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Abstract 

Sugars are recognized as signaling molecules regulating the biosynthesis of secondary 

metabolites in plants. Here, a modulatory effect of sugars on dolichol and phytosterol profiles 

was noted in the hairy roots of Arabidopsis thaliana. Arabidopsis roots contain a complex 

dolichol mixture comprising three  groups  (‘families’)  of  dolichols  differing  in  the  chain-

length. These dolichols, especially the longest ones are accompanied by considerable amounts 

of polyprenols of the same length. The spectrum of polyisoprenoid alcohols, i.e. dolichols and 

polyprenols, was dependent on sugar type (glucose or sucrose) and its concentration in the 

medium. Among the long-chain dolichols Dol/Pren-20 (dolichol or prenol molecule 

composed of 20 isoprene residues) and Dol/Pren-23 were the main components at 0.5% and 

2% glucose, respectively. Moreover, the ratio of polyprenols versus respective dolichols was 

also modulated by sugar in this group of polyisoprenoids, with polyprenols dominating at 3% 

sucrose and dolichols at 2% glucose. Glucose concentration affected the expression level of 

genes encoding cis-prenyltransferases, enzymes responsible for elongation of the 

polyisoprenoid chain.  

The most abundant phytosterols of the A. thaliana roots, β-sitosterol, stigmasterol and 

campesterol, were accompanied by corresponding stanols and traces of brassicasterol, 

stigmast-4,22-dien-3-one and stigmast-4-en-3-one. Similarly to the polyisoprenoids, sterol 

profile responded to the sugar present in the medium,  β-sitosterol dominating in roots grown 

on 3% or lower glucose concentrations and stigmasterol in 3% sucrose. These results indicate 

on involvement of sugar signaling in the regulation of cis-prenyltransferases and phytosterol 

pathway enzymes. 

 

Short title: Sugars modulate polyisoprenoid and phytosterol profiles in Arabidopsis 
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1. Introduction 

 

Terpenoids are involved in various cellular processes such as electron transport, 

photosynthesis, plant defense responses, hormonal regulation of development, and control of 

membrane fluidity [1]. Polyisoprenoids and phytosterols are representatives of this most 

numerous class of secondary metabolites [2,3].  

Polyisoprenoid alcohols constitute a group of hydrophobic polymers occurring in 

almost all living organisms. These molecules consist of up to more than 100 isoprene residues 

(Fig. 1) with either a hydrogenated double  bond  in  the  α-residue (dolichols, syn. 

dihydropolyprenols) or an unsaturated one (polyprenols, syn. dehydrodolichols) [2]. Dolichols 

have been detected in mammalian and yeast cells and recently in plant roots [4,5]. An 

interesting feature of the polyisoprenoid alcohols of a given organism is their occurrence as a 

mixture commonly named ‘family’. The term ‘family’  denotes  here  a  mixture  with  one  

dominant component and a Gaussian-like distribution of homologues. More complex mixtures 

containing  two  or  three  ‘families’  of  polyprenols have been observed in plant photosynthetic 

tissues [2]. The polyisoprenoids occur mostly as free alcohols and esters with carboxylic 

acids, with only traces of phosphates [2]. Plant polyprenols are mainly esterified with acetic 

acid, although long-chain fatty acids (palmitic, oleic, linoleic,  α-linolenic) have also been 

detected in some plant species [6,7]. The biological functions of free polyisoprenoid alcohols, 

i.e. dolichols and polyprenols in plants and other eukaryotes are largely unknown. They are 

postulated to act as modulators of properties of cellular membranes since studies on model 

membranes have shown that polyisoprenoids increase membrane fluidity and permeability [8-

10]. On the other hand, the role of phosphorylated dolichols as cofactors in protein 

glycosylation and glycosylphosphoinositol (GPI) anchor synthesis in eukaryotic cells is well 
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characterized [11-13]. Recently, a new function for dolichols and polyprenols has been 

proposed - as a shield against reactive oxygen species (ROS) [14].  

Sterols are crucial components found in eukaryotic cell membranes. They determine  

membrane fluidity and permeability [15]. What is more sterols are precursors of a wide range 

of bioactive compounds, e.g., brassinosteroid plant hormones taking part in vital cellular and 

developmental processes [16-18]. Sterols are found in cells in three forms: free sterols - the 

major form with a free 3β-hydroxyl group, steryl esters and steryl glucosides; no specific 

biological role has thus far been assigned to the two latter forms [13]. Plants, including A. 

thaliana, accumulate in their leaves various phytosterols with β-sitosterol, stigmasterol and 

campesterol (Fig. 1) as major components, and a small fraction of steryl esters [13]. There is 

no data on sterol composition of Arabidopsis roots.  

