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Abstract 

How random is the discharge pattern of cortical neurons? We examined record

ings from primary visual cortex (V1) and extrastriate cortex (MT) of awake, 

b ehaving macaque monkey, and compared them to analytical predictions. We 

measured two indices of firing variability: the ratio of the variance to the 

mean for the number of action potentials evoked by a constant stimulus, and 

the rate-normalized Coefficient of Variation ( Cv) of the interspike interval dis

tribution. Firing in virtually all V1 and MT neurons was nearly consistent 

with a completely random process (e.g., Cv ~ 1) . 

We tried to model this high variability by small, independent , and random EP

SPs converging onto a leaky integrate-and-fire neuron (Knight, 1972). Both 

this and related models predicted very low firing variability ( Cv ~ 1) for real

istic EPSP depolarizations and membrane time constants. We also simulated 

a biophysically very detailed compartmental model of an anatomically recon

structed and physiologically characterized layer V cat pyramidal cell with pas

sive dendrites and active soma. If independent, excitatory synaptic input fired 

t he model cell at the high rates observed in monkey, the Cv and the variability 

in the number of spikes were both very low, in agreement with the integrate

and-fire models but in strong disagreement with the majority of our monkey 

data. The simulated cell only produced highly variable firing when Hodgkin

Huxley-like currents (INa and very strong IvR) were placed on the distal basal 

dendrites. Now the simulated neuron acted more as a millisecond-resolution 

detector of dendritic spike coincidences than as a temporal integrator, thereby 
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increasing its bandwidth by an order of magnitude above traditional estimates. 

This hypothetical submillisecond coincidence detection mainly uses the cell's 

capacitive localization of very transient signals in thin dendrites. For millisecond

level events, different dendrites in the cell are electrically isolated from one 

another by dendritic capacitance, so that the cell can contain many indepen

dent computational units. This de-coupling occurs because charge takes time 

to equilibrate inside the cell, and can occur even in the presence of long 

membrane time constants. 

Simple approximations using cellular parameters (e.g., Rm, Cm, ~' GNa etc) 

can predict many effects of dendritic spiking, as confirmed by detailed compart

mental simulations of the reconstructed pyramidal cell. Such expressions allow 

the extension of simulated results to untested parameter regimes. Coincidence

detection can occur by two methods: (1) Fast charge-equilization inside den

dritic branches creates submillisecond EPSPs in those dendrites, so that indi

vidual branches can spike in response to coincidences among those fast EPSP's, 

(2) strong delayed-rectifier currents in dendrites allow the soma to fire only 

upon the submillisecond coincidence of two or more dendritic spikes. Such fast 

EPSPs and dendritic spikes produce somatic voltages consistent with intracel

lular observations. A simple measure of coincidence-detection "effectiveness" 

shows that cells containing these hypothetical dendritic spikes are far more 

sensitive to coincident EPSPs than to temporally separated ones, and suggest 

a conceptual mechanism for fast, parallel, nonlinear computations inside single 

cells. 



Vl 

If a simplified model neuron acts as a coincidence-detector of single pulses, net

works of such neurons can solve a simple but important perceptual problem

the "binding problem"- more easily and flexibly than traditional neurons can. 

In a simple toy model, different classes of coincidence-detecting neurons re

spond to different aspects of simple visual stimuli, for example shape and 

motion. The task of the population of neurons is to respond to multiple simul

taneous stimuli while still identifying those neurons which respond to a par

ticular stimulus. Because a coincidence-detecting neuron's output spike train 

retains some very precise information about the timing of its input spikes, all 

neurons which respond the same stimulus will produce output spikes with an 

above-random chance of coincidence, and hence will be easily distinguished 

from neurons responding to a different stimulus. This scheme uses the tra

ditional average-rate code to represent each stimulus separately, while using 

precise single-spike times to multiplex information about the relation of dif

ferent aspects of the stimuli to each other: In this manner the model's highly 

irregular spiking actually reflects information rather than noise. 
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Chapter 1 

Introduction 

1.1 The Basic Questions 

It can be mind-boggling to think that everything we see and hear around us 

is almost flawlessly reflected in the activity of neurons in our brains. Perhaps 

the foremost scientific and philosophical question of our time is to discovering 

how several billion tangled and interconnected cells can re-create the world for 

us, using only signals entering a few small apertures in the head. 

There are four major questions in understanding the brain: What does a single 

cell do with its inputs? How are the cells connected together? How do those 

connections change with time and input to "learn?'' And what task is the 

brain accomplishing by it all? It is generally thought that only the first of 

those questions- how a cell works-is very close to being answered. We will 

1 
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challenge the conventional answer, and suggest an alternative view of what a 

cell might do, how it might do it, and why such a function could be useful for 

perceptual computation. 

