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The theory of graphs mainly evolved with the rise of computer age. This theory

has rigorous applications in diversified fields like computer technology, communication

networks, electrical networks and social sciences. Graphs have been proved a powerful

mathematical tool to explain structure of molecules. It is also possible to explain flow

of control with the help of graph structures.

The study of famous Königsberg bridge problem during 1736 by Leonhard Euler

is supposed to be the birth of graph theory. In 1847 G. R. Kirchhoff developed the

theory of trees for their applications in electrical networks. Ten years later, A. Cayley

discovered trees while he was trying to enumerate the isomers of hydrocarbons.

It is believed that A. F. Möbious presented the famous four color problem in one

of his lecture in 1840. About ten years later, A. De Morgan discussed this problem with

his fellow mathematicians in London. The discussion by De Morgan is regarded as the

first systematic representation of four color problem. This problem has accelerated the

research in graph theory. The well celebrated four color problem took hundred years

for its solution. In 1976 Wolfgang Haken and Kenneth Appel solved this problem.

The first book on graph theory was published in 1936 by D. König. At present

thousands of research papers have been published and many titles available by eminent

authors like C. Berge, Frank Harary, Paul Erdös, D. B. West, Gross and Yellen.

The later part of the last century has witnessed intense activity in graph theory.

Development of computer science and optimization techniques boost up the research

work in the field. There are many interesting fields of research in graph theory. Some

of them are domination of graphs, decomposition of graphs, algebraic graph theory,

topological graph theory and labeling of graphs.

Any field of investigation becomes more interesting when there arise number of

problems that pose the challenges to our mind for their eventual solutions, more so

when the field it self is just emerging and whole galore of seemingly related or even

unrelated open problems provide motivation for research. The problems arising from

the study of various labeling techniques is one of such field. The labeling of graphs
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have become a field of multifaceted applications ranging from social science to neural

network and to biotechnology, to mention a few.

Graph labeling were first introduced by A. Rosa during 1960. At present couple of

dozens labeling techniques exist and vast amount of literature is available in printed as

well as in electronic form on various graph labeling problems.

The present work is aimed to discuss cordial labeling, 3-equitable labeling, strongly

multiplicative labeling and product cordial labeling. The content is divided in to six

chapters.

This first Chapter is of introductory nature.

The immediate Chapter-2 is intended to provide basic terminology and preliminar-

ies which are necessary for the subsequent chapters.

The penultimate Chapter-3 is targeted to discuss cordial labeling of graphs. Here

we report some of the existing results. We contribute fifteen new results to the theory of

cordial labeling. The focus of this chapter is to provide a cordial labeling for the larger

graphs obtained by some graph operations on standard graphs. We have investigated

some results in the context of graph operations namely fusion of two vertices and du-

plication of vertices. We also introduce new graph operation known as duplication of

an arbitrary edge and we prove that graphs obtained by duplication of an arbitrary edge

in cycle Cn and wheel Wn admit cordial labeling.

The Chapter-4 is focused on 3-equitable labeling of graphs. We investigate fif-

teen new results for 3-equitable labeling. All the results are analogous with the results

investigated in the context of cordial labeling which are reported in the previous chapter.

A graph H is called a supersubdivision of G if H is obtained from G by replacing

every edge ei of G by a complete bipartite graph K2,mi for some mi,1≤ i≤ q in such a

way that the end vertices of each ei are merged with the two vertices of 2-vertices part

of K2,mi after removing the edge ei from graph G. A supersubdivision H of G is said

an arbitrary supersubdivision of G if every edge of G is replaced by an arbitrary K2,m

(Here m may vary for each edge arbitrarily).
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In Chapter-5 we investigate four results in the context of cordial labeling and ar-

bitrary supersubdivision of graphs. We also contribute five new results which relate

strongly multiplicative labeling and arbitrary supersubdivision of graphs.

The last Chapter-6 is aimed to discuss product cordial labeling of graphs. We

investigate eleven new results for the product cordial labeling. Here we show that the

graph obtained by duplication of apex vertex of wheel Wn is not product cordial. Here

we also investigate product cordial labeling for the larger graphs resulted from the graph

operations on standard graphs.

Throughout this work we pose some open problems and throw some light on the

future scope of research.

The list of symbols and references are listed alphabetically at the end of the thesis.

List of Publications Arising From the Thesis

1. Cordial and 3-equitable labeling for some star related graphs., International Math-

ematical Forum,4(3), 2009, 1543-1553. (http://www.m-hikari.com/ imf.html)

2. Cordial and 3-equitable labeling for some shell related graphs., Journal of Scien-

tific Research, 1(3), 2009, 438-449.

(http://www.banglajol.info/index.php/JSR/index)

3. Some wheel related 3-Equitable Graphs in the context of vertex duplication., Ad-

vances Applications in Discrete Mathematics, 4(1), 2009, 71-85.

(http://www.pphmj.com)

4. Some new star related graphs and their cordial as well as 3-equitable labeling.,Journal

of Science,1(1),2010, 111-114.

5. Cordial and 3-equitable labeling for some wheel related graphs., Accepted for

publication in International Journal of Applied Mathematics.
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6. Strongly multiplicative labeling in the context of arbitrary supersubdivision., Jour-

nal of Mathematics Research, 2(2),2010, 28-33.

(http://ccsenet.org/journal/index.php/jmr)

7. Some new product cordial graphs., Journal of Applied Computer Science & Math-

ematics,8(4),2010, 62-65.(http://jacs.usv.ro)

8. Cordial labeling and arbitrary supersubdivision of some graphs., Accepted for

publication in International J. of Information Sc. and Computer Maths.

(http://pphmj.com/journals/ijiscm.htm)

The reprints/preprints of above papers are provided as an annexure.

Details of the Work Presented in Conferences

1. The paper entitled as "Gracefulness of union of two path graphs with grid graph

and complete bipartite graph" in International Conference on Emerging Tech-

nologies and Applications in Engineering, Technology and Sciences at Saurashtra

University, Rajkot during 13-14 January, 2008.

2. The paper entitled as "Product cordial graphs induced by some graph operations

on cycle related graphs" in Fifth Annual Instructional Conference of ADMA &

Graph Theory Day V at Periyar University, Salem (Tamil Nadu) during 8-10 June,

2009.

3. The paper entitled as "Some cordial graphs in the context of fusion and duplica-

tion" in Sixth Annual Instructional Conference of ADMA & Graph Theory Day

VI at College of Engineering, Pune(Maharashtra) during 8-10 June, 2010.
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2.1 Introduction

This chapter is intended to provide all the fundamental terminology and notations

which are needed for the present work.

2.2 Basic Definitions

Definition 2.2.1. A graph G = (V (G),E(G)) consists of two sets, V (G) = {v1,v2, . . .}

called vertex set of G and E(G) = {e1,e2, . . .} called edge set of G. Sometimes we

denote vertex set of G as V (G) and edge set of G as E(G). Elements of V (G) and E(G)

are called vertices and edges respectively.

Definition 2.2.2. An edge of a graph that joins a vertex to itself is called a loop. A loop

is an edge e = vivi.

Definition 2.2.3. If two vertices of a graph are joined by more than one edge then these

edges are called multiple edges.

Definition 2.2.4. A graph which has neither loops nor parallel edges is called a simple

graph.

Definition 2.2.5. If two vertices of a graph are joined by an edge then these vertices are

called adjacent vertices.

Definition 2.2.6. Two vertices of a graph which are adjacent are said to be neighbours.

The set of all neighbours of a vertex v of G is called the neighbourhood set of v. It is

denoted by N(v) or N[v] and they are respectively known as open and closed neighbour-

hood set.

N(v) = {u ∈V (G)/u adjacent to v and u , v}

N[v] = N(v)∪{v}

Definition 2.2.7. If two or more edges of a graph have a common vertex then these

edges are called incident edges.
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Definition 2.2.8. Degree of a vertex v of any graph G is defined as the number of edges

incident on v, counting twice the number of loops. It is denoted by deg(v) or d(v).

Definition 2.2.9. Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Then cartesian

product of G1 and G2 which is denoted by G1×G2 is the graph with vertex set V =

V1×V2 consisting of vertices u = (u1,u2), v = (v1,v2) such that u and v are adjacent in

G1×G2 whenever (u1 = v1 and u2 adjacent to v2) or (u2 = v2 and u1 adjacent to v1).

Definition 2.2.10. The corona G1�G2 of two graph G1 and G2 is defined as a graph

obtained by taking one copy of G1 (which has p1 vertices) and p1 copies of G2 and

attach one copy of G2 at every vertex of G1.

Definition 2.2.11. An armed crown is a graph in which path Pm is attached at each

vertex of cycle Cn. This graph is denoted by Cn�Pm.

Definition 2.2.12. The eccentricity of a vertex u, written ε(u), is maxv∈V (G)d(u,v).

Definition 2.2.13. Consider a cycle Cm. Let Ti (i = 1,2, . . . ,n≤m) be a rooted tree, that

is to say, a vertex in Ti is distinguished as the root of Ti. Form a graph G from Cm and

the Ti’s by identifying the root of each tree Ti with a vertex of Cm so that different roots

are identified with different vertices of Cm. Then G is a unicyclic graph which will be

denoted by Cm(T1,T2, . . . ,Tn)

Definition 2.2.14. gn is the graph with n+ 2 vertices and 3n− 1 edges obtained by

joining all the vertices of Pn to two additional vertices.

Definition 2.2.15. A graph G = (V (G),E(G)) is said to be bipartite if the vertex set

can be partitioned into two disjoint subsets V1 and V2 such that for every edge ei = viv j

∈ E(G), vi ∈V1 and v j ∈V2.

Definition 2.2.16. A complete bipartite graph is a simple bipartite graph such that two

vertices are adjacent if and only if they are in different partite sets. If partite sets V1 and

V2 are having m and n vertices respectively then the related complete bipartite graph is

denoted by Km,n and V1 is called m-vertices part and V2 is called n-vertices part of Km,n.
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2.3 Concluding Remarks

This chapter provides basic definitions and terminology required for the advance-

ment of the topic. For all other standard terminology and notations we refer to Harrary[24],

West[44], Gross and Yellen[23], Clark and Helton[13].

The next chapter is focused on the cordial labeling of graphs.
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3.1 Introduction

In the previous chapter, we have provided all the preliminaries and terminology

related to the present work while this chapter is aimed to discuss cordial labeling of

graphs in detail.

In the succeeding sections we will provide brief account of the concepts of label-

ing, Graceful labeling, Harmonious labeling and Cordial labeling.

The problems arising from the study of a variety of labeling techniques of the el-

ements of a graph or of any discrete structure is the potential area of challenge. Graph

labeling problems are really not of recent origin. e.g. coloring of the vertices arose in

connection with the now well known Four Color Theorem, which remain unsolved for

long time and took more than 150 years for its solution in 1976. The problem of enu-

meration of isomers in the hydrocarbon series CnH2n+2 initiated by the work of Keyley

is as old as the map coloring problem. In the late 1960’s a problem in radio astronomy

led to the assignments of the absolute differences of pairs of numbers occurring on the

positions of radio antennae to the links of the lay-out plans of the antennae under the

constrains of the optimal layout to scan the visible regions of the celestial dome quickly

made its way to formulate more tersk mathematical problem on graph labeling. In the

effort to provide the solution for this problem the notion of β -valuation was put forward

by A. Rosa[37] in 1967. Independent discovery of β -valuation termed as Graceful la-

beling by Golomb[21] in 1972 which is now the popular term. He also pointed out

the importance of studying Graceful graphs in trying to settle the complex problem of

decomposing the complete graph by isomorphic copies of a given tree of the same order.

3.2 Labeling of Graphs

Definition 3.2.1. If the vertices of the graph are assigned values subject to certain con-

ditions is known as graph labeling.
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Most of the graph labeling problem will have following three common character-

istics,

? a set of numbers from which vertex labels are chosen;

? a rule that assigns a value to each edge;

? a condition that theses values must satisfy.

A dynamic survey of graph labeling is regularly updated by Gallian[19] and avail-

able online on the web site of the electronics journal of combinatorics.

In the succeeding sections the discussion on various labeling techniques will be

carried out in chronological order as they introduced.

3.3 Graceful Labeling of Graphs

Graceful labeling was introduced by Rosa [37] in 1967.

Definition 3.3.1. A function f is called graceful labeling of a graph G if f : V (G)→

{0,1,2, . . . ,q} is injective and the induced function f ∗ : E(G)→{1,2, . . . ,q} defined as

f ∗(e = uv) = | f (u)− f (v)| is bijective.

A graph which admits graceful labeling is called graceful graph.

Initially Rosa named above defined labeling as β− valuation but Golomb[21] re-

named β−valuation as graceful labeling.

3.3.1 Some Known Facts About Graceful Labeling

• The graceful labeling of a graph is not unique.

• In any graceful graph the vertices with labels 0 and q are always adjacent.
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• If the vertex labels ai(i = 1,2, . . . , p) assigned to the graceful graph then q− ai

will yield another graceful labeling for the same graph.

• Subgraph of a graceful graph need not be a graceful graph.

• Supergraph of a graceful graph need not be a graceful graph.

• All the graphs with p≤ 5 are graceful except C5, K5 and Bowtie graph.

• There are q! graceful graph with q edges.

3.3.2 Some Known Results

• Rosa[37] proved that an Eulerian graph with q≡ 1,2(mod4) is not graceful.

• Truszczyński[43] studied unicyclic graphs and conjectured that all unicyclic graph

Cn, where n≡ 1,2(mod4) are graceful. Because of the immense diversity of uni-

cyclic graphs a proof of above conjecture seems to be out of reach in the near

future.

• Delorme et al.[14] and Ma and Feng[34] proved that the cycle with one chord is

graceful.

• Gracefulness of cycle with k consecutive chord is discussed by Koh et al.[31] and

Goh and Lim[20].

• Koh and Rogers[32] conjectured that cycle with triangle is graceful if and only if

n≡ 0,1(mod4).

• Ayel and Favaron[6] proved that helms are graceful.

• Kang et al.[28] proved that web graphs are graceful.

• Seoud and Youssef[40] proved that flowers are graceful.

• Golomb[21] proved that the complete graph Kn is not graceful for n≥ 5.

• Frucht[18], Hoede and Kuiper[26] proved that all wheels Wn are graceful.
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• Drake and Redl[15] enumerated the non graceful Eulerian graph with q≡ 1,2(mod4)

edges.

• Kathiresan[29] has investigated the graceful labeling for subdivision of Ladders.

• Sethuraman and Selvaraju[41] have discussed gracefulness of arbitrary super sub-

divisions of cycles.

3.3.3 Gracefulness of Trees

The conjecture of Ringel-Kotzig[36] states that "All the trees are graceful." has

been the focus of many research papers. Kotzig called the efforts to prove gracefulness

of trees as a ’disease’. Among all the trees known to be graceful are caterpillars, paths,

olive trees, banana trees etc., Some advance results regarding the gracefulness of trees

are listed below.

• Huang et al.[27] proved that trees with at most 4 end vertices are graceful.

• Aldred and Mckey[1] proved that trees with at most 27 vertices are graceful.

• Bermond and Sotteau[9] proved that rooted tree in which every level contains

vertices of same degree(symmetric trees) are graceful.

• Pastel and Raynaud[35] proved that rooted trees consisting of k branches where

the ith branch is a path of length i (olive trees) are graceful.

• Eshghi and Azimi[17] discussed the programming model for finding graceful la-

beling of graphs. Using this method, they verified that trees with 30,35 or 40

vertices are graceful.

Despite the efforts of many the graceful tree conjecture remained open and faith in

the conjecture is so strong that if a tree without a graceful labeling were indeed found

than it is possibly would not be considered a tree!

In the next section we will discuss Harmonious labeling in detail and take up the

survey of existing results.
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3.4 Harmonious Labeling of Graphs

Graham and Sloane[22] introduced harmonious labeling in 1980 during their study

of modular versions of additive bases problems stemming from error correcting codes.

Definition 3.4.1. A function f is called harmonious labeling of a graph G if f : V (G)→

{0,1,2, . . . ,q−1} is injective and the induced function f ∗ : E(G)→{0,1,2, . . . ,q−1}

defined as f ∗(e = uv) = ( f (u)+ f (v))(modq) is bijective.

A graph which admits harmonious labeling is called harmonious graph.

3.4.1 Some Known Results

• Graham and Sloane[22] conjectured that every tree is harmonious.

• Graham and Sloane[22] proved that

� Km,n is harmonious if and only if m or n = 1.

� wheel is harmonious.

� Petersen graph is harmonious.

� cycle Cn is harmonious if and only if n is odd.

� If a harmonious graph has even number of edges q and degree of every

vertex is divisible by 2α(α ≥ 1) than q is divisible by 2α+1.

� All ladders except L2 are harmonious.

� Friendship graph Fn is harmonious except n≡ 2(mod4).

� Fan fn is harmonious.

� The graph gn(n≥ 2) is harmonious.

• Aldred and Mckay[1] provided an algorithm and used computer to show that all

trees with at most 26 vertices are harmonious.

• Golomb[21] proved that complete graph is harmonious if and only if n≤ 4.
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3.5 Cordial Labeling of Graphs and Some Existing Re-

sults

In 1987 Cahit[10] introduced the concept of cordial labeling as a weaker version

of graceful and harmonious labeling.

Definition 3.5.1. A function f : V (G)→ {0,1} is called binary vertex labeling of a

graph G and f (v) is called label of the vertex v of G under f . For an edge e = uv, the

induced function f ∗ : E(G)→{0,1} is given as f ∗(e = uv) = | f (u)− f (v)|. Let v f (0),

v f (1) be number of vertices of G having labels 0 and 1 respectively under f and let

e f (0), e f (1) be number of edges of G having labels 0 and 1 respectively under f ∗. A

binary vertex labeling f of a graph G is called cordial labeling if |v f (0)− v f (1)| ≤ 1

and |e f (0)− e f (1)| ≤ 1. A graph which admits cordial labeling is called cordial graph.

There are three types of problems that can be considered in this area.

1. How cordiality is affected under various graph operations?

2. Construct new families of cordial graph by investigating suitable labeling.

3. Given a graph theoretic property P, characterise the class of graphs with property

P that are cordial.

In the above referred seminal paper Cahit investigated some classes of cordial

graphs as well as a necessary condition for an Eulerian graph to be cordial graph. Ho et

al.[25] have also proved some important results on cordial labeling of graphs. We will

report some results from these two papers for ready reference.

Theorem 3.5.2. Every tree is cordial.

Proof. We use induction on n, the number of vertices. The statement is obvious for

n ≤ 2. Now let n ≥ 3, and assume that all trees with m < n vertices are cordial. Let T

be any tree with n vertices, and let w be any end-vertex on maximum length path in T .

Let e1 = wz be the end-edge incident with w. If there exists another end-edge e2 = zy
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incident with z, delete from T vertices w,y and edges e1,e2. The resulting tree T ∗ has

n−2 vertices, and so by induction hypothesis it admits a cordial labeling, say f . Define

now a labeling f ∗ of T by f ∗(x) = f (x) for all x∈V (T ∗), f ∗(w) = 0, f ∗(y) = 1. Clearly,

f ∗ is a cordial labeling of T .

If there is no such end-edge e2, there must be an edge e3 = zu (here u is not and

end-vertex). Delete form T vertices w,z and e1,e3 obtaining tree T1. Let f1 be a cordial

labeling to T1. Define a labeling f ∗1 of T by f ∗1 (x) = f1(x) for all x ∈V (T1); if f1(u) = 0

put f ∗1 (z) = 0, f ∗1 (w) = 1 and if f1(u) = 1 put f ∗1 (z) = 1, f ∗1 (w) = 0. Again, f ∗1 is a

cordial labeling of T , and the proof is complete. �

Theorem 3.5.3. The complete graph Kn is cordial if and only if n≤ 3.

Proof. If f is a cordial labeling of Kn then either v f (1) = v f (0) = n
2 , or, if n is odd,

|v f (1)− v f (0)| = 1. In the former case, e f (1) = n2

4 ,e f (0) =
n(n−2)

4 , and we can have

|e f (1)− e f (0)| ≤ 1 only if n = 2. In the latter case, e f (1) = n2−1
4 ,e f (0) =

(n−1)2

4 and

we have |e f (1)− e f (0)| ≤ 1 only if n = 1 or 3. On the other hand, it is trivial to show

that there exists a cordial labeling of K1,K2 and K3. �

Theorem 3.5.4. The complete bipartite graph Km,n is cordial for all m,n≥ 1.

Proof. Let V = V1 ∪V2, |V1| = m, |V2| = n, be the bipartition of Km,n. If m = n, label

dm
2 e vertices of V1 and bm

2 c vertices of V2 with 0, and the remaining vertices with 1. If

m , n, we may assume m > n, say, m = n+ k. Label d k
2e of the extra k vertices with 0,

and the remaining b k
2c extra vertices with 1 (and the other vertices as before). It is easy

to verify that we have a cordial labeling of Km,n. �

Theorem 3.5.5. If G is an Eulerian graph with q edges where q≡ 2(mod4) then G has

no cordial labeling.

Proof. In a cordial labeling of a graph G with q≡ 2(mod4) edges, exactly q
2 ≡ 1(mod2)

edges must have label 1. Thus in at least one component of G the number of edges with

label 1 must be odd. In such a competent, a closed Eulerian trail starting at a vertex

labeled 0 would have to end at (the same) vertex labeled 1, a contradiction. �
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Theorem 3.5.6. The cycle Cn with n vertices is cordial if and only if n . 2(mod4).

Proof. Necessity follows from the Theorem 3.5.5. For sufficiency, let n = 4m+ r,r ∈

{0,1,3}, and let Cn = (v1,v2, . . .vn). For 1 ≤ i ≤ 4m, put f (vi) = 0 if i ≡ 1,2(mod4),

and f (vi) = 1 if i ≡ 0,3(mod4). Moreover, if r = 1 put f (v4m+1) = 1, and if r = 3 put

f (v4m+1) = f (v4m+2) = 0, f (v4m+3) = 1. It is straightforward to verify that in each case

f is a cordial labeling. �

Theorem 3.5.7. A regular graph of degree 1 on 2n vertices denoted by L(2n) is cordial

if and only if n . 2(mod4).

Proof. Let n≡ 2(mod4). In a cordial labeling of L(2n), let xi, i = 0,1,2, be the number

of edges having i of its vertices labeled with 0. Then x0 + x1 + x2 = n and x0 = x2

which implies x1 ≡ 0(mod2). On the other hand, if n ≡ 2(mod4), by counting the

total number of zeros, we get 2x0 + x1 =
n
2 ≡ 1(mod2) which implies x1 ≡ 1(mod2), a

contradiction. Thus n . 2(mod4). To obtain a cordial labeling of L(2n), n . 2(mod4)

take x0 = x2 = bn+1
4 c, x1 = n−2bn+1

4 c. �

Theorem 3.5.8. The wheel Wn is cordial if and only if n . 3(mod4).

Proof. For necessity, let n≡ 3(mod4), let f be a cordial labeling of Wn. We may assume

w.l.o.g that the center is labeled 0. Then exactly n−1
2 vertices of cycle Cn are labeled

with 0 and exactly n+1
2 with 1. If the vertices labeled 0 were arranged consecutively

they would account for n−3
2 edges labeled 0, and similarly, if the vertices labeled 1 were

arranged consecutively, they would account for n−1
2 edges labeled 0. In addition, there

are n−1
2 edges incident with the center labeled 0. Thus the total number of edges labeled

0 in such a labeling is n−1
2 + n−3

2 + n−1
2 = 3n−5

2 ≡ 0(mod2) since n ≡ 3(mod4). It is

readily seen that transposing labels of adjacent vertices of the cycle Cn either leaves the

number edges labeled 0 unchanged or increases or decreases by two. Thus the number

of edges labeled 0 in any cordial labeling of Wn, n ≡ 3(mod4), is even. On the other

hand, however, this number must equal n, a contradiction.

For sufficiency: When n ≡ 0 or 1(mod4), take the cordial labeling of Cn given in

the Theorem 3.5.6, and in addition, label the center with 0. This results in a cordial
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labeling of Wn. When n ≡ 2(mod4), label the center with 0, and the vertices of Cn as

follows: 1,1,1,1,0,0,1,1,0,0,1,1, . . . ,0,0. �

Lemma 3.5.9. Let T be an odd tree of order at least 5. If T has end vertices a and b

with a common adjacent vertex c, and if deg(c) = 3, then there exists a cordial labeling

of T such that

f (a) = 0, f (b) = f (c) = 1 and v f (0)> v f (1).

Proof. By induction on |V (T )|.

(i) When |V (T )|= 5, then T is the tree shown in FIGURE 3.1. It is cordial and has

the stated property as indicated.

0 1

1

0 0

a

b

c

FIGURE 3.1

(ii) Assume that the Lemma 3.5.9 is true for all odd tree T with 5 ≤ |V (T )| ≤

2k+ 1, k ≥ 3, and satisfying the given condition. Let T ∗ be a tree satisfying the given

condition and of order 2k+3. Since G = T ∗\{a,b,c} is a tree. G must either two end

vertices u and w with a common adjacent vertex, or two adjacent vertices u and w with

deg(u) = 1 and deg(w) = 2. Science the graph H = T ∗\{u,w} is an odd tree satisfying

the given condition and of order 2k+ 1, by induction hypothesis there exists a cordial

labeling f of H with f (a) = 0, f (b) = f (c) = 1 and v f (0)> v f (1).

In case that G has two end vertices u and w with a common vertex, then the fol-

lowing binary labeling f ∗ of T ∗ is cordial

f ∗(v) =


f (v); v ∈V (H)

0; v = u

1; v = w
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In case that G has two other adjacent vertices u and w with deg(u)= 1 and deg(w)=

2, and the other vertex, say z, adjacent to w is labeled 0 in H then

f ∗(v) =


f (v); v ∈V (H)

1; v = u

0; v = w

is cordial labeling of T ∗. If f (z) = 1, then

f ∗(v) =


f (v); v ∈V (H)

0; v = u

1; v = w

is cordial. In any case f ∗ is a cordial labeling of of T ∗ with the stated property. �

Lemma 3.5.10. The unicyclic graph G=Cm(T1,T2, . . . ,Tm), where m≥ 3 and 1≤ n≤m

is cordial, if each Ti(i = 1,2 . . . ,m) is a path of length 1.

Proof. If m+ n is odd, then G is a unicyclic graph of odd order, and hence is cordial.

Assume that m+n is even.

For m = 3, the unicyclic graph C3(T1) and C3(T1,T2,T3), where Ti(i = 1,2,3) is a

path of length 1, are cordial as shown if FIGURE 3.2 (a) and (b) respectively.

01 0

0

(a) (b)

1

10 0

1 1

FIGURE 3.2

Now let m ≥ 4 and n ≥ 1. Suppose first m = n. Then the binary labeling f of G

such that

f (v) =

 0; v ∈V (Cm)

1; v <V (Cm)
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is a cordial labeling of G.

Next suppose m > n. Let Cm = [a1,a2, . . . ,am]. then we must have deg(a j) = 2

and deg(a j+1)=3 for some j = 1,2, . . . ,m(here am+1 = a1) without lost of generality we

assume that deg(a2) = 2, deg(a3) = 3 and b1 is the vertex adjacent to a3 but not on the

cycle. Two cases to be considered

Case 1: deg(a1) = 2(see FIGURE 3.3(a))

(a) (b)

a2 a2 a1 a1 

a3 a3 

a4 a4 

am am 

b1 b1 

b2 

FIGURE 3.3

Then the graph G1 = G\{a1} is an odd tree satisfying the condition of the Lemma

3.5.9. Let g be the cordial labeling of G1 such that g(a2) = 0,g(b1) = g(a3) = 1 and

vg(0) > vg(1). If g(am) = 1, then the binary labeling f of G defined below is easily

checked to be cordial.

f (v) =

 g(v); v ∈V (G1)

1; v = a1

If g(am) = 0, then the following binary labeling of G is cordial.

f (v) =



1; v = a1

1; v = a2

0; v = b1

g(v); v ∈V (G1\{a2,b1})
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Case 2: deg(a1) = 3 (see FIGURE 3.3(b))

Let G2 = (G\{a1,a2})\{b2}, that is the graph obtained from G by removing the

edge a1a2 and the end vertex b2 adjacent to a1. Then G2 is an odd tree satisfying the

condition of the Lemma 3.5.9. It follows that there is a cordial labeling h of G2 with the

property that h(a2) = 0, h(a3) = h(b1) = 1 and vh(0)> vh(1)

Then the following binary labeling f of G is easily verified to be cordial

f (v) =

 h(v); v ∈V (G2)

1; v = b2

�

Lemma 3.5.11. The unicyclic graph G =Cm(T1), where T1 is a path of length 2 rooted

at the center vertex, is cordial for all m.

Proof. When m is odd, then the unicyclic graph G is of odd order and hence is cordial.

Assume that m is even. Two cases to be considered.

Case 1: m = 4k. By the Theorem 3.5.6 there exist a cordial labeling f of Cm.

Then the binary labeling f ∗ of G defined below is cordial.

f ∗(v) =


f (v); v ∈V (Cm)

1; v = b1

0; v = b2

Case 2: m = 4k+ 2. Without loss of generality we can assume that the root of T1 is

identified with the vertex a1 of the cycle Cm = [a1,a2, . . . ,am].
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Define a binary labeling f ∗ of G as follows

f ∗(v) =



0; v = a2i−1

0; v = a2i, i = 2p+1, p = 0,1,2, . . . ,k

1; v = a2 j+1

1; v = a2 j+2, j = 2q+1,q = 0,1,2, . . . ,k−1

1; v = b1

1; v = b2

It is straight forward to check that f ∗ is a cordial labeling of G =Cm(T1). �

Lemma 3.5.12. Consider a unicyclic graph G = Cm(T1,T2, . . . ,Tm). Suppose some Ti

has (i) two end vertices u and w with a common adjacent vertex, or (ii) two adjacent

vertices u and w such that deg(u) = 1 and deg(w) = 2, where u and w are not the root

of Ti. Then if G1 = G\{u,w} is cordial, so is G.

Proof. Suppose f is a cordial labeling of G1. In case (i) above the following binary

labeling f ∗ of G is cordial

f ∗(v) =


f (v); v ∈V (G1)

0; v = u

1; v = w

In case (ii) if the other vertex, say z, adjacent to w has label 0, that is, f (z) = 0,

then

f ∗(v) =


f (v); v ∈V (G1)

1; v = u

0; v = w

is cordial labeling of G. If z has label 1 in G1, then

f ∗(v) =


f (v); v ∈V (G)

0; v = u

1; v = w
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is a cordial labeling of G. �

Theorem 3.5.13. A unicyclic graph G is cordial if and only if G ,C4k−2 for all k ≥ 1.

Proof. Necessity follows from the Theorem 3.5.6.

For sufficiency assume first that the unicyclic graph G is of odd order. Let x be the

edge on the cycle of G. Since G\{x} is an odd tree, by the Theorem 3.5.2 there exists a

cordial labeling f of G\{x}. As |E(G)\{x}| is even, we must have e f (0) = e f (1), and

hence f is also a cordial labeling of G.

Now assume that the unicyclic graph G is of even order.

Let m ≥ 3, n ≥ 1 and |V (G)| is even. From each Ti(i = 1,2, . . . ,n) we repeatedly

remove two vertices (not the root) with the stated property (i) or (ii) in the Lemma

3.5.12 until we obtain a unicyclic graph G∗1 = Cm(T ∗1 ,T
∗

2 , . . . ,T
∗

r ) (r ≤ n), or G∗2 =

Cm(T ∗), where each tree T ∗i , i = 1,2, . . . ,r is a path of length 1 and the tree T ∗ is a path

of length 2 rooted at the center vertex. (this can always be achieved). By the Lemma

3.5.10 and Lemma 3.5.11 the above unicyclic graphs G∗1 and G∗2 are both cordial, and

by repeated applications of the Lemma 3.5.12 we see that G = Cm(T1,T2, . . . ,Tm) is

cordial. �

Theorem 3.5.14. The generalized Petersen graph P(n,k) is cordial iff n . 2(mod4).

Proof. Several cases are to be considered.

Case 1: n = 2m+1 and 2k+1≥ m. Let

q =

 2k+1−m; if m is odd.

2k+2−m; if m is even.

and q = 2l. Define a binary labeling f of P(n,k) as follows.

f (bi) =

 1; i = 0,1, . . . ,m

0; i = m+1,m+2, . . . ,n−1



Chapter 3. Cordial Labeling of Graphs 25

f (ai) =

 0; i = n− l,n− l +1, . . . ,n−1,0,1, . . . ,m− l

1; i = m− l +1,m− l +2, . . . ,n− l−1

Then obviously we have v f (0) = v f (1) = n. The number of zeros contributed to

e f (0) by edges bibi+k is (m+1− k)+ (m− k) = 2m−2k+1, that by the edges aiai+1

is 2m−1, and that by the edges aibi is 2l−2k+1−m or 2k+2−m.

Hence e f (0) = 3m+1 or 3m+2, and correspondingly e f (1) = 3m+2 or 3m+1.

Hence f is a cordial labeling for P(n,k).

Case 2: n = 2m+1 and 2k+1 < m. Let

q =

 m− (2k+1); if m is odd.

m− (2k+2); if m is even.

and q = 2l. Then by similar argument as in case 1, we can show that the following

binary labeling f of P(n,k) is cordial.

f (bi) =

 1; i = 0,1, . . . ,m

0; i = m+1,m+2, . . . ,n−1

if l = 0

f (ai) =

 0; i = 0,1, . . . ,m

1; i = m+1,m+2, . . . ,n−1

if l > 0

f (ai) =



0; i = 2p

1; i = 2p+1

1; i = m+2p+1

0; i = m+2p+2, p = 0,1, . . . , l−1

0; i = 2l + r, r = 0,1, . . . ,m−2l

1; i = m+2l + t, t = 0,1, . . . ,n−m−2l−1



Chapter 3. Cordial Labeling of Graphs 26

Case 3: n = 4m and k+1≥ m. Let k+1−m = l. Define a binary labeling f of P(n,k)

as follows

f (bi) =

 1; i = 0,1, . . . ,2m−1

0; i = 2m,2m+1, . . . ,n−1

f (ai) =

 0; i = n− l,n− l +1, . . . ,n− l,0,1, . . . ,2m− l−1

1; i = 2m− l,2m− l +1, . . . ,n− l−1

Then as in case 1 we can show that f is a cordial labeling of P(n,k)

Case 4: n = 4m and k+1 < m. Let m− (k+1) = l. Then the following binary labeling

f of P(n,k) is cordial

f (bi) =

 1; i = 0,1, . . . ,2m−1

0; i = 2m,2m+1, . . . ,n−1

f (ai) =



0; i = 2p

1; i = 2p+1

1; i = 2m+2p

0; i = 2m+2p+1, p = 0,1, . . . , l−1

0; i = 2l + r, r = 0,1, . . . ,2m−2l−1

1; i = 2m+2l + t, t = 0,1, . . . ,n−2m−2l−1

Case 5: n= 4m+2. In this case G=P(n,k) is a regular graph of degree 3 with |V (G)|=

8m+4≡ 0(mod4) and |E(G)|= 12m+6≡ 2(mod4). If G is cordial, then the graph G∗

obtained by joining one new vertex to every vertex of G would be cordial. But science

the degree of every vertex in G∗ is even. G∗ is Eulerian and since |E(G∗)| ≡ 2(mod4),

it follows from the Theorem 3.5.5 that G∗ cannot be cordial. Hence G = P(n,k), with

n = 4m+2 is not cordial. This completes the proof. �
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3.5.1 Some Other Known Results

• Lee and Liu[33], Du[16] proved that complete n-partite graph is cordial if and

only if at most three of its partite sets have odd cardinality.

• Seoud and Maqsoud[39] proved that if G is a graph with p vertices and q edges

and every vertex has odd degree then G is not cordial when p+q≡ 2(mod4).

• Andar et al. in [2],[3],[4] and [5] proved that

� Multiple shells are cordial.

� t-ply graph Pt(u,v) is cordial except when it is Eulerian and the number of

edges is congruent to 2(mod4).

� Helms, closed helms and generalized helms are cordial.

• In [5], Andar et al. showed that a cordial labeling g of a graph G can be extended

to a cordial labeling of the graph obtained from G by attaching 2m pendant edges

at each vertex of G. They also proved that a cordial labeling g of a graph G with

p vertices can be extended to a cordial labeling of the graph obtained from G by

attaching 2m+1 pendant edges at each vertex of G if and only if G does not sat-

isfy either of the following conditions:

(1) G has an even number of edges and p≡ 2(mod4).

(2) G has an odd number of edges and either p≡ 1(mod4) with eg(1) = eg(0)+

i(G) or p ≡ 3(mod4) with eg(0) = eg(1) + i(G), where i(G) = min{|eg(0)−

eg(1)|}

In the succeeding sections we will report the results investigated by us.

3.6 Cordial Labeling of Some Star Related Graphs

Definition 3.6.1. Consider two stars K(1)
1,n and K(2)

1,n then G =< K(1)
1,n : K(2)

1,n > is the graph

obtained by joining apex vertices of stars to a new vertex x.

Here |V (G)|= 2n+3 and |E(G)|= 2n+2.
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Definition 3.6.2. Consider k copies of stars namely K(1)
1,n ,K

(2)
1,n ,K

(3)
1,n , . . .K

(k)
1,n . Then the

G =< K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > is the graph obtained by joining apex vertices of

each K(p−1)
1,n and K(p)

1,n to a new vertex xp−1 where 2≤ p≤ k.

Here |V (G)|= k(n+2)−1 and |E(G)|= k(n+2)−2.

Definition 3.6.3. Consider two stars K(1)
1,n and K(2)

1,n then G =< K(1)
1,nNK(2)

1,n > is the graph

obtained by joining apex vertices of stars by an edge as well as to a new vertex x.

Here |V (G)|= 2n+3 and |E(G)|= 2n+3.

Definition 3.6.4. Consider k copies of stars namely K(1)
1,n ,K

(2)
1,n ,K

(3)
1,n , . . . . . .K

(k)
1,n . Then

the G =< K(1)
1,nNK(2)

1,nNK(3)
1,nN . . .NK(k)

1,n > is the graph obtained by joining apex vertices

of each K(p−1)
1,n and K(p)

1,n by an edge as well as to a new vertex xp−1 where 2≤ p≤ k.

Here |V (G)|= k(n+2)−1 and |E(G)|= k(n+3)−3.

Theorem 3.6.5. Graph < K(1)
1,n : K(2)

1,n > is cordial.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the pendant vertices K(1)
1,n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n

be the pendant vertices K(2)
1,n . Let c1 and c2 be the apex vertices of K(1)

1,n and K(2)
1,n respec-

tively and they are adjacent to a new common vertex x. Let G =< K(1)
1,n : K(2)

1,n >. We

define binary vertex labeling f : V (G)→{0,1} as follows.

For any n ∈ N and i = 1,2, . . .n where N is set of natural numbers.