All plant isoprenoids are synthesized from isopentenyl diphosphate (IPP) and 

dimethylallyl diphosphate (DMAPP) which are derived either from the cytoplasmic 

mevalonate (MVA) or the plastidial methylerythritol phosphate (MEP) pathways [for reviews 

see 19,20]. An initially formed intermediate - farnesyl diphosphate (FPP) - is further used to 

form numerous isoprenoid compounds. Elongation of FPP by an enzyme called cis-

prenyltransferase (CPT) [21]  results in the formation of polyprenyl diphosphate which is 

further converted to dolichol by polyprenol reductase [22]. Alternatively, condensation of two 

FPP molecules by squalene synthase results in the formation of squalene which is further 

converted to phytosterols by a set of dedicated enzymes [3].  

While almost all the enzymatic steps of polyisoprenoid and phytosterol biosynthetic 

pathways have already been well described [3,5,19,20,21,22], the general mechanisms 

coordinating the isoprenoid metabolism with the cellular metabolic network are still a subject 

of extensive studies. One of the well recognized signaling molecules is glucose and 

hexokinase–dependent and hexokinase-independent signaling pathways are known to 
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participate in sugar sensing [23]. Very recently Pleiotropic Regulatory Locus 1 (PRL1) has 

been shown to integrate sugar responses with isoprenoid metabolism [24]. The signaling via 

PRL1 involves the regulation of the activity of 3-hydroxy-3-methylglutaryl CoA reductase 

(HMGR1), the key enzyme of the MVA pathway, by its phosphorylation (causing 

inactivation) by SnRK1 kinase [25]. An involvement of regulatory promoter elements 

controlling gene expression in response to sugar has also been postulated [26].   

 Cultured plant tissues have proven to be good models for biochemical and molecular 

studies. Among others, hairy roots were found to be an abundant source of many classes of 

secondary metabolites [27] including dolichols considered as potential chemoterapeutics for 

patients suffering from shortage of dolichol phosphate (Congenital Disorder of Glycosylation 

type I) [22].  

In this study a hairy root culture of Arabidopsis thaliana was characterized in terms of 

its content of polyisoprenoid alcohols and sterols and its modulation by type and 

concentration of sugar in the medium. Surprisingly, a complex, three-family pattern of 

dolichols was found in this tissue, which is the first example of such in higher Eukaryotes. 

The main sterol components were the same as found in the leaves. The carbon source and its 

availability modulated the profile of accumulated dolichols and sterols as well as the 

expression of genes encoding enzymes of their pathways. The results indicate the usefulness 

of the hairy root model for biochemical and molecular studies on polyisoprenoid and sterol 

metabolism in plants.    
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2. Materials and methods  

 

2.1 Plant material and growth conditions 

Plants of Arabidopsis thaliana ecotype Columbia 2n=10 were grown in sterile conditions on 

½ Murashige and Skoog (MS) medium supplemented with vitamins (nicotinic acid, 

pyridoxine and thiamine) and inositol (5.6 mM) [28] at 20°C under 16/8 h photoperiod. The 

Argobacterium rhizogenes strain ATCC 15834 was used for transformation. Bacterial 

inoculum was grown overnight at 37⁰C on solid LB medium. A. thaliana rosette leaves were 

cut into pieces and approx. 1 cm squares were incised using a scalpel and placed on the 

surface of ½ MS medium in a Petri dish. Then inoculum of A. rhizogenes was placed on the 

leaf surface and Petri dishes were sealed with parafilm and placed at 20⁰C in darkness. After 

seven days the inoculated tissue was transferred twice to fresh ½ MS media supplemented 

with ampicillin, initially at a higher (500 mg/l) and then at a lower antibiotic concentration 

(300 mg/l), for 28 days in each case. Afterwards hairy roots from one explant were cut out 

and transferred to a fresh ½ MS liquid medium. Subsequently, hairy root cultures were 

transferred into a new medium (subcultured) every 21 days and grown in darkness at 22 °C on 

a rotary shaker at 105 rpm. After four subcultures, the hairy root culture was transferred to 

medium containing either sucrose (3%) or glucose (0.5, 1.0, 1.5, 2.0, 2.5, 3.0%) as the sole 

carbon source. In some experiments the growth of the culture was prolonged up to 42 days 

without medium change. Neither the root morphology nor sugar concentration in the medium 

changed significantly during the culture growth. When indicated, aliquots of roots were 

collected and frozen in liquid nitrogen for subsequent gene expression analysis and the 

remaining tissue was air-dried prior to lipid analysis. 

 

2.2 Chemicals 
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All dolichol and polyprenol standards were from the Collection of Polyprenols (Institute of 

Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw). Standards of sterols 

were from Sigma-Aldrich. Standards of fatty acid methyl ester mixture (37 species) and 

derivatizing chemicals for GC analysis were obtained from Supelco (Bellefonte, PA). Silica 

gel and RP-18 TLC plates and silica gel 60 for column chromatography were from Merck 

(Darmstadt, Germany), organic solvents (HPLC and p.a. grade) were from POCh (Gliwice, 

Poland). Murashige and Skoog Basal Salt Mixture and other chemicals were purchased from 

Sigma-Aldrich and were of analytical grade. RNeasy Plant Mini Kit was obtained from 

Qiagen (Hilden, Germany). DNase I, RNase-free,  GeneRuler™  DNA  Ladder  and  DNA  

Loading Dye were from Fermentas (Vilnius, Lithuania).  SuperScript™  II  First-Strand 

Synthesis System for RT-PCR and Taq DNA Polymerase were from Invitrogen (Carlsbad, 

CA). 

