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Chapter 1

Introduction
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How can n jobs assigned to n people with maximum total utility? How

many layers does a computer chip have so that wires in the same layers do

not cross? How can a sports tournament scheduled in minimum number of

days? How can a cable network lay down at minimum cost for communica-

tion system? What can be the best possible solution for traffic movements in

cities? In what order a traveling sales man should arrange visit which require

least time? Is it possible to colour the regions of every map using minimum

number of colours such that neighboring regions receive different colours?

Solutions of all above mentioned and many others practical problems in-

volve graph theory. This theory mainly evolved in last century with the rise

of computer age but it has root in 1736. The attempt to solve well known

Königsberg bridge problem by Leonhard Euler (1707-1783) is supposed to

be the birth of graph theory. After this nothing more was cultivated in this

field for next hundred years.

In 1847 Kirchhoff (1824-1887) developed the theory of trees for their

applications in electrical networks. Ten years later A. Cayley (1821-1895)

discovered trees while he was trying to enumerate the isomers of saturated

hydrocarbons. It is believed that A.F. Möbious (1790-1868) was the first

mathematician who presented the famous four colour problem. About ten

years later A.De Morgan (1806-1871) discussed this problem with his fellow

mathematician. This problem became famous when A. Cayley published it

in 1879. This problem was known as four colour conjecture which is settled

by Wolfgang Haken and Kenneth Appel in 1976.

Past century witnessed unprecedented growth in the subject. Vast amount

of research papers and couple of dozens standard titles are available in printed
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or in electronic form. There are many luminating stars in the galaxy of graph

theory some of them are W. Tutt, F. Harary, G. Chartrand, C. Berg, J.

Gross, J. Yellen, D. West, B.D. Acharya, E. Sampathkumar, S. Arumugam,

V. Swaminathan, S.B. Rao, S.A. Choudum and many other names can be

added into this list. These personalities have contributed in variety of fields

of graph theory and also trying to prepare second generation of active re-

searchers.The study and research activity in india is supported by govern-

ment through its Department of Science and Technology (DST). A National

Center for Advance Research in Discrete Mathematics (n−CARDMATH)

is established at Kalasalingam University, Krishnankoil (Tamilnadu). This

center provides all facilities to any researchers from India and abroad.

Many conferences, group discussions, seminars, workshops on graph the-

ory are sponsored by various universities and academic agencies. The present

work is motivated through DST sponsored group discussion organized at

Mary Matha Arts and Science College, Mananthavady (Kerala) during 19-28

April 2006.

Assignment of unique identification or naming an object is not simply a

tradition but a human practice. Labeling is a technical synonym used for

naming objects, using symbols drawn from any universe of discourse such as

the set of numbers , algebric groups and the power set of any non empty set.

Variety of fields of human interest need labeling. Some of them are study

of chemical elements, assignment of radio antennae and in life sciences for

naming plants or different species of animals. Such assignment are generally

motivated by a need to optimize on the number of symbols used to label en-

tire discrete structure. The effort for desired labeling or condition imposed
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as well as the nature of the universe of discourse from which the labels are

drawn are the factors which give rise to complexity. Various types of such

labeling of graphs, directed graphs, signed graphs have been investigated

during past four decades. Some such labeling are Graceful labeling, Harmo-

nious labeling, Cordial labeling, k-equitable labeling, Strongly multiplicative

labeling, Arithmetic labeling etc. The present work contains the discussion

on graceful labeling, cordial labeling and 3-equitable labeling. The content of

this thesis is divided into nine chapters. This first chapter is of introductory

nature.

The immediate chapter 2 is aimed to discuss basic terminologies and

preliminaries which are useful for the present work. Survey on different tech-

niques of graph labeling, existing results and latest updates are reported in

chapter 3. This chapter will serve ready reference for any scholar.

The next chapter 4 is focussed on reconstruction of graphs. We have

posed a powerful conjecture as well as investigated some new results.

The penultimate chapter 5 is intended to discuss graceful labeling in de-

tail. Some new results which concern to union of grid graph with some other

families of graphs are obtained. The results reported here are published

in Proceedings of the International Conference on Emerging Technology and

Applications in Engineering, Technology and Sciences (2008).

The detailed discussion about cordial labeling of graphs is carried out in

chapter 6. We have investigated ten new families of cordial graphs. The

results reported here are accepted for publication in refereed journals like

The Mathematics Students, Indian Journal of Mathematics and Mathemati-

cal Sciences and International Journal of Scientific Computing.
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The immediate chapter 7 is aimed to discuss cordial labeling in the con-

text of some graph operations. Four new results are obtained.The immedi-

ate chapter 8 is devoted to the discussion of 3-equitable labeling of graphs.

Three new results are reported which is our original work and published in

the Proceedings of the International Conference on Emerging Technology and

Applications in Engineering, Technology and Sciences (2008).

Labeled graphs are becoming increasingly useful mathematical models

for its broad range of applications. They are useful for the solution of prob-

lems in number theory and coding theory. In last chapter 9 we have recorded

some applications like determination of ambiguities in X-ray crystallography,

design of good radar type codes and laying of optimized communication net-

work. In chapters 5 to 9 some open problems and scope of further research

are given which will provide enough motivation to any scholar who want to

pursue research as a challenging career. The references are listed alphabeti-

cally and list of symbols is given at the end .

The whole work will establish a new trend of research in the field of graph

theory in gujarat region and we hope that highly motivated active research

group will come up in near future.
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Chapter 2

Basic Terminology and
Preliminaries
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2.1 Introduction :

This chapter is devoted to provide all the fundamentals and notations

which are useful for the present work. Basic definitions are given and ex-

plained with sufficient illustrations. Figures make this work more effective.

2.2 Basic Definitions

Definition 2.2.1 A graph G = (V, E) consists of two sets, V = {v1, v2, . . .}

called vertex set of G and E = {e1, e2, . . .} called edge set of G. Sometimes

we denote vertex set of G as V (G) and edge set of G as E(G). Elements of

V are called vertices and elements of E are called edges.

Definition 2.2.2 A graph consisting of one vertex and no edge is called a

trivial graph. A graph which is not trivial is called a non-trivial graph.

Definition 2.2.3 The number of edges in a given graph is called size of

the graph.

Definition 2.2.4 The number of vertices in a given graph is called order

of the graph.

A graph with order p and size q is sometimes denoted as (p, q) graph.

Definition 2.2.5 An edge of a graph that joins a vertex to itself is called

a loop. A loop is an edge e = vivi.

Definition 2.2.6 If two vertices of a graph are joined by more than one

edge then these edges are called multiple edges.

Definition 2.2.7 If two vertices of a graph are joined by an edge then these

vertices are called adjacent vertices.

Definition 2.2.8 If two or more edges of a graph have a common vertex

then these edges are called incident edges.

7



Definition 2.2.9 Degree of a vertex v of any graph G is defined as the

number of edges incident on v, counting twice the number of loops. It is

denoted by d(v) or dG(v).

Definition 2.2.10 A vertex of degree one is called a pendant vertex.

Definition 2.2.11 A vertex of degree zero is called an isolated vertex.

Illustration 2.2.12 Let us consider the following graph G.

G

Figure 2.1

In the above graph G shown in Figure 2.1

? Order of graph G is 6.

? Size of graph G is 8.

? e8 is loop.

? e2 and e3 are multiple edges.
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? v2 and v3 are adjacent vertices.

? e3 and e4 are incident edges.

? d(v6) = 5, d(v4) = 4.

? v2 is pendant vertex.

? v1 is isolated vertex.

Definition 2.2.13 A graph which has neither loops nor parallel edges is

called a simple graph.

In the following Figure 2.2 a simple graph is shown.

Figure 2.2

Definition 2.2.14 A directed edge (or arc) is an edge, one of whose end

vertices is designated as tail and other end vertex is designated as head. An

arc is said to be directed from its tail to its head.

Definition 2.2.15 Given a graph G we can obtain a digraph from G by

specifying direction to each edge of G. Such a digraph D is called an orien-

tation.

In the following Figure 2.3 eight different orientations of a graph G are

shown.

9



Figure 2.3

Definition 2.2.16 A directed graph(or digraph) is a graph each of whose

edges is directed.

Definition 2.2.17 A graph in which no edge is directed is called an undi-

rected graph.

Definition 2.2.18 A graph G = (V, E) is said to be finite if V and E both

are finite sets.
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Definition 2.2.19 Let G and H be two graphs. Then H is said to be

a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Here G is called super-

graph of H.

In the following Figure 2.4 H is a subgraph of G.

G H

Figure 2.4

Definition 2.2.20 Deletion of an edge from given graph G forms a sub-

graph of G which is called edge deleted subgraph of G.

Definition 2.2.21 The graph obtained by deletion of a vertex from given

graph G is called vertex deleted subgraph of G.

In the following Figure 2.6 vertex deleted subgraph and edge deleted sub-

graph of given graph G are shown.
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G

Figure 2.5

G− {v1} G− {e4}

Figure 2.6

Definition 2.2.22 Let G = (V, E) be a graph. If U is a non-empty subset

of the vertex set V of graph G then the subgraph G[U ] of G induced by U is

defined to be the graph having vertex set U and edge set consisting of those

edges of G that have both end vertices in U .

Similarly if F is a non-empty subset of the edge set E of G then the

subgraph G[F ] of G induced by F is the graph whose vertex set is the set of
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vertices which are end vertices of edges of F and whose edge set is F .

In the following Figure 2.8, G[U ] and G[F ] are vertex induced subgraph

and edge induced subgraph of graph G respectively.

G

Figure 2.7

Let U = {v2, v3, v4, v5} F = {e1, e5, e6, e7}

G[U ] G[F ]

Figure 2.8
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Definition 2.2.23 A subgraph H of a graph G is called spanning subgraph

of G if V (H) = V (G).

Definition 2.2.24 A walk is defined as a finite alternating sequence of

vertices and edges of the form viejvi+1ej+1 . . . ekvm which begins and ends

with vertices such that each edge in the sequence is incident on the vertex

preceding and succeeding it in the sequence. A walk from v0 to vn is denoted

as v0 − vn walk. A walk v0 − v0 is called a closed walk.

Definition 2.2.25 The number of edges in any walk is called length of the

walk. A walk is odd (or even) if its length is odd (or even).

Definition 2.2.26 A walk is called a trail if no edge is repeated.

Definition 2.2.27 A walk in which no vertex is repeated is called a path.

A path with n vertices is denoted as Pn. A path from v0 to vn is denoted as

v0 − vn path.

Definition 2.2.28 A closed path is called a cycle. A cycle with n vertices

is denoted as Cn.

Illustration 2.2.29 Consider the following graph G as shown in Figure 2.9.

G

Figure 2.9
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Above graph G shown in Figure 2.9 is known as bowtie graph. For this graph

we have the following.

? G is a simple, finite and undirected graph.

? W = v2e2v3e4v4e6v5e5v3e3v1 is a walk.

? P4 = v1e1v2e2v3e5v5 is a path.

? C3 = v1e1v2e2v3e3v1 is a cycle.

Definition 2.2.30 A graph which includes exactly one cycle is called a

unicyclic graph.

Definition 2.2.31 A graph G = (V, E) is said to be connected if there is

a path between every pair of vertices of G. A graph which is not connected

is called a disconnected graph.

The graph shown in Figure 2.2 is connected while the graph shown in Figure

2.1 is disconnected.

Definition 2.2.32 Each maximal connected subgraph of a disconnected

graph is called component of the graph. Every connected graph has exactly

one component.

Definition 2.2.33 A graph in which all the vertices having equal degree

is called a regular graph. If for every vertex v of graph G, d(v) = k for some

k ∈ N , then G is k-regular graph.

In the following Figure 2.10 a 3-regular graph on 10 vertices is shown.
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Figure 2.10

The above graph is known as Petersen graph which is a 3-regular graph with

10 vertices and 15 edges.

Definition 2.2.34 A graph in which the vertices having only two types

of degree is called a bidegreed graph. The graph shown in Figure 2.9 is a

bidegreed graph.

Definition 2.2.35 A simple, connected graph is said to be complete if ev-

ery pair of vertices of G is connected by an edge. A complete graph on n

vertices is denoted by Kn.

Note that Kn is (n− 1)-regular.

In the following Figure 2.11 K5 is shown.
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K5

Figure 2.11

Definition 2.2.36 Two vertices of a graph which are adjacent are said

to be neighbours. The set of all neighbours of a fixed vertex v of G is

called the neighbourhood set of v. It is denoted by N(v). In Figure 2.9,

N(v3) = {v1, v2, v4, v5}.

Definition 2.2.37 A closed trail which covers all the edges of given graph

is called an Eulerian line or Eulerian trail. A graph which has an Eulerian

line is called an Eulerian graph. The graphs shown in Figure 2.9 and Figure

2.11 are Eulerian graphs.

Definition 2.2.38 A graph G = (V, E) is said to be bipartite if the vertex

set can be partitioned into two subsets V1 and V2 such that for every edge

ei = vivj ∈ E, vi ∈ V1 and vj ∈ V2.

In the following Figure 2.12 a bipartite graph is shown.

17



Figure 2.12

Definition 2.2.39 A graph G = (V, E) is called n−partite graph if the

vertex set V can be partitioned into n nonempty sets V1, V2, . . . , Vn such that

every edge of G joins the vertices from different subsets. It is often called a

multipartite graph.

Definition 2.2.40 A complete bipartite graph is a simple bipartite graph

such that two vertices are adjacent if and only if they are in different partite

sets. If partite sets are having m and n vertices then the related complete

bipartite graph is denoted by Km,n.

Definition 2.2.41 The n−partite graph G is called complete n−partite if

for each i 6= j, each vertex of the subset Vi is adjacent to every vertex of the

subset Vj. The complete n−partite graph with n−partitions of vertex set is

denoted by Km1,m2,...,mn

Definition 2.2.42 A graph is said to be planar if there exists some geo-

metric representation of G which can be drawn on a plane such that no any

two of its edges intersect.

Definition 2.2.43 A graph that can not be drawn on a plane without a

crossover between its edges is called non planar graph.

In the following Figure 2.13 planar and non planar graph are shown.

18



K4 K3,3

Planar graph Non planar graph

Figure 2.13

Definition 2.2.44 A simple planar graph is called maximal planar if no

edge can be added without destroying its planarity.

Definition 2.2.45 A planar graph is outerplanar if it can be embedded in

the plane so that all its vertices lie on the same region.

Definition 2.2.46 An outerplanar graph is maximal outerplanar if no edge

can be added without losing outerplanarity.

Definition 2.2.47 A graph which does not contain any cycle is known as

acyclic graph.

Definition 2.2.48 An acyclic graph is known as forest.

Definition 2.2.49 A connected acyclic graph is called a tree. Thus every

component of a forest is a tree.

In the following Figure 2.14 a tree T on seven vertices is shown.
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Figure 2.14

Definition 2.2.50 A spanning tree of a graph G is a spanning subgraph

of G which is a tree. The number of spanning trees of a graph G is denoted

by τ(G).

Definition 2.2.51 A star graph with n vertices is a tree with one vertex

having degree n− 1 and other n− 1 vertices having degree 1. A star graph

with n + 1 vertices is denoted by K1,n.

In the following Figure 2.15 K1,4 is shown.

Figure 2.15

Definition 2.2.52 A banana tree is a tree which is obtained from a family

of stars by joining one end vertex of each star to a new vertex.

Definition 2.2.53 A t−ply Pt(u, v) is a graph with t paths, each of length

20



atleast two and such that no two paths have a vertex in common except the

end vertices u and v.

In the following Figure 2.16 P3(u, v) is shown.

P3(u, v)

Figure 2.16

Definition 2.2.54 A caterpillar is a tree in which a single path (the spine)

is incident to (or contains) every edge.

In the following Figure 2.17 a caterpillar on 10 vertices is shown.

Figure 2.17

Definition 2.2.55 A lobster is a tree with the property that the removal

of the end vertices leaves a caterpillar.

Definition 2.2.56 A vertex v of a graph G is called a cut vertex of G if

G− v is disconnected.
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Definition 2.2.57 The vertex connectivity of a connected graph G is de-

fined as the minimum number of vertices whose removal from G results re-

maining graph disconnected or K1. It is denoted by k(G).

A simple graph G is called n-connected(where n ≥ 1) if k(G) ≥ n.

Definition 2.2.58 A connected graph is said to be separable if its vertex

connectivity is one.

Definition 2.2.59 A block of a loopless graph is a maximal connected sub-

graph H such that no vertex of H is a cut vertex of H.

Definition 2.2.60 A graph G1 = (V1, E1) is said to be isomorphic to the

graph G2 = (V2, E2) if there exists a bijection between the vertex sets V1 and

V2 and a bijection between the edge sets E1 and E2 such that if e is an edge

with end vertices u and v in G1 then the corresponding edge e
′
in G2 has its

end vertices u
′
and v

′
in G2 which correspond to u and v respectively.

If such pair of bijections exist then it is called a graph isomorphism and

it is denoted by G1
∼= G2.

In the following Figure 2.18 two isomorphic graphs are shown.

G1 G2

Figure 2.18
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For the graphs in Figure 2.18 the vertices v1, v2, v3, v4, v5 correspond to

vertices v
′
1, v

′
3, v

′
5, v

′
2, v

′
4 respectively while edges e1, e2, e3, e4, e5 correspond to

e
′
1, e

′
4, e

′
2, e

′
3, e

′
5 respectively..

¶ Remark:

If two graphs are isomorphic then they have

• Same number of vertices

• Same number of edges

• Number of vertices having same degree is equal.

The above facts are not sufficient for the isomorphism of graphs. Con-

sider the graphs shown in Figure 2.19.

G1 G2

Figure 2.19

Here G1 and G2 satisfy above three conditions even though they are not

isomorphic. Here bijection does not preserve adjacency as well as incidency.

Definition 2.2.61 The complement G of a graph G = (V, E) is a graph

with vertex set V in which two vertices are adjacent if and only if they are

not adjacent in G.

In the following Figure 2.20 a graph G and its complement is shown.
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G G

Figure 2.20

Definition 2.2.62 Let G = (V, E) be a graph. A subset M of E is called

a matching in G if no two of the edges in M are adjacent. In other words

for any two edges e and f in M the two end vertices of e are both different

from the two end vertices of f . In the following Figure 2.21 a graph G and

its two different matchings are shown.

A graph G with two different matchings

Figure 2.21

In the above Figure 2.21 the sets M1 = {e1, e3} and M2 = {e1, e4, e8} are

24



two matchings of graph G.

Definition 2.2.63 If the vertex v of the graph G is the end vertex of some

edge in the matching M then v is said to be M-saturated.

In Figure 2.21 v1, v2, v3, v5 are M1−saturated while every vertex of G is

M2−saturated.

Definition 2.2.64 If M is a matching in graph G = (V, E) such that every

vertex is M -saturated then M is called a perfect matching.

In Figure 2.21 the matching M2 = {e1, e4, e8} is a perfect matching.

Definition 2.2.65 If G1 and G2 are subgraphs of a graph G then union

of G1 and G2 is denoted by G1 ∪ G2 which is the graph consisting of all

those vertices which are either in G1 or in G2 (or in both) and with edge set

consisting of all those edges which are either in G1 or in G2 (or in both).

In the following Figure 2.23 union of two graphs G1 and G2 is shown.

G1 G2

Figure 2.22
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G1 ∪G2

Figure 2.23

Definition 2.2.66 Let G and H be two graphs such that V (G)∩V (H) = ∅.

Then join of G and H is denoted by G+H. It is the graph with V (G+H) =

V (G)∪V (H), E(G+H) = E(G)∪E(H)∪J , where J = {uv/u ∈ V (G), v ∈

V (H)}. In the following Figure 2.24 join G + H of two graphs G and H is

shown.

G H G + H

Figure 2.24

Definition 2.2.67 The wheel graph Wn is join of the graphs Cn and K1.

i.e. Wn = Cn +K1. Here vertices corresponding to Cn are called rim vertices
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and Cn is called rim of Wn while the vertex corresponds to K1 is called apex

vertex.

Definition 2.2.68 A helm Hn, n ≥ 3 is the graph obtained from the wheel

Wn by adding a pendant edge at each vertex on the wheel’s rim.

In the following Figure 2.25 H3 is shown.

Figure 2.25

Definition 2.2.69 A closed helm CHn is the graph obtained by taking a

helm Hn and by adding edges between the pendant vertices.

In the following Figure 2.26 CH3 is shown.

Figure 2.26
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Definition 2.2.70 A web graph is the graph obtained by joining the pen-

dant vertices of a helm to form a cycle and then adding a single pendant

edge to each vertex of this outer cycle.

Definition 2.2.71 A generalized helm is the graph obtained by taking a

web and attaching pendant vertices to all the vertices of the outermost cycle.

Definition 2.2.72 A shell Sn is the graph obtained by taking n−3 concur-

rent chords in a cycle Cn. The vertex at which all the chords are concurrent

is called the apex. The shell Sn is also called fan Fn−1. i.e. Sn = Fn−1 =

Pn−1 + K1.

In the following Figure 2.27 S7 (or F6) is shown.

S7 or F6

Figure 2.27

Definition 2.2.73 A multiple shell MS{nt1
1 , nt2

2 , . . . , ntr
r } is a graph formed

by ti shells each of order ni, 1 ≤ i ≤ r which have a common apex.

