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Abstract

Signal processing techniques play important roles in the design of digital communication systems.

These include information manipulation, transmitter signal processing, channel estimation, chan-

nel equalization and receiver signal processing. By interacting with communication theory and sys-

tem implementing technologies, signal processing specialists develop efficient schemes for various

communication problems by wisely exploiting various mathematical tools such as analysis, proba-

bility theory, matrix theory, optimization theory, and many others. In recent years, researchers re-

alized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range

of different physical communications channels. Using the elegant matrix-vector notations, many

MIMO transceiver (including the precoder and equalizer) design problems can be solved by ma-

trix and optimization theory. Furthermore, the researchers showed that the majorization theory

and matrix decompositions, such as singular value decomposition (SVD), geometric mean decom-

position (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for

solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat

MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels,

and doubly selective scalar channels. Additionally, the channel estimation problem is also consid-

ered. The main contributions of this dissertation are the development of new matrix decompo-

sitions, and the uses of the matrix decompositions and majorization theory toward the practical

transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are ob-

tained, novel transceiver structures are developed, ingenious algorithms are proposed, and perfor-

mance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We pro-

pose a novel matrix decomposition which decomposes a complex matrix as a product of several sets

of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of
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the new decomposition, generalized geometric mean decomposition (GGMD), is always less than

or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which

yield the minimal complexity are derived. Based on the channel state information (CSI) at both

the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision

feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square er-

ror (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm

for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which

the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver

has K/ log2(K) times complexity advantage over the GMD transceiver, where K is the number of

data symbols per data block and is a power of 2. The performance analysis shows that the GGMD

DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias

and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is au-

tomatically minimized without the need for bit allocation. Moreover, the proposed transceiver can

achieve the channel capacity simply by applying independent scalar Gaussian codes of the same

rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying

MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers

work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends,

their performance is by no means optimal since the temporal diversity of the time-varying channels

is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition

of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel

prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean

decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under per-

fect channel prediction, the new system minimizes both the average MSE at the detector in each

space-time (ST) block (which consists of several coherence blocks), and the average per ST-block

BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under

an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by

each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based

systems since the super-imposed temporal precoder is able to exploit the temporal diversity of

time-varying channels. For practical applications, a novel ST-GTD based system which does not

require channel prediction but shares the same asymptotic BER performance with the ST-GMD
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DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems

for flat MIMO broadcast channels. The first one is the power minimization problem (min-power)

with a total bitrate constraint and per-stream BER constraints. The second problem is the rate

maximization problem (max-rate) with a total transmit power constraint and per-stream BER con-

straints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize

the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems.

The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT)

and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal

designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for

arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank

transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and un-

known wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how

to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the re-

ceiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed

for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-

path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can

construct M2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace meth-

ods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of

identifiable paths is up to O(M2
), theoretically. With the delay information, a MMSE estimator for

frequency response is derived. It is shown through simulations that the proposed method outper-

forms the conventional subspace channel estimator when the number of multipaths is greater than

or equal to the number of physical pilots minus one.
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Chapter 1

Introduction

Multiple-input multiple-output (MIMO) channel models are unified models for a wide range of dif-

ferent physical communication channels such as multi-antenna wireless systems, wireline systems,

or blocked transmission over linear time invariant (LTI) or linear time-varying (LTV) frequency

selective scalar channels. The models can be handled by elegant matrix-vector notations. For

point-to-point communications with LTI flat MIMO channels, signal processing researchers have

proposed various linear transmit-receive processing schemes, and schemes with linear transmit

precoder and decision-feedback receiver. The designs are obtained by solving various transceiver

optimization problems in matrix-vector form with channel state information (CSI) at both trans-

mitter and receiver. The point-to-point transceiver optimization is a collection of many different

problems, depending upon the objective function to be optimized and the constraints to be used.

The objective function can be mean square error (MSE), Gaussian mutual information, bit error rate

(BER), transmitted power or data rate. Majorization theory [95], [97] and matrix decompositions,

such as singular value decomposition (SVD), geometric mean decomposition (GMD) [17] or gener-

alized triangular triangularization (GTD) [21], provide unified frameworks for solving many of the

point-to-point transceiver design problems.

The main contributions of this dissertation are the developments of new matrix decomposi-

tions, and the uses of the matrix decompositions and the theory of majorization toward practical

and efficient transmit-receive scheme designs for the transceiver optimization problems with point-

to-point LTI and LTV MIMO channels. For minimum power and maximum rate DFE transceiver

optimization problems with MIMO broadcast channels, we show the uses of the joint triangulariza-

tion and majorization theories for elegant solutions. The transceiver design problem for LTV scalar

channels and the channel estimation problem of OFDM systems with quasi-stationary sparse mul-



2

tipath Rayleigh fading channels will also be considered in this thesis. In the introductory chapter,

we give an overview of transceiver optimization problems and review some important results of

majorization theories. Every attempt is made to make the text as self-contained as possible. Due to

the large volume of literature, the summary here is only directly related to the thesis topics and is

by no means a complete treatment of all past work. The reader interested in more comprehensive

treatments is referred to [91], [95], [97].

1.1 Channel Models

Transceiver designs depend on the types of channel models. We shall start with introducing the

channel models considered in present text. The first channel model we consider is the point-to-

point LTI narrowband MIMO channel depicted in Fig. 1.1(a). The input-output relation of the

channel is given by

y(n) = Hx(n) +w(n), (1.1)

where n is the block time index, H is a J ⇥N rank M channel matrix, and x(n) is an N ⇥ 1 trans-

mitted signal vector. The noise w(n) is a J ⇥ 1 complex Gaussian random process vector with

E(w(n)) = 0 and E(w(n)w†
(n0

)) = �2
w�(n�n0

)IJ . The vector y(n) is the J ⇥ 1 received signal vec-

tor. The LTI narrowband MIMO channel model is generic enough to model many communication

scenarios including wireless multi-antenna channels, zero-padding or cylic-prefix systems on fre-

quency selective scalar channels, wireline DSL systems, CDMA channels, and systems exploiting

polarization diversity. Modeling a wireless multi-antenna system as a MIMO channel is physically

natural. In (1.1), J is the number of receiving antennas, and N is the number of transmitting an-

tennas. For a frequency selective finite impulse response (FIR) scalar channel, the cyclic-prefix or

zero-padding mechanism can convert the channel into a MIMO channel [91]. The effect of the cyclic

prefix is to convert a scalar FIR channel to a square circulant matrix H in (1.1). On the other hand,

the zero-padding converts a scalar FIR channel into a full-banded Toeplitz matrix H.

For the narrowband block fading MIMO channel model [98] in Fig. 1.1(b), the channel remains

constant over the coherence period of Nc transmitted signal vectors and varies independently [98]

or according to Jakes’ model [29] across different coherence intervals. In this setting, we model the

MIMO channel as a time dependent matrix H(n) instead of a constant matrix H.
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Figure 1.1: (a) LTI narrowband MIMO channel. (b) LTV narrowband MIMO channel.
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Figure 1.2: LTI narrowband MIMO broadcast channel.
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Figure 1.3: LTV scalar channel.

For the scenario that a base station broadcasts common messages to L subscribed users through

MIMO narrowband channels as shown in Fig. 1.2, the broadcast channel is modeled as

yi(n) = Hix(n) +wi(n), i = 1, 2 . . . , L, (1.2)

where yi(n) is a Ji ⇥ 1 received signal vector of the ith user, x(n) is an N ⇥ 1 transmit signal

vector, Hi is a Ji ⇥ N (Ji � N) channel matrix for the ith user, and wi(n) is a Ji ⇥ 1 circular

symmetric additive Gaussian noise vector for the ith user with its statistics given by E(wi(n)) =

0, E(wi(n)w
†
i (n)) = �2

wi
IJi .

The linear time-varying (LTV) frequency selective scalar channel model is shown in Fig. 1.3.

The channel is characterized by the impulse response gn(l) where 0  l  L. The input and output

relation between the received signal y(n) and the transmitted signal x(n) is given by

y(n) =
L
X

l=0

gn(l)x(n� l) + w(n). (1.3)

The LTV channel gn(l) can be described equivalently by its discrete delay-Doppler function defined

as

S(v, l) =
L
X

n=0

gn(l)e
�j2⇡vn. (1.4)
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Figure 1.4: MIMO linear transceiver.
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Figure 1.5: MIMO DFE transceiver.

1.2 Point-To-Point MIMO Transceiver Optimization

The problems considered in this thesis are closely related to transceiver optimization problems

with point-to-point LTI MIMO channels, which are well studied in the literature. In this section,

we shall review the optimization problems of the point-to-point MIMO linear transceiver shown

in Fig. 1.4 and the point-to-point MIMO DFE transceiver shown in 1.5. Here H is a MIMO channel

characterized by a J⇥N transfer matrix, and w(n) is the additive channel noise. In the MIMO linear

transceiver, the transmitter has an N⇥M precoder F and the receiver has an M⇥J equalizer G. The

M ⇥ 1 data symbol vector a(n) is precoded by the precoder F to form the N ⇥ 1 transmitted signal

vector x(n). The J ⇥ 1 vector y(n) is the received signal from the MIMO channel, and y(n) is then

equalized by G to get the M ⇥ 1 estimated data symbol vector ˆa(n). The MIMO DFE transceiver

has an additional feedback equalizer B of size M ⇥M . The successive detection and feedback is

performed at the receiver, so the matrix B is restricted to be strictly upper triangular. The goal is to

optimize {F,G} for a linear transceiver or {F,G,B} for a DFE transceiver subject to appropriate

constraints such that some measure of performance is optimized. This leads to a multitude of

interesting problems depending upon what is being optimized and what the constraints are. For
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example, one might want to minimize the total mean square reconstruction error under a power

constraint. Or one might want to consider the quality of service problems which minimize transmit

power or maximize bit rate under per-stream BER constraints. The optimization can be performed

with or without the zero forcing constraint,

GHF = I, (1.5)

for a linear transceiver, or

GHF = I+B, (1.6)

for a DFE transceiver under no error propagation assumption.

The MIMO linear transceiver design problem was considered as early as 1976 [1]. In 1985, Salz

considered the joint optimization of the continuous time precoding MIMO filter F(jw) and MIMO

equalizer G(jw) at the receiver under the average transmitting power constraint for the case where

a discrete time sequence a(n) had to be transmitted over a continuous time channel H(jw) . By

Witsenhausen’s theorem, which is based on the idea of Schur-convex functions, Saltz showed that

the optimal solution can be obtained by diagonalizing the channel with singular value decomposi-

tion (SVD), and by solving for the optimal filters for the diagonal channel. The optimal equalizer

is identified to be a Wiener filter and the precoding filter can be obtained by using KKT condi-

tions [104]. Later on, diagonalization was also identified to be the key step in various MIMO linear

transceiver optimization problems. In 1988, Malvar and Staelin considered the joint optimization

of the MIMO linear transceiver in Fig. 1.4 for the case where {F,H,G} are only allowed to be rect-

angular constant matrices [3]. Furthermore, instead of imposing an average power constraint as in

earlier work, they imposed per-antenna power constraints. In 1994, Yang and Roy addressed joint

optimization of continuous time MIMO DFE transceiver by minimizing the geometric MSE [12].

The equalizer design problem of FIR scalar channels can be transformed into a MIMO transceiver

optimization by converting FIR scalar channels into narrowband MIMO channels (H) with the

zero-padding or cyclic-prefix method. In a pioneering paper in 1997, Xia considered the equaliza-

tion of FIR scalar channels with redundant precoder [4]. In 1999, Li and Ding considered the joint

optimization of communication systems with redundant filter banks under power constraints [5].

The derivation is parallel to that of Salz in 1985.



7

One may realize that the MIMO transceiver design problem is a collection of many problems,

depending on the objective function to be optimized and the constraints to be used. The objec-

tive function can be the average MSE, the Gaussian mutual information, the BER, or the signal

to interference and noise ratio (SINR), etc. There may be a zero-forcing constraint, or not. The

constraints can be an average power constraint or a peak power constraint, etc. In 2003, instead

of considering each design criterion in a separate way, Palomar et al. introduced the majorization

theory and used it to develop a unifying framework for MIMO linear transceiver designs [11]. The

framework generalizes many of the existing results by considering two families of objective func-

tions: Schur-concave and Schur-convex functions [95]. For Schur-concave objective functions, the

channel diagonalization structure is always optimal, whereas for Schur-convex functions, an opti-

mal solution diagonalizes the channel only after a very specific rotation of the transmitted symbols.

Once the optimal stucture of the transmit-receive processing is known, the design problem simpli-

fies and can be formulated within the powerful framework of convex optimization theory, in which

a great number of interesting design criteria can be easily solved. Since this paper, the theory of

majorization and convex optimization has became widely used in this field.

In 2005, Jiang et al. proposed MIMO DFE transceiver designs with and without a zero-forcing

constraint based on the geometric mean decomposition (GMD) [17], [18]. The systems decompose

a flat MIMO channel into multiple identical parallel subchannels, which can make it rather con-

venient to design modulation/demodulation and coding/decoding schemes. Similar MIMO DFE

transceiver designs were also published by Zhang et al. [16] and Xu et al. [19] independently and

at the same time. The designs are also known to minimize the arithmetic mean of the expected

MSE at the input of the decision device and the average BER in high signal to noise ratio (SNR)

[19]. Moreover, it was shown that the GMD-based system with a zero-forcing constraint achieves

optimal channel throughput asymptotically in high SNR while the GMD-based system without a

zero-forcing constraint maximizes Gaussian mutual information. A unifying framework for MIMO

DFE transceiver design was proposed in [23], and independently by [22]. The framework can be

regard as a parallel counterpart of [11] in 2003. The authors considered a broad range of design

criteria that can be expressed as either Schur-convex or Schur-concave functions of the logarithm

of the MSE of each data stream. For Schur-convex objectives, the GMD based MIMO MMSE DFE

transceiver in [18], which results in data streams with equal MSEs, is optimal. Interestingly, for

Schur-concave objectives, the MIMO linear transceiver is optimal. In 2009, Bergman et al. investi-
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gated the joint design problem of MIMO DFE transceivers with bit allocation. It was shown that the

optimal bit loading, which may take real bit numbers, will result in an orthogonalizing precoder

design. Decision feedback (DF) becomes superfluous when the optimal bit allocation is realizable.

DF may still be advantageous since it may allow us to redistribute the bit loading at very low cost

such that the bit allocation becomes realizable.

It is sometimes desirable to optimize the MIMO transceiver with specific quality of service (QoS)

constraints for each substream. In 2000, Lin and Phoong developed linear optimal zero-forcing (ZF)

transceivers with bit allocation that minimize the total transmit power for a given target rate and

meet per substream symbol error rate (SER) constraints [50], [51]. Optimal ZF solutions, with the

aim of minimizing the total transmit power under unequal per substream SER or BER constraints,

were considered by Pandaharipande and Dasgupta [53] in 2005 to support multiple data streams,

such as voice, data and video, by using the majorization theory. Each of the data streams in gen-

eral has different BER or SER requirements [52]-[53], [93]. In [54], linear MMSE transceivers were

designed by minimizing the total transmit power with possibly different per substream QoS con-

straints, in terms of MSE. Linear transceiver designs with bit allocation which maximize total bit

rate with power and SER constraints were considered in [55] and [56]. The proposed designs do

not assume a given bit allocation. Rather, both the linear transceiver and bit allocation are jointly

optimized. In 2010, Weng et al. considered both the min-power and max-rate design problems with

possibly unequal SER constraints for zero-forcing MIMO DFE transceivers with bit allocation [57].

The min-power and max-rate transceiver design problems are commonly considered and seem to

be closely related. In 2011, Li el al. showed the duality between these two problems for MIMO

linear transceivers with bit allocation. If a MIMO linear transceiver is optimal for the min-power

problem, it is also optimal for the max-rate problem, and the converse is true.

This thesis continues the line of research for point-to-point MIMO transceivers with decision

feedback. We propose generalized geometric mean decompositions (GGMD) which generally re-

quires fewer flops than GMD. Using the proposed GGMD, we are able to construct a novel MIMO

DFE transceiver with a butterfly structure in both the precoder and receiver. The unique structure

greatly reduces the complexity, especially for the application to CP systems. The performance of

the proposed GGMD DFE transceiver, in terms of MSE, SER and Gaussian mutual information, are

carefully investigated. In earlier works, the MIMO transceiver designs are based on LTI MIMO

equivalent channels. We introduce the idea of space-time precoding which allows us to take ad-
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vantage of the diversity offered by time-varying channels. Novel MIMO DFE transceiver designs

with LTV MIMO channels are proposed for the cases with and without channel prediction. The

QoS transceiver design problems are well studied for point-to-point MIMO channels. However,

literature on DFE transceiver design with common message MIMO broadcast is very limited. This

thesis also considers the broadcast DFE transceiver design with bit allocation for the min-power

and max-rate QoS problem with MIMO broadcast channels. Moreover, the transceiver design and

channel estimation problems for scalar LTV channels are presented in the present text.

1.3 Majorization Theory and Schur-Convexity

In this section, we shall briefly review the majorization theory and Schur-convexity on which many

of the results in this thesis are based. To explain what Schur-convexity is, we first define the notion

that the components of a vector x are less spread out than the components of a vector y.

Definition 1.1: (Additive Majorization.) For any x,y 2 Rn, the vector x is said to be additively

majorized by y, and is denoted as x �+ y if and only if

n�1
X

i=0

x[i] =

n�1
X

i=0

y[i], and

k
X

i=0

x[i] 
k
X

i=0

y[i], k=0,. . . ,n-2,

where x[i] and y[i] denote the (i+ 1)-th largest elements of x and y, respectively. Moreover, x is

said to be weakly additively majorized by y, denoted x �+w y, if and only if

k
X

i=0

x[i] 
k
X

i=0

y[i], k=0,. . . ,n-1.

⇤

The statement

x �+ y on S
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implies that x and y both belong to a subset S of real vectors, and y majorizes x in that subset.

An important tool to study majorization is defined in terms of a doubly stochastic matrix. Before

introducing the tool, the formal definition of a doubly stochastic matrix is given as follows:

Definition 1.2: (Doubly stochastic.) An n⇥ n matrix P is doubly stochastic if

Pij � 0,

and

n�1
X

i=0

Pij = 1, for 0  j  n� 1,
n�1
X

j=0

Pij = 1 for 0  i  n� 1.

⇤

An important theorem which characterizes additive majorization is stated as the following theo-

rem.

Theorem 1.1: A necessary and sufficient condition that x �+ y is that there exists a doubly

stochastic matrix P 2 Rn⇥n such that x = Py, where x,y 2 Rn. ⇤

A direct but important result which follows from Theorem 1.1 is summarized in the following form:

Lemma 1.1: (The two extreme vectors.) Given an n-vector y whose components satisfy yi � 0 and
P

i yi = 1, we have

h

1
n

1
n . . . 1

n

iT

�+ y �+

h

1 0 . . . 0

iT

. (1.7)

⇤

Functions that preserve the ordering of additive majorization are said to be Schur-convex.

Definition 1.3: (Schur convexity.) A real-valued function f(x) defined on a set A ⇢ Rn is said to be

Schur convex on A if

x �+ y on A) f(x)  f(y),

and Schur concave if

x �+ y on A) f(x) � f(y).
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⇤

Also note that �f(·) is Schur concave if and only if f(·) is Schur-convex. Although Schur-convex and

Schur-concave functions do not form a partition of functional space, there are many examples of

Schur-convex and Schur-concave functions that arise in transceiver optimization. Knowing that

the objective is Schur-convex or Schur-concave allows researchers to apply powerful tools from

majorization theory. The following theorems are very useful for identifying Schur-convex and

Schur-concave functions. The first theorem shows the relationship between a convex function and

a Schur-convex function [91].

Theorem 1.2: (From convex to Schur-convex functions) Let g(x) be convex on some interval I of the

real line. Then the function f(x) =
Pn�1

i=0 g(xi) is Schur-convex on In. ⇤

Example 1.1: (The average probability of error.) For square QAM, the symbol error rate (SER) of the

detector for AWGN channels is

Pe(y) = c0Q(A/
p
y),

where c0 and A depend on the size of QAM constellation and the transmitting power, y is the

error variance, and Q(·) is the Q-function. It was shown in [7] that Pe(y) is convex when y  A2/3

and concave when y > A2/3. In MIMO systems, one often deals with the average SER of several

data streams. For example, if we have M QAM symbol streams, the average SER is given by

Pe(y) =
c0
M

M�1
X

i=0

Q
� A
p
yi

�

.

It follows from Theorem 1.2 that Pe(y) is Schur-convex if yi  A2/3, and Schur-concave if

yi > A2/3 for all i. ⇤

The following theorem is related to compositions that involve Schur-convex or Schur-concave

functions [95].

Theorem 1.3: (Composition of Schur-convex functions.) Consider compositions of the form

 (x) = h(�1(x), . . . ,�k(x)),

where h(·) is a real-valued function defined on Rk, and the real functions, �i(·), have common
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domain A ⇢ Rn. If each �i is Schur-convex on A and h is increasing on Rk then  (x) is

Schur-convex. More exhaustively,

Each �i(x) is Schur-convex and h is increasing =)  (x) is Schur-convex;

Each �i(x) is Schur-convex and h is decreasing =)  (x) is Schur-concave;

Each �i(x) is Schur-concave and h is increasing =)  (x) is Schur-concave;

Each �i(x) is Schur-concave and h is decreasing =)  (x) is Schur-convex.

⇤

Parallel to the additive majorization is the notion of multiplicative majorization [97].

Definition 1.4: (Multiplicative majorization.) The vector x 2 Rn
+ is multiplicatively majorized by

y 2 Rn
+, denoted by x �⇥ y, if and only if

n�1
Y

i=0

x[i] =

n�1
Y

i=0

y[i],

k
Y

i=0

x[i] 
k
Y

i=0

y[i], for 0  k < n� 1.

⇤

Similar to the definition of the Schur-convex/Schur-concave function, it is natural to define a mul-

tiplicatively Schur-convex/Schur-concave function.

Definition 1.5: (Multiplicative Schur convexity.) A real-valued function f(x) defined on a set

A ⇢ Rn is said to be multiplicatively Schur convex on A if

x �⇥ y on A) f(x)  f(y),

and multiplicatively Schur concave if

x �⇥ y on A) f(x) � f(y).

⇤

However, it is not necessary to use the notion of multiplicatively Schur-convex/Schur-concave

functions since x �⇥ y if and only if log(x) �+ log(y).
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1.4 Outline of the Thesis

This thesis covers transceiver designs with linear time invariant MIMO channels, linear time-

varying MIMO channels, MIMO broadcast channels and time-varying frequency selective scalar

channels. In Chapter 2, a novel matrix decomposition is proposed and applied to construct a new

MIMO DFE transceiver for LTI flat MIMO channels. The new transceiver has less design and imple-

mentation complexity compared to the conventional GMD DFE transceiver. The performance of the

new MIMO DFE transceiver is studied and comparisons are made with well-known transceivers

in Chapter 3. The new DFE transceiver is shown to achieve the same optimality as the conven-

tional GMD DFE transceiver. Chapter 4 and Chapter 5 deals with the transceiver designs with

linear time-varying flat MIMO channels. By exploiting the proposed space time decomposition,

we develop novel DFE transceivers with temporal and spatial precoders which can harvest both

the temporal and spatial diversity of channels. In Chapter 6, the max-rate and min-power quality

of service design problems over MIMO broadcast channels are investigated. By using a particu-

lar kind of joint triangularization, we are able to solve both QoS problems analytically. Chapter

7 considers transceiver design for scalar LTV channels. Iterative design algorithms which maxi-

mize the receiver SINR are proposed. Chapter 8 focuses on the development of a subspace channel

estimation algorithm for OFDM systems with quasi-stationary sparse multipath Rayleigh fading

channels. The proposed subspace algorithm can identify up to O(M2
) multipath delays by using

M physical pilots. In this section, we will briefly introduce the scope and capture the major results

of each chapter.

1.4.1 Generalized Geometric Mean Decomposition and DFE Transceiver De-

sign – Chapter 2

As described in Sec. 1.2, geometric mean decomposition (GMD) is used to design MIMO DFE

transceivers which decouple the point-to-point LTI flat MIMO channels into independent subchan-

nels with equal signal to noise plus interference ratios (SINRs) [17], [18]. In Chapter 2, we propose

a new matrix decomposition, namely, the generalized geometric mean decomposition (GGMD),

which decomposes a complex matrix as a product of several sets of semi-unitary matrices and up-

per triangular matrices in an iterative manner. The inner most triangular matrix has its diagonal

elements equal to the geometric mean of the singular values of the complex matrix. The complex-

ity of GGMD is less than or equal to that of GMD. Based on the proposed GGMD, we are able to
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construct a novel MIMO DFE transceiver with butterfly structure. Along with the new butterfly

structure, a new iterative interference cancellation algorithm is proposed. For application to cyclic

systems, in which the equivalent MIMO channel matrices are circulant and the SVD can be easily

computed, the proposed GGMD DFE transceiver has K/ log2(K) times complexity advantage over

the GMD DFE transceiver, where K is the number of data symbols per data block and is a power

of 2.

1.4.2 Performance Analysis of GGMD DFE Transceiver – Chapter 3

In Chapter 2, we propose GGMD and demonstrate the uses of GGMD in MIMO transceiver design

with decision feedback. Chapter 3 analyzes the performance of the GGMD DFE transceiver for LTI

flat MIMO channels without zero-forcing constraint. It is shown that the GGMD DFE transceiver

converts MIMO channels into parallel equivalent subchannels and each subchannel has the same

bias and equal SINRs. Hence, no bit allocation is required to minimize the average bit error rate

(BER). In fact, the transceiver is optimal for symbol error rate (SER) in the moderate high SINR

region. Moreover, the GGMD DFE transceiver can achieve MIMO channel capacity simply by in-

dependently applying the scalar Gaussian code of the same rate to each subchannel. The analysis in

mean square error (MSE) shows that a GGMD DFE transceiver achieves the same optimal average

MSE that a GMD DFE MMSE transceiver does. For application to CP systems, the analyses suggest

that the MSE and SER performance of the GGMD DFE transceiver is better than an orthogonal fre-

quency division multiplexing (OFDM) or a single carrier cyclic prefix (SC-CP) system. In terms of

complexity and performance, the proposed GGMD DFE transceiver has the best of both worlds.

1.4.3 Zero-forcing DFE Transceiver Design over Slowly Time-Varying MIMO

Channels Using ST-GTD – Chapter 4

In Chapter 2, Chapter 3, and most of the literature, the research on MIMO transceiver design fo-

cuses on linear time invariant MIMO channels. This chapter considers transceiver designs for the

block fading MIMO channel, in which the channel is constant over the coherence (block) interval

of Nc symbol vectors. The channel varies across different coherence intervals [96]. It is assumed

that both instantaneous channel state information (CSI) at the transmitter (CSIT) and the receiver

(CSIR) are available. Exploiting the CSIT and CSIR, the GGMD-based transceiver in Chapter 2 or

the GMD-based transceiver in [17] can be applied directly. However, the performance measures
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are not optimized since different data blocks pass through different MIMO channels and there is

no temporal processing among different data blocks. Based on the generalized triangular decom-

position (GTD) [21], we develop space-time GTD for the decomposition of linear time-varying flat

MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, we

develop a space-time geometric mean decomposition (ST-GMD) DFE transceiver with the zero-

forcing constraint based on ST-GTD. Under perfect channel prediction, the new system minimizes

both the average MSE at the detector in each space-time (ST) block (which consists of several co-

herence blocks), and the average per ST-block BER in the moderate high SNR region. The new

transceiver has better performance than the GMD-based system mainly because the super-imposed

temporal precoder can exploit the temporal diversity of time-varying channels. For practical ap-

plications, a novel ST-GTD based system which does not require channel prediction but shares the

same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

1.4.4 MMSE DFE Transceiver Design over Slowly Time-Varying MIMO Chan-

nels Using ST-GTD – Chapter 5

In Chapter 4, the ST-GTD DFE transceiver with zero-forcing constraint is designed for time-varying

MIMO channels. Due to the zero-forcing constraint, the transceiver may suffer from channel

nulls and is Gaussian mutual information lossy. In this chapter, we consider the design of DFE

transceivers without zero-forcing constraint for the same channel model. In the first part, we

propose a GMD based MMSE DFE transceiver with a channel independent temporal precoder

(GMDM-TP). A constant unitary temporal precoder is superimposed on the block-wise GMD-

based MMSE transceiver. Therefore, it only requires instantaneous CSIT and CSIR. In the second

part, ST-GTD is applied to the design of a ST-GMD MMSE DFE transceiver which can maximize

Gaussian mutual information over the equivalent channel seen by each ST-block. This is not possi-

ble for the ST-GMD zero-forcing (ZF) DFE transceiver introduced in Chapter 4. Furthermore, anal-

yses show that the ST-GMD MMSE DFE transceiver outperforms the ST-GMD ZF DFE transceiver

in terms of average MSE and BER.
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1.4.5 MIMO Broadcast DFE Transceivers with QoS Constraints: Min-Power

and Max-Rate Solutions – Chapter 6

In Chapter 2, we study DFE transceiver design for point-to-point MIMO channels. MIMO broad-

casting channels have aroused much interest in recent years. In the common message broadcast

scenario, the base station has only one precoder to encode a common message while the subscribed

users can decode the message independently. The nature of the problem prevents one from adapt-

ing SVD as in a point-to-point MIMO linear transceiver or GMD as in a point-to-point MIMO DFE

transceiver. The QR decomposition based transceiver fails to achieve channel capacity with scalar

Gaussian code. In Chapter 6, the QoS transceiver design problems for common message MIMO

broadcast channels are investigated. The first problem is a power minimization problem with a

total bit rate constraint and per-stream BER constraints. The second problem is a data rate maxi-

mization problem with a total transmitting power constraint and per-stream BER constraints. In

both QoS problems, we jointly optimize the common precoder and the bit allocation at the base sta-

tion, and feed-forward and feedback equalizers at the receivers. By exploiting a particular class of

joint triangularization (JT), we propose the minimum power JT broadcast DFE transceiver (MPJT)

for the min-power QoS problem, and the maximum rate JT broadcast DFE transceiver (MRJT) for

the max-rate QoS problem. This chapter also shows the duality of the proposed MPJT and MRJT

transceivers. Moreover, two suboptimal QR-based MIMO broadcast DFE transceivers are also pro-

posed for the min-power and the max-rate QoS problems.

1.4.6 Optimized DFT-Filterbank Transceivers over LTV Channels – Chapter 7

In Chapter 7, we consider blocked transceiver optimization with linear time-varying (LTV) mul-

tipath scalar channels in which channels vary continuously within one block time. For practical

applications, it had been reported by Kozek et al. in 1998 [75] and Liu et al. in 2004 [74] that

windowed Fourier functions in the form of f(n � lN) exp(j2⇡kn/M) serve as good approximate

eigenfunctions of LTV multipath channels. The blocked transceiver based on these eigenfunctions

can be represented as a discrete Fourier transform modulated filterbank transceiver (DFT-FBT). The

chirped OFDM proposed by Barbarossa et al. in 2001 [68] and the Affine OFDM systems proposed

by Erseghe et al. in 2005 are special cases of DFT-FBT in which they use the chirped modulated

Fourier basis. Both the chirped and Affine OFDM systems can diagonalize an LTV multipath scalar

channel into a set of parallel memoryless subchannels if the support of the spreading function
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S(⌫, ⌧) of the LTV channel is mainly concentrated on a straight line. Our goal is to design the trans-

mitting and receiving filters of a general DFT-FBT such that the receiving SINR is maximized. We

develop an iterative SINR maximization algorithm for the design based on the perfect knowledge

of channel state information. A corresponding iterative algorithm is also developed for the case

where only the channel statistics is available.

1.4.7 Channel Estimation for OFDM Systems with Co-Pilots – Chapter 8

In Chapter 8, we consider the channel estimation problem for OFDM systems with sparse mul-

tipath Rayleigh fading channels. Using the concept of a difference co-array, we propose a new

technique which can construct M2 co-pilots from M physical pilot tones with alternating pilot place-

ment. Subspace methods, such as MUSIC and ESPRIT, can theoretically be used to estimate the

multipath delays and the number of identifiable paths is up to O(M2
). With the delay information,

an MMSE estimator for frequency response is derived.

1.5 Notations

In this section, we define the notations used in this thesis. Upper case bold letters are reserved for

matrices and lower case bold letters for vectors. Superscript (·)T and (·)† denote the transpose and

the conjugate transpose, respectively. The expression xi or [x]i denotes the ith element of a vector

x; Ai,j or [A]i,j denotes the (i, j)th element of a matrix A. The notation IM denotes the M ⇥M

identity matrix and 1 stands for a vector with each entry equal to one. Notation E(·) stands for

expectation. The notation diag(x) is a diagonal matrix with the entries of x on the diagonal. The

notation Tr() denotes the trace of the matrix A. The notation (n mod m) represents the remain-

der of n divided by m. The notation vec(A) denotes a vector formed by stacking the columns of

the matrix A sequentially. The notations � and ⌦ denote the Khatri-Rao product and Kronecker

product, respectively. For two real vectors x and y, x �+ y denotes that x is additively majorized

by y. For two complex vectors u and v, u �⇥ v and u �⇥w v denote multiplicative and weakly

multiplicative majorization, respectively [97], [95]. A semi-unitary matrix A is a matrix such that

A†A = I, i.e., all its columns are orthonormal. In figures, “" N” and “# N” denote the signal

upsampler and downsampler, respectively [92].
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Chapter 2

Generalized Geometric Mean
Decomposition and DFE Transceiver
Design

Geometric mean decomposition (GMD) was used by Jiang et al. to construct MIMO DFE transceivers

[17], [18] which decompose a flat MIMO channel into multiple identical parallel subchannels and

support simple modulation/demodulation and coding/decoding schemes. This chapter considers

a new matrix decomposition which decomposes a complex matrix as a product of several sets of

semi-unitary matrices and upper triangular matrices in an iterative manner. The inner most trian-

gular matrix has its diagonal elements equal to the geometric mean of the singular values of the

target complex matrix. The complexity1 of the new decomposition, generalized geometric mean de-

composition (GGMD), depends on its parameters, but is always less than or equal to that of GMD.

The optimal parameters which yield the minimal complexity are derived. The chapter also shows

how to use GGMD to design an optimal decision feedback equalizer (DFE) transceiver for multi-

input-multi-output (MIMO) channels without zero-forcing constraint. A novel iterative receiving

detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix

systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed

GGMD transceiver has K/ log2(K) times complexity advantage over the GMD transceiver, where

K is the number of data symbols per data block and is a power of 2. The performance analyses of

the proposed GGMD transceiver is deferred to the next chapter. Most of the results in this chapter

have been reported in our recent journal paper [27].
1The complexity is defined in terms of the number of floating point operations.
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2.1 Introduction

In multi-input-multi-output (MIMO) communications, matrix decompositions, such as singular

value decompostion (SVD), QR decompostion, gemetric mean decompostion (GMD), generalized

triangular decompostion (GTD), etc., are often used to design transceivers which decouple the

MIMO channels into independent subchannels [98], [15]-[21]. For a multiuser MIMO broadcast

scenario, block diagonal geometric mean decomposition (BD-GMD) [24] can be used for the design

instead. The decoupling allows communication systems to achieve the channel capacity2 by simply

applying independent scalar Gaussian codes on individual subchannels.

For the transmission over frequency selective channels, cyclic prefix (CP) systems are found

to be useful in mitigating the inter-symbol interference [91]. The CP system converts frequency

selective channels into MIMO circulant channels provided the cyclic prefix length is greater than or

equal to the order of the dispersive channels. Orthogonal frequency division multiplexing (OFDM)

[8], and discrete multitone (DMT) [9] are popular SVD based linear transceivers for CP systems. In

order to maximize the bit rate [35] or minimize the average bit error rate (BER) [25], bit allocation

is required. However, bit allocation not only makes modulation rather complicated but also may

result in bit rate loss or BER performance loss due to the constellation granularity [35], [17], [25].

The GMD decision feedback equalizer (DFE) minimum mean square error (MMSE) transceiver [18],

[19] has an advantage over SVD based transceivers in that all its effective subchannels have equal

signal to noise plus interference ratios (SINR), and thus may support codebooks of the same rate,

avoiding the need for a bit allocation mechanism.

In an OFDM system, the complexity of the transmitter and receiver is mostly that of a Discrete

Fourier Transform (DFT) matrix or an Inverse DFT (IDFT) matrix. For both matrices, Fast Fourier

Transform (FFT) can be used to reduce the complexity from O(K2
) to O(K log2(K)) [106], where K

is the size of the data block in the underlying CP system and is often chosen to be a power of 2 in

practice. We will also assume K to being a power of 2 throughout this chapter. Since DFT and IDFT

matrices can convert MIMO circulant channels into parallel subchannels, the main design complexity

of a GMD DFE MMSE transceiver for a CP system is not from the singular value decompositions

(SVD) of a channel matrix, but comes from the GMD of a diagonal matrix with positive ordered

diagonal elements, which is O(K2
) [18], [20], [21]. Moreover, the implementation complexity of a

GMD DFE MMSE transceiver for a CP system is O(K2
). From the perspective of implementation,

2In the QR case, the channel capacity is MIMO channel capacity without channel state information at the transmitter.
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introducing GMD DFE MMSE transceivers in CP systems does not seem to be practical because K

is usually large, and hence it might lead to formidable design and implementation complexity.

In this chapter, we propose the generalized geometric mean decomposition (GGMD) which

decomposes a complex matrix as the product of several sets of semi-unitary matrices and upper tri-

angular matrices in an iterative manner. The inner most triangular matrix has its diagonal elements

equal to the geometric mean of the singular values of the complex matrix. The class of GGMD is

characterized by a set of GGMD parameters and its complexity is completely determined by the pa-

rameters. We derive the optimal GGMD parameters which minimize the number of floating point

operations (flops) required by the decomposition. In general, GGMD requires fewer flops than

GMD. Based on the proposed GGMD, we also propose GGMD DFE transceivers for the general

MIMO channels. Using the GGMD decomposition, we can design a precoder of butterfly structure

which can be implemented efficiently. Along with the newly proposed iterative interference can-

celer at the receiver, the transceiver decouples the MIMO channel into parallel subchannels and all

its subchannels have equal SINRs akin to a GMD transceiver.

For application to CP systems, the design and implementation complexity advantages of a GGMD

transceiver as opposed to a GMD transceiver are especially prominent. The design complexity of a

GGMD transceiver comes from K-point fast Fourier transform (FFT), which takes O(K log2(K))

flops, and applying GGMD to a diagonal matrix with positive ordered diagonal elements, which

takes O(K) flops. Moreover, a GGMD DFE transceiver enjoys lower implementation complexity,

O(K log2(K)) than a GMD DFE MMSE transceiver, O(K2
).

2.2 Outline

The sections in this chapter are structured as follows. In Section 2.3, we review the time disper-

sive channel model, CP systems, and the GMD-based MMSE transceiver without zero-forcing con-

straint [18], [19]. In Section 2.4, we propose generalized geometric decomposition and discuss its

computational complexity. Section 2.5 is devoted to the development of the optimal GGMD MMSE

transceiver. Concluding remarks are given in Section 2.6.
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Figure 2.1: The conventional GMD DFE MMSE Transceiver.

2.3 Preliminaries

In CP systems, the purpose of a cyclic prefix is to convert a finite impulse response channel

H(z) =
Nh
X

n=0

h(n)z�n, (2.1)

into an M ⇥M circulant MIMO channel Hcir, where M is the data block size. Recall the fact that

circulants can be diagonalized by a DFT matrix [91]. That is,

�✓� = WHcirW
†,

where W is a M ⇥ M DFT matrix, � and �✓ are diagonal matrices with the DFT coefficients

�m,m = |H(e
j2m⇡

M
)| and [�✓]m,m = ej\H(ej2m⇡/M ). The DFT coefficients can be computed using FFT

algorithms, which takes M log2(M) flops when M is a power of 2. It is possible to determine the

SVD of Hcir without actually running the SVD algorithm of complexity O(M3
). The SVD of Hcir

is given by

Hcir = Uh⌃hV
†
h, (2.2)

where Uh = W†�✓⇧, V†
h = ⇧†W,

⌃h = diag(�h,0,�h,1, . . . ,�h,M�1),

�h,i = �[i,i] and �[i,i] denotes the ith largest diagonal element of �. ⇧ is a permutation matrix

chosen such that ⇧†�⇧ = ⌃h. Well studied sorting algorithms, such as merge sort or heap sort

[107] which take O(M log2(M)) comparisons, can be exploited to sort �m,m for ⌃h, and determine
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the permutation matrix ⇧. Next, a crucial theorem is reviewed for the transceiver design.

Theorem 2.1: (The geometric mean decomposition [20]) Let H 2 CJ⇥N have rank M with non-zero

singular values dh = [�h,0,�h,1, · · · ,�h,M�1]
T . Then there exists an upper triangular matrix

R 2 CM⇥M , and semi-unitary matrices P 2 CN⇥M and Q 2 CJ⇥M , such that

H = QRP†, (2.3)

where Rii = (

QM�1
i=0 �h,i)1/M . A semi-unitary matrix is a matrix with orthonormal columns. ⇤

2.3.1 GMD MMSE Transceiver for MIMO channels

A point to point MIMO channel can be modeled as:

y = Hx+w, (2.4)

where y is a J ⇥ 1 channel output vector, x is an N ⇥ 1 channel input vector subject to the total

power constraint E(Tr(xx†
)) = P0, H is a J⇥N channel matrix of rank M , and w is a J⇥1 circular

symmetric additive Gaussian noise vector with mean and variance given by

E(w) = 0, E(ww†
) = �2

wIJ . (2.5)

The GMD can be applied to design the optimal GMD DFE MMSE transceiver [18], [19] in Fig.

2.1 for the channel H. The details can be found in [39], [18] and [19]. For the completeness of this

chapter, the design procedures shall be summarized briefly in the following. For the application to

CP systems, one just needs to replace H with Hcir, given by, (2.1) in the design procedures.

