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Challenges in Toxicity Assessment and

Screening of ENMs

How do we measure the increasing, large number of
ENMs and their derivatives, evaluate their harmful
effects, feasibly?
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& Effect-driven aggregated parameter
& Reveal overall toxic effects

€ Informative multiple endpoints

€ Elucidate toxic mechanisms

& |dentify causative agents (NMs)

€ Physically, economically feasible

g

Genomics-based toxicity assessment
Toxicogenomics
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Toxicogenomic Technologies

Microarrays- central technology for toxicogenomics
Some Practical Limitations:
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How can we apply toxicogenomics feasibly?
Inexpensive, simple protocols, informative results
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Whole Cell Array of GFP-infused Recombinants
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GFP-Transformed Bacterial Cells to

Monitor Gene Expression

* The cell gives signal if
snaive V&7 flioreséence it cONtains the specific
(chemical AN gene that is involved in
the response to a ENM

Regulatory
protein

» Reflects cellular level
subtle response

» Reflects bioavailability
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Prokaryotic Real Time Gene Expression

Time-dependent Gene Expression Pattern
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Key findings:

1.Temporal dynamic pattern of

gene expression level =
=

_ _ = s -
2.Varying response to different 06
ENMs 0.4 - p

0.2 //

3.Depends on toxic response 0 - _—
pathway and sequence of 12 18 24 30 36 42 45 54 60 66 72 78 §4 20 96 102108114
involvement Time (min)

_ Ln(I), I- induction factor
4.Induction factor (I) seem to be

quantitatively correlated to the oxyR- Belong to redox stress, oxidative
toxicity level stress regulator.

*Onnis- den and Gu, 2009, ES&T; Gou and Gu, 2010, ES&T, in press.
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Prokaryotic Real Time Gene Expression

Time and Concentration Dependent Patterns
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Prokaryotic Real Time Gene Expression Generates

Compound-specific signature profile

Distinctive compound-specific two-dimension (time
and gene) profiles obtained for different toxicants
depending on their modes of action (MOA)

Time
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Prokaryotic Real Time Gene Expression Generates

Concentration-sensitive profile

Concentration-sensitive response:

= Distinctive concentration-sensitive profiles obtained for the same toxicant
at different concentrations

= Concentration-sensitive response:
(1). No-effect level (detection limit-NOTEL),

(2). Compound- specific response range (MOA indicative range),
(3). Global stress (cellular damage)

Time

Genes

nAg 1 mg/L " nAg 10 mg/L nAg 50 mg/L

Gou and Gu, unpublished
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Mechanistic toxicity assessment of nAg and nTiO,-anatase

Concentration-sensitive response

Different concentrations induce different genes with altered expression
*» The genes response to very low concentrations are different from

those at higher concentrations
» There are genes that are common to different concentrations-

potential biomarkers

nAg nTi02
Img/L Img/L
10mg/L 10mg/L
[ ]50mg/L [ ]50mg/L

*N. Gou, Onnis-Hayden, A. and A.Z. Gu (2010) Mechanistic Toxicity Evaluation of Nanomaterials via
Prokaryotic Gene Expression Profiling. Environ. Sci. Technol. (in
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Prokaryotic Real Time Gene Expression Generates

Concentration-sensitive profile

Concentration-sensitive response:

*The % of genes with altered expression increases with
Increase in concentration

» Dose-response curve

Dose-response curve in Dose-response curve in
exposure to mitomycin (MMC) exposure to nano-silver (nAg)

60% 60%
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03pg/ll 3pg/ll 30 pugi 300 pgll 1mgl 10mgl 50 mgll

Figure 8 Mitomycin and nano-silver dose-response curves for stress gene

expression. Y- % of genes differentially expressed in exposure to toxins compared to
control (no toxin)

Gou and Gu, unpublished

Northeastern Civil & Environmental Engineering



Mechanistic Toxicity Assessment of nAg

Genotoxicity- DNA damage,
but unsure SOS response
ROS production
and redox stress detoxification

SOS response

Oxidative stress redox response

general stress Drug resistance- MFS

&= genes, include multidrug
transporter and drug efflux
system.

drug resistance/sensitivity

protein stress
General response

cell killing

general function

0 0.2 0.4 0.6 0.8 1 1.2
Ln(l)

NnAg induced stress gene response (10 mg/L)
Gou and Gu, ES&T, 2010
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Mechanistic toxicity assessment of nAg

Oxidative Stress Response System

Oxidative damage
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How to Define Toxicity Assessment End-point?

