or distinction by either Saurashtra University or any other University according to best of my knowledge.

Place:
Date:

Dr. N. N. Jani
Ex. Prof. \& Head
Dept. of Computer Science, Saurashtra Univ.
Current Status:
Director- MCA Programme, SKPIMCS
Dean- Faculty of Computer \& IT
Kadi Sarva Vishwavidyalaya, Gandhinagar

Researcher Certificate

I certify that the development model for Molecular Structure Prediction and strategies derived by analysis and described in the thesis has been based on the literature survey , bibliographical references, and research paper from International journals and National journals and various conferences proceedings and through study literature available on various websites in respect of related areas.

Apart from these, all analysis, hypothesis, inferences and interpretations of data and strategy have been my own and original creation. The model has been developed is my own and original creation. Moreover, I declare that for the work done in the thesis, either the Saurashtra University or any other University has not conferred any degree, diploma or distinction on me before.

Place:
Date:

Binod Kumar

Acknowledgement

Research is to see what everybody else has seen, and to think what nobody else has thought. This work is also no exception. It is my pleasure to convey my gratitude to all those who have directly or indirectly contributed to make this work successful.

First and foremost, this dissertation represents a great deal of time and effort not only on my part, but on the part of my supervisor, Dr. N. N. Jani, Ex. Prof. \& Head, Computer Science Dept., Saurashtra University, Rajkot. I expressed my profound gratitude to Dr. Jani sir for his endless encouragement throughout my research work. He has helped me shape my research from day one, pushed me to get through the inevitable research setbacks, and encouraged me to achieve to the best of my ability. A person with great concern for his students, he will remain an exemplar in my future.

I take opportunity to express my deep sense of gratitude to Dr. V. S. Patel, Director, SICARD, Sardar Patel Centre for Science and Tech., Vallabh Vidyanagar, Anand, Gujarat for providing me visit at research centre. I got a chance to interact with sophisticated instruments like X-Ray Diffractometer (XRD) and Inductively Coupled Plasma Spectrometer (ICP).

I express my respectful gratitude to Dr. M. M. Patel, Ex. Director, ISTAR, Vallabh Vidyanagar, Anand , Dr. D. J. Desai, Principal, V.P. \& R.P.T.P Science College, Vallabh Vidyanagar and Dr. O. S. Srivastava, HOD, MCA Dept., ISTAR for providing me all kinds of facility and moral support for completing my research work on time.

Last but not least, I am thankful to my family members for their moral support and constant motivation for encouraging me in completing my work successfully.

Binod Kumar

TABLE OF CONTENTS

Page No.
CERTIFICATE OF GUIDE i
CERTIFICATE OF RESEARCHER ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xv
CHAPTER
I Introduction 1
1.1 Introduction 1
1.2 The Research Area, Problem Domain and Literature Survey 4
1.3 Relevance of research 6
1.4 Details of Remaining Chapters 8
1.5 References 10
II Computational Techniques, Tools and Technologies to support Bioinformatics 11
2.1 Introduction 11
2.2 ACD/ChemSketch 11
2.2.1 Introduction 11
2.2.2 ACD/ChemSketch includes 12
2.2.3 Structure Representation 13
2.2.4 IUPAC International Chemical Identifier 14
Page No.
2.3 NMRPrediction 16
2.3.1 Introduction 16
2.3.2 Taking example of Glutamyl 16
2.4 ArgusLab 18
2.4.1 Introduction 18
2.4.2 Building of Benzene 18
2.5 DAMBE 25
2.5.1 Main Feature 25
2.5.2 Sequence Analysis 26
2.5.3 Codon Frequency 27
2.5.4 Nonsynonymous codon substitution 28
2.6 Jemboss 30
2.6.1 Introduction 30
2.6.2 Local and Remote File Manager 30
2.6.3 Jemboss Alignment Editor 30
2.6.4 Sequence List 31
2.6.5 Jemboss Alignment Editor 31
2.7 Chemical Markup Language (CML) 32
2.7.1 Introduction 32
2.7.2 Reading XML Documents 32
2.7.3 Examples of the molecules with CML 33
2.8 SMILES 40
2.8.1 Introduction 40
2.8.2 Canonicalization 40
2.8.3 SMILES Specification Rules 41
2.8.3.1 Atoms 41
2.8.3.2 Bonds 42
2.8.3.3 Branches 42
2.8.3.4 Cyclic Structures 43
2.8.3.5 Disconnected Structures 44
2.10 References 45
III Alignment of Pairs and Multiple Sequences and Phylogenetic Analysis 46
3.1 Introduction 46
3.2 Sequence Description 46
3.3 Pair wise Sequence Alignment 47
3.3.1 Local versus Global Alignment 50
3.3.2 Methods of Sequence Alignment 50
3.4 Multiple Sequence Alignment 62
3.4.1 Methods of Multiple Sequence Alignment 63
3.4.2 Application of Multiple Alignments 66
3.5 Phylogenetic Analysis 67
3.5.1 Methods of Phylogenetic Analysis 69
3.5.2 Computational Considerations 72
3.6 References 74
IV Similarities Search and Sequence Alignment 75
4.1 FASTA Algorithm 75
4.1.2 FASTA Implementation 77
4.2 BLAST Algorithm 82
4.2.1 BLAST Output 87
4.2.2 BLAST Services 90
4.2.3 FILTERING and GAPPED BLAST 91
4.2.4 FASTA and BLAST Algorithms Comparison 92
4.3 References 93
V Protein Structure and Cheminformatics 94
5.1 Introduction 94
5.2 Different Levels of Protein Structure 95
5.3 Prediction Methods 98
Page No.
5.4 Secondary Structure Prediction 105
5.5 The Protein Folding Problem 105
5.6 Cheminformatics 106
5.6.1 Introduction 106
5.6.2 Challenges of Drug Design 108
5.6.3 The Drug Discovery Pipeline 110
5.6.4 Computer-Aided Drug Design (CADD) 112
5.6.5 Difficulties Implementing Denovo Design 113
5.6.6 Benefits of CADD 113
5.7 References 115
VI Conformational Study of Molecules using Tools 117
6.1 Introduction 117
6.2 Experimental Work 118
6.2.1 Activity No.-1 118
6.2.2 Activity No.-2 131
6.2.3 Activity No.-3 175
6.2.3.1 Sequence Analysis Using Jemboss 175
6.2.3.2 Nucleotide Sequence Using DAMBE 180
6.2.3.3 Protein sequence Using Jemboss 185
6.3 Data Analysis and Experimental Outcome 199
6.4 Conclusions and Future Scope of Research 209

LIST OF FIGURES

Serial Figure PageDescription

No.

No.

2.1 Stairlike curves
2.2 Coordination Bond Representation14
2.3 2,5-Diamino-5-Oxopentanoic acid 14
2.4 InChIKey Option 15
2.5 Generate InChIKey Button 15
2.6 Example of Glutamyl 16
$2.7 \quad{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of Glutamyl 16
2.8 Building of Benzene 18
2.9 Bonds in Benzene Structure 19
2.10 Building of Benzene Visualization 19
2.11 Visualization of MOs of Benzene 19
2.12 Calculating the ZINDO Electronic Spectra of a Molecule 20
2.13 The surface in a mesh rendering to make it easier to see the 21 underlying molecular structure
2.14 Generate the Grid Data22
2.15 The lone pairs on the oxygen 22
2.16 Visualizing the frontier MOs 23
2.17 Visualizing the frontier MOs(Diagram) 23
2.18 Electron Density Difference of benzene 24
2.19 Mapping the ESP difference onto the electron density 24
3.1 Local (top) versus Global (bottom) Alignment 50
3.2 Dynamic Programming Problems 52
3.3 Solution Matrix for MaxValue for A_{i} and B_{j}. 54
3.4 Pair-wise alignment of multiple sequences 62
3.5 Step-wise alignment of sequences 63
3.6 Example of a rooted tree 68
4.1 FASTA page at EBI 77
Serial Figure No.
No.
Description
Page4.2 Histogram from FASTA output
4.2 Histogram from FASTA output 78
4.3 Best Scoring Sequences 79
4.4 Visual FASTA Result 80
4.5 Local Alignment Score 81
4.6 The method to establish the k-letter query word list 83
4.7 The process to extension the exact match. 85
4.8 The positions of the exact matches. 85
4.9 Output from BLAST Query 88
4.10 Query sequence section of Nucleotide Blast Form 89
4.11 Graphic Summary of Nucleotide Blast Form 89
5.1 Peptide bond linking two amino acids 94
5.2 Torsion (or dihedral) angles of the backbone 95
5.3 An alpha helix of protein 96
5.4 An antiparallel beta sheet of protein 96
5.5 Secondary structure of Protein 97
5.6 Quaternary structure of Protein 97
5.7 General Ab Initio Protein Structure Process 99
5.8 RMSD Calculation 100
5.9 Comparative Modeling Process 102
5.10 Rigid Body Assembly of Protein Structure 103
5.11 Short Segment Assembly of Protein Structure 104
5.12 Enzyme substrate complementary interactions 107
5.13 Pharmacophore and Receptor Binding 108
5.14 Designing ligands to offset enzyme mechanism 109
5.15 Combinatorial chemistry schematic 111
5.16 Structured Based Drug Design 112
6.1 Alanine on ACD/ChemSketch 118
$6.2 \quad{ }^{13} \mathrm{C}$ NMR of Alanine 118
6.3 Estimation of ${ }^{1} \mathrm{H}$ NMR of Alanine 118
Serial Figure Page
No. No.
DescriptionNo.
56 6.4 2-Aminobutanoic acid on ACD/ChemSketch 119
57
$6.5 \quad{ }^{13} \mathrm{C}$ NMR of Aminobutanoic acid 119
58
6.6 Estimation of ${ }^{1} \mathrm{H}$ NMR of Aminobutanoic acid 119
59 6.7 Asparagine on ACD/ChemSketch 120
60 $6.8 \quad{ }^{13} \mathrm{C}$ NMR of Asparagine 120
61 6.9 Estimation of ${ }^{1} \mathrm{H}$ NMR of Asparagine 120
62 6.10 Glutamine on ACD/ChemSketch 121
63
$6.11 \quad{ }^{13} \mathrm{C}$ NMR of Glutamine 121
6.12 Estimation of ${ }^{1} \mathrm{H}$ NMR of Glutamine 121
65 6.13 Search query using Pubchem/NCBI of Analine 123
66
6.14 Bioactivity Analysis by Structure \& Activity Similarity of 124 Analine
6.15 Bioactivity Analysis by Structure \& Activity Similarity of 124Analine from Normalized score Percentile
6.16 Bioactivity Analysis by Activity \& protein target Similarity 125of Analine from Normalized score Percentile
6.17 Bioactivity Analysis by concise Data Table of Analine 125
6.18 Bioactivity Analysis by addition of similar compounds of 126Analine
6.19 Revised compound selection after addition of similar 126compounds of Analine
6.20 Search query using Pubchem/NCBI of Amino butyric Acid 127
6.21 Bioactivity Analysis by addition of similar compounds of 127
Amino butyric Acid
6.22 Revised compound selection after addition of similar 128compounds of Amino butyric Acid6.23 Search query using Pubchem/NCBI of Asparagine128
6.24 Bioactivity Analysis by addition of similar compounds 128
Serial Figure
No.777879

Description

Page
No.
6.25 Revised compound selection after addition of similar 129 compounds of Asparagine
6.26 Search query using Pubchem/NCBI of Glutamine 129
6.27 Bioactivity Analysis by addition of similar compounds of 130 Glutamine
6.28 Revised compound selection after addition of similar 130 compounds of Glutamine
6.29 3D-Molecular structure of Analine on ArgusLab 131
6.30 Graph :Energy vs. Difference S.E.C of Alanine 133
6.31 Graph: Energy vs. Difference of geometric optimization of 137 Analine
6.32 Graph: Geometric for different components of Analine
6.33 Graph: Quick Plot HOMO of Analine 139
6.34 Graph: Energy vs. Difference in HOMO of Analine 143
6.35 Quick Plot LUMO of Alanine 144
6.36 Graph: Energy vs. Difference by LUMO of Analine 147
6.37 Quick Plot ESP Mapped Density of Analine 148
6.38 Graph: Energy vs. Difference /cycle by ESP Mapped Density 152 of Analine
6.39 Structure of Amino butyric acid 153
6.40 Graph: Energy vs. Difference /cycle by SEC of Amino 154 butyric acid
6.41 Geometry Optimization of Amino butyric acid
6.42 Graph: Geometry Optimization Energy for various 156 components of Amino butyric acid
6.43 Quick Plot HOMO of Amino butyric acid157
6.44 Graph: Energy vs. Difference /cycle Quick Plot HOMO 158
calculation of Amino butyric acid
6.45 Quick Plot LUMO of Amino butyric acid
Serial Figure
No. No.DescriptionPage
98 6.46
Graph: Energy vs. Difference/ cycle by Quick Plot LUMO of 160Amino butyric acid996.47 Quick Plot ESP Mapped Density of Amino butyric acid161
100
6.48 Graph: Energy vs. Difference / cycle by Quick Plot ESP 162Mapped Density of Amino butyric acid1016.49 Structure of Asparagine163
102
6.50 Graph: Energy vs. Difference of Single Entry Point 164Calculation of Asparagine1036.51 Geometry Optimization of Asparagine164
104
6.52 Geometry Optimization Energy for various components of 165Asparagine1056.53 QuickPlot HOMO of Asparagine166
106
6.54 Graph: Energy vs. Difference /cycle for QuickPlot HOMO 167 of Asparagine1076.55 QuickPlot LUMO of Asparagine167
108
6.56 Graph: Energy vs. Difference /cycle for QuickPlot LUMO of 168Asparagine1091101116.59 Structure of Glutamine170
112 6.60 Geometry Optimization of Glutamine 171
113 6.61 QuickPlot LUMO calculation of Glutamine 172
114 6.62 QuickPlot LUMO calculation of Glutamine 173
115 6.63 Quick Plot ESP Mapped Density of Glutamine 174
116 6.64 Creation of Nucleotide Sequence from Multiple Alignment 175using Jemboss6.65 Creation of Nucleotide Sequence from Multiple Alignment175
118 6.66 Draw a threshold Dot Plot of two Sequences 176
Serial Figure
No. No.
Description
119 6.67 Display restriction Enzyme binding site in nucleotide 176No.sequence$120 \quad 6.68$ Calculation of Codon adaptation Index177
121 6.69 Calculation of isochores in DNA Sequence 177
122 6.70 Back -translate to Protein Sequence to ambiguous nucleotide 179sequence1236.71 Creation of distance matrix from multiple sequencealignment
124 6.72 Graph of Relative CpG, TpG and CpA abundance and GC\% 182
125 6.73 Graph Stacking Energy vs Sequence Numbering 183
126 6.74 Quick Multiple Alignment of Nucleotide Sequence 183
127
6.75 Creation of Phylogenetics Tree 184
128 6.76 Phylogenetics with DAMBE 184
129 6.77 Prediction of Protein Secondary structure using GOR Method 185
130 6.78 Plot of Hydrophobic Moment for Protein Sequences 186
131 6.79 Drawing a helical Net for Protein Sequence 186
132
6.80 Back -translate Protein sequence to Nucleotide Sequence 187
133
6.81 Generation of residue / base frequency plot 188
134
6.82 Isoelectric Point Plot Charge vs PH 189
135 6.83 Plot of Histogram of general properties 190
136
6.84 Plot graph of hydropathy 191
137
6.85 WaterMan- Eggert Local Alignment of two Protein 193138Sequences6.86 Needleman-Wunsch Global Alignment of two sequences195
139
6.87 SWISS-MODEL Repository Model 198140
6.88 Basic Components of Knowledge Based Model for Molecular 201
Structure Prediction
6.89 Basic view of Knowledge Based Model for Molecular 202Structure Prediction
6.90 Nodes of Analine in ${ }^{1} \mathrm{H}$ NMR in the model202
6.91 Chemical shift of different nodes of Analine in model 203

| $\begin{array}{c}\text { Serial } \\ \text { No. }\end{array}$ | $\begin{array}{c}\text { Figure } \\ \text { No. }\end{array}$ | $\begin{array}{c}\text { Description } \\ 144\end{array}$ | 6.92 |
| :---: | :---: | :--- | :--- | \(\left.\begin{array}{c}Page

No.\end{array}\right\}\)

LIST OF TABLES

Serial Table Description Page
No. No. No.
1 2.1 Shift Prediction Protocol 17
2 2.2 SMILE examples 40
3
2.3 Canonicalization of SMILE 41
4 2.4 SMILE atoms 41
5 2.5 SMILE bonds 42
6
2.6 SMILE branches 43
7
3.1 Set of 5 sequences 64
8 3.2 Scores for the Pair-wise Comparisons 64
9
3.3 Steps in Aligning 5 Sequences Given 65
10
3.4 Terms Used in Phylogenetic Analysis 69
11 4.1 BLAST Program Options 91
12
4.2 Comparison of BLAST and FASTA 92131415
5.1 Major Tasks and concerns in Drug development 109
6.1 Shift Prediction Protocol of Alanine using NMRPrediction 119
6.2 Shift Prediction Protocol of 2-aminobutanoic acid using 120 NMRPrediction
6.3 Shift Prediction Protocol of Asparagine using 121 NMRPrediction6.4 Shift Prediction Protocol of Glutamine using NMRPrediction122
6.5 SMILE Code of various structures 122
6.6 9- assays by addition of similar compound of Analine 126
6.7 7- assays by addition of similar compound Amino butyric 127 Acid6.8 18- assays by addition of similar compound Asparagine129
6.9 2- assays by addition of similar compound Glutamine 130
6.10 Single Entry Point Calculation of Alanine Using ArgusLab 131
Serial Table Page
No. No. Description No.246.11 Geometry Optimization of Analine using ArgusLab.
6.12 Geometric for different components of Analine134
6.13 Calculating Molecular Orbitals on grids for plotting HOMO of 139Analine6.14 Calculating Molecular Orbitals on grids for plotting LUMO of144Alanine
6.15 Calculating Molecular Orbitals on grids for plotting ESP Mapped 148 Density of Analine6.16 Single Entry Point Calculation of Amino butyric acid153
6.17 Geometry Optimization calculation of Amino butyric acid 155
6.18 Quick Plot HOMO calculation of Amino butyric acid 157
6.19 Quick Plot LUMO calculation of Amino butyric acid 159
6.20 Quick Plot ESP Mapped Density calculation of Amino butyric 161 acid6.21 Single Entry Point Calculation of Asparagine163
6.22 Geometry Optimization calculation of Asparagine 164
6.23 QuickPlot HOMO of Asparagine 166
6.24 QuickPlot LUMO calculation of Asparagine 167
6.25 Quick Plot ESP Mapped Density calculation of Asparagine 169
6.26 Single Entry Point Calculation of Glutamine 170
6.27 Geometry Optimization calculation of Glutamine 171
6.28 QuickPlot LUMO calculation of Glutamine 172
6.29 QuickPlot LUMO calculation of Glutamine 173
6.30 Quick Plot ESP Mapped Density of Glutamine 174
6.31 Finding of siRNA duplexes in mRNA 178
6.32 Calculation of fractional GC Content of Nucleic Acid 178sequences
6.33 Running FASTA algorithm to align locally two sequences 180
6.34 Nucleotide Frequency Calculation 181
6.35 Relative CpG, TpG and CpA abundance and GC\% 181
Serial Table
Description
Page
No. No. No.
49 6.36 Di-nucleotide Substitution Pattern 182
50 Calculation of Composition of Unique words in Sequences 187
51 6.38 Calculation of isoelectric points of protein 188
52 6.39 Calculation of Statistics of protein properties 189
53 6.40 Energy Comparative Table 207
Chapter -1
INTRODUCTION

1.1 Introduction

This research work aims to analyze experimental data about biochemical properties and their corresponding kinetics. In this research the attempt has been made to analyze protein and DNA structure using tools such as DAMBE and Jemboss. Some Molecular Visualization or Analysis tools are already developed that reads, analyses, and crosscorrelates experimental information which is useful for chemist, Organist Chemist, Biochemist and Druggist.

Under this research the analysis of different chemical and biochemical substances including drugs using tools like ACD/ChemSketch and NMR Prediction have been performed. The information obtained by the way of analysis that facilitates for in depth understanding of structures and that makes possible for a quantification of new chemical structure.

In this research using ACD/ChemSketch compounds are stored in databases and SMILE code (Simplified Molecular Input Line Specification) is generated. A SMILE defines the molecules in the form of alphanumeric chains. In this research work chemical shift of every carbon atom of the molecule have been displayed by using NMR Prediction.

Under this research CML codes of molecules have been developed and that codes have been used for molecular information like symmetry, and atom and bond attributes. Here multiple observations of the same molecule like conformational analysis and NMR prediction have been performed.

Using Pubchem/NCBI additional miscellaneous information such as bioactivity analysis by structure \& activity similarity and revised compound selection after addition of similar compounds have been analyzed.

Under the research work geometric optimization of molecules, chemical structure visualization and calculation of electronic absorption spectra of chemical structure have been performed using ArgusLab tool. In this research Single Entry Point Calculation, Molecular Orbital calculation on grids for plotting HOMO and LUMO and ESP Mapped Density calculations have been also performed.

Under the research work of different types of analysis like prediction of protein secondary structure, isoelectric point calculation etc. have been performed on nucleotide and protein sequence using DAMBE and Jemboss tools.

The aim of this research work is to develop a model for the prediction of molecular structure. In research work bioinformatics and cheminformatics approaches on molecule has been covered. In this research an integrated bioinformatics and cheminformatics approach has been discussed that enables retrieval and visualization of biological relationships across heterogeneous data sources. So, now it is getting importance to integrate biological information on large molecules and their interaction networks with programs chemical information on small drug molecules.

Bioinformatists and Chemoinformatists have working independently in their respective fields. But now development of small molecule drugs and small drug molecules with known properties has been utilized to study the functions of large networks of biological molecules in the fields of chemical biology.

The objective of this research work is to assist the organic and biochemist in each step of the synthesis planning process for prediction of molecular structure. This research work provides a series of methods and tools for chemical or biochemical applications. Built-in catalogs of fine chemicals or biochemical provide suitable starting materials for a
synthesis or molecular structure prediction target. Using similarity searches or substructure searches the connection between the target compound and available starting materials has been achieved.

This research work aims to search strategic bonds in target molecule for synthesis procedures. Structural criteria of each bond within the query molecule are also taken into account. In this research data mining tools has been used to predict physical properties of structures. In research work analysis on knowledgebase molecular system has been performed and a model has been developed that uses information to make decisions and suggest new strategies for chemistry and biochemistry problems.

The knowledgebase molecular system has three components:
A. Knowledgebase as Chemical Memory: An attempt has been made to concentrate on knowledge based data with an increasing number of chemical systems. Taking advantage of data sharing, each calculation increases the level of 'experience' of expert system extending the knowledge base upon which new hypothesis and chemical concept has been derived.
B. Data Mining: A component for increasing the chemical knowledge is extracting chemically meaningful data out of large scale chemical simulations with minimum human effort. The challenges lies in distinguishing data that is irrelevant for specific question under specific investigation for those that are important. To carry out this task an attempt has been made to concentrate on a knowledgebase system that process the molecular orbital and trace changes and similarities between molecules. Under this research visualization techniques have been used to enlarge scope of analysis.
C. Towards Artificial Chemical Intelligence: The final part of this research to formulate hypothesis based on data provided by molecules. Under this research work an attempt has been made for prediction of molecular structure. Finally, a research work
result has been collected and then analyzed using analysis tools and then evaluated the result.

1.2 The Research Area, Problem Domain and Literature Survey

Bioinformatics and management of scientific data are critical to support life science discovery. As computational models of proteins, cells and organisms become increasingly realistic much biology research has migrated from the wetlab to the computer. Successfully accomplishing the translation of biology in silico, however, requires access to a huge amount of information from across the research community. Much of information is currently available from publicly accessible data sources and more is being added daily. Unfortunately, scientists are not currently able to identify easily and exploit this information because of the variety of semantics, interfaces and data formats used by the underlying data sources. Providing biochemist, medical researcher and computer scientist with integrated access to all information they need a consistent format requires overcoming a large number of technical, social and political challenges.

In the last decade, biologist have experienced a fundamental revolution from traditional research and development (R\&D) consisting in discovering and understanding genes , metabolic pathways and cellular mechanisms to large scale computer-based R\&D that simulates the disease, the physiology, the molecular mechanism and pharmacology. This represents a shift away from life science's empirical roots in which it was an interactive process. Today it is systematic thematic and predictive with genomics, informatics and automation all playing a role. This fusion of biology and information science is expected to continue and expand for predictable futures. The first consequence of this revolution is the explosion of available data that bimolecular researchers have to exploit. For example, an average pharmaceutical company currently uses information from at least 40 databases [1] , each containing large amounts of data (e.g. as of June 2002, GenBank [2,3] provides access to $20,649,000,000$ bases in $17,471,000$ sequences) that can be analyzed using a variety of complex tools such as FASTA, BLAST etc.

Over past several years, bioinformatics has become both an all encompassing term for every thing relating to computer science and biology and an every trendy one. There are variety of reasons for this including : (1) As computational biology evolves and expands , the need for solutions to the data integration problems it faces increases; (2) the media are beginning to understand the implications of genomics revolution that has been going on the last 15 or more years; (3) the recent headlines and debates surrounding the cloning of animals and humans ; and (4) to appear cutting edge , many companies have relabeled the work the work as they are doing as bioinformatics instead of geneticists, biologists or computer science.

The analysis of data sets is one of the most important tasks in investigation of properties of chemical or biochemical compounds. Especially in Drug Design, methods are used to characterize complete sets of chemical or biochemical compounds instead of describing individual molecule. Data Mining, i.e. the exploration of large amounts of data in search for consistent patterns, correlation or other systematic relationships, can be helpful tool to evaluate "hidden" information in a set of molecules. Finding the adequate information for representation of new chemical structures is one of the most important problems in chemical data mining.

With the progressive specialization in services and extensive use of computational methods the steady increase of data is barely manageable even by a team of scientist. Thereby the interest in specific information is pushed into backward while global information of complete sets of data is becoming more and more important. Thus, the recognition of superior information for complete data sets becomes one of the most important tasks for information management in science.

In Chemistry or Biochemistry the investigation of molecular structures and of their properties is one of the most important areas. In chemistry an own language and namespace for molecular exists, that is still in development stage. With increase of computational information processing several conventions and formats for chemical information have been developed.

But, in one of the most important communication media of modern times, the internet, the chemical language has been used only in a few applications. While a couple of databases were accessible via WWW, no service exists, that allows a data mining of chemical datasets by the use of this specific language.

The task of Data Mining in chemical or biochemical context is to evaluate "hidden" information in set of chemical data. One of the differences of Data Mining compared to conventional database queries is the production of new information that is used to characterize chemical data in a more general way. Generally, it is not be possible to hold all of the potentially required information in a data set of chemical structures. Thus, the extraction of relevant information and production of reliable secondary information are important.

The similarity of two compounds concerning their biological activity is one of central tasks in the development of pharmaceutical products. A typical application is retrieval of structures with defined biological activity from a database. Biological activity is of special interest the development of drugs. The diversity of structures in a data set of drugs has been the interest for the synthesis of new compounds. With increasing variety of data set, the chance to find a new way of synthesis for a compound with similar biological property is increasing.

Therefore, finding the adequate information for representation of chemical structures is one of the basic problems in chemical data mining. Several methods have been developed in the last decades for the description of molecules including their chemical or biochemical properties.

1.3 Relevance of the Research

Data Mining Service Chemistry (DMSC) [4] is a project for the development and exploration of chemical data sets. With this service it is possible to analyze chemical or
biochemical data sets for molecular patterns and systematic relationships using the methods like Statistical analyses and neural networks of individual molecules.

System for Drug Discovery (QIS D2) [5] is a unique adaptive learning system designed to predict potential large-scale drug characteristics such as toxicity and efficacy. BioSpice is a set of software tools designed to represent and simulate cellular processes.

A new computer program is developed that describes, GRINSP (geometrically restrained inorganic structure prediction) [6], which allows the exploration of the possibilities of occurrence of 3-, 4-, 5- and 6-connected three-dimensional networks.

A global optimization method [7] is presented for predicting the minimum energy structure of small protein-like molecules. This method begins by collecting a large number of molecular conformations, each obtained by finding a local minimum of a potential energy function from a random starting point. The information from these conformers is then used to form a convex quadratic global underestimating function for the potential energy of all known conformers.

GenomeThreader [8] implements several data types in a reusable manner. Compared to its predecessor GeneSeqer, it is considerably faster, easier to maintain, and extensible. It is widely used for gene structure prediction.

The general approach [9] for the prediction of possible crystal structures consists of the global exploration of the energy landscape of the chemical system, with typical methods being simulated annealing or genetic algorithms. In the case of simulated annealing, combinations of model potentials and Ab initio calculations for the energy evaluation are state of the art.

The characteristics [10] of a free web-based spectral database for the chemical research community, containing ${ }^{13} \mathrm{C}$ NMR spectra data from more than 4000 natural compounds, and with a continuous increasing. This database allows flexible searching via chemical
structure, substructure, name, and family of compounds, as well as spectral features as chemical shift, allowing the structural elucidation of known and unknown compounds by comparison of ${ }^{13} \mathrm{C}$ NMR data.

In this research work planning has been made to provide a centralized access to a wide variety of data mining methods, like statistical processing and prediction of molecular structure. With this service it is possible to submit data sets or to compile a data set by extracting structures from chemical databases via Internet. For submitting or compiled data sets descriptors have been calculated with an extensive set of options. On the basis of these descriptors, several methods of data analysis have been performed on the data set.

1.4 Details of Remaining Chapters

This thesis is meant to be a major step in my personal interest in prediction of molecular structure.

Second chapter of this thesis provides an overview of tools like ACD/ChemSketch, NMR Prediction, Argus Lab, DAMBE and Jemboss. ACD/Labs is used for developed molecular structures, reactions, and schematic diagrams and calculated chemical properties of different substances (chemical and biochemical). NMR Prediction tool is used to perform estimation of ${ }^{\mathbf{1}} \mathbf{H}$-NMR and ${ }^{13} \mathbf{C}$-NMR of different substances. ArgusLab tool is used to build chemical structure and optimized its geometry. DAMBE tool is used to manipulate and analyze molecular sequence data. Jemboss can perform activities on sequences like predicting protein secondary structure etc. CML is designed to represent molecular information. SMILES (Simplified Molecular Input Line Entry System) is a line notation for entering and representing molecules.

Third chapter of this thesis provides an overview of pair wise sequence alignment and multiple sequence alignment. In this chapter alignment score and gap penalty between sequences has been calculated. Multiple sequence alignment is useful in finding patterns
in nucleotide sequences and for identifying structural and functional domains in protein families. The method of converting MSA to a phylogenetic tree has been used to reduce the problem of a multiple alignment to an iterative process of pair-wise alignments.

Forth chapter of this thesis provides an overview of sequence alignment tools like BLAST and FASTA. Here their working methods and the syntax used by these tools has been discussed. FASTA uses algorithm to search for similarities between one sequence and any group of sequences of same type (nucleic acid or protein) as the query sequence. BLAST uses a heuristic algorithm that seeks local as opposed to global alignments and is therefore able to detect relationships among sequences that share only isolated regions of similarity.

Fifth chapter of this thesis provides an overview of protein structure and Cheminformatics. The subunits of a protein are amino acids. The primary structure is the sequence of residues in the polypeptide chain. Secondary structure is a local regularly occurring structure in proteins and is mainly formed through hydrogen bonds between backbone atoms. Tertiary structure describes the packing of alpha-helices, beta-sheets and random coils with respect to each other on the level of one whole polypeptide chain. Ab Initio method and Heuristic methods have been used for protein structure prediction.

Sixth chapter of this thesis shows the strong interaction between representation and the methods used for data analysis: molecular representation need to capture relevant information and be compatible with the statistical methods used to analyze the data. The chapters review molecular representations and put focus on model validation using statistics, visualization methods, and standardization approaches.

1.5 References

[1] M. Peitsch. "From Genome to Protein Space." Presentation at the Fifth Annual Symposium in Bioinformatics, Singapore, October, 2000.
[2] D. Benson, I. Karsch -Mizarachi, D.Lipman . "Genbank." Nucleic Acids research 31, no 1 (2003): 23-27 , http://www.ncbi.nlm.nih.gov/Genbank.
[3] "Growth of GenBank." (2003): http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
[4] CRC NCRC Institute for Information technology Artificial Intelligence subject index: ftp.sas.com/pub/neural/FAQ\&.html\#A_app_chemistry
[5] Ying Zhao, Charles Zhou, Ian Oglesby, Cliff Zhou Quantum Intelligence, Inc. 3375 Scott Blvd Suite 100 ,Santa Clara CA 95054.
[6] Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France.
[7] K.A. Dill, A.T. Phillips, and J.B. Rosen, Molecular Structure Prediction by Global Optimization,
[8] Gordon Gremme , Volker Brendel , Michael E. Sparks, Stefan Kurtz, Engineering a software tool for gene structure prediction in higher organisms, Information and Software Technology 47 (2005) 965-978
[9] K Doll, J C Sch"on and M Jansen , Structure prediction based on ab initio simulated Annealing , Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany.
[10]Kochev, N., Monev, V., Bangov, I.: Searching Chemical Structures. In: Chemoinformatics: A textbook. Wiley-VCH (2003) 291-318

Chapter -2
Computational teChniques,
Tools a nd Technologies To support Bioinformatics

Chapter 2
 COMPUTATIONAL TECHNIQUES, TOOLS AND TECHNOLOGIES TO SUPPORT BIOINFORMATICS

2.1 Introduction

Under this research work tools like ACD/ChemSketch, NMR Prediction, Argus Lab, DAMBE and Jemboss have been discussed.

