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Abstract

In this paper, we give a geometric interpretation of determinantal forms, both in

the case of general matrices and symmetric matrices. We will prove irreducibility

of the determinantal singular loci and state its dimension. We also provide detailed

description of the singular locus for small dimensions.
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Chapter 1

Introduction

Given n a positive integer, for an (n+m)× (n+m) matrix M over C, let mI denote

the determinant of the minor formed by taking the rows and columns indexed by

I ∪ {n+ 1, . . . , n+m}, where I ⊆ {1, 2, .., n}. The corresponding multilinear form is

obtained from taking

det(M +Kn,m) =
∑
I

mI · xJ , (1.0.1)

where J is the complement of I in {1, 2, .., n}, and Kn+m a diagonal (n+m)× (n+

m) consisting xi for the first n rows, and 0 for the rest. We assign homogeneous

coordinates [xi1 : xi2] ∈ P1 for each xi, and call all the homogeneous form of the

associated multilinear form hM(x11, x12, x21, x22, . . . , xn1, xn2). Additionally, a point

m ∈ P2n−1 is called a determinantal point if m = (mI) for some (n + m) × (n + m)

matrix M .

Determinantal points appear in the context of determinantal point process, when

the correlation functions of a random point processes are determinantal points. De-

terminantal points coming from symmetric matrices are of interest in the area of

information theory; namely, entropy vectors of n scalar jointly Gaussian random

variables are symmetric determinantal.

There are previous results regarding the variety corresponding to symmetric de-

terminantal points given in[HS07], using hyperdeterminantal relations. The explicit

expressions that generate the hyperdeterminantal relations become very involved even

for small matrices.
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In this thesis, we will attempt to give a geometric description by studying the

singular loci of the determinantal multilinear forms and the associated matrices. Since

scaling preserves the projective multilinear form, matrices of the form M 0

0 N

 , (1.0.2)

correspond to the same multilinear form as M . Furthermore, when m > 0, adding

a multiple of one of the last m rows/columns to the first n rows/columns leaves the

multilinear form unchanged, as well as an arbitrary change of basis for the last m

rows/columns. It is sufficient to consider m ≤ n, and M of the form

 A B

C 0

 , (1.0.3)

where A is n × n . Note that det(M + Kn+m) has degree n. Furthermore, a generic

point satisfies m∅ 6= 0, and we can take the matrix to be n × n. In the symmetric

case, the same types of operations will preserve the symmetry, so B = CT .

The variety of determinantal points is of dimension n2 − n + 1[BR05]. In the

symmetric case, note that mi determines the diagonal entries, and mI with |I| = 2

determines the off-diagonal terms up to signs: therefore, the same multilinear form

can correspond to at most a finite number of matrices, whose off-diagonal entries can

differ by a multiple of −1. Therefore, the symmetric determinantal points have the

same dimension as the symmetric matrices, which is n(n+1)
2

.

It has been shown that the algebraic group Gn = GL2(C)⊗n acts on the determi-

nantal multilinear forms via

(xi1, xi2) 7→ (G(i)
n (xi1, xi2)

T ),

where G
(i)
n is the i−th copy of GL2(C) in Gn. To see that this action also preserves
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symmetric matrices, it is enough to check 1 0

0 α

 ,

 1 0

a0 1

 ,

 0 1

1 0

 (1.0.4)

of GL2(C). The first one corresponds to scaling the i-th row and column both by (α)
1
2 .

The second one represents the addition of a0 to the i-th diagonal entry. Assuming

the third one is acting on the first set of coordinates, then it takes a matrix of the

form


a B C

d E F

g H J

 (1.0.5)

to 
0 0 0

√
−1

0 E F d

0 H J g
√
−1 b c a

 . (1.0.6)

This group action is especially useful for studying symmetric determinantal forms

when n is small, when we try to compute the singular loci directly. We will then rely

on those results in n = 3 and 4 to describe the generic symmetric loci for all n with

the following result.

Theorem 1.0.1. The singular locus of a generic symmetric determinantal multilinear

form is irreducible of dimension n− 3.

By generic, we mean the statement holds on a dense open subset of the symmetric

determinantal multilinear forms. Since we are thinking of determinantal hypersur-

faces in a geometric way, it would be useful to have a more geometric interpretation

of the multilinear forms. It turns out that such an interpretation is given by line

configurations. Not all determinantal forms have such an interpretation, namely, the

ones who have at least one linear factor, but we will show that the line configurations
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correspond to a dense open set of determinantal forms.

In the general case, we would want to follow a similar approach as in the symmetric

case, but direct computation for small dimension cases gets more difficult. We will

therefore rely more on the correspondence between determinantal hypersurface and

line configurations. The result in the case of general matrices takes the familiar form.

Theorem 1.0.2. The singular locus of a generic determinantal multilinear form is

irreducible of dimension n− 4.

Finally, we will take the geometric approach one step further for small n, through

vector bundles, with the following result.

Theorem 1.0.3. There is a birational correspondence between determinantal mul-

tilinear 5-forms and the moduli space of genus 1 curves with certain vector bundle

structures.

For n = 6, we attempt to follow a similar approach as in n = 5, but since vector

bundles in this case are not as well studied, the result we arrive is not as strong, and

there are immediate open questions left to future discussion.
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Chapter 2

Geometric Interpretation

2.1 General Determinantal Forms

Given a line in Pn−1, if viewed as an element in G(2, n), there is a representation by

a 2× n matrix  ai,1 ai,2 · · · ai,n

bi,1 bi,2 · · · bi,n


.

If there are n lines, there are n such 2× n matrices, say with i = 1, 2, . . . , n. We

can further rewrite this by

A+XB =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n

+


x1 · · · 0
...

. . .
...