This challenge hinges on some simple questions with complex answers: What 

does a neuron do with its inputs to make an output? How reliable (or noisy) is 

this process? Which parts of the output signal are essential, and which parts 

represent irrelevant noise? 

1.1.1 The Average Rate Code 

It has long been observed that almost every nerve outside the central nervous 

system represents the intensity of a signal by a rate of action potentials (for 

example stretch-receptors in muscles; see Kuffier et al. 1988). Sensory neurons 

indicate by firing quickly that a stimulus matches their special sensitivity; the 

quick firing of motor neurons modifies tension in a muscle. 

Only more recently has it been shown that neurons in cerebral cortex behave 

likewise. First came the discovery by Rubel and Wiesel (1962) that the fir

ing rate of cells in striate cortex- the cortical area receiving the most direct 

input from the eyes-responds best to light/dark contours at particular ori

entations. Since then, cells throughout the brain have been found to have 

average firing rates which depend on various particular stimuli. For example, 

the visual system contains cells responding preferentially to an objects' motion 

in a particular direction, color, shape, and depth, in various combinations. In 
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all these cases, the experimenter characterizes the cell by electrically recording 

the average number of spikes it produces in response to various simple stimuli. 

The average spike rate evidently represents an analog signal pertaining to the 

stimulus. This analog code is essential to most mathematical theories of the 

brain, in great part because our mathematical tools (e.g., linear filter theory 

and differential equations) deal best with real numbers, and because no one 

has found a way of predicting or using the occurrence of single spikes. 

1.1.2 Why Noise Isn't Investigated 

But in real neurons, that analog code is contaminated with irregularity in the 

timing of individual spikes. No neuron anywhere can fire in a perfectly regular 

manner, if only because of the thermal nature of the chemical and electrical 

interactions which cause spiking. In general, the most regularly firing neurons 

are sensory and motor ones, while cortical cells fire in a far more irregular 

fashion. But while a few researchers have quantified this spiking "noise," 

virtually none have successfully accounted for that noise on the basis of a 

cell's inputs and input-output characteristics (see Chapter 2). This omission 

has occurred for both scientific and cultural reasons. 

It is usually difficult enough to record the spikes from a neuron. But it is 

practically impossible to record also the numerous chemical and electrical in

puts to a neuron, especially if those inputs come from thousands of disparate 

and inaccessible sources (as occurs in cortex). In addition, many of the most 
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basic attributes of neurons-such as their strength and time-course of synaptic 

conductances and their non-linear membrane properties-remain in dispute. 

So attempts to explain firing irregularity usually founder on a lack of essential 

data. 

Some cultural gaps have also contributed to this impasse. In my opinion, biolo

gists are so accustomed to instrumental noise and to the enormous complexity 

of living things that neural firing irregularity may appear perfectly normal, 

an inevitable part of nature's unpredictability. In addition, many biologists 

are put off by the hard-nosed mathematical analysis necessary to understand 

stochastic processes, and are disinclined to trust the predictive power of math

ematically formulated theories. After all, unlike in physics, biology has very 

little tradition of successful predictions by pure theory. 

On the other hand, there is a thriving community of mathematicians who 

study neural noise (see the tome by Tuckwell1989, and a long chapter in Jack 

et al. 1983). But that community has usually emphasized formal solutions 

over predictive power. Remarkably simplistic neural models are treated to ex

haustive formal analysis, without relating their parameters or their results to 

real systems (an egregious example is a warning in one paper that "it is nec

essary to avoid hasty identification, for instance, between the time constant of 

the model and the time constant of the cell membrane," Angelini et al. 1982). 

Approximations are shunned. And the resulting exquisitely intricate formulae 

appear irrelevant to laboratory biologists, so that virtually no communication 

occurs between those who understand the living systems and those who write 
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and solve the equations. 

1.1.3 Why "Noise" Might Be Information 

The analysis of the sources of firing variability has remained a backwater, in 

part because of its difficulty and in part because it is thought to be irrelevant 

to information processing. 

Please note: irregularity can be important in computation. For example, some 

computations are explicitly statistical, such as the Boltzmann Machine's repli

cating of its input statistics (Hinton and Sejnowski 1986); some use noise to 

linearize otherwise pat halogical filters (Knight 1972); some use noise to explore 

a weight space (Mazzoni et al. 1991). But in these and other cases, the source 

of variability is usually modelled by a "random number generator" rather than 

by an explicit mechanism. 