ACD/Labs [1] has been used for developed molecular structures, reactions, and schematic diagrams and calculated chemical properties of different substances (chemical and biochemical). NMR Prediction [2] tool has been used to perform estimation of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$-NMR of different substances. The proton shift estimation program has been invoked by this tool and the result has been displayed written to the drawing. Sometimes the drawing is changed to allow the display of certain shifts. ArgusLab [3] tool has been used to build chemical structure and its geometry has been optimized. It is being used for visualization of frontier p molecular orbitals of chemical structure.

DAMBE [4] tool has been used to manipulate and analyze molecular sequence data. DAMBE is used for calculation of genetic distances or phylogenetic reconstruction. Jemboss [5] has been used for interactively editing sequence alignment. Different activities on sequences have been performed by this tool like Editing Functions, Locking Sequences, Trim Sequences, Colour Schemes, Scoring Matrix, Consensus Sequence, Identity Table and Consensus Plot etc.

2.2 ACD/ChemSketch

2.2.1 Introduction

ACD/ChemSketch is the powerful all-purpose chemical drawing and graphics package from ACD/Labs developed to help chemists quickly and easily draw molecular
structures, reactions, and schematic diagrams, calculate chemical properties, and design professional reports and presentations. ACD/Labs has been fully dedicated to building integrated solutions that enable data transfer and connection with in chemical organizations.

ChemBasic is a simple, convenient, and functionally rich programming language for presentation and manipulation of molecular structure related objects and all the contents of ACD /Labs current and future programs. ChemBasic is founded on, and fully integrated with, ACD/Labs existing functionality. At the same time, ChemBasic has all of the things a programming language should have: numeric and string variables, arrays, flow control and conditional operators, input output procedures, etc.

ChemBasic inherits from generic BASIC and some of its extensions. Most evident is a product of Microsoft's Visual Basic for Applications (VBA). ChemBasic is designed as object oriented language. This means that all the chemistry related things are described as objects-that is, specific data structures which correspond to molecules, conformations, etc. I can design multi item input forms using ChemBasic programs using ACD/Forms Manager.

2.2.2 ACD/ChemSketch includes

- Structure mode for drawing chemical structures and calculating their properties.
- Draw mode or text and graphics processing.
- Additional modules that extend the ChemSketch possibilities (most of them should be purchased separately).

Structure mode. General information

In the Structure mode, following actions can be performed:

- Chemical structures can be drawn using the buttons located on the Structure toolbar, Atoms toolbar and References toolbar.
- For the selected structure the molar refractivity, molar volume, parachor, index of refraction, surface tension, density, and some other physicochemical properties can be calculated.
- Chemical structures can be finding according to their systematic or nonsystematic names, therapeutic category or inhibited enzyme by using the integrated ACD/Dictionary .
- Most favorable tautomeric forms of the drawn structure can be checked and can be automatically corrected the structure by using the integrated Tautomeric Forms function on the Structure toolbar.
- An optimized 3D model of a 2D structure can be get.

In Draw mode, the following actions can be performed:

- Graphical objects such as lines, arrows, rectangles, ellipses, arcs, polylines, and polygons can be drawn by using the Drawing toolbar buttons.
- Objects can be manipulated.
- Location of objects on the page with a ruler and gridlines can be controlled.

2.2.3 Structure Representation

Antialiasing has been supported by ACD/ChemSketch that displays chemical structures drawn with smooth lines. Antialiasing is a computer rendering technique that blurs the hard edges and adds shaded pixels to create the appearance of smoothness. This addresses the common issue with printers and computer monitors, when, due to the relatively low resolution, the tilted lines appear "stairlike" instead of smooth straight lines or curves. For example, compare the two pictures below:

Without antialiasing:

With antialiasing:

Figure 2.1: Stairlike curves

Treat some bonds to metal atoms as coordination bonds

ACD/Labs support the usage of a special coordination bond to represent a specific bonding between a ligand and a metal center in coordination structures. Such a bond indicates a connection but does not affect the valence of the corresponding atoms. However, often use of the regular single bond to represent a coordination that leads to formal violation of valence rules. Such a violation is marked in ACD/ChemSketch by "crossed atoms".

Figure 2.2 : Coordination Bond Representation

2.2.4 IUPAC International Chemical Identifier (InChI)

The IUPAC International Chemical Identifier (InChI $^{\text {TM }}$) is a non-proprietary identifier enabling unambiguous identification of chemical substances for electronic handling of chemical structural information. InChI codes significantly expand the use of InChI encoding for structure specification and searching over the Internet. For example:

InChl=1/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H2,7,8)(H,9,10)
Figure 2.3:2,5-diamino-5-oxopentanoic acid

InChI generation options include an option for InChIKey generation:

Figure 2.4: InChIKey Option

For quick access of InChI generation, a special button "Generate InChI" has been added to the top toolbar:

Figure 2.5: Generate InChIKey Button

2.3 NMRPrediction

2.3.1 Introduction

This software performs different estimation of a structure. It estimates ${ }^{\mathbf{1}} \mathbf{H} \mathbf{H} \mathbf{N} \mathbf{N R}$. It invokes the proton shift estimation program and displays the results written to the drawing. Sometimes the drawing is changed to allow the display of certain shifts. It estimates ${ }^{13} \mathbf{C}$-NMR. It invokes the carbon-13 shift estimation program and displays the results written to the drawing. Show Protocol command displays detailed information about the most recently invoked shift estimation. Calculate 3D Coordinates command displays the currently drawn structure as a 3D display in its own window. The molecule can be rotated by moving the mouse.

2.3.2 Taking example of Glutamyl

Figure 2.6: Example of Glutamyl

1H-NMR spectra of Glutamyl

Figure 2.7: 1H-NMR spectra of Glutamyl

Table 2.1: Shift Prediction Protocol

Node	Shift	Base + Inc.	Comment (ppm rel. to TMS)
NH2	8.81	2.00	amine
		6.81	general corrections
CH	3.48	1.50	methine
		1.13	1 alpha -N
		0.86	1 alpha -C=0
		-0.01	1 beta -C
CH	9.72	9.60	СНо
		0.12	$1-\mathrm{C}$
CH2	2.11	1.37	methylene
		0.22	1 beta -N
		0.29	1 beta -C=0
		0.23	1 beta - $C(=0) 0$
CH2	2.23	1.37	methylene
		0.90	1 alpha -C(=0)0
		-0.04	1 beta - C
OH	12.34	11.00	carboxylic acid

2.4 ArgusLab

2.4.1 Introduction

Argus Lab performing following capabilities:

- Build chemical structure and optimize its geometry.
- Visualize frontier p molecular orbital's of chemical structure.
- Calculate the electronic absorption spectra of chemical structure.
- Use a surface to visualize the spin-density in a molecule with unpaired spins.
- Make a surface that maps the electrostatic potential to the electron density.
- Using surfaces to see what happens to the electron density when a molecule absorbs light.

2.4.2 Building of Benzene

Benzene structure can be built from scratch and its geometry can be optimized. After addition of atoms from editor Benzene molecule can be generated and bonds can be made automatically. Following structure can be shown.

Figure 2.8: Building of Benzene

All bonds can be shown in that Benzene structure.

Figure 2.9: Bonds in Benzene Structure

Visualize the Building of Benzene

ArgusLab with generated MO grid files.

Figure 2.10: Building of Benzene Visualization
Visualization of MOs of Benzene

Figure 2.11: Visualization of MOs of Benzene

Calculating the electronic UV/Visible absorption spectrum of Benzene

The electronic excited states of benzene can be calculated using the semi-empirical ZINDO method which is parameterized for low-energy excited states of organic and organo-metallic molecules.

Calculating the ZINDO Electronic Spectra of a Molecule

The calculation consists of a ground-state closed shell SCF calculation followed by a configuration interaction calculation, using single-excited configurations, to solve for the excited states. Currently, only singlet excited states can be calculated.

Figure 2.12: Calculating the ZINDO Electronic Spectra of a Molecule

Making an electrostatic potential-mapped electron density surface

ArgusLab can generate Mapped surfaces. These are surfaces where one property is mapped onto a surface created by another property. The most popular example of this is to map the electrostatic potential (ESP) onto a surface of the electron density. In an ESPmapped density surface, the electron density surface gives the shape of the surface while the value of the ESP on that surface gives the colors.

The electrostatic potential is the potential energy felt by a positive "test" charge at a particular point in space. If the ESP is negative, this is a region of stability for the positive test charge. Conversely, if the ESP is positive, this is a region of relative instability for the positive test charge. Thus, an ESP-mapped density surface can be used to show regions of a molecule that might be more favorable to nucleophilic or electrophilic attack, making these types of surfaces useful for qualitative interpretations of chemical reactivity.

Steps for calculating the following surface:

Figure 2.13: The surface in a mesh rendering to make it easier to see the underlying molecular structure

This is an ESP-mapped density surface of formaldehyde. The colors are the value of the ESP at the points on the electron density surface. The color map is given on the left. The large red region around the oxygen-end of the molecule. There is enhanced electron density here. The red color indicates the most negative regions of the electrostatic potential where a positive test charge would have favorable interaction energy. The hydrogen-end of the molecule, with the magenta color, shows regions of relatively unfavorable energy for the ESP.

Making the Surface: Generate the grid data

All surfaces are constructed from grid data that is generated from a calculation. To generate the grid data, a single-point energy calculation of formaldehyde can be run.

Figure 2.14: Generate the Grid Data

Seeing the lone pairs on the oxygen

Some of the surface's settings can be altered to visualize the lone pair electron density on the oxygen.

Figure 2.15: The lone pairs on the oxygen

Using surfaces to see change in the electron density when a molecule absorbs light

Here the first excited state of simple molecule formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ has been examined. The highest occupied molecular orbital (HOMO) of formaldehyde is a non-bonding type MO that is in the plane of the molecule. The lowest unoccupied molecular orbital (LUMO) is a p MO perpendicular to the plane of the molecule. The first excited state of formaldehyde is an $n->p^{*}$ transition that is composed almost exclusively of the HOMO>LUMO transition.

Calculate the electronic absorption spectra or formaldehyde

Figure 2.16 : Visualizing the frontier MOs

Figure 2.17 : Visualizing the frontier MOs(Diagram)

Electron Density Difference

Different surface can be made to show the difference of the excited state minus the ground state electron density.

Figure 2.18: Electron Density Difference of benzene

Mapping the ESP difference onto the electron density

Figure 2.19: Mapping the ESP difference onto the electron density

2.5 DAMBE

DAMBE stands for Data Analysis in Molecular Biology and Evolution. It is an integrated software package for retrieving, organizing, manipulating aligning and analyzing molecular sequence data. Allele frequency data can also be used by DAMBE for calculating genetic distances or phylogenetic reconstruction.

2.5.1 Main Feature

DAMBE's main features can be classified into the following five categories:
1 Database and network functions:
(a) Molecular sequences can be directly read from GenBank or other networked computers;
(b) Specific sequences from GenBank sequences can be extracted by using information contained in the FEATURES table of GenBank sequence files;

2 Sequence conversion and manipulation utilities:
(a) It can be automatically detected and can be converted to 18 most commonly used molecular data formats;
(b) Complementary sequences can be getting.
(c) Protein-coding nucleotide sequences can be translated into amino acid sequences, with 12 different genetic codes implemented;
(d) Sequence can be aligned,
(e) Site-wise unresolved nucleotide, amino acid or codon sites can be deleted.
(f) Particular sites can be extracted, e.g., first, second or third codon positions, for particular analyses;

3 Sequence analysis can be focused on, factors affecting the frequency parameters in substitution models:
(a) Nucleotide and Dinucleotide frequencies
(b) Codon frequencies
(c) Amino acid frequencies
(d) Amino acid properties can be plotted along the sequence; with the following properties implemented:

- Polarity
- Polar requirement
- Chemical composition of the side chain
- Volume
- Hydropathy
- Isoelectric point
- Aromaticity

4 Basic comparative sequence analysis can be performed that focus on factors affecting the rate ratio parameters in substitution models:
(a) Nucleotide substitution pattern
(b) Codon substitution pattern
(c) Amino acid substitution pattern
(d) Substitution saturation

5 Advanced comparative sequence analysis can be performed
(a) Phylogenetic reconstruction based on the distance, maximum parsimony and maximum likelihood methods
(b) Reconstruction of ancestral sequences
(c) Testing the molecular clock hypothesis
(d) Evaluating relative statistical support of alternative phylogenetic hypotheses (e.g., alternative phylogenetic trees)
(e) Fitting probability distributions to substitution data over sites.

2.5.2 Sequence Analysis

This command computes the nucleotide and dinucleotide frequencies.

A part of a sample output (for one sequence) is shown below:

	A	C	G	U	Other	Sum (ACGU)	
FLAHAOHF							
Freq	339	211	209	210	0	969	
Prop.	. 22	35	. 22	. 22	. 22		1
	A	C	G	U	Sum		
Obs. A	117	75	72	75	339		
Exp.	119	74	73	74			
Obs. C	88	52	26	44	210		
Exp.	74	46	45	46			
Obs. G	79	32	53	45	209		
Exp.	73	46	45	45			
Obs. U	55	52	57	46	210		
Exp.	74	46	45	46			
Subtotal	339	211	208	210	968		

The output is of two parts for each sequence, the first part lists the nucleotide frequencies, with "Other" stands for all characters that are not "acgtu", e.g., "-?.". The second part lists the di-nucleotide frequencies and the expected frequencies when there is no association or repulsion between nucleotides (i.e., the probability of two nucleotides sitting next to each other depends entirely on their frequencies). The di-nucleotides are counted from the beginning to the end of the sequence, with the nucleotides on the left column being the first, and those on the top row being the second, of the dinucleotide. From the first part of the output, it has been interpreted that A is being used more frequently than other nucleotides.

2.5.3 Codon Frequency

This opens a dialog box for computing codon frequencies and codon usage bias. A part of a default sample output, based on a segment of the Influenza A viruses, is shown below:

Output from sequences in file C:\MS\virus\virus.rst on

Sequence length = 969 (After excluding '?', '-' and ' n '.)
Number of codons $=323$
From pooled sequences

AA	Codon	Mean Number (Sum)	RSCU
A	GCA	8.0(32)	1.87
	GCC	3.3 (13)	0.75
	GCG	2.3 (9)	0.56
	GCU	3.5 (14)	0.82
V	GUA	6.5 (26)	1.29
	GUC	4.0 (16)	0.80
	GUG	0.3 (21)	1.04
	GUU	4.5 (18)	0.88

The codon usage table is based on the following sequences:

```
1 FLAHAOHF
FLAHA1N
IAU11858
    IVHATG391
```


The output is in two parts. The first is a table of codon frequencies categorized into codon families, and the second lists nucleotide frequencies separately for each of the three codon positions designated as CodSite in the output.

2.5.4 Nonsynonymous codon substitution:

The sequence pairs available for selection on the left list depends on what input file format that is being used. If input format is NOT the RST format, then the number of possible sequence pairs is simply $\mathrm{N}^{*}(\mathrm{~N}-1) / 2$. A partial sample output for a set of elongation factor 1 -sequences (for only one pair-wise comparison between two chelicerate species) is shown below:

```
N Cod1 Cod2 AA1 AA2 DG DM
==============================================
node#8 vs. node#9
\begin{tabular}{lllllrl}
037 & AGG & AGU & R & S & 109.00 & 2.73 \\
106 & ACC & GCC & T & A & 58.00 & 0.90 \\
150 & UCA & CCA & S & P & 73.00 & 0.55 \\
241 & AAG & GAG & K & E & 53.00 & 1.05 \\
244 & GUU & CUU & V & L & 32.00 & 0.91 \\
357 & GAA & GAC & E & D & 61.00 & 1.46
\end{tabular}
--------------------------------------------------------------
Mean 64.33 1.27
Num NS: 6
node#11 vs. Bra90058
\begin{tabular}{lllllrr}
26 & UAC & UUC & Y & F & 22.00 & 0.48 \\
106 & GCC & AAC & A & N & 110.00 & 1.77 \\
117 & ACU & UCU & T & S & 58.00 & 0.89 \\
147 & GCC & ACC & A & T & 58.00 & 0.90 \\
148 & AAG & AAC & K & N & 94.00 & 1.83 \\
149 & AUG & UUG & M & L & 14.00 & 0.41 \\
156 & AAC & GCC & N & A & 110.00 & 1.77 \\
171 & GAA & GAC & E & D & 61.00 & 1.46 \\
213 & AUG & AUC & M & I & 10.00 & 0.29 \\
272 & AAC & AGC & N & S & 46.00 & 1.31 \\
282 & UCU & UAC & S & \(Y\) & 143.00 & 3.32
\end{tabular}
Mean
66.001 .31
Num NS: 11
```

Pair-wise comparisons along the tree are either between internal nodes, or between an internal node and a terminal node. This information is shown at the beginning of each pair-wise comparison. The first column shows the sequential numbering of codons along the DNA sequences (after deleting unresolved codons). The second and third columns show which codon pairs are involved in the substitution, and the fourth and fifth columns show the corresponding amino acids.

2.6 Jemboss

2.6.1 Introduction

Jemboss is developed by the EMBOSS team and is a graphical interface to the European Molecular Biology Open Software Suite, EMBOSS. Jemboss incorporates the 200+ applications of both the EMBOSS and EMBASSY packages.

The job manager is used to monitor the status of batch processes. These are those EMBOSS applications that are computationally intensive. Instead of waiting for the results these processes are submitted as batch, which frees the interface for other analyses to be carried out. This product includes code licensed from RSA Data Security.

2.6.2 Local and Remote File Manager

The users local and the remote file systems can be displayed. The local files are those stored on the computer that Jemboss is being run on. The remote files are the users files located on the server machine that runs the EMBOSS applications.

The activities performed by file manager are:

- Drag and Drop Files
- Transferring Files
- Refresh' File Manager
- Multiple File Selection

2.6.3 Jemboss Results Manager

Applications in Jemboss can be run 'interactively' or in 'batch' mode. Interactive applications wait for the process to finish and the results pop up on the screen. Batch process run in the background so that other tasks can be performed in Jemboss while the application is running. In both cases the results are stored on the server machine and can be retrieved at any time.

2.6.4 Sequence List

This window allows us to store their commonly used sequences.

An EMBOSS list file contains "references" to sequences, for example the file has been looked like: opsd_abyko.fasta, sw: opsd_xenla, sw: opsd_c* and @another_list etc.

The sequence length has been calculated by 'Calculate sequence attributes' under the 'Tools' menu. The sequence start and end positions has been displayed.

2.6.5 Jemboss Alignment Editor

The Jemboss Alignment Editor has been used interactively to edit a sequence alignment (read in fasta or MSF format). It can also be used from the command line to produce image files of the alignment (e.g. within a script).

Following activities has been performed by alignment editor:

- Loading Sequences
- Editing Functions
- Locking Sequences
- Trim Sequences
- Colour Schemes
- Scoring Matrix
- Consensus Sequence

2.7 Chemical Markup Language (CML) 2.7.1 Introduction

This is a variety of XML [6] designed to represent molecular information. It has been used to store chemical formulas and to display the molecules in graphical formats.

CML [7] has been developed to carry molecules, crystallographic data and reactions using an XML language. A universal, platform and application independent format for storing and exchanging chemical information has been offered by CML. CML outlines a variety of general purpose 'data-holder' elements and a smaller number of more specifically chemical elements (e.g. <molecule>, <reaction>, <crystal>) used to indicate chemical 'objects'. For example, a <molecule> will contain a <list> of <atom>s, which in turn have three <float>s specifying Cartesian coordinates for each atom.

CML provides no default conventions for labeling data elements and puts few restrictions on element ordering. The design of CML and contains minimal preconceptions as to the type of chemical information that has been stored using it.

2.7.2 Reading XML Documents [8]

Here is an example from the CML Schema:

```
<cml>
    <molecule id="m1">
    <atomArray>
        <atom elementType="N"/>
        <atom elementType="O"/>
    </atomArray>
    </molecule>
</cml
```

The first tag is <cml>. This is the top level tag. The next tag is <molecule id="m1">. The CML Schema reference says that the <molecule> tag is "a container for atoms, bonds and submolecules." The 'id' attribute is used as a unique identifier so that the
molecule can be referred to from elsewhere. Similarly, the <atomArray> is "a container for a list of atoms." The tag <atom elementType="N"/> specifies a nitrogen atom and the tag <atom elementType="0"/> an oxygen atom.

The tag </atomArray> closes the <atomArray> element. Tags must always be closed with a </ . . .> pattern in XML to create well formed documents. Also, tags must be fully enclosed within other tags and cannot overlap. For example, $<a></ b></ a>$ is well formed XML but $<a></ a></ b>$ is not. If a tag does not have anything inside it then the shorthand < . . / > can be used to indicate both opening and closing an empty tag.

2.7.3 Examples of the molecules with CML

In this research substance like Alanine, Amino butyric Acid, Asparagine and Glutamine have been studied.

(A) Alanine


```
<list xmlns:cml="http://www.xml-cml.org/schema/cml2/core" xmlns:stm="http://www.xml-
cml.org/schema/stmml" xmlns:ichi="http://www.iupac.org/foo/ichi" xmlns="http://www.xml-
cml.org/schema/cml2/core" title="/var/wwwtmp/mn_convert29053.xml">
    <molecule convention="CACTVS">
    <metadataList>
    <metadata name="dc:title">chemical structure data</metadata>
    <metadata name="dc:creator">wwwrun</metadata>
    <metadata name="dc:date">2009-06-03</metadata>
    </metadataList>
    <atomArray>
<atom id="1">
    <string builtin="elementType">C</string>
    <float builtin="x2">16.9045</float>
    <float builtin="y2">-7.5353</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
    <atom id="2">
    <string builtin="elementType">0</string>
    <float builtin="x2">16.9045</float>
    <float builtin="y2">-6.2053</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="3">
    <string builtin="elementType">C</string>
    <float builtin="x2">15.7527</float>
    <float builtin="y2">-8.2003</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
```

```
</atom>
<atom id="4">
    <string builtin="elementType">N</string>
    <float builtin="x2">15.7527</float>
    <float builtin="y2">-9.5303</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="5">
    <string builtin="elementType">C</string>
    <float builtin="x2">14.6008</float>
    <float builtin="y2">-7.5353</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="6">
    <string builtin="elementType">O</string>
    <float builtin="x2">18.0563</float>
    <float builtin="y2">-8.2003</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
    </atomArray>
<bondArray>
<bond id="1">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">2</string>
    <string builtin="order">2</string>
    </bond>
<bond id="2">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">3</string>
    <string builtin="order">1</string>
    </bond>
<bond id="3">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">4</string>
    <string builtin="order">1</string>
    </bond>
<bond id="4">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">5</string>
    <string builtin="order">1</string>
    </bond>
<bond id="5">
    <string builtin="atomRef">6</string>
    <string builtin="atomRef">1</string>
    <string builtin="order">1</string>
    </bond>
    </bondArray>
    </molecule>
    </list>
```


(B) Amino Butyric Acid

<list xmlns:cml="http://www.xml-cml.org/schema/cml2/core" xmlns:stm="http://www.xmlcml.org/schema/stmml" xmlns:ichi="http://www.iupac.org/foo/ichi" xmlns="http://www.xmlcml.org/schema/cml2/core" title="/var/wwwtmp/mn convert28995.xml">
<molecule convention="CACTVS">
<metadataList>
<metadata name="dc:title">chemical structure data</metadata>
<metadata name="dc:creator">wwwrun</metadata>
<metadata name="dc: date">2009-06-03</metadata>
</metadataList>

```
<atomArray>
<atom id="1">
    <string builtin="elementType">C</string>
    <float builtin="x2">16.7272</float>
    <float builtin="y2">-9.5383</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="2">
    <string builtin="elementType">O</string>
    <float builtin="x2">16.7272</float>
    <float builtin="y2">-8.2083</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="3">
    <string builtin="elementType">C</string>
    <float builtin="x2">15.5755</float>
    <float builtin="y2">-10.2033</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="4">
    <string builtin="elementType">N</string>
    <float builtin="x2">15.5755</float>
    <float builtin="y2">-11.5333</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="5">
    <string builtin="elementType">C</string>
    <float builtin="x2">14.4236</float>
    <float builtin="y2">-9.5383</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="6">
    <string builtin="elementType">O</string>
    <float builtin="x2">17.8791</float>
    <float builtin="y2">-10.2033</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
<atom id="7">
    <string builtin="elementType">C</string>
    <float builtin="x2">13.2718</float>
    <float builtin="y2">-10.2034</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
    </atomArray>
<bondArray>
<bond id="1">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">2</string>
    <string builtin="order">2</string>
    </bond>
<bond id="2">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">3</string>
    <string builtin="order">1</string>
    </bond>
<bond id="3">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">4</string>
    <string builtin="order">1</string>
    </bond>
<bond id="4">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">5</string>
    <string builtin="order">1</string>
    </bond>
<bond id="5">
```

```
<string builtin="atomRef">6</string>
<string builtin="atomRef">1</string>
<string builtin="order">1</string>
</bond>
<bond id="6">
    <string builtin="atomRef">7</string>
    <string builtin="atomRef">5</string>
    <string builtin="order">1</string>
    </bond>
    </bondArray>
    </molecule>
    </list>
```


(C)Asparagine

<list xmlns:cml="http://www.xml-cml.org/schema/cml2/core" xmlns:stm="http://www.xmlcml.org/schema/stmml" xmlns:ichi="http://www.iupac.org/foo/ichi" xmlns="http://www.xmlcml.org/schema/cml2/core" title="/var/wwwtmp/mn_convert29126.xml">
<molecule convention="CACTVS">
<metadataList>
<metadata name="dc:title">chemical structure data</metadata>
<metadata name="dc:creator">wwwrun</metadata>
<metadata name="dc:date">2009-06-03</metadata>
</metadataList>
<atomArray>
<atom id="1">
<string builtin="elementType">C</string>
<float builtin="x2">21.5693</float>
<float builtin="y2">-8.2244</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="2">
<string builtin="elementType">C</string>
<float builtin="x2">23.873</float>
<float builtin="y2">-8.2244</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="3">
<string builtin="elementType">C</string>
<float builtin="x2">20.4176</float>
<float builtin="y2">-8.8894</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="4">
<string builtin="elementType">C</string>
<float builtin="x2">22.7212</float>
<float builtin="y2">-8.8894</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="5">
<string builtin="elementType">0</string>
<float builtin="x2">23.873</float>
<float builtin="y2">-6.8944</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="6">
<string builtin="elementType">0</string>

```
<float builtin="x2">20.4176</float>
<float builtin="y2">-10.2194</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="7">
    <string builtin="elementType">N</string>
    <float builtin="x2">19.2658</float>
<float builtin="y2">-8.2244</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="8">
    <string builtin="elementType">N}</\mathrm{ string>
    <float builtin="x2">22.7212</float>
    <float builtin="y2">-10.2194</float>
    <float builtin="x3">0</float>
    <float builtin="y3">0</ float>
    <float builtin="z3">0</float>
    </atom>
<atom id="9">
    <string builtin="elementType">0</string>
    <float builtin="x2">25.0248</float>
    <float builtin="y2">-8.8894</float>
    <float builtin="x3">0</ float>
    <float builtin="y3">0</float>
    <float builtin="z3">0</float>
    </atom>
    </atomArray>
<bondArray>
<bond id="1">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">3</string>
    <string builtin="order">1</string>
    </bond>
<bond id="2">
    <string builtin="atomRef">1</string>
    <string builtin="atomRef">4</string>
    <string builtin="order">1</string>
    </bond>
<bond id="3">
    <string builtin="atomRef">2</string>
    <string builtin="atomRef">4</string>
    <string builtin="order">1</string>
    </bond>
<bond id="4">
    <string builtin="atomRef">2</string>
    <string builtin="atomRef">5</string>
    <string builtin="order">2</string>
    </bond>
<bond id="5">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">6</string>
    <string builtin="order">2</string>
    </bond>
<bond id="6">
    <string builtin="atomRef">3</string>
    <string builtin="atomRef">7</string>
    <string builtin="order">1</string>
    </bond>
<bond id="7">
    <string builtin="atomRef">4</string>
    <string builtin="atomRef">8</string>
    <string builtin="order">1</string>
    </bond>
<bond id="8">
    <string builtin="atomRef">9</string>
    <string builtin="atomRef">2</string>
    <string builtin="order">1</string>
    </bond>
    </bondArray>
    </molecule>
    </list>
```


(D) Glutamine

<list xmlns:cml="http://www.xml-cml.org/schema/cml2/core" xmlns:stm="http://www.xmlcml.org/schema/stmml" xmlns:ichi="http://www.iupac.org/foo/ichi" xmlns="http://www.xmlcml.org/schema/cml2/core" title="/var/wwwtmp/mn convert29157.xml">
<molecule convention="CACTVS">
<metadataList>
<metadata name="dc:title">chemical structure data</metadata>
<metadata name="dc:creator">wwwrun</metadata>
<metadata name="dc:date">2009-06-03</metadata>
</metadataList>
<atomArray>
<atom id="1">
<string builtin="elementType">C</string>
<float builtin="x2">14.2172</float>
<float builtin="y2">-13.937</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="2">
<string builtin="elementType">C</string>
<float builtin="x2">18.8245</float>
<float builtin="y2">-13.937</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="3">
<string builtin="elementType">0</string>
<float builtin="x2">14.2172</float>
<float builtin="y2">-12.607</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="4">
<string builtin="elementType">C</string>
<float builtin="x2">15.3691</float>
<float builtin="y2">-14.602</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="5">
<string builtin="elementType">0</string>
<float builtin="x2">18.8246</float>
<float builtin="y2">-12.607</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="6">
<string builtin="elementType">C</string>
<float builtin="x2">16.5209</float>
<float builtin="y2">-13.937</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="7">
<string builtin="elementType">C</string>
<float builtin="x2">17.6726</float>
<float builtin="y2">-14.7782</float>
<float builtin="x3">0</float>
<float builtin="y3">0</float>
<float builtin="z3">0</float>
</atom>
<atom id="8">

2.8 SMILES - A Simplified Chemical Language

2.8.1 Introduction

SMILES [9] (Simplified Molecular Input Line Entry System) is a line notation for entering and representing molecules and reactions. Some examples are:

Table 2.2: SMILE examples

SMILES	Name	SMILES	Name
CC	ethane	$[\mathrm{OH}++]$	hydronium ion
$\mathrm{O}=\mathrm{C}=\mathrm{O}$	carbon dioxide	$[2 \mathrm{H}] \mathrm{O}[2 \mathrm{H}]$	deuterium oxide
$\mathrm{C} \# \mathrm{~N}$	hydrogen cyanide	$[235 \mathrm{U}]$	uranium-235
CCN(CC)CC	triethylamine	$\mathrm{F} / \mathrm{C}=\mathrm{C} / \mathrm{F}$	E-difluoroethene
CC(=O)O	acetic acid	F/C=C\F	Z-difluoroethene
C1CCCCC1	cyclohexane	N[C@@H](C)C(=O)O	L-alanine
c1ccccc1	benzene	N[C@H](C)C $(=\mathrm{O}) \mathrm{O}$	D-alanine

Reaction SMILES	Name
$[\mathrm{I}-] .[\mathrm{Na}+] . \mathrm{C}=\mathrm{CCBr} \gg[\mathrm{Na}+] .[\mathrm{Br}-] . \mathrm{C}=\mathrm{CCI}$	displacement reaction
$(\mathrm{C}(=\mathrm{O}) \mathrm{O}) .(\mathrm{OCC}) \gg(\mathrm{C}(=\mathrm{O}) \mathrm{OCC}) .(\mathrm{O})$	intermolecular esterification

SMILES are a true language, although with a simple vocabulary (atom and bond symbols) and only a few grammar rules. SMILES representations of structure can in turn be used as "words" in the vocabulary of other languages designed for storage of chemical information (information about chemicals) and chemical intelligence (information about chemistry).

2.8.2 Canonicalization

A SMILE denotes a molecular structure as a graph with optional chiral indications. This is essentially the two-dimensional picture chemists draw to describe a molecule. SMILES describing only the labeled molecular graph (i.e. atoms and bonds, but no chiral or isotopic information) are known as generic SMILES.

It can be shown in the following examples.
Table 2.3: Canonicalization of SMILE

Input SMILES	Unique SMILES
OCC	CCO
$[\mathrm{CH} 3][\mathrm{CH} 2][\mathrm{OH}]$	CCO
$\mathrm{C}-\mathrm{C}-\mathrm{O}$	CCO
$\mathrm{C}(\mathrm{O}) \mathrm{C}$	CCO
$\mathrm{OC}(=\mathrm{O}) \mathrm{C}(\mathrm{Br})(\mathrm{Cl}) \mathrm{N}$	$\mathrm{NC}(\mathrm{Cl})(\mathrm{Br}) \mathrm{C}(=\mathrm{O}) \mathrm{O}$
$\mathrm{ClC}(\mathrm{Br})(\mathrm{N}) \mathrm{C}(=\mathrm{O}) \mathrm{O}$	$\mathrm{NC}(\mathrm{Cl})(\mathrm{Br}) \mathrm{C}(=\mathrm{O}) \mathrm{O}$
$\mathrm{O}=\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{N})(\mathrm{Br}) \mathrm{Cl}$	$\mathrm{NC}(\mathrm{Cl})(\mathrm{Br}) \mathrm{C}(=\mathrm{O}) \mathrm{O}$

2.8.3 SMILES Specification Rules

SMILES notation consists of a series of characters containing no spaces. Hydrogen atoms may be omitted (hydrogen-suppressed graphs) or included (hydrogen-complete graphs). Aromatic structures may be specified directly.

There are five generic SMILES encoding rules, corresponding to specification of atoms, bonds, branches, ring closures, and disconnections.