In this case we define labeling as follows

Case 1: If n even

f (v( j)
i ) = 0; if 1≤ i≤ n

2

= 1; n+2
2 ≤ i≤ n

 For j = 1,2

f (c1) = 0;

f (c2) = 1;

f (x) = 0;
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Case 2: If n odd

f (v( j)
i ) = 0; if 1≤ i≤ n−1

2

= 1; n+1
2 ≤ i≤ n

 For j = 1,2

f (c1) = f (c2) = f (x) = 0;

The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1 as shown in

TABLE 3.1. i.e. G admits cordial labeling. �

n Vertex Condition Edge Condition
all v f (0) = v f (1)+1 = n+2 e f (0) = e f (1) = n+1

TABLE 3.1

Illustration 3.6.6. Consider G =< K(1)
1,7 : K(2)

1,7 >. Here n = 7. The cordial labeling is as

shown in FIGURE 3.4.
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Above result can be extended for k−copies of K1,n as follows.

Theorem 3.6.7. Graph < K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > is cordial.

Proof. Let K( j)
1,n be k copies of star K1,n, v( j)

i be the pendant vertices of K( j)
1,n and c j

be the apex vertex of K( j)
1,n (here i = 1,2, . . .n and j = 1,2, . . . k).Let x1,x2 . . . xk−1 be

the vertices such that cp−1 and cp are adjacent to xp−1 where 2 ≤ p ≤ k. Consider

G =< K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n >. To define binary vertex labeling f : V (G)→{0,1}

we consider following cases.
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Case 1: n ∈ N even and k where k ∈ N−{1,2}.

In this case we define labeling function f as

For j = 1,2, . . . ,k

f (v( j)
i ) = 0; if 1≤ i≤ n

2

= 1; if n+2
2 ≤ i≤ n

f (c j) = 1; if j even

= 0; if j odd

f (x j) = 1; if j even, j , k

= 0; if j odd, j , k

Case 2: n ∈ N−{1,2} odd and k where k ∈ N−{1,2}.

In this case we define labeling function f as

For j = 1,2, . . . ,k

f (v( j)
i ) = 0; if 1≤ i≤ n−1

2

= 1; if n+1
2 ≤ i≤ n

f (c j) = 1; if j even

= 0; if j odd

f (x j) = 0; j , k

The labeling pattern defined above covers all the possibilities. In each case, the

graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)−

e f (1)| ≤ 1 as shown in TABLE 3.2(where n= 2a+b, k = 2c+d and a∈N∪{0},c∈N).

i.e. G admits cordial labeling. �

b d Vertex Condition Edge Condition

0 0,1 v f (0) = v f (1)+1 = k(n+2)
2 e f (0) = e f (1) =

k(n+2)
2 −1

0 v f (0)+1 = v f (1) =
k(n+2)

2 e f (0) = e f (1) =
k(n+2)

2 −1
1

1 v f (0) = v f (1) =
k(n+2)−1

2 e f (0)+1 = e f (1) =
k(n+2)−1

2

TABLE 3.2

Illustration 3.6.8. Consider G =< K(1)
1,6 : K(2)

1,6 : K(3)
1,6 >. Here n = 6 and k = 3. The

cordial labeling is as shown in FIGURE 3.5.
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Theorem 3.6.9. Graph < K(1)
1,nNK(2)

1,n > is cordial.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the pendant vertices K(1)
1,n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n be

the pendant vertices K(2)
1,n . Let c1 and c2 be the apex vertices of K(1)

1,n and K(2)
1,n respectively

and they are adjacent to a new common vertex x. Let G =< K(1)
1,nNK(2)

1,n >. We define

binary vertex labeling f : V (G)→{0,1} as follows.

For any n ∈ N and i = 1,2, . . .n, we define labeling as follows

Case 1: If n even

f (v( j)
i ) = 0; if 1≤ i≤ n

2

= 1; if n+2
2 ≤ i≤ n

f (c j) = 1;

 For j = 1,2

f (x) = 0;

Case 2: If n odd

f (v( j)
i ) = 0; if 1≤ i≤ n−1

2

= 1; if n+1
2 ≤ i≤ n

f (c j) = 0;

 For j = 1,2

f (x) = 0;
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The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1 as shown in

TABLE 3.3. i.e. G admits cordial labeling. �

n Vertex Condition Edge Condition
even v f (0)+1 = v f (1) = n+2 e f (0)+1 = e f (1) = n+2
odd v f (0) = v f (1)+1 = n+2 e f (0) = e f (1)+1 = n+2

TABLE 3.3

Illustration 3.6.10. Consider G =< K(1)
1,8NK(2)

1,8 >. Here n = 8. The cordial labeling is

as shown in FIGURE 3.6.
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Theorem 3.6.11. Graph < K(1)
1,nNK(2)

1,nNK(3)
1,nN . . .NK(k)

1,n > is cordial.

Proof. Let K( j)
1,n be k copies of star K1,n, v( j)

i be the pendant vertices of K( j)
1,n and c j

be the apex vertex of K( j)
1,n (here i = 1,2, . . .n and j = 1,2, . . . k). Let x1,x2 . . . xk−1

be the vertices such that cp−1 and cp are adjacent to xp−1 where 2 ≤ p ≤ k. Consider

G =< K(1)
1,nNK(2)

1,nNK(3)
1,nN . . .NK(k)

1,n >. To define binary vertex labeling f : V (G)→{0,1}

we consider following cases.
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Case 1: n ∈ N even and k where k ∈ N−{1,2}

In this case we define labeling function f as

For j = 1,2, . . . ,k

f (v( j)
i ) = 0; if 1≤ i≤ n

2

= 1; if n+2
2 ≤ i≤ n

f (c j) = 1;

 if j odd

f (v( j)
i ) = 0; if 1≤ i≤ n+2

2

= 1; if n+4
2 ≤ i≤ n

f (c j) = 0;

 if j even

f (x j) = 1; for all j, j , k

Case 2: n ∈ N−{1,2} odd and k where k ∈ N−{1,2}

In this case we define labeling function f as

For j = 1,2, . . .k

f (v( j)
i ) = 0; if 1≤ i≤ n−1

2

= 1; if n+1
2 ≤ i≤ n

f (c j) = 0;

f (x j) = 1; if j even

= 0; if j odd, j , k

The labeling pattern defined above covers all the possibilities. In each case the

graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)−

e f (1)| ≤ 1 as shown in TABLE 3.4(where n= 2a+b, k = 2c+d and a∈N∪{0},c∈N).

i.e. G admits cordial labeling. �
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b d Vertex Condition Edge Condition

0 v f (0) = v f (1)+1 = k(n+2)
2 e f (0) = e f (1)+1 = k(n+3)−2

2
0

1 v f (0)+1 = v f (1) =
k(n+2)

2 e f (0) = e f (1) =
k(n+3)−3

2

0 v f (0) = v f (1)+1 = k(n+2)
2 e f (0) = e f (1)+1 = k(n+3)−2

2
1

1 v f (0) = v f (1) =
k(n+2)−1

2 e f (0)+1 = e f (1) =
k(n+3)−2

2

TABLE 3.4

Illustration 3.6.12. Consider G =< K(1)
1,6NK(2)

1,6NK(3)
1,6 >. Here n = 6 and k = 3. The

cordial labeling is as shown in FIGURE 3.7.
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3.7 Cordial Labeling of Some Shell Related Graphs

Definition 3.7.1. Consider two shells S(1)n and S(2)n then graph G =< S(1)n : S(2)n > ob-

tained by joining apex vertices of shells to a new vertex x.

Here |V (G)|= 2n+1 and |E(G)|= 4n−4.

Definition 3.7.2. Consider k copies of shells namely S(1)n ,S(2)n ,S(3)n , . . . ,S(k)n . Then the

graph G =< S(1)n : S(2)n : S(3)n : . . . : S(k)n > obtained by joining apex vertex of each S(p)
n

and apex of S(p−1)
n to a new vertex xp(where2≤ p≤ k).

Here |V (G)|= k(n+1)−1 and |E(G)|= k(2n−1)−2.
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Theorem 3.7.3. Graph < S(1)n : S(2)n > is cordial.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . . ,v(1)n be the vertices S(1)n and v(2)1 ,v(2)2 ,v(2)3 , . . . ,v(2)n be the

vertices S(2)n . Let v(1)1 and v(2)1 be the apex vertices of S(1)n and S(2)n respectively. Let

G =< S(1)n : S(2)n >. We define binary vertex labeling f : V (G)→{0,1} as follows.

f (v( j)
i ) = 0; if i≡ 2,3(mod4)

f (v( j)
i ) = 1; if i≡ 0,1(mod4)

 For j = 1,2

f (x) = 0; if n≡ 1(mod4)

f (x) = 1; if n≡ 0,2,3(mod4)

The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1 as shown in

TABLE 3.5(where n = 4a+b and a ∈ N∪{0}). i.e. G admits cordial labeling. �

a Vertex Condition Edge Condition
0,1,2 v f (0)+1 = v f (1) = n+1 e f (0) = e f (1) = 2n−2

3 v f (0) = v f (1)+1 = n+1 e f (0) = e f (1) = 2n−2

TABLE 3.5

Illustration 3.7.4. Consider a graph G =< S(1)7 : S(2)7 >. Here n = 7. The cordial

labeling is as shown in FIGURE 3.8 .
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Theorem 3.7.5. Graph < S(1)n : S(2)n : S(3)n : . . . : S(k)n > is cordial.

Proof. Let S( j)
n be the shells. Let v( j)

i be the vertices S( j)
n and v( j)

1 be the apex vertices

of S( j)
n . Let x j( j , k) be the new vertices. Let G =< S(1)n : S(2)n : S(3)n : . . . : S(k)n >. We

define binary vertex labeling f : V (G)→{0,1} as follows.

f (v( j)
i ) = 0; if i≡ 2,3(mod4)

f (v( j)
i ) = 1; if i≡ 0,1(mod4)

 For j ≡ 1,2(mod4)

f (v( j)
i ) = 0; if i≡ 0,1(mod4)

f (v( j)
i ) = 1; if i≡ 2,3(mod4)

 For j ≡ 0,3(mod4)

f (x j) = 0; if j ≡ 2,3(mod4)

f (x j) = 1; if j ≡ 0,1(mod4)), j , k

 For n≡ 0,2,3(mod4)

f (x j) = 0; if j ≡ 1,2(mod4)

f (x j) = 1; if j ≡ 0,3(mod4)), j , k

 For n≡ 1(mod4)

The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1 as shown

in TABLE 3.6(where n = 4a+ b, k = 4c+ d and a,c ∈ N ∪{0}). i.e. G admits cordial

labeling. �
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b d Vertex Condition Edge Condition

0 v f (0) = v f (1)+1 = k(n+1)
2 e f (0) = e f (1) =

k(2n−1)−2
2

0,2 1,3 v f (0) = v f (1) =
k(n+1)−1

2 e f (0)+1 = e f (1) =
k(2n−1)−1

2

2 v f (0)+1 = v f (1) =
k(n+1)

2 e f (0) = e f (1) =
k(2n−1)−2

2

0 v f (0) = v f (1)+1 = k(n+1)
2 e f (0) = e f (1) =

k(2n−1)−2
2

1 v f (0)+1 = v f (1) =
k(n+1)

2 e f (0) = e f (1)+1 = k(2n−1)−1
2

1
2 v f (0)+1 = v f (1) =

k(n+1)
2 e f (0) = e f (1) =

k(2n−1)−2
2

3 v f (0) = v f (1)+1 = k(n+1)
2 e f (0) = e f (1)+1 = k(2n−1)−1

2

0,2 v f (0) = v f (1)+1 = k(n+1)
2 e f (0) = e f (1) =

k(2n−1)−2
2

3
1,3 v f (0) = v f (1)+1 = k(n+1)

2 e f (0)+1 = e f (1) =
k(2n−1)−1

2

TABLE 3.6

Illustration 3.7.6. Consider a graph G =< S(1)5 : S(3)5 : S(3)5 >. Here n = 5. The cordial

labeling is as shown in FIGURE 3.9.
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3.8 Cordial Labeling of Some Wheel Related Graphs

Definition 3.8.1. Consider two wheels W (1)
n and W (2)

n then G =< W (1)
n : W (2)

n > is the

graph obtained by joining apex vertices of wheels to a new vertex x.

Here |V (G)|= 2n+3 and |E(G)|= 4n+2.
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Definition 3.8.2. Consider k copies of wheels namely W (1)
n ,W (2)

n ,W (3)
n , . . .W (k)

n . Then

the G =<W (1)
n : W (2)

n : W (3)
n : . . . : W (k)

n > is the graph obtained by joining apex vertices

of each W (p−1)
n and W (p)

n to a new vertex xp−1 where 2≤ p≤ k.

Here |V (G)|= k(n+2)−1 and |E(G)|= 2k(n+1)−2.

Theorem 3.8.3. Graph <W (1)
n : W (2)

n > is cordial.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the rim vertices W (1)
n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n be the

rim vertices W (2)
n . Let c1 and c2 be the apex vertices of W (1)

n and W (2)
n respectively and

they are adjacent to a new common vertex x. Let G =<W (1)
n : W (2)

n >. We define binary

vertex labeling f : V (G)→{0,1} as follows.

For any n ∈ N−{1,2} and i = 1,2, . . .n where N is set of natural numbers.

In this case we define labeling as follows

f (v(1)i ) = 1;

f (c1) = 0;

f (v(2)i ) = 0;

f (c2) = 1;

f (x) = 1;

Thus rim vertices of W (1)
n and W (2)

n are labeled with the sequences 1,1,1, . . . ,1 and

0,0, . . . ,0 respectively. The common vertex x is labeled with 1 and apex vertices with 0

and 1 respectively.

The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1 as shown in

TABLE 3.7(where n ∈ N−{1,2}). i.e. G admits cordial labeling. �

n Vertex Condition Edge Condition
all v f (0)+1 = v f (1) = n+2 e f (0) = e f (1) = 2n+1

TABLE 3.7

Illustration 3.8.4. Consider G =<W (1)
6 : W (2)

6 >. Here n = 6. The cordial labeling is

as shown in FIGURE 3.10.
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Theorem 3.8.5. Graph <W (1)
n : W (2)

n : W (3)
n : . . . : W (k)

n > is cordial.

Proof. Let W ( j)
n be k copies of wheel Wn, v( j)

i be the rim vertices of W ( j)
n and c j be

the apex vertex of W ( j)
n (here i = 1,2, . . .n and j = 1,2, . . . k).Let x1,x2 . . . xk−1 be the

vertices such that cp−1 and cp are adjacent to xp−1 where 2 ≤ p ≤ k. Consider G =<

W (1)
n : W (2)

n : W (3)
n : . . . : W (k)

n >. To define binary vertex labeling f : V (G)→{0,1} we

consider following cases.

Case 1: n ∈ N−{1,2} and even k where k ∈ N−{1,2}

In this case we define labeling function f as

For i = 1,2, . . .n and j = 1,2, . . .k

f (v( j)
i ) = 0; if j even

= 1; if j odd

f (c j) = 1; if j even

= 0; if j odd

f (x j) = 1; if j even, j , k

= 0; if j odd, j , k

Case 2: n ∈ N−{1,2} and odd k where k ∈ N−{1,2}

In this case we define labeling function f for first k−1 wheels as

For i = 1,2, . . .n and j = 1,2, . . .k−1

f (v( j)
i ) = 0; if j even

= 1; if j odd
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f (c j) = 1; if j even

= 0; if j odd

f (x j) = 1; if j even

= 0; if j odd

To define labeling function f for kth copy of wheel we consider following subcases

Subcase 1: If n≡ 3(mod4)

f (v(k)i ) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For 1≤ i≤ n−1

f (v(k)n ) = 0;

f (ck) = 1;

Subcase 2: If n≡ 0,2(mod4)

f (v(k)i ) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For 1≤ i≤ n

f (ck) = 0; n≡ 0(mod4)

f (ck) = 1; n≡ 2(mod4)

Subcase 3: If n≡ 1(mod4)

f (v(k)i ) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 For 1≤ i≤ n

f (ck) = 0;

The labeling pattern defined above exhaust all the possibilities and in each one the

graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)−

e f (1)| ≤ 1 as shown in TABLE 3.8(where n = 4a+ b and a ∈ N ∪{0}). i.e. G admits

cordial labeling. �
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k b Vertex Condition Edge Condition

even 0,1,2,3 v f (0) = v f (1)+1 = k(n+2)
2 e f (0) = e f (1) = k(n+1)−1

0 v f (0) = v f (1)+1 = k(n+2)
2 e f (0) = e f (1) = k(n+1)−1

odd 1,3 v f (0) = v f (1) =
k(n+2)−1

2 e f (0) = e f (1) = k(n+1)−1

2 v f (0)+1 = v f (1) =
k(n+2)

2 e f (0) = e f (1) = k(n+1)−1

TABLE 3.8

Illustration 3.8.6.

Example 1: Consider G =<W (1)
7 : W (2)

7 : W (3)
7 : W (4)

7 >. Here n = 7 and k = 4 i.e k is

even. The cordial labeling is as shown in FIGURE 3.11.
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Example 2: Consider G =< W (1)
5 : W (2)

5 : W (3)
5 >. Here n = 5 i.e n ≡ 1(mod4) and

k = 3 i.e k is odd. The cordial labeling is as shown in FIGURE 3.12.
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3.9 Some Graph Operations and Cordial Labeling

Definition 3.9.1. Let u and v be two distinct vertices of a graph G. A new graph G1

constructed by fusing (or identifying) two vertices u and v by a single new vertex x such

that every edge which was incident with either u or v in G is now incident with x.

Definition 3.9.2. Duplication of a vertex vk of graph G produces a new graph G1 by

adding a vertex v′k with N(v′k) = N(vk).

In other words a vertex v′k is said to be duplication of vk if all the vertices which

are adjacent to vk are now adjacent to v′k also.

Definition 3.9.3. Duplication of an edge e = uv of graph G produces a new graph G1

by adding an edge e
′
= u

′
v
′
such that N(u) = N(u

′
) and N(v) = N(v

′
).

In other words an edge e
′

is said to be duplication of edge e if all the edges which

are incident to e are now incident to e
′
also.

Theorem 3.9.4. Fusion of two vertices vi and v j with d(vi,v j)≥ 3 of cycle Cn is cordial

except n≡ 2(mod4).

Proof. Consider cycle Cn with n vertices namely v1,v2, . . .vn. Let the vertex v1 be fused

with vk and graph G = Cn−{vk} . To define binary vertex labeling f : V (G)→ {0,1}

we consider the following cases.

Case 1: n≡ 0,1,3(mod4) and k ≡ 0,1,2(mod4)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For 1≤ i < k

f (vi) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 For k < i≤ n
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Case 2: n≡ 0(mod4) and k ≡ 3(mod4)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 For 1≤ i < k

f (vi) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For k < i≤ n

Case 3: n≡ 1(mod4)and k ≡ 3(mod4)

In this case we define labeling as follows

f (vi) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 For 1≤ i < k

f (vi) = 0; if i≡ 2,3(mod4)

= 1; if i≡ 0,1(mod4)

 For k < i≤ n

Case 4: n≡ 2(mod4)

The graph resulted due to fusion of two vertices is Eulerian which will have number

of edges congruent to 2(mod4). As we mentioned earlier (Theorem 3.5.5) an Eulerian

graph with number of edges congruent to 2(mod4) is not cordial.

Case 5: n≡ 3(mod4)and k ≡ 3(mod4)

In this case we define labeling as follows

f (v1) = 0;

f (vi) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 For 2≤ i < k

f (vi) = 0; if i≡ 0,1mod4)

= 1; if i≡ 2,3(mod4)

 For k < i≤ n



Chapter 3. Cordial Labeling of Graphs 44

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1

and |e f (0)− e f (1)| ≤ 1 as shown in TABLE 3.9(where n = 4a+ b and a ∈ N). i.e. G

admits cordial labeling. �

b Vertex Condition Edge Condition

0 v f (0)+1 = v f (1) = n
2 e f (0) = e f (1) = n

2

1 v f (0) = v f (1) = n−1
2 e f (0) = e f (1)+1 = n+1

2

3 v f (0) = v f (1) = n−1
2 e f (0)+1 = e f (1) = n+1

2

TABLE 3.9

Remark 3.9.5. When d(vi,v j) < 3 the fusion yields a graph which is not simple and

cordiality can not be discussed.

Illustration 3.9.6.

Example 1: Consider a graph obtained by fusing two vertices v1 and v6 of cycle C12.

Here n = 12 i.e. n ≡ 0(mod4) and k = 6 i.e k ≡ 2(mod4). The cordial labeling is as

shown in FIGURE 3.13.

0

0

0

0 0

1

1

1

11

1

FIGURE 3.13
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Example 2:Consider a graph obtained by fusing two vertices v1 and v7 of cycle C12.

Here n = 12 i.e. n ≡ 0(mod4) and k = 7 i.e k ≡ 3(mod4). The cordial labeling is as

shown in FIGURE 3.14

0

0

0

0

0

1

11

1

1

1

FIGURE 3.14

Example 3:Consider a graph obtained by fusing two vertices v1 and v7 of cycle C13.

Here n = 13 i.e. n ≡ 1(mod4) and k = 7 i.e k ≡ 3(mod4). The cordial labeling is as

shown in FIGURE 3.15.

0

0

0

0

0 0

1

1

1

1

1

1

FIGURE 3.15
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Example 4:Consider a graph obtained by fusing two vertices v1 and v7 of cycle C11.

Here n = 11 i.e. n≡ 3(mod4) and k = 7 i.e k≡ 3(mod4). The cordial labeling is shown

in FIGURE 3.16.

0

0

0

0

0

1

11

1

1

FIGURE 3.16

Theorem 3.9.7. Duplication of arbitrary vertex vk of cycle Cn produces a cordial graph.

Proof. Let Cn be the cycle with n vertices. Let vk be the vertex of Cn. Let v
′
k be the

duplicated vertex of vk and G be the graph resulted due to duplication. To define binary

vertex labeling f : V (G)→{0,1} we consider following cases.

Case 1: n≡ 0,3(mod4) and k ∈ N, 1≤ k ≤ n

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 For 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 For n− k+2≤ i≤ n

f (v
′
k) = 0; if i≡ 1(mod4)

= 1; if i≡ 0(mod4). i = n+1
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Case 2: n≡ 1,2(mod4) and k ∈ N, 1≤ k ≤ n

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 For n− k+2≤ i≤ n

f (v
′
k) = 1; i = n+1

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1

and |e f (0)− e f (1)| ≤ 1 as shown in TABLE 3.10(where n = 4a+b and a ∈ N). i.e. G

admits cordial labeling. �

b Vertex Condition Edge Condition

0 v f (0) = v f (1)+1 = n+2
2 e f (0) = e f (1) = n+2

2

1 v f (0) = v f (1) = n+1
2 e f (0) = e f (1)+1 = n+3

2

2 v f (0)+1 = v f (1) = n+2
2 e f (0) = e f (1) = n+2

2

3 v f (0) = v f (1) = n+1
2 e f (0)+1 = e f (1) = n+3

2

TABLE 3.10

Illustration 3.9.8.

Example 1: Consider a graph obtained by duplicating vertex v4 of cycle C7. Here n = 7

i.e n≡ 3(mod4) and k = 4 i.e k≡ 0(mod4). The cordial labeling is as shown in FIGURE

3.17.
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0

0

0

0

11

1

1

FIGURE 3.17

Example 2: Consider a graph obtained by duplicating vertex v3 of cycle C5. Here n = 5

i.e n≡ 1(mod4) and k = 3 i.e k≡ 3(mod4).The cordial labeling is as shown in FIGURE

3.18.

1

1

0

0

0

1

FIGURE 3.18

Theorem 3.9.9. Duplicating vertices of cycle Cn altogether produces a cordial graph

except n≡ 2(mod4).

Proof. Let Cn be the cycle with n vertices and v1,v2, ...,vn be the vertices of Cn moreover

G be the graph obtained by duplicating the vertices of Cn altogether and v′1,v
′
2, ...,v

′
n

be the duplicated vertices of v1,v2, ...,vnrespectively. To define binary vertex labeling

f : V (G)→{0,1} we consider the following cases.
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Case 1: n≡ 0,1,3(mod4)

In this case we define labeling f as:

f (vi) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for 1≤ i≤ n

f (v′i) = 0; if i≡ 2,3(mod4)

= 1; if i≡ 0,1(mod4)

 for 1≤ i≤ n

Case 2: n≡ 2(mod4)

In this case the graph is an Eulerian graph with number of edges congruent to

2(mod4). As we mentioned earlier (Theorem 3.5.5) an Eulerian graph with number of

edges congruent to 2(mod4) is not cordial.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case the graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1

and |e f (0)− e f (1)| ≤ 1 as shown in TABLE 3.11(where n = 4a+ b and a ∈ N ∪{0}).

i.e. G admits cordial labeling. �

b Vertex Condition Edge Condition

0 v f (0) = v f (1) = n e f (0) = e f (1) = 3n
2

1,3 v f (0) = v f (1) = n e f (0) = e f (1)+1 = 3n+1
2

TABLE 3.11

Illustration 3.9.10. Consider a graph obtained by duplicating vertices of cycle C5 al-

together. Here n = 5 i.e n ≡ 1(mod4). The corresponding cordial labeling is shown in

FIGURE 3.19.
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0

0

0
0

0

1

1

1

1

1

FIGURE 3.19

Theorem 3.9.11. The graph obtained by duplicating arbitrary rim vertex of wheel Wn =

Cn +K1 is cordial for all n and duplicating apex vertex is cordial except n≡ 2(mod4).

Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, ...,vn be the rim vertices of Wn, c1

be the apex vertex of Wn and G be the graph obtained by duplicating either rim vertex or

apex vertex of Wn. Let v
′
k be the duplicated vertex of vk and c

′
1 be the duplicated vertex

of c1. To define binary vertex labeling f : V (G)→ {0,1} we consider the following

cases.

Case 1: Duplication of arbitrary rim vertex vk , where k ∈ N, 1≤ k ≤ n

Subcase 1: n≡ 0,1,3(mod4)

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for n− k+2≤ i≤ n

f (v
′
k) = 1;

f (c1) = 0;
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Subcase 2: n≡ 2(mod4)

Here f (c1) = 1 and label remaining vertices same as subcase 1

Case 2: Duplication of apex vertex c1

Subcase 1: n≡ 0,1,3(mod4)

In this case we define labeling f as

f (vi) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for 1≤ i≤ n

f (c1) = 0;

f (c′1) = 1;

Subcase 2: n≡ 2(mod4)

In this case the graph is an Eulerian graph with number of edges congruent to

2(mod4). As we mentioned earlier (Theorem 3.5.5) an Eulerian graph with number of

edges congruent to 2(mod4) is not cordial.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1

and |e f (0)−e f (1)| ≤ 1 as shown in TABLE 3.12(where n = 4a+b and a,b ∈ N∪{0}).

i.e. G admits cordial labeling. �

b Vertex Condition Edge Condition
Duplication of a rim vertex

0,2 v f (0) = v f (1) = n+2
2 e f (0)+1 = e f (1) = n+2

1,3 v f (0) = v f (1)+1 = n+3
2 e f (0)+1 = e f (1) = n+2

Duplication of apex vertex

0 v f (0) = v f (1) = n+2
2 e f (0) = e f (1) = 3n

2

1 v f (0) = v f (1)+1 = n+3
2 e f (0) = e f (1)+1 = 3n+1

2

3 v f (0)+1 = v f (1) = n+3
2 e f (0)+1 = e f (1) = 3n+1

2

TABLE 3.12
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Illustration 3.9.12.

Example 1: Consider a graph obtained by duplicating vertex v3 on rim of wheel W5.

Here n = 5 i.e n ≡ 1(mod4) and k = 3 i.e k ≡ 3(mod4). The cordial labeling is shown

in FIGURE 3.20.

0

1

1

1

00

0

FIGURE 3.20

Example 2: Consider a graph obtained by duplicating apex vertex c1 of wheel W5. Here

n = 5 i.e n≡ 1(mod4).The cordial labeling is shown in FIGURE 3.21.

0

0

0
0

1

1
1

FIGURE 3.21

Theorem 3.9.13. Duplication of the vertices of wheel Wn altogether produces a cordial

graph, where n ∈ N.
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Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, ...,vn be the rim vertices of Wn, c1

be the apex vertex of Wn and G be the graph obtained by duplicating vertices altogether

moreover v′1,v
′
2, ...,v

′
n be the duplicated vertices of v1,v2, ...,vn respectively and c

′
1 be

the duplicated vertex of c1. To define binary vertex labeling f : V (G)→ {0,1} we

consider the following cases.

In this case we define labeling f as

f (vi) = 0; for all i, 1≤ i≤ n

f (v
′
i) = 1; for all i, 1≤ i≤ n

f (c1) = 1;

f (c
′
1) = 0;

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1

and |e f (0)−e f (1)| ≤ 1 as shown in TABLE 3.13(where n = 4a+b and a,b ∈ N∪{0}).

i.e. G admits cordial labeling. �

b Vertex Condition Edge Condition
0,1,2,3 v f (0) = v f (1) = n+1 e f (0) = e f (1) = 3n

TABLE 3.13

Illustration 3.9.14. Consider a graph obtained by duplicating vertices of wheel W3

altogether. Here n = 3 i.e n≡ 3(mod4). The cordial labeling is shown in FIGURE 3.22.

0

00

0

1

1 1

1

FIGURE 3.22
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Theorem 3.9.15. Duplication of arbitrary edge ek of cycle Cn produces a cordial graph.

Proof. Let Cn be the cycle with n vertices. Let ek = vkvk+1 be the vertex of Cn. Let

e
′
k = v

′
kv
′
k+1 be the duplicated edge of ek and G be the graph resulted due to duplication.

To define binary vertex labeling f : V (G)→{0,1} we consider following cases.

Case 1: If n≡ 0(mod4)

f (vk+i−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for n− k+2≤ i≤ n

f (v
′
k) = 0;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n

Case 2: If n≡ 1(mod4)

f (vk+i−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for n− k+2≤ i≤ n−1

f (vk−1) = 0; if k , 1

f (vk+n−1) = 0; if k = 1

f (v
′
k) = 0;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n
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Case 3: If n≡ 2(mod4)

f (vk) = 1;

f (vk+1) = 0; if k , n

f (vk−n+1) = 0; if k = n

f (vk+i−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for 3≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for n− k+2≤ i≤ n

f (v
′
k) = 0;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n

Case 4: If n≡ 3(mod4)

f (vk) = 1;

f (vk+i−1) = 0; if i≡ 2,3(mod4)

= 1; if i≡ 0,1(mod4)

 for 2≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 2,3(mod4)

= 1; if i≡ 0,1(mod4)

 for n− k+2≤ i≤ n−1

f (vk−1) = 1; if k , 1

f (vk+n−1) = 1; if k = 1

f (v
′
k) = 1;

f (v
′
k+1) = 0; if k , n

f (v
′
k−n+1) = 0; if k = n

The labeling pattern defined above covers all possible arrangement of vertices. The

graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1 as shown in

TABLE 3.14(where n = 4a+b and a,b ∈ N∪{0}). i.e. G admits cordial labeling. �
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b Vertex Condition Edge Condition

0,2 v f (0) = v f (1) = n+2
2 e f (0)+1 = e f (1) = n+4

2

1 v f (0) = v f (1)+1 = n+3
2 e f (0) = e f (1) = n+3

2

3 v f (0)+1 = v f (1) = n+3
2 e f (0) = e f (1) = n+3

2

TABLE 3.14

Illustration 3.9.16. Consider C10 and duplicate e2. The cordial labeling is as shown in

FIGURE 3.23

0
0

0

0

0
0

1

1

1

1

1
1

FIGURE 3.23

Theorem 3.9.17. Duplication of arbitrary edge ek of wheel Wn produces a cordial graph.

Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, . . . ,vn be the rim vertices of Wn, c

be the apex vertex of Wn and G be the graph obtained by duplicating either rim edge or

spoke edge of Wn. Let e
′
k be the duplicated edge of ek. To define binary vertex labeling

f : V (G)→{0,1} we consider the following cases.

Case 1: Duplication of arbitrary rim edge ek, where k ∈ N,1≤ k ≤ n

Subcase 1: If n≡ 0(mod4)

f (vk+i−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for 1≤ i≤ n− k+1
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f (vk+i−n−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for n− k+2≤ i≤ n

f (c) = 0;

f (v
′
k) = 0;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n

Subcase 2: If n≡ 1,2(mod4)

f (vk) = 0;

f (vk+i−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for 2≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for n− k+2≤ i≤ n

f (c) = 0;

f (v
′
k) = 1;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n

Subcase 3: If n≡ 3(mod4)

f (vk+i−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for n− k+2≤ i≤ n

f (c) = 0;

f (v
′
k) = 1;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n
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Case 2: Duplication of arbitrary spoke edge ek = cvk, where k ∈ N,n+1≤ k ≤ 2n

Subcase 1: If n≡ 0(mod4)

f (vk+i−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for n− k+2≤ i≤ n

f (c) = 0;

f (c
′
) = 0;

f (v
′
k) = 1;

Subcase 2: If n≡ 1(mod4)

f (vk+i−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod4)

= 1; if i≡ 1,2(mod4)

 for n− k+2≤ i≤ n−1

f (vk−1) = 0; if k , 1

f (vk+n−1) = 0; if k = 1

f (c) = 0;

f (c
′
) = 1;

f (v
′
k) = 1;

Subcase 3: If n≡ 2(mod4)

f (vk+i−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,2(mod4)

= 1; if i≡ 0,3(mod4)

 for n− k+2≤ i≤ n−1
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f (vk−1) = 1; if k , 1

f (vk+n−1) = 1; if k = 1

f (c) = 0;

f (c
′
) = 1;

f (v
′
k) = 1;

Subcase 4: If n≡ 3(mod4)

f (vk) = 0;

f (vk+i−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for 2≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,1(mod4)

= 1; if i≡ 2,3(mod4)

 for n− k+2≤ i≤ n−1

f (vk−1) = 0; if k , 1

f (vk+n−1) = 0; if k = 1

f (c) = 0;

f (c
′
) = 1;

f (v
′
k) = 1;

The labeling pattern defined above covers all the possibilities. In each case, the

graph G under consideration satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)−

e f (1)| ≤ 1 as shown in TABLE 3.15(where n = 4a+b and a ∈ N ∪{0}). i.e. G admits

cordial labeling. �
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b Vertex Condition Edge Condition
Duplication of a rim edge

0 v f (0) = v f (1)+1 = n+4
2 e f (0) = e f (1)+1 = n+3

1,3 v f (0) = v f (1) = n+3
2 e f (0) = e f (1)+1 = n+3

2 v f (0)+1 = v f (1) = n+4
2 e f (0)+1 = e f (1) = n+3

Duplication of a spoke edge

0 v f (0) = v f (1)+1 = n+4
2 e f (0) = e f (1) = 3n+2

2

1,3 v f (0) = v f (1) = n+3
2 e f (0) = e f (1)+1 = 3n+3

2

2 v f (0)+1 = v f (1) = n+4
2 e f (0) = e f (1) = 3n+2

2

TABLE 3.15

Illustration 3.9.18. Consider W4 and duplicate spoke edge e6. The cordial labeling is

as shown in FIGURE 3.24
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0

0

01 1

1

FIGURE 3.24
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3.10 Some Open Problems

It is possible to obtain the results similar to that of Section 3.9 using different graph

operations as well as various graph labeling techniques.

3.11 Concluding Remarks

This chapter was intended to discuss cordial labeling of graphs. The graceful la-

beling and harmonious labeling are discussed to prepare a platform for cordial labeling.

Some existing results are reported and fifteen new results are investigated.

The penultimate Chapter-4 is targeted to discussed 3-equitable labeling of graphs.
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3-equitable Labeling of Graphs

62
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4.1 Introduction

In 1990 Cahit[12] proposed the idea of distributing the vertex and the edge labels

among {0,1,2, . . . ,k− 1} as evenly as possible to obtain a generalization of graceful

labeling. A vertex labeling of a graph G = (V (G),E(G)) is a function f : V (G)→

{0,1,2, . . . ,k−1} and the value f (u) is called label of vertex u. For the vertex labeling

function f : V (G)→{0,1, . . . ,k−1}, the induced function f ∗ : E(G)→{0,1, . . . ,k−1}

defined as f ∗(e = uv) = | f (u)− f (v)| which satisfies the conditions

1. |v f (i)− v f ( j)| ≤ 1 and

2. |e f (i)− e f ( j)| ≤ 1, 0≤ i, j ≤ k−1,

where v f (i) and e f (i) denotes number of vertices and number of edges having label i

under f and f ∗ respectively, 0≤ i≤ k−1. Such labeling f is called k-equitable labeling

for the graph G. A graph which admits k-equitable labeling is called k-equitable graph.

Obviously 2-equitable labeling is a cordial labeling which is already discussed in the

previous chapter-3. When k = 3 the labeling is called 3-equitable labeling. The present

chapter is aimed to discuss 3-equitable labeling of graphs.

4.2 3-equitable Labeling of Graphs

Definition 4.2.1. Let G = (V (G),E(G)) be a graph. A mapping f : V (G)→{0,1,2} is

called ternary vertex labeling of G and f (v) is called label of the vertex v of G under f .

For an edge e = uv, the induced edge labeling f ∗ : E(G)→ {0,1,2} is given by

f ∗(e) = | f (u)− f (v)|. Let v f (0), v f (1), v f (2) be the number of vertices of G having

labels 0, 1 and 2 respectively under f and let e f (0), e f (1), e f (2) be the number of edges

having labels 0, 1 and 2 respectively under f ∗.

Definition 4.2.2. A ternary vertex labeling of a graph G is called 3-equitable labeling

if |v f (i)− v f ( j)| ≤ 1 and |e f (i)− e f ( j)| ≤ 1, 0≤ i, j ≤ 2.

A graph which admits 3-equitable labeling is called 3-equitable graph.
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4.2.1 Some Known Results

• Cahit[11],[12] proved that

� Cn is 3-equitable if and only if n is not congruent to 3(mod6).

� An Eulerian graph with q≡ 3(mod6) is not 3-equitable where q is the num-

ber of edges.

� All caterpillars are 3-equitable.

� (Conjecture) A triangular cactus with n blocks is 3-equitable if and only if n

is even.

� Every tree with fewer than five end vertices has a 3-equitable labeling.

• Seoud and Abdel Maqsoud[38] proved that

� A graph with p vertices and q edges in which every vertex has odd degree is

not 3-equitable if p≡ 0(mod3) and q≡ 3(mod6).

� All fans except P2 +K1 are 3-equitable.

� P2
n is 3-equitable for all n except 3.

� Km,n(where 3≤ m≤ n) is 3-equitable if and only if (m,n) = (4,4).

• Bapat and Limaye[7] proved that Helms Hn(where n≥ 4) are 3-equitable.

• Youssef[45] proved that Wn =Cn +K1 is 3-equitable for all n≥ 4.

In the immediate section we will provide brief account of results investigated by

us about 3-equitable labeling of some graphs.
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4.3 3-equitable Labeling of Some Star Related Graphs

Theorem 4.3.1. Graph < K(1)
1,n : K(2)

1,n > is 3-equitable.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the pendant vertices K(1)
1,n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n

be the pendant vertices K(2)
1,n . Let c1 and c2 be the apex vertices of K(1)

1,n and K(2)
1,n respec-

tively and they are adjacent to a new common vertex x. Let G =< K(1)
1,n : K(2)

1,n >. To

define ternary vertex labeling f : V (G)→{0,1,2} we consider following cases.