0 · · · xn



b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bn,1 bn,2 · · · bn,n

 ,

where A = (ai,j), and B = (bi,j). Then each row is a parametrization of the line,

and xi a parameter. The hypersurface in (P1)n associated with these n lines is given

by the equation det(A + XB) = 0, i.e. a set of n points, one from each line, that lie

on a common hyperplane.

If B is invertible, then B−1 ∈ GLn(C), and det(A+XB) = det(B)det(AB−1+X).

Therefore, we can find a collection of lines in the direction of coordinate vectors that

represent the same hypersurface.
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Now suppose B is singular, with no zero rows. With the above trick, we can replace

B with a lower triangular matrix such that nonzero rows are coordinate vectors. By

relabeling the lines, we will assume B is the form I 0

B1 0

 .

Assume corank(B) = m < n, i.e. I is of size m×m. Consider the (n+m)×(n+m)

matrix

B′ =

 B Ĩ

0 I

 ,

where the i-th of columns Ĩ is the (m + i)-th coordinate vector with 1 in the m + i

position, and 0 otherwise. Note that if we expand A to A′ of size (n+m)× (n+m)

with 0 entries, and X to

 X 0

0 I

 , then

det(A′ +X ′B′) = det

 A+XB Ĩ

0 I

 = det(A+XB),

and the hypersurface remains unchanged. Now by column operations, there is

E ′ ∈ GLn+m(C) such that

B′E ′ =

 I 0

−B1 I 0

 ,

with I of size n. The original hypersurface is also given by

det(

 A′E ′

−B1 I 0

+X ′) = 0.

Since GLn(C) acts on the space of line configurations, any hypersurface associated

to a line configuration can be represented by an n+m×n+m matrix, with m ≤ n+1.

However, in the case when m > 0, the multilinear form is of degree strictly less than
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n. Since projective lines are preserved by PGL2(C), PGLn2 (C) acts on the set of

determinantal forms associated to n lines.

In fact, if any of the n lines degenerate into points, we can still represent each

point by two dependent vectors ai and bi, and repeat the above process to obtain a

diagonal X ′. Assume bi is nonzero, then aij + bijxi is a common factor when taking

the determinant.

Another representation of line configurations is given by the n×2nmatrix
(
AT BT

)
.

Note that for det(A + XB) 6= 0,
(
A B

)
can represent an element in Gr(n, 2n).

Therefore, even for the degenerate case, when we have points instead of lines, this n×

2n representation is still valid. The associated hypersurface is given by
∑

i⊆[n] det(A
T
I B

T
[n]−I)xI =

0, i.e. the coefficients are given by the projection of Gr(n, 2n) onto the principal mi-

nors.

Since Gr(n, 2n) → P(∧n
⊕n

i Vi) under the Plücker embedding, if we consider

Gr(n, 2n) onto the principal minors P̃n, we get

Gr(n, 2n) −−−→ P(∧n
⊕n

i Vi)y y
P̃ −−−→ P(⊗ni Vi)

.

GL(2n) acts on P(⊗ni Vi), and it has been shown the principal minors are invariant

under the action of the subgroup SL(2)×n n Sn.

It is more clear in the Gr(n, 2n) representation that the closure of the space of n

lines contains the degenerate cases when there are k points and n− k lines, for some

0 ≤ k ≤ n.

2.2 Symmetric Determinantal Forms

For the symmetric matrices, suppose a symmetric matrix is given by n lines in general

position, i.e. the corresponding hypersurface is given by det(A + X) = 0 where A is

a symmetric n × n matrix. The lines have Plücker coordinates of the form ei ∧ eiA,



8

where ei is the i− th standard basis, and the sum of these coordinates is

∑
i

ei ∧ eiA =
∑
i,j

aij(ei ∧ ej) =
∑
i,j

(aij − aji)(ei ∧ ej) = 0

. This can be viewed as an extra condition imposed on the lines compared to the

general matrix case.

Now suppose we are given n lines, and underGL(n) action as above their parametriza-

tion is given by A + X, i.e. the Plücker coordinates are ei ∧ fi. Further, assume the

condition that the
∑n

i ai(ei ∧ fi) = 0 for some ai. Then
∑n

i ei ∧ (aifi) = 0. Then the

new representation of the n lines under n copies of

 1 0

0 ai

 is a symmetric matrix.

Choosing a different representation of the line, i.e. taking into consideration of

the PGL2(C) action, will scale the Plücker coordinates by a constant. Therefore

the orbit of a symmetric determinantal form under PGL2(C)n consists of symmetric

determinantal forms.

In the conditional case when we have to embed the n lines into a larger space to

replace with lines in coordinate directions, we have to revise the condition on Plücker

coordinates slightly. If the matrix is of size (n + m) × (n + m), there needs to exist

m lines, and ai for i = 1, . . . , n + m such that the sum of the Plücker coordinates of

the i-th line scaled by ai is 0.

Since in the conditional case, the determinantal hypersurface is further preserved

by left multiplication of the (n+m)× (n+m) matrix of the form

 I ∗

0 ∗

 ,

in addition to right multiplication by GLn+m(C), we can again restrict m to be

at most n− 1 in the symmetric case.

In this case, we would consider the Langrangian Grassmannian of a 2n dimension

vector space instead. Then the corresponding subgroup of Sp(2n), which preserves

the symmetric principal minors, is SL(2)×n n Sn.
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Chapter 3

Generic Irreducibility of the
Singular Locus

We will show that a point of the generic determinantal locus can be singular only if

the corresponding n points on the lines lie on a codimensional higher than 1 subspace.

Otherwise, there will be a contradiction to the assumption that n lines are in general

position. The n points on the lines can lie on a codimensional higher than 2 subspace,

but as we will see, this case fortunately only happens for large n.

Theorem 3.0.1. For configuration of lines in general position, every singular point

of the corresponding hypersurface in (P1)n gives a collection of n points on the lines

lying on a codimension 2 subspace.

