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Chapter − 1

Introduction

The attempt to solve famous Königsberg bridge problem was the starting

point of graph theory. The great Swiss mathematician Leonhard Euler(1707−

1783) had discussed this problem using graphs in 1736 and introduced that

how graph theory solves complicated problems which concern to practical

situations. After this nothing more was cultivated in this field for around

hundred years. In 1848, A. Cayley used this theory for the study of iso-

mers of saturated hydrocarbons. Presentation of four color problem by A. F.

Möbious and A. De Morgan during 1840 to 1850 provide the reason to boost

up research in the theory of graphs. A game Around The World by William

Hamilton in 1859 drew attention of several scholars. The fertile period was

followed by half a century of relative inactivity. In 1936 D. König published

the first book on graph theory which organized the work of several mathe-

maticians and his own. Past 50 years has been a period of intense activities

in the field of graph theory. At present thousands of papers have been pub-

lished and many titles available by eminent authors like Claud Berge, Paul

Erdős, Frank Harary, Douglas West, Jonathan Gross and Jay Yellen.

The graph theory and its applications have grown exponentially in the

last century. Development of computer science and optimization techniques

are responsible for this unprecedented growth. The graph theory has sur-

prising number of applications. It is applied to almost all the fields and in
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variety of subjects like computer science, physical science, biological science

and social science. This theory also helps to understand molecular structure

of atoms in chemistry. Easy and optimized electrical network as well as com-

munication network is possible using graphs. Thus it seems that the graph

theory enjoys the status of a beautiful QUEEN in the field of science and

technology.

The graph serves as a mathematical model for any system involving a

discrete arrangement of objects. Graph becomes aesthetic appealing due to

its diagrammatic representation.

Any field of investigation becomes more interesting when there arise a

number of problems that pose challenge to our mind for their eventual so-

lutions, more so when the field itself is just emerging and a whole galore of

seemingly related or even unrelated open problems provide motivation for re-

search. The problems arising from the study of different labeling techniques

is one of such field. In the present work we have studied and investigated

some results which concern to graph labeling techniques particularly graceful

labeling, cordial labeling and 3−equitable labeling.

The present work is motivated through a group discussion sponsored by

Department of Science and Technology (DST) at Mary Matha Arts and Sci-

ence College (Kerala) during 19− 28 April 2006.

Moreover we have enumerated minimum number of regular induced sub-

graphs of Kn. In addition to this we have carried out some investigations

which concern to maximal non−Hamiltonian graphs.

The work reported in this thesis is divided into nine chapters. This first

chapter is of introductory nature. The immediate Chapter−2 is intended to
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provide preliminaries and basic terminology. The next Chapter−3 is aimed

to give brief idea and survey of various graph labeling techniques. Existing

results and latest updates are reported which will serve as a reference mate-

rial for any researcher.

Graceful labeling of graph is discussed in Chapter−4. Here we have dis-

cussed the gracefulness of grid graph with some other families of graphs.

The results reported here are published in Proceedings of the International

Conference on Emerging Technologies and Applications in Engineering Tech-

nology and Sciences 2008. The detailed discussion about cordial labeling of

graphs is carried out in Chapter−5. We have contributed nine new families

to the theory of cordial graphs. The results reported in this chapter are

accepted for publication in reputed journals like The Mathematics Student,

Indian Journal of Mathematics and Mathematical Sciences and International

Journal of Scientific Computing.

The penultimate Chapter−6 is devoted to the discussion of 3−equitable

labeling of graphs. The definitions and survey of existing results is car-

ried out. The results reported in this chapter are our original and already

published in Proceedings of the International Conference on Emerging Tech-

nologies and Applications in Engineering Technology and Sciences 2008.

The labeled graphs are becoming increasingly useful mathematical models

for broad range of applications. They are useful for the solutions of prob-

lems in additive number theory and coding theory. In Chapter−7 we have

recorded some of the applications like determination of ambiguities in X−ray

crystallography, design of good radar type code and laying of optimized com-

munication network addressing system.
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Minimum number of regular induced subgraphs of Kn is enumerated in

Chapter−8. The results reported in this chapter are published in the journal

Mathematics Today.

The discussion about maximal non−Hamiltonian graphs is carried out in

last Chapter−9. Three powerful conjectures are posed and an algorithm is

developed for the construction of maximal non−Hamiltonian graphs. These

investigations are original and accepted for publication in the Volume−24

December 2007 of Mathematics Today. List of symbols and references are

listed alphabetically at the end of the thesis. The entire thesis is prepared

in LATEX to meet the global standard.

The whole work will give rise to a new trend of research in graph theory

in this region. We hope that a group of active researchers will come up in

near future.
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Chapter − 2

Preliminaries and Basic

Terminology

2.1 Introduction : This chapter is devoted to provide all the funda-

mentals and notations which are useful for the present work. Basic definitions

are given and explained with sufficient illustrations. This work becomes more

effective due to neat and clean figures.

2.2 Basic Definitions :

Definition−2.2.1 : A graph G = (V, E) consists of two sets, V = {v1, v2, . . .}

called vertex set of G and E = {e1, e2, . . .} called edge set of G. Sometimes

we denote vertex set of G as V (G) and edge set of G as E(G). Elements of

V are called vertices and elements of E are called edges.

Definition−2.2.2 : A graph consisting of one vertex and no edge is called

a trivial graph. A graph which is not trivial is called a non−trivial graph.

Definition−2.2.3 : The number of edges in a given graph is called size of

the graph.

Definition−2.2.4 : The number of vertices in a given graph is called order

of the graph.

A graph with order p and size q is denoted as (p, q) graph.

Definition−2.2.5 : An edge of a graph that joins a vertex to itself is called

a loop. A loop is an edge e = vivi.
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Definition−2.2.6 : If two vertices of a graph are joined by more than one

edge then these edges are called multiple edges or parallel edges.

Definition−2.2.7 : If two vertices of a graph are joined by an edge then

these vertices are called adjacent vertices.

Definition−2.2.8 : If two or more edges of a graph have a common vertex

then these edges are called incident edges.

Definition−2.2.9 : Degree of a vertex v of any graph G is defined as the

number of edges incident on v, counting twice the number of loops. It is

denoted by dG(v) or d(v).

Definition−2.2.10 : A vertex of degree one is called a pendant vertex.

Definition−2.2.11 : A vertex of degree zero is called an isolated vertex.

Illustration−2.2.12 : Let us consider the following graph G.

Figure−2.1

In above graph G shown in Figure−2.1

� Order of graph G is 5.

� Size of graph G is 6.

� e6 is loop.
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� e1 and e2 are multiple edges.

� v2 and v3 are adjacent vertices.

� e3 and e5 are incident edges.

� d(v3) = 5, d(v2) = 3.

� v4 is pendant vertex.

� v5 is isolated vertex.

Definition−2.2.13 : A graph which has neither loops nor parallel edges is

called a simple graph.

In the following Figure−2.2 a simple graph is shown.

Figure−2.2

Definition−2.2.14 : A directed edge (or arc) is an edge, one of whose end

vertices is designated as tail and other end vertex is designated as head. An

arc is said to be directed from its tail to its head.

Definition−2.2.15 : Given a graph G we can obtain a digraph from G

by specifying direction to each edge of G. Such a digraph D is called an

orientation.

In the following Figure−2.3 eight different orientations of a graph G are

shown.

7



Figure−2.3

Definition−2.2.16 : A directed graph(or digraph) is a graph each of whose

edges is directed.

Definition−2.2.17 : A graph in which no edge is directed is called an undi-

rected graph.
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Definition−2.2.18 : A graph G = (V, E) is said to be finite if V and E

both are finite sets.

Definition−2.2.19 : Let G and H be two graphs. Then H is said to be a

subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Here G is called super-

graph of H.

In the following Figure−2.4 H is a subgraph of G.

G H

Figure−2.4

Definition−2.2.20 : Deletion of an edge from given graph G forms a sub-

graph of G which is called edge deleted subgraph of G.

Definition−2.2.21 : The graph obtained by deletion of a vertex from given

graph G is called vertex deleted subgraph of G.

In the following Figure−2.5 vertex deleted subgraph and edge deleted

subgraph of given graph G are shown.
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G− {v1} G− {e4}

Figure−2.5

Definition−2.2.22 : Let G = (V, E) be a graph. If U is a nonempty subset

of the vertex set V of graph G then the subgraph G[U ] of G induced by U is

defined to be the graph having vertex set U and edge set consisting of those

edges of G that have both end vertices in U .

Similarly if F is a nonempty subset of the edge set E of G then the sub-

graph G[F ] of G induced by F is the graph whose vertex set is the set of

vertices which are end vertices of edges of F and whose edge set is F .
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In the following Figure−2.6, G[U ] and G[F ] are vertex induced subgraph

and edge induced subgraph of graph G respectively.

Let U = {v2, v3, v4, v5} and F = {e1, e5, e6, e7}

G[U ] G[F ]

Figure−2.6

Definition−2.2.23 : A subgraph H of a graph G is called spanning sub-

graph of G if V (H) = V (G).

Definition−2.2.24 : A walk is defined as a finite alternating sequence of

vertices and edges of the form viejvi+1ej+1 . . . ekvm which begins and ends

with vertices such that each edge in the sequence is incident on the vertex
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preceding and succeeding it in the sequence. A walk from v0 to vn is denoted

as v0 − vn walk. A walk v0 − v0 is called a closed walk.

Definition−2.2.25 : The number of edges in any walk is called length of

the walk. A walk is odd (or even) if its length is odd (or even).

Definition−2.2.26 : A walk is called a trail if no edge is repeated.

Definition−2.2.27 : A walk in which no vertex is repeated is called a path.

A path with n vertices is denoted as Pn. A path from v0 to vn is denoted as

v0 − vn path.

Definition−2.2.28 : A closed path is called a cycle. A cycle with n ver-

tices is denoted as Cn.

Illustration−2.2.29 : Consider the following graph G as shown in Fig-

ure−2.7.

Figure−2.7

Graph G shown in above Figure−2.7 is known as bowtie graph. For this

graph we note the followings :

� G is a simple, finite and undirected graph.

� W = v2e2v3e4v4e6v5e5v3e3v1 is a walk.

� P4 = v1e1v2e2v3e5v5 is a path.

� C3 = v1e1v2e2v3e3v1 is a cycle.
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Definition−2.2.30 : A graph which includes exactly one cycle is called a

unicyclic graph.

Definition−2.2.31 : A graph G = (V, E) is said to be connected if there is

a path between every pair of vertices in G. A graph which is not connected

is called a disconnected graph.

The graph shown in Figure−2.2 is connected while the graph shown in Fig-

ure−2.1 is disconnected.

Definition−2.2.32 : Each maximal connected subgraph of a disconnected

graph is called component of the graph. Every connected graph has exactly

one component.

Definition−2.2.33 : A graph in which all the vertices having equal degree

is called a regular graph. If for every vertex v of graph G, d(v) = k for some

k ∈ N , then G is k−regular graph.

In the following Figure−2.8 a 3−regular graph on 10 vertices is shown.

Figure−2.8

The above graph is known as Petersen graph which is a 3−regular graph

with 10 vertices and 15 edges.
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Definition−2.2.34 : A graph in which the vertices having only two types

of degree is called a bidegreed graph.

The graph shown in Figure−2.7 is a bidegreed graph.

Definition−2.2.35 : A simple, connected graph is said to be complete if

every pair of vertices of G is adjacent. A complete graph on n vertices is

denoted by Kn. Note that Kn is (n− 1)−regular.

In following Figure−2.9 K5 is shown.

K5

Figure−2.9

Definition−2.2.36 : Two vertices of a graph which are adjacent are said

to be neighbours. The set of all neighbours of a fixed vertex v of G is called

the neighbourhood set of v. It is denoted by N(v).

In Figure−2.7, N(v3) = {v1, v2, v4, v5}.

Definition−2.2.37 : A closed trail which covers all the edges of given graph

is called an Eulerian line or Eulerian trail. A graph which has an Eulerian

line is called an Eulerian graph. The graphs shown in Figure−2.7 and Fig-

ure−2.9 are Eulerian graphs.

Definition−2.2.38 : A graph G = (V, E) is said to be bipartite if the vertex

set can be partitioned into two disjoint subsets V1 and V2 such that for every
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edge ei = vivj ∈ E, vi ∈ V1 and vj ∈ V2.

In the following Figure−2.10 a bipartite graph is shown.

Figure−2.10

Definition−2.2.39 : A graph G = (V, E) is called n−partite graph if the

vertex set V can be partitioned into n nonempty mutually disjoint sets

V1, V2, . . . , Vn such that every edge of G joins the vertices from different sub-

sets. It is often called a multipartite graph.

Definition−2.2.40 : A complete bipartite graph is a simple bipartite graph

such that two vertices are adjacent if and only if they are in different partite

sets. If partite sets are having m and n vertices then the related complete

bipartite graph is denoted by Km,n.

Definition−2.2.41 : The n−partite graph G is called complete n−partite

if for each i 6= j, each vertex of the subset Vi is adjacent to every vertex of

the subset Vj. The complete n−partite graph with n−partitions of vertex

set is denoted by Km1,m2,...,mn .

Definition−2.2.42 : A graph is said to be planar if there exists some geo-

metric representation of G which can be drawn on a plane such that no any

two of its edges intersect.
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Definition−2.2.43 : A graph that can not be drawn on a plane without a

crossover between its edges is called non planar graph.

In the following Figure−2.11 planar and non planar graph are shown.

K4 Planar graph K3,3 Non planar graph

Figure−2.11

Definition−2.2.44 : A graph which does not contain any cycle is known

as acyclic graph.

Definition−2.2.45 : An acyclic graph is known as forest.

Definition−2.2.46 : A connected acyclic graph is called a tree. Thus every

component of a forest is a tree.

In the following Figure−2.12 a tree T on seven vertices is shown.

Figure−2.12
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Definition−2.2.47 : A spanning tree of a graph G is a spanning subgraph

of G which is a tree. The number of spanning trees of a graph G is denoted

by τ(G).

Definition−2.2.48 : A star graph with n vertices is a tree with one vertex

having degree n− 1 and other n− 1 vertices having degree 1. A star graph

with n + 1 vertices is K1,n.

In the following Figure−2.13 K1,4 is shown.

Figure−2.13

Definition−2.2.49 : A banana tree is a tree which is obtained from a fam-

ily of stars by joining one end vertex of each star to a new vertex.

Definition−2.2.50 : A t−ply Pt(u, v) is a graph with t paths, each of length

atleast two and such that no two paths have a vertex in common except the

end vertices u and v.

In the following Figure−2.14 P3(u, v) is shown.

Figure−2.14
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Definition−2.2.51 : A caterpillar is a tree in which a single path (the

spine) is incident to (or contains) every edge.

In following Figure−2.15 a caterpillar on 10 vertices is shown.

Figure−2.15

Definition−2.2.52 : A lobster is a tree with the property that the removal

of the end vertices leaves a caterpillar.

Definition−2.2.53 : A vertex v of a graph G is called a cut vertex of G if

G− v is disconnected.

Definition−2.2.54 : The vertex connectivity of a connected graph G is

defined as the minimum number of vertices whose removal from G makes

remaining graph disconnected.

Definition−2.2.55 : A connected graph is said to be separable if its vertex

connectivity is one.

Definition−2.2.56 : A block of a loopless graph is a maximal connected

subgraph H such that no vertex of H is a cut vertex of H.

Definition−2.2.57 : A graph G1 = (V1, E1) is said to be isomorphic to the

graph G2 = (V2, E2) if there exists a bijection between the vertex sets V1 and

V2 and a bijection between the edge sets E1 and E2 such that if e is an edge

with end vertices u and v in G1 then the corresponding edge e
′
in G2 has its

end vertices u
′
and v

′
in G2 which correspond to u and v respectively.

18



If such pair of bijections exist then it is called a graph isomorphism and

it is denoted by G1
∼= G2.

In the following Figure−2.16 two isomorphic graphs are shown.

G1 G2

Figure−2.16

For the graphs in Figure−2.16 the vertices v1, v2, v3, v4, v5 correspond to

vertices v
′
1, v

′
3, v

′
5, v

′
2, v

′
4 respectively while edges e1, e2, e3, e4, e5 correspond to

e
′
1, e

′
4, e

′
2, e

′
3, e

′
5 respectively..

Remark−2.2.58 :

If two graphs are isomorphic then they have

• Same number of vertices

• Same number of edges

• Number of vertices having same degree is equal.

The above facts are not sufficient for the isomorphism of graphs. Con-

sider the graphs shown in Figure−2.17.
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G1 G2

Figure−2.17

Here G1 and G2 satisfy above three conditions even though they are not

isomorphic. Here bijection does not preserve adjacency as well as incidency.

Definition−2.2.59 : The complement G of a graph G = (V, E) is a graph

with vertex set V in which two vertices are adjacent if and only if they are

not adjacent in G.

In following Figure−2.18 a graph G and its complement is shown.

G G

Figure−2.18

Definition−2.2.60 : If G1 and G2 are subgraphs of a graph G then union

of G1 and G2 is denoted by G1 ∪ G2 which is the graph consisting of all

those vertices which are either in G1 or in G2 (or in both) and with edge set

consisting of all those edges which are either in G1 or in G2 (or in both).

20



In the following Figure−2.19 union of two graphs G1 and G2 is shown.

G1 G2

G1

⋃
G2

Figure−2.19

Definition−2.2.61 : Let G and H be two graphs such that V (G)∩V (H) =

∅. Then join of G and H is denoted by G + H. It is the graph with

V (G + H) = V (G) ∪ V (H), E(G + H) = E(G) ∪ E(H) ∪ J , where J =

{uv/u ∈ V (G), v ∈ V (H)}.
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In the following Figure−2.20 join G+H of two graphs G and H is shown.