Case 1: n≡ 0(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for 1≤ i≤ n−1, j = 1,2

f (v(1)n ) = 1;

f (v(2)n ) = f (c1) = f (x) = 0;

f (c2) = 2;

Case 2: n≡ 1(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for 1≤ i≤ n, j = 1,2

f (c1) = f (x) = 0;

f (c2) = 2;
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Case 3: n≡ 2(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for 1≤ i≤ n, j = 1,2

f (c1) = f (c2) = f (x) = 0;

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)−e f ( j)| ≤ 1 for all 0≤ i, j≤ 2 as shown in TABLE 4.1(where n = 3a+b and

a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition
0 v f (0) = v f (1) = v f (2) = 2n+3

3 e f (0)+1 = e f (1) = e f (2) = 2n+3
3

1 v f (0) = v f (1) = v f (2)+1 = 2n+4
3 e f (0)+1 = e f (1) = e f (2)+1 = 2n+4

3

2 v f (0) = v f (1)+1 = v f (2)+1 = 2n+5
3 e f (0) = e f (1) = e f (2) = 2n+2

3

TABLE 4.1

Illustration 4.3.2. Consider a graph G =< K(1)
1,8 : K(2)

1,8 > Here n = 8 i.e n ≡ 2(mod3).

The corresponding 3-equitable labeling is shown in FIGURE 4.1. It is the case related

to case -3
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0
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FIGURE 4.1

Above result can be extended for k−copies of K1,n as follows.
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Theorem 4.3.3. Graph < K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > is 3-equitable.

Proof. Let K( j)
1,n , j = 1,2, . . .k be k copies of star K1,n. Let v( j)

i be the pendant vertices

of K( j)
1,n where i = 1,2, . . .n and j = 1,2, . . .k. Let c j be the apex vertex of K( j)

1,n where

j = 1,2, . . .k. Let G=<K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > and x1,x2, . . . ,xk−1 are the vertices

as stated in Theorem 2.3. To define ternary vertex labeling f : V (G)→ {0,1,2} we

consider following cases.

Case 1: For n≡ 0(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1(mod3)

= 1; if i≡ 2(mod3)

= 2; if i≡ 0(mod3)

 for i≤ n−1

f (v( j)
n ) = 1; if j ≡ 1,2(mod3)

= 2; if j ≡ 0(mod3)

f (c j) = 0; if j ≡ 1,2(mod3)

= 2; if j ≡ 0(mod3)

f (x j) = 2; if j ≤ n−1

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1(mod3)

= 1; if i≡ 2(mod3)

= 2; if i≡ 0(mod3)

f (c1) = 2;

f (x1) = 0;

For remaining vertices take j = k−1 and use the pattern of subcase 1.
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Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 1(mod3)

= 1; if i≡ 2(mod3)

= 2; if i≡ 0(mod3)

 for 1≤ i≤ n−1, j = 1,2

f (v(1)n ) = 1;

f (v(2)n ) = f (c2) = f (x j) = 2;

f (c1) = 0;

For remaining vertices take j = k−2 and use the pattern of subcase 1.

Case 2: For n≡ 1(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

Subcase 1.1: For n = 1

f (v( j)
1 ) = 2; if j ≡ 0(mod3)

= 1; if j ≡ 1,2(mod3)

f (c j) = 2; if j ≡ 1(mod3)

= 1; if j ≡ 2(mod3)

= 0; if j ≡ 0(mod3)

f (x j) = 0; j , k

Subcase 1.2: For n > 1

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for i≤ n−2

f (v( j)
n−1) = 0; if j ≡ 1,2(mod3)

= 2; if j ≡ 0(mod3)

f (v( j)
n ) = 1;
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f (c j) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 0,2(mod3)

f (x j) = 0; if j ≡ 1,2(mod3)

= 2; if j ≡ 0(mod3), j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

f (c1) = 0;

f (x1) = 2;

For remaining vertices take j = k−1 and use the pattern of subcase 1.1 or subcase

1.2 if n = 1 or n > 1 respectively.

Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for j = 1,2

f (c1) = f (x2) = 2;

f (c2) = f (x1) = 0;

f (x1) = 2; if n = 1

f (x1) = 0; if n > 1

For remaining vertices take j = k−2 and use the pattern of subcase 1.1 or subcase

1.2 if n = 1 or n > 1 respectively.
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Case 3: For n≡ 2(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for i≤ n−1

f (v( j)
n ) = 1; if j ≡ 1(mod3)

= 2; if j ≡ 0,2(mod3)

f (c j) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 0,2(mod3)

f (x j) = 0; if j ≡ 1,2(mod3)

= 2; if j ≡ 0(mod3)

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for i≤ n

f (c1) = 0;

f (x1) = 2;

For remaining vertices take j = k−1 and use the pattern of subcase 1.

Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for i≤ n, j = 1,2

f (c1) = 2;

f (c2) = f (x j) = 0;
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For remaining vertices take j = k−2 and use the pattern of subcase 1.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.2(where n = 3a+ b,

k = 3c+d and a ∈ N∪{0},c ∈ N). i.e. G admits 3-equitable labeling. �

b d Vertex Condition Edge Condition

0 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = k(n+2)

3

0 1 v f (0)=v f (1)+1=v f (2)+1= k(n+2)+1
3 e f (0) = e f (1) = e f (2) =

k(n+2)−2
3

2 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0) = e f (1) = e f (2)+1 = k(n+2)−1
3

1 0,1,2 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = k(n+2)

3

0 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = k(n+2)

3

2 1 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0)+1 = e f (1) = e f (2) =
k(n+2)−1

3

2 v f (0)=v f (1)+1=v f (2)+1= k(n+2)+1
3 e f (0) = e f (1) = e f (2) =

k(n+2)−2
3

TABLE 4.2

Illustration 4.3.4. Consider a graph G =< K(1)
1,5 : K(2)

1,5 : K(3)
1,5 : K(4)

1,5 >. Here n = 5 and

k = 4. The corresponding 3-equitable labeling is as shown in FIGURE 4.2.
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FIGURE 4.2

Theorem 4.3.5. Graph < K(1)
1,nNK(2)

1,n > is 3-equitable.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the pendant vertices K(1)
1,n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n be

the pendant vertices K(2)
1,n . Let c1 and c2 be the apex vertices of K(1)

1,n and K(2)
1,n respectively

and they are adjacent to a new common vertex x. Let G =< K(1)
1,nNK(2)

1,n >. To define

vertex labeling f : V (G)→{0,1,2} we consider the following cases.
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Case 1: n≡ 0(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for 1≤ i≤ n−1, j = 1,2

f (v(1)n ) = 1;

f (v(2)n ) = f (c2) = f (x) = 0;

f (c1) = 2;

Case 2: n≡ 1(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for 1≤ i≤ n, j = 1,2

f (c1) = f (x) = 0;

f (c2) = 2;

Case 3: n≡ 2(mod3)

In this case we define labeling f as

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

f (c j) = f (x) = 0;


for 1≤ i≤ n, j = 1,2

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)−e f ( j)| ≤ 1 for all 0≤ i, j≤ 2 as shown in TABLE 4.3(where n = 3a+b and

a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �
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b Vertex Condition Edge Condition

0 v f (0) = v f (1) = v f (2) = 2n+3
3 e f (0) = e f (1) = e f (2) = 2n+3

3

1 v f (0) = v f (1) = v f (2)+1 = 2n+4
3 e f (0)+1 = e f (1) = e f (2) = 2n+4

3

2 v f (0) = v f (1)+1 = v f (2)+1 = 2n+5
3 e f (0) = e f (1)+1 = e f (2)+1 = 2n+5

3

TABLE 4.3

Illustration 4.3.6. Consider a graph G =< K(1)
1,8NK(2)

1,8 > Here n = 8 i.e n ≡ 2(mod3).

The corresponding 3-equitable labeling is shown in FIGURE 4.3. It is the case related

to case 3.
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Theorem 4.3.7. Graph < K(1)
1,nNK(2)

1,nNK(3)
1,nN . . .NK(k)

1,n > is 3-equitable.

Proof. Let K( j)
1,n , j = 1,2, . . .k be k copies of star K1,n. Let v( j)

i be the pendant ver-

tices of K( j)
1,n where i = 1,2, . . .n and j = 1,2, . . .k. Let c j be the apex vertex of K( j)

1,n

where j = 1,2, . . .k. Let G =< K(1)
1,nNK(2)

1,nNK(3)
1,nN . . .NK(k)

1,n > and x1,x2, . . . ,xk−1 are the

vertices as stated in Theorem 2.3. To define vertex labeling f : V (G)→ {0,1,2} we

consider following cases.
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Case 1: For n≡ 0(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3), j , 3 and i , n

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

 for j ≡ 0,1(mod3)

f (v(3)n ) = 1;

f (c j) = 2; if j ≡ 1(mod3)

f (c j) = 0; if j ≡ 0(mod3) and j , 3

f (c3) = 2;

f (x j) = 2; if j ≡ 1(mod3)

f (x j) = 0; if j ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 2(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 0(mod3), i , n

f (v( j)
n ) = 1;

f (c j) = 2; if j , 2

f (x j) = 1; if j , 2


for j ≡ 2(mod3)

f (c2) = f (x2) = 0;
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Subcase 2: For k ≡ 1(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

f (c j) = 0; if j ≡ 1(mod3 and j , 1

f (c j) = 2; if j ≡ 2(mod3)

f (c1) = 2;

f (x j) = 0; if j ≡ 1(mod3)

f (x j) = 2; if j ≡ 2(mod3)



for j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 2(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 0(mod3), i , n

f (v( j)
n ) = f (x j) = 1;

f (c j) = 2;


for j ≡ 0(mod3)

Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3)

f (c j) = 2; if j ≡ 0(mod3)

f (c j) = 0; if j ≡ 2(mod3) and j , 2

f (x j) = 2; if j ≡ 0(mod3)

f (x j) = 0; if j ≡ 2(mod3)

f (c2) = 2;



for j ≡ 0,2(mod3)
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f (v( j)
i ) = 0; if i≡ 2(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 0(mod3), i , n

f (v( j)
n ) = 1;

f (c j) = 2; if j , 1

f (c1) = 0;

f (x j) = 1; if j , 1

f (x1) = 2;



for j ≡ 1(mod3)

Case 2: For n≡ 1(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

Subcase 1.1: For n = 1

f (v(1)1 ) = 1;

f (v(2)1 ) = f (v(3)1 ) = f (c1) = 2;

f (c2) = f (c3) = f (x2) = 0;

f (x1) = 1;

For remaining vertices use the pattern of subcase 1.2.

Subcase 1.2: For n > 1

f (v( j)
i ) = 0; if i≡ 0(mod3), i , n−1 and j , 3

= 1; if i≡ 1(mod3), i , n, j = 1

= 2; if i≡ 2(mod3)

f (v( j)
n ) = f (v(3)n−1) = 2 if j , 1

f (c j) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 0,2(mod3)

f (x j) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 0(mod3), j , k

= 1; if j ≡ 2(mod3), j , 2

f (x2) = 0;
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Subcase 2: For k ≡ 1(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3), i , n and j ≡ 0,1(mod3)

= 2; if i≡ 2(mod3)

f (v( j)
n ) = 2; if j ≡ 2(mod3)

f (c j) = 0; if j ≡ 0,1(mod3) and j , 1

f (c j) = 2; if j ≡ 2(mod3)

f (c1) = 2;

f (x j) = 1; if j ≡ 0(mod3)

f (x j) = 0; if j ≡ 1(mod3)

f (x j) = 2; if j ≡ 2(mod3)

Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3), i , n and j ≡ 1,2(mod3)

= 2; if i≡ 2(mod3)

f (v( j)
n ) = 2; if j ≡ 0(mod3)

f (c j) = 0; if j ≡ 1,2(mod3) and j , 1

f (c j) = 2; if j ≡ 0(mod3)

f (c1) = f (x1) = 2;

f (x j) = 1; if j ≡ 1(mod3) and j , 1

f (x j) = 0; if j ≡ 2(mod3)

f (x j) = 2; if j ≡ 0(mod3)

Case 3: For n≡ 2(mod3)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3), j ≡ 1,2(mod3) and i , n
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f (v(3)n ) = 1;

f (v( j)
n ) = 0; if j ≡ 0(mod3) and j , 3

f (c j) = 2; if j ≡ 1,2(mod3) and j , 1,2

= 0; if j ≡ 0(mod3) and j , 3

f (c1) = f (c2) = 0;

f (c3) = f (x2) = 2;

f (x j) = 0; if j ≡ 0,1(mod3)

= 1; if j ≡ 2(mod3) and j , 2

Subcase 2: For k ≡ 1(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3), j ≡ 0,2(mod3) and i , n

f (v( j)
n ) = 0; if j ≡ 1(mod3) and j , 1

f (v(1)n ) = 2;

f (c j) = 0; if j ≡ 1(mod3)

f (c j) = 2; if j ≡ 0,2(mod3)

f (x j) = 1; if j ≡ 0(mod3)

f (x j) = 0; if j ≡ 1,2(mod3)

Subcase 3: For k ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0(mod3)

= 1; if i≡ 1(mod3)

= 2; if i≡ 2(mod3), j ≡ 0,1(mod3) and i , n

f (v( j)
n ) = 0; if j ≡ 2(mod3) and j , 2

f (v(2)n ) = 2;

f (c j) = 0; if j ≡ 2(mod3)

f (c j) = 2; if j ≡ 0,1(mod3) and j , 1

f (x j) = 1; if j ≡ 1(mod3) and j , 1

f (x j) = 0; if j ≡ 0,2(mod3)

f (c1) = f (x1) = 0;
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The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.4(where n = 3a+ b,

k = 3c+d and a ∈ N∪{0},c ∈ N). i.e. G admits 3-equitable labeling. �

b d Vertex Condition Edge Condition

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0) = e f (1) = e f (2) =
k(n+3)−3

3

0 1 v f (0)+1 = v f (1)+1 = v f (2) =
k(n+2)+1

3 e f (0) = e f (1) = e f (2) =
k(n+3)−3

3

2 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0) = e f (1) = e f (2) =
k(n+3)−3

3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0) = e f (1) = e f (2) =
k(n+3)−3

3

1 1 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0)+1 = e f (1) = e f (2)+1 = k(n+3)−1
3

2 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0)+1 = e f (1) = e f (2) =
k(n+3)−2

3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0) = e f (1) = e f (2) =
k(n+3)−3

3

2 1 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0)+1 = e f (1) = e f (2) =
k(n+3)−2

3

2 v f (0) = v f (1)+1 = v f (2)+1 = k(n+2)+1
3 e f (0) = e f (1)+1 = e f (2)+1 = k(n+3)−1

3

TABLE 4.4

Illustration 4.3.8. Consider a graph G =< K(1)
1,5NK(2)

1,5NK(3)
1,5NK(4)

1,5 >. Here n = 5 and

k = 4. The corresponding 3-equitable labeling is as shown in FIGURE 4.4.
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4.4 3-equitable Labeling of Some Shell Related Graphs

Theorem 4.4.1. Graph < Sn(1) : Sn(2)> is 3-equitable.

Proof. Let v(1)1 ,v(1)2 , . . . ,v(1)n be the vertices S(1)n and v(2)1 ,v(2)2 ,v(2)3 , . . . ,v(2)n be the ver-

tices S(2)n . Let v(1)1 and v(2)1 be the apex vertices of S(1)n and S(2)n respectively. Let

G =< S(1)n : S(2)n >. We define ternary vertex labeling f : V (G)→{0,1,2} as follows.

Case 1: For n≡ 0,5(mod6)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

f (v(1)i ) = 1; if i≡ 0,5(mod6)

f (v(1)i ) = 2; if i≡ 2,3(mod6)

f (v(2)i ) = 0; if i≡ 0,3(mod6)

f (v(2)i ) = 1; if i≡ 4,5(mod6)

f (v(2)i ) = 2; if i≡ 1,2(mod6)

f (x) = 0;

Case 2: For n≡ 1(mod6)

f (v(1)i ) = 0; if i≡ 1,4(mod6), i , n

f (v(1)i ) = 1; if i≡ 0,5(mod6)

f (v(1)i ) = 2; if i≡ 2,3(mod6)

f (v(1)n ) = 1;

f (v(2)i ) = 0; if i≡ 0,3(mod6)

f (v(2)i ) = 1; if i≡ 4,5(mod6)

f (v(2)i ) = 2; if i≡ 1,2(mod6)

f (x) = 0;

Case 3: For n≡ 2(mod6)

f (v(1)i ) = 0; if i≡ 1,4(mod6), i , n−1

f (v(1)i ) = 1; if i≡ 0,5(mod6)

f (v(1)i ) = 2; if i≡ 2,3(mod6), i , n

f (v(2)i ) = 0; if i≡ 0,3(mod6)
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f (v(2)i ) = 1; if i≡ 4,5(mod6)

f (v(2)i ) = 2; if i≡ 1,2(mod6), i , n

f (v(1)n−1) = 1;

f (v(1)n ) = f (v(2)n ) = 0;

f (x) = 2;

Case 4: For n≡ 3(mod6)

f (v(1)i ) = 0; if i≡ 1,4(mod6), i , n−2

f (v(1)i ) = 1; if i≡ 0,5(mod6)

f (v(1)i ) = 2; if i≡ 2,3(mod6), i , n−1,n

f (v(2)i ) = 0; if i≡ 0,3(mod6), i , n

f (v(2)i ) = 1; if i≡ 4,5(mod6)

f (v(2)i ) = 2; if i≡ 1,2(mod6), i , n−1,n−2

f (v(1)n−2) = f (v(2)n ) = 1;

f (v(1)n−1) = f (v(2)n−1) = 2;

f (v(1)n ) = f (v(2)n−2) = 0;

f (x) = 0;

Case 5: For n≡ 4(mod6)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

f (v(1)i ) = 1; if i≡ 0,5(mod6)

f (v(1)i ) = 2; if i≡ 2,3(mod6)

f (v(2)i ) = 0; if i≡ 0,3(mod6), i , n−1

f (v(2)i ) = 1; if i≡ 4,5(mod6)

f (v(2)i ) = 2; if i≡ 1,2(mod6), i , n−2

f (v(2)n−2) = f (v(2)n−1) = 1;

f (x) = 0;

The labeling pattern defined above covers all possible arrangement of vertices.

The graph G satisfies the conditions |v f (i)− v f ( j)| ≤ 1 and |e f (i)− e f ( j)| ≤ 1, where

0 ≤ i, j ≤ 2 as shown in TABLE 4.5(where n = 6a+b and a ∈ N ∪{0}). i.e. G admits

3-equitable labeling. �
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b Vertex Condition Edge Condition

0,3 v f (0) = v f (1)+1 = v f (2)+1 = 2n+3
3 e f (0)+1 = e f (1) = e f (2) = 4n−3

3

1,4 v f (0) = v f (1) = v f (2) = 2n+1
3 e f (0) = e f (1) = e f (2) = 4n−4

3

2,5 v f (0) = v f (1)+1 = v f (2) = 2n+2
3 e f (0)+1 = e f (1)+1 = e f (2) = 4n−2

3

TABLE 4.5

Illustration 4.4.2. Consider a graph G =< S(1)6 : S(2)6 >. Here n = 6. The 3-equitable

labeling is as shown in FIGURE4.5.
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Theorem 4.4.3. Graph < S(1)n : S(2)n : S(3)n : . . . : S(k)n > is 3-equitable.

Proof. Let S( j)
n be the shells. Let v( j)

i be the vertices S( j)
n and v( j)

1 be the apex vertices

of S( j)
n . Let x j( j , k) be the new vertices. Let G =< S(1)n : S(2)n : S(3)n : . . . : S(k)n >. We

define vertex labeling f : V (G)→{0,1,2} as follows.

Case 1: For n≡ 0(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

f (v( j)
i ) = 1; if i≡ 0,5(mod6)

f (v( j)
i ) = 2; if i≡ 2,3(mod6)

f (x j) = 0;


for j ≡ 1(mod3)
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f (v( j)
i ) = 0; if i≡ 0,3(mod6), i , n

f (v( j)
i ) = 1; if i≡ 4,5(mod6)

f (v( j)
i ) = 2; if i≡ 1,2(mod6)

f (v( j)
n ) = 2; if j ≡ 2(mod3)

f (v( j)
n ) = 1; if j ≡ 0(mod3)

f (x j) = 0; j , k


for j ≡ 0,2(mod3)

Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6)

f (v(k)i ) = 1; if i≡ 0,5(mod6)

f (v(k)i ) = 2; if i≡ 2,3(mod6)

f (xk−1) = 0;

Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v(k−1)
i ) = 0; if i≡ 1,4(mod6)

f (v(k−1)
i ) = 1; if i≡ 0,5(mod6)

f (v(k−1)
i ) = 2; if i≡ 2,3(mod6)

f (v(k)i ) = 0; if i≡ 0,3(mod6)

f (v(k)i ) = 1; if i≡ 4,5(mod6)

f (v(k)i ) = 2; if i≡ 1,2(mod6)

f (xk−2) = f (xk−1) = 0;
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Case 2: For n≡ 1(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6), i , n

f (v( j)
i ) = 1; if i≡ 0,2,3,5(mod6) and j ≡ 1(mod3)

f (v( j)
i ) = 2; if i≡ 0,2,3,5(mod6) and j ≡ 2(mod3)

f (v( j)
n ) = 1; if j ≡ 1(mod3)

f (v( j)
n ) = 0; if j ≡ 2(mod3)

f (x j) = 1; if j ≡ 1(mod3)

f (x j) = 2; if j ≡ 2(mod3)



for j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 0,3(mod6)

f (v( j)
i ) = 1; if i≡ 4,5(mod6)

f (v( j)
i ) = 2; if i≡ 1,2(mod6)

f (x j) = 0; j , k


for j ≡ 0(mod3)

Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6)

f (v(k)i ) = 1; if i≡ 0,5(mod6)

f (v(k)i ) = 2; if i≡ 2,3(mod6)

f (xk−1) = 2;
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Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v( j)
i ) = 0; if i≡ 1,4(mod6) and j , k, i , n

f (v( j)
i ) = 1; if i≡ 0,5(mod6)

f (v( j)
i ) = 2; if i≡ 2,3(mod6)

f (v(k)n ) = 1;

f (xk−2) = 0;

f (xk−1) = 2;


for j = k−1,k

Case 3: For n≡ 2(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

f (v( j)
i ) = 1; if i≡ 2,3(mod6)

f (v( j)
i ) = 2; if i≡ 0,5(mod6)

f (x j) = 2;


for j ≡ 1(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6), i , n−1

f (v( j)
i ) = 1; if i≡ 0,5(mod6)

f (v( j)
i ) = 2; if i≡ 2,3(mod6), i , n

f (v( j)
n−1) = 1;

f (v( j)
n ) = 0;

f (x j) = 2;


for j ≡ 2(mod3)

f (v( j)
i ) = 0; if i≡ 0,5(mod6)

f (v( j)
i ) = 1; if i≡ 2,3(mod6)

f (v( j)
i ) = 2; if i≡ 1,4(mod6)

f (x j) = 0; j , k


for j ≡ 0(mod3)
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Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6)

f (v(k)i ) = 1; if i≡ 2,3(mod6)

f (v(k)i ) = 2; if i≡ 0,5(mod6)

f (xk−1) = 2;

Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v( j)
i ) = 0; if i≡ 1,4(mod6) and j , k, i , 1

f (v( j)
i ) = 1; if i≡ 2,3(mod6)

f (v( j)
i ) = 2; if i≡ 0,5(mod6)

f (v(k)1 ) = 2;

f (xk−2) = 2;

f (xk−1) = 0;


for j = k−1,k

Case 4: For n≡ 3(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

f (v( j)
i ) = 1; if i≡ 0,2,3,5(mod6), j ≡ 2(mod3)

f (v( j)
i ) = 2; if i≡ 0,2,3,5(mod6), j ≡ 1(mod3)

f (x j) = 1; if j ≡ 1(mod3)

f (x j) = 2; if j ≡ 2(mod3)


for j ≡ 1,2(mod3)
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f (v( j)
i ) = 0; if i≡ 0,5(mod6)

f (v( j)
i ) = 1; if i≡ 2,3(mod6), i , n−1

f (v( j)
i ) = 2; if i≡ 1,4(mod6), i , n−2

f (v( j)
n−2) = 0;

f (v( j)
n−1) = 2;

f (x j) = 0; j , k


for j ≡ 0(mod3)

Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6), i , n−2

f (v(k)i ) = 1; if i≡ 2,3(mod6), i , n−1

f (v(k)i ) = 2; if i≡ 0,5(mod6)

f (v(k)n−2) = 2;

f (v(k)n−1) = 0;

f (xk−1) = 0;

Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v( j)
i ) = 0; if i≡ 1,4(mod6), i , n−2, j , k−1

f (v( j)
i ) = 1; if i≡ 2,3(mod6), i , n−1

f (v( j)
i ) = 2; if i≡ 0,5(mod6)

f (v(k−1)
n−2 ) = 2;

f (v(k−1)
n−1 ) = 0;

f (v(k)n−1) = 2;

f (xk−2) = f (xk−1) = 0;



for j = k−1,k
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Case 5: For n≡ 4(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

f (v( j)
i ) = 1; if i≡ 0,2,3,5(mod6) and j ≡ 2(mod3)

f (v( j)
i ) = 2; if i≡ 0,2,3,5(mod6) and j ≡ 1(mod3)

f (x j) = 2;


for j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 0,5(mod6)

f (v( j)
i ) = 1; if i≡ 2,3(mod6)

f (v( j)
i ) = 2; if i≡ 1,4(mod6)

 If 1≤ i≤ n−4

f (v( j)
n−3) = f (v( j)

n−2) = f (v( j)
n−1) = 1;

f (v( j)
n ) = 0;

f (x j) = 2; j , k


for j ≡ 0(mod3)

Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6) and i , n

f (v(k)i ) = 1; if i≡ 2,3(mod6) and i , n−1

f (v(k)i ) = 2; if i≡ 0,5(mod6)

f (v(k)n−1) = f (v(k)n ) = 2;

f (xk−1) = 2;

Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v(k−1)
i ) = 0; if i≡ 1,4(mod6) and i , n

f (v(k−1)
i ) = 1; if i≡ 0,5(mod6)

f (v(k−1)
i ) = 2; if i≡ 2,3(mod6)
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f (v(k)i ) = 0; if i≡ 1,4(mod6) and i , n

f (v(k)i ) = 1; if i≡ 2,3(mod6) and i , n−2

f (v(k)i ) = 2; if i≡ 0,5(mod6)

f (v(k)n−2) = f (xk−2) = 2;

f (v(k)n ) = f (v(k−1)
n ) = 1;

f (xk−1) = 0;

Case 6: For n≡ 5(mod6)

Subcase 1: k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

f (v( j)
i ) = 1; if i≡ 0,2,3,5(mod6), j ≡ 2(mod3)

f (v( j)
i ) = 2; if i≡ 0,2,3,5(mod6), j ≡ 1(mod3)

f (x j) = 2; if j ≡ 1(mod3)

f (x j) = 0; if j ≡ 2(mod3)


for j ≡ 1,2(mod3)

If 1≤ i≤ n−2

f (v( j)
i ) = 0; if i≡ 0,5(mod6)

f (v( j)
i ) = 1; if i≡ 2,3(mod6)

f (v( j)
i ) = 2; if i≡ 1,4(mod6)

f (v( j)
n−1) = 1;

f (v( j)
n ) = 2;

f (x j) = 0; j , k


for j ≡ 0(mod3)

Subcase 2: k ≡ 1(mod3)

For first k− 1 copies of shells use the pattern of subcase 1 and for kth copy define

function as follow.

f (v(k)i ) = 0; if i≡ 1,4(mod6)

f (v(k)i ) = 1; if i≡ 2,3(mod6)

f (v(k)i ) = 2; if i≡ 0,5(mod6)

f (xk−1) = 2;
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Subcase 3: k ≡ 2(mod3)

For first k− 2 copies of shells use the pattern of subcase 1 and for k− 1 and kth copy

define function as follow.

f (v(k−1)
i ) = 0; if i≡ 1,4(mod6)

f (v(k−1)
i ) = 1; if i≡ 2,3(mod6)

f (v(k−1)
i ) = 2; if i≡ 0,5(mod6)

f (v(k)i ) = 0; if i≡ 0,5(mod6)

f (v(k)i ) = 1; if i≡ 2,3(mod6)

f (v(k)i ) = 2; if i≡ 1,4(mod6)

f (xk−2) = 2;

f (xk−1) = 0;

The labeling pattern defined above covers all possible arrangement of vertices.

The graph G satisfies the conditions |v f (i)− v f ( j)| , 1 and |e f (i)− e f ( j)| ≤ 1, where

0 ≤ i, j ≤ 2 as shown in TABLE 4.6(where n = 6a+b, k = 3c+d and a,c ∈ N ∪{0}).

i.e. G admits 3-equitable labeling. �
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b d Vertex Condition Edge Condition

0 v f (0)+1 = v f (1) = v f (2) =
k(n+1)

3 e f (0)+1=e f (1)=e f (2)+1= k(2n−1)
3

0 1 v f (0) = v f (1) = v f (2) =
k(n+1)−1

3 e f (0) = e f (1) = e f (2) =
k(2n−1)−2

3

2 v f (0)=v f (1)+1=v f (2)+1= k(n+1)+1
3 e f (0)+1=e f (1)=e f (2)=

k(2n−1)−1
3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+1)

3 e f (0)+1=e f (1)=e f (2)+1 = k(2n−1)
3

1 1 v f (0)+1=v f (1)+1=v f (2)=
k(n+1)+1

3 e f (0)=e f (1)=e f (2)+1= k(2n−1)−1
3

2 v f (0) = v f (1) = v f (2) =
k(n+1)−1

3 e f (0) = e f (1) = e f (2) =
k(2n−1)−2

3

2,5 0,1,2 v f (0)+1 = v f (1) = v f (2) =
k(n+1)

3 e f (0)+1=e f (1)=e f (2)+1= k(2n−1)
3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+1)

3 e f (0)+1=e f (1)=e f (2)+1= k(2n−1)
3

3 1 v f (0) = v f (1) = v f (2) =
k(n+1)−1

3 e f (0) = e f (1) = e f (2) =
k(2n−1)−2

3

2 v f (0)=v f (1)+1=v f (2)+1= k(n+1)+1
3 e f (0)=e f (1)+1=e f (2)=

k(2n−1)−1
3

0(n = 4) v f (0) = v f (1) = v f (2)+1 = 5k
3 e f (0)=e f (1)+1=e f (2)+1= 7k

3

0(n , 4) v f (0) = v f (1) = v f (2)+1 = k(n+1)
3 e f (0)+1=e f (1)=e f (2)+1= k(2n−1)

3

4 1 v f (0)+1=v f (1)+1=v f (2)=
k(n+1)+1

3 e f (0)+1=e f (1)=e f (2)=
k(2n−1)−1

3

2 v f (0) = v f (1) = v f (2) =
k(n+1)−1

3 e f (0) = e f (1) = e f (2) =
k(2n−1)−2

3

TABLE 4.6

Illustration 4.4.4. Consider a graph G =< S(1)4 : S(2)4 : S(3)4 >. Here n = 4. The 3-

equitable labeling is as shown in FIGURE 4.6.
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FIGURE 4.6
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4.5 3-equitable Labeling of Some Wheel Related Graphs

Theorem 4.5.1. Graph <W (1)
n : W (2)

n > is 3-equitable.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . .v(1)n be the rim vertices W (1)
n and v(2)1 ,v(2)2 ,v(2)3 , . . .v(2)n be the

rim vertices W (2)
n . Let c1 and c2 be the apex vertices of W (1)

n and W (2)
n respectively and

they are adjacent to a new common vertex x. Let G =<W (1)
n : W (2)

n >. To define vertex

labeling f : V (G)→{0,1,2} we consider the following cases.

Case 1: n≡ 0(mod6)

In this case we define labeling f as

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n

f (c1) = 2;

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 2; if i≡ 2,3(mod6)

= 1; if i≡ 0,5(mod6)

 for 1≤ i≤ n−3

f (v(2)i ) = 1; i≥ n−2
f (c2) = 0;

f (x) = 0;

Case 2: n≡ 1(mod6)

In this case we define labeling f as

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n

f (c1) = 2;
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f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n

f (c2) = 2;
f (x) = 1;

Case 3: n≡ 2(mod6)

In this case we define labeling f as

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−2

f (v(1)i ) = 1; i≥ n−1
f (c1) = 0;

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−2

f (v(2)i ) = 2; i≥ n−1
f (c2) = 0;

f (x) = 1;

Case 4: n≡ 3(mod6)

Subcase 1: n , 3

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n

f (c1) = 0;
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f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n−3

f (v(2)i ) = 1; i≥ n−2

f (c2) = 0;

f (x) = 2;

Subcase 2: n = 3

f (v(1)1 ) = f (v(2)1 ) = f (c2) = 0;

f (v(1)2 ) = f (v(1)3 ) = f (c1) = 1;

f (v(2)2 ) = f (v(2)3 ) = f (x) = 2;

Case 5: n≡ 4(mod6)

In this case we define labeling f as

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−3

f (v(1)i ) = 1; i = n−2,n−1

f (v(1)i ) = 0; i = n

f (c1) = 2;

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n

f (c2) = 2;

f (x) = 1;
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Case 6: n≡ 5(mod6)

In this case we define labeling f as

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n−5

f (v(1)i ) = 1; i = n−4,n−3

f (v(1)i ) = 2; i = n−2,n

f (v(1)i ) = 0; i = n−1

f (c1) = 2;

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−5

f (v(2)i ) = 0; i = n−4,n−1

f (v(2)i ) = 1; i = n−3,n−2

f (v(2)i ) = 2; i = n

f (c2) = 0;

f (x) = 0;

The labeling pattern defined above covers all the possible arrangement of vertices

and in each case the resulting labeling satisfies the conditions |v f (i)− v f ( j)| ≤ 1 and

|e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.7(where n = 6a+ b and

a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �
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b Vertex Condition Edge Condition

0 v f (0) = v f (1) = v f (2) = 2n+3
3 e f (0) = e f (1) = e f (2)+1 = 4n+3

3

1,4 v f (0) = v f (1)+1 = v f (2) = 2n+4
3 e f (0) = e f (1) = e f (2) = 4n+2

3

2 v f (0)+1=v f (1)=v f (2)+1= 2n+5
3 e f (0)+1 = e f (1) = e f (2)+1 = 4n+4

3

3(n = 3) v f (0) = v f (1) = v f (2) = 3 e f (0) = e f (1)+1 = e f (2) = 5

3(n , 3) v f (0) = v f (1) = v f (2) = 2n+3
3 e f (0)+1 = e f (1) = e f (2) = 4n+3

3

5 v f (0) = v f (1)+1=v f (2)+1= 2n+5
3 e f (0)+1 = e f (1) = e f (2)+1 = 4n+4

3

TABLE 4.7

Illustration 4.5.2. Consider a graph G =<W (1)
5 : W (2)

5 > Here n = 5 i.e n≡ 5(mod6).

The corresponding 3-equitable labeling is shown in FIGURE 4.7. It is the case related

to case -6

1

1 1

10

0

0

0

0

2

2

2

2

FIGURE 4.7

Theorem 4.5.3. Graph <W (1)
n : W (2)

n : W (3)
n : . . . : W (k)

n > is 3-equitable.

Proof. Let W ( j)
n be k copies of wheel Wn, v( j)

i be the rim vertices of W ( j)
n where i =

1,2, . . .n and j = 1,2, . . .k. Let c j be the apex vertex of W ( j)
n . Consider G =< W (1)

n :

W (2)
n : W (3)

n : . . . : W (k)
n > and vertices x1,x2, . . .xk−1 as stated in Theorem 2.3. To define

vertex labeling f : V (G)→{0,1,2} we consider following cases.
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Case 1: For n≡ 0(mod6)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

For j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−3

f (v( j)
i ) = 1; if i≥ n−2

f (c j) = 0;

f (x j) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 2(mod3)

For j ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n

f (c j) = 2;

f (x j) = 0; j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n

f (c1) = 2;

f (x1) = 0;

For remaining vertices take j = k−1 and label them as in subcase 1.
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Subcase 3: For k ≡ 2(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n

f (c1) = 0;
f (x1) = 2;

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−3

f (v(2)i ) = 1; if i≥ n−2
f (c2) = 0;

f (x2) = 0;

For remaining vertices take j = k−2 and label them as in subcase 1.

Case 2: For n≡ 1(mod6)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

For 1≤ j ≤ k

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−1

f (v( j)
n ) = 0; if j ≡ 1(mod3)

f (v( j)
n ) = 1; if j ≡ 0,2(mod3)

f (c j) = 2; if j ≡ 1(mod3)

f (c j) = 0; if j ≡ 0,2(mod3)

f (x j) = 1; if j ≡ 1(mod3)

= 2; if j ≡ 0,2(mod3), j , k
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Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−1

f (v(1)n ) = 1;

f (c1) = 2;

f (x1) = 0;

For remaining vertices take j = k−1 and label them as in subcase 1

Subcase 3: For k ≡ 2(mod3)

For j = 1,2

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−1

f (v( j)
n ) = 1;

f (c1) = 0;

f (c2) = 2;

f (x1) = 2;

f (x2) = 0;

For remaining vertices take j = k−2 and label them as in subcase 1.
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Case 3: For n≡ 2(mod6)

Subcase 1: For k ≡ 0(mod3)

For j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−4

f (v( j)
n−3) = 2;

f (v( j)
i ) = 1; if i≥ n−2

f (c j) = 0; if j ≡ 1(mod3)

f (c j) = 2; if j ≡ 2(mod3)

f (x j) = 0;

For j ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for i≤ n−2

f (v( j)
i ) = 1; if i≥ n−1

f (c j) = 2;

f (x j) = 0; j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−2

f (v(1)n−1) = 2;

f (v(1)n ) = f (c1) = 0;

f (x1) = 1;

For remaining vertices take j = k−1 and label them as in subcase 1.
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Subcase 3: For k ≡ 2(mod3)

For j = 1,2

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−4

f (v( j)
n−3) = 2;

f (v( j)
i ) = 1; if i≥ n−2

f (c j) = 0;

f (x1) = 1;

f (x2) = 0;

For remaining vertices take j = k−2 and label them as in subcase 1.

Case 4: For n≡ 3(mod6)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−3

If j ≡ 1(mod3)

f (v( j)
i ) = 1; if i≥ n−2

f (c j) = 0;

f (x j) = 1;

If j ≡ 2(mod3)

f (v( j)
n−2) = f (c j) = 0;

f (v( j)
n−1) = f (x j) = 2;

f (v( j)
n ) = 1;
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If j ≡ 0(mod3)

f (v( j)
i ) = 0; i f j = n−1,n−2

f (v( j)
n ) = f (c j) = 2;

f (x j) = 2; j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for i≤ n−3

f (v(1)i ) = 2; if i≥ n−2

f (c1) = 0;

f (x1) = 1;

For remaining vertices take j = k−1 and label them as in subcase 1.

Subcase 3: For k ≡ 2(mod3)

For j = 1,2

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−3

f (v(1)i ) = 1; if i = n−1,n−2

f (v(1)n ) = 0;

f (v(2)i ) = 2; if i≥ n−2

f (c j) = 0;

f (x1) = 1;

f (x2) = 2;

For n = 3 label rim vertices of W (1)
n by 0,1,0 and apex vertex by 1.