Proof. Assume (q1, q2, . . . , qn) ∈ (P1)n is a singular point of the hypersurface. Let Q

be the subspace spanned by the n points (p1, p2, . . . , pn) ∈ (Pn−1)n corresponding to

the singular point. We are given a line configuration {lk}k=1,2,...,n such that pi ∈ lk.

The singular point assumption implies there is a hyperplane containing all n points

(p1, p2, . . . , pn), and Q is at least codimension 1. Suppose Q is exactly codimension

1.

Since we are examining a singular point of the hypersurface, any infinitesimal

deformation of the singular point along the coordinate direction will stay on the

hypersurface, i.e. any infinitesimal deformation of any one of qi will remain coplanar

with all other qj for i 6= j.

• Case 1: All n − 1 subset of points among p1, p2, . . . , pn are independent, then
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any one of the subset of n−1 points alone is enough to determine a hyperplane.

We therefore have n − 1 hyperplanes, each corresponding to a subset of n − 1

points. But all n− 1 hyperplanes must be identical to the initial hyperplane Q

containing the n points. This means when we consider an n− 1 subset, the nth

point must also lie on the same hyperplane as the n− 1 points in the set, and

furthermore, infinitesimal deformation allows us to conclude the line containing

the n-th point also lies on the same hyperplane. Therefore we obtain n > n− 1

lines spanning n− 1 dimensional subspace.

• Case 2: There is a subset S of n − 1 points among (p1, p2, . . . , pn) which is

dependent. From the codimension 1 condition of Q, the n points (p1, p2, . . . , pn)

need to span n − 1 dimensions, so the n − 1 points in S have to span at least

n − 2 dimensions, i.e. there is a unique linear dependency for the points, say∑n−1
k=1 akqk = 0. Assume ai 6= 0 for i ∈ I, with I a subset of S. Let H be the

unique hyperplane in this case, then just as in the previous case, all |I| lines lie

on H.

For |I| ≤ n
2
, the lines {li}i∈I span at most 2|I| − 1 dimensions.

For |I| > n
2
, the lines {li}i∈I span at most n− 1 dimensions.

In either case, we have a contradiction to the fact that k lines in general position

span min(2k, n) dimensions.

Therefore, all singular points of the hypersurface correspond to n points lying on

a codimension of at least 2 subspace.

Remark 3.0.2. The above result actually holds for all line configurations. It can

be shown using the correspondence with lines in vector space of larger dimension as

described in the previous chapter.

Theorem 3.0.1 does not rule out the possibility where a singular point corresponds

to an n-tuple lying on a codimension 3 or higher hypersurface. We will show that

this indeed cannot happen generically when n is small.



11

Theorem 3.0.3. For 4 ≤ n < 9, there is a dense open subset of line configura-

tions such that every singular point of the corresponding hypersurface in (P1)n gives

a collection of n points on the lines spanning a codimension 2 subspace.

Proof. First consider the subset X3 inside (Pn−1)n, which is the projection of X̃3 =

{(∆, p1, p2, . . . , pn) : pi ∈ ∆,∆ ∈ Gr(n−3, n)} ⊆ (Pn−1)n×Gr(n−3, n) onto the first

factor, i.e.

X̃3 ⊆ (Pn−1)n ×Gr(n− 3, n)

��
X3 ⊆ (Pn−1)n

X̃3 can be viewed as a fiber bundle over Gr(n−3, n) with irreducible fibers that are

products of projective spaces, and therefore irreducible. Under projection, X3 is also

irreducible. If we consider the subset X ′3 of X3 where the n points span a codimension

3 hyperplane, then such points have exactly one fiber under the projection. Therefore,

the dimension of X3 is given by the preimage of X ′3, which is n(n − 4) + 3n − 9 =

n2 − n− 9.

Now consider the following diagram,

{Line configurations} × (P1)n

π

��

f // (Pn−1)n

{Line configurations}

,

where (P1)n is a set of parameters for each of the n lines, the horizontal map gives

points on the n lines, and π is the projection onto the first factor.

For a line configuration to be in the fiber of a point in (Pn−1)n, each line needs to

pass through a fixed point. Therefore, the fiber dimension is n(n−2). The pullback of

X3 under f has dimension ≤ n2−n−9+n(n−2) = 2n2−3n−9 = 2n(n−2)−(9−n).

For 4 ≤ n < 9, the codimension of π(f−1(X3)) is 9− n > 0.

Remark 3.0.4. In Theorem 3.0.3, we can replace 9 by any k2 > 1; then for any

4 ≤ n < k2 there is no singular point in the generic singular locus of a determinantal

n-form that corresponds to a codimension k or higher subspace.
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In general, given n lines {l1, . . . , ln} in Pn−1 corresponding to M , for each li, let

φi : P1 → li be the parametrization of li. Let

Sing(M)c = {x ∈ (P1)n : dim(span{φ1(x1) . . . , φn(xn)}) = n−2, li 6⊂ span{φ1(x1) . . . , φn(xn)}}

be the subset of the corank 2 locus inside Sing(M), and Sing(M)c the closure of

Sing(M)c.

Let us also denote Sing(L) the singular locus of the determinantal form associated

to L(and M).,i.e.

Sing(L) := {x ∈ (P1)n : dim(span{φ1(x1) . . . , φn(xn)}) ≤ n− 2}.

Lemma 3.0.1. Sing(M)c is irreducible of dimension n− 4 for generic M .

Proof. Let L = {l1, l2, . . . , ln} be n lines in general position corresponding to the

matrix M . Consider the set of n points, one from each line, that span a codimension

2 hyperplane. Then there is a well defined map

Sing(M)c

��
Gr(n− 2, n)× (P1)n

��
Gr(n− 2, n),

with the first map given by the inclusion of Sing(M)c in (P1)n, and the n−2 plane

containing the corresponding n points on n lines, and the second map the projection

onto the first factor.

Let Ai = {∆ ∈ Gr(n− 2, n) : li ∩∆ 6= ∅}, then Sing(M)c has image A = ∩ni=1Ai.