G H G + H

Figure−2.20

Definition−2.2.62 : The wheel graph Wn is join of the graphs Cn and K1.

i.e. Wn = Cn +K1. Here vertices corresponding to Cn are called rim vertices

and Cn is called rim of Wn while the vertex corresponds to K1 is called apex

vertex.

Definition−2.2.63 : A helm Hn, n ≥ 3 is the graph obtained from the

wheel Wn by adding a pendant edge at each vertex on the wheel’s rim.

In the following Figure−2.21 H3 is shown.

H3

Figure−2.21
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Definition−2.2.64 : A closed helm CHn is the graph obtained by taking

a helm Hn and by adding edges between the pendant vertices.

In the following Figure−2.22 CH3 is shown.

CH3

Figure−2.22

Definition−2.2.65 : A web graph is the graph obtained by joining the pen-

dant vertices of a helm to form a cycle and then adding a single pendant edge

to each vertex of this outer cycle.

Definition−2.2.66 : A generalized helm is the graph obtained by taking a

web and attaching pendant vertices to all the vertices of the outermost cycle.

Definition−2.2.67 : A shell Sn is the graph obtained by taking n − 3

concurrent chords in a cycle Cn. The vertex at which all the chords are

concurrent is called the apex. The shell Sn is also called fan Fn−1. i.e.

Sn = Fn−1 = Pn−1 + K1.
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In the following Figure−2.23 S7 (or F6) is shown.

S7 or F6

Figure−2.23

Definition−2.2.68 : A multiple shell MS{nt1
1 , nt2

2 , . . . , ntr
r } is a graph formed

by ti shells each of order ni, 1 ≤ i ≤ r which have a common apex.

Definition−2.2.69 : A triangular cactus is a connected graph all of whose

blocks are triangles.

Definition−2.2.70 : A k−angular cactus is a connected graph all of whose

blocks are cycles with k vertices.

Definition−2.2.71 : A triangular snake is the graph obtained from a path

Pn with vertices v1, v2, . . . vn by joining vi and vi+1 to a new vertex wi for

i = 1, 2, . . . , n− 1.

Definition−2.2.72 : Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.

Then cartesian product of G1 and G2 which is denoted by G1×G2 is the graph

with vertex set V = V1 × V2 consisting of vertices u = (u1, u2), v = (v1, v2)

such that u and v are adjacent in G1×G2 whenever (u1 = v1 and u2 adjacent

to v2) or (u2 = v2 and u1 adjacent to v1).
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In the following Figure−2.24 cartesian product of two paths is shown.

G1 G2 G1 ×G2

Figure−2.24

Definition−2.2.73 : The cartesian product of two paths is known as grid

graph which is denoted by Pm×Pn. In particular the graph Pn×P2 is known

as ladder graph.

Definition−2.2.74 : The cartesian product of two cycles is known as torus

grid which is denoted by Cm × Cn.

Definition−2.2.75 : The graph K2 ×K2 × . . .×K2(n times) is known as

n-cube.

Definition−2.2.76 : Let G = (V, E) be a graph. Let e = uv be an edge of

G and w is not a vertex of G. The edge e is subdivided when it is replaced

by edges e′ = uw and e′′ = wv.

In following Figure−2.25 subdivision of an edge is shown.

Figure−2.25 Subdividing an edge
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Definition−2.2.77 : Let G = (V, E) be a graph. If every edge of graph

G is subdivided then the resulting graph is called barycentric subdivision of

G. In other words barycentric subdivision is the graph obtained by insert-

ing a vertex of degree 2 into every edge of original graph. The barycentric

subdivision of any graph G is denoted by S(G). It is easy to observe that

|V (S(G))| = |V (G)|+ |E(G)| and |E(S(G))| = 2|E(G)|.

In following Figure−2.26 barycentric subdivision of a graph is shown.

Figure−2.26 A graph and its barycentric subdivision

Definition 2.2.78 Let e = uv be an edge of simple, finite, undirected,

connected graph G and d(u) = k, d(v) = l. Let N(u) = {v, u1, . . . , un−1}

and N(v) = {u, v1, . . . , vl−1}. A contraction on the edge e changes G to a

new graph G ∗ e, where V (G ∗ e) = (V (G) − {u, v}) ∪ {w}, E(G ∗ e) =

E(G − {u, v}) ∪ {wu1, wu2, . . . , wuk−1, wv1, . . . , wvl−1} and w is new vertex

not belonging to G.
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2.3 Concluding Remarks :

This chapter was intended to provide all the fundamentals and pre-

requisites which concern to the present work. Basic definitions like graph,

vertex, edge, subgraph etc. are given and explained with the help of illus-

trations. Common families of graphs like cycle, path, wheel, tree etc. are

introduced, notations and terminology are given. We have tried our best to

prepare platform for advancement of the subject. Illustrations and figures

help for better understanding.

The next chapter is aimed to discuss different graph labeling techniques.
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Chapter − 3

Different Graph Labeling

Techniques

3.1 Introduction :

Graph labeling was first introduced in 1960′s. At present various graph

labeling techniques are available and more than 800 research papers have

been published so far. The interest in the field of graph labeling is con-

stantly increasing and it has motivated many researchers. Many graph label-

ing techniques have applications to practical problems. According to Beineke

and Hegde [19] graph labeling serves as a frontier between number theory and

structure of graphs. Labeling of graphs have various applications in coding

theory, particularly for missile guidance codes, design of good radar type

codes, convolution codes with optimal autocorrelation properties. Graph la-

beling plays vital role in the study of X−ray crystallography, communication

network and solution of problems in additive number theory. A detailed study

of variety of applications of graph labeling is given by Bloom and Golomb

[25]. A systematic survey on graph labeling is updated every two year since

last one decade by Gallian [49]. The reference cited here is of latest version of

A Dynamic survey of Graph Labeling, published by The Electronics Journal

of Combinatorics.

This chapter is targeted to discuss various graph labeling techniques for

graph G = (V, E) with p vertices and q edges.
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Throughout the discussion on graph labeling we consider simple, finite

and undirected graphs unless or otherwise stated. In the remaining part of

this chapter we will concentrate on some important definitions for various

labeling techniques and existing results.

3.2 Some Graph Labeling Techniques :

If the vertices of the graph are assigned values subject to certain condi-

tions is known as graph labeling.

Most interesting graph labeling problems have three important ingredi-

ents :

(1) A set of numbers from which vertex labels are chosen.

(2) A rule that assigns a value to each edge.

(3) A condition that these values must satisfy.

Now discussion about various graph labeling techniques will be carried

out in chronological order as they were introduced.

3.2.1 Magic labeling : Magic labeling was introduced by Sedláček [87] in

1963 motivated through the notion of magic squares in number theory.

A function f is called magic labeling of a graph G if f : V
⋃

E →

{1, 2, . . . , p + q} is bijective and for any edge e = uv, f(u) + f(v) + f(e)

is constant.

A graph which admits magic labeling is called magic graph.

In following Figure−3.1 magic labeling for C8 is demonstrated in which

for any edge e = uv, f(u) + f(v) + f(e) = 22.
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Figure−3.1

Some known results about magic labeling are listed below.

Stewart [98] proved that

• Kn is magic for n = 2 and all n ≥ 5.

• Kn,n is magic for all n ≥ 3.

• Fans Fn are magic if and only if n ≥ 3 and n is odd.

• Wheels Wn are magic for all n ≥ 4.

For any magic labeling f of graph G, there is a constant c(f) such that

for all edges e = uv ∈ G, f(u) + f(v) + f(e) = c(f). The magic strength

m(G) is defined as the minimum of c(f) where the minimum is taken over

all magic labeling of G.

The above definition and some facts listed below were given by S. Avadyap-

pan et al.[13].

• m(P2n) = 5n + 1, m(P2n+1) = 5n + 3,

• m(C2n) = 5n + 4, m(C2n+1) = 5n + 2,

• m(K1,n) = 2n + 4.

30



Hegde and Shetty [60] defined M(G) analogous to m(G) as follows.

M(G) = max{c(f)}, where maximum is taken over all magic labeling f of

G.

For any graph G with p vertices and q edges following inequality holds.

p + q + 3 ≤ m(G) ≤ c(f) ≤ M(G) ≤ 2(p + q).

3.2.2 Graceful labeling : Graceful labeling was introduced by Rosa [86]

in 1967.

A function f is called graceful labeling of a graph G if f : V → {0, 1, 2, . . . , q}

is injective and the induced function f ∗ : E → {1, 2, . . . , q} defined as

f ∗(e = uv) = |f(u)− f(v)| is bijective.

A graph which admits graceful labeling is called graceful graph.

Initially Rosa named above defined labeling as β−valuation. Golomb [55]

renamed β−valuation as graceful labeling. We will discuss graceful labeling

in detail in Chapter−4.

3.2.3 Graceful−like labeling : In 1967, Rosa [86] gave another analogue

of graceful labeling.

A function f is called graceful−like labeling of a graph G if f : V →

{0, 1, 2, . . . , q+1} is injective and the induced function f ∗ : E → {1, 2, . . . , q}

or f ∗ : E → {1, 2, . . . , q − 1, q + 1} defined as f ∗(e = uv) = |f(u) − f(v)| is

bijective.

Frucht [48] termed such labeling as nearly graceful labeling. Some known

results about graceful−like labeling are listed below.

• Frucht [48] has shown that Pm

⋃
Pn admits graceful−like labeling with
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edge labels {1, 2, . . . , q − 1, q + 1}. G
⋃

K2 (where G is graceful graph) ad-

mits graceful−like labeling.

• Seoud and Elsahawi [91] have shown that all cycles admit graceful−like

labeling.

• Barrientos [18] proved that cycle Cn is having graceful−like labeling with

edge labels {1, 2, . . . , q − 1, q + 1} if and only if n ≡ 1 or 2 (mod 4).

3.2.4 Harmonious labeling : Graham and Sloane [56] introduced har-

monious labeling in 1980 during their study of modular versions of additive

bases problems stemming from error correcting codes.

A function f is called harmonious labeling of a graph G if f : V →

{0, 1, 2, . . . , q−1} is injective and the induced function f ∗ : E → {0, 1, 2, . . . ,

q − 1} defined as f ∗(e = uv) = (f(u) + f(v)) mod q is bijective.

A graph which admits harmonious labeling is called harmonious graph.

We will demonstrate harmonious labeling by means of following examples in

Figure−3.2.

Figure−3.2
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Graham and Sloane observed that if graph G is a tree then exactly two

vertices are assigned same vertex label in harmonious labeling. Some known

results about harmonious graph are listed below.

• Liu and Zhang [80] proved that every graph is a subgraph of a harmonious

graph.

• Graham and Sloane [56] posed a conjecture Every tree is harmonious. In

connection of above conjecture, Alderd and Mckay [6] proved that trees with

26 or less vertices are harmonious. They also proved that

� Caterpillars are harmonious.

� Cycles Cn are harmonious if and only if n ≡ 1, 3 (mod 4).

� Wheels Wn are harmonious for all n.

� Cm × Pn is harmonious if n is odd.

� Kn is harmonious if and only if n ≤ 4.

� Km,n is harmonious if and only if m or n = 1.

� Fans Fn are harmonious for all n.

• Liu [79] proved that all helms are harmonious.

• Jungreis and Reid [67] proved that grids Pm × Pn are harmonious if and

only if (m, n) 6= (2, 2). In the same paper they proved that Cm × Pn is har-

monious if m = 4 and n ≥ 3.

• Gallian et al.[50] proved that Cm × Pn is harmonious if n = 2 and m 6= 4.

3.2.5 Elegant labeling : Elegant labeling was introduced by Chang et

al.[36] in 1981.

A function f is called elegant labeling of a graph G if f : V → {0, 1, 2, . . . , q}

is injective and the induced function f ∗ : E → {1, 2, . . . , q} defined as
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f ∗(e = uv) = (f(u) + f(v)) mod (q + 1) is bijective.

A graph which admits elegant labeling is known as elegant graph. We will

note that as in harmonious labeling it is not necessary to make an exception

for trees. Some known results for elegant labeling are listed below.

• Chang et al.[36] proved that Cn is elegant when n ≡ 0, 3 (mod 4) and not

elegant when n ≡ 1 (mod 4) and path Pn is elegant when n ≡ 1, 2, 3 (mod

4).

• Cahit [30] proved that P4 is the only path which is not elegant.

• Balakrishnan et al.[16] proved that every simple graph is a subgraph of an

elegant graph.

• Deb and Limaye [40] defined near−elegant labeling by replacing codomain

of edge function f ∗ by {0, 1, . . . , q−1} and they proved that triangular snakes

where the number of triangles is congruent to 3 (mod 4) are near−elegant.

3.2.6 Prime and vertex prime labeling : The concept of prime labeling

was originated by Entringer and it was introduced in a paper by Tout et

al.[100].

A graph G with p vertices and q edges is said to have a prime labeling if

f : V → {1, 2, . . . , p} is bijective function and for every edge e = uv of G,

(f(u), f(v)) = 1.

• Around 1980 Entringer conjectured that All tree have a prime labeling. So

far there has been little progress towards the proof of this conjecture.

• Some known classes of trees having prime labeling are paths, stars, cater-

pillars, etc.

• Deretsky et al.[42] proved that
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� All cycles have prime labeling.

� Disjoint union of C2k and Cn have prime labeling.

� The complete graph Kn does not have a prime labeling for n ≥ 4.

• Lee et al.[77] proved that Wn have prime labeling if and only if n is even.

• Seoud et al.[90] proved that all helms, fans, K2,n, K3,n (where n 6= 3, 7),

Pn + K̄2 (where n = 2 or n is odd) are having prime labeling. He also proved

that Pn + K̄m does not have prime labeling if m ≥ 3.

• Seoud and Youssef [92] shown that Pn + K̄2 is having prime labeling if and

only if n = 2 or n is odd.

In 1991 Deretsky et al.[42] introduced the notion of dual of prime labeling

which is known as vertex prime labeling. According to them a graph with q

edges has vertex prime labeling if its edges can be labeled with distinct inte-

gers {1, 2, . . . , q} such that for each vertex of degree at least two the greatest

common divisor of the labels on its incident edges is 1. Some known results

for vertex prime labeling are listed below.

• Deretsky et al.[42] proved that

� Forests, all connected graphs are having vertex prime labeling.

� C2k

⋃
Cn, C2n

⋃
C2n

⋃
C2k+1, C2n

⋃
C2n

⋃
C2t

⋃
Ck and 5C2m are having

vertex prime labeling.

� A graph with exactly two component one of them is not an odd cycle has

a vertex prime labeling.

� 2−regular graph with at least two odd cycles does not have a vertex prime

labeling.

� He also conjectured that 2−regular graph has a vertex prime labeling if and

only if it does not have two odd cycles.
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3.2.7 k−Graceful labeling : A natural generalization of graceful label-

ing is the notion of k−graceful labeling which was independently introduced

by Slater [96] and by Maheo and Thuillier [83] in 1982.

A function f is called k−graceful labeling of a graph G if f : V →

{0, 1, 2, . . . , k + q − 1} is injective and the induced function f ∗ : E →

{k, k + 1, k + 2, . . . , k + q − 1} defined as f ∗(e = uv) = |f(u) − f(v)| is

bijective. A graph which admits k−graceful labeling is known as k−graceful

graph. Obviously 1−graceful graphs are the graceful graphs. Some known

results for k−graceful graph are listed below.

• Slater [96], Maheo and Thuillier [83] proved that Cn is k−graceful graph if

and only if either n ≡ 0, 1 (mod 4) with k−even and k ≤ n−1
2

or n ≡ 3 (mod

4) with k−odd and k ≤ n2−1
2

.

• Liang and Liu [78] proved that Km,n is k−graceful, for all m,n ∈ N and

for all k.

• Bu et al.[28] proved that Pn×P2 and (Pn×P2)
⋃

(Pn×P2) are k−graceful

for all k.

• Acharya [1] proved that a k−graceful Eulerian graph with q edges must

satisfies one of the following:

(1) q ≡ 0 (mod 4), q ≡ 1 (mod 4) if k is even, (2) q ≡ 3 (mod 4) if k is odd.

3.2.8 Cordial labeling : Cahit [31] introduced the concept of cordial la-

beling in 1987 as a weaker version of graceful and harmonious labeling.

A function f : V → {0, 1} is called binary vertex labeling of a graph G

and f(v) is called label of the vertex v of G under f . For an edge e = uv, the
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induced function f ∗ : E → {0, 1} is given as f ∗(e = uv) = |f(u)− f(v)|. Let

vf (0), vf (1) be number of vertices of G having labels 0 and 1 respectively

under f and let ef (0), ef (1) be number of edges of G having labels 0 and

1 respectively under f ∗. A binary vertex labeling f of a graph G is called

cordial labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph which

admits cordial labeling is called cordial graph.

Detailed discussion of above defined labeling will be carried out in Chap-

ter−5.

3.2.9 Additively graceful labeling : In 1989 Hegde [57] introduced the

concept of additively graceful labeling.

A function f is called additively graceful labeling of a graph G if f : V →

{0, 1, . . . , d q+1
2
e} is injective and the induced function f ∗ : E → {1, 2, . . . , q}

defined as f ∗(e = uv) = f(u) + f(v) is bijective. A graph which admits

additively graceful labeling is called additively graceful graph. Some known

results on additively graceful graph are listed below.

• Hegde [57] proved the following results.

� If G is an additively graceful graph with p vertices and q edges then

q ≥ 2p− 4 and the bounds are best possible.

� The graph for which q = 2p− 4 are essentially strongly indexable which is

discussed in 3.2.13.

� The complete graph Kn is additively graceful if and only if 2 ≤ n ≤ 4.

� An additively graceful graph is either K2 or K1,2 or has a triangle.

� If G is an additively graceful graph with a triangle then any additively

graceful labeling f of G must assign zero to a vertex of triangle in G.
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� If an Eulerian graph G with p vertices and q edges is additively graceful

then q ≡ 0, 3 (mod 4).