For remaining vertices take j = k−2 and label them as in subcase 1.
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Case 5: For n≡ 4(mod6)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

For j ≡ 0,1,2(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−4

f (v( j)
n−3) = 0; if j ≡ 0,1(mod3)

f (v( j)
n−3) = 2; if j ≡ 2(mod3)

f (v( j)
i ) = 1; if j ≡ 1,2(mod3), i≥ n−2

f (v( j)
i ) = 2; if j ≡ 0(mod3), i≥ n−2

f (c j) = 2; j ≡ 1,2(mod3)

f (c j) = 0; j ≡ 0(mod3)

f (x j) = 0; j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n

f (c1) = 0;

f (x1) = 1;

For remaining vertices take j = k−1 and label them as in subcase 1.
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Subcase 3: For k ≡ 2(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

f (v(2)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)


for i≤ n

f (c1) = 2;

f (c2) = 0;

f (x1) = 1;

f (x2) = 2;

For remaining vertices take j = k−2 and label them as in subcase 1.

Case 6: For n≡ 5(mod6)

In this case we define labeling function f as follows

Subcase 1: For k ≡ 0(mod3)

For j ≡ 1,2(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for i≤ n−2

f (v( j)
n−1) = 1;

f (v( j)
n ) = 2; if j ≡ 1(mod3)

f (v( j)
n ) = 0; if j ≡ 2(mod3)

f (c j) = 2; if j ≡ 1(mod3)

f (c j) = 0; if j ≡ 2(mod3)

f (x j) = 1; if j ≡ 1(mod3)

f (x j) = 2; if j ≡ 2(mod3)
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For j ≡ 0(mod3)

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−1

f (v( j)
n ) = 2;

f (c j) = 0;

f (x j) = 2; j , k

Subcase 2: For k ≡ 1(mod3)

f (v(1)i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−2

f (v(1)i ) = 1; if i≥ n−1

f (c1) = 0;

f (x1) = 2;

For remaining vertices take j = k−1 and label them as in subcase 1.

Subcase 3: For k ≡ 2(mod3)

For j = 1,2

f (v( j)
i ) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for i≤ n−2

f (v( j)
i ) = 1; i≥ n−1

f (c1) = 0;

f (c2) = 2;

f (x j) = 0;

For remaining vertices take j = k−2 and label them as in subcase 1.
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The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.8(where n = 6a+ b,

k = 3c+d and a ∈ N∪{0},c ∈ N). i.e. G admits 3-equitable labeling. �

b d Vertex Condition Edge Condition

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)
3

0 1 v f (0)+1 = v f (1)+1 = v f (2) =
k(n+2)+1

3 e f (0) = e f (1) = e f (2) =
2k(n+1)−2

3

2 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0) = e f (1) = e f (2)+1 = 2k(n+1)−1
3

0 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)

3

1 1 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2) =

2k(n+1)−1
3

2 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0) = e f (1) = e f (2) =

2k(n+1)−2
3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)
3

2 1 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)
3

2 v f (0)+1 = v f (1) = v f (2)+1 = k(n+2)+1
3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)

3

0 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)

3

3 1 v f (0)+1 = v f (1)+1 = v f (2) =
k(n+2)+1

3 e f (0) = e f (1) = e f (2) =
2k(n+1)−2

3

2 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0) = e f (1)+1 = e f (2) =
2k(n+1)−1

3

0 v f (0)+1 = v f (1) = v f (2) =
k(n+2)

3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)
3

4 1 v f (0) = v f (1)+1 = v f (2) =
k(n+2)

3 e f (0) = e f (1)+1 = e f (2) =
2k(n+1)−1

3

2 v f (0) = v f (1)+1 = v f (2) =
k(n+2)

3 e f (0) = e f (1) = e f (2) =
2k(n+1)−2

3

0 v f (0) = v f (1) = v f (2)+1 = k(n+2)
3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)

3

5 1 v f (0) = v f (1) = v f (2) =
k(n+2)−1

3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)
3

2 v f (0) = v f (1)+1 = v f (2)+1 = k(n+2)+1
3 e f (0)+1 = e f (1) = e f (2)+1 = 2k(n+1)

3

TABLE 4.8

Illustration 4.5.4. Consider a graph G =<W (1)
6 : W (2)

6 : W (3)
6 : W (4)

6 >. Here n = 6 and

k = 4. The corresponding 3-equitable labeling is as shown in FIGURE 4.8 .
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FIGURE 4.8

4.6 Some Graph Operations and 3-equitable Labeling

Theorem 4.6.1. Fusion of two vertices vi and v j with d(vi,v j) ≥ 3 of cycle Cn is 3-

equitable graph except n≡ 3(mod6).

Proof. Consider cycle Cn with n vertices namely v1,v2, . . .vn. Let G be the graph

obtained by fusion of two vertices v1 and vk of cycle Cn. To define vertex labeling

f : V (G)→{0,1,2} we consider the following cases.

Case 1: n≡ 0,1(mod6)

Subcase 1: k ≡ 0,3(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n−1

f (vn) = 1; if n≡ 0(mod6) and k ≡ 0(mod6)

= 0; if n . 0(mod6) and k . 0(mod6)
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Subcase 2: k ≡ 1,2,4,5(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for k < i≤ n

Case 2: n≡ 2(mod6)

Subcase 1: k ≡ 0(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n

Subcase 2: k ≡ 1,2,4,5(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for k < i≤ n−1

f (vn) = 2;
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Subcase 3: k ≡ 3(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n−2

f (vn−1) = 2;

f (vn) = 0;

Case 3: n≡ 3(mod6)

In this case the graph resulted from the fusion of two vertices is an Eulerian graph

which will have the number of edges congruent to 3(mod6). As proved by Cahit[11] an

Eulerian graph with number of edges congruent to 3(mod6) is not 3-equitable.

Case 4: n≡ 4(mod6)

Subcase 1: k ≡ 0(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n−3

f (vn−2) = 0;

f (vn−1) = 2;

f (vn) = 1;



Chapter 4. 3-equitable Labeling of Graphs 110

Subcase 2: k ≡ 1,2,4,5(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for k < i≤ n−2

f (vn−1) = 2;

f (vn) = 1;

Subcase 3: k ≡ 3(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n−3

f (vn−2) = 1;

f (vn−1) = 2;

f (vn) = 0;
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Case 5: n≡ 5(mod6)

Subcase 1: k ≡ 0,3(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for k < i≤ n

Subcase 2: k ≡ 1,2,4,5(mod6)

In this case we define labeling as follows

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i < k

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for k < i≤ n−1

f (vn) = 1;

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.9(where n = 6a+ b,

k = 6c+d and a,c ∈ N,b,d ∈ N∪{0}). i.e. G admits 3-equitable labeling. �
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b d Vertex Condition Edge Condition

1 to 5 v f (0) = v f (1)+1 = v f (2) = n
3 e f (0) = e f (1) = e f (2) = n

3
0

0 v f (0)+1 = v f (1) = v f (2) = n
3 e f (0) = e f (1) = e f (2) = n

3

1 to 5 v f (0) = v f (1) = v f (2) = n−1
3 e f (0) = e f (1)+1 = e f (2)+1 = n+2

3
1

0 v f (0) = v f (1) = v f (2) = n−1
3 e f (0)+1 = e f (1)+1 = e f (2) = n+2

3

2 0 to 5 v f (0)+1 = v f (1)+1 = v f (2) = n+1
3 e f (0) = e f (1)+1 = e f (2) = n+1

3

4 0 to 5 v f (0) = v f (1) = v f (2) = n−1
3 e f (0)+1 = e f (1) = e f (2)+1 = n+2

3

1 to 5 v f (0)+1 = v f (1)+1 = v f (2) = n+1
3 e f (0) = e f (1) = e f (2)+1 = n+1

3
5

0 v f (0)+1 = v f (1)+1 = v f (2) = n+1
3 e f (0)+1 = e f (1) = e f (2) = n+1

3

TABLE 4.9

Remark 4.6.2. When d(vi,v j) < 3 the fusion yields a graph which is not simple and

3-equitability can not be discussed.

Illustrations 4.6.3.

Example 1:Consider a graph obtained by fusion of two vertices v1 and v6 of cycle C11.

This example is related to subcase 1 of case 5. The 3-equitable labeling is as shown in

FIGURE 4.9.

2

2

2

2

0

0

1

1

1

0

FIGURE 4.9

Example 2:Consider a graph obtained by fusion of two vertices v1 and v5 of cycle C10.

This example is related to subcase 2 of case 4. The 3-equitable labeling is as shown in

FIGURE 4.10.
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Theorem 4.6.4. Duplication of arbitrary vertex vk of cycle Cn produces a 3-equitable

graph.

Proof. Let Cn be the cycle with n vertices. Let vk be the vertex of Cn. Let v
′
k be the

duplicated vertex of vk and G be the graph resulted due to duplication. To define vertex

labeling f : V (G)→{0,1,2} we consider following cases.

Case 1: n≡ 0,3,4,5(mod6) and k ∈ N, 1≤ k ≤ n

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for n− k+2≤ i≤ n

f (v
′
k) = 0; if n≡ 0(mod6)

f (v
′
k) = 1; if n≡ 3,4,5(mod6)
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Case 2: n≡ 1(mod6) and k ∈ N, 1≤ k ≤ n

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (v
′
k) = 2;

Case 3: n≡ 2(mod6) and k ∈ N, 1≤ k ≤ n

In this case we define labeling function f as

Subcase 1: if k ≤ 2

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i≤ n−2

f (vn−1) = 1;

f (vn) = 2;

 if k = 1

f (v1) = 2;

f (vn) = 1;

 if k = 2

f (v
′
k) = 0;

Subcase 2: if k ≥ 3

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i≤ n− k+1



Chapter 4. 3-equitable Labeling of Graphs 115

f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for n− k+2≤ i < n−1

f (vk−2) = 1;

f (vk−1) = 2;

f (v
′
k) = 0;

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.10(where n = 6a+ b

and a,b ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition

0 v f (0) = v f (1)+1 = v f (2)+1 = n+3
3 e f (0)+1 = e f (1) = e f (2) = n+3

3

1,4 v f (0) = v f (1)+1 = v f (2) = n+2
3 e f (0) = e f (1) = e f (2) = n+2

3

2,5 v f (0) = v f (1) = v f (2) = n+1
3 e f (0)+1 = e f (1) = e f (2)+1 = n+4

3

3 v f (0)+1 = v f (1)+1 = v f (2) = n+3
3 e f (0)+1 = e f (1) = e f (2) = n+3

3

TABLE 4.10

Illustrations 4.6.5. Consider a graph obtained by duplicating vertex v1 of cycle C8.

This is example of subcase 1 of case 3. The 3-equitable labeling is as shown in Figure

4.11.
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Theorem 4.6.6. The graph resulted form the duplication of the vertices of cycle Cn

altogether is 3-equitable for even n and not 3-equitable for odd n.

Proof. Let Cn be the cycle with n vertices and v1,v2, ...,vn be the vertices of Cn. Let G

be the graph obtained by duplicating the vertices of Cn altogether and v′1,v
′
2, ...,v

′
n be the

duplicated vertices corresponding to v1,v2, ...,vn respectively. To define vertex labeling

f : V (G)→{0,1,2} we consider the following cases.

Case 1: n≡ 0(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)


for 1≤ i≤ n
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Case 2: n≡ 2(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i < n

f (vn) = 2;

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n−2

f (v′n−1) = 1;

f (v′n) = 0;

Case 3: n≡ 4(mod6)

In this case we define labeling f as

f (v1) = f (v4) = 0;

f (v2) = f (v3) = 2;

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for 5≤ i≤ n

f (v′1) = 0;

f (v′2) = f (v′3) = 1;

f (v′4) = 2;

f (v′i) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for 5≤ i≤ n
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Case 4: For odd n

In this case the graph obtained is an Eulerian graph with number of edges congru-

ent to 3(mod6). Such graphs are not 3-equitable as proved by Cahit [11].

The labeling pattern defined above covers all possible arrangement of vertices. In

each case the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.11(where n = 6a+ b

and a,b ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition

0 v f (0) = v f (1) = v f (2) = 2n
3 e f (0) = e f (1) = e f (2) = n

2 v f (0) = v f (1)+1 = v f (2)+1 = 2n+2
3 e f (0) = e f (1) = e f (2) = n

4 v f (0) = v f (1)+1 = v f (2) = 2n+1
3 e f (0) = e f (1) = e f (2) = n

TABLE 4.11

Illustrations 4.6.7. Consider a graph obtained by duplicating vertices of cycle C6 alto-

gether. This is an example related to case 1. The corresponding 3-equitable labeling is

shown in FIGURE 4.12.
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Theorem 4.6.8. The graph obtained by duplication of arbitrary rim vertex of wheel

Wn = Cn +K1 is 3-equitable for n ≥ 5 while duplication of apex vertex is 3-equitable

for even n and not 3-equitable for odd n, n≥ 5.
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Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, ...,vn be the rim vertices of Wn, c1

be the apex vertex of Wn and G be the graph obtained by duplicating either rim vertex or

apex vertex of Wn. Let v
′
k be the duplicated vertex of vk and c

′
1 be the duplicated vertex

of c1. To define vertex labeling f : V (G)→{0,1,2} we consider the following cases.

Case 1: Duplication of arbitrary rim vertex vk , where k ∈ N, 1≤ k ≤ n

Subcase 1: n≡ 0,1(mod6)

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (v
′
k) = 2; if n≡ 0(mod6)

f (v
′
k) = 1; if n≡ 1(mod6)

f (c1) = 0; if n≡ 0(mod6)

f (c1) = 2; if n≡ 1(mod6)

Subcase 2: n≡ 2,5(mod6)

In this case we define labeling function f as

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for n− k+2≤ i≤ n
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f (v
′
k) = 1; if n≡ 2(mod6)

f (v
′
k) = 2; if n≡ 5(mod6)

f (c1) = 0;

Subcase 3: n≡ 3,4(mod6)

In this case we define labeling function f as

Subcase 3.1: if k ≤ 2

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−3

f (vn−2) = 0; if n≡ 3(mod6)

f (vn−2) = 1; if n≡ 4(mod6)

f (vn−1) = 1;

f (vn) = 2;


if k = 1

f (vn−1) = 0; if n≡ 3(mod6)

f (vn−1) = 1; if n≡ 4(mod6)

f (vn) = 1;

f (v1) = 2;


if k = 2

f (v
′
k) = 2;

f (c1) = 0;

Subcase 3.2: if k ≥ 3

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for n− k+2≤ i≤ n−3
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f (vk−3) = 0; if n≡ 3(mod6)

f (vk−3) = 1; if n≡ 4(mod6)

f (vk−2) = 1;

f (vk−1) = f (v
′
k) = 2;

f (c1) = 0;

Case 2: Duplication of apex vertex c1

Subcase 1: n≡ 0(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n

f (c1) = 0;

f (c′1) = 2;

Subcase 2: n≡ 2(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−2

f (vn−1) = 1;

f (vn) = 0;

f (c1) = f (c′1) = 2;
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Subcase 3: n≡ 4(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n−4

f (vn−3) = f (vn−2) = 1;

f (vn−1) = f (c1) = 0;

f (vn) = f (c′1) = 2;

Subcase 4: n≡ 1(mod6)

To satisfy the vertex condition it is essential to label n+2
3 vertices with 1. It is

obvious that any edge will have label 1 if it is incident to one vertex with label 1. As G

has n+2
3 vertices with label 1 and all the rim vertices are of degree 4 implies that there

are at least 3(n+2
3 −3)+8 = n+1 edges with label 1. As the number of edges in G = 3n

and in order to satisfy the edge conditions number of edges with label 1 must be exactly

n. Thus edge condition is violated and G is not 3-equitable.

Subcase 5: n≡ 3(mod6)

To satisfy the vertex condition it is essential to label n
3 vertices with label 1. It is

obvious that any edge will have label 1 if it is incident to one vertex with label 1. As

G has n
3 vertices with label 1 and all the rim vertices are of degree 4 implies that either

3(n
3−3)+8 = n−1 or 3(n

3−1)+4 = n+1 edges with label 1. As the number of edges

in G = 3n and in order to satisfy the edge conditions number of edges with label 1 must

be exactly n. Thus edge condition is violated and G is not 3-equitable.

Subcase 6: n≡ 5(mod6)

To satisfy vertex condition it is essential to label n+1
3 vertices with label 1. It is

obvious that any edge will have label 1 if it is incident to one vertex with label 1. As

G has n+1
3 vertices with label 1 and all the rim vertices are of degree 4, it has either

3(n+1
3 −4)+10 = n−1 or 3(n+1

3 ) = n+1 edges with label 1. As the number of edges
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in G = 3n and in order to satisfy the edge conditions number of edges with label 1 must

be exactly n. Thus edge condition is violated and G is not 3-equitable.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e j(1)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.12(where n = 6a+ b,

k ∈ N and 1≤ k ≤ n, a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition
Duplication of a rim vertex

0,3 v f (0) = v f (1)+1 = v f (2) = n+3
3 e f (0) = e f (1) = e f (2) = 2n+3

3

1,4 v f (0) = v f (1) = v f (2) = n+2
3 e f (0) = e f (1) = e f (2)+1 = 2n+4

3

2,5 v f (0)+1 = v f (1)+1 = v f (2) = n+4
3 e f (0)+1 = e f (1) = e f (2)+1 = 2n+5

3
Duplication of apex vertex

0 v f (0) = v f (1)+1 = v f (2) = n+3
3 e f (0) = e f (1) = e f (2) = n

2 v f (0)+1 = v f (1)+1 = v f (2) = n+4
3 e f (0) = e f (1) = e f (2) = n

4 v f (0) = v f (1) = v f (2) = n+2
3 e f (0) = e f (1) = e f (2) = n

TABLE 4.12

Illustrations 4.6.9.

Example 1: Consider a graph obtained by duplicating vertex v2 on rim of wheel W5.

This is the example related to subcase 2 of case 1. The 3-equitable labeling is shown in

FIGURE 4.13.
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Example 2: Consider a graph obtained by duplicating apex vertex c1 of wheel W6. This

is the example related to subcase 1 of case 2. The 3-equitable labeling is shown in

FIGURE 4.14.
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Theorem 4.6.10. Duplication of the vertices of wheel Wn altogether produces a 3-

equitable graph for n , 5, where n ∈ N.

Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, ...,vn be the rim vertices of Wn, c1

be the apex vertex of Wn and G be the graph obtained by duplicating vertices altogether

moreover v′1,v
′
2, ...,v

′
n be the duplicated vertices of v1,v2, ...,vn respectively and c

′
1 be
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the duplicated vertex of c1. To define vertex labeling f : V (G)→ {0,1,2} we consider

the following cases.

Case 1: n≡ 0(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)


for all i, 1≤ i≤ n

f (c1) = 0;

f (c′1) = 2;

Case 2: n≡ 1(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for for all i, 1≤ i≤ n−1

f (vn) = 1;

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for for all i, 1≤ i≤ n−1

f (v′n) = f (c′1) = 2;

f (c1) = 0;
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Case 3: n≡ 2(mod6)

In this case we define labeling f as

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for for all i, 1≤ i≤ n−2

f (vn−1) = f (vn) = 0;

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for for all i, 1≤ i≤ n−2

f (v′n−1) = f (v′n) = 1;

f (c1) = f (c′1) = 2;

Case 4: n≡ 3(mod6)

In this case we define labeling f as

f (v1) = f (v2) = 2;

f (v3) = 0;

f (vi) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 4≤ i≤ n

f (v′1) = 0;

f (v′2) = f (v′3) = 1;

f (v′i) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 4≤ i≤ n
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f (c1) = 2;

f (c′1) = 0; if n , 3

f (c1) = 0;

f (c′1) = 2; if n = 3

Case 5: n≡ 4(mod6)

In this case we define labeling f as

f (v1) = 0;

f (v2) = f (v4) = 2;

f (v3) = 1;

f (vi) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 3,4(mod6)

= 2; if i≡ 0,1(mod6)

 for 5≤ i≤ n

f (v′1) = 0;

f (v′2) = f (v′4) = 1;

f (v′3) = 2;

f (v′i) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 3,4(mod6)

= 2; if i≡ 0,1(mod6)

 for 5≤ i≤ n

f (c1) = 0;

f (c′1) = 2;
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Case 6: n≡ 5(mod6)

In this case we define labeling f as

f (v1) = f (v4) = 0;

f (v2) = f (v3) = 1;

f (v5) = 2;

f (vi) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 6≤ i≤ n

f (v′1) = f (v′4) = 1;

f (v′2) = f (v′3) = 2;

f (v′5) = 0;

f (v′i) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 4,5(mod6)

= 2; if i≡ 1,2(mod6)

 for 6≤ i≤ n

f (c1) = 0;

f (c′1) = 2;

Case 7: n = 5

G contains 12 vertices. In order to satisfy vertex condition 4 vertices must be

labeled one. It is obvious that any edge will have label 1 if it is incident to one vertex

with label 1. All the rim vertices are of degree 6 and duplicated vertices are of degree

3. Assign label one to v1,v
′
n,v

′
1 and v

′
2. It results minimum 11 edges with label one. As

number of edges in W5 is 30 edge condition is not satisfied. Therefore for n = 5 graph

G is not 3-equitable.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.13(where n = 6a+ b

and a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �
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b Vertex Condition Edge Condition

0,3 v f (0) = v f (1)+1 = v f (2) = 2n+3
3 e f (0) = e f (1) = e f (2) = 2n

1,4 v f (0)+1 = v f (1)+1 = v f (2) = 2n+4
3 e f (0) = e f (1) = e f (2) = 2n

2,5 v f (0) = v f (1) = v f (2) = 2n+2
3 e f (0) = e f (1) = e f (2) = 2n

TABLE 4.13

Illustration 4.6.11. Consider a graph obtained by duplicating vertices of wheel W4 al-

together. This is example of case 5. The 3-equitable labeling is shown in FIGURE 4.15.
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Theorem 4.6.12. Duplication of arbitrary edge ek of cycle Cn produces a 3-equitable

graph.

Proof. Let Cn be the cycle with n vertices. Let ek = vkvk+1 be the vertex of Cn. Let

e
′
k = v

′
kv
′
k+1 be the duplicated edge of ek and G be the graph resulted due to duplication.

To define ternary vertex labeling f : V (G)→{0,1,2} we consider following cases.

Case 1: If n≡ 1,2,3,4(mod6)

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for 1≤ i≤ n− k+1
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f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for n− k+2≤ i≤ n−1

f (vk−1) = 0; if k , 1

f (vk+n−1) = 0; if k = 1

f (v
′
k) = 2; if n≡ 2,3,4(mod6)

f (v
′
k) = 1; if n≡ 1(mod6)

f (v
′
k+1) = 2; if k , n

f (v
′
k−n+1) = 2; if k = n

Case 2: If n≡ 0(mod6)

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (v
′
k) = 0;

f (v
′
k+1) = 1; if k , n

f (v
′
k−n+1) = 1; if k = n

Case 3: If n≡ 5(mod6)

f (vk+i−1) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 2,5(mod6)

= 1; if i≡ 0,1(mod6)

= 2; if i≡ 3,4(mod6)

 for n− k+2≤ i≤ n−1
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f (vk−1) = 1; if k , 1

f (vk+n−1) = 1; if k = 1

f (v
′
k) = 0;

f (v
′
k+1) = 0; if k , n

f (v
′
k−n+1) = 0; if k = n

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1

and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.14(where n = 6a+ b

and a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition

0 v f (0) = v f (1) = v f (2)+1 = n+3
3 e f (0) = e f (1) = e f (2) = n+3

3

1 v f (0) = v f (1) = v f (2) = n+2
3 e f (0)+1 = e f (1) = e f (2)+1 = n+5

3

2 v f (0)+1 = v f (1)+1 = v f (2) = n+4
3 e f (0)+1 = e f (1) = e f (2) = n+4

3

3 v f (0)+1 = v f (1) = v f (2) = n+3
3 e f (0) = e f (1) = e f (2) = n+3

3

4 v f (0) = v f (1) = v f (2) = n+2
3 e f (0) = e f (1)+1 = e f (2)+1 = n+5

3

5 v f (0) = v f (1)+1 = v f (2)+1 = n+4
3 e f (0) = e f (1) = e f (2)+1 = n+4

3

TABLE 4.14

Illustration 4.6.13. Consider W9 and duplicate edge e3. The corresponding 3-equitable

labeling is shown in FIGURE 4.16

0

0

0

1
1

1

12

2

2

2

FIGURE 4.16



Chapter 4. 3-equitable Labeling of Graphs 132

Theorem 4.6.14. Duplication of arbitrary edge ek of wheel Wn produces a 3-equitable

graph.

Proof. Consider the wheel Wn =Cn +K1. Let v1,v2, . . . ,vn be the rim vertices of Wn, c

be the apex vertex of Wn and G be the graph obtained by duplicating either rim edge or

spoke edge of Wn. Let e
′
k be the duplicated edge of ek. To define ternary vertex labeling

f : V (G)→{0,1,2} we consider following cases.

Case 1: Duplication of arbitrary rim edge ek, where k ∈ N,1≤ k ≤ n

Subcase 1: If n≡ 0,5(mod6)

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (c) = 0;

f (v
′
k) = 2;

f (vk+1) = 1; if n≡ 0(mod6)

= 2; if n≡ 5(mod6)

 for k , n

f (vk−n+1) = 1; if n≡ 0(mod6)

= 2; if n≡ 5(mod6)

 for k = n

Subcase 2: If n≡ 1,2,3,4(mod6)

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for 1≤ i≤ n− k+1
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f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)


for n− k+2≤ i≤ n−1 and n≡ 1(mod6)

for n− k+2≤ i≤ n and n≡ 2,3,4(mod6)

f (vk−1) = 0; if n≡ 1(mod6) and k , 1

f (vk+n−1) = 0; if n≡ 1(mod6) and k = 1

f (c) = 0; if n≡ 2,4(mod6)

f (c) = 2; if n≡ 1,3(mod6)

f (v
′
k) = 0; if n≡ 2(mod6)

f (v
′
k) = 1; if n≡ 1(mod6)

f (v
′
k) = 2; if n≡ 3,4(mod6)

f (vk+1) = 0; if n≡ 3,4(mod6)

= 2; if n≡ 1,2(mod6)

 for k , n

f (vk−n+1) = 0; if n≡ 3,4(mod6)

= 2; if n≡ 1,2(mod6)

 for k = n

Case 2: Duplication of arbitrary spoke edge en+k = cvk, where k ∈ N,1≤ k ≤ n

Subcase 1: If n≡ 0,5(mod6)

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for n− k+2≤ i≤ n

f (c) = 0;

f (c
′
) = 2;

f (v
′
k) = 1; if n≡ 0(mod6)

f (v
′
k) = 0; if n≡ 5(mod6)
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Subcase 2: If n≡ 1(mod6)

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (c) = 2;

f (c
′
) = 2;

f (v
′
k) = 1;

Subcase 3: If n≡ 2(mod6)

f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for 1≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 0,5(mod6)

= 2; if i≡ 2,3(mod6)

 for n− k+2≤ i≤ n

f (c) = 0;

f (c
′
) = 2;

f (v
′
k) = 1;

Subcase 4: If n≡ 3(mod6),n , 3

f (vk) = 1;

f (vk+1) = 0; if k+1≤ n

f (vk−n+1) = 0; if k+1 > n

f (vk+2) = 2; if k+2≤ n

f (vk−n+2) = 2; if k+2 > n
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f (vk+i−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for 4≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 1,4(mod6)

= 1; if i≡ 2,3(mod6)

= 2; if i≡ 0,5(mod6)

 for n− k+2≤ i≤ n

f (c) = 0;

f (c
′
) = 2;

f (v
′
k) = 1;

If n = 3 the labeling starting from vk is 0,2,2 for rim vertices, labeling of apex

vertex 0 and labeling of vertices v
′
k and c

′
is 1.

Subcase 5: If n≡ 4(mod6),n , 4

f (vk+i−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for 4≤ i≤ n− k+1

f (vk+i−n−1) = 0; if i≡ 0,3(mod6)

= 1; if i≡ 1,2(mod6)

= 2; if i≡ 4,5(mod6)

 for n− k+2≤ i≤ n−4

f (vk+i−n−1) = 2; if n−3,n−2

f (vk+i−n−1) = 1; if n−1,n

f (c) = 0;

f (c
′
) = 0;

f (v
′
k) = 1;

If n = 4 the labeling starting from vk is 0,2,2,0 for rim vertices, labeling of apex

vertex 2 and labeling of vertices v
′
k and c

′
is 1.

The labeling pattern defined above covers all possible arrangement of vertices. In

each case, the graph G under consideration satisfies the conditions |v f (i)− v f ( j)| ≤ 1
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and |e f (i)− e f ( j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in TABLE 4.15(where n = 6a+ b

and a ∈ N∪{0}). i.e. G admits 3-equitable labeling. �

b Vertex Condition Edge Condition
Duplication of a rim edge

0 v f (0) = v f (1) = v f (2) = n+3
3 e f (0) = e f (1) = e f (2)+1 = 2n+6

3

1 v f (0)+1 = v f (1)+1 = v f (2) = n+5
3 e f (0)+1 = e f (1) = e f (2)+1 = 2n+7

3

2 v f (0) = v f (1) = v f (2)+1 = n+4
3 e f (0) = e f (1) = e f (2) = 2n+5

3

3 v f (0) = v f (1) = v f (2) = n+3
3 e f (0)+1 = e f (1) = e f (2) = 2n+6

3

4 v f (0) = v f (1)+1 = v f (2)+1 = n+5
3 e f (0) = e f (1)+1 = e f (2)+1 = 2n+7

3

5 v f (0) = v f (1)+1 = v f (2) = n+4
3 e f (0) = e f (1) = e f (2) = 2n+5

3

Duplication of a spoke edge

0 v f (0) = v f (1) = v f (2) = n+3
3 e f (0) = e f (1) = e f (2)+1 = n+1

1 v f (0)+1 = v f (1)+1 = v f (2) = n+5
3 e f (0) = e f (1) = e f (2)+1 = n+1

2 v f (0) = v f (1)+1 = v f (2) = n+4
3 e f (0)+1 = e f (1) = e f (2) = n+1

3 v f (0) = v f (1) = v f (2) = n+3
3 e f (0) = e f (1)+1 = e f (2) = n+1

4 v f (0)+1 = v f (1) = v f (2)+1 = n+5
3 e f (0) = e f (1)+1 = e f (2) = n+1

5 v f (0) = v f (1)+1 = v f (2) = n+4
3 e f (0)+1 = e f (1) = e f (2) = n+1

TABLE 4.15

Illustration 4.6.15. Consider W5 and duplicate edge e1. The corresponding 3-equitable

labeling is shown in FIGURE 4.17
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4.7 Some Open Problems

It is possible to derive similar results using different graph labeling schemes and

in the context of various graph families. The results reported in this chapter can be

extended for k-equitable labeling.

4.8 Concluding Remarks

This chapter was aimed to discuss 3-equitable labeling of graphs. Fifteen new

results are investigated and labeling patterns are demonstrated by means of several ex-

amples.

The investigations reported in chapter-3 and 4 give rise to following research pa-

pers.

• Cordial and 3-equitable labeling for some star related graphs., International Math-

ematical Forum,4(3), 2009, 1543-1553. (http://www.m-hikari.com/ imf.html)

• Cordial and 3-equitable labeling for some shell related graphs., Journal of Scien-

tific Research, 1(3), 2009, 438-449.

(http://www.banglajol.info/index.php/JSR/index)
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• Some wheel related 3-equitable Graphs in the context of vertex duplication., Ad-

vances Applications in Discrete Mathematics, 4(1), 2009, 71-85.

(http://www.pphmj.com)

• Some new star related graphs and their cordial as well as 3-equitable labeling.,Journal

of Science,1(1),2010, 111-114.

• Cordial and 3-equitable labeling for some wheel related graphs., Accepted for

publication in International Journal of Applied Mathematics.

The reprints/preprint of above research papers are given in Annexure.

The next chapter is targeted to discuss arbitrary supersubdivision and some graph

labeling problems.



Chapter 5

Arbitrary Supersubdivision and Graph

Labeling

139
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5.1 Introduction

This chapter is focused on arbitrary supersubdivision of graphs and some graph

labeling schemes. We investigate nine results corresponding to this concept.

5.2 Arbitrary Supersubdivision and Graceful Labeling

of Some Graphs

Sethuraman and Selvaraju[41] introduced a new method of construction called super-

subdivision of graph.

Definition 5.2.1. Let G be a graph with q edges. A graph H is called a supersubdivision

of G if H is obtained from G by replacing every edge ei of G by a complete bipartite

graph K2,mi for some mi,1 ≤ i ≤ q in such a way that the end vertices of each ei are

identified with the two vertices of 2-vertices part of K2,mi after removing the edge ei

from graph G. If mi is varying arbitrarily for each edge ei then supersubdivision is

called arbitrary supersubdivision which is denoted by SS(G).

• In the same paper Sethuraman and Selvaraju proved that arbitrary supersubdivi-

sions of any path are graceful.

• They also proved that arbitrary supersubdivisions cycle Cn are graceful.

• Kathiresan and Amutha[30] proved that arbitrary supersubdivisions of any star

are graceful.

In the present work we discuss cordial labeling and strongly multiplicative labeling

in the context of arbitrary supersubdivision of graph.
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5.3 Arbitrary Supersubdivision and Cordial Labeling

of Some Graphs

Theorem 5.3.1. Arbitrary supersubdivision of tree T is cordial.

Proof. Let T be the tree with n vertices and vi(1≤ i≤ n) be the vertices of T . Arbitrary

supersubdivision of T is obtained by replacing every edge of tree with K2,mi and we

denote this graph by G. Let α =
n−1

∑
1

mi. Let u j be the vertices of mi-vertices part where

1 ≤ j ≤ α . Denote the vertex with minimum eccentricity as v1 and n1 and n2 be the

number of vertices which are at odd and even distance respectively form v1 in T . Here

|V (G)|= α +n and |E(G)|= 2α . We define binary vertex labeling f : V (G)→ {0,1}

as follows.

f (v1) = 0;

f (vi) = 1; if d(v1,vi) in T is odd

= 0; if d(v1,vi) in T is even

 for 2≤ i≤ n

f (ui) = 0; If n1 ≥ n2

= 1; If n1 < n2

 for 1≤ i≤ |n1−n2|

f (ui) = 0; If |n1−n2|+1≤ i≤ bα+|n1−n2|
2 c

= 1; If dα+|n1−n2|
2 e ≤ i≤ α

 for i > |n1−n2|

In view of the above defined labeling pattern we have the followings.

• When α +n is even

v f (0) = v f (1) = α+n
2 ; e f (0) = e f (1) = α

• When α +n is odd

v f (0) = v f (1)+1 = α+n+1
2 ; e f (0) = e f (1) = α

Thus the graph G satisfies the conditions |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1.

That is, G admits cordial labeling. �
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Remarks 5.3.2. In the FIGURE 5.1 to 5.10 the dark vertices correspond to 2-vertices

part while hollow vertices correspond to mi-vertices part.

Illustration 5.3.3. Consider G =SS(T ). Here n = 12 and α = 24. The cordial labeling

is as shown in FIGURE 5.1

v1 

0

0
0

0

1

1

1

1

0

0 0

1

1

1

1
0

0

1

0

0

0
00

0 0

0

0

1

1

1

1
1

1

1
1 1

FIGURE 5.1

Theorem 5.3.4. Arbitrary supersubdivision of complete bipartite graph Km,n is cordial.

Proof. Let v1,v2,v3, . . .vm be the vertices of m-vertices part and vm+1,vm+2,vm+3, . . .vm+n

be the vertices of n-vertices part of Km,n. Arbitrary supersubdivision of Km,n is ob-

tained by replacing every edge of Km,n with K2,mi and we denote this graph by G. Let

α =
mn

∑
1

mi. Let u j be the vertices which are used for arbitrary supersubdivision, where

1 ≤ j ≤ α . Note that |V (G)| = α +m + n, |E(G)| = 2α . We define binary vertex

labeling f : V (G)→{0,1} as follows.

f (vi) = 0; if 1≤ i≤ m

= 1; if m+1≤ i≤ m+n

f (ui) = 1; if m≥ n

= 0; if m < n

 for 1≤ i≤ |m−n|
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f (ui) = 0; if |m−n|+1≤ i≤ bα+|m−n|
2 c

= 1; if dα+|m−n|
2 e ≤ i≤ α

 for i > |m−n|

Above defined function f is cordial labeling for the graph under consideration because

• v f (0) = v f (1) = α+m+n
2 ; e f (0) = e f (1) = α (When α +m+n is even)

• v f (0)+1 = v f (1) = α+m+n+1
2 ; e f (0) = e f (1) = α (When α +m+n is odd)

That is, G admits cordial labeling. �

Illustration 5.3.5. Consider G = SS(K2,2). Here m = 2, n = 2 and α = 12. The cordial

labeling is as shown in FIGURE 5.2
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Theorem 5.3.6. Arbitrary supersubdivision of grid graph Pn×Pm is cordial.

Proof. Let vi j be the vertices of Pn×Pm, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Arbitrary

supersubdivision of Pn×Pm is obtained by replacing every edge of grid graph with K2,mi

and we denote the resultant graph by G. Let α =
2mn−m−n

∑
1

mi. Let u j be the vertices of

mi-vertices part of K2,mi supersubdivision, where 1 ≤ j ≤ α . Here |V (G)| = α +mn,

|E(G)|= 2α . We define binary vertex labeling f : V (G)→{0,1} as follows.

f (vi j) = 0; if i and j both are even or i and j both are odd

= 1; if i is even and j is odd or i is odd and j is even

 Where 1≤ i≤ n and

1≤ j ≤ m

f (u j) = 0; if 1≤ j ≤ bα

2 c

= 1; if dα

2 e ≤ j ≤ α
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Above defined function f is cordial labeling for the graph under consideration

because

• v f (0) = v f (1) = α+mn
2 ; e f (0) = e f (1) = α (When α +mn is even)

• v f (0)+1 = v f (1) = α+mn+1
2 ; e f (0) = e f (1) = α (When α odd and mn is even)

• v f (0) = v f (1)+1 = α+mn+1
2 ; e f (0) = e f (1) = α (When α even and mn is odd)

That is, f is a cordial labeling for the G. Hence the result. �

Illustration 5.3.7. Consider G =SS(P3×P3). Here n = 3, m = 3 and α = 29. The

corresponding cordial labeling is shown in FIGURE 5.3
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Theorem 5.3.8. Arbitrary supersubdivision of armed crown Cn�Pm is cordial except

mi(1≤ i≤ n) are odd, mi(n+1≤ i≤ nm) are even and n is odd.