Definition 2.2.74 A triangular cactus is a connected graph all of whose

blocks are triangles.

Definition 2.2.75 A k-angular cactus is a connected graph all of whose

blocks are cycles with k vertices.
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Definition 2.2.76 A triangular snake is the graph obtained from a path

v1, v2, . . . vn by joining vi and vi+1 to a new vertex wi for i = 1, 2, . . . , n− 1.

Definition 2.2.77 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.

Then cartesian product of G1 and G2 which is denoted by G1×G2 is the graph

with vertex set V = V1 × V2 consisting of vertices u = (u1, u2), v = (v1, v2)

such that u and v are adjacent in G1×G2 whenever (u1 = v1 and u2 adjacent

to v2) or (u2 = v2 and u1 adjacent to v1).

In the following Figure 2.28 cartesian product of two paths is shown.

G1 G2 G1 ×G2

Figure 2.28

Definition 2.2.78 The cartesian product of two paths is known as grid

graph which is denoted by Pm×Pn. In particular the graph Pn×P2 is known

as ladder graph.

Definition 2.2.79 The cartesian product of two cycles is known as torus

grid which is denoted by Cm × Cn.

Definition 2.2.80 The graph K2 × K2 × . . . ,×K2(n times) is known as

n-cube.

Definition 2.2.81 Let G = (V, E) be a graph. Let e = uv be an edge of

G and w is not a vertex of G. The edge e is subdivided when it is replaced
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by edges e′ = uw and e′′ = wv.

In the following Figure 2.29 subdivision of an edge is shown.

Figure 2.29 Subdividing an edge

Definition 2.2.82 Let G = (V, E) be a graph. If every edge of graph

G is subdivided then the resulting graph is called barycentric subdivision of

G. In other words barycentric subdivision is the graph obtained by insert-

ing a vertex of degree 2 into every edge of original graph. The barycentric

subdivision of any graph G is denoted by S(G). It is easy to observe that

|VS(G)| = |VG|+ |EG| and |ES(G)| = 2|EG|.

In the following Figure 2.30 barycentric subdivision of a graph is shown.

Figure 2.30 A graph and its barycentric subdivision

Definition 2.2.83 The line graph (or edge graph) of a graph G is the graph

whose vertices are the edges of graph G, with ef ∈ E(L(G)) when e = uv

and f = vw in G (where u, v ∈ V (G)). The line graph(edge graph) of a

graph G is denoted by L(G).
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Definition 2.2.84 Let e = uv be an edge of the simple, finite, connected

and undirected graph G and d(u) = k, d(v) = l. Let N(u) = {v, u1, . . . , un−1}

and N(v) = {u, v1, . . . , vl−1}. A contraction on the edge e changes G to a

new graph G ∗ e where V (G ∗ e) = (V (G) − {u, v}) ∪ {w}, E(G ∗ e) =

E(G − {u, v}) ∪ {wu1, wu2, . . . , wuk−1, wv1, . . . , wvl−1} and w is new vertex

not belonging to G.

2.3 Concluding Remarks

This chapter was intended to provide all the fundamentals and pre-

requisites which concern to the present work. Basic definitions like graph,

vertex, edge, subgraph etc. are given and explained with the help of illus-

trations. Common families of graphs like cycle, path, wheel, tree etc. are

introduced. Notations and terminology are also given. We have tried our

best to prepare platform for the advancement of the subject. Illustrations

and figures help for better understanding.

The next chapter is aimed to discuss different graph labeling techniques.
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Chapter 3

Labeling Of Graphs
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3.1 Introduction :

Graph labeling were first introduced in 1960′s. At present various graph

labeling techniques are available and more than 800 research papers have

been published so far. The interest in the field of graph labeling is con-

stantly increasing and it has motivated many researchers. Many graph label-

ing techniques have applications to practical problems. According to Beineke

and Hegde[19] graph labeling serves as a frontier between number theory and

structure of graphs. Labeling of graphs have various applications in coding

theory, particularly for missile guidance codes, design of good radar type

codes, convolution codes with optimal autocorrelation properties. Graph la-

beling plays vital role in the study of X-ray crystallography, communication

network and solution of problems in additive number theory. A detailed

study on variety of applications of graph labeling is given by Bloom and

Golomb[24]. A systematic survey on graph labeling is updated every two

year since last one decade by Gallian[51]. The reference cited here is of latest

version of A Dynamic survey of Graph Labeling, published by The Electron-

ics Journal of Combinatorics.

This chapter is targeted to discuss various graph labeling techniques for

graph G = (V, E) with p vertices and q edges. Throughout the discussion

on graph labeling we consider simple, finite and undirected graphs unless or

otherwise stated. In the remaining part of this chapter we will concentrate

on some important definitions for various labeling techniques and existing

results.
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3.2 Some Graph Labeling Techniques :

If the vertices of the graph are assigned values subject to certain condi-

tions is known as graph labeling.

Most interesting graph labeling problems have three important ingredi-

ents :

(1) A set of numbers from which vertex labels are chosen.

(2) A rule that assigns a value to each edge.

(3) A condition that these values must satisfy.

Now discussion about various graph labeling techniques will be carried

out in chronological order as they were introduced.

3.2.1 Magic labeling

Magic labeling was introduced by Sedláček[104] in 1963 motivated through

the notion of magic squares in number theory.

A function f is called magic labeling of a graph G if f : V
⋃

E →

{1, 2, . . . , p + q} is bijective and for any edge e = uv, f(u) + f(v) + f(e)

is constant.

A graph which admits magic labeling is called magic graph.

In the following Figure 3.1 magic labeling is demonstrated.
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Figure 3.1

Some known results about magic labeling are listed below.

• Stewart[116] proved that

? Kn is magic for n = 2 and all n ≥ 5.

? Kn,n is magic for all n ≥ 3.

? Fans Fn are magic if and only if n ≥ 3 and n is odd.

? Wheels Wn are magic for all n ≥ 4.

For any magic labeling f of graph G, there is a constant c(f) such that

for all edges e = uv ∈ G, f(u) + f(v) + f(e) = c(f). The magic strength

m(G) is defined as the minimum of c(f) where the minimum is taken over

all magic labeling of G.
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i.e. m(G) = min{c(f)} taken over all magic labeling f of G. The above def-

inition and some facts listed below were given by S. Avadyappan et al.[13].

? m(P2n) = 5n + 1, m(P2n+1) = 5n + 3,

? m(C2n) = 5n + 4, m(C2n+1) = 5n + 2,

? m(K1,n) = 2n + 4.

• Hegde and Shetty[67] defined M(G) analogous to m(G) as follows

M(G) = max{c(f)} where maximum is taken over all magic labeling f of G.

For any graph G with p vertices and q edges following inequality holds

p + q + 3 ≤ m(G) ≤ c(f) ≤ M(G) ≤ 2(p + q).

3.2.2 Graceful labeling

Graceful labeling was introduced by Rosa[103] in 1967.

A function f is called graceful labeling of a graph G if f : V → {0, 1, 2, . . . , q}

is injective and the induced function f ∗ : E → {1, 2, . . . , q} defined as

f ∗(e = uv) = |f(u)− f(v)| is bijective.

A graph which admits graceful labeling is called graceful graph.

Initially Rosa named above defined labeling as β− valuation. Golomb[57]

renamed β− valuation as graceful labeling. We will discuss graceful labeling

in detail in Chapter 5.

3.2.3 Graceful-like labeling

In 1967, Rosa[103] gave another analogue of graceful labeling.

A function f is called graceful-like labeling of a graph G if f : V →

{0, 1, 2, . . . , q+1} is injective and the induced function f ∗ : E → {1, 2, . . . , q}

or f ∗ : E → {1, 2, . . . , q − 1, q + 1} defined as f ∗(e = uv) = |f(u) − f(v)| is
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bijective.

Frucht[50] termed such labeling as nearly graceful labeling. Some known

results about graceful-like labeling are listed below.

• Frucht[50] has shown that Pm

⋃
Pn admits graceful-like labeling with edge

labels {1, 2, . . . , q − 1, q + 1}. G
⋃

K2 (where G is graceful graph) admits

graceful-like labeling.

• Seoud and Elsahawi[108] have shown that all cycles admit graceful-like la-

beling.

• Barrientos[18] proved that cycle Cn is having graceful-like labeling with

edge labels {1, 2, . . . , q − 1, q + 1} if and only if n ≡ 1 or 2 (mod 4).

3.2.4 Harmonious labeling

Graham and Sloane[58] introduced harmonious labeling in 1980 during their

study of modular versions of additive bases problems stemming from error

correcting codes.

A function f is called harmonious labeling of a graph G if f : V → {0, 1, 2, . . . , q−

1} is injective and the induced function f ∗ : E → {0, 1, 2, . . . , q − 1} defined

as f ∗(e = uv) = (f(u) + f(v))mod q is bijective.

A graph which admits harmonious labeling is called harmonious graph.

We will demonstrate harmonious labeling by means of following example in

Figure 3.2.
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Figure 3.2

Graham and Sloane observed that if graph G is a tree then exactly two

vertices are assigned same vertex labels. Some known results about harmo-

nious graph are listed below.

• Liu and Zhang[93] proved that every graph is a subgraph of a harmonious

graph.

• Graham and Sloane[58] posed a conjecture Every tree is harmonious. In

connection of above conjecture, Alderd and Mckay[6] proved that trees with

26 or less vertices are harmonious. They also proved that

? Caterpillars are harmonious.

? Cycles Cn are harmonious if and only if n ≡ 1, 3 (mod 4).

? Wheels Wn are harmonious for all n.

? Cm × Pn is harmonious if n is odd.

? Kn is harmonious if and only if n ≤ 4.

? Km,n is harmonious if and only if m or n = 1.

? Fans Fn are harmonious for all n.

• Liu[92] proved that all helms are harmonious.

• Jungreis and Reid[76] proved that grids Pm×Pn are harmonious if and only
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if (m,n) 6= (2, 2). In the same paper they proved that Cm×Pn is harmonious

if m = 4 and n ≥ 3.

• Gallian et al.[52] proved that Cm × Pn is harmonious if n = 2 and m 6= 4.

3.2.5 Elegant labeling

Elegant labeling was introduced by Chang et al.[35] in 1981.

A function f is called elegant labeling of a graph G if f : V → {0, 1, 2, . . . , q}

is injective and the induced function f ∗ : E → {1, 2, . . . , q} defined as

f ∗(e = uv) = (f(u) + f(v)) mod (q + 1) is bijective.

A graph which admits elegant labeling is known as elegant graph. We will

note that as in harmonious labeling it is not necessary to make an exception

for trees. Some known results for elegant labeling are listed below.

• Chang et al.[35] proved that Cn is elegant when n ≡ 0, 3 (mod 4) and not

elegant when n ≡ 1 (mod 4) and Path Pn is elegant when n ≡ 1, 2, 3 (mod

4).

• Cahit[30] proved that P4 is the only path which is not elegant.

• Balakrishnan et al.[15] proved that every simple graph is a subgraph of an

elegant graph.

• Deb and Limaye[39] defined near-elegant labeling by replacing codomain of

edge function f ∗ by {0, 1, . . . , q − 1} and they proved that triangular snakes

where the number of triangles is congruent to 3 (mod 4) are near-elegant.

3.2.6 Prime and Vertex Prime labeling

The concept of prime labeling was originated by Entringer and it was intro-

duced in a paper by Tout et al.[118].
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A graph G with p vertices and q edges is said to have a prime labeling if

f : V → {1, 2, . . . , p} is bijective function and for every edge e = uv of G,

(f(u), f(v)) = 1.

• Around 1980 Entringer conjectured that All trees have a prime labeling.

So far there has been little progress towards the proof of this conjecture.

• Some known classes of trees having prime labeling are paths, stars, cater-

pillars, etc.

• Deretsky et al.[42] proved that

? All cycles have prime labeling.

? Disjoint union of C2k and Cn have prime labeling.

? The complete graph Kn does not have a prime labeling for n ≥ 4.

• Lee et al.[90] proved that Wn have prime labeling if and only if n is even.

• Seoud et al.[107] proved that all helms, fans, K2,n, K3,n (where n 6= 3, 7),

Pn + K̄2 (where n = 2 or n is odd) are having prime labeling. He also proved

that Pn + K̄m does not have prime labeling if m ≥ 3.

• Seoud and Youssef[109] have shown that Pn + K̄2 is having prime labeling

if and only if n = 2 or n is odd.

In 1991 Deretsky et al.[42] introduced the notion of dual of prime labeling

which is known as vertex prime labeling. According to them a graph with q

edges have vertex prime labeling if its edges can be labeled with distinct inte-

gers {1, 2, . . . , q} such that for each vertex of degree at least two the greatest

common divisor of the labels on its incident edges is 1. Some known results

for vertex prime labeling are listed below.

• Deretsky et al.[42] proved that

? Forests, all connected graphs are having vertex prime labeling.
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? C2k

⋃
Cn, C2n

⋃
C2n

⋃
C2k+1, C2n

⋃
C2n

⋃
C2t

⋃
Ck and 5C2m are having

vertex prime labeling.

? A graph with exactly two component one of them is not an odd cycle has

a vertex prime labeling.

? 2−regular graph with at least two odd cycles does not have a vertex prime

labeling.

? He also conjectured that Any 2−regular graph has a vertex prime labeling

if and only if it does not have two odd cycles.

3.2.7 k−Graceful labeling

A natural generalization of graceful labeling is the notion of k−graceful la-

beling which was independently introduced by Slater [657] and by Maheo

and Thuillier[97] in 1982.

A function f is called k−graceful labeling of a graph G if f : V →

{0, 1, 2, . . . , k + q − 1} is injective and the induced function f ∗ : E →

{k, k + 1, k + 2, . . . , k + q − 1} defined as f ∗(e = uv) = |f(u) − f(v)| is

bijective. A graph which admits k−graceful labeling is known as k−graceful

graph. Obviously 1−graceful graphs are the graceful graphs. Some known

results for k−graceful graph are listed below.

• Slater [113], Maheo and Thuillier[97] proved that Cn is k−graceful graph

if and only if either n ≡ 0, 1 (mod 4) with k−even and k ≤ n−1
2

or n ≡ 3

(mod 4) with k−odd and k ≤ n2−1
2

.

• Liang and Liu[91] proved that Km,n is k−graceful, for all m, n ∈ N and for

all k.

• Bu et al.[28] proved that Pn×P2 and (Pn×P2)
⋃

(Pn×P2) are k−graceful
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for all k.

• Acharya[1] proved that a k−graceful Eulerian graph with q edges must

satisfies one of the following:

(1) q ≡ 0 (mod 4), q ≡ 1 (mod 4) if k is even, (2) q ≡ 3 (mod 4) if k is odd.

3.2.8 Cordial labeling

Cahit[31] introduced the concept of cordial labeling in 1987 as a weaker ver-

sion of graceful and harmonious labeling.

A function f : V → {0, 1} is called binary vertex labeling of a graph G

and f(v) is called label of the vertex v of G under f . For an edge e = uv, the

induced function f ∗ : E → {0, 1} is given as f ∗(e = uv) = |f(u)− f(v)|. Let

vf (0), vf (1) be number of vertices of G having labels 0 and 1 respectively

under f and let ef (0), ef (1) be number of edges of G having labels 0 and

1 respectively under f ∗. A binary vertex labeling f of a graph G is called

cordial labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph which

admits cordial labeling is called cordial graph.

Detail discussion of above defined labeling will be carried out in Chapter 6.

3.2.9 Additively graceful labeling

In 1989 Hegde[63] introduced the the concept of additively graceful labeling.

A function f is called additively graceful labeling of a graph G if f : V →

{0, 1, . . . , d q+1
2
e} is injective and the induced function f ∗ : E → {1, 2, . . . , q}

defined as f ∗(e = uv) = f(u) + f(v) is bijective. A graph which admits

additively graceful labeling is called additively graceful graph. Some known

results on additively graceful graph are listed below.
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•Hegde[63] proved the following results.

? If G is an additively graceful graph with p vertices and q edges then

q ≥ 2p− 4 and the bounds are best possible.

? The graph for which q = 2p − 4 are essentially strongly indexable which

will be discuss in 3.2.13.

? The complete graph Kn is additively graceful if and only if 2 ≤ n ≤ 4.

? An additively graceful graph is either K2 or K1,2, or has a triangle.

? If G is an additively graceful graph with a triangle then any additively

graceful labeling f of G must assign zero to a vertex of triangle in G.

? If an Eulerian graph G with p vertices and q edges is additively graceful

then q ≡ 0, 3 (mod 4).

? A unicyclic graph G is additively graceful if and only if G is isomorphic to

either C3 or the graph obtained by joining a unique vertex to any one vertex

of C3.

? The graph obtained by joining t new vertices to any two fixed vertices of

Kn (2 ≤ n ≤ 4) is additively graceful.

? He also posed a conjecture For any additively graceful graph G with p ver-

tices and q edges q ≤ 1
2
(p2 − 5p + 18).

• Jinnah and Singh[75] proved that Pn × Pn is additively graceful graph.

3.2.10 (k, d)−Graceful labeling

Acharya and Hegde[4] generalized the notion of k−graceful labeling to (k, d)−graceful

labeling in 1990.

A function f is called (k, d)−graceful labeling of a graph G if f : V →

{0, 1, 2, . . . , k + (q − 1)d} is injective and the induced function f ∗ : E →

{k, k + d, k + 2d, . . . , k + (q − 1)d} defined as f ∗(e = uv) = |f(u) − f(v)|
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is bijective. A graph which admits (k, d)−graceful labeling is known as

(k, d)−graceful graph. Obviously (1, 1)−graceful labeling is graceful label-

ing and (k, 1)−graceful labeling is k−graceful labeling. Some known results

for (k, d)−graceful labeling are listed below.

• Bu and Zhang[29] proved that Km,n is (k, d)−graceful for all k and d.

• Hegde and Shetty[68] defined a class of trees known as Tp trees as follows

and proved that Tp- trees are (k, d)−graceful for all k and d.

Let T be a tree with adjecent vertices u0, v0 and pendent vertices u, v

such that the length of the path u0−u is same as the length of the path v0−v.

Now delete the edge u0v0 and join vertices u and v by an edge uv. Then such

a transformation of T is called an elementary parallel transformation (ept)

and the edge u0v0 is called a transformable edge. If by a sequence of ept′s T

can be reduced to a path then T is called Tp tree. They also proved that every

graph obtained by barycentric subdivision of a Tp tree is (k, d)−graceful for

all k and d.

• Hegde[64] proved that if a graph is (k, d)−graceful for odd k and even d

then the graph is bipartite. He also proved that Kn is (k, d)−graceful if and

only if n ≤ 4.

3.2.11 k−equitable labeling

In 1990 Cahit[33] proposed the idea of distributing the vertex and the edge

labels among {0, 1, 2, . . . , k− 1} as evenly as possible to obtain a generaliza-

tion of graceful labeling. A vertex labeling of a graph G = (V, E) is a function

f : V → {0, 1, 2, . . . , k− 1}and the value f(u) is called label of vertex u. For

the vertex labeling function f : V → {0, 1, 2, . . . , k− 1} the induced function

f ∗ : E → {0, 1, 2, . . . , k − 1} defined as f ∗(e = uv) = |f(u) − f(v)| satisfies
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the conditions:

(1) |vf (i)− vf (j)| ≤ 1 and

(2) |ef (i)− ef (j)| ≤ 1, 0 ≤ i, j ≤ k − 1,

where vf (i) and ef (i) denotes number of vertices and number of edges

having label i under f and f ∗ respectively, 0 ≤ i ≤ k − 1. Such labeling

f is called k−equitable labeling for the graph G. A graph which admits

k−equitable labeling is called k−equitable graph. Obviously 2−equitable

labeling is the cordial labeling defined earlier in 3.2.8. When k = 3 the label-

ing is called 3−equitable labeling which we will discuss in detail in Chapter

8. Some known results for k−equitable graph are listed below.

• Cahit[33],[34] proved that a graph is graceful if and only if it is (|E| +

1)−equitable and he conjectured that all tree are k−equitable, for all k.

• Speyer and Szaniszlo[114] proved Cahit′s conjecture for k = 3.

• Szaniszlo[117] proved that

? Pn is k−equitable for all k.

? Kn is not k−equitable for 3 ≤ k < n.

? K2,n is k−equitable if and only if n ≡ (k−1) (mod k) or n ≡ 0, 1, 2, . . . , (bk
2
c−

1)(mod k) or n = bk
2
c and k is odd.

? Cn is k−equitable if and only if k meets all of the following conditions:

(1) n 6= k,

(2) If k ≡ 2, 3(mod 4) then n 6= k−1 and n is not congruent to k(mod

2k).

• Vickrey[127] discussed the k−equitability of complete multipartite graphs.

He proved that for m ≥ 3 and k ≥ 3, Km,n is k−equitable if and only if Km,n

is one of following graphs:
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(1) K4,4 for k = 3,

(2) K3,k−1 for all k and

(3) Km,n for k > mn.

3.2.12 Skolem graceful labeling Lee and Shee[88] introduced the concept

of skolem graceful labeling in 1991.

A function f is called skolem graceful labeling of a graph G if f : V →

{1, 2, . . . , p} is bijective and the induced function f ∗ : E → {1, 2, . . . , q} de-

fined as f ∗(e = uv) = |f(u)−f(v)| is bijective. A graph which admits skolem

graceful labeling is called skolem graceful graph. A necessary condition for

a graph to be skolem graceful is p ≥ q + 1. Some known results for skolem

graceful graphs are listed below.