Unfortunately, the perceived irrelevance of the "noise" source rests on shaky 

assumptions about the nature of information and about the nature of per

ception. If one assumes that the average spike rate is the only important 

characteristic of a cell's firing, then of course any variation in it is "noise." 

But without that assumption, one can note that firing variability broadens the 

bandwidth of the neuron's output (the Fourier transform of a Poisson process 

is fiat, or "white noise"; the transform of a regular spike train is a single pure 

frequency, along with "harmonics" at its integral multiples). So an irregularly 

firing neuron might at least in principle be using that extra bandwidth to carry 
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information, with the millisecond timescale of individual action potentials and 

excitatory synapses giving it a kilohertz bandwidth. 

Distinguishing between noise and information requires knowing where their

regularity comes from. The unpredictable nature of individual spikes might 

represent information about some events of no perceptual significance (such 

as thermal fluctuations), or it might represent a perceptual code we have not 

yet fathomed ... we can never be sure it is not a code until we understand its 

source. Unpredictability by itself does not imply noise: as Carver Mead has 

pithily said, "One man's entropy is another man's information." 

What might that information be about? The simple average-rate scheme corre

lates the neuron's output exclusively with its particular stimulus, but ignores 

the possible relations between separate stimuli, and between neurons. The 

simple, traditional experiments present a single isolated stimulus and record 

from a single, isolated neuron. But visual perception requires not only that we 

detect thousands of isolated contours and motions, but that we make sense of 

them, ignoring some and and relating others in order to represent objects and 

patterns. True perception involves the inter-relationships between primitive 

stimuli. 

Those inter-relationships are not present in most simple experimental stimuli, 

and are apparently not present in the average-rate response. (There are con

troversial exceptions: the stimulus-induced firing-rate oscillations of Gray and 

Singer (1988), and the stimulus-linked variations in average-rate envelope of 

McClurkin et al. 1991). The possiblity suggested here is that the relationship 
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of a primitive stimulus (e.g., a contour) to other stimuli is reflected in correla

tions between cells' individual spike times, while the cells' average rates carry 

information about the respective stimuli alone. But this multiplexing hypoth

esis can only be tested by presenting multiple, preceptually relevant stimuli 

and simultaneously recording from multiple neurons. 

1.1.4 "Looking for patterns in all the wrong places ... " 

Researchers have searched for patterns in the "noise" of spiking irregularity, 

but without evident success. The late Don Perkel, a physicist who helped 

introduce nummerical spike analysis techniques to neurobiology (and who in

troduced my parents to each other), had speculated since the sixties about 

finding a "code" buried in the seemingly random trains of neurons, and of 

Geiger counters. Abeles (1980, 1990) has found and reviewed many cases 

of non-random signals in spike trains. In fact, there have been many other 

searches for recurring patterns in long trains of spikes from a single neuron 

(e.g., Strehler and Lestienne 1986; Legendy and Salcman 1986). As Abeles 

(1982) has noted, single-neuron data is relatively easy to obtain, because once 

a single neuron is located with a recording electrode, one can easily obtain 

thousands of spikes from it. With so much data, it is easy to try correlating 

the timing of a single neuron's spikes with either the stimulus onset or with 

other spikes from the same train. 

But while such attempts occasionally reveal slightly-above-random spike pat

terns (Abeles 1990 and references therein), there are several reasons why those 
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temporal patterns are probably not a significant code. First, the patterns 

found are faint, buried in a sea of "random" spikes. Second, no single neuron 

in cortex is thought to have a sufficiently long or flexible "memory" to decode 

a complex series of spikes. Also, the perceptual task is to relate a neuron to 

other neurons (correlation across space in short times), not to correlate a single 

neuron's output across a long time. Finally, the system as a whole cannot be 

expected to keep track of individual spikes for very long, because new input 

spikes are always coming in to replace the old ones. 

The alternative is to compare firings of different neurons with each other. 

That is harder, because while recording from one is difficult, recording from 

many at once is much more so. Fortunately, the motivation and technology 

for such multi-neuron recordings are increasing dramatically, and have already 

yielded evidence of strong correlations at timescales from the submillisecond 

realm up to hundreds of milliseconds. The most general task is to understand 

the significance of those correlations for cortical information processing. The 

narrower task of this thesis is to explore the cellular mechanisms which may 

make single-spike computation possible. 

1.2 Thesis Overview 

Chapter 2 forms the foundation of this thesis, demonstrating a striking con

tradiction between the most well-accepted theory of cortical cell function and 

the well-known irregularity of cortical firing. This work has already appeared 
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as a short note in Neural Computation (Softky and Koch 1992) and recently 

as a long article in the Journal of Neuroscience (Softky and Koch 1993). 