It is assumed that the channel state information H (Hcir) is available both at the transmitter and

the receiver. The data symbol vector a, which represents a data block, is an M ⇥ 1 vector with each

element ai chosen from the alphabet � of finite size. We assume that

E(a) = 0, E(aa†) = �2
aI and E(aw†

) = 0M⇥M , (2.6)

where channel noise w is given by (2.5). The diagonal channel matrix ⌃h 2 CM⇥M , the semi-unitary

matrix Vh 2 CJ⇥M in the precoder F and semi-unitary Uh 2 CN⇥M in the feedforward matrix G
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are given by the SVD of H

H = Uh⌃hV
†
h. (2.7)

For a CP system, they can be easily computed by (2.2). The power loading matrix ⌃f is a diagonal

matrix determined by the water-filling formula in (5.4). To determine the M ⇥M strictly upper

triangular feedback matrix B and unitary precoder P 2 CM⇥M , we first construct the M ⇥ M

diagonal design matrix

⇥ =

�

IM +

�2
a

�2
w

⌃2
f⌃

2
h

�1/2
, (2.8)

and apply GMD on ⇥, which is

⇥ = �Q(IM +B)P†, (2.9)

where

� =

�

M�1
Y

i=0

�i
�1/M

, �i = ⇥i,i. (2.10)

The M ⇥M diagonal matrix ⇤ in G can be obtained by

⇤ = ⌃f⌃h

�

⌃2
f⌃

2
h +

�2
w

�2
a

I
��1

. (2.11)

2.4 Generalized Geometric Mean Decomposition

In this section, we propose the generalized geometric mean decomposition (GGMD) which is a

powerful tool, like GMD in transceiver design [20], [17], [16]. It is defined for any J ⇥ N complex

matrix H of rank M . It decomposes the matrix H as the product of several sets of semi-unitary

matrices and upper triangular matrices and hence is a generalization of GMD. GGMD requires sig-

nificantly less computational complexity than GMD especially for application to diagonal matrices

with highly factorable rank number M .

Both GMD and GGMD consist of two stages, SVD and triangularization. The SVD stage is

common to both of the decompositions. Let us first take a simple example, where H has rank

M = 6, to illustrate the idea of GGMD. The number M can be factorized as the product of positive
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integer numbers greater than or equal to 2. Suppose that we factorize M as M = l0 ⇥ l1 = 2 ⇥ 3;

the SVD of H is done and the singular values are {1, 2, 3, 4, 5, 6}. The GGMD, with parameters

(l0, l1) = (2, 3), is as follows. Note that the parameters (l0, l1) are determined by the factorization of

M and one is free to choose any one of the factorizations. The (2, 3)-GGMD consists of two levels

of triangularization. For the first level, we construct a diagonal matrix consisting of the singular

values of H on its diagonal as

⌃(0)
= diag(6, 5, 4, 3, 2, 1). (2.12)

Then, we take l0⇥l0 diagonal submatrices of ⌃(0) and decompose them with GMD [20] respectively

which can be expressed as

2
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0 , (2.13)
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(0)†
2 . (2.15)

The number �(1)
n is the geometric mean of the diagonal elements of ˜⌃

(0)
n , and ˜Q

(0)
n and ˜P

(0)
n are

l0 ⇥ l0 unitary matrices. Putting (2.13)-(2.15) in a compact matrix form, we have

⌃(0)
= Q(0)

(⌃(1) ⌦ I2)(I+B(0)
)P(0)†, (2.16)

where Q(0)
= diag( ˜Q(0)

0 , ˜Q(0)
1 , ˜Q(0)

2 ), P(0)
= diag( ˜P(0)

0 , ˜P
(0)
1 , ˜P(0)

2 ), B(0)
= diag( ˜B(0)

0 , ˜B(0)
1 , ˜B(0)

2 ),

and ⌃(1)
= diag(�(1)

0 ,�(1)
1 ,�(1)

2 ). This ends the first level of decomposition. For the second level of
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decomposition, we take the diagonal matrix ⌃(1) in (2.16) and perform GMD as

2

6

6

6

4

p
30 0 0

0

p
12 0

0 0

p
2

3

7

7

7

5

| {z }

⌃(1)

=

6
p
720

| {z }

⌃(2)

·Q(1)

2

6

6

6

4

1 ⇥ ⇥

0 1 ⇥

0 0 1

3

7

7

7

5

| {z }

I+B(1)

P(1)†.

The number ⌃

(2) is the geometric mean of the diagonal elements of ⌃(1), and Q(1) and P(1) are

l1 ⇥ l1 unitary matrices. These operations complete the GGMD for this simple example. From this

example, one can see the differences of the triangularization stages of GMD and GGMD while both

of them share the same SVD stage. We also show the detailed triangularization results of GMD and

GGMD for this example in (2.17) and (2.18), respectively, to demonstrate the differences.

2.4.1 The GGMD Algorithm

For a general J ⇥N matrix H of rank M , the following summarizes the procedure for the GGMD

with parameters (l0, l1, . . . , lL�1) where L is the number of levels in the GGMD and li denotes the

parameter of GMD in the ith level. The numbers li and L could be any positive integers satisfying

M =

L�1
Y

i=0

li, (2.19)

where li � 2. The choice of li and L determines the computational complexity of GGMD which

will be detailed in the next subsection.

The (l0, l1, . . . , lL�1)-GGMD consists of two major stages, the SVD and the iterative triangular-

ization.

1. SVD: the SVD decomposes H as

H = U⌃V†, (2.20)

where U is a J⇥M semi-unitary matrix, V is an N⇥M semi-unitary matrix, and ⌃ is an M⇥M

diagonal matrix.
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2. Triangularization: the triangularization consist of L levels. For i = 0, . . . , L� 2, we define

Ni+1 =

Ni

li
=

L�1
Y

n=i+1

ln, (2.21)

with N0 = M and let ⌃(i) be some diagonal matrix

⌃(i)
= diag(�(i)

0 ,�(i)
1 , . . . ,�(i)

Ni�1). (2.22)

The matrix ⌃(0) is initialized as ⌃(0)
= ⌃ where ⌃ is from (2.20) and the other ⌃(i) shall be

determined in the subsequent steps.

⌃(0)
=

2

6

6

6

6

6

6

4

0 0 0 0 .89 �.45
0 0 .53 �.82 .10 .19
0 .86 �.44 �.26 .03 .06
1 �.03 0 3 0 .01
.06 .51 .73 .44 �.05 �.10
0 0 0 .25 .43 .86

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

3 �.11 �.09 �.02 .02 .01
0 3 �1.86 �.40 .42 .21
0 0 3 �1.16 1.22 .61
0 0 0 3 �2.8 �1.40
0 0 0 0 3 �4.5
0 0 0 0 0 3

3

7

7

7

7

7

7

5

·

2

6

6

6

6

6

6

4

0 0 0 1 .09 0

0 0 .64 �.07 .76 0

0 .31 �.72 �.05 .61 0

0 �.61 �.16 �.01 .13 .76
.44 .64 .17 .01 �.14 �.07
�.89 .32 .08 .01 �.07 .29

3

7

7

7

7

7

7

5

(2.17)

⌃(0)
=

2

6

6

6

6

6

6

4

.74 �.67 0 0 0 0

.67 .73 0 0 0 0

0 0 .76 �.65 0 0

0 0 .65 .75 0 0

0 0 0 0 .82 �.58
0 0 0 0 .58 .82

3

7

7

7

7

7

7

5

⇣

2

4

5.48 0 0

0 3.46 0

0 0 1.41

3

5

| {z }

⌃(1)

⌦I2
⌘

2

6

6

6

6

6

6

4

1 �.18 0 0 0 0

0 1 0 0 0 0

0 0 1 �.29 0 0

0 0 0 1 0 0

0 0 0 0 1 �.71
0 0 0 0 0 1

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

.67 .73 0 0 0 0

�.74 .67 0 0 0 0

0 0 .65 .76 0 0

0 0 �.75 .65 0 0

0 0 0 0 .57 .81
0 0 0 0 �.81 .58

3

7

7

7

7

7

7

5

,

2

4

5.48 0 0

0 3.46 0

0 0 1.41

3

5

| {z }

⌃(1)

= 2.99

2

4

0 .88 �.48
.97 �.12 �.23
.26 .46 .84

3

5

2

4

1 �.45 �.25
0 1 �1.28
0 0 1

3

5

2

4

0 .83 .55
.48 �.48 .73
�.88 �.26 .40

3

5 (2.18)
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(a) Let i = 0.

(b) Apply GMD to the Ni+1 li⇥li diagonal submatrices of ⌃(i), i.e., for n = 0, 1, . . . , Ni+1�1,

˜⌃(i)
n = �(i+1)

n
˜Q(i)
n (I+ ˜B(i)

n )

˜P(i)†
n , (2.23)

where ˜⌃
(i)
n = diag(�(i)

nli
, . . .�(i)

nli+li�1), ˜Q
(i)
n and ˜P

(i)
n are li ⇥ li unitary matrices, and ˜B

(i)
n

is li ⇥ li strictly upper triangular matrix. By Theorem 2.1,

�(i+1)
n =

⇣

li�1
Y

k=0

�(i)
lin+k

⌘1/li
. (2.24)

(c) If i < L� 1 then set i = i+ 1 and go to (b), else stop.

From (2.23), we can identify the diagonal matrix ⌃(i+1) for the next stage since �(i+1)
n are now

available. Stacking ˜⌃
(i)
n to form ⌃(i) in (2.22), equation (2.23) can be re-formulated as the GGMD

iterative equation,

⌃(i)
= Q(i)

(⌃(i+1) ⌦ Ili)(I+B(i)
)P(i)†, (2.25)

where Q(i)
= diag( ˜Q(i)

0 , . . . , ˜Q(i)
Ni+1�1), P

(i)
= diag( ˜P(i)

0 , . . . , ˜P(i)
Ni+1�1), and B(i)

= diag( ˜B(i)
0 , . . . , ˜B(i)

Ni+1�1).

Using (2.25), we have

⌃

(L)
=

⇣

M�1
Y

i=0

�(0)
i

⌘1/M
. (2.26)

The scalar ⌃(L) is the geometric mean of the singular values of H.

In summary, GMD decomposes H as the product of Q, R and P whereas GGMD decomposes

H as the product of ⌃(L), and L sets of Q(i), I+B(i) and P(i) are given by (2.25), i.e.,

H = UQ0
⌃

(L)A0V†, (2.27)
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where

Q0
=

L�1
Y

i=0

Q(i) ⌦ Il0i�1
,

A0
=

L�1
Y

i=0

(I+B(L�1�i)
)P(L�1�i)† ⌦ Il0L�2�i

,

l0n =

n
Y

i=0

li for n � 0, l0�1 = 1.

Also notice that the GMD is a special case of GGMD when we set L = 1 and l0 = M .

2.4.2 Complexity

The SVD stage requires O(MJN) flops which are independent of the GGMD parameters (l0, l1, . . . , lL�1).

Given the SVD of H, the GMD on each li⇥li diagonal matrix requires 7l2i +18li�35 flops [21] where

li � 2. For ⌃(i), the algorithm needs to apply GMDs on Ni+1 li ⇥ li diagonal matrices. Hence, the

triangularization step of GGMD takes

L�1
X

i=0

T (li)(
L�1
Y

n=i+1

ln) (2.28)

flops where

T (x) = 7x2
+ 18x� 35. (2.29)

Define

f(l, L) =
L�1
X

i=0

⇣

T (li)(
L�1
Y

n=i+1

ln)
⌘

, (2.30)

where l = [l0, l1, . . . , lL�1]
T . We can minimize the complexity of the triangularization by solving

min

l,L
f(l, L) (2.31)

subject to
L�1
Y

n=0

ln = M, ln � 2, 1  L  log2(M).

This is a combinatorial optimization problem, solving it directly is difficult. The optimal solu-

tion is given in Theorem 2.2 which uses the results in the following lemmas.
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Lemma 2.1: The GGMD with parameters (l0, . . . , lj , . . . , lL�1) requires more floating point

operations than the GGMD with parameters (l0, . . . ,m0,m1, . . . , lL�1) if there exists a lj which can

be further be factorized as lj = m0m1, where m0,m1 � 2 and lj � 4. ⇤

Proof: See appendix. ⇤

Lemma 2.1 shows that increasing the levels, L, of GGMD reduces the complexity. In other

words, one shall factorize M as much as possible.

Lemma 2.2: The GGMD with parameters (l0, . . . , lj , lj+1 . . . , lL�1) requires fewer floating point

operations than the GGMD with parameters (l0, . . . , lj+1, lj , . . . , lL�1) where lj < lj+1, lj , lj+1 � 2

and lj lj+1 = �. ⇤

Proof: See appendix. ⇤

Lemma 2.2 suggests that given L, arranging the parameters in increasing order, (l(0), l(1), . . . , l(L�1)),

yields the minimum complexity where l(n) denotes the nth smallest element in l 2 RL. Using

Lemma 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.2: The solution to the optimization problem given in (2.31) is given by

l⇤ = (l⇤0, l
⇤
1, . . . , l

⇤
L⇤�1), (2.32)

where l⇤n are prime numbers,
QL⇤�1

n=0 l⇤n = M , 2  l⇤n, and l⇤i  l⇤j for 0  i  j  L⇤ � 1. ⇤

Proof: If ln is not a prime number, by Lemma 2.1, we can always reduce the complexity by factor-

izing ln. Moreover, if lj > lj+1, by Lemma 2.2, swapping lj and lj+1 shall reduce the complexity.

In the same manner as bubble sort [107], one shall get the optimal ordering as given in (2.32) after

L⇤ � 1 runs of swapping scans. ⇤

We call the GGMD with the optimal GGMD parameters (l⇤0, l
⇤
1, . . . , l

⇤
L⇤�1), in particular, the

optimal GGMD. In the applications where M = K = 2

� , Theorem 2.2 says that the complexity of

the triangularization step is minimized by choosing li = 2 and L = �. The optimal value of problem

(2.31) is

f⇤
(l⇤, L⇤

) = 29(K � 1).
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Figure 2.2: The transmitter of the GGMD DFE transceiver and the channel.
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Figure 2.3: The receiver of the GGMD DFE transceiver.

So, the total complexity of the optimal GGMD is O(KJN) + O(29K). For the GMD proposed in

[20], SVD is required as well. In the second stage, the algorithm of GMD decomposes the diagonal

matrix ⌃ as

⌃ = Q0RP0†, (2.33)

where R is a K ⇥K upper triangular matrix, P0 and Q0 are K ⇥K unitary matrices. This requires

T (K) flops. To obtain the form H = QRP†, we take R, Q0 and P0 from (2.33), and compute

Q = UQ0 and P = VP0. So, GMD has the total complexity of O(KJN) + O(7K2
+ 2(J + N)K).

For the applications in which the SVD of H has negligible complexity, the optimal GGMD requires

much lower complexity, O(K), than GMD, which is O(K2
).

For the value of M where M not a prime number, the optimal GGMD is a different kind of

decomposition to GMD, since the decomposition in (2.27), in general, cannot be re-grouped as the

product of Q, R, and P as in (2.3) where Ri,i equals the geometric mean of the singular values of

H.

2.5 GGMD DFE Transceiver

In this section, we propose the GGMD DFE transceiver for general MIMO channels by using the

optimal GGMD introduced in Sec. 2.4. It can be directly applied to CP systems in which we will see
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obvious design and implementation complexity advantages over the GMD DFE MMSE transceiver.

The proposed precoder and receiver of a GGMD transceiver are shown in Fig. 2.2 and Fig. 2.3,

respectively. The equivalent MIMO channel is given by a J ⇥N matrix H as in (2.4). For a CP sys-

tem, the channel matrix H = Hcir where Hcir is defined in Sec. 2.3. The channel state information

H is assumed to be available both at the transmitter and the receiver. The data symbol vector a

and the channel noise w are given by (2.6) and (2.5), respectively. The diagonal channel matrix ⌃h,

the matrix Vh in the precoder F and U†
h in the feedforward matrix G are from the SVD of channel

matrix H as in (2.7). The power loading matrix ⌃f is a diagonal matrix described in Sec. 2.3.1

and the diagonal matrix ⇤ in feedforward decoder G is given by (2.11). To design the rest of the

transceiver, we take the M ⇥M diagonal matrix ⇥ in (2.8) and apply the proposed GGMD in Sec.

2.4 to obtain B(i) and P(i). The GMMD parameters are given by the factorization of M =

QL�1
i=0 li

as in (2.19) and the factors li are chosen to be prime numbers in increasing order so that the number

of flops is minimized. The partial product of li is defined as

l0n =

n
Y

i=0

li. (2.34)

By setting

⌃(0)
= ⇥, (2.35)

the feedback matrices B(i) and precoding matrices P(i) can be computed via the GGMD algorithm

in Sec. 2.4.1, i.e.,

⌃(i)
= Q(i)

(⌃(i+1) ⌦ Ili)(I+B(i)
)P(i)†. (2.36)

Note that the SVD stage is not required since ⇥ is already a diagonal matrix with positive diagonal

elements in decreasing order. The matrices Ai are given by

Ai = (I+B(i)
)P(i)† ⌦ Il0i�1

. (2.37)

We also define P(L)
= 1.
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Figure 2.4: The decomposition of an equivalent (L � k)-layer receiver into two (L � k � 1)-layer
receivers

2.5.1 Receiver Detection Algorithm

Fig. 2.3 is a conceptual figure of the receiver which specifies the input and output relationships of

the received signals and the detected symbols, just like the receiver of a GMD MMSE transceiver

[19]. The actual symbol detection must follow a particular ordering such that the feedback parts

of the system do not violate causality. The estimated symbol vector ˆa is obtained by decoding the

output of G, y0(0), with the iterative cancellation detection algorithm to be described later. Before

giving the algorithm, we need some notations, then, the algorithm is presented. Following the

algorithm, a simple example is given. The detailed explanations of the algorithm are deferred to

Sec. 2.5.2.

Define f(z) as a function which sets z 2 C to the element in the alphabet � with the minimum

Euclidean distance. The downsampling operator S
(m)
i is a downsampler with the downsampling

factor lm and shift i. It is defined on a Nm ⇥ 1 vector x such that the output is a Nm+1 ⇥ 1 vector

given by

y = S
(m)
i x,

where yn = xlmn+i, i = 0, 1, . . . , lm � 1, 0  n  Nm+1 � 1 and Nm is given by (2.21). In matrix

form, it can be represented as

S
(m)
i = INm+1 ⌦ e

(m)T
i , (2.38)
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where e
(m)
i is an lm ⇥ 1 vector containing all zeros except for an 1 in the ith entry. We also define

the upsampling operator �
(m)
i with the upsampling factor lm and shift i on a Nm+1 ⇥ 1 vector x

such that the Nm ⇥ 1 output vector y is

y = �
(m)
i x,

where ylmn+i = xn and the other entries of y are zeros. In matrix form, �(m)
i can be expressed as

�
(m)
i = INm+1 ⌦ e

(m)
i .

The bijective function j = g(i) maps a positive number 0  i  M � 1 to a positive number

0  j M � 1. Given i, j is computed via the iterative equations

q�1 = i, (2.39)

qk�1 = qklk + rk, (2.40)

where 0  k  L�1, 0  rk  lk�1, L and lk are given by (2.19). We first set q�1 = i, and compute

qk =

jqk�1

lk

k

,

rk = qk�1 mod lk,

iteratively for k = 0, 1, . . . , L� 1. After obtaining all rk, the number j is given by

j =
L�1
X

k=0

⇣

(lk � 1� rk) ·
L�1
Y

m=k+1

lm
⌘

. (2.41)

For example, if M = K = 2

L and we choose lk = 2, then the function j = g(i) takes the positive

number i = (bL�1bL�2 . . . b1b0)2 and maps it to

j = g(i) = (b0b1 . . . bL�2bL�1)2. (2.42)

The detection algorithm is described by the pseudo code as follows:
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Figure 2.5: Equivalent 1-layer receiver

Algorithm 2.5.1: ITERATIVEDETECTION(y0(0)
, L)

procedure DETECT(k,y, v, â, L, l)

for i 0 to lk � 1 do{

n lk � 1� i

if i = 0

then

(

x 0Nm⇥1

z

0  S

(k)
n y (i)

else
n

z

0  S

(k)
n

Ä
y �B

(k)
x

ä
(ii)

if k < L� 1

then

(

z (I+B

(k+1))P(k+1)†
z

0 (iii)

(â, ã, v) DETECT(k + 1, z, v, â, L, l) (iv)

else

(

âg�1(v) = ã f(z0) (v)

v  v + 1

x x+�

(k)
n P

(k+1)
ã (vi)

}

ã x (vii)

return (â, ã, v) (viii)

main

k  0

v  0

l (l0, l1, . . . , lL�1)

â 0M⇥1

(â, ã, v) DETECT(k,y0(0)
, v, â, L, l) (ix)

output (â)

The left arrow “ ” indicates an assignment of a variable. “for i 0 to lk � 1” denotes the loop

with index variable i taking the value 0, then 1 and so on up to lk�1. “main” and “output” indicate

the main procedure and the output of a program, respectively. DETECT(k, y, v, ˆa, L, l) denotes the
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procedure DETECT with input variable k, y, v, ˆa, L and l. For ease of justification, we will explain

the algorithm for the case where M = K = 2

L and lk = 2. The procedure DETECT(k,y, v, ˆa, L, l)

can be used to decode â and â(k) from input signal y0(k) for the equivalent (L� k)-layer receiver in

Fig. 2.4. The matrices Ai in Fig. 2.4 are defined as

Ai = (I+B(i)
)P(i)†.

In this case, the input signal of the receiver, y0(k), corresponds to the input variable y of the proce-

dure DETECT, and the output signals â and â(k) correspond to the output variables ˆa and ˜a in line

(viii), respectively. The input variables k and L of DETECT indicate that the procedure is doing the

decoding for an (L� k)-layer receiver.

The algorithm below starts by calling DETECT in line (ix) to decode ˆa with input signal y0(0)

for the (L)-layer GGMD receiver in Fig. 2.3. When i = 0, the procedure extracts the odd indexed

elements of y(0) (line i) and feeds them into DETECT with parameter k = 1 (line iv), which does the

decoding for the (L � 1)-layer receiver. It repeats the same actions with even indexed elements of

y0(0) when i = 1. This is because from the perspectives of the odd and even indexed components

of y0(0), they both see equivalent (L � 1)-layer receivers as on the right side of Fig. 2.4. Note

that the decoding of even indexed elements has to wait until the odd indexed elements are fully

decoded. The procedure continues to break the signals into even and odd until the signals see

one layer (m = 1) receivers (Fig. 2.5) in which the decoding is as simple as a V-BLAST [15] with

two subchannels. Then, the decoding of â follows the ordering defined by (2.42) in line (v). More

elaborations on the algorithm can be found later in Sec. 2.5.2.

To understand the proposed detection algorithm better, we shall go through the detection algo-

rithm with a simple example where M = K = 4 and lk = 2 in the following, i.e., the GGMD DFE

receiver in Fig. 2.3 has L = 2 and M = 4. After the reception of a block y, the receiver computes

y0(0)
= Gy and calls the procedure DETECT in “main” to decode ˆa. The detailed operations are

summarized as follows:

1) Initialize k = 0, the counter v = 0, l = [2, 2], â = 0K⇥1.

2) Call procedure DETECT with input k, y0(0), v and â to decode the 2 layer receiver on the left side of Fig. 2.4.

1. i = 0, [y(0)
1 y

(0)
3 ]T = [y0(0)

1 y

0(0)
3 ]T . (extract odd indexed signal)

2. z(0) = [y0(1)
1 y

0(1)
3 ]T = (I+B

(1))P(1)†[y(0)
1 y

(0)
3 ]T . (line (iii))
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3. Call precedure DETECT with input k = 1, z(0), v, and â to decode the equivalent 1 layer receiver as on

the upper right side of Fig. 2.4, and in Fig. 2.5.

a. i = 0, y(1)
3 = y

0(1)
3 . (extract odd indexed signal in line (i))

b. â3 = f(y(1)
3 ) and v = v + 1. (decode â3 in line (v))

c. x(1) = [0, â3]
T . (line (vi))

d. i = 1, y(1)
1 = S

(1)
0 ([y0(1)

1 y

0(1)
3 ]T �B

(1)
x

(1)). (line (ii))

e. â1 = f(y(1)
1 ) and v = v + 1. (decode â1, line (v))

f. ã(1) = [â1, â3]
T . (return to previous layer of DETECT)

4. x(0) = �

(0)
1 P

(1)
ã

(1). (line (vi))

5. i = 1, [y(0)
0 y

(0)
2 ]T = S

(0)
0 (y0(0) �B

(0)
x

(0)). (even indexed signal, line (ii))

6. z0(0) = [y0(1)
0 y

0(1)
2 ]T = (I+B

(1))P(1)†[y(0)
0 y

(0)
2 ]T . (line (iii))

7. Call procedure DETECT with input k = 1, z0(0), v, and â to decode the equivalent 1 layer receiver as in

the lower right side of Fig. 2.4.

a. i = 0, y(1)
2 = y

0(0)
2 .

b. â2 = f(y(1)
2 ) and v = v + 1. (decode â2, line (v))

c. x(1) = [0, â2]
T

d. i = 1, y(1)
0 = S

(1)
0 ([y0(1)

0 y

0(1)
2 ]T �B

(1)
x

(1)).

e. â0 = f(y(1)
0 ) and v = v + 1. (decode â0, line (v))

f. ã(1) = [â0, â2]
T . (done and return)

3â 1â 2â 0â

0i 1i

0i 0i 1i1i

Figure 2.6: The flow of detection algorithm for L = 2

Fig. 2.6 illustrates the flow of the detection algorithm. The depth of the tree corresponds to the

depth of the function call. The detection sequence of ân is in bit-reversed order of the L bits one’s

complement of n. In our example, the symbol ân, where n = (b1b0)2 in binary representation, is the

(b0b1)2th symbol to be detected.
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2.5.2 The Validity of the Detection Algorithm

In the following paragraphs, we will first show that an (L � k)-layer receiver can be split into lk

(L � k � 1)-layer receivers, where k = 0, 1, . . . , L � 2, as illustrated in Fig. 2.4, and then, we shall

explain how the algorithm successfully exploits this to decode ˆa in Fig. 2.3. For ease of justification,

we consider the GGMD transceiver with M = K = 2

L and li = 2. Similar justifications can be

extended to GGMD transceivers with M not being a power of 2. The following lemma is useful in

justifying the algorithm.

Lemma 2.3: The Nm+1 ⇥Nm matrix S
(m)
i defined in (2.38) satisfies

S
(m)
i (Q(m) ⌦ Ilm) = Q(m)S

(m)
i (2.43)

for any Q(m) 2 CNm+1⇥Nm+1 . ⇤

Proof:

S
(m)
i (Q(m) ⌦ Ilm) = (INm+1 ⌦ e

(m)T
i )(Q(m) ⌦ Ilm)

= Q
(m)
i ⌦ e

(m)T
i = Q(m)S

(m)
i .

⇤

For decoding, the algorithm perform a total of L splits and each split breaks the receiver into

two sub-receivers at a time. The idea of receiver splits is demonstrated in Fig. 2.4. The splits start

at k = 0, in which the receiver on the left side of Fig. 2.4 corresponds to the L-layer receiver in Fig.

2.3. We have y(n)
= y(n), y0(n)

= y0(n), and â(n) = â(n) for 0  n  L � 1. After the split, we have

two (L � 1)-layer receivers as shown on the right side of Fig. 2.4. The splits continue for k going

from 0 to L � 1. From the kth to (k + 1)th split, for notational convenience, we set y(n), y0(n) and

ˆa(n) on the left hand side of Fig. 2.4 in the (k + 1)th split as

y(n)
= S

(k)
i y(n),y0(n)

= S
(k)
i y0(n), â(n) = S

(k)
i â(n),

where S
(k)
i y(n), S(k)

i y0(n), and S
(k)
i â(n) are from the right side of Fig. 2.4 in kth split, and k + 1 

n  L� 1. Eventually, the splits break the original receiver into 2

L�1 one layer receivers as shown

in Fig. 2.5. The decoding of S(L�2)
i ˆa from S

(L�2)
i y0(L�1) is essentially the same as the GMD MMSE
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receiver in Fig. 2.1 with M = 2.

The split is possible due to the special structure of B(k),

B(k)
= diag( ˜B(k)

0 , ˜B(k)
1 , . . . , ˜B(k)

2L�k�1�1),

where ˜B
(k)
n are 2 ⇥ 2 strictly upper triangular matrices. To exploit the special structure of B(k),

we break y(k) in Fig. 2.4 into odd and even indexed signal components, S(k)
1 y(k) and S

(k)
0 y(0),

respectively. They can be computed via

S
(k)
1 y(k)

= S
(k)
1 y0(k), (2.44)

S
(k)
0 y(k)

= S
(k)
0 y0(k) � S

(k)
0 B(k)

ˆa(k). (2.45)

The component S(k)
0 y(k) takes the feedback component S(k)

0 B(k)
ˆa(k) which can further be factored

as

S
(k)
0 B(k)

ˆa(k) = S
(k)
0 B(k)�

(k)
1 P(k+1)S

(k)
1 ˆa(k+1). (2.46)

Here, we use the fact S(k)
0 B(k)

= S
(k)
0 B(k)

�

(k)
1 S

(k)
1 and Lemma 2.3.

From the left side of Fig. 2.4, the y(n) and y0(n) have the relationships such that

y0(n+1)
=

⇣

(I+B(n+1)
)P(n+1)† ⌦ I2n+1�k

⌘

y(n),

y(n+1)
= y0(n+1) � (B(n+1) ⌦ I2n+1�k)ˆa(n+1), (2.47)

for n = k, k + 1, . . . , L� 2. Multiplying S
(k)
i on both sides and applying Lemma 2.3, we have

S
(k)
i y0(n+1)

=

⇣

(I+B(n+1)
)P(n+1)† ⌦ I2n�k

⌘

S
(k)
i y(n),

S
(k)
i y(n+1)

= S
(k)
i y0(n+1) � (B(n+1) ⌦ I2n�k)S

(k)
i ˆa(n+1). (2.48)

Using Lemma 2.3, one can show that

S
(k)
i ˆa(n) =

⇣

P(n+1) ⌦ I2n�k

⌘

S
(k)
i ˆa(n+1). (2.49)

From (2.48) and (2.49), we can conclude that both S
(k)
1 y(k) (odd) and S

(k)
0 y(k) (even) respectively

see the equivalent (L � k � 1)-layer receivers as shown on the right side of Fig. 2.4. Moreover, the
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Table 2.1: Design complexity (K is a power of 2)

GMD Transceiver GGMD Transceiver

⌃h, Vh, U†
h O(K log2(K)) O(K log2(K))

⌃f O(K) O(K)

⇥ O(K) O(K)

Decompose
⇥

O(K2
) O(K)

Total O(K2
) O(K log2(K))

output ˆa(k) of the (L� k)-layer can be written as

ˆa(k) =

⇣

P1
i=0 �

(k)
i S

(k)
i

⌘

�

P(k+1) ⌦ I2
�

ˆa(k+1) (2.50)

=

P1
i=0 �

(k)
i P(k+1)S

(k)
i ˆa(k+1),

where
P1

i=0 �
(k)
i S

(k)
i = INk and the second equality follows from Lemma 2.3.

Now, we are ready to justify how the algorithm works. Suppose that the procedure DETECT

works for an (L�k�1)-layer receiver and we want to show that the procedure DETECT can decode

ˆa and ˆa(k) from y0(k) for the (L � k)-layer receiver in Fig. 2.4. At iteration i = 0, line (i) computes

S
(k)
1 y(k) and the signal S(k)

1 y(k) sees the equivalent (L � k � 1)-layer receiver shown on the upper

right side of Fig. 2.4. Line (iii) computes S
(k)
1 y0(k+1). Since the procedure DETECT works for a

(L � k � 1)-layer receiver, line (iv) can successfully decode S
(k)
1 ˆa and S

(k)
1 ˆa(k+1) from S

(k)
1 y0(k+1).

After that, at iteration i = 1, S(k)
1 ˆa(k+1) can be removed from S

(k)
0 y0(k) by (2.45) and (2.46) (line

(vi) and (ii)) and the lower receiver can again use DETECT (line (iv)) to decode S
(k)
0 ˆa and S

(k)
0 ˆa(k+1)

from S
(k)
0 y0(k+1). Using (2.50), line (vi) and (vii) compute ˆa(k+1) from S

(k)
1 ˆa(k+1) and S

(k)
0 ˆa(k+1). So,

we have shown that DETECT works for an (L � k)-layer receiver based on the assumption that it

works for an (L� k � 1)-layer receiver. For equivalent 1-layer receivers in Fig. 2.5 which the splits

shall eventually break down to, line (i), (ii), (v), (vi), and (vii) decode S
(L�2)
i â and S

(L�2)
i â(L�1)

sequentially from S
(L�2)
i y0(L�1) just like a GMD MMSE receiver [18], [19]. By induction, we can

conclude that Algorithm 2.5.1 can successfully decode ˆa in Fig. 2.3.

2.5.3 Complexity

The proposed GGMD DFE transceiver is applicable to general MIMO channels and has less or

equal design and implementation complexity as compared to the GMD MMSE transceiver. However,
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Table 2.2: Implementation complexity (K is a power of 2)

GMD Transceiver GGMD Transceiver

P O(K2
) O(K log2(K))

⌃f O(K) O(K)

Vh O(K log2(K)) O(K log2(K))

G O(K2
) O(K log2(K))

B O(K2
)

Ai, P(i)⌦I2i ,
and B(i)⌦I2i

O(K log2(K))

Total O(K2
) O(K log2(K))

(0)
0 1,1[ ]P

(1)
0 0,0[ ]P

(1)
0

0,1

[
]

P(1)0
1,0

[
]

P

(1)
0 1,1[ ]P

(1)
0 0,0[ ]P

(1)
0

0,1

[
]

P
(1)0
1,0

[
]

P
(1)
0 1,1[ ]P

(1)
2P I (0)P

0a

1a

2a

3a

(0)
0 0,0[ ]P

(0)
0 0,1[ ]P(0)

0 1,0[ ]P

(0)
1 1,1[ ]P

(0)
1 0,0[ ]P

(0)
1 0,1[ ]P(0)

1 1,0[ ]P

Figure 2.7: Structure of P for K = 4

the design complexity is dominated by the SVD step, which takes O(JNM) [102]; the implementation

complexity is dominated by the full matrices Vh and U†
h in Fig. 2.2 and 2.3. So, the complexity gain

of a GGMD transceiver over a GMD transceiver is not obvious. It becomes prominent when we

apply it to CP systems. So, in the following paragraphs, we will only discuss the complexity of the

GGMD transceiver for CP systems and comparisons will be made with the GMD transceiver.

In CP systems, the number of subchannels, M , is often chosen to be a power of 2 which allows

efficient implementation, i.e., M = K = 2

L. Here, we also use this convention. The design complex-

ity of both transceivers is shown in Table 2.1. From Sec. 2.3, we see that obtaining ⌃h, Vh and U†
h
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takes O(K log2(K)) flops. Since ⇥ is already a diagonal matrix with positive diagonal elements in

decreasing order, the complexity of decomposing ⇥ only comes from the triangularization parts of

GGMD and GMD, respectively. According to Sec. 2.4.2, the GGMD has lower complexity, O(K),

than the complexity of GMD, O(K2
). Hence, the total design complexity of a GGMD transceiver is

O(K log2(K)) while that of a GMD transceiver is O(K2
).

To compare the implementation complexity, we let these systems process one K ⇥ 1 data vector a

and compare the number of floating point operations. The results are summarized in Table 2.2. For

the transmitter part, the complexity of the GMD transceiver is O(K2
) which comes from the K⇥K

full-size precoder P in Fig. 2.1. The precoder P of the GGMD transmitter can be implemented

efficiently by the butterfly structure illustrated in Fig. 2.7, which has complexity O(K log2(K)).

The structure has log2(K) levels of P(i) ⌦ I2i and each level requires 2K multiplications and K

additions. Vh can be implemented by fast Fourier transform with complexity O(K log2(K)).

Next, we compare the receivers. For the GMD transceiver, the feedforward matrix G has com-

plexity O(K2
) and the successive cancelation algorithm for implementing [17] the feedback matrix

B has complexity O(K2
). So, the total implementation complexity of the GMD transceiver is O(K2

).

For the GGMD receiver, the feedforward matrix G has the complexity O(K log2(K)) since Uh is

virtually a DFT matrix whereas A0 is a block diagonal matrix consisting of (K/2) 2 ⇥ 2 submatri-

ces. The iterative detection algorithm, Algorithm 2.5.1, is a divide-n-conquer algorithm [103] and the

number of flops required for the detection of an L � k-layer in Fig. 2.4 can be described by the

recurrence

�(L� k) =

8

<

:

O(1), k = L� 1,

2�(L� k � 1) +O(2

L�k
), 0  k < L� 1,

(2.51)

where O(1) is base case complexity for the detection of 1-layer receiver in Fig. 2.5, 2�(L�k�1) is the

complexity of conquering subproblems, and O(2

L�k
) is from the dividing and combining steps. Lines

(i)-(iii) are the dividing steps and Line (vi) is the combining step of the divide-n-conquer algorithm

and the number of flops is determined by B(k) and P(k+1). Since P(k+1) and B(k) are block diagonal

matrices with 2 ⇥ 2 submatrices on their diagonals, the dividing and combining steps take O(2

L�k
)

flops. Solving the recurrence (2.51) [103], we have the complexity of iterative detection algorithm

�(L) = O(K log2 K).



42

One can also verify that the cost of multiplications and additions to implement the iterative detec-

tion is approximately equal to implementing the matrices in Fig. 2.3 besides G. Since P(i) and B(i)

are block diagonal matrices with 2⇥ 2 submatrices on their diagonals, implementing Ai, P(i) ⌦ I2i

and B(i) ⌦ I2i requires complexity O(K). And log2(K) sets of them add up the complexity to

O(K log2(K)). Hence, we can conclude that the implementation complexity of a GGMD transceiver

is O(K log2(K)), which is within the same order as the DFT/IDFT matrix, and K/ log2(K) times

smaller than the implementation complexity of GMD transceiver.

2.6 Conclusions

In this chapter, we have proposed a new matrix decomposition GGMD which decomposes a com-

plex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices

in an iterative manner. The optimal GGMD parameters which minimize the number of flops are

derived. Along with the snovel iterative detection algorithm, we have shown that the GGMD can

be used to design the GGMD DFE transceiver for MIMO channels. We found that the GGMD DFE

transceiver is the most useful for CP systems since its design and implementation complexity are much

less than that of a GMD MMSE transceiver. In the next chapter, we will analyze the performance of

a GGMD transceiver and show that it reaches the same optimality that a GMD MMSE transceiver

can possibly achieve.

2.7 Appendix

2.7.1 Proof of Lemma 2.1

Since the SVD steps of both decompositions have the same complexity, we only consider the com-

plexity of the triangularization steps. By (2.28), the difference of complexity between (l0, . . . , lj , . . . , lL�1)-

GGMD and (l0, . . . ,m0,m1, . . . , lL�1)-GGMD is given by

d =

�

T (m0)m1 + T (m1)� T (lj)
�

⇣

L�1
Y

n=j+1

ln
⌘

=

QL�1
n=j+1 ln
m1

(7m3
1 � 17m2

1 � 7l2jm1 + 7l2j ). (2.52)
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The second equality follows from the direct substitution of T (·) from (2.29). By the assumptions

m0,m1 � 2 and m0m1 = lj , we have

2  m1  lj/2. (2.53)

Consider the function

g(x) = 7x3 � 17x2 � 7l2jx+ 7l2j , (2.54)

for x 2 {R : 2  x  lj/2}. Its second derivative is given by

d2g

dx2
= 42x� 34 > 0.

The last inequality follows from x � 2. Hence, g(x) is a convex function for x 2 {R : 2  x  lj/2}.

Now, the values of g(x) at boundary points are given by

g(2) = �12� 7l2j < 0,

g(lj/2) = l2j (�
21

8

lj +
22

8

) < 0.

One can write m1 = 2↵ + (1 � ↵)lj/2 for some ↵ 2 {R+ : 0  ↵  1}. Because g(x) is a convex

function, by Jensen’s inequality [104], we have

g(m1)  ↵g(2) + (1� ↵)g(lj/2) < 0.

By substituting g(m1) back in (2.52), we have d < 0 and this concludes the proof.

2.7.2 Proof of Lemma 2.2

By (2.28), the difference of complexity between (. . . , lj , lj+1, . . .)-GGMD and (. . . , lj+1, lj , . . .)-GGMD

is given by

d =

⇣

T (lj)lj+1 + T (lj+1)� T (lj+1)lj � T (lj)
⌘

Nj+2

=

Nj+2(lj+1 � lj)

lj

�

7l2j � (7� + 17)lj + 7�), (2.55)
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where Nj+2 is given by (2.21), � = lj lj+1 and the last equality is from the direct substitution of T (·)

in (2.29). Consider the function

h(x) = 7x2 � (7� + 17)x+ 7�,

which is a convex function in x. Now,

h(2) = �7� � 6 < 0,

h(
�

2

) = �7

4

�2 � 3

2

� < 0. (2.56)

Since 2  lj  �/2, one can express

lj = 2↵+ (1� ↵)�
2

,

for some 0  ↵  1. Because h(x) is a convex function, by Jensen’s inequality [104] and (2.56), we

have

h(lj) = ↵h(2) + (1� ↵)h(�
2

) < 0.

Therefore, d < 0 for lj < lj+1 and this proves the lemma.
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Chapter 3

Performance Analysis of Generalized
Geometric Mean Decomposition DFE
Transceiver

In Chapter 2, the generalized geometric mean decomposition (GGMD) was proposed and used

to design GGMD decision feedback equalizer (DFE) transceivers for arbitrary multi-input-multi-

output (MIMO) channels without zero-forcing constraint. For the application to cyclic prefix (CP)

systems, the GGMD DFE transceiver has the greatest advantage over the GMD DFE MMSE transceiver

in terms of design and implementation complexity. This chapter presents the performance analy-

sis for the GGMD DFE transceiver implementation proposed in Chapter 2. The arithmetic mean

square error (MSE), symbol error rate (SER) and Gaussian mutual information of the proposed

system are investigated. The performance advantages of the GGMD DFE transceiver over popu-

lar orthogonal frequency division multiplexing (OFDM) and single-carrier CP MMSE systems are

shown analytically and verified by numerical simulations.

3.1 Introduction

In Chapter 2, we introduced a new matrix decomposition, generalized geometric mean decom-

position (GGMD). We demonstrated the potential uses of GGMD in DFE transceiver design with-

out zero-forcing constraint. Along with the proposed iterative detection algorithm, a GGMD DFE

transceiver with lower design and implementation complexity than a GMD DFE MMSE transceiver

[18], [19] can be constructed. The GGMD DFE transceiver is not just an implementation efficient

version of a GMD DFE MMSE transceiver. It is a new DFE transceiver constructed from the newly
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proposed GGMD and, as we shall explain in Sec. 3.4, it has a different input and output relation-

ship from the conventional GMD transceiver. So, an in-depth investigation of its performance is

needed.

The analysis in this chapter shows that a GGMD DFE transceiver achieves the same optimal

arithmetic MSE as a GMD DFE MMSE transceiver [19] does. Then it shows that the proposed

transceiver converts the MIMO channels into parallel equivalent subchannels and each subchannel

has the same bias and equal signal to noise plus interference ratios (SINRs). Hence, no bit allo-

cation is required to minimize the average bit error rate (BER) [35] or maximize the bitrate [25].