• Lee and Wui[89] proved that a connected graph is skolem graceful if and

only if it is a graceful tree.

• Yao et al. [129] have shown that a tree with p vertices and with maximum

degree at least p
2

is skolem graceful.

• Although the disjoint union of trees can not be graceful, they can be skolem

graceful.

• Lee and Wui[89] proved that the disjoint union of two or three stars is

skolem graceful if and only if at least one star has even size.

• Choudum and Kishore[37] proved that disjoint union of k copies of the star

K1,2p is skolem graceful if k ≤ 4p+1 and the disjoint union of any number of

copies of K1,2 is skolem graceful. He also proved that all five stars are skolem

graceful.

• Frucht[50]proved that Pm

⋃
Pn is skolem graceful when m + n ≥ 5.
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• Bhatt-Nayak and Deshmukh[23] proved that Pn1

⋃
Pn2

⋃
Pn3 is skolem

graceful when n1 < n2 ≤ n3, n2 = t(n1 + 2) + 1, n1 is even and when

n1 < n2 ≤ n3, n2 = t(n1 + 3) + 1, n1 is odd. They also proved that

Pn1

⋃
Pn2

⋃
. . .

⋃
Pni

, for i ≥ 4 is skolem graceful under certain conditions.

3.2.13 Indexable labeling

Acharya and Hegde[5] introduced the concept of indexable labeling in 1991.

A function f is called indexable labeling of a graph G if f : V →

{0, 1, 2, . . . , p − 1} is bijective and the induced function f ∗ : E → N de-

fined as f ∗(e = uv) = f(u) + f(v) is injective. Here f is called indexer of

G. A graph which admits indexable labeling is called indexable graph. A

graph is said to be strongly indexable if f ∗(E) = {1, 2, . . . , q}. Here f is

called strong indexer of graph G. A function f is called (k, d)−indexable

labeling if f : V → {0, 1, 2, . . . , p − 1} is bijective and the induced function

f ∗ : E → {k, k+d, . . . , k+(q−1)d} defined as f ∗(e = uv) = f(u)+f(v) is in-

jective. A (k, d)−indexable graph is the graph which admits (k, d)−indexable

labeling. A graph is said to be strongly (k, d)−indexable if f ∗(E) = {k, k +

d, . . . , k + (q − 1)d}. Some known results on indexable and (k, d)−indexable

graph are listed below.

• Acharya and Hegde[5] have conjectured that All unicyclic graphs are in-

dexable. This conjecture was proved by Arumugam and Germina[12] using

Breadth First Search (BFS) algorithm [38]. They also proved that all trees

are indexable.

• Acharya and Hegde[4] proved that K2, K3 and K2 ×K3 are the only non-

trivial regular graphs which are strongly indexable.

• Hegde[65] proved that
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? Every graph can be embedded as an induced subgraph of an indexable

graph.

? If a connected graph with p vertices and q edges (q ≥ 2) is (k, d)−indexable

then d ≤ 2.

? Pm × Pn is indexable for all m and n.

? If G is connected (1, 2)−indexable graph then G must be a tree.

? Kn, n ≥ 4 and wheels Wn are not (k, d)−indexable.

3.2.14 Felicitous labeling

Lee et al.[87] introduced the concept of felicitous labeling in 1991.

A function f is called felicitous labeling of a graph G if f : V → {0, 1, 2, . . . , q}

is injective and the induced function f ∗ : E → {0, 1, 2, . . . , q − 1} defined as

f ∗(e = uv) = (f(u) + f(v))mod q is bijective. A graph which admits fe-

licitous labeling is called felicitous graph. Some known results on felicitous

graphs are listed below.

• Balakrishnan and Kumar[16] proved that every graph is a subgraph of a

felicitous graph.

• Lee et. al.[87] proved that

? Cycles Cn are felicitous except n ≡ 2(mod 4).

? Km,n is felicitous when m, n > 1.

? P2

⋃
C2n+1 is felicitous for all n.

? They also conjectured that n−cube is felicitous which was proved by

Figueroa-Centeno et al.[46] in 2001.

• Shee[111] conjectured that Pm

⋃
Cn is felicitous when n > 2 and m > 3,

which is still open.
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3.3 Concluding Remarks :

In this chapter we have discussed various graph labeling techniques in de-

tail. The discussion includes definitions and known results for each labeling

techniques. This chapter will give broad idea about various labeling tech-

niques and will provide ready reference for any researcher. The penultimate

chapter is devoted to the discussion on reconstruction of graphs.
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Chapter 4

Reconstruction of Graphs
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4.1 Introduction :

There are many unsolved problem in graph theory. Graph reconstruc-

tion is one such unsolved problem which was initially posed by Ulam in 1941

and the problem was systematically investigated by Kelly[80] in his Ph.D.

dissertation in 1942. Kelly wrote the first paper on reconstruction of graph in

1957. More than 300 papers have been published on this topic even though

problem of graph reconstruction is long standing unsolved problem but work

on it has been slowed down, may be due to the feeling that existing tech-

niques are not enough to lead to a complete solution.

In this chapter we will give the results and development which have

been appeared recently in some selected variation like edge reconstruction,

degree associated reconstruction, vertex switching reconstruction etc.

Ramachandran[102] has discussed graph reconstruction briefly. Now we will

develop all the terminology and definitions which concern to this chapter.

4.2 Vertex Reconstruction:

Definition 4.2.1 A graph H is called a reconstruction of a graph G if the

vertices of G and H can be labeled v1, v2, . . . , vn and u1, u2, . . . , un respec-

tively such that G− vi
∼= H − ui,∀i.

Definition 4.2.2 A vertex deleted subgraph of a graph G in unlabeled

form is called a card of G.

Definition 4.2.3 The collection of cards of G is called deck which is de-

noted as G. Hence G={Gi/Gi = G− vi, vi ∈ G, i = 1, 2, . . . , n}.

Illustrations 4.2.4 For better understanding of above terminology we will

consider some illustrations.
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G G1 G2 G3

G4 G5

Figure 4.1

In the above Figure 4.1 for the given graph G G1, G2, G3, G4, G5 are the

vertex deleted subgraphs i.e cards and G = {Gi, i = 1, 2, 3, 4, 5} is a deck of G.

G G1 G2

G3 G4

Figure 4.2

In the above Figure 4.2 G1, G2, G3, G4 are the vertex deleted subgraphs
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i.e cards and G = {Gi, i = 1, 2, 3, 4} is a deck of G.

G G1 G2 G3

G4 G5

Figure 4.3

In the above Figure 4.3 G1, G2, G3, G4, G5 are the vertex deleted sub-

graphs i.e cards and G = {Gi, i = 1, 2, 3, 4, 5} is a deck of G.

Figure 4.4
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In above Figure 4.4 each card G is a path of (n− 1) vertices i.e each card

is Pn−1.

At this stage we will also note that number of elements in any deck G is

same as number of vertices of G.

Definition 4.2.5 Let G and H be decks of graphs G and H respectively

then we say G = H provided they have the same number of elements and

each Gi = Hi, i = 1, 2, . . . , n.

Definition 4.2.6 Let G and H be two simple graphs. If G = H then H

is said to be reconstruction of G and graph G is known as reconstructible

graph.

Reconstruction Conjecture (RC):

All graphs with at least three vertices are reconstructible.

In 1964 Harary[62] reformulated RC as follows

Reconstruction Conjecture (RC): Any graph G with at least three ver-

tices is uniquely determined upto isomorphism by its deck.

Here one can obviously ask question that why must any graph G has at

least three vertices?

For this simple reason is that there are non-isomorphic graphs G and H

on two vertices for which G = H. In the following Figure 4.5(a) and Figure

4.5(b) two such graphs are shown for which G is not isomorphic to H but

G = H.

G G− u G− v

Figure 4.5(a)
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H H − u H − v

Figure 4.5(b)

We can look at the RC in another way as follows.

Given a collection of subgraphs of the form G, then exactly one graph

G can be uniquely recaptured from G. In this case we say that G is re-

constructible from G. Two things are needed for such reconstruction one is

|V (G)| and the other is |E(G)|. |V (G)| is straight forward as we noted earlier

it is simply number of graphs in G and |E(G)| =
P

v∈V (G) |E(G−v)|
|V (G)|−2

,

where v is any arbitrary vertex of graph G. It is also very interesting to

know how often a particular graph H occurs as a non-spanning subgraph of

G. Let us denote the number of occurrence of H as non-spanning subgraph

of G by S(H, G).

The following known result is very useful to know S(H, G).

Theorem 4.2.7 Let S(H, G) and S(H, G − v) be the number of sub-

graphs of G and G − v respectively which are isomorphic to H, where

|V (H)| < |V (G)| then S(H, G) =
P

v∈V (G) S(H,G)

|V (G)|−|V (H)| .

Above result is very useful and throw some light about reconstructible

graphs. The following fundamental Lemma 4.2.8 is very important in this

regard which was given by Kelly.

Lemma 4.2.8 For any two graphs F and G such that |V (F )| < |V (G)|,

the number S(F, G) of subgraphs of G isomorphic to F is reconstructible.

(Two subgraphs isomorphic to F are counted as different if they have differ-

ent vertex set or edge set).

As a consequence of above result we have following corollary.
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Corollary 4.2.9 For any two graphs F and G such that |V (F )| < |V (G)|,

the number of subgraphs of G which are isomorphic to F and include a

given vertex v is reconstructible from the deck of G (this number is infact

S(F, G)− S(F, G− v)).

Using above results following are the classes of reconstructible graph as

mentioned by Ramachandran[102].

• All regular graphs are reconstructible.

• All disconnected graphs are reconstructible.

• Trees are reconstructible.

• Unicyclic graphs are reconstructible.

• Cactus are reconstructible.

• Maximal planar graphs are reconstructible.

• Outer planar graphs are reconstructible.

• Separable graphs without end vertices are reconstructible.

We have also investigated following results in connection of reconstruc-

tion of graph.

Theorem 4.2.10 Forests are reconstructible.

Proof Consider a forest G with n vertices then it is obvious that its deck

G contains n copies of forests say f1, f2, . . . , fn. Now let H be another graph

obtained from deck G. Then clearly |V (H)| = n and

|E(H)| =
P

v∈V (H) |E(H−v)|
|V (H)|−2

< n(n−2)
n−2

= n.

i.e. |E(H)| ≤ n− 1.

Therefore to prove that H is a forest it remains to show that H is acyclic. If

possible assume that H is not acyclic. Then H contains atleast one cycle say
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C. As H is disconnected cycle C will be contained in any one component of

H. It is clear that H itself can’t be cycle as we have |E(H)| < n. Therefore

∃ a vertex v ∈ V (H) where v not belongs to C. Therefore H−v still contains

a cycle which is not possible as each graph in G is a forest.

Thus H must be acyclic graph. i.e. H is forest. Thus we can obtain a

forest H from deck of forest G. Therefore forests are reconstructible.

Lemma 4.2.11 For any tree T only pendant vertices are not cut vertices

of T .

Proof Let v be any vertex of T with d(v) > 1. Therefore there are at

least two vertices, say u and w which are adjacent to v. As T is a tree there

is exactly one path between u and w which passes through v. Note that u

and w cannot be adjacent otherwise u, v and w will form a triangle which is

not possible as T is a tree. Hence no path exists between u and w in T − v

which implies that T − v is disconnected. Hence v is a cut vertex of T . As

v is an arbitrary vertex we have proved that every vertex v with d(v) > 1 is

a cut vertex of T .

Moreover removal of any pendant vertex will not effect connectedness of

T . It follows that any pendant vertices are not cut vertices of T . Hence only

pendant vertices of tree T are not cut vertices of T .

Lemma 4.2.12 Let T be a tree with |V (T )| > 2. If there are exactly two

vertices of T which are not cut vertices of T then T must be a path graph.

Proof Let u and v be two vertices of T which are not cut vertices of T

then u and v are the only pendant vertices of T according to previous Lemma

4.2.11. To prove that T is a path graph it suffices to prove that d(w) = 2

for any vertex w ∈ V (T ) different than u and v. If possible let d(w) > 2 and
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also assume that w is on the path between u and v. Then there are at least

three vertices in T which are adjacent to w. Let v1, v2, v3 be adjacent with

w otherwise they will form a triangle which is not possible as T is a tree.

Further assume that v1 be a vertex on the path from u to w and v2

is a vertex on the path from w to v. As v1 and v3 are adjacent to w

and there is exactly one path between u and w which contains v1, say

P1 = u, u1, . . . , un, v1, w. Then v3 cannot be on this path. Similarly v2

and v3 are adjacent to w and there is exactly one path between w and v,

say P2 = w, v2, u
′
1, . . . , u

′
n, v then v3 cannot be on this path. Hence there is

another subtree say T ′ which doesn’t contain paths P1 and P2 but contains

path between w and v3. As T ′ is a tree it must involve atleast one pendant

vertex. Thus we have one more pendant vertex which is distinct from u and

v.

Thus there are three pendant vertices in T . Hence by previous Lemma

4.2.11 there are three different vertices which are not cut vertices of T . This

contradicts the fact that T has exactly two vertices which are not cut vertices

of T . Therefore our assumption d(w) > 2 is wrong.

⇒ d(w) = 2, ∀ w ∈ V (T ).

⇒ T must be a path graph.

Theorem 4.2.13 Paths are reconstructible.

Proof Consider deck G of acyclic graphs where exactly two graphs are con-

nected i.e exactly two cards in G are connected which implies that there are

exactly two vertices of G which are not cut vertices of G. Then by previ-

ous Lemma 4.2.12 G must be a path graph. Thus we can recover G from G

and this recovered graph is a path graph. Therefore paths are reconstructible.
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4.3 Reconstruction and Suspension of graph:

Definition 4.3.1 Let G be a graph then if a new vertex v is joined to

each of the pre-existing vertices of G then the resulting graph is called the

suspension of G from v (or join of G and v) which is denoted as G + v.

In the following Figure 4.6 graph G and its suspension G + v are shown.

G G + v

Figure 4.6

Following theorem relate above concept with reconstruction of graph.

Theorem 4.3.2 The suspension G + v of any graph G is reconstructible.

Proof If G is a reconstructible it can be uniquely determined from the col-

lection G = {G − v′/v′ ∈ V (G)}. Now consider the collection G+ consisting

of one copy of G and n copies of graphs (G− v′) + v. Since there is only one

way of joining vertex v to any graph and G is uniquely determined from G.

It follows that G + v can be uniquely determined from the collection G+.

4.4 A step forward in the direction of RC:

In 1988 Yang Yongzhi[130] proved that RC is true if all 2-connected graph

are reconstructible.

We have investigated a powerful result which support above existing ob-

servation.
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Theorem 4.4.1 Let G be a graph with |V (G)| > 2. Then G is 2-connected

if and only if each graph in G is connected.

Proof First assume that G is 2-connected i.e. k(G) ≥ 2. Therefore any

vertex of G is not a cut vertex of G which implies that G− v is connected ∀

v ∈ V (G). Therefore each graph in G is connected. Conversely suppose that

each graph in G is connected i.e. ∀v ∈ V (G), (G − v) is connected i.e. v is

not a cut vertex of G.

i.e. Any vertex v ∈ V (G) is not cut vertex of G.

i.e. k(G) ≥ 2.

i.e. G is 2-connected.

Above result can be combined with Yang Yongzhi’s existing result as follows:

Our Conjecture All those graphs G for which all cards in G are connected

and reconstructible then RC is true.

Consider following examples in connection with above observation.

Example 1

G

Figure 4.7

Here each card is connected. The graph obtained from it is shown in

following Figure 4.8.
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Figure 4.8

Example 2

G

Figure 4.9

Here each card is connected. The graph obtained from it is shown in

following Figure 4.10.

Figure 4.10

Thus in above examples graph G is reconstructed from G which is a deck

of connected cards.

In 1976 Krishnamoorthy and Parthasarathy[83] have proved that critical

blocks are reconstructible (A block is critical if removal of any vertex from
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this block will be a separable graph). Hence RC is true if all blocks are hav-

ing a vertex v such that G− v is also a block are reconstructible.

Our observation is stronger than above existing result because Krish-

namoorthy and Parathasarathy have considered G to be collection of blocks

which are 2-connected while we are considering G to be collection of con-

nected graphs not necessarily be 2-connected that means our collection G

contains cut vertices while their does not.

4.5 Edge Reconstruction:

In previous section we had discussed reconstruction of graph from vertex

deleted subgraphs. In this section we will discuss reconstruction of graph

using edge deleted subgraphs.

Definition 4.5.1 Let G be a simple graph with atleast four edges and let

Ge denotes the collection of all its edge deleted subgraphs of the form G− e.

i.e. Ge = {G− e/e ∈ E(G)}. Now take another simple graph H with atleast

four edges and He denotes the collection of all edge deleted subgraphs of the

form H − f i.e. He = {H − f/f ∈ E(H)}.

If Ge = He then H is said to be reconstruction of G and graph G is known

as Edge Reconstructible graph.

Edge Reconstruction Conjecture:

All graphs with atleast four edges are reconstructible from the collection of

edge deleted subgraphs. (Collection of edge deleted subgraphs is also known

as edge deck).

Here one can obviously ask question that why must any graph G have

atleast four edges?
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For this simple reason is that there are non-isomorphic graphs G and H

on two and three edges for which Ge = He. In the following Figure 4.11 and

Figure 4.12 two such graphs are shown for which G is not isomorphic to H

but Ge = He.

G Ge

H He

Figure 4.11

G Ge
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H He

Figure 4.12

For better understanding of edge reconstruction consider following examples

in which graph G is reconstructed from edge deck Ge.

Examples 1

Ge

Figure 4.13

The graph obtained from above deck is shown in following Figure 4.14

Figure 4.14
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Examples 2

Ge

Figure 4.15

The graph obtained from above deck is shown in following Figure 4.16

Figure 4.16

Following are some known results about edge reconstruction.

Theorem 4.5.2 (Hemminger[26])

A graph is edge reconstructible if and only if its edge graph is reconstructible.

Theorem 4.5.3 (Greenwell[59])

If G is reconstructible and has no isolated vertices, then G is edge recon-

structible. Using this result with results for vertex reconstruction several

classes of graphs and other parameters are edge reconstructible. Following

are some known results.

• Lovasz[94] proved that a graph G with p vertices and q edges is edge

reconstructible if q > 1
4
p(p− 1).

• Müller[99] improved this result as follows
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? G is edge reconstructible if 2q−1 > p!.

? A graph G is edge reconstructible if q > p× log2 p.

We have tried to relate regularity of graph with edge reconstruction as fol-

lows.

Theorem 4.5.4 If G is a regular graph then the vertices in graphs of Ge

have only two different kinds of degree.

Proof Let G be a k-regular graph. i.e. d(v) = k, v ∈ V (G). Then deletion

of edge e will be responsible to decrease the degree of vertices u and v by

one and remaining vertices will have degree k. Thus the vertices of G − e

will have only two different kinds of degree namely k and k − 1. As e was

an arbitrary edge of the graph G we can say that Ge has graphs having only

two different kinds of degree.

4.6 Edge Reconstruction of wheel graph:

We are familiar with wheel graph Wn which is defined in Chapter 2. In

this chapter we will take up it in connection of edge reconstruction. Consider

W4, W5, W6 as shown in Figure 4.17, Figure 4.19, Figure 4.21 respectively

and their deck are shown in Figure 4.18, Figure 4.20, Figure 4.22.

Figure 4.17

66



Ge

Figure 4.18

Figure 4.19

Ge

Figure 4.20

Figure 4.21
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Ge

Figure 4.22

Observing above three figures carefully we can make following statement.

The edge deck of wheel graph Wn contains (n − 1) copies of two types of

graphs each of which having (2n − 3) edges. Thus wheel graphs are edge

reconstructible according to Lovasz[94] and Müller[99].

4.7 Some more classes of edge reconstructible graph:

• Lauri[84] proved the edge reconstructibility of planar graphs with minimum

degree 5.

• Fiorini and Lauri[47] proved the edge reconstructibility of 4-connected pla-

nar graph of minimum degree 4.

• Fiorini and Lauri[47] proved that 3-connected graphs which triangulate a

surface are edge reconstructible.

• Myrvold, Ellingham and Hoffman[100] proved that bidegreed graphs are

edge reconstructible, moreover they have also shown that all graphs which

do not have three consecutive integers in their degree sequence are edge re-

constructible.

Thus in this section we have studied all the latest updates about edge re-
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constructibility of graph. In the next section we will study vertex switching

reconstruction in detail.

4.8 Vertex Switching Reconstruction :

Vertex switching reconstruction was first considered by Stanley[115].

Definition 4.8.1 A vertex switching Gv of a graph G is obtained by taking

a vertex v of G, removing all edges incident with v and adding edges joining

v to every vertex not adjacent to v in G.

Definition 4.8.2 The collection {〈Gv : v ∈ V (G)〉} of unlabeled graph is

called the vertex switching deck of G.

For better understanding of above terminology we will take one example.