For most cortical cells, only the mean firing frequency is reproducible under 

identical stimulus conditions. Because the fine time-structure of the irregular

ities is not reproducible, it is widely assumed that information is only carried 

in the average spike frequency; the fine time structure is usually assumed to 

be irreproducible "noise." Some electrophysiologists have focussed on the idea 

that the dynamics of the neuronal response may carry significant information 

(McClurkin et al. 1991; Abeles 1990; Aertsen et al. 1989). We here do not 

directly address that issue. Rather, we measure the degree of firing irregularity 

in cortical cells in the behaving monkey and investigate the possible neuronal 

sources of the high degree of observed variability. The conclusion is that such 

cells do not perform a temporal integration or averaging of their excitatory 

inputs, but rather exhibit a striking sensitivity to input fluctuations at fine 

timescales. 

Chapter 3 takes that conclusion as an indication that cortical cells might 

compute with single spikes rather than with average rates. We examine in 

detail one hypothetical situation-the presence of spiking mechanisms on the 

thin, remote branches of cortical cells- in which cells might perform as high

fidelity coincidence-detectors of single input events at the submillisecond scale, 

without performing temporal integration of those inputs. 

This approach flies in the face of much tradition. Decades of electrophysiology 

have produced no reliable evidence that information about a single stimulus is 
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carried by precise spike-times in most cortical areas. Only temporal averages 

over much longer timescales (at least 20 ms; McClurkin et al. 1991) correlate 

with stimuli. Furthermore, it is generally believed that cortical cells are fun

damentally incapable of using such millisecond-resolution information, due to 

their relatively longer membrane time-constants (10-30 ms) and to attenuation 

of high-frequency signals by their dendrites (Douglas and Martin 1991 ). 

While some of that chapter's hypotheses are made in the absence of any ex

perimental data to support or undermine them, the simulations and analyses 

are at least consistent with the relevant measurements already done on single 

cells- it is possible for a cell to contain those postulated spiking mechanims 

so that their electrical effects are nearly masked from the cell body by dis

tributed capacitances. In fact, those same capacitive cable properties help 

isolate the cell's different branches from each other at fast timescales, allowing 

it to contain many independent, fast subunits. 

An additional thrust of Chapter 3 is the introduction of some approximation 

techniques to supplement the brute-force numerical simulation of the model 

cell's differential equations. These approximations use fundamental proper

ties of the model's geometry and electrical responses to successfully predict 

the simulation results without any free parameters ("fudge factors"), thus 

revealing both the primary mechanisms at work and the scaling properties of 

those mechanisms. 

The final part, Chapter 4, constructs a Gedanken-network out of conclu

sions from the previous two chapters. In this network cells use single-pulse 
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coincidence-detection to carry significant information through their firing irreg

ularity. This network-while simplified to the point of silliness in a biological 

sense-nonetheless manages to solve an outstanding perceptual problem by 

multiplexing information between the the cells' average firing rates and their 

individual spike times. Such multiplexing would preserve the ability of single 

neurons to represent features by analog firing rates, but would in addition 

use the full kilohertz bandwidth of each neuron to link neurons together in a 

primitive form of perception called "binding" (Engel et al. 1992), while re

taining the apparently random character of each neuron's output as recorded 

in isolation. 

1.3 Cortical Physiology Oversimplified 

A neuron in the cerebral cortex is a small bag of saltwater, shaped like a tree 

(including roots). It is surrounded by more salt water and by other neurons, 

some of which it is connected to. It produces as "output" electrical pulses in 

response to input pulses from other neurons, and those output pulses travel 

onward to other neurons. 

Because this research focusses on the behavior of a single neuron in response to 

its inputs, it is necessary to review the most elementary properties of a neuron; 

unfortunately, the intricate and ever-changing pattern of their interconnections 

is well beyond this discussion. 

The cell body is called the soma, and the branches radiating from it are den-



CHAPTER 1. INTRODUCTION 12 

drites. The membrane forming the neuron's skin (the "bag") is about 50 A 

thick. The capacitance of biological membranes depends on its thickness and 

dielectric constant, and is constant at about 0.7-1 f.lF/cm2 • But while in its 

purest state that membrane is impermeable to the passage of ions, the presence 

of small pores in the membrane can allow the passage of ions, so that current 

can :flow through it (such as sodium, potassium, chlorine, and calcium, which 

carry the bulk of the electrical current in neurons) . Herein lies the beauty and 

complexity of a neuron's electrical function. 

