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ABSTRACT 

The various singularities and instabilities which arise in the 

modulation theory of dispersive wavetrains are studied. Primary interest 

is in the theory of nonlinear waves,but a study of associated questions 

in linear theory provides background information and is of independent 

interest. 

The full modulation theory is developed in general terms. 

In the first approximation for slow modulations, the modulation equations 

are solved. In both the linear and nonlinear theories, singularities and 

regions of multivalued modulations are predicted. Higher order effects 

are considered to evaluate this first order theory. An improved 

approximation is presented which gives the true behavior in the singular 

regions. For the linear case, the end result can be interpreted as the 

overlap of elementary wavetrains.In the nonlinear case, it is found 

that a sufficiently strong nonlinearity prevents this overlap. Transition 

zones with a predictable structure replace the singular regions. 

For linear problems, exact solutions are found by Fourier 

integrals and other superposition techniques. These show the true 

behavior when breaking modulations are predicted. 

A numerical study is made for the anharmonic lattice to 

assess the nonlinear theory. This confirms the theoretical predictions 

of nonlinear group velocities, group splitting, and wavetrain instabil

ity, as well as higher order effects in the singular regions. 
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CHAPT ER I. INTRODUCTION 

This thesis is a study of the various singularities and insta

bilities that arise in the modulation theory of dispersive wavetrains. 

The main objective is the resolution of questions raised in the theory 

of nonlinear waves, but a detailed study of related questions in linear 

theory provides background information and is of independent interest. 

Linear dispersive problems are characterized by the existence 

of elementary periodic solutions 

A cos e. 8 = kx - wt, (1. 1) 

in which the frequency W and the wave number k are related by a 

dispersion relation 

w = W(k) ( 1. 2) 

In corresponding nonlinear problems, solutions in the form of 

periodic wavetrains are also found but a basic new ingredient is the 

appearance of amplitude dependence in the dispersion relation. A 

typical variable, cp say, is given by 

cp =~(8), 8=kx-wt, (1. 3) 

where ~ is a periodic function of e; ~ also includes an amplitude 

parameter A and the solution requires that (W, k, A) satisfy a disper

sion relation 

w = W(k, A) • (1. 4) 

The function ~ is no longer sinusoidal, in general, but the crucial 

change, leading to qualitatively new phenomena, is the inclusion of 

A in (1. 4). 
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In the linear case, more general solutions can be obtained 

by Fourier superposition, but this is not possible in the nonlinear 

case. Instead, one approach has been to develop the theory of 

modulated wavetrains in which (w, k, A) are slowly varying functions 

of x and t. In this extended form, Wand k are defined in terms of 

the phase e (x, t) by 

k = e • 
X 

(1. 5) 

Even in linear theory, the modulation approach is useful to 

give a quick and informative derivation of the concepts of group 

velocity, and to extend results to nonuniform media where exact 

solutions cannot be found. In such cases it is equivalent to the 

W. K. B. approximation. 

The simplest approa ch is to note that 

from ( 1. 5 ). Then if one still assumes that ( 1. 2) holds, k satisfies 

(1.6a) 

where C(k) = W' (k). This is a nonlinear hyperbolic equation with 

characteristic velocity C (k). On the characteristic curves 

dx = C(k) dt 

k is constant. Thus each wave number propagates with its own group 

velocity. It c an also be shown that the amplitude satisfies a similar 

equation which may be written 
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(1. 6b) 

This equation can be solved by integration along the same character-

istics. 

For nonlinear problems in which the amplitude is small, 

the dispersion relation (I. 4) can be expanded in powers of A 2 
, 

w = W 0 (k) + A 2 Wz (k) + •••• 

The corresponding modulation equations are 

kt + W 0 ' (k) k + 2 A W 2 A = 0 , 
X X 

(I. 7a) 

(I. 7b) 

A derivation will be given in Chapter V. These are two coupled 

equations for (k, A), which have characteristic velocities 

Accordingly, (1. 7) are hyperbolic or elliptic if W 0
11 W 2 is positive 

or negative, respectively. 

In the hyperbolic case, the two velocities C± are the non-

linear analogs of the classical group velocity and both reduce to 

C (k) in the linear limit. If the modulations are confined to a finite 

region, the disturbance will split into two groups with speeds C + 

and C _, a result quite different from linear theory. 

For the elliptic case, small perturbations about constant 

solutions will grow. This implies that the periodic wavetrain (1. 3) 

is unstable for W 0 ''Wz < 0, a result which has no analog in linear 
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problems. 

In the linear problem, and in the nonlinear case when 

W 0 " W 2 > 0, the modulation equations are hyperbolic and nonlinear. 

Such equations always have breaking solutions. If the initial wave 

number distribution is such that c or c± decreases with increasing 

x, then some of the characteristics e ventually cross. This produces 

singularities and multivalued solutions. Equations (1. 6) or (1. 7) 

are no longer valid at this stage since the modulations do not change 

slowly. This leaves the question of what actually happens near 

breaking. One possibility is that higher order effects become domi-

nant and prevent breaking. There is also the intriguing possibility 

of some kind of shock structure being the end result. This would not 

be a shock in the usual sense, but a shock in the modulations; for 

instance, it might be the juxtaposition of two periodic wavetrain 

with some small transition region between. 

In the linear case, however, even though (1. 6a) is nonlinear, 

it approximates the behavior of a basic linear problem. So, in this 

case, superposition of wavetrains gives an acceptable interpretation 

of multi valued modulations. 

In the following chapters we assess the validity of the modu-

lation equations (1. 6) and (1. 7), and determine what happens in 

cases where this first order theory does not apply. First, in Chap-

ter II, a concise and rigorous form of the full modulation theory is 

derived for linear problems. Equations (1. 6) are found as a first 

approximation. In the next approximation an amplitude coupling 
A 

term ( .:..X )x appears in the wave number equation. Analysis of 
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exact solutions in Chapters III and IV shows that this improved 

approximation is sufficient to predict the true behavior in all cases. 

This additional c oupling effect pr events singularities and also pro

duces an overlap region for large times. 

In Chapter V, the full modulation theory is extended to non

linear problems. Here it is found that a sufficiently strong non

linearity changes the character of the solution near breaking. In 

the breaking region the wave number obeys a kind of Korteweg-de 

Vries equation. This predicts two kinds of transition region in which 

both the amplitude and wave number change abruptly; their speeds 

correspond to the two nonlinear group velocities. The improved 

modulation theory is also used to reassess the questions of insta

bility in the elliptic case (Wa" W 2 < 0 in (1. 7)). It is found that only 

perturbations with a wavelength shorter than some critical value will 

grow. Also, solitary wave packets are shown to exist for this case. 

In Chapter VI, numerical solutions are computed for an 

anharmonic lattice which is both nonlinear and dispersive. This 

problem is of physical interest in itself, but is presented here to 

assess the modulation theory and the questions of breaking. For the 

first time clear evidence of group splitting and instability is found, 

as well as verification of the predicted behavior near breaking. 
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CHAPTER II. LINEAR DISPERSIVE WAVES 

We consider here the class of linear problems which exhibit 

dispersive wave behavior. In problems of one space dimension 

dispersive waves are recognized by the existence of elementary 

periodic solutions 

cp (x, t) = A ei(kx- wt) (2. 1) 

where A, w, and k are real constants: the amplitude, frequency, 

and wave number. Clearly A is arbitrary for linear problems, but 

typically it is found that wand k must satisfy a dispersion relation 

G(W, k) = 0 (2. 2a) 

if (2.1) is to be a solution. We suppose that the dispersion relation 

can be solved for W, 

w = W(k) (2. 2b) 

In general, there will be a number of such solutions which are re-

ferred to as different modes. As noted earlier, a significant 

quantity associated with each mode is the group velocity 

C{k) = dW 
dk 

The variation of the group velocity with wave number is responsible 

for the dispersive behavior so we exclude the case where C is 

constant. 

To see precisely how the dispersion is related to the governing 

equation, consider the general linear partial differential equation in 

x and t with constant coefficients: 
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(2. 3) 

where Pis a polynomial. For periodic solutions (2. 1 ), the derivative 

operators are replaced by multiplication 

to give 

o __, - i W, 
t 

0 __, ik 
X 

P( -i w, ik)A = 0 

If this has solutions for real Wand k, then (2. 3) is dispersive, and 

the dispersion function must be 

G( W, k) - P( -i W, ik) 

Interestingly, G contains all of the information about the problem. 

By rever sing the above argument, the original equation can be 

reconstructed from the dispersion relation. Given the function G, 

the equation must have been 

= 0 (2. 4) 

We see that if G contains a mixture of odd and even powers, the dif-

ferential equation involved is complex. For example the Schroedinger 

equation for a free particle, 

has G = w- k
2 

• 

icpt + cp 
XX = 0 

Equation (2. 3) will give rise to polynomial dispersion relations. 

However, there are other cases in which a more general dispersion 

arises, such as water waves, discrete problems, or integrodiffer-

ential equations. Also, if a single mode is being studied, the 
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dispersion relation in the form (2. 2b) may not be a polynomial. For 

these cases, an equivalent differential equation with an infinite series 

of terms can b e constructed from (2. 4), using the Taylor series ex-

pansion for Gin powers of wand k. For Gin the form w - W(k), this 

equivalent equation is 

i <:pt-W(O)<:p + i W' (O)<:p + 2
1
, W "(O)<:p + • • • • = 0 

X . XX 

This is equivalent in that it has the same dis per sian r elation, and can 

be used in place of the original equation if desired. 

The elementary solutions (2. 1) can be superposed to give the 

general solution in terms of Fourier integrals. Considering just one 

mode, the solution is 

00 

<:p (x, t) = s F(k)eikx-i W(k)t dk 

-oo 

where F is determined from the initial conditions as 

00 

1 s -ikx F(k) = 2 '11' <:p (x, o) e dx 

-oo 

The Fourier integrals give the exact solution of the problem, but 

their content is hard to see. By formulating the solution in terms 

of modulations we can extract some of the main features which are 

common to all dispersive problems. The modulation theory can be 

obtained from the asymptotic behavior of the Fourier integrals, but 

it can also be derived directly in a way that lends itself to general-

izations. 
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Modulation theory 

We consider solutions which behave locally like the uniform 

periodic wave, but have a slowly varying amplitude, frequency, and 

wave number. We can write such a solution in terms of an ampli-

tude A(x, t) and phase 8 (x, t) in the form 

cp(x, t) = A(x, t)ei 8(x, t) (2. 5) 

The proper generalization of frequency and wave number for a 

modulated wave is 

w(x, t) = -8t' k(x, t) = 8 
X 

The equations for A and 8 are determined by substituting (2. 5) into 

the differential equation (2. 4). Each differentiation can be replaced 

by an operator acting on A, 

so that (2. 4) becomes 

G( w + i ot, k - i ox) A(x, t) = 0 (2. 6) 

It is convenient to work with the functions Wand k in place of 8, and 

supplement (2. 6) by the compatibility relation 

ok + a w 0 at ax = • (2. 7) 

If (2. 7) holds, then the operators ( w + i at) and (k - i ax) commute, 

however operations such as k a and a k cannot be interchanged. 
X X 

The real and imaginary parts of (2. 6) along with (2. 7) provide 

three equations for the variables ( w, k, A). These are the full 
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(exact) modulation e quations. 

