Biotechnologies for Cancer Diagnostics: Cell Sorting, Protein Analysis and Imaging of Cellular Metabolism

Thesis by Kiwook Hwang

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2013 (Defended May 30th, 2013)

Kiwook Hwang All Rights Reserved To my dearest wife,

Hana Kim

Acknowledgement

First of all, I would like to thank to my advisor, Professor James Heath. With great patience, he has guided and trained me to become a research scientist during my Ph. D. journey. He also granted me academic freedom and incredibly valuable resources, including the organization of Nanosystems Biology Cancer Center (NSBCC) between Caltech, UCLA and the Institute for Systems Biology (ISB). I appreciate him for giving me many chances to collaborate with brilliant senior scientists, including Professor Caius Radu (UCLA), Professor Paul Mischel (UCSD), Professor Raphael Levine (UCLA), Professor Arion Chatziioannou (UCLA), Professor Heather Christofk (UCLA) and Professor Michael Phelps (UCLA), who have helped and advised me during my graduate researches. Also, I would like to acknowledge my thesis committee members, Professor Long Cai, Professor Shu-ou Shan and Professor William Goddard III, who spent much time providing insightful comments and suggestions on my progress report and research proposals. Not to forget, I thank the Samsung Scholarship which has also been supporting my Ph.D. studies.

In Heath lab, I have been fortunately able to collaborate with a number of gifted past and present group members. I would like to thank Dr. Gabe Kwong, Dr. Young Shik Shin and Dr. Jun Wang, with whom I worked on NACS, SCBC and RIMChip projects, respectively. Through them, I have learned practical techniques for the preparation of bio samples and the fabrication of microfluidic chips, as well as the scientific way of designing experiments. I also appreciate Dr. Heather Agnew and Wei Wei in studying the application of RIMChip in clinical systems. Thanks to Dr. Habib Ahmad, Dr. Jen-Kan Yu, Joey Varghese, Alex Sutherland, Ryan Henning and Blake Farrow for valuable scientific discussions. I appreciate Diane Robinson, Amy Crown, Elyse Garlock and Kevin Kan for processing all paper-work and managing lab facilities properly.

Also, I acknowledge many intelligent co-workers at UCLA, especially Dr. Daniel Braas, Alex Dooraghi, Dr. David Nathanson, Dr. Dean Campbell and Jessica Gu in working with the RIMChip project. Without their kind help and assistance, I could not obtain wonderful results at UCLA.

I am grateful to all of my Korean friends for sharing my personal life at Caltech, especially Dr. Oh-Hoon Kwon, Dr. Chang Ho Sohn, Dr. Christopher Chang, Dongwan Kim, Chung Whan Lee and Jake Kim.

Finally, I appreciate my family who always supported me with love and care. In particular, I thank my beloved wife, Hana Kim. Without her unconditional love and patience during the Ph.D. period, this work would never have existed. I dedicate this thesis to her.

Abstract

This thesis presents the development of chip-based technology for informative *in vitro* cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called "Nucleic Acid Cell Sorting (NACS)", based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called "Radiopharmaceutical Imaging Chip" (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

TABLE OF CONTENTS

Acknowledgements	iv
Abstract	vi
Table of Contents	viii
List of Illustrations and Tables	vi
Chapter I: Introduction	1
1.1 Cell Sorting in Cancer Research	1
1.2. Proteomics for Cancer Diagnosis	2
1.3. Metabolomics for Cancer Diagnosis	3
1.4. Thesis Overview	4
1.5. References	7

Chapter II: Quantifying the performance of a new T cell sorting technique,

and the preparation of reagents for quantitative analysis of proteins from macrophages

2.1. Introduction	9
2.2. Experimental Methods	14
2.2.1. Microarray fabrication for T cell sorting	14
2.2.2. Synthesis of DNA-SAC conjugates	15
2.2.3. Preparation of T cells	16
2.2.4. Sorting cells with NACS and conventional microarrays	16
2.2.5. Microchip fabrication	17
2.2.6. Preparation of barcode arrays	18
2.3. Results and Discussions	20
2.3.1. Comparison between NACS and conventional protein microarray	20
2.3.2. Preparation of DNA-encoded antibodies	22
2.4. Conclusions	24
2.5. References	24

Chapter III: Fast	Metabolic Res	sponse to Drug	g Intervention	through A	Analysis o	on a
Miniaturized, Hi	ghly Integrated	Molecular Ima	aging System			