Proof. Let v1,v2,v3, . . .vn be the vertices of Cn and vi j(1 ≤ i ≤ n,2 ≤ j ≤ m) be the

vertices of paths. Arbitrary supersubdivision of Cn�Pm is obtained by replacing every

edge of Cn�Pm with K2,mi and we denote this graph by G. Let α =
mn

∑
1

mi and u j be

the vertices of mi-vertices part of K2,mi , where 1 ≤ j ≤ α . Here |V (G)| = α +mn,

|E(G)|= 2α . To define binary vertex labeling f : V (G)→{0,1} we consider following

cases.
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Case 1: For n even

f (vi) = 0; if i is odd

= 1; if i is even

f (vi j) = 0; if i and j both are even or i and j both are odd

= 1; if i is even and j is odd or i is odd and j is even


for 1≤ i≤ n and

2≤ j ≤ m

f (u j) = 0; if 1≤ j ≤ bα

2 c

= 1; if dα

2 e ≤ j ≤ α

 for 1≤ j ≤ α

Case 2: For n odd and at least one mi(1≤ i≤ n) is even and at least one mi(n+1≤ i≤

mn) is odd

Without loss of generality we assume that m1 is even.

f (v1) = 0;

f (vi) = 0; if i is even

= 1; if i is odd

f (v1 j) = 0; if j is odd

= 1; if j is even

f (vi j) = 0; if i is even and j is odd or i is odd and j is even

= 1; if i and j both are even or i and j both are odd



for 2≤ i≤ n and

2≤ j ≤ m

f (u j) = 0; if 1≤ j ≤ m1
2

= 1; if m1
2 +1≤ j ≤ m1

f (u j) = 0; if m1 +1≤ j ≤ bα+m1
2 c

= 1; if dα+m1
2 e ≤ j ≤ α


for 1≤ j ≤ α

In view of the above two cases graph G satisfies the following conditions.

• v f (0) = v f (1) = α+mn
2 ; e f (0) = e f (1) = α (When α +mn is even)

• v f (0)+1 = v f (1) = α+mn+1
2 ; e f (0) = e f (1) = α (When α odd and mn is even)

• v f (0) = v f (1)+1 = α+mn+1
2 ; e f (0) = e f (1) = α (When α even and mn is odd)

That is, f is a cordial labeling for G and consequently G is a cordial graph.
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Case 3: If n is odd number with mi(1≤ i≤ n) are odd and mi(n+1≤ i≤ nm) are even

In this case G is an Eulerian graph with number of edges congruent to 2(mod4).

As we mentioned earlier (Theorem 3.5.5) an Eulerian graph with number of edges con-

gruent to 2(mod4) is not cordial.

Hence from the case 1 to 3 we have the required result. �

Illustration 5.3.9. Consider G = SS(C4�P3). Here n = 4, m = 3 and α = 29. The

corresponding cordial labeling is as shown in FIGURE 5.4
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5.4 Strongly Multiplicative Labeling

Definition 5.4.1. A graph G = (V (G),E(G)) with p vertices is said to be multiplicative

if the vertices of G can be labeled with p distinct positive integers such that label induced

on the edges by the product of labels of end vertices are all distinct.
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The concept of multiplicative labeling was introduced by Beineke and Hedge[8].

In the same paper they shown that every graph admits multiplicative labeling and they

defined strongly multiplicative labeling as follows.

Definition 5.4.2. A graph G = (V (G),E(G)) with p vertices is said to be strongly mul-

tiplicative if the vertices of G can be labeled with p distinct integers 1,2, ...p such that

label induced on the edges by the product of labels of the end vertices are all distinct.

5.4.1 Some Known Results

Beineke and Hedge[8] have proved the following results.

• Every cycle Cn is strongly multiplicative.

• Every wheel Wn is strongly multiplicative.

• Complete graph Kn is strongly multiplicative if and only if n≤ 5.

• Complete bipartite graph Kn,n is strongly multiplicative if and only if n≤ 4.

• Every spanning subgraph of a strongly multiplicative graph is strongly multiplicative.

• Every graph is an induced subgraph of a strongly multiplicative graph .
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5.5 Arbitrary Supersubdivision and Strongly Multiplica-

tive Labeling of Some Graphs

Theorem 5.5.1. Arbitrary supersubdivision of tree T is strongly multiplicative.

Proof. Let T be the tree with n vertices. Arbitrary supersubdivision SS(T ) of tree T

obtained by replacing every edge of tree with K2,mi and we denote such graph by G. Let

α = ∑mi (1≤ i≤ n−1). Let v j (1≤ j≤ α +n) be the vertices of G. Denote the vertex

with minimum eccentricity as v1. Then v2 will be the vertex which is at 1- distance

apart from v1. If there are more than one such vertices then throughout the work we will

follow one of the direction ( clockwise or anticlockwise) and denote them as v3,v4, . . . .

Next consider the vertices which are at 2- distance apart from v1, 3- distance apart from

v1 and so on. (e.g. if there are seven vertices and two vertices are at distance 1- apart,

one vertex is at distance 2- apart and three vertices are at distance 3- apart respectively

form v1. In this situation the vertices which are at 1- distance apart from v1 will be

identified as v2 and v3, the vertex which is at distance 2- apart will be identified as v4

and the vertices which are at distance 3- apart will be identified as v5,v6 and v7.) We

define vertex labeling f : V (G)→{1,2 . . .α +n} as follows.

For any 1≤ i≤ n+α define

f (vi) = i;

Then the above defined function f is strongly multiplicative labeling for the graph

G. That is, the graph G under consideration admits strongly multiplicative labeling. �

Illustration 5.5.2. In FIGURE 5.6 strongly multiplicative labeling of SS(T ) correspond-

ing to tree T of FIGURE 5.5 is shown where n = 13 and α = 26.
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FIGURE 5.5
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Theorem 5.5.3. Arbitrary supersubdivision of complete bipartite graph Km,n is strongly

multiplicative.

Proof. Let v1,v2,v3, . . .vm be the vertices of m-vertices part and vm+1,vm+2,vm+3, . . .vm+n

be the vertices of n-vertices part of Km,n. Arbitrary supersubdivision SS(Km,n) of Km,n

obtained by replacing every edge of Km,n with K2,mi and we denote such graph by G. Let

α = ∑mi (1≤ i≤mn). Let u j be the vertices which are used for arbitrary supersubdivi-

sion, where 1≤ j≤ α . We denote vertices by u j which are used for supersubdivision of
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edges v1vm+1,v1vm+2, . . .v1vm+n,v2vm+1, . . .vnvm+n. Let po be the highest prime less

than α +m+n. We define vertex labeling f : V (G)→{1,2 . . .α +m+n} as follows.

If po ≤ α +m

f (vi) =

 i; i f 1≤ i≤ m

α + i; i f m+2≤ i≤ m+n

f (vm+1) = po;

f (u j) =

 m+ j; i f 1≤ j < po

m+ j+1; i f po ≤ j ≤ α

If po > α +m

f (vi) =


i; i f 1≤ i≤ m,

α + i−1; i f m+2≤ i < po,

α + i; i f po ≤ i≤ m+n

f (vm+1) = po;

f (u j) = m+ j; where 1≤ j ≤ α

Then in each possibilities described above the function f is strongly multiplicative

labeling for the graph G. That is, the graph G under consideration admits strongly

multiplicative labeling. �

Illustration 5.5.4. Consider SS(K2,3). Here m = 2, n = 3 and α = 14. The strongly

multiplicative labeling is as shown in FIGURE 5.7.
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Theorem 5.5.5. Arbitrary supersubdivision of grid graph Pn×Pm is strongly multiplica-

tive.

Proof. Arbitrary supersubdivision SS(Pn×Pm) of Pn×Pm obtained by replacing every

edge of grid graph with K2,mi and we denote such graph by G. Let α = ∑mi (1 ≤ i ≤

mn). Let vi (1≤ i≤mn+α) be the vertices of G. Denote the vertex of left upper corner

with v1. Here we designate vertices by vi (2≤ i≤ mn+α) according to the procedure

described in Theorem 5.5.1 We define vertex labeling f : V (G)→{1,2, . . . ,mn+α}

f (vi) = i; where 1≤ i≤ mn+α

Then the above defined function f is strongly multiplicative labeling for the graph

G. That is, the graph G under consideration admits strongly multiplicative labeling. �

Illustration 5.5.6. Consider SS(P4×P3). Here n = 4, m = 3 and α = 41. The corre-

sponding strongly multiplicative labeling is shown in FIGURE 5.8.
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Theorem 5.5.7. Arbitrary supersubdivision of armed crown Cn�Pm is strongly multi-

plicative.

Proof. Arbitrary supersubdivision SS(Cn�Pm) of Cn�Pm obtained by replacing every

edge of Cn�Pm with K2,mi and we denote such graph by G. Let α = ∑mi (1≤ i≤mn).

Let vi (1≤ i≤ mn+α) be the vertices of G. Designate arbitrary vertex of Cn as v1 and

employing the scheme used in Theorem 5.5.1 the remaining vertices will receive labels

v2,v3, . . . ,vmn+α . We define vertex labeling f : V (G)→{1,2, . . . ,mn+α} as follows.

f (vi) = i; where 1≤ i≤ mn+α

Then the above defined function f is strongly multiplicative labeling for the graph

G. That is, the graph G under consideration admits strongly multiplicative labeling. �

Illustration 5.5.8. Consider SS(C5�P3). Here n = 5, m = 3 and α = 37. The corre-

sponding strongly multiplicative labeling is as shown in FIGURE 5.9.
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Theorem 5.5.9. Arbitrary supersubdivision of C(m)
n is strongly multiplicative.

Proof. Arbitrary supersubdivision of C(m)
n is obtained by replacing every edge of C(m)

n

with K2,mi and we denote this graph by G. Let α =∑mi. Let vi(1≤ i≤m(n−1)+α+1

be the vertices of G. Denote the common vertex of cycles by v1. According to the

procedure followed in previous results the remaining vertices will be designated as vi

(2≤ i≤m(n−1)+α +1). We define vertex labeling f : V (G)→{1,2, . . . ,m(n−1)+

α +1} as follows.

For any 1≤ i≤ m(n−1)+α +1 we define

f (vi) = i;

Then the above defined function f is strongly multiplicative labeling for the graph

G. That is, the graph G under consideration admits strongly multiplicative labeling. �

Illustration 5.5.10. Consider SS(C(3)
4 ). Here n = 4, m = 3 and α = 26. The strongly

multiplicative labeling is as shown in FIGURE 5.10.
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5.6 Some Open Problems

• It is possible to investigate some result corresponding to different graph labeling

techniques.

• Try to find out some characterisation for strongly multiplicative labeling.

5.7 Concluding Remarks

It is very interesting to investigate graph or families of graph which admits partic-

ular type of labeling. Here we discuss cordial and strongly multiplicative labeling in the

context of arbitrary supersubdivision of some graphs.

The content of this chapter give rise to the following two research papers.

1. Strongly multiplicative labeling in the context of arbitrary supersubdivision., Jour-

nal of Mathematics Research, 2(2),2010, 28-33.

2. Cordial labeling and arbitrary supersubdivision of some graphs., Accepted for

publication in International J. of Information Sc. and Computer Maths.

(http://pphmj.com/journals/ijiscm.htm)
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The reprint/preprint of above research papers are given in Annexure.

The last Chapter-6 is intended to discuss product cordial labeling of graphs.
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Product Cordial Labeling of Graphs
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6.1 Introduction

In cordial labeling the induced edge labels are absolute difference of vertex labels

while in product cordial labeling the induced edge labels are product of vertex labels. In

the present chapter we contribute eleven new results corresponding to product cordial

labeling.

6.2 Product Cordial Labeling

Definition 6.2.1. Let G = (V (G),E(G)) be a graph. A mapping f : V (G)−→ {0,1} is

called binary vertex labeling of G and f (v) is called the label of vertex v of G under f .

For an edge e = uv, the induced edge labeling f ∗ : E(G)→ {0,1} is given by

f ∗(e) = f (u) f (v). Let v f (0),v f (1) be the number of vertices of G having labels 0 and

1 respectively under f and let e f (0),e f (1) be the number of edges of G having labels 0

and 1 respectively under f ∗

Definition 6.2.2. A binary vertex labeling of graph G is called a product cordial labeling

if |v f (0)−v f (1)| ≤ 1 and |e f (0)−e f (1)| ≤ 1. A graph G is product cordial if it admits

product cordial labeling.

6.2.1 Some Known Results

The concept of product cordial labeling was introduced by Sundaram et al.[42].

They proved that

• All trees are product cordial.

• Unicyclic graphs of odd order are product cordial.

• triangular snakes are product cordial .

• dragons are product cordial.
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• helms are product cordial.

• union of two path graphs are product cordial.

• A graph with p vertices and q edges with p≥ 4 is product cordial then q < p2−1
4 .

6.3 Some New Product Cordial Graphs

Theorem 6.3.1. The graph obtained by fusion of two vertices vi and v j with d(vi,v j)≥ 3

of cycle Cn is product cordial.

Proof. Let Cn be any cycle. v1,v2,v3, . . . ,vn be the vertices of Cn. G is the graph pro-

duced by fusion of v1 with vk. To define binary vertex labeling f : V (G)→ {0,1} we

consider following cases.

Case 1: For any odd n and k ≤ n+1
2

f (vi) = 1; if 1≤ i≤ n+1
2 and i , k

= 0; if n+3
2 ≤ i≤ n

Case 2: For any odd n and k > n+1
2

f (v1) = 1;

f (vi) = 0; if 2≤ i≤ n+1
2

= 1; if n+3
2 ≤ i≤ n and i , k

Case 3: For any even n and k ≤ n+2
2

f (vi) = 1; if 1≤ i≤ n+2
2 and i , k

= 0; if n+4
2 ≤ i≤ n

Case 4: For any even n and k > n+2
2

f (v1) = 1;

f (vi) = 0; if 2≤ i≤ n
2

= 1; if n+2
2 ≤ i≤ n and i , k
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The labeling pattern defined above includes all possible arrangement of vertices. In each

case the graph G under consideration satisfies the conditions for product cordiality as

shown in TABLE 6.1(where n = 2a+b and a ∈ N). i.e. G is product cordial graph. �

b Vertex Condition Edge Condition
0 v f (0)+1 = v f (1) = n

2 e f (0) = e f (1) = n
2

1 v f (0) = v f (1) = n−1
2 e f (0) = e f (1)+1 = n+1

2

TABLE 6.1

Remarks 6.3.2. If d(vi,v j)< 3 the graph obtained by fusion is not simple and product

cordiality can not be discussed.

Illustrations 6.3.3. Consider a graph obtained by fusing two vertices, v1 and v7 of cycle

C11. Here n = 11 i.e. n is odd and k = 7. Here k > n+1
2 . The product cordial labeling is

as shown in FIGURE 6.1.
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Theorem 6.3.4. Duplication of arbitrary vertex vk of cycle Cn with n ≥ 6 produces

product cordial graph.

Proof. Let Cn be cycle with n vertices, where n≥ 6. Let vk be arbitrary vertex of Cn. Let

G be the graph obtained by duplicating vertex vk of cycle Cn. Let v
′
k be duplicated vertex
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of vk. To define binary vertex labeling f : V (G) −→ {0,1}. We consider following

cases.

Case 1: For even n

f (vk+i−1) = 1; if 1≤ i≤ n−2
2 and k+ i−1≤ n

f (vk+i−n−1) = 1; if 1≤ i≤ n−2
2 and k+ i−1 > n

f (vk+i−1) = 0; if n
2 ≤ i < n and k+ i−1≤ n

f (vk+i−n−1) = 0; if n
2 ≤ i < n and k+ i−1 > n

f (vn) = 1; if k = 1

f (vk−1) = 1; if k > 1

f (v
′
k) = 1;

Case 2: For odd n

f (vk+i−1) = 1; if 1≤ i≤ n−3
2 and k+ i−1≤ n

f (vk+i−n−1) = 1; if 1≤ i≤ n−3
2 and k+ i−1 > n

f (vk+i−1) = 0; if n−1
2 ≤ i < n and k+ i−1≤ n

f (vk+i−n−1) = 0; if n−1
2 ≤ i < n and k+ i−1 > n

f (vn) = 1; if k = 1

f (vk−1) = 1; if k > 1

f (v
′
k) = 1;

The above defined labeling pattern includes all possible arrangement of vertices. In each

case 1 and case 2 the conditions for product cordiality is satisfied as shown in TABLE

6.2(where n = 2a+b and a ∈ N).

b Vertex Condition Edge Condition
0 v f (0)+1 = v f (1) = n+2

2 e f (0) = e f (1) = n+2
2

1 v f (0) = v f (1) = n+1
2 e f (0) = e f (1)+1 = n+3

2

TABLE 6.2
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Case 3 : For n = 3,4

The graph G with p vertices and q edges does not satisfy the condition q < p2−1
4

hence G is not product cordial as stated by Sundaram et al.[42]

Case 4 : For n = 5

To satisfy vertex condition it is essential to label 3 vertices with label 0. It is

obvious that any edge will have label 0 if it is incident to vertex with label 0. As G

has 3 vertices with label zero and minimum degree of the vertices are of 2, it has at

least 3× 2− 1 = 5 edges with label 0 and at most 7− 5 = 2 edges with label 1. Here

|e f (0)− e f (1)| = |5− 2| = 3. Thus edge condition is not satisfied. Hence G is not

product cordial.

Thus from the case 1 to 4 we conclude that the Duplication of arbitrary vertex vk

of cycle Cn with n≥ 6 produces product cordial graph. �

Illustration 6.3.5. Consider a graph obtained by duplicating vertex v3 of cycle C8. Here

n = 8 i.e. n is even. The product cordial labeling is as shown in FIGURE 6.2.
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Theorem 6.3.6. The graph obtained by duplication of arbitrary rim vertex of wheel Wn

is product cordial for odd n and not product cordial for even n, where n≥ 6.

Proof. Consider the wheel. Let v1,v2,v3, . . . ,vn be the rim vertices of wheel and let c1

be the apex vertex. Let G be the graph obtained by duplicating arbitrary rim vertex vk
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of wheel. Let v
′
k be duplicated vertex of vk. The following function f : V (G)−→ {0,1}

gives product cordial labeling for the following case.

Case 1 : For odd n

f (vk+i−1) = 1; if 1≤ i≤ n−3
2 and k+ i−1≤ n

f (vk+i−n−1) = 1; if 1≤ i≤ n−3
2 and k+ i−1 > n

f (vk+i−1) = 0; if n−1
2 ≤ i < n and k+ i−1≤ n

f (vk+i−n−1) = 0; if n−1
2 ≤ i < n and k+ i−1 > n

f (vn) = 1; if k = 1

f (vk−1) = 1; if k > 1

f (v
′
k) = 1;

f (c1) = 1;

The above defined labeling pattern includes all possible arrangement of vertices.

The following TABLE 6.3(where n = 2a+b and a ∈ N) show the conditions of product

cordiality for the above defined function is satisfied by G.

b Vertex Condition Edge Condition
a≥ 3 v f (0)+1 = v f (1) = n+3

2 e f (0) = e f (1)+1 = n+2

TABLE 6.3

Case 2 : For even n

If n is even n−1 is odd. According to case 1 duplication of arbitrary rim vertex of

Wn−1 is product cordial and satisfy vertex condition v f (0)+1 = v f (1). Wn contains one

more vertex than Wn−1. In order to satisfy vertex condition this vertex must have label

0 which forces us to assign 0 labels to two edges. i.e. e f (0) = e f (1)+3. Therefore the

graph obtained by duplication of arbitrary rim vertex of Wn is not product cordial for

even n.

Case 3 : For n = 3,4,5

The graph G with p vertices and q edges does not satisfy the condition q < p2−1
4

hence G is not product cordial as proved by Sundaram et al.[42].
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Thus from the case 1 to 3 we conclude that the graph obtained by duplication of

arbitrary rim vertex of wheel Wn is product cordial for odd n and not product cordial for

even n, where n≥ 6. �

Illustration 6.3.7. Consider a graph obtained by duplication of rim vertex v4 of wheel

W9. Here n = 9. The product cordial labeling is as shown in FIGURE 6.3.
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FIGURE 6.3

Theorem 6.3.8. The graph obtained by duplication of apex vertex of wheel Wn is not

product cordial graph.

Proof. Consider the wheel. Let G be the graph obtained by duplication of apex vertex

c1 of wheel. Let c
′
1 be duplicated vertex of c1. Graph G contains n+ 2 vertices and

3n edges. Degree of each rim vertex is 4 and degree of apex vertex and its duplicated

vertex is n. Vertex label of c1 and c
′
1 must be 1 because label 0 will give rise to 2n edges

with label 0 which will violate edge condition.

Case 1 : For even n

To satisfy vertex condition it is essential to label n+2
2 vertices with label 0. It is

obvious that any edge will have label 0 if it is incident to vertex with label 0. As G

has n+2
2 vertices with label zero and all the rim vertices are of degree 4, it has at least

3(n+2)
2 + 1 edges with label 0 and at most 3n− 3(n+2)

2 − 1, i.e 3n−8
2 edges with label 1.

Here |e f (0)− e f (1)| = |3(n+2)
2 + 1− 3n−8

2 | = 8. Thus edge condition is not satisfied.

Hence G is not product cordial graph.
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Case 2 : For odd n

To satisfy vertex condition it is essential to label n+1
2 vertices with label 0. It is

obvious that any edge will have label 0 if it is incident to vertex with label 0. As G

has n+1
2 vertices with label zero and all the rim vertices are of degree 4, it has at least

3(n+1)
2 + 1 edges with label 0 and at most 3n− 3(n+1)

2 − 1, i.e 3n−5
2 edges with label 1.

Here |e f (0)− e f (1)| = |3(n+1)
2 + 1− 3n−5

2 | = 5. Thus edge condition is not satisfied.

Hence G is not product cordial. �

Definition 6.3.9. A vertex switching Gv of a graph G is obtained by taking a vertex v

of G, removing all edges incidence to v and adding edges joining v to every vertex not

adjacent to v in G.

Theorem 6.3.10. Vertex switching of cycle Cn is product cordial.

Proof. Let G =Cn and v1,v2, . . . ,vn be successive vertices of Cn. Gvk denotes the vertex

switching of G with respect to the vertex vk of G. To define binary vertex labeling

f : V (Gvk)−→ {0,1} we consider following.

f (vk+i−1) = 1; if 1≤ i≤ dn+2
2 e and k+ i−1≤ n and i , 2

f (vk+i−n−1) = 1; if 1≤ i≤ dn+2
2 e and k+ i−1 > n and i , 2

f (vk+i−1) = 0; if dn+4
2 e ≤ i < n and k+ i−1≤ n

f (vk+i−n−1) = 0; if dn+4
2 e ≤ i < n and k+ i−1 > n

f (vk+1) = 0; if k , n

f (v1) = 0; if k = n

The above defined labeling pattern includes all possible arrangement of vertices. The

following TABLE 6.4(where n = 2a + b and a ∈ N) show the conditions of product

cordiality for the above defined function is satisfied by Gvk . �
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b Vertex Condition Edge Condition
0 v f (0)+1 = v f (1) = n+1

2 e f (0)+1 = e f (1) = n−2
1 v f (0) = v f (1) = n

2 e f (0) = e f (1)+1 = n−2

TABLE 6.4

Illustration 6.3.11. Consider a graph obtained by vertex switching of v4 of wheel C9.

Here n = 9. The product cordial labeling is as shown in FIGURE 6.4.
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FIGURE 6.4

Theorem 6.3.12. Graph < S(1)n : S(2)n > is product cordial.

Proof. Let v(1)1 ,v(1)2 ,v(1)3 , . . . ,v(1)n be the vertices S(1)n and v(2)1 ,v(2)2 ,v(2)3 , . . . ,v(2)n be the

vertices S(2)n . Let v(1)1 and v(2)1 be the apex vertices of S(1)n and S(2)n respectively which

are joined to a vertex x. For G =< S(1)n : S(2)n >. We define binary vertex labeling

f : V (G)→{0,1} as follows.

f (v(1)i ) = 1;

f (v(2)i ) = 0;

 For 1≤ i≤ n

f (x) = 1;

Thus vertices of S(1)n are labeled with 1 and vertices of S(2)n are labeled with 0 while the

vertex x is labeled with 1. Consequently v f (0) = n,v f (1) = n+1 and e f (0) = e f (1) =

2n−2. Thus the graph G satisfies the conditions for product cordial graph. That is, G

admits product cordial labeling. �
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Illustration 6.3.13. Consider a graph G =< S(1)8 : S(2)8 >. Here n = 8. The product

cordial labeling is as shown in FIGURE 6.5 .
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Theorem 6.3.14. Graph < S(1)n : S(2)n : . . . : S(k)n > is product cordial except k odd and n

even.

Proof. Let S( j)
n be the shells. Let v( j)

i be the vertices S( j)
n and v( j)

1 be the apex vertices of

S( j)
n . Let x j( j , k) be the new vertices where 1≤ j≤ k. Let G=< S(1)n : S(2)n : . . . : S(k)n >.

For 1≤ i≤ n we define binary vertex labeling f : V (G)→{0,1} as follows.

Case 1: k even

f (v( j)
i ) = 1; if j ≤ k

2

f (v( j)
i ) = 0; if j > k

2

f (x j) = 1; if j ≤ k
2

f (x j) = 0; if k
2 < j ≤ k−1

Case 2: both k and n odd

f (v( j)
i ) = 1; if j ≤ k−1

2

f (v( j)
i ) = 1; if j = k+1

2 and i≤ n+1
2

f (v( j)
i ) = 0; if j = k+1

2 and i > n+1
2

f (v( j)
i ) = 0; if j > k+1

2

f (x j) = 1; if j ≤ k−1
2

f (x j) = 0; if k−1
2 < j ≤ k−1

In both the cases described above the graph G satisfies the vertex condition v f (0)+1 =

v f (1) =
k(n+1)

2 and edge condition e f (0) = e f (1)+1 = k(2n−1)−1
2 .
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Case 3 : k odd and n even

We assign label 1 to all the vertices of first copies of shells and assign label 0 to all

the vertices of last copies of shells. This will provide equal number of vertices and edges

with label 0 and 1. Now our task is to label n vertices of a shell (i.e. vertices of (k+1
2 )th

copy). In order to satisfy vertex condition for product cordiality n
2 vertices must be

labeled with 0. Then at least n edges will get label 0. Consequently the number of edges

with label 1 is (2n−3)−(n) = n−3 because |Sn(E)|= 2n−3. Hence |e f (0)−e f (1)|=

|n−(n−3)|= 3. Thus edge condition is not satisfied. i.e. G is not product cordial graph.

Thus from the case 1 to 3 we conclude that graph < S(1)n : S(2)n : . . . : S(k)n > is

product cordial except k odd and n even. �

Illustration 6.3.15. Consider a graph G=< S(1)7 : S(2)7 : S(3)7 >. Here n= 7. The product

cordial labeling is as shown in FIGURE 6.6.
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Theorem 6.3.16. Graph < K(1)
1,n : K(2)

1,n > is product cordial.

Proof. Let v(1)1 ,v(1)2 , . . . ,v(1)n and v(2)1 ,v(2)2 , . . . ,v(2)n be the pendant vertices of K(1)
1,n and

K(2)
1,n respectively. Let c1 and c2 be the apex vertices of K(1)

1,n and K(2)
1,n respectively which

are adjacent to a common vertex x. Let G =< K(1)
1,n : K(2)

1,n >. We define binary vertex

labeling f : V (G)→{0,1} as follows.
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f (v(1)i ) = 1;

f (v(2)i ) = 0;

 For 1≤ i≤ n

f (x) = 1;

In view of the above defined labeling pattern v f (0) = e f (0) = e f (1) = n+ 1 and

v f (1) = n+ 2. Thus the graph G satisfies the vertex condition and edge condition be-

cause v f (0)+ 1 = v f (1) and e f (0) = e f (1). That is, G admits product cordial label-

ing. �

Illustration 6.3.17. Consider a graph G =< K(1)
1,8 : K(2)

1,8 >. Here n = 8. The product

cordial labeling is as shown in FIGURE 6.7.
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Theorem 6.3.18. Graph < K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > is product cordial.

Proof. Let v( j)
i be the pendant vertices of K( j)

1,n and c j be the apex vertices of K( j)
1,n . Let

x j( j , k) be the new vertices where LetG =< K(1)
1,n : K(2)

1,n : K(3)
1,n : . . . : K(k)

1,n > . We define

binary vertex labeling f : V (G)→{0,1} as follows.

Case 1: k even

f (v( j)
i ) = 1; if 1≤ j ≤ k

2

f (v( j)
i ) = 0; if k+2

2 ≤ j ≤ k

 For 1≤ i≤ n



Chapter 6. Product Cordial Labeling of Graphs 169

f (c j) = 1; if 1≤ j ≤ k
2

f (c j) = 0; if k+2
2 ≤ j ≤ k

f (x j) = 1; if 1≤ j ≤ k
2

f (x j) = 0; if k+2
2 ≤ j ≤ k−1

Case 2: k odd

Subcase 1: n even

f (v( j)
i ) = 1; if 1≤ j ≤ k−1

2

f (v( j)
i ) = 0; if k+3

2 ≤ j ≤ k

 For 1≤ i≤ n

f (c j) = 1; if 1≤ j ≤ k+1
2

f (c j) = 0; if k+3
2 ≤ j ≤ k

f (x j) = 1; if 1≤ j ≤ k−1
2

f (x j) = 0; if k+1
2 ≤ j ≤ k−1

f (v( j)
i ) = 1; if 1≤ i≤ n

2

f (v( j)
i ) = 0; if n+2

2 ≤ i≤ n

 For j = k+2
2

Subcase 2: n odd

f (v( j)
i ) = 1; if 1≤ j ≤ k−1

2

f (v( j)
i ) = 0; if k+3

2 ≤ j ≤ k

 For 1≤ i≤ n

f (c j) = 1; if 1≤ j ≤ k+1
2

f (c j) = 0; if k+3
2 ≤ j ≤ k

f (x j) = 1; if 1≤ j ≤ k−1
2

f (x j) = 0; if k+1
2 ≤ j ≤ k−1

f (v( j)
i ) = 1; if 1≤ i≤ n−1

2

f (v( j)
i ) = 0; if n+1

2 ≤ i≤ n

 For j = k+2
2

The labeling pattern defined above exhaust all the possibilities for n and k and in each

cases the graph G satisfies the conditions |v f (0)− v f (1)| ≤ 1 and |e f (0)− e f (1)| ≤ 1
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as shown in TABLE 6.5(where n = 2a+b, k = 2c+d and a,c ∈ N). That is, G admits

product cordial labeling. �

d b Vertex Condition Edge Condition

0 0,1 v f (0)+1 = v f (1) =
k(n+2)

2 e f (0) = e f (1) =
k(n+2)−2

2

0 v f (0)+1 = v f (1) =
k(n+2)

2 e f (0) = e f (1) =
k(n+2)−2

2
1

1 v f (0) = v f (1) =
k(n+2)−1

2 e f (0) = e f (1)+1 = k(n+2)−1
2

TABLE 6.5

Illustration 6.3.19. Consider a graph G =< K(1)
1,5 : K(2)

1,5 : K(3)
1,5 >. Here n = 5. The

product cordial labeling is as shown in FIGURE 6.8.
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Theorem 6.3.20. Graph <W (1)
n : W (2)

n > is product cordial.

Proof. Let v(1)1 ,v(1)2 , . . . ,v(1)n and v(2)1 ,v(2)2 , . . . ,v(2)n be the rim vertices of W (1)
n and W (2)

n

respectively. Let c1 and c2 be the apex vertices of W (1)
n and W (2)

n respectively which

are adjacent to a common vertex x. Let G =< W (1)
n : W (2)

n >. We define binary vertex

labeling f : V (G){0,1} as follows.

f (v(1)i ) = 1;

f (v(2)i ) = 0;

 For 1≤ i≤ n

f (x) = 1;

Then the graph G satisfies the vertex condition v f (0)+1 = v f (1) = n+2 and edge

condition e f (0) = e f (1) = 2n+1. That is, G admits product cordial labeling. �



Chapter 6. Product Cordial Labeling of Graphs 171

Illustration 6.3.21. Consider a graph G =<W7(1) : W7(2)>. Here n = 7. The product

cordial labeling is as shown in FIGURE 6.9.
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Theorem 6.3.22. Graph < W (1)
n : W (2)

n : W (3)
n : ... : W (k)

n > is product cordial (i)for k

even and n even or odd (ii)for k odd and n even with k > n and (iii) not product cordial

otherwise.

Proof. Let v( j)
i be the rim vertices W ( j)

n and c j be the apex vertices of W ( j)
n . Let x j( j , k)

be the new vertices. Let G =<W (1)
n : W (2)

n : W (3)
n : ... : W (k)

n >. We define binary vertex

labeling f : V (G)→{0,1} as follows.

Case 1: k even

f (v( j)
i ) = 1; if 1≤ j ≤ k

2

f (v( j)
i ) = 0; if k+2

2 ≤ j ≤ k

 For 1≤ i≤ n

f (c j) = 1; if 1≤ j ≤ k
2

f (c j) = 0; if k+2
2 ≤ j ≤ k

f (x j) = 1; if 1≤ j ≤ k
2

f (x j) = 0; if k+2
2 ≤ j ≤ k−1

Case 2: k odd, n even with k > n

f (v( j)
i ) = 1; if 1≤ j ≤ k+1

2

f (v( j)
i ) = 0; if k+3

2 ≤ j ≤ k

 For 1≤ i≤ n
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f (c j) = 1; if 1≤ j ≤ k+1
2

f (c j) = 0; if k+3
2 ≤ j ≤ k

f (x j) = 1; if 1≤ j ≤ k−n−1
2

f (x j) = 0; if k−n+1
2 ≤ j ≤ k−1

In both the cases described above the graph G satisfies the vertex condition as

v f (0)+1 = v f (1) =
k(n+2)

2 and edge condition as e f (0) = e f (1) = k(n+1)−1. i.e. G

admits product cordial labeling.

Thus we proved (i) and (ii) while to prove (iii) we have to consider following two

cases.

Case 3: k and n odd

We assign label 1 to all the vertices of first k−1
2 copies of wheels and assign label

0 to all the vertices of last k−1
2 copies of wheels. This will provide equal number of

vertices and edges with label 0 and 1. Now our task is to label n+ 1 vertices of a

wheel (i.e. vertices of (k+1
2 )th copy). In order to satisfy vertex condition for product

cordiality n+1
2 vertices must be labeled with 0. Then at least n+2 edges will get label

0. Consequently the number of edges with label 1 is (2n)− (n+ 2) = n− 2 because

|Wn(E)| = 2n. Hence |e f (0)− e f (1)| = |n+ 2− (n− 2)| = 4. Thus edge condition is

not satisfied. i.e. G is not product cordial graph.

Case 4: For k odd and n even with n≥ k

If k+1
2 copies of wheel are labeled with 1 then vertex condition is not satisfied as

n≥ k. Then arguing as in case 3 the graph G does not admit product cordial labeling.

Thus from case 1 to 4 we have the required result. �

Illustration 6.3.23. Consider a graph G =< W (1)
6 : W (2)

6 : W (3)
6 : W (4)

6 >. Here n = 6.

The product cordial labeling is as shown in FIGURE 6.10.
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6.4 Open Problems

It is always interesting to investigate a particular type of labeling for a larger graph

resulted from some graph operations on standard graphs. It is possible to derive results

corresponding to various graph operations and in the context of different graph labeling

assignment.

6.5 Concluding Remarks

We have investigated product cordial labeling for the graph resulted due to graph

operations like fusion, duplication and switching of vertex. In addition to this we derive

some results for wheel, star and shell related graph.

The results reported here are published in the following research paper.

1. Some new product cordial graphs.,Journal of Applied Computer Science & Math-

ematics, 8(4),2010, 62-65.(http://jacs.usv.ro)

The reprint of the above research paper is provided in Annexure.
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List of Symbols

|B| Cardinality of set B.

CHn Closed helm on n vertices.

Cn Cycle with n vertices.

E(G) or E Edge set of graph G.

Fn Fan on n vertices.

G×H Cartesian product of graphs G and H.

G = (V (G),E(G)) A graph G with vertex set V (G) and edge set E(G).

G− e Graph G with one edge deleted.

G− v Graph G with one vertex deleted.

Hn Helm on n vertices.

Kn Complete graph on n vertices.

Km,n Complete bipartite graph.

N(v) Open neighbourhood of vertex v.

N[v] Closed neighbourhood of vertex v.

Pn Path graph on n vertices.

Sn Shell on n vertices.

T Tree.

T (G) Spanning tree of graph G.

V (G) or V Vertex set of graphs G.

Wn Wheel on n vertices.

d(v) or dG(v) Degree of a vertex v of graph G.

e f (n) Number of edges with edge label n.

dne Least integer not less than real number n (Ceiling of n).
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bnc Greatest integer not greater than real number n (Floor of n).

(p,q) A graph with order p and size q.

v f (n) Number of vertices with vertex label n.
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1.  Introduction 

We begin with simple, finite, connected and undirected graph G = (V, E). For all standard 
terminology and notations we follow Harary [1]. We will give brief summary of 
definitions which are useful for the present investigations. 

Definition 1.1  A shell Sn is the graph obtained by taking n-3 concurrent chords in a cycle 
Cn on n vertices. The vertex at which all the chords are concurrent is called the apex 
vertex.  The shell is also called fan Fn-1.  i.e. Sn=Fn-1=Pn-1+K1. 

Definition 1.2:  Consider two shells Sn
 (1) and Sn

(2) then graph G =< Sn
 (1): Sn

(2)  > obtained 
by joining apex vertices of shells to a new vertex x. 

Definition 1.3:  Consider k copies of shells namely Sn
 (1), Sn

 (2), Sn
 (3), . . ., Sn

 (k). Then the 
graph G =< Sn

 (1): Sn
 (2): Sn

 (3): . . .: Sn
 (k)> obtained by joining apex vertex of each Sn

 (p) and 
apex of Sn

 (p-1) to a new vertex  xp−1 where 2 ≤ p ≤ k. 

Definition 1.4:  If the vertices of the graph are assigned values subject to certain 
conditions then it is known as graph labeling. 

Most interesting graph labeling problems have following three important ingredients. 

(i) a set of numbers from which the labels are chosen; 
(ii) a rule that assigns a value to each edges; 
(iii) a condition that these values must satisfy. 

                                                 
1Corresponding Author : samirkvaidya@yahoo.co.in 
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For detail survey on graph labeling one can refer Gallian [2]. Vast amount of literature 
is available on different types of graph labeling. According to Beineke and Hegde [3] 
graph labeling serves as a frontier between number theory and structure of graphs. 
Labeled graph have variety of applications in coding theory, particularly for missile 
guidance codes, design of good radar type codes and convolution codes with optimal 
autocorrelation properties. Labeled graph plays vital role in the study of X-ray 
crystallography, communication network and to determine optimal circuit layouts. A 
detail study of variety of applications of graph labeling is given by Bloom and Golomb[4]. 

Definition 1.5: Let G = (V, E) be a graph. A mapping f: V (G) → {0, 1} is called binary 
vertex labeling of G and f (v) is called the label of the vertex v of G under f.  

For an edge e = uv, the induced edge labeling f*: E (G) → {0, 1} is given by f*(e) =|f 
(u) − f (v)|. Let vf (0), vf (1) be the number of vertices of G having labels 0 and 1 
respectively under f while ef (0), ef (1) be the number of edges having labels 0 and 1 
respectively under f*. 

Definition 1.6:  A binary vertex labeling of a graph G is called a cordial labeling if |vf(0) 
−vf(1)| ≤ 1 and |ef(0) − ef(1)| ≤ 1. A graph G is cordial if it admits cordial labeling. 