The particular form of G, and hence (2. 6) is not unique when 

studying a single mode, and in some cases the proper choice will 

greatly simplify the equations. For instance, in the beam equation 

for which w2 = k 4
, one could take G to be either W

2
- k 4 or w- k 2 

when studying the mode w = k 2
• The latter choice is the simpler 

one for (2. 6). In other cases, it is better not to solve for w. In the 

Klein-Gordon equation for which W
2 = k 2 +1, if G is chosen to be 

W- jk2 +l it has to be interpreted as w- (1 + i k 2 + ••• ) • This 

results in an infinite series of terms in (2. 6). It is better to take 

G to be w2 
- (k2 +l) for that case. 

A classical e xample of a mod:ulated wave is obtained by 

superposing t w o elementary solutions of equal amplitude, say 

cp = expli(k+O)x - iW(k-O)t] 

+ exp [i(k-O)x - i W(k- O)t] • (2. 8a) 

This gives rise to a beating effect. By rearranging, (2. 8a) can be 

put in terms of an amplitude and phase function 

cp = A(x, t)ei(kx - wt) 

where A= 2 cos(Ox-i[W(k+O) - W(k- O)]t) 

and w = iiW(k+O) + W(k-0)] 

The amplitude oscillations (or beats) move with a speed 

v = W(k+n ) - W(k-0) 
20 

(2.8b) 

(2. 8c) 

(2. 8d) 
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If 0 is small, then V is approximately the group velocity dW Yet 
dk 

this solution is exact, and the finite difference formula for this speed 

must be obtainable from the full modulation equations (2. 6). 

To see this we write (2. 6) as 

where the choice of(+) or (-) gives the real or imaginary part of 

(2. 6). If w and k are constant, and the amplitude is a sinusoidal 

steady profile, say 

A= cos O(x-Vt) = R eiO(x-Vt) 

then these equations require 

i{ G( w+VO, k+O) ± G( w- V O, k - 0 )} = 0 

With G(w,k) - w- W(k), (+)and ( -) give (2. 8c) and (2. 8d), respec-

ti vel y. 

Slow modulations 

There is not much advantage in replacing the original problem 

with the full modulation e quations. Posed in this way the problem is 

much worse, being three -coupled nonlinear equations. However, we 

have not yet taken advantage of the fact that the solution of interest 

involves modulations of the uniform wavetrain. For such solutions 

the parameters change slowly relative to the local wavelength and 

period. Then, various levels of approximation be c ome useful in 

under standing the nature of dispersive waves. 
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We assume that the modulation parameters are functions of 

slow variables 

X = E:x , T = E: t, E: << 1 

so that (2. 6) becomes 

G(w + iE: oT, k- iE: 8_x)A(X,T) = 0. (2. 9) 

This can be expanded in powers of E: by looking at the general term 

in the Taylor series for G. For instance, the first terms which 

n 
arise from k are 

n-1 a 
+ ••• (k A)x)+O(e) 

+ O( E: a) 

= kn A - i£ ( A 2 ~ (kn)) 
2A \ dk X 

The expansion of (2. 9) in powers of (iE:) takes the form 

(2. 1 Oa) 

The higher order terms E2, E 3 become quite complicated if the 

function G is left in general form. However, the interest here is 

in a single mode and we may take 
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G ( w, k) = w - W (k) ( 2. 11 ) 

since the resulting equations must be equivalent. The corresponding 

expressions for E:a and E 3 are 

+ _l W(iv) (k) 3k 2 A 
4! X ' 

(2.10b) 

-E3 Axxx 

(2.10c) 

To simplify further we suppose that the modulations are small in the 

sense that Wand k are close to some constant values, i.e. 

W = W 0 + 0 ( E: ), k = k 0 + 0 ( e:) , (2.12) 

where W 0 and k 0 can be chosen to satisfy the dispersion relation. 

The modulations Wand k will be seen to remain small so that (2. 12) 

is valid uniformly in time. However this assumption cannot be made 

about the amplitude. With (2. 11) and (2. 12), E 2 is 

E:a = (2.13) 
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The real part of (2. 10) gives the corrected dispersion relation 

w = W(k) -

Using this in the compatibility relation (2. 7) we obtain 

Since kT and kx are O(E:) according to (2. 12). the correction to the 

wave number modulation is relatively of order E:, To be consistent 

with this we must neglect E 3 in the imaginary part of (2. 10) which is 

a correction of order E: 2
• Thus, at this level of approximation, the 

modulation equations are 

A 
1 2 ( XX ) kT + C(k)kX = 2 E: W"(ko·) -p;-

X 
(2. 14a) 

(2. 14b) 

It would be consistent with assumption (2. 12) to expand C(k) as 

C(ko) + C'(ko )(k-ko) 

in (2. 14). But the more general form is kept, since e ven when 

(k-k0 ) is not small, the c oupling term on the right of (2. 14a) seems 

to be the most impo r tant one compared with oth e r contributions. 

For the sp ecial ca se G = W - k 2
, th e full modulation equations 

(2.6) are 
.A 

I XX I 

kt + 2kkx = \---;;;:-- ) 
X 

In this case (2, 14) are exact . 
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As mentioned, the modulation equations are valid no matter 

which form of G(w,k) is chosen in (2. 9) for a particular mode. How-

ever, in the study of nonlinear problems in Chapter V, it is not 

clear a priori that we have this choice. So it is of value to see how 

(2. 14) is obtained from (2. 10) using a general G. Within the approx-

imation (2. 12 ), E 2 is 

From (2. 14b) we can make the approximation 

so that 

or E2 = ;~ Gw I W''(ko) Axx+ O(e:) 
0 

The general form of the corrected dispersion relation is 

G(w,k )A + i E:
2 

Gw j W"(ko )Axx 
0 

+O{e: 3
) = 0 

(2. lSa) 

(2. 15b) 

When this is solved for Wand combined with the compatability rela-

tion we arrive at (2. 14a). Using this W in the amplitude equation 

we arrive at (2. 14b) since 

G k ;d -- = - C(k) + O{E: ) 
Gw 
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First order theory 

If the E:
2 term in (2. 14) is neglected, the modulation equations 

are 

k T + c (k) kx = o , (2. 16a) 

0 (2. 16b) 

These equations can be solved in general, and their solution will be 

referred to as the first order modulation theory. Note that at this 

level of approximation the wave number can be c omputed from (2. 16a) 

independently of the amplitude. 

We solve (2. 16) for the initial conditions 

k(:x;:, 0) = k 0 (X), A(X, 0) = A 0 (X) • 

From (2. 16a), k is constant on the lines 

X = C(k)T + S 

for any constant s. 

(X, T) 

T 

E, (X,T) X 

Fig. 2. 1 Group Lines 
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Since the line r(s) intersects the x axis at the point X= s, 
this constant must be k 0 {S) (see Fig. 2. 1 ); thus we have 

X = C (k0 (S) )T + s . (2. 1 7) 

These lines 'l.r e the characteristics of equation (2. 16a), and are called 

group lines since their slope is the group velocity. We see that 

different wave numbers propagate with the corresponding gr oup 

velocity. If (2. 17) can be solved uniquely for S = S(X, T) the solution 

for k can be written in terms of the initial data as 

k(X,T)=k0 (S(X,T)). (2. 18) 

With the solution for k known, the amplitude can be c omput ed 

from (2. 16b). We express this equation in terms of time derivatives 

along the group lines, i.e. 

where 

dA 
dT 

d 
dT 

= 0 (2. 19) 

The factor W"(k)kx is now known and is c omputed from (2. 1 7) and 

(2. 18). We have 

1 
1 +p(S)T ' 

where p is the X -derivative of the group velocity for the initial 

conditions, i. e . , 

p(X) 
d 

= dX C(k0 (X)) 
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With this expression, the equation for A along the group lines is 

dA + 
dT 

p(s) 
l+p(S)T = 0 . 

Since p(S) is c onstant on r(s), it can be integrated at once to give 

A(X, T) = 
Ao (s) 

-~""->...::....L---,1 ' 

(1 + p(S)T) 2 
S = S(X, T) , (2. 20a) 

which completes the solution of (2. 16 ). 

The 11total amount of A 211 between any two group lines, say 

r(Sr) and r(s 2 ), can be defined as 

Q(T) 

x2 (T) 

= s A 
2 

(X, T )dX = 
X1 (T) 

dX 

where X 1 (T) and X 2 (T) are the X -coordinates of r(s1 ) and r(s2) at 

-1 
timeT. Since Sx = (l+pT) , the expr es sion for Q(T) can be con-

verted to an integral with respect to S , 

s:a 
Q(T) = ~ Ao2 (S)ds = Q(O) , 

s1 
which is constant in time. From this we see another role of the 

group velocity: the total A 2 between group lines remains constant, 

and in this sense A 2 is propagated with speed C(k). 

The X -derivatives of A will be needed later, so they are 

calculated here. For simplicity we choose the initial amplitude 

to be constant and take it to be unity; 

Ao( s ) = 1 

In (2. 20a) A is expressed as a function of the independent variables 
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sand T, so Ax= As sx where 

Then we can compute 

Ax 
1 p'T A 5 = -2 

Axx 
1 p 11 T A 7 + S(i p'T) 2 A 9 

= -2 (2. 20b) 

Axxx= 
1 pii'TAg + 0 (T 2

) , -2 

etc . 

Breaking modulations 

According to first order theory, the values of k propagate 

with the group velocity C(k). If the initial modulation is such that 

C(k) decreases with X in some region, that is p < 0, then some of 

the group lines for different values of k will eventually cross, 

causing singularities and multivalued solutions. The appearance 

of singularities is clear from the formulas for A and kX. As 

T-> -1 
PTS) both of these quantities be come unbounded. After the 

singularity appears, the group lines cross leaving an overlap region 

where each point has more than one predicted value. This phenomenon 

is called breaking. Breaking solutions occur whenever p < 0, and 

the time at which a singularity first appears is given by 

= 

The qualitative behavior of typical breaking modulations is sketched 

in Fig. 2 . 2. 
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As breaking is approa ched, the assumption that the modula-

tions are slow is c ertainly not valid. However, there is the possi-

bility that the first order breaking effect dominates in the full theory 

so that singularities and regions of overlap actually d e velop, pro-

vided multivalued solutions c an be given a meaning. Since the 

original problem is linear, one could interpret such solutions as the 

superposition of several wavetrains as in (2. Sa). 