The precise shape and size of those pores (called "channels") determine which 

ions pass through them. Because each ion species has a different concentration 

inside and outside the cell, the potential of an ion species differs from inside to 

outside, so that there is a separate voltage (or battery) associated with each 

ion (called Erev 1 relative to the potential of the fluid outside the cell). 

The numbers of open channels determine the amount of current passed. That 

current is given by the membrane conductance 9i, where i denotes the ion 

type (or ion mix) and its associated potential (the "reversal potential" Erev, 

defined relative to the potential outside the cell). While a few membrane con

ductances (the "leak" conductances) are constant with time and independent 

of transmembrane voltage, the most interesting and useful ones change with 

voltage, time, and chemical signals. 

For example, two voltage- and time-dependent conductances are activated in 

creating an output pulse (called an "action potential") , which are named after 

their discoverers Hodgkin and Huxley. The first of those Hodgkin-Huxley 
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conductances to be engaged is the sodium conductance (9Na), which opens 

more and more as the cell voltage increases above its usual polarized "resting" 

voltage of about -75 m V ( = Erest)· Because there is more sodium outside 

the cell than inside, the sodium rushes in through the sodium channels when 

they begin to open and raises the cell voltage, and that depolarization opens 

the conductances still further, in a postive-feedback loop. (See Appendix G 

for the differential equations modelled.) 

Three effects eventually limit the excursion of this current avalanche. A minor 

effect is that as the cell depolarizes, the driving potential difference (EN a- V) 

decreases. A much stronger effect is that the sodium channels have a natural 

time-course, so that in normal circumstances they begin to close after about 

half a millisecond. The final effect is that the strong depolarization of the 

cell causes the opening of potassium channels. Because potassium is more 

abundant inside the cell than outside, it rushes out and repolarizes the cell. 

This whole process produces a voltage "spike" lasting about a millisecond, 

which propagates down the output fiber (the "axon") without dispersion, due 

to the presence of further Hodgkin-Huxley channels along the axon's length. 

Another critically important type of channel is found at the "synapse," the 

location where the output axon of one neuron provides input to another neu

ron. Some synapses are direct, linear electrical connections between cells, with 

bi-directional current flow. But the most prominent synapse class in the brain, 

the chemical synapse, provides the essential function of one-way information 

transfer: an action potential in the axon can cause an electrical effect in the 
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target cell, but not vice-versa . At the synapse, the arriving action potential 

pulse triggers the release of chemicals which (in most cases) cause the open

ing of channels on the target neuron; If the channels opened have a reversal 

potential greater than the resting potential (Esyn > Erest), the synapse and 

synaptic current are called "excitatory," because they depolarize the target 

cell and make it more likely to fire. The resulting voltage change in the tar

get neuron from such an excitatory synapse is called an EPSP (Excitatory 

Post Synaptic Potential) . If the channels have a lower voltage (Esyn < Erest), 

the synapse is "inhibitory," leading to an IPSP. In general, excitatory synaptic 

currents are much briefer than inhibitory ones, and have much stronger driving 

potentials. Inhibitory synapses can sometimes have reversal potentials so close 

to resting potential that they act not by driving down the membrane voltage, 

but by shunting off the excitatory current ("shunting" or "silent" inhibition) . 

In the study of visual cortical neurons, the neurons' responses are stimulated 

through visual patters (e.g., bright dots or dark bars) presented in the animal's 

field of view; the region of the field of view over which a pattern can elicit a 

neural response is called that particular neuron's Receptive Field (RF). The 

response is usually analyzed by showing the same pattern many times, and 

averaging the resulting spike trains-each with the stimulus presentation time 

as t = 0- to form a Post Stimulus Time Histogram, corresponding to the 

average spike rate after the stimulus appears. 

As a reference, a glossary of important terms follows: 

action potential-sudden voltage pulse (about 1 ms duration) 
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adaptation-slowing-down of output spikes during constant input 

axon, axonal-the thin output cable along which a spike propagates 

dendrite, dendritic- the thin (1-4 Jtm) "roots" branching outward 

apical dendrite-a single thick ( 4-7 Jtm) dendrite, like a 

tree-trunk, found on pyramidal cells 

distal- far away from the soma 

proximal- close to the soma 

soma, somatic-the cell body (typically a sphere or blob 15 Jtm 

wide) 

synapse, synaptic-the one-way chemical contact from an axon to 

another cell 

EPSP-Excitatory Post Synaptic Potential 

EPSG-Excitatory Post Synaptic Current 

IPSP-Inhibitory Post Synaptic Potential 

IS/-Interspike Interval 

PSTH-Post Stimulus Time Histogram 

RF-Receptive Field 

15 



Chapter 2 

A Paradox: Cortical cells do 

not perform temporal 

integration of small, random 

EPSPs 

2.1 Introduction 

When a typical spiking neuron is injected with sufficient current, it fires a 

regular stream of action potentials. But cortical cells in vivo usually fire irreg

ularly in response to a sensory stimulus. What are the cause and function of 

that irregularity? 