� A unicyclic graph G is additively graceful if and only if G is isomorphic to

either C3 or the graph obtained by joining a unique vertex to any one vertex

of C3.

� The graph obtained by joining t new vertices to any two fixed vertices of

Kn (2 ≤ n ≤ 4) is additively graceful.

� He also posed a conjecture For any additively graceful graph G with p ver-

tices and q edges q ≤ 1
2
(p2 − 5p + 18).

• Jinnah and Singh [66] proved that Pn × Pn is additively graceful graph.

3.2.10 (k, d)−Graceful labeling : Acharya and Hegde [4] generalized the

notion of k−graceful labeling to (k, d)−graceful labeling in 1990.

A function f is called (k, d)−graceful labeling of a graph G if f : V →

{0, 1, 2, . . . , k + (q − 1)d} is injective and the induced function f ∗ : E →

{k, k + d, k + 2d, . . . , k + (q − 1)d} defined as f ∗(e = uv) = |f(u) − f(v)|

is bijective. A graph which admits (k, d)−graceful labeling is known as

(k, d)−graceful graph. Obviously (1, 1)−graceful labeling is graceful label-

ing and (k, 1)−graceful labeling is k−graceful labeling. Some known results

for (k, d)−graceful labeling are listed below.

• Bu and Zhang [29] proved that Km,n is (k, d)−graceful for all k and d.

• Hegde and Shetty [61] defined a class of trees known as Tp−trees as follows

and proved that Tp−trees are (k, d)−graceful for all k and d.

Let T be a tree with adjacent vertices u0, v0 and pendant vertices u, v

such that the length of the path u0 − u is same as the length of the path
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v0 − v. Now delete the edge u0v0 and join vertices u and v by an edge uv.

Then such a transformation of T is called an elementary parallel transforma-

tion (ept) and the edge u0v0 is called a transformable edge. If by a sequence

of ept′s T can be reduced to a path then T is called Tp−tree. They also

proved that every graph obtained by barycentric subdivision of a Tp−tree is

(k, d)−graceful for all k and d.

• Hegde [59] proved that if a graph is (k, d)−graceful for odd k and even d

then the graph is bipartite. He also proved that Kn is (k, d)−graceful if and

only if n ≤ 4.

3.2.11 k−equitable labeling : In 1990 Cahit [33] proposed the idea of dis-

tributing the vertex and the edge labels among {0, 1, 2, . . . , k − 1} as evenly

as possible to obtain a generalization of graceful labeling.

A vertex labeling of a graph G = (V, E) is a function f : V → {0, 1, 2, . . . ,

k − 1} and the value f(u) is called label of vertex u. For the vertex la-

beling function f : V → {0, 1, 2, . . . , k − 1}, induced function f ∗ : E →

{0, 1, 2, . . . , k − 1} defined as f ∗(e = uv) = |f(u) − f(v)| which satisfies the

conditions:

(1) |vf (i)− vf (j)| ≤ 1 and

(2) |ef (i)− ef (j)| ≤ 1, 0 ≤ i, j ≤ k − 1,

where vf (i) and ef (i) denotes number of vertices and number of edges

having label i under f and f ∗ respectively, 0 ≤ i ≤ k − 1. Such labeling

f is called k−equitable labeling for the graph G. A graph which admits

k−equitable labeling is called k−equitable graph. Obviously 2−equitable la-

beling is the cordial labeling defined earlier in 3.2.8. When k = 3 the labeling
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is called 3−equitable labeling which we will discuss in detail in Chapter−6.

Some known results for k−equitable graph are listed below.

• Cahit [33],[34] proved that a graph is graceful if and only if it is (|E| +

1)−equitable and he conjectured that all tree are k−equitable, for all k.

• Speyer and Szaniszlo [97] proved Cahit′s conjecture for k = 3.

• Szaniszlo [99] proved that

� Pn is k−equitable for all k.

� Kn is not k−equitable for 3 ≤ k < n.

� K2,n is k−equitable if and only if n ≡ k − 1 (mod k) or

n ≡ 0, 1, 2, . . . , (bk
2
c − 1) (mod k) or n = bk

2
c and k is odd.

� Cn is k−equitable if and only if k meets all of the following conditions:

(1) n 6= k,

(2) if k ≡ 2, 3 (mod 4) then n 6= k− 1 and n is not congruent to k (mod 2k).

• Vickrey [109] discussed the k−equitability of complete multipartite graphs.

He proved that for m ≥ 3 and k ≥ 3, Km,n is k−equitable if and only if Km,n

is one of following graphs:

(1) K4,4 for k = 3,

(2) K3,k−1 for all k and

(3) Km,n for k > mn.

3.2.12 Skolem graceful labeling : Lee and Shee [75] introduced the con-

cept of skolem graceful labeling in 1991.

A function f is called skolem graceful labeling of a graph G if f : V →

{1, 2, . . . , p} is bijective and the induced function f ∗ : E → {1, 2, . . . , q} de-

fined as f ∗(e = uv) = |f(u)−f(v)| is bijective. A graph which admits skolem
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graceful labeling is called skolem graceful graph. A necessary condition for

a graph to be skolem graceful is p ≥ q + 1. Some known results for skolem

graceful graphs are listed below.

• Lee and Wui [76] proved that a connected graph is skolem graceful if and

only if it is a graceful tree.

• Yao et al.[111] have shown that a tree with p vertices and with maximum

degree at least p
2

is skolem graceful.

• Although the disjoint union of trees can not be graceful, they can be skolem

graceful.

• Lee and Wui [76] proved that the disjoint union of two or three stars is

skolem graceful if and only if at least one star has even size.

• Choudum and Kishore [38] proved that disjoint union of k copies of the star

K1,2p is skolem graceful if k ≤ 4p+1 and the disjoint union of any number of

copies of K1,2 is skolem graceful. He also proved that all five stars are skolem

graceful.

• Frucht [48] proved that Pm

⋃
Pn is skolem graceful when m + n ≥ 5.

• Bhat−Nayak and Deshmukh [23] proved that Pn1

⋃
Pn2

⋃
Pn3 is skolem

graceful when n1 < n2 ≤ n3, n2 = t(n1 + 2) + 1 (where n1 is even) and when

n1 < n2 ≤ n3, n2 = t(n1 + 3) + 1 (where n1 is odd). They also proved that

Pn1

⋃
Pn2

⋃
. . .

⋃
Pni

, for i ≥ 4 is skolem graceful under certain conditions.

3.2.13 Indexable labeling : Acharya and Hegde [5] introduced the concept

of indexable labeling in 1991.

A function f is called indexable labeling of a graph G if f : V →

{0, 1, 2, . . . . . . , p − 1} is bijective and the induced function f ∗ : E → N
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defined as f ∗(e = uv) = f(u) + f(v) is injective. Here f is called indexer

of G. A graph which admits indexable labeling is called indexable graph.

A graph is said to be strongly indexable if f ∗(E) = {1, 2, . . . , q}. Here f

is called strong indexer of graph G. A function f is called (k, d)−indexable

labeling if f : V → {0, 1, 2, . . . , p − 1} is bijective and the induced function

f ∗ : E → {k, k+d, . . . , k+(q−1)d} defined as f ∗(e = uv) = f(u)+f(v) is in-

jective. A (k, d)−indexable graph is the graph which admits (k, d)−indexable

labeling. A graph is said to be strongly (k, d)−indexable if f ∗(E) = {k, k +

d, . . . , k + (q − 1)d}.

Some known results on indexable and (k, d)−indexable graphs are listed

below.

• Acharya and Hegde [5] have conjectured that All unicyclic graphs are in-

dexable. This conjecture was proved by Arumugam and Germina [12] using

breadth first search (BFS) algorithm [39]. They also proved that all trees are

indexable.

• Acharya and Hegde [5] proved that K2, K3 and K2 ×K3 are the only non-

trivial regular graphs which are strongly indexable.

• Hegde [58] proved that

� Every graph can be embedded as an induced subgraph of indexable graph.

� If a connected graph with p vertices and q edges (q ≥ 2) is (k, d)−indexable

then d ≤ 2.

� Pm × Pn is indexable for all m and n.

� If G is connected (1, 2)−indexable graph then G must be a tree.

� Kn, n ≥ 4 and wheels Wn are not (k, d)−indexable.
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3.2.14 Felicitous labeling : Lee et al.[74] introduced the concept of fe-

licitous labeling in 1991.

A function f is called felicitous labeling of a graph G if f : V → {0, 1, 2, . . .

. . . , q} is injective and the induced function f ∗ : E → {0, 1, 2, . . . . . . , q − 1}

defined as f ∗(e = uv) = (f(u) + f(v)) mod q is bijective. A graph which

admits felicitous labeling is called felicitous graph. Some known results on

felicitous graphs are listed below.

• Balakrishnan and Kumar [15] proved that every graph is subgraph of a

felicitous graph.

• Lee et al.[74] proved that

� Cycles Cn are felicitous except n ≡ 2 (mod 4)

� Km,n is felicitous when m, n > 1

� P2

⋃
C2n+1 is felicitous for all n.

� They also conjectured that n−cube is felicitous which was proved by

Figueroa−Centeno et al.[45] in 2001.

• Shee [94] conjectured that Pm

⋃
Cn is felicitous when n > 2 and m > 3

which is still open.

3.3 Concluding Remarks :

In this chapter we have discussed various graph labeling techniques in

detail. The discussion includes definitions and known results for each label-

ing. This chapter will give broad idea about various labeling techniques and

will provide ready reference for any researcher. The penultimate chapter is

devoted to the discussion on graceful labeling.
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Chapter − 4

Graceful Labeling of Graphs

4.1 Introduction :

In Chapter−3 we have discussed various types of graph labeling while

this chapter is aimed to discuss graceful labeling in detail. Some new classes

of graceful graphs are investigated and some open problems are given at the

end. As we mentioned earlier the graceful labeling was introduced by Rosa

during 1967.

In the immediate section we will recall the definition of graceful labeling

for ready reference.

4.2 Some Basic Definitions and Important Results :

Definition−4.2.1 : If the vertices of the graph are assigned values subject

to certain conditions is known as graph labeling.

Definition−4.2.2 : A function f is called graceful labeling of a graph G

if f : V → {0, 1, 2, . . . , q} is injective and the induced function f ∗ : E →

{1, 2, . . . , q} defined as f ∗(e = uv) = |f(u) − f(v)| is bijective. A graph

which admits graceful labeling is called graceful graph.

In the following Figure−4.1 some graceful graphs and their graceful la-

beling are shown.
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Figure−4.1

Some obvious facts and known results are listed below.

• Any graceful graph will always have vertices with labels 0 and q and these

vertices are adjacent. One can visualize this from Figure−4.1.

• Graceful labeling is not unique. This fact is demonstrated in the following

Figure−4.2.

Figure−4.2

• Supergraph of a graceful graph need not be graceful. e.g. K4 if graceful

but K5 is not.

• Subgraph of a graceful graph need not be a graceful graph. e.g. W5 =

C5 + K1 is graceful while C5 is not.
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• If {a1, a2, . . . , ap} ⊆ {0, 1, . . . , q} is a graceful labeling of any graph G, then

{q − ai/i = 1, 2, . . . , p} is also graceful labeling for the graph G.

• There are q! connected graceful graphs with q edges. For example there

are 3! = 6 graceful graphs with 3 edges as shown in the above Figure−4.2

and following Figure−4.3.

Figure−4.3

• All the graphs with p ≤ 5 are graceful except C5, K5 and Bowtie graph.

• Rosa [86] proved that the cycle Cn is graceful if and only if n ≡ 0, 3 (mod

4).

• Frucht [47], Hoede and Kuiper [63] proved that all wheels Wn = Cn + K1

are graceful graphs.

• Golomb [55] proved that the complete graph Kn is graceful if and only if

n ≤ 4.

• Rosa [86] and Golomb [55] proved that the complete bipartite graphs are

graceful.

• Aravamudhan and Murugan [11] have shown that the complete tripartite

graph K1,m,n is graceful.
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• Beutner and Harborth [21] showed that Kn− e (Kn with one edge deleted)

is graceful only if n ≤ 5, Kn − 2e and Kn − 3e are graceful only if n ≤ 6.

• Ringel−Kotzig conjecture about gracefulness of trees is still an open prob-

lem and it has motivated good number of research papers. The conjecture is

All trees are graceful. In [64] Kotzig called the effort to prove this conjecture

as a disease. The trees known to be graceful are Caterpillars, Paths and Star

Graphs.

• Ayel and Favaron [14] proved that all Helms are graceful.

• Kang et al.[69] proved that Webs are graceful.

• Bermond [20] conjectured that Lobsters are graceful.

• Morgan [84] proved that all lobsters with perfect matchings are graceful.

• Chen et al.[37] and Bhat−Nayak and Deshmukh [22] proved that banana

trees are graceful.

• Aldred and Mckay [6] used a computer program to show that trees with at

most 27 vertices are graceful.

Despite of many efforts the graceful tree conjecture remains an open prob-

lem and this problem has motivated some new graph labeling techniques.

• Truszczynski [101] studied unicyclic graphs and conjectured that All uni-

cyclic graphs except Cn, where n ≡ 1 or 2 (mod 4) are graceful.

Because of the immense diversity of unicyclic graphs, a proof of above

conjecture seems out of reach in the near future.

• Delorme et al.[41] and Ma and Feng [81] proved that cycle with a chord is

graceful.

• Gracefulness of cycle with k consecutive chords is also investigated by Koh

et al.[71],[72] and Goh and Lim [54].
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• Koh and Rogers [72] conjectured that Cycle with triangle [ denoted as

Cn(p, q, r) ] is graceful if and only if n ≡ 0, 1 (mod 4).

Next section is aimed to discuss gracefulness of some product related

graphs. This section also includes investigations carried out by us.

4.3 Gracefulness of Some Product Related Graphs:

We have defined the cartesian product of two graphs in Chapter−2. This

definition has attracted many researchers. Some results of product related

graphs are listed below.

• Acharya and Gill [3] proved that grid graph Pm × Pn is graceful.

• Maheo [82] gave the graceful labeling for Pm × P2 which can be readily be

extended to all grids.

• Kathiresan [70] proved that the graph obtained from subdividing each step

of ladders Pn × P2 exactly once is graceful.

• Acharya [1] proved that certain subgraph of grid graphs are graceful.

• Huang and Skiena [65] proved that Cm × Pn is graceful for all n, when m

is even and for all n with 3 ≤ n ≤ 12 when m is odd.

• Jungreis and Reid [67] proved that torus grid Cm × Cn is graceful when

m ≡ 0 (mod 4) and n is even.

A complete solution for the problem of graceful torus grid will most likely

involve a large number of cases.

We have also investigated some new families of product related graphs.

We will provide detail proof of these results.
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Theorem−4.3.1 : The graph G = (Pm × Pn)
⋃

(Pr × Ps), where m, n, r, s ∈

N \ {1} is graceful.

Proof : It is obvious that the graph G has number of vertices p = rs + mn

and number of edges q = 2(rs + mn)− (m + n + r + s). According to Defi-

nition−4.2.2 the available vertex labels are 0, 1, . . . , q.

Now label the vertices of (Pr × Ps) by the labels q, 0, 1, q − 2, q − 3, q −

4, 4, 5, . . . etc. This labeling sequence is having two sequential patterns, one

is increasing and other is decreasing. Such labeling will give rise to edge

labeling as decreasing sequence of labels q, q−1, . . . , q +r+s+1−2rs. Such

vertex labeling pattern is shown in Figure−4.4.

Figure−4.4

Now our task is to label the vertices of (Pm × Pn). It will depend on

the vertex labels of the last grid of (Pr ×Ps). Let w and t be vertex labels of

last grid of (Pr × Ps). These labels produce edge label q + r + s + 1− 2rs =

2mn + 1− (m + n). At this stage we have to consider following two possibil-

ities.
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Case - I: w < t. Then w must be a label from increasing sequence of la-

bels and t − w = 2mn + 1 − (m + n). Now available vertex labels are

t + 1, t− 1, t− 2, . . . , w + 2, w + 1, which are in number 2mn + 1− (m + n).

We will use these labels for labeling of vertices (Pm × Pn). This vertex

labeling sequence is t + 1 = 2mn − (m + n) + w + 2, w + 2, w + 3, 2mn −

(m+n)+w, 2mn− (m+n)+w− 1, 2mn− (m+n)+w− 2, w +7, w +8, . . .

etc. This labeling sequence is having two sequential patterns, one is increas-

ing and other is decreasing. Such labeling will give rise to edge labeling as

decreasing sequence of labels 2mn− (m + n), . . . , 2, 1. Thus we have labeled

all the rs + mn vertices of G gracefully.

Case - II: w > t. Then w must be a label from decreasing sequence of

labels and w − t = 2mn + 1 − (m + n). Now available vertex labels are

w− 1, w− 2, . . . , t + 2, t + 1, t− 1, which are in number 2mn + 1− (m + n).

We will use these labels for labeling of vertices of (Pm×Pn). This vertex

labeling sequence is t−1, w−2 = 2mn− (m+n)+ t−1, w−3, t+1, t+2, t+

3, w − 7, . . . etc. This labeling sequence is having two sequential patterns,

one is increasing and other is decreasing. Such labeling will give rise to edge

labeling as decreasing sequence of labels 2mn − (m + n), . . . , 2, 1. Thus we

have labeled all the rs + mn vertices of G gracefully.

Therefore G = (Pr × Ps)
⋃

(Pm × Pn) is graceful graph.