Moreover, we show that the proposed GGMD DFE transceiver can achieve MIMO channel capac-

ity by independently applying the scalar Gaussian code of the same rate to each subchannel. The

investigation also shows that the proposed transceiver minimizes the average symbol error rate

(SER) in the moderate high signal to noise plus interference ratio (SINR) region.

In Chapter 2, it is shown that the design and implementation of a GGMD DFE transceiver for CP

systems takes O(K log2(K)) flops, which is of the same order as the implementation complexity of

a single carrier cyclic prefix (SC-CP) or an orthogonal frequency division multiplexing (OFDM)

MMSE system. The analysis in this chapter explicitly shows the advantages of the proposed

transceiver over OFDM and SC-CP MMSE systems in terms of arithmetic MSE and average SER.

We show that a GGMD transceiver has lower SER than a SC-CP MMSE system [10] for all SINRs,

and lower SER than an OFDM MMSE system in the moderate high SINR region. Numerical simula-

tions are also conducted to verify the analytical results. Furthermore, the simulations demonstrate

the robustness of GGMD DFE transceivers to channel spectral nulls while the average bit error

rates (BERs) of SC-CP and OFDM MMSE systems degrade significantly. Most of the results in this

chapter have been reported in our recent journal paper [28].

3.2 Outline

The sections in this chapter are structured as follows. In Section 3.3, we briefly review the per-

formance of a GMD DFE MMSE transceiver and the design of a GGMD DFE transceiver [27].

In Section 3.4, we analyze the performance of the proposed transceiver in terms of arithmetic

MSE, average SER and Gaussian mutual information. Analytical comparisons of the GGMD DFE

transceiver, the GMD DFE MMSE transceiver, OFDM and SC-CP MMSE systems on their average

MSEs and SERs are made in Section 3.5. Numerical simulations of BER performances are given in
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Figure 3.1: The transmitter of the GGMD DFE transceiver and the channel.
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Figure 3.2: The receiver of the GGMD DFE transceiver.

Section 3.6. Concluding remarks are given in Section 3.7.

3.3 Preliminaries

In this section, we shall first review the performance of the conventional GMD DFE MMSE transceiver

[18], [19] shown in Fig. 2.1 of Chapter 2. The error component vector in front of the detector is given

by e = y � a where y and a are defined in Fig. 2.1 of Chapter 2. Under the no error propagation

assumption, the error covariance matrix [19] can be written as

Rgmd
ee = E(ee†) = �2

a(I+B)P†⇥�2P(I+B)

†, (3.1)

where the design matrix

⇥ =

�

IM +

�2
a

�2
w

⌃2
f⌃

2
h

�1/2
, (3.2)

�2
a, �2

w, ⌃f and ⌃h are defined in Sec. 2.3 of Chapter 2. The M ⇥ M strictly upper triangular

feedback matrix B and unitary precoding matrix P are obtained from the GMD of ⇥, which is

⇥ = Q
⇣

M�1
Y

k=0

�i
⌘1/M

(IM +B)P†, (3.3)
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where �k = [⇥]k,k. Using (3.3), (3.1) can be reduced to

Rgmd
ee = E(ee†) = �2

a

⇣

M�1
Y

k=0

��2
k

⌘1/M
IM . (3.4)

One can see that Rgmd
ee is determined by the diagonal elements of the upper triangular matrix

from the GMD of ⇥ in (3.3). For square QAM [94], the average uncoded SER of a GMD MMSE

transceiver [19] is

Pgmd = c0Q(c1
p

�gmd � 1), (3.5)

where

�gmd =

�2
a

[Rgmd
ee ]k,k

, (3.6)

c0 and c1 depend on the number of bits b associated with each QAM symbol as

c0 = 4(1� 2

�b/2
) and c1 =

»
3/(2b � 1). (3.7)

Fig. 3.1 and Fig. 3.2 show the transmitter and receiver of the proposed GGMD DFE transceiver,

respectively. The details of the design are given in Chapter 2. The feedback matrices B(i) and

precoding matrices P(i) are obtained from the optimal GGMD of the design matrix ⇥ in (3.2),

⌃(i)
= Q(i)

(⌃(i+1) ⌦ Ili)(I+B(i)
)P(i)†, (3.8)

where ⌃(0)
= ⇥, li are GGMD parameters defined in Chapter 2 and 0  i  L� 1. The matrices Ai

are defined as

Ai = (I+B(i)
)P(i)† ⌦ Il0i�1

, (3.9)

where l0i =
Qi

n=0 ln.

As mentioned in Chapter 2, the optimal GGMD and GMD, in general, are two different kinds

of decomposition for non-prime M since GGMD cannot be written as the product of Q, R and

P†, where the upper triangular matrix R has diagonal elements equal to the geometric mean of

the singular values of the matrix it is decomposing. Moreover, the GGMD DFE transceiver has a
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completely different receiver structure than that of a GMD DFE MMSE transceiver. One cannot

compute the error covariance matrix of the GGMD DFE transceiver using results from (3.1), (3.3)

and (3.4). It is not clear how the error covariance matrix depends on the matrices obtained from

GGMD in (3.8). Hence, we shall carefully analyze the performance of the proposed GGMD DFE

transceiver based on the new receiver structure in Fig. 3.2 and the optimal GGMD in (3.8).

3.4 Performance Analysis of GGMD DFE Transceiver

In this section, we derive the input-output relationship of the GGMD DFE transceiver in Fig. 3.1

and 3.2. And then, we will analyze the performance of the proposed GGMD transceiver in terms

of total MSE, uncoded average SER and Gaussian mutual information. All the analysis results are

based on the assumption that there is no error propagation in the decision feedback loop, i.e. ˆa = a,

which is a standard assumption for performance analysis of DFE equalizers [18], [19], [26] and [17].

For notational convenience, we define

A0
(m) =

L�1�m
Y

i=0

AL�1�i, (3.10)

P0
(m) =

L�1
Y

i=m

P(i) ⌦ Il0i�1
,

Q0
(m) =

L�1
Y

i=m

Q(i) ⌦ Il0i�1
,

A0
(L) = P0

(L) = Q0
(L) = IM , where 0  m  L � 1 and l0i�1 is defined in (3.9). So, the GGMD in

(3.8) can be written as

⌃(0)
= Q0

(0)⌃

(L)A0
(0). (3.11)

In Fig. 3.1 and 3.2, the input-output relationship of the GGMD transceiver (from input vector a to

the signal vector y(L�1)), has the form

y(L�1)
= r = Tggmda+w0, (3.12)
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where the equivalent noise w0
= A0

(0)⇤U†
hw and the equivalent channel matrix Tggmd is given by

Tggmd =

⇣

A0
(0)⇤⌃h⌃fP

0
(0) (3.13)

�
L
X

n=1

A0
(n)(B(n�1) ⌦ Il0n�2

)P0
(n)

⌘

.

For the GMD transceiver in Fig. 2.1 of Chapter 2, the input-output relationship can be expressed as

y = Tgmda+ (IM +B)P†⇤U†
hw, (3.14)

where the equivalent channel matrix

Tgmd = (IM +B)P†⇤⌃h⌃fP�B. (3.15)

Since A0
(m), P0(m) and B(m) ⌦ Il0m�1

in (3.12) are obtained from the GGMD as in (3.11), they all

have special parallel butterfly structures as shown in Fig. 2.7 of Chapter 2, while P and B obtained

from GMD do not have such structures. So, in general, A0
(0) in (3.12) is not equal to (I + B)P†

in (3.14), which means that the GGMD and GMD receivers have different noise components in

front of the detector even for the same channel noise w. Moreover, Tggmd is generally not equal to

Tgmd. GGMD and GMD transceivers have different equivalent channels and noise components in

front of the detectors, unless M is prime number so that GGMD reduces to GMD. Therefore, we

cannot expect both transceivers to output the same ˆa even for the same input data vector a and

channel noise w. The GGMD DFE transceiver is essentially a different transceiver from the GMD

DFE MMSE transceiver. Hence, a thorough investigation of its performance is needed to verify the

usefulness of a GGMD transceiver.

3.4.1 Mean Square Error

To understand the mean square error of the proposed transceiver in Fig. 3.1 and Fig. 3.2, we shall

first analyze the error component in front of the detector,

e = y(L�1) � a, (3.16)
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and then derive the error covariance matrix. From Fig. 3.2, we have

y(m)
= Amy(m�1) � (B(m) ⌦ Il0m�1

)P0
(m+ 1)a, (3.17)

for 0  m  L � 1 where P0
(m + 1) is given by (3.10). Using this relation of y(m) for consecutive

m, we have the following lemma for the error component.

Lemma 3.1: The error component e defined as in (3.16) can be expressed as

e = A0
(m)

⇣

y(m�1) �P0
(m)a

⌘

, (3.18)

for 1  m  L� 1. ⇤

Proof: See appendix. ⇤

From Fig. 3.2, it can be shown that

y(0)
= GHFa�B(0)P0

(1)a+Gw. (3.19)

The channel matrix H is decomposed by SVD in Chapter 2 as

H = Uh⌃hV
†
h, (3.20)

where ⌃h is an M ⇥M diagonal matrix, Uh is a J ⇥M semi-unitary matrix and Vh is an N ⇥M

unitary matrix. Substituting (3.19) and (3.20) into (3.18) for m = 1 yields

e = A0
(1)

⇣

�

GUh⌃h⌃fP
(0) � I�B(0)

�

P0
(1)a+Gw

⌘

. (3.21)

Following similar procedures as in Sec. 19.C [91], the error covariance matrix can be shown to be

Rggmd
ee = E[ee†] (3.22)

= �2
aA

0
(0)⌃(0)�2

A0
(0)

†,

where A0
(0) is given by (3.10) and ⌃(0) is given by (3.11). Applying (3.11) to (3.22) , one can finally
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have

Rggmd
ee = �2

a

⇣

M�1
Y

k=0

��2
k

⌘1/M
IM , (3.23)

where �k is given in (3.3). From the expression above, the error covariance matrix Rggmd
ee here is

identified to be exactly the same as that of the GMD MMSE transceiver given in (3.4). The total

MSEs of both the GGMD and GMD DFE transceivers over a data block are given by

⇠ggmd = ⇠gmd = Tr(Rggmd
ee ) = M�2

a

⇣

M�1
Y

k=0

��2
k

⌘1/M
. (3.24)

This implies that the GGMD transceiver is optimal in terms of arithmetic MSE, just as the GMD

MMSE transceiver.

3.4.2 Bias of the Detector

In practice, whenever MMSE receivers are used, the bias is estimated and removed before the sym-

bol detection. A careful treatment of bias is required before we can analyze the uncoded average

SER performance of the proposed GGMD DFE transceiver. The GGMD iterative equations in (3.8)

can be rewritten as

⌃(i)
= Q(i)D(i)B

(i)
1 P(i)†, (3.25)

where B
(i)
1 = I+B(i) and

D(i)
= ⌃(i+1) ⌦ Ili . (3.26)

The following two lemmas shall be useful in deriving the bias of the GGMD DFE receiver.

Lemma 3.2: The product ⌃f⌃h⇤ can be reduced to

⌃f⌃h⇤ = (I�P(0)B
(0)
1

�1
D(0)�2

B
(0)
1

�†
P(0)†

). (3.27)

⇤

Proof: See appendix. ⇤
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Lemma 3.3: Suppose

E = (A⌦ Il)
⇣

l�1
X

m=1

DmSm
⌘

(B⌦ Il),

where Dm are any nl ⇥ nl diagonal matrices, A and B are any n⇥ n complex matrices, and S is a

ln⇥ ln circular shift operator of the form

S =

0

B

B

B

B

B

B

B

@

0 0 · · · 1

1 0

. . .
0

...
. . . . . .

...

0 · · · 1 0

1

C

C

C

C

C

C

C

A

. (3.28)

Then, the diagonal elements of E are all zeros, i.e., Eii = 0. ⇤

Proof: See appendix. ⇤

To determine the bias of the detector, we shall re-express each component of r in (3.12) as

ri = ↵iai + ⌧i, (3.29)

where 0  i M � 1, ↵i is the bias, ⌧i is the noise plus interference component such that E(ai⌧⇤i ) =

0. The following theorem will be helpful in reducing (3.12) to (3.29).

Theorem 3.1: The received signal r in (3.12) can be expressed as

r = A0
(m)

⇣

I�D(m�1)�2
B

(m�1)
1

�†
⌦ Il0m�2

⌘

P0
(m)a

�
L
X

n=1+m

A0
(n)

⇣

B(n�1) ⌦ Il0n�2

⌘

P0
(n)a�

m
X

n=2

˜Ena+w0, (3.30)

where

˜En =A0
(n)

n⇣

D(n�1)�2
B

(n�1)
1

�†
P(n�1)† ⌦ Iln�2

⌘

· L(n�2) ⌦ Il0n�3

o

P0
(n� 1), (3.31)

L(n)
= B

(n)
1

�†
� I, (3.32)

and 1  m  L. ⇤
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Proof: Using the result from Lemma 3.2 and (3.12), r can be written as

r = A0
(1)

⇣

I�D(0)�2
B

(0)
1

�†⌘
P0

(1)a (3.33)

�
L
X

n=2

A0
(n)

⇣

B(n�1) ⌦ Il0n�2

⌘

P0
(n)a+w0.

So, (3.30) holds for m = 1. Suppose (3.30) holds for m = k, i.e.,

r = A0
(k)

⇣

I�D(k�1)�2
B

(k�1)
1

�†
⌦ Il0

k�2

⌘

P0
(k)a

�
L
X

n=1+k

A0
(n)

⇣

B(n�1) ⌦ Il0n�2

⌘

P0
(n)a�

k
X

n=2

˜Ena+w0

= A0
(k)

h

I� (P(k)B
(k)
1

�1
D(k)�2

B
(k)
1

�†
P(k)† ⌦ Ilk�1)(I

+ L(k�1)
)⌦ Il0

k�2

i

·P0
(k)a�

k
X

n=2

˜Ena+w0

�
L
X

n=1+k

A0
(n)

⇣

B(n�1) ⌦ Il0n�2

⌘

P0
(n)a

= A0
(k + 1)

⇣

I�D(k)�2
B

(k)
1

�†
⌦ Il0

k�1

⌘

P0
(k + 1)a

�
L
X

n=2+k

A0
(n)

⇣

B(n�1) ⌦ Il0n�2

⌘

P0
(n)a�

k+1
X

n=2

˜Ena+w0.

The second equality follows from (3.25) and (3.26) and the third equality is obtained by factoring

A0
(k) as A0

(k) = A0
(k + 1)Ak. So, (3.30) holds for m = k + 1. Therefore, we have proven the

theorem by induction. ⇤

In particular for m = L, Theorem 3.1 reduces to

r =(I�D(L�1)�2
⌦ Il0L�2

)a�
L
X

n=2

˜Ena

� (D(L�1)�2
L(L�1) ⌦ Il0L�2

)a+w0. (3.34)

Note that D(L�1)�2
L(L�1)⌦ Il0L�2

is a strictly lower triangular matrix. The following lemma shows

that ˜En have zero diagonal elements. Along with the elements ai in a being uncorrelated, (3.34)

can be written as (3.29). The component ↵iai in ri only comes from the first term in (3.34). By (3.8),
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(3.26), we have

D(L�1)
=

⇣

M�1
Y

k=0

�k
⌘1/M

IlL�1 . (3.35)

Hence, the bias ↵i is given by

↵ = ↵i = 1�
⇣

M�1
Y

k=0

1

�2
k

⌘1/M
. (3.36)

All the equivalent subchannels of a GGMD transceiver have the same bias ↵.

Lemma 3.4: The matrices ˜En in (3.31) have zero diagonal elements for n = 2, 3, . . . , L. ⇤

Proof: See appendix. ⇤

3.4.3 Symbol Error Rate Performance

For square QAM modulations [94], the uncoded SER of the ith subchannel of GGMD DFE transceiver

is

Pggmd,i = c0Q(c1
p
�ggmd,br,i), (3.37)

where c0 and c1 are given by (3.7) and �ggmd,br,i is the signal to noise plus interference ratio (SINR)

in the ith subchannel of the detector after bias removal. Given the type of modulation, the SER is

completely determined by the SINR �ggmd,br,i. To compute the �ggmd,br,i, we need to determine the

covariance of ⌧i in (3.29). The ith component of e in (3.16) is given by

ei = ri � ai = (↵� 1)ai + ⌧i, (3.38)

where the second equality follows by direct substitution of (3.29). Then we can compute the error

covariance of ei as

[Rggmd
ee ]i,i = [E(ee†)]i,i = (1� ↵)2�2

a + [R⌧⌧ ]i,i

= (1� ↵)�2
a, (3.39)
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where last equality is from the result in (3.23). By algebraic manipulation, one can rewrite such that

[R⌧⌧ ]i,i = ↵(1� ↵)�2
a. (3.40)

The SINR for the ith subchannel is given by

�ggmd,br,i = �ggmd,br =

�2
a

[R⌧⌧ ]i,i/↵2
=

↵

1� ↵ , (3.41)

which is constant for all subchannels. Averaging over all M subchannels, we have the uncoded

average SER of the GGMD DFE transceiver,

Pggmd =

c0
M

M�1
X

i=0

Q(c1
p
�ggmd,br,i) = c0Q(c1

p
�ggmd,br). (3.42)

The following is an important theorem connecting the average SER performances of GGMD and

GMD DFE transceivers.

Theorem 3.2: Both GGMD and GMD DFE MMSE transceivers share the same average symbol

error rate. ⇤

Proof: The average uncoded SER of the GMD MMSE transceiver in [19] is given by (3.5). As

shown earlier in this section, both the GGMD and GMD MMSE transceivers have the same error

covariance matrices given by (3.23). So, by (3.39) and (3.6), we have

�gmd =

�2
a

(1� ↵)�2
a

=

1

1� ↵ . (3.43)

Then, it follows that

�ggmd,br = �gmd � 1,

which also implies

Pggmd = Pgmd. (3.44)

⇤
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By equalizing the SINRs of all subchannels, the GGMD DFE transceiver also minimizes the

average SER in the moderate high SINR region [19].

Using the Gray encoding scheme [94], we can assume that there is only one bit error for each

occurrence of the symbol error in the moderate high SNR region. The uncoded bit error rate (BER)

of the ith subchannel of a GGMD DFE transceiver can be approximated by

P ggmd
b,i ⇡ Pggmd,i/b, (3.45)

where b is given by (3.7). It follows that the average BER is given by

P ggmd
b =

1

M

M�1
X

i=0

P ggmd
b,i = Pggmd/b. (3.46)

We use the fact Pggmd = Pggmd,i, from (3.37) and (3.42), for the second equality. By Theorem 3.2, we

can conclude that both GMD and GGMD transceivers have the same average BER performance,

i.e.,

P ggmd
b = P gmd

b . (3.47)

3.4.4 Gaussian Mutual Information

The GGMD DFE MMSE transceiver converts the MIMO channel H into M equivalent parallel sub-

channels and each subchannel has equal SINR given by (3.41). The Gaussian mutual information

of the GGMD DFE MMSE transceiver in Fig. 3.1 and 3.2 is

I(y(L�1)
;a) = M log2(1 + �ggmd,br)

= M log2(
1

1� ↵ )

= M log2

⇣

M�1
Y

k=0

�2
k

⌘1/M
. (3.48)

The channel capacity of the MIMO channel H in Fig. 3.1 is as follows [98]:

C = max

Tr(R
xx

)P0

log2 det

⇣

IN +

HRxxH
†

�2
w

⌘

, (3.49)
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where Rxx = E(xx†
). Using properties of unitary matrices and waterfilling [91], the optimization

problem in (3.49) can be solved and one can obtain the channel capacity

C = log2 det

⇣

IN +

�2
a

�2
w

⌃2
f⌃

2
h

⌘

= M log2

⇣

M�1
Y

k=0

�2
k

⌘1/M
, (3.50)

where ⌃h and ⌃f are given in Sec. 2.3 of Chapter 2. The last equality follows from (3.2) and (3.3).

The analysis shows that

C = I(y(L�1
;a),

which implies the GGMD DFE transceiver is Gaussian mutual information lossless. Along with the

fact that all the equivalent subchannels of the GGMD transceiver have the same SINR, identical and

independent Gaussian channel codes can be applied so that the proposed system achieves channel

capacity. In other words, the GGMD DFE transceiver is an efficent capacity achieving structure for

MIMO communications.

In summary, we have shown that the proposed GGMD DFE transceiver has the same perfor-

mance as the GMD DFE MMSE transceiver in terms of arithmetic MSE, average SER and Gaus-

sian mutual information for generic MIMO channels. To compare the performance with linear

transceivers [91], one can just refer to the comparison results of the GMD DFE MMSE transceiver

as in Ch. 19 [91].

3.5 Performance Comparison

In Chapter 2, we show that the design and implementation of a GGMD DFE MMSE transceiver for a

CP system takes O(K log2(K)) flops, where K is the size of a data block and is a power of 2. Also,

it is well known [106] that the implementation complexity of an OFDM or SC-CP MMSE system is

O(K log2(K)). Without increasing the complexity too much, the proposed GGMD DFE transceiver

will be a good candidate for CP systems if it demonstrates superior performance over an OFDM

or SC-CP MMSE system. In this section, we compare the performance of the proposed GGMD

DFE transceiver with the popular OFDM and SC-CP MMSE transceiver over CP systems. Here, the

MIMO equivalent channel is a circulant matrix Hcir. Comparisons in terms of average MSE and

SER are made in the following two subsections.
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3.5.1 Mean Square Error

To facilitate the performance comparisons with OFDM and SC-CP MMSE systems in which uni-

form power allocation is applied, we consider the versions of GGMD and GMD DFE MMSE transceiver

with uniform power allocation (GGMDU and GMDU). The power allocation matrix takes the form

⌃f =

»
P0/MIM . (3.51)

The corresponding error covariance matrices are given by

Rggmdu
ee = Rgmdu

ee = �2
a

⇣

M�1
Y

k=0

��2
k

⌘1/M
IM , (3.52)

where

�k =

h

�

IM +

�2
aP0

�2
wM

⌃2
h

�1/2
i

k,k
, (3.53)

and the total MSEs are

⇠ggmdu = ⇠gmdu = M�2
a

⇣

M�1
Y

k=0

��2
k

⌘1/M
. (3.54)

It is clear from [19] that

⇠ggmdu = ⇠gmdu � ⇠ggmd = ⇠gmd, (3.55)

since the power loading matrix ⌃f in the GMD DFE MMSE transceiver is the optimal solution that

minimizes the total MSE.

Both OFDM and SC-CP MMSE systems are special cases of the DFE MMSE transceiver in Fig.

3.1 and Fig. 3.2. A GGMD DFE transceiver reduces to an OFDM MMSE system if we make P(i)

and Ai identity matrices, B(i) zero matrices, and ⌃f as in (3.51). So, its error covariance follows

directly from (3.22) and is of the form

Rofdm
ee = �2

a

⇣

IM +

�2
aP0

�2
wM

⌃2
h

⌘�1
. (3.56)
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The total MSE is

⇠ofdm = �2
a

M�1
X

k=0

1

�2
k

, (3.57)

where �k is given in (3.53). To make the GGMD DFE MMSE transceiver a SC-CP MMSE system, we

let P(0)
= W and A0 = W†, where W is an M ⇥M DFT matrix. All other P(i) and Ai should be

identity matrices, and B(i) are zero matrices. Thus, the error covariance of a SC-CP MMSE system

can be shown to be

Rsccp
ee = �2

aW
†
⇣

IM +

�2
aP0

�2
wM

⌃2
h

⌘�1
W. (3.58)

One can verify that Rsccp
ee has equal diagonal elements [6], [7] where

[Rsccp
ee ]i,i =

�2
a

M

M�1
X

k=0

1

�2
k

. (3.59)

The total MSE of the SC-CP MMSE system is given by

⇠sccp = �2
a

M�1
X

k=0

1

�2
k

, (3.60)

which is equal to ⇠ofdm.

By AM-GM inequality and (3.55), we can conclude that

⇠ofdm = ⇠sccp � ⇠ggmdu = ⇠gmdu � ⇠ggmd = ⇠gmd. (3.61)

3.5.2 Symbol Error Rate

For the GGMD and GMD DFE MMSE transceiver with uniform power allocation (GGMDU and

GMDU), the average SERs are given by

Pggmdu = Pgmdu = c0Q(c1
p

�ggmdu � 1), (3.62)

where

�ggmdu =

�2
a

[Rggmdu
ee ] i,i

=

M�2
a

⇠ggmdu
,
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and Rggmdu
ee is given by (3.52). Since Pggmd and Pggmdu are increasing functions of MSE [11], [39], it

follows from (3.55) that

Pgmd = Pggmd  Pgmdu = Pggmdu, (3.63)

when �ggmdu � 1.

The comparisons of GGMD, OFDM and SC-CP MMSE transceivers in terms of SERs are sum-

marized in Theorem 3.3. Before that, we define SINRs of the ith subchannel for GGMD, GGMDU,

OFDM, SC-CP MMSE transceivers as

�

ggmd
i =

�2
a

[Rggmd
ee ]i,i

, �ggmdu
i =

�2
a

[Rggmdu
ee ]i,i

,

�

ofdm
i =

�2
a

[Rofdm
ee ]i,i

, �sccp
i =

�2
a

[Rsccp
ee ]i,i

, (3.64)

respectively. In what follows “convex region” means the SINRs are such that

�

ggmdu
i ,�ofdm

i ,�sccp
i 2 {Rcvx

\

ˆRcvx}, (3.65)

and “concave region” means

�

ggmdu
i ,�ofdm

i ,�sccp
i 2 {Rccv

\

ˆRccv}. (3.66)

The sets, Rcvx, ˆRcvx,Rccv , and ˆRccv , depend on the choice of modulation schemes and are defined

in Sec. VI of [39]. To make this chapter self-contained, we summarize the case for square 2

b-QAM

as follows: The number b only takes even integers. Let R++ = {x 2 R : x � 1}. For b = 2, we

define Rcvx = {� 2 R++}. For b � 4,

Rcvx = {� 2 R++ : �  t1 or � � t2}, (3.67)

in which t1  t2 and

t1, t2 =

8

K1 + 3±
p

K2
1 � 10K1 + 9

,

K1 = 3/(2b � 1), and Rccv = R++ \ Rcvx. Moreover, we define ˆRcvx = {� 2 R++} for b = 2, 4. For
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b � 6,

ˆRcvx = {� 2 R++ : �  t01 or � � t02}, (3.68)

in which t01  t02

t01, t
0
2 =

4

K1 + 1±
p

K2
1 � 6K1 + 1

,

and ˆRccv = R++ \ ˆRcvx. The convex region usually means the very low and moderate high SINR

region and the concave region means medium SINR region. For QPSK modulation, the convex

region contains all SINR values.

Theorem 3.3: Let Pofdm be the average SER of the OFDM MMSE system, Psccp be the average SER

of the SC-CP MMSE system. Then,

Pggmdu  Psccp  Pofdm, in the convex region,

Pofdm  Pggmdu = Pgmdu  Psccp, in the concave region,

and Pggmd  Pggmdu.

⇤

Proof: The proof consists of four parts. Firstly, we show that Pggmdu  Psccp for all SINRs. The

second part is the proof that Pggmdu  Pofdm in the convex region and the other way around in the

concave region. The third part is the proof that Psccp  Pofdm for �sccp
i ,�ofdm

i 2 Rcvx and the other

way around for �

sccp
i ,�ofdm

i 2 Rccv . This part had been proven in [7] and a similar proof can be

found in Theorem 2 of [39]. The last part Pggmd  Pggmdu follows from (3.63).

To prove the first part, we define SER function in terms of MSE x as

 (x) = c0Q(c1

…
�2
a

x
� 1),

so that

Pggmdu =  (⇠ggmdu/M) and Psccp =  (⇠sccp/M),
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where ⇠ggmdu and ⇠sccp are given by (3.54) and (3.60), respectively. Since  (x) is a monotone in-

creasing function [11], [39], the fact that ⇠ggmdu  ⇠sccp in (3.61) leads to Pggmdu  Psccp.

For the proof of second part, we define

g(y) =
1

M

M�1
X

k=0

c0Q(c1
p

e2yk � 1), (3.69)

where y is a M ⇥ 1 vector. So that by (3.52) and (3.56)

Pggmdu = g(yggmdu
),

Pofdm = g(yofdm
).

The elements of yggmdu and yofdm are given by

yggmdu
i = log(

»
�

ggmdu
i ) =

1

M

M�1
X

k=0

log �k,

yofdmi = log(

»
�

ofdm
i ) = log �i,

where �k are defined in (3.53). By the definition of majorization [95], one can verify that yggmdu is

additively majorized by yofdm, denoted as

yggmdu �+ yofdm. (3.70)

By Lemma 2 in [39] and Proposition C.1 in [95], it follows that g(y) is Schur-convex when e2yi 2

ˆRcvx, and Schur-concave when e2yi 2 ˆRccv . For �ggmdu
i ,�ofdm

i 2 ˆRcvx; yggmdu and yofdm are in the

domain where g(y) is Schur-convex. Hence, by (3.70), we can conclude that g(yggmdu
)  g(yofdm

).

Similarly, it follows that g(yggmdu
) � g(yofdm

) for �ggmdu
i ,�ofdm

i 2 ˆRccv . ⇤

3.6 Numerical Results

In this section, we present the simulation results on the average BERs of the proposed GGMD

DFE transceiver, the GMD DFE MMSE transceiver [18], [19], the SC-CP MMSE system, and OFDM

MMSE systems [7], [6], [106]. For OFDM MMSE systems, both cases, with and without bit allo-

cation, are considered. The bit allocation is done according to Ch. 8 in [106] with slightly modifi-

cations for the OFDM MMSE system. We assume that the channel noise is AWGN with variance
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Figure 3.3: The BER performance comparison for the channel h1.
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Figure 3.4: The BER performance comparison for the channel h2.
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Figure 3.5: The comparison of BERs

�2
w as in Sec. 3.3. The number of subchannels M = K = 64 and the length of the cyclic prefix is

equal to the order of the channels. The SNR is defined as SNR = Eav/�2
w, where Eav is the average

transmitting symbol power. For moderate high SNR and Gray encoding schemes, one can assume

one bit error per symbol error. Then, BER = SER/b where b is the number of bits per symbol

[94]. So, the relationships of average SERs for different transceivers roughly reflects those of the

BERs. The average BERs are evaluated over fixed channels and multipath slowly fading channels

in Example 1 and Example 2, respectively.

Example 1: Two channels with four coefficients (Nh = 3) as in [7] are used in this example:

H1(z) = zh1, H2(z) = zh2, (3.71)

where

h1 =

2

6

6

6

6

6

6

4

0.3903 + j0.1049

0.6050 + j0.1422

0.4402 + j0.0368

0.0714 + j0.5002

3

7

7

7

7

7

7

5

, h2 =

2

6

6

6

6

6

6

4

�0.3699� j0.5782

�0.4053� j0.5750

�0.0834� j0.0406

0.1587� j0.0156

3

7

7

7

7

7

7

5

,
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and z = [1, z�1, z�2, z�3
]. The second channel has a spectral null at 0.9⇡. For the proposed GGMD

DFE transceiver, the GMD MMSE transceiver , the SC-CP MMSE system, and OFDM MMSE sys-

tems, the modulated symbols are standard QPSK symbols with Gray encoding [94] and two bits

are allocated to each subchannel. So, the convex region in Theorem 3.3 contains all SNRs in R++

whenever the theorem applies. For the OFDM MMSE system with bit allocation, an average of two

bits is allocated to each subcarrier and each substream only takes square QAM [94] symbols with

Gray encoding. Hence, the bit allocation algorithm [106] assigns even number of bits to each sub-

stream. The BERs are evaluated by sending 10000 64 ⇥ 1 data blocks for each system. Fig. 3.3 and

Fig. 3.4 show that both the GGMD and GMD DFE MMSE transceivers have almost the same BER

performance, which conforms to (3.47). Both figures also show that Pggmd  Psccp  Pofdm, except

for the low SNR region where error propagation is significant. Otherwise, the results follow the

analysis result in Theorem 3.3 nicely. Moreover, both GGMD and GMD DFE MMSE transceivers

are robust to spectral nulls while the BERs of OFDM and SC-CP MMSE systems degrade signifi-

cantly if there is a spectral null as illustrated in Fig. 3.4. Although the OFDM MMSE system with

bit allocation performs considerably well when compared with SC-CP and OFDM systems without

bit allocation, the simulations show that it suffers from BER loss due to the granularity issue of bit

allocation.

Example 2: The multipath slowly fading channel is given by

H(z) =
Nh
X

n=0

h(n)z�n. (3.72)

The channel order Nh = 3, the channel taps h(n) are assumed to be complex Gaussian variables

satisfying E[h(n)] = 0 and E[h(n)h⇤
(n � k)] = �(k). The cyclic prefix length is chosen to be 3.

The modulation and bit allocation schemes for all the systems are the same as those in Example

1. To evaluate the BERs, we have 10000 64 ⇥ 1 data blocks processed by each system for one

channel realization. The average BERs are obtained by averaging over 100 channel realizations.

The average BERs are shown in Fig. 3.5. The figure shows that both the GGMD and GMD DFE

MMSE transceivers have almost the same BER performance. Moreover, the GGMD and GMD

transceivers greatly reduce the average BERs in the CP system when compared with linear MMSE

receivers, SC-CP and OFDM. The result, Pggmd  Psccp  Pofdm, is consistent with Theroem 3.3.

Moreover, it is observed that both GGMD and GMD DFE MMSE transceivers outperform OFDM

MMSE systems with bit allocation.
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3.7 Conclusions

The GGMD transceiver achieves the same optimality as the optimal GMD MMSE transceiver, in

that it maximizes Gaussian mutual information, and minimizes the arithmetic mean square error and

average SER. For CP systems, the SER analysis shows that the GGMD DFE transceiver outperforms

the SC-CP MMSE system for all SINRs, and the OFDM MMSE system in moderate high SINR re-

gion. Moreover, our simulations demonstrate the robustness of the GGMD DFE transceiver when

there are spectral nulls, and verify its performance advantage over OFDM and SC-CP MMSE sys-

tems. The proposed GGMD DFE transceiver is a good transceiver candidate for CP systems with

competitive complexity and excellent SER performance in moderate high SINR.

3.8 Appendix

3.8.1 Proof of Lemma 3.1

By (3.17), the error component defined in (3.16) can be re-expressed as

e = AL�1y
(L�2) � (B(L�1) ⌦ Il0L�2

)a� a

= AL�1

⇣

y(L�2) � (P(L�1) ⌦ Il0L�2
)a
⌘

.

The last equality follows from (3.9). So, (3.18) holds when m = L � 1. Suppose (3.18) holds for

m = k as well, i.e.,

e = A0
(k)

⇣

y(k�1) �P0
(k)a

⌘

. (3.73)

Substituting y(k�1) in (3.73) with (3.17), we have

e = A0
(k)

⇣

Ak�1y
(k�2) �

�

(B(k�1)
+ I)⌦ Il0

k�2

�

P0
(k)a

⌘

= A0
(k � 1)

⇣

y(k�2) �P0
(k � 1)a

⌘

.

The last equality follows from (3.9). Hence, (3.18) holds when m = k � 1. By induction, we can

conclude the proof.
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3.8.2 Proof of Lemma 3.2

By the definition of ⇤ in Chapter 2, we have

⌃f⌃h⇤ =

�2
a

�2
w

⌃2
f⌃

2
h

⇣ �2
a

�2
w

⌃2
f⌃

2
h + I

⌘�1
.

Applying the matrix inversion lemma [105], one can have

⌃f⌃h⇤ = I�
⇣

I+
�2
a

�2
w

⌃2
f⌃

2
h

⌘�1
. (3.74)

By (3.2), (3.26) and the GGMD iterative equations in (3.25), (I+ �2
a/�

2
w⌃

2
f⌃

2
h)

1/2 can be factored as

⇣

I+
�2
a

�2
w

⌃2
f⌃

2
h

⌘1/2
= Q(0)D(0)B

(0)
1 P(0)†. (3.75)

Substituting (3.75) into (3.74), we obtain (3.27).

3.8.3 Proof of Lemma 3.3

Denote

Em = (A⌦ Il)DmSm
(B⌦ Il),

so that E =

Pl�1
m=1 Em. Let G = (A ⌦ Il)Dm and F = Sm

(B ⌦ Il). For 0  i1, i2  n � 1 and

0  j1, j2  l � 1, one can observe that

Gi1l+j1,i2l+j2 = 0, for |j1 � j2| 6= 0,

Fi1l+j1,i2l+j2 = 0, for |j1 � j2| 6= m. (3.76)

The diagonal elements of Em can be expressed as

[Em]i1l+j1,i1l+j1 =

nl�1
X

j=0

Gi1l+j1,jFj,i1l+j1 . (3.77)
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Renumbering the indices and using (3.76), we have

[Em]i1l+j1,i1l+j1 =

n�1
X

i2=0

⇣

l�1
X

j2=0,j2 6=j1

Gi1l+j1,i2l+j2Fi2l+j2,i1l+j1

+Gi1l+j1,i2l+j1Fi2l+j1,i1l+j1

⌘

= 0.

Hence, the diagonal elements of E are given by

Ei,i =

l�1
X

m=1

[Em]i,i = 0. (3.78)

3.8.4 Proof of Lemma 3.4

Taking out the common factor Il0n�3
from A0

(n), P0
(n� 1) and the bracketed term in (3.31), ˜En can

be re-expressed as

˜En =

n

(A⌦ Iln�2)L
(n�2)

(B⌦ Iln�2)

o

⌦ Il0n�3
, (3.79)

where

A =

⇣

L�n�1
Y

i=0

(B
(L�1�i)
1 P(L�1�i)† ⌦ IQL�2�i

m=n�1
lm
)

⌘

·D(n�1)�2
B

(n�1)
1

�†
P(n�1)†,

B =

L�1
Y

i=n�1

P(i) ⌦ IQi�1

m=n�1
lm
.

Since B(n�2) is a strictly upper triangular matrix with ln�2⇥ln�2 submatrices on its diagonal, using

(3.32), we can show that L(n�2) is a strictly lower triangular matrix with ln�2 ⇥ ln�2 strictly lower

submatrices on its diagonal. So, L(n�2) can be written in the form:

L(n�2)
=

ln�2�1
X

m=1

DmSm, (3.80)

where Dm are diagonal matrices of size
QL�2

j=n�2 lj and S is of the same size having the same form

as (3.28). Using Lemma 3.3, we finally have [

˜En]i,i = 0.
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Chapter 4

Zero-Forcing DFE Transceiver Design
over Slowly Time-Varying MIMO
Channels Using ST-GTD

This chapter considers the optimization of transceivers with decision feedback equalizers (DFE)

for slowly time-varying memoryless multi-input multi-output (MIMO) channels. The data vec-

tors are grouped into space-time blocks (ST-blocks) for the spatial and temporal precoding to take

advantage of the diversity offered by time-varying channels. Space-time generalized triangular de-

composition (ST-GTD) is proposed for application in time-varying channels. Under the assumption

that the instantaneous channel state information at the transmitter (CSIT) and receiver (CSIR), and

the channel prediction are available, we also propose the space-time geometric mean decomposi-

tion (ST-GMD) system based on ST-GTD. Under perfect channel prediction, the system minimizes

both the arithmetic MSE at the feedback detector, and the average un-coded bit error rate (BER)

in the moderate high signal to noise ratio (SNR) region. For practical applications, a novel ST-

GTD based system which does not require channel prediction but shares the same asymptotic BER

performance with the ST-GMD system is also proposed. At the moderate high SNR region, our

analysis and numerical results show that all the proposed systems have better BER performance

than the conventional GMD-based systems over time-varying channels; the average BERs of the

proposed systems are non-increasing functions of the ST-block size. Most of the results in this

chapter have been reported in our journal paper [38].
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4.1 Introduction

In recent years, multi-input multi-output (MIMO) transceiver design has received a great deal of

attention [12]-[19]. Most of the research on MIMO transceiver design focuses on time-invariant

channels. In practice, the wireless channels are time-varying due to users’ mobility. In this chap-

ter, we consider transceiver design based on the block fading model in which the MIMO channel

is constant over the coherence (block) interval of Nc symbol vectors. The channel varies across

different coherence intervals independently or according to Jakes’ model [29], [98]. Zero-forcing

constraint is assumed throughout the chapter.

To exploit the array gain for the full channel capacity, both channel state information (CSI) at

the transmitter (CSIT) and the receiver (CSIR) are required [14], [98]. When the channel varies at a

much lower rate compared to the data rate of the systems, CSIT can be obtained from the receiver

via feedback mechanism. However, the overhead becomes too large if the channel is varying at a

faster rate. In time division duplex (TDD) systems, the uplink and downlink are multiplexed on

the same channel, so channel reciprocity holds. Hence, the transmitter can estimate its own CSI at

the current time slot using the received signal from the reverse link, and use the estimated CSI to

transmit data at the next time slot provided that the channel does not change significantly [30]-[34].

Wiener filter prediction can further be exploited to improve the accuracy of CSIT [29], [30]. Both

feedback and TDD schemes can offer instantaneous CSI at transmitter and receiver.

For time invariant channels, the geometric mean decomposition (GMD) based systems with

“zero-forcing” and “minimum mean square error (MSE)” decision feedback structures [16], [17],

[18] and [19], and the GGMD-based transceiver proposed in Chapter 2, are known to minimize the

arithmetic mean (over the spatial domain) of the expected MSE at the input of the decision device

and the average bit error rate (BER) in high signal to noise ratio (SNR). Moreover, [17] shows that

the GMD-based system with zero-forcing constraint achieves optimal channel throughput asymp-

totically in high SNR. Unlike the singular value decomposition based systems which require bit

allocation to achieve the optimal average BER [35], the GMD-based systems do not require bit allo-

cation since all the effective subchannels have the same SINR [17].

In the case of time-varying channels, different data blocks pass through MIMO channels with

different channel coefficients. If instantaneous CSIT and CSIR are available, the GMD-based system

can be applied directly to time-varying channels. However, its average BER is not minimized since

different coherence blocks have different arithmetic MSEs at the feedback loop detector. In [36],
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we proposed the GMD transceiver with a superimposed channel-independent temporal precoder

(GMD-TP) which also only requires instantaneous CSIT and CSIR. We took the space-GMD and

introduced the channel-independent temporal precoder to construct the GMD-TP. The temporal

precoder equalizes the MSEs and hence SNRs across different coherence blocks (intervals) so that

the average BER per space-time block (ST-block) is minimized.