16 



CHAPTER 2. A PARADOX 17 

The irregularity of action potential discharge has been analyzed usmg the 

mathematics of stochastic point processes and their intrinsic variability (Perkel, 

Gerstein, and Moore 1967; Stein 1967a,b; Lansky and Smith 1989; for a recent 

overview, see Tuckwell1989 and references therein). The firing variability of 

thalamic and cortical spike trains has been studied experimentally ( Poggio 

and Viernstein, 1964; Noda and Adey 1970;Burns and Webb 1976). These 

and similar studies measured neuronal variability- usually in the form of in

terspike interval distributions - and characterized that variability using vari

ous phenomenological statistical distributions (e.g., hyperbolic normal, gamma 

distribution etc.). They did not relate the firing variability to the quantitative 

biophysics of the cells. 

One exception is the study by Calvin and Stevens (1968). On the basis of 

intracellular recordings of cat lumbrosacral motoneurons, they constructed a 

simple model of the spike generation mechanism. They combined the measured 

properties of synaptic noise with their model to account for the observed small 

interspike-interval variability (with an associated coefficent of variability Cv ~ 

0.05 - 0.1). They concluded that in the majority of neurons they recorded 

from, synaptic noise was by itself sufficient to explain the observed variability, 

without invoking any additional intrinsic noise sources. 

Our study uses the same starting point, measurmg interspike interval his

tograms and their associated coefficients of variation in the case of extracellu

lar recorded units in primary visual cortex (V1) and middle temporal visual 

area (area V5 or MT) of the awake behaving monkey. Unlike the lumbrosacral 
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motoneurons, the cortical units have a very high degree of irregularity, with 

Cv ranging between 0.5 - 1.0. We attempt to understand the origin of these 

values by two different theoretical methods: modified integrate-and-fire mod

els, and simulations of detailed compartmental models of cortical pyramidal 

cells. Our analysis reveals a strong contradiction between the large observed 

interspike variability at high firing rates and the much smaller values predicted 

by well-accepted analytical and biophysical single cell models. This contradic

tion does not exist for high variability at low firing rates, which is consistent 

with the models of Wilbur and Rinzel (1983) and Bugmann (1990). This con

tradiction has been noted (but not published or resolved) in the case of retinal 

ganglion cells at high illumination by Barlow and Levick (H. Barlow, personal 

communication). 

2.2 Electrophysiological Data 

We used data from two different laboratories. In both cases, extracellular spike 

trains were recorded from cells in visual cortex of awake adult macaques. Our 

primary interest was neither in the nature of the stimuli used nor in the cells' 

selective responses to these stimuli, but only in the statistical properties of 

neuronal firing. 

The first set of data came from primary visual cortex, or cortical area Vl. In 

that region of cortex, neurons respond best to simple contours of a particu

lar orientation presented in the center of small receptive fields (RFs). These 
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recordings came from an investigation of the influence of the larger "non

classical receptive field" on single neuron activity in two alert and behaving 

macaque monkeys ( macaca fascicularis; Knierim and Van Essen 1992). Data 

was only accepted for trials during which the monkey kept its eyes on a fixed 

target. The cells were stimulated by a variety of flashed bars of various orien

tation in the center of the classical RF, and in some cases additionally stimu

lated by either parallel or perpendicular oriented bars outside the classical RF 

(Knierim and Van Essen 1992). We used 1184 single, well-isolated spike trains 

of 1 sec duration recorded from 16 cells at a temporal resolution of 1 msec. 

Only one of these cells showed any bursting activity (as defined below), and 

was rejected. 

The second set of data (referred to in the following simply as "MT" data) was 

recorded during an investigation into the relationship between motion dis

crimination and the behavior of single neurons in area MT (or V5) , a region 

of extrastriate visual cortex concerned with motion processing (M. mulatta; 

Newsome, Britten and Movshon, 1989b; Britten et al. 1992) . In brief, three 

monkeys were trained to report the direction of motion of a random dot dis

play in which a fixed fraction of dots (the amount of "motion coherency") 

moved coherently in one direction while the remainder moved randomly in all 

directions (Newsome and Pare 1988). The amount of motion coherency as 

well as the direction of motion was varied across trials. During a single trial, 

the monkeys, whose heads were restrained, had to fix their gaze on a cross. If 

fixation was broken- as monitored by a search coil-the trial was terminated. 
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Standard electrophysiological procedures were used to identify and record sin

gle MT neurons in three alert and behaving monkeys (Mikami, Newsome and 

Wurtz 1986). The two-threshold window discriminator produced pulses corre

sponding to single action potentials whose time of arrival was recorded with 

1 msec resolution. Care was taken to record only single neuron activity. Al

together, the activity from 409 neurons was recorded, each trial usually being 

2 sec long. Figure 2.1 shows a sample spike train, a histogram of all the su

perposed spike trains (the Post-Stimulus Time Histogram, or PSTH), and an 

interspike-interval histogram from a typical MT recording. 