2.8.3.1 Atoms

Atoms are represented by their atomic symbols: this is the only required use of letters in SMILES. Each non-hydrogen atom is specified independently by its atomic symbol enclosed in square brackets, []. The second letter of two-character symbols must be entered in lower case. Atoms in aromatic rings are specified by lower case letters, e.g., aliphatic carbon is represented by the capital letter C , aromatic carbon by lower case c .

Table 2.4: SMILE atoms

C	methane	$(\mathrm{CH} 4)$
P	phosphine	$(\mathrm{PH} 3)$
N	ammonia	$(\mathrm{NH} 3)$
S	hydrogen sulfide	$(\mathrm{H} 2 \mathrm{~S})$
O	water	$(\mathrm{H} 2 \mathrm{O})$
Cl	hydrochloric acid	(HCl)

2.8.3.2 Bonds

Single, double, triple, and aromatic bonds are represented by the symbols,$-=$, \#, and :, respectively. Adjacent atoms are assumed to be connected to each other by a single or aromatic bond (single and aromatic bonds may always be omitted). Examples are:

Table 2.5: SMILE bonds

CC	ethane	$(\mathrm{CH} 3 \mathrm{CH} 3)$
$\mathrm{C}=\mathrm{O}$	formaldehyde	$(\mathrm{CH} 2 \mathrm{O})$
$\mathrm{C}=\mathrm{C}$	ethene	$(\mathrm{CH}=\mathrm{CH} 2)$
$\mathrm{O}=\mathrm{C}=\mathrm{O}$	carbon dioxide	$(\mathrm{CO} 2)$
COC	dimethyl ether	$(\mathrm{CH} 3 \mathrm{OCH} 3)$
C \#N	hydrogen cyanide	(HCN)
CCO	ethanol	$(\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{OH})$
$[\mathrm{H}][\mathrm{H}]$	molecular hydrogen	$(\mathrm{H} 2)$

For linear structures, SMILES notation corresponds to conventional diagrammatic notation except that hydrogens and single bonds are generally omitted. For example, 6-hydroxy-1,4-hexadiene can be represented by many equally valid SMILES, including the following three:

Structure	Valid SMILES
	$\mathrm{C}=\mathrm{CCC}=\mathrm{CCO}$
$\mathrm{CH} 2=\mathrm{CH}-\mathrm{CH} 2-\mathrm{CH}=\mathrm{CH}-\mathrm{CH} 2-\mathrm{OH}$	$\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{O}$
	$\mathrm{OCC}=\mathrm{CCC}=\mathrm{C}$

2.8.3.3 Branches

Branches are specified by enclosing them in parentheses, and can be nested or stacked. In all cases, the implicit connection to a parenthesized expression (a "branch") is to the left. Examples are:

Table 2.6: SMILE branches

CCN(CC)CC
Triethylamine

Isobutyric acid

3-propyl-4-isopropyl-1-
heptene

2.8.3.4 Cyclic Structures

Cyclic structures are represented by breaking one bond in each ring. The bonds are numbered in any order, designating ring opening (or ring closure) bonds by a digit immediately following the atomic symbol at each ring closure. This leaves a connected non-cyclic graph which is written as a non-cyclic structure using the three rules described above. Cyclohexane is a typical example:

There are usually many different, but equally valid descriptions of the same structure, e.g., the following SMILES notations for 1-methyl-3-bromo-cyclohexene-1:

Digits denoting ring closures has been reused. As an example, the digit 1 used twice in the specification:

The ability to re-use ring closure digits makes it possible to specify structures with 10 or more rings. Structures that require more than 10 ring closures to be open at once are exceedingly rare.

2.8.3.5 Disconnected Structures

Disconnected compounds are written as individual structures separated by a "." (period). If desired, the SMILES of one ion may be imbedded within another as shown in the example of sodium phenoxide.

05

Matching pairs of digits following atom specifications imply that the atoms are bonded to each other. The bond may be explicit (bond symbol and/or direction preceding the ring closure digit) or implicit (a nondirectional single or aromatic bond). This is true whether or not the bond ends up as part of a ring.

Adjacent atoms separated by dot (.) imply that the atoms are not bonded to each other. This is true whether or not the atoms are in the same connected component. For example, C1.C1 specifies the same molecule as CC(ethane) .

2.10 References

[1] www.acdlabs.com
[2] www.upstream.ch
[3] www.arguslab.com
[4] http://dambe.bio/uottawa.ca
[5] http://mEMBOSS/jemboss/jar/resources/readme.html
[6] http://www.xml-cml.org/
[7] http://zvon.org/xxl/CML1.0/Output/index.html
[8] http://cml.sourceforge.net/
[9] http://www.daylight.com

Chapter -3
Alignment of PAirs and
Multiple SequenceS and Phylogenetic AnAlysis

Chapter 3

ALIGNMENT OF PAIRS AND MULTIPLE SEQUENCES AND PHYLOGENETIC ANALYSIS

3.1 Introduction

In this chapter Pair wise Sequence Alignment and Multiple Sequence Alignment has been discussed. In this chapter alignment score and Gap Penalty between sequences has been calculated. The gap penalty formula can be extended to include a penalty for alignments for the gaps at the end of a sequence of equal length. Multiple sequence alignment is useful in finding patterns in nucleotide sequences and for identifying structural and functional domains in protein families.

Multiple sequence alignment (MSA) is an extension of the similarity concepts to determine levels of homology (relatedness) between members of a series of globally related sequences are aligned together in column.

3.2 Sequence Description

Patterns provide appropriate representations of conserved regions in biosequences. In most cases one is given a set of sequences (DNA or proteins) and is looking for patterns that appear in some minimum number (or percentage) of these sequences. The exact definition of a pattern varies from algorithm to algorithm. In general, a pattern is a member of a well defined subset C of all the possible regular expressions over \sum^{1} (the set C is called a pattern language). Being a regular expression, every pattern P defines a language $L(P)$ in the natural way: a string belongs to $L(P)$ if it is recognized by the automaton of P. A sequence $s \in \sum^{*}$ is said to "match" a given pattern P if s contains some substring that belongs to $\mathrm{L}(\mathrm{P})$.

For an illustration, consider the following set of strings over the English alphabet:

$$
\text { S = \{LARGE, FINGER, AGE }\}
$$

In this case the pattern "L..GE" has support 2 since it is matched by the first two strings of S (..' is called the don't-care character and is used to indicate position that can be occupied by an arbitrary alphabet character). The term support denotes the number of input strings matching a given pattern. As another example, the pattern "A*GE" has also support 2 (it is matched by the first and the last strings). Here, the character ${ }^{`} *$ ' is used to match substrings of arbitrary length.

3.3 Pair wise Sequence Alignment

Pair wise sequence alignment [1] involves the matching of two sequences, one pair of elements at a time. The challenge in pair wise sequence alignment is to find the optimum alignment of two sequences with some degree of similarity. This optimum condition is based on a score that reflects the number of paired characters in two sequences and number and length of gaps required to adjust the sequences so the maximum number of characters are in alignment. For example, consider the ideal case of identical nucleotide sequences, (A) and (B)

A) ATTCGGCATTCAGTGCTAGA
 B) ATTCGGCATTCAGTGCTAGA

Assuming that the alignment scoring algorithm counts one point per pair of aligned characters, then the score for each of the 20 pairs, or 20 points. Now, consider the case when several of character pairs aren’t aligned:

C) ATTCGGCATTCAGTGCTAGA

D) ATTCGGCATTGCTAGA

In this case, the score is 11 , because only 11 pairs of characters in sequences (C) and (D) are aligned. By moving last six characters ahead in sequence (D) by adding four gaps, the sequences become:

E) ATTCGGCATTCAGTGCTAGA
 F) ATTCGGCATT - - - GCTAGA

Now, the score, based on the original algorithm of character pairing, is 16 . However, because the score would have been 11 without the inserted gaps, a penalty should be extracted for each gap inserted into the sequence to favor alignments that can be made with as few gaps as possible. Assuming a gap penalty of -0.5 per gap, the alignment score becomes $10+6+(4 \times-0.5)$ or 14 .

Another scenario is that in which the areas of similarity and difference are not obvious. Consider the sequences (G) and (H):

G) ATTCGGCATTCAGAGCGAGA
 H) ATTCGACATTGCTAGTGGTA

Unlike the previous cases, there are no relatively long runs of character pairings, and the matching pairs are separated by unaligned characters. The alignment score is 1 point per aligned pair or 13 . One attempt at visual alignment by adding four gaps into sequence (H) results in:

G) ATTCGGCATTCAGAGCTAGA

I) ATTCGACATT - - - GCTAGTGGTA

This alignment results in a score of 12 , or 14 alignments minus 2 points for the 4 gaps introduced into sequence (H), transforming it to sequence (I). In addition, a penalty of 0.5 per character pair is scored for an inexact match. In case of sequences (G) and (I), there are 6 inexact matches. In case of sequences (G) and (I), there are 6 inexact matches,
for a penalty of ($6 \times-0.5=-3$). Using this new alignment scoring algorithm, and ignoring the length difference between the two sequences, the alignment score for the (G)-(I) alignment becomes:

$$
\begin{aligned}
\text { Alignment Score } & =14 \text { alignments }+4 \text { gaps }+6 \text { inexact matches } \\
& =14+(4 \times-0.5)+(6 \times-0.5) \\
& =14-2-3 \\
& =9
\end{aligned}
$$

In this example, adding gaps results in a lower alignment score, illustrating how the relative worth of exact matches, inexact matches and gaps determines the eventual alignment of two sequences.

Although a simple gap penalty of -0.5 point per gap has been used to illustrate the role of alignment scores on sequence alignment, gap penalty is typically calculated as:

$$
\text { Penalty gap }=\text { Cost }_{\text {opening }}+\text { Cost }_{\text {extension }} \times \text { Length gap }
$$

In this formula, Penalty gap is the total gap penalty, Cost opening is the cost of opening is the cost of opening a gap in a sequence, Cost extension is the cost of extending an existing gap by one character, and Length gap is the length of the gap in characters. The minimum value of Length gap is one. Returning to sequence pair (E)-(F), assuming that Cost opening is (-0.5) and Cost extension is (-0.5), the gap penalty becomes:

$$
\begin{aligned}
\text { Penalty gap }_{\text {gap }} & =\text { Cost }_{\text {opening }}+\text { Cost }_{\text {extension }} \times \text { Length }_{\text {gap }} \\
& =-0.5+(-0.5 \times 4) \\
& =-2.5
\end{aligned}
$$

With the expanded method of computing gap penalty, the score becomes $10+6-2.5=$ 13.5 points. The gap penalty formula can be extended to include a penalty for alignments for the gaps at the end of a sequence of equal length.

3.3.1 Local versus Global Alignment

Sequence pair (E) - (F) is an example of global alignment- that is , an attempt to line up the two sequences matching as many characters as possible, for the entire length of each segment. Global alignment considers all characters in a sequence, and bases alignment on the total score, even at the expense of stretches in the sequence that share similarity as shown in figure. Global alignment is used to help determine whether two protein sequences are the same family.

Figure 3.1: Local (top) versus Global (bottom) Alignment. In local alignment, the alignment of local, high - scoring sequences takes precedence over the overall alignment. In global alignment, the best overall alignment is sought, regardless of whether local, high-scoring subsequences are in alignment or not.

3.3.2 Methods of Sequence Alignment

There are several approaches for conducting sequence alignments. Many of these methods are heuristics methods. One of them is Dynamic Programming (DP) method for sequence alignment.

Dynamic Programming

In genetics, sequence alignment is an important application where dynamic programming is essential. Typically, the problem consists of transforming one sequence into another using edit operation that replace, insert, or remove an element. Each operation has an associated cost, and the goal is to find the sequence of edits with the lowest total cost.

The problem can be stated naturally as a recursion, a sequence A is optimally edited into a sequence B by either:

1. inserting the first character of B , and performing an optimal alignment of A and the tail of B
2. deleting the first character of A , and performing the optimal alignment of the tail of A and B
3. replacing the first character of A with the first character of B , and performing optimal alignments of the tails of A and B.

The partial alignments can be tabulated in a matrix, where cell (i, j) contains the cost of the optimal alignment of $\mathrm{A}[1 . . \mathrm{i}]$ to $\mathrm{B}[1 . . \mathrm{j}]$. The cost in cell (i, j) can be calculated by adding the cost of the relevant operations to the cost of its neighboring cells, and selecting the optimum.

Dynamic programming is a form of recursion in which intermediate results are saved in a matrix. The comparison can solve complex mathematical equations, with the results of one equation feeding the input of another. With dynamic programming, the intermediate results can be recorded and next equation can be solved with regard to following equations.

The function has been used to illustrate the value of dynamic programming in sequence alignment:

$$
\text { MaxValue }=f\left(A_{i}, B_{j}\right)
$$

In this equation, MaxValue is function of variables A_{i} and B_{j}, where i and j are indices to the variables defined in tree structure illustrated in Figure 3.3. That is, the possible values of A_{i} are represented by A_{1} through A_{5}, and possible values of B_{j} are represented by B_{1} through B_{11}. The best solution to MaxValue depends on the equation that defines MaxValue. Following possible value of MaxValue have been considered as example:

$$
\text { MaxValue }=\left(A_{i} \times B_{j}\right)
$$

Figure 3.2: Dynamic Programming Problems. Values for A and B are defined in the tree structure. Maximizing MaxValue requires evaluating the equation for every combination of i and j.

In this example, the solution is simply the largest value of A and the largest values of B . However, following definition of MaxValue has been considered:

$$
\text { Ma } \times \text { Value }=3 \sqrt{\frac{14 \times A^{2}}{\log \left(A^{2}+B^{2}\right)}}
$$

In Brute- Force Methods of solving for MaxValue every combinations of A and B has been required and each value has been found out recursively and defined in the tree structure.

For evaluating every value of B in the MaxValue equation needs evaluating every value of A that has been illustrated in Figure 3.3. For example, assume that the values of A_{i} and B_{j} are defined as:

$$
\mathrm{A}=\left[\begin{array}{l}
2 \\
3 \\
8 \\
4 \\
1
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}
11 \\
1 \\
0 \\
3 \\
8 \\
1 \\
7 \\
5 \\
3 \\
2
\end{array}\right]
$$

Solving for the first value of $\mathrm{A}_{\mathrm{i}}\left(\mathrm{A}_{1}=2\right)$ and ignoring the specific equation for MaxValue for Clarity:

MaxValue $(1,1)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{1}\right)=$	$\mathrm{f}(2,9)=$	5
$\operatorname{MaxValue}(1,2)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{2}\right)=$	$\mathrm{f}(2,11)=$	3
$\operatorname{MaxValue}(1,3)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{3}\right)=$	$\mathrm{f}(2,1)=$	0
$\operatorname{MaxValue}(1,4)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{4}\right)=$	$\mathrm{f}(2,0)=$	2
$\operatorname{MaxValue}(1,5)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{5}\right)=$	$\mathrm{f}(2,3)=$	8
$\operatorname{MaxValue}(1,6)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{6}\right)=$	$\mathrm{f}(2,8)=$	0
$\operatorname{MaxValue}(1,7)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{7}\right)=$	$\mathrm{f}(2,1)=$	-2
$\operatorname{MaxValue}(1,8)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{8}\right)=$	$\mathrm{f}(2,7)=$	1
$\operatorname{MaxValue}(1,9)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{9}\right)=$	$\mathrm{f}(2,5)=$	2
$\operatorname{MaxValue}(1,10)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{10}\right)=$	$\mathrm{f}(2,3)=$	8
$\operatorname{MaxValue}(1,11)=$	$\mathrm{f}\left(\mathrm{A}_{1}, \mathrm{~B}_{11}\right)=$	$\mathrm{f}(2,2)=$	4

If the branches of A and B have hundreds of sub-branches, representing hundreds of values, then problem is likely computationally infeasible.

Dynamic programming can address this computational and time dilemma by creating a matrix to store the values for A_{i}, B_{j} and MaxValue for each combination of i and j. For example, consider the solution matrix for MaxValue in Figure 3.3. The solution set to MaxValue computed earlier for A_{1} appears in first row of the matrix. Examining only this first row, it can be seen that there are two solutions to MaxValue, B_{5} and B_{10}, each of which results in a value of 8 .

Figure 3.3: Solution Matrix for MaxValue for A_{i} and B_{j}. The solution to MaxValue is A_{3} and B_{3} with MaxValue $=12$

MaxValue has been considered as aligned score for pair wise alignment of two sequences. MaxValue takes into account gap penalties, correct alignments and imperfect alignments. After the matrix is filled in using the alignment score to determine MaxValue, the highest scoring path is followed back to the beginning of the alignment to define the best alignment of elements in sequence, including gaps.

Example of Global Sequence Alignment using Dynamic Programming

The following is an example of global sequence alignment using Needleman/Wunsch techniques. For this example, the two sequences to be globally aligned are

G A A T T C A G T T A (sequence \#1)
G G A T C G A (sequence \#2)

So $\mathrm{M}=11$ and $\mathrm{N}=7$ (the length of sequence \#1 and sequence \#2, respectively)

A simple scoring scheme is assumed where

- $\mathrm{S}_{\mathrm{i}, \mathrm{j}}=1$ if the residue at position i of sequence $\# 1$ is the same as the residue at position j of sequence \#2 (match score); otherwise
- $\mathrm{S}_{\mathrm{i}, \mathrm{j}}=0$ (mismatch score)
- w = 0 (gap penalty)

Three steps in dynamic programming

1. Initialization
2. Matrix fill (scoring)
3. Traceback (alignment)

Initialization Step

The first step in the global alignment dynamic programming approach is to create a matrix with $\mathrm{M}+1$ columns and $\mathrm{N}+1$ rows where M and N correspond to the size of the sequences to be aligned.

Since this example assumes there is no gap opening or gap extension penalty, the first row and first column of the matrix can be initially filled with 0 .

Matrix Fill Step

One possible (inefficient) solution of the matrix fill step finds the maximum global alignment score by starting in the upper left hand corner in the matrix and finding the maximal score $M_{i, j}$ for each position in the matrix. In order to find $M_{i, j}$ for any i, j it is minimal to know the score for the matrix positions to the left, above and diagonal to i, j. In terms of matrix positions, it is necessary to know $\mathrm{M}_{\mathrm{i}-1, \mathrm{j},}, \mathrm{M}_{\mathrm{i}, \mathrm{j}-1}$ and $\mathrm{M}_{\mathrm{i}-1, \mathrm{j}-1}$.

For each position, $\mathrm{M}_{\mathrm{i}, \mathrm{j}}$ is defined to be the maximum score at position i,j; i.e.

$\mathbf{M}_{\mathbf{i}, \mathbf{j}}=$ MAXIMUM [

$\mathbf{M}_{\mathbf{i}-\mathbf{1}, \mathbf{j}-\mathbf{1}}+\mathbf{S}_{\mathbf{i}, \mathbf{j}}$ (match/mismatch in the diagonal),
$\mathbf{M}_{\mathbf{i}, \mathbf{j}-1}+\mathbf{w}$ (gap in sequence \#1),
$\mathbf{M}_{\mathbf{i}-1, \mathbf{j}}+\mathbf{w}$ (gap in sequence \#2)]

In the example, $\mathrm{M}_{\mathrm{i}-1, \mathrm{j}-1}, \mathrm{M}_{\mathrm{i}, \mathrm{j}-1}$ and $\mathrm{M}_{\mathrm{i}-1, \mathrm{j}}$ has been considered red, green and blue respectively.

Using this information, the score at position 1,1 in the matrix can be calculated. Since the first residue in both sequences is a $G, S_{1,1}=1$, and by the assumptions stated at the beginning, $w=0$. Thus, $\mathrm{M}_{1,1}=\operatorname{MAX}\left[\mathrm{M}_{0,0}+1, \mathrm{M}_{1,0}+0, \mathrm{M}_{0,1}+0\right]=\operatorname{MAX}[1,0,0]=1$.

A value of 1 is then placed in position 1,1 of the scoring matrix.

Since the gap penalty (w) is 0 , the rest of row 1 and column 1 can be filled in with the value 1. Take the example of row 1 . At column 2, the value is the max of 0 (for a mismatch), 0 (for a vertical gap) or 1 (horizontal gap). The rest of row 1 can be filled out similarly until we get to column 8 . At this point, there is a G in both sequences (light blue). Thus, the value for the cell at row 1 column 8 is the maximum of 1 (for a match), 0 (for a vertical gap) or 1 (horizontal gap). The value will again be 1 . The rest of row 1 and column 1 can be filled with 1 using the above reasoning.

Then after column 2 will be considered. The location at row 2 will be assigned the value of the maximum of 1 (mismatch), 1 (horizontal gap) or 1 (vertical gap). So its value is 1 .

At the position column 2 row 3, there is an A in both sequences. Thus, its value will be the maximum of 2 (match), 1 (horizontal gap), 1 (vertical gap) so its value is 2 .

Moving along to position column 2 row 4, its value will be the maximum of 1 (mismatch), 1 (horizontal gap), 2 (vertical gap) so its value is 2 . For all of the remaining
positions except the last one in column 2, the choices for the value will be the exact same as in row 4 since there are no matches. The final row will contain the value 2 since it is the maximum of 2 (match), 1 (horizontal gap) and 2(vertical gap).

Using the same techniques as described for column 2, column 3 has to be filled.

		G	A A	T	T	C	A	G	T	T	A
	0	0	00	0	0	0	0	0	0	0	0
G	0	1	1.1	1	1	1	1	1	1	1	1
G	0	1	$1+1$								
A	0	1	$2+2$								
T	0	1	$2-2$								
C	0	1	$2 \div 2$								
G	0	1	$2 \div 2$								
A	0	1	$2 * 3$								

After filling in all of the values the score matrix is as follows:

		G	A	A	T	T	C		G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	1	1	1	1	1	1	1	1	1	1	1
G	0	1	1	1	1	1	1	1	2	2	2	2
A	0	1	2	2	2	2	2	2	2	2	2	3
T	0	1	2	2	3	3	3	3	3	3	3	3
C	0	1	2	2	3	3	3	4	4	4	4	4
G	0	1	2	2	3	3	3	4	4	5	5	5
A	0	1	2	3	3	3	3	4	5	5	5	6

Trace back Step

After the matrix fill step, the maximum alignment score for the two test sequences is 6 . The traceback step determines the actual alignment(s) that result in the maximum score. With a simple scoring algorithm such as one that is used here, there are likely to be multiple maximal alignments.

The traceback step begins in the M, J position in the matrix, i.e. the position that leads to the maximal score. In this case, there is a 6 in that location.

Traceback takes the current cell and looks to the neighbor cells that could be direct predecessors. This means it looks to the neighbor to the left (gap in sequence \#2), the diagonal neighbor (match/mismatch), and the neighbor above it (gap in sequence \#1). The algorithm for traceback chooses as the next cell in the sequence one of the possible predecessors. In this case, the neighbors are marked in red. They are all also equal to 5.

Since the current cell has a value of 6 and the scores are 1 for a match and 0 for anything else, the only possible predecessor is the diagonal match/mismatch neighbor. If more than one possible predecessor exists, any can be chosen. This gives us a current alignment of

(Seq \#1)	A
	I
$($ Seq \#2)	A

So now we look at the current cell and determine which cell is its direct predecessor. In this case, it is the cell with the red 5.

		G	A	A	T	T	C	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	
G	0	1	1	1	1	1	1	1	1	1	1	
G	0	1	1	1	1	1	1	1	2	2	2	
A	0	1	2	2	2	2	2	2	2	2	2	
T	0	1	2	2	3	3	3	3	3	3	3	
C	0	1	2	2	3	3	4	4	4	4		
G	0	1	2	2	3	3	4	4	5			
A												6

The alignment as described in the above step adds a gap to sequence \#2, so the current alignment is

(Seq \#1)	T A
	।
(Seq \#2)	-A

Once again, the direct predecessor produces a gap in sequence \#2.

After this step, the current alignment is

Continuing on with the traceback step, a position in column 0 row 0 has been found which indicatives completion of traceback. One possible maximum alignment is:

Giving an alignment of:

An alternate solution is:

Giving an alignment of :

There are more alternative solutions each resulting in a maximal global alignment score of 6 . Since this is an exponential problem, only a single solution has been printed by most of dynamic programming algorithms.

3.4 Multiple Sequence Alignment

Multiple sequence alignment [2], in which three or more sequences must be aligned, is useful in finding patterns in nucleotide sequences and for identifying structural and functional domains in protein families.

Multiple sequence alignment is as an extension of the pair-wise alignment. The first step in multiple sequence alignment is pair-wise alignment of all the sequences. For example four sequences- S_{1}, S_{2}, S_{3} and S_{4} have been considered. The alignment of these sequences involves 5 pair-wise comparisons $\left(\mathrm{S}_{1}\right.$ and $\mathrm{S}_{2}, \mathrm{~S}_{1}$ and $\mathrm{S}_{3}, \mathrm{~S}_{1}$ and $\mathrm{S}_{4}, \mathrm{~S}_{2}$ and $\mathrm{S}_{3}, \mathrm{~S}_{2}$ and S_{4} and S_{3} and S_{4}. . This is shown in Figure 3.4. The result of this alignment has been represented as a tree or a dendogram.

Figure 3.4: Pair-wise alignment of multiple sequences (6 pairwise comparisons then cluster analysis)

Then process of aligning the multiple sequences step-wise has been followed. The first step has been used to align the pair of most similar sequences, followed by less similar and so on. The gaps in the alignments have been used to optimize the alignment. This has been shown in Figure 3.5.

Figure 3.5: Step-wise alignment of sequences

3.4.1 Methods of Multiple Sequence Alignment

There are several approaches for conducting multiple sequence alignment. The most common approach to approach to multiple sequence alignment is Progressive Alignment.

Progressive Alignment Method

The approach of progressive alignment is to begin with an alignment of most alike sequences and then builds upon the alignment using other sequences. Progressive alignments work by first aligning the most alike sequences using dynamic programming and then progressively adding less related sequences to the initial alignment.

Cluster pair-wise alignment is a simple score between extensions of sequence alignment. In a pair-wise alignment, the comparison score between any two positions in those clusters is the arithmetic average of scores for all possible symbol comparisons at those positions. When gaps have inserted into a cluster to produce an alignment, they have been
inserted at the same position in all of the sequences of the cluster. The full multiple alignments are obtained once all the sequences have been clustered into one. This hierarchical clustering can be plotted as a dendogram.

Since the alignment is calculated on a progressive basis, the order of the initial sequences can affect the final alignment. Different comparison matrices or gap weights affects the multiple alignments.

Consider the 5 sequences given in Table 3.1 that need to be aligned.

Table 3.1: Set of 5 sequences

S_{1}	T	C	Y	G	I	F	V	L		
S_{2}	T	C	G	I	F	V	L			
S_{3}	S	C	Y	G	I	F	V	L	S	G
S_{4}	T	C	F	G	I	F	V	L		
S_{5}	A	C	G	I	F	V	L	S	G	

All pair-wise comparisons are performed, resulting in a matrix of scores. The scores have been represented in Table 3.2.

Table 3.2: Scores for the Pair-wise Comparisons

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
$\mathrm{~S}_{1}$		26	38	38	26
$\mathrm{~S}_{2}$	26		26	26	32
$\mathrm{~S}_{3}$	38	26		36	36
$\mathrm{~S}_{4}$	38	26	36		26
$\mathrm{~S}_{5}$	26	32	36	26	

The most closely-related pair of sequences is aligned first. In this example S_{1} and S_{3} and S_{1} and S_{4} have the same score, so they can be used as the first pair. The interactions are shown in Table 3.3.

Table 3.3: Steps in Aligning 5 Sequences Given Above

There are four steps.
Step 1 - start with S_{1} and S_{3}

S_{1}	T	C	Y	G	I	F	V	L	-	-
S_{3}	S	C	Y	G	I	F	V	L	S	G

Step 2 - add S_{4}

S_{1}	T	C	Y	G	I	F	V	L	-	-
S_{3}	S	C	Y	G	I	F	V	L	S	G
S_{4}	T	C	F	G	I	F	V	L	-	-

Step 3 - add S_{2}

S_{1}	T	C	Y	G	I	F	V	L	-	-
S_{3}	S	C	Y	G	I	F	V	L	S	G
S_{4}	T	C	F	G	I	F	V	L	-	-
S_{2}	T	C	-	G	I	F	V	L	-	-

Step 4 - add S_{5}

S_{1}	T	C	Y	G	I	F	V	L	-	-
S_{3}	S	C	Y	G	I	F	V	L	S	G
S_{4}	T	C	F	G	I	F	V	L	-	-
S_{2}	T	C	-	G	I	F	V	L	-	-
S_{5}	A	C	G	I	F	V	L	S	G	-

The alignment can be thought of as occurring in a "star" configuration, where the sequence with the greatest similarity to the others is at the centre and the rays of the star represent the pair-wise distances to the remaining sequences. Each time a sequence is added, gaps are inserted either in newly added sequence or in the entire alignment to optimize alignment.

The first problem with progressive methods is that they depend upon the initial pair-wise sequence alignments. If the sequences are closely related then the likelihood is good that the initial alignment contains relatively few errors. However, if initial sequences are distantly related, then there will be more errors in the alignment, which will propagate through the rest of the alignments. The second problem is that suitable scoring matrices and gap penalties must be chosen to apply to the sequences as a set.

3.4.2 Application of Multiple Alignments

The basic information from a multiple alignment of protein sequences is the position and nature of the conserved regions in each member of the group. Conserved sequence regions correspond to functionally and structurally important parts of the protein. Hypotheses about functional importance or specific roles can then be directly tested by mutagenesis and truncation experiments.

Multiple sequence alignments can be used to find regions of similar sequence in all of the sequences that defines a conserved consensus pattern. If the alignment is strong, MSA can also be used to derive the possible evolutionary relationships among the sequences.

Multiple alignments are powerful tools for identifying new members of the aligned group. It is possible to query databases of multiple alignments with single sequences and to query sequence databases with multiple alignments. It has been observed that such searches are more sensitive and selective than sequence-to-sequence searches.

Multiple alignments of many sequences and those with different sequence weights are difficult to visualize. Sequence logos are a graphical way for presenting multiple alignments. A different graphical view of multiply aligned sequences is by a tree relating their sequence similarity. This is very useful when the aligned sequences are of several functional subtypes and we wish to know to which one our sequence/s belongs. A way to estimate the significance of a tree is by bootstrap values. These values have been used to find number of times branching point have been observed with different models of the
input data. The higher the fraction of the bootstrap value (number of observations/number of trials) indicates that the sequences emerging from that branch point cluster together.

Multiple alignments are powerful tools for identifying new members of the aligned group. It is possible to query databases of multiple alignments with single sequences and to query sequence databases with multiple alignments. It has been seen that such searches are more sensitive and selective than sequence-to-sequence searches.

The Blimps program has been used to query both protein and nucleotide sequence databases with protein blocks and vice versa. The queries are single sequences or blocks. The program is available on the WWW and by e-mail server for searching multiple alignment databases with single sequences.

The MAST program [3]has been used to query sequence databases with blocks. Protein or nucleotide databases are queried with protein blocks. The query can be a single block or all the blocks of a protein family.

The LAMA program has been used to search blocks databases with block queries. Queries can be obtained from the Blocks database, BlockMaker program or by reformatting multiple alignments.

3.5 Phylogenetic Analysis

The sequencing of DNA and proteins has become easy and fast with the use of automated tools. Similarity searches and multiple alignments of sequences have been used to find the relationship between the sequences.

Based on given a set of sequences, the evolutionary relationship among genes has been reconstructed. To reconstruct the evolutionary relationship, a branched structure termed a phylogeny or tree has been created. A phylogeny illustrates the relationship between the sequences. Analysis of phylogeny of a family has been done to know about molecular
evolution. Molecular evolution is based on mutations imparting the DNA to derive during evolution. The number of types of changes in residues of a MSA can be used to start a phylogenetic analysis. Each column in a MSA denotes mutations that occur at one site during evolution of sequence family.

Phylogenetic Trees

The method [4] of converting MSA to a phylogenetic tree is used to reduce the problem of a multiple alignment to an iterative process of pair-wise alignments. The purpose works as follows:

- Compute all pair-wise distance between given sequence
- Compute a tree by single linkage clustering by using methods like UPGNA or Nearest Neighbor.
- Align the sequences in an orderly fashion.

An evolutionary relationship has been represented using phylogenetic trees. A tree is 2D graph showing evolutionary relationships among organisms. This separate source of sequences has been referred as taxa, defined as phylogenetically distinct units on the tree. The tree is composed of nodes representing the taxa and branches representing the relationships among the taxa. An example of a rooted tree of 4 taxa is shown in Figure

3.4.

Figure 3.6: Example of a rooted tree of 4 taxa showing branch lengths proportional to the number of changes in branch

The most used terms in phylogenetic analysis are given in Table 3.4.

Table 3.4: Terms Used in Phylogenetic Analysis

Node	A Node Represents a Taxonomic Units it can be a Taxon
Branch	Defines the relationship between the taxa in terms of descent and ancestry.
Topology Branch length	Is the branching pattern Often represents the number of chances that have occurred in that branch.
Root	Is the common ancestor of all taxa.
Distance scale	Scale which represents the number of differences between sequences

3.5.1 Methods of Phylogenetic Analysis

There are two approaches to deriving phylogenetic trees. One approach makes no reference no reference to any historical model of relationships. Proceed by measuring a set of distances between species and generate the tree by a hierarchical Clustering procedure. This is called the phonetic approach. The alternative, the cladistic approach, is to consider possible pathways of evolution, infer the features of ancestor at each node and choose an optimal tree according to some model of evolutionary change. Phenetics is based on similarity; cladistics is based on genealogy.

Clustering Methods

Clustering approaches to determination of phylogenetic relationships are explicitly nonhistorical. A simple clustering procedure works as follows: Given a set of species, determine for all pairs a measure of similarity or difference between them. To create a tree from the set of dissimilarities, first choose the two most closely related species and insert a node to represent their common ancestor. Then replace the two selected species by a set containing both and replace the distances from the pair to the others by the average of distances of the two selected species to the others. Now we have a set of pairwise dissimilarities not between individual species but between sets of species. (Regard each remaining individual species as a set containing only one element.) Then repeat the process, as the following example.