 

2.3 Lipid extraction  

Dry roots (10 g) were homogenized using a mortar and pestle. Lipids were extracted with 20 

ml of acetone/hexane (1:1, by vol.) for 2 days at room temperature following the earlier-

described procedure [4] with modifications. The extract was removed by decantation and the 

tissue was reextracted four times with new portions of the solvent mixture. All extracts were 

pooled and evaporated under a stream of nitrogen. The crude lipid fraction was divided into 

halves analyzed separately. Analysis of the total pool of lipids was performed after alkaline 

hydrolysis, thus one half was hydrolyzed (7.5% KOH in a mixture of water/toluene/ethanol, 

1/6.6/5.5 by vol., containing 0.2% pyrogallol) at 95°C for 1 hour. Unsaponifiable lipids were 

extracted with hexane three times and purified on a silica gel 60 column. Purified lipids were 

analyzed by HPLC using suitable internal and external standards.  
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To analyze the content of isoprenoid esters, the second half of lipids was purified on a silica 

gel 60 column eluted with hexane containing increasing concentrations of diethyl ether (0–

15%), to separate esters of polyisoprenoids and sterols and non-esterified forms of these 

compounds. The esters of polyisoprenoid alcohols and sterols were eluted with 1% diethyl 

ether in hexane, and free polyisoprenoids and sterols were eluted with 6% and 10% diethyl 

ether in hexane, respectively.  

Native polyisoprenoid and steryl esters were then separated (silica gel 60 column eluted with 

linear gradient from 0% to 2% of diethyl ether in hexane) and split into halves. One portion of 

pure polyisoprenoid esters and steryl esters was used for estimation of carboxylic acid 

residues while the second half was subjected to alkaline hydrolysis and the liberated 

polyisoprenoids and sterols were used for estimation of the respective alcohols (see below).  

The recovery of the analytical procedure was approx. 85%. Each experiment was performed 

in triplicate and the presented data are means of three independent measurements.  

 

2.4 HPLC/UV analysis of polyisoprenoids 

Lipids were analyzed according to a previously described protocol [4] with modifications. 

Runs were performed on a 4.6 × 75 mm ZORBAX XDB-C18 (3.5  μm)  reversed-phase 

column (Agilent, USA) using a Waters dual-pump apparatus, a Waters gradient programmer, 

and a Waters Photodiode Array Detector (spectrum range: 210-400 nm). The chain length and 

identity of lipids were confirmed by comparison with external standards of a polyprenol 

mixture (Pren-9, 11-23, 25) and a natural mixture of ram dolichols (from Dol-15 to Dol-24 

with Dol-19 most abundant). Quantitative determination of polyisoprenoids and phytostereols 

was performed by using Dol-23, Pren-19 and cholestanol as internal and external standards. 

Integration of the HPLC/UV chromatograms was performed with the aid of the Empower 

(Waters) software. 
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2.5 HPLC/ESI-MS analysis of polyisoprenoids 

HPLC/ESI-MS measurements were performed using an HP 1100 series HPLC system 

(Agilent Technologies) coupled to an API 365 triple quadrupole mass spectrometer (Applied 

Biosystems), as described previously [4].  

 

2.6 Quantitative (qPCR) expression analysis of cis-prenyltransferases (CPTs) 

Total RNA was extracted and purified using the RNeasy Plant Mini Kit (Qiagen) according to 

the  manufacturer’s  instructions.  RNA  concentration  and  purity  were  verified  using  a 

NanoDrop™  1000  Spectrophotometer (THERMO Scientific, Waltham, MA). Before cDNA 

synthesis, RNA was treated with RNase-free DNase I  (Fermentas) according to the 

manufacturer’s  instructions  and  then  the  first-strand cDNA synthesis was carried out with 

approximately  1.38  μg  of RNA using the SuperScript™  II  First-Strand Synthesis System for 

RT-PCR (Invitrogen) and oligo-dT  primers  according  to  the  manufacturer’s  procedure.  Six  

microliters of cDNA was used for real-time PCR using gene-specific  primers in a total 

volume of 20 µl of Maxima™  SYBR  Green  qPCR  Master  Mix  (Fermentas)  in  a  Real-time 

thermal  cycler  PikoReal  96  (THERMO  Scientific)  according  to  the  manufacturer’s  

instructions. The cycle threshold (Ct) was used to determine the relative expression level of a 

given gene using the 2-ΔΔCt method. The relative expression level of each gene was analyzed 

using PikoReal Software 2.0 (THERMO Scientific) after normalization with Actin (ACT) 

gene used as the internal reference. One-way  ANOVA  with  Tukey’s post test was performed 

using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA  

www.graphpad.com).  