Illustration−4.3.2: For better understanding of labeling pattern discussed

in above Theorem −4.3.1 let us consider G = (P3 × P4)
⋃

(P4 × P2). For the

graph G p = 20 and q = 27. Therefore for graceful labeling of G available ver-

tex labels are 0, 1, . . . , 27. As per procedure employed in Theorem−4.3.1 we

first label vertices of P3×P4 by 27, 0, 25, 4, 1, 24, 5, 20, 23, 6, 19, 8 and P4×P2
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by 7, 17, 16, 9, 10, 14, 13, 12. this will produce edge labels 1, 2, . . . , 27 as shown

in Figure−4.5. Thus G is a graceful graph.

Figure−4.5

Theorem−4.3.3 : The graph G = C2f+3

⋃
(Pm × Pn)

⋃
(Pr × Ps) , where

m,n, r, s ∈ N \ {1} and f = 2(mn + rs)− (m + n + r + s), is graceful.

Proof : It is obvious that G will have number of vertices p = 2f +3+mn+rs

and number of edges q = 3f + 3. Let u1, u2, . . . , u2f+3 be successive ver-

tices of C2f+3. Now label f + 2 vertices u1, u3, . . . , u2f+3 of C2f+3 by the

labels 0, 1, 2, . . . , f + 1 respectively and label the remaining f + 1 vertices

u2, u4, . . . , u2f+2 of C2f+3 by the labels 3f +3, 3f +2, . . . , 2f +3 respectively.

Thus all the vertices of C2f+3 are labeled. This vertex labeling will give rise

to edge label according to Definition−4.2.2 as 3f +3, 3f +2, . . . , f +2, f +1.

Now our task is to label the vertices of (Pm × Pn)
⋃

(Pr × Ps) for which

the available vertex labels are 2f + 2, 2f + 1, . . . , f + 2 and required edge

labels for (Pm × Pn)
⋃

(Pr × Ps) are f, f − 1, . . . . . . , 2, 1. Since available

vertex labels are f + 1 and required edge labels are f , we first label the
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vertices of (Pm × Pn)
⋃

(Pr × Ps) by 0, 1, . . . , f , as in Theorem−4.3.1. Then

we add f + 2 to all the vertex labels of (Pm × Pn)
⋃

(Pr × Ps) will pro-

duce edge labels 1, 2, . . . , f for (Pm × Pn)
⋃

(Pr × Ps). Thus we have labeled

G = C2f+3

⋃
(Pm×Pn)

⋃
(Pr ×Ps) gracefully. Therefore G is graceful graph.

4.4 Gracefulness of Union of Grid Graph with Com-

plete Bipartite Graph and Path Graph :

Bu and Cao [27] have discussed gracefulness of Km,n and its union with

path graph. Seoud and Youssef [93] have shown that Km,n

⋃
Kp,q (m,n, p, q ≥

2), Km,n

⋃
Kp,q

⋃
Kr,s (m,n, p, q, r, s ≥ 2 and (p, q) 6= (2, 2)) are graceful

graphs. In this section we will discuss gracefulness of union of grid graph

with complete bipartite graph and path graph.

Theorem−4.4.1 : G = Km,n

⋃
(Pr × Ps), r, s ≥ 2 is graceful graph.

Proof : Here total number of vertices p = m + n + rs and number of edges

q = mn + 2rs− (r + s).

Now label the vertices of Km,n by the labels 0, 1, . . . ,m − 1, m + 2rs −

(r + s), 2m + 2rs − (r + s), . . . , q = mn + 2rs − (r + s), which give rise to

edge labels as q, q − 1, . . . , 2rs− (r + s) + 1 to edges of Km,n. Now our task

is to label the vertices of (Pr ×Ps) , for which the available vertex labels are

m + 1, m + 2, . . . ,m + 2rs− (r + s)− 1 and m + 2rs− (r + s) + 1.

Let us denote the vertices of the grid graph Pr×Ps by v11, v12, . . . , v1n, v21,

. . . , vmn. Now label the vertex v11 by m+2rs− (r + s) + 1, v12 by m+1, v21

by m + 2, v13 by m + 2rs− (r + s)− 1, v22 by m + 2rs− (r + s)− 2, v31 by

m+2rs− (r + s)− 3, v14 by m+5, v23 by m+6, v32 by m+7, v41 by m+8,
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v15 by m + 2rs− (r + s)− 7, v24 by m + 2rs− (r + s)− 8 etc. This will give

rise edge labeling as 2rs− (r + s), 2rs− (r + s)− 1, 2rs− (r + s)− 2, . . . , 2, 1.

For the vertex labeling and edge labeling following pattern has been observed.

(1) In each square of grid the difference between two labels of main diag-

onal is always one.

(2) In the labeling of vertices two sequential patterns has been found. One

is increasing and another is decreasing. This will give rise to edge labeling

into decreasing sequence of labels 2rs− (r + s), 2rs− (r + s)− 1, 2rs− (r +

s)−2, . . . , 2, 1, such labeling pattern for vertices and edges is shown by down

arrows in the Figure−4.6.

Figure−4.6

Thus we have labeled all the vertices of graph Km,n

⋃
(Pr × Ps) grace-

fully, where m,n, r, s ∈ N \ {1} and the graph becomes a graceful graph.
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Illustration−4.4.2: For better understanding of above discussed labeling

pattern, let us see graceful labeling pattern for the graph G = K4,3

⋃
(P3×P4).

For the graph G, p = 19 and q = 29. Therefore for graceful labeling

available vertex labels are 0, 1, 2, . . . , 29. As per the procedure employed in

Theorem−4.4.1 we first label the vertices of K4,3 by 0, 1, 2, 3, 29, 25, 21 and

(P3 ×P4) by 22, 5, 20, 9, 6, 19, 10, 15, 18, 11, 14, 13. This will produce edge la-

bels 1, 2, . . . , 29 as shown in Figure−4.7. Thus G is a graceful graph.

Figure−4.7

Lemma−4.4.3 : Using 0, 1, . . . , t − 2 and t vertex labels one can produce

1, 2, . . . , t− 1 edge labels for path graph Pt, t ≥ 3.

Proof : There are six cases to be considered as follows:

Case - I: t ≡ 3 (mod 6). In this case t = 6n + 3 for some non−negative

integer n. Now Pt = P6n+3 is a path of length 6n + 2, it has 6n + 3 ver-

tices and for this available vertex labels are 0, 1, 2, . . . , 6n + 1 and 6n + 3.

Let us denote these vertices by u1, u2, . . . , u6n+3. We shall label the vertices

u2, u4, . . . , u6n+2 according to the sequence 1, 0, 2, 4, 3, 5, 7, 6, . . . , 3n−3, 3n−

1, 3n + 1. Now label the remaining vertices u1, u3, . . . , u6n+3 according to

the sequence 6n + 3, 6n + 1, 6n − 1, 6n, . . . , 3n + 2, 3n + 3, 3n, as shown in

Figure−4.8.
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Figure−4.8

Such vertex labeling will give rise to edge labeling for Pt as 6n+2, 6n, 6n+

1, 6n− 1, 6n− 3, . . . , 3, 4, 2, 1.

Case - II: t ≡ 4 (mod 6). Then t = 6n + 4, for some n ∈ N
⋃
{0}. Here

available vertex labels are 0, 1, 2, . . . , 6n+2 and 6n+4. We shall label the ver-

tices u2, u4, . . . , u6n+2 according to the sequence 1, 0, 2, 4, 3, . . . , 3n− 3, 3n−

1, 3n + 1, 3n and label the remaining vertices u1, u3, . . . , u6n+3 according to

the sequence 6n + 4, 6n + 2, 6n, 6n + 1, 6n − 1, . . . , 3n + 3, 3n + 4, 3n + 2 as

shown in Figure−4.9. Such vertex labeling will give rise to edge labeling for

Pt as 6n + 3, 6n + 1, 6n + 2, 6n, 6n− 2, . . . , 4, 5, 3, 1, 2.

Figure−4.9

Case - III: t ≡ 5 (mod 6). Then t = 6n + 5 , for some n ∈ N
⋃
{0}.

Here available vertex labels are 0, 1, 2, . . . , 6n + 3 and 6n + 5. We shall label

the vertices at even places according to the sequence 1, 0, 2, 4, 3, . . . , 3n −

3, 3n − 1, 3n + 1, 3n and label the remaining vertices according to the se-

quence 6n + 5, 6n + 3, 6n + 1, 6n + 2, 6n, . . . , 3n + 5, 3n + 2, 3n + 3. Such
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vertex labeling will give rise to edge labeling for Pt as 6n + 4, 6n + 2, 6n +

3, 6n + 1, . . . , 5, 6, 4, 1, 2, 3.

Case - IV: t ≡ 0 (mod 6). Then t = 6n, for some n ∈ N . Here avail-

able vertex labels are 0, 1, 2, . . . , 6n−2 and 6n. We shall label the vertices at

even places according to the sequence 1, 0, 2, 4, 3, . . . , 3n−4, 3n−2, 3n−3, 3n

and label the remaining vertices according to the sequence 6n, 6n − 2, 6n −

4, . . . , 3n+3, 3n+1, 3n−1. Such vertex labeling will give rise to edge labeling

for P6n as 6n− 1, 6n− 3, 6n− 2, . . . , 7, 5, 3, 4, 2, 1.

Case - V: t ≡ 1 (mod 6). Then t = 6n + 1 , for some n ∈ N . We shall label

the vertices at even places according to the sequence 1, 0, 2, 4, 3, . . . , 3n −

3, 3n − 2, 3n − 3, 3n − 1 and label the remaining vertices according to the

sequence 6n + 1, 6n− 1, 6n− 3, . . . , 3n + 2, 3n, 3n + 1. Such vertex labeling

will give rise to edge labeling for Pt as 6n, 6n− 2, 6n− 1, 6n− 3, . . . , 5, 3, 1, 2.

Case - VI: t ≡ 2 (mod 6). Then t = 6n + 2, for some n ∈ N . We shall la-

bel the vertices at even places according to the sequence 1, 0, 2, 4, 3, . . . , 3n−

2, 3n−3, 3n, 3n−1 and label the remaining vertices according to the sequence

6n + 2, 6n, 6n− 2, 6n− 1, . . . , 3n + 5, 3n + 2, 3n + 3, 3n + 1, will give rise to

edge labeling for Pt as 6n + 1, 6n− 1, 6n, . . . , 4, 5, 6, 3, 1, 2.

Thus in any case one can produce 1, 2, . . . , t− 1 edge labels for Pt, t ≥ 3,

using 0, 1, 2, . . . , t− 2 and t vertex labels.

Remark−4.4.4 : From the above Lemma−4.4.3 following observations are

obvious:

(1) By adding n in each term of the sequence 1, 2, . . . , t− 2, t ( which are

vertex labels for Pt t ≥ 3 ) one can produce edge labels 1, 2, . . . , t− 1 for Pt,

t ≥ 3.
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(2) By subtracting each term of the sequence 1, 2, . . . , t− 2, t ( which are

vertex labels for Pt ) from n + t one can produce edge labels 1, 2, . . . , t − 1

for Pt, t ≥ 3.

Theorem−4.4.5 : The graph G = (Pr × Ps)
⋃

Pt is graceful, where t ∈

N \ {2} and r, s ∈ N \ {1}.

Proof : Here for the graph G under consideration number of vertices p =

rs + t and number of edges q = 2rs − (r + s) + t − 1. According to Defini-

tion−4.2.2 the available vertex labels are 0, 1, . . . , q.

Now label the vertices of Pr × Ps by the labels q, 0, 1, q − 2, q − 3, q −

4, 6, 7, . . .etc. As we discussed in Theorem−4.4.1 two labeling pattern has

been observed. Such vertex labeling will give rise to edge labeling as de-

creasing sequence of labels q, q− 1, . . . , q− 2rs + r + s + 1 which is shown in

Figure−4.10.

Figure−4.10

Now our task is to label the vertices of Pt. It will depend on the vertex

labels of the last grid of Pr × Ps. Let w and z be vertex labels of last grid

of Pr × Ps. These labels produce edge label q − 2rs + r + s + 1 = t. At this

stage following two cases are to be considered.

Case - I: w < z . Then w must be a label from increasing sequence of labels

and z − w = t. Now available vertex labels are z + 1 = t + w + 1, z − 1 =

t + w − 1, z − 2 = t + w − 2, . . . , w + 2, w + 1, which are in number t. Using
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these labels we can label Pt according to Remark−4.4.4 and produce edge

labels 1, 2, . . . , t− 1.

Case - II: w > z. Then w must be a label from decreasing sequence of labels

and w − z = t. Now available vertex labels are w − 1 = t + z − 1, w − 2 =

t + z − 2, . . . , z + 2, z + 1, z − 1, which are in number t. Using these labels

one can label the vertices of Pt according to Remark−4.4.4 and produce edge

labels 1, 2, . . . , t− 1.

Therefore G = (Pr × Ps)
⋃

Pt is graceful, where r, s ∈ N \ {1} and

t ∈ N \ {2}.

Illustration−4.4.6: For better understanding of the above discussed label-

ing pattern, let us see graceful labeling pattern for the graph G = (P3 ×

P4)
⋃

P13. For this graph G, p = 25 and q = 29. So for graceful la-

beling of G, available vertex labels are 0, 1, 2, . . . , 29. According to Theo-

rem−4.4.5 one can label (P3 × P4) by 29, 0, 27, 4, 1, 26, 5, 22, 25, 6, 21, 8 and

P13 by 7, 19, 9, 20, 11, 18, 10, 16, 12, 17, 14, 15, 13. This will give rise to edge

labels 29, 28, . . . , 13 for grid graph (P3 × P4) and 12, 10, 11, 9, . . .

. . . , 5, 3, 1, 2 for P13 according to Case - V of Lemma−4.4.3 such labeling

pattern is shown in Figure−4.11. Hence G is a graceful graph.

Figure−4.11
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Theorem−4.4.7 : The graph G = Km,n

⋃
(Pr × Ps)

⋃
Pt is graceful, where

t ∈ N \ {2} and m, n, r, s ∈ N \ {1}.

Proof : The graph G has number of vertices p = m+n+rs+t and number of

edges e = mn+2rs−(r+s)+t−1 = mn+q say, where q = 2rs−(r+s)+t−1

is the number of edges in (Pr × Ps)
⋃

Pt.

Now label the vertices of Km,n by labels 0, 1, . . . ,m − 1, m + q, 2m +

q, . . . , e = mn + q, which will give rise to edge labels as e, e− 1, . . . , q + 1 for

the edges of Km,n. Now our task is to label the vertices of (Pr × Ps)
⋃

Pt,

for which the available vertex labels are in number q + 1. These are m, m +

1, m+2, . . . ,m+ q− 1 and m+ q +1. Now by adding m+1 in all the vertex

labels of (Pr × Ps)
⋃

Pt reported in Theorem - 4.4.5 one can produce edge

labels 1, 2, . . . , q. Thus we have labeled G = Km,n

⋃
(Pr ×Ps)

⋃
Pt gracefully

and hence G is a graceful graph.

4.5 Gracefulness of Union of Two Path Graphs with

Grid Graph and Complete Bipartite Graph :

It is obvious that union of two path graphs can not be graceful as num-

ber of vertices of Pn

⋃
Pt is more than the number of labels available for its

gracefulness. In connection of Lemma−4.4.3, we have following remarks.

Remark−4.5.1 : Using n, n+1, . . . , n+t−2, n+t, for n∈ N one can produce

1, 2, . . . , t−1 edge labels for path graph Pt(where t ≥ 3). In order to produce

s, s + 1, . . . , t − 1 edge labels for path graph Pt−s using above vertex labels

one can proceed as either of the following two ways.

(i) Using n + s, n + s + 1, . . . , n + t− 2, n + t, (where n, s ∈ N) one can

produce 1, 2, . . . , t− s− 1 edge labels for path graph Pt−s. Now choose half
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of the total number of vertex labels from the above mentioned sequence of

vertex labels into their numerically increasing order (one less than half of the

total number when n is odd) and subtract s from each selected vertex labels.

This will produce edge labels s, s + 1, . . . , t− 1 for Pt−s.

(ii) Using n+ s, n+ s+2, . . . , n+ t−1, n+ t, (where n ∈ N) will produce

edge labels as 1, 2, . . . , t−s−1 for Pt−s. Now choose half of the total number

of vertex labels from the above mentioned sequence of vertex labels according

to their numerically increasing order (one less than half of the total number

when n is odd) and subtract s from each selected vertex labels. This will

produce edge labels s, s + 1, . . . , t− 1 for Pt−s.

Remark−4.5.2 : If we label the grid graph (Pr × Ps) by using increas-

ing and decreasing sequence of vertex labels in diagonal pattern then there

are min{r, s} − 1 vertex labels are not used after graceful labeling of

(Pr×Ps). Moreover if Kr,s is labeled by t vertex labels (where t ≤ max{r, s})

0, 1, . . . , t − 1 and remaining by t, 2t, . . . , rs then there are t vertex labels

namely 1 + t, 2 + t, . . . . . . , 2t − 1, 2t + 1 which are not used in the graceful

labeling of Kr,s.

Theorem−4.5.3 : The graph G = Pn∪Pt∪(Pr×Ps),where t < min{r, s}, r, s ≥

3 is graceful.

Proof : Here total number of vertices p = n + t + rs and total number of

edges q = n + t + 2rs− (r + s− 2).

Now label the vertices of (Pr×Ps) by labels q, 0, 1, q−2, q−3, q−4 . . . etc.

This labeling sequence is having two sequential patterns, one is increasing

and other is decreasing. Such labeling pattern will give rise to edge labeling

as decreasing sequence of labels q, q − 1, . . . , q + r + s + 1 − 2rs, which is
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shown in Figure−4.12.

Figure−4.12

Now our task is to label the vertices of Pn. It will depend on the vertex

labels of the grid graph (Pr × Ps). Let w and z be vertex labels of last grid

of (Pr × Ps).

Case - I: w < z. Then w must be a label from increasing sequence of

labels and z − w = q + r + s + 1 − 2rs = n + t − 1. Now available vertex

labels are z + 1, z − 1, . . . , w + 2, w + 1 which are total n + t− 1.