Example: Consider four species characterized by homologous sequences ATCC, ATGC, TTCG and TCGG. Taking the number of differences as the measure of dissimilarity between each pair of species, use a simple clustering procedure to derive a phylogenetic tree.

The distance matrix is:

	ATCC	ATGC	TTCG	TCGG
ATCC	0	1	2	4
ATGC		0	3	3
TTCG			0	2
TCGG				0

Because the matrix is symmetric, we need fill in only the upper half. The smallest nonzero distance is 1, between ATCC and ATGC. Therefore our first cluster is \{ATCC, ATGC\}. The tree will contain the fragment:

The reduced distance matrix is:
(ATCC, ATGC)
TTCG
TCGG

TTCG TCGG
$1 / 2(2+3)=2.5 \quad 1 / 2(4+3)=3.5$
0
2
0

The next cluster is \{TTCG, TCGG\}, distance 2. Finally, linking the clusters \{ATCC, ATGC $\}$ and $\{T T C G$, TCGG $\}$ gives the tree:

Branch lengths have been assigned according to the rule:
Branch length of edge between nodes X and $\mathrm{Y}=1 / 2$ distance between X and Y .
Whether the branch lengths are truly proportional to divergence times of the taxa represented by the nodes must be determined from external evidence.

This process of tree building is called the UPGMA method (Unweighted Pair Group Method with Arithmetic mean).

Cladistic Methods

Cladistic methods [5] deal explicitly with the patterns of ancestry implied by the possible trees relating a set of taxa. Their aim is to select the correct tree by utilizing an explicit model of the evolutionary process. The most popular cladistic methods in molecular phylogency are the maximum parsimony and maximum likelihood approaches. They are specialized to sequence to sequence data, starting from a multiple sequence alignment.

The maximum parsimony [6] method defines an optimal tree as the one that postulates the fewest mutations. For instance, given species characterized by homologous sequences ATGC, ATGG, TCCA and TTCA, the tree postulates four mutations:

An alternative tree postulates seven mutations.

Note that the second tree implies that the $\mathrm{G} \longrightarrow$ A mutation in the forth position occurred twice independently. The former tree is optimal according to the maximum parsimony method, because no other tree involves fewer mutations.

The maximum likelihood method assigns quantitative probabilities to mutational events, rather than merely counting them. Like maximum parsimony, maximum likelihood reconstructs ancestors at all nodes of each tree considered; but it also assigns branch lengths based on probabilities of mutational events. For each possible tree topology, the assumed substitution rates are varied to find the parameters that give the highest likelihood of producing the observed sequences. The optimal tree is the one with the highest likelihood of generating the observed data.

3.5.2 Computational Considerations

Cladistic methods- maximum parsimony and maximum likelihood requires large amounts of computer time. By considering Cladistic methods the total number of possible trees, increases very rapidly with the number of species.

Calculated phylogenies are often approximations, methods for testing them are:

1. Comparison of phylogenies obtained from different characters describing the same set of taxa. If trees produced from different characters share a subtree,
perhaps that portion of the phylogency has been determined reliably and other portions have not.
2. Analysis of subsets of taxa should give the same answer - respect to the subset- as appears within the full tree.
3. Formal statistical test, involving returning the calculation on subsets of the original data, are known as jackknifing and bootstrapping:

- Jackknifing is calculation with data sets samples randomly from the original data. For phylogeny calculations from multiple sequence alignments. Select different subsets of the positions in the alignment and return the calculation. Finding that each subset gives the same phylogenetic tree lends it credibility. If such subset gives a different tree, none of them is trustworthy.
- Bootstrapping is similar to Jackknifing except that the positions chosen at random may include multiple copies of the same position to form data sets of the same size as the original to preserve statistical properties of the sampling.

4. If there are very long edges, then this has been considered seriously because there is the possibility of unequal variation in evolutionary rate that may have disturbed the calculation. So outgroup taxa has been introduced to check this.

3.5 References

[1] Bryan Bergeron ." Bioinformatics Computing" Eastern Economy Edition, 306310,2003.
[2] S.C. Rastogi, N.Mendiratta, P. Rastogi, "Bioinformatics Methods and Applications", PHI, 93-100, 2006.
[3] http://bioinformatics.weizmann.ac.il/blocks/process_blocks.html
[4] Arthur M. Lesk. "Introduction to Bioinformatics" Oxford University Press, 203-209, 2005.
[5] http://evolution.genetics.washington.edu/phylip/software.html
[6] Whelan , S. Lio , P. \& Goldman, N., Molecular Phylogenetics : State -of-the-art methods for looking into past, Trends in Genetics,17, 262-272, 2001

Chapter -4

Simil ar it ieS Search and Sequence Alignment

Chapter 4
 SIMILARITIES SEARCH AND SEQUENCE
 ALIGNMENT

4.1 FASTA Algorithm

The FASTA algorithm [1] is a heuristic method for string comparison. FASTA compares a query string against a single text string. When searching the whole database for matches to a given query, the query using the FASTA algorithm to every string in the database has been compared.

When looking for an alignment, a few segments have been found in which there has absolute identity between the two compared strings. The algorithm is using this property and focuses on these identical regions.

The stages in the FASTA algorithm are as follows:

1. An integer parameter called ktup (short for k respective tuples), has been specified and ktup-length matching substrings of the two strings has been looked. The standard recommended ktup values are six for DNA sequence matching and two for protein sequence matching. The matching ktup-length substrings are referred to as hot spots. Consecutive hot spots are located along the dynamic programming matrix diagonals. This stage can be done efficiently by using a lookup table or a hash to store all the ktup-length substrings from one string, and then search the table with the ktup-length substrings from the other string.
2. In this stage 10 best diagonal runs of hot spots in the matrix has been found out. A diagonal run is a sequence of nearby hot spots on the same diagonal.

In order to evaluate the diagonal runs, FASTA gives each hot spot a positive score, and the space between consecutive hot spots in a run is given a negative score that decreases with the increasing distance. The score of the diagonal run is the sum of the hot spots scores and the interspot scores. FASTA finds the 10 highest scoring diagonal runs under this evaluating scheme.
3. A diagonal run specifies a pair of aligned substrings. The alignment is composed of matches (the hot spots) and mismatches (from the interspot regions), but it does not contain any indels because it is derived from a single diagonal. The runs have been using an amino acid (or nucleotide) substitution matrix, and pick the best scoring run. The single best subalignment found in this stage is called init ${ }_{1}$. Apart from computing init $_{1}$, a filtration has been performed and the diagonal runs achieving relatively low scores have been discarded.
4. Until now any indels in the subalignments have not been allowed. Now it has been tried to combine "good" diagonal runs from close diagonals, thus achieving a subalignment with indels allowed. Then after "good" subalignments have been taken from the previous stage (subalignments whose score is above some specified cutoff) and attempt to combine them into a single larger high-scoring alignment that allows some spaces.
5. In this step FASTA computes an alternative local alignment score, in addition to init $_{n}$. A diagonal segment has been defined by init t_{1} in the dynamic programming matrix. A narrow diagonal band in the matrix has been considered, centered along this segment. The optimal local alignment in this band has been computed, using the ordinary dynamic programming algorithm. Assuming that the best local alignment is indeed within the defined band, the local alignment algorithm essentially merges diagonal runs found in the previous stages to achieve a local alignment which may contain indels. The band width is dependent on the ktup choice. The best local alignment computed in this stage is called opt.
6. In the last stage, the database sequences are ranked according to init $_{n}$ scores or opt scores, and the full dynamic programming algorithm is used to align the query sequence against each of the highest ranking result sequences.

Although FASTA is a heuristic, and as such it is possible to show instances in which the alignments found by the algorithm are not optimal, it is claimed that the resulting alignment scores well compare to the optimal alignment, while the FASTA algorithm is much faster than the ordinary dynamic programming alignment algorithm.

4.1.2 FASTA Implementation

FASTA at the EBI is one of the most popular FASTA implementation. The FASTA input form is given in Figure 4.1.

Figure 4.1: FASTA page at EBI

The Histogram

The histogram [2] compares the predicted extreme value distribution of local similarity scores, represented by asterisks with the actual number obtained, represented by equal signs. Each bar represents the number of local alignment having the z-opt score indicated in the first column. The second column is the actual number of sequences with that z-opt scores. The third column is the predicted number of alignments having z -scores in that interval.

For histogram for this particular sequence is given in Figure 4.2.

```
- opt E()
    < 20 1040 0:=
    22 0: one = represents 1534 library sequences
    24 4 1:*
    28 53 201:*
    227 1223:*
        4728:= *
        34 5065 12823:====
        36 16019 26336:============
        38 33416 43523:========================
        40 58656 60711:===========================================*
        42 81562 74211:==================================================*=======
        4487125
        81862:===========================================================
            4692000
        83378:==============================================================
            48 83023
        79825:========================================================
            5083389
        72841:=========================================================
            5268683 64039:===============================================
            54 58489 54701:=====================================*===
            56 48841 45692:===============================*==
            58 36330 37512:=========================**
            60 26755 30387:=================== *
            62 21306 24361:=============== *
            64 17453 19374:=============*
            66 13701 15313:=========*
            68 10436 12045:=======**
            70 8222 9439:=======*
            72 6047 7376:====*
            74 5090 5751:===*
```

Figure 4.2: Histogram from FASTA output

The Sequence Listing

The next part of the output is a listing of the best scoring sequences in the database. The best alignments are reported first and the worst hits last.

The first column identifies the database sequence reported by database, database accession number and database identifier. The next column reports the total length of database sequence. The final scores are reported in the opt column and the E () value for that particular database sequence is reported in the last column.

Figure 4.3: Best Scoring Sequences

Figure 4.4: Visual FASTA Result

The Local Alignments

After the list of hits, the actual local alignments identified are displayed. The initn and initl columns report the local similarity scores calculated at different stages of the FASTA procedure. For each alignment, the various scores and E () values are reported again along with some new information. The Smith-Waterman score reported is the same as the opt score. The percent identity and length of the alignments are displayed.

SUBMISSION PARAMETERS						
Title		Sequence	Database			uniprot
Sequence length		338	Sequence type			p
Program		fasta	Version			35.04 Mar. 8, 2009
Expectation upper value		10.0	Matrix			BL50
Sequence range		1 -	Humber of scores			50
Humber of alignments		50	Word size			2
Open gap penalty		-10	Gap extension penalty			-2
Histogram false						
Show Annotation	Summary Table	FASTA	MView	VisualFasta	XML	SUBMIT ANOTHER JOB

Figure 4.5: Local Alignment Score

Significance of the E-values

FASTA calculates an E-value (expectation of significance). E () values represent the number of sequences having a given alignment occurred by chance. In the above example of FASTA search, the best hits mostly have E () values of zero (0). This can be interpreted as: "we can expect zero sequences to have the score this alignment has, strictly by chance".

E () values are calculated from the probability derived from the extreme value distribution for each z-opt score interval, and the number of sequences in the database. Therefore, as more sequences are added to a database, the E () values can change and sequences identified in one search may not be found in a later one.

4.2. BLAST Algorithm

BLAST is one of the most widely used bioinformatics programs, because it addresses a fundamental problem and the algorithm emphasizes speed over sensitivity. This emphasis on speed is vital to making the algorithm practical on the huge genome databases currently available, although subsequent algorithms can be even faster.

BLAST is about 50 times faster than dynamic programming; however, it cannot guarantee the optimal alignments of the query and database sequences as in the dynamic programming, but just works to find the related sequences in a database search. BLAST is more time efficient than FASTA by searching only for the more significant patterns in the sequences, but with comparative sensitivity.

Algorithm

To run, BLAST requires a query sequence to search for, and a sequence to search against (also called the target sequence) or a sequence database containing multiple such sequences. BLAST finds subsequences in the database which are similar to subsequences in the query. In typical usage, the query sequence is much smaller than the database, e.g., the query may be one thousand nucleotides while the database is several billion nucleotides.

The main idea of BLAST is that there are often high-scoring segment pairs (HSP) contained in a statistically significant alignment. BLAST searches for high scoring sequence alignments between the query sequence and sequences in the database using a heuristic approach that approximates the Smith-Waterman algorithm. The exhaustive Smith-Waterman approach is too slow for searching large genomic databases such as

GenBank. Therefore, the BLAST algorithm uses a heuristic approach that is less accurate than the Smith-Waterman but over 50 times faster.

An overview of the BLASTP algorithm (a protein to protein search) is as follows:

1. Remove low-complexity region or sequence repeats in the query sequence. Low-complexity region means a region of a sequence is composed of few kinds of elements. These regions might give high scores that confuse the program to find the actual significant sequences in the database, so they should be filtered out. The regions is to be marked with an X (protein sequences) or N (nucleic acid sequences) and then be ignored by the BLAST program. To filter out the lowcomplexity regions, the SEG program is used for protein sequences and the program DUST is used for DNA sequences.

2. Make a k-letter word list of the query sequence.

The words is listed of length 3 in the query protein sequence by taking $k=3(k$ is usually 11 for a DNA sequence) "sequentially", until the last letter of the query sequence is included. The method can be illustrated in Figure 4.6.

Figure 4.6: The method to establish the k-letter query word list

3. List the possible matching words.

This step is one of the main differences between BLAST and FASTA. FASTA cares about all of the common words in the database and query sequences that are listed in step 2; however, BLAST cares about only the high-scoring words. The
scores are created by comparing the word in the list in step 2 with all the 3-letter words. By using the scoring matrix (substitution matrix) to score the comparison of each residue pair, there are $20^{\wedge} 3$ possible match scores for a 3-letter word.

4. Organize the remaining high-scoring words into an efficient search tree.

 This is for the purpose that the program can rapidly compare the high-scoring words to the database sequences.
5. Repeat step $\mathbf{1}$ to $\mathbf{4}$ for each k-letter word in the query sequence.

6. Scan the database sequences for exact match with the remaining high-scoring words.

The BLAST program scans the database sequences for the remaining high-scoring word, such as PEG, of each position. If an exact match is found, this match is used to seed a possible ungapped alignment between the query and database sequences.

7. Extend the exact matches to high-scoring segment pair (HSP).

- The original version of BLAST stretches a longer alignment between the query and the database sequence in left and right direction, from the position where exact match is scanned. The extension does not stop until the accumulated total score of the HSP begins to decrease. A simplified example is presented in Figure 4.7.

Figure 4.7: The process to extension the exact match.

- BLAST2 adopts a lower neighborhood word score threshold to maintain the same level of sensitivity for detecting sequence similarity. Therefore, the possible matching words list in step 3 becomes longer. Next, the exact matched region, within distance A from each other on the same diagonal in Figure 4.8, has been joined as a longer new region. Finally, the new regions are then extended as the same method in the original version of BLAST, and the HSPs' (High-scoring segment pair) scores of the extended regions are then created by using a substitution matrix as before.

Figure 4.8: The positions of the exact matches.

8. List all of the HSPs in the database whose score is high enough to be considered.

The HSPs have been listed whose scores are greater than the empirically determined cutoff score S . By examining the distribution of the alignment scores modeled by comparing random sequences, a cutoff score S can be determined such that its value is large enough to guarantee the significance of the remained HSPs.

9. Evaluate the significance of the HSP score.

BLAST next assesses the statistical significance of each HSP score by exploiting the Gumbel extreme value distribution (EVD). In accordance with the Gumbel EVD, the probability p of observing a score S equal to or greater than x is given by the equation

$$
p(S \geq x)=1-\exp \left(-e^{-\lambda(x-\mu)}\right)
$$

Where $\mu=\frac{\left[\log K m^{\prime} n^{\prime}\right]}{\lambda}$
The statistical parameters λ and K are estimated by fitting the distribution of the ungapped local alignment scores, of the query sequence and a lot of shuffled versions (Global or local shuffling) of a database sequence, to the Gumbel extreme value distribution. λ and K depend upon the substitution matrix, gap penalties, and sequence composition (the letter frequencies). The m' and n ' is the effective length of the query and database sequence, respectively. The original sequence length is shortened to the effective length to compensate for the edge effect. They can be calculated as:

$$
\begin{aligned}
& m^{\prime} \approx m-\frac{(\ln K m n)}{H} \\
& n^{\prime} \approx n-\frac{(\ln K m n)}{H}
\end{aligned}
$$

Where H is the average expected score per aligned pair of residues in an alignment of two random sequences. Altschul and Gish gave the typical values, λ $=0.318, \mathrm{~K}=0.13$, and $\mathrm{H}=0.40$, for ungapped local alignment. The expect score E of a database match is the number of times that an unrelated database sequence would obtain a score S higher than x by chance. The expectation E obtained in a search for a database of D sequences is given by

$$
E \approx 1-e^{-p(x>s) D}
$$

Furthermore, when $p<0.1$, E could be approximated by the Poisson distribution as: $E \approx p D$

10. Make two or more HSP regions into a longer alignment.

Sometimes, it has been found that two or more HSP regions in one database sequence that can be made into a longer alignment. This provides additional evidence of the relation between the query and database sequence. There are two methods, the Poisson method and the sum-of scores method, to compare the significance of the newly combined HSP regions. Suppose that there are two
combined HSP regions with the sets of score $(65,40)$ and $(52,45)$, respectively. The Poisson method gives more significance to the set with the lower score of each set is higher ($45>40$). However, the sum-of-scores method prefers the first set, because $65+40(105)$ is greater than $52+45(97)$. The original BLAST uses the Poisson method; gapped BLAST and the WU-BLAST use the sum-of scores method.

11 Show the gapped Smith-Waterman local alignments of the query and each of the matched database sequences.

o The original BLAST only generates ungapped alignments including the initially found HSPs individually, even when there is more than one HSP found in one database sequence.
o BLAST2 versions produce a single alignment with gaps that can include all of the initially found HSP regions. Note that the computation of the score and its corresponding E score is involved with the adequate gap penalties.

12 Report matches whose expect score is lower than a threshold parameter E.

4.2.1 BLAST: Output

The protein sequence has been used for BLAST output [4]. First there is a short description of the program options chosen. Then there is a list of all of database sequences that match our query sequence. Several numbers are assigned to each of these sequences that represent the quality of the match.

Figure 4.9: Output from BLAST Query

Figure 4.10: Query sequence section of Nucleotide Blast Form.

Figure 4.11: Graphic Summary of Nucleotide Blast Form

4.2.2 BLAST Services

The BLAST web server, hosted by the NCBI, allows with a web browser to perform similarity searches against constantly updated databases of proteins and DNA that include most of the newly sequenced organisms.

BLAST is actually a family of programs (all included in the blastall executable). These include:

1. Nucleotide-nucleotide BLAST (blastn)

This program, given a DNA query, returns the most similar DNA sequences from the DNA database that the user specifies.

2. Protein-protein BLAST (blastp)

This program, given a protein query, returns the most similar protein sequences from the protein database that the user specifies.

3. Position-Specific Iterative BLAST (PSI-BLAST)

This program is used to find distant relatives of a protein. First, a list of all closely related proteins is created. These proteins are combined into a general "profile" sequence, which summarizes significant features present in these sequences. A query against the protein database is then run using this profile, and a larger group of proteins is found. This larger group is used to construct another profile, and the process is repeated By including related proteins in the search, PSI-BLAST is much more sensitive in picking up distant evolutionary relationships than a standard protein-protein BLAST.

4. Nucleotide 6-frame translation-protein (blastx)

This program compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database.

5. Nucleotide 6-frame translation-nucleotide 6-frame translation (tblastx)

This program is the slowest of the BLAST family. It translates the query nucleotide sequence in all six possible frames and compares it against the six-frame translations of a nucleotide sequence database. The purpose of tblastx is to find very distant relationships between nucleotide sequences.

6. Protein-nucleotide 6-frame translation (tblastn)

This program compares a protein query against the all six reading frames of a nucleotide sequence database.

7. Large numbers of query sequences (megablast)

When comparing large numbers of input sequences via the command-line BLAST, "megablast" is much faster than running BLAST multiple times. It concatenates many input sequences together to form a large sequence before searching the BLAST database, and then post-analyze the search results to glean individual alignments and statistical values.

Table 4.1: BLAST Program Options

Program	Query Sequence	Database	Alignment Type
Blastp	Protein	Protein	Gapped
Blastn	Nucleic acid	Nucleic acid	Gapped
Blastx	Translated nucleic Acid	Protein	Each frame gapped
Tblastn	Protein	Translated nucleic Acid	Each frame gapped
Tblastx	Translated nucleic Acid2	Translated nucleic Acid	Ungapped

4.2.3 FILTERING and GAPPED BLAST

Filtering is the process of removing the undesired sequences from the query sequence prior to the search. BLAST filters regions of low-complexity. If my sequence contains large regions of "low complexity" it may not significant hits to the database.

GAPPED- BLAST

Gapped -BLAST is BLAST 2.0[6]. It represents BLAST plus a new heuristic for gapped alignments. It allows the introduction of gaps (deletions and insertions) into alignments. With a gapped alignment tool, homologous domains do not have to be broken into several segments. The programs, blastn and blastp offer fully gapped alignments. blastx
and tblastn have 'in-frame' gapped alignments and use sum statistics to link alignments from different frames.

Output of BLAST 2.0 is as follows:

- Information on Query sequence and Databases used
- Histogram, like the FASTA histogram
- Scores in bits-E value: number of hits expected to be reported by chance
- \quad Alignments found $($ default $=50)$
- Parameters used in BLAST search.

4.2.4 FASTA and BLAST Algorithms Comparison

Table 4.2: Comparison of BLAST and FASTA

Abstract

1.FASTA offers many of the same functionalities as BLAST. Although BLAST tools are faster, FASTA provides more accurate sequence alignments. BLAST uses a different algorithm, but its results are similar to those found by FASTA. BLAST uses a general set of rules to compare specific regions of similarity for a given search string. BLAST is more than a precision matching tool. It provides a method for comparing the structures and functions of samples to genetic sequences and proteins 2.FASTA is superior to BLAST for translated DNA-protein comparison and DNA database searches because it calculates a single alignment that allows frame shifts. In contrast, BLAST performs forward-frame searches separately. By treating forwardreading frames as a single sequence, FASTA makes it much easier to produce highquality alignments that extend the length of the protein sequence, resulting in improved sensitivity. 3.FASTA is a little more flexible than BLAST for DNA sequence searches. It provides small word sizes to accommodate polymerase chain reaction primers having short sequences. And FASTA uses several different scoring matrixes to help identify sequences of varying lengths.

4.3 References

[1] httep://www.ebi.ac.uk/fasta33/genomics.html
[2] http://www.ebi.ac.uk/snpfasta3/index.html
[3] http://www.ncbi.nlm.nih.gov/BLAST
[4] www.ch.ebnet.org/software/bBLAST.html
[5] http://www.ncbi.nlm.gov/BLAST/
[6] S.C. Rastogi, N.Mendiratta, P. Rastogi, "Bioinformatics Methods and Applications", PHI, 144-145, 2006.

Chapter -5

Protein Structure and
 Chemif or matiCs

Chapter 5

 PROTEIN STRUCTURE AND CHEMINFORMATICS

 PROTEIN STRUCTURE AND CHEMINFORMATICS}

5.1 Introduction

The subunits of a protein are amino acids or to be precise amino acid residues. An amino acid consists of a central carbon atom (the alpha Carbon $\mathrm{C}_{\text {alpha }}$) and an amino group $\left(\mathrm{NH}_{2}\right)$, a hydrogen atom (H), a carboxy group (COOH) and a side chain (R) which is bound to the $\mathrm{C}_{\text {alpha }}$. Different side chains $\left(\mathrm{R}_{\mathrm{i}}\right)$ make up different amino acids with different physico-chemical properties. Proteins are made out of 20 amino acids (there is a list with corresponding three- and one-lettercodes in the section on Biological Preliminaries). A peptide bond is formed via covalent binding of the Carbon atom of the Carboxy group of one amino acid to the nitrogen atom of the amino group of another amino acid by dehydration:

Figure 5.1: Peptide bond linking two amino acids

A polypeptide chain is a chain of amino acid residues linked together by peptide bonds. The backbone of the polypeptide is given by the repeated sequence of three atoms of each residue in the chain: the amide N , the alpha Carbon $\mathrm{C}_{\text {alpha }}$ and the Carbonyl C . Rotations in the chain take place about the bonds in the backbone, where as the peptide
bond usually is rigid (Figure 2). The existence of an amino group (N-Terminal) at one end of the chain and a carboxy group (C-Terminal) at the other end designs a direction to the chain. Conventionally the beginning of a polypeptide is its N -Terminal.

Figure 5.2: Torsion (or dihedral) angles of the backbone

5.2 Different Levels of Protein Structure

The wide variety of 3-dimensional protein structures corresponds to the diversity of functions proteins fulfill.

Proteins fold in three dimensions. Protein structure is organized hierarchically from socalled primary structure to quaternary structure. Higher-level structures are motifs and domains.

Above all the wide variety of conformations is due to the huge amount of different sequences of amino acid residues. The primary structure is the sequence of residues in the polypeptide chain.

Secondary structure is a local regularly occurring structure in proteins and is mainly formed through hydrogen bonds between backbone atoms. So-called random coils, loops or turns don't have a stable secondary structure. There are two types of stable secondary structures: Alpha helices and beta-sheets (Figure 3 and Figure 4). Alpha-helices and beta-sheets are preferably located at the core of the protein, where as loops prefer to reside in outer regions.

Figure 5.3: An alpha helix: The backbone is formed as a helix. An ideal alpha helix consists of 3.6 residues per complete turn. There are hydrogen bonds between the carboxy group of amino acid n and the amino group of another amino acid $n+4[1][2]$. The mean phi angle is -62 degrees and the mean psi angle is -41 degrees [3].

Figure 5.4: An antiparallel beta sheet. Beta sheets are created, when atoms of beta strands are hydrogen bond. Beta sheets may consist of parallel strands, antiparallel strands or out of a mixture of parallel and antiparallel strands [4].

Tertiary structure describes the packing of alpha-helices, beta-sheets and random coils with respect to each other on the level of one whole polypeptide chain. Figure 5 shows the tertiary structure of Chain B of Protein Kinase C Interacting Protein.

Figure 5.5: Secondary structure of Protein. Helices are visualized as ribbons and extended strands of betasheets by broad arrows

Quaternary structure only exists, if there is more than one polypeptide chain present in a complex protein. Then quaternary structure describes the spatial organization of the chains. Figure 5.6 shows both, Chain A and Chain B of Protein Kinase C Interacting Protein forming the quaternary structure.

Figure 5.6: Quaternary structure of Protein.

5.3 Prediction Methods

Protein's 3D structure helps us to understand its functionality and provides means for planning experiments and drug design. Experimental methods given by X-ray crystallography and NMR spectroscopy to determine protein structure. The Brookhaven Protein Data Bank (PDB) is the repository for those structures. Files including atom coordinates which are suited for visualization by graphical molecule viewers like rasmol can be obtained at this site. PDB is also searchable with a sequence as a query, e.g. with the BLAST service located at NCBI with a polypeptide as a query.

The various prediction methods are based on the assumption, that the three-dimensional protein structure is determined by its primary structure.

Structure prediction methods are divided two categories:

1. Ab Initio Methods
2. Heuristic Methods

1. Ab Initio Methods

Ab Initio methods of determining protein structure are based on sequence data and molecular dynamics. One assumption is that a protein's secondary structure can be completely defined as a function of bond lengths, bond angles and torsion angles. The overall process of predicting tertiary protein structure from known sequence is illustrated in Figure 5.7. Given a sequence of amino acids, the first step is to generate a secondary structure by using bond lengths, angles and torsion angles. The next phase of process, generating the tertiary structure, involves methods such as molecular dynamics to create a library of tertiary protein structure.

Molecular dynamics calculates the force on each atom and move that atom a distance in small unit of time. The process is repeated until a pre-determined time limit is reached.

Figure 5.7: General Ab Initio Protein Structure Process

From a library of 3D structure candidates, the most promising structures are filtered from less capable structures. A common method of filtering to identify the most stable molecular conformations is based on the assumption that the native conformation of a protein is the conformation with the lowest energy. Once the top protein structure candidate is identified, it is validated and visualized. In validation process there is comparison of the predicted protein structure with a structure derived from NMR experiments. Validation process involves assigning a figure of merit to the predicted structure, based on comparison to the gold standard. The most often-used figure of merit in protein structure comparison is the root mean squared deviation (RMSD). The calculation for RMSD, expressed in Angstroms (Figure 5.8).

Figure 5.8: RMSD Calculation.

Where,
$R M S D=\sqrt{\frac{\sum_{i} d_{i}^{2}}{N}}$
$\mathrm{N}=$ Number of atoms
$\mathrm{d}=$ the distance in Angstroms between corresponding atoms in experimental and predicted protein structures.

Identical structures with perfect match would have an RMSD of 0; matching short to moderate -length protein structures have RMSD in the 1-3 Angstrom range. An RMSD of 5 or 6 Angstroms may be intolerable in a molecule with only 50 residues, but perfectly acceptable in large protein molecules for applications such as searching structure databases for known protein structures. However, even a relative measure, RMSD is valuable when working within a single family of proteins because the size of structures will be about same.

Visualization of the protein structure is performed through protein engines on the web, such as Rasmol or SWISS-PDBViewer.

2. Heuristic Methods

Heuristic methods use a database of protein structures to make prediction about the structure of newly sequenced proteins. In heuristic methods most newly sequenced proteins share structural similarities with proteins whose structures and sequences are known, and that these structures can serve as templates for new sequences. It is also assumed that relatively substantial changes in amino acid sequence may not alter the protein structure.

The main heuristic method of predicting protein structure from amino acid sequence data is comparative modeling i.e. to find similarities in amino acid sequence. Comparative modeling assumes that protein with similar amino acid sequences share the same basic 3D structure.

The basis for comparative modeling is typically the PDB, which contains description of 3D structures of proteins and other molecules as determined by NMR and X-ray crystallography experiments. Protein structures defined within Protein Database Modeling (PDM) and virtually every other protein structure database are based on assumptions that may not be completely valid. For example, the common assumption that amino acid sequences result in similar protein structures is known to have exceptions.

Comparative modeling is an iterative, multi-phase process. In Figure 5.9, given protein sequence data, the main phases of process are template selection, alignment, model building and evaluation. 3D visualization is often performed as part of the evaluation phase. The key activities in each phase of the comparative modeling process are outlined here.

Figure 5.9: Comparative Modeling Process

Template Selection

Template selection involves searching a template database for the closest match or matches to the new (target) molecules, based on the target's amino acid sequence. The goal of template selection is to discover a link between the target protein and a known protein structure. For this usually PDB are used. Selecting an appropriate group of database entries from the database to serve as structure templates is based on sequences comparisons or threading.

Pairwise sequence comparison involves searching selections of the template candidate for amino acid sequences that are similar to sequences in the target protein. Multiple sequence comparison relies on an iterative algorithm that expands the template search to include all candidate templates from the template database.

Threading involves aligning the sequence of the target protein with the 3D structure of a template to determine whether the amino acid sequences is spatially and chemically similar to the template.

Alignment

The main aim of the alignment phase of comparative modeling is to align the sequence of polypeptides in the target sequence with that of the template structure in order to position the target and template in the same 3D orientation. Many of the alignment procedures are based on dynamic programming techniques.

Model Building

Actual model building begins only after identification of the libraries of templates that match the target protein. The structure of one of the template exactly fits the target protein, signifying that the structure of that target is identified to that of the template.

Rigid body assembly approach uses large segments of the template that are dissected at natural folds and reassembled over the superimposed structure of the target molecule. The accuracy of model building through rigid assembly is increased because there is an increased chance of availability of sub-assembly of molecule that matches the sequence in a corresponding area in the target protein as shown in Figure 5.10.

Figure 5.10: Rigid Body Assembly of Protein Structure

The aim of segment matching is to identify areas on structure templates that match areas in the target protein with similar sequences. These short matching segments in template are used as guiding positions in the target molecule, as shown in Figure 5.11.

Figure 5.11: Short Segment Assembly of Protein Structure

Evaluation

In evaluating comparative modeling, even best methods like ab initio methods rarely achieve accuracies approaches 70 percent. The modeling process is repeated dozen of times before a reasonable target structured is constructed. In this evaluation process visualization tool is used to validate gross measures.

For quantitative evaluation, a measure of target-template similarity can be used. The greater the similarity of the model with the closest template, as measured by RMSD, the more likely the model is an accurate prediction of the actual structure.

5.4 Secondary Structure Prediction

Linus Pauling [5] suggested that amino acid chains could assume regular local structures, namely alpha helices and beta strands. In between these secondary structure elements there are turns or loops. There is a long tradition of attempts to predict local secondary structure based on sequence. State-of-the-art secondary structure prediction generally observes the frequencies of occurrences of k-tuples in particular secondary structures. Based on this statistic prediction can be made for a new sequence.

Chou and Fasman [6] apply a basic log-odds approach for the occurences of single amino acid residues in the sequence, while the GOR method [7] which is based on information theory uses all possible pair frequencies within a sliding window.

As long as one restricts to the problem to the prediction for a single sequence there seems to be an inherent limit in prediction accuracy of around 65\%. Multiply aligned sequences offer a means to surpass this limit. The PHD-method [8] uses evolutionary information from multiple sequence alignments in a multi level system of neural networks. So, the average accuracy of PHD-method is greater than 72%.

The GOR method is used to estimate for the prediction of secondary structure of protein.

5.5 The Protein Folding Problem

It has long been known that the structure of a protein is determined purely by the amino acid sequence [9], and the structure of the protein determines the function. The function of a protein depends entirely on the ability of the protein to fold rapidly and reliably to its native structure.