Another possibility is that as breaking is approached, higher 

order effects become dominant and prevent the development of singu-

larities. In this case there is the question of some kind of shock 

structure being the end result. 

The exist e nce of shocks in the modulations is an intriguing 

speculation, but doubtful for linear proble ms since such behavior 

is always associated with nonlinea r effects in the original equations. 

In fact, it is shown in Chapter III that an overlap region does occur 

asy1nptotically for large times (T >> tB). This precludes the exis

tence of a shock structure, and leads one to believe that development 

of singularities followed by overlap is the end result. This is not 

the case either, as we will see in the analysis of some exact solu-

tions in Chapters III and IV. 

Higher order e ffects 

In the fi r st order theory (2. 16), the wave number is indepen-

dent of the amplitude, but in the next approximation (2. 14), there is 

an amplitude coupling term (Ax_:) . This term becomes large as 
X 

breaking is approached, so that it should have an important effect 

on the actual behavior. 



-22-

To get a first impression of this effect we proceed by sue-

ces sive approximation. The first order solution fo r the amplitude 

given by (2. 20a), call it A(O)' can be used on the R. H. S. of (2. l4a) 

since the error introduced in A will be O(E: 2 
), 

A = A (O) + O(e 2 ) • 

The error is also proportional to T, so this is not valid for large 

times, though it does give the first tendencies. Using the derivatives 

(2. 20b), the coupling term becomes 

,. Axx) 
\1\ = X 

-t pIll (S)T 

For small times, neglecting O(T 2 
), the wave number equation (2. 14a) 

becomes 

8k 
8T 

+ W'(k) 8k = ax -i E: 2 W 11 (ko)p 111 (S)T. 

The characteristic curves for this equation, given by 

dX 
dT = W' (k) , 

are no longer straight lines since k is not constant on them. But for 

small T, they can be approximated by the straight group lines within 

the retained accuracy. Hence, S can be treated as a constant on the 

characteristics, and the equa~ion can be ·integrated immediately; 

(2.21) 

on the group lines 

X = w I (k ( s' 0) ) T + s ' 



-23-

where k(O) is the first order solution (2. 18). 

The solution in (2. 21) gives an idea of the kind of error one 

can expect from using the fi r st order modulation th e ory. In the c ase 

of breaking , th e higher order effects tend to prevent the development 

of singularities. In Fig. 2. 3 we have ske t ched a typi c al breaking 

profile for W" > 0, and the c orresponding p and p 111 c urves. The 

change in sign of p 111 about the center of the disturbanc e c auses the 

slope to flatten there, giving a reverse breaking effect, which grows 

initially as T;,;. 

In the next two chapters exact solutions are found by Fourier 

transforms and othe r superposition t e chnique s to further evaluate 

the modulation theory and questions of breaking. 
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CHAPTER III . BREAKING MODULATIONS IN LINEAR PROBLEMS 

For linear problems in uniform media we can obtain exact 

solutions in terms of Fourier integrals. In this chapter we use 

these exact solutions to study the true behavior when the first 

modulation theory predicts breaking. 

Let us consider a solution q::(x, t) which has the initial shape 

x < -L } 
, -L <X< L 

x>L 

where 
Is-~ 

R = 2L and C(k1 ) > C(k2 ). This represents a 

modulated wave with wave number 

{

k 1 , x<-L 

k(x, 0) = k 1 -Rx , -L < x < L } 
k 2 , x>L 

and constant amplitude 

A(x, 0) = 1 

k=k 
1 

x=-L 

k(x,O) 

x=L 

k=k 2 

Fig . 3 . 1 Initial Modulations 

X 
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The group velocity C( k) is decreasin g toward the front of the distur-

bance . According to the first order modulation theory the group 

lines cross and breaking occurs. We now consider the exact solution. 

Exact solution: w = W(k) 

The initial conditions naturally separate into three regions, 

each of which can be analyzed separately and the results superposed 

to give the complete solution. We will compute three solutions 

cp1 , CiJ.l, cp3 cor res pending to the initial conditions 

ikl X x<O 

l Je 
cp1 (x, 0) = t 0 x> 0 

f 0 x < 0 l cp~ (x, 0) = t ik2 x 
e x > 0 

CP.3 (x, 0) = 
j ei(k, x-iRx• ). -L < x < L l 
l 0 otherwise 

The solution to the problem of interest is then 

where 'ft and t~ are chosen so that the three functions agree in 

phase at their junctions, i.e. 

For a single mode with the dispersion relation 

w = W(k) , 

a solution can be written 



where 
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ct> (x, t) = \ ';(k)eikx -iW(k)t dk 
'=- oo 

1 \ 
00 

-ikx 
F(k) = 2 1T ,J q:> (x, O) e dx 

-oo 

Th e s e formulas c an b e applie d directly to find solution q:>3 ; we have 

L 

with 

'+'3 (x, t) 
.• . (k 1 R 2 ) = \ el 11'1 -z- 11 qi (x-'lj,t )d11 

ql (s ,t) = 

-L 

1 
21T 

00 

~ e iks- iW(k)t dk 

-oo 

(3.la) 

( 3 . 1 b) 

Since '+'1 (x, 0) and '+'2 (x, 0) are not integrable on ( -oo, oo). a gene raliz e d 

Fourie r repr e s e ntation must be us e d. The s e solutions are 

cp1 (x, t) ( 3. 2) 

( 3. 3 ) 

wh e re th e c ontours of integration are above and b e low the simple 

poles at k 1 and k 2 , respe ctive ly. The initial c onditions can b e 

checke d by evaluating the int e grals at t = 0. For x > 0, the contours 

can b e closed above to give 

For x < 0, they can be closed below to give 

m _ ik1 X 
't'I: - e ' '+'2 = 0 

Asymptotics -Overlap of el e mentary waves 

On the straight line s 

X = Vt ( 3. 4) 

the solution can be expressed as a function of t alone. Then, for 
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large t, the integrals (3.1), (3. 2), (3. 3) can be evaluated by the 

usual methods of asymptotic analysis. 

For integrals (3. 2) and (3. 3) the ''saddle point method" is 

applicable. On the lines ( 3. 4) integral ( 3. 2) becomes 

cpl (t) _1 \' 
= 21ri j 

c1 

_1 _ ei(kV-W(k) )t dk 
k-kl 

As t ..... oo, the major contribution comes from the stationary point 

(or saddle point) of the function 

kV - W(k) • 

Thus, the saddle point k = k , is determired from 
s 

d w (k ) = c (k ) = v 
dk s s 

Line (3. 4) can be interpreted as the group line corresponding to the 

wave number k • The path of steepest descent near k = k is shown 
s s 

in Fig. 3. 2. Integration along this path for k =/::: k 1 gives terms of 
s 

1 

order t -z- as t ..... oo. When th e contour of integral (3. 2) is deformed 

into the steepest descent path, there will be a contribution from the 

pole k = k 1 for k < k 1 , and no contribution for k > k 1 • Thus, pro-
s s 

vided k -L kl. we have as t ..... oo s -r- { ' } O(t-2 ) , k > kl 
s 

cpl = i8 _.!. 
e 1 + O(t 2

) • k < kl s 

Similarly for cp2 we have 

ciS~: O(t -i) , k > k,} s 
cp2 = 

O(t 2 ) k < k:a s 
where e. = k.x - W(k.)t, J = 1, 2 • 

J J J 
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' ' ' 

' ' ' ' S.D. 

Fig 3. 2 Steepest Descent Path Near Saddle Point for ~~ > 0 

Integral (3. l) can be found by a straightforward application 
l 

of the "method of stationary phase 11 and is of the order t -z- as t be-

comes large. 

Thus, apart from the regions corresponding to k = k 1 or 
s 

k = k 2 , the asymptotic solution is the superposition of two semi
s 

infinite uniform wavetrains moving with speeds C(k1 ) and C(~ ). 

Since C(k1 ) > C(ka ), there is a region where the two wavetrains 

overlap (Fig. 3. 3). 

In terms of a single modulated wavetrain (Fig. 3. 4 ), the 

region where there is just one elementary wave corresponds to 

constant wave number and amplitude. In the overlap region the 

sum of the two elementary waves produces a beating effect; the 

amplitude is harmonic 



t 

k 

i8 cp oe e 1 

k=k 1 
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X 

Fig. 3.3 Asymptotic solution(t~oo ). 

' k=k2 
'----~-----------

X 

... 
X 

Fig. 3.4 Asymptotic modulations(t~oo ). 
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I k1 -k:a J 
A= 2cosl 2 (x-Vt) ( 3. 5) 

with 
W(k1) - W(k:a) 

v = 

and the wave number and frequency are constant, 

w = t[W(kl) + W(k2)] 

It is interesting that this behavior for large time is com-

patible with the first order modulation theory. If the breaking 

solutions are interpreted as an overlap of two wavetrains then 

the first order solutions are valid as t -+ oo. One might speculate 

that the first order theory gives a fair picture of the solution for 

all times. We investigate this by looking at a special case. 

Special case: W = k
2 

As noted in Chapter II, the second order theory (2. 14) is 

exact for the special case W = k 2
• So the exact solution in this 

case also gives the typical behavior ofthe second order theory 

for a general dispersion relation. For w = k 2 the solution just 

obtained can be evaluated in terms of Fresnel integrals. For 

cpl we have 

= 

With the new variable of integration 
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.this becomes 

cpl 

I 
where 

1 

Making the further change of variables J.L = K t 2 and evaluating the 

contribution from the semi-circle, we get 

oo . x-2kl t 
1 1 \ 1 -i11

2 1 
r;:-= z-+2'1Ti.) "jie,.. e .yt 

-oo 

Now, it is natural to take x- 2 k 1 t as a new independent variable. 
,jt 

After more manipulation we find the solutions cp1 and cp2 in the form 

ikax-i~ t 
F (s ) • 1, 2, cpa = e Q' = 

Q' Q' 

x-2k t 
where 

Q' 
t > 0 • s = 

Q' ,;z:rrt 

F (s) 
Q' 

and :I is the complex Fresnel integral function 

.7 (s) 

s .iT" ;a 
r· 1 2 z 

dz I 

= .) e 

0 

The function cp3 can be standardized directly by completing 

the square in the exponential. Fort > 0, we have 
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1 a 2 k1 x - 2 Rx - k 1 t 

1 - 2 Rt 

• 1T 
1 

B(L) 

F 3 = e-
1 4 (2ll-2Rt I )-2 S exp(i ~ sgn(l-2Rt)u2 )du 

B( -L) 

Again, cp3 is expressed in terms of :T or its conjugate. depending 

upon the sign of (l-2Rt). 