By the Kleiman’s version of Bertini theorem[Kle74], Ai intersects transversally, and

A is smooth of dimension 2(n − 2) − n = n − 4. The projection map has one point

fiber. We will show Sing(M)c is open. Consider

Ci := {x ∈ (P1)n : dim(span{φ1(x1) . . . , φn(xn)}+ li) ≤ n− 2}.
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Let l̄j be the image of lj in V/li, where V is the corresponding n-dim vector space,

and set Li = {l̄j : j 6= i}. Since L is a set of lines in general position, so is Li in V/li.

If φ̄j is the parametrization of the i-th line in V/li, now

Sing(Li) = {y ∈ (P1)n−1 : dim(span{φ̄j(yj) : j 6= i}) ≤ n− 4}

= {y ∈ (P1)n−1 : dim(span{φj(yj) : j 6= i}+ li) ≤ n− 2}

= {y = (y1, . . . , ŷi, . . . , yn) ∈ (P1)n−1 : (y1, . . . , yi, . . . , yn) ∈ Ci for all yi ∈ P1}.

Therefore, Ci ∼= Sing(Li)× P1.

Since Sing(Li) is closed, so is Ci. Now Sing(M)c is the complement of ∪iCi in

Sing(M) and therefore is open. Hence Sing(M)c is irreducible of dimension n− 4.

We will see for some small n, Sing(M) = Sing(M)c for a generic M .

Proposition 3.0.1. There is a morphism from the generic singular locus into Gr(n−

2, n) for 4 ≤ n < 9, and for 4 ≤ n < 7 the map is injective.

Proof. The statement regarding 4 ≤ n < 9 is a rephrasing of Theorem 3.0.3.

The ambiguity of injection comes from the fact that we could have n − 2 out of

the n points spanning an n−2 plane which contains one line in our configuration, but

this line does not contain any of the previous n−2 points. However, if this is the case,

we could consider the quotient space of the n− 2 plane by the line contained in it. In

this regard, we obtain an n − 4 plane that intersects n − 1 lines in general position.

By Kleinman’s Bertini Theorem, the set of Gr(n − 4, n − 2) we are considering has

dimension dim(Gr(n− 4, n− 2))− (n− 1) = n− 7.

For 4 ≤ n < 7, there cannot be such an n− 2 plane containing a line generically.

Therefore, all points in the generic singular locus correspond to corank 2 matrices

which intersect each line at exactly one point.

Since for 4 ≤ n < 7, Sing(M) = Sing(M)c for a generic line configuration, and

Sing(M) is irreducible of dimension n−4, we will show that in general this statement

also holds for higher n, except Sing(M) = Sing(M)c.
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Theorem 3.0.5. The generic singular locus is irreducible of dimension n− 4.

Proof. Let L = {l1, . . . , ln} be a set of n lines in general position in Pn−1. For each

li, let φi : P1 → li be the parametrization of li, and φ = (φi).

We want to show that Sing(L) is irreducible.

For 4 < n < 9, we already know that Sing(L) is irreducible for generic L. We

proceed by induction and assume Sing(Li) is irreducible for all 1 ≤ i ≤ n, which

implies Ci ∼= Sing(Li)× P1 is also irreducible for 1 ≤ i ≤ n.

Suppose there is a component C in Sing(L) such that C 6= Sing(L)c. Then since

Sing(L) = Sing(L)c ∪ ∪ni=1Ci,

if C ∪ Sing(L)c 6= ∅,

C = (C ∩ Sing(L)c) ∪ (C ∩ ∪ni=1Ci)

would contradict C being irreducible.

So we will assume C∩Sing(L)c = ∅, i.e. C ⊂ ∪ni=1Ci. Note that for any x ∈ Ci∩C,

dim(span{φ1(x1) . . . , φn(xn)}+ li) ≤ n− 2

and

dim(span{φ1(x1) . . . , φn(xn)}) < n− 2,

which implies

dim(span{φ1(x1) . . . , φn(xn)}+ lj) ≤ n− 2.

So x ∈ Cj, and C ∩ Ci = C ∩ Cj, i.e. C = C ∩ Ci ⊂ Ci. Since Ci is irreducible,

C = Ci. Therefore Cis are all identical. However, from the definition of Ci, C is then

the whole (P1)n, which contradicts the codimension 2 condition of Sing(L).

We can now conclude that Sing(L)c is the only component of Sing(L), and

dim(Sing(L)) = dim(Sing(L)c) = n− 4.
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Chapter 4

Description of the Generic Singular
Locus for n = 5 and 6

4.1 n=5

Theorem 4.1.1. The generic singular locus for n = 5 is a genus 1 curve.

Proof. We already know that the singular locus is of dimension 1, from 3.0.5. Using

previous notation, we’ll calculate the canonical bundle of A.

Since Ai is of codimension 1, viewing as a divisor, we have KAi
= (KG(3,5) +

Ai)|Ai
= (−c1(G(3, 5)) + Ai)|Ai

. Iterating over the five linearly equivalent divisors,

we have KA = (−c1(G(3, 5)) +A1 +A2 +A3 +A4 +A5)|A = (−c1(G(3, 5)) + 5Ai)|A.

Consider the tautological exact sequence over G(3, 5)

0→ S → C5 → V → 0,

then the tangent bundle is given by

TG = Hom(S,Q) = S∨ ⊗Q.

Since the TG is generated by its sections[Ful98],

c1(S
∨ ⊗Q) = 5[Ai]

So KA is trivial.
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As usual, we restrict our attention to the line configurations in a sufficiently small

dense open subset. By doing so, there is an injective morphism from the singular locus

to G(3, 5). Since non-vanishing of the determinant imposes open conditions, for every

singular point p, where rows r1, r2, r3 of the corresponding matrix are independent,

for 1 ≤ ri ≤ 5, it is possible to find an open set around p where r1, r2, r3 stay

independent. Let W be the pullback of the universal bundle on G(3, 5). Then W

is naturally embedded in O5
C . The quotient V is then the pullback of the universal

quotient bundle of G(3, 5), then V a vector bundle of rank 2 with five global sections.