In this chapter, based on the generalized triangular decomposition (GTD) [21], we develop

space-time GTD (ST-GTD) for the decomposition of time-varying MIMO channels which does

GMD on the spatial domain and GTD on the temporal domain. Using the special case of ST-GTD,

namely ST-GMD which does GMD on both spatial and temporal domains, we develop the ST-

GMD transceivers with zero-forcing constraint. The design of ST-GTD transceivers requires instan-

taneous CSIR, CSIT and channel prediction. The required prediction length depends on the size

of an ST-block. Similar issues of channel prediction have been studied in several papers, e.g., [29],

[37]. The Wiener filter theory is usually adopted for the prediction of future channel coefficients

based on the previous channel estimations. The accuracy of prediction depends highly on the chan-

nel model. Under the perfect channel prediction assumption, the ST-GMD transceiver is shown to

jointly minimize the arithmetic MSE in each ST-block (which consists of several coherence blocks),

and minimize the average per ST-block BER in high SNR. Next, in consideration of the feasibility

of channel prediction, a causal ST-GTD based transceiver (CST-GTD) with stationary temporal pro-

cessing is also proposed here. It does not require channel prediction because its temporal precoder

is stationary. It is shown that the CST-GTD has smaller arithmetic MSE and average BER than the

conventional GMD-based system in the high SNR region. The simulation also shows that the BER

performance of the CST-GTD approximates that of the ST-GMD transceiver asymptotically. In any

case, the ST-GMD transceiver serves as a performance benchmark for the general class of ST-GTD

transceiver, including CST-GTD.

The novelty of the ST-GTD transceiver is the incorporation of the temporal precoder and the

newly proposed “nested-loop” receiver structure. For each ST-block, these two components not

only redistribute the MSEs among blocks, but also reduce the arithmetic MSE. This is in contrast

to the linear block precoder in [6] and [7], and the temporal precoder in [36], which keep the same

arithmetic MSE while equalizing the MSEs. At the moderate high SNR region, our analysis and

numerical results show that all the proposed systems have better BER performance than the con-

ventional GMD-based systems over time-varying channels; the average BERs of the proposed sys-
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Figure 4.1: The GMD-based system

tems are non-increasing functions of the ST-block size. Moreover, our analysis shows that if the

block size is a power of two, i.e., 2n, then the average BERs of the proposed systems are non-

increasing functions of n at the high SNR region and non-decreasing functions of n at the low SNR

region. Our numerical studies in Sec. 4.7 also demonstrate the use of channel prediction for ST-

GMD transceivers in the Jakes’ channel model. In the cases in which channel prediction is accurate

enough, the performance of ST-GMD transceivers with imperfect channel prediction is still very

close to that with perfect channel prediction.

4.2 Outline

The sections are structured as follows. In Section 4.3, we introduce the time-varying channel model

and review the GTD theorem [21]. The GMD-based DFE transceiver with the zero-forcing con-

straint [17], [19] is reviewed. In Section 4.4.1, we develop space-time GTD based on the spatial

GMD. Section 4.4.2 is devoted to the derivation the optimal ST-GTD transceiver which minimizes

the arithmetic MSE. A practical suboptimal ST-GTD transceiver which does not require channel

prediction is proposed in Section 4.5. In Section 4.6, we analyze the performance of the proposed

transceivers. Numerical examples of BER performances are given in Section 4.7. Concluding re-

marks are given in Section 4.8.

4.3 Preliminaries and Reviews

4.3.1 System Model

In this chapter, we consider the narrowband block fading MIMO channel model [98]. The channel

remains constant over the coherence period of Nc transmitted signal vectors and varies indepen-
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dently [98] or according to Jakes’ model [29] across different coherence intervals. For simplicity of

analysis, we just pick one transmitted signal vector from each coherence block since the transmitted

signal vectors in the same block go through the same channel. The channel model is given by

y(k) = H(k)x(k) +w(k), (4.1)

where k is the coherence block index, H(k) is a J ⇥N rank M channel matrix, and x(k) is an N ⇥ 1

transmitted signal vector. The elements of H(k) are i.i.d. Gaussian random variables. In Jakes’

model, the (i, j)-th coefficients of the channel matrices from different k are related by

E[Hi,j(k)H
⇤
i,j(k

0
)] = J0(2⇡fd|k � k0|NcTs), (4.2)

where J0(·) is the zeroth order Bessel function of first kind, fd the Doppler spread and Ts the

symbol period. The noise w(k) is a J ⇥ 1 Gaussian random process vector with E(w(k)) = 0 and

E(w(k)w†
(k0)) = �2

w�(k � k0)IJ , and y(k) is the J ⇥ 1 received signal vector. At each coherence

interval, H(k) is assumed to be known to the transmitter and receiver.

4.3.2 GTD Decomposition

In the following, we give a brief review of GTD theorem [21] and its application for the design of

the GMD-based zero-forcing DFE transceiver [17].

Theorem 4.1: ( The generalized triangular decomposition. [21]) Let H 2 CJ⇥N have rank M with

non-zero singular values dH = [�H,0,�H,1, · · · ,�H,M�1]
T . Then there exists an upper triangular

matrix R 2 CM⇥M , and semi-unitary matrices P 2 CN⇥M and Q 2 CJ⇥M in which all columns

are orthonormal, such that H = QRP† if and only if r �⇥ dH where ri = |Rii|. ⇤

Suppose Rii = |Rii|ej✓i . Without loss of generality, we can make the diagonal entries of R real

and positive by extracting ej✓i from the ith row of R and multiplying the ith column of Q by ej✓i .

If one chooses Rii = (

QM�1
i=0 �H,i)

1/M , then GTD is reduced to GMD.

4.3.3 GMD-based Transceivers with Zero-forcing Constraint

Fig. 4.1 shows the GMD transceiver, which has been shown to be optimal in average BER at high

SNR for linear time invariant channels [19]. Since both the transmitter and receiver have perfect
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CSI at current block time k, the N ⇥M precoding matrix P(k), and the J ⇥M feedforward matrix

Q(k) can be obtained from the GMD of H(k) which is

H(k) = Q(k)R(k)P†
(k), (4.3)

where P(k) 2 CN⇥M and Q(k) 2 CJ⇥M with orthonormal columns. R(k) 2 CM⇥M is an upper

triangular matrix with r(k) on the diagonal. The M ⇥ 1 vector r(k) has equal elements

ri(k) = �k =

�

M�1
Y

i=0

�H,i(k)
�1/M

, (4.4)

where �H,i(k) is the ith singular value of H(k). The M ⇥M feedback matrix B(k) is given by

B(k) = D�1
R (k)R(k)� IM , (4.5)

where DR(k) = diag(r(k)). a(k) is an M ⇥ 1 symbol vector from the kth block with each element

[a(k)]i chosen from the alphabet � of finite size. We assume E(a(k)a†(k0)) = �2
a�(k � k0)IM . The

gain ↵ is chosen to satisfy the total transmitting power constraint

P0 = Tr
⇣

E
�

x(k)x†
(k)

�

⌘

, (4.6)

and hence satisfies ↵ =

p

P0/M�2
a.

If there is no error propagation in the DFE loop, the received signal vector in front of the detector

is given by

y(k) = a(k) + e(k), (4.7)

where e(k) = ↵�1DR
�1

(k)Q†
(k)w(k). The error covariance of e(k) is

Ree =

�2
w

↵2
diag(|r(k)|)�2. (4.8)

The total MSE of the kth block at the detector is

⇠gmd(k) = tr(Ree) =
�2
w

↵2
M
�

M�1
Y

i=0

1

�2
H,i(k)

�1/M
. (4.9)
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4.4 Space-Time GTD Transceivers

4.4.1 Space-Time GTD

To facilitate space-time processing for the later sections, K blocks of symbol vectors are grouped

into one space-time block as

am =

h

aT (mK) . . . aT (mK +K � 1)

iT

, (4.10)

where m is the ST-block index. The symbols, m and mK, will be omitted for convenience. The

equivalent MIMO channel matrix for the mth ST-block is a KJ ⇥KN block diagonal matrix given

by

H = diag
�

H(0),H(1), . . . ,H(K � 1)

�

. (4.11)

Let 0  k  K � 1. If GMD is applied to each H(k) separately (in spatial domain), we have

H(k) = Q(k)R(k)P†
(k) as (4.3). H can be decomposed as

H = QRP†, (4.12)

where Q, P and R are block diagonal matrices with Q(k), P(k) and R(k) on the diagonals, respec-

tively. Let

d = [�0, . . . ,�K�1]
T , (4.13)

where �i is defined in (4.4). R can be expressed as

R = DR(IKM +B), (4.14)

where DR = ⌃ ⌦ IM , ⌃ = diag(d), and B is a block diagonal matrix with B(k) on the diagonal.

B(k) are strictly upper triangular M ⇥M matrices given by (4.5).

Since ⌃ is a diagonal matrix consisting of positive entries �k, these are also the singular values.

Therefore, by Theorem 4.1, we can decompose ⌃ by GTD as

⌃ = Q1R1P
†
1, (4.15)
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where P1 and Q1 are K ⇥ K unitary matrices, and R1 is a K ⇥ K upper triangular matrix. The

necessary and sufficient condition for the GTD in (4.15) to be possible is

r1 �⇥ d, (4.16)

in which r1 is a K ⇥ 1 vector consisting of diagonal elements of R1 and d is given by (4.13). We

refer to the GTD of ⌃ as the temporal domain GTD because the �k depend on H(k) and the decom-

position needs all �k all at once. By (4.12), (4.14) and (4.15), the rank MK block diagonal matrix H

of the from (4.11) can be decomposed as

H = Q
�

(Q1R1P
†
1 ⌦ IM )(IMK +B)

�

P†, (4.17)

if and only if r1 �⇥ d. The decomposition taking this form is referred to as the space-time GTD

(ST-GTD). We denote

DR
1

= diag(r1), (4.18)

B1 = DR
1

�1R1 � IK . (4.19)

When the entries of r1 equal (
QK�1

k=0 �k)1/K , the time domain GTD in (4.15) reduces to the time

domain GMD. We name this kind of ST-GTD, in particular, as ST-GMD.

The ST-GTD has some advantages over directly applying GTD on big matrix H. Both algorithms

first compute the SVD of H, and do the decompositions on the diagonal matrix consisting of all

singular values. The block diagonal structure of H helps to reduce the complexity in the SVD

stage, from O(K3MNJ) to O(KMNJ). Assuming that SVD of H is given, ST-GTD requires lower

computational complexity, O(KM(N+J))+O(K2
), than the complexity of directly applying GTD

on H, which is O(2K2M2
) [21]. Moreover, ST-GTD decouples precoding into spatial and temporal

domains. So, ST-GTD can be chosen in such a way that channel prediction is not necessary, as we

show later in Section 4.5.

4.4.2 Space-Time GTD Transceivers

In this subsection, we propose the ST-GTD ZF-DFE transceiver based on the ST-GTD introduced in

the preceding subsection. The proposed precoder of the ST-GTD transceiver is shown in Fig. 4.2.
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Figure 4.2: The transmitter of the ST-GTD transceiver and the channel
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Figure 4.3: The receiver of the ST-GTD transceiver

The proposed receiver is in Fig. 4.3 and its operation will be explained later. Here, it is assumed

that the transmitter could predict the channels H(k) for 0  k  K � 1 before sending an ST-block

a. We also assume that the receiver can track the channels perfectly and the decoding follows after

the reception of a whole ST-block. There are well-studied methods [29], [37] which we can exploit

here for the channel prediction. In any case, this system performance serves as a benchmark for

performance comparisons and the theoretical foundation for the development of the transceiver

which does not require channel prediction in next section.

Channel prediction is applicable when H(k) for different k are correlated [29], [37]. Before

precoding an ST-block, one can apply a Wiener filter to predict H(1), . . . ,H(K � 1) based upon

previous P channel matrices as

ˆHi,j(k) = w†
i,j,khi,j , (4.20)

where ˆHi,j(k) is the (i, j)-th element of the predicted channel matrix ˆH(k) of H(k) for k = 1, . . . ,K�

1, wi,j,k = [wi,j,k(0), wi,j,k(1), . . . , wi,j,k(P � 1)]

T and hi,j = [Hi,j(0), Hi,j(�1), . . . , Hi,j(�P + 1)].

Suppose Jakes’ model in (4.2) is used, then wi,j,k is given by

wi,j,k = Rh
�1rh(k), (4.21)



79

where

[Rh]m,n = J0(2⇡fdNcTs|n�m|),

[rh(k)]m = J0(2⇡fdNcTs|m+ k|),

for 0  m,n  P � 1. Interested readers can refer to [29] and [37] for more details.

If channel prediction is perfect, then the transmitter and receiver have perfect CSI of H. ST-GTD

can be applied to decompose H as (4.17) to get P, P1, Q, DR, B and B1 for the ST-GTD transceiver.

Note that DR should be chosen as diag(d)⌦ IM and DR1 = diag(r1) where r1 �⇥ d. If ST-GMD is

applied instead of ST-GTD, we name the transceiver, in particular, the ST-GMD transceiver.

However, in practice, perfect channel prediction is not possible. So, the design of ST-GTD

transceivers based on the predicted channel may not match the actual channel due to channel

prediction error. To alleviate the mismatch, we modify the design procedure. Note that channel

prediction is not required by the receiver to get H since the receiver can store the signal until the

whole ST-block is received before it starts to decode. The only part that depends on channel pre-

diction is the temporal precoder P1 at the transmitter. The computation of precoding matrix P1

requires knowledge of the singular values of H(0), . . . ,H(K � 1). At time k = 0, the precoder al-

ready needs P1 to precode one block for transmission. The implementation of the spatial precoder

P without channel prediction is not a problem, since P is a block diagonal matrix consisting of

P(k) and the computation of P(k) requires only the current CSI H(k). Letting a0 = (P1⌦ IM )a, the

precoded block at time k is given by

[t]kM :kM+M�1 = P(k)[a0]kM :kM+M�1. (4.22)

To design P1, we firstly apply the Wiener prediction filter in (4.20) for channel prediction and

construct the predicted channel matrix

ˆH = diag(H(0), ˆH(1), . . . , ˆH(K � 1)), (4.23)

where ˆH(k) are given by (4.20). Then, P1 is obtained from the ST-GTD or ST-GMD of ˆH. In the

case of perfect channel prediction, Q1, P1 and R1 are obtained from the temporal domain GTD

of ⌃ which is obtained from H, i.e., ⌃ = Q1R1P
†
1. Here, Q1 and R1 are obtained from the QR
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decomposition of ⌃P1 as

⌃P1 = Q1R1, (4.24)

where P1 is from the ST-GTD of ˆH, Q1 is a K⇥K unitary matrix and R1 is a K⇥K upper triangular

matrix. Without loss of generality, we can make the vector r1, which consists of the diagonal entries

of R1, positive and real. One can also verify that if the channel prediction is perfect both design

procedures lead to the same ST-GTD or ST-GMD transceiver.

For each ST-block time, a is precoded by the linear precoders, transmitted through the channel

H and pre-processed at the receiver by Q† and ↵�1DR
�1. The estimation of a is obtained by the

successive cancelation algorithm described next.

4.4.3 Successive Cancellation Detection Algorithm for ST-GTD Transceivers

Before summarizing the detection algorithm at the receiver in Fig. 4.3, we need some notations.

For 0  i M � 1, define the M ⇥M diagonal matrix Ei as

Ei = diag([0, . . . , 0
| {z }

M�i

, 1, . . . , 1
| {z }

i

]), (4.25)

and the M ⇥1 vector si in which all the entries are zero except the ith entry, which is 1. Based on Ei

and si, we define two operators, ⇥i = IK ⌦ Ei and Si = IK ⌦ sTi , on the ST-block vector a, which

has the form (4.10). ⇥i retains the last i symbols of each a(k) and makes the other symbols of a(k)

zero. And Si is such that

Sia = [ai(0), . . . , ai(K � 1)]

T .

The detection algorithm for the receiver in Fig. 4.3 is as follows:

1. Initialize: i = 0.

2. Outer loop feedback (space domain): Calculate

SM�i�1y = SM�i�1

�

y0 �B(P1 ⌦ IM )⇥iˆa
�

.

3. Inner loop feedback and detection (time domain): Compute
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z(i) = SM�i�1r
0
= (IK + B1)P

†
1SM�i�1y; SM�i�1ˆa can be decoded sequentially with the

following procedures:

(a) â(K�1)M+M�1�i = Qt(z(i)K�1) where the function q = Qt(t) sets q to the element in � such

that it is closest to t in Euclidean norm.

(b) For c = 2, . . . ,K, â(K�c)M+M�1�i = Qt
�

z(i)K�c �
PK�1

m=K�c+1[B1]K�c,mâmM+M�i�1).

4. If i = M � 1, then stop, else set i = i+ 1 and go to 2.

Step 1-2 are clear by direct substitution. To justify step 3, we assume that there is no error

propagation, i.e., ⇥iˆa = ⇥ia. By substitution, we have

y0
= (IMK +B)(P1 ⌦ IM )a+w0, (4.26)

where

w0
= (1/↵)DR

�1Q†w,

w = [w(0)

T , . . . ,w(K � 1)

T
]

T .

Then

SM�i�1y = SM�i�1(y
0 �B(P1 ⌦ IM )⇥iˆa)

= P1SM�i�1a+ SM�i�1w
0.

Substituting SM�i�1y into SM�i�1r
0, we have

SM�i�1r
0
= (IK +B1)SM�i�1a+w2, (4.27)

where w2 = SM�i�1((IK+B1)P
†
1⌦IM )w0. Observe that the equivalent channel between SM�i�1r

0

and SM�i�1a is an upper triangular matrix. Hence, SM�i�1a can be detected sequentially by the

VBLAST-like algorithm in the steps 3a and 3b above.

4.4.4 Mean Square Error at the Detector

To analyze the performance of the ST-GTD transceiver in Fig. 4.3, we assume perfect channel

prediction. The performance of the ST-GTD transceiver mainly depends on the noise component in
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r. To characterize the performance of the detector, we calculate the error covariance matrix of the

noise component. We assume that there is no error propagation so that ˆa = a, which is a legitimate

assumption at high SNR. Under this assumption, the signal vector r can be expressed as

r = a+ e, (4.28)

where

e =

1

↵
(DR

�1
1 Q†

1 ⌦ IM )q.

The entries of the MK⇥1 vector q = Q†w are i.i.d. complex Gaussian with zero mean and variance

�2
w. The error covariance matrix Ree is given by

Ree = E(ee†) =
�2
w

↵2
(DR

�1
1 DR

�†
1 ⌦ IM ), (4.29)

Denote the vector r1 which consists of the diagonal elements of R1 as r1 = [⌘0, ⌘1, . . . , ⌘K�1]
T . The

total MSE of the ST-GTD transceiver over an ST-block is

⇠st�gtd =

�2
wM

↵2

K�1
X

k=0

1

|⌘k|2
� �2

wMK

↵2

�

K�1
Y

k=0

1

�2
k

�1/K
, (4.30)

where ⌘k = [r1]k. The last inequality comes from AM-GM inequality and r1 �⇥ d. The equality

holds when |⌘0| = |⌘1| = . . . = |⌘K�1| and r1 �⇥ d. In particular, if we choose

⌘k =

�

K�1
Y

i=0

�i
�1/K

, (4.31)

then r1 �⇥ d is also satisfied, making the ST-GTD possible. This is the case when the ST-GMD is

applied. We call this class of ST-GTD transceiver the ST-GMD transceiver. The total mean square

error of the ST-GMD transceiver is given by

⇠st�gmd =

�2
wMK

↵2
(

K�1
Y

k=0

1

�2
k

)

1/K

=

�2
wMK

↵2
(

K�1
Y

k=0

M�1
Y

i=0

1

�2
H,i(k)

)

1/MK . (4.32)
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The class of ST-GMD transceivers is the optimal subclass of ST-GTD transceivers in terms of total

mean square error. Notice that the ST-GMD allows the ST-GTD transceiver to reach the optimal

MSE in (4.32), which is the smallest achievable MSE possible from directly applying the GMD to the

big matrix H. Furthermore, the error covariance matrix of ST-GMD transceiver has equal diagonal

elements. Hence, for every ST-block, the ST-GMD transceiver minimizes both the arithmetic and

geometric MSE, and the average un-coded BER at the high SNR region according to [19].

4.5 Space-Time GTD Transceivers with Fixed Temporal Precoder

In the previous section, the design of ST-GTD transceivers relies on channel prediction. However,

the channel prediction might not always be that accurate when the MIMO channels H(k) from

block to block become more independent. The performance of the transceiver degrades when the

predicted CSI at the transmitter is unreliable. In this section, we develop an ST-GTD transceiver

which does not use channel prediction. We say that the transmitter is “causal”.

As mentioned in section 4.4.2, the computation of a precoding matrix P1 requires knowledge of

the singular values of H(0), . . . ,H(K � 1). Without channel prediction, the precoder only has the

CSI at the current and previous times, and it is impossible to compute P1. To make the precoder

causal, one can let P1 be a constant unitary matrix W. In [7] and [6], the DFT or Hadamard matrix

is chosen as the channel independent precoder for the OFDM system to equalize the MSEs over

subchannels and hence minimize average BER. This motivates us to choose W to be a DFT or

Hadamard matrix. Q1 and R1 are obtained from the QR decomposition of ⌃W as

⌃W = Q1R1, (4.33)

where Q1 is also a K ⇥K unitary matrix and R1 is a K ⇥K upper triangular matrix. We call this

kind of transceiver the causal ST-GTD transceiver (CST-GTD). It is in fact a subclass of ST-GTDs

with perfect channel prediction. The error covariance matrix of the noise signal in front of the

detector is given by (4.29), and the total mean square error ⇠cst�gtd is the same as (4.30).

4.5.1 Comparison of Mean Square Error

Now, we compare the performance of the conventional GMD-based system [17], the ST-GMD

transceiver with perfect channel prediction, and the CST-GTD transceiver. The total MSE of the
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GMD-based system in one ST-block is

⇠gmd =

�2
w

↵2
M

K�1
X

k=0

1

�2
k

. (4.34)

The comparison of the three transceivers is given in Theorem 4.2.

Theorem 4.2: The total mean square errors over one ST-block for the three transceivers are such

that

⇠st�gmd  ⇠st�gtd  ⇠gmd. (4.35)

⇤

Proof: The first inequality follows from (4.30). To prove the second inequality, we firstly define a

function

f(x) =
�2
wM

↵2

K�1
X

k=0

e�2xk , (4.36)

where f(·) : RK 7! R and x = [x0, x1, . . . , xK�1]
T . Since e�2x, x 2 R is a convex function, f(x) is a

Schur-Convex function by proposition 3.C.1 in [95]. Let

⇥ = [log |⌘0|, log |⌘1|, . . . , log |⌘K�1|]T ,

� = [log |�0|, log |�1|, . . . , log |�K�1|]T . (4.37)

Since r1 �⇥ d, then ⇥ �+ �. ⇠st�gtd in (4.30) and ⇠gmd in (4.34) can be expressed in term of � and

⇥ respectively as

⇠st�gtd = f(⇥), (4.38)

⇠gmd = f(�). (4.39)

Since ⇥ �+ �, by the definition of Schur-convex function in [95], we have ⇠st�gtd  ⇠gmd. ⇤

Therefore, we have proven that the class of ST-GTD transceivers has performance superior to

the conventional GMD-based system over time-varying channels in terms of total MSE within one
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ST-block or arithmetic MSE. In particular, for CST-GTD, we have

⇠st�gmd  ⇠cst�gtd  ⇠gmd.

Also, note that an ST-GMD transceiver with imperfect channel prediction can be treated as

an ST-GTD transceiver with perfect channel prediction due to the channel mismatch caused by

prediction error. Hence, the total mean square error of ST-GMD transceiver with imperfect channel

prediction ⇠st�gmdic is such that

⇠st�gmd  ⇠st�gmdic  ⇠gmd.

The temporal precoder P1 or W, and the “nested-feedback-loop” receiver in ST-GTD or CST-

GTD transceiver not only redistribute the MSEs of the blocks in each ST-block but also reduce

the arithmetic MSE per ST-block. This is in contrast to the linear block precoder in [6] and [7],

which keeps the same arithmetic MSE while equalizing the MSEs. Also, note that the conventional

GMD-based system is actually a subclass of CST-GTD with the constant temporal precoding matrix

WK = IK .

4.5.2 Comparison of Complexity

In this section, we compare the complexity of the conventional GMD-based system and the ST-GTD

transceiver. We let these systems process one ST-block and compare the number of multiplications

and additions. For the transmitter part, the complexity of the GMD-based system is O(MNK)

which comes from the spatial precoder P(k) in Fig. 4.1. Since the transmitters of ST-GTD incorpo-

rate an additional temporal precoder P1 as in Fig. 4.2, it has complexity O(MNK +K2M).

Next, we compare the receivers. For the GMD-based system in Fig. 4.1, the feedforward matrix

Q†
(k) has complexity O(JM) and the feedback matrix B(k) has O(M2

). The total complexity of

the GMD-based receiver is O(JMK + M2K). The ST-GTD transceiver contains two additional

temporal precoders in the feedback loop and an additional temporal feedback loop with feedback

matrix B1 ⌦ IM which has complexity O(MK2
). Hence, its total complexity is O(JMK +MK2

+

M2K).
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4.6 Performance Analysis

In this section, we will compare the average BER and the ergodic channel capacity of the con-

ventional GMD-based system, ST-GTD and ST-GMD transceivers. For both ST-GTD and ST-GMD

transceivers, perfect channel prediction is assumed. We assume N 0 uses of the time-varying chan-

nels:

H(n), for 0  n  N 0 � 1. (4.40)

Every K successive uses constitute one ST-block. So the mth ST-block uses the channels:

H(mK + k), for 0  k  K � 1, (4.41)

where 0  m  dN 0/Ke � 1. The number of blocks, N 0, is assumed to be a large number and a

multiple of the ST-block size K. An even number of bits, b, are allocated for every symbol ai(k) of

each ST-block. For square QAM [94], the BER for each symbol in the kth block of the mth ST-block,

assuming that there is just one bit error per symbol error, is approximately

Pe ⇡ cQ
⇣ A
p

⌫(mK + k)

⌘

, (4.42)

where Q(·) is the Q-function defined in [94], A =

p

(3Eav)/(2b � 1), Eav is the average symbol

power, ⌫(mK+k) is the per symbol MSE of the kth block in the mth ST-block and c = (4/b)(1�2�b
2
).

Notice that the symbol error rate (SER) equals bPe. The average BER over the entire transmission

is hence given by

P =

1

N 0

(N 0/K)�1
X

m=0

K�1
X

k=0

cQ(

A
p

⌫(mK + k)
). (4.43)

The function Q(A/
p
y) for y 2 R plays a crucial role in BER analysis. An important property of it

is restated as the following lemma.

Lemma 4.1: The function f(y) = Q(A/
p
y) is monotone increasing. It is convex when y  A2/3

and concave when y > A2/3. ⇤

Proof: See [7]. ⇤
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We define the SNR of the nth block as �(n). The SNR expressions for the ST-GTD and ST-GMD

transceivers are given respectively by

�st�gtd(n) =
↵2Eav|⌘2n|

�2
w

,

�st�gmd(n) =
↵2Eav

�2
w(
QK�1

i=0
1

�2(mK+i) )
1/K

, (4.44)

which follow from (4.29). We also define two SNR regions:

Rhigh = {� : � � 2

b � 1

3

}, Rlow = {� : � <
2

b � 1

3

}. (4.45)

Before starting the analysis, we prove another useful lemma:

Lemma 4.2: If A 2 Rn⇥n
+ , B 2 Rm⇥m

+ are doubly stochastic matrices, the C = A⌦B is an

mn⇥mn doubly stochastic matrix. ⇤

Proof: See Appendix 4.9.1. ⇤

4.6.1 BER Performance Comparison of the Transceivers

Now, we will compare the BER of the entire class of ST-GTD transceivers including ST-GMD, ST-

GMD with imperfect channel prediction and CST-GTD transceivers with the conventional GMD-

based system. The following lemma is helpful for further analysis:

Lemma 4.3: The function �(y) = Q(c2 exp (y)) is monotone decreasing where c2 = ↵A/�w > 0. It

is convex when c22e
2y � 1 and concave when c22e

2y < 1. ⇤

Proof: The proof is similar to Lemma 4.1. ⇤

In the following theorems, “high SNR” means the SNRs �(n) of the transceivers are such that

�(n) 2 Rhigh and “low SNR” means �(n) 2 Rlow.

Theorem 4.3: Let Pst�gmd, Pst�gtd and Pgmd be the average BER of ST-GMD, ST-GTD and the
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conventional GMD-based transceivers, respectively. Then,

Pst�gmd  Pst�gtd  Pgmd, at high SNR,

Pst�gmd � Pst�gtd � Pgmd, at low SNR. (4.46)

⇤

Proof: We first prove the second inequality for both high and low SNR. Let

g(z) =
1

K

K�1
X

k=0

Q(c2e
zk
), (4.47)

where g(·) : RK 7�! R, z = [z0, . . . , zK�1]
T and c2 = ↵A/�w. By Lemma 4.3 and Theorem 1.2, g(z)

is Schur-convex when c22e
2zk � 1 and Schur-concave when c22e

2zk  1 for all 0  k  K � 1. For

0  m  (N 0/K)� 1, define K ⇥ 1 vectors as

x(m) = [log(�mK), . . . , log(�mK+K�1)]
T , (4.48)

y(m) = [log(|⌘mK |), . . . , log(|⌘mK+K�1|)]T . (4.49)

So, the BERs of the GMD and the ST-GTD transceivers are given respectively by

Pgmd =

cK

N 0

(N 0/K)�1
X

m=0

g(x(m)), (4.50)

Pst�gtd =

cK

N 0

(N 0/K)�1
X

m=0

g(y(m)). (4.51)

At the high SNR region, where �gmd(n),�st�gtd(n) 2 Rhigh, we have c22e
2xk(m) � 1 and c22e

2yk(m) �

1 for all k,m. In this domain, the function g(·) is Schur-convex. It is known that r1 �⇥ d, so

y(m) �+ x(m); hence, we have g(y(m))  g(x(m)) for 8m. Therefore, Pst�gtd  Pgmd. At the low

SNR region, where �gmd(n), �st�gmd(n) 2 Rlow, we can prove Pst�gtd � Pgmd similarly. The first

inequality can also been proven by following similar steps. ⇤

Let Pst�gmdic and Pcst�gtd denote the average BER of the ST-GMD transceiver with imperfect

channel prediction, and CST-GTD, respectively. At the high SNR region, from Theorem 4.3, we can
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conclude, in particular, that

Pst�gmd  Pcst�gtd  Pgmd, (4.52)

Pst�gmd  Pst�gmdic  Pgmd. (4.53)

4.6.2 Block Size and the BER Performance

In this subsection, the relationship between the size of ST-block and the BER performance is ex-

plored.

Theorem 4.4: Let P(K)
st�gmd denote the BER of the ST-GMD transceiver with ST-block size K and

P(qK)
st�gmd denote that with ST-block size qK, for q,K 2 N. The number of blocks transmitted, N 0, is

assumed to be the multiple of qK. Then,

P(qK)
st�gmd

8

<

:

 P(K)
st�gmd , at high SNR,

� P(K)
st�gmd , at low SNR.

(4.54)

⇤

Proof: Let

 (w) =

c

N 0

N 0�1
X

n=0

Q(c2 exp(wn)), (4.55)

where w = [w0, w1, . . . , wN 0�1]
T and c2 = ↵A/�w.  (w) is Schur-convex if all c22e2wn � 1, Schur-

concave if all c22e2wn < 1. Let x = [x0, x1, . . . , xN 0�1]
T where

xn = log �n. (4.56)

For the ST-block size K,

P(K)
st�gmd =  (y), (4.57)

where y = [y0, y1, . . . , yN 0�1]
T and

ymK+k =

1

K

K�1
X

i=0

log(�mK+i), (4.58)



90

for 0  k  K � 1 and 0  m  (N 0/K)� 1. From (4.56) and (4.58),

y = (IN 0/K ⌦ LK)x, (4.59)

where LK is a K ⇥K matrix with equal elements, 1/K.

For the ST-block size qK,

P(qK)
st�gmd =  (z), (4.60)

where z = [z0, z1, . . . , zN 0�1]
T and

zm0qK+k0
=

1

qK

qK�1
X

i=0

log(�m0qK+i), (4.61)

for 0  k0  qK � 1 and 0  m0  N 0/(qK)� 1. From (4.59), (4.61),

z = (IN 0/(qK) ⌦ Lq ⌦ LK)x

= [(IN 0/(qK) ⌦ Lq)⌦ IK ][IN 0/K ⌦ LK ]x

= (IN 0/(qK) ⌦ Lq ⌦ IK)y. (4.62)

By Lemma 4.2, IN 0/(qK) ⌦ Lq ⌦ IK is a doubly stochastic matrix; So, z �+ y [95].

At the high SNR region, where �

(K)
st�gmd(n),�

(qK)
st�gmd(n) 2 Rhigh, we have c22e

2yn � 1 and

c22e
2zn � 1 for all n. In this domain, the function  (·) is Schur-convex. Since z �+ y, one can

conclude that  (z)   (y). At the low SNR region, where �

(K)
st�gmd(n),�

(qK)
st�gmd(n) 2 Rlow, we can

prove  (y)   (z) similarly. ⇤

At the high SNR region, from Theorem 4.4, we can conclude that P(qK)
st�gmd is a non-increasing

function of q. As the ST-block size gets larger, the BER performance of ST-GMD improves monoton-

ically. Larger ST-block size is more favorable because it gains more diversity from the time-varying

channels. However, it implies a longer decoding delay at the receiver. At the low SNR region, the

relationship is the other way around, so it is better to have small ST-block size.
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4.6.3 Performance Comparison in Capacity

In the conventional GMD-based system, the average BER per ST-block is dominated by the block

with the largest MSE. To achieve the optimal per ST-block average BER and hence minimize the

average BER, bit allocation is required. The proposed ST-GMD transceiver does not require bit

allocation among blocks since all SNRs of different blocks in each ST-block are the same. In this

subsection, from the perspective of capacity, we will show the asymptotic optimality of ST-GMD

transceiver.

With uniform power loading, the ergodic channel capacity [96] for the equivalent channel H in

(4.11) of an ST-block is given by

Cupl = EH{log
�

det(I+ ⇢HHH)

�

}

= EH{
K�1
X

k=0

M�1
X

i=0

log

�

1 + ⇢�2
H,i(k)

�

}, (4.63)

where ⇢ = (�a↵)2/�2
w and �H,i(k) is given in (4.4). In the conventional GMD-based system and

the ST-GMD transceiver, the channel H is converted into equivalent parallel subchannels. Hence,

the ergodic channel capacities of the equivalent subchannels obtained by using the conventional

GMD-based system and the ST-GMD transceiver are respectively given by

Cgmd = MEH{
K�1
X

k=0

log

�

1 + ⇢�2
k

�

},

Cst�gmd = MKEH{log
�

1 + ⇢(
K�1
Y

k=0

�2
k)

1/K
�

}, (4.64)

where �k is given by (4.4). For high SNR,

lim

⇢!1
Cupl � Cgmd =

K�1
X

k=0

EH{log(
Q

i ⇢�
2
H,i(k)

Q

i ⇢�
2
H,i(k)

)} = 0. (4.65)

So the GMD-based system does not have capacity loss. For ST-GMD transceivers, lim⇢!1 Cgmd �

Cst�gmd = MEH{log(
Q

k ⇢�
2
k/
Q

k ⇢�
2
k)} = 0. Together with (4.65), we have

lim

⇢!1
Cupl � Cst�gmd = 0. (4.66)

Therefore, for high SNR, the ST-GMD transceiver is asymptotically optimal in capacity and per
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Figure 4.4: BER performance of GMD, ST-GMD and CST-GTD.
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Figure 4.5: BER performance v.s. block size for ST-GMD and CST-GTD.
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ST-block average BER simultaneously. Note that the design of the ST-GMD transceiver is possible

only when the channel prediction is good.

4.7 Numerical Results

In this section, we present the numerical results on the average BERs of the GMD-based system,

ST-GMD and CST-GTD transceivers. We also demonstrate how the ST-block size affects the BER

performance. The channel model described in section 4.3.1 is adopted. The noise is AWGN. The

MIMO channel matrices H(k) are 3⇥ 3 complex Gaussian random matrices. The elements of H(k)

are i.i.d. complex Gaussian random variables with zero mean and unit variance. Uniform bit al-

location is adopted with b = 4 for each subchannel. The modulation scheme is 16-QAM. Both

transmitter and receiver have perfect CSI at current time k. We assume that perfect channel predic-

tion is available only for the ST-GMD transceiver. The temporal precoding matrix of the CST-GTD

is a K ⇥K DFT matrix. N 0
= 2

20 data blocks are sent through the channels for BER performance

evaluation.

Example 1: The ST-block size is K = 16. H(k) are independent for different k. Fig. 4.4 shows

the BER performance of the conventional GMD-based system, CST-GTD and ST-GMD transceivers

for different SNRs. For the high SNR region, Fig. 4.4 satisfies Pst�gmd < Pcst�gtd < Pgmd, which

verifies Theorem 4.3. At BER 10

�4, the SNR gains of the ST-GMD and the CST-GTD over the GMD-

based system are 5 dB and 4.7 dB, respectively. The performance of CST-GTD is close to ST-GMD.

At BER 10

�5, the SNR gain of the ST-GMD transceiver over the CST-GTD transceiver is about 0.6

dB. At the low SNR region, Pst�gmd and Pcst�gtd are greater than Pgmd. This is because of the error

propagation. For the space-time processing at these receivers, the errors might propagate through

the entire ST-block, i.e., K blocks.

Example 2: In this example, various choices of ST-block size are compared. H(k) are indepen-

dent for different k. Fig. 4.5 shows Pst�gmd and Pcst�gtd. At the low SNR region, Pst�gmd and

Pcst�gtd increase with respect to K as in shown Fig. 4.7. But at the high SNR region, Pst�gmd and

Pcst�gtd decrease with respect to K which is best illustrated by Fig. 4.6. These results verify The-

orem 4.4. Notice that the CST-GTD transceiver almost has the same performance as the ST-GMD

transceiver when K = 32. The SNR gap is only 0.08 dB at BER 10

�5.

Example 3: Here, the BER performances of the three transceivers are evaluated using Jakes’

channel model. H(k) for different k are correlated and the cross-correlation is given by (4.2). Fig. 4.8



94

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10−3

block size

BE
R

 

 
CST−GTD
ST−GMD

Figure 4.6: BER performance v.s. block size K at SNR=17 dB.
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Figure 4.8: BER performance v.s. fdNcTs at SNR = 17 dB.

shows the average BER performances of the conventional GMD-based system, CST-GTD and ST-

GMD transceivers for different values of the product fdNcTs, which appears in (4.2). As fdNcTs gets

larger, the channels are changing at faster rates, and H(k) for different k become more uncorrelated.

The ST-block size is K = 16 and the BERs are evaluated at SNR = 17 dB. For small fdNcTs, the

channels are almost like time invariant channels; the BER improvements of CST-GTD and ST-GMD

transceivers over the conventional GMD-based system are small since there is not much temporal

diversity for the temporal precoders to exploit. As fdNcTs increases, the average BERs of CST-GTD

and ST-GMD transceivers drop quickly due to the rich temporal diversity offered by the time-

varying channels.

Example 4: This example demonstrates the BER performance of ST-GMD transceiver with im-

perfect channel prediction. H(k) follows the Jakes’ model in Sec. 4.3.1. The ST-block size K = 4,

and fdNcTs = 0.1. The ST-GMD transceiver is designed according to the procedure for the case of

imperfect channel prediction in Sec. 4.4.1. Fig. 4.9 illustrates the BER performance of the ST-GMD

transceiver based on channel prediction. Its BER curve follows the curve of the ST-GMD transceiver

with perfect channel prediction closely for most of the SNR values, and deviates at the very high
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SNR region. The BER degradation results from the channel prediction error. At BER 10

�5, the SNR

loss from imperfect channel prediction is 0.35 dB.

4.8 Conclusions

We have proposed two MIMO transceivers with zero-forcing decision feedback structure for MIMO

slowly time-varying channels. They harvest the rich temporal diversity due to the time-varying

nature of the channels to minimize the average BER. The issue of available CSIT for slowly time-

varying channels can be addressed using feedback mechanisms or TDD schemes. Under the as-

sumption of perfect channel prediction, the ST-GMD transceiver is shown to be the best in terms

of arithmetic MSE and average BER in high SNR. The ST-GMD transceiver serves as a benchmark

for performance. The CST-GTD transceivers only require the instantaneous CSIT and CSIR, as the

GMD-based systems does. It has the same asymptotic BER performance as the ST-GMD transceiver

and has smaller arithmetic MSE than the conventional GMD-based systems. The dependency of

BER on the ST-block size has also been analyzed. Simulations show that only moderate ST-block

size is required for good average BER performance.
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4.9 Appendix

4.9.1 Proof of Lemma 4.2

Let [A]ij = aij , [B]ij = bij and [C]ij = cij . By the definition of Kronecker product,

ci1m+j1,i2m+j2 = ai1,i2bj1,j2 � 0,

where 0  i1, i2  n� 1 and 0  j1, j2  m� 1. Since A and B are doubly stochastic,

n�1
X

i=0

aij =
n�1
X

j=0

aij =
m�1
X

i=0

bij =
m�1
X

j=0

bij = 1. (4.67)

Consider

mn�1
X

i=0

ci,j =
n�1
X

i1=0

m�1
X

j1=0

ci1m+j1,i2m+j2 =

X

i1

X

j1

ai1,i2bj1,j2 ,

where j = i2m+ j2. By (4.67), we have

mn�1
X

i=0

ci,j =
X

i1

ai1,i2
X

j1

bj1,j2 = 1. (4.68)

Similarly, we can prove
Pmn

j=0 ci,j = 1. Therefore, C is also a doubly stochastic matrix.
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Chapter 5

MMSE DFE Transceiver Design over
Slowly Time-varying MIMO
Channels Using ST-GTD

In the previous chapter, we studied the zero-forcing (ZF) transceiver with decision feedback equal-

izer (DFE) over slowly time-varying narrowband multi-input multi-output (MIMO) channels. This

chapter addresses the design problem of a DFE transceiver without zero-forcing constraint. In the

first part, a channel independent temporal precoder is superimposed on the conventional block-

wise GMD-based minimum mean square error (MMSE) DFE transceiver to take advantage of the

temporal diversity. In the second part, ST-GTD is applied for the design of MMSE DFE transceivers.