 

2.7 HPLC/UV analysis of sterols 
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Sterols were analyzed according to the previously described protocol with modifications [29]. 

Separation was performed on a Nova-Pack C18 column (3.9 × 300 mm, 4 μm; Waters, USA) 

using a Waters dual-pump apparatus, a Waters gradient programmer, and a Waters 2487 Dual 

λ  Absorbance Detector. A mixture of methanol/acetonitrile, 3:7 (v/v), was used for isocratic 

elution at a flow rate of 1.2 ml/min. Detection wavelength was 205 nm. The identity of sterols 

was confirmed by comparison with external standards of stigmasterol, campesterol,  β-

sitosterol,  β-sitostanol, ergosterol and cholesterol.  

 

2.8 GC/FID analysis of sterols 

Sterols were analyzed as trimethylsilyl (TMS) derivatives. To prepare the TMS derivatives, a 

sample of free sterols (4.5 mg) was supplemented with pyridine (250 µl) and a mixture of 

N,O-bis(trimethylsilyl)trifluoroacetamide with 1% of trimethylchlorosilane (500 µl), kept at 

70°C for 20 minutes in a tightly closed vial and then cooled at room temperature. The 

trimethylsililated sterols were analyzed by GC within 6 hours.   

The GC apparatus (Agilent Technologies, type 7890A) was equipped with a split/splitless 

injector and a FID detector. A capillary HP-5 column (J & W Scientific Columns from 

Agilent Technologies) of 30 m length, 0.32 mm i.d. and 0.25 µm film thickness was used. 

Nitrogen, hydrogen and air flow-rates were maintained at 1 ml/min., 30 ml/min. and 400 

ml/min.,  respectively. Inlet and detector temperature was kept at 250°C and 290°C, 

respectively, and the oven temperature was programmed as 65-230-280°C with a one-minute 

hold at 65°C, an increase rate of 20°C/min, a one-minute hold at 230°C, an increase rate of 

8°C/min and 24-minute hold at 280°C. Sterols were identified by comparison with 

commercial standards.  

 

2.9 GS/MS analysis of sterols 
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The GC-MS analysis was carried out on an Agilent 7890A gas chromatograph coupled to an 

Agilent 5975C MS Detector under electron impact ionization (70 eV). The MS scan range 

was 33-500 atomic mass units. The chromatographic column for the analysis was a DB-5ms 

capillary column (30 m, 0.25 mm, 0.25 µm). The carrier gas used was helium at a flow rate of 

0.75 ml/min. Samples were analyzed with the column held at 265°C for 60 minutes. The 

injection was performed in the split mode (10:1) at 290°C. The identification of the 

compounds was achieved by comparison with NIST mass spectral library on the basis of the 

mass fragments and m/z values of each compound.  

 

2.10 Synthesis of stigmast-4,22-dien-3-one and stigmast-4-en-3-one 

Stigmasterol (41.2 mg, 0.1 mmol) or β-sitosterol (41.4 mg) were dissolved in 3 ml of 

dichloromethane and 32.3 mg (0.15 mmol) of pyridinium chlorochromate was added. The 

reaction mixture was stirred at room temperature for two hours. Progress of the oxidation 

reaction was analyzed on silica TLC plates in toluene:ethyl acetate (9:1, by vol.). To separate 

pyridinium chlorochromate from products, the reaction mixture was placed on a florisil 

column and elution with dichloromethane was performed. Further purification of the 3-oxo-

steroids synthesized was performed on a silica gel 60 column eluted with increasing 

concentrations of diethyl ether in hexane (0%, 5%, 10%, 15%). 

 

2.11 GC/FID analysis of fatty acids 

Sterol esters (4.5 mg) were mixed with 1 ml of a 14% (w/w) solution of boron trifluoride in 

methanol. The vial was firmly closed and placed at 70°C. After 20 minutes the vial was 

cooled at room temperature and 1 ml of n-hexane and 1 ml of MilliQ water were added. Fatty 

acid methyl esters were extracted by vigorous shaking. The organic layer was collected and 

dried over anhydrous sodium sulfate and then analyzed by GC. 
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The GC apparatus (Agilent Technologies, 7890A) was equipped with a split/splitless injector, 

FID detector and capillary HP INNOWax column (30 m, 0.25 mm, 0.25 µm) (J & W 

Scientific Columns from Agilent Technologies). Nitrogen was used as the carrier gas at an 

average velocity of 30 ml / s. Hydrogen and air flow-rate was maintained at 30 ml / min and 

400 ml / min, respectively. The inlet and detector temperature was kept at 250°C and 260°C, 

respectively, and the oven temperature was programmed as 50-220-260°C with a two-minute 

hold at 50°C, an increase rate of 4°C / min, 20-minute hold at 220°C, an increase rate of 20°C 

/ min and a five-minute hold at 260°C.  

The fatty acid methyl esters were identified by comparison of their retention times with those 

of commercially available FAMEs standards.  