We denote the fiber of W over p by σ(p).

In addition, we can construct five line bundles Li ∼ O to C , which correspond to

the five lines li whose parametrizations are given by line configurations via li/σ(p)∩li.

Li is well-defined, since local trivialization is given by W . Furthermore, Γ(Li) is given

by li, and Li is a line bundle of degree 2.

Theorem 4.1.2. V is an indecomposable rank 2 vector bundle of degree 5.

Proof. Note that Γ(V ) is generated by five global sections, each corresponding to

a row in the matrix M . Furthermore, since the corresponding lines have general

configuration, Γ(V ) = 5. Suppose V is decomposable, then either V = OC ⊕L ′
4 or

L ′
2 ⊕ L ′

3, where the subscript denotes the degree of the line bundle, and H0(V ) is

the direct sum of the global sections of its line bundle decompositions.

In the first case, V splits into a short exact sequence

0→ OC → V → L ′
4 → 0. (4.1.1)

On the other hand, each Li maps into V . Since Li are degree 2, it has nontrvial

image in L ′
4. Taking global sections, we have l1, l2, . . . , l5 which are contained in

Γ(L ′
4), which is a 4-dimensional vector space. But this contradicts the generic line

configuration assumption.

In the case where V = L ′
2 ⊕ L ′

3, since all Li are non-isomorphic, there is at

most one Li = L ′
2. Then at least four Li all have a nontrivial image in L ′

4, and

four of l1, l2, . . . , l5 are contained in a 3-dimensional vector space, which again is a
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contradiction to the generality assumption.

Therefore V is indecomposable. By the classification of indecomposable vector

bundles over an elliptic curve, we know degV = 5 [Ati57].

Suppose we are now given a genus 1 curve with a rank 2 indecomposable vector

bundle V of degree 5, and five non-isomorphic line bundles Li of degree 2 that map

into V , there is a corresponding line configuration.

Consider the following commutative diagram

0 −−−→ S −−−→ Γ(V )
j−−−→ V −−−→ 0x ψ

x
Γ(Li) −−−→ Li −−−→ 0

where the morphism from global sections are defined by the the base-point free

linearly independent global sections, and S is the kernel of j, which has a codimension

2 fiber over each point.

Since Li injects into V , the images of Γ(Li) in V are proper. Therefore the

image of Γ(Li) meets S in Γ(V ). Therefore, the line configuration obtained from the

geometric data given above gives rise to a singular locus containing a genus 1 curve.

In fact, by counting dimensions, we can conclude that the singular locus we con-

structed cannot be any bigger. The moduli space M (E , {Li}5i=1, V ) in question

consists of an elliptic curve E , sets of line bundles {Li}5i=1 of degree 2 belonging to

different isomorphism classes, and a rank 2 vector bundle V of degree 5, along with

maps Li → V for i = 1, 2, . . . , 5. Consider the projection

M (E , {Li}5i=1, V )→M (E ,L1, V )→M (E ,L1,K = W/L1),

where M (E ,L1, V ) is the moduli space of E with V and just one of the above

mentioned L1 along with Li → V , and M (E ,L1, K = W/L1) the moduli space of

E with L1 and a degree 3 line bundle K , which has dimension 2. [HM98]

Now Ext1(K ,L1) = H1(L⊗Qv) which has dimension −(deg(L1)−deg(K )) = 1,

and Ext1(K ,L1) is entirely given by scaling.

Since we have a short exact sequence,
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0→ L1 → W → K → 0,

we can consider the following long exact sequence

Hom(Li,L1)→ Hom(Li,W )→ Hom(Li,K )→ Ext1(Li,L1).

From the assumption that Li and L1 are not isomorphic for i = 2, 3, 4, 5, we have

Hom(Li,W ) ∼= Hom(Li,K ), and the first projection of moduli space has fiber of

dimension 4. Therefore M (E , {Li}5i=1, V ) is 6-dimensional.

On the other hand, if we consider configurations of five lines in P4, it is of dimension

5 · dim(G(2, 5)) − (dim(GL5) − 1) = 6, where −1 accounts for the scalar matrices.

Therefore, given an elliptic curve with a rank 2 indecomposable vector bundle V of

degree 5, and five non-isomorphic line bundles Li of degree 2 that map into V , we

indeed obtain a line configuration that corresponds to an elliptic curve. We have

proven the following statement:

Theorem 4.1.3. There is a natural correspondence between the set of line configura-

tions and the moduli space of genus 1 curves with six vector bundles whose properties

are stated as above.

4.2 n=6

Similar to the discussion for n = 5, the generic singular locus here can be viewed as

the intersection of G(4, 6) with six lines in P5 in general position, and we obtain a

dimension 2 variety with trivial canonical class, which is a K3 surface.

In fact, for higher n, we can consider the corank 2 locus X, i.e. the image of

G(n − 2, n) inside the singular locus. Let H be a hyperplane section of X, i.e.

X = Y ∩H for some subvariety Y . Since the canonical divisor of G(n−2, n) is given by

−nH[Con82], KY = −H, by Kodaira’s theorem, H i(OY ) = H i(OY (KY + (−KY ))) =

0 for i > 0. Furthermore, the dual form of Kodaira’s theorem gives H i(OY (−H)) = 0

for 0 < i < dim(X) + 1. If we consider the long exact exact sequence in cohomology
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associated to

0→ OY (−H)→ OY → OX → 0,

we obtain H i(OX) = 0 for all 0 < i < dim(X). Therefore, X is a Calabi-Yau

manifold.