With accurate channel prediction and space-time powerloading, the proposed ST-GMD MMSE

transceiver minimizes the arithmetic MSE at the feedack detector, and maximizes Gaussian mu-

tual information. For practical applications, the ST-GTD MMSE transceiver, which does not require

channel prediction but shares the same asymptotic BER performance with the ST-GMD MMSE

system, is also developed. In the convex region, our analysis shows that the proposed MMSE

transceiver has better BER performance than the conventional GMD-based MMSE transceiver; the

average BERs of the proposed systems are non-increasing functions of the ST-block size. The su-

perior performance of thes ST-GMD MMSE transceiver over the ST-GMD ZF transceiver is also

verified analytically. Most of the results in this chapter have been reported in our journal paper

[39].
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5.1 Introduction

In Chapter 4 and [36], we considered the design of zero-forcing decision feedback equalizer (ZF-

DFE) transceivers over slowly time-varying multi-input multi-output (MIMO) memoryless chan-

nels. We used the block fading MIMO channel model in which the channel is constant over the

coherence interval of Nc blocks and varies across different coherence intervals according to Jakes’

model [29], [98]. It is assumed that both instantaneous channel state information (CSI) at the trans-

mitter (CSIT) and the receiver (CSIR) are available.

In [36], we proposed the geometric mean decomposition (GMD) ZF transceiver with a channel

independent temporal precoder (GMD-TP). The GMD-TP only requires instantaneous CSIR and

CSIT. The temporal precoder equalizes the mean square errors (MSEs) in each space-time block

(ST-block) (which consists of several coherence blocks) such that the average BER per ST-block is

minimized. However, the temporal precoder does not alter the per ST-block total MSE. In Chapter

4, based on the proposed space-time generalized triangular decomposition (ST-GTD), we were able

to develop an ST-GMD ZF transceiver which minimizes both the arithmetic MSE, and the average

BER in high signal to noise ratio (SNR) per ST-block. The design of the ST-GTD transceiver requires

instantaneous CSIT, CSIR and channel prediction. For practical implementation, a causal ST-GTD

ZF transceiver with constant temporal precoder which does not require channel prediction was

proposed. For all ST-GTD transceivers, the temporal precoder and the newly proposed “nested

loop” receiver structure not only redistribute the MSEs in each ST-block, but also reduce the per ST-

block arithmetic MSE. However, the proposed transceivers are mutual information lossy because

of the zero-forcing constraint.

In this chapter, we consider the design of DFE transceivers without zero-forcing constraint. For

linear time invariant (LTI) MIMO channels, the GMD-based MMSE system (GMDM) [19], [18] is

shown in [19] to minimize the arithmetic MSE, the geometric MSE at the feedback detector, and

BER at high SINR region. Moreover, the design also maximizes the Gaussian mutual information.

Unlike the singular value decomposition based systems which require bit allocation to achieve

the the optimal average BER [35], GMD-based systems do not require bit allocation since all the

effective subchannels have the same SINR [17]. However, in the case of time-varying channels,

different data blocks pass through different MIMO channels. If the GMD-based MMSE system is

directly applied to the time-varying channels, the performance measures are not optimized.

In the first part, we propose the GMD MMSE transceiver with a channel independent temporal
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precoder (GMDM-TP). A constant unitary temporal precoder is superimposed on the block-wise

GMD-based MMSE transceiver. Only instantaneous CSIT and CSIR are required. The temporal

precoder equalizes the MSEs for each ST-block so that the average per block BER is minimized in

the convex region as GMD-TP [36]. The convex region here corresponds to moderate high SINR,

or to all SINR values depending on the modulation constellation. However, the arithmetic MSE

of GMDM-TP is smaller than that of GMD-TP [36] since the underlying GMD MMSE system has

smaller total MSE than the zero-forcing case in each block [91]. In the second part, ST-GTD is ap-

plied for the design of ST-GTD MMSE transceivers. Inherited from the ST-GTD ZF transceiver,

the ST-GMD MMSE transceiver requires instantaneous CSIT, CSIR, and channel prediction. With

perfect channel prediction, the proposed space-time GMD MMSE transceiver (ST-GMDM), with

space-time power-loading, maximizes Gaussian mutual information over the equivalent channel

seen by each ST-block which is not possible for the ST-GMD ZF transceiver in Chapter 4. Moreover,

it jointly minimizes the arithmetic MSEs for each ST-block and the per ST-block average BER in the

convex region (see below). Hence, the average BER over the entire transmission is reduced. Fur-

thermore, we show that the ST-GMDM transceiver outperforms ST-GMD ZF transceiver in terms

of arithmetic MSE and average BER. For the applications where channel prediction is not practical,

we propose the “causal” ST-GTD MMSE transceiver (CST-GTDM) which does not require channel

prediction. The simulation shows the CST-GTDM has asymptotic BER performance as the ST-GMD

MMSE transceiver when the ST-block size increases. In any case, ST-GMD MMSE transceiver serves

as a performance benchmark for the general class of ST-GTD MMSE transceiver.

In the convex region, which corresponds to very low and moderate high SINR, or all SINR

values, depending on the modulation constellation, the analysis shows that the proposed MMSE

transceiver has better BER performance than the conventional GMD-based MMSE transceiver.

Moreover, if the ST-block size is 2

n, then the average BERs of the proposed systems are non-

increasing functions of n in the convex region and non-decreasing functions of n in the concave re-

gion. Simulations also demonstrate the superior performance of the proposed MMSE transceivers

over the corresponding ZF transceivers.

5.2 Outline

The sections are structured as follows. In Section 5.3, we introduce the time-varying channel model

and review the GMD-based MMSE transceiver without zero-forcing constraint [19], [18]. In Section
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Figure 5.1: The GMD-based system

5.4, we derive the optimal channel independent temporal precoder for the GMD-based MMSE

transceiver. Section 5.5 is devoted to the derivation of the optimal ST-GTD MMSE transceiver

which minimizes the arithmetic MSE and average BER. A practical suboptimal ST-GTD MMSE

transceiver which does not require channel prediction is proposed in Section 5.6. In Section 5.7, we

analyze the performance of the proposed transceivers. Numerical examples of BER performances

are given in Section 5.8. Concluding remarks are given in Section 5.9.

5.3 Preliminaries

In this chapter, we use the same narrowband block fading MIMO channel model as described in

Sec. 4.3.1 of Chapter 4.

5.3.1 GMD-Based MMSE Transceivers

Fig. 1 shows the optimal GMD MMSE transceiver, which has been shown to be optimal in average

BER at high SNR and maximizes the Gaussian mutual information for LTI channels [19] and [18].

Now, we apply the structure directly to the time-varying channel H(k) and refer to it as the “con-

ventional” GMD-based MMSE transceiver. It is assumed that E(a(k)a†(k0)) = �2
a�(k�k0)IM . Since

both the transmitter and receiver have perfect CSI at current block time k, the N ⇥M precoding

matrix F(k), the M ⇥ J feedforward matrix G(k) and the M ⇥M feedback matrix B(k) are deter-

mined by H(k). The J ⇥M matrix Uh(k) and the N ⇥M matrix Vh(k) can be obtained from the

singular value decomposition (SVD) of H(k),

H(k) = Uh(k)⌃h(k)V
†
h(k), (5.1)
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where U†
h(k)Uh(k) = IM , V†

h(k)Vh(k) = IM and

⌃h(k) = diag
�

�h,0(k),�h,1(k), . . . ,�h,M�1(k)
�

. (5.2)

Here, �h,i(k) is the ith singular value of H(k). The power loading matrix ⌃f (k) is a diagonal matrix

given by

⌃f (k) = diag
�

�f,0(k),�f,1(k), . . . ,�f,M�1(k)
�

, (5.3)

where �2
f,i(k) are determined by the water-filling formula

�2
f,i(k) =

8

<

:

1
�(k) �

�2
w

�2
a�

2
h,i

(k)
, 0  i  L(k)� 1

0, L(k)  i M � 1.
(5.4)

Here, L(k)� 1 is the largest number such that 1/�(k)� �2
w/(�

2
a�

2
h,L(k)�1(k)) is positive, and

1

�(k)
=

1

L(k)�2
a

⇣

P0 + �2
w

L(k)�1
X

i=0

1

�2
h,i(k)

⌘

, (5.5)

where P0 = Tr(E(x(k)x†
(k))). To determine the M ⇥M matrices R(k) and P(k), we first construct

the M ⇥M diagonal matrix

⇥(k) =
�

IM +

�2
a

�2
w

⌃2
f (k)⌃

2
h(k)

�1/2
. (5.6)

R(k) and P(k) can be obtained by the GMD [17] of ⇥(k), which is

⇥(k) = Q(k)R(k)P†
(k), (5.7)

where P(k) and Q(k) are unitary matrices, and R(k) 2 CM⇥M is an upper triangular matrix with

r(k) on the diagonal. The M ⇥ 1 vector r(k) has equal elements

rl(k) = �k =

�

M�1
Y

i=0

[⇥(k)]i,i
�1/M

. (5.8)

Then, the M ⇥M feedback matrix B(k) is given by

B(k) = D�1
R (k)R(k)� IM , (5.9)
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Figure 5.2: The transmitter of GMDM-TP and the channel

where DR(k) = diag(r(k)). The M ⇥M diagonal matrix ⇤(k) in G(k) can be obtained by

⇤(k) = ⌃f (k)⌃h(k)
�

⌃2
f (k)⌃

2
h(k) +

�2
w

�2
a

I
��1

. (5.10)

If there is no error propagation in the decision feedback loop, the received signal vector in front

of the detector is given by

y(k) = a(k) + e(k), (5.11)

where

e(k) = (G(k)H(k)F(k)�B(k)� IM )a(k) +G(k)w(k).

Following the same derivation as in [19], the error covariance matrix of e(k) can be written as

Ree(k) = E(e(k)e†(k)) = �2
adiag(|r(k)|)�2. (5.12)

The total MSE of the kth block at the detector is

⇠gmd(k) = Tr
�

Ree(k)
�

(5.13)

= M�2
a(
�2
w�(k)

�2
a

)

L(k)
M

�

L(k)�1
Y

i=0

1

�2
h,i(k)

�1/M
.

5.4 GMD MMSE Transceivers with Temporal Precoder

In this section, we develop the GMD MMSE transceiver with channel independent temporal pre-

coder (GMDM-TP) based on the conventional GMD-based MMSE system, [19] and [18], by incor-
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Figure 5.3: The receiver of GMDM-TP

porating a constant K ⇥ K unitary matrix W as the temporal precoder. The purpose of W is to

equalize the MSEs (at the input of decision device) of different blocks.

The GMDM-TP scheme is shown in Fig. 5.2 and Fig. 5.3. Except for the temporal precoding

matrix W, the transceiver has similar structure as the GMD-based system as described in the last

section. To facilitate space-time processing, K blocks of symbol vectors are grouped into one space-

time block as

˜am =

h

aT (mK) . . . aT (mK +K � 1)

iT

, (5.14)

where m is the ST-block index. The symbols, m and mK, will be omitted for convenience. The

equivalent MIMO channel matrix for the mth ST-block is a KJ ⇥KN block diagonal matrix given

by

˜H = diag
�

H(0),H(1), . . . ,H(K � 1)

�

. (5.15)

In Fig. 5.2, the noise vector ˜w = [wT
(0), . . . ,wT

(K � 1)]

T . Let 0  k  K � 1. If SVD is applied

to H(k) separately (in the spatial domain), we have H(k) = Uh(k)⌃h(k)V
†
h(k) as in (5.1). ˜H can be

decomposed as

˜H =

˜Uh
˜⌃h

˜V†
h, (5.16)

where ˜Uh, ˜Vh and ˜⌃h are block diagonal matrices with Uh(k), Vh(k) and ⌃h(k) on the diagonals,

respectively. The power loading matrix ˜⌃f in the transmitter is a KM ⇥KM diagonal matrix

˜⌃f = diag(⌃f (0),⌃f (1), . . . ,⌃f (K � 1)), (5.17)
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where ⌃f (k) is given by (5.3). The KM ⇥KM block diagonal matrix ˜P is given by

˜P = diag
�

P(0),P(1), . . . ,P(K � 1)

�

, (5.18)

where P(k) is determined by the GMD of ⇥(k) as in (5.7). The KM ⇥KM feedback block diagonal

matrix ˜B consists of B(k) on the diagonal where B(k) is as (5.9). The MK ⇥MK diagonal matrix

˜⇤ in Fig. 5.3 can be written as

˜⇤ = diag
�

⇤(0),⇤(1), . . . ,⇤(K � 1)

�

, (5.19)

where ⇤(k) is given by (5.10).

At the transmitter, every ST-block ˜a is first processed by the temporal precoder W ⌦ IM , pre-

coded by the spatial precoder ˜F and then sent through the channel ˜H. At the receiver, the re-

ceived blocks are first processed with feedforward matrix ˜G and decoded by the temporal pre-

coder W† ⌦ IM . The detector detects the symbols in the ST-block ˜a sequentially according to the

successive cancellation algorithm described in the following. Before summarizing the detection

algorithm of the receiver, we need some notations. For 0  i M � 1, define the M ⇥M diagonal

matrix Ei as

Ei = diag([0, . . . , 0
| {z }

M�i

, 1, . . . , 1
| {z }

i

]), (5.20)

and the M ⇥ 1 vector si in which all the entries are zero except the ith entry which is 1. Based on Ei

and si, we define two operators, ⇥i = IK ⌦ Ei and Si = IK ⌦ sTi , on the ST-block vector a which

has the form (5.14). ⇥i retains the last i symbols of each a(k) and makes the other symbols of a(k)

zero. And note that Sia = [ai(0), . . . , ai(K � 1)]

T .

The successive cancellation algorithm:

1. Initialize: i = 0.

2. Feedback: Calculate

SM�i�1y = SM�i�1(y
0 �B(W ⌦ IM )⇥iˆa).

3. Detection: Calculate z(i) = SM�i�1r
0
= W†SM�i�1y.

Detect SM�i�1ˆa = Qt(z(i)), where the function q = Qt(t) sets [q]k to the element in � such
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that it is closest to [t]k in Euclidean norm.

4. If i = M � 1, then stop, else set i = i+ 1 and go to 2.

The algorithm can be justified by direct substitution under the no error propagation assumption,

i.e., ⇥iˆa = ⇥ia. To characterize the performance of the detector, we consider the error covariance

matrix of the error signal component, e = r0 � a, in front of the detector. If there is no error

propagation, i.e., ˆa = a, e is given by

e = (W† ⌦ IM )

�

(

˜G ˜H˜F� ˜B� I)(W ⌦ IM )a+

˜G ˜w
�

, (5.21)

in which the elements of ˜w are i.i.d complex circular Gaussian, with zero mean and variance �2
w.

So, we have the error covariance matrix

Ree(W) = E(ee†) = �2
a(W

†⌃�2W ⌦ IM ), (5.22)

where

⌃ = diag(�0,�1, . . . ,�K�1), (5.23)

and �k is given by (5.8).

Let ⌫(i)W (k) denote the MSE when the detection device detects the ith symbol of the kth block in

an ST-block. It is given by

⌫(i)W (k) = [Ree(W)]kM+i,kM+i, (5.24)

where 0  i  M � 1 and 0  k  K � 1. From (5.22), one can observe that all the equivalent

subchannels of the MIMO channel H(k) have the same MSE, ⌫W (k), i.e.,

⌫W (k) = ⌫(i)W (k) = �2
a[W

†⌃�2W]k,k, (5.25)

for all i. This is because GMD is applied for each H(k). We denote the MSE vector with the temporal

precoder W as

vW = [⌫W (0), ⌫W (1), . . . , ⌫W (K � 1)]

T . (5.26)
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Figure 5.4: The transmitter of the ST-GTD transceiver and the channel
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Figure 5.5: The receiver of the ST-GTD transceiver

Note that the conventional GMD-based system is the special case of GMDM-TP with W = IK . So,

its MSE vector can be written as

vI = [⌫I(0), ⌫I(1), . . . , ⌫I(K � 1)]

T , (5.27)

where ⌫I(k) is obtained by (5.25) by letting W = IK . From (5.25), one can verify that

vW = TvI , (5.28)

where Ti,j = |Wj,i|2. The matrix T is a doubly stochastic matrix. By Theorem 1.1, we have

vW �+ vI . (5.29)

This implies that any unitary temporal precoder can equalize the MSEs of the blocks in one ST-

block, so that vW �+ vI is satisfied.

If W is chosen to be the unitary matrix Z in which

|Zij | =
1p
K

, 0  i, j  K � 1, (5.30)
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one can show that the error covariance matrix has equal diagonal elements [6], [7]. Let ⌫Z(k) be the

MSE in the kth block of a ST-block of the GMDM-TP with the temporal precoder Z. From (5.28)

and (5.30), one can show that ⌫Z(k) are equal and given by

⌫Z(k) =
�2
a

K

K�1
X

i=0

1

�2
i

, (5.31)

for all k. Hence, Ree(Z) has equal diagonal elements by (5.24) and (5.25). By Lemma 1.1, one can

further show that

vZ �+ vW �+ vI , (5.32)

where vZ = [⌫Z(0), . . . , ⌫Z(K � 1)]

T . The unitary matrix Z satisfying (5.30) is an optimal precoder

among the class of unitary matrices in the sense that it equalizes [Ree]i,i such that vZ �+ vW . The

total MSE over one ST-block for GMDM-TP is independent of the choice of W and can be shown

to be

⇠gmdm�tp = Tr
�

Ree(W)

�

= M�2
a

K�1
X

k=0

1

�2
k

. (5.33)

In fact, the total MSE of the conventional GMD-based system ⇠gmdm = ⇠gmdm�tp. However, the

BER performance is different since the diagonal entries of Ree(W) of GMD-TP are redistributed.

The BER discussion is relegated to section 5.7.

5.5 Space-Time GTD MMSE Transceivers

In this section, we propose the ST-GTD MMSE DFE transceiver based on the ST-GTD introduced

in Chapter 4. The proposed precoder and receiver of ST-GTD transceiver are shown in Fig. 5.4

and Fig. 5.5, respectively. It is assumed that the transmitter could predict the channels H(k) for

0  k  K � 1 before sending a ST-block ˜a and the receiver can perfectly track the channels.

There are well-studied methods [37], [29] which we can exploit here for the channel prediction. In

Chapter 4, we used Wiener filters to do channel prediction in Jakes’ channel model where H(k) are

correlated for different k. Before the precoding of an ST-block, the Wiener prediction filters predict

H(1), . . . ,H(K�1) based upon previous P channel matrices H(0), . . . ,H(�P+1). In the following

subsections, we will introduce the design procedures for the ST-GTD MMSE transceiver based on
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perfect and imperfect channel prediction.

5.5.1 Perfect Channel Prediction

Here, we consider the design of the ST-GTD transceiver based on perfect channel prediction and

use it as a theoretical foundation for the development of the ST-GTD transceivers with imperfect

channel prediction or even without channel prediction in the later section. In either case, this sys-

tem serves as a benchmark for performance comparisons.

Since the transmitter and receiver have perfect CSI of ˜H, the matrix ˜Vh in spatial precoder

˜F and ˜U†
h in feedforward matrix ˜G can be obtained from the block SVD of ˜H as in (5.16). The

power loading matrix ˜

⌃f in GMDM-TP only uses the instantaneous CSI, i.e., H(k) at time k, and

allocates power on a per-block basis. Here, since H(k) for 0  k  K � 1 are available by channel

prediction, a more sophisticated power allocation algorithm over space and time can be used. The

power loading matrix ˜⌃f takes the form of (5.17) and the diagonal elements �2
f,i(k) are given by

the space-time water filling formula,

�2
f,i(k) =

8

<

:

1
� �

�2
w

�2
a�

2
h,i

(k)
, 0  i  L(k)� 1

0, L(k)  i M � 1

, (5.34)

where L(k)�1 is the largest number such that 1/���2
w/(�

2
a�

2
h,L(k)�1(k)) is positive. The threshold

1/� is determined by the power constraint over an ST-block instead of a block, i.e.,

KP0 = �2
aTr(˜F

†
˜F) = �2

a

K�1
X

k=0

M�1
X

i=0

�2
f,i(k). (5.35)

Substituting (5.34) into (5.35), we have

1

�
=

KP0 +
PK�1

k=0

PL(k)�1
i=0 �2

w/�
2
h,i(k)

�2
a

PK�1
k=0 L(k)

. (5.36)

Since ˜⌃f can be obtained from (5.34), ˜⇤ can then be calculated from (5.19).

Moreover, ST-GTD [38] can be applied to get ˜P, P1, ˜B and B1 for the precoder and the receiver

as follows. Firstly, we construct the block diagonal matrix

˜⇥ = diag
�

⇥(0),⇥(1), . . . ,⇥(K � 1)

�

, (5.37)
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where ⇥(k) is given by (5.6). Applying the spatial GMD to ⇥(k) for all k, we have ⇥(k) =

Q(k)R(k)P†
(k) as in (5.7). One can obtain the spatial precoder ˜P from the block GMD of ˜⇥ as

˜⇥ =

˜Q ˜R˜P†, (5.38)

where ˜P, ˜R and ˜Q are block diagonal matrices consisting of P(k), R(k) and Q(k) on the diagonals,

respectively. Let

d = [�0, . . . ,�K�1]
T , (5.39)

where �i is defined in (5.8). ˜R can be factored as

˜R = DR(IKM +

˜B) (5.40)

where DR = ⌃ ⌦ IM , ⌃ = diag(d), and the spatial feedback matrix ˜B is a block diagonal matrix

with B(k) on the diagonal. B(k) are strictly upper triangular M ⇥M matrices given by (5.9).

Secondly, the temporal GTD of ⌃ gives the temporal precoder P1. We decompose ⌃ as

⌃ = Q1R1P
†
1, (5.41)

where P1 and Q1 are K ⇥ K unitary matrices, and R1 is a K ⇥ K upper triangular matrix. The

necessary and sufficient condition for the GTD in (5.41) to be possible is

r1 �⇥ d, (5.42)

in which r1 is a K ⇥ 1 vector consisting of diagonal elements of R1 and d is given by (5.39). The

temporal domain feedback matrix B1 is given by

B1 = DR
�1
1 R1 � IK , (5.43)

where DR1 = diag(r1). So, the ST-GTD decomposes ˜⇥ as

˜⇥ =

˜Q
⇣

(Q†
1DR1(IK +B1)P1)⌦ IM )(IKM +

˜B)

⌘

˜P†, (5.44)

which is entirely different from the direct GMD on ˜⇥. For the design of the ST-GMD MMSE
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transceiver, the temporal GTD of ⌃ in (5.41) is replaced by the temporal GMD in which all the

entries of r1 in (5.42) equal (
QK�1

k=0 �k)1/K .

5.5.2 Imperfect Channel Prediction

In practice, perfect channel prediction is not possible. The mismatch between the ST-GTD transceiver

designed by the predicted CSI and the actual channel may result in performance degradation. To

alleviate the mismatch caused by channel prediction error, we modify the design procedure.

At the transmitter end, we use the Wiener prediction filter to predict the channel matrix ˜H as

described in Sec. 4.4.2 at the beginning of each ST-block, and denote the predicted channel matrix

as ˆH. ˜Vh can be implemented with no channel prediction, since it is block diagonal with Vh(k)

on its diagonal. And the computation of Vh(k) only relies on the instantaneous CSI H(k). As for

the power loading matrix ˜⌃f , the space-time water filling formula in (5.34) requires all the singular

values �h,i(k) of ˜H, so the predicted singular values �̂h,i(k) obtained from ˆH are used instead. The

spatial precoder ˜P is a block diagonal matrix with P(k) on its diagonal, so we can implement the

precoder without predicted CSI. Letting a0 = (P1 ⌦ IM )

˜a, the precoded block at time k is given by

[t]kM :kM+M�1 = P(k)[a0]kM :kM+M�1. (5.45)

One can see that only P(k) is required at block time k. To get the spatial precoder P(k), we construct

⇥(k) in (5.6) using �h,i(k) and ˜⌃f , and then do the GMD decomposition as in (5.7). Using the

predicted �̂h,i(k), we construct ˜⇥ as in (5.37) and the temporal precoder P1 is obtained from the

ST-GTD of ˜⇥ in (5.44).

At the receiver end, ˜H is available without channel prediction, because the receiver can store

the signal until ˜H is estimated. Using the predicted channel matrix ˆH, the receiver first designs the

power loading matrix ˜⌃f and temporal precoder P1 as at the transmitter. ˜Uh, ˜⇤, ˜P, ˜B and ⌃ are

obtained in a similar fashion as in the last subsection. R1 are obtained from the QR decomposition

of ⌃P1 as

⌃P1 = Q1R1. (5.46)

The temporal feedback matrix B1 is given by (5.43).

One can also verify that both the design procedures in this and the last subsection lead to the
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same ST-GTD or ST-GMD MMSE transceiver when channel prediction is perfect. For each ST-block

time, ˜a is precoded by the temporal and spatial precoders, transmitted through the channel ˜H and

pre-processed at the receiver by ˜G. The estimation of the transmitted ˜a at the receiver is done by

the successive cancellation algorithm described in Sec. 4.4.3.

5.5.3 Mean Square Error at the Detector

To characterize the performance of the ST-GTD transceiver, we assume perfect channel prediction

and calculate the error covariance matrix of the noise component, e = r� ˜a. Under the assumption

of no error propagation in the feedback loop, the error component e can be expressed as

e = A[

�

˜G ˜H˜F� (

˜B+ IM )

�

(P1 ⌦ IM )a+

˜G ˜w], (5.47)

where

A = [(I+B1)P
†
1 ⌦ IM ]. (5.48)

Following a similar derivation procedure as for (5.22), we have the error covariance matrix

Ree = E(ee†) = �2
aA(⌃�2 ⌦ IM )A†

= �2
a[DR

�1
1 DR

�†
1 ⌦ IM ], (5.49)

where DR1 is as (5.43). The second equality follows from the temporal domain GTD (5.41). The

total MSE of the ST-GTD MMSE transceiver over an ST-block is the trace of Ree, i.e.,

⇠st�gtdm = �2
aM

K�1
X

k=0

1

|⌘k|2
� �2

aMK
⇣

K�1
Y

k=0

1

�2
k

⌘1/K
, (5.50)

where ⌘k = [r1]k. The last inequality comes from the AM-GM inequality and r1 �⇥ d. The lower

bound of the total MSE ⇠st�gtdm is achieved when the ST-GMD is applied, in which we choose

⌘k =

�

K�1
Y

i=0

�i
�1/K

. (5.51)
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We call this class of ST-GTD MMSE transceiver the ST-GMD MMSE transceiver. The total mean

square error of the ST-GMD MMSE transceiver is given by

⇠st�gmdm = �2
aMK

�

K�1
Y

k=0

1

�2
k

�1/K
. (5.52)

If the conventional spatial water-filling algorithm is used, the power loading matrix ⌃f is the

same as ⌃f in (5.17). Then, the total mean square error of the ST-GMD MMSE transceiver is given

by

⇠st�gmdm = �2
aMK

K�1
Y

k=0

(

�2
w�(k)

�2
a

)

L(k)
MK

⇣

L(k)�1
Y

i=0

1

�2
h,i(k)

⌘

1
MK

.

However, the MSE is not minimized since the precoder does not exploit the full knowledge of

the channel for power loading. If the space-time power loading algorithm in (5.34) is used, the

minimized MSE can be shown to be

⇠st�gmdm = �2
aMK(

�2
w�

�2
a

)

t
⇣

K�1
Y

k=0

L(k)�1
Y

i=0

1

�2
h,i(k)

⌘

1
MK

, (5.53)

where t =
PK�1

k=0 L(k)/(MK). This is also the smallest MSE achievable by designing a GMD MMSE

transceiver over the big equivalent channel matrix ˜H. The class of ST-GMD MMSE transceivers

with space-time power loading is the optimal subclass of ST-GTD MMSE transceivers in terms of

total mean square error. Furthermore, the error covariance matrix of a ST-GMD MMSE transceiver

has equal diagonal elements. Hence, for every ST-block, the ST-GMD MMSE transceiver minimizes

both the arithmetic and geometric MSE, and the average un-coded BER at the high SNR region

according to [19].

5.5.4 Complexity

Although the ST-GMD MMSE transceiver and the GMD MMSE transceiver designed for the big

channel matrix ˜H have the same performance, the ST-GMD MMSE transceiver has lower complexity

both in the operation phase, and the design phase which obtains the precoder and equalizer. In the

design phase, both transceivers do the same block SVD as in (5.16), which has complexity O(KM3
).

However, ST-GTD requires lower computational complexity, O(KM2
+ K2

), than the complexity

of directly applying GTD on ⇥, which is O(K2M2
) [21], [38]. To evaluate the complexity of op-
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erations, we let the systems process one ST-block and compare the number of multiplications and

additions. The total complexity of an ST-GTD MMSE transceiver is O(K2M + KM2
) while that

of the GMD MMSE transceiver is O(K2M2
+KM2

). More importantly, ST-GTD can be chosen in

such a way that channel prediction is not necessary, as we show next.

5.6 Space-Time GTD MMSE Transceivers with Fixed Temporal

Precoder

In the previous section, the design of ST-GTD MMSE transceivers relies on channel prediction just

as the ST-GTD ZF transceivers in Chapter 4. When the channel prediction becomes unavailable,

we can choose P1 to be a constant DFT or Hadamard matrix just as in Chapter 4 which makes the

implementation of the transmitter possible. The conventional spatial water-filling formula in (5.4)

is used to obtain power loading matrix ˜⌃f . Now, R1 is obtained from the QR decomposition of

⌃W as

⌃W = Q1R1, (5.54)

where Q1 is also a K ⇥K unitary matrix and R1 is a K ⇥K upper triangular matrix. The temporal

feedback matrix B1 is given by (5.43). The detection at the receiver is exactly the same as in the

ST-GTD MMSE transceiver (Fig. 5.5). We call this kind of transceiver the causal ST-GTD MMSE

transceiver (CST-GTDM). It is in fact a subclass of the ST-GTD MMSE transceiver. The error covari-

ance matrix of the error component in front of the detector is given by (5.49). And the total mean

square error ⇠cst�gtdm is given by (5.50).

5.6.1 Comparison of Mean Square Error

In this subsection, we compare the performance of the conventional GMD-based MMSE system

[19], the CST-GTD MMSE transceiver, and the ST-GMD MMSE transceiver with perfect channel

prediction. The total MSE of the GMD-based MMSE system in one ST-block is

⇠gmdm = �2
aM

K�1
X

k=0

1

�2
k

. (5.55)

The comparison is presented in Theorem 5.1.



115

Theorem 5.1: The total mean square errors over one ST-block for the three transceivers are such

that

⇠st�gmdm  ⇠st�gtdm  ⇠gmdm. (5.56)

⇤

Proof: The first inequality follows from (5.50). The proof of the second inequality is similar to that

of Theorem 4.2 in Chapter 4. ⇤

The result is independent of the chosen power-loading scheme as long as all three transceivers

have the same power loading matrix. For simplicity, we assume that only the ST-GMD transceiver

uses the space-time water filling formula in (5.34) and the other two use the spatial power loading

formula in (5.4). ⇠st�gmdm  ⇠st�gtdm is still true since space-time water filling gives the minimal

MSE. The theorem shows that the class of ST-GTD MMSE transceivers has smaller total MSE per

ST-block than the conventional GMD-based MMSE system. In particular, for CST-GTDM, we have

⇠st�gmdm  ⇠cst�gtdm  ⇠gmdm. (5.57)

The temporal precoder P1 or W1, and the “nested-feedback-loop” receiver in the ST-GMD or

CST-GTD MMSE transceiver redistribute the MSEs of the blocks in each ST-block and also help

to reduce the per ST-block arithmetic MSE. This is in contrast to the linear temporal precoder

of GMDM-TP which keeps the same per ST-block arithmetic MSE while equalizing the MSEs in

blocks.

5.7 Performance Analysis

In this section, we compare the average BER of the conventional GMD-based, GMD-TP, ST-GTD,

and ST-GMD MMSE transceivers. For both ST-GTD and ST-GMD transceivers, perfect channel

prediction is assumed. We assume N 0 uses of the time-varying channels. Every K successive uses

constitute one ST-block. So the mth ST-block uses the channels:

H(mK + k), for 0  k  K � 1, (5.58)
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where 0  m  dN 0/Ke � 1. N 0 is assumed to be a large number and a multiple of the ST-block

size K. Even numbers of bits, b bits, are allocated for every symbol ai(k) of each ST-block. For

square QAM [94], the BER for each symbol in the kth block of the mth ST-block with bias removal,

assuming that there is just one bit error per symbol error, is approximately

Pe ⇡ cQ
⇣

A

 
1

⌫(mK + k)
� 1

�2
a

⌘

, (5.59)

where Q(·) is the Q-function defined in [94], A =

p

(3�2
a)/(2

b � 1), �2
a is the average symbol

power, ⌫(mK + k) is the per symbol MSE of the kth block in the mth ST-block as in (5.25) and

c = (4/b)(1 � 2

�b
2
). Note that the symbol error rate (SER) equals bPe. The average BER over the

entire transmission is hence given by

P =

1

N 0

(N 0/K)�1
X

m=0

K�1
X

k=0

cQ
⇣

A

 
1

⌫(mK + k)
� 1

�2
a

⌘

. (5.60)

The function Q(A
p

1/y � 1/�2
a) for y 2 R+ plays a crucial role in BER analysis. An important

property of it is restated as the following lemma.

Lemma 5.1: Assume that y < �2
a. The function f(y) = Q(A

p

1/y � 1/�2
a) is monotone increasing.

It is convex when y � t2 or y  t1 and concave otherwise, where

t1 =

A2
+ 3�2

a �
p

A4
+ 9�4

a � 10A2�2
a

8

,

t2 =

A2
+ 3�2

a +
p

A4
+ 9�4

a � 10A2�2
a

8

. (5.61)

If the constellation is chosen to be BPSK and QPSK, f(y) is convex for all y. ⇤

Proof: See [11]. ⇤

We define the SINR of the nth block as �(n). The SINR expressions of the nth block for the

conventional GMD-based MMSE system, the GMDM-TP with precoder W, and the GMDM-TP
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with precoder Z are defined as

�gmd(n) = �2
a/⌫I(n),

�gmdm�tpw(n) = �2
a/⌫W (n),

�gmdm�tpz(n) = �2
a/⌫Z(n), (5.62)

where ⌫I(n), ⌫W (n) and ⌫Z(n) are given by (5.27), (5.25) and (5.31), respectively. And the SINR

expressions for the ST-GTD and ST-GMD MMSE transceivers are given respectively by

�st�gtdm(n) = |⌘2n|,

�st�gmdm(n) =
�

K�1
Y

i=0

�2
(mK + i)

�1/K
, (5.63)

which follow from (5.49) and m = bn/Kc. We also define two SINR regions:

For b � 3,

Rcvx =

�

� : � � �2
a

t1
[ �  �2

a

t2

 

.

For 1  b  2,

Rcvx =

�

� : � 2 R+
 

. (5.64)

And

Rccv =

�

� : � 2 R+\Rcvx

 

. (5.65)

For convenience, we define the average BER in (5.60) as the function of the MSEs of all blocks,

�(z) =
c

N 0

N 0�1
X

n=0

Q
⇣

A

 
1

zn
� 1

�2
a

⌘

, (5.66)

where z = [z0, z1, . . . , zN 0�1]
T . By Lemma 5.1 and proposition 3.C.1 in [95], �(z) is Schur-convex

when zn  t1 or zn � t2 and Schur-concave when t1  zn  t2 for all n and b � 3. It is Schur-convex

if 1  b  2.
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5.7.1 BER Comparison of the Transceivers

In the following theorem, we compare the BER performance of the conventional GMD-based MMSE

system and GMDM-TP and prove that Z in (5.30) is the optimal temporal unitary precoder for

GMDM-TP which minimizes the average BER at the convex region. In what follows, the “convex

region” means the SINRs of the transceivers are such that �(n) 2 Rcvx and the “concave region”

means �(n) 2 Rccv .

Theorem 5.2: Let Pgmdm be the average BER of the conventional GMD-based system, Pgmdmtp�w

be the average BER of the GMDM-TP with the temporal precoder W and Pgmdmtp�z be that with

the temporal precoder Z. Then,

Pgmdmtp�z  Pgmdmtp�w  Pgmdm, at the convex region,

Pgmdmtp�z � Pgmdmtp�w � Pgmdm, at the concave region.

⇤

Proof: The proof is similar to that of Theorem 1 in [36]. ⇤

Next, we compare the BER of the entire class of ST-GTD MMSE transceivers including the ST-

GMD and CST-GTD MMSE transceivers with the conventional GMD-based MMSE system. The

following lemma is helpful for further analysis:

Lemma 5.2: The function �(y) = Q(c1
p
e2y � 1) is monotone decreasing in y where c1 = A/�a.

Let ⌘ = ey . For constellations up to 16-QAM (1  b  4), �(y) is convex for all y 2 R+. Otherwise,

it is convex when |⌘|2  t01 or |⌘|2 � t02 and concave when t01 < |⌘|2 < t02, in which

t01 =

⇣

K1 + 1�
»
K2

1 � 6K1 + 1

⌘

/(4K1),

t02 =

⇣

K1 + 1 +

»
K2

1 � 6K1 + 1

⌘

/(4K1), (5.67)

and K1 = 3/(2b � 1). ⇤

Proof: The proof can be found in [23]. ⇤

For the following discussion, we define two more SINR regions:
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For b � 5,

“Rcvx =

�

� : � � 1

t01
[ �  1

t02

 

.

For 1  b  4,

“Rcvx =

�

� : � 2 R+
 

. (5.68)

And

“Rccv =

�

� : � 2 R+\“Rcvx

 

. (5.69)

In the following theorem, “convex region” and “concave region” are defined by the “Rcvx and “Rccv ,

respectively.

Theorem 5.3: Let Pst�gtdm be the BER of the ST-GTD MMSE transceiver and Pst�gmdm be that of

ST-GMD MMSE transceiver. Then,

Pst�gmdm  Pst�gtdm  Pgmdm, in the convex region

Pst�gmdm � Pst�gtdm � Pgmdm, in the concave region.

⇤

Proof: Using Lemma 5.2 and following similar procedures to those in the proof of Theorem 4.3 in

Chapter 4, we can obtain the result. ⇤

From Theorem 5.3, it also follows that Pst�gmdm  Pcst�gtdm  Pgmdm in the convex region,

and the other way around for the concave region.

In the following discussion, let x = [x0, x1, . . . , xN 0�1]
T , where

xn =

�2
a

|⌘n|2
, (5.70)

for n = mK + k. The average BER of the ST-GTD MMSE transceiver can be expressed as

Pst�gtdm = �(x), (5.71)
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where �(·) is defined in (5.66). Now, we define a quantity as

P⇤
st�gtdm = �(y), (5.72)

in which y = [y0, y1, . . . , yN 0�1]
T and ymK+k = 1/K

PK�1
i=0 xmK+i for 0  k  K � 1. By the

similar argument as the proof of Theorem 5.2, one can verify that P⇤
st�gtdm is the lower bound of

Pst�gtdm in convex region, i.e., �st�gtdm(n) 2 Rcvx and �⇤
st�gtdm(n) 2 Rcvx, where �⇤

st�gtdm(n) =

�2
a/yn. At the concave region, P⇤

st�gtdm � Pst�gtdm. Notice that the two bounds are achieved

for the class of ST-GMD MMSE transceivers since xmK = xmK+1 = . . . = xmK+K�1. That is

P⇤
st�gmdm = Pst�gmdm. In the following, we compare the performance of GMDM-TP and ST-

GMD MMSE transceiver. The theorem also gives us some hints about the BER performance of

CST-GTDM.

Theorem 5.4: Let Pgmdmtp�z be the average BER of the GMDM-TP with temporal precoder Z, and

Pst�gmdm be the BER of the ST-GMD MMSE transceiver. Then,

Pst�gmdm  P⇤
st�gtdm  Pgmdmtp�z. (5.73)

⇤

Proof: To prove the second inequality, first observe that the BER of GMDM-TP is given by

Pgmdmtp�z = �(v), (5.74)

where �(·) is defined in (5.66), v = [v0, . . . , vN 0�1]
T . For 0  k  K � 1, vmK+k is given by

vmK+k =

�2
a

K

K�1
X

i=0

1

�2
mK+i

=

⇠gmdm(m)

MK
. (5.75)

Notice that P⇤
st�gtdm is given by (5.72) and

ymK+k =

�2
a

K

K�1
X

i=0

1

|⌘mK+i|2
=

⇠st�gtdm(m)

MK
. (5.76)

Since Theorem 5.1 shows that ⇠st�gtdm(m)  ⇠gmdm(m), so ymK+k  vmK+k. As f(y) = Q(A
p

1/y � 1/�2
a)

is a nondecreasing function of y by Lemma 5.1, we can conclude that P⇤
st�gtdm  Pgmdmtp�z .
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The BER of the ST-GMD MMSE transceiver is given by

Pst�gmdm = �(v0
), (5.77)

where v0
= [v00, . . . , v

0
N 0�1]

T , and by (5.52)

v0mK+k = �2
a(

K�1
Y

k=0

1

�2
mK+k

)

1/K
=

⇠st�gmdm(m)

MK
. (5.78)

Again from Theorem 5.1, we have v0mK+k  ymK+k. Similarly, we can conclude that Pst�gmdm 

P⇤
st�gtdm. ⇤

For the convex region, very low SINR or high SINR, if P⇤
cst�gtdm is a tight lower bound of

Pcst�gtdm, it is very likely, from Theorem 5.4, that Pcst�gtdm  Pgmdmtp�z ; then we have

Pst�gmdm  Pcst�gtdm  Pgmdmtp�z  Pgmdm.

The simulations in 5.8 also support this conjecture.

5.7.2 Block size and the BER Performance

In this section, the relationship between the size of the ST-block and the BER performance is ex-

plored. We first consider the GMDM-TP in Theorem 5.5. In the following theorem, “convex region”

and “concave region” are defined by Rcvx and Rccv , respectively.

Theorem 5.5: Let P(K)
gmdmtp�z denote the average BER of the GMDM-TP with ST-block size K over

N 0 channel uses and P(qK)
gmdmtp�z denote that with ST-block size qK, for q,K 2 N. Then,

P(qK)
gmdmtp�z

8

<

:

 P(K)
gmdmtp�z , in the convex region,

� P(K)
gmdmtp�z , in the concave region.

(5.79)

⇤

Proof: Express P(K)
gmdmtp�z and P(qK)

gmdmtp�z in terms of �(·) in (5.66) and follow analog steps in the

proof of Theorem 4.4. ⇤

In Theorem 5.6, “convex region” and “concave region” are defined by “Rcvx and “Rccv , respec-
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tively.

Theorem 5.6: Let P(K)
st�gmdm denote the BER of the ST-GMD MMSE transceiver with ST-block size

K and P(qK)
st�gmdm denote that with ST-block size qK, for q,K 2 N. Then,

P(qK)
st�gmdm

8

<

:

 P(K)
st�gmdm , in the convex region,

� P(K)
st�gmdm , in the concave region.