3.1. Introduction	28
3.2. Experimental Methods	29
3.2.1. RIMChip design concepts.	29
3.2.2. RIMChip fabrication	31
3.2.3. The beta-particle camera (Betabox)	32
3.2.4. Cell sample preparation, viability, and cell-cycle assays	32
3.2.5. Betabox assay	33
3.2.6. Off-chip radioassay	35
3.2.7. Phosphoprotein assay	35
3.2.8. Data processing	35
3.3. Results	36
3.3.1. Design of RIMChip and cell loading.	36
3.3.2. Validation of RIMChip	41
3.3.3. Kinetic study of drug response with RIMChip	42
3.4. Discussions	46
3.5. Conclusions	47
3.6. References	47

Chapter IV: Development and characterization of the capture agents library

targeting c-MET for in vivo cancer imaging	
4.1. Introduction	50
4.2. Experimental Methods	52
4.2.1. Synthesis of PCC for c-MET.	52
4.2.2. Functionalization of capture agents	53
4.2.3. Preparation of cells	55
4.2.4. Confocal experiment for 3D imaging of live cells incubated	
with capture agents	55
4.2.5. Flow cytometry for the quantification of binding affinity	56
4.2.6. In vitro radioassay with RIMChip	56
4.2.7. In vivo treatment and imaging with microPET/CT	57
4.3. Results and Discussions	57

4.3.1. Synthesis of capture agents for c-MET	57
4.3.2. Cell-based fluorescence imaging assays	58
4.4. Conclusions and Future Directions	60
4.5. References	60

Chapter IV: Imaging of glycolytic metabolism in primary glioblastoma cells with RIMChip

5.1. Introduction
5.2. Experimental Methods
5.2.1. Preparation of cells
5.2.2. Cell sorting
5.2.3. In vitro radio assay with RIMChip65
5.3. Results and Discussions
5.3.1. Imaging of glycolytic metabolism in glioblastoma cells
according to their expression level of EGFRvIII
5.3.2. Imaging of glycolytic metabolism in glioblastoma cells
under drug treatment
5.4. Conclusions and Future Directions
5.5. References

Appendix A: Modular nucleic acid assembled p/MHC microarrays

for multiplexed sorting of antigen-specific T cells	
A.1. Introduction	71
A.2. Experimental Methods	74
A.2.1. Microarray fabrication.	74
A.2.2. Synthesis of DNA-SAC conjugates.	75
A.2.3. Preparation of T cells	76
A.2.4. Sorting cells	76
A.3. Results and Discussions	78
A.3.1. Design of ssDNA-p/MHC tetramers	78
A.3.2. Comparison between NACS and conventional protein microarray.	80
A.3.3. Specificity of NACS and its detection limit	82
A.3.4. Selective release of immobilized T cells with restriction	

endonucleases		
A.3.5. Sorting of TCR engineered and endogenous primary		
human T cells by NACS		
A.5. Conclusions		
A.6. References		

Appendix B: Protein signaling networks from single cell fluctuations and	l
information theory profiling	
B.1. Introduction	
B.2. Experimental Methods	
B.2.1. Microchip fabrication.	
B.2.2. Preparation of barcode arrays	94
B.2.3. Culture and stimulation of THP-1 cells	97
B.2.4. On-chip secretion profiling	97
B.2.5. Bulk secretion profiling	
B.2.6. Quantification and statistics	
B.2.7. Data Analysis: Conversion to the number of molecules	
B.2.8. Calculations	
B.2.9. Analysis of experimental and biological variation from	
SCBC-based single-cell measurement	
B.2.10. Signal-to-noise calculations and experimental error	
B.3. Theoretical methods	
B.3.1. The fluctuations in the secretome	
B.3.2. Theoretical approach	109
B.3.3. Theory of fluctuations	110
B.3.4. A quantitative Le Chatelier equation	
B.4. Results and Discussion	114
B.4.1. Computing the covariance matrix	114
B.4.2. The network	115
B.4.3. The composite networks	119
B.4.4. The number-based network	
B.4.5. Antibody perturbations	
B.5. Conclusions	

B.6. Appendix: Details in Theoretical Methods	124
B.6.1. Introduction to theoretical supplementary methods	124
B.6.2. The ensemble: basis for making predictions	125
B.6.3. Fluctuations describe the response to small perturbations	127
B.6.4. The principle of Le Chatelier	128
B.6.5. The equation for the direction of change	129
B.6.6. Tiers of the network are eigenvectors of the	
correlation matrix	131
B.6.7. The spectral representation of the covariance matrix	131
B.6.8. The role of the number of cells in the sample	132
B.6.9. Antibody perturbations	133
B.7. References	133