For our analysis, we used a subset of these trials. We rejected all spike trains 

that contained any dominant interspike intervals (ISis) characteristic of "burst

ing" behavior. A "bursting" neuron frequently fires a pair of action potentials 

within a short time ( < 1- 3 msec), a situation characterized by a sharp peak 

in that range on the lSI histogram. More specifically, we rejected any neuron 

whose lSI histogram (see below) contained more than twice as many counts 

in the 2 msec bin as in the 5 msec bin. These criteria yielded a subset of 233 

non-bursty neurons. 

In general, we did not find any significant difference between the degree of 

variability of V1 or MT neurons. Therefore, except when otherwise explicitly 

noted, we will lump these two sets of experimental data together. 



Vl MT 

A ~~~~~ ~ ~~~~ l ll~l\11~ ~~~sample ~rain IIIII ~11 1 1111 11 !\il\1111 ~ 
0 200 400 t 0 200 400 

20 . 

c 

10 

00 

E 

400: 

00 

400 

30 

D 
50 

post-stimulus 

800 t 

F 
3000 

interspike 
interval 

-----
60 90 

"Kt(msec) 

900 1800 

30 60 90 

?1 

Figure 2.1: Firing Statistics of Neurons in Areas Vl and MT (A,B) Sample 
spike trains from one of the fastest-firing non-bursting neurons recorded in each area. 
( C,D) Post-stimulus time histograms (PSTH) from the same neuron. (E,F) Inters pike
interval histograms from the same neuron. These neurons are "typical," in that their 
firing times seem nearly random at all observed firing rates. 
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2.3 Analysis Method 

2.3.1 Parameters and Normalization Procedure 

The spikes following the stimulus onset arrived at times { ti}. Thus the inter-

spike interval (lSI) is 

(2.1) 

We will analyze histograms of these ISis through two of their parameters. One 

is the mean of the histogram (the average interspike time .6.t): 

(2.2) 

where Si is the number of spikes in the train. The other parameter is the 

standard deviation about that mean, which is 

C76,t (2.3) 

These two values together yield a measure of the variability of the spike train, 

the dimensionless Coefficient of Variation, which describes the relative width 

of the lSI histogram: 

(2.4) 

For a very regular spike train ("pacemaker"), the lSI histogram will have a 

very narrow peak and Cv -+ 0. In the case of a random spike train (a Poisson 

process or shot noise), the .6.ti are exponentially distributed and Cv = 1. 

The coefficient of variation can be larger than one in the case of a multi-

state neuron (Wilbur and Rinzell983). But such neurons would produce lSI 
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histograms with a narrow peak on a broad base, which would be excluded by 

our "burstiness" measure (above, section 2.2). So this work does not measure 

or model multi-state neurons . 

This analysis could not be applied directly to our data, because both Vl and 

MT neurons "adapted," in that their firing rates decreased to roughly half 

the initial value during the first 100 - 300 msec, despite a constant visual 

stimulus. Moreover, because more than one stimulus was used on each cell, 

the number of spikes varied significantly between trains . We found that the 

ratios of pre-adapted and post-adapted firing rates only slightly for different 

stimuli, because the post-stimulus time histograms for different stimuli all had 

approximately the same shape. 

Because such non-stationary (variable-moment) statistics are difficult to ana

lyze, the goal of the analysis was to arrive at an approximate estimate of the 

"instantaneous" Cv, without artificially broadening the lSI histograms due to 

the changing mean firing rate. That is, we attempted to eliminate the artificial 

source of variance induced by adapting rates by separating spikes into many 

histograms, each representing a roughly constant firing rate. Our method was 

to compute the approximate instantaneous firing rate R. We then used R 

to segregate spikes into ten different histograms. The highest R (early times 

with strong stimuli) binned corresponding spikes in the "fastest" histogram, 

the lowest R (the tail-end of the weaker stimuli) put spikes into the "slowest" 

histogram, and intermediate R stored spikes in corresponding histograms in 

between. The predicted values of R and its resulting range were calculated 
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separately for each cell, as follows. 