Case - II: w > z. Then w must be a label from the decreasing se-

quence of labels and n + t − 1 = w − z. Now available vertex labels are

w − 1, w − 2, . . . , z + 2, z + 1, z − 1, which are in number n + t− 1.

Using these labels one can label the vertices of Pn according to Re-

mark−4.5.1 which will give rise to edge labels as n + t − 2, n + t − 3, . . . , t.

Now to label Pt one can use vertex labels which are not used in graceful

labeling of grid graph. This labels will give rise to edge labels 1, 2, . . . , t− 1

for Pt. Thus graph G under consideration admits graceful labeling.

Illustration−4.5.4: For better understanding of above defined labeling pat-

tern consider the graph G = P10 ∪ P3 ∪ (P5 × P4) with q = 42. The graceful
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labeling of G is shown in Figure−4.13.

Figure−4.13

Theorem−4.5.5 : The graph G = Pn∪Pt∪Kr,s,where t ≤ max{r, s}, r, s ≥ 3

is graceful.

Proof : Here total number of vertices p = n + t + r + s and total number

of edges q = rs + n + t− 2.

Now label the vertices of Kr,s by labels 0, 1, . . . , r−1 , r+n+t−2, . . . , rs+

n + t− 2 = q(assuming r ≥ s) as shown in Figure−4.14. This will give rise

to edge labels as q, q − 1, . . . , n + t− 1 of Kr,s.

Figure−4.14

Now our task is to label the vertices of Pn and then Pt for which the
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available vertex labels are r, r +1, r +2, . . . , r +n+ t−3, r +n+ t−1. These

are in number n+t−1 and 2r+n+t−3, 2r+n+t−1, 2r+n+t, . . . , 3r+n+t−3,

which are in number r. Using these labels according to Remark−4.5.2 one

can label Pn and Pt which give rise to edge labels as n+ t− 2, n+ t− 3, . . . , t

and t− 1, t− 2, . . . , 2, 1 respectively. Thus we have labeled all the vertices of

graph G under consideration gracefully.

Illustration−4.5.6: For better understanding of above defined labeling pat-

tern consider the graph G = P10 ∪ P5 ∪ (K4,5) with q = 33. The graceful

labeling of G is shown in Figure−4.15.

Figure−4.15

4.6 Some Open Problems :

• One can discuss gracefulness of union of grid graph with wheels, cycles,

Petersen graph etc.

• One can derive parallel results for other type of labeling like harmonious,

(k, d)−graceful, skolem graceful, k−equitable etc.

• One can discuss gracefulness in the context of various graph operations like

contraction and barycentric subdivision.

• One can investigate graceful labeling for the star of cycle, which is defined

in Chapter−5.
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4.7 Concluding Remarks :

The graceful labeling of graph is stronger in its class. Grid graph is very

interesting family of graphs. Here we have discussed the gracefulness of union

of grid graph with some other families. The results obtained here are new

and of very general nature. This work throws light on the gracefulness of

disconnected graphs which is very less cultivated field. Illustrations provide

better understanding of the derived results. This work contributes eight new

results to the theory of graceful graphs. The next Chapter−5 is aimed to

discuss cordial labeling of graphs.
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Chapter − 5

Cordial Labeling of Graphs

5.1 Introduction :

In Chapter−3 we have discussed various types of graph labeling, while

this chapter is aimed to discuss cordial labeling of graphs in detail. Some

new families of cordial graphs are investigated and some open problems are

also posed.

Many researchers have studied cordiality of graphs. As we mentioned in

Chapter−3, Cahit [31] introduced cordial graph in 1987 as a weaker version

of graceful and harmonious graphs. In the immediate section we will re-

call the definition of cordial graphs and will provide detail survey on cordial

graphs.

5.2 Some Basic Definitions and Important Results :

Definition−5.2.1 : If the vertices of the graph are assigned values subject

to certain conditions is known as graph labeling.

Definition−5.2.2 : A function f : V → {0, 1} is called binary vertex labeling

of a graph G and f(v) is called label of the vertex v of G under f .

For an edge e = uv, the induced function f ∗ : E → {0, 1} is given as

f ∗(e = uv) = |f(u) − f(v)|. Let vf (0), vf (1) be number of vertices of G

having labels 0 and 1 respectively under f and let ef (0), ef (1) be number of

edges of G having labels 0 and 1 respectively under f ∗.
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Definition−5.2.3 : A binary vertex labeling f of a graph G is called cordial

labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph which admits

cordial labeling is called cordial graph.

Vast amount of literature is available in printed or in electronic form.

Some known families of cordial graphs are listed below.

• As investigated by Cahit [32]

� Every tree is cordial.

� Complete bipartite graphs Km,n are cordial.

� Complete graphs Kn are cordial iff n ≤ 3.

� Maximal outer planar graphs are cordial.

� Eulerian graph is not cordial if its size congruent to 2 (mod 4).

� All fans Fn = Pn + K1 are cordial.

� Wheels Wn = Cn + K1 are cordial iff n is not congruent to 3 (mod 4).

� k−angular cactus with t cycles is cordial iff kt is not congruent to 2 (mod

4).

• Ho et al.[62], proved that

� Unicyclic graph is cordial except C4k+2.

� Generalized Petersen graph P (n, k) is cordial iff n is not congruent to 2

(mod 4).

• Lee and Liu [73], Du[43] proved that complete n−partite graph is cordial

if and only if at most three of its partite sets have odd cardinality.

• Seoud and Maqusoud [88] proved that if G is a graph with n vertices and m

edges and every vertex has odd degree then G is not cordial when m+n ≡ 2

(mod 4).
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• Andar et al. in [7],[8],[9] and [10] proved that

� Multiple shells are cordial.

� t−ply graph Pt(u, v) is cordial except when it is Eulerian and the number

of edges is congruent to 2 (mod 4).

� Helms, closed helms and generalized helms are cordial.

� Flowers are cordial.

• In [10], Andar et al. showed that a cordial labeling of a graph G can be

extended to a cordial labeling of the graph obtained from G by attaching 2m

pendant edges at each vertex of G. They also proved that a cordial labeling

of a graph G with p vertices can be extended to a cordial labeling of the

graph obtained from G by attaching 2m + 1 pendant edges at each vertex of

G if and only if G does not satisfy either of the following conditions: (1) G

has an even number of edges and p ≡ 2 (mod 4); (2) G has an odd number

of edges and either p ≡ 1 (mod 4) with eg(1) = eg(0) + i(G) or p ≡ 3 (mod

4) with eg(0) = eg(1) + i(G), where i(G) = min{|eg(0)− eg(1)|}.

5.3Cordial Labeling for Some Cycle Related Graphs:

We have investigated some new families of cordial graphs. In this section

we will give cordial labeling for cycle with one chord, cycle with twin chords

and cycle with triangle. Let us provide some important definitions.

Definition−5.3.1 : Chord of a cycle Cn is an edge joining two non−adjacent

vertices of cycle Cn.

Definition−5.3.2 : Two chords of a cycle are said to be twin chords if they

form a triangle with an edge of the cycle Cn.

For positive integers n and p with 3 ≤ p ≤ n − 2, Cn,p is the graph
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consisting of a cycle Cn with a pair of twin chords with which the edges of

Cn form cycles Cp, C3 and Cn+1−p without chords.

Definition−5.3.3 : A cycle with triangle is a cycle with three chords which

by themselves form a triangle.

For positive integers p, q, r and n ≥ 6 with p + q + r + 3 = n, Cn(p, q, r)

denotes a cycle with triangle whose edges form the edges of Cn, cycles Cp+2,

Cq+2 and Cr+2 without chords.

Theorem−5.3.4 : Cycles with one chord are cordial.

Proof : Let u1, u2, . . . , un be consecutive vertices of cycle Cn and e = u1u3

be a chord of cycle Cn. The vertices u1, u2, u3 forms a triangle with chord e.

To define labeling function f : V (G) → {0, 1} we consider following cases.

Case−1 : n ≡ 0, 1 (mod 4)

f(ui) = 0; if i ≡ 1, 2 (mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

Case−2 : n ≡ 2 (mod 4)

f(ui) = 0; if i ≡ 1, 2 (mod 4)

= 1; if i ≡ 0, 3 (mod 4), 1 ≤ i ≤ n− 2 and f(un) = 0, f(un−1) = 1.

Case−3 : n ≡ 3 (mod 4)

f(u1) = 1 and f(ui) = 0; if i ≡ 1, 2 (mod 4)

= 1; if i ≡ 0, 3 (mod 4), 2 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table−5.1.

i.e. G admits cordial labeling.
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Let n = 4a + b, a ∈ N .

Table−5.1

Theorem−5.3.5 : Cycles with twin chords are cordial, where chords form

two triangles and one cycle Cn−2.

Proof : Let G be the cycle with twin chords, where chords form two tri-

angles and one cycle Cn−2. Here number of vertices p = n and number

of edges q = n + 2. Let u1, u2, . . . , un be successive vertices of G. Let

e1 = unu2 and e2 = unu3 be the chords of cycle Cn. To define labeling func-

tion f : V (G) → {0, 1} we consider following cases.

Case−1 : n ≡ 0 (mod 4)

f(ui) = 0; if i ≡ 1, 2 (mod 4)

= 1; if i ≡ 0, 3 (mod 4), 1 ≤ i ≤ n.

Case−2 : n ≡ 1, 2, 3 (mod 4)

f(ui) = 0; if i ≡ 0, 1 (mod 4)

= 1; if i ≡ 2, 3 (mod 4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table−5.2.

i.e. G admits cordial labeling.
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Let n = 4a + b, a ∈ N .

Table−5.2

Theorem−5.3.6 : Cycles with triangle Cn(1, 1, n−5) is cordial except n ≡ 3

(mod 4).

Proof : Let G be cycle with triangle Cn(1, 1, n − 5). Let u1, u2, . . . , un be

successive vertices of G. Let u1, u3 and u5 be the vertices of triangle formed

by edges e1 = u1u3, e2 = u3u5 and e3 = u1u5.

Note that for the case n ≡ 3 (mod 4), graph G is an Eulerian graph with

number of edges congruent to 2 (mod 4). Then in this case G is not cordial

as proved by Cahit [32]. So it remains to consider following cases to define

labeling function f : V (G) → {0, 1}.

Case−1 : n ≡ 0, 1 (mod 4)

f(ui) = 0, 1; if i ≡ 1, 2 (mod 4)

= 1; if i ≡ 0, 3 (mod 4), 1 ≤ i ≤ n.

Case−2 : n ≡ 2 (mod 4)

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3 (mod 4), 1 ≤ i ≤ n− 2.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table−5.3.

i.e. G admits cordial labeling.
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Let n = 4a + b, n ∈ N , n ≥ 6.

Table−5.3

5.4 Path Union of Graphs and Cordial Labeling :

Definition−5.4.1 : Let G be a graph and G1, G2, . . . , Gn, n ≥ 2 be n copies

of graph G. Then the graph obtained by adding an edge from Gi to Gi+1

(for i = 1, 2, . . . , n− 1) is called path union of G.

Shee and Ho [95] introduced the concept of path union. They also proved

that path union of Petersen graph, trees, wheels and unicyclic graphs are

cordial. We have investigated cordial labeling for path union of finite num-

ber of copies of cycle with one chord.

Theorem−5.4.2 : The path union of finite number of copies of cycle Cn with

one chord is cordial, where chord forms a triangle with edges of the cycle.

Proof : Let G be the path union of cycle Cn with one chord and G1, G2, . . . , Gk

be k copies of cycle Cn with one chord, where |Gi| = n, for each i. Let us

denote the consecutive vertices of graph Gi by {ui1, ui2, . . . , uin}, for i =

1, 2, . . . , k. Let ui1, ui2, ui3 forms a triangle with chord e. Let ei = ui3u(i+1)1

be the edge joining Gi and Gi+1, for i = 1, 2, . . . , k − 1. To define labeling

function f : V (G) → {0, 1} we consider following cases.

Case−1 : n ≡ 0 (mod 4)

f(uij) = 0; if j ≡ 0, 3(mod 4)

= 1; if j ≡ 1, 2(mod 4), when i is even, 1 ≤ i ≤ k, 1 ≤ j ≤ n.
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f(uij) = 0; if j ≡ 1, 2 (mod 4)

= 1; if j ≡ 0, 3 (mod 4), when i is odd, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case−2 : n ≡ 1 (mod 4)

When i ≡ 0, 1 (mod 4)

f(uij) = 0; if j ≡ 0, 3 (mod 4)

= 1; if j ≡ 1, 2 (mod 4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

When i ≡ 2, 3 (mod 4)

f(uij) = 0; if j ≡ 1, 2 (mod 4)

= 1; if j ≡ 0, 3 (mod 4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case−3 : n ≡ 2 (mod 4)

f(uin−1) = 1, f(uin) = 0 and

f(uij) = 0; if j ≡ 1, 2 (mod 4)

= 1; if j ≡ 0, 3 (mod 4), 1 ≤ i ≤ k, 1 ≤ j ≤ n− 2.

Case−4 : n ≡ 3 (mod 4)

When i ≡ 0, 1 (mod 4)

f(ui1) = 0 and

f(uij) = 0; if j ≡ 2, 3 (mod 4)

= 1; if j ≡ 0, 1 (mod 4), 1 ≤ i ≤ k, 2 ≤ j ≤ n.

When i ≡ 2, 3 (mod 4)

f(ui1) = 1 and

f(uij) = 0; if j ≡ 1, 2 (mod 4)

= 1; if j ≡ 0, 3 (mod 4), 1 ≤ i ≤ k, 2 ≤ j ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table−5.4.
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i.e. G admits cordial labeling.

Let n = 4a + b, n ∈ N , n ≥ 4.

Table−5.4

Illustration−5.4.3 : For better understanding of above defined labeling

pattern let us consider graph G which is path union of three copies of cycle

C8 with one chord (It is the case related with n ≡ 0 (mod 4), k = 3). The

labeling pattern is shown in Figure−5.5.

Figure−5.5
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5.5 Some More Cordial Graphs :

We introduce here a graph called star of a graph.

Definition−5.5.1 : A graph obtained by replacing each vertex of star graph

K1,n by a graph G is called star of G. We denote it as G∗. We name central

graph in G∗ is the graph which replaces central vertex of graph K1,n.

We have investigated cordial labeling for star of cycle.

Theorem−5.5.2 : Star of cycles C∗
n is cordial for all n.

Proof : Let v1, v2, . . . , vn be successive vertices of central cycle of C∗
n and

ui1, ui2, . . . , uin be successive vertices of other cycles C
(i)
n (except central cy-

cle), i = 1, 2, . . . , n. Let ei be the edge such that ei = ui1vi. Moreover, let

us denote the vertex of cycle C
(i)
n which is adjacent to a vertex vi labeled by

0 as u
(0)
ij and similarly denote the vertex of cycle C

(i)
n which is adjacent to a

vertex vi labeled by 1 as u
(1)
ij . To define required labeling f : V (C∗

n) → {0, 1}

we consider following cases.

Case−1 : n ≡ 0 (mod 4)

f(vi) = 0; if i ≡ 0, 1 (mod 4)

= 1; if i ≡ 2, 3 (mod 4), 1 ≤ i ≤ n.

f(u
(0)
ij ) = 0; if j ≡ 0, 3 (mod 4)

= 1; if j ≡ 1, 2 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

f(u
(1)
ij ) = 0; if j ≡ 2, 3 (mod 4)

= 1; if j ≡ 0, 1 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

Case−2 : n ≡ 1 (mod 4)

f(vi) = 0; if i ≡ 0, 1 (mod 4)

= 1; if i ≡ 2, 3 (mod 4), 1 ≤ i ≤ n.
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f(u
(0)
ij ) = 0; if j ≡ 0, 3 (mod 4)

= 1; if j ≡ 1, 2 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

f(u
(1)
ij ) = 0; if j ≡ 1, 2 (mod 4)

= 1; if j ≡ 0, 3 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

Case−3 : n ≡ 2 (mod 4)

f(vi) = 0; if i ≡ 0, 2 (mod 4)

= 1; if i ≡ 1, 3 (mod 4), 1 ≤ i ≤ n.

f(u
(0)
ij ) = 0; if j ≡ 0, 1 (mod 4)

= 1; if j ≡ 2, 3 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

f(u
(1)
in ) = 1, f(u

(1)
in−1) = 0 and

f(u
(1)
ij ) = 0; if j ≡ 0, 3 (mod 4)

= 1; if j ≡ 1, 2 (mod 4), 1 ≤ j ≤ n− 2, 1 ≤ i ≤ n.

Case−4 : n ≡ 3 (mod 4)

f(vi) = 0; if i ≡ 0, 1 (mod 4)

= 1; if i ≡ 2, 3 (mod 4), 1 ≤ i ≤ n.

f(u
(0)
ij ) = 0; if j ≡ 0, 1 (mod 4)

= 1; if j ≡ 2, 3 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

f(u
(1)
ij ) = 0; if j ≡ 2, 3 (mod 4)

= 1; if j ≡ 0, 1 (mod 4), 1 ≤ j ≤ n, 1 ≤ i ≤ n.

The graph under consideration satisfies the condition |vf (0)− vf (1)| ≤ 1

and |ef (0)− ef (1)| ≤ 1 in each case as shown in following Table−5.6.
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Let n = 4a + b, n ∈ N , n ≥ 3

Table−5.6

Illustration−5.5.3 : For better understanding of above defined labeling pat-

tern let us consider star of cycle C6 (It is related to Case−3). The cordial

labeling of star of C6 is as shown in Figure−5.7

Figure−5.7
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Theorem−5.5.4 : The graph obtained by joining two copies of cycle Cn by

a path of arbitrary length is cordial.