For n = 6, we have the following sturcture on a K3 surface. There is a rank 2

vector bundle V such that h0(V ) = 6, and six line bundles Li for i = 1, 2, . . . , 6, with

each h0(Li) = 2, and Li injects into V . Furthermore,

Li·Lj = |{∆ ∈ G(4, 6) : ∆ contains 2 distinct points and intersects 4 lines in general position}| = 2

L 2
i = {∆ ∈ G(4, 6) : ∆ contains 1 line and intersects 5 lines in general position } = 0

Li · V = {∆ ∈ G(4, 6) : ∆ intersects 8 lines in general position } = 5

V 2 = {∆ ∈ G(4, 6) : ∆ contains 1 point and intersects 7 lines in general position } = 14,

since the degree of the Grassmannian of lines embedded via the Plücker embedding

are given by Catalan numbers [Muk93]. We then compute the intersection matrix to

be nonsingular.

If we consider the moduli space of K3 surfaces and vector bundles in the above

assumption, the dimension would be at most 20− 7 = 13. Note that in this case, the

configuration of six lines in P5 gives a dimenson count of 6·dim(G(2, 6))−dim(GL6)−

1 = 13.

The above discussion leads to a question we can ask. Do all K3 surfaces in (P1)6

with the above vector bundle structures come from our determinantal hypersurface

construction? If not, what would be a natural way to realize the vector bundles?

If the K3 surface in (P1)6 is the singular locus of a hypersurface, and furthermore,

when we project onto any copy P1, it is a genus 1 curve most of the time, i.e. de-

terminantal in the case of n = 5, is this K3 surface associated to a determinantal

hypersurface?
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Chapter 5

Description of Generic Symmetric
Singular Loci for n = 3, 4, 5

For symmetric matrices, since there is an extra condition on the Plücker coordinates

of line configurations, we expect the dimension of a singular locus would go up.

In this chapter, we will explicitly find a dense open set inside symmetric deter-

minantal multilinear n-forms and describe the singular locus of a multilinear form

inside this open set in the case of small n. The singular loci are obtained from solving

systems of equations for n = 3 and 4. For n = 4, direct computation can in fact

give us all possible singular loci, but we will not state it here. For n = 5, we have

to simplify the set of equations with its Gröbner Basis (in our case, we utilize the

software Magma).

Note, It is easy to see that in the case where n = 2, we obtain all possible bilinear

forms.

5.1 n=3

Take=ing a Zariski open subset inside symmetric determinantal trilinear forms cor-

responding to m∅ 6= 0, we can then consider 3 × 3 matrices {aij}. The determinant

of minors have relations
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(m123−m12m3−m13m2−m23m1+2m1m2m3)
2 = 4(m1m2−m12)(m2m3−m23)(m1m3−m13),

(5.1.1)

The singular point is computed to be

[
a12a13 − a11a23

a23
,
a12a23 − a13a22

a13
,
a13a23 − a12a33

a12
] ∈ P1 × P1 × P1

when at most one aij = 0, for i 6= j, i.e. no lines degenerate into points. Call this

type of singular locus, consisting of just one point, T1.

Furthermore, we can describe all possible singular loci. With m∅ = 1, a point

outside the dense open set would have at least two aij = 0. The associated multilinear

forms satisfies mI/mI∪{k} is a constant for all I ⊆ [3] with |I| ≤ 2, and a fixed k not

in I, i.e. the multilinear forms have at least a linear factor. We then have a case in

which either

• Exactly two aij vanish, i.e. two lines and one point, in which case the singular

locus is just P1(Type T2).

• All off-diagonal entries are zero, i.e. three points in general position, then

Det(M +K3,0) = (x1 −m1)(x2 −m2)(x3 −m3),

and the singular locus is three copies of P1 intersecting at a point (Type T3).

The three types of singular loci are shown in the figure below.

Figure 5.1: Singular loci for determinantal points of 3× 3 matrices
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5.2 n=4

Theorem 5.2.1. There is a dense open set of symmetric determinantal quadrilinear

forms whose singular locus under PGL⊗42 action is given by the diagonal embedding

from P1 to (P1)4, given by k 7→ (k, k, k, k).

Proof. Consider the multilinear form

a(x1x2 + x3x4) + b(x1x3 + x2x4)− (a+ b)(x2x3 + x1x4) (5.2.1)

whose singular locus is given by the diagonal embedding. Furthermore, it is realizable

by a symmetric matrix M given by

0 0 0 −a
1
4

√
b

a
1
4

√
−a−b
a
1
4

0 0 a
1
4 −a

1
4
√
−a−b√
b

0 −a
3
4√
b

0 a
1
4 0 −

√
ad14√
−a−b +

√
ad24√
b

√
bd14√
−a−b −

√
bd34√
−a−b d14

−a
1
4 −a

1
4
√
−a−b√
b

−
√
ad14√
−a−b +

√
ad24√
b

0 −
√
−a−bd24√

b
+
√
−a−bd34√

a
d24

√
b

a
1
4

0
√
bd14√
−a−b −

√
bd34√
−a−b −

√
−a−bd24√

b
+
√
−a−bd34√

a
0 d34

√
−a−b
a
1
4

−a
3
4√
b

d14 d24 d34 0


,

where dij are arbitrary constants.

Note that dim(PGL2(C)⊗4) = 12, and symmetric determinantal points for n = 4

are of dimension 10, so a generic symmetric determinantal quadrilinear form should

have stabilizers of dimension 2. Indeed , in this case, it is given by four copies of α
−β2+α2 b

β
−β2+α2 α

, where α, β ∈ C.

Now the orbit of det(M + K3,0) has dimension dim(PGL2(C)⊗4) − dim(Stab) =

12− 2 = 10, so this orbit is a dense open subset in the set of all symmetric determi-

nantal quadrilinear forms where the singular locus is given by the diagonal embedding

up to PGL2 action.