This folding process satisfy two conditions - one thermodynamic, and one kinetic. The thermodynamic consideration is that the protein adopts a single, stable, folded conformation. The kinetic requirement is that the protein must fold to the native state on an appropriate timescale. It has been suggested that for a protein of 100 amino acids, a purely random conformational search would require around 10-36 s or around 10-29
years,[10] and yet proteins are able to fold on a timescale of milliseconds to seconds. This suggests that only a small amount of conformational space is sampled during the folding process and this in turn implies the existence of kinetic folding pathways, [11]. This paradox of how proteins fold rapidly and reliably to their native conformation is known as the protein folding problem.

The computational difficulty of protein folding is classified as an NP-complete problem. If a problem is NP-complete, it means that a particular solution can be checked in a polynomial time but to solve the whole problem requires an exponential time algorithm. A problem is in NP if it has a nondeterministic polynomial time solution. This means that the solution can be checked within polynomial time. As the exponential function in an NP-complete problem increases as much more rapid rate than a polynomial, these problems are untraceable.

5.6 Cheminformatics

5.6.1 Introduction

Cheminformatics (also known as chemoinformatics and chemical informatics) is the use of computer and informational techniques, applied to a range of problems in the field of chemistry. These in silico techniques are used in pharmaceutical companies in the process of drug discovery. These methods can also be used in chemical and allied industries in various other forms.

Chemoinformatics [12] is the mixing of those information resources to transform data into information and information into knowledge for the intended purpose of making better decisions faster in the area of drug lead identification and optimization. Cheminformatics combines the scientific working fields of chemistry and computer science for example in the area of chemical graph theory and mining the chemical space. It is to be expected that the chemical space contains at least 10^{60} molecules. Cheminformatics can also be applied to data analysis for various industries like paper and
pulp, dyes and such allied industries. Enzymes are a subset of receptor-like proteins that are directly responsible for catalyzing the biochemical reactions. DNA polymerase and related enzymes are crucial for cell division and replication. Enzymes are genetically programmed to be absolutely specific for their appropriate molecular targets.

The most important concept in drug design is to understand the methods by which the active site of a receptor selectively restricts the binding of inappropriate structures. Any potential molecule that can bind to a receptor is called a ligand. In order for a ligand to bind, it must contain a specific combination of atoms that presents the correct size, shape, and charge composition in order to bind and interact with the receptor Figure 5.12 schematically shows a typical ligand-receptor binding interaction.

Figure 5.12: Enzyme substrate complementary interactions.

Ligand-receptor interaction must have complementary size and shape. This is termed steric complementarity. As is the case with an actual key, if a different molecule varies by even a single atom in the wrong place, it may not fit properly, and will most likely not interact with the receptor. However, the more closely the fit between the ligand and receptor, the more tightly the interaction becomes.

The main driving force for ligand and receptor binding is hydrophobic interaction. In order for ligand and receptor to interact, there must be a driving force that compels the ligand to leave the water and bind to the receptor. The hydrophobicity of a ligand is what causes this. Hydrophobicity stands for 'water fearing' and is a measure of how 'greasy' a
compound is. It can be roughly approximated by the percentage of hydrogen and carbon in the molecule. As shown in Figure 5.13, the active site may contain a mixture of hydrophobic pockets and regions that are more polar.

Figure 5.13: Pharmacophore and Receptor Binding

There are numerous potential interactions between ligand and receptor. Depending upon the size of the active site, there may be a numerous steric, electrostatic, and hydrophobic contact. The specific interactions that are crucial for ligand recognition and binding by the receptor are termed the pharmacophore. Usually, these are the interactions that directly factor into the structural integrity of a receptor or are involved in the mechanism of its action.

This is shown in Figure 5.13 above. In the upper left frame of this figure, there is native ligand bound within the active site. Through biochemical investigation, phenyl ring (blue) and the carboxylic acid group (green) are vital to receptor interaction has been determined. Thus, it has been interpreted that these two groups must be the pharmacophore that a ligand must present to the receptor for binding.

5.6.2 The Challenge of Drug Design

There are difficulties in designing drugs towards specific target receptors.

Table 5.1. Major Tasks and concerns in Drug development [13].

1. Characterize medical condition and determine receptor targets.
2. Achieve active site complementarity: steric, electrostatic, and hydrophobic.
3. Consider biochemical mechanism of receptor.
4. Adhere to laws of chemistry.
5. Synthetic feasibility.
6. Biological considerations.
7. Patent considerations.

When a medical condition exists where a drug could be beneficial, extensive scientific study must first be done in order to determine the biological and biochemical problems that underlie the disease process.

Once a receptor target has been established and well characterized, the process of ligand design begins. The first consideration is that the designed ligand must complement the active site of the receptor target. Steric, electrostatic, and hydrophobic complementarity must be established. The pharmacophore must be presented to the receptor in order for recognition and binding to occur. Otherwise, the designed ligands have no chance of interacting with the receptor.

Figure 5.14: Designing ligands to offset enzyme mechanism.

In addition to adequately binding the receptor, the biochemical mechanism of the receptor target must be taken into consideration. This is shown in Figure 5.14. In this the biochemical mechanism of a protease has been schematically represented. A protease is an enzyme that cleaves proteins and peptides. In the top part of the figure, a specific group of atoms colored in red and blue, called a peptide bond has been recognized by protease. If the peptide bond is present at a specific position in the active site when the ligand binds, it is cleaved by the protease with the addition of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to form two separate fragments.

Having characterized the active site region and the mechanism of action of the target receptor, the challenge then becomes one of designing a suitable ligand. The optimal combination of atoms and functional groups to complement the receptor is often the natural ligand of the receptor.

There are biological considerations to the development of new drugs. The liver is the major organ of detoxification in the human body. Any drug that is taken undergoes a number of chemical reactions in the liver as the body attempts to neutralize foreign substances. Various chemical structures are highly toxic to biological systems, and these have been also well characterized.

5.6.3 The Drug Discovery Pipeline

The development [19] of any potential drug begins with years of scientific study to determine the biochemistry behind a medical problem for which pharmaceutical intervention is possible. The result is the determination of specific receptor targets that must be modulated to alter their activity in some way. Once these targets have been identified, the goal is then to find compounds that have to interact with the receptors.

The modern day drug discovery pipeline is outlined in Figure 5.14. The first step is to determine an estimate for the receptor. An estimation is a chemical or biological test that turns positive when a suitable binding agent interacts with the receptor. Usually, this test
is some form of colorimetric estimation, in which an indicator turns a specific color when complementary ligands are present. This estimate is then used in mass screening, which is a technique whereby hundreds of thousands of compounds can be tested in a matter of days to weeks. Entire corporate database of known compounds has been first screened by pharmaceutical company. The reason is that if a successful match is found, the database compound is usually very well characterized. Then after, a synthetic method has been known for this compound. This enables the company to rapidly prototype a candidate ligand.

Figure 5.15: Combinatorial chemistry schematic.

Combinatorial chemistry is a very powerful technique that has been applied in the refinement of the lead compound. Combinatorial chemistry is a synthetic tool to rapidly generate thousands of lead compound derivatives for testing. As shown above in Figure 5.15, subsite groups (shown in red, green, and blue) are potential sites for derivatization. These subsites are then reacted with combinatorial libraries to generate a multitude of derivative structures, each with different substituent groups. By carefully selecting libraries based upon the study of the active site, the derivatization process towards optimizing ligand receptor interaction has been targeted.

Figure 5.16: Structured Based Drug Design

Structure based design, often called rational drug design, and is much more focused than combinatorial chemistry. As shown above in Figure 5.16, it involves using the biochemical laws of ligand-receptor association discussed above to postulate ligand refinements to improve binding. Functional groups on the ligand can have been changed in order to expand electrostatic complementarity with the receptor. However, the danger in altering any portion of the ligand is the effect on the remaining ligand structures. Modifying even a single atom in the middle of the ligand can drastically change the shape of the overall structure. Even though complementarity in one portion of the ligand might be improved by the chemical revision, the overall binding might be severely compromised. This is the difficulty in any ligand refinement procedure.

5.6.4 Computer-Aided Drug Design (CADD)

Computer graphics technology has achieved the ability to generate vector models of chemical structures and manipulate them in real-time. The ability to study computer models of ligand structures and their binding interactions with a receptor has been offered by Computer graphics technology.

The time and effort required for drug synthesis and testing has been avoided by simply generating novel compounds using the computer. Testing has been replaced by calculating the ligand-receptor binding affinity using the physical laws of chemistry. The
concept of generating virtual lead compounds entirely through computer simulation has been termed as Denovo Design.

Computer-Aided Drug Design (CADD) [14] is a specialized discipline that uses computational methods to simulate drug-receptor interactions. CADD methods are heavily dependent on bioinformatics tools, applications and databases.

5.6.5 Difficulties Implementing Denovo Design

Although computers have become exponentially faster, the complete number of calculations needed to accurately predict the binding of a denovo generated ligand to its receptor in a useful timeframe still requires significant approximations. In denovo design, a whole ligand from scratch has been generated and it has been docked within the receptor. A ligand is flexible structure, and can guess an excess of different conformations and orientations. The predicted binding structure has to be similar with the calculated one. Failure in this attempt has damaged the utility of denovo structure generating software.

The second most significant problem in computer aided denovo design [15] is the generation of undesired chemical structures. There are a nearly infinite number of potential combinations of atoms. However, the vast majority of these structures are of no use. As discussed above, undesired structures are rejected due to toxicity, chemical instability, or synthetic difficulty. Nearly all denovo design software packages are overwhelmed by this problem, especially with respect to synthetic feasibility.

5.6.7 Benefits of CADD

CADD methods and bioinformatics tools offer significant benefits for drug discovery programs.

- Cost Savings: Many biopharmaceutical companies now use computational methods and bioinformatics tools to reduce this cost burden. Virtual screening, lead
optimization and predictions of bioavailability and bioactivity can help guide experimental research.
- Time-to-Market: The predictive power of CADD can help drug research programs choose only the most promising drug candidates. By focusing drug research on specific lead candidate's biopharmaceutical companies can get drugs to market more quickly.
- Insight: Molecular models of drug compounds can disclose atomic scale binding properties that are difficult to envision in any other way. Researcher's shows new molecular models to find out protein targets for new binding for new improved compound.

5.7 References

[1] Pauling, L., Corey, R.B. (1951) The structure of proteins: Two hydrogen-bonded helical cofigurations of the polypeptide chain. Proc.Natl.Acad.Sci. U.S.A. 37 p.205211.
[2] Richmond, T.J. and Richards, F.M. (1978) Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119 p537-555.
[3] Richardson, J. S. (1981) The anatomy and taxonomy of protein structure.Adv. Prot. Chem. 34, p.167-339.
[4] Richardson, J. S. (1977). Beta-Sheet topology and the relatedness of proteins. Nature 268. p.495-500
[5] Koehl, P. and Levitt M. (1999). A brighter future for protein structure prediction. Nature structural biology 6,2 p. 108-112.
[6] Chou, P.Y. and Fasman, G.D. (1978) Empirical predictions of protein conformations. Ann. Rev. Biochem. 47:251-276.
[7] Garnier, J., Gibrat J.-F., and Robson, B. (1996) GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. Meth. Enz. 266:540-553.
[8] B Rost, and C Sander (1993) Prediction of protein secondary structure at better than 70\% accuracy. J Molecular Biol, 232, 584-599.
[9] C. Tanford. ,Protein denaturation. ,Adv. Prot. Chem., 1970, 24, 1-95.
[10] D. Shortle. ,The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J., 1996, 10, 1, 27-34.
[11] L. J. Smith, K. M. Fiebig, H. Schwalbe, and C. M. Dobson. The concept of the random coil - Residual structure in peptides and denatured proteins. Fold. Des., 1996, 1, 5, R95-R106.
[12] Binod Kumar and Dr. N. N. Jani: Recent Advances in Cheminformatics. International Journal of Intelligent Information Processing, Serials Publications, Vol. 3 No. 1 (2009) ISSN: 0973-3892.
[13] Binod Kumar and Dr. N. N. Jani: A new Dimension in Molecular Structure Analysis: Better Information for Biochemoinformatist. International Journal of Intelligent Information Processing, Serials Publications,Vol. 3 No. 2 (2009) ISSN: 0973-3892.
[14] Binod Kumar and Dr. N. N. Jani: Computational Approaches to Drug Design: Bioinformatics Approach. National Conference ETCT 2008, Surat, 2008.
[15] G.R. Marshall, C.D. Barry, H.E. Bosshard, R.A.. Dammkoehler and D.A. Dunn,The Conformational Parameter in Drug Design: The Active Analog Approach, in Computer Assisted Drug Design, ACS Symposia, 112, E.C. Olson and R.E. Christofferson (Eds.), American Chemical Society, Washington D.C., 1979

Chapter -6

Conformational Study of Molecules using Tools

6.1 Introduction

Under this research work various chemical and biochemical compounds have been analyzed including drugs using tools like ACD/ChemSketch, NMR Prediction and ArgusLab.

Under the research work of Activity No.-1 molecules have been analyzed using tool like ACD/ChemSketch and NMR Prediction. In this research using ACD/ChemSketch compounds are stored in databases and SMILE code (Simplified Molecular Input Line Specification) is generated. A SMILE defines the molecules in the form of alphanumeric chains. In this research work chemical shift of every carbon atom of the molecule have been displayed by using NMR Prediction. Using Pubchem/NCBI additional miscellaneous information such as bioactivity analysis by structure \& activity similarity and revised compound selection after addition of similar compounds have been found out.

Under the research work of Activity No.-2 geometry of molecules have been optimized, chemical structure has been visualized and electronic absorption spectra of chemical structure has been calculated by using ArgusLab tool.

Under the research work of Activity No.-3 different types of analysis like prediction of protein secondary structure, isoelectric point calculation etc. have been performed on nucleotide Sequence and protein sequence using DAMBE and Jemboss tools.

6.2 Experimental Work

6.2.1 Activity No -1

In this research work Alanine (Amino acid) has been used on ACD/ChemSketch editor and its SMILE code has been generated. After that this structured has been transferred to NMRPrediction editor. Similar activity has been performed with Amino butyric acid, Asparagine and Glutamine.

Figure 6.1: Alanine on ACD/ChemSketch editor

Figure 6.2: ${ }^{13} \mathrm{C}$ NMR of of Alanine

Figure 6.3: Estimation of ${ }^{1} \mathrm{H}$ NMR of Alanine

Table 6.1: Shift Prediction Protocol of Alanine using NMRPrediction

Figure 6.4:2-aminobutanoic
acid ACDChemSketch editor

Figure 6.6: Estimation of ${ }^{1} \mathrm{H}$ NMR of Aminobutanoic acid

Table 6.2: Shift Prediction Protocol of 2-aminobutanoic acid using NMRPrediction

Node CH	Shift	Base + Inc.	Comment (ppm rel. to TMS)
	3.49	1.50	methine
		1.13	1 alpha -N
		0.87	1 alpha -C(=0)O
		-0.01	1 beta -C
NH2	8.81	2.00	amine
		6.81	general corrections
CH2	1.82	1.37	methylene
		0.00	1 alpha -C
		0.22	1 beta -N
		0.23	1 beta -C(=0)O
OH	12.34	11.00	carboxylic acid
		1.34	general corrections
CH3	0.96	0.86	methyl
		0.10	1 beta -C-R

$\operatorname{lnCh}=1 / \mathrm{C} 4 \mathrm{H} 8 \mathrm{~N} 203 / \mathrm{C} 5-2(4(8) 9) 1-3(6) 7 / \mathrm{h} 2 \mathrm{H}, 1,5 \mathrm{H} 2,(\mathrm{H} 2,6,7)(\mathrm{H}, 8,9)$

Figure 6.7: Asparagine on ACD/ChemSketch editor

Figure 6.8: ${ }^{13} \mathrm{C}$ NMR of Asparagine

Figure 6.9: Estimation of ${ }^{1} \mathrm{H}$ NMR of Asparagine

Table 6.3: Shift Prediction Protocol of Asparagine using NMRPrediction

Figure 6.11: ${ }^{13} \mathrm{C}$ NMR of Glutamine
Figure 6.10: Glutamine on ACD/ChemSketch editor

Figure 6.12: Estimation of ${ }^{1} \mathrm{H}$ NMR of Glutamine

Table 6.4: Shift Prediction Protocol of Glutamine using NMRPrediction

Node	Shift	Base + Inc.	Comment (ppm rel. to TMS)
CH2	2.23	1.37	methylene
		0.90	1 alpha -C(=O)O
		-0.04	1 beta -C
CH2	2.05	1.37	methylene
		0.23	1 beta - $\mathrm{C}(=0) \mathrm{O}$
		0.22	1 beta -N
		0.23	1 beta - C ($=0$) 0
CH	3.49	1.50	methine
		1.13	1 alpha -N
		0.87	1 alpha -C(=0)O
		-0.01	1 beta -C
OH	12.34	11.00	carboxylic acid
		1.34	general corrections
OH	12.34	11.00	carboxylic acid
		1.34	general corrections
NH2	8.81	2.00	amine
		6.81	general corrections

Table 6.5: SMILE Code of various structures

Structure	SMILE Code
 Alanine	$\mathrm{CC}(\mathrm{N}) \mathrm{C}(\mathrm{O})=\mathrm{O}$
 Amino butyric Acid	$\operatorname{CCC}(\mathrm{N}) \mathrm{C}(\mathrm{O})=\mathrm{O}$
 Asparagine	$\mathrm{NC}(\mathrm{CC}(\mathrm{N})=\mathrm{O}) \mathrm{C}(\mathrm{O})=\mathrm{O}$
	$\mathrm{NC}(\mathrm{CCC}(\mathrm{O})=\mathrm{O}) \mathrm{C}(\mathrm{O})=\mathrm{O}$

After that web based structure search queries have been performed on these compounds using Pubchem/NCBI. Here activities like Bioactivity Analysis by Structure \& Activity Similarity of molecule , Bioactivity Analysis by Structure \& Activity Similarity of molecule from Normalized score Percentile , Bioactivity Analysis by Activity \& protein target Similarity of molecule from Normalized score Percentile, Bioactivity Analysis by concise Data Table of molecule , Bioactivity Analysis by addition of similar compounds of molecule and Revised compound selection after addition of similar compounds of molecule have been performed.

Figure 6.13: Search query using Pubchem/NCBI of AnalineBioActivity Analysis: 9 BioAssays and 1 compound (3)
Summary 8 Data Table (i) Structure-Activity :\% \qquad
\boxminus Compound Cluster: © by Structure similarity \subset by Activity Similarity ? BioAssay Cluster: © by Activity Similarity \subset by Protein Target Similarity \subset by Depositor-Specified Similarity [3] Activity Similarity: Calculated from Activity Outcome - ?
\qquad
田 Revise Selection (3) Add Similar Compounds
\boxplus Hints: Click the blue circles for analysis on a subcluster

Activity Outcome	BioAssay Type
- Probe	\diamond Primary
- Active	\square Confirmatory
- Inactive	O Summary
- Unspecified/	\triangle Other
Discrepant Untested - Collapsed	∇ Unassigned

Figure 6.14: Bioactivity Analysis by Structure \& Activity Similarity of Analine

Figure 6.15: Bioactivity Analysis by Structure \& Activity Similarity of Analine from Normalized score Percentile
（7）BioActivity Analysis： 9 BioAssays and 1 Compound（⿴囗
Summary \& Data Table (i) Structure-Activity \#\# D L
Summary \& Data Table (i) Structure-Activity \#\# D L
@ Compound Cluster: O by Structure Similarity © by Activity Similarity [3
@ Compound Cluster: O by Structure Similarity © by Activity Similarity [3
BioAssay Cluster: O by Activity Similarity © by Protein Target Similarity O by Depositor-Specified Similarity [3
BioAssay Cluster: O by Activity Similarity © by Protein Target Similarity O by Depositor-Specified Similarity [3
Activity Similarity: Calculated from Normalized Score,Percentile\ (3)
Activity Similarity: Calculated from Normalized Score,Percentile\ (3)
Apply
Apply
田 Revise Selection (⿴囗⿱一一⿰口
田 Revise Selection (⿴囗⿱一一⿰口
\boxplus Hints: Click the blue circles for analysis on a subcluster
\boxplus Hints: Click the blue circles for analysis on a subcluster

Normalized Score	BioAssay Type
$=1$	\diamond Primary
$=0.9=0.4$	\square Confirmatory
$=0.8=0.3$	$=0.2$
$=0.7$	O Summary
$=0.6$	$=0.1$
$=0.5$	\triangle Other
Unavailable	
Discrepant	
Untested	
Collapsed	∇ Unassigned

Figure 6．16：Bioactivity Analysis by Activity \＆protein target Similarity of Analine from Normalized score Percentile

Figure 6．17：Bioactivity Analysis by concise Data Table of Analine

Activity Outcome Probe	BioAssay Type
- Active	\diamond Primary
$=$ Inactive	\square Confirmatory
$=$ Unspecified/	\triangle Summary
Inconclusive	
Discrepant	
Untested	
Collapsed	∇ Unassigned

Compound Cluster

Figure 6.18: Bioactivity Analysis by addition of similar compounds of Analine

Table 6.6: 9- assays by addition of similar compound of Analine

CID/ Activity /AID	248	328	155	157	161	165	167	175	256
602	Inact								
24197250			Inact						

Inact $=$ Inactive
(7) BioActivity Analysis: 9 Bioassays and 124 Compounds (2 Tested)

Summary 8 DataTable ${ }^{\text {® }}$ Structure-Activity : $:$
Revise Compound Selection (9 shown)
Select Tested
Add Active
Add Tested

(\%) Revise BioAssay Selection
Add Active
Add Tested
Add Related BioAssays Other Filters

Figure 6.19: Revised compound selection after addition of similar compounds of Analine


```
All: 1 BioAssay: 1 Protein3D: 1 Rule of 5:1 x
    \ulcorner1: CID: 6657
                                    Related Structures, BioAssays, Literature, Other Links
                            Butyrine; DL-2-Aminobutyric acid; 2-Aminobutyric acid
                        IUPAC: 2-aminobutanoic acid
                    MW: 103.119760 g/mol | MF: C4 H9NOO
                            Tested in BioAssays: All: 7. Active: 0; BioActivity Analysis
                    8
```

Figure 6.20: Search query using Pubchem/NCBI of Amino butyric Acid

Outcome - Probe	BioAssay Type Primary
- Activ	\square
- Inactive	\bigcirc
U	\triangle Other
Discrepan Untested	
[Collapsed	∇ Unassigned

Figure 6.21: Bioactivity Analysis by addition of similar compounds of Amino butyric Acid

Table 6.7: 7- assays by addition of similar compound Amino butyric Acid

CID/ Activity /AID							
824	155	157	161	165	167	175	248
6657	Inact	Inact	Inact	Inact	Inact	Inact	
317835	Inact						
187846		Inact	Inact	Inact	Inact	Inact	
1182						Inact	
23615471							Inact
Inact	Inact	Inact	Inact	Inact	Inact		

Inact = Inactive

BioActivity Analysis: 7 Bioassays and 128 compounds (6 Tested)

Summary 8 DataTable (iil Structure-Activity :Revise compound Selection (9 shown) (3) Select Tested Add TestedRevise BioAssay Selection (3) Add Active
Add Related BioAssays
Other Filters

Figure 6.22: Revised compound selection after addition of similar compounds of Amino butyric Acid
All: 1 BioAssay: 1 Protein3D: 0 Rule of 5: 1 努
ᄃ1: CID: 236
Related Structures, BioAssays, Literature
asparagine; L-asparagine; DL-Asparagine
IUPAC: 2,4-diamino-4-oxobutanoic acid
MW: $132.117920 \mathrm{~g} / \mathrm{mol} \mid \mathrm{MF}: \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$

Tested in BioAssays: All: 18, Active: 2; BioActivity Analysis
8

Figure 6.23: Search query using Pubchem/NCBI of Asparagine

Figure 6.24: Bioactivity Analysis by addition of similar compounds of Asparagine

Table 6.8: 18- assays by addition of similar compound Asparagine

Summary 8 DataTable (i) Structure-Activity in

8
Revise Compound Selection ? Add Similar Compounds
Select Active
Add Active
Add TestedRevise BioAssay Selection ?
Select Active
Add Active
Add Tested
Add Related BioAssays
Other Filters

Figure 6.25: Revised compound selection after addition of similar compounds of Asparagine

Figure 6.26: Search query using Pubchem/NCBI of Glutamine

Figure 6.27: Bioactivity Analysis by addition of similar compounds of Glutamine

Table 6.9: 2- assays by addition of similar compound Glutamine

CID/Activity/AID	248	256
24193351	Inactive	
24193353	Inactive	Inactive
24194094		Inactive
24194334	Inactive	
24198617		Inactive
611	Inactive	Inactive
8737	Inactive	
16219390	Inactive	
24194125		

Summary \& DataTable (i) Structure-Activity ${ }^{\text {B }}$

R Revise Compound Selection (9 shown) Select Tested
Select Tested
Add Active
Add TestedRevise BioAssay Selection ?
Add Active
Add Tested
Add Related BioAssay
other Filters

Figure 6.28: Revised compound selection after addition of similar compounds of Glutamine

6.2.2 Activity No -2

In this research work Alanine, Amino butyric acid, Asparagine and Glutamine have been analyzed on ArgusLab tool and calculations like Single Entry Point Calculation, Geometric Optimization and UV Electronic Spectra have been performed.

Figure No 6.29 : 3D-Molecular structure of Analine on ArgusLab

Table No 6.10: Single Entry Point Calculation of Alanine Using ArgusLab

```
********* Validated Experiment & Chemical System Settings **********
    Calculation started: Thu Jun 04 10:37:09 2009
    Title:E:\myphdthesis_2009\ACd_results\Ala
    Max. SCF cycles 100
    SCF convergence 1.5936e-013 au. for energy
    Input Atomic Information
    ************************
\begin{tabular}{lllll}
1 & C & 16.904500 & -7.535300 & 0.000000 \\
2 & 0 & 16.904500 & -6.205300 & 0.000000 \\
3 & C & 15.752700 & -8.200300 & 0.000000 \\
4 & N & 15.752700 & -9.530300 & 0.000000 \\
5 & C & 14.600800 & -7.535300 & 0.000000 \\
6 & 0 & 18.056300 & -8.200300 & 0.000000
\end{tabular}
Constructing Chemical System(s)
Basis Set
************
basis functions : 24
shells: : 12
primitives : 72
Memory for Main Chemical System
Max. number 2-ele. ints. = 1596
```


Cycle	Energy (au)	Difference
**		
1	-36.971063	
2	-32.276391119	4.69467
3	-33.620242051	-1.34385
4	-26.283142152	7.3371
5	-33.505498559	-7.22236
6	-26.230341192	7.27516
7	-33.507013214	-7.27667
8	-26.229486478	7.27753
9	-33.508071400	-7.27858
10	-26.229663085	7.27841
11	-33.508488479	-7.27883
12	-26.229742535	7.27875
13	-33.508637619	-7.2789
14	-26.229770710	7.27887
15	-33.508689823	-7.27892
16	-26.229780460	7.27891
17	-33.508708012	-7.27893
18	-26.229783833	7.27892
19	-33.508714344	-7.27893
20	-26.229785002	7.27893
21	-33.508716547	-7.27893
22	-26.229785408	7.27893
23	-33.508717315	-7.27893
24	-26.229785549	7.27893
25	-33.508717582	-7.27893
26	-26.229785599	7.27893
27	-33.508717675	-7.27893
28	-26.229785616	7.27893
29	-33.508717707	-7.27893
30	-26.229785622	7.27893
31	-33.508717718	-7.27893
32	-26.229785624	7.27893
33	-33.508717722	-7.27893
34	-26.229785624	7.27893
35	-33.508717723	-7.27893
36	-26.229785625	7.27893
37	-33.508717724	-7.27893
38	-26.229785625	7.27893
39	-33.508717724	-7.27893
40	-26.229785625	7.27893
41	-33.508717724	-7.27893
42	-26.229785625	7.27893
43	-33.508717724	-7.27893
44	-26.229785625	7.27893
45	-33.508717724	-7.27893
46	-26.229785625	7.27893
47	-33.508717724	-7.27893
48	-26.229785625	7.27893
49	-33.508717724	-7.27893
50	-26.229785625	7.27893
51	-33.508717724	-7.27893
52	-26.229785625	7.27893
53	-33.508717724	-7.27893
54	-26.229785625	7.27893
55	-33.508717724	-7.27893
56	-26.229785625	7.27893
57	-33.508717724	-7.27893
58	-26.229785625	7.27893
59	-33.508717724	-7.27893
60	-26.229785625	7.27893
61	-33.508717724	-7.27893

Diagram 6.30: Energy vs. Difference S.E.C of Alanine

Writing final SCF to disk
Final SCF Energy $=-26.2297856247 \mathrm{au}$

```
            Final SCF Energy = -16459.4538 kcal/mol
            ***** Heat of Formation *****
            11889.4613 kcal/mol
            Wiberg Atom-Atom Bond Orders
            ******************************
                1
                    2
                    3
                    4
                                    5
                                    6
1 0.000000
2 0.331606 0.000000
3 0.241269 0.010621
4 0.000639 
5 0.003243 1.0.00301 
6 0.327085 0.009206 0.009767 0.0.0.00086 0.000241 0.000000
    Atomic spin densities
    **********************
    C C 0.6170
        2 0 0.0225
        C 0.3284
        N 0.0005
        5 C
        6 0 0.0273
S2 operator
***********
exact 0.750000
calculated 0.750201
                            Ground State Dipole (debye)
\begin{tabular}{|c|c|c|c|}
\hline X & Y & Z & length \\
\hline \[
106.85663544
\] & \[
55.51461066
\] & \[
-0.00000000
\] & \[
120.41682828
\] \\
\hline iken Atomic & rges & & \\
\hline
\end{tabular}
        C 2.6734
        O 4.0964
        C -3.8542
        N -3.0018
        C -3.9958
        4.0820
        Properties elapsed time O sec.
        Total Elapsed Time 0 sec.
```

Table No 6.11: Geometry Optimization of Analine using ArgusLab.