Example

G G1 G2 G3

G4 G5

Figure 4.23

Here for a given graph G, {G1, G2, G3, G4, G5} is the vertex switching

deck.
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Definition 4.8.3 A graph G is called vertex switching reconstructible if

any graph with the same vertex switching deck as G is isomorphic to G. The

following are some known results:

• If G has n vertices and n ≡ 1, 2, 3(mod4), then G is vertex switching

reconstructible.

• When n 6= 4, number of edges and degree sequence are vertex switching

reconstructible.

• Disconnected graphs of order n 6= 4 are vertex switching reconstructible.

• Triangle free graphs are vertex switching reconstructible.

• Regular graphs of order n 6= 4 are vertex switching reconstructible.

4.9 Concluding Remarks :

In this chapter reconstruction of graphs is discussed in detail. We derived

that suspension of graph, path graphs and forests are reconstructible. Edge

reconstruction and vertex switching reconstruction are studied in detail. A

conjecture is posed in the support of long standing problem of graph recon-

struction is the salient feature of this chapter. The next chapter is intended

to discuss graceful labeling of graphs.
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Chapter 5

Graceful Labeling of Graphs
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5.1 Introduction :

In Chapter 3 we have discussed various types of graph labeling while this

chapter is aimed to discuss graceful labeling in detail. Some new classes of

graceful graphs are investigated and some open problems are given at the end.

As we mentioned earlier the graceful labeling was introduced by Rosa[103]

during 1967.

In the immediate section we will recall the definition of graceful labeling

for ready reference.

5.2 Some Basic Definitions and Important Results :

Definition 5.2.1 If the vertices of the graph are assigned values subject to

certain conditions is known as graph labeling.

Definition 5.2.2 A function f is called graceful labeling of a graph G if

f : V → {0, 1, 2, . . . , q} is injective and the induced function f ∗ : E →

{1, 2, . . . , q} defined as f ∗(e = uv) = |f(u) − f(v)| is bijective. A graph

which admits graceful labeling is called graceful graph.

In the following Figure 5.1 some graceful graphs and their graceful label-

ing are shown.

Figure 5.1
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Some obvious facts and known results are listed below.

• Any graceful graph will always have vertices with labels 0 and q and these

vertices are always adjacent. One can visualize this from Figure 5.1.

• Graceful labeling is not unique. This fact is demonstrated in the following

Figure 5.2.

Figure 5.2

• Supergraph of a graceful graph need not be graceful. e.g. K4 if grace-

ful but K5 is not.

• Subgraph of a graceful graph need not be a graceful graph. e.g. W5 =

C5 + K1 is graceful while C5 is not.

• If {a1, a2, . . . , ap} ⊆ {0, 1, . . . , q} is a graceful labeling of any graph G, then

{q − ai/i = 1, 2, . . . , p} is also graceful labeling for the graph G.

• There are q! connected graceful graphs with q edges. For example there

are 3! = 6 graceful graphs with 3 edges as shown in the following Figure 5.3.
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Figure 5.3

• All the graphs with p ≤ 5 (where p denotes number of vertices) are graceful

except C5, K5 and Bowtie graph.

• Rosa[103] proved that the cycle Cn is graceful if and only if n ≡ 0, 3 (mod

4).

• Frucht[49], Hoede and Kuiper[72] proved that all wheels Wn = Cn + K1

are graceful graphs.

• Golomb[57] proved that the complete graph Kn is graceful if and only if

n ≤ 4.

• Rosa[103] and Golomb[57] proved that the complete bipartite graphs are

graceful.

• Aravamudhan and Murugan[11] have shown that the complete tripartite
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graph K1,m,n is graceful.

• Beutner and Harborth[21] showed that Kn − e (Kn with one edge deleted)

is graceful only if n ≤ 5, Kn − 2e and Kn − 3e are graceful only if n ≤ 6.

• The Ringel-Kotzig conjecture about gracefulness of trees is still an open

problem and it has motivated good number of research papers. The con-

jecture is All trees are graceful. In [73]Kotzig called the effort to prove this

conjecture as a ”disease”. The trees known to be graceful are caterpillars,

paths, star graphs etc.

• Ayel and Favaron[14] proved that all Helms are graceful.

• Kang et al.[78] proved that Webs are graceful.

• Bermond[20] conjectured that lobsters are graceful.

• Morgan[98] proved that all lobsters with perfect matchings are graceful.

• Chen et al.[36], Bhatt-Nayak and Deshmukh[22] proved that banana trees

are graceful.

• Aldred and Mckay[6] used a computer program to show that trees with at

most 27 vertices are graceful.

Despite of many efforts the graceful tree conjecture remains an open prob-

lem but this problem has motivated some new graph labeling techniques.

• Truszczynski[119] studied unicyclic graphs and conjectured that All uni-

cyclic graphs except Cn, where n ≡ 1 or 2 (mod 4) are graceful.

Because of the immense diversity of unicyclic graphs, a proof of above

conjecture seems out of reach in the near future.

• Delorme et al.[40], Ma and Feng[95] proved that cycle with a chord is grace-

ful.
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• Gracefulness of cycle with k consecutive chords is also investigated by

Koh et al.[81],[82], Goh and Lim[56].

•Koh and Rogers[82] conjectured that cycle with triangle [denoted as Cn(p, q, r)]

is graceful if and only if n ≡ 0, 1(mod4).

Next section is aimed to discuss gracefulness of some product related

graphs. This section also includes investigations carried out by us.

5.3 Gracefulness of Some Product Related Graphs

:

We have defined the cartesian product of two graphs in Chapter 2. This

definition has attracted many researchers. Some results of product related

graphs are listed below.

• Acharya and Gill[3] proved that grid graph Pm × Pn is graceful.

• Maheo[96] gave the graceful labeling for Pm × P2 which can be readily be

extended to all grids.

• Kathiresan[79] proved that the graph obtained from subdividing each step

of ladder Pn × P2 exactly once is graceful.

• Acharya[1] proved that certain subgraph of grid graphs are graceful.

• Huang and Skiena[74] proved that Cm ×Pn is graceful for all n, when m is

even and for all n with 3 ≤ n ≤ 12 when m is odd.

• Jungreis and Reid[76] proved that torus grid Cm × Cn is graceful when

m ≡ 0 (mod 4) and n is even.

A complete solution for the problem of graceful torus grid will most likely

involve a large number of cases.

We have also investigated some new families of product related graphs.
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We will provide detail proof of these results.

Theorem 5.3.1 The graph G = (Pm × Pn)
⋃

(Pr × Ps), where m, n, r, s ∈

N\{1} is graceful.

Proof It is obvious that the graph G has number of vertices p = rs+mn and

number of edges q = 2(rs + mn)− (m + n + r + s). According to Definition

5.2.2 the available vertex labels are 0, 1, . . . , q.

Now label the vertices of (Pr × Ps) by the labels q, 0, 1, q − 2, q − 3, q −

4, 4, 5, . . . etc. This labeling sequence is having two sequential patterns, one

is increasing and other is decreasing. Such labeling will give rise to edge

labeling as decreasing sequence of labels q, q−1, . . . , q +r+s+1−2rs. Such

vertex labeling pattern is shown in Figure 5.4.

Figure 5.4

Now our task is to label the vertices of (Pm × Pn). It will de-

pend on the vertex labels of the last grid of (Pr × Ps). Let w and t be

vertex labels of last grid of (Pr × Ps). These labels produce edge label

77



q + r + s + 1− 2rs = 2mn + 1− (m + n). At this stage we have to consider

following two possibilities.

Case 1: w < t. Then w must be a label from increasing sequence of la-

bels and t − w = 2mn + 1 − (m + n). Now available vertex labels are

t + 1, t− 1, t− 2, . . . , w + 2, w + 1, which are in number 2mn + 1− (m + n).

We will use these labels for labeling of vertices of (Pm ×Pn). This vertex

labeling sequence is t+1 = 2mn− (m+n)+w +2, w +2, w +3, 2mn− (m+

n) + w, 2mn− (m + n) + w− 1, 2mn− (m + n) + w− 2, w + 7, w + 8, . . . etc.

This labeling sequence is having two sequential pattern, one is increasing and

other is decreasing. Such labeling will give rise to edge labeling as decreasing

sequence of labels 2mn − (m + n), . . . , 2, 1. Thus we have labeled all the

rs + mn vertices of G gracefully.

Case 2: w > t. Then w must be a label from decreasing sequence of la-

bels and w − t = 2mn + 1 − (m + n). Now available vertex labels are

w− 1, w− 2, . . . , t + 2, t + 1, t− 1, which are in number 2mn + 1− (m + n).

We will use these labels for labeling of vertices of (Pm ×Pn). This vertex

labeling sequence is t−1, w−2 = 2mn− (m+n)+ t−1, w−3, t+1, t+2, t+

3, w − 7, . . . etc. This labeling sequence is having two sequential patterns,

one is increasing and other is decreasing. Such labeling will give rise to edge

labeling as decreasing sequence of labels 2mn − (m + n), . . . , 2, 1. Thus we

have labeled all the rs + mn vertices of G gracefully.

Therefore G = (Pr × Ps)
⋃

(Pm × Pn) is graceful graph.

Illustration 5.3.2 For better understanding of labeling pattern discussed

in above Theorem 5.3.1 let us consider G = (P4 × P2)
⋃

(P2 × P3). For the
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graph G, p = 14 and q = 17. Therefore for graceful labeling of G available

vertex labels are 0, 1, . . . , 17. As per procedure employed in Theorem 5.3.1

we first label vertices of P4 × P2 by 17, 0, 1, 15, 14, 3, 4, 12 and P2 × P3 by

13, 6, 11, 7, 10, 9. This will produce edge labels 1, 2, . . . , 17 as shown in Fig-

ure 5.5. Thus G is a graceful graph.

Figure 5.5

Theorem 5.3.3 The graph G = C2f+3

⋃
(Pm × Pn)

⋃
(Pr × Ps) (where

m,n, r, s ∈ N\{1} and f = 2(mn + rs)− (m + n + r + s)) is graceful.

Proof It is obvious that G will have number of vertices p = 2f +3+mn+rs

and number of edges q = 3f + 3. Let u1, u2, . . . , u2f+3 be successive ver-

tices of C2f+3. Now label f + 2 vertices u1, u3, . . . , u2f+3 of C2f+3 by the

labels 0, 1, 2, . . . , f + 1 respectively and label the remaining f + 1 vertices

u2, u4, . . . , u2f+2 of C2f+3 by the labels 3f +3, 3f +2, . . . , 2f +3 respectively.

Thus all the vertices of C2f+3 are labeled. This vertex labeling will give rise

to edge labels according to Definition 5.2.2 as 3f +3, 3f +2, . . . , f +2, f +1.
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Now our task is to label the vertices of (Pm × Pn)
⋃

(Pr × Ps) for which

the available vertex labels are 2f + 2, 2f + 1, . . . , f + 2 and required edge

labels for (Pm × Pn)
⋃

(Pr × Ps) are f, f − 1, . . . , 2, 1. Since available ver-

tex labels are f + 1 and required edge labels are f , we first label the ver-

tices of (Pm × Pn)
⋃

(Pr × Ps) by 0, 1, . . . , f , as in Theorem 5.3.1. Then

we add f + 2 to all the vertex labels of (Pm × Pn)
⋃

(Pr × Ps) will pro-

duce edge labels 1, 2, . . . , f for (Pm × Pn)
⋃

(Pr × Ps). Thus we have labeled

G = C2f+3

⋃
(Pm×Pn)

⋃
(Pr ×Ps) gracefully. Therefore G is graceful graph.

5.4 Gracefulness of Union of Grid Graph with Com-

plete Bipartite Graph and Path Graph :

Bu and Cao[27] have discussed gracefulness of Km,n and its union with

path graph. Seoud and Youssef[110] have shown that Km,n

⋃
Kp,q (m, n, p, q ≥

2), Km,n

⋃
Kp,q

⋃
Kr,s (m,n, p, q, r, s ≥ 2 and (p, q) 6= (2, 2)) are graceful

graphs. In this section we will discuss gracefulness of union of grid graph

with complete bipartite graph and path graph.

Theorem 5.4.1 G = Km,n

⋃
(Pr × Ps), r, s ≥ 2 is graceful graph.

Proof Here total number of vertices p = m + n + rs and total number of

edges q = mn + 2rs− (r + s).

Now label the vertices of Km,n by the labels 0, 1, . . . ,m− 1, m + 2rs− (r +

s), 2m + 2rs − (r + s), . . . , q = mn + 2rs − (r + s), which give rise to edge

labels as q, q − 1, . . . , 2rs − (r + s) + 1 to edges of Km,n. Now our task is

to label the vertices of (Pr × Ps) for which the available vertex labels are

m + 1, m + 2, . . . ,m + 2rs− (r + s)− 1 and m + 2rs− (r + s) + 1.

Let us denote the vertices of the grid graph Pr × Ps by v11, v12, . . . , v1n,
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v21, . . . , vmn. Now label the vertex v11 by m+2rs− (r + s)+1, v12 by m+1,

v21 by m+2, v13 by m+2rs− (r + s)−1, v22 by m+2rs− (r + s)−2, v31 by

m+2rs− (r + s)− 3, v14 by m+5, v23 by m+6, v32 by m+7, v41 by m+8,

v15 by m+2rs−(r+s)−7, v24 by m+2rs−(r+s)−8 etc. This will give rise

to edge labels as 2rs− (r+s), 2rs− (r+s)−1, 2rs− (r+s)−2, . . . , 2, 1. For

the vertex labeling and edge labeling following pattern has been observed.

(1) In each square of grid the difference between two labels of main diagonal

is always one.

(2) In the labeling of vertices two sequential patterns have been found. One

is increasing and another is decreasing. This will give rise to edge labeling

into decreasing sequence of labels 2rs− (r + s), 2rs− (r + s)− 1, 2rs− (r +

s)−2, . . . , 2, 1. Such labeling pattern for vertices and edges is shown by down

arrows in following Figure 5.6.

Figure 5.6

Thus we have labeled all the vertices of graph Km,n

⋃
(Pr × Ps) grace-
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fully, where m,n, r, s ∈ N\{1} and hence the graph is graceful graph.

Illustration 5.4.2 For better understanding of above discussed labeling

pattern let us consider the graph G = K4,3

⋃
(P3 × P4). For the graph

G, p = 19 and q = 29. Therefore for graceful labeling available ver-

tex labels are 0, 1, 2, . . . , 29. As per the procedure employed in Theorem

5.4.1 we first label the vertices of K4,3 by 0, 1, 2, 3, 29, 25, 21 and vertices

of (P3 × P4) by 22, 5, 20, 9, 6, 19, 10, 15, 18, 11, 14, 13. This will produce edge

labels 1, 2, . . . , 29 as shown in Figure 5.7. Thus G is a graceful graph.

Figure 5.7

Lemma 5.4.3 Using 0, 1, . . . , t − 2 and t vertex labels one can produce

1, 2, . . . , t− 1 edge labels for path graph Pt, t ≥ 3.

Proof There are six cases to be considered as follows:

Case 1: t ≡ 3 (mod 6).

In this case t = 6n+3 for some non-negative integer n. Then for Pt available

vertex labels are 0, 1, 2, . . . , 6n + 1 and 6n + 3. Let us denote these vertices

by u1, u2, . . . , u6n+3. We shall label the vertices u2, u4, . . . , u6n+2 according

to the sequence 1, 0, 2, 4, 3, 5, 7, 6, . . . , 3n − 3, 3n − 1, 3n + 1. Now label the

remaining vertices u1, u3, . . . , u6n+3 according to the sequence 6n + 3, 6n +
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1, 6n− 1, 6n, . . . , 3n + 2, 3n + 3, 3n, as shown in Figure 5.8.

Figure 5.8

Such vertex labeling will give rise to edge labeling for Pt as 6n+2, 6n, 6n+

1, 6n− 1, 6n− 3, . . . , 3, 4, 2, 1.

Case 2: t ≡ 4 (mod 6).

Then t = 6n + 4 for some n ∈ N
⋃
{0}. Here available vertex labels are

0, 1, 2, . . . , 6n + 2 and 6n + 4. We shall label the vertices u2, u4, . . . , u6n+2

according to the sequence 1, 0, 2, 4, 3, . . . , 3n− 3, 3n− 1, 3n + 1, 3n and label

the remaining vertices u1, u3, . . . , u6n+3 according to the sequence 6n+4, 6n+

2, 6n, 6n + 1, 6n− 1, . . . , 3n + 3, 3n + 4, 3n + 2 as shown in Figure 5.9. Such

vertex labeling will give rise to edge labels 6n + 3, 6n + 1, 6n + 2, 6n, 6n −

2, . . . , 4, 5, 3, 1, 2.

Figure 5.9

Case 3: t ≡ 5 (mod 6).

Then t = 6n + 5 for some n ∈ N
⋃
{0}. Here available vertex labels are

0, 1, 2, . . . , 6n + 3 and 6n + 5. We shall label the vertices at even places ac-
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cording to the sequence 1, 0, 2, 4, 3, . . . , 3n − 3, 3n − 1, 3n + 1, 3n and label

the remaining vertices according to the sequence 6n + 5, 6n + 3, 6n + 1, 6n +

2, 6n, . . . , 3n + 5, 3n + 2, 3n + 3. Such vertex labeling will give rise to edge

labels 6n + 4, 6n + 2, 6n + 3, 6n + 1, . . . , 5, 6, 4, 1, 2, 3.

Case 4: t ≡ 0 (mod 6).

Then t = 6n for some n ∈ N . Here available vertex labels are 0, 1, 2, . . . , 6n−

2 and 6n. We shall label the vertices at even places according to the sequence

1, 0, 2, 4, 3, . . . , 3n− 4, 3n− 2, 3n− 3, 3n and label the remaining vertices ac-

cording to the sequence 6n, 6n−2, 6n−4, . . . , 3n+3, 3n+1, 3n−1. Such vertex

labeling will give rise to edge labels 6n− 1, 6n− 3, 6n− 2, . . . , 7, 5, 3, 4, 2, 1.

Case 5: t ≡ 1 (mod 6).

Then t = 6n + 1 for some n ∈ N . We shall label the vertices at even places

according to the sequence 1, 0, 2, 4, 3, . . . , 3n − 3, 3n − 2, 3n − 3, 3n − 1 and

label the remaining vertices according to the sequence 6n + 1, 6n − 1, 6n −

3, . . . , 3n + 2, 3n, 3n + 1. Such vertex labeling will give rise to edge labels

6n, 6n− 2, 6n− 1, 6n− 3, . . . , 5, 3, 1, 2.

Case 6: t ≡ 2 (mod 6).

Then t = 6n + 2 for some n ∈ N . We shall label the vertices at even places

according to the sequence 1, 0, 2, 4, 3, . . . , 3n − 2, 3n − 3, 3n, 3n − 1 and la-

bel the remaining vertices according to the sequence 6n + 2, 6n, 6n− 2, 6n−

1, . . . , 3n+5, 3n+2, 3n+3, 3n+1, such vertex labeling will give rise to edge

labels 6n + 1, 6n− 1, 6n, . . . , 4, 5, 6, 3, 1, 2.

Thus in any case one can produce 1, 2, . . . , t− 1 edge labels for Pt, t ≥ 3,

using 0, 1, 2, . . . , t− 2 and t vertex labels.

Remark 5.4.4 From the above Lemma 5.4.3 following observations are ob-
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vious:

(1) By adding n in each term of the sequence 1, 2, . . . , t− 2, t ( which are

vertex labels for Pt t ≥ 3 ) one can produce edge labels 1, 2, . . . , t− 1 for Pt,

t ≥ 3.

(2) By subtracting each term of the sequence 1, 2, . . . , t− 2, t ( which are

vertex labels for Pt ) from n + t one can produce edge labels 1, 2, . . . , t − 1

for Pt, t ≥ 3.

Theorem 5.4.5 The graph G = (Pr ×Ps)
⋃

Pt is graceful, where t ∈ N\{2}

and r, s ∈ N\{1}.

Proof Here for the graph G under consideration number of vertices p = rs+t

and number of edges q = 2rs− (r + s) + t− 1. According to Definition 5.2.2

the available vertex labels are 0, 1, . . . , q.

Now label the vertices of Pr × Ps by the labels q, 0, 1, q − 2, q − 3, q −

4, 6, 7, . . .etc. As we discussed in Theorem 5.4.1 two labeling patterns have

been observed. Such vertex labeling will give rise to edge labeling as decreas-

ing sequence of labels q, q−1, . . . , q−2rs+r+s+1 which is shown in Figure

5.10.

Figure 5.10

Now our task is to label the vertices of Pt. It will depend on the vertex

labels of the last grid of Pr × Ps. Let w and z be vertex labels of last grid

of Pr × Ps. These labels produce edge label q − 2rs + r + s + 1 = t. At this
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stage following two cases are to be considered.

Case 1: w < z . Then w must be a label from increasing sequence of labels

and z − w = t. Now available vertex labels are z + 1 = t + w + 1, z − 1 =

t + w − 1, z − 2 = t + w − 2, . . . , w + 2, w + 1, which are in number t. Using

these labels we can label Pt according to Remark 5.4.4 and produce edge

labels 1, 2, . . . , t− 1.

Case 2: w > z. Then w must be a label from decreasing sequence of labels

and w − z = t. Now available vertex labels are w − 1 = t + z − 1, w − 2 =

t + z − 2, . . . , z + 2, z + 1, z − 1, which are in number t. Using these labels

one can label the vertices of Pt according to Remark 5.4.4 and produce edge

labels 1, 2, . . . , t− 1.