The concept of cordial labeling was introduced by Cahit [5]. Many researchers have 
studied cordiality of graphs. Cahit [5] proved that tree is cordial. In the same paper he 
proved that Kn is cordial if and only if n ≤ 3. Ho et al. [6] proved that unicyclic graph is 
cordial unless it is C4k+2. Andar et al. [7] have discussed the cordiality of multiple shells. 
Vaidya et al. [8, 9, 10] have also discussed the cordiality of various graphs. 

Definition 1.7:  Let G = (V, E) be a graph. A mapping f: V (G) → {0, 1, 2} is called 
ternary vertex labeling of G and f (v) is called the label of the vertex v of G under f.  

For an edge e = uv, the induced edge labeling f*: E (G) → {0, 1, 2} is given by f*(e) =|f 
(u) − f (v)|. Let vf (0), vf (1) and vf (2) be the number of vertices of G having labels 0,1 and 
2 respectively under f  while ef(0), ef(1) and ef(2) be the number of edges having labels 0,1 
and 2 respectively under f*. 

Definition 1.8: A vertex labeling of a graph G is called a 3-equitable labeling if |vf(i) 
−vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for all 0 ≤ i, j≤ 2. A graph G is 3-equitable if it admits 3-
equitable labeling.   

The concept of 3-equitable labeling was introduced by Cahit [11]. Many researchers 
have studied 3-equitability of graphs. For example Cahit [11] proved that Cn is 3-equitable 
except n ≡ 3(mod6).  In the same paper he proved that an Eulerian graph with number of 
edges congruent to 3(mod6)  is not 3-equitable.  Youssef [12] proved that Wn is 3-
equitable for all n ≤ 4. In the present investigations we prove that graphs < Sn

 (1): Sn
(2) >   

and  < Sn
 (1): Sn

 (2) : Sn
 (3): . . .: Sn

 (k)> cordial as well as 3-equitable.  
 
2. Main Results 
 

Theorem 2.1:  Graph < Sn
 (1): Sn

 (2) > is cordial. 
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Proof: Let v1

(1) , v2
(1) , v3

(1) , . . . v n 
(1) be the vertices Sn

(1) of  v1
(2) , v2

(2) , v3
(2) , . . . v n 

(2) be 
the vertices of Sn

(2). Let v1
 (1) and v1

 (2) be the apex vertices of Sn
 (1) and Sn

 (2), respectively.  
Let G =< Sn

 (1): Sn
 (2) >. We define binary vertex labeling f: V (G) → {0, 1} as follows. 

For j=1, 2 
f(vi

(j) ) = 0;  if i≡2,3(mod4)  
f(vi

(j) ) = 1;  if i≡0,1(mod4)  
f(x)     = 0;  if n≡1(mod4) 
f(x)     = 1;  if n≡0,2,3(mod4) 

The labeling pattern defined above covers all possible arrangement of vertices. The graph 
G satisfies the conditions |vf (0) −vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. as shown in Table 1. 
i.e. G admits cordial labeling.                                        

 
 Table 1. Table showing vertex and edge conditions. 
 

b Vertex condition Edge condition 

0,1,2 vf(0)+1=vf(1) ef(0)=ef(1) 
3 vf(0) =vf(1) +1 ef(0)=ef(1) 

Illustration 2.2:  Consider a graph G =< S7
(1) : S7

(2) >.  Here n = 7. The cordial labeling is 
as shown in Fig. 1. 

1

0

0

11

0

0

1
1

0

0

11

0

0

 
Fig. 1.  Cordial labeling of the graph G. 

 

Theorem 2.3: Graph < Sn
 (1): Sn

 (2): Sn
 (3): . . .: Sn

 (k)> is cordial. 

Proof: Let Sn
 (j) be the shells.  Let vi

(j) be the vertices of Sn
 (j) and v1

(j) be the apex vertices of 
Sn

(j). Let xj (j≠k) be the new vertices. Let G =< Sn
 (1): Sn

 (2): Sn
 (3): . . .: Sn

 (k)>.  We define 
binary vertex labeling  f : V (G) → {0, 1} as follows. 

For j≡1, 2(mod4)  
f (vi

 (j) ) = 0;  if i≡2,3(mod4)  
f (vi

 (j) ) = 1;  if i≡0,1(mod4)  
For j≡0, 3(mod4)  
f(vi

(j) ) = 0;  if i≡0,1(mod4)  

Let n=4a+b 



 S. K. Vaidya et al. J. Sci. Res. 1 (3), 438-449 (2009) 441 
 

f(vi
(j) ) = 1;  if i≡2,3(mod4)  

For n≡0,2,3(mod4)  
f(xj)    = 0;  if j≡2,3(mod4) 
f(xj)    = 1;  if j≡0,1(mod4), j≠k 
For n≡1(mod4)  
f(xj)    = 0;  if j≡1,2(mod4) 
f(xj)    = 1;  if j≡0,3(mod4), j≠k 

The labeling pattern defined above covers all possible arrangement of vertices. The 
graph G satisfies the conditions |vf(0) −vf(1)| ≤ 1 and |ef(0) − ef(1)| ≤ 1 as shown in Table 
2. i.e. G admits cordial labeling.                                   

 Table 2. Table showing vertex and edge conditions. 
 

b d Vertex condition Edge condition 

0 vf(0) =vf(1) +1 ef(0)=ef(1) 
1,3 vf(0) =vf(1)  ef(0)+1=ef(1) 0 
2 vf(0)+1 =vf(1) ef(0)=ef(1) 

0 vf(0) =vf(1) +1 ef(0)=ef(1) 
1 vf(0)+1 =vf(1) ef(0)=ef(1)+1 
2 vf(0)+1 =vf(1) ef(0)=ef(1) 

1 

3 vf(0) =vf(1) +1 ef(0)=ef(1)+1 

0 vf(0) =vf(1) +1 ef(0)=ef(1) 
1,3 vf(0) =vf(1) ef(0) +1=ef(1) 2 
2 vf(0)+1 =vf(1) ef(0)=ef(1) 

0,2 vf(0) =vf(1) +1 ef(0)=ef(1) 
3 

1,3 vf(0) =vf(1) +1 ef(0) +1=ef(1) 
 

Illustration 2.4: Consider a graph G =< S5
(1): S5

(2) : S5
(3) >.  Here n = 5. The cordial 

labeling is as shown in Fig. 2. 

 
1

1

1

1

1

1 1

1

0

0

0

0

0

0

0

0 0
 
 
 
 
 
 
 
 
 

Fig. 2.  Cordial labeling of the graph G. 
 

Let n=4a+b, k=4c+d
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Theorem 2.5: Graph < Sn

 (1): Sn
 (2) > is 3-equitable. 

Proof:  Let v1
(1) , v2

(1) ,, . . . v n 
(1) be the vertices Sn

(1) and v1
(2) , v2

(2) , v3
(2) , . . . v n 

(2) be the 
vertices Sn

(2). Let v1
(1) and v1

(2) be the apex vertices of Sn
 (1) and Sn

 (2) , respectively.  Let G 
=< Sn

 (1): Sn
 (2) >. We define ternary vertex labeling f: V (G) → {0, 1, 2} as follows. 

Case-1: For n≡0, 5(mod6) 
 

f(vi
(1) ) = 0;  if i≡1,4(mod6)  

f(vi
(1) ) = 1;  if i≡0,5(mod6)  

f(vi
(1) ) = 2;  if i≡2,3(mod6)  

f(vi
(2) ) = 0;  if i≡0,3(mod6)  

f(vi
(2) ) = 1;  if i≡4,5(mod6)  

f(vi
(2) ) = 2;  if i≡1,2(mod6)  

f(x)     = 0;   

Case-2: For n≡1(mod6) 
 

f(vi
(1) ) = 0;  if i≡1,4(mod6), i≠n 

f(vi
(1) ) = 1;  if i≡0,5(mod6)  

f(vi
(1) ) = 2;  if i≡2,3(mod6)  

f(vn
(1) ) = 1;  

f(vi
(2) ) = 0;  if i≡0,3(mod6)  

f(vi
(2) ) = 1;  if i≡4,5(mod6)  

f(vi
(2) ) = 2;  if i≡1,2(mod6)  

f(x)     = 0;   
 

Case-3: For n≡2 (mod6) 
 

f (vi
(1) )  = 0;  if i≡1,4(mod6), i≠n-1 

f(vi
(1) )  = 1;  if i≡0,5(mod6)  

f(vi
(1) )  = 2;  if i≡2,3(mod6), i≠n 

f (vi
(2) )  = 0;  if i≡0,3(mod6)  

f(vi
(2) )  = 1;  if i≡4,5(mod6)  

f(vi
(2) )  = 2;  if i≡1,2(mod6), i≠n  

f(vn-1
(1)) = 1;  

f(vn
(1) ) = f(vn

(2) ) = 0;   
f(x)      = 2;   

Case-4: For n≡3(mod6) 
 

f(vi
(1) ) = 0;  if i≡1,4(mod6), i≠n-2 

f(vi
(1) )  = 1;  if i≡0,5(mod6)  

f(vi
(1) )  = 2;  if i≡2,3(mod6), i≠n-1 ,n 

f(vi
(2) )  = 0;  if i≡0,3(mod6), i≠n  

f(vi
(2) )  = 1;  if i≡4,5(mod6)  

f(vi
(2) )  = 2;  if i≡1,2(mod6), i≠n-1, n-2  

f(vn-2
(1))= f(vn

(2) ) =  1;  
f(vn-1

(1))= f(vn-1
(2))=  2;  

f(vn
(1) ) = f(vn-2

(2))=  0;  
f(x)      = 0;   

 
 
Case-5: For n≡4 (mod6) 
 

f(vi
(1) )  = 0;  if i≡1,4(mod6) 

f(vi
(1) )  = 1;  if i≡0,5(mod6)  

f(vi
(1) )  = 2;  if i≡2,3(mod6) 

f(vi
(2) )  = 0;  if i≡0,3(mod6), i≠n-1  

f(vi
(2) )  = 1;  if i≡4,5(mod6) 

f(vi
(2) )  = 2;  if i≡1,2(mod6), i≠ n-2  

f(vn-2
(2))= f(vn-1

(2))=  1;  
f(x)      =0;   

 

 
The labeling pattern defined above covers all possible arrangement of vertices. The 

graph G satisfies the conditions |vf(i) −vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1, where 0≤ i, j≤2 as 
shown in Table 3. i.e. G admits 3-equitable labeling.                               

 
 

Let n=6a+b
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Table 3. Table showing vertex and edge conditions. 
 

b Vertex condition Edge condition 

0,3 vf(0) =vf(1) +1= vf(2) +1 ef(0)+1=ef(1) =ef(2) 
1,4 vf(0) =vf(1) = vf(2)  ef(0)=ef(1) =ef(2) 
2,5 vf(0) =vf(1) +1= vf(2)  ef(0)+1=ef(1)+1 =ef(2) 

 
 
Illustration 2.6: Consider a graph G =< S6

(1) : S6
(2) >.  Here n = 6. The 3-equitable 

labeling is as shown in Fig. 3. 
 

0 2

0

22

2

1

1

1

1

0

0

0

 
Fig. 3.  3-equitable labeling of the graph G. 

 
 

Theorem-2.7: Graph < Sn
 (1): Sn

 (2) : Sn
 (3): . . .: Sn

 (k)> is 3-equitable. 

Proof: Let Sn
 (j) be the shells.  Let vi

(j) be the vertices Sn
 (j) and v1

(j) be the apex vertices of 
Sn

(j).  Let xj (j≠k) be the new vertices. Let G =< Sn
 (1): Sn

 (2): Sn
 (3): . . .: Sn

 (k)>.  We define 
vertex labeling  f : V (G) → {0, 1, 2} as follows. 

Case-1: For n≡0 (mod6) 
 
Subcase 1.1: k≡0 (mod3) 
For j≡1 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6)  
f(vi

(j) ) = 1;  if i≡0,5(mod6)  
f(vi

(j) ) = 2;  if i≡2,3(mod6)  
f(xj)    = 0; 
 

 
For j≡0,2 (mod3)  
f(vi

(j) ) = 0;  if i≡0,3(mod6) i≠n 
f(vi

(j) ) = 1;  if i≡4,5(mod6)  
f(vi

(j) ) = 2;  if i≡1,2(mod6) 
f(vn

(j)) =2;  if j≡2(mod3) 
f(vn

(j)) =1;  if j≡0(mod3) 
f(xj)    = 0; j≠k 
 

 

Subcase 1.2: k≡1 (mod3) 
For first k-1 copies of  shells use the pattern of subcase 1.1 and for kth  copy define 
function as follow. 
f(vi

(k) ) = 0;  if i≡1,4(mod6)  
f(vi

(k) ) = 1;  if i≡0,5(mod6)  
f(vi

(k) ) = 2;  if i≡2,3(mod6)  
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f(xk-1)  = 0; 
 

Subcase 1.3: k≡2 (mod3) 
 

For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
 

f(vi
(k-1) ) = 0;  if i≡1,4(mod6)  

f(vi
(k-1) ) = 1;  if i≡0,5(mod6)  

f(vi
(k-1) ) = 2;  if i≡2,3(mod6)  

f(vi
(k) )   = 0;  if i≡0,3(mod6)  

f(vi
(k) )   = 1;  if i≡4,5(mod6)  

f(vi
(k) )   = 2;  if i≡1,2(mod6)  

f(xk-2)    = f(xk-1) =  0; 
 
Case-2: For n≡1 (mod6) 
 

Subcase 2.1: k≡0 (mod3) 
 

For j≡1,2 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6), i≠n  
f(vi

(j) ) = 1;  if i≡0,2,3,5(mod6) and j≡1(mod3) 
f(vi

(j) ) = 2;  if i≡0,2,3,5(mod6) and j≡2(mod3) 
f(vn

(j)) = 1;  if j≡1 (mod3) 
f(vn

(j)) = 0;  if j≡2 (mod3) 
f(xj)    = 0; if j≡1(mod3) 
f(xj)    = 2; if j≡2(mod3) 
 

 
 

For  j≡ 0 (mod3)  
f(vi

(j) ) = 0;  if i≡0,3(mod6) 
f(vi

(j) ) = 1;  if i≡4,5(mod6)  
f(vi

(j) ) = 2;  if i≡1,2(mod6) 
f(xj)    = 0; j≠k 
 

Subcase 2.2: k≡1 (mod3) 
 

For first k-1 copies of shells use the pattern of subcase 1.1 and for kth  copy define 
function as follow: 
 

 

f(vi
(k) ) = 0;  if i≡1,4(mod6)  

f(vi
(k) ) = 1;  if i≡0,5(mod6)  

f(vi
(k) ) = 2;  if i≡2,3(mod6)  

f(xk-1)  = 2; 
 
Subcase 2.3: k≡2 (mod3) 
 

For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
 

For j=k-1, k; 
f(vi

(j) ) = 0;  if i≡1,4(mod6) and j≠k, i≠n 
f(vi

(j) ) = 1;  if i≡0,5(mod6)  
f(vi

(j) ) = 2;  if i≡2,3(mod6)  
f(vn

(k)) = 1;   
f(xk-2) = 0; 
f(xk-1) = 2;   
 

Case-3: For n≡2 (mod6) 
 

Subcase 3.1: k≡0 (mod3) 
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For j≡1 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6)  
f(vi

(j) ) = 1;  if i≡2,3(mod6)  
f(vi

(j) ) = 2;  if i≡0,5(mod6) 
f(xj)    = 2;  
 

For j≡2 (mod3)  
f(vi

(j) )  = 0;  if i≡1,4(mod6), i≠n-1  
f(vi

(j) )  = 1;  if i≡0,5(mod6)  
f(vi

(j) )  = 2;  if i≡2,3(mod6) , i≠n 
f(vn-1

(j))= 1;  if j≡1 (mod3) 
f(vn

(j))  = 0;   
f(xj)     = 2;  
 

For  j≡ 0 (mod3)  
f(vi

(j) ) =  0;  if i≡0,5(mod6) 
f(vi

(j) ) = 1;  if i≡2,3(mod6)  
f(vi

(j) ) = 2;  if i≡1,4(mod6) 
f(xj)    = 0; j≠k 
 

 

Subcase 3.2: k≡1 (mod3) 
For first k-1 copies of shells use the pattern of subcase 1.1 and for kth copy define function 
as follow: 
f(vi

(k) ) = 0;  if i≡1,4(mod6)  
f(vi

(k) ) = 1;  if i≡2,3(mod6)  
f(vi

(k) ) = 2;  if i≡0,5(mod6)  
f(xk-1)  = 2; 
 
Subcase 3.3: k≡2 (mod3) 
For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
For j=k-1, k; 
f(vi

(j) ) = 0;  if i≡1,4(mod6) and j≠k, i≠1 
f(vi

(j) ) = 1;  if i≡2,3(mod6)  
f(vi

(j) ) = 2;  if i≡0,5(mod6)  
f(v1

(k)) = 2;   
f(xk-2) = 2; 
f(xk-1) = 0;   
 
Case-4: For n≡3 (mod6) 
 
Subcase 4.1: k≡0 (mod3) 
For j≡1, 2 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6)  
f(vi

(j) ) = 1;  if i≡0,2,3,5(mod6) and j≡ 2 (mod3) 
f(vi

(j) ) = 2;  if i≡0,2,3,5(mod6) and j≡ 1 (mod3) 
f(xj)    = 1; if  j≡ 1 (mod3) 
f(xj)    = 2; if  j≡ 1 (mod3) 
 

 
For  j≡ 0 (mod3)  
f(vi

(j) )    =  0;  if i≡0,5(mod6) 
f(vi

(j) )   = 1;  if i≡2,3(mod6) and 
i≠n-1 
f(vi

(j) )   = 2;  if i≡1,4(mod6) and 
i≠n-2 
f(vn-2

(j)) = 0;   
f(vn-1

(j)) = 2;   
f(xj)    = 0; j≠k 
 

 
Subcase 4.2: k≡1 (mod3) 
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For first k-1 copies of shells use the pattern of subcase 1.1 and for kth  copy define 
function as follow: 
f(vi

(k) ) = 0;  if i≡1,4(mod6) and i≠n-2 
f(vi

(k) ) = 1;  if i≡2,3(mod6) and i≠n-1 
f(vi

(k) ) = 2;  if i≡0,5(mod6)  
f(vn-2

(k)) = 2;   
f(vn-1

(k)) = 0;   
f(xk-1)   = 0; 
 
Subcase 4.3: k≡2 (mod3) 
For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
For j=k-1, k; 
f(vi

(j) )     = 0;  if i≡1,4(mod6) and i≠n-2, j≠k-1 
f(vi

(j) )     = 1;  if i≡2,3(mod6) and i≠n-1 
f(vi

(j) )     = 2;  if i≡0,5(mod6)  
f(vn-2

(k-1)) = 2;   
f(vn-1

(k-1)) = 0;   
f(vn-1

(k))   = 2; 
f(xk-2) = f(xk-1) = 0;   
 
Case-5: For n≡4 (mod6) 
 
Subcase 5.1: k≡0 (mod3) 
For j≡1, 2 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6)  
f(vi

(j) ) = 1;  if i≡0,2,3,5(mod6) and j≡ 2 (mod3) 
f(vi

(j) ) = 2;  if i≡0,2,3,5(mod6) and j≡ 1 (mod3) 
f(xj)    = 2;  
 

 
For  j≡ 0 (mod3)  
If 1≤i≤n-4 
f(vi

(j) )   =  0;  if i≡0,5(mod6) 
f(vi

(j) )   = 1;  if i≡2,3(mod6) 
f(vi

(j) )   = 2;  if i≡1,4(mod6) 
f(vn-3

(j)) = f(vn-2
(j)) = f(vn-1

(j)) = 1;   
f(vn

(j))   = 0;   
f(xj)      = 2; j≠k 
 

Subcase 5.2: k≡1 (mod3) 
For first k-1 copies of shells use the pattern of subcase 1.1 and for kth  copy define 
function as follow: 
f(vi

(k) ) = 0;  if i≡1,4(mod6) and i≠n 
f(vi

(k) ) = 1;  if i≡2,3(mod6)  
f(vi

(k) ) = 2;  if i≡0,5(mod6)  
f(vn

(k)) = 1;   
f(xk-1)  = 2; 
 
Subcase 5.3: k≡2 (mod3) 
For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
f(vi

(k-1) ) = 0;  if i≡1,4(mod6) and i≠n 
f(vi

(k-1) ) = 1;  if i≡0,5(mod6)  
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f(vi

(k-1) ) = 2;  if i≡2,3(mod6)  
f(vi

(k) )   = 0;  if i≡1,4(mod6) and i≠n 
f(vi

(k) )   = 1;  if i≡2,3(mod6) and i≠n-2 
f(vi

(k) )   = 2;  if i≡0,5(mod6)  
f(vn-2

(k) )= f(xk-2) = 2; 
f(vn

(k) )  = f(vn
(k-1) ) =  1; 

f(xk-1)    = 0; 
 
Case-6: For n≡5 (mod6) 
 
Subcase 6.1: k≡0 (mod3) 
 

For j≡1, 2 (mod3)  
f(vi

(j) ) = 0;  if i≡1,4(mod6)  
f(vi

(j) ) = 1;  if i≡0,2,3,5(mod6) and j≡ 2 (mod3) 
f(vi

(j) ) = 2;  if i≡0,2,3,5(mod6) and j≡ 1 (mod3) 
f(xj)    = 2;  if j≡1 (mod3) 
f(xj)    = 0;  if j≡2 (mod3) 
 

 
 

 
For  j≡ 0 (mod3)  
If 1 ≤  i ≤ n-2 
f(vi

(j) )   =  0;  if i≡0,5(mod6) 
f(vi

(j) )   = 1;  if i≡2,3(mod6) 
f(vi

(j) )   = 2;  if i≡1,4(mod6) 
f(vn-1

(j)) = 1;   
f(vn

(j))   = 2;   
f(xj)      = 0; j≠k 
 

Subcase 6.2: k≡1 (mod3) 
 
For first k-1 copies of shells use the pattern of subcase 1.1 and for kth  copy define 
function as follow: 
 

f(vi
(k) ) = 0;  if i≡1,4(mod6)  

f(vi
(k) ) = 1;  if i≡2,3(mod6)  

f(vi
(k) ) = 2;  if i≡0,5(mod6)  

f(xk-1)  = 2; 
 
Subcase 6.3: k≡2 (mod3) 
 
For first k-2 copies of shells use the pattern of subcase 1.1 and for k-1 and  kth  copy define 
function as follow: 
 

f(vi
(k-1) ) = 0;  if i≡1,4(mod6) 

f(vi
(k-1) ) = 1;  if i≡2,3(mod6)  

f(vi
(k-1) ) = 2;  if i≡0,5(mod6)  

f(vi
(k) )   = 0;  if i≡0,5(mod6)  

f(vi
(k) )   = 1;  if i≡2,3(mod6)  

f(vi
(k) )   = 2;  if i≡1,4(mod6)  

f(xk-2)    = 2; 
f(xk-1)    = 0; 

The labeling pattern defined above covers all possible arrangement of vertices. The 
graph G satisfies the conditions |vf(i) −vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1, where 0≤ i, j≤2 as 
shown in Table 4. i.e. G admits 3-equitable labeling.                              
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Table 4. Vertex and edge conditions.  
 

b d Vertex condition Edge condition 

0 vf(0)+1=vf(1)= vf(2) ef(0)+1=ef(1)= ef(2)+1 
1 vf(0)=vf(1)= vf(2) ef(0)=ef(1)= ef(2) 0 
2 vf(0) =vf(1) +1= vf(2)+1 ef(0)+1=ef(1)= ef(2)+1 

0 vf(0)+1=vf(1)= vf(2) ef(0)+1=ef(1)= ef(2)+1 
1 vf(0)+1=vf(1)+1= vf(2) ef(0)=ef(1)= ef(2)+1 1 
2 vf(0) =vf(1) = vf(2) ef(0)=ef(1)= ef(2) 

2 0,1,2 vf(0)+1=vf(1)= vf(2) ef(0)+1=ef(1)= ef(2)+1 

0 vf(0)+1=vf(1)= vf(2) ef(0)+1=ef(1)= ef(2)+1 
1 vf(0)=vf(1)= vf(2) ef(0)=ef(1)= ef(2) 3 
2 vf(0) =vf(1) +1= vf(2)+1 ef(0)=ef(1)+1= ef(2) 

0(n≠4) vf(0) =vf(1)= vf(2) +1 ef(0)+1=ef(1)= ef(2)+1 

0( n=4) vf(0) =vf(1)= vf(2) +1 ef(0)=ef(1)+1= ef(2)+1 
1 vf(0)+1=vf(1)+1= vf(2) ef(0)+1=ef(1)= ef(2) 

4 

2 vf(0) =vf(1) = vf(2)  ef(0)=ef(1)= ef(2) 

5 0,1,2 vf(0)+1=vf(1)= vf(2) ef(0)+1=ef(1)= ef(2)+1 
 
 

Illustration 2.8:  Consider a graph G =< S4
(1): S4

(2) : S4
(3)  >.  Here n = 4. The 3-equitable 

labeling is as shown in Fig. 4. 
 

0

2

0

0 0 0

2

2

2

1

1

1

1

1  
Fig. 4.  3-equitable labeling of the graph G. 

 

3. Concluding Remarks 

Labeled graph is the topic of current interest for many researchers as it has diversified 
applications. We discuss here cordial labeling and 3-equitable labeling of some shell 
related graphs. This approach is novel and contributes four new results. The derived 

Let n=6a+b, and k=3c+d  
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labeling pattern is demonstrated by means of elegant illustrations which provide better 
understanding of the derived results. The results reported here are new and expected to 
add new dimension to the theory of cordial and 3-equitable graphs. 
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Abstract

We present here cordial and 3-equitable labeling for the graphs ob-
tained by joining apex vertices of two stars to a new vertex. We extend
these results for k copies of stars.

Mathematics Subject Classification: 05C78

Keywords: Cordial labeling, 3-equitable labeling

1. Introduction
We begin with simple, finite, connected, undirected graph G = (V, E).

In the present work K1,n denote the star. Vertex corresponds to K1 is called
an apex vertex. For all other terminology and notations we follow Harary[7].
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We will give brief summary of definitions which are useful for the present in-
vestigations.

Definition 1.1 Consider two stars K
(1)
1,n and K

(2)
1,n then G =< K

(1)
1,n : K

(2)
1,n >

is the graph obtained by joining apex vertices of stars to a new vertex x.
Note that G has 2n + 3 vertices and 2n + 2 edges.

Definition 1.2 Consider k copies of stars namely K
(1)
1,n, K

(2)
1,n, K

(3)
1,n, . . .K

(k)
1,n.

Then the G =< K
(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n > is the graph obtained by join-

ing apex vertices of each K
(p−1)
1,n and K

(p)
1,n to a new vertex xp−1 where 2 ≤ p ≤ k.

Note that G has k(n + 2) − 1 vertices and k(n + 2) − 2 edges.

Definition 1.3 If the vertices of the graph are assigned values subject to
certain conditions is known as graph labeling.

Most interesting graph labeling problems have three important character-
istics.

1. a set of numbers from which the labels are chosen.

2. a rule that assigns a value to each edge.

3. a condition that these values must satisfy.

For detail survey on graph labeling one can refer Gallian[6]. Vast amount
of literature is available on different types of graph labeling. According to
Beineke and Hegde[2] graph labeling serves as a frontier between number the-
ory and structure of graphs.

Labeled graph have variety of applications in coding theory, particularly
for missile guidance codes, design of good radar type codes and convolution
codes with optimal autocorrelation properties. Labeled graph plays vital role
in the study of X-Ray crystallography, communication network and to deter-
mine optimal circuit layouts. A detail study of variety of applications of graph
labeling is given by Bloom and Golomb[3].

Definition 1.4 Let G = (V, E) be a graph. A mapping f : V (G) →{0,1}
is called binary vertex labeling of G and f(v) is called the label of the vertex v
of G under f .

For an edge e = uv, the induced edge labeling f ∗ : E(G) → {0, 1} is given
by f ∗(e)=|f(u)−f(v)|. Let vf (0), vf (1) be the number of vertices of G having
labels 0 and 1 respectively under f and let ef (0),ef(1) be the number of edges
having labels 0 and 1 respectively under f ∗.

Definition 1.5 A binary vertex labeling of a graph G is called a cordial
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labeling if |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. A graph G is cordial if
it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit[4].
Many researchers have studied cordiality of graphs. e.g.Cahit [4] proved

that tree is cordial. In the same paper he proved that Kn is cordial if and only
if n ≤ 3. Ho et al.[8] proved that unicyclic graph is cordial unless it is C4k+2.
Andar et al.[1] discussed cordiality of multiple shells. Vaidya et al.[9],[10],[11]
have also discussed the cordiality of various graphs.
Definition 1.6 Let G = (V, E) be a graph. A mapping f : V (G) →
{0, 1, 2} is called ternary vertex labeling of G and f(v) is called label of the
vertex v of G under f .

For an edge e = uv, the induced edge labeling f ∗ : E(G) → {0, 1, 2} is
given by f ∗(e) = |f(u) − f(v)|. Let vf(0), vf (1), vf (2) be the number of ver-
tices of G having labels 0, 1, 2 respectively under f and ef (0), ef(1), ef (2) be
the number of edges having labels 0, 1, 2 respectively under f ∗.
Definition 1.7 A ternary vertex labeling of a graph G is called a 3-equitable
labeling if |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2. A
graph G is 3-equitable if it admits 3-equitable labeling.

The concept of 3-equitable labeling was introduced by Cahit[5]. Many re-
searchers have studied 3-equatability of graphs. e.g.Cahit [5] proved that Cn

is 3-equitable except n ≡ 3(mod6). In the same paper he proved that an Eu-
lerian graph with number of edges congruent to 3(mod6) is not 3-equitable.
Youssef[12] proved that Wn is 3-equitable for all n ≥ 4.

In the present investigations we prove that graphs < K
(1)
1,n : K

(2)
1,n > and

< K
(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n > are cordial as well as 3-equitable.

2. Main Results

Theorem-2.1: Graph < K
(1)
1,n : K

(2)
1,n > is cordial.

Proof: Let v
(1)
1 , v

(1)
2 , v

(1)
3 , . . . v

(1)
n be the pendant vertices K

(1)
1,n and v

(2)
1 , v

(2)
2 , v

(2)
3 ,

. . . v
(2)
n be the pendant vertices K

(2)
1,n. Let c1 and c2 be the apex vertices of K

(1)
1,n

and K
(2)
1,n respectively and they are adjacent to a new common vertex x. Let

G =< K
(1)
1,n : K

(2)
1,n >. We define binary vertex labeling f : V (G) → {0, 1} as

follows.
For any n ∈ N and i = 1, 2, . . . n where N is set of natural numbers.
In this case we define labeling as follows
Case 1: If n even
For j = 1, 2

f(v
(j)
i ) = 0; if 1 ≤ i ≤ n

2

= 1; n+2
2

≤ i ≤ n
f(c1) = 0;
f(c2) = 1;
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f(x) = 0;
Case 2: If n odd
For j = 1, 2

f(v
(j)
i ) = 0; if 1 ≤ i ≤ n−1

2

= 1; n+1
2

≤ i ≤ n
f(c1) = f(c2) = f(x) = 0;

The labeling pattern defined above covers all possible arrangement of ver-
tices. The graph G satisfies the conditions |vf (0) − vf (1)| ≤ 1 and |ef (0) −
ef (1)| ≤ 1 as shown in Table 1. i.e. G admits cordial labeling.

Table 1

For better understanding of the above defined labeling pattern, consider fol-
lowing illustration.
Illustration 2.2 Consider G =< K

(1)
1,7 : K

(2)
1,7 >. Here n = 7. The cordial

labeling is as shown in Figure 1.

Figure 1

Above result can be extended for k−copies of K1,n as follows.

Theorem 2.3 Graph < K
(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n > is cordial.

Proof: Let K
(j)
1,n be k copies of star K1,n, v

(j)
i be the pendant vertices of K

(j)
1,n

and cj be the apex vertex of K
(j)
1,n (here i = 1, 2, . . . n and j = 1, 2, . . . k).Let

x1, x2 . . . xk−1 be the vertices such that cp−1 and cp are adjacent to xp−1 where

2 ≤ p ≤ k. Consider G =< K
(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n >. To define binary

vertex labeling f : V (G) → {0, 1} we consider following cases.
Case 1: n ∈ N even and k where k ∈ N − {1, 2}.
In this case we define labeling function f as

For j = 1, 2, . . . k
f(v

(j)
i ) = 0; if 1 ≤ i ≤ n

2
.
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= 1; if n+2
2

≤ i ≤ n.
f(cj) = 1; if j even.

= 0; if j odd.
f(xj) = 1; if j even, j �= k.

= 0; if j odd, j �= k.
Case 2: n ∈ N − {1, 2} odd and k where k ∈ N − {1, 2}.
In this case we define labeling function f as

For j = 1, 2, . . . k
f(v

(j)
i ) = 0; if 1 ≤ i ≤ n−1

2
.

= 1; if n+1
2

≤ i ≤ n.
f(cj) = 1; if j even.

= 0; if j odd.
f(xj) = 0, j �= k.

The labeling pattern defined above covers all the possibilities. In each case,
the graph G under consideration satisfies the conditions |vf (0) − vf (1)| ≤ 1
and |ef(0) − ef(1)| ≤ 1 as shown in Table 2. i.e. G admits cordial labeling.

Let n = 2a + b and k = 2c + d where a ∈ N ∪ {0}, c ∈ N

Table 2

For better understanding of the above defined labeling pattern, consider fol-
lowing illustration.
Illustration 2.4 Consider G =< K

(1)
1,6 : K

(2)
1,6 : K

(3)
1,6 >. Here n = 6 and k = 3.

The cordial labeling is as shown in Figure 2. It is the case 1 of Theorem 2.3.

Figure 2

Theorem 2.5 Graph < K
(1)
1,n : K

(2)
1,n > is 3-equitable.

Proof:Let v
(1)
1 , v

(1)
2 , v

(1)
3 , . . . v

(1)
n be the pendant vertices K

(1)
1,n and v

(2)
1 , v

(2)
2 , v

(2)
3 ,

. . . v
(2)
n be the pendant vertices K

(2)
1,n. Let c1 and c2 be the apex vertices of K

(1)
1,n
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and K
(2)
1,n respectively and they are adjacent to a new common vertex x. Let

G =< K
(1)
1,n : K

(2)
1,n >. To define ternary vertex labeling f : V (G) → {0, 1, 2}

we consider the following cases.
Case 1: n ≡ 0(mod3)
In this case we define labeling f as

For j = 1, 2
f(v

(j)
i ) = 0; i ≡ 0(mod3)

= 1; i ≡ 1(mod3)
= 2; i ≡ 2(mod3), 1 ≤ i ≤ n − 1

f(v
(1)
n ) = 1;

f(v
(2)
n ) = f(c1) = f(x) = 0;

f(c2) = 2;
Case 2: n ≡ 1(mod3)
In this case we define labeling f as:

For j = 1, 2
f(v

(j)
i ) = 0; i ≡ 0(mod3)

= 1; i ≡ 1(mod3)
= 2; i ≡ 2(mod3)

f(c1) = f(x) = 0;
f(c2) = 2;

Case 3: n ≡ 2(mod3)
In this case we define labeling f as

For j = 1, 2
f(v

(j)
i ) = 0; i ≡ 0(mod3)

= 1; i ≡ 1(mod3)
= 2; i ≡ 2(mod3)

f(c1) = f(c2) = f(x) = 0;
The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions
|vf(i)− vf (j)| ≤ 1 and |ef(i)− ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in Table
3. i.e. G admits 3-equitable labeling.

Let n = 3a + b and a ∈ N ∪ {0}

Table 3

For better understanding of the above defined labeling pattern, consider fol-
lowing illustration.
Illustration 2.6 Consider a graph G =< K

(1)
1,8 : K

(2)
1,8 > Here n = 8 i.e

n ≡ 2(mod3). The corresponding 3-equitable labeling is shown in Figure 3. It
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is the case related to case -3

Figure 3

Above result can be extended for k−copies of K1,n as follows.

Theorem 2.7 Graph < K
(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n > is 3-equitable.

Proof: Let K
(j)
1,n, j = 1, 2, . . . k be k copies of star K1,n. Let v

(j)
i be the pendant

vertices of K
(j)
1,n where i = 1, 2, . . . n and j = 1, 2, . . . k. Let cj be the apex ver-

tex of K
(j)
1,n where j = 1, 2, . . . k. Let G =< K

(1)
1,n : K

(2)
1,n : K

(3)
1,n : . . . : K

(k)
1,n > and

x1, x2, . . . , xk−1 are the vertices as stated in Theorem 2.3. To define ternary
vertex labeling f : V (G) → {0, 1, 2} we consider following cases.
Case 1: For n ≡ 0(mod3)
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3)

f(v
(j)
i ) = 0; if i ≡ 1(mod3)

= 1; if i ≡ 2(mod3)
= 2; if i ≡ 0(mod3), i ≤ n − 1

f(v
(j)
n ) = 1; if j ≡ 1, 2(mod3)

= 2; if j ≡ 0(mod3)
f(cj) = 0; if j ≡ 1, 2(mod3)

= 2; if j ≡ 0(mod3)
f(xj) = 2; if j ≤ n − 1

Subcase 2: For k ≡ 1(mod3)

f(v
(1)
i ) = 0; if i ≡ 1(mod3)

= 1; if i ≡ 2(mod3)
= 2; if i ≡ 0(mod3)

f(c1) = 2
f(x1) = 0

For remaining vertices take j = k − 1 and use the pattern of subcase 1.
Subcase 3: For k ≡ 2(mod3)

For j = 1, 2
f(v

(j)
i ) = 0; if i ≡ 1(mod3)
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= 1; if i ≡ 2(mod3)
= 2; if i ≡ 0(mod3), 1 ≤ i ≤ n − 1

f(v
(1)
n ) = 1

f(v
(2)
n ) = f(c2) = f(xj) = 2

f(c1) = 0
For remaining vertices take j = k − 2 and use the pattern of subcase 1.

Case 2: For n ≡ 1(mod3)
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3)
Subcase 1.1: For n = 1

f(v
(j)
1 ) = 2; if j ≡ 0(mod3)

= 1; if j ≡ 1, 2(mod3)
f(cj) = 2; if j ≡ 1(mod3)

= 1; if j ≡ 2(mod3)
= 0; if j ≡ 0(mod3)

f(xj) = 0; j �= k
Subcase 1.2: For n > 1

f(v
(j)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3), i ≤ n − 2

f(v
(j)
n−1) = 0; if j ≡ 1, 2(mod3)

= 2; if j ≡ 0(mod3)

f(v
(j)
n ) = 1

f(cj) = 2; if j ≡ 1(mod3)
= 0; if j ≡ 0, 2(mod3)

f(xj) = 0; if j ≡ 1, 2(mod3)
= 2; if j ≡ 0(mod3), j �= k

Subcase 2: For k ≡ 1(mod3)

f(v
(1)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3)

f(c1) = 0
f(x1) = 2

For remaining vertices take j = k − 1 and use the pattern of subcase 1.1
or subcase 1.2 if n = 1 or n > 1 respectively.
Subcase 3: For k ≡ 2(mod3).
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3)

f(c1) = f(x2) = 2
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f(c2) = f(x1) = 0
f(x1) = 2; if n = 1
f(x1) = 0; if n > 1

For remaining vertices take j = k − 2 and use the pattern of subcase 1.1
or subcase 1.2 if n = 1 or n > 1 respectively.
Case 3: For n ≡ 2(mod3).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3)

f(v
(j)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3), i ≤ n − 1

f(v
(j)
n ) = 1; if j ≡ 1(mod3)

= 2; if j ≡ 0, 2(mod3)
f(cj) = 2; if j ≡ 1(mod3)

= 0; if j ≡ 0, 2(mod3)
f(xj) = 0; if j ≡ 1, 2(mod3)

= 2; if j ≡ 0(mod3)
Subcase 2: For k ≡ 1(mod3)

f(v
(1)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3), i ≤ n

f(c1) = 0
f(x1) = 2

For remaining vertices take j = k − 1 and use the pattern of subcase 1.
Subcase 3: For k ≡ 2(mod3)
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 0(mod3)

= 1; if i ≡ 1(mod3)
= 2; if i ≡ 2(mod3), i ≤ n

f(c1) = 2.
f(c2) = f(xj) = 0.