32	-27.896560313	7.70973
33	-35.606290823	-7.70973
34	-27.896560472	7.70973
35	-35.606290012	-7.70973
36	-27.896560533	7.70973
37	-35.606289699	-7.70973
38	-27.896560557	7.70973
39	-35.606289579	-7.70973
40	-27.896560566	7.70973
41	-35.606289532	-7.70973
42	-27.896560569	7.70973
43	-35.606289514	-7.70973
44	-27.896560571	7.70973
45	-35.606289508	-7.70973
46	-27.896560571	7.70973
47	-35.606289505	-7.70973
48	-27.896560571	7.70973
49	-35.606289504	-7.70973
50	-27.896560571	7.70973
51	-35.606289503	-7.70973
52	-27.896560572	7.70973
53	-35.606289503	-7.70973
54	-27.896560572	7.70973
55	-35.606289503	-7.70973
56	-27.896560572	7.70973
57	-35.606289503	-7.70973
58	-27.896560572	7.70973
59	-35.606289503	-7.70973
60	-27.896560572	7.70973
61	-35.606289503	-7.70973
62	-27.896560572	7.70973
63	-35.606289503	-7.70973
64	-27.896560572	7.70973
65	-35.606289503	-7.70973
66	-27.896560572	7.70973
67	-35.606289503	-7.70973
68	-27.896560572	7.70973
69	-35.606289503	-7.70973
70	-27.896560572	7.70973
71	-35.606289503	-7.70973
72	-27.896560572	7.70973
73	-35.606289503	-7.70973
74	-27.896560572	7.70973
75	-35.606289503	-7.70973
76	-27.896560572	7.70973
77	-35.606289503	-7.70973
78	-27.896560572	7.70973
79	-35.606289503	-7.70973
80	-27.896560572	7.70973
81	-35.606289503	-7.70973
82	-27.896560572	7.70973
83	-35.606289503	-7.70973
84	-27.896560572	7.70973
85	-35.606289503	-7.70973
86	-27.896560572	7.70973
87	-35.606289503	-7.70973
88	-27.896560572	7.70973
89	-35.606289503	-7.70973
90	-27.896560572	7.70973
91	-35.606289503	-7.70973
92	-27.896560572	7.70973
93	-35.606289503	-7.70973
94	-27.896560572	7.70973
95	-35.606289503	-7.70973
96	-27.896560572	7.70973
97	-35.606289503	-7.70973
98	-27.896560572	7.70973
99	-35.606289503	-7.70973
100	-27.896560572	7.70973

Figure 6.31: Energy vs. Difference of geometric optimization of Analine

Table 6.12: Geometric for different components of Analine

Figure 6.32: Geometric for different components of Analine

Quick Plot HOMO : Analine

Diagram 6.33: Quick Plot HOMO of Analine

Table 6.13 : Calculating Molecular Orbitals on grids for plotting HOMO of Analine

```
********* Validated Experiment & Chemical System Settings **********
    Calculation started: Thu Jun 04 15:34:36 2009
    Max. SCF cycles 200
    SCF convergence 1.5936e-009 au. for energy
    AM1 param file C:\Program Files\ArgusLab\params\am1.prm
    SCF saved every }1000\mathrm{ cycles
    Two-electron integrals
        buffer size 1000
        storage random list in core
    Property integrals one center
    Dipole integrals length operator
    Input Atomic Information
************************
\begin{tabular}{clccc}
1 & C & 16.904500 & -7.535300 & 0.000000 \\
2 & 0 & 16.904500 & -6.205300 & 0.000000 \\
3 & C & 15.752700 & -8.200300 & 0.000000 \\
4 & N & 15.752700 & -9.530300 & 0.000000 \\
5 & C & 14.600800 & -7.535300 & 0.000000 \\
6 & 0 & 18.056300 & -8.200300 & 0.000000 \\
tting the following & orbitals to grid files:14
\end{tabular}
Constructing Chemical System(s)
Basis Set
***********
    basis functions : 24
    shells: : }1
    primitives : 72
Memory for Main Chemical System
Max. number 2-ele. ints. = 1596
Memory Requirements (bytes)
*****************************
Core 973208
Scratch 10368
```

System charge $\quad 0.000000$
Total number of 2 -ele integrals 870
Integrals elapsed time 0 sec.
***** SCF *****
Core repulsion $\quad 79.3611$ au

Calculating one electron matrix
Diagonalizing starting one-ele. matrix Performing SCF

Cycle	Energy (au)	Difference
*******	************	*********
1	-36.971063	
2	-32.276391119	4.69467
3	-33.620242051	-1.34385
4	-26.283142152	7.3371
5	-33.505498559	-7.22236
6	-26.230341192	7.27516
7	-33.507013214	-7.27667
8	-26.229486478	7.27753
9	-33.508071400	-7.27858
10	-26.229663085	7.27841
11	-33.508488479	-7.27883
12	-26.229742535	7.27875
13	-33.508637619	-7.2789
14	-26.229770710	7.27887
15	-33.508689823	-7.27892
16	-26.229780460	7.27891
17	-33.508708012	-7.27893
18	-26.229783833	7.27892
19	-33.508714344	-7.27893
20	-26.229785002	7.27893
21	-33.508716547	-7.27893
22	-26.229785408	7.27893
23	-33.508717315	-7.27893
24	-26.229785549	7.27893
25	-33.508717582	-7.27893
26	-26.229785599	7.27893
27	-33.508717675	-7.27893
28	-26.229785616	7.27893
29	-33.508717707	-7.27893
30	-26.229785622	7.27893
31	-33.508717718	-7.27893
32	-26.229785624	7.27893
33	-33.508717722	-7.27893
34	-26.229785624	7.27893
35	-33.508717723	-7.27893
36	-26.229785625	7.27893
37	-33.508717724	-7.27893
38	-26.229785625	7.27893
39	-33.508717724	-7.27893
40	-26.229785625	7.27893
41	-33.508717724	-7.27893
42	-26.229785625	7.27893
43	-33.508717724	-7.27893
44	-26.229785625	7.27893
45	-33.508717724	-7.27893
46	-26.229785625	7.27893
47	-33.508717724	-7.27893
48	-26.229785625	7.27893
49	-33.508717724	-7.27893
50	-26.229785625	7.27893
51	-33.508717724	-7.27893
52	-26.229785625	7.27893
53	-33.508717724	-7.27893
54	-26.229785625	7.27893
55	-33.508717724	-7.27893
56	-26.229785625	7.27893
57	-33.508717724	-7.27893
58	-26.229785625	7.27893
59	-33.508717724	-7.27893
60	-26.229785625	7.27893
61	-33.508717724	-7.27893

62	-26.229785625	7.27893
63	-33.508717724	-7.27893
64	-26.229785625	7.27893
65	-33.508717724	-7.27893
66	-26.229785625	7.27893
67	-33.508717724	-7.27893
68	-26.229785625	7.27893
69	-33.508717724	-7.27893
70	-26.229785625	7.27893
71	-33.508717724	-7.27893
72	-26.229785625	7.27893
73	-33.508717724	-7.27893
74	-26.229785625	7.27893
75	-33.508717724	-7.27893
76	-26.229785625	7.27893
77	-33.508717724	-7.27893
78	-26.229785625	7.27893
79	-33.508717724	-7.27893
80	-26.229785625	7.27893
81	-33.508717724	-7.27893
82	-26.229785625	7.27893
83	-33.508717724	-7.27893
84	-26.229785625	7.27893
85	-33.508717724	-7.27893
86	-26.229785625	7.27893
87	-33.508717724	-7.27893
88	-26.229785625	7.27893
89	-33.508717724	-7.27893
90	-26.229785625	7.27893
91	-33.508717724	-7.27893
92	-26.229785625	7.27893
93	-33.508717724	-7.27893
94	-26.229785625	7.27893
95	-33.508717724	-7.27893
96	-26.229785625	7.27893
97	-33.508717724	-7.27893
98	-26.229785625	7.27893
99	-33.508717724	-7.27893
100	-26.229785625	7.27893
101	-33.508717724	-7.27893
102	-26.229785625	7.27893
103	-33.508717724	-7.27893
104	-26.229785625	7.27893
105	-33.508717724	-7.27893
106	-26.229785625	7.27893
107	-33.508717724	-7.27893
108	-26.229785625	7.27893
109	-33.508717724	-7.27893
110	-26.229785625	7.27893
111	-33.508717724	-7.27893
112	-26.229785625	7.27893
113	-33.508717724	-7.27893
114	-26.229785625	7.27893
115	-33.508717724	-7.27893
116	-26.229785625	7.27893
117	-33.508717724	-7.27893
118	-26.229785625	7.27893
119	-33.508717724	-7.27893
120	-26.229785625	7.27893
121	-33.508717724	-7.27893
122	-26.229785625	7.27893
123	-33.508717724	-7.27893
124	-26.229785625	7.27893
125	-33.508717724	-7.27893
126	-26.229785625	7.27893
127	-33.508717724	-7.27893
128	-26.229785625	7.27893
129	-33.508717724	-7.27893
130	-26.229785625	7.27893
131	-33.508717724	-7.27893
132	-26.229785625	7.27893
133	-33.508717724	-7.27893
134	-26.229785625	7.27893
135	-33.508717724	-7.27893
136	-26.229785625	7.27893
137	-33.508717724	-7.27893
138	-26.229785625	7.27893
139	-33.508717724	-7.27893
140	-26.229785625	7.27893
141	-33.508717724	-7.27893
142	-26.229785625	7.27893

143	-33.508717724	-7.27893
144	-26.229785625	7.27893
145	-33.508717724	-7.27893
146	-26.229785625	7.27893
147	-33.508717724	-7.27893
148	-26.229785625	7.27893
149	-33.508717724	-7.27893
150	-26.229785625	7.27893
151	-33.508717724	-7.27893
152	-26.229785625	7.27893
153	-33.508717724	-7.27893
154	-26.229785625	7.27893
155	-33.508717724	-7.27893
156	-26.229785625	7.27893
157	-33.508717724	-7.27893
158	-26.229785625	7.27893
159	-33.508717724	-7.27893
160	-26.229785625	7.27893
161	-33.508717724	-7.27893
162	-26.229785625	7.27893
163	-33.508717724	-7.27893
164	-26.229785625	7.27893
165	-33.508717724	-7.27893
166	-26.229785625	7.27893
167	-33.508717724	-7.27893
168	-26.229785625	7.27893
169	-33.508717724	-7.27893
170	-26.229785625	7.27893
171	-33.508717724	-7.27893
172	-26.229785625	7.27893
173	-33.508717724	-7.27893
174	-26.229785625	7.27893
175	-33.508717724	-7.27893
176	-26.229785625	7.27893
177	-33.508717724	-7.27893
178	-26.229785625	7.27893
179	-33.508717724	-7.27893
180	-26.229785625	7.27893
181	-33.508717724	-7.27893
182	-26.229785625	7.27893
183	-33.508717724	-7.27893
184	-26.229785625	7.27893
185	-33.508717724	-7.27893
186	-26.229785625	7.27893
187	-33.508717724	-7.27893
188	-26.229785625	7.27893
189	-33.508717724	-7.27893
190	-26.229785625	7.27893
191	-33.508717724	-7.27893
192	-26.229785625	7.27893
193	-33.508717724	-7.27893
194	-26.229785625	7.27893
195	-33.508717724	-7.27893
196	-26.229785625	7.27893
197	-33.508717724	-7.27893
198	-26.229785625	7.27893
199	-33.508717724	-7.27893
200	-26.229785625	7.27893

Figure 6.34: Energy vs. Difference in HOMO of Analine

```
    Maximum number of iterations reached: SCF NOT CONVERGED!
    Writing final SCF to disk
    Final SCF Energy = -26.2297856247 au
    Final SCF Energy = -16459.4538 kcal/mol
    Saving the final SCF to the restart file
E:\myphdthesis_2009\ACd_results\Ala.restartscf
    SCF elapsed time 1 sec.
    ***** Heat of Formation *****
            11889.4613 kcal/mol
            Calculating Molecular Orbitals on grids for plotting.
        Atomic spin densities
        ************************
            C C 0.6170
            2 O 0.0225
            C 0.3284
            N 0.0005
            5 C 0.0044
            O 0.0273
S2 operator
\begin{tabular}{ll} 
exact & 0.750000 \\
calculated & 0.750201
\end{tabular}

\section*{Quick Plot LUMO: Alanine}


Diagram 6.35: Quick Plot LUMO of Alanine

Table 6.14 : Calculating Molecular Orbitals on grids for plotting LUMO of Alanine
```

********* Validated Experiment \& Chemical System Settings **********
Calculation started: Thu Jun 04 15:53:38 2009
Max. SCF cycles 20
SCF convergence 1.5936e-009 au. for energy
AM1 param file C:\Program Files\ArgusLab\params\am1.prm
SCF saved every 1000 cycles
Input Atomic Information

1	C	16.904500	-7.535300	0.000000
2	O	16.904500	-6.205300	0.000000
3	C	15.752700	-8.200300	0.000000
4	N	15.752700	-9.530300	0.000000
5	C	14.600800	-7.535300	0.000000
6	O	18.056300	-8.200300	0.000000

Plotting the following orbitals to grid files:15
Constructing Chemical System(s)
Basis Set

basis functions : 24
Memory for Main Chemical System
Max. number 2-ele. ints. = 1596
Memory Requirements (bytes)

Core 973208
Scratch - }1036
System charge 0.000000

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Core repulsion 79.3611 au} \\
\hline \multicolumn{3}{|l|}{Calculating one electron matrix Diagonalizing starting one-ele. matrix Performing SCF} \\
\hline Cycle & Energy (au) & Difference \\
\hline \multicolumn{3}{|l|}{*********************************************} \\
\hline 1 & -36.971063 & \\
\hline 2 & -32.276391119 & 4.69467 \\
\hline 3 & -33.620242051 & -1.34385 \\
\hline 4 & -26.283142152 & 7.3371 \\
\hline 5 & -33.505498559 & -7.22236 \\
\hline 6 & -26.230341192 & 7.27516 \\
\hline 7 & -33.507013214 & -7.27667 \\
\hline 8 & -26.229486478 & 7.27753 \\
\hline 9 & -33.508071400 & -7.27858 \\
\hline 10 & -26.229663085 & 7.27841 \\
\hline 11 & -33.508488479 & -7.27883 \\
\hline 12 & -26.229742535 & 7.27875 \\
\hline 13 & -33.508637619 & -7.2789 \\
\hline 14 & -26.229770710 & 7.27887 \\
\hline 15 & -33.508689823 & -7.27892 \\
\hline 16 & -26.229780460 & 7.27891 \\
\hline 17 & -33.508708012 & -7.27893 \\
\hline 18 & -26.229783833 & 7.27892 \\
\hline 19 & -33.508714344 & -7.27893 \\
\hline 20 & -26.229785002 & 7.27893 \\
\hline 21 & -33.508716547 & -7.27893 \\
\hline 22 & -26.229785408 & 7.27893 \\
\hline 23 & -33.508717315 & -7.27893 \\
\hline 24 & -26.229785549 & 7.27893 \\
\hline 25 & -33.508717582 & -7.27893 \\
\hline 26 & -26.229785599 & 7.27893 \\
\hline 27 & -33.508717675 & -7.27893 \\
\hline 28 & -26.229785616 & 7.27893 \\
\hline 29 & -33.508717707 & -7.27893 \\
\hline 30 & -26.229785622 & 7.27893 \\
\hline 31 & -33.508717718 & -7.27893 \\
\hline 32 & -26.229785624 & 7.27893 \\
\hline 33 & -33.508717722 & -7.27893 \\
\hline 34 & -26.229785624 & 7.27893 \\
\hline 35 & -33.508717723 & -7.27893 \\
\hline 36 & -26.229785625 & 7.27893 \\
\hline 37 & -33.508717724 & -7.27893 \\
\hline 38 & -26.229785625 & 7.27893 \\
\hline 39 & -33.508717724 & -7.27893 \\
\hline 40 & -26.229785625 & 7.27893 \\
\hline 41 & -33.508717724 & -7.27893 \\
\hline 42 & -26.229785625 & 7.27893 \\
\hline 43 & -33.508717724 & -7.27893 \\
\hline 44 & -26.229785625 & 7.27893 \\
\hline 45 & -33.508717724 & -7.27893 \\
\hline 46 & -26.229785625 & 7.27893 \\
\hline 47 & -33.508717724 & -7.27893 \\
\hline 48 & -26.229785625 & 7.27893 \\
\hline 49 & -33.508717724 & -7.27893 \\
\hline 50 & -26.229785625 & 7.27893 \\
\hline 51 & -33.508717724 & -7.27893 \\
\hline 52 & -26.229785625 & 7.27893 \\
\hline 53 & -33.508717724 & -7.27893 \\
\hline 54 & -26.229785625 & 7.27893 \\
\hline 55 & -33.508717724 & -7.27893 \\
\hline 56 & -26.229785625 & 7.27893 \\
\hline 57 & -33.508717724 & -7.27893 \\
\hline 58 & -26.229785625 & 7.27893 \\
\hline 59 & -33.508717724 & -7.27893 \\
\hline 60 & -26.229785625 & 7.27893 \\
\hline 61 & -33.508717724 & -7.27893 \\
\hline 62 & -26.229785625 & 7.27893 \\
\hline 63 & -33.508717724 & -7.27893 \\
\hline 64 & -26.229785625 & 7.27893 \\
\hline 65 & -33.508717724 & -7.27893 \\
\hline 66 & -26.229785625 & 7.27893 \\
\hline 67 & -33.508717724 & -7.27893 \\
\hline 68 & -26.229785625 & 7.27893 \\
\hline 69 & -33.508717724 & -7.27893 \\
\hline 70 & -26.229785625 & 7.27893 \\
\hline 71 & -33.508717724 & -7.27893 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 72 & -26.229785625 & 7.27893 \\
\hline 73 & -33.508717724 & -7.27893 \\
\hline 74 & -26.229785625 & 7.27893 \\
\hline 75 & -33.508717724 & -7.27893 \\
\hline 76 & -26.229785625 & 7.27893 \\
\hline 77 & -33.508717724 & -7.27893 \\
\hline 78 & -26.229785625 & 7.27893 \\
\hline 79 & -33.508717724 & -7.27893 \\
\hline 80 & -26.229785625 & 7.27893 \\
\hline 81 & -33.508717724 & -7.27893 \\
\hline 82 & -26.229785625 & 7.27893 \\
\hline 83 & -33.508717724 & -7.27893 \\
\hline 84 & -26.229785625 & 7.27893 \\
\hline 85 & -33.508717724 & -7.27893 \\
\hline 86 & -26.229785625 & 7.27893 \\
\hline 87 & -33.508717724 & -7.27893 \\
\hline 88 & -26.229785625 & 7.27893 \\
\hline 89 & -33.508717724 & -7.27893 \\
\hline 90 & -26.229785625 & 7.27893 \\
\hline 91 & -33.508717724 & -7.27893 \\
\hline 92 & -26.229785625 & 7.27893 \\
\hline 93 & -33.508717724 & -7.27893 \\
\hline 94 & -26.229785625 & 7.27893 \\
\hline 95 & -33.508717724 & -7.27893 \\
\hline 96 & -26.229785625 & 7.27893 \\
\hline 97 & -33.508717724 & -7.27893 \\
\hline 98 & -26.229785625 & 7.27893 \\
\hline 99 & -33.508717724 & -7.27893 \\
\hline 100 & -26.229785625 & 7.27893 \\
\hline 101 & -33.508717724 & -7.27893 \\
\hline 102 & -26.229785625 & 7.27893 \\
\hline 103 & -33.508717724 & -7.27893 \\
\hline 104 & -26.229785625 & 7.27893 \\
\hline 105 & -33.508717724 & -7.27893 \\
\hline 106 & -26.229785625 & 7.27893 \\
\hline 107 & -33.508717724 & -7.27893 \\
\hline 108 & -26.229785625 & 7.27893 \\
\hline 109 & -33.508717724 & -7.27893 \\
\hline 110 & -26.229785625 & 7.27893 \\
\hline 111 & -33.508717724 & -7.27893 \\
\hline 112 & -26.229785625 & 7.27893 \\
\hline 113 & -33.508717724 & -7.27893 \\
\hline 114 & -26.229785625 & 7.27893 \\
\hline 115 & -33.508717724 & -7.27893 \\
\hline 116 & -26.229785625 & 7.27893 \\
\hline 117 & -33.508717724 & -7.27893 \\
\hline 118 & -26.229785625 & 7.27893 \\
\hline 119 & -33.508717724 & -7.27893 \\
\hline 120 & -26.229785625 & 7.27893 \\
\hline 121 & -33.508717724 & -7.27893 \\
\hline 122 & -26.229785625 & 7.27893 \\
\hline 123 & -33.508717724 & -7.27893 \\
\hline 124 & -26.229785625 & 7.27893 \\
\hline 125 & -33.508717724 & -7.27893 \\
\hline 126 & -26.229785625 & 7.27893 \\
\hline 127 & -33.508717724 & -7.27893 \\
\hline 128 & -26.229785625 & 7.27893 \\
\hline 129 & -33.508717724 & -7.27893 \\
\hline 130 & -26.229785625 & 7.27893 \\
\hline 131 & -33.508717724 & -7.27893 \\
\hline 132 & -26.229785625 & 7.27893 \\
\hline 133 & -33.508717724 & -7.27893 \\
\hline 134 & -26.229785625 & 7.27893 \\
\hline 135 & -33.508717724 & -7.27893 \\
\hline 136 & -26.229785625 & 7.27893 \\
\hline 137 & -33.508717724 & -7.27893 \\
\hline 138 & -26.229785625 & 7.27893 \\
\hline 139 & -33.508717724 & -7.27893 \\
\hline 140 & -26.229785625 & 7.27893 \\
\hline 141 & -33.508717724 & -7.27893 \\
\hline 142 & -26.229785625 & 7.27893 \\
\hline 143 & -33.508717724 & -7.27893 \\
\hline 144 & -26.229785625 & 7.27893 \\
\hline 145 & -33.508717724 & -7.27893 \\
\hline 146 & -26.229785625 & 7.27893 \\
\hline 147 & -33.508717724 & -7.27893 \\
\hline 148 & -26.229785625 & 7.27893 \\
\hline 149 & -33.508717724 & -7.27893 \\
\hline 150 & -26.229785625 & 7.27893 \\
\hline 151 & -33.508717724 & -7.27893 \\
\hline 152 & -26.229785625 & 7.27893 \\
\hline
\end{tabular}

153 154 155 156 157 158 159 160 161 161
162
163 164 165 166 167 168 169 170 171
\(-33.508717724\)
\(-26.229785625\)
-33.508717724
-26.229785625
-33. 508717724
\(-26.229785625\)
-33.508717724
-26.229785625
-33.508717724
-26.229785625
-33. 508717724
\(-26.229785625\)
-33. 508717724
-26.229785625
-33.508717724
\(-26.229785625\)
-33. 508717724
\(-26.229785625\)
-33.508717724
\(-26.229785625\)
-33. 508717724
\(-26.229785625\)
-33. 508717724
-26.229785625
-33.508717724
-26.229785625
-33. 508717724
-26.229785625
-33.508717724
-26.229785625
-33.508717724
-26.229785625
-33.508717724
\(-26.229785625\)
-33.508717724
-26.229785625
-33. 508717724
-26.229785625
-33.508717724
-26.229785625
-33. 508717724
\(-26.229785625\)
-33. 508717724
\(-26.229785625\)
\(-33.508717724\)
-26.229785625
-33.508717724
\(-26.229785625\)


Figure 6.36: Energy vs. Difference by LUMO of Analine
```

 Maximum number of iterations reached: SCF NOT CONVERGED!
 Writing final SCF to disk
 Final SCF Energy = -26.2297856247 au
 Final SCF Energy = -16459.4538 kcal/mol
 Saving the final SCF to the restart file
 E:\myphdthesis_2009\ACd_results\Ala.restartscf
SCF elapsed time 0 sec.
***** Heat of Formation *****
11889.4613 kcal/mol
Calculating Molecular Orbitals on grids for plotting.
Atomic spin densities

1	C	0.6170
2	O	0.0225
3	C	0.3284
4	N	0.0005
5	C	0.0044
6	O	0.0273

```
```

S2 operator

```
S2 operator
***********
***********
exact 0.750000
exact 0.750000
calculated 0.750201
calculated 0.750201
Properties elapsed time 1 sec.
Total Elapsed Time 1 sec.
```


Quick Plot ESP Mapped Density : Analine

Figure 6.37: Quick Plot ESP Mapped Density of Analine

Table 6.15 : Calculating Molecular Orbitals on grids for plotting ESP Mapped Density of Analine

```
********* Validated Experiment & Chemical System Settings
```

200
$1.5936 \mathrm{e}-009 \mathrm{au}$. for energy

Input Atomic Information ************************				
1	C	16.904500	-7.535300	0.000000
2	0	16.904500	-6.205300	0.000000
3	C	15.752700	-8.200300	0.000000
4	N	15.752700	-9.530300	0.000000
5	C	14.600800	-7.535300	0.000000
6	0	18.056300	-8.200300	0.000000

Plotting electron density for the following states to grid files:0 Plotting electrostatic potential for the following states to grid files:0

Constructing Chemical System(s)

Basis Set
basis functions : 24
shells : 12
primitives : 72

Memory for Main Chemical System
Max. number 2 -ele. ints. $=1596$
Memory Requirements (bytes)

Core	973208
Scratch	10368
System charge	0.000000

***** SCF *****
Core repulsion 79.3611 au
Calculating one electron matrix
Diagonalizing starting one-ele. matrix
Performing SCF

Performing SCF

Cycle $* ~$		
1	-36.971063	Energy (au)
2	-32.276391119	4.69467
3	-33.620242051	-1.34385
4	-26.283142152	7.3371
5	-33.505498559	-7.22236
6	-26.230341192	7.27516
7	-33.507013214	-7.27667
8	-26.229486478	7.27753
9	-33.508071400	-7.27858
10	-26.229663085	7.27841
11	-33.508488479	-7.27883
12	-26.229742535	7.27875
13	-33.508637619	-7.2789
14	-26.229770710	7.27887
15	-33.508689823	-7.27892
16	-26.229780460	-7.27891
17	-33.508708012	7.27893
18	-26.229783833	-7.27893
19	-33.508714344	7.27893
20	-26.229785002	-7.27893
21	-33.508716547	7.27893
22	-26.229785408	-7.27893
23	-33.508717315	7.27893
24	-26.229785549	-7.27893
25	-33.508717582	7.27893
26	-26.229785599	-7.27893
27	-33.508717675	7.27893
28	-26.229785616	-7.27893
29	-33.508717707	7.27893
30	-26.229785622	7.27893
31	-33.508717718	7.27893
32	-26.229785624	

33	-33.508717722	-7.27893
34	-26.229785624	7.27893
35	-33.508717723	-7.27893
36	-26.229785625	7.27893
37	-33.508717724	-7.27893
38	-26.229785625	7.27893
39	-33.508717724	-7.27893
40	-26.229785625	7.27893
41	-33.508717724	-7.27893
42	-26.229785625	7.27893
43	-33.508717724	-7.27893
44	-26.229785625	7.27893
45	-33.508717724	-7.27893
46	-26.229785625	7.27893
47	-33.508717724	-7.27893
48	-26.229785625	7.27893
49	-33.508717724	-7.27893
50	-26.229785625	7.27893
51	-33.508717724	-7.27893
52	-26.229785625	7.27893
53	-33.508717724	-7.27893
54	-26.229785625	7.27893
55	-33.508717724	-7.27893
56	-26.229785625	7.27893
57	-33.508717724	-7.27893
58	-26.229785625	7.27893
59	-33.508717724	-7.27893
60	-26.229785625	7.27893
61	-33.508717724	-7.27893
62	-26.229785625	7.27893
63	-33.508717724	-7.27893
64	-26.229785625	7.27893
65	-33.508717724	-7.27893
66	-26.229785625	7.27893
67	-33.508717724	-7.27893
68	-26.229785625	7.27893
69	-33.508717724	-7.27893
70	-26.229785625	7.27893
71	-33.508717724	-7.27893
72	-26.229785625	7.27893
73	-33.508717724	-7.27893
74	-26.229785625	7.27893
75	-33.508717724	-7.27893
76	-26.229785625	7.27893
77	-33.508717724	-7.27893
78	-26.229785625	7.27893
79	-33.508717724	-7.27893
80	-26.229785625	7.27893
81	-33.508717724	-7.27893
82	-26.229785625	7.27893
83	-33.508717724	-7.27893
84	-26.229785625	7.27893
85	-33.508717724	-7.27893
86	-26.229785625	7.27893
87	-33.508717724	-7.27893
88	-26.229785625	7.27893
89	-33.508717724	-7.27893
90	-26.229785625	7.27893
91	-33.508717724	-7.27893
92	-26.229785625	7.27893
93	-33.508717724	-7.27893
94	-26.229785625	7.27893
95	-33.508717724	-7.27893
96	-26.229785625	7.27893
97	-33.508717724	-7.27893
98	-26.229785625	7.27893
99	-33.508717724	-7.27893
100	-26.229785625	7.27893
101	-33.508717724	-7.27893
102	-26.229785625	7.27893
103	-33.508717724	-7.27893
104	-26.229785625	7.27893
105	-33.508717724	-7.27893
106	-26.229785625	7.27893
107	-33.508717724	-7.27893
108	-26.229785625	7.27893
109	-33.508717724	-7.27893
110	-26.229785625	7.27893
111	-33.508717724	-7.27893
112	-26.229785625	7.27893
113	-33.508717724	-7.27893

114	-26.229785625	7.27893
115	-33.508717724	-7.27893
116	-26.229785625	7.27893
117	-33.508717724	-7.27893
118	-26.229785625	7.27893
119	-33.508717724	-7.27893
120	-26.229785625	7.27893
121	-33.508717724	-7.27893
122	-26.229785625	7.27893
123	-33.508717724	-7.27893
124	-26.229785625	7.27893
125	-33.508717724	-7.27893
126	-26.229785625	7.27893
127	-33.508717724	-7.27893
128	-26.229785625	7.27893
129	-33.508717724	-7.27893
130	-26.229785625	7.27893
131	-33.508717724	-7.27893
132	-26.229785625	7.27893
133	-33.508717724	-7.27893
134	-26.229785625	7.27893
135	-33.508717724	-7.27893
136	-26.229785625	7.27893
137	-33.508717724	-7.27893
138	-26.229785625	7.27893
139	-33.508717724	-7.27893
140	-26.229785625	7.27893
141	-33.508717724	-7.27893
142	-26.229785625	7.27893
143	-33.508717724	-7.27893
144	-26.229785625	7.27893
145	-33.508717724	-7.27893
146	-26.229785625	7.27893
147	-33.508717724	-7.27893
148	-26.229785625	7.27893
149	-33.508717724	-7.27893
150	-26.229785625	7.27893
151	-33.508717724	-7.27893
152	-26.229785625	7.27893
153	-33.508717724	-7.27893
154	-26.229785625	7.27893
155	-33.508717724	-7.27893
156	-26.229785625	7.27893
157	-33.508717724	-7.27893
158	-26.229785625	7.27893
159	-33.508717724	-7.27893
160	-26.229785625	7.27893
161	-33.508717724	-7.27893
162	-26.229785625	7.27893
163	-33.508717724	-7.27893
164	-26.229785625	7.27893
165	-33.508717724	-7.27893
166	-26.229785625	7.27893
167	-33.508717724	-7.27893
168	-26.229785625	7.27893
169	-33.508717724	-7.27893
170	-26.229785625	7.27893
171	-33.508717724	-7.27893
172	-26.229785625	7.27893
173	-33.508717724	-7.27893
174	-26.229785625	7.27893
175	-33.508717724	-7.27893
176	-26.229785625	7.27893
177	-33.508717724	-7.27893
178	-26.229785625	7.27893
179	-33.508717724	-7.27893
180	-26.229785625	7.27893
181	-33.508717724	-7.27893
182	-26.229785625	7.27893
183	-33.508717724	-7.27893
184	-26.229785625	7.27893
185	-33.508717724	-7.27893
186	-26.229785625	7.27893
187	-33.508717724	-7.27893
188	-26.229785625	7.27893
189	-33.508717724	-7.27893
190	-26.229785625	7.27893
191	-33.508717724	-7.27893
192	-26.229785625	7.27893
193	-33.508717724	-7.27893
194	-26.229785625	7.27893

Figure 6.38: Energy vs. Difference /cycle by ESP Mapped Density of Analine

```
Final SCF Energy = -26.2297856247 au
Final SCF Energy = -16459.4538 kcal/mol
SCF elapsed time 1 sec.
***** Heat of Formation *****
    11889.4613 kcal/mol
    Calculating ground-state density on grid.
    Calculating ground-state electrostatic potential on grid.
Atomic spin densities
***********************
            C 0.6170
            0.0225
            0.3284
                        0.0005
                        0.0044
                        0.0273
```

```
S2 operator
***********
```

$\begin{array}{ll}\text { exact } & 0.750000 \\ \text { calculated } & 0.750201\end{array}$

Properties elapsed time 17 sec. Total Elapsed Time 18 sec.

6.2.2.1 Data Analysis of Experimental Work

In this research work like Alanine other compounds amino butyric acid, Asparagine and Glutamine have been analyzed on ArgusLab tool and calculations like Single Entry Point Calculation and Geometric Optimization have been performed.

(A) Amino butyric acid

Single Entry Point Calculation: Amino butyric acid

Figure 6.39: Structure of Amino butyric acid
Table 6.16: Single Entry Point Calculation of Amino butyric acid

```
********* Validated Experiment & Chemical System Settings
Input Atomic Information
\begin{tabular}{llrrr}
1 & C & 16.727200 & -9.538300 & 0.000000 \\
2 & O & 16.727200 & -8.208300 & 0.000000 \\
3 & C & 15.575500 & -10.203300 & 0.000000 \\
4 & N & 15.575500 & -11.533300 & 0.000000 \\
5 & C & 14.423600 & -9.538300 & 0.000000 \\
6 & O & 17.879100 & -10.203300 & 0.000000 \\
7 & C & 13.271800 & -10.203400 & 0.000000
\end{tabular}
Constructing Chemical System(s)
Basis Set
***********
basis functions : 28
primitives : 84
Memory for Main Chemical System
Max. number 2-ele. ints. = 2212
Memory Requirements (bytes)
*****************************
Core }15459
Scratch }1388
System charge 0.000000
```


Figure 6.40: Energy vs. Difference /cycle by SEC of Amino butyric acid

```
***** SCF *****
Writing final SCF to disk
Final SCF Energy = -16.0505499405 au
Final SCF Energy = -10071.8812 kcal/mol
            SCF elapsed time 1 sec.
***** Heat of Formation ******
Wiberg Atom-Atom Bond Orders
******************************
\begin{tabular}{lll}
1 & 2 & 3
\end{tabular}
\begin{tabular}{lll}
1 & 0.000000 & \\
2 & 0.159277 & 0.000000
\end{tabular}
0.159277
0.593365 0.132542
0.001599 0.002860
0.000804 0.005289
0.052133 0.006354
0.000011 0.000003
3
4
```

```
0.000000
-. 15927
0.00000
\(0.132542 \quad 0.000000\)
0.003560
\(0.006354 \quad 0.002427\)
\(0.000003 \quad 0.000014\)
```

0.000000
0.000046
0.000046
0.004958
0.000000 0.000753
0.000000

5
6

Geometry Optimization: Amino butyric acid

Figure 6.41: Geometry Optimization of Amino butyric acid
Table 6.9 : Geometry Optimization calculation of Amino butyric acid

```
******** Validated Experiment & Chemical System Settings **********
    Calculation started: Thu Jun 04 16:50:46 2009
    Title:E:\myphdthesis_2009\ACd_results\Abu
    Max. geom cycles
        100
    Convergence criteria:
    max. grad. component <
    0.000084 au.
    Input Atomic Information
    ************************
\begin{tabular}{llrrr}
1 & C & 16.727200 & -9.538300 & 0.000000 \\
2 & O & 16.727200 & -8.208300 & 0.000000 \\
3 & C & 15.575500 & -10.203300 & 0.000000 \\
4 & N & 15.575500 & -11.533300 & 0.000000 \\
5 & C & 14.423600 & -9.538300 & 0.000000 \\
6 & O & 17.879100 & -10.203300 & 0.000000 \\
7 & C & 13.271800 & -10.203400 & 0.000000
\end{tabular}
Constructing Chemical System(s)
```

```
Basis Set
***********
    basis functions : 28
    shells: : }1
    primitives : 42
```


Figure 6.42: Geometry Optimization Energy for various components of Amino butyric acid

```
***** SCF *****
```

Core repulsion 99.4321 au
Final SCF Energy $=-16.0321304196$ au
Final SCF Energy $=-10060.3228 \mathrm{kcal} / \mathrm{mol}$
*************** Final Geometry ****************

C	15.94062971	-9.99263718	-0.48994553	6
O	16.76806159	-7.34951479	0.07850090	8
C	15.52407585	-10.21360278	0.64044515	6
N	15.72470082	-11.86193116	-0.07280711	7
C	14.77876094	-8.77341644	-0.10464275	6
O	18.56438623	-10.55937950	0.03787747	8
C	12.87928488	-10.67771816	-0.08942813	6

Final Geom Energy $=-39.9881072545$ au
Final Geom Energy $=-25092.9388 \mathrm{kcal} / \mathrm{mol}$
Geometry Optimization elapsed time 4 min. 53 sec .
***** Heat of Formation *****

$$
10076.7315 \mathrm{kcal} / \mathrm{mol}
$$

```
    Atomic spin densities
    **********************
        1.0005
        0.0005
        -0.0225
            0.0189
            0.0019
            0.0008
            -0.0000
S2 operator
***********
exact 0.750000
calculated 0.790950
```

```
Properties elapsed time O sec
```

Properties elapsed time O sec
Total Elapsed Time 4 min. }54\mathrm{ sec

```
Total Elapsed Time 4 min. }54\mathrm{ sec
```

Quick Plot HOMO: Amino butyric acid

Figure 6.43: Quick Plot HOMO of Amino butyric acid
Table 6.17: Quick Plot HOMO calculation of Amino butyric acid

```
Calculation started: Thu Jun 04 17:29:12 2009
Max. SCF cycles 200
SCF convergence 1.5936e-009 au. for energy
Input Atomic Information
************************
\begin{tabular}{llrrr}
1 & C & 15.940630 & -9.992637 & -0.489946 \\
2 & O & 16.768062 & -7.349515 & 0.078501 \\
3 & C & 15.524076 & -10.213603 & 0.640445 \\
4 & N & 15.724701 & -11.861931 & -0.072807 \\
5 & C & 14.778761 & -8.773416 & -0.104643 \\
6 & 0 & 18.564386 & -10.559379 & 0.037877 \\
7 & C & 12.879285 & -10.677718 & -0.089428
\end{tabular}
Plotting the following orbitals to grid files:16
```


Figure 6.44: Energy vs. Difference /cycle Quick Plot HOMO calculation of Amino butyric acid

```
Constructing Chemical System(s)
    Basis Set
    ************
        basis functions : 28
        shells : 14
        primitives : % 84
    Memory for Main Chemical System
    Max. number 2-ele. ints. = 2212
    Memory Requirements (bytes)
**********************************
        Core 1002304
        Scratch 13888
        System charge 0.000000
***** SCF *****
    Core repulsion 79.7563 au
    Final SCF Energy = -38.5635015264 au
    Final SCF Energy = -24198.9844 kcal/mol
***** Heat of Formation *****
            7106.8388 kcal/mol
    Calculating Molecular Orbitals on grids for plotting.
Atomic spin densities
\(* * * * * * * * * * * * * * * * * * * *\)
```

```
S2 operator
***********
exact 0.750000
```

Properties elapsed time 1 sec.
Total Elapsed Time 2 sec.

Quick Plot LUMO : Amino butyric acid

Figure 6.45: Quick Plot LUMO of Amino butyric acid
Table 6.18 : Quick Plot LUMO calculation of Amino butyric acid

```
******** Validated Experiment & Chemical System Settings **********
    Calculation started: Thu Jun 04 17:50:51 2009
    Max. SCF cycles 200
    SCF convergence 1.5936e-009 au. for energy
    Input Atomic Information
    **************************
\begin{tabular}{llrrr}
1 & C & 15.940630 & -9.992637 & -0.489946 \\
2 & O & 16.768062 & -7.349515 & 0.078501 \\
3 & C & 15.524076 & -10.213603 & 0.640445 \\
4 & N & 15.724701 & -11.861931 & -0.072807 \\
5 & C & 14.778761 & -8.773416 & -0.104643 \\
6 & 0 & 18.564386 & -10.559379 & 0.037877 \\
7 & C & 12.879285 & -10.677718 & -0.089428
\end{tabular}
Constructing Chemical System(s)
```

```
Basis Set
```

Basis Set

basis functions : 28
basis functions : 28
shells : 14
shells : 14
primitives : 84
primitives : 84
Memory for Main Chemical System
Max. number 2-ele. ints. = 2212
Memory Requirements (bytes)

Core	1002304
Scratch	13888
System charge	0.000000

```


Figure 6.46: Energy vs. Difference/ cycle by Quick Plot LUMO of Amino butyric acid
```

Calculating Molecular Orbitals on grids for plotting
Atomic spin densities

1	C	-0.0184

2-0.0000
C C 0.0197
4 N 0.0012
C 0.9972
6 0-0.0000
S2 operator

exact 0.750000
calculated 0.751080
Properties elapsed time 1 sec.