Proof : Let {u1, u2, . . . , un} be the vertices of first copy of cycle Cn. Let

{v1, . . . , vk} be the vertices of path Pk with u1 = v1 and {w1, . . . , wn} be the

vertices of second copy of cycle Cn with vk = w1. To define labeling function

f : V (G) → {0, 1} we consider following cases.

Case 1: n ≡ 0(mod 4), k ≡ 0(mod 4)

f(ui) = 0; if i ≡ 0, 3(mod 4)

= 1; if i ≡ 1, 2(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod 4)

= 1; if j ≡ 1, 2(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 0(mod 4), k ≡ 1, 2(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

Case 3: n ≡ 0(mod 4), k ≡ 3(mod 4) and n ≡ 3(mod 4), k ≡ 0(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k.
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f(wi) = 0; if i ≡ 0, 3(mod 4)

= 1; if i ≡ 1, 2(mod 4), 1 ≤ i ≤ n.

Case 4: n ≡ 1(mod 4), k ≡ 0(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod 4)

= 1; if j ≡ 2, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

Case 5: n ≡ 1(mod 4), k ≡ 1(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vk) = 1 and

f(vj) = 0; if j ≡ 0, 1(mod 4)

= 1; if j ≡ 2, 3(mod 4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 2, 3(mod 4)

= 1; if i ≡ 0, 1(mod 4), 1 ≤ i ≤ n.

Case 6: n ≡ 1(mod 4), k ≡ 2(mod 4) and

n ≡ 2(mod 4), k ≡ 3(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod 4)

= 1; if j ≡ 2, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod 4)

= 1; if i ≡ 0, 1(mod 4), 1 ≤ i ≤ n.
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Case 7: n ≡ 1(mod 4), k ≡ 3(mod 4)

f(ui) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.

f(vk) = 0 and

f(vj) = 0; if j ≡ 0, 1(mod 4)

= 1; if j ≡ 2, 3(mod 4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.

Case 8: n ≡ 2(mod 4), k ≡ 0(mod 4)

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 2.

f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod 4)

= 1; if i ≡ 0, 1(mod 4), 1 ≤ i ≤ n.

Case 9: n ≡ 2(mod 4), k ≡ 1(mod 4)

f(ui) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod 4)

= 1; if i ≡ 0, 1(mod 4), 1 ≤ i ≤ n.
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Case 10: n ≡ 2(mod 4), k ≡ 2(mod 4)

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 2.

f(vj) = 0; if j ≡ 0, 1(mod 4)

= 1; if j ≡ 2, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod 4)

= 1; if i ≡ 0, 1(mod 4), 1 ≤ i ≤ n.

Case 11: n ≡ 3(mod 4), k ≡ 1(mod 4)

f(ui) = 0; if i ≡ 0, 3(mod 4)

= 1; if i ≡ 1, 2(mod 4), 1 ≤ i ≤ n.

f(vk) = 0 and

f(vj) = 0; if j ≡ 0, 3(mod 4)

= 1; if j ≡ 1, 2(mod 4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.

Case 12: n ≡ 3(mod 4), k ≡ 2(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.
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Case 13: n ≡ 3(mod 4), k ≡ 3(mod 4)

f(ui) = 0; if i ≡ 1, 2(mod 4)

= 1; if i ≡ 0, 3(mod 4), 1 ≤ i ≤ n.

f(vk) = 0 and f(vj) = 0; if j ≡ 1, 2(mod 4)

= 1; if j ≡ 0, 3(mod 4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 0, 1(mod 4)

= 1; if i ≡ 2, 3(mod 4), 1 ≤ i ≤ n.

Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N
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Table−5.8
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The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in above Table−5.8. i.e.

G admits cordial labeling.

For better understanding of above defined labeling pattern let us consider

an example.

Example−5.5.5 : Consider a graph obtained by joining two copies of cycle

C5 by a path P5 (It is the case related with n ≡ 1(mod 4), k ≡ 1(mod 4)).

The labeling pattern is shown in Figure−5.9.

Figure−5.9

Theorem−5.5.6 : The graph G obtained by joining two copies of cycle

Cn with one chord by a path of arbitrary length is cordial.

Proof : Let u1, . . . , un be consecutive vertices of first copy of cycle Cn with

one chord, v1, . . . , vk be consecutive vertices of path Pk with u1 = v1 and

w1, . . . , wn be consecutive vertices of second copy of cycle Cn with one chord,

where vk = w1. To define labeling function f : V (G) → {0, 1} there are

sixteen cases. We shall define it according to following Table−5.10.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 4
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Table−5.10

The labeling pattern defined above covers all possible arrangement

of vertices. In each case the graph G under consideration satisfies the condi-

tions |vf (0)−vf (1)| ≤ 1 and |ef (0)−ef (1)| ≤ 1 as shown in above Table−5.10.

i.e. G admits cordial labeling.

For better understanding of above defined labeling pattern let us consider

an example.

Example−5.5.7 : Consider a graph obtained by joining two copies of cycles

C7 with one chord by a path P7 (It is the case related with n ≡ 3(mod 4),

k ≡ 3(mod 4)). The labeling pattern is shown in Figure−5.11.

85



Figure−5.11

Theorem−5.5.8 : The graph G obtained by joining two cycles with twin

chords by a path of arbitrary length is cordial where chords form two trian-

gles and one cycle Cn−2.

Proof : Let u1, . . . , un be successive vertices of first copy of cycle Cn such

that u1, u2, u3 form a triangle with one of the chord and d(u1) = 4, d(u3) =

d(u4) = 3 while d(u2) = 2 and d(ui) = 2, for 5 ≤ i ≤ n. Let w1, . . . , wn be

the successive vertices of second copy of cycle Cn such that w1, w2, w3 form a

triangle with one of the twin chords and d(w1) = 4, d(w3) = d(w4) = 3 while

d(w2) = 2 and d(wi) = 2, for 5 ≤ i ≤ n. Let v1, . . . , vk be the successive

vertices of path Pk with v1 = ui, for i = 3 or i = 1 or i = 4 and vk = w1. To

define labeling function f : V (G) → {0, 1} there are following cases.

Case-A v1 = u3

Case-B v1 = u1

Case-C v1 = u4

We shall define the labeling function according to Table−5.12 to Table−5.14.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5
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Table−5.12

Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5
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Table−5.13

Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5
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Table−5.14

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in above Table−5.12 to

5.14. i.e. G admits cordial labeling.

Let us demonstrate above labeling pattern by means of following exam-

ples.
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Example−5.5.9 : Consider a graph obtained by joining two copies of cy-

cles C5 with twin chords by a path P4 (It is the case related with Case−A,

n ≡ 1(mod 4), k ≡ 0(mod 4)). The labeling pattern is shown in Figure−5.15.

Figure−5.15

Example−5.5.10 : Consider a graph obtained by joining two copies of cy-

cles C6 with twin chords by a path P6 (It is the case related with Case−B,

n ≡ 2(mod 4), k ≡ 2(mod 4)). The labeling pattern is shown in Figure−5.16.

Figure−5.16
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Example−5.5.11 : Consider a graph obtained by joining two copies of cy-

cles C8 with twin chords by a path P7 (It is the case related with Case−C,

n ≡ 0(mod 4), k ≡ 3 (mod 4)). The labeling pattern is shown in Figure−5.17.

Figure−5.17

Theorem−5.5.12 : Kn

⋃
Kn, where n = t2, for some t ∈ N is cordial

graph.

Proof : It is obvious that t2−t is an even integer. Let u1, u2, . . . , un be succes-

sive vertices of first copy of Kn and v1, . . . , vn be successive vertices of second

copy of Kn. We shall define the labeling function f : V (Kn

⋃
Kn) → {0, 1}

by

f(ui) = 0 if i ∈ {1, 2, . . . , t2−t
2
}

= 1 if i ∈ { t2−t
2

+ 1, . . . , n} and

f(vj) = 0 if j ∈ { t2−t
2

+ 1, . . . , n}

= 1 if j ∈ {1, 2, . . . , t2−t
2
}.
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The labeling pattern of this graph is shown in following Figure−5.18.

Figure−5.18

For the graph under consideration vf (0) = vf (1) and

ef (0) = 2[( t2−t
2

)× ( t2−t
2
− 1) + {t2 − ( t2−t

2
)} × {t2 − ( t2−t

2
)− 1}]

= 1
2
[(t2 − t)× (t2 − t− 2) + (t2 + t)× (t2 + t− 2)]

= t4 − t2

= t2(t2 − 1)

= 1
2

number of edges in Kn

⋃
Kn.

Therefore ef (0) = ef (1).

Thus the graph under consideration satisfies the conditions |vf (0)−vf (1)| ≤

1 and |ef (0) − ef (1)| ≤ 1. Therefore the graph Kn

⋃
Kn, where n = t2, for

some t ∈ N is cordial graph.
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5.6 Some Open Problems :

• In connection of cordial labeling of path union, instead of taking one edge

between two graphs one can think path of arbitrary length between any two

graphs. Then Theorem−5.4.2 reported in previous section will be a spacial

case.

• One can derive results similar to the previous section for multiple shells,

helms etc.

• One can discuss cordiality in the context of various graph operations like

barycentric subdivision and contraction.

• One can investigate cordial labeling for star of some other graphs.

5.7 Concluding Remarks :

In this chapter cordial labeling is discussed in detail and survey of some

existing results is carried out. Nine new results are obtained. Hint for further

results is given in the form of open problems. Investigations carried out here

are novel and important. Labeling pattern is given in vary elegant way and

it is demonstrated by means of sufficient examples.

The penultimate chapter is aimed to discuss 3−equitable labeling of

graphs.
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Chapter − 6

3−Equitable Labeling Of

Graphs

6.1 Introduction :

In the previous Chapter−5 we have discussed cordiality of various graphs

while this chapter is aimed to discuss 3−equitable labeling of graphs in de-

tail. Four new 3−equitable graphs are investigated.

6.2 Some Definitions and Existing Results :

As we mentioned in Chapter−3 Cahit [33] has defined k−equitable la-

beling in 1990. Here we will discuss 3−equitable labeling which is particular

type of k−equitable labeling defined as follows.

Definition−6.2.1 : Let G = (V, E) be a graph. A mapping f : V (G) →{0,1,2}

is called ternary vertex labeling of G and f(v) is called label of the vertex v

of G under f .

For an edge e = uv the induced edge labeling f ∗ : E(G) →{0,1,2} is given

by f ∗(e)=|f(u)− f(v)|. Let vf (0),vf (1),vf (2) be the number of vertices of G

having labels 0,1 and 2 respectively under f and let ef (0),ef (1),ef (2) be the

number of edges having labels 0,1 and 2 respectively under f ∗.
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Definition−6.2.2 A ternary vertex labeling of a graph G is called 3−equitable

labeling if |vf (i)− vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, 0≤ i, j ≤2. A graph G

is called 3−equitable graph if it admits 3−equitable labeling.

Some known families of 3−equitable graphs are listed below.

• Cahit [32],[33] proved that

� Cn is 3−equitable if and only if n is not congruent to 3(mod 6).

� An Eulerian graph with q ≡ 3(mod 6) is not 3−equitable where q is the

number of edges.

� All caterpillars are 3−equitable.

� He conjectured that A triangular cactus with n blocks is 3−equitable if and

only if n is even.

� Every tree with fewer than five end vertices has a 3−equitable labeling.

• Seoud and Abdel Maqsoud [89] proved that

� A graph with p vertices and q edges in which every vertex has odd degree

is not 3−equitable if p ≡ 0(mod 3) and q ≡ 3(mod 6).

� All fans except P2 + K1 are 3−equitable.

� P 2
n is 3−equitable for all n except 3.

� Km,n, 3 ≤ m ≤ n is 3−equitable if and only if (m,n) = (4, 4).

• Bapat and Limaye [17] proved that

� Helms Hn, n ≥ 4 are 3−equitable.

� Flowers are 3−equitable.

• Youssef [112] proved that Wn = Cn + K1 is 3−equitable for all n ≥ 4.

In the next section we will give brief account of some new results investigated

by us.
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6.3 Some Cycle Related 3−equitable Graphs :

We have investigated some new families of cycle related 3−equitable

graphs. In this section we will give 3−equitable labeling for cycle with one

chord, cycle with twin chords and cycle with triangle.

Theorem−6.3.1 : Cycle with one chord is 3−equitable.

Proof : Let G be the cycle with one chord. Let v1, v2, . . . , vn be successive

vertices of cycle Cn. Let e1 = v2vn be chord of a cycle Cn. To define ternary

vertex labeling f : V (G) →{0,1,2} we consider the following cases and we

shall define labeling for them as follows.

Case−1 : n ≡ 0, 4, 5(mod 6)

f(vi) = 0 ; if i ≡ 2, 5(mod 6)

= 1 ; if i ≡ 0, 1(mod 6)

= 2 ; if i ≡ 3, 4(mod 6), 1 ≤ i ≤ n.

Case−2 : n ≡ 1(mod 6)

f(vi) = 0 ; if i ≡ 3, 4(mod 6)

= 1 ; if i ≡ 0, 1(mod 6)

= 2 ; if i ≡ 2, 5(mod 6), 1 ≤ i ≤ n.

Case−3 : n ≡ 2(mod 6)

f(vn−1) = 0, f(vn) = 2 and f(vi) = 0 ; if i ≡ 0, 3(mod 6)

= 1 ; if i ≡ 1, 2(mod 6)

= 2 ; if i ≡ 4, 5(mod 6), 1 ≤ i ≤ n− 2.

Case−4 : n ≡ 3(mod 6)

f(vn−1) = 0, f(vn) = 2 and label remaining vertices as in Case−2.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions
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|vf (i)−vf (j)| ≤ 1 and |ef (i)−ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in following

Table−6.1. i.e. G admits 3−equitable labeling.

Let n = 4a + b, aεN .

Table−6.1

For better understanding of above defined labeling pattern let us consider

an example.

Example−6.3.2 : Consider cycle C7 with one chord. The labeling pattern

is shown in Figure−6.2. (It is the case related to n ≡ 1(mod 6))

Figure−6.2

Theorem−6.3.3 : Cycle with twin chords where chords form two triangles

and one cycle Cn−2 is 3−equitable.

Proof : Let G be the cycle with twin chords where chords form two triangle

and one cycle Cn−2. Let v1, v2, . . . , vn be successive vertices of cycle Cn and

e1 = v2vn and e2 = v3vn be two chords of a cycle Cn. To define ternary
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vertex labeling f : V (G) →{0,1,2} we consider the following cases and we

shall define labeling for them as follows.

Case−1 : n ≡ 0(mod 6)

f(vi) = 0 ; if i ≡ 1, 2(mod 6)

= 1 ; if i ≡ 4, 5(mod 6)

= 2 ; if i ≡ 0, 3(mod 6), 1 ≤ i ≤ n.

Case−2 : n ≡ 1(mod 6)

f(vi) = 0 ; if i ≡ 2, 5(mod 6)

= 1 ; if i ≡ 3, 4(mod 6)

= 2 ; if i ≡ 0, 1(mod 6), 1 ≤ i ≤ n.

Case−3 : n ≡ 2, 3, 4, 5(mod 6)

f(vi) = 0 ; if i ≡ 2, 5(mod 6)

= 1 ; if i ≡ 0, 1(mod 6)

= 2 ; if i ≡ 3, 4(mod 6), 1 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (i)−vf (j)| ≤ 1 and |ef (i)−ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in following

Table−6.3. i.e. G admits 3−equitable labeling.

Let n = 4a + b, nεN , n ≥ 5.

Table−6.3

99



For better understanding of above defined labeling pattern let us consider

an example.

Example−6.3.4 : Consider cycle C9 with twin chords. The labeling pattern

is as shown in Figure−6.4. (It is the case related to n ≡ 3(mod 6))

Figure−6.4

Theorem−6.3.5: Cycle with triangle Cn(1, 1, n − 5) is 3−equitable except

n ≡ 0(mod 6).

Proof : Let G be cycle with triangle Cn(1, 1, n − 5). Let v1, v2, . . . , vn be

successive vertices of G. Let v1, v3 and v5 be the vertices of triangle formed

by edges e1 = v1v3, e2 = v3v5 and e3 = v1v5.To define ternary vertex labeling

f : V (G) →{0,1,2} we consider the following cases and we shall define label-

ing for them as follows.

Case−1 : n ≡ 0(mod 6)

Here graph G is an Eulerian graph with number of edges congruent to

3(mod 6). Then in this case G is not 3−equitable as proved by Cahit [32].

Case−2 : n ≡ 1(mod 6)

f(v1) = 2, f(v2) = 1 and f(vi) = 0 ; if i ≡ 1, 4(mod 6)

= 1 ; if i ≡ 2, 3(mod 6)

= 2 ; if i ≡ 0, 5(mod 6), 3 ≤ i ≤ n.
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Case−3 : n ≡ 2(mod 6)

f(v1) = 2, f(v2) = 0 and

f(vi) = 0 ; if i ≡ 1, 4(mod 6)

= 1 ; if i ≡ 0, 5(mod 6)

= 2 ; if i ≡ 3, 2(mod 6), 3 ≤ i ≤ n.

Case−4 : n ≡ 3(mod 6)

f(vn−2) = 0, f(vn−1) = 2, f(vn) = 1 and

f(vi) = 0 ; if i ≡ 0, 3(mod 6)

= 1 ; if i ≡ 4, 5(mod 6)

= 2 ; if i ≡ 1, 2(mod 6), 1 ≤ i ≤ n− 3.

Case−5 : n ≡ 4(mod 6)

f(vn−3) = 1, f(vn−2) = 0, f(vn−1) = 2,f(vn) = 0 and

f(vi) = 0 ; if i ≡ 1, 4(mod 6)

= 1 ; if i ≡ 0, 5(mod 6)

= 2 ; if i ≡ 2, 3(mod 6), 1 ≤ i ≤ n− 4.