Remark 5.2.2. Theorem 5.2.1 implies that every symmetric determinantal quadri-

linear form is in the closure of the orbit of det(M + K3,0) under the PGL⊗42 action.
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The symmetric determinantal quadrilinear forms are the closure of one orbit.

5.3 n=5

In the n = 5 case, one point to note is that both symmetric determinantal multilinear

5-forms and PGL⊗52 have dimension 15: if we want to follow what happens in n = 4,

we would hope to find determinantal points with finite stabilizers under the action

of PGL⊗52 . In fact, this is the case, and additionally, we can describe the generic

singular locus as a quintic del Pezzo surface.

In our case, we will consider the del Pezzo surface dP5 as obtained from blowing

up P1 × P1 at three different points, with five maps to P1, which gives a canonical

embedding of dP5 into (P1)5 given by (a, b) 7→ (a, b, 1+b
a
, a+b−1

ab
, 1−a

b
), up to PGL2

actions.

Proposition 5.3.1. Matrices whose singular loci are dP5 embedded as described above

are dense in the set of symmetric matrices for n = 5.

Proof. First we need to show that there exists a matrix whose singular locus is the

quintic del Pezzo surface. We consider



z x y y x

x z x y y

y x z x y

y y x z x

x y y x z


.

We take M to be the matrix when x = 0, y = 1, z = 0, and its associated multilinear

form φ is the homogeneous form of

2 +x1 +x2 +x3 +x4 +x5−x1x2x4−x1x3x4−x1x3x5−x2x3x5−x2x4x5 +x1x2x3x4x5.

(5.3.1)
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The singular locus W of φ has a Gröbner basis consisting of 10 cubics,

x11x21x41 − x11x22x42 − x12x21x42 − x12x22x42,

x11x31x41 − x12x31x42 − x12x32x41 − x12x32x42,

x11x31x51 − x11x32x52 − x12x32x51 − x11x31x51,

x11x22x31 − x12x21x32 − x12x22x32,

x11x41x52 − x12x42x51 − x12x42x52,

x11x22x52 − x12x21x51 − x12x22x52,

x21x31x51 − x21x32x52 − x22x31x52 − x22x32x52,

x21x41x51 − x22x41x52 − x22x42x51 − x22x42x52,

x21x32x41 − x22x31x42 − x22x32x42,

x31x42x51 − x32x41x52 − x32x42x52.

The projection map onto the first two factors gives a birational equivalence W 7→

P1 × P1 via the open set that is the preimage of the complement of the points

{(0,−1), (−1, 0), (∞,∞)}.

Every stabilizer of the multilinear form induces an automorphism of W , whose au-

tomorphism group is S5. Therefore the stabilizer of the multilinear form is trivial un-

der PGL2(C)5, and the orbit of this multilinear form is of dimension dim(PGL2(C)⊗5) =

15 = dim(C5). Hence, this orbit gives a dense open subset of symmetric determinan-

tal multilinear 5-forms where the singular locus is a del Pezzo surface blowing up at

three points with embedding given to (P1)5 as above.

Note that for the small n we have just discussed, the generic type of singular locus

is irreducible, and the dimension of the singular locus goes up by one each time. This

will serve as a motivation for higher n.
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Chapter 6

Generic Irreducibility of the
Symmetric Singular Locus

We will again look for a dense open set in n× n symmetric matrices and attempt to

describe the properties of the associated singular loci. Similar to the general case, we

will show that a generic singular locus is irreducible by first showing that there exists

an irreducible component of the appropriate dimension, and that this is the unique

irreducible component in this singular locus.

We start with two results concerning intersection numbers.

Definition 6.0.1. For a subvarietyX of dimension k in (P1)n, X represents a class [X]

in the group An−k((P1)n) inside the Chow ring of (P1)n. Let Hj,n ∈ A((P1)n) denote

the generator of the j-th copy of A(P1) under the projection map, and Hj1···jk,n =

Hj1,n · · ·Hjk,n ∈ Ak((P1)n), where ji ∈ {1, . . . , n} are distinct. Then we define the

intersection number [X].[Hj1···jk,n] of X with respect to the subset {j1, . . . , jk} as the

image of [X] and [Hj1···jk,n] under the natural pairing An−k((P1)n)× Ak((P1)n)→ Z.

Lemma 6.0.1. For a subvariety X ⊆ (P1)n such that dimX = k, there exists a subset

of (P1)n of size k such that the intersection number with X is nonzero.

Proof. We induct on n. For n = 1, A1(P)1 is generated by any point, in particular,

X if k = 0. For k = n = 1, X = (P1)n, the statement also holds.

Assume the statement is true for n− 1. Let ια : (P1)n−1 → (P1)n via x 7→ (x, α),

then the preimage X ′ of X is either X itself, or a k − 1 dimensional subvariety of

(P1)n−1.
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Suppose [X][Hj1···jk,n] = 0 for some j1, . . . , jk, and X ′ = X. Let p : (P1)n →

(P1)n−1 be the projection map. Since (ια)∗([X
′][Hj1···jk,n−1]) = [X][Hj1···jk,n] = 0, and

p∗(ια)∗ = id, we have ([X ′][Hj1···jk,n−1]) = (p∗(ια)∗)(([X
′][Hj1···jk,n−1])) = 0. This is a

contradiction.

Suppose X ′ is a k − 1 dimensional variety inside Pn−1. Then under pullback

p∗([X ′][Hj1···jk−1,n−1]) = [X][Hj1···jk−1,n]. Now [X][Hj1···jk−1j′,n] = 0 if j′ = jl for some

l, or otherwise by induction hypothesis. Since p∗ is a split monomorphism, we have

[X ′][Hj1···jk−1,n−1] = 0.

Corollary 6.0.1. For a subvariety X ⊆ (P1)n such that the intersection number of

X with any subsets of (P1)n of size k is 0, then dimX < k.

Proof. For any k′ ≥ k, we can find a subset of k′ where the intersection number with

X is nonzero. Applying Lemma 6.0.1, we have dimX 6= k′.