(5.80)

⇤

Proof: Similar to the proof of Theorem 4.4. ⇤

In the convex region, from Theorems 5.5 and 5.6, we can conclude that both P(qK)
gmdmtp�z and

P(qK)
st�gmdm are non-increasing functions of q. As the ST-block size gets larger, the BER performance

of the GMDM-TP and ST-GMD MMSE transceivers improves monotonically. Larger ST-block size

is more favorable because it gains more diversity from the time-varying channels. In the concave

region, the relationship is the other way around, so it is better to have small ST-block size.

5.7.3 MMSE v.s. Zero-forcing

In this section, we show explicitly that the ST-GMD MMSE transceiver has better performance than

the zero-forcing case in terms of mean square error and bit error rate.

Theorem 5.7: The bias removed per symbol MSE of ST-GMD MMSE transceiver with space-time

power loading is smaller than that of the zero-forcing ST-GMD transceiver in Chapter 4, i.e.,

⇠st�gmdm�br  ⇠stgmdzf
, (5.81)

where

�2
a

⇠st�gmdm�br

=

�2
a

⇠st�gmdm

� 1,

⇠st�gmdm =

⇠st�gmdm

MK
, (5.82)
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and from Chapter 4, ⇠stgmdzf
is given by

⇠stgmdzf
=

�2
a�

2
wM

P0
(

K�1
Y

k=0

M�1
Y

i=0

1

�2
h,i(k)

)

1/MK . (5.83)

⇤

Proof: See Appendix. ⇤

Theorem 5.8: Let Pstgmd�zf be the average bit error probability of the zero-forcing ST-GMD

transceiver in Chapter 4. Then,

Pst�gmdm  Pstgmd�zf . (5.84)

⇤

Proof:

Pst�gmdm =

K

N 0

(N 0/K)�1
X

m=0

cQ
⇣

A

Ã
1

�2
a

(

�2
a

⇠
(m)
st�gmdm

� 1)

⌘

=

K

N 0

(N 0/K)�1
X

m=0

cQ
⇣

A

Ã
1

�2
a

(

�2
a

⇠
(m)
stgmd�br

)

⌘

, (5.85)

and

Pstgmd�zf =

K

N 0

(N 0/K)�1
X

m=0

cQ
⇣

A

Ã
1

�2
a

(

�2
a

⇠
(m)
stgmdzf

)

⌘

, (5.86)

where ⇠
(m)
st�gmdm denotes the per symbol MSE of the mth ST-block of the ST-GMD MMSE transceiver,

⇠
(m)
stgmdm�br is the bias removed per symbol MSE of the mth ST-block and ⇠

(m)
stgmdzf

is that of the zero-

forcing ST-GMD. The second equality of (5.85) follows from (5.82). By Lemma 4.1 in Chapter 4,

Q(A
p

1/y) is a non-increasing function of y. And Theorem 5.7 says ⇠
(m)
stgmdm�br  ⇠

(m)
stgmdzf

. Hence,

we can conclude that Pst�gmdm  Pstgmd�zf . ⇤
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5.7.4 Capacity Performance

In this subsection, we discuss the performance of the ST-GMD MMSE transceiver in terms of Gaus-

sian mutual information. We will show that ST-GMD MMSE transceiver is mutual information

lossless. This means the transceiver maximizes the ensemble average of the Gaussian mutual infor-

mation between the input signal ˜a and the signal r in front of the detector (see Fig. 5.4 and Fig. 5.5)

with respect to ˜H, and the maximized average mutual information is equal to the ergodic channel

capacity of ˜H [96]. The fact that the mutual information is lossless also implies that each substream

[

˜a]i can use an independent optimal coding scheme to achieve channel capacity.

Under the short-term power constraint, in which the power associated with each channel real-

ization must equal the average power P0K, the ergodic capacity [96] of the channel ˜H is

C = EH̃

h

max

R
x

:Tr(R
x

)=KP0

log

�

det(I+ ˜H†Rx
˜H/�2

w)
�

i

= EH̃

h

K�1
X

k=0

M�1
X

i=0

log

�

1 +

�2
a�

2
f,i(k)�

2
h,i(k)

�2
w

�

i

= EH̃

h

MK log

⇣

(

�2
a

��2
w

)

t
�

K�1
Y

k=0

L(k)�1
Y

i=0

�2
h,i(k)

�

1
MK

i

, (5.87)

where �2
f,i(k) is given by the space-time water-filling formula (5.34) and t is defined in (5.53). The

third equality is obtained by direction substitution with (5.34). In the ST-GMD MMSE transceiver,

the channel ˜H is converted into equivalent parallel subchannels with equal MSEs. After the bias

removal at the detector, the MSE of each subchannel is given by ⇠st�gmdm�br in (5.82). Therefore,

the average mutual information of the input and output signals of the equivalent subchannels is

Ist�gmdm = EH̃

h

MK log

�

1 +

�2
a

⇠st�gmdm�br

�

i

= EH̃

h

MK log

� �2
a

⇠st�gmdm

�

i

. (5.88)

Substituting for ⇠st�gmdm from (5.82) and (5.53), we have

C = Ist�gmdm.

Hence, we can conclude that the ST-GMD MMSE transceiver is mutual information lossless.
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Figure 5.6: BER performance of GMDM, GMDM-TP, ST-GMDM and CST-GTDM.

0 5 10 15 20 25 30 35 40 45 50

0.075

0.08

0.085

0.09

0.095

0.1

block size

BE
R

 

 

GMDM−TP
CST−GTDM
ST−GMDM (imperfect)
ST−GMDM (perfect)

Figure 5.7: BER performance v.s. block size at SNR=10 dB.
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5.8 Numerical Results

In this section, simulation results on the average BERs of the GMD-based MMSE system, GMDM-

TP, ST-GMD and CST-GTD MMSE transceivers are presented. We also demonstrate how the ST-

block size affects the BER performance. Comparisons between the proposed MMSE transceivers

and the zero-forcing transceivers in Chapter 4 are also given. The channel model and noise are the

same as in Sec. 4.3.1. The channel matrices H(k) are 3 ⇥ 3 complex Gaussian random matrices.

The elements of H(k) are i.i.d. with zero mean and unit variance. For Examples 1, 2 and 4, Jakes’

channel model is adopted. The modulation scheme is 16-QAM. Both transmitter and receiver have

perfect CSI at current time k. We assume that perfect channel prediction is available only for the

MMSE and zero-forcing ST-GMD transceivers. The temporal precoding matrices of the GMDM-TP

and CST-GTDM are K ⇥K DFT matrices. N 0
= 2

20 data blocks are sent through the channels for

BER performance evaluation.

Example 1: The ST-block size is K = 16. The product fdNcTs which appears in Jakes’ model

(4.2) is 0.1. Fig. 5.6 shows the BER performance of the conventional GMD-based MMSE system

(GMDM) , GMDM-TP, CST-GTDM and ST-GMD MMSE transceivers for different SNRs. For 16-

QAM, the entire SNR region is convex. Fig. 5.6 shows Pst�gmdm < Pcst�gtdm < Pgmdmtp�z , which

verifies Theorem 5.4 and substantiates our conjecture that P⇤
cst�gtdm ⇡ Pcst�gtdm. The performance

of the CST-GTDM is close to the ST-GMD MMSE transceiver. At BER 10

�5, the SNR gain of the ST-

GMD MMSE transceiver over the CST-GTDM transceiver is about 0.05 dB. At the high SNR region,

Pst�gmdm, Pcst�gtdm and Pgmdmtp�z are smaller than Pgmdm. This conforms to the nature predicted

by Theorem 5.2 and Theorem 5.3. However, at the low SNR region, Pst�gmdm and Pcst�gtdm are

greater than Pgmd which contradicts Theorem 5.3. This is not surprising since Theorem 5.3 ne-

glects the effect of error propagation in the decision feedback loop. For ST-GMD and CST-GTD

MMSE transceivers, the errors might propagate through the entire ST-block, i.e., K blocks, which is

much more severe than what is seen in the conventional GMD-based MMSE transceiver. Hence, in

the absence of error propagation which corresponds to the high SNR region, the ST-GMD MMSE

transceiver has the best BER performance. At BER 10

�4, the SNR gains of the ST-GMD, the CST-

GTD and the GMD-TP MMSE transceiver over the GMD-based MMSE system are 2.16 dB, 2.12 dB

and 1.7 dB, respectively.

Example 2: In this example, various choices of ST-block size are compared and the performance

of the ST-GMD MMSE transceiver with imperfect channel prediction is demonstrated. The order
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Figure 5.8: BER performance v.s. block size at SNR=19 dB.
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Figure 5.10: BER performance v.s. fdNcTs at K = 16 and SNR = 19 dB.

of the Wiener prediction filter is set to be equal to ST-block size K and fdNcTs = 0.1. Fig. 5.7 and

Fig. 5.8 show Pst�gmdm, Pcst�gtdm and Pgmdmtp�z . At the low SNR region, Pst�gmdm, Pcst�gtdm

and Pgmdmtp�z increase with respect to K. This is because the larger the ST-block size the more

severe the error propagation in low SNR. For GMDM-TP, the phenomenon also results from the

concavity of the BER function in the low SNR region. At the high SNR region, Pst�gmdm, Pcst�gtdm

and Pgmdmtp�z decrease with respect to K, which is best illustrated by Fig. 5.8. These results verify

Theorem 5.5 and Theorem 5.6. Notice that the BER performance of the CST-GTD and ST-GMD

MMSE transceiver are almost the same when K = 32. Fig. 5.7 and Fig. 5.8 also show that the

performance of the ST-GMD transceiver with imperfect channel prediction is as good as the ideal

ST-GMD transceiver when K is small. This is because prediction error is almost negligible when K

is small. However, the ST-GMD transceiver has worse BER than the CST-GTD transceiver when K

is slightly larger since degradation caused by the prediction error is too severe.

Example 3: In this example, we compare the average BER performance of the proposed GMD-

TP, ST-GMD, and CST-GTD MMSE transceivers, with the corresponding zero-forcing transceivers

in [36] and Chapter 4. The ST-block size K is 16. H(k) for different k are independent. The results
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are shown in Fig. 5.9. At BER 10

�4, the SNR gains of GMD-TP, ST-GMD, and CST-GTD MMSE

transceivers over their zero-forcing counterparts are 1.32 dB, 0.37 dB and 0.57 dB, respectively.

Example 4: The BER performances of the transceivers are evaluated using Jakes’ channel model.

Fig. 5.10 shows the average BER performances of the conventional GMD-based system, CST-GTD

and ST-GMD MMSE transceivers with perfect and imperfect channel prediction for different values

of the product fdNcTs, which appears in (4.2). Larger fdNcTs implies the channels are changing

at faster rates, and H(k) for different k are more uncorrelated. Hence, as fdNcTs increases, the

average BERs of CST-GTD and ideal ST-GMD transceivers drop quickly due to the rich temporal

diversity offered by the time-varying channels. However, channel prediction error increases when

the channel is changing at a faster rate [29]. For fdNcTs > 0.026, the ST-GMDM transceiver with

imperfect channel prediction has poorer performance than CST-GTDM. For the system considered

in [29], where the carrier frequency fc = 2 GHz, the symbol period Ts = 2.5 µs and the terminal

speed ⌫ = 30 m/s; if we set Nc = 50, which is also suggested in [29], the product fdNcTs will be

0.025. This means that ST-GMDM with imperfect channel prediction is useful for the system in [29]

when the terminal is traveling at a speed slower than 30 m/s (i.e., 67 mph).

5.9 Conclusions

Three MIMO MMSE decision feedback transceivers for narrowband MIMO time-varying channels

were proposed. The GMDM-TP is a cost efficient structure which equalizes the MSE in both tem-

poral and spatial domains to minimize the average BER. Under the perfect channel prediction, the

ST-GMD MMSE transceiver is shown to be the optimal in terms of arithmetic MSE and average BER

in the convex region. Moreover, it was shown to be mutual information lossless. The CST-GTDM

has the same asymptotic BER performance as the ST-GMD MMSE transceiver, and has smaller

arithmetic MSE than both the conventional GMD-based MMSE systems and the GMDM-TP. The

dependency of average BER on the ST-block size has also been analyzed. We also showed the ad-

vantage of the ST-GMD MMSE transceiver over the ST-GMD ZF transceiver in terms of arithmetic

MSE and average BER.
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5.10 Proof of Theorem 5.7

Recall that the space-time water-filling formula is given in (5.34). L(k) is determined from

1

�
� �2

w

�2
a�

2
h,i(k)

 0, for L(k)  i M � 1. (5.89)

In other words,

�2
h,i(k) 

��2
w

�2
a

, for L(k)  i M � 1. (5.90)

Hence, it is necessary and sufficient to prove the theorem for

�2
h,L(k)(k) = . . . = �2

h,M�1(k) =
��2

w

�2
a

= �2
h, (5.91)

in which the value is independent of k. Using (5.91), one can reformulate ⇠st�gmdm as

⇠st�gmdm = �2
a�
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K�1
Y

k=0

M�1
Y

i=0

1

�2
h,i(k)

⌘

1
MK

. (5.92)

So,
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From the power constraint,
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we can write
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Plugging this into (5.83), we have
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The second term on the right hand side of the equality is greater than one by the AM-GM inequality.

Hence,

�2
a

⇠stgmdzf

 �2
a

⇠st�gmdm�br

, (5.96)

and the proof is complete.
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Chapter 6

MIMO Broadcast DFE Transceivers
with QoS Constraints: Min-Power
and Max-Rate Solutions

This chapter considers two joint design problems of linear precoder, decision feedback equalizer

(DFE) and bit allocation for multi-input multi-output (MIMO) broadcast (BC) channels. The first

problem is a power minimization problem (min-power) with a total bitrate constraint and per

data stream symbol error rate (SER) specifications. The second problem is a rate maximization

problem (max-rate) with a total transmit power constraint and per data stream SER specifications.

For a given broadcast DFE transceiver, optimal bit allocation formulas for both problems are de-

rived. A particular class of joint triangularization (JT) is applied to obtain the optimal broadcast

DFE transceivers for the min-power and max-rate QoS problems, namely the minimum power JT

broadcast DFE transceiver (MPJT) and the maximum rate JT broadcast DFE transceiver (MRJT),

respectively. Two suboptimal broadcast DFE transceivers, the power minimized QR broadcast

DFE transceiver (PMQR) and the rate maximized QR broadcast DFE transceiver (RMQR), are also

proposed for the min-power and max-rate QoS problems, respectively. The proposed suboptimal

designs apply QR decompositions instead of the particular class of JT. Moreover, integer bit al-

location problems for both QoS problems are addressed. This work also shows the duality of the

proposed MPJT and MRJT transceivers. At the end, numerical results are presented to demonstrate

the performance of the proposed MPJT, MRJT, PMQR and RMQR transceivers under different QoS

constraints, and verify the duality of the proposed MPJT and MRJT transceivers. Most of the results

in this chapter have been reported in our recently submitted journal paper [65].
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6.1 Introduction

Multi-input multi-output (MIMO) broadcast (BC) channels have aroused much interest in recent

years. Capacity regions have been established for several scenarios [40]-[43]. In the common-

message (multicast) scenario, the base station has only one precoder to encode a common message

while the users at the receiver ends can decode the message independently. This prevents one from

adapting singular value decomposition (SVD) to the design, since a SVD-based transceiver requires

one channel dependent precoder for each MIMO channel. Moreover, the QR-based transceiver fails

to achieve channel capacity with scalar Gaussian code [97], [44]. For the two-user case, the joint

equal diagonal triangularization (JET) is proposed in [44], [45] for the design of a broadcast deci-

sion feedback equalizer (DFE) transceiver which can achieve common message MIMO broadcast

channel capacity with scalar Gaussian codes.

In the context of transceiver design for point to point (PTP) MIMO systems, the power mini-

mization (min-power) and the rate maximization (max-rate) problems with quality of service (QoS)

constraints have been studied extensively in [51]-[58]. In [51] and [58], linear optimal zero-forcing

(ZF) transceivers with bit allocation that minimize the total transmit power for a given target rate

and equal per substream symbol error rate (SER) constraints are developed. Optimal ZF solutions,

with the aim of minimizing the total transmit power under unequal per substream SER or bit error

rate (BER) constraints, are considered in [52]-[53] to support multiple data streams, such as voice,

data and video. Each of the data streams in general has different BER or SER requirements [52]-

[53], [93]. In [54], linear MMSE transceivers are designed by minimizing the total transmit power

with possibly different per substream QoS constraints, in terms of mean square error (MSE) or BER.

Linear transceiver designs with bit allocation which maximize total bit rate with power and SER

constraints are considered in [55], [56] and [58]. In [57], the authors consider both the min-power

and max-rate design problems with possibly unequal SER constraints for DFE transceivers.

In this work, we investigate two DFE transceiver QoS design problems for common-message

MIMO broadcasting channels, which are generalizations or extensions of the point to point MIMO

min-power or max-rate problems in [51]-[58]. To the best of our knowledge, this is the first work ad-

dressing the min-power and max-rate QoS problems for common-message MIMO broadcast chan-

nels. The JET broadcast DFE transceiver proposed in [44] can not provide solutions for the QoS

problems. The first problem addressed in this chapter is a min-power problem with a total bit rate

constraint and per data substream symbol error rate (SER) specifications. The second problem is
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a max-rate problem with a total transmit power constraint and per data substream SER specifica-

tions. For both problems, we jointly optimize the bit allocation, the precoder, feed-forward and

feedback equalizers. The optimal solutions are obtained in two steps. For a given broadcast DFE

transceiver, we design the optimal bit allocation, and then the transceivers are designed to min-

imize the transmit power or maximize the transmission rate based on the optimal bit allocation.

For given QoS specifications, one can obtain the optimal solutions for the min-power and max-

rate problems, namely the minimum power joint triangularization (JT) broadcast DFE transceiver

(MPJT) and the maximum rate JT DFE transceiver (MRJT), respectively, by exploiting a particular

class of joint triangularization satisfying the dominance condition (to be described later). For the two-

user case, if the SER specifications satisfy the admissible condition (to be described later), MPJT and

MRJT can always be designed. For a more than two-user case, finding a MPJT or MRJT could be

difficult or impossible even though the SER specifications satisfy the admissible condition, since there

is no theory that guarantees the existence of joint triangularization for more than two matrices such

that the dominance condition is satisfied.

A power minimized QR broadcast DFE transceiver (PMQR) and a rate maximized QR broadcast

DFE transceiver (RMQR) are also proposed. They can be easily designed for an arbitrary number of

users. Instead of using the joint triangularization satisfying dominance condition, QR decompositions

are exploited. Therefore, PMQR and RMQR are suboptimal solutions for the min-power and max-

rate QoS problems, respectively. This chapter also addresses the integer bit allocation problem for

the proposed broadcast DFE transceivers by introducing suboptimal bit allocation procedures.

For point to point MIMO channels, the authors in [58] showed that if the linear transceiver is op-

timal for the power-minimizing problem, it is also optimal for the rate-maximizing problem. And

the converse is true. In this chapter, we shall show the duality of the MPJT and MRJT transceivers

for MIMO broadcast channels. Given that an MPJT is an optimal solution for a min-power prob-

lem, it is also a solution for a max-rate problem with the power constraint set to be the transmit

power of the MPJT. Likewise, given that a MRJT is optimal for a max-rate problem, it is also opti-

mal for a min-power problem with the target rate set to be the rate of the MRJT. In the simulations,

the optimality of the MPJT transceiver is demonstrated against the suboptimal PMQR transceiver

for the min-power problem. Comparisons have also been made between the MRJT and RMQR

transceivers for the max-rate problem. The effects of integer bit allocation for the transceivers

are shown. Numerical examples are also provided to verify the duality of the MPJT and MRJT
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transceivers.
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Figure 6.1: The DFE transceiver for broadcast channel

6.2 Outline

The sections in this chapter are structured as follows. We start by reviewing the concept of gener-

alized singular value [46] and the joint triangularization [45], and introduce the structure of a DFE

transceiver for MIMO broadcast channels in Section 6.3. In Section 6.4, we discuss the joint design

of a broadcast DFE transceiver and bit allocation for the min-power QoS problem. The max-rate

QoS problem of a broadcast DFE transceiver is investigated in Section 6.5. Section 6.6 connects

the proposed MPJT and MRJT transceivers by showing their duality in the min-power and max-

rate QoS problems. Numerical examples for the designs are provided in Section 6.7. Concluding

remarks are given in Section 6.8.
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6.3 Preliminaries and System Model

The generalized singular values [46] and the joint triangularization [45] are two important concepts

used in this work. We review them first:

Definition 1: The generalized singular values (GSVs) of the ordered matrix pair (A1,A2) are ele-

ments of the set

S = {s 2 R+
: det(A†

1A1 � s2A†
2A2) = 0}, (6.1)

where A1 2 CJ1⇥N , A2 2 CJ2⇥N and J1 � N . u(A1,A2) will denote a vector composed of all

GSVs.

Theorem 6.1:(The joint triangularization (JT) [45]). Let r be an N ⇥ 1 vector consisting of positive

real elements, rn, and A1 2 CJ1⇥N and A2 2 CJ2⇥N be two matrices of rank N where J1, J2 � N .

There exists upper triangular matrices R1,R2 2 CN⇥N , a unitary matrix P 2 CN⇥N , and

semi-unitary matrices Q1 2 CJ1⇥N and Q2 2 CJ2⇥N , such that

A1 = Q1R1P
†, A2 = Q2R2P

†, (6.2)

and [R1]n,n/[R2]n,n = rn for n = 0, 1, . . . , N � 1, if and only if

r �⇥ u(A1,A2). (6.3)

⇤

Without loss of generality, we can make the diagonal entries of R1 and R2 real and positive.

In this chapter, we consider the scenario that a base station broadcasts common messages to sev-

eral subscribed users through MIMO narrowband channels. The broadcast channel is modeled

as

yi = Hix+wi, i = 1, 2 . . . , L, (6.4)

where yi is a Ji ⇥ 1 received signal vector of the ith user, x is an N ⇥ 1 transmit signal vector, Hi

is a Ji ⇥N (Ji � N) channel matrix for the ith user, and wi is a Ji ⇥ 1 circular symmetric additive

Gaussian noise vector for the ith user with its statistics given by E(wi) = 0, E(wiw
†
i ) = IJi .
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The common message broadcast channel capacity is determined by the worst channel and has the

expression:

CBC = max

C
xx

min

i=1,...,L
log2 det

⇣

IJi +HiCxxH
†
i

⌘

, (6.5)

where the maximization is over all positive definite matrices Cxx subject to the power constraint

Tr (Cxx)  P0 [41].

A generic DFE transceiver for a common message broadcast MIMO channel is shown in Fig.

6.1. The precoder F is of size N ⇥N , the feed forward receiver matrices Gi are of size N ⇥ Ji and

the feedback matrices Bi are strictly upper triangular matrices of size N ⇥ N . It is assumed that

the channel state information Hi is available both at the receivers and the transmitter. The data

symbol, an, is a bn-bit carrying square QAM symbol from the nth substream and is transmitted

through L subchannels to L users. The total number of bits per data block, which consists of N

QAM symbols, is

N�1
X

n=0

bn.

The data symbols an are assumed to be zero mean and uncorrelated, i.e., E(a) = 0, E(aa†) = IN .

Furthermore, a is uncorrelated with the channel noise wi, i.e., E(aw†
i ) = 0.

The error component prior to the detector of the ith user is

ei = yi � a,

and the error covariance matrix is given by

Reiei = E(eie
†
i ). (6.6)

Denote the mean square error (MSE) of the nth data stream for the ith user as

�2
i,n = [Reiei ]n,n. (6.7)

Under the high bitrate and low SER assumptions, bn � 1, the SER of the QAM detector for the nth
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substream from user i can be approximated [94] as

SERi,n ⇡ 4Q
⇣

…
3

2

bn � 1

�i,n
⌘

, (6.8)

where �i,n is the SINR of the nth substream from the ith user and can be approximated [25] by

�i,n = 1/�2
i,n. The above SER expression is good for Gaussian interference. For non-Gaussian

impulse noise [49], the SER may be higher than (6.8).

6.4 Power Minimized Broadcast DFE Transceivers with QoS Con-

straints

In this section, we discuss the joint design of a MIMO broadcast DFE transceiver for a power mini-

mization (min-power) problem under the target rate and per data substream SER constraints. Un-

der the total bit rate and SER constraints, we optimize the bit allocation {bn}, the precoder F, the

receiver matrices Gi and the feedback matrices Bi such that the total transmit power is minimized.

To avoid a complicated integer programming problem, we relax bn 2 Z+ to bn 2 R. The problem

can be formulated as

min

F,Gi,Bi,{bn}
Tr (FF†

) (6.9)

s.t. (a) SERi,n  ⌘i,n

(b)
N�1
X

n=0

bn � B0, bn 2 R,

where B0 denotes the target total bit rate and ⌘i,n is the SER constraint of the nth substream for

the ith user. The optimization problem in (6.9) reduces to the min-power problem in [57] when

there is only one subscriber and the zero-forcing constraint is applied. It shall further reduce to

the min-power problem in [51] and [58] if we only consider linear transceivers. Note that per

substream SER constraints have been widely used in the min-power and max-rate problems for

PTP MIMO channels [51], [53], [55]-[58], even in the cases where the bit allocation variables, {bn},

are optimization variables [51], [55]-[58]. It is also shown in [55] and [25] that SER constraints are

good approximations of BER constraints for moderately low BERs and Gray coded bit mapping.

Here, a careful treatment of the min-power problem with per substream BER constraints is available

later in Sec. 6.4.6.
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Using (6.8) and assuming bn >> 1, the SER constraints in (6.9) can be re-expressed as

2

bn�2
i,n�i,n  1, (6.10)

where the QoS coefficients

�i,n = (Q�1
(⌘i,n/4))

2/3.

Reducing the SER constraints in (6.10) to a single constraint, we can translate the problem in (6.9)

into

min

F,Gi,Bi,{bn}
Tr (FF†

) (6.11)

s.t. (a) max

i2S1,n2S2

2

bn�2
i,n�i,n  1

(b)
N�1
X

n=0

bn � B0, bn 2 R,

where S1 = {1, 2, . . . , L} and S2 2 {0, 1, . . . , N � 1}. The following lemma is useful in solving the

above optimization problem.

Lemma 6.1: Suppose L0 = {F,Bi, {bn},Gi} is an optimal solution set for (6.11), then

L1 = {F,Bi, {bn},G⇤
i } is also an optimal solution set, where the MMSE feedforward matrices are

given by

G⇤
i = (IN +Bi)F

†H†
i (IJi +HiFF

†H†
i )

�1. (6.12)

⇤

Proof: For given F and Bi, [25] shows that the nth row of G⇤
i independently minimizes the mean

square error of the nth subchannel, �2
i,n in (6.7). Hence,

2

bn
�i,n�

2
i,n(G

⇤
i )  2

bn
�i,n�

2
i,n(Gi)  1.

The first constraint in (6.11) is still valid if one replaces Gi in L0 with G⇤
i . ⇤

By Lemma 6.1, there always exists a set of optimal feed forward matrices Gi in the form of (6.12)

if an optimal solution set exists for (6.11). So, in this work, we set Gi to be in the form of (6.12). The
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error covariance matrices in (6.6) can be shown to be

Reiei(G
⇤
i ) = (IN +Bi)(IN + F†H†

iHiF)
�1

(IN +Bi)
†. (6.13)

6.4.1 Optimal Bit Allocation

When the optimal G⇤
i are applied, the optimization problem (6.11) becomes

min

F,Bi,{bn}
Tr (FF†

) (6.14)

s.t. (a) max

i2S1,n2S2

2

bn�2
i,n�i,n  1

(b)
N�1
X

n=0

bn � B0, bn 2 R.

The optimal bit allocation is obtained by considering the weighted MSE constraint in (6.14). We

first review a lemma of vector norm from [108].

Lemma 6.2: If x 2 RN , then ||x||1 � ||x||1/N . ⇤

Proof: Please refer to [108]. ⇤

By Lemma 6.2, the maximal weighted MSEs in (6.14) have an arithmetic mean (AM) lower

bound such that

max

n2S2,i2S1

{�2
i,n�i,n2

bn} � 1

N

⇣

X

n2S2

2

bn
max

i2S1

{�2
i,n�i,n}

⌘

. (6.15)

Applying the AM-GM inequality to the right hand side of (6.15), we obtain a smaller geometric

mean (GM) lower bound

max

n2S2,i2S1

{�2
i,n�i,n2

bn} � 2

b
⇣

Y

n2S2

max

i2S1

{�2
i,n�i,n}

⌘

1
N

, (6.16)

where b = (1/N)

P

n2S2
bn. The equality in (6.16) holds if and only if one chooses bn such that

2

bn
max

i2S1

{�i,n�
2
i,n} = c (constant). (6.17)

Taking logarithms on both sides, we have

bn = D � log2

⇣

max

i2S1

{�i,n�
2
i,n}

⌘

, (6.18)
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where D is a constant.

In Theorem 6.2 below, it is shown that the maximal weighted MSE achieves the GM lower

bound with the optimal {bn}. Before we reach that, we introduce the following lemma which is

useful for the later discussions.

Lemma 6.3: Let F = ↵F1, where ↵ > 0 and F1 2 CN⇥N . Then, [Reiei(G
⇤
i )]n,n = �2

i,n(G
⇤
i ) in (6.13)

is a non-increasing function of ↵. ⇤

Proof: See appendix. ⇤

Theorem 6.2: Given that F and Bi are optimal, the optimal bit allocation formula for problem (6.14) is

bn = D � log2

⇣

max

i2S1

{�i,n�
2
i,n}

⌘

, (6.19)

where D is a constant chosen such that
PN�1

n=0 bn = B0. ⇤

Proof: In the following, we shall first prove that the optimal bit allocation has the form as in

(6.19). Using the first part of the result, we shall be able to show that the constant D in (6.19) should

be chosen such that the total bit rate is equal to B0.

Suppose that (F,Bi, {˜bn}) is the optimal solution for (6.14) and the equality in (6.17) does not

hold, i.e.

2

b̃k
max

i
�i,n�

2
i,n 6= c, (6.20)

for all n. The total rate is

B1 =

N�1
X

n=0

˜bn,

and it satisfies the total bit rate constraint in (6.14), B1 � B0. Let {b⇤k} be the bit allocation given by

(6.19) and D be the constant such that
PN

n=0 b
⇤
n = B1. By (6.16), one can get

max

n2S2,i2S1

�2
i,n�i,n2

b⇤n
= 2

B1
N
�

N�1
Y

n=0

max

i
�2
i,n�i,n

�

1
N , (6.21)
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where the right hand side term is also the lower bound of maxn2S2,i2S1 �
2
i,n�i,n2

b̃k . Therefore,

max

n2S2,i2S1

�2
i,n�i,n2

b⇤n < max

n2S2,i2S1

�2
i,n�i,n2

b̃n  1. (6.22)

The first inequality follows from (6.20) and the last inequality is from the MSE constraints in (6.14).

Suppose the optimal precoder F is scaled by a factor of ↵ where ↵ > 0, i.e., ↵F. By Lemma 6.3,

maxn2S2,i2S1 �
2
i,n�i,n2

bk is a non-increasing function of ↵. Therefore, one can scale down F as ↵F

(0 < ↵ < 1) such that

max

n2S2,i2S1

�2
i,n�i,n2

b⇤k  1.

The scaling leads to lower transmit power, ↵2Tr (FF†
) and a contradiction arises on the optimality

of (F,Bi, {˜bn}).

Now, we are ready to prove the second result. Suppose that (F,Bi, {b⇤n}) is optimal and {b⇤k} is

given by (6.19) where the D is chosen such that

N�1
X

n=0

b⇤n = B1 > B0.

Let {bn} be given by (6.19) but D be such that
P

n=S2
bn = B0. Since B0 < B1, the maximal

weighted MSE is given by

max

n2S2,i2S1

�2
i,n�i,n2

bk
= 2

B0
N
�

N�1
Y

n=0

max

i
�2
i,n�i,n

�

1
N (6.23)

< 2

B1
N
�

N�1
Y

n=0

max

i
�2
i,n�i,n

�

1
N  1.

By Lemma 6.3,
�

QN�1
n=0 maxi �2

i,n�i,n

�

1
N is a continuous non-increasing function of ↵. Using the

same arguments as the first part of the proof, we can conclude the proof.

⇤

6.4.2 Optimal Feedback Matrices and Precoder

The remaining problem is optimizing the precoding matrix and feedback matrices. Substituting

the optimal bn from (6.19) into (6.14) and setting F =

˜FP where P is an M ⇥M unitary matrix, we
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reduce the optimization problem (6.14) to

min

P,F̃,Bi

Tr (˜F˜F†
) (6.24)

s.t.
Y

n2S2

max

i2S1

⇣

�2
i,n�i,n

⌘

 2

�B0 .

To solve the problem above, the following lemma is introduced.

Lemma 6.4: For ai,n 2 R++ (i 2 S1 and n 2 S2), a strictly increasing function f : R++ 7! R++ and

a strictly decreasing function g : R++ 7! R++,

Y

n2S2

max

i2S1

{f(ai,n)} � max

i2S1

n

Y

n2S2

f(ai,n)
o

, (6.25)

Y

n2S2

min

i2S1

{g(ai,n)}  min

i2S1

n

Y

n2S2

g(ai,n)
o

. (6.26)

The equalities hold if and only if there exists a j 2 S1 such that

aj,n � ai,n, for i 2 S1, n 2 S2. (6.27)

⇤

Proof: See appendix. ⇤

Using Lemma 6.4, we obtain the lower bound for the geometric mean of weighted MSEs in

(6.24)

Y

n2S2

max

i2S1

{�i,n�
2
i,n} � max

i2S1

{
Y

n2S2

�i,n�
2
i,n}, (6.28)

and the equality holds if and only if the dominance conditions hold, i.e., there exists j 2 S1 such that

�2
j,n/�

2
i,n � �i,n/�j,n, for i 6= j and n 2 S2. (6.29)

The dominance condition implies that there exists one user who has the largest weighted MSEs for

all of his data substreams when compared to other users. Let us now assume that the dominance

condition is satisfied and relegate the discussion of the condition to the next section, Sec. 6.4.3. The
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problem in (6.24) becomes

min

P,F̃,Bi

Tr (˜F˜F†
) (6.30)

s.t. max

i2S1

{
Y

n2S2

�i,n�
2
i,n}  2

�B0 .

To optimize Bi and P, we consider the left term of the inequality constraint in (6.30),

max

i2S1

n

˜

�i

Y

n2S2

�2
i,n

o

� max

i2S1

n

˜

�i det
�

Reiei(G
⇤
i )
�

o

, (6.31)

where ˜

�i =
QN�1

n=0 �i,n. The inequality follows from Hadamard’s inequality and the equality holds

if and only if Reiei(G
⇤
i ) is diagonal. The following theorem shows that the optimal P and Bi shall

make the equality in (6.31) hold. Before that, an useful lemma is introduced.

Lemma 6.5: The function g(↵) = det

�

IN + ↵2
˜F†H†

iHi
˜F
�

is a continuous strictly increasing

function of ↵ for ↵ > 0 and Hi
˜F 6= 0. ⇤

Proof: See appendix. ⇤

Theorem 6.3: Suppose (

˜F,P,Bi) is the optimal solution for (6.30). The optimal P and Bi are such

that Reiei(G
⇤
i ) in (6.13) is diagonal (The diagonalization is always possible as shown later in this

subsection). ⇤

Proof: Suppose (

˜F, ˜P, ˜Bi) is optimal for (6.30) and (

˜P, ˜Bi) does not make Reiei(G
⇤
i ) diagonal.

Applying the Hadamard’s inequality from (6.31) and substituting Reiei(G
⇤
i ) from (6.13), we have

2

�B0 � max

i2S1

{˜�i

Y

n2S2

�2
i,n(G

⇤
i , ˜P, ˜Bi)} (6.32)

> max

i2S1

n

˜

�i det
�

Reiei(G
⇤
i )
�

o

= max

i2S1

˜

�i

det

�

IN +

˜F†H†
iHi

˜F
�

.

Using the fact from Lemma 6.5 that det
�

IN + ↵2
˜F†H†

iHi
˜F
�

is a continuous increasing function of

↵, one can scale ˜F by a factor of ↵ = 1� ✏ (✏ is an arbitrary small positive number) such that

max

i2S1

˜

�i

det

�

IN + ↵2
˜F†H†

iHi
˜F
�

 2

�B0 , (6.33)
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and construct a new feasible solution for (6.30), i.e. (↵˜F, ¨P, ¨Bi), where ¨P and ¨Bi diagonalize

Reiei(G
⇤
i ). By (6.31) and (6.33), the MSE constraint of (6.30) is satisfied, i.e.,

max

i2S1

{˜�i

Y

n2S2

�2
i,n(G

⇤
i , ¨P, ¨Bi)}

= max

i2S1

˜

�i

det

�

IN + ↵2
˜F†H†

iHi
˜F
�

 2

�B0 . (6.34)

The new feasible solution requires less power than (

˜F, ˜P, ˜Bi), i.e.,

↵2Tr (˜F˜F†
) < Tr (˜F˜F†

),

which leads to a contradiction on the optimality of (˜F, ˜P, ˜Bi). ⇤

To make Reiei(G
⇤
i ) diagonal, we construct auxiliary matrices and apply joint triangularization

on them as follows:

Ai =

2

4

Hi
˜F

IN

3

5

= QiRiP
†
= QiDRi(IN +Bi)P

†, (6.35)

where Qi is a (Ji + N) ⇥ N semi-unitary matrix, Ri is an N ⇥ N upper triangular matrix, P is an

N ⇥ N unitary matrix, DRi is a diagonal matrix composed of [Ri]n,n on its diagonal and Bi is an

N ⇥N strictly upper triangular matrix. Given that the P and Bi are obtained from (6.35), one can

verify that

Reiei(G
⇤
i ) = D�2

Ri
. (6.36)

Note that here, joint triangularization for any number of Ai is possible since one can fix P and per-

form QR decomposition on AiP. If P = IN , the operations are just ordinary QR decompositions.

Applying the optimal P and Bi obtained from the triangularization in (6.35) to (6.30), it follows

from (6.31) and (6.13) that (6.30) can be reduced to

min

F̃
Tr (˜F˜F†

) (6.37)

s.t. min

i2S1

log2

⇣

det

�

IJi +Hi
˜F˜F†H†

i

�

˜

�i

⌘

� B0.



146

The problem is the dual problem of the determinant maximization problem with linear matrix

inequality [47]. The optimal solution ˜F⇤ can be solved numerically and has the following property.

Property 1 The optimal solution ˜F⇤ for (6.37) is such that

min

i2S1

log2

⇣

det

�

IJi +Hi
˜F⇤

˜F⇤†H†
i

�

˜

�i

⌘

= B0. (6.38)

Proof: See appendix. ⇤

6.4.3 Dominance Condition

Recall that to convert (6.24) to (6.30), the dominance condition (6.29) should be satisfied. By (6.36),

the dominance condition is equivalent to

ri,n
rj,n
�
 

�i,n

�j,n
, (6.39)

for some j 2 S1 and i 6= j where ri,n = [Ri]n,n and Ri is given by (6.35). In other words, only

a particular class of JT which satisfies (6.39) yields optimal P and Bi for problem (6.24). Before

further discussions, we introduce the following two lemmas.

Lemma 6.6: For w 2 RN
++ and d 2 RN

++, if wn  dn, then w[n]  d[n], where [n] denotes the index

of the nth largest element in a vector. ⇤

Proof: See appendix. ⇤

Lemma 6.7: For w 2 RN
++ and u 2 RN

++, there exists a d 2 RN
++ such that

d �⇥ u, and wn  dn, (6.40)

for n 2 S2 if and only if

w �⇥w u. (6.41)

⇤
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Proof: See appendix. ⇤

For given channel state information, by Theorem 6.1 and Lemma 6.7, one can verify that the

necessary condition for the existence of a joint triangularization satisfying the dominance condition

is

�(i, j) =

h

 
�i,0

�j,0
,

 
�i,1

�j,1
, . . . ,

 
�i,N�1

�j,N�1

iT

�⇥w u(Ai,Aj), (6.42)

for some j and i 6= j where �i,n are the predetermined QoS coefficients in (6.10) and u(Ai,Aj) is

defined in Definition 1. Note that u(Ai,Aj) is determined by the channels, Hi. For convenience, we

name the necessary condition in particular the admissibility condition. By Lemma 6.7, the admissibility

condition implies that there exists an r 2 RN
++ such that

r �⇥ u(Ai,Aj), and �(i, j)  r.

For the two-user case, it follows from Theorem 6.1 that �i,n fulfilling the admissibility condition also

guarantees the existence of a joint triangularization satisfying the dominance condition in (6.39). For

the case with more than two users, the existence of such a joint triangularization is not guaranteed

even when the admissibility condition is fulfilled. This is mainly because there is no theoretical result

which supports more than two matrices and guarantees the existence of a joint triangularization

satisfying the dominance condition in (6.39), such as Theorem 6.1 for the two-user case.

In summary, to solve the power minimization problem in (6.9), we first solve for ˜F from (6.37)

numerically. Next, we construct the auxiliary design matrices Ai as in (6.35), and perform joint

triangularizations on Ai to obtain P and Bi. The optimal Gi and optimal bit allocation are given

by (6.12) and (6.19), respectively. Suppose that there exists a joint triangularization satisfying the

dominance condition in (6.39) for the given QoS coefficients, �i,n, we can obtain an optimal design for

the transmit power minimizing problem formulated in (6.9), namely the optimal minimum power

JT broadcast DFE transceiver (MPJT).
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6.4.4 Power Minimized QR (PMQR) Broadcast DFE Transceiver

For a more than two-user case, finding an optimal MPJT may be difficult or impossible even when

the QoS coefficients, �i,n, fulfill the admissibility condition. In this section, we propose a suboptimal

design for the power minimization problem in (6.9). For an arbitrary number of users, we can set

˜F = ↵˜F⇤, where ↵ > 0 and ˜F⇤ is obtained by solving (6.37). QR decompositions are performed

on the auxiliary matrices in (6.35) to design Bi and P (which is IN ). The feedforward equalizer G

and bit allocation {bn} are given by (6.12) and (6.19), respectively. Here, the dominance condition in

(6.29) is not guaranteed to be fulfilled. We need to check if the weighted MSE constraint in (6.24)

is satisfied or not. In (6.24),
QN�1

n=0 maxi2S1

⇣

�2
i,n�i,n

⌘

is a non-increasing function of ↵ by Lemma

6.3. To make the power in (6.24) as small as possible and fulfill the weighted MSE constraint, we

iteratively adjust ↵ and reiterate the transceiver design such that ↵ is the smallest number satisfying

N�1
Y

n=0

max

i2S1

⇣

�2
i,n�i,n

⌘

 2

�B0 .

The choice only gives us a suboptimal solution, which is referred to as the power minimized QR

broadcast DFE transceiver (PMQR), for the original design problem (6.9).