 

3. Results and discussion 

 

3.1 Sugar modulates polyisoprenoid composition and content in hairy roots  

A detailed study of polyisoprenoids accumulated in the hairy root culture of A. thaliana with 

the aid of HPLC/UV revealed three families of homologous polyisoprenoid alcohols differing 

in chain length (Fig.2A). The three families comprised short-chain dolichols, from Dol-12 to -

14 (dolichol molecules composed of 12 up to 14 isoprene residues), with the most abundant 

component Dol-13, medium-chain dolichols with Dol-16 most abundant, and long-chain ones, 

from Dol-19 to Dol-30, with Dol-20 dominant. The dolichols were accompanied by various 

amounts of corresponding polyprenols (α-unsaturated dolichol counterparts).  

The identity of dolichols isolated from Arabidopsis roots purified after alkaline hydrolysis 

(see Materials and methods) was unambiguously confirmed by HPLC/ESI-MS. The main 

component of the dolichol mixture, Dol-16 with the molecular formula C80H132O, gave a 

pseudomolecular ion peak m/z 1132.3 ([M+Na]+), while Dol-20 (C100H164O) and Dol-23 
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(C115H188O) gave pseudomolecular ion peaks m/z 1404.5 ([M+Na]+) and 1608.7 ([M+Na]+), 

respectively. The molecular masses of other prenologues (from C65 to C130) were also 

confirmed by HPLC/ESI-MS (see Supplemental Table 1).  

Such complexity of the dolichol pattern was rather unexpected since only one dolichol family 

comprised of 6-8 members has been detected in all plant and animal tissues studied before. 

The only exception was the yeast S.cerevisiae where, upon aging or starvation (for glucose or 

nitrogen), a second family of longer dolichols (Dol-19 to-23, Dol-21 most abundant) had been 

reported in addition to the typical dolichol mixture (Dol-14 to -18, Dol-16 most abundant) 

[30].  

A comparison of the polyisoprenoids derived from cultures grown under various conditions 

(Table 2) showed that the composition of the long-chain ones varied with the concentration 

and type of sugar present in the growth medium. In the medium containing 3%  sucrose 

Dol/Pren-21 were the most abundant, while Dol/Pren-20 and Dol/Pren-23 dominated in roots 

grown on 0.5% and 2.0% glucose, respectively  (Table 2). What is even more interesting, a 

careful inspection of the HPLC/UV chromatogram revealed the presence of much longer 

dolichols (up to Dol-35) exclusively in roots grown on 1%, 1.5% or 2% glucose.  

We also noticed that the carbon source and its concentration affected the dolichol:polyprenol 

ratio in the long-chain family of polyisoprenoid alcohols. The Dol:Pren ratio (as calculated 

from roughly integrated HPLC chromatograms) was approximately 0.8/1 in the roots grown 

on 3% sucrose versus 2.5/1 in the cultures from 2% glucose (Fig. 2B). That result suggested 

that the type of sugar and its abundance could affect the activity of enzyme(s) responsible for 

conversion of polyprenols into dolichols. This phenomenon needs further studies of which 

identification and characterization of the polyprenol reductase(s) involved is the first 

indispensable step. The occurrence of a polyprenyl reductase (SRD5A3-like gene product) in 
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Arabidopsis leaves has been reported recently [31] while its human counterpart had been 

characterized only one year earlier [22].  

The total polyisoprenoid content in roots was also dependent on the carbon source and its 

concentration (Fig. 3). The highest accumulation of polyisoprenoid alcohols occurred in roots 

grown in the medium containing 3% sucrose (65.5 µg/g dry tissue)  while  roots grown on 

glucose showed lower accumulation (from 22.5 to 32.4 µg/g dry tissue, depending on the 

sugar concentration). 

Numerous studies have reported on the accumulation of polyisoprenoids in various plant and 

animal tissues [2], but little is known on the regulation their synthesis. The mechanism of the 

concomitant regulation of genes encoding putative CPTs, enzymes elongating the 

polyisoprenoid chain, has not been elucidated yet.  

 

3.2 Influence of carbon source on the expression of cis-prenyltransferases 

As discussed above, the type of sugar and its concentration in the culture medium affected the 

composition of accumulated dolichols. This observation prompted us to investigate the effect 

of sugar on the expression of genes encoding CPTs. As many as ten genes encoding putative 

CPTs have been identified in the Arabidopsis genome but only three AtCPT have been 

characterized at the molecular level [32-35].  