Link to regulatory benchmark

NOTEL -No Observable Transcription Effect Level

Concept: used by others In toxicogenomics

Definition: the maximum concentration of a
chemical at which less than 5% of the genes are
differentially expressed

Determination: We fit a dose-response curve %
gene differentially expressed vs concentrations
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How to Define Toxicity Assessment End-point?

Correlation of NOTEL with Other Endpoints

How to determine NOTEL? Comparison of NOTEL with
conventional endpoints

08F === nAg . 4-NNP 1100 ug/l |ECso: 480 g/l for bacteria V.fischeri

=== nTiO:2a (EDCs) ECso: 100-300 pg/ for Crustaceans”

LCso: 43-170 pg/l for Zooplankton®!
nAg 0.5 mg/l |LCsy: SmglL for E.coli *°

(Nanomaterials)
MMC 0.1 g/l |LCs: 6.7 mg/l for cancer cells™®

(Pharmaceutical)
Hg 1ugl  LCsp: 60-700 pg! for Fish®?

(Heavy metals) LCso: 4-850 g/l for Crustaceans®

¢ L Cso: 3.5-600 pg/l for Zooplankton”

Portion of differentially expressed genes

1 2 5 10 20 50 100
Concentration (mg/L)
Dose- response curve

NOTEL can be an quantitative endpoint linking toxicogenomic

results with conventional toxicity assement endpoints
*N. Gou, Onnis-Hayden, A. and A.Z. Gu (2010, ES&T)
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How to Define More Informative End-point?

The new INDEX??- TGRI

Although NOTEL seems like a good candidate for endpoint, we feel
that the rich information of toxiogenomic are not fully reflected:

-The number of genes with altered expression level by toxicant?
- The magnitude of changes in the gene expression induced?
- The time factor : temporal change patterns?

ToxicoGenomic Response Indicator (TGRI) — new index proposed

We are using a mathematical manipulation that incorporate both the
number and level of genes with altered expression, as well as the time
length for the maximum expression level to occur.

The TGRI index converts the multi-dimensional toxicogenomic data to a
regulatory toxicity endpoint.
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TGRI Allows for Toxicity Level Comparison in

Different Toxicity Categories
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Comparison of toxicity level:
Oxidative stress: CB:>SWCNT>nAg>nTiO,-a>C,,>nTIO,-r

Drug resistance: nTiO,-a>CB:>nAg >C,,>SWCNT-0x
>SWCNT>nTiO,-r
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TGRI Allows for Toxicity Level Comparison in Different

Toxicity Catagories

TGRI

& SOS stress & Protein Stress

Comparison of toxicity level:
Genotoxicity: nTiO, >CB>nAg> C,,>SWCNT

Protein stress: nAg>nTiO, >C,,>CB
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Advantages and Impact of Proposed High Rate Toxicity
Screening Method and System

* Fast bioassay (2-3 hrs)

» Sensitive and quantitative assessment of toxicities of
ENMSs

* Information-rich results reveal mechanism, reflect
bioavailability and overall biological response to ENMs

» Easy, simple, inexpensive procedures
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Prokaryotic Real Time Gene Expression

Power of Two Dimensional Profiling
Conclusions

*Temporally dynamic gene expression yields NM-specific &
concentration-sensitive profile

*The specific yet “conservative” profile allows for potential
classification and identification of NMs

* Reveals detailed toxicity mechanisms of various NMs
* Allow high rate, feasible and economical screening of NMs

 Provide information that can be incorporated into risk
assessment framework
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