The idea of iteratively designing the precoding matrices and equalizers at receivers is widely

used in the context of multi-user MIMO system [59]-[63], where independent data streams for dif-

ferent users are encoded with different precoding matrices at the transmitter. In our case, common

data streams for all the subscribed users are encoded with a single precoding matrix, and the bit

allocation is included in the joint optimization. It is possible to exploit some ideas from [59]-[63], to

further improve the iterative algorithm here in this section.

6.4.5 Integer Bit Allocation

Recall that in Sec. 6.4.1 we have relaxed the bit allocation, bn, to real numbers. However, the square

QAM symbols can only carry an even number of bits. Hence, a suboptimal strategy is required for

practical implementation. We modify the bit allocation formula in (6.19) to

bn = 2

j

0.5
⇣

D � log2

�

max

i2S1

{�i,n�
2
i,n}

�

⌘k

, (6.43)

which truncates bn in (6.19) to the nearest even number smaller than or equal to bn. Since we are

truncating bn, the constraint (a) in (6.11) is always satisfied while the total bit rate might not meet
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the target rate B0. Therefore, we propose the following algorithm.

1. Set B = B0.

2. Solve optimization problem (6.11) and compute bn by (6.43).

3. If
PN�1

n=0 bn � B then stop, else set B0 = B0 + 1 and go to 2).

There are at most 2N iterations for the above algorithm.

6.4.6 BER Constraints

In this section, we consider the min-power problem with per substream SER constraints. It is

sometimes desirable to directly apply per substream BER constraints in (6.9), i.e.,

BERi,n  ⌘i,n. (6.44)

When bn � 2 and the BER is smaller than 10

�3, it is shown in [64] that the BER of the QAM detector

for the nth substream from user i is well approximated by

BERi,n ⇡ 0.2 exp
⇣�1.6�i,n
2

bn � 1

⌘

, (6.45)

where �i,n is given in (6.8). Since BERi,n is a decreasing and continuous function of �i,n/(2bn � 1),

assuming bn >> 1, one can re-express the BER constraints in (6.44) as in (6.10), except that the QoS

coefficients �i,n are replaced by

�i,n =

log(5⌘i,n)�1

1.6
. (6.46)

Hence, the min-power problem with BER constraints can be treated as in (6.11). All the results in

this section shall still follow.

6.5 Rate Maximized Broadcast DFE Transceivers with QoS Con-

straints

In applications where the data rate is the main concern, formulating data rate as the objective

function directly gives the maximum rate design. In this section, we design the broadcast DFE
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transceiver in Fig. 6.1 by maximizing the total bit rate under the total transmit power constraint and

the per substream SER QoS specifications. To avoid a complicated integer programming problem,

bn 2 Z+ is relaxed to bn 2 R. The problem can be formulated as

max

F,Gi,Bi,{bn}

X

n2S2

bn (6.47)

s.t. (a) Tr (FF†
)  P0

(b) SERi,n  ⌘i,n, i 2 S1, n 2 S2,

where P0 denotes the total transmit power constraint, and ⌘i,n is the nth substream SER constraint

for the ith user, S1 = {1, 2, . . . , L} and S2 = {0, 1, . . . , N � 1}. Note that a careful treatment of

the max-rate problem with per substream BER constraints is available later in Sec. 6.5.4. Also,

the optimization problem in (6.47) reduces to the max-rate problem in [57] when there is only one

subscriber and the zero-forcing constraint is applied. It further reduces to the max-rate problem in

[56] and [58] if we only consider linear transceivers.

6.5.1 Optimal Bit Allocation

To solve (6.47), we shall first derive the optimal bit allocation for a given broadcast DFE transceiver.

Using the SER expression as in (6.8) and the fact that Q(

p
x) is a monotonic decreasing function of

x, the SER constraints in (6.47) can be re-expressed as

(2

bn � 1)�2
i,n�i,n  1, (6.48)

where the QoS coefficient �i,n is given by (6.10). Reducing L SER constraints in (6.48) to a single

constraint, (6.47) becomes

max

F,Gi,Bi,{bn}

X

n2S2

bn (6.49)

s.t. (a) Tr (FF†
)  P0

(b) (2

bn � 1)max

i2S1

{�2
i,n�i,n}  1.

One can claim that the equality in the second constraint of (6.49) holds for the optimal solution

{b⇤n}. Otherwise, the total bit rate can be made even higher by increasing {b⇤n} until the equalities

are met, which leads to a contradiction. Without loss of optimality, we can replace the inequality
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constraint (b) in (6.49) with

(2

bn � 1)max

i2S1

{�2
i,n�i,n} = 1,

and hence the optimal bit allocation is given by

b⇤n = min

i2S1

log2

⇣

1 +

1

�2
i,n�i,n

⌘

. (6.50)

Applying the optimal bit allocation and setting F =

˜FP where P is an N ⇥ N unitary matrix and

˜F 2 CN⇥N , (6.49) can be reduced to

max

F̃,P,Gi,Bi

X

n2S2

min

i2S1

log2

⇣

1 +

1

�2
i,n�i,n

⌘

(6.51)

s.t. Tr (˜F˜F†
)  P0.

In the above discussions, we have relaxed bn to be real numbers. However, the square QAM

symbols only carry an even number of bits. In practice, one can modify the optimal bit allocation

formula in (6.50) as

bn = 2

j

0.5min

i2S1

log2

⇣

1 +

1

�2
i,n�i,n

⌘k

, (6.52)

which truncates b⇤n in (6.50) to the nearest even number smaller than or equal to b⇤n. The new integer

bit allocation, {bn}, is still a valid but suboptimal solution (i.e., even integer) for (6.47) since the SER

constraints in (6.48) are still satisfied.

For fixed ˜F, the remaining optimization problem of (6.51) is

max

P,Gi,Bi

X

n2S2

min

i2S1

n

log2

�

1 +

1

�2
i,n�i,n

�

o

. (6.53)

By taking logs on both sides of (6.26) in Lemma 6.4, we obtain the upper bound for (6.53)

max

P,Gi,Bi

X

n2S2

min

i2S1

n

log2

⇣

1 +

1

�2
i,n�i,n

⌘o

 max

P,Gi,Bi

min

i2S1

n

X

n2S2

log2

⇣

1 +

1

�2
i,n�i,n

⌘o

; (6.54)

the equality holds if and only if the dominance condition as in (6.29) is satisfied. At high SNR, the
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upper bound in (6.54) can be approximated as

max

P,Gi,Bi

min

i2S1

n

log2

⇣

1

˜

�i
Q

n2S2
�2
i,n

⌘o

, (6.55)

where ˜

�i =
Q

n2S2
�i,n. Applying the max-min inequality [104] on the upper bound, we have

max

P,Gi,Bi

min

i2S1

fi(P,Gi,Bi)  min

i2S1

max

P,Gi,Bi

fi(P,Gi,Bi), (6.56)

where

fi(P,Gi,Bi) = log2

⇣

1

˜

�i
Q

n2S2
�2
i,n

⌘

.

The equality holds when the function f satisfies the saddle point property, i.e., there exists a j 2 S1

such that

fj(P,Gj ,Bj)  fi(P,Gi,Bi), (6.57)

for every i 2 S1. One can verify by substitution that the dominance condition as in (6.29) is sufficient

for (6.57) to hold. Suppose that the dominance condition holds, the optimization problem in (6.51)

can be translated to

max

F̃
min

i2S1

max

P,Gi,Bi

n

log2

⇣

1

˜

�i
Q

n2S2
�2
i,n

⌘o

(6.58)

s.t. Tr (˜F˜F†
)  P0.

6.5.2 Optimal Feed-Forward, Feedback Matrices and Precoder

Since the objective function in (6.58) is a monotonic decreasing function of the MSEs, �2
i,n, [11], [25],

the optimal feed-forward matrices G⇤
i for given precoding matrices, ˜F and P, and feedback matri-

ces Bi, have the same form as in (6.12). Applying the optimal G⇤, the error covariance matrices,

Reiei , in (6.6) can be shown to be in the form of (6.13).

To optimize Bi and P, we consider the MSE product in (6.58)

˜

�i

Y

n2S2

�2
i,n =

˜

�i

Y

n2S2

[Reiei ]n,n � ˜

�i det(Reiei), (6.59)
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where the inequality follows from Hadamard’s inequality and the equality holds if and only if

Reiei is diagonal. The lower bound,

˜

�i det(Reiei) =

˜

�i

det(IJi +Hi
˜F˜F†H†

i )
, (6.60)

is independent of the choice of Bi and P. On account of the objective function, log2(1/(˜�i
Q

n2S2
�2
i,n)),

being a monotonic decreasing function of ˜�i
Q

n2S2
�2
i,n, the optimal Bi and P of (6.58) for given ˜F

and G⇤
i are such that ˜�i

Q

n2S2
�2
i,n is minimized. By (6.59) and (6.60), one can see that the optimal

P and Bi will make Reiei in (6.13) diagonal, and can be obtained from the joint triangularizations

as in (6.35).

Applying the optimal G⇤
i , P and Bi to (6.58), it follows from (6.59) and (6.60) that (6.58) can be

reduced to

max

F̃
min

i2S1

log2

⇣

det

�

IJi +Hi
˜F˜F†H†

i

�

˜

�i

⌘

(6.61)

s.t. Tr (˜F˜F†
)  P0.

The problem falls into the category of a determinant maximization problem with linear matrix

inequality [47]. The optimal solution ˜F⇤ can be solved numerically and has the following property.

Property 2 The optimal solution ˜F⇤ for (6.61) is such that

Tr (˜F⇤
˜F⇤†

) = P0. (6.62)

Proof: See appendix. ⇤

In summary, to obtain the solution for the rate maximization problem in (6.47), we first solve

for the optimal ˜F from (6.61) numerically, construct the auxiliary design matrices Ai as in (6.35),

and perform joint triangularizations on Ai to obtain P and Bi. The optimal Gi and optimal bit

allocation are given by (6.12) and (6.50), respectively. Recall that to convert (6.51) to (6.58), the

dominance condition as in (6.39) should be satisfied. If Bi and P are obtained from the joint tri-

angularization satisfying the dominance condition for the given QoS coefficients , the whole design

(

˜F,P,Bi,Gi, {bn}), namely the optimal maximum rate JT broadcast DFE transceiver (MRJT), is op-

timal for the rate maximization problem (6.47). The existence of such a joint triangularization was

elaborated in Sec. 6.4.3.
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6.5.3 Rate Maximized QR (RMQR) Broadcast DFE Transceiver

For an arbitrary number of users, we can first solve for the optimal ˜F from (6.61) numerically and

perform QR decompositions on the auxiliary matrices in (6.35) to design Bi and P (which is IN ).

The Gi and bit allocation are given by (6.12) and (6.50), respectively. QR decompositions only give

us a suboptimal solution since the dominance condition is not guaranteed to hold. So, (6.51) does not

translate to (6.58) in general. We refer to the design for the rate maximization problem (6.47) as the

bit rate maximized QR broadcast DFE transceiver (RMQR).

6.5.4 BER Constraints

As in Sec. 6.4.6, it is sometimes desirable to directly apply per substream BER constraints in (6.47).

Using the BER expression as in (6.45) and the fact that exp(�x) is a monotonic decreasing function

of x, the BER constraints in (6.44) can be re-expressed as in (6.48), except that the QoS coefficients

�i,n are given by (6.46). Hence, the max-rate problem with BER constraints can be treated as (6.49).

All the results in this section shall still follow.

6.6 The Duality of MPJT and MRJT

In the previous sections, we have shown that the minimum power JT broadcast DFE transceiver

(MPJT) is optimal for the power minimization problem in (6.9), and the maximum rate JT broadcast

DFE transceiver (MRJT) is optimal for the rate maximization problem in (6.47), if the dominance con-

ditions are satisfied. Although MPJT and MRJT are optimal solutions for two different problems,

respectively, they are well connected. While a MPJT is an optimal solution for the power mini-

mization in (6.9), it is also an optimal solution for the rate maximization in (6.47) with the power

constraint set to the minimal power obtained in (6.9). Similarly, the MRJT is optimal for the power

minimization problem in (6.9) with target rate B0 being the maximal rate from (6.47). The results

are formally stated by the following two theorems.

Theorem 6.4: Suppose the MPJT, �1 = (F⇤,B⇤
i ,G

⇤
i , {b⇤n}), is optimal for the power minimization

problem in (6.9) with target bitrate B0 and transmit power P0. Then, �1 is also an optimal solution

for the rate maximization problem in (6.47) with the transmit power constraint, P0, given such that
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the dominance condition as in (6.39) holds for

˜F = ↵˜F⇤, (6.63)

where ˜F⇤ is an optimal solution for (6.61), ↵ = 1 or 1� ✏, and ✏ is an arbitrary small positive

number. ⇤

Proof: Suppose the MPJT, �1 = (F⇤,B⇤
i ,G

⇤
i , {b⇤n}), is optimal for the power minimization problem

in (6.9) under the total bitrate constraint,
P

n2S2
b⇤n � B0, and the SER constraints, SERi,n  ⌘i,n.

The minimal transmit power is Tr (F⇤F⇤†
) = P0. By Theorem 6.2, the total bitrate is

X

n2S2

b⇤n = B0.

Take P0 as the power constraint and consider the rate maximization problem in (6.47) under the

same SER constraints. Given that the dominance condition holds, there exists an MRJT, �2 = (F,Bi,Gi, {bn}),

which is an optimal solution for the rate maximization problem and the maximal rate is

B1 =

X

n2S2

bn = min

i2S1

log2

⇣

det

�

IJi +HiFF
†
H†

i

�

˜

�i

⌘

, (6.64)

where the last equality follows from (6.61). By Property 2, the transmit power is

Tr (FF†
) = P0.

The rate B1 � B0, otherwise, it will lead to a contradiction on the optimality of �2 since �1 is a

feasible solution for the rate maximization problem with a higher rate if B0 > B1. If B1 = B0,

�1 achieves the same rate as �2 and hence is also an optimal solution for the rate maximization

problem. For the case where B1 > B0, we shall show in the following that it leads to a contradiction.

For B1 > B0, we can scale F by a factor of ↵ = 1� ✏ (✏ is a small positive number) and re-design an

MRJT such that it requires less power than P0 to achieve the rate B0 since B1 in (6.64) is a continuous

strictly increasing function of ↵ by Lemma 6.5. This leads to a contradiction for �1 being optimal

for (6.9). ⇤

Theorem 6.5:

Suppose the MRJT, �1 = (F⇤,B⇤
i ,G

⇤
i , {b⇤n}), is optimal for the rate maximization problem in (6.47)
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under the power constraint, P0, and the maximum rate is B0. Then, �1 is also an optimal solution

for the power minimization problem in (6.9) with the target rate, B0, given that the dominance

condition in (6.39) holds for ˜F = ↵˜F⇤, where ˜F⇤ is an optimal solution for (6.37), ↵ = 1 or 1 + ✏, and

✏ is an arbitrary small positive number. ⇤

Proof: Suppose the MRJT, �1 = (F⇤,B⇤
i ,G

⇤
i , {b⇤n}), is optimal for the rate maximization problem

in (6.47) under the power constraint, Tr (FF†
)  P0. The maximum rate is assumed to be B0. By

Property 2, the transmit power is

Tr (F⇤F⇤†
) = P0.

Take B0 as the rate constraint and consider the power minimization problem in (6.9) under the same

SER constraints. Given that the dominance condition holds, there exists an MPJT, �2 = (F,Bi,Gi, {bn}),

which is an optimal solution, and the minimal power is Tr (FF†
) = P1. The power P1  P0. The

case where P1 > P0 leads to a contradiction on the optimality of �2 for (6.9) since �1 is a feasible

solution of (6.9) and requires less power than �2. If P1 = P0, �1 achieves the same power as �2

and hence is also the solution for the power minimization problem. For the case where P1 < P0, a

contradiction shall arise as shown in the following. For the power minimization problem in (6.9),

the optimal bit allocation is given by (6.19) and the total rate is

B0 = min

i2S1

log2

⇣

det

�

IJi +HiFF
†
H†

i

�

˜

�i

⌘

, (6.65)

where the equality follows from Property 1. One can scale F by a factor of ↵ = 1 + ✏ (✏ is an small

positive number) and re-design the MPJT such that the new transceiver achieves a rate higher

than B0 with the transmit power less than or equal to P0 since B0 in (6.65) is a continuous strictly

increasing function of ↵ by Lemma 6.5. This is a contradiction with �1 being optimal for (6.47). ⇤

Following the same techniques as in Theorem 6.4 and Theorem 6.5, one can establish similar

duality results for the min-power and max-rate problems with per substream BER constraints. Fur-

thermore, suppose that the optimal Gi for min-power problem (6.9) is given by (6.12), one can

follow similar procedures as the above to show that the optimal solution for (6.9) is optimal for

(6.47), and the optimal solution for (6.47) is also optimal for (6.9) even when the dominance condi-

tion is not satisfied.
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Figure 6.2: Average minimal transmit power versus target bit rate B0
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Figure 6.4: Duality of max-rate and min-power problem

6.7 Numerical Results

In this section, we present several numerical results on the design of the proposed MPJT, PMQR,

RMJT and RMQR transceivers. A two-user scheme is considered and the SER constraints in (6.9)

and (6.47) are set such that ⌘i,n = 10

�3. Choosing the QoS parameters, �i,n, in this way guarantees

that the admissibility condition in (6.42) can always be fulfilled because either

�(1, 2) = 1 �⇥w u(A1,A2), or

�(2, 1) = 1 �⇥w u(A2,A1).

The optimal solutions for (6.9) and (6.47), the MPJT and MRJT, respectively, are therefore obtainable.

The channels for both users are 4⇥4 MIMO Rayleigh channels Hi. The elements of Hi are complex

Gaussian random variables whose real and imaginary parts are independent with zero mean and

variance 1/2. The channel noise is described in (6.4). Both the transmitter and receiver have perfect

channel state information.
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Example 1: In this example, we solve the power minimization problem in (6.9) for each of 500

channel realizations. For different target bit rates, we compute the minimal transmit power for both

MPJT and PMQR transceivers, and the power is averaged over all channel realizations. For integer

bit allocation, we use the suboptimal strategy introduced in Sec. 6.4.5 which gives even bn. The

results are shown in Fig. 6.2 where the suffix “int” indicates the use of suboptimal solutions given

in Sec. 6.4.5 for MPJT and PMQR transceivers. The figure shows that both the MPJT transceivers

with optimal bit allocation and suboptimal integer bit allocation always require less power than

the PMQR transceivers with optimal bit allocation and suboptimal integer bit allocation, respec-

tively. For both the optimal and integer allocation, the MPJT transceivers have 1.3dB gain over

the PMQR transceivers. We also observe that each transceiver requires approximately 2.9dB more

power doing even number bit allocation than the optimal bit allocation.

Example 2: In this example, we design the proposed MRJT and RMQR transceivers by maximiz-

ing the bit rate for different transmission power constraints. The designs are done for 500 randomly

generated channel realizations, and for each realization we compute bit rate via (6.50) and (6.52).

The total bit rates are averaged over 500 channel realizations and shown in Fig 6.3. The suffix “int”

indicates the use of (6.52), the even number bit allocation. For both cases of optimal bit allocation

and even number bit allocation, the results show that the MRJT broadcast DFE transceivers achieve

higher bit rate than the RMQR broadcast DFE transceiver. For the same bit rate, the MRJT broad-

cast DFE transceiver has 1.3dB power advantage over the RMQR broadcast DFE transceiver. We

also observe that each transceiver requires approximately 2.9dB more power doing even number

bit allocation than doing the optimal bit allocation.

The numerical results of the proposed MRJT and MPJT broadcast DFE transceivers are plotted

together in Figure 6.4 for comparison. The lines of MPJT and MRJT broadcast DFE transceivers

overlap almost everywhere. This implies that when both transceivers operate at the same transmit

power, their bit rates are the same. It suggests the duality of the proposed MRJT broadcast DFE

transceiver and the MPJT broadcast DFE transceiver as discussed in Sec. 6.6.

6.8 Conclusions

In this chapter, we solved the min-power and max-rate QoS design problems for MIMO broad-

cast DFE transceivers. By applying a particular class of joint triangularization which satisfies the

dominance condition, we proposed MPJT and MRJT transceivers, which are optimal solutions for
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the min-power and max-rate QoS problems, respectively. Two corresponding suboptimal broad-

cast DFE transceivers, MPQR and MRQR transceivers, which exploit simple QR decompositions,

were also proposed for the min-power and max-rate QoS problems, respectively. Numerical results

show that the suboptimal designs require 1.3dB more power than the optimal designs. Integer bit

allocation algorithms were also developed for the proposed systems. We then showed the duality

of the proposed MPJT and MRJT transceivers for the min-power and max-rate QoS problems and

the results were verified by numerical examples.

6.9 Appendix

6.9.1 Proof of Lemma 6.3

Substituting F = ↵F1 into (6.13), one gets

�2
i,n = [(IN +Bi)(IN + ↵2C†

iCi)
�1

(IN +Bi)
†
]n,n,

where Ci = HiF1. The first derivative of �2
i,n with respect to ↵ is

@�2
i,n

@↵
= [(I+Bi)

@Di

@↵
(I+Bi)

†
]n,n,

where Di = (I+ ↵2F†
1H

†
iHiF)

�1. The derivative of Di with respect to ↵ is given by [109]

@Di

@↵
= �Di

@Di
�1

@↵
D†

i = �2↵DiC
†
iCiD

†
i . (6.66)

Hence, one can conclude that

@�2
i,n

@↵
= �2↵[A†

iAi]n,n  0,

where Ai = CiD
†
i (I+Bi)

† and �2
i,n is a non-increasing function of ↵.

6.9.2 Proof of Lemma 6.4

The inequality (6.25) follows immediately from the fact that

Y

n2S2

max

i2S1

{f(ai,n)} �
Y

n2S2

f(ai,n).
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We shall first prove the sufficient condition of the equality. Suppose there exists a j 2 S1 such that

aj,n � ai,n,

for all i 2 S1 and n 2 S2. Then, we have

Y

n2S2

max

i2S1

{f(ai,n)} =

Y

n2S2

f(aj,n)

= max

i2S1

n

Y

n2S2

f(ai,n)
o

.

The necessary part shall be proved by contradiction. Assume that the equality in (6.25) holds, and

for every j 2 S1, there exists i 6= j such that

aj,n < ai,n

for some n. This shall lead to

Y

n2S2

f(aj,n) <
Y

n2S2

max

i2S1

{f(ai,n)}. (6.67)

Taking maxj2S1 on both sides, (6.67) becomes

max

j2S1

n

Y

n2S2

f(aj,n)
o

<
Y

n2S2

max

i2S1

{f(ai,n)},

which contradicts with the original assumption. For (6.26), the proof is similar.

6.9.3 Proof of Lemma 6.5

By Jacobi’s formula [110],

@ det(A)

@↵
= det(A)Tr (A�1 @A

@↵
) (6.68)

= 2↵ det(A)Tr (Hi
˜FA�1

˜F†H†
i ) > 0,

where A =

�

IN + ↵2
˜F†H†

iHi
˜F
�

. The last inequality follows from ↵ > 0 and A being positive

definite. Hence, g(↵) is a continuous strictly increasing function of ↵.
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6.9.4 Proof of Property 1

Suppose that ˜F in (6.37) is scaled by a positive factor of ↵. By Lemma 6.5, the function

min

i2S1

log2

⇣

det

�

IJi + ↵2Hi
˜F˜F†H†

i

�

˜

�i

⌘

(6.69)

is a strictly increasing function of ↵. Let us assume that the optimal solution for (6.37) is such that

min

i2S1

log2

⇣

det

�

IJi +Hi
˜F⇤

˜F⇤†H†
i

�

˜

�i

⌘

> B0,

and the minimal power is P0 = Tr (˜F⇤
˜F⇤†

). One can scale ˜F⇤ by ↵ = 1 � ✏, where ✏ is an arbitrary

small positive number, such that

min

i2S1

log2

⇣

det

�

IJi + ↵2Hi
˜F⇤

˜F⇤†H†
i

�

˜

�i

⌘

� B0.

The adjusted power

↵2Tr (˜F⇤
˜F⇤†

) < P0,

which contradicts with the optimality of ˜F⇤. Hence, we can conclude the proof.

6.9.5 Proof of Lemma 6.6

Let us define a permutation of a vector, x 2 RN , by a permutation function m = g(n), where

0  n,m  N � 1. The permutation takes the mth element of x and copies it to the nth entry of the

permuted vector. The permuted vector defined by g(n) is given by

xg = [xg(0), xg(1), . . . , xg(N�1)]
T .

Let g1(n) denote the index of the nth largest element in w. Given that

w  d, (6.70)
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where “” denotes element-wise inequality, the permutation defined by g1(n) preserves the order-

ing, i.e.,

wg1  dg1 . (6.71)

Suppose the permutations, g1(n) and g(n), preserve the ordering in (6.70), i.e.,

wg1  dg. (6.72)

If the elements of dg are not in decreasing order, there exist n1 and n2 such that dg(n1) < dg(n2)

where 0  n1 < n2  N � 1. We can define a new permutation function

g2(n) =

8

>

>

>

<

>

>

>

:

g(n2), n = n1

g(n1), n = n2

g(n), n 6= n1, n2.

The new permuted vector dg2 is the same as dg except that dg(n1) and dg(n2) are swapped. Using

the fact that wg1(n1) � wg1(n2) and (6.72), we have

wg1(n1)  dg(n1) < dg(n2) = dg2(n1),

wg1(n2)  wg1(n1)  dg(n1) = dg2(n2).

Hence, it shows that the permutation g2(n), preserves the ordering in (6.72), i.e.,

wg1  dg2 . (6.73)

Taking wg1 and dg1 from (6.71), one can iteratively apply g2(n) like permutations on dg1 such that

the elements of dg1 are in descending order and the ordering is preserved as in (6.73). Finally, we

have

w[n]  d[n].
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6.9.6 Proof of Lemma 6.7

The sufficient part of the proof is similar to Proposition 5.A.9 in [95]. The necessary part can be

shown via the definition of weakly majorization. Suppose d �⇥ u and wn  dn. Since wn  dn,

Lemma 6.6 shows that

w[n]  d[n]. (6.74)

By the definition of multiplicative majorization, we have

n
Y

i=0

u[i] �
n
Y

i=0

d[i] �
n
Y

i=0

w[i], (6.75)

where 0  n  N �1 and the second inequality follows from (6.74). Hence, by definition w �⇥w u.

6.9.7 Proof of Property 2

Let us assume that the optimal solution for (6.61) is such that Tr (˜F⇤
˜F⇤†

) < P0 and the maximum

rate is

B0 = min

i2S1

log2

⇣

det

�

IJi +Hi
˜F⇤

˜F⇤†H†
i

�

˜

�i

⌘

.

One can scale ˜F⇤ by ↵ = 1+✏ (✏ is an arbitrary small positive number) such that ↵2Tr (˜F⇤
˜F⇤†

)  P0.

Since the objective rate function as in (6.69) is a strictly increasing function of ↵, the modified rate

min

i2S1

log2

⇣

det

�

IJi + ↵2Hi
˜F⇤

˜F⇤†H†
i

�

˜

�i

⌘

> B0,

which contradicts with the optimality of ˜F⇤. Therefore, Tr (˜F⇤
˜F⇤†

) = P0.
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Chapter 7

Optimized DFT-FB Transceivers over
Linear Time-Varying Channels

In this chapter, we consider the optimization of a DFT modulated filterbank transceiver (DFT-FBT)

over linear time varying (LTV) channels. The DFT-FBT is a generalization of the Affine Fourier

transform based OFDM (Affine OFDM) and the chirped OFDM, which are suggested in recent

literature for transmission over LTV channels. For both known LTV channels and unknown wide

sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize

the transmitting and receiving prototypes of DFT-FBT such that the signal to interference and noise

ratio (SINR) at the receiver is maximized. After the optimization, the channel dependent part, like

OFDM, is a set of scalar multipliers at the receiver end that adapts to the equivalent memoryless

channel on a block basis. Simulation results show that the bit error rate (BER) performance of the

optimized DFT-FBT over LTV channels is superior to the Affine OFDM. Most of the results in this

chapter have been reported in our paper [66].

7.1 Introduction

In recent years, orthogonal frequency division multiplexing (OFDM) systems have found many

applications in wideband communications. One of the advantages of OFDM systems is their abil-

ity to combat ISI induced by the transmission over frequency selective channels efficiently. By the

insertion of cyclic prefix (CP) of length L at the transmitter, the inverse discrete Fourier transform

(IDFT) and discrete Fourier transform (DFT) operations at the transmitter and receiver can convert

any frequency selective channel of order L into parallel one-tap subchannels. And the equalizer

at the receiver is just a set of scalar multipliers. Due to its many fascinating features, OFDM tech-
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nology has been adopted for wireless wideband communications systems, like DVB-T [71] and

the evolving IEEE 802.16e standard for WiMAX [72]. In these applications, the wireless channels

are typically LTV multipath channels, which are also called doubly selective channels. The time

variation may be caused by Doppler shift due to the mobility of the transmitter or receiver, car-

rier frequency offset, or phase noise [99], [73]. This leads us to study the case where the channel

changes continuously within one block time. Windowed Fourier functions in L2
(R2

) [101] have

been reported in [74], [75], serving as good approximate eigenfunctions of practical LTV channels.

They are in the form of f(n� lN) exp(j2⇡kn/M), and the transceiver based on these eigenfunctions

can be represented as a DFT-FBT as in Fig. 7.1.

Moreover, the results reported in [68], [69] also confirm this approximation. They show that

if the support of the spreading function S(�, ⌧) of the LTV channels is maximally concentrated

on a line in delay-Doppler plane, the chirp modulated Fourier basis is a set of eigenfunctions of

these channels. The chirped OFDM schemes in [67], [68] are generalized by [69] as Affine OFDM.

However, they all fail to diagonalize general LTV channels in which the support is not necessarily

on a line in the delay-Doppler plane. The authors propose algorithms to optimize the chirp rate

parameters at the transmitter and receiver to minimize MSE or maximize SIR at the receiver. But

their algorithms are highly nonlinear and the perfect knowledge of LTV channels is required.

In this chapter, we consider the DFT-FBT whose prototypes are arbitrary and not limited to

the form of chirp waveforms as in Affine OFDM. Our design goal is to optimize DFT-FBT over

LTV channels such that the SINR is maximized at the receiving detectors. With the treatment of

inter-symbol interference (ISI) and inter-carrier interference (ICI) as Gaussian noise as in multiuser

detection for CDMA systems [100], the equivalent channel is memoryless within one block time.

Standard channel estimation techniques of OFDM can be applied directly to design the FEQ [70] to

correct scalar ambiguity from block to block. Firstly, the case in which the transmitter and receiver

have perfect knowledge of the channel is considered. We extend the SIR maximization algorithm

for DFT-FBT over LTI channels [76] to our case where the channel is LTV. We show how to optimize

the transmitter and the receiver such that the SIR at the receiver is maximized. In addition, a new

iterative algorithm that allows us to maximize the SINR of the DFT-FBT is proposed. Secondly,

WSSUS stochastic channels [99] are considered. Based on the statistics of the channel, we propose

an algorithm that optimizes the prototypes for the maximizations of average SIR/SINR. In this

case, both prototypes are stationary for fixed statistics.
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Figure 7.1: General filter bank transceiver

7.2 Outline

The sections in this chapter are structured as follows. We start by introducing a filter bank transceiver

for LTV channels, and derive the input/output description for such system in Section 7.3. In Sec-

tion 7.4, we address the DFT-FBT optimization problem by proposing an iterative algorithm which

maximizes the SIR at the receiver, based on the full knowledge of channel state information. Sec-

tion 7.5 considers the SIR maximization problem of a DFT-FBT for WSSUS channels in which only

channel statistics is available. In Section 7.6, the SINR maximization of the DFT-FBT is addressed

for both cases of channels. Numerical examples for the designs are provided in Section 7.7. Con-

cluding remarks are given in Section 7.8.

7.3 The FBT for LTV Channels

The block diagram of a FB transceiver is shown in Fig. 7.1. There are M subchannels and the deci-

mation ratio is N . We assume that L = N �M redundant samples are added, where N > M . The

LTV channel is characterized by the channel response gn(l), for 0  l  L. In the following discus-

sions, we will derive the input-output (I/O) description of a FBT over LTV channels. Assume that

all transmitting filters, fi(n), and and receiving filters, hi(n), are of order nf and nh, respectively.

Let

g̃(k)i (n) =
L
X

l=0

gn(l)fi[n� kN � l], (7.1)
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which has support on n 2 kN, kN + 1, . . . , kN + nf + L. The output signal of the channel is

y(n) =
1
X

k=�1

M�1
X

i=0

si(k)g̃
(k)
i (n). (7.2)

The downsampled signal after the m-th subband filter Hm(z) can be expressed in Z-domain as

ˆSm(z) =
1
X

k=�1

M�1
X

i=0

si(k)[Hm(z) ˜G(k)
i (z)]#N , (7.3)

in which ˜G(k)
i (z) =

P1
n=�1 g̃(k)i (n)z�n. Define

g(k)i (n) = g̃(k)i (n+ kN), for n 2 0, 1, . . . , nf + L.

With zk,i(n) denoting the contribution of si(k) to ˆSm(z), the advanced version zk,i(n + k) has Z-

transform

si(k)[Hm(z)G(k)
i (z)]#N .

To facilitate the derivation of the I/O description, we define

î
Hm(z)G(k)

i (z)
ó
#N

=

X

n

b(k)i,m(n)z�n. (7.4)

So, the output signal ŝm(k) can be expressed as

ŝm(k) = sm(k)b(k)m,m(0) +

X

n 6=0

sm(k � n)b(k�n)
m,m (n)

+

X

i 6=m

X

n

si(k � n)b(k�n)
i,m (n).

From the above expression, we have the time-varying I/O description for the FBT from the i-th

input to the m-th output at the k-th block time as

T (k)
i,m(z) = b(k)i,m(0) +

X

n 6=0

b(k�n)
i,m (n)z�n. (7.5)

For the m-th output, the ISI and ICI come from
P

n 6=0 b
(k�n)
m,m (n)z�n and

P

n b
(k�n)
i,m (n)z�n, respec-

tively, for all i 6= m. Note that T (k)
i,m(z) is a useful notation, although there is no physical system

with this transfer function. Unfortunately, the ISI-free solution for LTV channels is unknown. To
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Figure 7.2: DFT-FBT transceiver with nh = nf = N � 1

have near ISI-free property, the transmitting filters Fi(z) and the receiving filters Hi(z) could be

optimized such that these terms are as small as possible.

For efficient implementation, the class of DFT-FBT is often considered as a good candidate. The

transmitting filters Fi(z) and the receiving filters Hi(z), for 0  i M � 1, are modulated versions

of prototype filters h(n) and f(n) given by

Fi(z) = W iL
M

nf
X

n=0

f(n)W�in
M z�n

Hi(z) = W�iL
M

nh
X

n=0

h(n)W in
M zn, (7.6)

where WM = exp(�j2⇡/M).

The special case of DFT-FBT with nf = nh = N�1 is as in Fig. 7.2. It becomes the Affine OFDM

if h(0) = . . . = h(L� 1) = 0, and

f(n) = ej2⇡c1(n�L)2 ,

h(n) = ej2⇡(c0(n�L)�c1(n�L)2), (7.7)

in which c0 and c1 are constant. The authors in [69] show that if the LTV channel takes the form of

gn(l) = v(l)e�j2⇡c1l
2

ej2⇡(2c1l�c0)n, (7.8)

where v(l) is a function of integer l, the coefficients h(n) and f(n) would make the equivalent

channel matrix from s(k) to ˆs(k) a circulant matrix. Hence, the LTV channel is diagonalizable by
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W and W†. This is called the linear delay/Doppler spreading channel in [68].

7.4 SIR Optimization of DFT-FBT for Known LTV Channels

For the class of linear delay/Doppler spreading channel, the channel is always diagonalized, if the

prototypes of a DFT-FBT take the form of (7.7). However, LTV channels in general are not linear

delay/Doppler spreading, i.e., the support of S(v, l) is not necessarily on a line. Unfortunately,

there is no ISI-free solution in terms of Fi(z) and Hi(z) for general LTV channels. In the following,

we consider the class of DFT-FBT and show how to design the prototype filters so that SIR at the

receiver is maximized.

In the following discussions, the input signals si(n) are assumed to be zero mean WSS and

white random process with the same variance, i.e,

E{si(n0
)s⇤j (n)} = �2

s�(i� j)�(n0 � n). (7.9)

Assume that the prototypes adapt to the channel on a per block basis. Let f (k) =
⇥

f (k)
(0)f (k)

(1) . . . f (k)
(nf )

⇤T

and h(k)
=

⇥

h(k)
(0)h(k)

(1) . . . h(k)
(nh)

⇤T be the transmitting and receiving prototypes, respectively,

at the k-th block time. Also, let nh and nf be no greater than N � 1.

Define a 1⇥ (nh + 1) row vector and a 1⇥ (nf + L+ 1) row vector as

b
(k)
i,f (n) =

h

g(k)i (nN) . . . g(k)i (nh + nN)

i

b
(k)
i,h (n) =

h

h(k)
i (�nN) . . . h(k)

i (nf + L� 1� nN)

i

where h(k)
i (·) is the i-th receiving filter at the k-th block time. So, b(k)i,m(n) can be expressed as the

product of matrices as

b(k)i,m(n) = b
(k)
i,f (n)Dmh(k)

= b
(k)
m,h(n)G

(k)D0
if

(k), (7.10)

where

Di = diag(1,W i
M , . . . ,W inh

M )W�iL
M ,

D0
i = diag(1,W�i

M , . . . ,W
�inf

M )W iL
M ,
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=

2
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4
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0
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7

7

7

7

7

7

7

7

7

7

7

7

7
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.

The power gains for the desired signal, the ISI and the ICI of the m-th output ŝm(k) can be shown

to be

P (k)
sig (m)

�2
s

=

�

�

�

b(k)m,m(0)

�

�

�

2
(7.11)

= h(k)†D†
mb

(k)†
m,f (0)b

(k)
m,f (0)Dmh(k),

P (k)
isi (m)

�2
s

=

X

n 6=0

�

�

�

b(k�n)
m,m (n)

�

�

�

2

=

X

n 6=0

h(k�n)†D†
mb

(k�n)†
m,f (n)b(k�n)

m,f (n)Dmh(k�n),

P (k)
ici (m)

�2
s

=

X

n,i 6=m

�

�

�

b(k�n)
i,m (n)

�

�

�

2

=

X

i 6=m,n

h(k�n)†D†
mb

(k�n)†
i,f (n)b(k�n)

i,f (n)Dmh(k�n).

Therefore, the SIR at the k-th block time can be expressed as

SIR(k)
h =

h(k)†Q
(k)
0,fh

(k)

h(k)†Q
(k)
1,fh

(k)
+

P

n 6=0 h
(k�n)†Q

(k�n)
2,f (n)h(k�n)

where Q
(k)
0,f , Q(k�n)

1,f and Q
(k�n)
2,f are positive definite matrices given by

Q
(k)
0,f = �2

s

X

m

D†
mb

(k)†
m,f (0)b

(k)
m,f (0)Dm,

Q
(k)
1,f = �2

s

X

m,i6=m

D†
mb

(k)†
i,f (0)b

(k)
i,f (0)Dm,

Q
(k)
2,f (n) = �2

s

X

m,i

D†
mb

(k)†
i,f (n)b(k)

i,f (n)Dm.
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Similarly we can express the same SIR in terms of f (k) as

SIR(k)
f =

f (k)†Q
(k)
0,hf

(k)

f (k)†Q
(k)
1,hf

(k)
+

P

n 6=0 f
(k�n)†Q

(k�n)
2,h (n)f (k�n)

,

where Q
(k)
0,h, Q(k)

1,h and Q
(k)
2,h(n) are positive definite matrices similar to Q

(k)
0,f , Q(k)

1,f and Q
(k)
2,f (n) by

replacing b
(k)
m,f (n) and Dm with b

(k)
m,h(n) and G(k)D0

m, respectively.

SIR(k) depends on the prototypes prior to block k. It is not easy to optimize SIR(k) with respect

to h(k) or f (k). Observe that if the first L coefficients of the h(k)’s are set to zero, the inter-block

interference (IBI)
P

n 6=0 h
(k�n)†Q

(k�n)
2,f (n)h(k�n) is zero. Hence, we assume that all the blocks are

friendly blocks such that they do not allow too much IBI to leak to the other blocks. Suppose that

the IBI is much smaller than the ICI within the block itself, i.e.,

h(k)†Q
(k)
1,fh

(k) �
X

n 6=0

h(k�n)†Q
(k�n)
2,f (n)h(k�n),

h(k)†Q
(k)
1,fh

(k) �
X

n 6=0

h(k)†Q
(k)
2,f (n)h

(k). (7.12)

So,

SIR(k)
h ⇡

h(k)†Q
(k)
0,fh

(k)

h(k)†
(Q

(k)
1,f +

P

n 6=0 Q
(k)
2,f (n))h

(k)
=

‘SIR(k)

h .

The SIR maximization problem becomes

max

h(k)

h(k)†Q
(k)
0,fh

(k)

h(k)†
(Q

(k)
1,f +

P

n 6=0 Q
(k)
2,f (n))h

(k)
, for all k. (7.13)

Solving (7.13) is much simpler since h(k) could be optimized on a per block basis. The computer

experiments of the optimization problem (7.13) for various LTV channels also confirm the friendly

block assumptions in (7.12). Furthermore, if the assumptions are guaranteed to hold, the actual SIR

at the receiver is approximately equal to the optimal SIR value in (7.13).

Similarly, given h(k) and the channel response, and under similar assumptions, the optimal f (k)

can be obtained by solving the optimization problem,

max

f (k)

f (k)†Q
(k)
0,hf

(k)

f (k)†(Q
(k)
1,h +

P

n 6=0 Q
(k)
2,h(n))f

(k)
, for all k. (7.14)

Given one of the two prototype filters, we can optimize the other prototype filter so that the SIR
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is maximized. The optimal h(k) and f (k) can be obtained by solving the optimization problems,

involving the Rayleigh-Ritz ratio, in (7.13) and (7.14), respectively. By solving the optimization

problems alternatively and iteratively, the SIR will increase monotonically.

7.5 SIR Optimization for Unknown WSSUS Channels

For wideband wireless communications, the motion of the mobile terminal, and the variation of the

surrounding objects makes channels time-varying. In the design of a wideband wireless commu-

nications system over LTV channels, channel estimation is a big challenge since the channel may

change due to the Doppler effect within one block time. Instead of real-time LTV channel estima-

tion, we can design a statistically optimized DFT-FBT according to the channel statistics. In the

statistically optimized DFT-FBT, the transmitting and receiving filters are stationary if the channel

statistics do not change. The only part that adapts from block to block is the FEQ which is designed

based on the equivalent memoryless channel.