This so 1 uti on for W = k 2 is evaluated using the 

''T-method of Lanczos for Fresnel integrals, "(b) which gives 5-6 

significant figure accuracy. The modulations are calculated from 

the exact solution by measuring the peak values and the distance 

between zero e s. This gives an average value of amplitude and wave 

number which is a good approximation to the local values since the 

solution shows that the modulations do not change drastically over 

one wave length. 

The first order modulations. say A(o) and k(o). can also be 

found explicitly for this case, giving a comparison between the exact 

solution and the first approximation. The time of br e aking is 

t -B -

Outside the disturbed regions, 

I: X < 2 kl t-L. 

II: x>2k2 t+L, 

1 
2R 

i. e. 

t < t . B 



(I) 

k=kl 

A=l 

x=-L x=L 

··· 3 4 -

k=k 
. 1 

(II) 

k=k 
2 

A=l 

------...... ...... 
t=O .......... ...... -----

x=-L x=L 

A ( 0 )• -
A=l 

I I 

x--L X-L 

Fig. 3.5 Solu~ion of the first order 
2 modulation equations for the case w=k . 

X 

X 

X 
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the values of A(o} and k(o} are constant (see Fig. 3.5 ). In the range 

of influence of the disturbance 

III: 2k1 t - L < x < 2 k2 t + L, t < tB 

we have 

k(o} +.!. 
X - 2kl t + L 

= kl 2 t - t 
B I 

A (o) 
1 

(l t - -
= --) 2 

tB 

Results for the case 

kl = 2. 3 , k2 = 2. 0, R = • 025 , 

are shown in Fig. 3.6. The first order modulations are plotted 

along with the calculated solution. The time of breaking is tB = 20. 

For small times (e. g. t/tB = • 3} the behavior agrees well with the 

first order theory. As the solution progresses furth e r (e. g. t/tB=. 77), 

the higher order effects shown in Fig. 2. 3 become apparent; the 

breaking of k at the center has stopped, and oscillations are beginning 

to appear at the front and back. As t/tB increases past unity the slope 

of k flattens at tne center until a region of constant k is left. 

In the last picture (t /tB = 5. 13 }, the asymptotic form of the 

solution is beginning to develop. There is an interval of approx-

imately 50 units in length for which k is constant, aside from 

the two spikes which appear at the near zeros of the amplitude. 

This constant value is -}(k1 +k3 }. The amplitude is beginning to 
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show the beating effect in (3. 5 ). The appearance of the spikes 

in k is a spurious result of the algorithm used to calculate 

the modulations. The wave number is computed from the 

distance between zeros of the solution. At points where the 

amplitude vanishes there is an extra zero; this gives a high 

value for the computed wave number near these points. 
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Figs. 3. 6. 1 - 3. 6. 6 

Modulations from the exact solution (solid) 

and from first order theory (dotted) 
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Conclusions 

In the first approximation for slow modulations, the wave 

number is governed by a nonlinear equation which is independent 

of the amplitude. Highe r order effects enter in a complicated way, 

but if the modulations are also small, i.e. (2. 12 ), the only signifi-

cant contribution in the n e xt approximation is an amplitude coupling 
A 

term ( ? )x in the wave number equation. As long as this term 

remains negligible, the modulations agree well with the first order 

the ory. However, in br e aking problems this c oupling term become s 

large near the singularity and its effect must be considered. 

The exact solution shown in Fig. 3.6 for the spe cial case 

W = k 2 also gives the typical behavior predicted by the next higher 

order theory (2. 14) for the general problem. In this solution the 

breaking is stopped short of a singularity, and is reversed; the 

final result is a region of c onstant kat the cent e r, and an amplitude 

behavior like I sin 0 (x-Vt) I for some 0 and V. This can be inter-

preted as the beating phenomenon which results from the super-

position of two e lementary waves. Given this interpretation, the 

solution agrees with the asymptotic analysis of the exact solution 

obtained by Fourier integrals. That is, the end result is an overlap 

of elementary wavetrains which appear as beats. 

Since the s e cond approximation (2. 14) resolves the singu-

larity and agrees with the asymptotic analysis of the exact solution, 

th e re is no ne e d to look b e yond (2. 14 ). Even higher order effects 

will add only small c orrections to the predicted behavior. This is 

borne out by further e xact solutions discussed in Chapter IV. There, 
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the Schroedinger equation, Klein-Gordon equation, harmonic lattice, 

and the linearized Korteweg-de Vries equation are all found to exhibit 

the behavior predicted by (2. 14). This is true even when the modu

lations (k-k0 ) are not small. Therefore, it appears that the effects 

considered in (2. 14) are the most important, even when (2.12) does 

not hold. 

The first order theory predicts that the lines of constant k 

converge and eventually cross. This leaves a region of multivalued 

modulations. However, near t/tB = 1, the next approximation (2. 14) 

must be used. The lines of constant k actually diverge near breaking 

(see Fig. 3. 7). This divergence eventually leads to beats, which can 

be interpreted as overlap of elementary wavetrains. This overlap 

corresponds to the region of multivalued modulations in the first 

order theory. 
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t 
First order theory 

X 

t 
Exact theory 

X 

Fig. 3.7 . Lines of constant k, according to the first 

order theory, and the exact theory. 
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CHAPTER IV. SINUSOIDAL FREQUENCY MODULATION 

IN A DISPERSIVE MEDIUM 

Exact solutions for initial sinusoidal modulations in the wave 

number can be found in the form of a rapidly convergent series for 

any linear dispersive wave problem. These provide additional 

examples of the true behavior when breaking is predicted. 

The phase function 

e (x) 
6k = ko x + - sin VX v 

has the wave number 

k(x) - 9 = ko + 6k cos Vx 
X 

The complex periodic wave for this modulation is 

.6k . 
1. e "k 1- S1nVx 

cp (x) = 1 0 x v 
e = e e 

Since the second exponential factor is itself periodic, it has a 

Fourier expansion. Thus 

00 

cp (x) = 6 
n=-oo 

C eiko x + inVX 
n 

where the Fourier coeffidents C are 
2-rr n 
-v-

v s (· 6k . . . ) d 
2

-rr exp 1 v s1n Vx - 1 Vnx x • 

0 

Taking t = vx, the C 1 s can be expressed in terms of Bessel functions, 
n 

i. e . 
2-rr 

Cn = };r ~ e ( i 
6~ sin'¥ - int) dt 

0 

= J (6k) 
n v 
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Using the property of Bessel functions, 

n 
J (y) = ( -1) J (y) , 

n -n 

the real part of cp gives the series representation 

6k 
cos(k0 x + v sinvx) = C 0 cos k 0 x 

n 
C (coskx+(-1) cosk x), 

n n . -n ( 4. l) 

where kn = k 0 + nv 

For a dispersive wave problem with the dispersion relation 

w = W(k) 

we have elementary solutions 

cos [k X - W(k )t J 
n n 

for each n. Since these c an be superposed, a dispersive wave 

solution can be constructed from the R. H. S. of (4. l) by adding 

the appropriate time dependence in each phase; i.e., 

cp (x, t) = C 0 cos 80 

00 

+ I.: c (cos e + (-l)n cos e ) 
n=l n n -n 

(4. 2) 

where e = k X - W(k )t. This solution can be cast in the form of 
n n n 

a modulated wave 

cp (x, t) = R A(x, t)ei G(x, t) 

and from (4. l) the initial modulations are 
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k(x, 0) = ko + 6k cos vx 

A(x, 0) = 1 

The series (4. 2) converges very rapidly, so that a numerical plot 

of the solution using the first several terms gives accurate results, 

e . g., when 

An example 

6k 
v = l, -6 

C7 = I. SxlO • 

As a graphic example we take the case of the Schroedinger 

equation, 

W(k) = k2 , 

for the conditions 

6k = • 1 v = . 1 

ko 2 t = 1 
50 • = 26k v = B 

The solution is evaluated using the first seven terms of the series 

(4. 2). The amplitude and wave number are then estimated from the 

solution by the same technique used in Chapter III. The results are 

shown in Fig. 4. l. 

The results substantiate the conclusions drawn in the previous 

chapters. As the amplitude derivatives become large, the higher 

order effects discussed in Chapter II and shown in Fig. 2. 3 begin 

to appear. Eventually the breaking is reversed, leaving a region 

of constant k. This is similar to the results shown in Fig. 3. 5. 

Again, although this is computed for a special case, it is also the 

typical behavior predicted by the second order theory (2. 14) for 
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Figs. 4.1.1- 4.1.5 

Modulations £rom solution (4. 2) (solid) 

and from first order theory (dotted) 
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the general case. 

This technique can be used for any dispersion relation. 

Solutions for several other problems have been calculated, including 

and 

2 . k W = s1n 2 

which are the dispersion relations for the Klein-Gordon equation, 

the harmonic lattice, and the linearized Korteweg-deVries equation, 

respectively. All of them give similar results. This is strong 

evidence that the behavior for breaking modulations is qualitatively 

the same in all problems, and is predicted by the second order 

approximation (2. 14). 

Modulations 

Although (4. 2) is useful for the numerical evaluation, it is 

not the best form for analytic discussion of the modulations. How-

ever, using the usual trigonometric identities, we can rewrite the 

solution as 

cp = a cos 80 - 13 sin80 

where 

8o = k 0 x - W(ko )t 

Ql = Co + 26 C cos(.6 t)cos(nvN) 
n n n 

n even 

+ 2 .6 C sin(.6 t)sin(n v N ) , 
n odd n n n 



and 
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= 2 6 
n even 

C sin(6 t)cos (n vN ) 
n n n 

+ 2 6 C cos ( 6 t) sin ( n v N ) , 
n odd n n n 

6 
n = i [ W (k ) + W (k ) - 2 W (k0 ) ] , 

n -n 

N = X
n 

W(kn) - W(k_n) 
---------------- t 

nv 

The amplitude and wave number can now be written explicitly 

l 

A(x, t) = (a2 + (3 2 ) 2 

a 13 - ~ a 
k(x, t) ko + X X = 

A z 

(4. 3a) 

(4. 3b) 

If information about the modulations is desired, it can be computed 

directly from (4. 3). One sees imme diately that there can be no 

singularities in the wave number. For the possible exception of 

points where the amplitude vanishes, (4. 3b) has a finite limit as 

A ..... 0. 

