Improving the performance of starch film by engineering the interaction of nanocrystalline cellulose fillers with starch molecules

N. Vigneshwaran*, L. Ammayappan and Q. Huang Department of Food Science, Rutgers University

*Email: nvw75@yahoo.com

New Brunswick, NI

WHY STARCH FILM?

- Biopolymer
 - Renewable & Sustainable
 - Biodegradable & Compostable
 - Carbon-neutral
- Starch as a renewable and biodegradable polymer
- is an essential alternative to synthetic polymers in production of films for food packaging and agricultural mulching applications

MAJOR PROBLEMS...

High water vapour permeability

High oxygen permeability

Low strength

NANOFILLERS...

- Nanocellulose
- Highly crystalline
- Young's modulus as high as 134 GPa

NANOCELLULOSE FROM CELLULOSE FIBERS...

NANOCELLULOSE PREPARATION...

High pressure homogenization

▶ 20,000 psi pressure

Repeated passes till it reaches nano size

HIGH PRESSURE HOMOGENIZER

- EmulsiFlex-C3 (Avestin, Inc) is delivered with a pneumatically controlled, dynamic homogenizing valve
- Capacity: 3L / hr
- Maximum pressure up to 2,000 bar / 30,000 psi

STARCH NANOCELLULOE COMPOSITE FILMS...

- Soluble starch from potato
- NCC prepared by homogenization process from Avicel
- Film by casting process in teflon dish, dried at 50 °C overnight
- Concentrations:
 - 4% starch
 - 0.02% sodium azide
 - 0.04% nanocellulose (1% of starch)
 - 0.04% gum arabic (1% of starch)

COMPONENTS

Starch

Cellulose

 Gum arabic (mixture of polysaccharides and glycoproteins)

STARCH FILM BY CASTING PROCESS IN TEFLON DISH...

AGGREGATION OF NANOCELLULOSE IN STARCH FILM

TO PREVENT AGGREGATION OF NANOCELLULOSE...

- Use of various stabilizing agents
 - Soluble starch
 - Gum arabic
 - Tween 80

DLS PARTICLE SIZE ANALYSIS...

- Nanocellulose
 - 197.8 nm
- Nanocellulose stabilized by starch
 - 391.7 nm

COMPONENTS...

Starch

Cellulose

Gum arabic (mixture of polysaccharides and glycoproteins)

ECO-Friendly

WORK IN PROGRESS...

- Permeability Characterization
 - Water vapor
 - Oxygen
- Mechanical properties
- Biodegradability

ACKNOWLEDGEMENTS...

- Rutgers University, New Brunswick, NJ, USA
- Indian Council of Agricultural Research, India

www.nanocellulose.in

Thank You...