Six genes encoding putative CPTs were found to be expressed in Arabidopsis roots [21] and 

their individual expression levels were quantified by qPCR employing specific primers (Table 

1). Variable, although statistically significant effects of glucose and sucrose concentrations on 

the transcript level were observed for all the genes studied (AtCPT1, AtCPT2, AtCPT3, 

AtCPT6, AtCPT7 and AtCPT9) (Fig. 4). CPT3 and CPT7 were induced the most by higher 

glucose concentrations while CPT6 and CPT9 by sucrose. For CPT1 and CPT2 a weak 

induction was noted at high glucose or sucrose.   
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That diverse stimulatory effect of sugars on the individual CPTs suggests that the complex 

regulatory system responsible for polyisoprenoid biosynthesis is adjustable to the changing 

environmental conditions. It is not clear why Arabidopsis should need ten CPT isoenzymes 

and in fact they diverse response to sugar reported here suggests that they could be dedicated 

to responding to various environmental stimuli. If they show different preferences towards 

different substrates and/or catalyze the synthesis of products of different chain length this 

could be a mechanism responsible for adjusting the spectrum of polyisoprenoids to 

environmental signals. This hypothesis requires further detailed studies. Moreover, with only 

three CPTs characterized it is difficult to speculate on their individual functions and possible 

redundancy.  

 

3.3 Influence of culture growth on dolichol accumulation 

We checked the time-course content of accumulation of polyisoprenoid alcohols in the hairy 

root tissue during the culture growth in the medium containing 2% glucose (Fig. 5). The 

composition of the polyisoprenoids was constant during the course of this experiment (data 

not shown) while their overall content fluctuated modestly: after 21 days it decreased to 32.5 

µg/g d.w. (approx. 74% of the initial value) to increase again to 57.8 µg/g d.w. (approx. 132% 

of the starting material) at the forty-second day of growth. An increase of the polyisoprenoid 

content during the life-span has been observed in all tissues studied [2]. The initial decrease of 

the dolichol content observed here most probably reflects the physiological status of growing 

roots since the whole root bundle is taken for analysis. The starting material – the root 

inoculum – is a mature root tissue with a high dolichol content. During the first two-three 

weeks of the culture growth new roots are appearing ubiquitously and they exhibit the low 

dolichol content typical for young tissue (Skorupinska-Tudek et al., unpublished). On the 

other hand, it is also plausible that degradation of dolichol is involved in determining its 
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cellular concentration. The mechanism of dolichol catabolism remains unknown even though 

its half life has been estimated in animal tissue (t½ 40-70 h and 80-140 h in sea urchin embryo 

and rat liver, respectively [36,37]), and oxidative breakdown via conversion to aldehyde 

[38,39] or carboxylic acid [40,41] has been postulated.  

 

3.4 Structure of dolichyl esters accumulated in Arabidopsis roots - HPLC/ESI-MS analysis 

The polyisoprenoid alcohols (predominantly dolichols) accumulated in the Arabidopsis 

thaliana hairy roots occurred as esters of short-chain carboxylic acids, mainly propionic acid, 

and no free dolichols were detected at any time-point studied. The dolichyl esters were 

initially analyzed by TLC and HPLC/UV and a more detailed analysis was carried out by 

HPLC/ESI-MS. The Rf values and retention times of esterified dolichols from A. thaliana 

were compared with standards of dolichyl propionates and acetates obtained by acylation of a 

dolichol standard (Dol-19 acetate, propionate and palmitate) and re-acylation of the isolated 

mixture of native Arabidopsis dolichols  (Supplemental Fig. 1). Finally, the identity of the 

dolichyl esters was confirmed by HPLC/ESI-MS. The most abundant compound Dol-16 

propionate with the molecular formula C83H136O2 gave a pseudomolecular ion ([M+Na]+) 

peak m/z 1188.0. The molecular masses of all other esterified homologues were also in 

agreement with the dolichyl propionate structure.  

 

3.5 Free sterols accumulated in Arabidopsis roots - GC-FID and GC-MS analysis  

Free sterols and steryl esters were isolated and characterized separately.  

A GC-FID chromatogram of free sterols isolated from hairy roots of Arabidopsis and 

analyzed as trimethylsilyl ethers indicated (Fig. 6) that stigmasterol, β-sitosterol, and 

campesterol were the main accumulated sterols, with accompanying stanols. In order to 

further characterize the fraction of free sterols, GC-MS was performed. It fully confirmed the 
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above results and gave additional information  indicating the presence of small amounts of 

brassicasterol, stigmast-4,22-dien-3-one and stigmast-4-en-3-one (Fig. 1, Supplemental Fig. 

2).  

Quantitative estimation of free sterols revealed that the most abundant one – stigmasterol - 

constituted 43.4% of all sterols (Table 3) in roots grown on 3% sucrose.  

Benveniste reported a typical plant sterol profile for wild-type Arabidopsis thaliana ecotype 

Columbia leaves comprising β-sitosterol (64% of sterol pool), campesterol (11%), 

stigmasterol (6%), isofucosterol (3%), and brassicasterol (2%) [3]. Although the sterol 

composition of the Arabidopsis hairy roots turned out to be clearly different to that of the 

leaves, three sterols - β-sitosterol, campesterol and stigmasterol in different proportions - are 

dominant in both organs.  

 

3.6 Esterified sterols accumulated in Arabidopsis roots - GC-FID identification of sterols and 

fatty acids 

In parallel to free sterols, the fraction of steryl esters with carboxylic acids was also analyzed. 