For n = 3 or 4, we say a determinantal multilinear form is generically singular

if its singular locus is a point (when n = 3), or given by the diagonal embedding as

described in the previous chapter up to PGL2 action (when n = 4).

Suppose n > 4. Take a singular locus Sing(f) which corresponds to a de-

terminantal multilinear n-form f , and consider projection maps pI : Sing(f) →

(P1)|I|, where I ⊂ [n], and |I| = n − 3 or n − 4 . Denote ZI(f) = {z ∈ Sing :

f |pI(z) is generically singular}. For an n×n matrix M , denote ZI(M) = ZI(det(M +

Kn,0))

Proposition 6.0.2. For |I| = n − 3, there is a dense open set of n × n symmetric

matrices where ZI(M) is an irreducible subvariety of dimension n− 3.

Proof. Let z ∈ Sing(M); then it corresponds to one point on each line Z̃ = {z̃1, . . . , z̃n}.

Let Vn−3 be the space spanned by n− 3 points in Z̃ indexed by I. A necessary condi-

tion for z ∈ ZI is that the projection of three lines not indexed by I onto the quotient

by Vn−3 corresponds to three lines in general position.

It suffices to consider configurations of n lines in Pn−1 that satisfy the Plücker

coordinate condition as described in Chapter 1. There is a rational projection
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Gr(2, n)× (Pn−1)n−3

��
Gr(2, 3)

,

given by projection onto the complementary space spanned by the n − 3 points

in Pn−1. If the n − 3 points are independent, and the line is not in the span, the

projection is well-defined. Furthermore, it is surjective, since we can split into n-dim

vector space as Cn = C3⊕Cn−3, and can therefore embed an element in Gr(2, 3) into

the first C3.

Let Fn be the (P1)n−3 bundle over G(2, n)n, and F ′
n−3 be the natural (P1)n−3

bundle over G(2, n)n−3. Then we have

Fn = Gr(2, n)3 ×F ′
n−3

��
Gr(2, n)3 × (Pn−1)n−3

��
G(2, 3)3,

where the first arrow is a morphism given by points in (Pn−1)n−3 on the n lines,

and the second arrow three copies of the rational projection mentioned above, which is

also surjective. Therefore, given an open set G(2, 3)3 that corresponds to the generic

singular locus in (P1)3, i.e. three lines in general position, it pulls back to an open set

U in Fn. In other words, there is a open subset of configurations of n lines in Pn−1,

along with an open subset of each fiber, that corresponds to three lines in general

position under the projection map. Under the quotient correspondence, the fiber

would lie on a 1 + (n− 3) = n− 2 plane and indeed belongs to the singular locus.

The Plücker coordinate condition is preserved under push forward. Furthermore,

given an element G(2, 3)3, if we represent it by a 3 × 3 matrix R, then the n × n

matrix

 R 0

0 I ′

 ,
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where I ′ consists of 1 on the diagonal, superdiagonal and subdiagonal, and 0

elsewhere, represents n lines in Pn−1 that satisfy the Plücker coordinate condition

and are in the preimage. Therefore, U is non-empty.

ZI has irreducible image under pI , with irreducible fiber of constant dimension (a

single point), therefore ZI is irreducible of dimension dim((P1)n−3) = n− 3.

Although the above result can possibly be proved with matrix representation, the

advantage of adapting the line configuration is that we would not accidentally miss

the points at infinity. Since we only care about the generic situation, it is enough

to consider line configurations and ignore the degenerate cases when points replace

lines.

It may seem like we get many ZI as we vary I, but they turn out to be an identical

component inside the singular locus.

Lemma 6.0.2. ZI(M) is open in Sing(M) for a generic M .

Proof. For |I| = n− 3, refer to Theorem 6.0.1. In general, as we have seen above, ZI

is open if the set of generic multilinear n − |I| forms is open. For |I| = n − 4, ZI is

the preimage of an orbit under PGL2 action of maximal dimension.

Let Ik = I − {k} for some k ∈ I, with |I| = n − 3. We can regard pIk as a

composition φk · pI , where φk : (P1)I → (P1)Ik deletes the k-th coordinate. Then

ZI ∩ ZIk 6= ∅, and since they are both irreducible open sets, Z̄I = Z̄Ik for all k ∈ I.

For k 6= k′, Z̄Ik = Z̄I′k , and ZIk ∩ ZI′k 6= ∅. We will denote Zn−3 the nontrivial

intersection of all ZI and ZIk varying over all I, i.e. Zn−3 = ∩{I:|I|=n−3} ∩{Ik:k∈I} ZIk .

Finally, we will show that Zn−3 is the unique irreducible component inside the

singular locus, and therefore it is oftentimes enough to use Zn−3 to describe the

singular locus.

Theorem 6.0.1. Sing(M) is irreducible of dimension n− 3 for a generic M .

Proof. Suppose there is an irreducible component C disjoint from Z̄, then pI(C) is

not dominant for |I| = n−3. Therefore, there exists an open subset U ⊂ (P1)n−3 such
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that p−1I (U) ∩ C = ∅, which means that for [p−1(U)] ∈ An−3(P1)n, [C][p−1(U)] = 0.

Applying Lemma 6.0.1, dimC < n− 3.

Since at each singular point the matrix determinant and its minors vanish, together

with the symmetric condition, we associate matrices of co-rank 2 generically. Given

a generic M , there is a well-defined morphism v from the Sing(M) to the corank

2 subvariety, M2,n, and im(v) has a covering defined by hypersurfaces everywhere.

Since an open set U ∈ im(v) is of dim(M2,n) and v is injective, v−1(U) is at most

co-dimension 3. Therefore, such C cannot exist, and Zn−3 is the only irreducible

component in Sing(M).

Since Zn−3 is open, dim(Sing(M)) = dim(Zn−3) = n− 3.
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