In the following, we consider gn(l) as a wide sense stationary uncorrelated scattering (WSSUS)

channel [99]. The cross-correlation of the zero-mean stochastic processes gn(l) is given by

E{gn1(l1)g
⇤
n2
(l2)} = Rl2(n1 � n2)�(l1 � l2), (7.15)

where Rl2(n) is any arbitrary function. We will propose an algorithm to optimize the prototypes

h and f of the DFT-FBT such that the ratio of the average signal power to the average interference

power is maximized. For convenience, we assume that nh = nf and nh could be greater than N �1

since the transmitting and receiving filters are stationary. The average signal, ISI and ICI power are

calculated by taking the expectation on (7.11) over the random process gn(l). From (7.4) and (7.6),

one can verify that

b(k)i,m(n) =

nh
X

n1=0

L
X

l=0

gn1+(n+k)N (l)f(n1 � l + nN)

·h(n1)W
�i(n1+nN�l�L)+m(n1�L)
M .

Based on WSSUS assumption, we can express Eg|b(k)i,m(n)|2 in terms of h as

Eg

�

�

�

b(k)i,m(n)
�

�

�

2
= h†⇤†

m�iJf (n)⇤m�ih, (7.16)



174

where

Jf (n) =

L
X

l=0

�†
f,l,nJl�f,l,n

⇤m = diag(1,Wm
M , . . . ,Wmnh

M )

�f,l,n = diag(f(�l + nN), . . . , f(nh � l + nN)),

and Jl is an nh + 1 by nh + 1 matrix whose (n2, n1)-th element is Rl(n1 � n2).

Similarly, we can express Eg|b(k)i,m(n)|2 in terms of f as

Eg

�

�

�

b(k)i,m(n)
�

�

�

2
= f†⇤†

m�iJh(n)⇤m�if , (7.17)

where

Jh(n) =

L
X

l=0

S†
�l+nN�†

hJl�hS�l+nN

�h = diag(h(0), h(1), . . . , h(nh)),

and Sm is an nh+1 by nh+1 shifting matrix that shifts a vector up by m. Applying these expressions,

the average signal, ISI, and ICI power can be reformulated in terms of f or h as

¯P (k)
sig (m) = �2

sh
†Jf (0)h = �2

s f
†Jh(0)f ,

¯P (k)
isi (m) = �2

sh
†
X

n 6=0

Jf (n)h = �2
s f

†
X

n 6=0

Jh(n)f ,

¯P (k)
ici (m) = �2

sh
†
(

M�1
X

j=1

⇤†
j

X

n

Jf (n)⇤j)h

= �2
s f

†
(

M�1
X

j=1

⇤†
j

X

n

Jh(n)⇤j)f .

Note from the above expressions that the average signal, ISI, and ICI power are constant over

all subbands and block time. The power is independent of the block index since both h and f

are stationary over the blocks and the channel is WSSUS. The independence of power from the

subchannel index comes from the nature of DFT-FBT and the averaging over channels. So, we have

average SIR in terms of h as

SIRh =

h†Q0,fh

h†Q1,fh
, (7.18)
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where Q0,f , Q1,f of dimension nh + 1 by nh + 1 are positive definite matrices

Q0,f = �2
sJf (0), (7.19)

Q1,f = �2
s(

M�1
X

m=0

⇤†
m

X

n

Jf (n)⇤m � Jf (0)).

Similarly, in terms of f ,

SIRf =
f†Q0,hf

f†Q1,hf
, (7.20)

where Q0,h, Q1,h can be obtained from (7.19) by replacing Jf (n) by Jh(n). The optimal f and h can

be obtained by solving the eigen problem involving the Rayleigh-Ritz ratio of (7.20) and (7.18). We

can use the iterative algorithm mentioned in the previous section to get satisfactory SIR.

7.6 The SINR Optimization

The BER of communications systems depends on the receiving SINR. In light of this dependence,

we propose algorithms to maximize the receiving SINR in this section. Assume that the noise v(n)

is AWGN with zero mean and variance �2
v . The power of the received noise after the receiving filter

Hk(z) can be shown to be

�2
v

nh
X

n=0

|h(n)|2.

So, we can formulate the average SINR for the unknown channel case in terms of h as

SINRh =

h†Q0,fh

h†
(Q1,f + �2

vI)h
. (7.21)

From the last section, we know that all the subchannels have the same the average SINRh. So, the

maximization of SINRh is equivalent to the minimization of the BER of DFT-FBT provided that

the BER is a monotonic decreasing function of SINR. Given f , we can solve for the optimal h such

that SINR is maximized just as in SIR maximization. However, given h, the SINR optimization

problem is

max

f

f†Q0,hf

f†Q1,hf + �2
vh

†h
s.t. kfk  1. (7.22)
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This is not a standard SIR maximization problem and cannot be solved directly. However, by

Lemma 7.1 below, it is equivalent to

max

f

f†Q0,hf

f†(Q1,h + �2
vh

†h)f
s.t. kfk = 1, (7.23)

where Q0,h and Q1,h + �2
vh

†h are positive definite matrices. A similar technique has been used

in [77]. We recognize this is the same as the SIR maximization problem in the previous section.

Therefore, we can solve h and f iteratively to get a satisfactory SINR value. The SINR maximization

for DFT-FBT over known LTV channels can be solved similarly.

Lemma 7.1: The optimal solution of the optimization problem (7.22) is f⇤⇤ = f⇤/kf⇤k, where f⇤ is

the optimal solution to the unconstrained optimization problem

max

f

f†Q0,hf

f†(Q1,h + �2
vh

†h)f
. (7.24)

⇤

Proof: For any nontrivial kfk  1, let f3 = f/kfk and ⌘ = �2
vh

†h > 0. The ratio

f†Q0,hf

f†Q1,hf + ⌘
=

f3
†Q0,hf3

f3
†Q1,hf3 + ⌘/kfk2


f3

†Q0,hf3

f3
†Q1,hf3 + ⌘

.

The last inequality holds if and only if kfk = 1. So, for the optimization problem (7.22), we just

need to consider the feasible set kfk = 1, and this is equivalent to (7.23). And (7.23) is equivalent to

the unconstrained problem in (7.24) since if f⇤ maximizes (7.24), so does f⇤/kf⇤k. ⇤

7.7 Design Examples

In this section, we design DFT-FBT over WSSUS channels and compare the performance with

Affine OFDM and traditional OFDM. The the channel response gn(l) is a wide-sense stationary

stochastic process given by

gn(l) =
K�1
X

i=0

↵l(n)�(l � i), (7.25)

where K is the number of multipaths and the path gains ↵l(n) have zero mean and follow Clark’s

model [99]

E[↵l(n)↵
⇤
(n1)] = PlJ0(2⇡fDTs(n� n1)). (7.26)
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fD is the maximum Doppler shift depending on the mobile agent velocity v and is given by fD =

fcv/c, where c is the speed of light and fc is the carrier frequency. Pl denotes the average power

of the l-th path and Ts is the sampling period. Here, fc is set to 5 GHz and Ts to 2µs. The average

power gain for the l-th path is Pl = 2

�l. The channel gains are normalized such that the sum

of the power from all multipaths is one. The number of subbands is M = 64, K = 9, and the

size of a block N = 80. The length of prototype filters h and f are 80. For the known channel

case, Affine OFDM and DFT-FBT are designed based on gn(l). The Chirp rate parameters c1 and

c0 in (7.7) of the Affine OFDM are designed and updated on a per block basis by the algorithm

in [69]. We design our DFT-FBT by alternatively optimizing h(k) and f (k) to maximize the SINR.

The prototypes are also updated on a per block basis. For the unknown channel case, we design

the statistical optimized DFT-FBT according to the channel statistics (Sec. 7.5), Pl and fD. For the

optimization of h and f , the objective function is the average SINR given in (7.18) and (7.20).

The plot of SINR at the receiver versus the mobile terminal velocity is shown in Fig. 7.3. The

variance of AWGN noise is 0.001. The SINR is the average SINR over 500 realizations of chan-

nels. We observe that the increase of velocity, hence the Doppler frequency, lowers the SINR at

the receiver. The DFT-FBT with known channel maintains really good SINR even at high Doppler

frequency, while the SINRs of the traditional OFDM and the Affine OFDM drop tremendously.

Furthermore, the statistical DFT-FBT (Sec. 7.5) outperforms the Affine OFDM even though it only

has the statistics of the LTV channels and the prototypes are stationary over all transmission blocks.

Fig. 7.4 shows the bit error rate performance of OFDM, Affine OFDM, DFT-FBT and statistical

DFT-FBT. FEQ as in Fig. 7.1 is used. 4-QAM symbols are transmitted in each subband. The BER

is the average probability of error over 500 realizations of channels. The velocity of the mobile ter-

minal is 100 km/hr. The Affine OFDM outperforms traditional OFDM only when Eb/N0 is greater

than 15 dB. The gain of DFT-FBT and statistical DFT-FBT over Affine OFDM increases as Eb/N0

gets larger. When BER equals to 3 · 10�3, the gains are approximately 7 dB and 4 dB, respectively.

7.8 Conclusions

We have proposed methods of designing DFT-FBT over known and unknown LTV channels. By

formulating the SINR as a Rayleigh-Ritz ratio, we were able to optimize the prototypes of DFT-FBT

such that the SINR at the receiver is maximized. Even when only channel statistics are available,

the statistical DFT-FBT performs better than the Affine OFDM which requires exact channel knowl-
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edge. In general, the optimized DFT-FBT provides substantial performance gain over the Affine

OFDM in LTV channels.
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Chapter 8

Channel Estimation for OFDM
Systems with Co-Pilots

In Chapter 7, orthogonal frequency division multiplexing (OFDM) transceivers are designed based

on channel state information (CSI). Channel estimation is an essential part of an OFDM system

which provides updated CSI. In this chapter, a new pilot-aided subspace channel estimation algo-

rithm for OFDM systems is proposed. The channel model is a sparse L-multipath channel with

gains subject to Rayleigh fading. The new algorithm constructs M2 virtual pilot tones from M

physical pilot tones, and employs the subspace method, MUSIC, to estimate the multipath time

delays. With the delay information, a minimum mean square error (MMSE) estimator is derived

to estimate the frequency response of OFDM systems. The proposed algorithm can identify up to

O(M2
) multipath delays by using M pilot tones. It is also demonstrated that the proposed chan-

nel estimation algorithm can help the OFDM system to keep relatively good bit error rate (BER)

performance, compared to the conventional subspace channel estimation method with uniform pi-

lots, even when the number of multipaths is greater than the number of pilots. Moreover, it could

potentially improve the spectral efficiency by reducing the number of pilots for given L.

8.1 Introduction

One of the advantages of OFDM systems is their ability to combat ISI induced by the transmission

over frequency selective channels efficiently [106]. A good channel estimation method which tracks

the time-varying channel parameters is essential in performing coherent demodulation for doubly

selective fading channels. The continuous time impulse response of a doubly selective wireless

channel for high speed data transmission is often modeled as the superposition of sparse multi-
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paths and each of them is associated with some time delay [111]. The multipath time delays are

slowly time varying while the gain of each multipath is relatively fast time varying and is subject

to Rayleigh fading [79]. It is advisable to place pilot subcarriers in each OFDM symbol [78], [83].

The traditional channel estimation approach consists of two steps. First, the least square (LS)

estimates are obtained over the pilot tones. Then these preliminary estimates are interpolated over

the frequency grids. In [80] and [82], the MMSE channel estimators for OFDM system are derived

based on the correlation in the frequency domain or time domain and the preliminary LS estimates

at the pilot tones. The correlation is not easily available at the receiver, and may require compli-

cated pilot placement and large overhead [86]. In [83], the frequency response is interpolated with a

linear/spline function based on the LS channel estimates at pilot tones. However, the method may

require a large number of pilot tones. The Fourier transform based methods in [81] and [85] first

estimate the constrained temporal channel response under MMSE or LS criterion, and interpolate

the frequency response with the Fourier transform. The FT-based methods have low complexity

and may require a smaller number of pilot tones than the frequency interpolation methods in [83].

However, they require knowledge of the channel support in the temporal domain for good perfor-

mance, and require the normalized multipath delays to be on integer grids. To give a comparison

benchmark for the class of FT-based methods, we construct an FT-based MMSE estimator with a

genie in Sec. 8.6. The genie has knowledge of the normalized channel delays rounded to the nearest

integers.

The methods above do not exploit the nature of the parametric channel model in which the

channel can be characterized by delays and complex amplitudes. In practice, the delays present

much slower variations in time than the amplitudes. This may allow the two types of parameters

to be handled independently. In [84], the authors use the subspace method which estimates the

multipath delays of the parametric channel model from uniform pilot tones, and apply the delay

information to design an MMSE estimator for the channel gains. The multipath delay estimation

works at a much slower rate than the MMSE amplitude estimation due to the quasi-stationarity

of the multipath delays. The subspace method allows the normalized multipath delays to be non-

integers which can potentially improve the performance of the channel estimator over the FT-based

channel estimators. However, the subspace channel estimator can never identify more multipaths

than the number of pilots minus one. To get good channel estimation when the number of mul-

tipaths increases, one needs to add more pilots per OFDM symbol which sacrifices the spectral
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Figure 8.1: The OFDM system.

efficiency of the OFDM systems. Inspired by the work on co-array in [89], we introduce the alter-

nating pilot placement in OFDM systems which allows us to construct M2 virtual pilot tones from

M physical pilot tones. The subspace method, MUSIC [90], can still be employed to estimate the

multipath time delays. With acquired multipath delays, an MMSE estimator is designed to estimate

the channel frequency response from the pilot tones in two consecutive OFDM symbols. Theoret-

ically speaking, the proposed algorithm can identify up to O(M2
) multipath delays by using M

pilot tones. For a fixed number of multipath delays, the new algorithm can potentially increase the

spectral efficiency of OFDM systems by using a smaller number of physical pilots.

8.2 Outline

The sections in this chapter are structured as follows. In Sec. 8.3, we introduce the channel models,

OFDM systems and the concept of the nested array. An overview of the subspace channel esti-

mation method with uniform pilots is presented in Sec. 8.4. In Sec. 8.5, we introduce the idea

of co-pilots and propose a subspace channel estimation algorithm. Numerical examples for the

designs are provided in Sec. 8.6. Concluding remarks are given in Sec. 8.7.

8.3 Preliminaries

In this section, we shall first describe the OFDM system model considered in this chapter. Sec. 8.3.2

reviews the concept of a nested array which plays a key role in the development of our new channel

estimation algorithm.
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8.3.1 System Model

Fig. 8.1 displays the block diagram of the OFDM system used in this paper. The system has N

subcarriers, and for each transmission, a size N OFDM symbol a(i) = [a0(i), a1(i), . . . aN�1(i)]T

is transmitted through the subcarriers, where i represents the OFDM symbol index. Suppose the

transmission bandwidth is 1/Ts, so the sampling period for the OFDM signals is Ts. The transmit

filter gT (t) is applied to limit the transmission bandwidth to 1/Ts. It is assumed that the channel

h(t; ⌧) is a multipath linear time-varying Rayleigh fading channel, characterized by

h(t; ⌧) =
L�1
X

l=0

hl(t)�(⌧ � ⌧l(t)), (8.1)

where hl(t) is the channel gain for the lth path, L is the total number of the multipaths, and ⌧l(t)

is the time delay for the lth path and is confined in the time interval ⌧l 2 [0, ⌧max]. The channel

gains, {hl(t)}, are independent wide sense stationary complex Gaussian processes and their auto-

correlations are characterized by the Jakes’ model, in which

E[hl(t+ T )h⇤
l (t)] = �2

hl
J0(2⇡fd,lT ), (8.2)

where J0(·) is the zero-th order Bessel function of first kind, fd,l is the Doppler spread of the lth path

and �2
hl

is the power of the lth path. The channel is time-varying as a result of the slow variations

of ⌧l(t) and the fast variation variations of the amplitudes hl(t) due to Doppler shift. To remove

the intersymbol interference (ISI) caused by the multipaths, a sufficiently long cyclic prefix (CP) of

length Ng is added in the front of each OFDM symbol at the transmitter end which brings the total

length of an OFDM symbol to N0 (N0 = Ng+N ). The CP is then removed at the receiver. We assume

that the channel h(t; ⌧) is quasi-stationary, i.e., the channel does not change within one OFDM

symbol time, N0Ts, but can vary from one OFDM symbol to another OFDM symbol. Moreover, the

delays, ⌧l(t), are assumed to be stationary for NI (assumed to be even) OFDM symbols. In practice,

each delay can be considered as a constant in NI OFDM symbols provided that their variations in

NIN0Ts are much smaller than the temporal resolution Ts of the system. To quantify, for a relative

radial movement between a transmitter and a receiver with velocity ⌫, the variation of the delay

⌧l(t) in NIN0Ts s is �⌧ = ⌫NIN0Ts/c (where c = 3 ⇥ 10

5 km/s). The condition �⌧ << Ts leads

to NI << (c/⌫)/N0. Therefore, for ⌫ = 30 km/h, we have NI << 3.6 · 107/(N0), meaning that the

delays, ⌧l(t), can be treated as a constant (⌧l) for a large number of OFDM symbols, NI .
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Under perfect synchronization, for the ith OFDM symbol time, the output of the receiver is an

N ⇥ 1 vector, c(i) = [c0(i), c1(i), . . . , cN�1(i)]T , and

cn(i) =
1

Ts
GT

nG
R
nHn(i)an(i) + zn(i), (8.3)

where GT
n and GR

n are the values of the Fourier transform of gT (t) and gR(t) evaluated at frequency

w =

2⇡n
NTs

, E{|an(i)|2} = �2
a, and zn(i) is i.i.d. white complex Gaussian noise with zero mean and

variance �2
z . The channel frequency response Hn(i) is given by

Hn(i) =
L�1
X

l=0

hl(iN0Ts)e
� j2⇡n⌧l

NTs . (8.4)

In this paper, we assume GR(jw) is flat for the entire OFDM signal bandwidth 1/Ts, and GR
n and

GT
n are equal to

p
Ts.

8.3.2 Nested Array

In this subsection, we shall review the concept of difference co-array and the nested array proposed

by [89].

Definition 8.1: (Difference Co-Array): Consider an array of of N sensors, with the positions given

by the integer set I defined as

I = {ni 2 N , i = 0, 1, . . . , N � 1}.

Define the set

Sdiff = {ni � nj , ni 2 I, 0  i, j  N � 1}.

In our definition of the set Sdiff , we allow repetition of its elements. We define the set Sdu,

consisting of the distinct elements of the set Sdiff . Then, the difference co-array of the given array is

defined as the array which has sensors located at positions given by the set Sdu. ⇤

The number of elements in the difference co-array, given by the set Sdu, directly decides the distinct

values of the cross correlation terms in the covariance matrix of the signal received by an antenna

array with sensor positions defined by I. Using these distinct cross correlation terms in different
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ways, one can substantially increase the number of sources that can be detected by the array. Each

such technique uses a part or whole of the resulting difference co-array, instead of the original array,

to perform direction of arrival (DOA) estimation.

The two-level nested array [89] is a concatenation of two uniform linear arrays (ULAs): inner

and outer. The sensor positions of the inner ULA are given by the set

Sinner = {m0d1|m0 = 1, 2, . . . ,M0}, (8.5)

and those of the outer ULA are defined by the set

Souter = {m1(M0 + 1)d1|m1 = 1, 2, . . . ,M1}. (8.6)

The difference co-array of this nested array is a filled ULA with 2M1(M0 + 1) � 1 elements whose

positions are given by the set

Sca = {nd1, n = �M, . . . ,M}, (8.7)

where M = M1(M0 + 1) � 1. The two-level nested array can attain 2M1(M0 + 1) � 1 degrees of

freedom in the co-array using only M0 +M1 elements.

8.4 Subspace Channel Estimation with Uniform Pilots

In [84] and [87], the authors proposed pilot-aided channel estimation methods based on subspace

methods. The algorithms have two stages: the channel model parameter acquisition stage and

tracking stage. The acquisition stage includes the detection of the number of multipaths, L, via the

MDL criterion, and the estimation of multipath delays, ⌧l, using subspace methods like ESPRIT or

MUSIC. In the tracking stage, an MMSE estimator is applied to estimate the frequency response

of the channel. It is assumed that Ms pilots are evenly inserted into N subcarriers with spacing

ds  NTs/⌧max to avoid aliasing (according to sampling theorem). The pilot tone set

S =

�

s(m)

�

�s(m) = mds, m = 0, . . . ,Ms � 1

 

(8.8)
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denotes all the pilot positions. The least square (LS) estimates of Hs(m)(i) on the pilot tones are

obtained by inverting the cs(m)(i) in (8.3) by the known pilot symbols, as(m)(i), as

bS
(i) = WSh(i) + z0(i), (8.9)

where bS
(i) 2 CMs⇥1, bSm(i) is the least square estimate of Hs(m)(i), WS 2 CMs⇥L, [WS ]m,l =

exp {�j2⇡mds⌧l
NTs

}, h(i) = [h0(iN0Ts) . . . hL�1(iN0Ts)]
T , z0(i) 2 CMs⇥1, z0m(i) = zs(m)(i)/as(m)(i),

E{z0(i)z0†(i)} = �2
z0IMs and �2

z0 = E{1/|as(m)(i)|2}�2
z . In the acquisition stage, the covariance

matrix for the LS estimated signals is estimated via

R =

1

NI

NI�1
X

i=0

bS
(i)bS

(i)†. (8.10)

When NI goes large, the matrix R converges to

lim

NI!1
R = WSE{h(i)h†

(i)}W†
S + �2

z0IMs . (8.11)

Standard MDL method in [84] and MUSIC can be used to estimate L and ⌧l from R, and reconstruct

WS in (8.9). After that, the algorithms switch to the tracking stage, which estimates frequency

response Hn(i) by the MMSE estimator given by

˜h(i) = WH

⇣ �

SNR
R�1

hh +W†
SWS

⌘�1
W†

Sb
S
(i), (8.12)

where ˜h(i) = [

ˆH0(i), . . . , ˆHN�1(i)]T , Rhh = diag(�2
h0
, . . . ,�2

hL�1
), � = E{|an(i)|2|}E{|1/an(i)|2},

SNR = E{|an(i)|2|}/�2
z , and WH is an N ⇥ L Vandermode matrix with [WH]n,l = exp {�j2⇡⌧ln

NTs
}.

8.5 Subspace Channel Estimation with Co-pilots

The subspace channel estimator in Sec. 8.4 has two fundamental limitations. It can only identify up

to Ms� 1 multipath delays given that the number of pilots is Ms. In [88], the author suggests that a

large aperture helps to improve the identifiability of MUSIC. So, the identifiability of the subspace

method in Sec. 8.4 could be limited by the small pilot aperture, Msds, when Msds is much smaller

than N . To improve identifiability, one may try to increase Ms. However, doing so would harm the

spectral efficiency of the OFDM system, which is given by ⌘ = (N �Ms)/(N +Ng).
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In this section, we apply different placements of pilots in even and odd OFDM symbols. M0

pilots are inserted in even OFDM symbols while M1 pilots are inserted in odd OFDM symbols.

M0 and M1 are such that M0M1 < N . By computing the cross-correlation of the even and odd

pilot signals, it is possible to construct a set of virtual pilots (co-pilots) which have more degrees of

freedom and bigger apertures than the uniform pilots in Sec. 8.4. For the even OFDM symbols, the

pilot tone indices are chosen from the set

S0 =

�

s0(m0) = (m0 + 1)M1d
�

�

�

m0 = 0, . . . ,M0 � 1

 

, (8.13)

where d = bmin((N � 1)/(M0M1), NTs/⌧max)c. Similarly, the pilot tone indices of the odd OFDM

symbols are chosen from

S1 =

�

s1(m1) = (m1 + 1)d
�

�

�

m1 = 0, . . . ,M1 � 1

 

. (8.14)

We call the placement, in particular, the alternating nested pilot placement. The dense pilots in odd

OFDM symbols correspond to the inner ULA of a nested array while the sparse pilots in even

OFDM symbols correspond to the outer ULA. Instead of having the nested structure [89] pilots in a

single OFDM symbol, the dense and sparse pilots are inserted in the odd and even OFDM symbols,

respectively, which leads to better spectral efficiency.

From S0 and S1, we can define a difference set Sdif as

Sdif =

n

xm0 � ym1

�

�

�

xm0 2 S0, ym1 2 S1

o

=

n

md
�

�

�

0  m M0M1 � 1

o

. (8.15)

The cardinality (with no repetition) of the difference set, which is |Sdif |, corresponds to the num-

ber of distinct cross correlation values obtained from the pilot signals. Using these distinct cross

correlation values judiciously in different ways, one can substantially increase the number of mul-

tipath delays that can be estimated and the number is upper bounded by |Sdif | [89]. Here, we have

|Sdif | = M0M1, which is the maximum degree of freedom a difference set constructed from a size

M0 and a size M1 set can achieve. For a fixed total number of pilots in an even OFDM symbol and

an odd OFDM symbol, 2Ms = M0+M1 (assumed to be even here), |Sdif | is maximized by dividing

2Ms pilots evenly to the odd and even symbols, i.e. M0 = M1 = Ms. Therefore, we choose both

M0 and M1 to be Ms.
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As in (8.9), the least square estimates of Hs0(m0)(2i) for an even OFDM symbol is given by

b(0)
(2i) = WS0h

(0)
(2i) + z(0)(2i), (8.16)

where b(0)
(2i) 2 CM0⇥1, b(0)m (2i) is the least square estimate of Hs0(m)(2i), WS0 2 CM0⇥L, [WS0 ]m0,l =

W (m0+1)M1

l , Wl = exp {�j2⇡d⌧l
NTs

}, z(0)(2i) 2 CM0⇥1, h(0)
(2i) = h(2i) and E{z(0)(2i)z(0)†(2i)} =

�2
z0IM0 . Similarly, the least square estimates of Hs1(m1)(2i+ 1) for an odd OFDM symbol is

b(1)
(2i+ 1) = WS1h

(1)
(2i+ 1) + z(1)(2i+ 1), (8.17)

where b(1)
(2i+1) 2 CM1⇥1, b(1)m (2i+1) is the least square estimate of Hs1(m)(2i+1), WS1 2 CM1⇥L,

[WS1 ]m1,l = WM1�m1
l , z(1)(2i+ 1) 2 CM1⇥1, and E{z(1)(2i+ 1)z(1)†(2i+ 1)} = �2

z0IM1 . Taking the

LS estimates, b(0) and b(1), from NI consecutive OFDM symbols, one can compute the correlation

matrix

RNI =

2

NI

NI/2�1
X

i=0

b(1)
(2i+ 1)b(0)†

(2i), (8.18)

where NI is the OFDM symbol time in which the multipath delay time is stationary. When NI !

1, we have

Rdif = lim

NI!1
RNI = E{b(1)b(0)†} = WS1Rh(1)h(0)W

†
S0

+WS1E{h(1)z(0)†}+ E{z(1)h(0)}W†
S0

+ E{z(1)z(0)†}, (8.19)

where Rh(1)h(0) = J0(2⇡fdN0Ts)diag(�2
h0
, . . . ,�2

hL�1
). The last three terms are zeros since the chan-

nel gains and the noise have zero means and are uncorrelated, and the noises z(0) and z(1) are

uncorrelated. Performing a vectorization on Rdif , we get

q = vec(Rdif ) =
�

W⇤
S0
�WS1

�

| {z }

A

p, (8.20)

where q 2 CM0M1⇥1, [A]n,l = W�n
l , and p = J0(2⇡fdN0Ts) · [�2

h0
, . . . ,�2

hL�1
]

T . Comparing the

above equation to (8.9), one can identify that A has the same Vandermonde form as WS with

M0M1 pilots, p corresponds to h(i), and the noise term is zero. So, we have constructed a set of

virtual pilots with M0M1 distinct tones in the co-array domain. We call the virtual pilots, in particular,
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the co-pilots, which suggests that they are constructed from the concept of co-array.

Also, we can compute another correlation matrix

R0
NI

=

2

NI

NI/2�1
X

i=0

b(1)⇤
(2i+ 1)b(0)T

(2i), (8.21)

and it converges to

R0
dif = lim

NI!1
R0

NI
= W⇤

S1
Rh(1)h(0)WT

S0
. (8.22)

The vectorization R0
dif yields

q0
= vec(R0

dif ) =
�

WS0 �W⇤
S1

�

| {z }

A0

p, (8.23)

where q0 2 CM0M1⇥1 and p is given by (8.20). Taking the 2nd to the last element of q0 and stacking

it with q, we have

˜q =

2

4

Jq0
2:end

q

3

5

=

˜Ap, (8.24)

where J 2 R(M0M1�1)⇥(M0M1�1) with ones on its anti-diagonal and zeros elsewhere, and the lth

column of ˜A is given by

[

˜A]:,l =

h

WM0M1�1
l . . .W 0

l . . .W�M0M1+1
l

iT

.

Extracting the (M0M1 � i)th to (2M0M1 � 1� i)th row of ˜q, we have the vector

˜q(i)
= ADpvi,

where A is given by (8.20), Dp = diag(p) and vi = [W i
0,W

i
1, . . . ,W

i
L�1]

T . Using ˜q(i), we can

construct the matrix

G =

h

˜q(0)
˜q(1) . . . ˜q(M0M1�1)

i

= ADpA
†. (8.25)

The matrix G has the same form as the covariance matrix of the LS estimated signals from a set of

M0M1 uniform pilots as in (8.11), except that the noise term is gone. We can take RNI and R0
NI
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as the approximations for Rdif and R0
dif , respectively, and construct the estimated G accordingly.

Then, the MDL method and the MUSIC algorithm are applied on G to estimate to multipath delays.

Note that applying the subspace methods on the covariance matrix G can identify up to M0M1� 1

multipaths, theoretically.

After the estimation of the number of multipaths and time delays, ⌧l, the channel gains, h(i),

are estimated via an MMSE estimator. Stacking b(2i) in (8.16) and b(2i + 1) in (8.17) (we omit the

superscripts (0) and (1) here), we have

b0
(2i) = [bT

(2i) bT
(2i+ 1)]

T
= Wh0

(2i) + z(2i), (8.26)

where W = diag(WS0 ,WS1), h0
(2i) = [hT

(2i) hT
(2i+1)]

T , and z(2i) = [zT (2i) zT (2i+1)]

T . Then,

the MMSE estimate of h0
(2i) is given by

ˆh0
(2i) =

�

�2
z0R�1

h0h0 +W†W
��1

W†b0
(2i), (8.27)

where ˆh0
(2i) = [

ˆhT
(2i) ˆhT

(2i + 1)]

T , and ˆh(i) is the MMSE estimate of h(i). The MMSE estimator

of the frequency response Hn(i) is given by

˜h(i) = WH
ˆh(i), (8.28)

where ˜h(i) and WH are defined in (8.12).

8.6 Numerical Results

In this section, we present numerical examples of channel estimation for the OFDM system in Sec.

8.3, using the subspace channel estimator with uniform pilots in Sec. 8.4, the proposed co-pilot

method in Sec. 8.5, uniformly spaced comb-type pilots with linear interpolation [83], and a Fourier

transform (FT) based MMSE estimator with genie aided temporal constraint. For the genie aided FT

based MMSE estimator, the number of multipaths and the normalized delays which are rounded to

the nearest integers, i.e., ⌧ 0l = round(⌧l/Ts), are provided by a genie as the prior information. The

pilots are inserted uniformly into both even and odd OFDM symbols. A similar MMSE estimator as

in (8.27) is used to estimate the temporal channel response ˆh0
(2i). Here, the matrix W = I2 ⌦Wg,

where Wg 2 CMg⇥L, [Wg]m,l = exp (�2⇡m⌧ 0l/Mg) and Mg is the number of pilots per OFDM



191

symbol. The frequency response is estimated with an FT interpolator as in (8.28). The genie aided

FT based MMSE estimator provides the performance benchmark for the class of classical FT based

MMSE estimators in which the multipath delays fall on the integer grids of nTs, n 2 N [81], [85].

The number of subcarriers, N , is 64. The length of cyclic prefix is Ng = 16. So, the size of an

OFDM symbol is N0 = 80. The maximum delay for the multipath channel in (8.1), ⌧max, is 16Ts.

The normalized multipath delays are given by ⌧l/Ts = 1 + round(l(⌧max/Ts � 2)/(L � 1)) + µl,

where µl are assumed to be independent, uniformly distributed between ��⌧/2 and �⌧/2, and

stationary for NI = 2000 consecutive OFDM symbols. The term µl perturbs ⌧l/Ts from an integer

grid. For �⌧ = 0, ⌧l/Ts takes an integer value. The power profile of the lth delay in (8.2) is given

by �2
hl

= C · ↵l, where ↵ = 0.8 and C is chosen such that
PL�1

l=0 �2
hl

= 1. The normalized Doppler

frequency in (8.2) is fd,lT = fd,lN0Ts = 0.1. The data and pilot symbols are QPSK symbols. For

all the channel estimation methods considered here, the number of pilots per OFDM symbol is set

to be 5, i.e., Ms = M0 = M1 = Mg = 5. In the delay acquisition stage of the uniform pilot and

the proposed co-pilot method, both algorithms take NI = 2000 OFDM symbols, construct their

own covariance matrices, and run the MDL and MUSIC algorithm to estimate ⌧l. In the tracking

stage, MMSE estimators in the forms of (8.27) and (8.28) are applied every two OFDM symbols to

estimate Hn(i). For the uniform pilot method, W and b0
(2i) in the MMSE estimator are given by

W = diag(WS ,WS) and b0T
(2i) = [(bS

(2i))T (bS
(2i+ 1))

T
], instead.

Example 1: In this example, we evaluate the average normalized MSE, 1/N
PN�1

n=0 E{| ˆHn(i) �

Hn(i)|2/|Hn(i)|2}, of the above mentioned channel estimators for different numbers of multipaths

(L). One million OFDM symbols are transmitted and the channel varies according to the parame-

ters described above. The SNR is

SNR = 10 log10

⇣�2
a(N �Ms)

N0�2
z

⌘

= 30 dB.

The results are shown in Fig. 8.2 and Fig. 8.3 for �⌧ = 0.1 and �⌧ = 0.5, respectively. The proposed

co-pilot method performs better than the uniform pilot method when L � 4. The result conforms

to the justification that the co-pilot method can identify more than 4 multipaths, which is the fun-

damental limit of the uniform pilot method. For L = 1, 2, the co-pilot method also outperforms

the uniform pilot method since it has a larger pilot aperture. The FT based MMSE estimator with a

genie has lower MSE for the case with �⌧ = 0.1, in which the normalized multipath delays (⌧l/Ts)

are more likely to fall on integer grids. For L < 7 and �⌧ = 0.5, the proposed co-pilot method out-
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Figure 8.2: Average MSE of the estimated frequency response with �⌧ = 0.1.
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Figure 8.3: Average MSE of the estimated frequency response with �⌧ = 0.5.
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Figure 8.4: Average BER of the OFDM system with �⌧ = 0.1
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Figure 8.5: Average BER of the OFDM system with �⌧ = 1
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performs the FT based MMSE estimator. However, the FT based MMSE estimator benefits from the

genie and has lower MSEs than all the other three methods when L > 7 and �⌧ = 0.5. The comb-

type pilot method with linear interpolation has bad MSE performance since it can not capture the

variation of Hn(i) in the frequency domain.

Example 2: We compare the BER performance of the OFDM systems equipped with the above

mentioned channel estimators for different SNRs. The number of multipaths is L = 4, �⌧ = 0.1

or �⌧ = 1 and other system parameters are described as above. The BERs are the average BERs

computed over 10

6 OFDM symbols. The BERs of the OFDM system with perfect channel knowl-

edge are simulated and serve as the benchmark for all other systems with channel estimators. The

results are given in Fig. 8.4 and Fig. 8.5. Among the four OFDM systems with channel estimators,

the co-pilot system has the best BER performance, then the uniform pilot system, then the FT based

MMSE system, and then the linear interpolation system. For the case with �⌧ = 0.1, the FT based

MMSE system with the genie and the uniform pilot system have almost the same BERs for all the

SNRs. When �⌧ = 1, the BER performance of the FT based system degrades tremendously. This

suggests that the FT-based MMSE systems will perform poorly if the normalized multipath delays

(⌧l/Ts) are not integers.

8.7 Conclusions

In this chapter, we have proposed a new subspace channel estimation algorithm which can identify

up to O(M2
) multipath delays by using M physical pilot tones. For doubly selective channels, it

was shown that the new algorithm is capable of improving the spectral efficiency of OFDM systems

by using a lesser number of pilots for a given number of multipath delays.
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Chapter 9

Conclusions

In this thesis, we have studied transceiver design problems with various kinds of channels. By ex-

ploiting the majorization theory, the proposed generalized geometric mean decomposition (GGMD),

the proposed space-time generalized triangular decomposition (ST-GTD) and joint triangulariza-

tion (JT), we were able to analytically solve the transceiver optimization problems with LTI flat

MIMO channels, LTV flat MIMO channels, and broadcast flat MIMO channels. Novel transceiver

structures and detection algorithms were developed. Performance analysis was done to confirm

the improvements over the conventional design, and relevant theoretical issues were studied. In

addition to MIMO transceiver designs, new transceiver design and channel estimation algorithms

were proposed for the multi-carrier systems.

The first part of the thesis focuses on decision feedback equalizer (DFE) transceiver design with

LTI flat MIMO channels. In Chapter 2, based on CSIT and CSIR, a novel butterfly structured MIMO

DFE transceiver was constructed by using the newly proposed GGMD. The proposed transceiver

works for general LTI flat MIMO channels, and is found to be most useful for cyclic prefix (CP) sys-

tems since its design and implementation complexity are much less than that of a conventional GMD

MMSE transceiver. In Chapter 3, performance analyses for the proposed GGMD DFE transceiver

were derived. We showed that the proposed design minimizes the average MSE, minimizes the

average SER, and maximizes the Gaussian mutual information under the total power constraint.

For the application in CP systems, the SER analysis shows that the GGMD DFE transceiver outper-

forms the SC-CP MMSE system for all SINRs, and the OFDM MMSE system in the moderate high

SINR region.

In the second part of the thesis, the transceiver designs for slowly LTV flat MIMO channels were

studied. In Chapter 4, we developed the ST-GTD based on the generalized triangular decomposi-
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tion (GTD). ST-GTD can be used to decompose the slowly LTV flat MIMO channels and construct

an ST-GMD DFE transceiver with a zero-forcing (ZF) constraint. Under perfect channel prediction,

the system minimizes both the average MSE at the detector in each ST-block, and the average per

ST-block BER in the moderate high SNR region. For practical applications where channel prediction

is not available, a causal ST-GTD ZF transceiver (CST-GTD), which has the same asymptotic BER

performance as the ST-GMD ZF DFE transceiver, was also proposed. In the analysis, we showed

that the proposed transceivers have smaller MSEs and BERs in the moderate high SNR region than

the conventional GMD ZF DFE transceiver. In Chapter 5, three transceivers were proposed under

the MMSE criterion. Firstly, a channel independent temporal precoder is super-imposed on the

conventional block-wise GMD MMSE DFE transceiver to take advantage of the temporal diversity.

Secondly, ST-GTD is applied to design the ST-GMD MMSE transceiver under the MMSE criterion

(ST-GMDM) which is optimal in terms of arithmetic MSE, Gaussian mutual information and aver-

age BER for the ST-block transmission scheme. Finally, we proposed a causal ST-GTD MMSE DFE

transceiver (CS-GTDM) which does not require channel prediction and has the same asymptotic

BER performance as ST-GMDM. In the analysis, we verified the performance advantage of the pro-

posed systems over the conventional GMD MMSE DFE transceiver and compared the proposed

systems in terms of MSE and BER. Also, we analyzed the dependency of the average BERs of the

proposed systems on ST-block size, and showed the advantage of ST-GMDMs over ST-GMD ZF

transceivers (proposed in Chapter 4).

Chapter 6 focuses on the DFE transceiver design for MIMO broadcast channels. Two joint de-

sign problems of the linear precoder, DFE and bit allocation are considered. The first problem is a

min-power QoS problem with a total bitrate constraint and per stream SER/BER constraints, and the

second problem is a max-rate QoS problem with a total power constraint and per stream SER/BER

constraints. By applying a particular class of joint triangularization which satisfies the dominance

condition, we propose the minimum power JT broadcast DFE transceiver (MPJT) and the maxi-

mum rate JT broadcast DFE transceiver (MRJT), which are optimal solutions for the min-power and

max-rate QoS problems, respectively. Two corresponding suboptimal broadcast DFE transceivers,

MPQR and MRQR transceivers which exploit simple QR decompositions, are also proposed for

the min-power and max-rate QoS problems, respectively. Integer bit allocation algorithms are also

developed for the proposed systems. Moreover, the theoretical results show the duality of the pro-

posed MPJT and MRJT transceivers for the min-power and max-rate QoS problems and the results
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are verified by numerical examples.

In Chapter 7, the discrete Fourier transform modulated filterbank transceiver (DFT-FBT) design

problem with LTV scalar channels was studied. For the case with perfect CSI and that with channel

statistics, we proposed iterative algorithms which jointly optimize the prototype filters such that

the SINR at the receiver is maximized. Simulation results reveal that the optimized DFT-FBTs

provide substantial gains over the conventional Affine OFDM which requires exact CSI at both

ends. In Chapter 8, a new pilot-aided subspace channel estimation algorithm for OFDM systems

with sparse L-multipath LTV channels was proposed. The new algorithm can identify up to O(M2
)

multipath delays with M physical pilot tones and the normalized delays are not limited to be on

integer grids. The simulation results reveal that the new algorithm can help the OFDM system to

keep relatively good BER performance, compared to the conventional subspace channel estimator,

even when the number of multipaths is greater than the number of physical pilots.

There are various topics worthy of future research. In Chapters 2 and 3, the proposed GGMD en-

ables us to construct an implementation-efficient GGMD DFE transceiver which can convert MIMO

channels into parallel subchannels with equal SINRs. In QoS problems, one may have different

SINR requirements for the substreams of an implementation efficient DFE transceiver. It is thus

essential to develop a new decomposition which can help us to design such a transceiver. More-

over, the results are obtained based on the assumption of perfect CSIT and CSIR. Having a robust

design with respect to the channel uncertainty, which arises in practical communication systems,

is desirable. In Chapters 4 and 5, channel independent temporal precoders are super-imposed on

the DFE transceivers to exploit the temporal diversity without the need of channel prediction. The

design of a channel dependent temporal precoder based on the channel statistics is not known and

worthy of pursuing. In Chapter 6, elegant analytical solutions for the min-power and max-rate QoS

problems are derived by exploiting a particular class of joint triangularization. There is a theory

that guarantees the existence of such a JT decomposition for two-user cases. For more than two

users, relevant theoretical results are still unavailable. It will be useful if one could develop similar

results for the JT decomposition of more than two matrices.
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