```

\section*{Quick Plot ESP Mapped Density: Amino butyric acid}


Figure 6.47: Quick Plot ESP Mapped Density of Amino butyric acid

Table 6.19: Quick Plot ESP Mapped Density calculation of Amino butyric acid
```

********* Validated Experiment \& Chemical System Settings
Calculation started: Thu Jun 04 18:40:01 2009
Title:
SCF convergence 1.5936e-009 au. for energy
Input Atomic Information

1	C	15.940630	-9.992637	-0.489946
2	O	16.768062	-7.349515	0.078501
3	C	15.524076	-10.213603	0.640445
4	N	15.724701	-11.861931	-0.072807
5	C	14.778761	-8.773416	-0.104643
6	0	18.564386	-10.559379	0.037877
7	C	12.879285	-10.677718	-0.089428

Constructing Chemical System(s)
Basis Set

basis functions : 28
shells : 14
primitives : 84
Memory for Main Chemical System
Max. number 2-ele. ints. = 2212
Memory Requirements (bytes)

Core 1002304
Scratch 13888
System charge 0.000000
Total number of 2-ele integrals 2212
Integrals elapsed time O sec.

```


Figure 6.48: Energy vs. Difference / cycle by Quick Plot ESP Mapped Density of Amino butyric acid
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{***** Heat of Formation ***** \(7106.8388 \mathrm{kcal} / \mathrm{mol}\)} \\
\hline \multicolumn{4}{|l|}{Atomic spin densities} \\
\hline \multicolumn{4}{|l|}{**********************} \\
\hline 1 & C & -0.0184 & \\
\hline 2 & 0 & 0.0000 & \\
\hline 3 & C & 0.0197 & \\
\hline 4 & N & 0.0012 & \\
\hline 5 & C & 0.9972 & \\
\hline 6 & 0 & -0.0000 & \\
\hline 7 & C & 0.0002 & \\
\hline
\end{tabular}
```

S2 operator

```
exact 0.750000
calculated \(\quad 0.751080\)
Properties elapsed time 19 sec.
Total Elapsed Time 20 sec.

\section*{Asparagine}


Figure 6.49: Structure of Asparagine

\section*{Single Entry Point Calculation: Asparagine}

Table 6.20: Single Entry Point Calculation of Asparagine
```

Input Atomic Information

1	C	21.569300	-8.224400	0.000000
2	C	23.873000	-8.224400	0.000000
3	C	20.417600	-8.889400	0.000000
4	C	22.721200	-8.889400	0.000000
5	O	23.873000	-6.894400	0.000000
6	O	20.417600	-10.219400	0.000000
7	N	19.265800	-8.224400	0.000000
8	N	22.721200	-10.219400	0.000000
9	O	25.024800	-8.889400	0.000000

Constructing Chemical System(s)
Basis Set

basis functions : }3
shells : 18
primitives : 108
Memory for Main Chemical System
Max. number 2-ele. ints. = 3744
***** SCF *****
Core repulsion 165.108 au
Final SCF Energy = -24.2129529102 au
Final SCF Energy = -15193.8710 kcal/mol
***** Heat of Formation *****
28241.3138 kcal/mol

```


Figure 6.50: Energy vs. Difference of Single Entry Point Calculation of Asparagine
```

Properties elapsed time 0 sec.
Total Elapsed Time 1 sec.

```

\section*{Geometry Optimization: Asparagine}


Figure 6.51: Geometry Optimization of Asparagine
Table 6.21 : Geometry Optimization calculation of Asparagine
```

Max. SCF cycles
SCF convergence
Max. geom cycles
Convergence criteria:
max. grad. component <

```
50
\(1.5936 \mathrm{e}-013 \mathrm{au}\). for energy
100
0.000084 au.
```

Input Atomic Information

1	C	21.569300	-8.224400	0.000000
2	C	23.873000	-8.224400	0.000000
3	C	20.417600	-8.889400	0.000000
4	C	22.721200	-8.889400	0.000000
5	O	23.873000	-6.894400	0.000000
6	O	20.417600	-10.219400	0.000000
7	N	19.265800	-8.224400	0.000000
8	N	22.721200	-10.219400	0.000000
9	O	25.024800	-8.889400	0.000000

Constructing Chemical system(s)
Basis Set

basis functions : }3
shells : 18
primitives : 54
Memory for Main Chemical System
Max. number 2-ele. ints. = 3744
Memory Requirements (bytes)

Core	727504
Scratch	22464

 Core repulsion 165.108 au
 Final SCF Energy = -24.2078555875 au
 Final SCF Energy = -15190.6724 kcal/mol
 Final Geom Energy = -49.2464605506 au
 Final Geom Energy = -30902.6484 kcal/mol
 Geometry Optimization elapsed time 10 min. 41 sec.
 ***** Heat of Formation *****
15290.0969 kcal/mol
Total Elapsed Time 10 min. 42 sec.

```


Figure 6.52: Geometry Optimization Energy for various components of Asparagine

\section*{QuickPlot HOMO: Asparagine}


Figure 6.53: QuickPlot HOMO of Asparagine

Table 6.22: QuickPlot HOMO of Asparagine
```

********* Validated Experiment \& Chemical System Settings
Max. SCF cycles - }20
SCF convergence 1.5936e-009 au. for energy
Input Atomic Information
In

1	C	21.754545	-7.442867	0.000000
2	C	22.902106	-8.435586	-0.000002
3	C	21.117400	-8.750163	-0.000003
4	C	22.167307	-9.347993	0.000005
5	0	23.854067	-5.931479	0.000000
6	0	20.535689	-11.277524	0.000000
7	N	18.418534	-7.512176	0.000000
8	N	23.206285	-10.652366	-0.000000
9	O	25.927568	-9.324447	0.000000

 Plotting the following orbitals to grid files:21
 Constructing Chemical System(s)
 Basis Set

basis functions	$: 36$
shells	$: 18$
primitives	$: 108$

Memory for Main Chemical System
Max. number 2-ele. ints. = 3744
Memory Requirements (bytes)

Core	1051640
Scratch	22464

***** SCF *****
Core repulsion 133.616 au
Final SCF Energy = -67.3585267794 au
Final SCF Energy = -42268.1518 kcal/mol
***** Heat of Formation *****
1167.0330 kcal/mol
Total Elapsed Time 2 sec.

```


Figure 6.54 : Energy vs. Difference /cycle for QuickPlot HOMO of Asparagine

\section*{QuickPlot LUMO: Asparagine}


Figure 6.55: QuickPlot LUMO of Asparagine

Table 6.23: QuickPlot LUMO calculation of Asparagine



Figure 6.56: Energy vs. Difference /cycle for QuickPlot LUMO of Asparagine

\section*{Quick Plot ESP Mapped Density: Asparagine}


Figure 6.57: Quick Plot ESP Mapped Density of Asparagine
Table 6.24: Quick Plot ESP Mapped Density calculation of Asparagine
```

********* Validated Experiment \& Chemical System Settings
Max. SCF cycles
200
SCF convergence 1.5936e-009 au. for energy
Input Atomic Information

1	C	21.754545	-7.442867	0.000000
2	C	22.902106	-8.435586	-0.000002
3	C	21.117400	-8.750163	-0.000003
4	C	22.167307	-9.347993	0.000005
5	0	23.854067	-5.931479	0.000000
6	O	20.535689	-11.277524	0.000000
7	N	18.418534	-7.512176	0.000000
8	N	23.206285	-10.652366	-0.000000
9	O	25.927568	-9.324447	0.000000

Constructing Chemical System(s)
Basis Set

basis functions : }3
shells : 18
primitives : }10
Memory for Main Chemical System
Max. number 2-ele. ints. = 3744
Memory Requirements (bytes)

Core
1051640
Scratch 22464
Total number of 2-ele integrals 2935
***** SCF *****
Core repulsion 133.616 au
Final SCF Energy = -67.3585267794 au
Final SCF Energy = -42268.1518 kcal/mol
***** Heat of Formation *****
1167.0330 kcal/mol
Total Elapsed Time 26 sec.

```


Figure 6.58: Energy vs. Difference for Quick Plot ESP Mapped Density calculation of Asparagine Glutamine


Figure 6.59: Structure of Glutamine

\section*{Single Entry Point Calculation: Glutamine}

Table 6.25: Single Entry Point Calculation of Glutamine
```

********* Validated Experiment \& Chemical System Settings **********
Max. SCF cycles
SCF convergence
10
1.5936e-013 au. for energy
Basis Set

basis functions : 40
shells : 20
primitives : 120

```
```

 Memory for Main Chemical System
 Max. number 2-ele. ints. = 4660
 Memory Requirements (bytes)

Core	251216
Scratch	27520

Total number of 2-ele integrals 2554
***** SCF *****
Core repulsion 188.429 au
Final SCF Energy = -34.1405108556 au
Final SCF Energy = -21423.5133 kcal/mol
***** Heat of Formation *****
27536.8764 kcal/mol
Atomic spin densities

1	C	0.0000
2	C	0.0006
3	O	0.0000
4	C	0.0000
5	O	0.0006
6	C	0.0002
7	C	0.0379
8	0	0.0001
9	0	0.0000
10	N	0.9605

```
```

S2 operator

```
S2 operator
***********
***********
exact 0.750000
calculated 0.750000
Total Elapsed Time 1 sec.
```

Geometry Optimization: Glutamine

Figure 6.60: Geometry Optimization of Glutamine
Table 6.26: Geometry Optimization calculation of Glutamine
Constructing Chemical System(s)

Basis Set

basis functions	$: 40$
shells	$: 20$
primitives	$: 60$

```
    Memory for Main Chemical System
    Max. number 2-ele. ints. = 4660
Memory Requirements (bytes)
*********************************
    Core 899000
Total number of 2-ele integrals 2770
    Final SCF Energy = -17.6840713073 au
    Final SCF Energy = -11096.9323 kcal/mol
    Final Geometry ******************
\begin{tabular}{rrrrr} 
C & 15.31615076 & -13.95376286 & 0.00000000 & 6 \\
C & 18.08684663 & -13.98614029 & 0.00000000 & 6 \\
O & 14.89461756 & -11.46192091 & 0.00000000 & 8 \\
C & 16.17329576 & -15.62707299 & 0.00000000 & 6 \\
O & 18.50404616 & -11.50082702 & -0.00000000 & 8 \\
C & 16.26399478 & -13.38874488 & 0.00000000 & 6 \\
C & 16.93275916 & -14.42568040 & -0.00000000 & 6 \\
O & 20.66644582 & -14.98357984 & -0.00000000 & 8 \\
O & 12.32919477 & -15.33565085 & 0.00000000 & 8 \\
N & 17.19304862 & -17.05401998 & 0.00000000 & 7
\end{tabular}
    Final Geom Energy = -59.9845308085 au
        Final Geom Energy = -37640.8953 kcal/mol
***** Heat of Formation *****
        11319.6093 kcal/mol
    Total Elapsed Time 12 min. 16 sec.
```

QuickPlot HOMO: Glutamine

Figure 6.61: QuickPlot HOMO calculation of Glutamine

Table 6.27: QuickPlot HOMO calculation of Glutamine

```
Constructing Chemical System(s)
```

Basis Set

basis functions	$: 40$
shells	$: 20$
primitives	$: 120$

```
    Memory for Main Chemical System
    Max. number 2-ele. ints. = 4660
Memory Requirements (bytes)
*****************************
\begin{tabular}{lr} 
Core & 1115224 \\
Scratch & 27520
\end{tabular}
***** SCF *****
    Core repulsion 159.976 au
    Final SCF Energy = -59.1523636153 au
    Final SCF Energy = -37118.7021 kcal/mol
S2 operator
***********
\begin{tabular}{ll} 
exact & 0.750000 \\
calculated & 0.750001
\end{tabular}
Total Elapsed Time 4 sec.
```


QuickPlot LUMO: Glutamine

Figure 6.62: QuickPlot LUMO calculation of Glutamine

Table 6.28 QuickPlot LUMO calculation of Glutamine

```
Input Atomic Information
************************
```

1	C	15.316151	-13.953763	0.000000
2	C	18.086847	-13.986140	0.000000
3	O	14.894618	-11.461921	0.000000
4	C	16.173296	-15.627073	0.000000
5	0	18.504046	-11.500827	-0.000000
6	C	16.263995	-13.388745	0.000000
7	C	16.932759	-14.425680	-0.000000
8	O	20.666446	-14.983580	-0.000000
9	O	12.329195	-15.335651	0.000000
10	N	17.193049	-17.054020	0.000000

constructing Chemical System(s)

```
Basis set
***********
```

 basis functions : 40
 shells : 20
 primitives : 120
 Final SCF Energy $=-59.1523636153 \mathrm{au}$
Final SCF Energy $=-37118.7021 \mathrm{kcal} / \mathrm{mol}$

```
    Memory for Main Chemical System
    Max. number 2-ele. ints. = 4660
Memory Requirements (bytes)
*********************************
\begin{tabular}{lr} 
Core & 1115224 \\
Scratch & 27520
\end{tabular}
S2 operator
***********
\begin{tabular}{ll} 
exact & 0.750000 \\
calculated & 0.750001
\end{tabular}
Properties elapsed time 1 sec.
Total Elapsed Time 3 sec.
```


Quick Plot ESP Mapped Density: Glutamine

Figure 6.63: Quick Plot ESP Mapped Density of Glutamine
Table 6.29: Quick Plot ESP Mapped Density of Glutamine

```
Constructing Chemical System(s)
Basis Set
***********
    basis functions : 40
    shells : 20
    primitives : }12
    Memory for Main Chemical system
    Max. number 2-ele. ints. = 4660
Memory Requirements (bytes)
*****************************
    Core
    1115224
    Scratch
    27520
***** SCF *****
    Core repulsion 159.976 au
    Final SCF Energy = -59.1523636153 au
    Final SCF Energy = -37118.7021 kcal/mol
        SCF elapsed time 2 sec.
**** Heat of Formation *****
    11841.6877 kcal/mol
```


6.2.3 Activity No -3

In the second phase of research work experiment has been performed using tools like DAMBE and Jumboss. Under this research work molecular sequence of Nucleotides and Proteins has been analyzed.

6.2.3.1 Sequence Analysis Using Jemboss

Creation of Sequence from Multiple Alignments

In this phase of my research work I have created nucleotide sequence from multiple alignments using tropomyosin.fasta file using Jemboss software.

Figure 6.64 : Creation of Nucleotide Sequence from Multiple Alignment using Jemboss

Figure 6.65 : Creation of Nucleotide Sequence from Multiple Alignment

Drawing a Threshold Dot Plot of two Sequences

Figure 6.66 : Draw a threshold Dot Plot of two Sequences

Displaying Restriction Enzyme binding site in nucleotide sequence

Figure 6.67: Display restriction Enzyme binding site in nucleotide sequence

Calculation of Codon adaptation Index

	B	CAI	
	B	CAI	
	BF452255	CAI	0.136
d	BG089808	CAI	0.161
Sequ	BG147728	CAI	0.128
Sequence	BI817778	C	0
q	AF18610	C	0
	AF186110	C	0.
	2	CAI	
Sequence	AF362886	CAI :	
	AF3687	CAI :	0
Sequenc	AF087679	CAI	0.176

Figure 6.68 : Calculation of Codon adaptation Index

Calculation of isochores in DNA Sequence

Figure 6.69 : Calculation of isochores in DNA Sequence

Finding of siRNA duplexes in mRNA

Table 6.30 : Finding of siRNA duplexes in mRNA

Calculation of fractional GC Content of Nucleic Acid sequences

Table 6.31: Calculation of fractional GC Content of Nucleic Acid sequences

\#Sequence	GC content
BF056441	0.40
BE848719	0.46
BF022813	0.59
BF452255	0.57
BG089808	0.54
BG147728	0.55
BI817778	0.62
AF186109	0.55
AF186110	0.54
AF310722	0.56
AF362886	0.49
AF362887	0.50
AF087679	0.52

Back -translate to Protein Sequence to ambiguous nucleotide sequence

Abstract

>BF056441 BF056441; 7k05a04.x1 NCI_CGAP_GC6 Homo sapiens cDNA clone IMAGE:3443238 3' similar to SW:TPM4 HUMAN PO7226 TROPOMYŌSIN, FIBROBLAST NON-MUSCLE TYPE ; , mRNA sequence. GCNTGYGCNGGNACNACNGGNTGYGCNGCNGGNGCNGCNACNTGYACNGCNGCNGCNGGN ACNGGNACNGGNGGNGCNACNACNACNACNGCNACNACNTGYTGYGCNACNACNGGNTGY GCNTGYGCNGCNACNACNACNGGNTGYACNGCNGGNACNGGNACNGCNACNACNACNTGY TGYACNGGNGGNGGNACNGCNGGNACNGGNACNGGNGGNACNGGNTGYACNGGNGCNGCN ACNGCNGCNGCNACNGCNGGNGGNGCNGCNACNGCNGCNGCNACNGGNTGYACNGCNTGY ACNACNGCNGCNGGNGGNGCNGCNGCNGCNGCNGCNACNGCNGCNGGNGCNGGNGCNGGN TGYACNGGNGCNGCNGCNGCNGCNGGNTGYACNGGNGGNACNGGNTGYTGYGCNACNACN ACNGGNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGGNGGNGGNGCNGCNGGNGGNGCN GCNACNGGNGCNGGNGCNACNACNACNGCNGCNTGYACNGGNGGNACNGGNTGYACNTGY GCNGCNGCNGGNTGYACNACNTGYACNTGYTGYGGNGCNACNGCNTGYGCNGCNGCNGCN ACNGCNACNACNACNGGNGGNACNTGYGCNACNGGNACNGCNACNACNTGYGCNACNGCN GCNACNACNACNGGNTGYACNACNGGNGCNTGYGCNACNACNACNTGYTGYGCNGGNTGY GCNGCNGCNGGNTGYGGNGCNGCNGGNGCNACNGGNGGNTGYGCNGCNACNGCNGCNTGY GCNGCNGCNGCNGGNGGNGCNGCNTGYACNACNTGYACNACNGCNTGYGCNGCNGGNGCN GGNGCNGCNGGNGCNGGNGCNGCNGCNGGNGCNTGYTGYTGYGCNTGYGGNGGNGCNGGN TGYACNTGYTGYGCNGGNGCNGGNACNACNACNTGYACNGGNACNACNGGNGGNGCNGCN TGYGCNGCNGGNGCNTGYACNTGYACNACNTGYACNGGNACNACNACNACNGGNTGYACN ACNGCNACNGCNACNGCNTGYGCNGGNACNACNGCNGCNGGNACNACNTGYGGNACNACN ACNGCNGGNACNGGNACNTGYACNGGNGCNACNTGYTGYGCNGGNACNGGNACNTGYACN GGNGCNACNGGNACNGCNGCNGGNTGYTGYTGYGCNTGYGGNACNACNTGYACNTGYACN ACNTGYACNACNACNGGNGGNTGYTGYACNGGNGGNGGNTGYGCNGCNGGNACNACNACN TGYACNTGYACNACNTGYTGYGCNGGNGGNACNTGYGCNACNTGYGCNGCNACNACNGGN ACNTGYACNACNACNACNTGYTGYGCNGGNACNACNACNACNGGNTGYGCNGCNTGYTGY GGNACNACNTGYACNTGYACNTGYACNGGNTGYGCNGCNGCNACNACNTGYGCNGGNTGY GCNTGYGGNGGNGGNACNTGYACNTGYGCNGGNTGYTGYACNTGYACNACNACNTGYGCN GGNACNACNACNGGNACNTGYGCNGGNGCNTGYGCNGGNGCNGCNGGNACNACNACNGCN GCNACNACNACNTGYACNACNTGYACNACNTGYGCNACNGCNACNACNACNGGNACNTGY TGYACNTGYTGYACNACNACNACNTGYGCNGGNGCNGCNACNGCNTGYACNACNACNACN TGYGCNGGNGCNACNGGNTGYGCNGGNTGYTGYACNTGYTGYGCNGGNGCNGGNGCNACN ACNACNTGYGCNGGNGCNACNACNGGNACNGCNGGNACNACNGCNTGYGCNGCNACNACN TGYACNGGNGCNGGNACNACNTGYACNACNTGYACNTGYTGYGCNGGNGGNACNTGYGCN TGYTGYGCNTGYGCNACNACNACNACNGCNACNACNTGYGCNGGNGCNTGYGCNTGYTGY ACNTGYTGYGGNTGYGCNTGYGGNTGYACNACNTGYACNTGYACNGGNTGYTGYTGYACN TGYACNTGYGCNGGNTGYACNGCNGCNTGYTGYTGYACNACNTGY

Figure 6.70 : Back -translate to Protein Sequence to ambiguous nucleotide sequence

Creation of distance matrix from multiple sequence alignment

nstance matrix

Incorrected for Multiple Substitutions
Ising base positions 123 in the codon
;ap weighting is 0.000000

1	2	3	4	5	6	7	8	9	10	11	12	13	
0.00	76.30	75.89	75.10	75.84	79.25	76.11	75.11	73.93	74.96	74.68	70.19	74.22	BF056441 1
	0.00	78.04	80.12	76.60	78.13	76.77	79.80	76.65	79.23	79.55	79.58	77.94	BE848719 2
		0.00	68.74	77.09	72.32	66.11	71.60	71.84	73.27	72.08	77.09	73.75	BF022813 3
			0.00	73.75	74.52	68.81	73.94	75.68	73.94	75.97	77.23	72.59	BF452255 4
				0.00	70.47	73.23	71.58	73.25	71.88	77.27	77.93	73.10	BG089808 5
					0.00	73.67	74.21	71.96	76.07	73.05	72.07	73.27	BG147728 6
						0.00	74.56	75.88	78.10	77.60	74.18	73.67	BI817778 7
							0.00	65.92	67.74	74.68	70.19	67.74	AF186109 8
								0.00	69.65	67.21	73.00	70.93	AF186110 9
									0.00	65.91	72.54	68.00	AF310722 10
										0.00	69.81	70.13	AF362886 11
											0.00	71.13	AF362887 12
												0.00	AF087679 13

Figure 6.71 : Creation of distance matrix from multiple sequence alignment

6.2.3.2 Nucleotide Sequence Using DAMBE

Under this research work nucleotide sequence has been created from multiple alignments through tropomyosin.fasta file using DAMBE software.

Running FASTA algorithm to align locally two sequences

Table 6.32: Running FASTA algorithm to align locally two sequences

```
Query: ACCGCGATGACGAATA
Target: GAATACGACTGACGATGGA
N-tuple: 1
Result of the local alignment
Number of matched words of length 1: 7
Query: ACCGCGATGACGAATA
Target: GAATACGACTGACGATGGA
Computational details:
Part I. Hash table of query
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0 & 0 & 6 & 9 & 12 & 13 & 15 \\
\hline 1 & 1 & 2 & 4 & 10 & & \\
\hline 2 & 3 & 5 & 8 & 11 & & \\
\hline 3 & 7 & 14 & & & & \\
\hline Par & Targ & tab & & & & \\
\hline 0 & -3 & - 5 & -8 & -11 & & \\
\hline 1 & 1 & -5 & -8 & -11 & -12 & -14 \\
\hline 2 & 2 & -4 & -7 & -10 & -11 & -13 \\
\hline 3 & -4 & -11 & & & & \\
\hline 4 & 4 & -2 & -5 & -8 & -9 & -11 \\
\hline 5 & 4 & 3 & 1 & - 5 & & \\
\hline 6 & 3 & 1 & -2 & -5 & & \\
\hline 7 & 7 & 1 & -2 & -5 & -6 & -8 \\
\hline 8 & 7 & 6 & 4 & -2 & & \\
\hline 9 & 2 & -5 & & & & \\
\hline 10 & 7 & 5 & 2 & -1 & & \\
\hline 11 & 11 & 5 & 2 & -1 & -2 & -4 \\
\hline 12 & 11 & 10 & 8 & 2 & & \\
\hline 13 & 10 & 8 & 5 & 2 & & \\
\hline 14 & 14 & 8 & 5 & 2 & 1 & -1 \\
\hline 15 & 8 & 1 & & & & \\
\hline 16 & 13 & 11 & 8 & 5 & & \\
\hline 17 & 14 & 12 & 9 & 6 & & \\
\hline 18 & 18 & 12 & 9 & 6 & 5 & 3 \\
\hline
\end{tabular}
Part III. Frequency table
```

2	7
3	3
4	3
5	6
6	3
7	3

Nucleotide Frequency Calculation

Table 6.33: Nucleotide Frequency Calculation

Relative CpG, TpG and CpA abundance and GC\%

Table 6.34 :Relative CpG, TpG and CpA abundance and GC\%

Relative CpG, TpG and CpA abundance and GC\%			
SeqName	RA (CpG)	RA (TpG+CpA)	GC\%
embl : BF056441	0.4688	1.7385	0.4000
embl:BE848719	0.4070	1.7275	0.4642
embl:BF022813	1.7365	3.0724	0.5919
embl:BF452255	1.2272	2.3809	0.5706
embl:BG089808	0.9545	1.8657	0.5380
embl:BG147728	1.0379	2.3310	0.5506
embl:BI817778	1.5579	2.3169	0.6239
embl:AF186109	0.9357	1.6668	0.5503
embl:AF186110	0.5796	1.4454	0.5413
embl:AF310722	0.6665	1.3112	0.5621
embl:AF362886	1.4989	4.1446	0.4903
embl:AF362887	1.0261	2.7307	0.5023
embl : AF087679	0.7944	1.2812	0.5158
$R A$ is the odds-ratio measure, i.e., $F(X Y) /[F(X) * F(Y)]$ for quantifying the relative			
abundance of dinucleotides (for nucleotide sequences) or di-aa (for protein sequences). For nucleotide sequences, $F(X)$ and $F(Y)$ are the frequencies of X and Y, respectively,			
and $\mathrm{F}(\mathrm{XY})$ is the frequency of dinucleotide XY.			
For amino acid sequences, they are amino acid and di-aa frequencies			
XY is considered high (or low) when RA >1.25 (or <0.78). See Hollander, M., and D. A			
Wolfe. 1973. N	atist	ds. Wiley,	York

For an application of RA, see Karlin, S., W. Doerfler, and L. R. Cardon. 1994. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol 68:2889-2897.

Part II: Distribution of CpG in individual sequences:
Summary statistics of the inter-CpG distances

SeqName	N	Mean	STD	CV	Skew	Kurt
embl : BF056441	7	67.4286	54.7809	0.8124	0.8692	0.5025
embl:BE848719	9	60.7778	51.2732	0.8436	0.9363	0.9433
embl:BF022813	14	18.0417	30.2834	1.6785	3.2732	11.6885
embl:BF452255	15	19.4583	30.9234	1.5892	2.9717	9.8669
embl:BG089808	15	17.9630	26.4175	1.4707	2.7305	7.9922
embl:BG147728	12	21.2000	33.9017	1.5991	2.7200	7.8178
embl:BI817778	21	16.5357	15.1645	0.9171	1.8831	4.0354
embl:AF186109	20	21.1212	33.3164	1.5774	3.3791	13.5583
embl:AF186110	25	29.7667	34.7768	1.1683	2.7001	9.3338
embl:AF310722	28	21.7778	30.5977	1.4050	3.1991	13.1335
embl:AF362886	7	43.4286	52.4622	1.2080	1.6513	2.6721
embl:AF362887	10	41.4000	50.7701	1.2263	2.2652	5.7178
embl:AF087679	21	23.4857	26.0151	1.1077	1.6260	2.0147

Figure 6.72: Graph of Relative CpG, TpG and CpA abundance and GC\%

Di-nucleotide Substitution Pattern

Table 6.35: Di-nucleotide Substitution Pattern

| DiNuc | AA | AC | AG | AT | CA | $C C$ | $C G$ | $C T$ | GA | GC | GG | GT | TA | TC | TG | TT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AA | 68.000 | 6.000 | 35.000 | 8.000 | 17.000 | 8.000 | 0.000 | 14.000 | 30.000 | 16.000 | 12.000 | 2.000 | 3.000 | 4.000 | 6.000 | 7.000 |
| AC | 6.000 | 34.000 | 17.000 | 11.000 | 5.000 | 4.000 | 3.000 | 0.000 | 2.000 | 9.000 | 1.000 | 2.000 | 3.000 | 5.000 | 0.000 | 4.000 |
| AG | 35.000 | 17.000 | 102.000 | 12.000 | 2.000 | 0.000 | 7.000 | 5.000 | 6.000 | 6.000 | 11.000 | 7.000 | 11.000 | 4.000 | 30.000 | 10.000 |
| AT | 8.000 | 11.000 | 12.000 | 32.000 | 9.000 | 2.000 | 2.000 | 10.000 | 4.000 | 7.000 | 5.000 | 11.000 | 0.000 | 6.000 | 2.000 | 5.000 |
| CA | 17.000 | 5.000 | 2.000 | 9.000 | 82.000 | 7.000 | 7.000 | 10.000 | 15.000 | 1.000 | 5.000 | 8.000 | 8.000 | 6.000 | 5.000 | 3.000 |
| CC | 8.000 | 4.000 | 0.000 | 2.000 | 7.000 | 48.000 | 4.000 | 8.000 | 0.000 | 9.000 | 8.000 | 4.000 | 4.000 | 8.000 | 1.000 | 1.000 |
| CG | 0.000 | 3.000 | 7.000 | 2.000 | 7.000 | 4.000 | 8.000 | 6.000 | 4.000 | 0.000 | 3.000 | 4.000 | 0.000 | 0.000 | 11.000 | 4.000 |
| CT | 14.000 | 0.000 | 5.000 | 10.000 | 10.000 | 8.000 | 6.000 | 110.000 | 4.000 | 2.000 | 2.000 | 8.000 | 0.000 | 2.000 | 4.000 | 27.000 |
| GA | 30.000 | 2.000 | 6.000 | 4.000 | 15.000 | 0.000 | 4.000 | 4.000 | 68.000 | 14.000 | 18.000 | 14.000 | 10.000 | 6.000 | 6.000 | 12.000 |
| GC | 16.000 | 9.000 | 6.000 | 7.000 | 1.000 | 9.000 | 0.000 | 2.000 | 14.000 | 54.000 | 14.000 | 13.000 | 6.000 | 13.000 | 5.000 | 5.000 |
| GG | 12.000 | 1.000 | 11.000 | 5.000 | 5.000 | 8.000 | 3.000 | 2.000 | 18.000 | 14.000 | 32.000 | 5.000 | 3.000 | 3.000 | 8.000 | 4.000 |
| GT | 2.000 | 2.000 | 7.000 | 11.000 | 8.000 | 4.000 | 4.000 | 8.000 | 14.000 | 13.000 | 5.000 | 36.000 | 2.000 | 2.000 | 2.000 | 3.000 |
| TA | 3.000 | 3.000 | 11.000 | 0.000 | 8.000 | 4.000 | 0.000 | 0.000 | 10.000 | 6.000 | 3.000 | 2.000 | 22.000 | 5.000 | 7.000 | 7.000 |
| TC | 4.000 | 5.000 | 4.000 | 6.000 | 6.000 | 8.000 | 0.000 | 2.000 | 6.000 | 13.000 | 3.000 | 2.000 | 5.000 | 104.000 | 11.000 | 16.000 |
| TG | 6.000 | 0.000 | 30.000 | 2.000 | 5.000 | 1.000 | 11.000 | 4.000 | 6.000 | 5.000 | 8.000 | 2.000 | 7.000 | 11.000 | 66.000 | 17.000 |
| TT | 7.000 | 4.000 | 10.000 | 5.000 | 3.000 | 1.000 | 4.000 | 27.000 | 12.000 | 5.000 | 4.000 | 3.000 | 7.000 | 16.000 | 17.000 | 104.000 |

Graph Stacking Energy vs. Sequence Numbering

Figure 6.73: Graph Stacking Energy vs Sequence Numbering

Quick Multiple Alignment of Nucleotide Sequence

Figure 6.74: Quick Multiple Alignment of Nucleotide Sequence

Creation of Phylogenetics Tree of Nucleotide sequence based on Distance Method

Figure 6.75: Creation of Phylogenetics Tree

Phylogenetics with DAMBE