LIST OF ILLUSTRATIONS AND TABLES

Number Page
Fig. 1.1. Diagnosis of breast cancer with metabolites.
Fig. 2.1. Self-assembled ssDNA-p/MHC tetramer arrays for
multiplexed sorting of antigen-specific cells
Fig. 2.2. Design of integrated microchip for single-cell protein
secretome analysis14
Table 2.1. Orthogonal DNA sequences for spatial encoding of
p/MHC tetramers
Table 2.2. Sequences and terminal functionalization of
oligonucleotides19
Table 2.3. Summary of antibodies used for macrophage experiments20
Fig. 2.3. Comparison of NACS versus spotted p/MHC arrays21
Table 2.4. Parameters utilized for the protein assay calibration curve
Fig. 2.4. Cross-reactivity check and calibration curves
Fig. 3.1. Fabrication of the RIMChip
Fig. 3.2. The RIMChip design, operation, and betabox performance
Fig. 3.3. Distribution of adherent (liposarcoma) cells within fibronectin-coated
cell chambers within channel
Fig. 3.4. Effect of surface coating on cell number in microchambers
Fig. 3.5. Effect of fibronectin coating on ¹⁸ F-FDG uptake by liposarcoma cells .40
Fig. 3.6. Validations of the RIMChip via genetic and molecular manipulation
of glycolytic flux and nucleoside salvage activity in betabox assays,
with comparisons against standard assays
Fig. 3.7. Betabox assays, correlated with other functional assays, for gauging
the response of cancer cells to targeted drugs44
Fig. 3.8. The kinetics of glucose consumption rate and protein level upon
Erlotinib treatment
Table 3.1. List of antibodies used for GBM cell proteomic assay45
Fig. 4.1. c-MET pathway
Fig. 4.2. Scheme of capture agent synthesis by in situ click chemistry

Fig. 4.3. Scheme of FITC labeling
Fig. 4.4. Scheme of ¹⁸ F labeling
Fig. 4.5. Molecular structure of the 1 st -generation capture agent for
targeting human c-MET, conjugated with FITC, IN-CT-102557
Fig. 4.6. Expression level of c-MET in different prostate cancer cell lines
Fig. 4.7. Result of titration experiment with IN-CT-1025
Fig. 5.1. The relation between [¹⁸ F]FDG uptake and the expression
level of EGFRvIII in GBM39 cells67
Fig. 5.5. The relation between [¹⁸ F]FDG uptake and drug treatment to
EGFR+ subpopulations of GBM39 cells68
Fig. A.1. Self-assembled ssDNA-p/MHC tetramer arrays
for multiplexed sorting of antigen-specific cells73
Table A.1. Orthogonal DNA sequences
for spatial encoding of p/MHC tetramers75
Fig. A.2. T cell capture efficiency is optimal when utilizing ssDNA-SAC
conjugates to generate NACS p/MHC tetramers
Fig. A.3. Comparison of NACS versus spotted p/MHC arrays
Fig. A.4. Nucleic acid cell sorting of antigen-specific T cells
Fig. A.5. Programmed release of captured T cells by endonuclease cleavage85
Fig. A.6. NACS sorting of endogenous primary human T cells specific
for Epstein-Barr virus and Cytomegalovirus
Fig. B.1. Design of integrated microchip for single-cell protein
secretome analysis
Fig. B.2. Cross-reactivity check and calibration curves
Table B.1. Sequences and terminal functionalization of
oligonucleotides96
Table B.2. Summary of antibodies used for macrophage experiments
Table B.3. Parameters utilized for the protein assay calibration curve
Fig. B.3. Experimental and simulation results for extracting
the experimental error contribution to the SCBC protein assays 102
Table B.4. Values of parameters used in simulation 103
Fig. B.4. Simulated histograms of average intensity from multiple
DNA barcode locations

Table. B.5. The coefficients of variation for each of the assayed
proteins from single-cell experiments105
Fig. B.5. Protein secretion heat maps for different colony sizes of
LPS-stimulated macrophages107
Fig. B.6. Fluctuations in the numbers of secreted IL-8 proteins,
for all single-cell experiments109
Table B.6. Digital representation of the covariance matrix for 1-cell
measurements
Fig. B.7. The summary network derived from the information theory
treatment of the data
Fig. B.8. PMA and LPS activation and kinetics of protein secretion
from activated macrophage cells118
Fig. B.9. Protein-protein interactions via the quantitative
Le Chatelier's theorem120
Fig. B.10. The dependence of the dominant eigenvalues of the
covariance matrix on the number of cells in the sample
Fig. B.11. Heat map of the covariance matrix (left) and of the
contributions to the first two tiers of the network (right)
for measurements on chambers containing 3 cells
Fig. B.12. Perturbation of protein networks using neutralizing antibodies