For remaining vertices take j = k − 2 and use the pattern of subcase 1.
The labeling pattern defined above covers all possible arrangement of ver-

tices. In each case, the graph G under consideration satisfies the conditions
|vf(i)− vf (j)| ≤ 1 and |ef(i)− ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in Table
4. i.e. G admits 3-equitable labeling.

Let n = 3a + b and k = 3c + d where a ∈ N ∪ {0},c ∈ N .



1552 S. K. Vaidya, N. A. Dani, K. K. Kanani and P. L. Vihol

Table 4

For better understanding of the above defined labeling pattern, consider fol-
lowing illustration.
Illustration 2.8 Consider a graph G =< K

(1)
1,5 : K

(2)
1,5 : K

(3)
1,5 : K

(4)
1,5 >. Here

n = 5 and k = 4. The corresponding 3-equitable labeling is as shown in Figure
4.

Figure 4

3. Concluding Remarks
Labeled graph is the topic of current interest for many researchers as it

has diversified applications. We discuss here cordial labeling and 3-equitable
labeling of some star related graphs. This approach is novel and contribute
two new graphs to the theory of cordial graphs as well as 3-equitable graphs.
The derived labeling pattern is demonstrated by means of elegant illustrations
which provides better understanding of the derived results. The results re-
ported here are new and will add new dimension in the theory of cordial and
3-equitable graphs.
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Abstract 

This paper is in connection with our earlier  paper [11]. We present here cordial and 3-equitable labeling for 

the graphs obtained  by joining apex vertices of k copies of stars  by an edge as well as to a new vertex. 

Keywords : Cordial  labeling, 3-equitable  labeling, Star  graph. 

 

INTRODUCTION 

We begin with finite undirected graph G = (V, E) without  

loops and multiple edges.  Vertex corresponds to K1 in star 

K1,n is called the apex vertex. For all standard terminology 

and notations we follow Gross and Yellen[6]. We will give 

brief account of definitions which are useful for the present 

investigations. 

Definition 1.1: Consider k copies of stars namely K1,n
(1)

, 

K1,n
(2)

  , K1,n
(3) , . . . .  . K1,n

(k). Then the G = < K1,n
(1)

 �K1,n
(2)

 

�K1,n
(3)
� . . . �K1,n

(k)
> is the graph obtained  by joining 

apex vertices of each K1,n
(p-1)

  and K1,n
(p)

  by an edge as well 

as to a new vertex  xp-1 where 2�p�k..   

Note that for this new graph G, |V | = k(n + 2) − 1 and |E| = 

k(n + 3) − 3. 

Definition 1.2:  If the vertices of the graph are assigned 

values subject to certain conditions then  it is known as 

graph labeling. 

Vast amount of literature is available on different types of 

graph labeling in printed and electronic form. For detail 

survey on graph labeling one can refer to Gallian [5] which 

is updated regularly. 

Labeled graph have many diversified applications. A detail 

study on variety of applications of graph labeling is 

reported  in Bloom and Golomb[2]. 

Definition 1.3: Let G = (V, E) be a graph.  A mapping         

f : V (G) �{0,1} is called binary vertex labeling of G and   

f (v) is called the label of the vertex v of G under f . 

For an edge e = uv, the induced edge labeling f* : E(G)  � 

{0, 1} is given by f*(e)=|f (u) − f (v)|.  Let   vf (0), vf (1) be 

the number of vertices of G having labels 0 and 1 

respectively under f and let ef(0), ef(1) be the number of 

edges having labels 0 and 1 respectively under f*. 

 

 
*
Corresponding Author: samirkvaidya@yahoo.co.in 

Definition 1.4:  A binary  vertex  labeling  of a  graph  G  is 

called  a  cordial labeling if |vf (0) − vf (1)| � 1 and            

|ef (0) − ef (1)| � 1. A graph G is cordial if it admits cordial 

labeling. 

The concept of cordial labeling was introduced by Cahit[3]. 

Many researchers have studied cordiality of graphs.   

e.g.Cahit [3] proved that tree is cordial.  In the same paper 

he proved that Kn is cordial if and only if  n � 3. Ho et al.[7]  

proved that unicyclic graph  is cordial unless it is C4k+2. 

Andar et al.[1] has discussed cordiality of multiple shells. 

Vaidya et al.[8, 9, 10] have also discussed the cordiality  of 

various graphs. 

Definition 1.5:  Let G  = (V, E)  be a graph. A mapping 

f:V(G)�{0,1,2} is called ternary vertex labeling of G and 

f(v) is called label of the vertex v of G under f. 

For an edge e = uv, the induced edge labeling f *:E(G) � 

{0,1,2} is given by f *(e) = |f (u) − f (v)|.  Let vf(0), vf(1), 

vf(2) be the number  of vertices of G having labels 0, 1, 2 

respectively under f and ef(0), ef(1), ef(2) be the number of 

edges having labels 0, 1, 2 respectively under f*. 

Definition 1.6 : A vertex labeling of a graph G is called a 

3-equitable labeling if |vf (i)− vf (j)| � 1 and |ef(i)−ef(j)| � 1 

for all 0 � i, j � 2. A graph G is 3-equitable if it admits 3-

equitable labeling. 

The concept of 3-equitable  labeling was also introduced  

by Cahit[4] and good number of research papers are 

available.  Many researchers have studied 3-equatability of 

graphs. e.g.Cahit  [4] proved that  Cn is 3-equitable  except 

n� 3(mod6).  In the same paper he proved that an Eulerian 

graph with number of edges congruent to 3(mod6) is not 3-

equitable.  Youssef[14] proved that  Wn  is 3-equitable  for 

all n � 4. 

Vaidya et al [12] have discussed 3-equitable labeling in the 

context of duplication of vertex.  The present work is in the 

sequence of our earlier paper [11]. In that paper we had 

discussed cordial and 3-equitable labeling of some star 

related graphs.  There we join apex vertices with a new 

vertex and apex vertices are not adjacent while in this 

present work the respective apex vertices are also adjacent.  

Here we prove that the graph <K1,n
(1)

 �K1,n
(2)
�K1,n

(3)
� . . . 

� K1,n
(k)

> is cordial as well as 3-equitable. 

 

MAIN RESULTS  
 
Theorem 2.1: Graph <K1,n

(1)
�K1,n

(2)
�K1,n

(3)
�…� K1,n

(k)
>  

is cordial. 
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Proof: Let K1,n
(j)

 be k copies of star  K1,n,  vi
(j)

  be the 

pendant vertices of K1,n
(j)

 
and cj   be the  apex vertex  of 

K1,n
(j) (here i = 1, 2, . . . n and  j = 1, 2, . . .  k).  Let x1, x2  . . 

.  xk−1   be the  vertices  such that  cp−1   and cp  are adjacent  

with them  selves as  well as  to  a  new common  vertex  

xp−1  where 2  � p  � k.  Consider G = < K1,n
(1)

 �K1,n
(2)

 

�K1,n
(3)
� . . . �K1,n

(k)
>. To define binary vertex labeling 

f:V(G)�{0,1} we consider following cases where n,k0N 

and j=1, 2, …., k. 

Case 1:  n even.   

If j odd
 

f(vi
(j)

) = 0; if 1
2
ni≤ ≤  

 = 1; if 2 .
2

n i n+
≤ ≤  

f(cj) = 1; 

If j even. 

f(vi
(j)) = 0; if 21

2
ni +

≤ ≤  

 = 1; if 4 .
2

n i n+
≤ ≤  

f (cj ) = 0; 

f (xj ) = 1; for all j,  j � k. 

Case 2:  n odd. 

f(vi
(j)

) = 0; if 11
2

ni −
≤ ≤  

 = 1; if 1 .
2

n i n+
≤ ≤  

f (cj ) = 0; 

f (xj ) = 1; if  j even. 

 = 0; if j odd, j � k. 

The labeling pattern defined above covers all the 

possibilities. In each case the graph G under consideration 

satisfies the conditions |vf(0)− vf(1)| � 1 and |ef(0)−ef (1)|�1 

as shown in Table 1. i.e. G admits  cordial labeling. 

Let n = 2a + b and k = 2c + d where a � N � {0}, c � N 

Table 1: Table showing vertex and edge conditions 

b d Vertex Condition Edge Condition 

0 vf(0)=vf(1)+1 ef(0)=ef(1)+1 
0 

1 vf(0)+1=vf(1) ef(0)=ef(1) 

0 vf(0)=vf(1)+1 ef(0)=ef(1)+1 
1 

1 vf(0)=vf(1) ef(0)+1=ef(1) 

 

Illustration 2.2: Consider G = <K1,7
(1) 
� K1,7

(2) 
�K1,7

(3) 

�K1,7
(4) >.  Here n=7 and k=4. The cordial labeling is as 

shown in Figure 1. It is the case 2 of Theorem 2.1 

 
Figure 1: Cordial labeling for graph G 

 

Theorem 2.3: Graph <K1,n
(1)
�K1,n

(2)
�K1,n

(3)
�...� K1,n

(k)>  

is 3-equitable. 

Proof: Let K1,n
(j)

 be k copies of star  K1,n,  vi
(j)

  be the 

pendant vertices of K1,n
(j)

 
and cj   be the  apex vertex  of 

K1,n
(j) (here i = 1, 2, . . . n and  j = 1, 2, . . .  k).  Let G =       

< K1,n
(1)

 �K1,n
(2)

 �K1,n
(3)
� . . . �K1,n

(k)
> and  x1, x2  . . .  

xk−1  are the vertices as stated in Theorem 2.1. To define 

vertex labeling f:V(G)�{0,1,2} we consider following 

cases. 

Case 1:  For n � 0(mod3) 

Subcase 1:  For k � 0(mod3) 
For j � 0, 1(mod3) 

f(vi
(j)) = 0; if i � 0(mod3),  j � 3 and i � n 

 = 1; if i � 1(mod3) 

          = 2; if i � 2(mod3) 

f(vn
(3)

)= 1; 

f (cj )  = 2; if j � 1(mod3) 

f (cj )  = 0; if j � 0(mod3) and j � 3 

f (c3)  = 2; 

f (xj ) = 2 if j � 1(mod3) 

f (xj ) = 0 if j � 0(mod3) 

For j � 2(mod3) 

f(vi
(j)

) = 0; if i � 2(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 0(mod3),  i � n 

f(vn
(j)

) = 1; 

f (cj )  = 2; if j �2  

f (c2)  = f (x2) = 0;  

f (xj )  = 1; if j � 2 

Subcase 2:  For k � 1(mod3)  

For j � 1, 2(mod3) 

f(vi
(j)

)  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 2(mod3) 

f (cj )  = 0; if j � 1(mod3) and j � 1 

f (cj )  = 2; if j � 2(mod3) 

f (c1)  = 2; 

f (xj )  = 0 if j � 1(mod3) 

f (xj )  = 2 if j � 2(mod3) 

For j � 0(mod3) 

f(vi
(j)

)  = 0; if i � 2(mod3) 

 = 1; if i � 1(mod3) 

= 2; if i � 0(mod3),  i � n 

f(vn
(j)

) = f (xj ) = 1; 

f (cj )  = 2; 

Subcase 3:  For k � 2(mod3)  

For j � 0, 2(mod3) 

f(vi
(j)

)  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 2(mod3) 

f (cj )  = 2; if j � 0(mod3) 

f (cj )  = 0; if j � 2(mod3) and j � 2 

f (c2)  = 2; 

f (xj ) = 2 if j � 0(mod3) 

f (xj )  = 0 if j � 2(mod3) 

For j � 1(mod3) 

f(vi
(j)

)  = 0; if i � 2(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 0(mod3),  i � n 
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f(vn
(j)

) = 1; 

f (cj )  = 2 if j � 1 

f (c1)  = 0; 

f (x1 )  = 2; 

f (xj )  = 1 if j � 1 

Case 2:  For n � 1(mod3) 

Subcase 1:  For k � 0(mod3) 

Subcase 1.1:  For n = 1 

f(v1
(1)

)  = 1; 

f(v1
(2)) = f(v1

(3))= f(c1)= 2; 

f(c2)  = f(c3)= f(x2)= 0; 

f(x2) = 1; 

For remaining vertices use the pattern of subcase 1.2. 

Subcase 1.2:  For n > 1 

f(vi
(j))  = 0; if i � 0(mod3), i�n-1 and j� 3  

 = 1; if i � 1(mod3), i�n,  j=1 

 = 2; if i � 2(mod3) 

f(vn
(j)) = f(vn-1

(3))= 2; if  j�1 

f (cj )  = 2; if j � 1(mod3) 

 = 0; if j � 0, 2(mod3) 

f (xj )  = 2; if j � 1(mod3) 

 = 0; if j � 0(mod3), j � k 

 = 1; if j � 2(mod3), j � 2 

f (x2 )  = 0; 

Subcase 2:  For k � 1(mod3) 

f(vi
(j))  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3), i�n,  j� 0, 1(mod3) 

 = 2; if i � 2(mod3) 

f(vn
(j)

) = 2; if j � 2(mod3) 

f (cj ) = 0; if j � 0, 1(mod3) and j � 1 

f (cj ) = 2; if j � 2(mod3) 

f (c1) = 2; 

f (xj ) = 1; if j � 0(mod3)  

f (xj ) = 0; if j � 1(mod3)  

f (xj ) = 2; if j � 2(mod3) 

Subcase 3:  For k � 2(mod3) 

f(vi
(j)

)  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3), i�n,  j� 1, 2(mod3) 

 = 2; if i � 2(mod3) 

f(vn
(j)

) = 2; if j � 0(mod3) 

f (cj ) = 0; if j � 1, 2(mod3) and j � 1 

f (cj ) = 2; if j � 0(mod3) 

f (c1) =  f (x1) = 2; 

f (xj ) = 1; if j � 1(mod3) and j � 1 

f (xj ) = 0; if j � 2(mod3)  

f (xj ) = 2; if j � 0(mod3) 

Case 3:  For n � 2(mod3) 

Subcase 1:  For k � 0(mod3) 

f(vi
(j)

)  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 2(mod3), i�n,  j� 1, 2(mod3) 

f(vn
(3)

) = 1;  

f(vn
(j)

) = 0; if j � 0(mod3) and j�3 

f (cj )  = 2; if j � 1, 2(mod3) and j � 1,2 

f (cj )  = 0; if j � 0(mod3) and j � 3 

f (c1)  =  f (c2) = 0; 

f (c3)  =  f (x2) = 2; 

f (xj )  = 0; if j � 0,1(mod3)  

        = 1; if j � 2(mod3) and j � 2 

Subcase 2:  For k � 1(mod3) 

f(vi
(j)

)  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 2(mod3), i�n,  j� 0, 2(mod3) 

f(vn
(1)) = 2;  

f(vn
(j)

) = 0; if j � 1(mod3) and j�1 

f (cj )  = 0; if j � 1 (mod3)  

f (cj )  = 2; if j � 0, 2 (mod3)  

f (xj )  = 0; if j � 1,2(mod3)  

           = 1; if j � 0(mod3)  

Subcase 3:  For k � 2(mod3) 

f(vi
(j))  = 0; if i � 0(mod3) 

 = 1; if i � 1(mod3) 

 = 2; if i � 2(mod3), i�n,  j� 0, 1(mod3) 

f(vn
(2)

) = 2;  

f(vn
(j)) = 0; if j � 2(mod3) and j � 2 

f (cj )  = 0; if j � 2(mod3)  

f (cj )  = 2; if j � 0, 1 (mod3) and j � 1 

f (xj )  = 0; if j � 0,2(mod3)  

           = 1; if j � 1(mod3) and j � 1 

f (c1)  =  f (x1) = 0; 

The labeling pattern defined above covers all possible 

arrangement of vertices.  In each case, the graph  G under  

consideration  satisfies the conditions |vf (i) − vf (j)| � 1 and 

|ef (i) − ef (j)| � 1 for all 0 � i, j � 2 as shown in Table 2. i.e. 

G admits  3-equitable  labeling. 

Let n = 3a + b and k = 3c + d where a 0 N ∪  {0}, c 0 N. 

Table 2 : Table showing vertex and edge conditions 

b d Vertex Condition Edge Condition 

0 vf(0)+1=vf(1)=vf(2) ef(0)=ef(1)=ef(2) 

1 vf(0)+1=vf(1)+1=vf(2) ef(0)=ef(1)=ef(2) 0 

2 vf(0)=vf(1)=vf(2) ef(0)=ef(1)=ef(2) 

0 vf(0)+1=vf(1)=vf(2) ef(0)=ef(1)=ef(2) 

1 vf(0)+1=vf(1)=vf(2) ef(0)+1=ef(1)=ef(2)+1 1 

2 vf(0)+1=vf(1)=vf(2) ef(0)+1=ef(1)=ef(2) 

0 vf(0)+1=vf(1)=vf(2) ef(0)=ef(1)=ef(2) 

1 vf(0)=vf(1)=vf(2) ef(0)+1=ef(1)=ef(2) 2 

2 vf(0)=vf(1)+1=vf(2)+1 ef(0)=ef(1)+1=ef(2)+1 

 
Illustration 2.4:  Consider a graph  G=< K1,10

(1)
�K1,10

(2)
� 

K1,10
(3)
�K1,10

(4)
>.  Here n = 10 and k = 4. The 

corresponding 3-equitable labeling is as shown in Figure 2. 

 
Figure 2: 3-equitable labeling for graph G 
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CONCLUDING REMARKS 
We discuss here cordial labeling and 3-equitable labeling of 

some star related graphs.  The derived labeling pattern is 

demonstrated by means of elegant illustrations which 

provide better understanding of the results.  We have also 

investigated similar results for shell related graphs which is 

the extension of earlier published work by Vaidya et al [13] 

but for the sake of brevity they are not reported here. 
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Abstract-We present here product cordial labeling for the 
graphs obtained by joining apex vertices of two stars, shells and 
wheels to a new vertex. We extend these results for k copies of 
stars, shells and wheels. 
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I. INTRODUCTION 

 
We begin with simple, finite, connected and undirected 

graph G = (V, E). In the present work K1, n and Wn = Cn + K1 
(n ≥ 3) denote the star and wheel respectively. For all other 
standard terminology and notations we follow Harary [1]. 
We will give brief summary of definitions which are useful 
for the present investigations. 
Definition 1.1 : A shell Sn is the graph obtained by taking n-3 
concurrent chords in a cycle Cn of n vertices. The vertex at 
which all the chords are concurrent is called the apex vertex.  
The shell is also called fan Fn-1.  i.e. Sn=Fn-1=Pn-1+K1. 
Definition 1.2 : Consider two shells Sn

 (1) and Sn
(2). Then, the 

graph G =< Sn
 (1): Sn

(2)  > is obtained by joining apex vertices 
of shells to a new vertex x. Similar constructions may be 
operated  for two wheels and stars. 
Definition 1.3 : Consider k copies of shells namely Sn

 (1), Sn
 (2), 

Sn
 (3), . . ., Sn

 (k). Then, the graph G =< Sn
 (1): Sn

 (2): . . .: Sn
 (k)> 

is obtained by joining apex vertex of each Sn
 (p) and apex of  

Sn
 (p-1) to a new vertex xp−1 where 2 ≤ p ≤ k. 

The graphs corresponding to  K1,n and Wn can be 
constructed similarly. 
Definition 1.4 : If the vertices of the graph are assigned 
values subject to certain conditions then it is known as graph 
labeling. 

For a detailed survey on graph labeling see Gallian [2].  
The most interesting graph labeling to be considered has 

three important characteristics: 
(i) a set of numbers from which the labels are chosen; 
(ii) a rule that assigns a value to each edge; 
(iii) a condition that these values must satisfy. 

The present work is intended to discuss one such labeling 
known as product cordial labeling defined as follows. 
Definition 1.5 : Let G = (V, E) be a graph. A mapping           
f: V(G) → {0, 1} is called binary vertex labeling of G and      

f (v) is called the label of the vertex v of G under f.  
For an edge e = uv, the induced edge labeling   f*: E (G) → 

{0, 1} is given by f*(e) =f(u)f(v). Let vf (0), vf (1) be the 
number of vertices of G having labels 0 and 1 respectively 
under f while ef (0), ef (1) be the number of edges having 
labels 0 and 1 respectively under f*. 
Definition 1.6 : A binary vertex labeling of a graph G is 
called a product cordial labeling if |vf(0) −vf(1)| ≤ 1 and 
|ef(0) − ef(1)| ≤ 1. A graph G is product cordial if it admits 
product cordial labeling. 

The concept of product cordial labeling was introduced by 
Sundaram et al.[3]. They proved that trees, unicyclic graphs 
of odd order, triangular snakes, dragons, helms and union of 
two path graphs are product cordial. They also proved that a 
graph with p vertices (p ≥ 4) and q edges is product cordial 
then 4q < p2 − 1. 

In the present investigations we prove that the graphs 
<Sn

(1): Sn
(2 )>,  <K1,n

(1):K1,n
(2)>,  <K1,n

 (1):K1,n
 (2):K1,n

 (3): . . .: 
K1,n

 (k)> and  < Wn
 (1): Wn

 (2) > are product cordial.  We also 
prove that  graph < Sn

 (1): Sn
 (2) : Sn

 (3): . . .: Sn
 (k)> is product 

cordial except k odd and n even. Further we prove that graph 
< Wn

 (1): Wn
 (2) : Wn

 (3): . . .: Wn
 (k)> is product cordial for      

(i) k even and n even or odd (ii) k odd  and even n with k>n 
and (iii) not product cordial otherwise. 

 
II  MAIN RESULTS 

 
Theorem-2.1: Graph < Sn

 (1): Sn
 (2) > is product cordial. 

Proof: Let v1
(1) , v2

(1) , v3
(1) , . . . v n 

(1) be the vertices Sn
(1) and 

v1
(2) , v2

(2) , v3
(2) , . . . v n 

(2) be the vertices Sn
(2). Let v1

 (1) and  
v1

 (2) be the apex vertices of Sn
 (1) and Sn

 (2) respectively which 
are joined to a vertex x.   

For G =< Sn
 (1): Sn

 (2) >. We define binary vertex labeling  
f: V (G) → {0, 1} as follows. 
f(vi

(1) ) = 1;   
f(vi

(2) ) = 0; where 1≤ i ≤ n 
f(x)      = 1; 

Thus vertices of Sn
 (1) are labeled with 1 and vertices of Sn

(2) 
are labeled with 0 while the vertex x is labeled with 1. 
Consequently vf(0) =n, vf (1)=n+1 and  ef (0)= ef (1)=2n-2. 
Thus the graph G satisfies the conditions for product cordial 
graph.  i.e. G admits product cordial labeling.   
Illustration 2.2 : Consider a graph G =< S8

(1) : S8
(2) >.  Here 
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n=8. The product cordial labeling is as shown in Figure 1. 
Theorem-2.3: Graph < Sn

 (1): Sn
 (2):... .: Sn

 (k)> is product 
cordial except k odd and n even. 
Proof: Let Sn

 (j) be the shells.  Let vi
(j) be the vertices Sn

 (j) and 
v1

(j) be the apex vertices of Sn
(j). Let xj (j≠k) be the new 

vertices where 1≤ j ≤ k. Let G =<Sn
 (1): Sn

 (2): Sn
 (3): . .: Sn

 (k)>.  
For 1≤ i ≤ n we define binary vertex labeling                          f 
: V (G) → {0, 1} as follows. 

Case-1: k even 

f (vi
 (j) ) = 1;  if  j ≤ 2

k  

f (vi
 (j) ) = 0;  if  j > 2

k  

f(xj)    = 1;  if j ≤ 2
k  

f(xj)    = 0;  if 2
k < j ≤ k-1 

Case-2: both  k and n odd 

f (vi
 (j) ) = 1;  if  j ≤ 2

1−k  

f (vi
 (j) ) = 1;  if  j = 2

1+k and i ≤ 2
1+n  

f (vi
 (j) ) = 0;  if  j = 2

1+k and i > 2
1+n  

f (vi
 (j) ) = 0;  if  j > 2

1+k  

f(xj)    = 1;  if j ≤ 2
1−k  

f(xj)    = 0;  if 2
1−k < j ≤ k-1 

 
In both the cases described above the graph G satisfies the 

vertex condition vf(0) +1=vf(1) and edge condition 
ef(0)=ef(1)+1.  i.e. G admits product cordial labeling.  
Case-3 :  k odd and n even 

We assign label 1 to all the vertices of first 1
2

k−  copies of 

shells and assign label 0 to all the vertices of last 1
2

k− copies 
of shells. This will provide equal number of vertices and 
edges with label 0 and 1.  Now our task is to label n vertices 

of a shell (i.e. vertices of ( )1
2

thk+  copy). In order to satisfy 

vertex condition for product cordiality 2
n vertices must be 

labeled with 0.  

 
Fig. 1.  Product cordial labeling of the graph G. 

 
Fig. 2.  Product cordial labeling of the graph G. 

 
Then at least n edges will get label 0. Consequently the 

number of edges with label 1 is (2n-3)-(n)=n-3 because 
|Sn(E)|=2n-3.  

Hence |ef(0)-ef(1)|=|n-(n-3)|=3. Thus edge condition is not 
satisfied. i.e. G is not product cordial.   
Illustration 2.4 : Consider a graph G =< S7

(1): S7
(2) : S7

(3) >.  
Here n = 7. The product cordial labeling is as shown in 
Figure 2. 
Theorem-2.5: Graph < K1,n

 (1): K1,n
 (2) > is product cordial. 

Proof: Let v1
(1), v2

(1), . . . v n 
(1) and v1

(2), v2
(2), . . . v n 

(2) be the 
pendant vertices of K1,n

 (1)  and  K1,n
(2) respectively. Let c1 and 

c2 be the apex vertices of K1,n
(1) and K1,n

(2) respectively which 
are adjacent to a common vertex x. Let G =<K1,n

(1): K1,n
(2)>. 

We define binary vertex labeling f: V (G) → {0, 1} as 
follows. 
f(vi

(1) ) = 1;   
f(vi

(2) ) = 0; where 1≤ i ≤ n 
f(x)     = 1;   

In view of the above defined labeling pattern vf(0)= ef(0)= 
ef(1)=n+1 and vf(1)=n+2. Thus the graph G satisfies the 
vertex condition and edge condition because vf(0)+1=vf(1) 
and  ef(0)= ef(1). i.e. G admits product cordial labeling. 

 
Illustration 2.6 : Consider a graph G =< K1,8

(1) : K1.8
(2) >.  

Here n = 8. The product cordial labeling is as shown in 
Figure 3. 
Theorem-2.7: Graph < K1,n

 (1): K1,n
 (2) : K1,n

 (3): . . .: K1,n
 (k)> is 

product cordial. 
Proof :  Let vi

(j) be the pendant vertices of K1,n
 (j) and cj be the 

apex vertices of K1,n
(j).  Let xj (j≠k) be the new vertices where 

1 .j k≤ ≤  Let G =< K1,n
 (1): K1,n

 (2) : K1,n
 (3): . . .: K1,n

 (k)> . 
We define binary vertex labeling f : V (G) → {0, 1} as 
follows. 

 
Fig. 3.  Product cordial labeling of the graph G. 
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Case-1: k even. 
f(vi

(j) ) = 1;  if 1≤ j ≤ 2
k   

f(vi
(j) ) = 0;  if 2

2
k+ ≤ j ≤ k, where 1≤ i ≤ n 

f(cj )   = 1;  if 1≤ j ≤ 2
k   

f(cj )   = 0;  if 2
2

k+ ≤ j ≤ k 

f(xj)    = 1;  if 1≤ j ≤ 2
k  

f(xj)    = 0; if 2
2

k+ ≤ j ≤ k-1 
Case-2: k odd. 
Subcase 2.1:  n even and 1≤ i ≤ n 
f(vi

(j) ) = 1;  if 1≤ j ≤ 1
2

k−   

f(vi
(j) ) = 0;   if  3

2
k+ ≤ j ≤ k 

f(cj )   = 1;  if 1≤ j ≤ 1
2

k+  

f(cj )   = 0;  if 3
2

k+ ≤ j ≤ k  

f(xj)    = 1;  if 1≤ j ≤ 1
2

k−  

f(xj)    = 0; if 1
2

k+ ≤ j ≤ k-1 

For  j = 1
2

k+  

f(vi
(j) ) = 1;  if 1≤ i ≤ 2

n  

f(vi
(j)) = 0;  if 2

2
n+ ≤ i ≤  n 

Subcase 2.2:  n odd and  1≤ i ≤ n 
f(vi

(j) ) = 1;  if 1≤ j ≤ 1
2

k−   

f(vi
(j) ) = 0;   if  3

2
k+ ≤ j ≤ k 

f(cj )   = 1;  if 1≤ j ≤ 1
2

k+  

f(cj )   = 0;  if 3
2

k+ ≤ j ≤ k  

f(xj)    = 1;  if 1≤ j ≤ 1
2

k−  

f(xj)    = 0; if 1
2

k+ ≤ j ≤ k-1 

For  j = 1
2

k+  

f(vi
(j) ) = 1;  if 1≤ i ≤ 1

2
n−  

f(vi
(j)) = 0;  if 1

2
n+ ≤ i ≤  n 

 
The labeling pattern defined above exhaust all the 
possibilities for n and k and in each cases the graph G 
satisfies the conditions |vf(0) −vf(1)| ≤ 1 and |ef(0) − ef(1)| ≤ 1 
as shown in Table 1(where n=2a+b, k=2c+d and a,c0N).  i.e. 
G admits product cordial labeling. Illustration 2.8 : Consider 
a graph G =<K1,5

(1):K1,5
(2):K1,5

(3) >.  Here n = 5. The product 
cordial labeling is as shown in Fig. 4. 

                     
TABLE: 1 TABLE SHOWING VERTEX AND EDGE CONDITIONS. 

d b Vertex Condition Edge Condition 
0 0,1 vf(0)+1=vf(1) ef(0)=ef(1) 

0 vf(0)+1=vf(1) ef(0)=ef(1) 1 1 vf(0)=vf(1) ef(0)=ef(1)+1 

 
Fig. 4.  Product cordial labeling of the graph G. 

 
Theorem-2.9: Graph < Wn

 (1): Wn
 (2) > is product cordial. 

Proof: Let v1
(1), v2

(1), . . . v n 
(1) and v1

(2), v2
(2), . . . v n 

(2) be the 
rim vertices of Wn

 (1)  and  Wn
(2) respectively. Let c1 and c2 be 

the apex vertices of Wn
(1) and Wn

(2) respectively which are 
adjacent to a common vertex x.  Let G =<Wn

(1): Wn
(2)>. We 

define binary vertex labeling  f: V (G) → {0, 1} as follows. 
f(vi

(1) ) = 1; 
f(vi

(2) ) = 0;where  1≤ i ≤ n 
f(x)     = 1;   
  Then the graph G satisfies the vertex condition 
vf(0)+1=vf(1) and edge condition ef(0)= ef(1). i.e. G admits 
product cordial labeling.                                
Illustration 2.10 : Consider a graph G =< W7

(1) : W7
(2) >.  

Here n = 7. The product cordial labeling is as shown in 
Figure 5. 
Theorem -2.11: Graph < Wn

 (1): Wn
 (2) : Wn

 (3): . . .: Wn
 (k)> is 

product cordial for (i)  k even and n even  or odd (ii) k odd  
and n even with k>n and (iii) not product cordial otherwise. 
Proof:  Let vi

(j) be the rim vertices Wn
 (j) and cj be the apex 

vertices of Wn
(j).  Let xj (j≠k) be the new vertices. Let            

G =< Wn
 (1): Wn

 (2) : Wn
 (3): . . .: Wn

 (k)> . We define binary 
vertex labeling f : V (G) → {0, 1} as follows. 
 
Case-1: k even and 1≤ i ≤ n 
f(vi

(j) ) = 1;  if 1≤ j ≤ 2
k   

f(vi
(j) ) = 0;  if 2

2
k+ ≤ j ≤ k 

f(cj )   = 1;  if 1≤ j ≤ 2
k   

f(cj )   = 0;  if 2
2

k+ ≤ j ≤ k 

f(xj)    = 1;  if 1≤ j ≤ 2
k  

f(xj)    = 0;  if 2
2

k+ ≤ j ≤ k-1 
 
Case-2:  k odd,  n even with k>n and  1≤ i ≤ n 
f(vi

(j) ) = 1;  if 1≤ j ≤ 1
2

k+   

f(vi
(j) ) = 0;  if  3

2
k+ ≤ j ≤ k 

f(cj )   = 1;  if 1≤ j ≤ 1
2

k+  

f(cj )   = 0;  if 3
2

k+ ≤ j ≤ k  

f(xj)    = 1;  if 1≤ j ≤ 1
2

k n− −  

f(xj)    = 0; if 1
2

k n− + ≤ j ≤ k-1 
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Fig. 5.  Product cordial labeling of the graph G. 

 
In both the cases described above the graph G satisfies the 
vertex condition as vf(0)+1=vf(1) and edge condition as 
ef(0)= ef(1). i.e. G admits product cordial labeling . 

Thus we  proved (i) and (ii) while to prove (iii) we have to 
consider following two cases. 

Case-3: k and n odd. 
We assign label 1 to all the vertices of first 1

2
k−  copies of 

wheels and assign label 0 to all the vertices of last 1
2

k− copies 
of wheels. This will provide equal number of vertices and 
edges with label 0 and 1. Now our task is to label n+1 

vertices of a wheel (i.e. vertices of ( )1
2

thk+  copy). In order to 

satisfy vertex condition for product cordiality 1
2

n+ vertices 
must be labeled with 0. Then at least n+2 edges will get label 
0. Consequently the number of edges with label 1 is         
(2n)-(n+2) = n-2 because |Wn(E)|=2n. Hence |ef(0)-ef(1)|     
=| n+2-(n-2)|=4. Thus edge condition is not satisfied. i.e. G 
is not product cordial.   
Case-4: For k odd and n even with n≥k. 

If 1
2

k+  copies of wheel are labeled with 1 then vertex 
condition is not satisfied as n≥k.  

 
 

Fig. 6.  Product cordial labeling of the graph G. 
 
Then arguing as in Case-3 the graph G does not admit 
product cordial labeling. 
Illustration 2.12 : Consider a graph G =< W6

(1): W6
(2) : W6

(3) : 
W6

(4)  >.  Here n = 6. The product cordial labeling is as 
shown in Figure 6. 

 
III. CONCLUDING REMARKS 

We derive six new results for product cordial labeling. The 
defined labeling pattern is demonstrated by means of enough 
illustrations which will provide better understanding of the 
derived results. It is also possible to investigate similar results 
corresponding to other graph families and for different graph 
labeling techniques. 
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Abstract

We investigate some new results for strongly multiplicative labeling of graph. We prove that the graph obtained by
arbitrary supersubdivision of tree T , grid graph Pn × Pm, complete bipartite graph Km,n, Cn � Pm and one-point union of
m cycle of length n are strongly multiplicative.

Keywords: Strongly multiplicative labeling, Strongly multiplicative graphs, Arbitrary supersubdivision

1. Introduction

We begin with simple, finite, undirected and connected graph G = (V, E). In the present work T , Pn × Pm and Km,n

denote the tree, grid graph, and complete bipartite graph respectively. Cn � Pm is the graph obtained by identifying an
end point of Pm with every vertex of cycle Cn. One point union of m cycles of length n denoted as C

(m)
n is the graph

obtained by identifying one vertex of each cycles. If V1 and V2 are two partitions correspond to complete bipartite graph
Km,n then V1 is called m-vertices part and V2 is called n-vertices part of Km,n. In the graph G eccentricity of a vertex u is
maxv∈V(G)d(u, v). For all other terminology and notations we refer to (Harary, F., 1972). We will give brief summary of
definitions and other information which are useful for the present investigations.

Definition 1.1 Let G be a graph with q edges. A graph H is called a supersubdivision of G if H is obtained from G by
replacing every edge ei of G by a complete bipartite graph K2,mi

for some mi, 1 ≤ i ≤ q in such a way that the end vertices
of each ei are merged with the two vertices of 2-vertices part of K2,mi

after removing the edge ei from graph G.

A supersubdivision H of G is said to be an arbitrary supersubdivision of G if every edge of G is replaced by an arbitrary
K2,m (m may vary for each edge arbitrarily). Arbitrary supersubdivision of G is denoted by S S (G).

Definition 1.2 If the vertices of the graph are assigned values subject to certain conditions then it is known as graph
labeling.

Most interesting graph labeling problems have following three important characteristics.

1. a set of numbers from which the labels are chosen;

2. a rule that assigns a value to each edges;
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3. a condition that these values must satisfy.

For detail survey on graph labeling one can refer to (Gallian, J., 2009). Vast amount of literature is available on different
types of graph labeling. According to (Beineke, L., 2001, p.63-75) graph labeling serves as a frontier between number
theory and structure of graphs.

Labeled graph have variety of applications in coding theory, particularly for missile guidance codes, design of good radar
type codes and convolution codes with optimal autocorrelation properties. Labeled graph plays vital role in the study of X-
ray crystallography, communication network and to determine optimal circuit layouts. A systematic study on applications
of graph labeling is reported in (Bloom, G., 1977, p. 562-570).

Definition 1.3 A graph G = (V, E) with p vertices is said to be multiplicative if the vertices of G can be labeled with p

distinct positive integers such that label induced on the edges by the product of labels of end vertices are all distinct.

Multiplicative labeling was introduced in (Beineke, L., 2001, p.63-75) where it is shown that every graph G admits
multiplicative labeling and strongly multiplicative labeling is defined as follows.

Definition 1.4 A graph G = (V, E) with p vertices is said to be strongly multiplicative if the vertices of G can be labeled
with p distinct integers 1, 2, ...p such that label induced on the edges by the product of labels of the end vertices are all
distinct.

In the present investigations we prove that the graphs obtained by arbitrary supersubdivision of tree T , grid graph Pn×Pm,
complete bipartite graph Km,n, Cn � Pm and C

(m)
n are strongly multiplicative for all n and m.

2. Main Results

Theorem-2.1: Arbitrary supersubdivisions of tree T are strongly multiplicative.