Case−6 : n ≡ 5(mod 6)

f(vn−2) = 1, f(vn−1) = 0, f(vn) = 0 and

f(vi) = 0 ; if i ≡ 0, 3(mod 6)

= 1 ; if i ≡ 4, 5(mod 6)

= 2 ; if i ≡ 1, 2(mod 6), 1 ≤ i ≤ n− 3.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case the graph G under consideration satisfies the conditions

|vf (i)−vf (j)| ≤ 1 and |ef (i)−ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in following

Table−6.5. i.e. G admits 3−equitable labeling.
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Let n = 4a + b, nεN , n ≥ 6.

Table−6.5

Remark−6.3.6 : In the above Theorem−6.3.5 we have discussed the

3−equitable labeling of Cn(1, 1, n − 5) but it is also possible to develop

3−equitable labeling when three chords are making possible triangle with

respect to given cycle. For the sake of brevity that discussion is not included

here.

For better understanding of above defined labeling pattern let us consider

an example.

Example−6.3.7 : Consider cycle C8 with triangle. The labeling pattern is

as shown in Figure−6.6. (It is the case related to n ≡ 2(mod 6))

Figure−6.6

We have defined star of a graph in Chapter−5 as Definition−5.5.1. In

that connection we will prove following result.
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Theorem−6.3.8 : Star of cycles C∗
n is 3−equitable for all n.

Proof : Let v1, v2, . . . , vn be successive vertices of central cycle of C∗
n and

ui1, . . . , uin be successive vertices of other cycles C
(i)
n (except central cycle),

i = 1, 2, . . . , n. Let ei be the edge such that ei = ui1vi. Moreover, let us

denote the vertex of cycle C
(i)
n which is adjacent to a vertex vi labeled by 0

as u
(0)
ij , the vertex of cycle C

(i)
n which is adjacent to a vertex vi labeled by 1

as u
(1)
ij and the vertex of cycle C

(i)
n which is adjacent to a vertex vi labeled

by 2 as u
(2)
ij . To define required labeling f : V (C∗

n) → {0, 1, 2} we consider

following cases and we shall define labeling function for them as follows.

Case−1: n ≡ 0(mod 6)

f(vi) = 0; if i ≡ 0, 3(mod 4)

= 1 ; if i ≡ 1, 2(mod 6)

= 2 ; if i ≡ 4, 5(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 1, 2(mod 6)

= 2 ; if j ≡ 4, 5(mod 6), 1 ≤ j ≤ n,1 ≤ i ≤ n

f(u
(1)
ij ) = 0; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 1, 2(mod 6)

= 2 ; if j ≡ 4, 5(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 0, 5(mod 6)

= 2 ; if j ≡ 2, 3(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

Case−2: n ≡ 1(mod 6)

f(vi) = 0; if i ≡ 0, 3(mod 6)

= 1 ; if i ≡ 1, 2(mod 6)
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= 2 ; if i ≡ 4, 5(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 2, 5(mod 6)

= 1 ; if j ≡ 0, 1(mod 6)

= 2 ; if j ≡ 3, 4(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(1)
i1 ) = 2 and

f(u
(1)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 2, 3(mod 6)

= 2 ; if j ≡ 0, 5(mod 6), 2 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 2, 3(mod 6)

= 2 ; if j ≡ 0, 5(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

Case−3: n ≡ 2(mod 6)

f(vi) = 0 ; if i ≡ 2, 5(mod 6)

= 1 ; if i ≡ 0, 1(mod 6)

= 2 ; if i ≡ 3, 4(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 0, 5(mod 6)

= 2 ; if j ≡ 2, 3(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(1)
in ) = 1, f(u

(1)
in−1) = 2 and

f(u
(1)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 1, 2(mod 6)

= 2 ; if j ≡ 4, 5(mod 6), 1 ≤ j ≤ n− 2, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 2, 5(mod 6)

= 1 ; if j ≡ 0, 1(mod 6)

= 2 ; if j ≡ 3, 4(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n
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Case−4: n ≡ 3(mod 6)

f(vi) = 0 ; if i ≡ 1, 4(mod 6)

= 1 ; if i ≡ 0, 5(mod 6)

= 2 ; if i ≡ 2, 3(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 0, 5(mod 6)

= 2 ; if j ≡ 2, 3(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

Let n1 denotes the number of cycles whose one end vertex uij (for some

j) is adjacent to vertex vi which is labeled by 1. Here note that number of

vertices in central cycle which are labeled by 1 is even.

To label n1

2
such cycles we define labeling f as

f(u
(1)
in ) = 1, f(u

(1)
in−1) = 2, f(u

(1)
in−2) = 0 and

f(u
(1)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if i ≡ 4, 5(mod 6)

= 2 ; if i ≡ 1, 2(mod 6), 1 ≤ j ≤ n− 3, 1 ≤ i ≤ n.

To label remaining n1

2
such cycles we define labeling f as

f(u
(1)
ij ) = 0 ; if j ≡ 2, 5(mod 6)

= 1 ; if j ≡ 0, 1(mod 6)

= 2 ; if j ≡ 3, 4(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 2, 3(mod 6)

= 2 ; if j ≡ 0, 5(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

Case−5: n ≡ 4(mod 6)

f(vi) = 0 ; if i ≡ 0, 3(mod 4)

= 1 ; if i ≡ 1, 2(mod 6)
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= 2 ; if i ≡ 4, 5(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 4, 5(mod 6)

= 2 ; if j ≡ 1, 2(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(1)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 1, 2(mod 6)

= 2 ; if j ≡ 4, 5(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 1, 4(mod 6)

= 1 ; if j ≡ 0, 5(mod 6)

= 2 ; if j ≡ 2, 3(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

Case−6: n ≡ 5(mod 6)

f(vi) = 0 ; if i ≡ 2, 5(mod 4)

= 1 ; if i ≡ 0, 1(mod 6)

= 2 ; if i ≡ 3, 4(mod 6), 1 ≤ i ≤ n

f(u
(0)
ij ) = 0 ; if j ≡ 0, 3(mod 6)

= 1 ; if j ≡ 4, 5(mod 6)

= 2 ; if j ≡ 1, 2(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(1)
ij ) = 0 ; if j ≡ 2, 5(mod 6)

= 1 ; if j ≡ 0, 1(mod 6)

= 2 ; if j ≡ 3, 4(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

f(u
(2)
ij ) = 0 ; if j ≡ 2, 5(mod 6)

= 1 ; if j ≡ 3, 4(mod 6)

= 2 ; if j ≡ 0, 1(mod 6), 1 ≤ j ≤ n, 1 ≤ i ≤ n

The above defined labeling pattern covers all possible arrangement of

vertices. In each case the graph under consideration satisfies the condition
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|vf (i)−vf (j)| ≤ 1 and |ef (i)−ef (j)| ≤ 1, 0 ≤ i, j ≤ 2 as shown in Table−6.7.

i.e. graph C∗
n admits 3−equitable labeling.

Let n = 4a + b, nεN , n ≥ 3.

Table−6.7

Example−6.3.9 : For better understanding of above defined labeling pat-

tern let us consider star of cycle C5 (It related to Case−6). The 3−equitable

labeling of star of C5 is as shown in Figure−6.8.

Figure−6.8
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6.4 Some Open Problems :

• One can discuss 3−equitable labeling in the context of various graph op-

erations like barycentric subdivision and contraction.

• One can investigate 3−equitable labeling for path union of cycles, cycle

with one chord, cycle with twin chords, cycle with triangle etc.

• One can investigate the results for 3−equitable labeling parallel to results

investigated as in Section−5.5 for cordial labeling.

6.5 Concluding Remarks :

In this chapter 3−equitable labeling is discussed in detail and survey of

some existing results is carried out. The results obtained here are novel and

labeling pattern is given in very elegant way which is demonstrated by means

of examples.

The penultimate chapter is aimed to discuss applications of graph label-

ing.
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Chapter − 7

Applications of Graph Labeling

7.1 Introduction : Labeled graphs are becoming more interesting

due to their broad range of applications. This family has variety of applica-

tions in diversified fields. Labeled graphs have vital applications to coding

theory, particularly in the development of missile guidance codes, design of

radar type codes and convolution codes with optimal autocorrelation prop-

erties. Optimal circuit layouts and solution of problem of number theory can

be discussed in the context of graph labeling. Ambiguity in X−ray crystal-

lography can also be explained using graph labeling techniques. A detailed

survey on such applications is systematically studied by Bloom and Golomb

[25]. We will discuss some interesting applications reported in that paper.

Some of these applications are also recorded in Germina [53].

7.2 Semigraceful Labeling and Golomb Ruler : We

have discussed graceful labeling and graceful graphs in Chapter−4. As we

noted there Kn is graceful if and only if n ≤ 4. In other words it is not

possible to label vertices with numbers {0, 1, 2, . . . , nC2} such that each edge

can be labeled distinctly using labels {1, 2, . . . . . ., nC2}. This problem has

motivated Golomb to define semigraceful labeling. According to him if the

constraint edge labels to be consecutive integers is relaxed then such labeling

is called semigraceful labeling and the graph which admits such labeling is
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called semigraceful graph. In other words semigraceful graph on n vertices

does not use all the labels from {1, 2, . . ., nC2} but some edge labels are

missing. In general vertex labels in semigraceful labeling may exceed nC2 or

repeat or both. Semigraceful labeling is optimal if it minimizes the largest

edge label which is denoted by G(Kn).

In the following Figure−7.1(a) a semigraceful labeling for K5 is shown.

In this figure we will observe that no edge is labeled with label 6.

(a) (b)

Figure−7.1

Golomb observed an important equivalence for the coding theory con-

text between a semigraceful labeling which minimizes G(Kn). He developed

a special ruler on which n division marks(including the ends) are placed. The

positions of the division marks correspond to the number placed on the end

vertices of Kn. The edge labels of Kn thus exactly correspond to the set

of measurements which can be made on the ruler. Such ruler is named by

Gradner [51] as a Golomb Ruler. In Figure−7.1(b) a ruler corresponding to

semigraceful labeling for K5 is shown. As we mentioned earlier no edge is
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labeled with 6. Equivalently from Figure−7.1(b) we can see that it is not

possible to measure length 6 directly by the Golomb Ruler. All optimal rulers

have been found for n ≤ 11 and are summarized in Bloom and Golomb [24].

Such ruler will be able to measure nC2 lengths which are numerically equal

to edge labels of Kn and they measure non−redundant minimal length.

In Figure−7.2 we provide semigraceful labeling and equivalent Golomb

rulers for K6, K7, K8 respectively. These rulers will measure maximum

lengths of 17, 25 and 34 units in optimal way.
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Figure−7.2

It is also possible to provide other pattern of labeling and corresponding

ruler. Such rulers are called homometric rulers. For example for K6 it is

possible to provide semigraceful labeling using vertex labels 0, 1, 4, 10, 15, 17

or 0, 1, 4, 11, 13, 17 or 0, 1, 8, 12, 14, 17.

In the following Table−7.3 we have summarized the particulars regarding

possible semigraceful labeling of Kn for n ≤ 11.

Table−7.3
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The discovery of Golomb Rulers with more marks as well as method

for generating such class remains an open problem. The Golomb Rulers

discussed above have several applications in coding theory, X−ray crystal-

lography etc. In the remaining part of this chapter we will discuss such

applications.

7.3 Generation of Radar Type Codes : In the previous sec-

tion we have discussed Golomb Ruler in detail and also seen the possibility

to measure the lengths(distances) with that ruler. In coding context distance

interval is replaced by time interval. Let us consider a time mark ruler cor-

responding to K5 shown in Figure−7.1. One can generate a radar code from

this ruler by transmitting a sequence of five pulses at times corresponding to

the marks on the ruler. i.e. 0,1,4,9,11. We observe that there is a 1 unit time

interval between the onset of the first and second pulses, 3 units time interval

between the second and third, 5 units time interval between third and fourth

and 2 units between the last two. The time duration between the emission of

the signal and its return is determined by correlating all incoming sequences

of 11 time units duration with the original sequence. Let each pulse be of

one unit duration. Thus, when an incoming string matches the original as

shown in following Figure−7.4(a). Then a signal of strength 5 is generated

as shown in following Figure−7.4(b).
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(a) (b)

Figure−7.4

In the same Figure−7.4(b) we can see that a dip in the autocorrelation

occurs at ±6 time units, since there are no pulses which are aligned with a

6 unit shift of the pulse sequence out of its synch position. Six, of course, is

the only distance of 11 or fewer units that the original ruler can not measure.

We have also seen that it is the only number which is missing in labeling of

K5.

Eckler [44] investigated the problem related to above application for de-

signing missile guidance codes. In an air borne missile, receiver passes all

incoming signal trains down a delay line. If the line is tapped in several

places which correspond to the actual time interval between incoming pulses,

then the sum of those pulses will exceed a threshold and initiate some control

action.

The command code for such a missile contains two or more different com-

mands. Thus, in terms of instrumentation the delay line must be tapped by

sets of leads corresponding to the delays between pulses for each command.

In order to make code insensitive to random interference pulses (such as elec-

trical storms or jamming effects) all of the delays pulses for one command
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must totally differ from those for every command. It is also desirable to use

the shortest code word durations possible in order to minimize the delay line

and to decrease the time during which interference could occur. Thus Eckler

calculated (d − 1) intervals for the d pulses associated with of n different

commands. In synch these commands give on reception by the missile, an

autocorrelation of height d. Out-of-synch, the maximum autocorrelation is

1, and the noiseless cross correlation between commands also never exceed

1. This problem is analogous to find a set of n rulers of different lengths

with (d− 1) marks on it. The marks on these rulers permit measuring each

length in only one way. Moreover, the longest of these rulers must be as

short as possible. Alternatively the problem corresponds to label as grace-

fully as possible a disconnected graph with n components. Each component

is a complete graph on (d− 1) vertices. For this labeling each component of

the composite graph has a vertex labeled with 0.

In the following Figure−7.5 2−message, 4−pulse missile code with min-

imum duration is shown.

(a) (b) (c) (d)

Figure−7.5
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In above Figure−7.5,

(a) Difference triangles

(b) Rulers

(c) Disconnected graph with 2 components

(d) Connected graph

7.4 X−ray Crystallography and Golomb Ruler : Ruler

models are very much useful in X−ray crystallography. It sometimes happens

that distinct crystal structures will give rise to identical X−ray diffraction

patterns. These inherent ambiguities in the X−ray analysis of crystal struc-

tures have been studied by Patterson [85], Garrido [52] and Franklin [46].

For any crystal structure positions of atoms are determined by measure-

ments made on X−ray diffraction patterns. These measurements indicate the

set of distances between atoms in the crystal lattice, but in general do not

necessarily specify the absolute positions of the atoms without any ambigu-

ity. Mathematically, finite sets of integers R = {0 = a1 < a2 < . . . < an} and

S = {0 = b1 < b2 < . . . < an = bn} corresponding to two atom positions may

have exactly the same set of differences D(R) = D(S) = {|ai − aj| : i < j}.

Since the diffraction pattern determines the set of differences D(R), it is im-

possible to determine which of the homometric sets R or S produced it, and

consequently which crystal lattice give rise to the diffraction pattern. This

homometric set problem may be viewed as a determination of non−equivalent

rulers, which make identical sets of measurements. The sets R and S desig-

nate the positions of the marks of two rulers and D(R) and D(S) are their

respective sets of nC2 measurements.
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Thus the class of diffraction patterns corresponds to a set of differences,

which has no repeated elements, that is, to a non−redundant set. Two equiv-

alent rulers are shown in Figure−7.6. Also there are no non−redundant rulers

with fewer than 6 points or of length less than 17.

Figure−7.6

Measurements made by the rulers are 1,2,3,4,5,6,7,8,9,10,11,12,13,16,17.

The shortest non−redundant homometric pairs of rulers and the 6C2 = 15

intervals which they measure.

7.5 Communication Network Labeling : In a small com-

munication network, it may be desirable to assign each user terminal node

number(vertex label) subject to the constraint that all the resulting edges

(communication links) receive distinct numbers. In this way, the numbers of

any two communicative terminals automatically specify (by simple subtrac-

tion) the link number of the connecting path and conversely the path number

uniquely corresponds to the pair of user terminals which it interconnects.

Properties of a potential numbering system for such networks have been

explored under the guise of gracefully labeled graphs, that is, the properties

of graceful graphs provide design parameters for an appropriate communica-

tion network.
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If a graphical model of any communication network can not be labeled

gracefully, there is a possibility of using semigraceful labeling in which the

constraint requiring the edge labels to be consecutive integers is relaxed.

The most important question for utilizing a graceful addressing and iden-

tification system involve being better able to determine whether an arbitrary

model of a communications network is in a graceful configuration. If it is,

how should it be labeled? If it isn’t, can it be embedded into a graceful struc-

ture easily? or should it be labeled semigracefully? Moreover, determination

needs to be made of growth provisions for any addressing scheme, that is, of

algorithms for labeling a graph in which new vertices and edges have been

added to a gracefully labeled graph.

7.6 Scope of Further Research :

• One can explore the related ruler problems which have similar applica-

tions to communications network. This includes the problems of finding the

shortest rulers with k marks which measure all integer lengths from 1 to n,

either (i) allowing the same length to be measured in more than one way, or

(ii) not allowing the same length to be measured in more than one way.

• One can study the structure of different crystals using the ruler model.

This approach will give rise to interdisciplinary research work.