Therefore G = (Pr × Ps)
⋃

Pt is graceful, where r, s ∈ N\{1} and t ∈

N\{2}.

Illustration 5.4.6 For better understanding of the above discussed label-

ing pattern consider the graph G = (P3 × P4)
⋃

P13. For this graph G

p = 25 and q = 29. So for graceful labeling of G, available vertex labels

are 0, 1, 2, . . . , 29. According to Theorem 5.4.5 one can label (P3 × P4) by

29, 0, 27, 4, 1, 26, 5, 22, 25, 6, 21, 8 and P13 by

7, 19, 9, 20, 11, 18, 10, 16, 12, 17, 14, 15, 13. This will give rise to edge labels

29, 28, . . . , 13 for grid graph (P3 × P4) and 12, 10, 11, 9, . . . . . . , 5, 3, 1, 2 for

P13 according to Case 5 of Lemma 5.4.3 such labeling pattern is shown in

Figure 5.11. Hence G is a graceful graph.

86



Figure 5.11

Theorem 5.4.7 The graph G = Km,n

⋃
(Pr × Ps)

⋃
Pt is graceful where

t ∈ N\{2} and m,n, r, s ∈ N\{1}.

Proof The graph G has number of vertices p = m+n+rs+ t and number of

edges e = mn+2rs− (r + s)+ t− 1 = mn+ q where q = 2rs− (r + s)+ t− 1

is the number of edges in (Pr × Ps)
⋃

Pt.

Now label the vertices of Km,n by labels 0, 1, . . . ,m − 1, m + q, 2m +

q, . . . , e = mn + q, which will give rise to edge labels as e, e− 1, . . . , q + 1 for

the edges of Km,n. Now our task is to label the vertices of (Pr × Ps)
⋃

Pt,

for which the available vertex labels are in number q + 1. These are m,m +

1, m+2, . . . ,m+ q− 1 and m+ q +1. Now by adding m+1 in all the vertex

labels of (Pr × Ps)
⋃

Pt reported in Theorem 5.4.5 one can produce edge

labels 1, 2, . . . , q. Thus we have labeled G = Km,n

⋃
(Pr ×Ps)

⋃
Pt gracefully

and hence G is a graceful graph.

5.5 Gracefulness of Union of Two Path Graphs with

Grid Graph and Complete Bipartite Graph :

It is obvious that union of two path graphs can not be graceful as num-

ber of vertices of Pn

⋃
Pt is more than the number of labels available for its

gracefulness. In connection of Lemma 5.4.3, we have following remarks.
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Remark 5.5.1 Using n, n+1, . . . , n+ t−2, n+ t, for n ∈ N one can produce

1, 2, . . . , t−1 edge labels for path graph Pt(where t ≥ 3). In order to produce

s, s + 1, . . . , t − 1 edge labels for path graph Pt−s using above vertex labels

one can proceed as either of the following two ways.

(i) Using n + s, n + s + 1, . . . , n + t− 2, n + t, (where n, s ∈ N) one can

produce 1, 2, . . . , t− s− 1 edge labels for path graph Pt−s. Now choose half

of the total number of vertex labels from the above mentioned sequence of

vertex labels into their numerically increasing order (one less than half of the

total number when n is odd) and subtract s from each selected vertex labels.

This will produce edge labels s, s + 1, . . . , t− 1 for Pt−s.

(ii) Using n + s, n + s + 2, . . . , n + t − 1, n + t, (where n ∈ N) one can

produce edge labels as 1, 2, . . . , t − s − 1 for Pt−s. Now choose half of the

total number of vertex labels from the above mentioned sequence of vertex

labels according to their numerically increasing order (one less than half of

the total number when n is odd) and subtract s from each selected vertex

labels. This will produce edge labels s, s + 1, . . . , t− 1 for Pt−s.

Remark 5.5.2 If we label the grid graph (Pr × Ps) by using increasing

and decreasing sequence of vertex labels in diagonal pattern then there are

min{r, s} − 1 vertex labels which are not used after graceful labeling of

(Pr×Ps). Moreover if Kr,s is labeled by t vertex labels (where t ≤ max{r, s})

0, 1, . . . , t − 1 and remaining by t, 2t, . . . , rs then there are t vertex labels

namely 1 + t, 2 + t, . . . , 2t − 1, 2t + 1 which are not used in the graceful la-

beling of Kr,s.

Theorem 5.5.3 The graph G = Pn∪Pt∪(Pr×Ps),where t < min{r, s}, r, s ≥

3 is graceful.
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Proof Here total number of vertices p = n + t + rs and total number of

edges q = n + t + 2rs− (r + s− 2).

Now label the vertices of (Pr×Ps) by labels q, 0, 1, q−2, q−3, q−4 . . . etc.

This labeling sequence is having two sequential patterns, one is increasing

and other is decreasing. Such labeling pattern will give rise to edge labeling

as decreasing sequence of labels q, q − 1, . . . , q + r + s + 1 − 2rs, which is

shown in Figure 5.12.

Figure 5.12

Now our task is to label the vertices of Pn. It will depend on the vertex

labels of the grid graph (Pr × Ps). Let w and z be vertex labels of last grid

of (Pr × Ps).

Case 1: w < z. Then w must be a label from increasing sequence of labels

and z −w = q + r + s + 1− 2rs = n + t− 1. Now available vertex labels are

z + 1, z − 1, . . . , w + 2, w + 1 which are total n + t− 1.

Case 2: w > z. Then w must be a label from the decreasing sequence of

labels and n + t − 1 = w − z. Now available vertex labels are w − 1, w −

2, . . . , z + 2, z + 1, z − 1, which are in number n + t− 1.

Using these labels one can label the vertices of Pn according to Remark 5.5.1

which will give rise to edge labels as n + t− 2, n + t− 3, . . . , t. Now to label
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Pt one can use vertex labels which are not used in graceful labeling of grid

graph. This labels will give rise to edge labels 1, 2, . . . , t − 1 for Pt. Thus

graph G under consideration admits graceful labeling.

Illustration 5.5.4 For better understanding of above defined labeling pat-

tern consider the graph G = P10∪P3∪ (P5×P4) as shown in following Figure

5.13. Here q = 42.

Figure 5.13

Theorem 5.5.5 The graph G = Pn ∪Pt ∪Kr,s,where t ≤ max{r, s}, r, s ≥ 3

is graceful.

Proof Here total number of vertices p = n + t + r + s and total number

of edges q = rs + n + t− 2.

Now label the vertices of Kr,s by labels 0, 1, . . . , r−1 , r+n+t−2, . . . , rs+

n + t− 2 = q(assuming r ≥ s) as shown in Figure 5.14. This will give rise to

edge labels as q, q − 1, . . . , n + t− 1 of Kr,s.
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Figure 5.14

Now our task is to label the vertices of Pn and then Pt for which the

available vertex labels are r, r +1, r +2, . . . , r +n+ t−3, r +n+ t−1. These

are in number n+t−1 and 2r+n+t−3, 2r+n+t−1, 2r+n+t, . . . , 3r+n+t−3,

which are in number r. Using these labels according to Remark 5.5.2 one

can label Pn and Pt which give rise to edge labels as n+ t− 2, n+ t− 3, . . . , t

and t− 1, t− 2, . . . , 2, 1 respectively. Thus we have labeled all the vertices of

graph G under consideration gracefully.

Illustration 5.5.6 For better understanding of above defined labeling pat-

tern consider the graph G = P10 ∪ P5 ∪ (K4,5). Here q = 33. The graceful

labeling of G is as shown in following Figure 5.15

Figure 5.15
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5.6 Some Open Problems :

• One can discuss gracefulness of union of grid graph with Wheels, Cycles,

Petersen Graph etc.

• One can derive parallel results for other type of labeling like harmonious,

(k, d)−graceful, skolem graceful, k−equitable etc.

• One can discuss gracefulness in the context of various graph operations like

fusion, duplication, contraction, barycentric subdivision etc.

5.7 Concluding Remarks :

The graceful labeling of graph is stronger in its class. Grid graph is very

interesting family of graphs. Here we have discussed the gracefulness of grid

graph with some other families. The results obtained here are new and of

very general nature. This work throws light on the gracefulness of discon-

nected graphs which is very less cultivated field. Illustrations provide better

understanding of the derived results. This work contributes eight new results

to the theory of graceful graphs. The next Chapter 6 is aimed to discuss cor-

dial labeling of graphs.
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Chapter 6

Cordial labeling of graphs
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6.1 Introduction :

In Chapter 3 we have discussed various types of graph labeling while this

chapter is aimed to discuss the cordial labeling of graphs in detail. Some new

families of cordial graphs are investigated and some open problems are also

posed.

Many researchers have studied cordiality of graphs. As we mentioned in

Chapter 3, Cahit[31] introduced cordial graphs in 1987 as a weaker version of

graceful and harmonious graphs. In the immediate section we will recall the

definition of cordial graphs and will provide detail survey on cordial graphs.

6.2 Some Definitions and Important Results :

Definition 6.2.1 If the vertices of the graph are assigned values subject

to certain conditions is known as graph labeling.

For detail survey on graph labeling one can refer Gallian[51].

Definition 6.2.2 Let G = (V, E) be a graph. A function f : V (G) →

{0, 1} is called binary vertex labeling of G and f(v) is called label of the vertex

v under f .

For an edge e = uv the induced function f ∗ : E(G) → {0, 1} is given by

f ∗(e) = |f(u)−f(v)|. Let vf (0), vf (1) be the number of vertices of G having

labels 0 and 1 respectively under f and let ef (0), ef (1) be the number of

edges having labels 0 and 1 respectively under f ∗.

Definition 6.2.3 A binary vertex labeling of a graph G is called a cordial

labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

A graph which admits cordial labeling is called a cordial graph.

Vast amount of literature is available in printed and in electronic form
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about cordial labeling. Some known families of cordial graphs are listed be-

low.

• As investigated by Cahit[32]

? Every tree is cordial.

? Complete bipartite graphs Km,n are cordial.

? Complete graphs Kn are cordial if and only if n ≤ 3.

? Maximal outer planar graphs are cordial.

? Eulerian graph is not cordial if its number of edges congruent to 2(mod4).

? All fans Fn = Pn + K1 are cordial.

? Wheels Wn = Cn + K1 are cordial if and only if n is not congruent to

3(mod4).

? k-angular cactus with t cycles is cordial if and only if kt is not congruent

to 2(mod4).

• Ho et al.[70] proved that

? Unicyclic graph is cordial except C4k+2.

? Generalized Petersen graph P (n, k) is cordial if and only if n is not con-

gruent to 2(mod4).

• Lee and Liu[86], Du[44] proved that complete n-partite graph is cordial if

and only if at most three of its partite sets have odd cardinality.

• Seoud and Maqsoud[106] proved that if G is a graph with n vertices

and m edges and every vertex has odd degree then G is not cordial when

m + n ≡ 2(mod4).

• Andar et al. in [7],[8], [9] and [10] proved that

? Multiple shells are cordial.

? t-ply graph Pt(u, v) is cordial except when it is Eulerian and the number
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of edges is congruent to 2(mod4).

? Helms, closed helms and generalized helms are cordial.

? In [10], Andar et al. showed that a cordial labeling g of a graph G can be

extended to a cordial labeling of the graph obtained from G by attaching 2m

pendant edges at each vertex of G. They also proved that a cordial labeling

of a graph G with p vertices can be extended to a cordial labeling of the

graph obtained from G by attaching 2m + 1 pendant edges at each vertex of

G if and only if G does not satisfy either of the following conditions:

(1) G has an even number of edges and p ≡ 2(mod4).

(2) G has an odd number of edges and either p ≡ 1(mod4) with eg(1) =

eg(0) + i(G) or p ≡ 3(mod4) with eg(0) = eg(1) + i(G), where i(G) =

min{|eg(0)− eg(1)|}.

6.3 Cordial Labeling For Some Cycle Related Graphs

We have investigated some new families of cordial graphs. In this section

we will give cordial labeling for cycle with one chord, cycle with twin chords

and cycle with triangle. Before proving these results let us provide some

important definitions.

Definition 6.3.1 A chord of a cycle Cn is an edge joining two non-adjacent

vertices of cycle Cn.

Definition 6.3.2 Two chords of a cycle are said to be twin chords if they

form a triangle with an edge of the cycle Cn.

For positive integers n and p with 3 ≤ p ≤ n − 2, Cn,p is the graph con-

sisting of a cycle Cn with a pair of twin chords with which the edges of Cn

form cycles Cp, C3 and Cn+1−p without chords.
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Definition 6.3.3 A cycle with triangle is a cycle with three chords which

by themselves form a triangle.

For positive integers p, q, r and n ≥ 6 with p + q + r + 3 = n, Cn(p, q, r)

denotes a cycle with triangle whose edges form the edges of cycles Cp+2, Cq+2

and Cr+2 without chords.

Theorem 6.3.4 Cycles with one chord are cordial.

Proof Let u1, u2, . . . , un be consecutive vertices of cycle Cn and e = u1u3

be a chord of cycle Cn. The vertices u1, u2, u3 forms a triangle with chord e.

To define labeling function f : V (G) → {0, 1} we consider following cases.

Case 1: n ≡ 0, 1(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 2(mod4)

In this case we define labeling f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2.

Case 3: n ≡ 3(mod4)

In this case we define labeling f as

f(u1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 2 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of

vertices.
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In each case, the graph G under consideration satisfies the conditions

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.1.

i.e. G admits cordial labeling.

Let n = 4a + b, where a ∈ N .

Table 6.1

Illustration - 6.3.5 For better understanding of above defined labeling

pattern let us consider cycle C5 with one chord (it is related with Case-1).

The labeling is shown in following Figure 6.1.

Figure 6.1

Theorem 6.3.6 Cycles with twin chords are cordial, where chords form

two triangles and one cycle Cn−2.
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Proof Let G be the cycle with twin chords, where chords form two tri-

angles and one cycle Cn−2. Here number of vertices p = n and number

of edges q = n + 2. Let u1, u2, . . . , un be successive vertices of G. Let

e1 = unu2 and e2 = unu3 be the chords of cycle Cn. To define labeling func-

tion f : V (G) → {0, 1} we consider following cases.

Case 1: n ≡ 0(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 1, 2, 3(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.2.

i.e. G admits cordial labeling.

Let n = 4a + b, where n ∈ N , n ≥ 5.

Table 6.2
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Illustration - 6.3.7 For better understanding of above defined labeling

pattern let us consider cycle C7 with twin chords (it is related with Case-2).

The labeling is shown in following Figure 6.2.

Figure 6.2

Theorem 6.3.8 Cycles with triangle Cn(1, 1, n − 5) is cordial except n ≡

3(mod4).

Proof Let G be cycle with triangle Cn(1, 1, n − 5). Let u1, u2, . . . , un be

successive vertices of G. Let u1, u3 and u5 be the vertices of triangle formed

by edges e1 = u1u3, e2 = u3u5 and e3 = u1u5.

Note that for the case n ≡ 3(mod4), graph G is an Eulerian graph with

number of edges congruent to 2(mod4). Then in this case G is not cordial

as proved by Cahit[32]. So it remains to consider following cases to define

labeling function f : V (G) → {0, 1}.

Case 1: n ≡ 0, 1(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

100



= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 2(mod4)

In this case we define labeling f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.3.

i.e. G admits cordial labeling.

Let n = 4a + b, where n ∈ N , n ≥ 6.

Table 6.3

Illustration - 6.3.9 For better understanding of above defined labeling

pattern let us consider cycle C6 with triangle (it is related with Case-2). The

labeling is shown in following Figure 6.3.
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Figure 6.3

In the immediate section we will prove some more results.

6.4 Path Union of Graphs and Cordial Labeling

Definition 6.4.1 Let G be a graph and G1, G2, . . . , Gn, n ≥ 2 be n copies

of graph G. Then the graph obtained by adding an edge from Gi to Gi+1

(for i = 1, 2, . . . , n− 1) is called path union of G.

Shee and Ho[112] introduced above concept. They also proved that path

union of Petersen graph, trees, wheels and unicyclic graphs are cordial.

We have investigated cordial labeling for path union of finite number of

copies of cycle with chord, cycle with twin chords and cycle with triangle.

Theorem 6.4.2 The path union of finite number of copies of cycle Cn with

one chord is cordial, where chord forms a triangle with edges of the cycle.

Proof Let G be the path union of cycle Cn with one chord and G1, G2, . . . , Gk

be k copies of cycle Cn with one chord, where |Gi| = n, for each i. Let us

denote the consecutive vertices of graph Gi by {ui1, ui2, . . . , uin}, for

i = 1, 2, . . . , k. Let ui1, ui2, ui3 forms a triangle with chord e. Let ei =
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ui3u(i+1)1 be the edge joining Gi and Gi+1, for i = 1, 2, . . . , k − 1. To define

labeling function f : V (G) → {0, 1} we consider following cases.

Case 1: n ≡ 0(mod4)

In this case we define labeling as

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), when i is even, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), when i is odd, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case 2: n ≡ 1(mod4)

In this case we define labeling as

When i ≡ 0, 1(mod4)

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

When i ≡ 2, 3(mod4)

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case 3: n ≡ 2(mod4)

In this case we define labeling as

f(uin−1) = 1, f(uin) = 0 and

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n− 2.

Case 4: n ≡ 3(mod4)

In this case we define labeling as

When i ≡ 0, 1(mod4)

f(ui1) = 0 and
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f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 2 ≤ j ≤ n.

When i ≡ 2, 3(mod4)

f(ui1) = 1 and

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ k, 2 ≤ j ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.4.

i.e. G admits cordial labeling.

Let n = 4a + b, k = 4c + d where n, k ∈ N , n ≥ 4.

Table 6.4

Illustrations - 6.4.3 For better understanding of above defined labeling

pattern let us consider few examples.

Example 1 Consider graph G which is path union of three copies of cycle

C8 with one chord (it is the case related to n ≡ 0(mod4), k = 3). The label-
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ing pattern is shown in Figure 6.4.

Figure 6.4

Example 2 Consider a path union of four copies of cycle C5 with one chord

(it is the case related to n ≡ 1(mod4), k = 4). The labeling pattern is shown

in Figure 6.5.

Figure 6.5

Example 3 Consider a path union of four copies of cycle C6 with one chord

(it is the case related to n ≡ 2(mod4), k = 4). The labeling pattern is shown

in Figure 6.6.
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Figure 6.6

Theorem 6.4.4 The path union of finite number of copies of cycle Cn with

twin chords is cordial.

Proof Let G be the path union of cycle Cn with twin chords and G1, G2, . . . Gk

be k copies of cycle Cn with twin chords, where |Gi| = n, for each i. Let us de-

note the successive vertices of graph Gi by {ui1, ui2, . . . uin}, for i = 1, 2, . . . k.

Let ei = ui3u(i+1)1 be the edge joining Gi and Gi+1, for i = 1, 2, . . . k− 1. To

define labeling function f : V (G) → {0, 1}, we consider following cases.

Case 1: n ≡ 0(mod4)

In this case we define labeling as

When i ≡ 1, 2(mod4)

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4),1 ≤ i ≤ k, 1 ≤ j ≤ n.

When i ≡ 0, 3(mod4)

f(uij) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4),1 ≤ i ≤ k, 1 ≤ j ≤ n.
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Case 2: n ≡ 1(mod4)

In this case we define labeling as

When i ≡ 0, 1(mod4)

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

When i ≡ 2, 3(mod4)

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case 3: n ≡ 2(mod4)

In this case we define labeling as

When i ≡ 0, 1(mod4)

f(ui1) = 0, f(ui2) = 1 and

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ k, 3 ≤ j ≤ n.

When i ≡ 2, 3(mod4)

f(ui1) = 1, f(ui2) = 0

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 3 ≤ j ≤ n.

Case 4: n ≡ 3(mod4)

In this case we define labeling as

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), when i is odd, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

f(uij) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), when i is even, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

The labeling pattern defined above covers all possible arrangement
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of vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.5 i.e. G admits cordial labeling.

Let n = 4a + b, k = 4c + d, where n, k ∈ N , n ≥ 5.

Table 6.5

Illustrations - 6.4.5 For better understanding of above defined labeling

pattern let us consider few examples.

Example 1 Consider a path union of three copies of cycle C5 with twin

chords(it is the case related to n ≡ 1(mod4), k = 3). The labeling pattern is

shown in Figure 6.7.
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Figure 6.7

Example 2 Consider a path union of four copies of cycle C6 with twin

chords(it is the case related to n ≡ 2(mod4), k = 4). The labeling pattern is

shown in Figure 6.8.

Figure 6.8

Theorem 6.4.6 The path union of finite number of copies of cycle with

triangle Cn(1, 1, n− 5) is cordial.

Proof Let G be the path union of cycle Cn with triangle and G1, G2, . . . Gk

be k copies of cycle Cn with triangle, where |Gi| = n, for each i. Let us de-

note the successive vertices of graph Gi by {ui1, ui2, . . . uin}, for i = 1, 2, . . . k.