We have exact expressions for the modulations ( 4. 3 ), and 

these should agree to some extent with the first order solutions 

(2. 18) and (2. 20). :d If we again consider the special case W(k) = k , 

a and f3 simplify somewhat since we have 

and 

Nn = N(x, t) = x - 2 k 0 t , 
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where = (2llk\J) -l 

The quantities a, f, A, k are all functions of t/tB and N. If the ex

pressions for a and Pare expanded in po':"'ers oft/tB, the infinite 

series can be summed using formulas similar to (4. 1)! After some 

work one obtains 

A a = 1 +_!__ sin \JS 
tB 

( _!__ ) 
2 

sin2 
\) s + o(f- ) 3 

+ J 

tB B 

and 

k(s, O) + O( f ) 2 

k = 
B 

where s = S (x, t) is given by 

X = 2k(s, O)t + s . 

The first order solutions are 

( 1 

= k(s, O) 

Thus we have a significant solution for which the exact modulations 

can be found. These agree with the first order solutions for 

t/tB << 1, and the error is of the order (t/tB) 3 in the amplitude 

and (t/tB)2 in the wave number. 
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CHAPTER V. NONLINEAR DISPERSIVE WAVES 

Nonlinear problems can also exhibit dispersive wave behavior. 

The concepts of periodic solutions, dispersion, modulations, and 

group velocity can be generalized to include the nonlinear case. 

Problems of breaking occur, but the results are qualitatively dif-

ferent from the linear problem, even for small nonlinearities! 

In nonlinear problems, dispersive behavior is characterized 

by the existence of a family of periodic solutions, which are analogous 

to the elementary solutions 

A 
i8 

e , e = kx - wt 

of linear theory. These solutions are not harmonic in general, and 

their shape usually depends upon the amplitude and wave number. 

In the case of a single dependent variable cp(x, t) 

cp(x, t) = ip (8, a, k), e = kx - wt, ( 5. l) 

which are Z1r periodic in 8. The constant a determines the amplitude 

of ip. Typically it is found that for ip to be a solution, a relation 

between w, k, and the amplitude parameter a must be satisfied, i. e. 

G( W, k, a) = 0 (5. 2) 

This is the nonlinear dispersion relation. 

As an example, we take the cubic Schroedinger equation, 

= 0 

This has periodic solutions 
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provided (w, k, a) satisfy 
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ikx- iwt 
ae 

2 2 w- k +a a = 0 • 

Another example, in which cp is not sinusoidal, is a nonlinear 

version of the Klein-Gordon equation: 

cptt - cpxx + V'(cp) = 0 • 

Periodic solutions are found by taking 

cp-- = 9? (8) , e = kx - wt • 

Upon substitution and one integration, the solution is found to be 

1 
[a - V(9?)] 2 

The constant a is introduced by the integration and is related to the 

amplitude of 9?. For the special case where V(9?) is either cubic, 

quartic, or trigonometric, 9? (8) can be expressed in terms of standard 

elliptic functions. If we require that 9? be 2'11" periodic i n e. then 

where the circular integral is an integration over one period of 9?. 

This relation between W, k, and a is the amplitude dependent dis-

persion relation. 
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Near-Linear Theory 

If the nonlinearity is small (a << 1 }, more can be said about 

the form of the periodic wave (5. 1) and the dispersion relation (5. 2). 

In this case the solution can be found by perturbation methods. The 

dependent variable cp is expressed in the form of a Stokes 1 expansion, 

cp = a cos 9 + a2 cos 2 9 + a 3 cos 3 9 + O(a 4 ) , ( 5. 3) 

and G, which is determined by the supression of secular terms, is 

expressed in powers of the amplitude, 

G(W, k, a) = Go (W, k} + a 2 G2 ( W, k} + O(a 4
) • (5. 4a) 

This can be solved for w to give the alternative form 

(5. 4b} 

To see specifically how (5. 3} and (5. 4) are calculated, let us 

consider the special case where the first nonlinear effect is cubic 

in. cp and its derivatives, i.e. 

P(a a )cp + cr aPcp 
t' X p ax 

(5. 5) 

Only x-derivatives are considered here for simplicity. Other prob-

lems can be analyzed in the same manner by adding more nonlinear 

terms. 

The function Go (W, k} in (5. 4 ) must correspond with the dis-

per sion relation for the linearized problem 

= 0 
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From the discussion in Chapter II we know 

Go(W, k) = P(-iw, ik) • 

Substituting the Stokes 1 expansion (5. 3) into (5. 5 ), and using 

we have 

r. ·e iZ8 i38] RLGo ( w, k)ae
1 + az G 0 (Zw, Zk)e + a 3 G 0 (3 w, 3k)e 

where R[f] is the real part of f. The expansion of the first nonlinear 

term gives 

where N = p + q + r, f3 = ( -1 )p + ( -1 ) q + ( -1 { • 

By equating the coefficient of ei
8 

to zero we find the amplitude 

dependent dispersion relation 

= 0 • (5. 6) 

The ff . . t f i28 d i38 coe 1c1en s o e an e give 

= 0, = 4G0 (3 W, 3k) 

The nonlinear equation (5. 5) is dispersive if (5. 6) has solu-

tions for real (W, k, a). This requires that the number of derivatives 
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1n each term be even so that (5. 6) is real, or that the number of 

derivatives in each term is odd so that (5. 6) is purely imaginary 

and a factor i cancels- throughout. 

Given a G, one can always construct a corresponding equation, 

although it will not be unique. One such construction with a cubic 

nonlinearity is 

(5. 7) 

This has complex periodic solutions 

cp ikx-iwt = a e 

provided Go(W, k) + a 2 
Ga(W, k) = 0. 

Other equations can be found by comparing (5. 5) and (5. 6 ). 

Modulation the_9ry 

In linear problems we saw that the modulation viewpoint was 

useful in extracting information about dispersive waves. In nonlinear 

problems, the periodic solutions cannot be superposed to give general 

results. Here the modulation theory is not only informative, it pro-

vides a method of treating the general nonlinear problem which 

cannot be handled in any other way. 

As in the linear case, we suppose there are solutions which 

are locally of the form (5. 1), with the amplitude, wave number, and 

frequency varying in space and time. We will restrict ourselves to 

the near linear case (5.5). However, the full nonlinearity can be 

treated concisely and rigorously by the method of the averaged 

Lagrangian. ( 1 ) 
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Th e modulated wave can be c ast in the form of a Stokes 1 ex-

pansion, 

~(x, t) = a(x, t)cos 8(x, t) + a 3 (x, t)cos38 + O(a5
), 

where a3 is to be determined. Upon substitution of this into equation 

(5. 5) we have 

+O(a5
) = 0 . (5. 8) 

The nonlinear term of (5. 8) can be expanded if desired, giving a 

. i 8 i38 
m1xture of e and e terms. As before, we obtain two equations 

b · h ff. · t f i 8 d i 3 8 t t 1 y sethng t e coe 1c1en s o e an e o zero separa e y; one 

of them determines the function a 3 , the other gives the modulation 

equations for ( W, k, a). These are supplemented by the compatibility 

relation 

k +' w = 0 • 
t X 

Slow modulations 

As in the linear problem, we treat the modulation parameters 

( w, k, a) as functions of slow variables 

X = ex , T = E: t I E: << 1 • 
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Equation (5. 8) becomes 

R{ ei
9 

G 0 (w+ie8T, k - iE: 8X)a 

i38 3 I 
+ e [G0 (3 w,3k)a +O(e) ]a3 J 

This is a double expansion in which E: and a are both small. The 

ff . . t f i9 . coe l.CJ.en o e g1ves 

(5. 9) 

Equation (5. 9) is the nonlinear analog of equation (2. 9), and is simply 

the full modulation form of the linearized problem augmented by the 

3 cubic term a G;a. Although (5. 9) was derived for a special case, the 

result can be shown by other techniques (l) to be true in general. 

Following the expansion (2. 1 0). we can expand the term 

G 0 ( w +iE: aT. k-iE: 8X)a in powers of (iE:) as 

iE: r :a 2) ·] G 0 ( w. k)a + -2 I (G a )T - (G k a X a - o,w o, 

(5. 1 0) 

If we suppose that w and k are close to some constant values, 

w = W 0 + O(E:), k = k 0 + O(e). (5. 11) 

then E 2 is given by (2. 15). that is 

-1 
E:a = -2 ,_ G w(w • k )W 11 (k )axx + O(e a) o, 0 0 0 0 
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With this, the real part of (5. 9) gives 

E:2 
[ Go ( W, k) + a 2 G2 ( W, k) ] a + - G ( w , k ) W 11 (k ) a 

2! o,w o o o o XX 

0( 5 ;3 ;;! + a , E: a , E: a) = 0. (5. l2a) 

This can be solved for w, 

2 a 
W = W (k) + a 2 W:r-(k) - .!:.___ W 11 (k ) XX 

o 2! o o a 

4 2 3 + O(a , E: a , E: ) , (5.12b) 

where Wo and W2 are the functions which arise in the alternative 

form of the dispersion relation (5. 4b). The imaginary part of (5. 9) 

gives the amplitude equation 

(5. 13) 

As in linear theory, we must neg1e ct the correction E: 2 a as well as 

a 3 to be consistent with the retained accuracy in (5. 12). So to this 

approximation the modulation equations are 

kT + [w
0

(k) + a2 W2 (k) · - ~ = 
- x 

a 
1 E:2 W "(k ) ( XX ) 
2 o o a x • (5. 14a) 

(a:d)T+[W0 '(k)a2 ]X = 0. (5.14b) 

These equations correspond to (2. 14) in the linear theory. To be 

consistent with (5. 11) we should expand the terms 
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and 

Wo' = Wo' (ko) + Wo"(ko )(k-k0 ) 

in (5. 14). But the more general form is kept since the term on the 

right of (5. 14a) seems to be the most important contribution from 

E:a even when (k-k0 ) is not small. 

If the reduced form 

were used in (5. 9) instead of the general G, the result would still be 

equations (5. 14 ). Thus when studying a single mode, the modulation 

equations may be taken as 

= w 0 (k - iE: a: )a + a 3 w '2 (k) 

within the accuracy of (5. 14). Further, the modulation equations 

(5. 9) involve only the dispersion functions Go and G:a. so that the 

modulations are independent of which particular equation led to these 

functions. T h us, for the mode 

W = Wo(k) +a~ W:a(k) + O(a 4
), 

the equation 

(5.15) 

has the same modulations as the original problem. When it is a 

sufficient approximation to take W 0 as quadratic, and W :a as constant, 

this can be transformed into the cubi c Schroedinger equation 
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First order theory 

In the first approximation to equations (5. 14) we have 

k + (Wo(k) +a2 Wz (k)) = 0 T X , 

= 0 • 

In determining the characteristics of these equations, it turns out 

that it is sufficient to work with the pair 

= 0 , (5. 16a) 

= 0 . (5. 16b) 

The term omitted in (5. 16a) leads to corrections of smaller order. 

These provide the nonlinear version of the first order modulation 

theory (2. 16 ). The significant difference introduced by the non-

linearity is that the wave number is coupled to the amplitude at the 

lowest order through the term 2aWz aX in (5. 16a). This is respon

sible for qualitatively new results. 