• One can develop the graph model for communication network using other

labeling techniques like harmonious labeling, k−equitable labeling etc.
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7.7 Concluding Remarks : Graph labeling presents a common

context for many applied and theoretical problems. Some of these are illus-

trated in the current chapter. Graph labeling and diversified applications

are held together by common thread. This chapter creates an impression

of graph labeling as a unifying model which has vital potential to provide

solutions for practical purposes. Graph labeling techniques may work as a

powerful unifying model with biotechnology, information technology and new

generation communication network. One can develop new labeling technique

and discover its applications to diversified area.
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Chapter − 8

Regular Induced Subgraphs of

Kn

8.1 Introduction :

We begin with some preliminaries for present chapter. Let G = (V, E)

be a simple graph with vertex set V and edge set E. We shall denote degree

of vertex v of graph G by dG(v), is the number of vertices adjacent to v in

G. The maximum degree for any vertex v of G is 4(G) and the minimum

degree for any vertex v of G is δ(G). If 4(G) = δ(G), then G is called a

regular graph. If 4(G) = δ(G) = k, then G is called a k−regular graph. G is

called even regular or odd regular as k is even or odd accordingly. We note

that if G is an odd regular graph then the number of vertices in G can not

be odd, as degree sum of all vertices is even.

We shall denote Zn as a group of integer modulo n and rZn as a subgroup

of Zn generated by the element r for some r ∈ {1, 2, . . . , n}. nCr has the usual

meaning of combination notation. In 1889 Cayley [35] enumerated number

of spanning trees for the graph Kn. In present chapter we have enumerated

even regular induced subgraphs of Kn.
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8.2 Induced Subgraphs of Kn :

We introduce following definition.

Definition−8.2.1 : Let G = (V, E) be a graph with n vertices v1, . . . , vn.

Construct a cycle by starting from any vertex vs, vs+r, vs+2r, . . . , vs in which

two vertices vi and vj are joined if one of them is included and either |j−i| = r

or |j − i + n| = r. Then we call it an r−cycle.

8.2.2 Example of an r−cycle : Consider a graph G with 16 vertices

v1, v2, . . . , v16. Then v1, v5, v9, v13, v1 is a 4−cycle of the graph G and v4, v10,

v16, v6, v12, v2, v8, v14, v4 is a 6−cycle of the graph G as shown in following

Figure−8.1.

Figure−8.1

Lemma−8.2.3 : It is always possible to construct precisely (n, r) disjoint

r−cycles from given n vertices v0, v1, v2, . . . , vn−1, where (n, r) = gcd of n

and r.

Proof : Consider Zn = {0, 1, . . . , n − 1}. It is obvious that (n, r)Zn is a

subgroup of Zn and it is same as rZn. Because rZn ⊆ (n, r)Zn. Moreover
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(n, r) is gcd of n and r, so there exist a, b ∈ Z such that an + br = (n, r).

⇒ (n, r)Zn = (an + br)Zn = brZn ⊆ rZn

⇒ (n, r)Zn ⊆ rZn

Thus rZn = (n, r)Zn.

Now as {v0, v(n,r), . . . , vr, . . . , vn−(n,r)} = {vkr(mod n)/k = 1, 2, . . . , n
(n,r)

},

then by joining the vertices from above set give rise to an r−cycle.

Now Zn =
⋃

Coset of (n, r)Zn =
⋃

Coset of rZn one can join the vertices

of {vi, vi+(n,r), . . . , vi+r, . . . , vi+n−(n,r)} = {vkr+i(mod n)/k = 1, 2, . . . , n
(n,r)

} to

form r−cycles, for each i = 1, 2, . . . , (n, r)−1, which are in number precisely

(n, r).

Therefore one can construct precisely (n, r) r−cycles from the n ver-

tices v0, v1, v2, . . . , vn−1. Since the cosets of rZn are disjoint, all such (n, r),

r−cycles are distinct.

Remark−8.2.4 : In above Example−8.2.2, G has two 6−cycles which are

v4, v10, v16, v6, v12, v2, v8, v14, v4 and v4, v10, v16, v6, v12, v2, v8, v14, v4 as (16, 6) =

2. Also these are 10−cycles for G. In fact if r−cycle and (n − r)−cycle for

a graph on n vertices, have a common vertex than these cycles are always

identical. Thus 1−cycle, 2−cycle, . . ., r−cycle, when r < n
2

for a graph G of

n vertices are always distinct.

Theorem−8.2.5 : The complete graph Kn has an even k−regular induced

connected subgraph for 2 ≤ k ≤ n− 1.

Proof : We use induction to prove the require result. Without loss of gen-

erality we arrange the vertices v1, . . . , vn, as shown in following Figure−8.2.
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Figure−8.2

For k = 2 : One can construct a 1−cycle by joining v1, v2, . . . , vn, v1, which

is 2−regular induced connected subgraph of Kn.

For better understanding of construction we exhibit one more case when

k = 4.

For k = 4 : One can construct 2−cycle using previous Lemma−8.2.3. The

number of such cycles is precisely (n, 2). We can also construct 1−cycle like

case when k = 2. This together will induce an even 4−regular connected

subgraph of Kn.

Now as k is even k = 2t for some t ∈ N and let us assume that one

can construct (k − 2)−regular graph which is an induced connected sub-

graph of Kn, by constructing 1−cycle, 2−cycles, . . . , (t − 1)−cycles, using

Lemma−8.2.3.

For k = 2t : Note that 2t = k ≤ n− 1 < n ⇒ t < n
2
.

Therefore by previous Lemma−8.2.3 one can construct t−cycles which

are in number precisely (n, r). These together with 1−cycle, 2−cycles,
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. . . , (t − 1)−cycles, constructed by assumption form k−regular connected

induced subgraph of Kn.

8.2.6 Example of a k−regular graph : Consider a graph G with v1, v2, . . . , v7

vertices. Then 1−cycle C1 = v1, v2, . . . , v7, v1, 2−cycle C2 = v1, v3, v5, v7, v2, v4, v6,

v1 and 3−cycle C3 = v1, v4, v7, v3, v6, v2, v5, v1 forms 2, 4, 6−regular induced

connected subgraphs of K7 by C1, C1

⋃
C2 and C1

⋃
C2

⋃
C3 respectively as

shown in following Figure−8.3.

Figure−8.3

In the succeeding Theorem−8.2.7 the regular subgraph of Kn is enumer-

ated.

Theorem−8.2.7 : Kn has atleast 2
n−1

2 regular subgraphs, where n is odd

integer.

Proof : For n = 1 it is obvious that K1 is a regular subgraph of itself.

Suppose n = 2t + 1, for some t ∈ N . ⇒ t = (n−1)
2

.

Then by previous Lemma−8.2.3 Kn contains 1−cycle, 2−cycles, . . . . . . ,

t−cycles, which are 2−regular subgraphs of Kn. Thus there tC1 2−regular

subgraph of Kn.
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If we take union of any two of above graphs, results into 4−regular sub-

graph of Kn. Thus there are tC2, 4−regular subgraph of Kn.

Proceeding in like way there are tCr, 2r−regular subgraph of Kn, for

r = 3, 4, . . . , t. Moreover null graph on n vertices is also a regular subgraph

of Kn.

Therefore Kn has atleast tC1+ - - - +tCr+ - - - +tCt + 1 = 2
n−1

2 regular

subgraphs.

8.3 Concluding Remarks :

A particular class of graphs namely k−regular graphs is considered. We

proved that Kn has an even k−regular induced connected subgraph for

2 ≤ k ≤ n − 1. Moreover if Kn having odd number of vertices then the

minimum number of regular subgraph of Kn is enumerated. The combina-

tion of Number Theory, Group Theory and Graph Theory is the real essence

and beauty of these investigations.

The results obtained here are supposed to be new and independent. We

have not found result of this nature in the survey of existing literature of

Graph Theory. We believe that these results can be applicable to optimiza-

tion problems of air traffic system, mobile telephone network and radio fre-

quency assignment.
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Chapter − 9

Maximal non−Hamiltonian

Graphs

9.1 Introduction :

We begin with simple, finite graph G = (V, E) with n vertices. We denote

the number of vertices in G by | V | and any cycle in G by C. We shall denote

w(G) the number of components of the graph G and < U > is subgraph of G

generated by the vertex subset U of V . We represent the number of partition

of integer n with exactly r parts by P r
n . For standard definitions, existing

results and other notations which concern to present chapter we follow Clark

and Holtan [39].

In the next section we will give brief summary of definitions and result

which are useful for this chapter.

9.2 Some Useful Definitions and Results :

Definition−9.2.1 (Hamiltonian graph) : A cycle C in graph G is said to

be Hamiltonian cycle if it contains all the vertices of the graph G. A graph

G having such cycle is called a Hamiltonian graph.

Definition−9.2.2 (Maximal non−Hamiltonian graph) : A simple graph

G is called maximal non−Hamiltonian if it is not Hamiltonian, but G + e

is Hamiltonian graph, where e is an edge between any two non−adjacent

vertices of G.
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Theorem−9.2.3 (Bondy and Chvatal [26]) : Let G be a simple graph

with n vertices. Let u and v be two non−adjacent vertices in G such that

d(u)+d(v) ≥ n. Let G+uv denote the super graph of G obtained by joining

an edge between u and v. Then G is Hamiltonian if and only if G + uv is

Hamiltonian.

Definition−9.2.4(Closure of a graph) : Let G be a simple graph with

n vertices. If there are two non−adjacent vertices u1 and v1 in G such

that dG(u1) + dG(v1) ≥ n then join them by an edge to form super graph

G1. Then if there are two non−adjacent vertices u2 and v2 in G1 such that

dG(u2) + dG(v2) ≥ n then join them by an edge to form the super graph G2.

Continuing recursively joining pairs of non−adjacent vertices whose degree

sum is greater than or equal to n until no such pair remains. The ultimate

super graph obtained is called the closure of G and it is denoted by c(G). If

such pair does not exists then c(G) is itself G.

9.3 Main Results :

Theorem−9.3.1 : Let G = (V, E) be a graph on n vertices, n ≥ 3. Let

V = B∪V0∪ . . .∪Vk be a partition of vertex set V such that < B∪Vi > is a

complete graph, 0 ≤ i ≤ k , B = {v1, v2, . . . , vk} and there is no edge with one

end vertex in Vi and other end vertex in Vj, where i, j ∈ {0, 1, . . . , k}, i 6= j.

Then G is a maximal non−Hamiltonian graph.

Proof : Suppose each Vi consist ti vertices ∀ i = 0, 1, . . . , k and n = k + t0+

- - - +tk in graph G such graph is shown following Figure−9.1.
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Figure−9.1

As w(G\B) > | B |, it is obvious that G is non−Hamiltonian graph.

Now we will show that G + e (where e is an edge between any two

non−adjacent vertices of G) is a Hamiltonian graph. Since all the ver-

tices of B are adjacent to all other vertices of graph G, e must be the edge

whose one end vertex is in Vi and other end vertex is in Vj for some i, j ∈

{0, 1, . . . , k}, i 6= j, as each < Vs > is a complete graph, for s = 0, 1, . . . , k.

Suppose e = wiwj, for some wi ∈ Vi and wj ∈ Vj. Then C = v1 − V0 −

v2− . . .− vi+1−Vi\{wi}−wi−wj− Vj\{wj}− vi+2−Vi+1− . . .− vj −Vj−1−

vj+1−Vj+1− vj+2− . . .− vk−Vk− v1, is a Hamiltonian cycle for G+ e. Thus

G is a maximal non−Hamiltonian graph.

Theorem−9.3.2 : Let G be a maximal non−Hamiltonian graph on n ver-

tices discussed in Theorem−9.3.1. Then c(G) = G.

Proof : To construct c(G) we have to join non−adjacent vertices u and

v of G by an edge e such that dG(u) + dG(v) ≥ n. In G all the vertices

of B are adjacent to all other vertices of G. Moreover all the vertices of

Vi, i = 0, 1, . . . , k are adjacent to each other. Thus u ∈ Vi and v ∈ Vj for
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some i, j ∈ {0, 1, . . . , k}, i 6= j.

Now dG(u) + dG(v) = k + ti − 1 + k + tj − 1

= 2k + ti + tj − 2

< ti + tj + k + k − 1

< ti + tj + k +
∑

1

s ∈ A

< ti + tj + k +
∑

ts = n, where A = {0, 1, . . . , k}\{i, j}

s ∈ A

i.e. dG(u) + dG(v) < n.

Thus there is no pair of vertices for which dG(u) + dG(v) ≥ n. Therefore

one can not add any edge in G to construct c(G). Therefore c(G) = G.

9.3.3 Discussion on maximal non−Hamiltonian graph :

By Theorem−9.3.1 one can see that | B |≤ (n − 1)/2 as V0, V1, . . . , Vk

are nonempty sets. Thus one can obtain maximal non−Hamiltonian graphs

for various values of n as follows. When n = 3, there is only one maximal

non−Hamiltonian graph which is P3. When n = 4, then also there is only

one maximal non−Hamiltonian graph as shown in Figure−9.2. There are

three maximal non−Hamiltonian graphs on five and six vertices each, which

are shown in Figures−9.3 to 9.8

Figure−9.2 Figure−9.3 Figure−9.4 Figure−9.5
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Figure−9.6 Figure−9.7 Figure−9.8

For n = 7, n = 8 and n = 11 one can obtain total number of distinct

maximal non−Hamiltonian graphs P 2
6 + P 3

5 + P 4
4 = 6, P 2

7 + P 3
6 + P 4

5 = 7

and P 2
10 + P 3

9 + P 4
8 + P 5

7 + P 6
6 = 20 respectively. These are the only max-

imal non−Hamiltonian graphs for given number of vertices. Thus number

of partitions are useful to enumerate the maximal non−Hamiltonian graphs

for given number of vertices. Above results and discussion gives following

indications which are believed to be true.

Conjecture−9.3.4 : Any maximal non−Hamiltonian graph G must be of

the type as discussed in Theorem−9.3.1.

Conjecture−9.3.5 : For any maximal non−Hamiltonian graph G, c(G) =

G.

Conjecture−9.3.6 : The number of maximal non−Hamiltonian graphs on n

vertices are precisely P 2
n−1+P 3

n−2+ - - - +P
n/2
(n/2)+1 (For n even) and P 2

n+P 3
n−2+

- - - +P
(n+1)/2
(n+1)/2 (For n odd).

9.3.7 Algorithm for the construction of maximal non−Hamiltonian

graphs :

Input - Vertex set V , with | V |= n.

Step - 1 Choose B ⊂ V such that | B |= k ≤ (n− 1)/2.

Step - 2 Choose a partition of integer n− k with k + 1 parts say t0 + t1+ -

- - +tk = n− k.
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Step - 3 Construct complete graphs < B > and < Vi >, where | Vi |= ti,

i = 0, 1, . . . , k.

Step - 4 Make all the vertices of V0 ∪ V1 ∪ . . . ∪ Vk adjacent to each vertex

of B.

Output - G = ∪ < B ∪ Vi > is a maximal non−Hamiltonian graph.

9.3.8 Application of above algorithm :

Input - Let V = {v1, v2, . . . , v10}.

Step - 1 Choose B = {v1, v2, v3}, so that | B |= 3 ≤ (10− 1)/2.

Step - 2 Choose a partition of integer 10 − 3 = 7 with four parts e.g.

1 + 1 + 2 + 3.

Step - 3 Construct complete graphs < B > and < Vi >, i = 0, 1, 2, 3 and

V0 = {v4},

V1 = {v5}, V2 = {v6, v7} and V3 = {v8, v9, v10}.

Step - 4 Make all the vertices of V0 ∪V1 ∪V2 ∪V3 adjacent to each vertex of

B = {v1, v2, v3}.

Output - The graph shown in following Figure−9.9 is maximal non−Hamiltonian.

Figure−9.9
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Remark−9.3.9 : There are precisely P 4
7 = 3 maximal non−Hamiltonian

graphs on ten vertices, where | B |= 3.

9.4 Concluding Remarks :

A very general class of maximal non−Hamiltonian graphs is investi-

gated. Moreover it is also shown that the closure c(G) of such graph is

itself. This work gives powerful indication for the construction of maxi-

mal non−Hamiltonian graphs as we pose three strong conjectures. In addi-

tion to this an algorithm is also developed for the construction of maximal

non−Hamiltonian graphs. Investigations contained in this chapter are new

and we hope this work will set a milestone in the field of Graph Theory.
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LIST OF SYMBOLS

|B| Cardinality of set B.

CHn Closed helm on n vertices.

Cn Cycle with n vertices.

C∗
n Star of cycles.

E(G) or E Edge set of graph G.

Fn Fan on n vertices.

G Complement of G.

G ∪H Union of graphs G and H.

G ∩H Intersection of graphs G and H.

G×H Cartesian product of graphs G and H.

G + H Join of graphs G and H.

G ∼= H G is isomorphic to H.

G = (V, E) A graph G with vertex set V and edge se E.

G + e Super graph of G by adding an edge e in the graph G.

G + uv Super graph of G by adding an edge between vertices

u and v in G.

G + v Suspension of graph G and vertex v.

G ∗ e Contraction of edge e in graph G.

G− e Graph G with one edge deleted.

G− v Graph G with one vertex deleted.

Hn Helm on n vertices.

Kn Complete graph on n vertices.
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Km,n Complete bipartite graph.

N(v) Neighbourhood of vertex v.

Pn Path graph on n vertices.

P r
n Number of partitions of integer n with exactly r parts.

Sn Shell on n vertices.

T Tree.

T (G) Spanning tree of graph G.

< U > Induced subgraph of a graph G generated by

the vertex set U ⊂ V .

V (G) or V Vertex set of graphs G.

Wn Wheel on n vertices.

(a, b) Greatest Common Divisor of integers a and b.

c(G) The closure graph of G.

d(v) Degree of vertex v.

dG(v) Degree of vertex v in graph G.

4(G) Maximum degree of a vertex in graph G.

δ(G) Minimum degree of a vertex in graph G.

ef (n) Number of edges with edge label n.

nCr or nCr r Combinations of an n objects.

dne Least integer not less than real number n (Ceiling of n).

bnc Greatest integer not greater than real number n (Floor of n).

(p, q) A graph with order p and size q.

vf (n) Number of vertices with vertex label n.

w(G) The number of components in the graph G.
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