Let ei = ui4u(i+1)2 be the edge joining Gi and Gi+1, for i = 1, 2, . . . k− 1. To

define labeling function f : V (G) → {0, 1}, we consider following cases.
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Case 1: n ≡ 0(mod4)

In this case we define labeling as

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), when i is even, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), when i is odd, 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case 2: n ≡ 1(mod4)

In this case we define labeling as

When i ≡ 0, 1(mod4)

f(uij) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

When i ≡ 2, 3(mod4)

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Case 3: n ≡ 2(mod4)

In this case we define labeling as

f(uin−1) = 1, f(uin) = 0 and

f(uij) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n− 2.

Case 4: n ≡ 3(mod4)

In this case we define labeling as

When G has even number of copies,

For i ≡ 0(mod4)

f(ui1) = 1, f(ui2) = 0, f(ui3) = 1 and

f(uij) = 0; if j ≡ 2, 3(mod4)
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= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ k, 4 ≤ j ≤ n.

For i ≡ 1(mod4)

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

For i ≡ 2(mod4)

f(ui1) = 0, f(ui2) = 1, f(ui3) = 0 and

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ k, 4 ≤ j ≤ n.

For i ≡ 3(mod4)

f(uij) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

When G has odd number of copies,

For G = G1,

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ k, 1 ≤ j ≤ n.

For G = G2 = G3,

f(ui1) = 0, f(ui2) = 1, f(ui3) = 0 and

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ k, 4 ≤ j ≤ n.

We define labeling pattern for remaining copies as:

For i ≡ 0(mod4)

f(uij) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 4 ≤ i ≤ k, 1 ≤ j ≤ n.

For i ≡ 1(mod4)

f(ui1) = 1,f(ui2) = 0, f(ui3) = 1
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f(uij) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 4 ≤ i ≤ k, 4 ≤ j ≤ n.

For i ≡ 2(mod4)

f(uij) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 4 ≤ i ≤ k, 1 ≤ j ≤ n.

For i ≡ 3(mod4)

f(ui1) = 0,f(ui2) = 1, f(ui3) = 0

f(uij) = 0; if j ≡ 1, 0(mod4)

= 1; if j ≡ 2, 3(mod4), 4 ≤ i ≤ k, 4 ≤ j ≤ n.

The labeling pattern defined above covers all possible arrangement of

vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.6. i.e. G admits cordial labeling.

Let n = 4a + b, k = 4c + d, where n, k ∈ N , n ≥ 6.

Table 6.6
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Illustration - 6.4.7 For better understanding of above defined labeling

pattern let us consider path union of four copies of cycle C6 with triangle (it

is the case related to n ≡ 2(mod4), k = 4). The labeling pattern is shown in

Figure 6.9.

Figure 6.9

¶ Remark 6.4.8 In Theorems 6.4.2 to 6.4.6 we consider edges between

end vertices of chord but it is also possible to discuss cordiality when edges

are attached to other vertices.

In the next section some more cordial graphs are investigated.

6.5 Some More Cordial Graphs :

In this section we will provide cordial labeling for four cycle related graphs.

Unlike in pervious section we consider path of arbitrary length between two

graphs instead of one edge. We limit ourself for two copies of graph. In

short, we are considering two copies of graph G and join them by a path of

arbitrary length.

Theorem 6.5.1 The graph obtained by joining two copies of cycle Cn by a

path of arbitrary length is cordial.
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Proof Let {ui1, ui2, . . . uin} be the vertices of first copy of cycle Cn, {vi1, vi2, . . . vik}

be the vertices of path Pk with u1 = v1 and {wi1, wi2, . . . win} be the ver-

tices of second copy of cycle Cn with vk = w1. To define labeling function

f : V (G) → {0, 1} we consider following cases.

Case 1: n ≡ 0(mod4), k ≡ 0(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 0(mod4), k ≡ 1, 2(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 3: n ≡ 0(mod4), k ≡ 3(mod4) and n ≡ 3(mod4), k ≡ 0(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.
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f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Case 4: n ≡ 1(mod4), k ≡ 0(mod4) In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 5: n ≡ 1(mod4), k ≡ 1(mod4) In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vk) = 1 and

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Case 6: n ≡ 1(mod4), k ≡ 2(mod4) and n ≡ 2(mod4), k ≡ 3(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k.
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f(wi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Case 7: n ≡ 1(mod4), k ≡ 3(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vk) = 0 and

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 8: n ≡ 2(mod4), k ≡ 0(mod4) In this case we define labeling f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Case 9: n ≡ 2(mod4), k ≡ 1(mod4) In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 2, 3(mod4)
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= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Case 10: n ≡ 2(mod4), k ≡ 2(mod4) In this case we define labeling f as

f(un) = 0, f(un−1) = 1 and label the remaining vertices as in Case 6.

Case 11: n ≡ 3(mod4), k ≡ 1(mod4) In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vk) = 0 and

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 12: n ≡ 3(mod4), k ≡ 2(mod4) In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 13: n ≡ 3(mod4), k ≡ 3(mod4)

Here f(vk) = 0 and label remaining vertices as in Case 12.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions

|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.7.

i.e. G admits cordial labeling.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N

To be continued on next page
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Table 6.7

Illustrations 6.5.2

For better understanding of above defined labeling pattern, let us con-

sider few examples.

Example 1 Consider a graph obtained by joining two copies of cycle C5

by a path P5(it is the case related to n ≡ 1(mod4), k ≡ 1(mod4)). The

labeling pattern is shown in Figure 6.10.
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Figure 6.10

Example 2 Consider a graph obtained by joining two copies of cycle C7

by a path P7(it is the case related to n ≡ 3(mod4), k ≡ 3(mod4)). The

labeling pattern is shown in Figure 6.11.

Figure 6.11

Example 3 Consider a graph obtained by joining two copies of cycle C8

by a path P6(it is the case related to n ≡ 0(mod4), k ≡ 2(mod4)). The

labeling pattern is shown in Figure 6.12.
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Figure 6.12

Theorem 6.5.3 The graph G obtained by joining two copies of cycle Cn

with one chord by a path of arbitrary length is cordial.

Proof Let u1, . . . , un be consecutive vertices of first copy of cycle Cn with

one chord, v1, . . . , vk be consecutive vertices of path Pk with u1 = v1 and

w1, . . . , wn be consecutive vertices of second copy of cycle Cn with one chord,

where vk = w1. To define labeling function f : V (G) → {0, 1} we consider

following cases.

Case 1: n ≡ 0(mod4), k ≡ 0(mod4) and n ≡ 1(mod4), k ≡ 3(mod4).

In this case we define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.
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Case 2: n ≡ 0(mod4), k ≡ 1(mod4)

f(vk) = 1 and label remaining vertices as in Case-1.

Case 3: n ≡ 0(mod4), k ≡ 2(mod4)

In this case we define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 4: n ≡ 0(mod4), k ≡ 3(mod4)

f(vk) = 0 and label remaining vertices as in Case-3.

Case 5: n ≡ 1(mod4), k ≡ 0(mod4)

In this case we define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.
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Case 6: n ≡ 1(mod4), k ≡ 1(mod4)

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 7: n ≡ 1(mod4), k ≡ 2(mod4)

In this case we define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4),

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Case 8: n ≡ 2(mod4), k ≡ 0(mod4)

In this case we define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k
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f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 9: n ≡ 2(mod4), k ≡ 1(mod4)

In this case we define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vk) = 1

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k − 1

f(wn) = 1, f(wn−1) = 0 and

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1 ;if i ≡ 1, 2(mod4), 1 ≤ i ≤ n− 2.

Case 10: n ≡ 2(mod4), k ≡ 2(mod4)

In this case we define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(wn) = 1, f(wn−1) = 0 and

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ n− 2
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Case 11: n ≡ 2(mod4), k ≡ 3(mod4)

In this case we define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vk) = 0 and

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k − 1

f(wn) = 0, f(wn−1) = 1 and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2.

Case 12: n ≡ 3(mod4), k ≡ 0, 3(mod4)

In this case we define labeling function f as

f(u1) = 0, and

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 2 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(w1) = 1, and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 2 ≤ i ≤ n.

125



Case 13: n ≡ 3(mod4), k ≡ 1(mod4)

In this case we define labeling function f as

f(u1) = 1, and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 2 ≤ i ≤ n

f(vk−1) = 0,f(vk) = 1

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k − 2

f(w1) = 1, and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 2 ≤ i ≤ n.

Case 14: n ≡ 3(mod4), k ≡ 2(mod4)

In this case we define labeling function f as

f(u1) = 0, f(u2) = 1 and

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 3 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(w1) = 1, f(w2) = 0 and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions
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|vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 as shown in following Table 6.8.

i.e. G admits cordial labeling.

Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5

To be continued on next page
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Table 6.8

Illustrations- 6.5.4

For better understanding of above defined labeling pattern, let us con-

sider few examples.

Example 1 Consider a graph obtained by joining two copies of cycles C5 with

one chord by a path P6(it is the case related to n ≡ 1(mod4), k ≡ 2(mod4)).

The labeling pattern is shown in Figure 6.13.
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Figure 6.13

Example 2 Consider a graph obtained by joining two copies of cycles C7

with one chord by a path P7(it is the case related with n ≡ 3(mod4),

k ≡ 3(mod4)).The labeling pattern is shown in Figure 6.14.

Figure 6.14

Theorem 6.5.5 The graph G obtained by joining two cycles with twin

chords by a path of arbitrary length is cordial where chords form two tri-

angles and one cycle Cn−2.
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Proof Let u1, ...., un be successive vertices of first copy of cycle Cn such

that u1, u2, u3 form a triangle with one of the chord and d(u1) = 4, d(u3) =

d(u4) = 3 while d(u2) = 2 and d(ui) = 2, for 5 ≤ i ≤ n. Let w1, ...., wn be

the successive vertices of second copy of cycle Cn such that w1, w2, w3 form a

triangle with one of the twin chords and d(w1) = 4, d(w3) = d(w4) = 3 while

d(w2) = 2 and d(wi) = 2, for 5 ≤ i ≤ n. Let v1, ...., vk be the successive

vertices of path Pk with v1 = ui, for i = 3 or i = 1 or i = 4 and vk = w1. To

define labeling function f : V (G) → {0, 1} we consider following cases.

Case-A v1 = u3

Subcase 1: n ≡ 0(mod4),k ≡ 0, 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 2: n ≡ 0(mod4),k ≡ 1(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)
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= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 3: n ≡ 0(mod4),k ≡ 2(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 4: n ≡ 1(mod4),k ≡ 0(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wn) = 0 and

f(wi) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ n− 1.

Subcase 5: n ≡ 1(mod4),k ≡ 1, 2(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.
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f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 6: n ≡ 1(mod4),k ≡ 3(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 7: n ≡ 2(mod4),k ≡ 0(mod4) and n ≡ 3(mod4),k ≡ 0(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(w1) = 0 and

f(wi) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 2 ≤ i ≤ n.

Subcase 8: n ≡ 2(mod4),k ≡ 1, 2(mod4)

In this case we define labeling f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.
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f(wi) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Subcase 9: n ≡ 2(mod4),k ≡ 3(mod4)

f(w1) = 0 and label remaining vertices as in Subcase 8.

Subcase 10: n ≡ 3(mod4),k ≡ 1(mod4)

f(w1) = 1 and label remaining vertices as in Subcase 6.

Subcase 11: n ≡ 3(mod4),k ≡ 2(mod4)

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 12: n ≡ 3(mod4),k ≡ 3(mod4)

f(vk) = 1 and label remaining vertices as in Subcase 11.

The labeling pattern defined above covers all possible arrangement

of vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.9 i.e. G admits cordial labeling.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5

To be continued on next page
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Table 6.9

Case-B v1 = u1

Subcase 1: n ≡ 0(mod4),k ≡ 0, 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.
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Subcase 2: n ≡ 0(mod4),k ≡ 1, 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 3: n ≡ 1(mod4),k ≡ 0(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 4: n ≡ 1(mod4),k ≡ 1(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.
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Subcase 5: n ≡ 1(mod4),k ≡ 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 6: n ≡ 1(mod4),k ≡ 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 7: n ≡ 2(mod4),k ≡ 0, 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.
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Subcase 8: n ≡ 2(mod4),k ≡ 1(mod4)

f(vk) = 0 and label remaining vertices as in Subcase 6.

Subcase 9: n ≡ 2(mod4),k ≡ 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 10: n ≡ 3(mod4),k ≡ 0(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 11: n ≡ 3(mod4),k ≡ 1(mod4)

f(vk) = 0 and label remaining vertices as in Subcase 10.

Subcase 12: n ≡ 3(mod4),k ≡ 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)
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= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(w1) = 1 and

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 2 ≤ i ≤ n.

Subcase 13: n ≡ 3(mod4),k ≡ 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vk) = 1 and

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of

vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.10. i.e. G admits cordial labeling.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5

To be continued on next page
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Table 6.10

Case-C v1 = u4

Subcase 1: n ≡ 0(mod4),k ≡ 0, 3(mod4) and n ≡ 3(mod4),k ≡ 0(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.
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Subcase 2: n ≡ 0(mod4),k ≡ 1, 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 3: n ≡ 1(mod4),k ≡ 0, 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 4: n ≡ 1(mod4),k ≡ 1(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ i ≤ n.
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Subcase 5: n ≡ 1(mod4),k ≡ 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 6: n ≡ 2(mod4),k ≡ 0(mod4) and n ≡ 3(mod4),k ≡ 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k.

f(w1) = 0 and

f(wi) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 2 ≤ i ≤ n.

Subcase 7: n ≡ 2(mod4),k ≡ 1(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.
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Subcase 8: n ≡ 2(mod4),k ≡ 2(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k.

f(wi) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 9: n ≡ 2(mod4),k ≡ 3(mod4)

In this case define labeling f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

f(vk) = 0 and

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k − 1.

f(wi) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 10: n ≡ 3(mod4),k ≡ 1, 2(mod4)

f(w1) = 1 and label remaining vertices as in Subcase 3.

The labeling pattern defined above covers all possible arrangement of

vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.11 i.e. G admits cordial labeling.
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Let n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, j ∈ N and

n ≥ 5

To be continued on next page
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Table 6.11

Illustrations 6.5.6

Let us demonstrate above labeling patterns by means of following ex-

amples.

Example 1 Consider a graph obtained by joining two copies of cycles C5

with twin chords by a path P4(it is the case related to Case-A, n ≡ 1(mod4),

k ≡ 0(mod4)). The labeling pattern is shown in Figure 6.15.
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Figure 6.15

Example 2 Consider a graph obtained by joining two copies of cycles C6

with twin chords by a path P6(it is the case related to Case-B, n ≡ 2(mod4),

k ≡ 2(mod4)).The labeling pattern is shown in Figure 6.16.

Figure 6.16

Example 3 Consider a graph obtained by joining two copies of cycles C8

with twin chords by a path P7(it is the case related to Case-C, n ≡ 0(mod4),

k ≡ 3(mod4)).The labeling pattern is shown in Figure 6.17.
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Figure 6.17

Theorem 6.5.7The graph G obtained by joining two copies of cycle Cn(1, 1, n−

5) with triangle by a path of arbitrary length is cordial.

Proof Let u1, . . . , un be consecutive vertices of first copy of cycle Cn(1, 1, n−

5) with triangle, v1, . . . , vk be consecutive vertices of path Pk with u1 = v1

and w1, . . . , wn be consecutive vertices of second copy of cycle Cn(1, 1, n− 5)

with triangle, where vk = w1. To define labeling function f : V (G) → {0, 1}

we consider following cases.

Case 1: n ≡ 0(mod4), k ≡ 0(mod4) and n ≡ 1(mod4), k ≡ 0, 3(mod4).

In this case define labeling function f as

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.
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Case 2: n ≡ 0(mod4), k ≡ 1(mod4)

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vk) = 1 and

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k − 1

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Case 3: n ≡ 0(mod4), k ≡ 2(mod4)

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case 4: n ≡ 0(mod4), k ≡ 3(mod4)

f(vk) = 0 and label remaining vertices as in Case 3.

Case 5: n ≡ 1(mod4), k ≡ 0, 3(mod4).

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)
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= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Case 6: n ≡ 1(mod4), k ≡ 1(mod4)

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(w1) = 0 and

f(wi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 2 ≤ i ≤ n.

Case 7: n ≡ 1(mod4), k ≡ 2(mod4)

In this case define labeling function f as

f(ui) = 0; if i ≡ 1, 2(mod4),

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.
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Case 8: n ≡ 2(mod4), k ≡ 0(mod4)

In this case define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(w1) = 1, f(w2) = 0 and

f(wi) = 0; if i ≡ 2, 3(mod4)

= 1 ;if i ≡ 0, 1(mod4), 3 ≤ i ≤ n.

Case 9: n ≡ 2(mod4), k ≡ 1(mod4)

In this case define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vk) = 1

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k − 1

f(wn) = 1, f(wn−1) = 0 and

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1 ;if i ≡ 1, 2(mod4), 1 ≤ i ≤ n− 2.

Case 10: n ≡ 2(mod4), k ≡ 2(mod4)

In this case define labeling function f as
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f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

f(wn) = 1, f(wn−1) = 0 and

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1 ;if i ≡ 1, 2(mod4), 1 ≤ i ≤ n− 2.

Case 11: n ≡ 2(mod4), k ≡ 3(mod4)

In this case define labeling function f as

f(un) = 0, f(un−1) = 1 and

f(ui) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2

f(vk) = 0 and

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k − 1

f(wn) = 0, f(wn−1) = 1 and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 1 ≤ i ≤ n− 2.

Case 12: n ≡ 3(mod4), k ≡ 0(mod4)

In this case define labeling function f as

f(u1) = 1, f(u2) = 0 and

f(ui) = 0; if i ≡ 0, 3(mod4)

152



= 1; if i ≡ 1, 2(mod4), 3 ≤ i ≤ n

f(vk) = 1 and

f(vj) = 0; if j ≡ 0, 3(mod4)

= 1; if j ≡ 1, 2(mod4), 1 ≤ j ≤ k − 1

f(wi) = 0; if i ≡ 0, 3(mod4)

= 1 ;if i ≡ 1, 2(mod4), 1 ≤ i ≤ n.

Case 13:n ≡ 3(mod4), k ≡ 1(mod4)

In this case define labeling function f as

f(u1) = 1, f(u2) = 0 and

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 3 ≤ i ≤ n

f(vj) = 0; if j ≡ 2, 3(mod4)

= 1; if j ≡ 0, 1(mod4), 1 ≤ j ≤ k

f(w1) = 1, f(w2) = 0 and

f(wi) = 0; if i ≡ 1, 2(mod4)

= 1 ;if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.

Case 14: n ≡ 3(mod4), k ≡ 2(mod4)

In this case define labeling function f as

f(u1) = 1, f(u2) = 0 and

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 3 ≤ i ≤ n

f(vj) = 0; if j ≡ 0, 1(mod4)

= 1; if j ≡ 2, 3(mod4), 1 ≤ j ≤ k

153



f(wi) = 0; if i ≡ 0, 1(mod4)

= 1 ;if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 15: n ≡ 3(mod4), k ≡ 3(mod4)

In this case define labeling function f as

f(u1) = 1, f(u2) = 0 and

f(ui) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 3 ≤ i ≤ n

f(vj) = 0; if j ≡ 1, 2(mod4)

= 1; if j ≡ 0, 3(mod4), 1 ≤ j ≤ k

f(w1) = 0, f(w2) = 1 and

f(wi) = 0; if i ≡ 0, 1(mod4)

= 1 ;if i ≡ 2, 3(mod4), 3 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement

of vertices. In each case, the graph G under consideration satisfies the condi-

tions |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1 as shown in following Table

6.12. i.e. G admits cordial labeling.
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n = 4a + b, k = 4c + d, i = 4s + r, j = 4x + y, where n, k, i, jεN .

To be continued on next page
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Table 6.12

Illustration - 6.5.8

Let us demonstrate above defined labeling pattern by means of fol-

lowing examples.

Example 1 Consider a graph obtained by joining two copies of cycle C8 with

triangle by a path P5(it is the case related to n ≡ 0(mod4), k ≡ 1(mod4)).

The labeling pattern is shown in Figure 6.18.

Figure 6.18

Example 2 Consider a graph obtained by joining two copies of cycle C9 with

triangle by a path P4(it is the case related to n ≡ 1(mod4), k ≡ 0(mod4)).

156



The labeling pattern is shown in Figure 6.19.

Figure 6.19

Example 3 Consider a graph obtained by joining two copies of cycle C7 with

triangle by a path P3(it is the case related to n ≡ 3(mod4), k ≡ 3(mod4)).

The labeling pattern is shown in Figure 6.20.

Figure 6.20

¶ Remark-6.5.9 In the results derived in sections 6.4 and 6.5 we con-

sider edges and path of arbitrary length respectively between end vertices

of chord but it is also possible to discuss cordiality when edges or path of

arbitrary length are attached to other vertices.
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6.6 Some Open Problems :

¶ In connection of cordial labeling of path union,instead of taking one

edge between two graphs one can think path of arbitrary length between any

two graphs. Then the results of Theorem 6.5.7 and Theorem 6.5.9 reported

in previous section will be spacial cases.

¶ One can derive results similar to the previous section for multiple shells,

helms etc.

¶ One can discuss cordiality in the context of various graph operations

like Contraction, barycentric subdivision etc.

6.7 Concluding Remarks :

In this chapter cordial labeling is discussed in detail and survey of some

existing results is carried out. Ten new results are obtained. Results of Theo-

rem 6.5.1 and Theorem 6.5.5 are accepted for publication in The Mathemat-

ics Student(December 2007) while results of Theorem 6.3.4, Theorem 6.4.2

and Theorem 6.5.3 are accepted for publication in IJMMS (June 2008(1)).