Proof: Let T be the tree with n vertices. Arbitrary supersubdivision SS(T ) of tree T obtained by replacing every edge of
tree with K2,mi

and we denote such graph by G. Let K =
∑

mi (1 ≤ i ≤ n − 1). Let v j (1 ≤ j ≤ K + n) be the vertices
of G. Denote the vertex with minimum eccentricity as v1. Then v2 will be the vertex which is at 1- distance apart from
v1. If there are more than one such vertices then throughout the work we will follow one of the direction ( clockwise or
anticlockwise) and denote them as v3, v4, . . . . Next consider the vertices which are at 2- distance apart from v1, 3- distance
apart from v1 and so on. (e.g. if there are seven vertices and two vertices are at distance 1- apart, one vertex is at distance 2-
apart and three vertices are at distance 3- apart respectively form v1. In this situation the vertices which are at 1- distance
apart from v1 will be identified as v2 and v3, the vertex which is at distance 2- apart will be identified as v4 and the vertices
which are at distance 3- apart will be identified as v5, v6 and v7.) We define vertex labeling f : V(G) → {1, 2 . . .K + n} as
follows.

For any 1 ≤ i ≤ n + K define

f (vi) = i

Then the graph G under consideration admits strongly multiplicative labeling.

Illustration 2.2: In Fig.2 strongly multiplicative labeling of SS(T ) corresponding to tree T of Fig.1 is shown where n = 13
and K = 26.

Theorem 2.3: Arbitrary supersubdivisions of complete bipartite graph Km,n are strongly multiplicative.
Proof: Let v1, v2, v3, . . . vm be the vertices of m-vertices part and vm+1, vm+2, vm+3, . . . vm+n be the vertices of n-vertices part
of Km,n. Arbitrary supersubdivision SS(Km,n) of Km,n obtained by replacing every edge of Km,n with K2,mi

and we denote
such graph by G. Let K =

∑
mi (1 ≤ i ≤ mn). Let u j be the vertices which are used for arbitrary supersubdivision, where

1 ≤ j ≤ K. We denote vertices by u j which are used for supersubdivision of edges v1vm+1, v1vm+2, . . . v1vm+n, v2vm+1,
. . . vnvm+n. Let po be the highest prime less than K + m + n. We define vertex labeling f : V(G) → {1, 2 . . .K + m + n} as
follows.

If po ≤ K + m

f (vi) =

{
i; i f 1 ≤ i ≤ m,
k + i; i f m + 2 ≤ i ≤ m + n

f (vm+1) = po;

f (u j) =

{
m + j; i f 1 ≤ j < po,
m + j + 1; i f po ≤ j ≤ K
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If po > K + m

f (vi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i; i f 1 ≤ i ≤ m,
k + i − 1; i f m + 2 ≤ i < po,
k + i; i f po ≤ i ≤ m + n

f (vm+1) = po;
f (u j) = m + j; where 1 ≤ j ≤ K

Then in each possibilities described above the graph G under consideration admits strongly multiplicative labeling.

Illustration 2.4: Consider S S (K2,3). Here m = 2, n = 3 and K = 14. The strongly multiplicative labeling is as shown in
Fig.3.

Theorem 2.5: Arbitrary supersubdivisions of grid graph Pn × Pm are strongly multiplicative.

Proof: Arbitrary supersubdivision SS(Pn × Pm) of Pn × Pm obtained by replacing every edge of grid graph with K2,mi
and

we denote such graph by G. Let K =
∑

mi (1 ≤ i ≤ mn). Let vi (1 ≤ i ≤ mn + K) be the vertices of G. Denote the vertex
of left upper corner with v1. Here we designate vertices by vi (2 ≤ i ≤ mn + K) according to the procedure described in
Theorem 2.1. We define vertex labeling f : V(G) → {1, 2, . . . ,mn + K}

f (vi) = i; where 1 ≤ i ≤ mn + K

Then the graph G under consideration admits strongly multiplicative labeling.

Illustration 2.6: Consider SS(P4 × P3). Here n = 4, m = 3 and K = 41. The corresponding strongly multiplicative
labeling is shown in Fig.4.

Theorem 2.7:Arbitrary supersubdivisions of Cn � Pm are strongly multiplicative.

Proof: Arbitrary supersubdivision SS(Cn � Pm) of Cn � Pm obtained by replacing every edge of Cn � Pm with K2,mi
and

we denote such graph by G. Let K =
∑

mi (1 ≤ i ≤ mn). Let vi (1 ≤ i ≤ mn + K) be the vertices of G. Designate
arbitrary vertex of Cn as v1 and employing the scheme used in Theorem 2.1 the remaining vertices will receive labels
v2, v3, . . . , vmn+K .We define vertex labeling f : V(G) → {1, 2, . . . ,mn + K} as follows.

f (vi) = i; where 1 ≤ i ≤ mn + K

Then the graph G under consideration admits strongly multiplicative labeling.

Illustration 2.8: Consider S S (C5 � P3). Here n = 5, m = 3 and K = 37. The corresponding strongly multiplicative
labeling is as shown in Fig.5.

Theorem 2.9: Arbitrary supersubdivisions of C
(m)
n are strongly multiplicative.

Proof: Arbitrary supersubdivision of C
(m)
n is obtained by replacing every edge of C

(m)
n with K2,mi

and we denote this
graph by G. Let K =

∑
mi. Let vi(1 ≤ i ≤ m(n − 1) + K + 1 be the vertices of G. Denote the common vertex of

cycles by v1. According to the procedure followed in previous results the remaining vertices will be designated as vi

(2 ≤ i ≤ m(n − 1) + K + 1). We define vertex labeling f : V(G) → {1, 2, . . . ,m(n − 1) + K + 1} as follows.

For any 1 ≤ i ≤ m(n − 1) + K + 1 we define

f (vi) = i;

Then the graph G under consideration admits strongly multiplicative labeling.

Illustration 2.10: Consider SS(C(3)
4 ). Here n = 4, m = 3 and K = 26. The strongly multiplicative labeling is as shown in

Fig.6.

3. Concluding Remarks And Open Problem

Labeled graph is the topic of current interest for many researchers as it has diversified applications. It is also very in-
teresting to investigate graph or families of graph which admits particular type of labeling. In (Sethuraman, G., 2001
p.1059-1064) and (Kathiresan, K., 2004 p.81-84) graceful labeling in the context of arbitrary supersubdivision is dis-
cussed while we discuss here strongly multiplicative labeling in the context of arbitrary supersubdivision. We consider
five different graph families and investigate their strongly multiplicative labeling. This work is a nice combination of
combinatorial number theory and graph theory which will provide enough motivation to any researcher.

Open Problems:
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• Similar investigations are possible for other graph families.

• Parallel results can be investigated corresponding to other graph labeling techniques.
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Figure 1. Tree T before arbitrary supersubdivision

Figure 2. Strongly multiplicative labeling of SS(T )
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Figure 3. Strongly multiplicative labeling of S S (K2,3)

Figure 4. Strongly multiplicative labeling of SS(P4 × P3)

Figure 5. Strongly multiplicative labeling of S S (C5 � P3)
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Figure 6. Strongly multiplicative labeling of SS(C(3)
4 )
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1. Introduction

We begin with simple, finite, undirected and connected graph G =

(V (G), E(G)). In the present work T , Pn × Pm and Km,n denote the tree,

grid graph, and complete bipartite graph respectively. The graph Cn � Pm

is obtained by identifying an end point of Pm with every vertex of Cn. If

V1 and V2 are two partitions correspond to complete bipartite graph Km,n

then V1 is called m-vertices part and V2 is called n-vertices part of Km,n.

For the graph G eccentricity of a vertex u is maxv∈V (G)d(u, v). For all other

terminology and notations we follow Gross and Yellen[4]. Given below are

some definitions useful for the present investigations.

Definition 1.1 Let G be a graph with q edges. A graph H is called

a supersubdivision of G if H is obtained from G by replacing every edge ei

of G by a complete bipartite graph K2,mi for some mi, 1 ≤ i ≤ q in such a

way that the end vertices of each ei are identified with the two vertices of

2-vertices part of K2,mi after removing the edge ei from graph G. If mi is

varying arbitrarily for each edge ei then supersubdivision is called arbitrary

supersubdivision which is denoted by SS(G).

Definition 1.2 If the vertices of the graph are assigned values subject to

certain conditions then it is known as graph labeling.

Vast amount of literature is available on different types of graph label-

ing. For detailed survey on graph labeling we refer to A Dynamic Survey of

Graph Labeling by Gallian[3].

Definition 1.3 Let G = (V (G), E(G)) be a graph. A mapping f :

V (G) →{0,1} is called binary vertex labeling of G and f(v) is called the

label of the vertex v of G under f .
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For an edge e = uv, the induced edge labeling f∗ : E(G) → {0, 1} is

given by f∗(e)=|f(u) − f(v)|. Let vf (0), vf (1) be the number of vertices

of G having labels 0 and 1 respectively under f and let ef (0),ef (1) be the

number of edges having labels 0 and 1 respectively under f∗.

Definition 1.4 A binary vertex labeling of a graph G is called a cordial

labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph G is cordial

if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit[2]. Many re-

searchers have studied cordiality of graphs. e.g.Cahit [2] proved that tree is

cordial. In the same paper he proved that Kn is cordial if and only if n ≤ 3.

Ho et al.[5] proved that unicyclic graph is cordial unless it is C4k+2. Andar

et al.[1] have discussed cordiality of multiple shells. Vaidya et al.[8, 9, 10]

have also discussed the cordiality of various graphs.

In the present investigations we prove that the graphs obtained by ar-

bitrary supersubdivision of tree, grid graph, complete bipartite graph are

cordial. We also prove that arbitrary supersubdivision of Cn�Pm is cordial

except mi(1 ≤ i ≤ n) are odd and mi(n + 1 ≤ i ≤ nm) are even with n is

odd.

2. Main Results

Theorem-2.1: Arbitrary supersubdivision of tree T is cordial.

Proof: Let T be the tree with n vertices and vi(1 ≤ i ≤ n) be the vertices

of T . Arbitrary supersubdivision of T is obtained by replacing every edge

of tree with K2,mi and we denote this graph by G. Let α =

n−1∑
1

mi. Let uj

be the vertices of mi-vertices part where 1 ≤ j ≤ α. Denote the vertex with

minimum eccentricity as v1 and n1 and n2 be the number of vertices which

are at odd and even distance respectively form v1 in T . Here |V (G)| = α+n
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and |E(G)| = 2α. We define binary vertex labeling f : V (G) → {0, 1} as

follows.

f(v1) = 0;

f(vi) = 1; if d(v1, vi) in T is odd

= 0; if d(v1, vi) in T is even

 1 ≤ i ≤ n

f(ui) = 0; If n1 ≥ n2

= 1; If n1 < n2

 1 ≤ i ≤ |n1 − n2|

f(ui) = 0; If |n1 − n2|+ 1 ≤ i ≤ bα+|n1−n2|
2 c

= 1; If dα+|n1−n2|
2 e ≤ i ≤ α

 i > |n1 − n2|

In view of the above defined labeling pattern we have the followings.

• When α+ n is even

vf (0) = vf (1) = α+n
2 ; ef (0) = ef (1) = α

• When α+ n is odd

vf (0) = vf (1) + 1 = α+n+1
2 ; ef (0) = ef (1) = α

Thus the graph G satisfies the conditions |vf (0) − vf (1)| ≤ 1 and |ef (0) −

ef (1)| ≤ 1. That is, G admits cordial labeling.

Illustration 2.2: Consider G =SS(T ). Here n = 13 and α = 26. The

cordial labeling is as shown in Fig.1.
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Fig.1 Cordial labeling of SS(T )

Theorem 2.3: Arbitrary supersubdivision of complete bipartite graph

Km,n is cordial.

Proof: Let v1, v2, v3, . . . vm be the vertices of m-vertices part and vm+1,

vm+2, vm+3, . . . vm+n be the vertices of n-vertices part of Km,n. Arbitrary

supersubdivision of Km,n is obtained by replacing every edge of Km,n with

K2,mi and we denote this graph by G. Let α =
mn∑
1

mi. Let uj be the ver-

tices which are used for arbitrary supersubdivision, where 1 ≤ j ≤ α. Note

that |V (G)| = α + m + n, |E(G)| = 2α. We define binary vertex labeling

f : V (G)→ {0, 1} as follows.

f(vi) = 0; if 1 ≤ i ≤ m

= 1; if m+ 1 ≤ i ≤ m+ n

f(ui) = 1; if m ≥ n

= 0; if m < n

 1 ≤ i ≤ |m− n|

f(ui) = 0; if |m− n|+ 1 ≤ i ≤ bα+|m−n|2 c

= 1; if dα+|m−n|2 e ≤ i ≤ α

 i > |m− n|

Above defined function f is cordial labeling for the graph under consid-
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eration because

• vf (0) = vf (1) = α+m+n
2 ; ef (0) = ef (1) = α (When α+m+ n is even)

• vf (0) + 1 = vf (1) = α+m+n+1
2 ; ef (0) = ef (1) = α (When α+m+ n is

odd)

That is, G admits cordial labeling.

Illustration 2.4: Consider G = SS(K2,3). Here m = 2, n = 3 and α = 14.

The cordial labeling is as shown in Fig.2.

0 0

0 0 0 0 0

0 0

1 1 1

11111
1

1

Fig.2 Cordial labeling of SS(K2,3)

Theorem 2.5: Arbitrary supersubdivision of grid graph Pn×Pm is cordial.

Proof: Let vij be the vertices of Pn × Pm, where 1 ≤ i ≤ n and 1 ≤ j ≤

m. Arbitrary supersubdivision of Pn × Pm is obtained by replacing every

edge of grid graph with K2,mi and we denote the resultant graph by G.

Let α =

2mn−m−n∑
1

mi. Let uj be the vertices of mi-vertices part of K2,mi

supersubdivision, where 1 ≤ j ≤ α. Here |V (G)| = α + mn, |E(G)| = 2α.

We define binary vertex labeling f : V (G)→ {0, 1} as follows.

For 1 ≤ i ≤ n and 1 ≤ j ≤ m

f(vij) = 0; if i and j both are even or i and j both are odd

= 1; if i is even and j is odd or i is odd and j is even
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f(uj) = 0; if 1 ≤ j ≤ bα2 c

= 1; if dα2 e ≤ j ≤ α

Above defined function f is cordial labeling for the graph under consid-

eration because

• vf (0) = vf (1) = α+mn
2 ; ef (0) = ef (1) = α (When α+mn is even)

• vf (0)+1 = vf (1) = α+mn+1
2 ; ef (0) = ef (1) = α (When α odd and mn

is even)

• vf (0) = vf (1) + 1 = α+mn+1
2 ; ef (0) = ef (1) = α (When α even and

mn is odd)

That is, f is a cordial labeling for G. Hence the result.

Illustration 2.6: Consider G =SS(P4 × P3). Here n = 4, m = 3 and

α = 41. The corresponding cordial labeling is shown in Fig.3.

0

0

0

0

0

0

1

1

1

1 1

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
1 1 1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

Fig.3 Cordial labeling of SS(P4 × P3)
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Theorem 2.7: Arbitrary supersubdivision of Cn � Pm is cordial except

mi(1 ≤ i ≤ n) are odd, mi(n+ 1 ≤ i ≤ nm) are even and n is odd.

Proof: Let v1, v2, v3, . . . vn be the vertices of Cn and vij(1 ≤ i ≤ n, 2 ≤

j ≤ m) be the vertices of paths. Arbitrary supersubdivision of Cn � Pm is

obtained by replacing every edge of Cn�Pm with K2,mi and we denote this

graph by G. Let α =

mn∑
1

mi and uj be the vertices of mi-vertices part of

K2,mi , where 1 ≤ j ≤ α. Here |V (G)| = α + mn, |E(G)| = 2α. To define

binary vertex labeling f : V (G)→ {0, 1} we consider following cases.

Case 1: For n even.

for 1 ≤ i ≤ n and 2 ≤ j ≤ m

f(vi) = 0; if i is odd

= 1; if i is even

f(vij) = 0; if i and j both are even or i and j both are odd

= 1; if i is even and j is odd or i is odd and j is even

f(uj) = 0; if 1 ≤ j ≤ bα2 c

= 1; if dα2 e ≤ j ≤ α

 1 ≤ j ≤ α

Case 2: For n odd and at least one mi(1 ≤ i ≤ n) is even and at least

one mi(n+ 1 ≤ i ≤ mn) is odd. Without loss of generality we assume that

m1 is even.

For 2 ≤ i ≤ n and 2 ≤ j ≤ m

f(v1) = 0;

f(vi) = 0; if i is even

= 1; if i is odd

f(v1j) = 0; if j is odd

= 1; if j is even

8



f(vij) = 0; if i is even and j is odd or i is odd and j is even

= 1; if i and j both are even or i and j both are odd

f(uj) = 0; if 1 ≤ j ≤ m1
2

= 1; if m1
2 + 1 ≤ j ≤ m1

f(uj) = 0; if m1 + 1 ≤ j ≤ bα+m1
2 c

= 1; if dα+m1
2 e ≤ j ≤ α


1 ≤ j ≤ α

In view of the above two cases graph G satisfies the following conditions.

• vf (0) = vf (1) = α+mn
2 ; ef (0) = ef (1) = α (When α+mn is even)

• vf (0)+1 = vf (1) = α+mn+1
2 ; ef (0) = ef (1) = α (When α odd and mn

is even)

• vf (0) = vf (1) + 1 = α+mn+1
2 ; ef (0) = ef (1) = α (When α even and

mn is odd)

That is, f is a cordial labeling for G and consequently G is a cordial graph.

Case 3: If n is odd number with mi(1 ≤ i ≤ n) are odd and mi(n+ 1 ≤

i ≤ nm) are even.

In this case G is an Eulerian graph with number of edges congruent to

2(mod4) then G is not cordial as proved by Cahit[2].

Hence from the Case 1 to 3 we have the required result.

Illustration 2.8: Consider G = SS(C5 � P3). Here n = 5, m = 3 and

α = 37. The corresponding cordial labeling is as shown in Fig.4.
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Fig.4 Cordial labeling of SS(C5 � P3)

3. Conclusion and Scope

Sethuraman and Selvaraju[7] and Kathiresan and Amutha[6] have dis-

cussed graceful labeling in the context of arbitrary supersubdivision of some

graphs while we discuss cordial labeling in the context of arbitrary super-

subdivision of some graphs. Similar investigations can be carried out for

other graph families as well as in the context of different labeling problems

is an open area of research.
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Cordial and 3-equitable Labeling for Some Wheel
Related Graphs

S K Vaidya∗, N A Dani†, K K Kanani‡, P L Vihol§

Abstract—We present here cordial and 3-equitable
labeling for the graphs obtained by joining apex ver-
tices of two wheels to a new vertex. We extend these
results for k copies of wheels.

Keywords: Cordial graph, Cordial labeling, 3-equitable

graph, 3-equitable labeling

AMS Subject classification number(2000): 05C78.

1 Introduction

We begin with simple, finite and undirected graph
G = (V,E). In the present work Wn = Cn +K1 (n ≥ 3)
denotes the wheel and in Wn vertices correspond to Cn

are called rim vertices and vertex which corresponds to
K1 is called an apex vertex. For all other terminology
and notations we follow Harary[7]. We will give brief
summary of definitions which are useful for the present
investigations.

Definition 1.1 Consider two wheels W
(1)
n and W

(2)
n

then G =< W
(1)
n : W

(2)
n > is the graph obtained by

joining apex vertices of wheels to a new vertex x.
Note that G has 2n+ 3 vertices and 4n+ 2 edges.

Definition 1.2 Consider k copies of wheels

namely W
(1)
n ,W

(2)
n ,W

(3)
n , . . .W

(k)
n . Then the

G =< W
(1)
n : W

(2)
n : W

(3)
n : . . . : W

(k)
n > is the

graph obtained by joining apex vertices of each W
(p−1)
n

and W
(p)
n to a new vertex xp−1 where 2 ≤ p ≤ k.

Note that G has k(n+ 2)− 1 vertices and 2k(n+ 1)− 2
edges.

Definition 1.3 If the vertices of the graph are as-
signed values subject to certain conditions then it is
known as graph labeling.
According to Hegde[8] most interesting graph labeling
problems have following three important characteristics.
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1. a set of numbers from which the labels are chosen;

2. a rule that assigns a value to each edge;

3. a condition that these values must satisfy.

The recent survey on graph labeling can be found in
Gallian[6]. Vast amount of literature is available on
different types of graph labeling. According to Beineke
and Hegde[2] graph labeling serves as a frontier between
number theory and structure of graphs.
Labeled graph have variety of applications in coding
theory, particularly for missile guidance codes, design
of good radar type codes and convolution codes with
optimal autocorrelation properties. Labeled graph
plays vital role in the study of X-Ray crystallography,
communication network and to determine optimal circuit
layouts. A detail study of variety of applications of
graph labeling is carried out by Bloom and Golomb[3].

Definition 1.4 Let G = (V,E) be a graph. A
mapping f : V (G) →{0,1} is called binary vertex labeling
of G and f(v) is called the label of the vertex v of G
under f .
For an edge e = uv, the induced edge labeling
f∗ : E(G) → {0, 1} is given by f∗(e)=|f(u)− f(v)|. Let
vf (0), vf (1) be the number of vertices of G having labels
0 and 1 respectively under f and let ef (0),ef (1) be the
number of edges having labels 0 and 1 respectively under
f∗.

Definition 1.5 A binary vertex labeling of a graph G
is called a cordial labeling if |vf (0) − vf (1)| ≤ 1 and
|ef (0) − ef (1)| ≤ 1. A graph G is cordial if it admits
cordial labeling.
The concept of cordial labeling was introduced by
Cahit[4].
Many researchers have studied cordiality of graphs.
e.g.Cahit [4] proved that tree is cordial. In the same
paper he proved that Kn is cordial if and only if n ≤ 3.
Ho et al.[9] proved that unicyclic graph is cordial unless
it is C4k+2. Andar et al.[1] discussed cordiality of
multiple shells. Vaidya et al.[10], [11], [12] have also
discussed the cordiality of various graphs.

Definition 1.6 A vertex labeling of a graph G is
called a 3-equitable labeling if |vf (i) − vf (j)| ≤ 1 and



|ef (i) − ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2. A graph G is
3-equitable if it admits 3-equitable labeling.
The concept of 3-equitable labeling was introduced by
Cahit[5]. Many researchers have studied 3-equitability
of graphs. e.g.Cahit [5] proved that Cn is 3-equitable
except n ≡ 3(mod6). In the same paper he proved that
an Eulerian graph with number of edges congruent to
3(mod6) is not 3-equitable. Youssef[16] proved that Wn

is 3-equitable for all n ≥ 4. Several results on 3-equitable
labeling for some wheel related graphs in the context of
vertex duplication are reported in Vaidya et al.[13].
In the present investigations we prove that graphs

< W
(1)
n : W

(2)
n > and < W

(1)
n : W

(2)
n : W

(3)
n : . . . : W

(k)
n >

are cordial as well as 3-equitable.

2 Main Results

Theorem-2.1 Graph < W
(1)
n : W

(2)
n > is cordial.

Proof Let v
(1)
1 , v

(1)
2 , v

(1)
3 , . . . v

(1)
n be the rim vertices

W
(1)
n and v

(2)
1 , v

(2)
2 , v

(2)
3 , . . . v

(2)
n be the rim vertices W

(2)
n .

Let c1 and c2 be the apex vertices of W
(1)
n and W

(2)
n

respectively and they are adjacent to a new common

vertex x. Let G =< W
(1)
n : W

(2)
n >. We define binary

vertex labeling f : V (G) → {0, 1} as follows.

For any n ∈ N − {1, 2} and i = 1, 2, . . . n where N
is set of natural numbers.
In this case we define labeling as follows

f(v
(1)
i ) = 1;

f(c1) = 0;

f(v
(2)
i ) = 0;

f(c2) = 1;
f(x) = 1;

Thus rim vertices of W
(1)
n and W

(2)
n are labeled with the

sequences 1, 1, 1, . . . , 1 and 0, 0, . . . , 0 respectively. The
common vertex x is labeled with 1 and apex vertices
with 0 and 1 respectively.
The labeling pattern defined above covers all possible
arrangement of vertices. The graph G satisfies the
vertex condition vf (0) + 1 = vf (1) and edge condition
ef (0) = ef (1). i.e. G admits cordial labeling.

Illustration 2.2 Consider G =< W
(1)
6 : W

(2)
6 >.

Here n = 6. The cordial labeling is as shown in Figure 1.

Theorem 2.3 Graph < W
(1)
n : W

(2)
n : W

(3)
n : . . . :

W
(k)
n > is cordial.

Proof Let W
(j)
n be k copies of wheel Wn, v

(j)
i be

the rim vertices of W
(j)
n and cj be the apex vertex

of W
(j)
n (here i = 1, 2, . . . n and j = 1, 2, . . . k).Let

x1, x2 . . . xk−1 be the vertices such that cp−1 and cp
are adjacent to xp−1 where 2 ≤ p ≤ k. Consider

G =< W
(1)
n : W

(2)
n : W

(3)
n : . . . : W

(k)
n >. To define

Figure 1: Cordial labeling of graph G.

binary vertex labeling f : V (G) → {0, 1} we consider
following cases.

Case 1: n ∈ N−{1, 2} and even k where k ∈ N−{1, 2}.
In this case we define labeling function f as
For i = 1, 2, . . . n and j = 1, 2, . . . k

f(v
(j)
i ) = 0; if j even.

= 1; if j odd.
f(cj) = 1; if j even.

= 0; if j odd.
f(xj) = 1; if j even, j 6= k.

= 0; if j odd, j 6= k.
Case 2: n ∈ N −{1, 2} and odd k where k ∈ N −{1, 2}.
In this case we define labeling function f for first k − 1
wheels as
For i = 1, 2, . . . n and j = 1, 2, . . . k − 1

f(v
(j)
i ) = 0; if j even.

= 1; if j odd.
f(cj) = 1; if j even.

= 0; if j odd.
f(xj) = 1; if j even.

= 0; if j odd.
To define labeling function f for kth copy of wheel we
consider following subcases
Subcase 1: If n ≡ 3(mod4).
For 1 ≤ i ≤ n− 1
f(v

(k)
i ) = 0; if i ≡ 0, 1(mod4).

= 1; if i ≡ 2, 3(mod4).

f(v
(k)
n ) = 0;

f(ck) = 1;
Subcase 2: If n ≡ 0, 2(mod4).

f(v
(k)
i ) = 0; if i ≡ 0, 1(mod4).

= 1; if i ≡ 2, 3(mod4).
f(ck) = 0; n ≡ 0(mod4)
f(ck) = 1; n ≡ 2(mod4)

Subcase 3: If n ≡ 1(mod4).

f(v
(k)
i ) = 0; if i ≡ 0, 3(mod4).

= 1; if i ≡ 1, 2(mod4).
f(ck) = 0;

The labeling pattern defined above exhaust all the
possibilities and in each one the graph G under consid-
eration satisfies the conditions |vf (0) − vf (1)| ≤ 1 and
|ef (0) − ef (1)| ≤ 1 as shown in Table 1. i.e. G admits
cordial labeling.
(In Table 1 n = 4a+ b and a ∈ N ∪ {0})



Figure 2: Cordial labeling of graph G.

Table 1: Vertex and Edge conditions for f

Let us understand the labeling pattern with some
examples given below.

Illustrations 2.4
Example 1: Consider G =< W

(1)
7 : W

(2)
7 : W

(3)
7 :

W
(4)
7 >. Here n = 7 and k = 4 i.e k is even. The cordial

labeling is as shown in Figure 2.

Example 2: Consider G =< W
(1)
5 : W

(2)
5 : W

(3)
5 >.

Here n = 5 i.e n ≡ 1(mod4) and k = 3 i.e k is odd. The
cordial labeling is as shown in Figure 3.

Theorem 2.5 Graph < W
(1)
n : W

(2)
n > is 3-equitable.

Proof Let v
(1)
1 , v

(1)
2 , v

(1)
3 , . . . v

(1)
n be the rim vertices

W
(1)
n and v

(2)
1 , v

(2)
2 , v

(2)
3 , . . . v

(2)
n be the rim vertices W

(2)
n .

Let c1 and c2 be the apex vertices of W
(1)
n and W

(2)
n

respectively and they are adjacent to a new common

vertex x. Let G =< W
(1)
n : W

(2)
n >. To define vertex

labeling f : V (G) → {0, 1, 2} we consider the following
cases.

Case 1: n ≡ 0(mod6)
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

Figure 3: Cordial labeling of graph G.

= 1; i ≡ 2, 3(mod6)
= 2; i ≡ 0, 5(mod6), 1 ≤ i ≤ n

f(c1) = 2;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 2; i ≡ 2, 3(mod6)
= 1; i ≡ 0, 5(mod6), 1 ≤ i ≤ n− 3
= 1; i ≥ n− 2

f(c2) = 0;
f(x) = 0;

Case 2: n ≡ 1(mod6)
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 2, 3(mod6)
= 2; i ≡ 0, 5(mod6), 1 ≤ i ≤ n

f(c1) = 2;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 2, 3(mod6)
= 2; i ≡ 0, 5(mod6), 1 ≤ i ≤ n

f(c2) = 2;
f(x) = 1;

Case 3: n ≡ 2(mod6)
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n− 2
= 1; i ≥ n− 1

f(c1) = 0;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n− 2
= 2; i ≥ n− 1

f(c2) = 0;
f(x) = 1;

Case 4: n ≡ 3(mod6)
Subcase 1: n 6= 3
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n

f(c1) = 0;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 2, 3(mod6)



= 2; i ≡ 0, 5(mod6), 1 ≤ i ≤ n− 3
= 1; i ≥ n− 2

f(c2) = 0;
f(x) = 2;

Subcase 2: n = 3
f(v

(1)
1 ) = f(v

(2)
1 ) = f(c2) = 0;

f(v
(1)
2 ) = f(v

(1)
3 ) = f(c1) = 1;

f(v
(2)
2 ) = f(v

(2)
3 ) = f(x) = 2;

Case 5: n ≡ 4(mod6)
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n− 3
= 1; i = n− 2, n− 1
= 0; i = n

f(c1) = 2;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n

f(c2) = 2; f(x) = 1.
Case 6: n ≡ 5(mod6)
In this case we define labeling f as:

f(v
(1)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 2, 3(mod6)
= 2; i ≡ 0, 5(mod6), 1 ≤ i ≤ n− 5
= 1; i = n− 4, n− 3
= 2; i = n− 2, n
= 0; i = n− 1

f(c1) = 2;

f(v
(2)
i ) = 0; i ≡ 1, 4(mod6)

= 1; i ≡ 0, 5(mod6)
= 2; i ≡ 2, 3(mod6), 1 ≤ i ≤ n− 5
= 0; i = n− 4, n− 1
= 1; i = n− 3, n− 2
= 2; i = n

f(c2) = 0;
f(x) = 0;

The labeling pattern defined above covers all the possible
arrangement of vertices and in each case the resulting
labeling satisfies the conditions |vf (i) − vf (j)| ≤ 1 and
|ef (i) − ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in Table
2. i.e. G admits 3-equitable labeling.
(In Table 2 n = 6a+ b and a ∈ N ∪ {0})
Let us understand the labeling pattern defined in
Theorem 2.5 by means of following Illustration 2.6.

Table 2: Vertex and Edge conditions for f

Illustration 2.6 Consider a graph G =< W
(1)
5 : W

(2)
5 >

Here n = 5 i.e n ≡ 5(mod6). The corresponding
3-equitable labeling is shown in Figure 4.

Theorem 2.7 Graph < W
(1)
n : W

(2)
n : W

(3)
n : . . . :

W
(k)
n > is 3-equitable.

Proof Let W
(j)
n be k copies of wheel Wn, v

(j)
i be

the rim vertices of W
(j)
n where i = 1, 2, . . . n and

j = 1, 2, . . . k. Let cj be the apex vertex of W
(j)
n .

Consider G =< W
(1)
n : W

(2)
n : W

(3)
n : . . . : W

(k)
n > and

vertices x1, x2, . . . xk−1 as stated in Theorem 2.3. To
define vertex labeling f : V (G) → {0, 1, 2} we consider
following cases.

Case 1: For n ≡ 0(mod6).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).
For j ≡ 1, 2(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 3.

f(v
(j)
i ) = 1; if i ≥ n− 2.

f(cj) = 0.
f(xj) = 2; if j ≡ 1(mod3).

= 0; if j ≡ 2(mod3).
For j ≡ 0(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6).

f(cj) = 2.
f(xj) = 0, j 6= k.

Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6).

f(c1) = 2.
f(x1) = 0.

For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6).

f(c1) = 0.
f(x1) = 2.

Figure 4: 3-equitable labeling of graph G.



f(v
(2)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 3.

f(v
(2)
i ) = 1; if i ≥ n− 2.

f(c2) = 0.
f(x2) = 0.

For remaining vertices take j = k − 2 and label them as
in subcase 1.
Case 2: For n ≡ 1(mod6).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 1.

f(v
(j)
n ) = 0; if j ≡ 1(mod3).

f(v
(j)
n ) = 1; if j ≡ 0, 2(mod3).

f(cj) = 2; if j ≡ 1(mod3).
f(cj) = 0; if j ≡ 0, 2(mod3).
f(xj) = 1; if j ≡ 1(mod3).

= 2; if j ≡ 0, 2(mod3), j 6= k.
Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 1.

f(v
(1)
n ) = 1;

f(c1) = 2.
f(x1) = 0.

For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 1.

f(v
(j)
n ) = 1;

f(c1) = 0.
f(c2) = 2.
f(x1) = 2.
f(x2) = 0.

For remaining vertices take j = k − 2 and label them as
in subcase 1.
Case 3: For n ≡ 2(mod6).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).
For j ≡ 1, 2(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 4.

f(v
(j)
n−3) = 2.

f(v
(j)
i ) = 1; if i ≥ n− 2.

f(cj) = 0; if j ≡ 1(mod3).
f(cj) = 2; if j ≡ 2(mod3).
f(xj) = 0.

For j ≡ 0(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 2, 3(mod6).
= 2; if i ≡ 0, 5(mod6), i ≤ n− 2.

f(v
(j)
i ) = 1; if i ≥ n− 1.

f(cj) = 2.
f(xj) = 0, j 6= k.

Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 2.

f(v
(1)
n−1) = 2.

f(v
(1)
n ) = 0.

f(c1) = 0.
f(x1) = 1.

For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 4.

f(v
(j)
n−3) = 2;

f(v
(j)
i ) = 1; if i ≥ n− 2.

f(cj) = 0.
f(x1) = 1.
f(x2) = 0.

For remaining vertices take j = k − 2 and label them as
in subcase 1.
Case 4: For n ≡ 3(mod6).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 3.

If j ≡ 1(mod3)

f(v
(j)
i ) = 1; if i ≥ n− 2.

f(cj) = 0.
f(xj) = 1.

If j ≡ 2(mod3)

f(v
(j)
n−2) = 0.

f(v
(j)
n−1) = 2.

f(v
(j)
n ) = 1.

f(cj) = 0.
f(xj) = 2.

If j ≡ 0(mod3)

f(v
(j)
i ) = 0; ifj = n− 1, n− 2.

f(v
(j)
n ) = 2.

f(cj) = 2.
f(xj) = 2, j 6= k.

Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 2, 3(mod6).
= 2; if i ≡ 0, 5(mod6), i ≤ n− 3.

f(v
(1)
i ) = 2; if i ≥ n− 2.

f(c1) = 0.



f(x1) = 1.
For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 3.

f(v
(1)
i ) = 1; if i = n− 1, n− 2.

f(v
(1)
n ) = 0.

f(v
(2)
i ) = 2; if i ≥ n− 2.

f(cj) = 0.
f(x1) = 1.
f(x2) = 2.

For n = 3 label rim vertices of W
(1)
n by 0, 1, 0 and apex

vertex by 1.
For remaining vertices take j = k − 2 and label them as
in subcase 1.
Case 5: For n ≡ 4(mod6).
In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).
For j ≡ 0, 1, 2(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 4.

f(v
(j)
n−3) = 0; if j ≡ 0, 1(mod3).

f(v
(j)
n−3) = 2; if j ≡ 2(mod3).

f(v
(j)
i ) = 1; if j ≡ 1, 2(mod3), i ≥ n− 2.

f(v
(j)
i ) = 2; if j ≡ 0(mod3), i ≥ n− 2.

f(cj) = 2, j ≡ 1, 2(mod3).
f(cj) = 0, j ≡ 0(mod3).
f(xj) = 0, j 6= k.

Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6).

f(c1) = 0.
f(x1) = 1.
For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 2, 3(mod6).
= 2; if i ≡ 0, 5(mod6).

f(v
(2)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6).

f(c1) = 2.
f(c2) = 0.
f(x1) = 1.
f(x2) = 2.

For remaining vertices take j = k − 2 and label them as
in subcase 1.

Case 6: For n ≡ 5(mod6).

In this case we define labeling function f as follows
Subcase 1: For k ≡ 0(mod3).
For j ≡ 1, 2(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 2, 3(mod6).
= 2; if i ≡ 0, 5(mod6), i ≤ n− 2.

f(v
(j)
n−1) = 1.

f(v
(j)
n ) = 2; if j ≡ 1(mod3).

f(v
(j)
n ) = 0; if j ≡ 2(mod3).

f(cj) = 2; if j ≡ 1(mod3).
f(cj) = 0; if j ≡ 2(mod3).
f(xj) = 1; if j ≡ 1(mod3).
f(xj) = 2; if j ≡ 2(mod3).

For j ≡ 0(mod3)

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6) i ≤ n− 1.

f(v
(j)
n ) = 2.

f(cj) = 0.
f(xj) = 2, j 6= k.

Subcase 2: For k ≡ 1(mod3).

f(v
(1)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 2.

f(v
(1)
i ) = 1; if i ≥ n− 1.

f(c1) = 0.
f(x1) = 2.

For remaining vertices take j = k − 1 and label them as
in subcase 1.
Subcase 3: For k ≡ 2(mod3).
For j = 1, 2

f(v
(j)
i ) = 0; if i ≡ 1, 4(mod6).

= 1; if i ≡ 0, 5(mod6).
= 2; if i ≡ 2, 3(mod6), i ≤ n− 2.

f(v
(j)
i ) = 1, i ≥ n− 1.

f(c1) = 0.
f(c2) = 2.
f(xj) = 0.

For remaining vertices take j = k − 2 and label them as
in subcase 1.
The labeling pattern defined above covers all possible
arrangement of vertices. In each case, the graph G under
consideration satisfies the conditions |vf (i) − vf (j)| ≤ 1
and |ef (i) − ef (j)| ≤ 1 for all 0 ≤ i, j ≤ 2 as shown in
Table 3. i.e. G admits 3-equitable labeling.
(In Table 3 n = 6a + b and k = 3c + d where
a ∈ N ∪ {0},c ∈ N)

The labeling pattern defined above is demonstrated by
means of following Illustration 2.8.

Illustration 2.8 Consider a graph G =< W
(1)
6 : W

(2)
6 :

W
(3)
6 : W

(4)
6 >. Here n = 6 and k = 4. The correspond-

ing 3-equitable labeling is as shown in Figure 5.



Figure 5: 3-equitable labeling of graph G.

Table 3: Vertex and Edge conditions for f

3 Concluding Remarks

Cordial and 3-equitable labeling of some star and shell
related graphs are reported in Vaidya et al.[14], [15] while
the present work corresponds to cordial and 3-equitable
labeling of some wheel related graphs. Here we provide
cordial and 3-equitable labeling for the larger graphs
constructed from the standard graph.

Further scope of research
Similar investigations can be carried out in the context
of different graph labeling techniques and for various
standard graphs.
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