To solve these equations by the method of characteristics we 
1 w2 2 

multiply (5. 16b) by± 2 ( Wo" ) , and add to (5. 16a). This gives 

(kT + C± kX) ± 2 c::::Ji sgn W 0
11 (aT + C± aX) = 0, 

where 

are the characteristic velocities of this system. Thus, the modula-

tion equations (5. 16) are hyperbolic for W 0 " W 2 > 0, and elliptic 

for W 0
11 W 2 < 0. We consider first the hyperbolic case in which 
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c± are real. On the characteristic curves 

the equations become 

r ±. dX = 
. dT 

F'(k) dk ± da 
dT dT = 

k 1 

0 , 

where 21 s ( ~rao" )2 F = m s gn W 0 " dk. 

0 

(5. l 7) 

These are known as the characteristic equations. They can be inte

± 
grated once to give expressions which are constant along I' , i.e. 

F(k) ± a 
± = y (5. 18) 

The quantities y± are the Riemann invariants of equations (5. 16). 

T (X,T) 

t; +(X,T) t; (X,T) X 

Fig. 5. l Characteristics of modulation equations (5. 16) 
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+ -If there is a unique I' and a unique I' from the X -axis to the point 

(X, T) (se e Fig . 5. 1), we can associate with this point the coordinates 

S+ (X, T) and S- (X, T) where the I'± cross the X -axis. In terms of 

the initial c onditions 

a(X, 0) = a 0 (X), k(X, 0) = k 0 (X}, 

the Riemann invariants are 

(5. 19) 

+ -At the point (X, T) where I' and I' inter sect, the values of k and a 

are the same fo r e ach curve, so that equations (5. 18) can be added 

and subtracted to give 

F(k) 1 + -
= 2 (Y + Y ) ~ (5. 20a) 

a (5. 20b) 

In princ iple, to c alculate the solution at (X, T ), the two char -

acteristic curves must be followed back to the X -axis to locate S+ 

and S-. The Riemann invariants are computed from the initial data 

using (5. 19). The solution is t~en given by (5. 20). However, since 

the characteristics cannot be determined without knowing the solution 

at each point, the procedure must be carried out numerically, in 

general. 

Splitting 

When the initial modulations are confined to a segm e nt o f 

the X -axis, say 
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X<O 

[k(X, 0), a(X, 0)] = [ko (X), ao (X)] 

X>L 

more can be said about the solution. The two families of character-

istics from the disturbance on [O, L] will eventually split at some 

time, say T = T • s 
This time is estimated by 

T 
s 

L 

It is assumed that the nonlinearity is strong enough to cause this 

splitting before there is any crossing of characteristics of the same 

family. This splitting naturally divides the X -T plane into three 

T 

T=T s 

r 

X=L X 

Fig. 5. 2 Splitting of the Modulations 
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distinct regions as shown in Fig. 5. 2. In region I, the Riemann 

invariant y + is constant everywhere. It has the value 

The other invariant y is constant on each r-. so that k and a are 

individually constant on each r curve in I, and therefore these 

curves a re straight lines. Similarly in region III, k and a are constant 

in each r+, which are also straight lines. For the center region II, 

both r+ and r- eminate from constant initial conditions so that y + 

and y are constant, 

y = F (k.2 } - a2 , 

everywhere in II. Thus, k and a are constant throughout II, with the 

values 

(5. 2la) 

(5. 2lb} 

So an isolated disturbance is eventually split into two groups 

which move with speeds C + and C _. These two characteristic 

velocities are the nonlinear analogs of group velocity, and both 

reduce to the classical group velocity in the linear limit. Both the 

wave number and the amplitude propagate with the corresponding 

group velocity in each group. Since one of the Riemann invariants 

is c onstant throughout a group, we can eliminate one of the dependent 

variables from the equation. For instance, in the C group, we have 

+ y = F(k1) + a1 = F(k} + a 
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This can be used to express a in terms of k alone, 

a = a1 - [ F (k) - F (k1 ) ] (5. 22a) 

valid in region I. In region III we have 

a = a 2 + [F(k)- F(k1 )]. (5. 22b) 

The group velocities depend on k and a, so that character

istics of the same family can eventually cross, leading to singularities 

and multi valued solutions. The solution of (5. 16) for typical com

pressive modulations is sketched in Fig. 5. 3. This is to be com

pared with the solution for the linear problem in Fig. 2. 2. The 

nonlinearity has split the disturbance into two groups, each resulting 

in breaking. 

Linearized modulation equations 

If equations (5.16) are linearized about some constant values, 

say 

the general solution can be easily found, and in some cases this is 

more illuminating than the full solution just discussed. The linear

ized equations have solutions 

a - a 0 = exp [i IJ( A.t - x)] 

k - k 0 = a exp[i IJ(At - x)] 

wher e a and A. a re found upon substitution to b e 
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Superposition of these solutions for all values of IJ. will give the 

general solution. 

An interesting application of the linearized solution when 

Wo" W2 > 0 is the signaling problem. For a small sinusoidal 

amplitude modulation at X = 0 , 

k(O, T) = ko 

a(O, T) = a 0 + o cosV T ')... o << 1 

the solution is 

2 w2 
V ( T - :

0

, )sinyX k = ko - 0 sin 
JWo" W2 

a = ao + 0 cosv ( T - L )cos yX 
' Wo' 

where y = v a 0 

We see a beating effect in both the amplitude and wave number, 

Fig. 5. 4. This is due to the superposition of solutions which move 

with the two nonlinear group velocities C + and C • The distance be

tween modes of the beats is 

L = 

This beating phenomenon could provide a good test when 

searching for experimental evidence of two nonlinear group veloc:... 

ities. Such an experiment should produce steady time behavior 
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Fig. 5. 4 Signaling problem 

X=L X 

X=L X 

similar to standing waves; it should be easier to measure than a 

propagating disturbance. 

Higher order effects 

The presence of both the nonlinear term and the higher order 

dispersion effect in (5. 14) provides interesting phenomena which 

do not occur when these are considered separately. One is a atruc

tur ed transition region for breaking modulations. Another is the 

existence of solitary wave packets in the elliptic case . 

Breaking 

The first order modulation equations (5. 16) have breaking 

solutions in some cases. As breaking is approached, these equations 

are no longer valid. As in linear theory the higher order dispersive 

effects neglected in the first approximation must be considered. 
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From (5. 14) we see that at the next level of approximation these 

axx 
effects enter the equations through the term (-a- )X . This is the 

same amplitude term which introduces higher order effects in the 

linear theory (see equation (2. 14) ). However, in the linear problem 

the amplitude is given approximately by (2. 20), whereas in the 

nonlinear problem it is given approximately by (5. 22). The higher 

order effects are quite different in the two cases; we expect quali-

tatively different behavior near breaking for the nonlinear problem. 

To study this behavior we return to equations (5. 14), 

k rw (k) :aw (k)] .!. aw "(k ) (aXX) T+ o +a . ;a x=ze o o -a- ' 
X 

(5. 23a) 

= 0 (5.23b) 

The two terms in (5. 23a) which involve the amplitude are both of 

• higher order. Thus after splitting is completed, the first order 

result (5. 22) can be used to eliminate the amplitude from (5. 23a) • 

. This will give an equation that involves only k and is valid in the 

region of breaking. 

Relation (5. 22) gives the amplitude as a function of wave 

number, which we denote by 

* a = a (k) (5.23) 

We have 

since kxa is of smaller order according to ( 5. 11 ). The function 

* a:k can be found from (5. 1 7) and (5. 22) ' 
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where+ or -is chosen for the C+ or C_ group respectively. With 

the assumptions in (5. 11), (5. 24) implies that a is also close to 

some constant value 

a= a0 + 0(€) . 

We would like this deviation in the amplitude to be small compared 
3 

to the background value a 0 • For instance we may take a 0 = O(e 'i" ). 

This allows the simplification 

= (1 +o(e)). 

With this, (5. 23a) becomes 

(5. 25) 

with the constant j3 

This equation gives the next approximation to the true behavior in 

the regions of breaking.. The choice of(+) or (-)gives solutions 

which apply in the C+ or C groups respectively. Again, we do 

not expand the nonlinear term about ko and a 0 , since the R. H. S. 

seems to give the important contribution even when (k-k0 ) is 

not small. 

The higher order term j3 kXXX adds dispersion to the modu

lation equations. In fact, if we retain only the linear part of the 

coefficient of kX, we have the Korteweg-de Vries equation for the 

variable K = k-ko· That is 
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KT + (co+ yK)KX = j3 KXXX • 

where (5. 26) 

This equation is well known as a model for nonlinear dispersive 

problems. Therefore we digress here to study (5. 26);. we wish to 

determine the effects of dispersion on solutions for which the non

linearity alone predicts breaking. 

First we consider the possibility of a shock-like solution 

to (5 . 26). A shock is a transition from one equilibrium state to 

another which is steady in some frame of reference. One looks 

for steady profile solutions 

such that 

and 

K(X,T) = f(X-VT) 

as 

K-Ka as 

(X-VT) - -oo 

(X- VT) - +oo 

However, it is known that the only steady solutions to the Korteweg

deVries equation are periodic, or solitary waves of the form 

ao + a sech2 0 (X - VT) 

This precludes the existence of a steady shock structure . 

There is still the possibility of unsteady solutions which have 

some kind of structure in the region of breaking. Although no such 
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exact solutions are known, their qualitative aspects can be inferred 

by studying the nonlinear and dispersive effects separately. 

The linearized problem (y = 0) , . 

can be solved by looking for similarity solutions of the form 

(5.28) 

Upon substitution one finds that n = ~. and for 13 > 0, f(E;) must satisfy 

f"' + s f'(~) = 0 

This is Airy's equation for f'(E:),and f can be expressed in terms of 

the Airy function: 

f(s) = 

where A.('!l) = 
1 

1 
2n 

-E; 

-co 
00 

~ e i'!ls 

-oo 

For 13 < o, f(s) = \ A.('!l)d'!l 
.) 1 

-oo 

These solutions are shown in Fig. (5. 5). 

As T-+ 0, the solution in (5. 28) approaches a unit step function at 

X= C 0 T. There is a definite transition region around the point 

X= C 0 T where the character of the solution changes abruptly. 

Oscillations appear at the front or back depending upon the sign of 

13· The interpretation here is that the transition creates oscillations 

which propagate with their own group velocity. Since 
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f, S< O 

f, S> O 

Fig. 5.5 Similarity solutions of the 

linearized K.dV. equation. 

\ 
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the oscillations move faster than C 0 for j3 > 0, and slower for 

j3 < 0. The slope at X = C 0 T is 

' 
K = X 

showing that the transition flattens as the solution progresses. 