Both the research papers are collaborative work of Vaidya et.al.[122] and

[124]. Hint for further research is given in the form of open problems. Inves-

tigations carried out here are novel and important. Labeling pattern is given

in very elegant way and it is demonstrated by means of several examples.

In the penultimate chapter cordial labeling is discussed in the context of

some graph operations.
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Chapter 7

Cordiality and Some Graph
Operations
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7.1 Introduction :

The previous chapter provides brief account of cordial labeling while this

chapter is targeted to discuss cordial labeling in the context of different graph

operations.

7.2 Join of Two Graphs and Cordial Labeling :

Definition 7.2.1 Let G and H be two graphs such that V (G) ∩ V (H) = ∅.

Then join of G and H is denoted by G+H. It is the graph with V (G+H) =

V (G)∪V (H), E(G+H) = E(G)∪E(H)∪J , where J = {uv/u ∈ V (G), v ∈

V (H)}.

In the following Figure 7.1 join G + H of two graphs G and H is shown.

G = P2 H = P3 G + H = P2 + P3

Figure 7.1

Cordiality of join of two graphs can be intimately discussed in reference

of size of the graph in following way.

• Youssef[131] has proved that if G and H are cordial and both have even

size then G + H is cordial. In this context we have the following aspects.

? Let G = C6 and H = P3. Then G is of even size and not cordial(see

[70]), H is of even size and cordial(see [32]) while G + H is cordial as shown
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in Figure 7.3.

G = C6 H = P3

Figure 7.2

G + H = C6 + P3

Figure 7.3

? Let G = H = C6 then G and H both of even size and not cordial as

proved by Ho et al.[70] while G + H is cordial as shown in Figure 7.5.
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G = C6 H = C6

Figure 7.4

G + H = C6 + C6

Figure 7.5

? Let G = C5 and H = K2. Then G and H both are of odd size and

cordial and G + H is also cordial as shown in following Figure 7.7.
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G = C5 H = K2

Figure 7.6

G + H = C5 + K2

Figure 7.7

? Let G = H = K2. Then G and H both are of odd size and cordial(see

[32]) while G + H is not cordial as proved by Cahit[32].
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G = K2 H = K2

Figure 7.8

G + H = K4

Figure 7.9

Some other known results are listed below.

• Seoud, Diab and Elsahawi[107] have proved the following.

∗ Pm + Pn is cordial for all m and n except (m, n) = (2, 2).

∗ Cm +Cn is cordial if m is not congruent to 0(mod4) and n is not congruent

to 2(mod4).

∗ Cn + K1,m is cordial for n is not congruent to 3(mod4) and odd m except

(n, m) = (3, 1).

• Diab[43] proved that Cm + Pn is cordial if and only if (m, n) 6= (3, 3), (3, 2)

or (3, 1). In the same paper he showed that Pm + K1,n is cordial if and only

if (m, n) 6= (1, 2).

7.3 Union of Two Graphs and Cordial Labeling:

Definition 7.3.1 If G1 and G2 are subgraphs of a graph G then union of
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G1 and G2 is denoted by G1 ∪ G2 which is the graph consisting of all those

vertices which are either in G1 or in G2 (or in both) and with edge set con-

sisting of all those edges which are either in G1 or in G2 (or in both).

Youssef[132] has proved that if G and H are cordial and one has even

size then G∪H is cordial. In connection to this result we have the following

aspects.

? If G1 and G2 are cordial and both have odd size then G1 ∪ G2 is cor-

dial.

To see this consider graph G and its subgraphs G1 and G2 as shown in

Figure 7.10, Figure 7.11 and Figure 7.12 respectively.

Figure 7.10

G1 = C3 G2 = P2

Figure 7.11
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G1 ∪G2

Figure 7.12

? If G1 is not cordial and has even size, G2 is cordial has odd size then

G1 ∪G2 is cordial.

To see this consider graph G and its subgraphs G1 and G2 as shown in

Figure 7.13, Figure 7.14 and Figure 7.15 respectively.

G

Figure 7.13

166



G1 = C6 G2 = P2

Figure 7.14

G1 ∪G2

Figure 7.15

? If G1 is not cordial, G2 is not cordial then G1 ∪G2 is also not cordial.

To see this consider graph G and its subgraphs G1 and G2 as shown in

Figure 7.16, Figure 7.17 and Figure 7.18 respectively.
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G

Figure 7.16

G1 = C6 G2 = K4

Figure 7.17
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G1 ∪G2

Figure 7.18

where G1 ∪ G2 is not cordial as it Eulerian graph with number of edges

congruent to 2(mod4) (see[32]).

Some other known results are listed below.

• Diab[43] proved that Pm ∪K1,n is cordial if and only if (m,n) 6= (1, 2). In

the same paper he proved that Cm ∪K1,n is cordial for all m and n.

• Youssef[132] proved that Cm ∪ Cn is cordial if and only if m + n is not

congruent to 2(mod4).

7.4 Cartesian Product of Two Graphs and Cordial

Labeling :

Definition 7.4.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then

cartesian product of G1 and G2 which is denoted by G1 × G2 is the graph

with vertex set V = V1 × V2 consisting of vertices u = (u1, u2), v = (v1, v2)

such that u and v are adjacent in G1×G2 whenever (u1 = v1 and u2 adjacent

to v2) or (u2 = v2 and u1 adjacent to v1).
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In the following Figure 7.19 cartesian product of P3 × P3 is shown.

P3 P3 × P3

Figure 7.19

Some known results are listed below.

• Ho et al.[71] proved that the cartesian product of two cordial graphs of

even size is cordial.

To see this consider G = H = P3. Here G and H both are cordial and of

even size. Then G ×H = P3 × P3 is also cordial according to the following

results.

• Lee et al.[85] proved that

? The cartesian product of an arbitrary number of paths is cordial.

? The cartesian product of two cycles is cordial if and only if atleast one of

them is even.

? The cartesian product of an arbitrary number of cycles is cordial if atleast

one of them has length a multiple of 4 or atleast two of them are even.

• Seoud and Abdel Maqsoud[106] proved that Cn × Pm is cordial except for

170



the case C4k+2 × P2.

7.5 Reconstruction Of Graphs And Cordial Label-

ing

Reconstruction of graph is discussed in detail in Chapter 4. In this section

we will discuss cordial labeling in the context of reconstruction of graph.

We observe that cordiality of a graph may or may not be reconstructible. In

support of this observation we have the following:

• There are some graphs which are not cordial although their deck con-

tains cordial cards.

Consider cycle Cn where n ≡ 2(mod4). Such cycle Cn is not cor-

dial as proved by Ho et. al.[70]. Here deck G contains n copies of path Pn

which are cordial as proved by Cahit[32].

• There are some graphs which are cordial but their deck contains some

graphs which are not cordial.

Tadpole T (l, 1) where l ≡ 2(mod4) is cordial as proved by Ho et.

al.[70]. Here deck G contains one copy of cycle Cl and l copies of trees. Here

cycle Cl where l ≡ 2(mod4) is not cordial as proved by Ho et. al.[70] while l

copies of trees are cordial as proved by Cahit[32].

• The wheel graph Wn = Cn + K1 is reconstructible from the deck of

one copy of cycle Cn and n copies of fans Fn−1 = Pn−1 + K1. Here in the

deck :
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1. When n ≡ 0, 1(mod4) the cycle Cn as well as fans Fn−1 are cordial and

the graph reconstructed from it is Wn is also cordial.

2. When n ≡ 2(mod4) the cycle Cn is not cordial and fans Fn−1 are cordial.

The graph reconstructed from these deck is Wn where n ≡ 2(mod4) is cor-

dial.

3. When n ≡ 3(mod4) the cycle Cn as well as fans Fn−1 are cordial but graph

Wn reconstructed from this deck is not cordial.

¶ Remark

For the cordiality of wheel, cycle and fan one can refer the related references

mentioned in Chapter 6.

7.6 Contraction Of Graphs And Cordial Labeling

:

Definition 7.6.1 Let e = uv be an edge of the simple, finite, connected

and undirected graph G and d(u) = k, d(v) = l. Let N(u) = {v, u1, . . . , un−1}

and N(v) = {u, v1, . . . , vl−1}. A contraction on the edge e changes G to a

new graph G ∗ e where V (G ∗ e) = (V (G) − {u, v}) ∪ {w}, E(G ∗ e) =

E(G− {u, v}) ∪ {wu1, wu2, . . . , wuk−1, wv1, . . . , wvl−1}

and w is new vertex not belonging to G.

Note that:

• Contraction of cycle Cn is cycle Cn−1.

• Contraction of wheel Wn = Cn + K1 is either fan Fn−1 or wheel Wn−1.

• Contraction of Kn is Kn−1.

• Contraction of Pn is Pn−1.
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In the context of above definition we have following observations

Observation 1 : Contraction of cycle Cn is cordial except n ≡ 3(mod4)

because as proved by Ho et. al.[70] unicyclic graphs are cordial except C4k+2.

Observation 2 : Contraction of complete graph Kn is cordial iff n ≤ 4

because Cahit[32] proved that Kn is cordial if and only if n ≤ 3.

Definition 7.6.2 A collection of edge contracted subgraph of a graph

G is called contraction deck of G which is denoted as G∗ and it is defined as

G∗ = {G ∗ e/e ∈ G}. Each element of G∗ is called card. We will have two

more observations in connection of above definition.

Observation 3 : Contraction deck of wheel graph Wn = Cn + K1 (where

n ≡ 0(mod4)) will contain some cordial as well as some non-cordial cards

because contraction deck of the wheel graph contains fans Fn−1 and wheel

Wn−1. As proved by Cahit [32] all fans are cordial but wheels Wn are cordial

except n ≡ 3(mod4).

Observation 4 : Contraction deck of Tadpole T (l, r) contains all cordial

cards except l ≡ 2(mod4) and r = 1 because contraction deck of tadpole

T (l, 1) where l ≡ 2(mod4) contains fans and a cycle Cl where l ≡ 2(mod4).

As proved by Ho et. al.[70] unicyclic graphs are cordial except C4k+2.

7.7 Vertex Switching And Cordial Labeling

Definition 7.7.1 A vertex switching Gv of a graph G is obtained by tak-

ing a vertex v of G, removing all edges incident to v and adding edges joining

v to every vertex not adjacent to v in G.

We will discuss cordiality in the context of above definition. We will dis-
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cuss cordiality of vertex switching in some cycle related graphs.

Theorem 7.7.2 Vertex switching of cycle Cn is cordial.

Proof Let G = Cn and v1, v2, . . . , vn be successive vertices of Cn. Gv

denotes the vertex switching of G with respect to the vertex v of G.Here

note that in each of the following cases the labeling pattern starts from the

switched vertex which is considered as v1 and label the vertex in clockwise

direction. To define binary vertex labeling f : V (Gv) → {0, 1} following

cases to be considered.

Case 1: n ≡ 0, 1, 2(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case 2: n ≡ 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all the possibility of vertex switch-

ing. In each cases the graph under consideration satisfies the conditions for

cordiality as shown in following Table 7.1. i.e. Gv admits cordial labeling.

Let n = 4a + b, a ∈ N .

Table 7.1
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Illustrations - 7.7.3 For better understanding of above defined labeling

pattern let us consider few examples.

Example 1 Consider cycle C7 (it is the case related to n ≡ 3(mod4)). The

labeling pattern is shown in Figure 7.20.

G Gv

Figure 7.20

Example 2 Consider cycle C8 (it is the case related to n ≡ 0(mod4)). The

labeling pattern is shown in Figure 7.21.

G Gv

Figure 7.21

Theorem 7.7.4 Vertex switching of cycle Cn with one chord is cordial.

Proof Let G = Cn and v1, v2, . . . , vn be successive vertices of Cn. Gv

denotes the vertex switching of G with respect to the vertex v of G. Here
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note that in each of the following cases the labeling pattern starts from the

switched vertex which is considered as v1 and label the vertex in clockwise

direction. To define binary vertex labeling f : V (Gv) → {0, 1} following

cases to be considered.

Case A: Vertex switching of a vertex having d(v) = 2 and it is adjacent

with both end vertices of chord.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

f(v1) = 0, f(vn) = 1 and

f(vi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 2 ≤ i ≤ n− 1.

Subcase 2: n ≡ 1(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n.

Subcase 3: n ≡ 2(mod4)

In this case we define labeling f as

f(v1) = 0, f(vn) = 1 and

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 2 ≤ i ≤ n− 1.

Subcase 4: n ≡ 3(mod4)

In this case we define labeling f as

f(v1) = 0, f(vn−1) = 1, f(vn) = 0 and

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 2 ≤ i ≤ n− 2.
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Case B: Vertex switching of a vertex having d(v) = 3.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 2: n ≡ 1(mod4)

In this case we define labeling f as

f(vn) = 0 and

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 1 ≤ i ≤ n− 1.

Subcase 3: n ≡ 2(mod4)

In this case we define labeling f as

f(v1) = 1, f(vn) = 0 and

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 2 ≤ i ≤ n− 1.

Subcase 4 :n ≡ 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case C: Vertex switching of a remaining vertex which are having d(v) =

2.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

In this case first label both end vertices of chord by label 0. For remaining

vertices define labeling f as
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f(v1) = 1

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 2 ≤ i ≤ n.

Subcase 2: n ≡ 1, 2, 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all the possibility of vertex switch-

ing. In each cases A, B and C the graph under consideration satisfies the

conditions for cordiality as shown in following Table 7.2, Table 7.3 and Table

7.4 respectively. i.e. In each case Gv admits cordial labeling.

Let n = 4a + b, a ∈ N .

Table 7.2

Table 7.3
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Table 7.4

Illustrations - 7.7.5 For better understanding of above defined labeling

pattern, let us consider few examples.

Example 1 Consider cycle C6 with one chord (It is the case related to

Case A, n ≡ 2(mod4)). The labeling pattern is as shown in Figure 7.22.

G Gv

Figure 7.22

Example 2 Consider cycle C7 with one chord (It is the case related to Case

B, n ≡ 3(mod4)). The labeling pattern is as shown in Figure-7.23.

G Gv

Figure 7.23

Example 3 Consider cycle C8 with one chord (It is the case related to Case

C, n ≡ 0(mod4)). The labeling pattern is as shown in Figure-7.24.
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G Gv

Figure 7.24

Theorem 7.7.6 Vertex switching of cycle Cn with twin chords is cordial.

Proof Let G = Cn be the cycle with twin chords, where chords form two

triangles and one cycle Cn−2. Here number of vertices p = n and number of

edges q = n + 2. Let v1, v2, . . . , vn be successive vertices of G. Let e1 = vnv2

and e2 = vnv3 be the chords of cycle Cn. Gv will denotes the vertex switch-

ing of G with respect to the vertex v of G. Here note that in each of the

following cases the labeling pattern starts from the switched vertex which is

considered as v1 and label the vertex in clockwise direction. To define binary

vertex labeling f : V (Gv) → {0, 1} following cases to be considered.

Case A: Vertex switching of a vertex having d(v) = 2 and it is adjacent

with both end vertices of chord.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

f(v1) = 0, f(vn) = 1 and

f(vi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 2 ≤ i ≤ n− 1.

Subcase 2: n ≡ 1(mod4)
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In this case we define labeling f as

f(v1) = 0 and

f(vi) = 0; if i ≡ 2, 3(mod4)

= 1; if i ≡ 0, 1(mod4), 2 ≤ i ≤ n.

Subcase 3: n ≡ 2(mod4)

In this case we define labeling f as

f(v1) = 0, f(v2) = 1 and

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.

Subcase 4: n ≡ 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Case B: Vertex switching of a vertex are having d(v) = 3.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 2: n ≡ 1(mod4)

In this case we define labeling f as

f(v1) = 0, f(v2) = 1 and

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.
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Subcase 3: n ≡ 2(mod4)

In this case we define labeling f as

f(v1) = 0, f(v2) = 1 and

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.

Subcase 4: n ≡ 3(mod4)

In this case we define labeling f as

f(v1) = 0 and

f(vi) = 0; if i ≡ 0, 3(mod4)

= 1; if i ≡ 1, 2(mod4), 2 ≤ i ≤ n.

Case C: Vertex switching of a vertex which is having d(v) = 4.

Subcase 1: n ≡ 0, 1, 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 1 ≤ i ≤ n.

Subcase 2: n ≡ 2(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Case D: Vertex switching of a remaining vertex which are having d(v) =

2.

Subcase 1: n ≡ 0(mod4)

In this case we define labeling f as

In this case first label both end vertices of chord by label 0. For remaining

vertices define labeling f as
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f(v1) = 1

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 2 ≤ i ≤ n.

Subcase 2: n ≡ 1, 2, 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all the possibility of vertex

switching. In each cases A, B, C and D the graph under consideration satis-

fies the conditions for cordiality as shown in following Table 7.5, Table 7.6,

Table 7.7 and Table 7.8 respectively. i.e. In each case Gv admits cordial

labeling.

Let n = 4a + b, a ∈ N .

Table 7.5
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Table 7.6

Table 7.7

Table 7.8

Illustrations - 7.7.7 For better understanding of above defined labeling

pattern, let us consider few examples.

Example 1 Consider cycle C6 with twin chords (It is the case related to

Case A, n ≡ 2(mod4)). The labeling pattern is shown in Figure-7.25.
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G Gv

Figure 7.25

Example 2 Consider cycle C7 with twin chords (It is the case related to

Case B, n ≡ 3(mod4)). The labeling pattern is shown in Figure-7.26.

G Gv

Figure 7.26

Example 3 Consider cycle C8 with twin chords (It is the case related to

Case C, n ≡ 0(mod4)). The labeling pattern is shown in Figure-7.27.
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G Gv

Figure 7.27

Theorem 7.7.8 Vertex switching of cycle Cn with triangle is cordial ex-

cept n ≡ 0(mod4).

Proof Let G be cycle with triangle Cn(1, 1, n− 5). Let u1, u2, . . . , un be

successive vertices of G. Let u1, u3 and u5 be the vertices of triangle formed

by edges e1 = u1u3, e2 = u3u5 and e3 = u1u5. Gv denotes the vertex switch-

ing of G with respect to the vertex v of G.Here note that in each of the

following cases the labeling pattern starts from the switched vertex which

is considered as v1 and label the vertex in clockwise direction. Note that

for the case n ≡ 0(mod4) we have varified with the help of computer that

graph Gv does not satisfy the condition of cordial labeling hence it is not

cordial. So it remains to consider following cases to define labeling function

f : V (G) → {0, 1}.

Case A: Vertex switching of a vertex having d(v) = 4.

Subcase 1: n ≡ 1, 2(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)
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= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

Subcase 2: n ≡ 3(mod4)

In this case we define labeling f as

f(v1) = 0, f(v2) = 1 and

f(vi) = 0; if i ≡ 1, 2(mod4)

= 1; if i ≡ 0, 3(mod4), 3 ≤ i ≤ n.

Case B: Vertex switching of a vertex having d(v) = 2.

Subcase 1: n ≡ 1, 2, 3(mod4)

In this case we define labeling f as

f(vi) = 0; if i ≡ 0, 1(mod4)

= 1; if i ≡ 2, 3(mod4), 1 ≤ i ≤ n.

The labeling pattern defined above covers all the possibility of vertex switch-

ing. In each cases A and B the graph under consideration satisfies the con-

ditions for cordiality as shown in following Table 7.9 and Table 7.10 respec-

tively.

Let n = 4a + b, a ∈ N .

Table 7.9
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Table 7.10

7.8 Concluding Remarks

This chapter was aimed to discuss cordial labeling in the context of different

graph operations like reconstruction, contraction, join etc. This approach is

novel. The results reported here are original and provide new direction in

the field of graph labeling techniques.

Next chapter is aimed to discuss 3-equitable labeling of graphs.
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Chapter 8

3-Equitable Labeling Of Some
Graphs
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8.1 Introduction:

In the previous chapter we have discussed cordiality in the context of

various graph operations while this chapter is aimed to discuss 3-equitable

labeling of graphs in detail. Three new 3-equitable graphs are investigated.

8.2 Some Definitions and Existing Results:

As we mentioned in Chapter 3 Cahit[32] has defined k-equitable labeling

in 1990. Here we will discuss 3-equitable labeling which is particular type of

k-equitable labeling defined as follows.

Definition 8.2.1 Let G = (V, E) be a graph. A mapping f : V (G) →{0,1,2}

is called ternary vertex labeling of G and f(v) is called label of the vertex v

of G under f .

For an edge e = uv the induced edge labeling f ∗ : E(G) →{0,1,2} is given

by f ∗(e)=|f(u)− f(v)|.Let vf (0),vf (1),vf (2) be the number of vertices of G

having labels 0,1 and 2 respectively under f and let ef (0),ef (1),ef (2) be the

number of edges having labels 0,1 and 2 respectively under f ∗.

Definition 8.2.2 A ternary vertex labeling of a graph G is called 3-

equitable labeling if |vf (i)− vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, 0≤ i, j ≤2. A

graph G is called 3-equitable graph if it admits 3-equitable labeling.

Some known families of 3-equitable graphs are listed below.