Native steryl esters were hydrolyzed and analyzed by means of GC-FID as described above. 

The profile of sterol esters was very much like that of free sterols and comprised β-sitosterol, 

stigmasterol, campesterol, brassicasterol, sitostanol, stigmastanol and ergostanol (Fig. 6). 

Interestingly, in  this  case  β-sitosterol was the dominant component of the sterol mixture from 

roots grown on 3% sucrose, in contrast to the free sterols (Table 3). The sterols were esterified 

with a wide range of fatty acids (Table 4, Supplemental Fig. 3.). The most abundant acyl 

residues, palmitic (C16:0), oleinic (C18:1n9c), linolenic (C18:2n6c)  and  α-linolenic 

(C18:3n3) were accompanied by butyric (C4:0), lauric (C12:0), myristic (C14:0), 

pentadecanoic (C15:0), palmitoleic (C16:1), heptadecanoic (C17:0), stearic (C18:0), arachidic 

(C20:0), behenic (C22:0), lignoceric (C24:0) and nervonic (C24:1n9) (Table 4). The 
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composition of steryl esters in Arabidopsis roots is similar to that of tobacco and many other 

plant leaves [42,43].  

 

3.7 Sugar modulates sterol composition and content in A. thaliana hairy roots  

Analysis of the effect of glucose on the profile of sterols revealed that similarly to 

polyisoprenoids also the sterol composition was modulated by glucose concentration. 

Interestingly, β-sitosterol was most abundant in roots grown on 3% glucose while 

stigmasterol was the dominant component of the total sterol mixture isolated from 

Arabidopsis hairy roots grown on 0.5% or 2% glucose, or 3% sucrose (Table 5). Similarly to 

polyisoprenoids, the content of sterols was the highest in roots grown on 3% sucrose.  

The observed shift of the sterol profile in response to changed glucose concentration suggests 

the existence of a yet unknown mechanism regulated by glucose signal(s) modulating sterol 

biosynthesis in roots.  
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4. Conclusions 

Elucidation of the mechanisms responsible for regulation of the isoprenoid biosynthesis 

pathways is in the focus of many research groups. Heterotrophically grown hairy root culture 

of A. thaliana is an interesting model for such studies however data obtained hitherto require 

further confirmation in the in vivo system. Elucidation of the polyisoprenoid and sterol 

profiles described here provides a valuable stepping stone for further experiments. Moreover, 

this report suggests an influence of glucose signal(s) on isoprenoid metabolism, both 

polyisoprenoids and sterols. Glucose availability modulated not only the profile and content 

of the isoprenoids, but also the transcription of genes for the crucial enzymes of 

polyisoprenoid biosynthesis, cis-prenyltransferases.  

Saccharides are known to exert a double effect on the plant cell metabolism. On the one hand 

glucose, sucrose and other saccharides are readily metabolizable carbon sources which, upon 

glycolysis, provide intermediates further used by the cell’s metabolic pathways, e.g., the 

isoprenoid-producing MEP (glyceraldehyde 3-phosphate and pyruvate) and MVA (acetate) 

pathways [19,20]. On the other hand, glucose is also a signaling molecule. The mechanism of 

glucose signaling in the plant metabolism has been studied extensively and various signaling 

pathways have been suggested [23,24,25,26].  

Despite the growing body of data on the regulatory mechanisms involved, these 

transcriptional and post-transcriptional networks are still not fully understood. The suggested 

application of dolichols as drugs supplementing the cellular dolichol pool in patients with 

Congenital Disorder of Glycosylation type 1 [22] draws further attention to the mechanisms 

regulating their biosynthesis.    
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Figure legends 

Fig. 1 Structures of polyisoprenoid alcohols (dolichol, polyprenol) and phytosterols found in 

A. thaliana hairy roots grown in vitro. t (=2) and c (> 8) stand for internal trans and cis while 

α  and  ω  – for OH- and C-terminal isoprene residue, respectively.  

 

Fig. 2 Composition of polyisoprenoids extracted from hairy roots of Arabidopsis thaliana. 

The complex mixture comprises three families of short-, medium- and long-chain 

polyisoprenoids; the most abundant compounds of each family are indicated. A) HPLC/UV 

chromatogram of polyisoprenoids extracted from roots grown on 3% sucrose; B) The pattern 

of dolichols and polyprenols is changed when roots are grown on various concentrations of 

glucose or sucrose. Shown are expanded regions of HPLC chromatograms containing long-

chain dolichols isolated from roots grown on media containing 2% glucose or 3% sucrose. 

The results were confirmed in three independent biological samples. 

 

Fig. 3 Polyisoprenoid alcohols of roots cultured on different sugar types and concentration. 

Arabidopsis roots were cultivated for 21 days on media with various concentrations of sugars, 

dolichols were estimated by HPLC/UV as described in Materials and methods. Values (±SD) 

represent means of three independent experiments.  

 

Fig. 4 Effect of sugars on expression of genes encoding cis-prenyltransferases isoenzymes. 