This solution of the linear problem demonstrates that 
I 

the dispersion tends to cancel breaking in the transition. So 

it is plausible that a balance is reached between these two 

effects leaving a nearly steady profile aside from the oscillations. 

The speed of this disturbance should be V = C 0 + y K evaluated 

at some intermediate point. 

These deductions are speculative but they have been borne 

out by numerical studies detailed . in Chapter VI for a similar 

problem (Fig. 6. 3 ). There seems to be a somewhat permanent 

structure to the solution in the region where nonlinear effects 

alone would cause breaking and overlap. There is a definite 

transition region where the character of the solution changes 

abruptly. The solution in the immediate neighborhood of the 

transition is almost a steady profile which appears to change 

slowly; the final behavior of the solution on the oscillatory side 

is unknown. 

Since the wave number is governed by the nonlinear disper-

sive equation (5. 25), these transition regions can occur in the 

modulations. Both types are possible since the third derivative 
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in (5. 25) can have either sign (see Fig. 5. 6). The propagation 

speeds are the nonlinear group velocittes 

V = W 0 ' ± aJW0
1' W2 (5. 29a) 

at some typical values of (k, a). The unsteady oscillations will 

always be ahead for the c+ group, . and behind for the c- group. 

The amplitude and the wave number both change across these 

transitions. Their values, (~.~ ) at -oo, and (~, aa) at +oo, are 

related by 

~ - ~ = ± [F(~) - F(~ )] (5. 29b) 

For these results it was assumed that the amplitude is large 

enough to cause splitting before breaking. This requires 

a> (5. 29c) 

The nonlinearity must be sufficient to overcome the overlapping 

tendency [qk1 ) - C(~ )] of the group velocity. Otherwise the 

behavior will follow linear theory . . Therefore, only transitions 

up to a certain size, as measured by (a1 -a2 ) or (k1 -k2 ), can exist 

for a given nonlinear effect. 

In general, both types of transition will emerge from an 

initial disturbance, leaving between them an undisturbed periodic 

wave. For the breaking problem considered earlier (Fig. 5. 3), 

the result is the sausage shaped wave packet shown in Fig. 5. 7. 

This packet grows in length and has unsteady oscillations at the 

front and rear. 



~ per,.odic wave 

Figo 5. 6 Two possible transitio n 

regions for breaking m odulations 

Fig . 5. 7 Both transitions en:t.erging 

from a disturbance 
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In line ar theory, the end result of breaking is a region 

of modulations which look like beats. This can be interpret e d 

as the overlap of the two semi-infinite wavetrains on either 

side of the breaking region. Here we see that a sufficiently 

strong nonlinearity can stop this overlap, leaving a transition 

zone separating the two wavetrains. However, this transition 

lacks the permanence of a true shock structure; the long time 

behavior of the unsteady oscillations on one side of the transi

tion is unknown. 



-86-

Solitary Wave Packets 

An important class of solutions to (5. 14) consists of steady 

profile waves which propagate without change in shape. With 

(w, k, a) as functions of~= X- VT, (5. lZb) and (5. 14b) are 

[w- W0 (k) - a"' W2 (k)] a + A at;~= 0, (5. 30a) 

= 0, (5. 30b) 

where A= i l' W 0 "(ko). The second of these can be integrated 

immediately to give 

[Wd(k)- V]aa = constant (5.31) 

An interesting special case has (W, k) constant within the 

retained accuracy of (5. 14), and the amplitude vanishing as ~ ... ±oo. 

By choosing 

V = W 0 '(k) , (5.32) 

(5. 30b) is satisfied identically and (5. 30a) can be integrated to give 

da 
ds 

where 

or 

= ± a ( *- (a a - aM a ) ) i 

+ ( 2 w- w 0 (k) ) i 
W 2 (k) ' 

The only positive bounded solutions of (5. 33) occur for 

(5. 33) 

(5. 34) 
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which further requires that 
w2 
ZA. < 0, or equivalently 

The solution of (5. 33) is a solitary wave with a maximum value 

X 

Fig. 5. 9 Solitary Wave Packet 

Thus, for the case when the first order modulation equations 

are elliptic, there are solitary wave packets as shown in Fig. 5. 9. 

They have constant ( W, k), and propagate undistorted. Their speed 

is the linear group velocity (5. 32) (within O(a2
)), and (w, k) satisfy 

the amplitude dependent dispersion relation at -
1

- of the maximum 
ff 

value. 

Instability 

The first order modulation equations are Pither hyperbolic 

or elliptic depe nding upon the sign of W 0 11 W 2 • We will show here 
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that this is associated with the stability of the uniform periodic 

wave. 

The periodic wave is denoted by constant solutions of the 

modulation equations, say w 0 , k 0 , a 0 • To investigate the behavior 

of small perturbations of the p e riodic wave, we study the modulation 

equations (5. 14) line arized about this constant solution, i.e. 

(5. 35a) 

aT + W o' (ko )aX + i W o"(ko )a0 kX = 0, (5. 35b) I 

1 <:l 
with b = 2 E: 

W on(ko) 
The term a 0

2 W2 '(ko )kX has been dropped 

in (5. 35a) since it is small c0mpar ed with the term 2 a 0 W 2 (k0 )aX. 

These e quations have the solution 

k = iJ,L(AT -X) 
e ' a = a e 

iJ,L(AT -X) 

where a and A are determin e d upon substitution to be 

E: J.L W o" 
2 a 0 

For A complex, the solution will grow exponentially in time implying 

instability of the p e riodic wave. Thus a necessary c ondition for 

stability is that 

w II 2 

W 0 " W2 >- (i e-J.L -
0
-) 

. ao 

For the cas e W 0 11 W2 < 0, this requires that 
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;::;: 2 ao (- w2 )i 
Wo" 

There is a critical value for which the perturbations become unstable. 

In terms of the unsealed space coordinate x, perturbations ei 1.1. x are 

unstable for 

( w2 )i 
1.1. < 2 a 0 - --

Wo" 
(5. 36) 

According to the first order theory (E: = 0), the stability criterion is 

Wo"Wz > 0 • 

So, in the first approximation the periodic wave is stable or unstable 

depending on whether the modulation equations (5. 16) are hyperbolic 

or elliptic. The higher order terms have a stabilizing effect. 

The elliptic case also implies the existence of solitary wave 

packets. Thus, the speculation that the end result of instability is 

not a chaotic disturbance, but a sequence of such wave packets. 
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CHAPTER VI. NUMERICAL STUDY 

In Chapter V, several results for nonlinear dispe rsive 

problems are predicted from modulation theory. Th e se include 

the existence of two group velocities which produce splitting, a 

structured transition region for breaking modulations, and the 

possible instability of the periodic wave. The derivation of exact 

solutions for nonlinear problems exhibiting such behavior is un-

likely, and experimental evidence of splitting and breaking modu-

lations is not yet available. We present here numerical calculations 

for a model of physical interest; these verify splitting, the predicted 

behavior near breaking, and the stability criterion. A calculation 

showing breaking solutions in the usual sense is also presented for 

a nonlinear dispersive problem. 

.p f f 

Fig. 6. 1. Mass -spring lattice 
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A discrete -eroblem 

The numerical solution of partial differential equations is a 

difficult task, especially for the large ranges of space and time 

n e eded to observe the effects dis cussed. However, there are some 

discrete problems of physical interest which exhibit dispersive 

behavior, and offer a relatively easy numerical solution since they 

involve coupled ordinary differential equations. Such a system is 

the infinite mass -spring chain shown in Fig. 6. 1. If the extension 

of the nth spring is r (t) = y -y 
1

, the equations are 
n n n-

m "r (t) = f(r 
1

) + f(r 
1

) - 2f(r ), 
n n+ n- n 

(6. 1) 

where f is the restoring force of the spring. This is used by 

Lowen( 3) to model lattice vibrations in crystals. Equation (6.1) 

has other applications, such as the study of lumped transmission 

lines as discussed by Hirota and Suzuki.(
4

) These authors provide 

experimental evidence of the predicted behavior for solitary waves. 

Others (S) have used lumped transmission lines to verify the 

concepts of dispersion relation and group velocity for linear 

problems. If we assume that the displacements are small but 

finite, and that f is an odd function, the force law can be approxi-

mated by 

f(r) = ar + J3r 3 

The scales of r and t can be chosen so that the problem takes the 
n 

normalized form 
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(6.2a) 

g(r) = r + a r 3 (6. 2b) 

We will use problem (6. 2) as a model to study numerically the be-

havior of dispersive systems, but first we show that (6. 2) is indeed 

dispersive, and calculate its periodic wave and dispersion relation. 

In the linearized limit of (6. 2) we have 

r (t) = r + r - 2 r 
n n+l n-1 n 

For this to have periodic solutions of the form 

i e (t) 
r (t) = A e n 

n 
e = pn - wt , 

n 

one finds upon substitution that p and W must satisfy 

- uf + 2(1 - cosp) = 0 

w = 2 sin ( r) 

(6. 3) 

(6. 4) 

(6. Sa) 

(6. Sb) 

If pis interpreted as the spatially discrete analog of the wave number 

then (6. 5) is the dispersion relation. In modulation theory, the 

variables ( w, k, A) are functions of continuous x as well .as t. 

We can e xtend this problem so that these concepts apply by defining 

r (x. t) over all space such that 

8 2 r 
(x. t) = r (x+l, t) + r (x-1. t) 

- 2r(x, t) 

Equation (6. 3) is then the special case where x = n, 

(6. 6a) 

and r (t) = r(n, t). 
n 

Moreover, we c an formulat e the problem in terms of a partial 
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differential e quation by e xpanding the R. H. S. of (6. 6a) in a Taylor 

series 

= + 2 
6! 

+ ••• (6. 6b) 

Whichever view is taken, the modulation theory of Chapter II can be 

applied; i.e. solutions of (6. 6) are expressed as 

i8(x t) 
r (x, t) = A(x, t)e ' 

where A and 8 must satisfy the modulation equations (2. 6) in which 

G is given by either of (6. 5). 

In the nonlinear problem we use the continuous · extension of 

(6. 2): 

2 

~ (x, t) = g(r(x+l, t)) + g(r(x-1, t))-2g(r(x, t)). 
01:2 

If the R. H. S. is expanded in a Taylor series, 

1 
r tt = r xx + IT r xxxx + • • • 

+ cr[3 r 2 r + 6rr 2 + ••• ] 
XX X 

we see that only terms which are even in the number of x-derivatives 

appear. The refore, the nonlinear problem is also dispersive. The 

periodic wave can be found in terms of a Stokes 1 expansion for small 

amplitudes, 

r = cp(8, a, k) = a cos e +Ill a 3 cos38 

+ a 5 (IJ-2 cos38 + V 2 cos 58) + ••• (6. 7a) 
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where 

i a(co~3k-l) 3a(cos3k-l) 
J.ll = J.l.2 = 

Go (3 W o, 3k) Go (3 W 0 , 3k) 

3 
2 a(cosSk-1) 

Go (5 Wo, Sk) 

G 0 (w, k) = - w 2 + 2(1 - cosk) 

and W 2 . k 
0 = s1n 2 

I 

The supression of secular terms in the expansion gives the ampli-

tude dependent dispersion relation 

+ • • • • ) • (6. 7b) 

Moreover, the exact periodic wave can be found for the special 

2Tr 
case k = 3, i.e. 