• Cahit[32],[33] proved that

? Cn is 3-equitable if and only if n is not congruent to 3(mod6).
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? An Eulerian graph with q ≡ 3(mod6) is not 3-equitable where q is the

number of edges.

? All caterpillars are 3-equitable.

? Wn is 3-equitable if and only if n is not congruent to 3(mod6).

? He conjectured that A triangular cactus with n blocks is 3-equitable if and

only if n is even.

? Every tree with fewer than five end vertices has 3-equitable labeling.

• Seoud and Abdel Maqsoud[105] proved that

? A graph with p vertices and q edges in which every vertex has odd degree

is not 3-equitable if p ≡ 0(mod3) and q ≡ 3(mod6).

? All fans except P2 + K1 are 3-equitable.

? P 2
n is 3-equitable for all n except 3.

? Km,n, 3 ≤ m ≤ n is 3-equitable if and only if (m, n) = (4, 4).

• Bapat and Limaye[17] proved that

? Helms Hn, n ≥ 4 are 3-equitable.

• Youssef[131] proved that Wn = Cn + K1 is 3-equitable for all n ≥ 4.

In the next section we will give brief account of some new results investigated

by us.

8.3 Some Cycle Related 3-equitable Graphs:

We have investigated some new families of cycle related 3-equitable graphs.

In this section we will give 3-equitable labeling for cycle with one chord, cycle
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with twin chords and cycle with triangle.

Theorem 8.3.1: Cycle with one chord is 3-equitable.

Proof: Let G be the cycle with one chord. Let v1, v2, ..., vn be successive

vertices of cycle Cn. Let e1 = v2vn be chord of a cycle Cn.To define ternary

vertex labeling f : V (G) →{0,1,2} we consider the following cases,

Case 1: n ≡ 0, 4, 5(mod6)

In this case we define labeling as

f(vi) =0 ;if i ≡ 2, 5(mod6)

=1 ;if i ≡ 0, 1(mod6)

=2 ;if i ≡ 3, 4(mod6), 1 ≤ i ≤ n.

Case 2: n ≡ 1(mod6)

In this case we define labeling as

f(vi) =0 ;if i ≡ 3, 4(mod6)

=1 ;if i ≡ 0, 1(mod6)

=2 ;if i ≡ 2, 5(mod6), 1 ≤ i ≤ n.

Case 3: n ≡ 2(mod6)

In this case we define labeling as

f(vn−1) = 0, f(vn) = 2 and

f(vi) =0 ;if i ≡ 0, 3(mod6)

=1 ;if i ≡ 1, 2(mod6)

=2 ;if i ≡ 4, 5(mod6), 1 ≤ i ≤ n− 2.

Case 4: n ≡ 3(mod6)

In this case we define labeling as

f(vn−1) = 0, f(vn) = 2 and label remaining vertices as in Case 2.
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The labeling pattern defined above covers all possible arrangement of

vertices. In each case the graph G under consideration satisfies the condi-

tions |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in

following Table 8.1 i.e. G admits 3-equitable labeling.

Let n = 4a + b, aεN .

Table 8.1

Illustrations - 8.3.2

For better understanding of above defined labeling pattern let us con-

sider few examples.

Example 1 Consider cycle C7 with one chord. The labeling pattern is shown

in Figure 8.1 (it is the case related to n ≡ 1(mod6)).

Figure 8.1

Example 2 Consider cycle C11 with one chord . The labeling pattern is
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shown in Figure 8.2 (it is the case related to n ≡ 5(mod6)).

Figure 8.2

Theorem 8.3.3 Cycle with twin chords where chords form two triangles

and one cycle Cn−2 is 3-equitable.

Proof Let G be the cycle with twin chords where chords form two trian-

gle and one cycle Cn−2. Let v1, v2, ...., vn be successive vertices of cycle Cn

and e1 = v2vn and e2 = v3vn be two chords of a cycle Cn.To define ternary

vertex labeling f : V (G) →{0,1,2} we consider the following cases.

Case 1: n ≡ 0(mod6)

In this case we define labeling as

f(vi) =0 ;if i ≡ 1, 2(mod6)

=1 ;if i ≡ 4, 5(mod6)

=2 ;if i ≡ 0, 3(mod6), 1 ≤ i ≤ n.

Case 2: n ≡ 1(mod6)

In this case we define labeling as

f(vi) =0 ; if i ≡ 2, 5(mod6)

=1 ; if i ≡ 3, 4(mod6)

=2 ; if i ≡ 0, 1(mod6), 1 ≤ i ≤ n.
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Case 3: n ≡ 2, 3, 4, 5(mod6)

In this case we define labeling as

f(vi) =0 ;if i ≡ 2, 5(mod6)

=1 ;if i ≡ 0, 1(mod6)

=2 ;if i ≡ 3, 4(mod6), 1 ≤ i ≤ n.

The labeling pattern defined above covers all possible arrangement of

vertices. In each case the graph G under consideration satisfies the condi-

tions |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in

following Table 8.2. i.e. G admits 3-equitable labeling.

Let n = 4a + b, nεN , n ≥ 5.

Table 8.2

Illustrations - 8.3.4

For better understanding of above defined labeling pattern let us con-

sider few examples.

Example 1 Consider cycle C9 with twin chords . The labeling pattern is as

shown in Figure 8.3 (it is the case related to n ≡ 3(mod6)).
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Figure 8.3

Example 2 Consider cycle C11 with twin chords . The labeling pattern is

as shown in Figure 8.4 (it is the case related to n ≡ 5(mod6)).

Figure 8.4

Theorem 8.3.5: Cycle with triangle Cn(1, 1, n−5) is 3-equitable except

n ≡ 0(mod6).

Proof:

Let G be cycle with triangle Cn(1, 1, n− 5). Let v1, v2, . . . , vn be succes-

sive vertices of G. Let v1, v3 and v5 be the vertices of triangle formed by

edges e1 = v1v3, e2 = v3v5 and e3 = v1v5.To define ternary vertex labeling

f : V (G) →{0,1,2} we consider the following cases.

Case 1: n ≡ 0(mod6)

Here graph G is an Eulerian graph with number of edges congruent to
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3(mod6). Then in this case G is not 3-equitable as proved by Cahit[178].

Case 2: n ≡ 1(mod6) in this case we define labeling as

f(v1) = 2, f(v2) = 1 and

f(vi) =0 ;if i ≡ 1, 4(mod6)

=1 ;if i ≡ 2, 3(mod6)

=2 ;if i ≡ 0, 5(mod6), 3 ≤ i ≤ n.

Case 3: n ≡ 2(mod6)

In this case we define labeling as

f(v1) = 2, f(v2) = 0 and

f(vi) =0 ;if i ≡ 1, 4(mod6)

=1 ;if i ≡ 0, 5(mod6)

=2 ;if i ≡ 3, 2(mod6), 3 ≤ i ≤ n.

Case 4: n ≡ 3(mod6)

In this case we define labeling as

f(vn−2) = 0, f(vn−1) = 2, f(vn) = 1 and

f(vi) =0 ;if i ≡ 0, 3(mod6)

=1 ;if i ≡ 4, 5(mod6)

=2 ;if i ≡ 1, 2(mod6), 1 ≤ i ≤ n− 3.

Case 5: n ≡ 4(mod6)

In this case we define labeling as

f(vn−3) = 1, f(vn−2) = 0, f(vn−1) = 2,f(vn) = 0 and

f(vi) =0 ;if i ≡ 1, 4(mod6)

=1 ;if i ≡ 0, 5(mod6)

=2 ;if i ≡ 2, 3(mod6), 1 ≤ i ≤ n− 4.
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Case 6: n ≡ 5(mod6)

In this case we define labeling as

f(vn−2) = 1, f(vn−1) = 0, f(vn) = 0 and

f(vi) =0 ;if i ≡ 0, 3(mod6)

=1 ;if i ≡ 4, 5(mod6)

=2 ;if i ≡ 1, 2(mod6), 1 ≤ i ≤ n− 3.

The labeling pattern defined above covers all possible arrangement of

vertices. In each case the graph G under consideration satisfies the condi-

tions |vf (i) − vf (j)| ≤ 1 and |ef (i) − ef (j)| ≤ 1 (0 ≤ i, j ≤ 2) as shown in

following Table 8.3. i.e. G admits 3-equitable labeling.

Let n = 4a + b,nεN , n ≥ 6.

Table 8.3

Remark - 8.3.6: In the above Theorem 8.3.5 we have discussed the 3-

equitable labeling of Cn(1, 1, n − 5) but it is possible to develop 3-equitable

labeling when three chords are making possible triangle with respect to given

cycle. For the sake of brevity that discussion is not included here.

Illustrations - 8.3.7

For better understanding of above defined labeling pattern let us con-

sider few examples.

Example 1 Consider cycle C8 with triangle . The labeling pattern is as

shown in Figure 8.5 (it is the case related to n ≡ 2(mod6)).
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Figure 8.5

Example 2 Consider cycle C10 with triangle . The labeling pattern is as

shown in Figure 8.6 (it is the case related to n ≡ 4(mod6)).

Figure 8.6

8.4 Some Open Problems:

¶ One can discuss 3-equitable labeling in the context of various graph oper-

ations like Reconstruction, contraction etc.

¶ One can investigate 3-equitable labeling for path union of cycles, cycle with

one chord, cycle with twin chords, cycle with triangle etc.

¶ One can investigate the results for 3-equitable labeling parallel to results

investigated as in Section 6.5 for cordial labeling.
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8.5 Concluding Remarks:

In this chapter 3-equitable labeling is discussed in detail and survey of

some existing results is carried out. The results obtained here are novel and

labeling pattern is given in very elegant way which is demonstrated by means

of several examples.

The penultimate chapter is aimed to discuss applications of graph la-

beling.
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Chapter 9

Applications of Graph Labeling
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9.1 Introduction :

Labeled graphs are becoming more interesting due to their broad range

of applications. This family has variety of applications in diversified fields.

Labeled graphs have vital applications to coding theory, particularly in the

development of missile guidance codes, design of radar type codes and convo-

lution codes with optimal autocorrelation properties. Optimal circuit layouts

and solution of problem of number theory can be discussed in the context

of graph labeling. Ambiguity in X-ray crystallography can also be explained

using graph labeling techniques. A detail survey on such applications is

systematically studied by Bloom and Golomb[24]. We will discuss some in-

teresting applications reported in that paper. Some of these applications are

also recorded in Germina[55].

9.2 Semigraceful Labeling and Golomb Ruler:

We have discussed graceful labeling and graceful graphs in Chapter 5.

As we noted there Kn is graceful if and only if n ≤ 4. In other words it is

not possible to label vertices with numbers {0, 1, 2 . . ., nC2} such that each

edge can be labeled distinctly using labels {1, 2 . . ., nC2}. This problem has

motivated Golomb to define semigraceful labeling. According to him if the

constraint edge labels to be consecutive integers is relaxed then such label-

ing is called semigraceful labeling and the graph which admits such labeling

is called semigraceful graph. In other words semigraceful graph on n ver-

tices does not use all the labels from {1, 2 . . ., nC2} but some edge labels are

missing. In general vertex labels in semigraceful labeling may exceed nC2 or

repeat or both. Semigraceful labeling is optimal if it minimizes the largest
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edge label which is denoted by G(Kn).

In the following Figure 9.1(a) a semigraceful labeling for K5 is shown. In

this figure we will observe that no edge is labeled with label 6.

(a) (b)

Figure 9.1

Golomb observed an important equivalence for the coding theory con-

text between a semigraceful labeling which minimizes G(Kn). He developed

a special ruler on which n division marks(including the ends) are placed.

The positions of the division marks correspond to the number placed on the

end vertices of Kn. The edge labels of Kn thus exactly correspond to the

set of measurement which can be made on the ruler. Such ruler is named

by Gardner[53] as a Golomb Ruler. In Figure 9.1(b) a ruler corresponding

to semigraceful labeling for K5 is shown. As we mentioned earlier no edge is

labeled with 6. Equivalently from Figure 9.1(b) we can see that it is not pos-

sible to measure length 6 directly by the Golomb Ruler. All optimal rulers

have been found for n ≤ 11 and are summarized in Bloom and Golomb[25].
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Such ruler will be able to measure nC2 lengths which are numerically equal

to edge labels of Kn and they measure non-redundant minimal length.

In Figure 9.2 to 9.4 we provide semigraceful labeling and equivalent

Golomb rulers for K6, K7, K8 respectively. These rulers will measure maxi-

mum lengths of 17, 25 and 34 units in optimal way.

(a) (b)

Figure 9.2

(a) (b)

Figure 9.3
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(a)

(b)

Figure 9.4

It is also possible to provide other pattern of labeling and corresponding

ruler. Such rulers are called homometric rulers. For example for K6 it is

possible to provide semigraceful labeling using vertex labels 0, 1, 4, 10, 15, 17

or 0, 1, 4, 11, 13, 17 or 0, 1, 8, 12, 14, 17.

In the following Table 9.1 we have summarized the particulars regarding

possible semigraceful labeling of Kn for n ≤ 11.
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Table 9.1

The discovery of Golomb Rulers with more marks as well as method

for generating such class remains an open problem. The Golomb Rulers

discussed above have several applications in coding theory, X-ray crystal-

lography etc. In the remaining part of this chapter we will discuss such

applications.

9.3 Generation of Radar Type Codes :

In the previous section we have discussed Golomb Ruler in detail and

also seen the possibility to measure the lengths(distances) with that ruler.

In coding context distance interval is replaced by time interval. Let us con-

sider a time mark ruler corresponding to K5 shown in Figure 9.1. One can
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generate a radar code from this ruler by transmitting a sequence of five pulses

at times corresponding to the marks on the ruler. i.e. 0,1,4,9,11. We observe

that there is a 1 unit time interval between the onset of the first and second

pulses, 3 units time interval between the second and third, 5 units time in-

terval between third and fourth and 2 units between the last two. The time

duration between the emission of the signal and its return is determined by

correlating all incoming sequences of 11 time units duration with the original

sequence. Let each pulse be of one unit duration. Thus, when an incoming

string matches the original as shown in following Figure 9.5(a) then a signal

of strength 5 is generated as shown in following Figure 9.5(b).

Figure 9.5 (a) Figure 9.5 (b)

In the same Figure 9.5(b) we can see that a dip in the autocorrelation occurs

at ±6 time units, since there are no pulses which are aligned with a 6 unit

shift of the pulse sequence out of its synch position. Six, of course, is the

only distance of 11 or fewer units that the original ruler can not measure.

We have also seen that it is the only number which is missing in labeling of

K5.
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Eckler[45] investigated the problem related to above application for de-

signing missile guidance codes. In an air borne missile, receiver passes all

incoming signal trains down a delay line. If the line is tapped in several

places which correspond to the actual time interval between incoming pulses,

then the sum of those pulses will exceed a threshold and initiate some control

action.

The command code for such a missile contains two or more different com-

mands. Thus, in terms of instrumentation the delay line must be tapped by

sets of leads corresponding to the delays between pulses for each command.

In order to make code insensitive to random interference pulses (such as elec-

trical storms or jamming effects) all of the delays pulses for one command

must totally differ from those for every command. It is also desirable to use

the shortest code-word durations possible in order to minimize the delay line

and to decrease the time during which interference could occur. Thus Eckler

calculated (d − 1) intervals for the d pulses associated with of n different

commands. In synch these commands give on reception by the missile, an

autocorrelation of height d. Out-of-synch, the maximum autocorrelation is

1, and the noiseless cross-correlation between commands also never exceeds

1. This problem is analogous to find a set of n rulers of different lengths

with (d− 1) marks on it. The marks on these rulers permit measuring each

length in only one way. Moreover, the longest of these rulers must be as short

as possible. Alternatively the problem corresponds to label as gracefully as

possible a disconnected graph with n components. Each component is a com-

plete graph on (d − 1) vertices. For this each component of the composite

graph has a vertex labeled with 0. In the following Figure 9.6 2-message,
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4-pulse missile code with minimum duration is shown.

(a) (b) (c) (d)

Figure 9.6

In the above Figure 9.6,

(a) Difference triangles

(b) Rulers

(c) Disconnected graph with 2 components

(d) Connected graph

9.4 X-ray Crystallography and Golomb Ruler:

Ruler models are very much useful in X-ray crystallography. It some-

times happens that distinct crystal structures will give rise to identical X-

ray diffraction patterns. These inherent ambiguities in the X-ray analysis

of crystal structures have been studied by Patterson[101], Garrido[54] and

Franklin[48].

For any crystal structure positions of atoms are determined by measure-

ments made on X-ray diffraction patterns. These measurements indicate the
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set of distances between atoms in the crystal lattice, but in general do not

necessarily specify the absolute positions of the atoms without any ambigu-

ity. Mathematically, finite sets of integers R = {0 = a1 < a2 < . . . < an} and

S = {0 = b1 < b2 < . . . < an = bn} corresponding to two atom positions may

have exactly the same set of differences D(R) = D(S) = {|ai − aj| : i < j}.

Since the diffraction pattern determines the set of differences D(R), it is im-

possible to determine which of the homometric sets R or S produced it, and

consequently which crystal lattice give rise to the diffraction pattern. This

homometric set problem may be viewed as a determination of non-equivalent

rulers, which make identical sets of measurements. The sets R and S desig-

nate the positions of the marks of two rulers and D(R) and D(S) are their

respective sets of nC2 measurements.

Thus the class of diffraction patterns corresponds to a set of differences,

which has no repeated elements, i.e., to a non-redundant set. Two equivalent

rulers are shown in Figure 9.7. Also there are no non-redundant rulers with

fewer than 6 points or of length less than 17.

Figure 9.7

Measurements made by the rulers are 1,2,3,4,5,6,7,8,9,10,11,12,13,14,6,17.

The shortest non-redundant homometric pairs of rulers and the 6C2 = 15

intervals which they measure.
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9.5 Communication Network Labeling:

In a small communication network, it may be desirable to assign each

user terminal node number(vertex label) subject to the constraint that all

the resulting edges (communication links) receive distinct numbers. In this

way, the numbers of any two communicative terminals automatically specify

(by simple subtraction) the link number of the connecting path; and con-

versely the path number uniquely corresponds to the pair of user terminals

which it interconnects.

Properties of a potential numbering system for such networks have been

explored under the guise of gracefully labeled graphs, that is, the properties

of graceful graphs provide design parameters for an appropriate communica-

tion network.

If a graphical model of any communication network can not be labeled

gracefully, there is a possibility of using semigraceful labeling in which the

constraint requiring the edge labels to be consecutive integers is relaxed.

The most important question for utilizing a graceful addressing and iden-

tification system involve being better able to determine whether an arbitrary

model of a communications network is in a graceful configuration. If it is,

how should it be labeled? If it isn’t, can it be embedded into a graceful

structure easily? or should it be labeled semigracefully? Moreover, deter-

mination needs to be made of growth provisions for any addressing scheme,

i.e., of algorithms for labeling a graph in which new vertices and edges have

been added to a gracefully labeled graph.
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9.6 Scope of Further Research:

¶ One can explore the related ruler problems which have similar applica-

tions to communications network and problems of finding the shortest rulers

with k marks which measure all integer lengths from 1 to n, either (i) al-

lowing the same length to be measured in more than one way, or (ii) not

allowing the same length to be measured in more than one way.

¶ One can study the structure of different crystals using the ruler model.

This approach will give rise to interdisciplinary research work.

¶ One can develop the graph model for communication network using

other labeling techniques like harmonious labeling, k-equitable labeling etc.

9.7 Concluding Remarks:

Graph labelings present a common context for many applied and theo-

retical problems. Some of these are illustrated in the current chapter. Graph

labeling and diversified applications are held together by common thread.

This chapter creates an impression of graph labeling as a unifying model

which has vital potential to provide solutions for practical purposes. Graph

labeling techniques may work as a powerful unifying model with biotech-

nology, information technology and new generation communication network.

One can develop new labeling technique and discover its applications to di-

versified area.
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List of Symbols

|B| Cardinality of set B.

CHn Closed helm on n vertices.

Cn Cycle with n vertices.

C∗
n Star of cycle Cn.

E(G) or E Edge set of graph G.

Fn Fan on n vertices.

G Complement of G.

G ∪H Union of graphs G and H.

G ∩H Intersection of graphs G and H.

G×H Cartesian product of graphs G and H.

G + H Join of graphs G and H.

G ∼= H G is isomorphic to H.

G = (V, E) A graph G with vertex set V and edge se E.

G + v Suspension of graph G and vertex v.

G ∗ e Contraction of edge e in graph G.

G− e Graph G with one edge deleted.

G− v Graph G with one vertex deleted.

Hn Helm on n vertices.

Kn Complete graph on n vertices.

Km,n Complete bipartite graph.

N(v) Neighbourhood of vertex v.
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Pn Path graph on n vertices.

Sn Shell on n vertices.

T Tree.

T (G) Spanning tree of graph G.

V (G) or V Vertex set of graphs G.

Wn Wheel on n vertices.

(a, b) Greatest Common Divisor of integers a and b.

d(v) or dG(v) Degree of a vertex v of graph G.

4(G) Maximum degree of a vertex in graph G.

ef (n) Number of edges with edge label n.

nCr r Combinations of an n objects.

dne Least integer not less than real number n (Ceiling of n).

bnc Greatest integer not greater than real number n (Floor of n).

(p, q) A graph with order p and size q.

vf (n) Number of vertices with vertex label n.
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