Hairy roots were grown on media containing various concentrations of sugars. Relative levels 

of expression were measured by qPCR using Actin2 as reference, with expression in 0.5% 

glucose set at 1. Data are mean values of three independent measurements, error bars are 

indicated. P value was determined by one-way  ANOVA  with  Tukey’s  post  test. 
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Fig. 5 Effect of hairy root culture growth on the content of polyisoprenoid alcohols. Roots 

were grown on 2% glucose for indicated time, dolichols were estimated by HPLC/UV as 

described in Materials and methods. Each bar represents the mean value of three independent 

experiments. Error bars are indicated.  

 

Fig. 6 Composition of free sterols and steryl esters in hairy roots. GC/FID chromatograms of 

sterols isolated as free alcohols (top) and esters (bottom) from roots grown on 3% sucrose. 

Representative chromatograms out of three for independent biological samples are shown. 

 



Table 1. Primers used in qPCR to evaluate expression of Arabidopsis thaliana 

cis-prenyltransferases 

 

Name of Arabidopsis CPT Locus Tag Primer sequence 

AtCPT1 At2g23410 F:  5’-GTGGCAACTTGCTTATTCCG-3’ 
R:  5’-CCTACGCTGATACGAAGC-3’ 

AtCPT2 At2g23400 F: 5’-TTGTCCGAGAGGAGGAGCTAC-3’ 
R:  5’-TGCCGTCGTCAATCCGTCTC-3’ 

AtCPT3 At2g17570 F:  5’-GCGCTTATGTCGATGCTG-3’ 
R:  5’-CAGACTCAACCTCCTCAGG-3’ 

AtCPT6 At5g58780 F:  5’-GACGATTATGACAACGAGCAAC-3’ 
R:  5’-ATGTCTTGGCATCAGCTCTC-3’ 

AtCPT7 At5g58770 F: 5’-TATCTCTACGAGTTCCTACTCC-3’ 
R:  5’-CTACTTAACCGCCATCGC-3’ 

AtCPT9 At5g58784 F:  5’-AGCATGTGGCGGTTATATTGG-3’ 
R:  5’-TTCTCCATGAGCCTTCTCG-3’ 

Actin2 At3g18780 F:  5’-GACCAGCTCTTCCATCGAGAA-3’ 
R:  5’-CAAACGAGGGCTGGAACAAG-3’ 

 

Table 1



Table 2. Dolichol spectrum in Arabidopsis hairy roots – effect of carbon source  

Numbers in bold indicate dominating prenologues.  

 
Carbon source Dolichols (number of isoprene units) 

 
 

Glucose 

0.5% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30      
1.0% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
1.5% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
2.0% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
2.5% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30      
3.0% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30      

Sucrose 3.0% 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30      
 

 

Table 2



Table 3. Composition of sterols accumulated as free alcohols and esters in hairy roots of A. 

thaliana grown on 3% sucrose. Data are obtained from GC/MS estimation (see Materials and 

methods).  

 

Sterol 

Sterol fraction 

Free sterol Esterified sterol 

µg/g d.w. % µg/g d.w. % 

Total 2234 100 81 100 

Brassicasterol 31.3 1.4 3.3 4.1 

Campesterol 375.3 16.8 13.4 16.6 

Campestanol 35.7 1.6 2.3 2.8 

Stigmasterol 969.6 43.4 19.4 24.0 

β-Sitosterol 661.3 29.6 36.7 45.3 

Stigmastanol 71.5 3.2 5.9 7.2 

Stigmast-4,22-dien-3-one 46.9 2.1 n.d.* 0 

Stigmast-4-en-3-one 42.4 1.9 n.d.* 0 

 

* n.d., not detected 

 

Table 3



Table 4. Fatty acid composition of steryl esters isolated from A. thaliana hairy roots grown on 

3% sucrose 

 

Fatty acid Retention time [min] % of total FA 

C4:0 4.63 0.18 

C12:0 27.86 0.49 

C14:0 33.52 0.98 

C15:0 36.17 0.64 

C16:0 38.80 16.47 

C16:1 39.40 2.10 

C17:0 41.15 0.37 

C18:0 43.53 2.28 

C18:1n9c 44.06 12.89 

C19:2n6c 45.25 37.61 

C18:3n3 46.88 16.70 

C20:0 48.58 0.54 

C22:0 56.28 1.86 

C24:0 66.58 1.33 

C24:1n9 67.58 5.56 

 

Table 4



Table 5. Effect of sugar type and concentration on sterol content and profile (shown as ratio of 

two dominating sterols) in A.thaliana hairy roots. Content of sterols was estimated using 

HPLC/UV (see Materials and methods). 

  

Sugar concentration Stigmasterol β-Sitosterol 
Total sterol content 

[µg/g d.w.] 

0.5% glucose 1.4 1 2129±234 

2.0% glucose 1.3 1 2048±234 

3.0% glucose 0.7 1 1476±126 

3.0% sucrose 1.5 1 2234±268 

 

 

Table 5
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