2Tr ) r = a cos( 3 x- wt , (6. 8) 

where 
Tr 2 .!. 

w = 2 sin ( '3 ) ( 1 + ! a a ) 2 
, 

is a solution for arbitrary a. This gives credibility to the belief that 

a periodic solution exists in general, and to the validity of the above 

Stokes 1 expansion for small amplitudes. 

According to modulation theory, the stability of the periodic 

wave is related to sgn(W0
11 W 2 ). For this example we have 

W 0
11 = -i sin(~) and W 2 =!a sin(~) so that (6. 7a) is stable for the 

case of a soft spring a < 0. For a hard spring a > 0 the periodic 
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wave should exhibit instability. 

Numerical solution 

In the numerical solution of (6. 2}, a finite chain must be 

used, say from n = 0, ton= N as shown in Fig. 6. 2 . 

t 

n=O 

I 

.I 
I 
I 

Fig. 6. 2 Numerical Solution 

n=N n 

A signal r (t) can be applied at n = 0, and the disturbance observed 
0 

as it propagates down the lattice. This line should behave as a 

semi-infinite chain until the signal nears n = N. The number of 

node points must be large enough for the dispersive phenomena to 

develop before the signal reaches the terminal. It has been found 

that lines of the order of 100 elements are sufficient, and also 

computationally practical. 

The equations are integrated using a pre-written program 

(MODDEQ) a vailable on the Caltech Fortran library. This routine 

uses the Adams -Moulton predictor- corrector, with the method of 
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Runge-Kutta-Gill to start the integration process. 

Breaking in a nonlinear dispersive mediw:n 

First we consider the question of breaking in the detailed 

profile of a wave (as opposed to breaking in the modulations) when 

dispersion is present. An initial profile is introduced into (6. 2) 

as shown in Fig. 6. 3. The nonlinear effect alone would cause such 

a profile to break. As this profile steepens, the dispersive effect 

due to the discreteness becomes important. This effect retards 

breaking in the main transition, while producing oscillations 

behind. 

In Chapter V, speculation about such solutions were made 

for the Korteweg-de Vries equation (5. 25). We can see the corre-

spondence between (6. 2) for a single mode, and the Korteweg-de 

Vries equation by expanding the dispersion relation (6. 7b) in powers 

of k, 

By comparing (5. 5) and (5. 6), we see that an equation which also 

has this dispersion relation is 

= 
1 

2 4 
( 1 + 2a r 2 ) r + 0 ( r 5 ) 2 XXX 

This has a structure similar to (5. 25) for 13 < 0. The analysis of 

Chapter V predicts that oscillations appear behind the transition 

for this sign of 13, in agreement with the computations presented 

here. 
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Modulated waves 

To study the propagation of modulations, the periodic solu-

tion cp( 81 a, k) given by ( 6. 7) is imposed initially for s orne constant 

wave number and amplitude, i.e. 

r (0) = cp(8 (0). a, k), 8n(t) = kn - wt • n n 

for n = 0, l, ••• N. The boundary condition at n = 0 is varied to 

send a modulated wave down the lattice. For a signal with an 

amplitude a 0 (t) and frequency Wo (t), the phase function is computed 

as 

eo (t) = 

t 

S w0 (t) d t 

0 

If the amplitude and frequency vary slowly, the appropriate boundary 

condition is 

(6. 9) 

where ko is determined by Wo and a 0 through the dispersion relation. 

The boundary condition at n = N is set to correspond to the initial 

periodic wave, 

so that no reflections occur at this boundary due to the unmodulated 

sig nal. 

When the functions rn (t) are computed numerically, they must be 

interpreted in terms of modulations W (t), k (t},n=O,N. The amplitude is 
n n 
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determined at the nth node by measuring the local maxima of r (t) n 

and interpolating linearly between crests as shown in Fig. 6. 4. The 

frequency is determined similarly by measuring the time between 

zeroes of r (t). 
n 

a 
n 

r 
n 

Fig. 6. 4. Numerically computing the modulations 

As mentioned in Chapter III, this is an approximation which com-

putes the average values over one period. 

To check the accuracy and feasability of the scheme, the 

solution is computed for the linear case (cr = 0) and no modulations 

at the boundary (6. 9). The exact solution is then known, 

r (t) = a cos(kn - wt) 
n 



-100-

and can be compared with the computed values. For this calculation 

w e take a lattice of sixty elements, and 

k = 21T 
3 

w = 1. 732, a= 1 

The integration is performed over t E: (0, 50) for time step sizes 

h = . 1 and h = . 05. The results: 

N = 60, t = 50 h = . 1 h = • 05 

Max. error r .3% . 0 1<t 
n 

If a .3~ . 1 <t 

II w <. 05~ <. 05~ (6. 10) 

The total computing time on the IBM 3 70/155 is about 80 sec for 

k = . 05. 

Nonlinear Case-Splitting and Breaking 

A signal is sent down the lattice by decreasing the frequency 

at n = 0, while the amplitude is held constant. This will cause a 

disturbance along both families of characteristics for which breaking 

is predicted by the first order theory. 

The initial parameters are 

a= 1 , 

w = W( ~, 1) = 1. 665 

For this choice of wave number the exact formula (6. 8) can be used 

for the initial periodic wave. Since the amplitude is of the order l, 

the paramete r a is chosen to have a small value, 

(J = -.1 
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so that the near-linear theory will still be reasonable. 

A lattice of 100 elements is used with an integration step 

size h = • 05. Table (6. 10) shows an error of. 01'% in the computed 

r (t) at time t = 50. The results should be accurate for times on 
n 

the order of t = 100. 

The frequency is decreased linearly over the interval 

t e (2, 8) to a final value w = l. 465. The time and distance down 

the lattice when splitting of the characteristics occurs can be 

estimated as 

X 
s 

c+ c_ 
~ C -C 

+ -
6 t, + c - c + -

M, 

where the signal at the source begins at time t 0 and lasts for a 

time M. Using near -linear theory, the group velocities in terms 

of wand a are 

where W 0 ' = cos sin-
1 

( 
1
! ~ 

2
) 

8 aa 

For an intermediate value of the frequency, w = 1. 56, and a = 1, we 

calculate 

c+ = . 743 , 

X :::::J 8 
s 

c = • 429 , 

t :::::J 21 
s 

The position and time of breaking can also be estimated. 

For the C + family, the group lines eros s at 

\ 
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2 ( dC+ \- l 
c dt ) , 

dC+ 
where dC is the rate of change of the group velocity at the source. 

dC+ 
For w = l. 66, """""dt = . 025, C+ = . 673 we have 

X ~ 18 B , 

The modulations are separated completely before any breaking 

occurs, and according to condition (5. 29c), the nonlinearity is strong 

enough to produce the transition regions instead of overlap after 

breaking. 

The solution shown in Fig. 6. 5 agrees very well with the 

predicted behavior, Fig. 5.7. The two transitions have clearly 

separated from the disturbance leaving a region between which is 

precisely an unmodulated periodic wave. Using the background 

values at ± ao. 

r.JJ 1 = l. 465, a 1 = 1, ~ = 1. 730, 

w2 = l. 665, a 2 = 1, ~ = 2. 090 , 

we can calculate the parameters for this center region from (5. 21). 

Here we have 

-1 
F ( k) = ~:::;:=-

J6Ia\ 
k . 

The predicted values are 

1. 232 , l. 540 

these compare well with the values from the computation, 
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Looking at the disturbance in front, we see an almost steady 

transition, preceded by a growing oscillation in both the frequency 

and the amplitude. The speed of this steady region is 

v = .67 

Behind this, the values are 

w = 1. 52, a= 1. 23, k = 1. 87 

which give C + = • 78. In front, as x --+ +oo, the values are 

w = 1.67, a= 1.00, k= 2.09, 

which give C+ = .67. The suggestion in (5.29a) that V be close to a 

typical C+ is verified. The change in wave number across the dis

turbance is t:.k = . 22. According to (5. 29b), the change in amplitude 

should be 

-1 
t:. aTH = t:.k = . 28 • 

J61al 

and the computed value is 

t:. aNUM = . 23 

I 
Thus, we have confirmed the theoretical predictions concern-

ing nonlinear group velocities and group splitting as well as the 

higher order effects near breaking. 

In comparing Fig. 6. 5. 4 with the first order solution 

Fig. 5. 3, we see that they are very similar, even though the 
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numerical solution has progressed well past breaking (t /tB R: 4). 

Apparently we can extend the first order theory (5. 16) past 

breaking by replacing the singular regions with the transition 

zones shown in Fig. 5. 6. The result should agree well with 

the true behavior for times up to tB and well beyond. This is 

in contrast to the linear problem, for which the first order 

theory cannot be extended to give the behavior near tB' and 

only in a limited sense for t >> tB. 
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Figs • 6 • 5 • 1 - 6 • 5 • 4 

Breaking modulations for the nonlinear case 
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Linear case 

The previous case is solved again for a linear force 

law a = 0, f(r) = r, as another example of the breaking problem 

::tnalyzed in Chapter III. The numerical solution, Fig. 6. 6, 

agrees with the exact solution, Fig. 3. 5, demonstrating that 

the numerical methods used are reliable. 

The time of breaking for this case is 

= 24 

The speed of the amplitude peak near breaking is 

v = • 56 • 

which agrees with the group velocity calculated at the center 

(w = 1. 64) , 

c = .57 
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Figs • 6 • 6 • I - 6 • 6 • 3 

Breaking modulations for the linear case 
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Instability 

The modulation theory predicts that the periodic wave 

(6. 7) is unstable for the case of a hard spring o > 0. For 

the value 

0 = + • 1 

a small sinusoidal perturbation given by 

Wo (t) = 1. 667 + • 05 sin(. 07t) , 

is introduced at the boundary. The rapid growth of this dis-

turbance, shown in Fig. 6. 7, demonstrates that this instability 

actually occurs. 

Due to computational limitations, the solution cannot be 

followed to its end result. Therefore, we cannot say from 

these calculations whether or not instability results in a sequence 

of solitary wave packets. 
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Figs. 6. 7. 1 - 6. 7. 3 

Instability of the periodic wave 
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