Effect of Nanomaterial Surface Properties on their Bioavailability to Cells, Fish, and Plants

Richard W. Vachet

Department of Chemistry and Center for Hierarchical Manufacturing University of Massachusetts Amherst

Environmental Fate, Transport, and Bioavailability of Nanomaterials

- > 1,000 commercial products with nanomaterials, ranging from electronics to cleaners to cosmetics to sporting equipment; up ~ 400% since 2006
- Increased manufacturing and use of nanomaterials will inevitably lead to their release into the environment
- What's the impact on the environment?

Effect of Nanomaterial Properties on Bioavailability

 Nanomaterial surface properties will control fate, transport, and bioavailability

To understand how surface properties influence bioavailability:

- Synthesize stable and well-defined nanomaterials
- Develop tools to track nanomaterials in complex samples

Gold Nanoparticle Models

- Easy to synthesize
- Tunable core sizes
- Core-shell design
- Well defined surface properties
- Inherently non-toxic

Surface Properties

- Monolayer of ligands on AuNP
- Hydrophobic layer to stabilize gold core
- TEG layer for solubility and biocompatibility
- Variable end groups define interactions

Characterization of Model AuNPs

Characterization of Model AuNPs

AuNPs: 7 – 20 nm core-shell diameters (by DLS) M Stable over 5 days in solution

Characterization of Model AuNPs

AuNPs: expected surface charge in solution

Influence of Surface Properties on Nanoparticle Bioavailability to Fish

Japanese medaka (*Oryzias latipes*)

Why Medaka?

• thrive in a variety of environments (i.e. pH, dissolved O₂, temperature, dissolved organic carbon) and these factors may influence bioavailability of NPs

Influence of Surface Properties on Nanoparticle Bioavailability to Fish

Influence of Surface Properties on Nanoparticle Bio-Distribution

Clearance of AuNPs 1-3 from Intestines

Tentative conclusion: NPs with hydrophilic surfaces are less toxic and more sustainable nanomaterials

erarchical Manufacturing Massachusetts Amherst

Influence of Surface Properties on Nanoparticle Bioavailability to Plants

rice • food staple

radish

edible roots

pumpkin

• popular crop

ryegrassimportantpasture crop

Influence of Surface Properties on Nanoparticle Bioavailability to Plants

80 nM of AuNP

er for Hierarchical Manufacturing

AuNP **2**: R= ---он

- AuNPs 1 associates with roots most significantly
- Radish has most NPs in roots
- Pumpkin has least NPs in roots
- Separate studies show 90% of NPs in radish roots are on surface

Influence of Surface Properties on Nanoparticle Bioavailability to Plants

AuNP 2: R= ---он

ter for Hierarchical Manufacturing versity of Massachusetts Amherst

- AuNPs 3 is most taken up into leaves/shoots of rice and ryegrass;
 AuNP 1 is generally the least
- Each AuNP type goes into rice shoots
- No significant uptake into radish
 or pumpkin

New Measurement Methods

- Gold core acts as energy reservoir: upon laser irradiation, AuNPs absorb laser energy and monolayer is desorbed and ionized
- Mass spectrum contains intact ligands, ligand fragments and disulfide ions

erarchical Manufacturing Massachusetts Amherst

Cellular Uptake of AuNPs Studied by LDI-MS

Cellular Uptake of AuNP 1 Studied by LDI-MS

- LDI mass spectrum of COS-1 cell lysate after uptake of AuNP 1
 - m/z 422 corresponds to the molecular ion (M^+) of ligand
 - m/z 184 is the head-group fragment of phosphatidylcholine
 - •100 pM (x 10⁻¹² M) AuNP in cell culture can be detected

nter for Hierarchical Manufacturing versity of Massachusetts Amherst

Multiplexed Tracking of AuNP Cellular Uptake by LDI-MS

Different "mass barcodes" for each AuNP facilitates multiplexed tracking by LDI-MS
 Multiplexed tracking provides side-by-side comparison of AuNP uptake
 CHM

Summary

• Functionalized AuNPs are good models for investigating the effect of surface chemistry on NP bioavailability.

- NP bioavailability experiments with fish and cells indicate that NPs with positivelycharged surfaces are accumulated about 10x more than neutral or negative NPs.
- Hydrophilic NPs are less toxic to fish than hydrophobic NPs, and nanomaterials with such surfaces may lead to more sustainable nanomaterials
- NP bioavailability to plants is species dependent and uptake into leaves has a surface charge dependency that differs from fish and cells.
- Future work will seek to image NPs in tissues and understand possible NP transformations *in vivo*.

Acknowledgements

<u>Collaborators</u> Prof. Vincent Rotello Prof. Kathleen Arcaro Prof. Baoshan Xing Prof. Julian Tyson

Funding: National Science Foundation: Center for Hierarchical Manufacturing Office of Naval Research