```
Phylogenetics with DAMBE
I. Distance options:
Genetic distance: MLCompositeTN93
Distance matrix:
13
emb 1:AF362886
emb1:BI817778 0.10926
emb 1:BF056441 0.16187 0.34219
emb 1:BE848719 0.15956
emb1:AF362887 0.06521 0.22293 0.15434 0.14749
emb1:BF022813 0.03321
lemb 1:BG147728 0.10176
emb1:BF452255 0.08620
emb 1: BG089808 
lembl:AF186109 0.05730
embl:AF087679 0.09643
emb 1:AF186110 
emb1:AF310722 
Composite lnL maximized after 26 iterations
k1 = 15.6653
k2 = 27.4965
lnL}=-31.7887
II. Tree options
Tree-building method: FastME
Outgroup: emb1:AF362886
Branch evaluation: Balanced
Initial tree: GME
Branch swapping: Yes.
Best tree:
(emb 1:BI817778:0.105152, ( (emb 1:AF087679:0.034556, ( (emb 1:AF186109:-0.005268,(emb 1:AF186110:0.002106,emb 1:AF310722:0.000185):0.005699):0.0128:
```

Figure 6.76: Phylogenetics with DAMBE

6.2.3.3 Protein Sequence Using Jemboss

In this phase of research work protein structure has been analyzed using tropomyosin.fasta file through Jemboss software.

Prediction of Protein Secondary structure using GOR Method


```
# Program: garnier
# Rundate: Sun 23 May 2009 16:53:17
# Commandline: garnier
# -sequence C: mEMBOSS\test\data\tropomyosin. fasta
# -idc 0
# -rformat tagreq
# -auto
# Report_format: tagseq
# Report_file: bfo5644l.garnier
```



```
# Sequence: BF056441 from: l to: 675
# Hitcount: 125
#
# DCH = O, DCS = 0
#
# Please cite:
# Garnier, Osguthorpe and Robson (1978) J. Mol. Biol. 120:97-120
#
#"========================================
```


Figure 6.77: Prediction of Protein Secondary structure using GOR Method

Plot of Hydrophobic Moment for Protein Sequences

Figure 6.78: Plot of Hydrophobic Moment for Protein Sequences

Drawing a helical Net for Protein Sequence

Figure 6.79: Drawing a helical Net for Protein Sequence

Back -translate Protein sequence to Nucleotide Sequence

Abstract

 ACCTGCGCCGGCACCACCGGCTGCGCCGCCGGCGCCGCCACCTGCACCGCCGCCGCCGGC GCCTGCACCGGCGGCGCCACCACCACCACCGCCACCACCTGCTGCGCCACCACCGGCTGL TGCACCGGCGCCACCACCACCGGCTGCACCGCCGGCACCGGCACCGCCACCACCACCTGE ACCGCCGCCGCCACCGCCGGCGGCACCGGCACCGGCGGCACCGGCTGCACCGGCGCCGCE TGCACCGGCGCCGCCGCCGCCGCCGGCTGCACCGGCGGCACCGGCTGCTGCGCCACCACL GCCGCCGCCGGCTGCACCACCTGCACCTGCTGCGGCGCCACCGCCTGCGCCGCCGCCGCR ACCGCCACCACCACCGGCGGCACCTGCGCCACCGGCACCGCCACCACCTGCGCCACCGCC GCCACCACCACCGGCTGCACCACCGGCGCCTGCGCCACCACCACCTGCTGCGCCGGCTGD GCCGCCGCCGGCTGCGGCGCCGCCGGCGCCACCGGCGGCTGCGCCECCACCGCCGCCTGC GCCGCCGCCGCCGGCGGCGCCGCCTGCACCACCTGCACCACCGCCTGCGCCGCCGGCGCC GGCGCLGCCGGCGCCGGCGCCGCCGCCGGCGCCTGCTGCTGCGCCTGCGGCGGCGCCGGE TGCACCTGCTGCGCCGGCGCCGGCACCACCACCTGCACCGGCACCACCGGCGGCGCCGCC TGCGCCGCCGGCGCCTGCACCTGCACCACCTGCACCGGCACCACCACCACCGGCTGCACC ACCGCCACCGCCACCGCCTGCGCCGGCACCACCGCCGCCGGCACCACCTGCGGCACCACL ACCGCCGGCACCGGCACCTGCACCGGCGCCACCTGCTGCGCCGGCACCGGCACCTGCACC GGCGCCACCGGCACCGCCGCCGGCTGCTGCTGCGCCTGCGGCACCACCTGCACCTGCACC TGCACCTGCACCACCTGCTGCGCEGGCGGCACCTGCGCCACCTGCGCCGCCACCACCGGO ACCTGCACCACCACCACCTGCTGCGCCGGCACCACCACCACCGGCTGCGCCGCCTGCTGC GGCACCACCTGCACCTGCACCTGCACCGGCTGCGCCGCCGCCACCACCTGCGCCGGCTGC GCCTGCGGCGGCGGCACCTGCACCTGCGCCGGCTGCTGCACCTGCACCACCACCTGCGCC GGCACCACCACCGGCACCTGCGCCGGCGCCTGCGCCGGCGCCGCCGGCACCACCACCGCD GCCACCACCACCTGCACCACCTGCACCACCTGCGCCACCGCCACCACCACCGGCACCTGC TGCACCTGCTGCACCACCACCACCTGCGCCGGCGCCGCCACCGCCTGCACCACCACCACL TGCGCCGGCGCCACCGGCTGCGCCGGCTGCTGCACCTGCTGCGCCGGCGCCGGCGCCACD ACCACCTGCGCCGGCGCCACCACCGGCACCGCCGGCACCACCGCCTGCGCCGCCACCACC TGCACCGGCGCCGGCACCACCTGCACCACCTGCACCTGCTGCGCCGGCGGCACCTGCGCD TGCTGCGCCTGCGCCACCACCACCACCGCCACCACCTGCGCCGGCGCCTGCGCCTGCTGC TGCACCTGCGCCGGCTGCACCGCCGCCTGCTGCTGCACCACCTGC

Figure 6.80: Back -translate Protein sequence to Nucleotide Sequence

Calculation of Composition of Unique words in Sequences

Table 6.36: Calculation of Composition of Unique words in Sequences

Generation of residue / base frequency plot

Figure 6.81 : Generation of residue / base frequency plot

Calculation of isoelectric points of protein

Table 6.37: Calculation of isoelectric points of protein

PH	Bownel	chargre
1. 100	143.00	1. 00
1. 50	142-99	0. 99
2.00	$142-93$	$0-98$
2.50	$142-93$	0.93
3.00	$142-30$	$0-30$
$3-50$	$142-56$	a-56
4.00	142-2B	0-2
4.50	142-10	O-10
5. 000	141-99	-0.01
5-50	$141-37$	-1.13
6. 00	$141-56$	-10.44
6-50	$140-60$	-1.40
7-00	$137-65$	$-4-35$
7-50	$129-11$	$-12-39$
8.00	$107-92$	$-34-08$
$8-50$	71.06	$-70-94$
9. 00	$34-16$	$-107-84$
9-50	$12-93$	$-129-07$
10.00	4-36	$-137-64$
$10-50$	1. 41	$-140-59$
11-00	10. 45	$-141-55$
11-50	10. 14	$-141-36$
$12-00$	0.04	$-141-96$
$12-50$	0.01	-141-99
13.00	0.00	$-142-00$
$13-50$	0.00	-142.00
14.00	0.00	-142.00
IEP OF	348719	om 1 to
ISoele	ic Pail	$=4.8956$
PH	Bownmel	chergre
1. 000	195-01	1. 100
1. -50	$194-99$	0.99
2.00	$194-98$	a-93
$2-50$	$194-93$	10.93

Isoelectric Point Plot Charge vs PH

Figure 6.82: Isoelectric Point Plot Charge vs PH

Calculation of Statistics of protein properties

Table 6.38: Calculation of Statistics of protein properties

Molecular weight $=57252.78$			Residues $=675$
Average Residue Weight $=84.819$			Charge $=0$.
Isoelectric Point $=4.9650$			
A280 Molar Extinction Coefficient $=0$			
A280 Extinction Coefficient $1 \mathrm{mg} / \mathrm{ml}=0.00$			
Improbab	f expr	inclu	es $=0$
Residue	Number	Mole\%	Dayhof
$A=A l a$	187	27.704	3.221
$B=A s x$	0	0.000	0.000
$C=$ Cys	141	20.889	7.203
$D=A s p$	0	0.000	0.000
$\mathrm{E}=\mathrm{Glu}$	0	0.000	0.000
$F=$ Phe	0	0.000	0.000
$\mathrm{G}=\mathrm{Gly}$	129	19.111	2.275
$\mathrm{H}=\mathrm{His}$	0	0.000	0.000
$I=I l e$	0	0.000	0.000
J = ---	0	0.000	0.000
$\mathrm{K}=\mathrm{Lys}$	0	0.000	0.000
$\mathrm{L}=\mathrm{Leu}$	0	0.000	0.000
$\mathrm{M}=$ Met	0	0.000	0.000
$\mathrm{N}=\mathrm{Asn}$	0	0.000	0.000
$\mathrm{O}=--$	0	0.000	0.000
$\mathrm{P}=$ Pro	0	0.000	0.000
$\mathrm{Q}=\mathrm{Gln}$	0	0.000	0.000
$\mathrm{R}=\mathrm{Arg}$	0	0.000	0.000
$\mathrm{S}=$ Ser	0	0.000	0.000
$T=T h r$	218	32.296	5.294
$\mathrm{U}=---$	0	0.000	0.000
$\mathrm{V}=\mathrm{Val}$	0	0.000	0.000

$\mathrm{W}=\operatorname{Trp}$	00.000		0.000	
X＝Xaa	$0 \quad 0.000$		0.000	
$\mathrm{Y}=\mathrm{Tyr}$	$0 \quad 0.000$		0.000	
$\mathrm{Z}=\mathrm{Glx}$	0 0．000		0.000	
Property	Residues	Number		Mole\％
Tiny	$(\mathrm{A}+\mathrm{C}+\mathrm{G}+\mathrm{S}+\mathrm{T})$	675		100.000
Small	$(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{G}+\mathrm{N}+\mathrm{P}+\mathrm{S}+\mathrm{T}+\mathrm{V})$	675		100.000
Aliphatic	$(\mathrm{A}+\mathrm{I}+\mathrm{L}+\mathrm{V}$ ）	187		27.704
Aromatic	（ $\mathrm{F}+\mathrm{H}+\mathrm{W}+\mathrm{Y}$ ）	0		0.000
Non－polar	$(\mathrm{A}+\mathrm{C}+\mathrm{F}+\mathrm{G}+\mathrm{I}+\mathrm{L}+\mathrm{M}+\mathrm{P}+\mathrm{V}+\mathrm{W}+\mathrm{Y})$	） 457		67.704
Polar	$(\mathrm{D}+\mathrm{E}+\mathrm{H}+\mathrm{K}+\mathrm{N}+\mathrm{Q}+\mathrm{R}+\mathrm{S}+\mathrm{T}+\mathrm{Z})$	218		32.296
Charged	$(\mathrm{B}+\mathrm{D}+\mathrm{E}+\mathrm{H}+\mathrm{K}+\mathrm{R}+\mathrm{Z})$	0		0.000
Basic	（ $\mathrm{H}+\mathrm{K}+\mathrm{R}$ ）	0		0.000
Acidic	$(\mathrm{B}+\mathrm{D}+\mathrm{E}+\mathrm{Z})$	0		0.000

Plot of amino acid properties of proteins in parallel

Figure 6.83 ：Plot of Histogram of general properties

Figure 6.84: Plot graph of hydropathy

WaterMan- Eggert Local Alignment of two Protein Sequences

```
#######################################
# Program: matcher
# Rundate: Sun 23 May 2009 20:40:49
# Commandline: matcher
    -asequence C:\mEMBOSS\test\data\tropomyosin.fasta
        -sprotein1
        -bsequence C:\mEMBOSS\test\data\opsd.fasta
        -sprotein2
        -alternatives 1
        -gapopen 0
        -gapextend 0
        -aformat markx0
        -auto
    Align_format: markx0
# Report_file: bf056441.matcher
########################################
```

```
# Aligned sequences: 2
# 1: BF05\overline{6}441
# 2: OPSD_HUMAN
# Matrix: EBLOSUM62
# Gap penalty: 0
# Extend_penalty: 0
# Length: 624
# Identity: 88/624 (14.1%)
# Similarity: re5/624 (16.8%)
# Gaps: 519/624 (83.2%)
# Score: 487
#=========================================
    10 20
BF0564 GT-TGCAAG-------A-ATCTAAAG---T-----------GTGGA-------
```



```
    30 40 50
BF0564 TTTATTCCATTGCA--CAA--------TTTG------CT---AGT------
```



```
    70 80
BF0564 --GT---------A-TTTCCTGGGTA------GTG-TGGTGCTGAAT--A
```



```
                                    90 100 110
BF0564 AATA--G----G-AATAAATGCTAC---TTAAG--GAAAAAAT-AAGAG-
```



```
        100 110 120
MF0564 - 120 1--GCT----GAAA-------AAGCTGGTGC----CATTTGAAAAAAAA-
OPSD_H IALW--SंSVVL---ȦAIERYVVV---------'C
        130 140
        160 170 180
BF0564 ---AAG---GGA--AG-GA-AT---GA-GATTTAACTGGTGCTCAA---A
```



```
                                200 210
BF0564 G-CTTCT-----CCG--ATACAAAATATTTGGTCATG----T---------
```



```
        180 190 200
        220 230
BF0564 A----------T--------TC-ATAATTTG----CT---TGACATTTCC
```



```
            210 220 230
        40250 260 270
BF0564 A----GCAAAGCGAAGATGGCAAT--AACAAAAGGA---- - ACTTCT----
```



```
                280 290 300
BF0564 ----TA---C----AAGAGAAGAGAAAGACCCA-CGGA----GCT--CCA
```



```
        260 270
BF0564 GA--G----TTTCTGT--TGGA--A-CAAGA-------------------------
OPSD_H GSNFGPIFM-----TIP---AFFAK-SA-AIYNPVIYIMMNKQFRNCML
    280 290 300 310
```



```
\(370 \quad 380\)
```


Figure 6.85: WaterMan- Eggert Local Alignment of two Protein Sequences

Needleman-Wunsch Global Alignment of two sequences

BF056441 OPSD_HUMAN	300 6		323 41	
BF056441	324	gactcttctgttt------t-gc-	347	
OPSD_HUMAN	42	-A---------- YMFLLIVLG-FPINFLTLYVTVQHKKLRT-- PLNYIL	76	
BF056441	348	-agtta----a-gttcgtt-tagtg--tct--gatcc--a-g-tgtct	380	
OPSD_HUMAN	77	LNLA--VADLFMVLG---G--FTS-T-LYT-SLHG--- YFVFGPTG-C	110	
BF056441	381	gatgtaa---gccc--acgttctcttctttggcctg-ggca--agtttct	422	
OPSD_HUMAN	111	NLEG---FFA-----------------T-LGG--EIA	124	
BF056441	423	ct--tcc----aggtc-----atcaa---tt---gtcttttcc---agtt	452	
OPSD_HUMAN	125	--LWS--LVVLA--- - IERYVVVC--KPMSNFRFG------- - ENHA -	153	
BF056441	453	tt--gcaaccgttctctc-tgca-a-attc-agcacgggtctcagcetct	496	
OPSD_HUMAN	154	- IMG-VA---------FT---WVMA---LA - CA	169	
BF056441	497	ttc---agtt-t-----gt--cagacagaagtttaa	525	
OPSD_HUMAN	170	--PPLAG--WSRYIPEG-LQC--SC----G------ IDYYT-LKPEVN	199	
BF056441	526	t-tc-------t--t--------catattt-gtcctcctt--t-	550	
OPSD_HUMAN	200	NES-FVIYMFVVHFTIPMIIIFFC------YG--------QLVFT-VKEA	233	
BF056441	551	gaa----tacttttc--ag---atgc--------agcctc---c----ag	576	
OPSD_HUMAN	234	-AAQQQESA---TT-QKA-EKEVT--RMVIIMVIA-----FLICWVPYA-	269	
BF056441	577	ag-att----tca--gatt-g----t--agtt--ac-aattctga	605	
OPSD_HUMAN	270	S-VA--FYIFT--HQG-SNFGPIFMTIPA---FFA-KSA----AIYNPV	304	
BF056441	606	tct--tct-ccaggtcaccacattttattca----gac--	637	
OPSD_HUMAN	305	IYIMMNKQFRNC-MLT-TICC--G------------------ KNPLG--DD	331	
BF056441	638	-acctccgcacgcttctc-tgcce-tc-tcagc-ta-accettc 675		
		: \| \quad \|	${ }^{\text {a }}$ -	
OPSD_HUMAN	332	EA--S---A-----T-VS----KT-ET-S--QVAPA------ 348		

\#			
\# Aligned sequences: 2			
\# 1: BF056441			
\# 2: OPSD_XENLA			
\# Matrix: EBLOSUM62			
\# Gap_penalty: 0.0			
\# Extend_penalty: 0.0			
\# Length: 897			
\# Identity: 84/897 (9.4\%)			
\# Similarity: 106/897 (11.8\%)			
\# Gaps: 765/897 (85.3\%)			
\# Score: 484.0			
\#			
\#			
BF056441	1 a	gttgcaa	50
OPSD_XENLA	0		0
BF056441	51 ag	gtatttc	100
OPSD_XENLA	0		0
BF056441	101 tt	aaggaaaa	150
OPSD_XENLA	0		0
BF056441	151 a	gggaagga	200

OPSD_XENLA	0		0
BF056441	201	tatttggtcatgtattcataatttgcttgacatttccagcaaagcgaaga	250
OPSD_XENLA	0		0
BF056441		tggcaataacaaaag-gaac----t--tct-tacaagagaagagaa-ag-	290
OPSD_XENLA	1	MNG---T-------EG---PNFYVPMS-NKT----------GVVRS-P	23
BF056441	291	c-----acggagctcc-aga-------gttt	312
OPSD_XENLA	24	FDYPQYYLA---EPWQYS--A----LA-AYMFLLILLG----LPINFM	57
BF056441	313	tg---t-------tggaacaa------g---actct---t-ctgttttg	338
OPSD_XENLA	58	T-LFVTIQHKKLRT------PLNYILLNLVFA---NHFMVLC------	90
BF056441	339	cttata-tacagttaag--ttc--gttta----g-tgtct---gatcc--	373
OPSD_XENLA	91	FT----VT---MYTS-MHG----YFIFGPTG-C-YIEG----FF	116
BF056441	374	agt-gtctg--a--tg-ta-agcc-------c---acgttctcttctttg	406
OPSD_XENLA	117	A-TLG---GEVALWS-LVVLA---VERYIVVCK	144
BF056441	407	gcctgg---gca---a--gtttctcttcc-agg-tc---a-tcaattgtc	442
OPSD_XENLA	145	NFRFG--ENHAIMG---------VA--FT-WIMALSC-A	168
BF056441	443	ttttccagtttt---gca-acc----gttct--ctctgcaaat---tc	477
OPSD_XENLA	169	A-----PPLFG--WS--RYIPEG----MQCSC-G----VDYYT-	193
BF056441	478	agc-------acggg---------tc----t---ca-gcctcttt---	498
OPSD_XENLA	194	LKPEVNNES---FVIYMFIVHFT-IPLIVIFFC-YG------RLL	227
BF056441	499	cagtttgtcagac---agaag----t-tta--atttc---ttc------t	529
OPSD_XENLA	228	C------T-----VKEA-AA-QQQESLTT-QKA----EKEVT-RMVVIMV	258
BF056441	530	-a-tatt---t--gtcctccttttca--gaatactt-t--	559
OPSD_XENLA	259	VFFLICWVPYAYVA--FYIFTHQG---------SNFG------ PVFM	288
BF056441	560	tcag--atgc--agcc-tccaga--g-a---t-t----tcagattgtag-	592
OPSD_XENLA	289	T---VPA---FFA---KS--S-AIYNPVIYIVLNKQFRNC--------- - -	317
BF056441	593	-tta-caattctgagttcttctcca----g---gtcaccacattttattc	633
OPSD_XENLA	318	ITT-LC----C---G---------- KNPFGDEDG--S--S-A----A-T-	338
BF056441	634	agacacc-tccgc-acgettctctgcce-tctcagc-ta-accettc	675
OPSD_XENLA	339		354

Figure 6.86: Needleman-Wunsch Global Alignment of two sequences

SWISS-MODEL Repository Model

Model Quality Assessnent

Template Selection					
\#\#\#\#\#\#\#\#\#\#\#\#\# TEMPLATES SELECTED \#\#\#\#\#\#\#\#\#\#\#\#\#					
$>07618 \mathrm{ce3} 2 \mathrm{~d} 203 \mathrm{c} 12432 \mathrm{~b} 72 \mathrm{bb} 6242 \mathrm{ca4a}$					
>2098B Evalue:1.92452e-105 SeqID:87.764 Method:BLAST Type:MODEL					
TEMPLATE ID 2098B	$\begin{aligned} & \text { D } \quad \begin{array}{l} \text { START } \\ 7 \end{array} . \end{aligned}$	$\begin{gathered} \text { STOP } \\ 243 \end{gathered}$	METHOD BLAST	STATUS BUILT	
FINISHED PIPELINE ON ID: 07618ce3ed203c12432b72bb6242ca4a on gopt-45.cluster.bc2.ch BC2-Cluster					
Template Search					
From-To					
7-243	2098B	2.70	88\%	BLAST	
9-242	109cA	2.60	87\%	BLAST	
9-242	109 eA	2.60	87\%	BLAST	
9-242	109fA	2.70	87\%	BLAST	
9-242	109dA	2.30	86\%	BLAST	
7-244	2098A	2.70	85\%	BLAST	
11-241	$2 \mathrm{br9A}$	1.75	77\%	BLAST	
7-242	2 npmB	2.52	64\%	BLAST	
7-242	2 npmA	2.52	64\%	BLAST	
8-242	2 btpA	2.80	63\%	BLAST	
11-243	19jbB	2.00	64\%	BLAST	
11-243	19jbA	2.00	64\%	BLAST	
11-242	2c1jA	2.60	64\%	BLAST	
11-242	2c1jB	2.60	64\%	BLAST	
11-242	2002B	1.50	64\%	BLAST	
11-242	2002A	1.50	63\%	BLAST	
8-241	2v7dA	2.5	63\%	BLAST	
11-242	$2 \mathrm{bq0A}$	2.50	64\%	BLAST	
11-240	1ib1A	2.70	64\%	BLAST	
11-240	1ib1D	2.70	64\%	BLAST	
11-240	1ib1C	2.70	64\%	BLAST	
11-240	1ib1B	2.70	64\%	BLAST	
11-243	2 bqOB	2.50	64\%	BLAST	
11-242	2 c 23 A	2.65	63\%	BLAST	
11-242	2btpB	2.80	63\%	BLAST	
11-243	2c74A	2.70	61\%	BLAST	
11-241	2b05D	2.55	61\%	BLAST	
11-241	$2 \mathrm{b05C}$	2.55	61\%	BLAST	
11-241	2b05B	2.55	61\%	BLAST	
11-241	2 b 05 A	2.55	61\%	BLAST	

Figure 6. 87: SWISS-MODEL Repository Model

6.3 Data Analysis and Experimental Outcome

In the first phase of experimental work of research (Activity No-1) analyses on compounds like Alanine, Amino butyric Acid, Asparagine and Glutamine have been performed using NMRPrediction and ACD/ChemSketch.

This research work describes the characteristics of a free web-based spectral database for chemical research community, containing ${ }^{13} \mathrm{C}$ NMR spectra data from natural compounds. This database allows flexible searching via chemical structure , substructure, name and family of compounds as well as spectral features as chemical shifts, allowing the structural elucidation of known and unknown compounds by comparison of ${ }^{13} \mathrm{C}$ NMR data.

In this experiment script calculates and represents the ${ }^{13} \mathrm{C}$ NMR spectra of the compound. The chemical shifts value obtained in different NMR experiments can be entered with the carbon's hybridization type. This experiment permits to carry out the enquiry with the required number of carbons, from one carbon to the totality of the compound's carbon. It is possible to specify the required deviation (+/-), to the limit in a detailed way. So it limits the search distinctly and therefore a reasonable and manageable compound can be obtained.

If the skeleton of the studied substance is known, and if some distinctive chemical shifts of most important signals are also available, a search by shifts in each particular position of the molecule can be carried out. So it can be obtained the compounds of the family whose shifts, in those position match with those with problem compound.

In this research using ACD/ChemSketch compounds are stored in databases and SMILE codes (Simplified Molecular Input Line Specification) have been generated. A SMILE defines the molecules in the form of alphanumeric chains. This format of structural specification has been used for sharing chemical structure information.

Under this research CML codes of molecules have been developed and that codes have been used for molecular information like symmetry, and atom and bond attributes. Here multiple observations of the same molecule (e.g. conformational analysis and NMR prediction) have been performed.

After that web based structure search queries have been performed on these compounds using web based Pubchem/NCBI. Here activities like bioactivity analysis by structure \& activity similarity of molecule , bioactivity analysis by structure \& activity similarity of molecule from normalized score percentile, bioactivity analysis by activity \& protein target similarity of molecule from normalized score percentile, bioactivity analysis by addition of similar compounds of molecule and revised compound selection after addition of similar compounds of molecule have been performed.

In the second phase of experimental work of research (Activity No-2) analyses on same compounds like Alanine, Amino butyric Acid, Asparagine and Glutamine have been performed using ArgusLab tool. Under these experimental work calculations like single entry point calculation, geometry optimization, quick plot HOMO, Quick plot LUMO and quick plot ESP mapped density have been performed.

The outcomes of Activity No-2 have been derived in form of like heat of formation, atom-atom bond orders, atomic spin densities, ground state dipole, SCF plot between energy vs. difference per cycle, final SCF energy, geometric search, comparison between exact and calculated of s2 operator, calculation of ground-state density on grid, calculation of ground-state electrostatic potential on grid and total elapsed time etc. The above all outcomes of compounds like Alanine, Amino butyric Acid, Asparagine and Glutamine have been compared.

It is possible to carry out a combined and simultaneous use of outcomes of Activity No-1 and Activity No-2 like SMILE, chemical shifts, CML, bioactivity analysis of structures, atom-atom bond orders, atomic spin densities, SCF energy and geometric search etc. that
undoubtedly amplifies the search capacity and increases the possibilities of finding compounds and to predict their molecular structure.

PROPOSED MODEL FOR MOLECULAR STRUCTURE PREDICTION

In this research a Model for Molecular Structure Prediction has been developed. This model has been used for prediction of molecular structure. The basic components of this model have been shown in this Figure 6.88.

Figure 6.88: Basic Components of Knowledge Based Model for Molecular Structure Prediction

The combinations of all above basic components enhance the capability of this model in predicting molecular structure.

Figure 6.89 is basic view of the model that has been developed. In this model all basic components of compounds like Alanine, Amino butyric Acid, Asparagine and Glutamine have been analyzed and these have been shown in the form of Menu. Here SMILE structure of all above molecules has been generated.

Figure 6.89: Basic view of Knowledge Based Model for Molecular Structure Prediction

In Figure 6.90 different nodes of Analine like - C, CH and $-\mathrm{CH}_{3}$ have been generated in the model in form of ${ }^{1} \mathrm{H}$-NMR curve.

Figure 6.90: Nodes of Analine in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in model

In Figure 6.91 chemical shift values of different nodes of analine has been generated in model.

Figure 6.91: Chemical shift values of different nodes of analine in model

In Figure 6.92 bond orders of the analine has been generated in model using ${ }^{13} \mathrm{C}$ - NMR.

Figure 6.92: Bond order of the analine in model using ${ }^{13} \mathrm{C}$ - NMR

In Figure 6.93 molecular structure, molecular weight, molecular formula and composition of analine has been generated in model.

Figure 6.93: Molecular Composition of Analine in the model

In Figure 6.94 CML structure of analine has been generated in model.

Figure 6.94: CML structure of analine in the model

In Figure 6.95 different curves like activity outcome, compound cluster have been generated in the model after addition of similar compounds of analine.

Figure 6.95: Bio activity analysis of analine after addition of similar compounds in the model

In Figure 6.96 revised compound selection of analine has been generated in the model.

Figure 6.96: Revised compound selection of analine in the model

In Figure 6.97 geometric optimization of analine for different components have generated and it ahs been shown in the model.

Figure 6.97: Geometric Optimization of analine for different components in the model

In this experimental part of research work different types of energy calculations like Heat of Formation (SEP), Geometric Opt.(Final SEF Energy), Geometric Opt.(Final Gemt. Energy), Geometric Opt.(Heat of Formation), HOMO(Heat of Formation), LUMO(Final SCF Energy), LUMO(Heat of Formation), ESP(Heat of Formation) and ESP(Final SCF) on Alanine, Amino butyric Acid, Asparagine and Glutamine have performed and their result have been presented in form of graph in Figure 6.98. All energies values have been shown in Table 6.39.

Table 6.39 : Energy Comparative Table

	Analine	Amino Butyric acid	Asparagine	Glutamine
Heat of Formation (SEP)	11889.4613	-10071.8812	28241.3138	27536.8764
Geometric Opt. (Final SEF Energy)	-17505.372	-10060.3228	-15190.672	-11096.9323
Geometric Opt. (Final Gemt. Energy)	-18937.346	-25092.9388	-30902.648	-37640.8953
Geometric Opt. (Heat of Formation)	6661.9791	10076.7315	15290.0969	11319.6093
HOMO (Heat of Formation)	11889.4613	-24198.9844	1167.033	11841.6877
LUMO (Final SCF Energy)	-16459.454	-24198.9844	-42268.152	-37118.7021
LUMO (Heat of Formation)	11889.4613	7106.8388	1167.033	11841.6877
ESP (Heat of Formation)	11889.4613	7106.8388	1167.033	11841.6877
ESP (Final SCF)	-16459.454	-24198.9844	-42268.152	-37118.7021

Figure 6.98: Energy Comparative Chart

From this chart it has been interpreted that there has been minor increase in all types of energies due to increase in complexity of structure as complexity in structure is getting increased from aniline to glutamine.

In the last phase of experimental work of research (Activity No-3) various analyses on nucleotide and protein sequences have been performed by using DAMBE and Jemboss tools. The outcomes of this experimental part of research have been analyzed and evaluated. Multiple sequence alignment is an extension of pair-wise alignments. Phylogenetic trees are useful representation and method for multiple alignments. The pattern-matching approaches using scores for gaps and inexact matching are statistically valid for assessing the degree of string similarity. It is easy to rationalize the need for gaps because of computational infeasibility of solving long string comparisons without the provision for gaps. However, even a short gap in polypeptide sequence can disturb secondary and tertiary structures of protein and probably alter its function as well. Heuristics approaches, such as match matrices, attempt to add some sense of biological relevance to the mathematical equations that define the relative similarity of nucleotide and polypeptide sequences.

6.4 Conclusions and Future Scope of Research

The outcomes of this work provides an innovative platform to solve complex chemical problems such as structure elucidation, required the joint efforts of computer science and chemistry specialists. The results obtained are a good reason to expect success with novel approaches for current research challenges, as the field of chemoinformatics matures and a closer collaboration with bioinformatics is developed.

By increasing the number of stored compounds, by adding more searches and use information visualization techniques could give more insight in the analysis process. Supervised and unsupervised machine learning methods that could lead to interesting predictions for the different substructures. Use of genetic software techniques could lead to automatically design molecules.

In the extension of this research work, computational neural networks could be used to predict the mapping between protein sequence and secondary structure. By adding neural network units that detect periodicities in the input sequence, secondary structure and tertiary structure prediction accuracy could be increased.