The major simplifying assumption was that the cell's instantaneous rate at 

time t during any particular experimental trial j depended only on the to-

tal number spikes Sj in that train, and on the cell's average instantaneous 

response r(t) averaged over all m experimental trials for that particular cell. 

The instantaneous response r(t) was taken directly from the post-stimulus 

time histogram of the cell for all m stimuli, coarse-graining t to bins 20 msec 

wide (indexed by i = 0, 20, 40 ... msec). Thus, if Sj(i) is the number of spikes 

in train j falling in bin i, then 

(- 1 ~ -r(t) = r t) = 20m~ Sj(t). (2.5) 

The true instantaneous rate Rj(t) is then assumed to be the product of r(t) 

and Sj, normalized by Savg, the average number of spikes in a train for that 

S· 
R j(t) = ~ x r(t). 

avg 
(2.6) 

The Sj term in eq. 2.6 represents the efficiency of the stimulus, i.e., how many 

spikes the cell fired over the entire recording interval (e.g., 2 sec in the case 

of the MT recordings) in response to a particular visual stimulus, while r(t) 

describes the time course of neuronal adaptation over all stimuli used for that 

particular cell. Note that only the parameter Sj was used in the Newsome et 

al. (1989a) study-for which the MT data analyzed here were generated-for 

the evaluation of neuronal sensitivity and performance. 

Each lSI in any spike train for a particular cell was then placed into one of ten 

different histograms according to its associated R3 value. The maximum rate 



CHAPTER 2. A PARADOX 25 

Rmax (defined over all stimulus conditions for that cell) was used to define 

10 equally spaced rate intervals from 0 to Rmax Hz, i.e., (0- 0.1) Rmax, 

(0.1 - 0.2) Rmax . .. (0.9 -1.0) Rmax· So each cell produced ten lSI histograms, 

each of which had a temporal resolution of 1 msec and a total range of 100 msec 

(longer ISis were not necessary for this analysis of high firing rates) . 

For each spike train j, both b.t; and Rj ( t;) were computed from the original 

data, following eqs. (2.1) and (2.6) . Then b.t; was assigned to the post-stimulus 

timet at the center of its lSI (i.e., t = (t; + t;+1)/2). Finally, b.t; contributed 

one count to the appropriate lSI bin in the particular histogram whose rate 

range included Rj(t). Figure 2.2 illustrates this procedure for a fast-firing V1 

cell. Here Rmax =380Hz and Savg = 83 spikes in one second (83Hz). The 

average time course r(t) and Rj(t) (for the fastest-firing train) are shown in 

Figure 2.2 (a,b). Three of the associated ten histograms, into which a total of 

4009 lSI values were placed, are also illustrated. Note that the instantaneous 

rate Rj(t) was only used to determine into which histogram any particular 

value of b.t; should be placed. 

Because the histograms with highest R only contained the earliest spikes of 

the few fastest trains, they typically had far fewer spikes than the intermediate 

histograms (see Fig. 2.2). Nonetheless, these fast histograms usually contained 

enough spikes to be statistically significant, judging by the error bars in Cv as 

calculated below. In addition, the fastest histograms had mean rates typically 

twice as fast as the cell's average (adapted) response to a strong stimulus over 

1-2 sec. 
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Figure 2.2: Firing Variability Analyzed by Multiple lSI Histograms. The 
firing rate of a cell depended on both stimulus efficacy and post-stimulus time. lSI 
histograms were made from such data by segregating lSI's according to the approx
imate instantaneous rate r(t), according to the following steps. (A) r(t) (Hz) was 
calculated for any particular cell from the PSTH for all the responses of that cell to 
stimulation. (B) The instantaneous rate R;(t) for train j was computed by multiply
ing r(t) by the ratio of the total number of spikes S; of that train to the cell's average 
number of spikes Savg· Here, Savg = 83 and S; = 131. Each lSI was placed into one 
of ten lSI histograms, so that each histogram represented a roughly constant firing 
rate: histogram #0 was slowest, and histogram #9 was fastest. (C,D,E) Three of the 
ten histograms for the Vl cell of Fig. 1 are shown here (spikes between 50 msec and 
100 msec are not shown here, but were included in our analysis.) These lSI distribu
tions are typical of cortical cells described elsewhere: a virtual absence of lSI's below 
2 msec indicates the refractory period and the absence of "bursting" behavior, and 
the distribution is very wide relative to its width. Each histogram's shape-parameter 
Cv contributed one point in Figs. 2.3, 2.9, and 2.13. 
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The parameters flt, a L'!.t , and Cv were then calculated from each of the ten 

histograms (without using Rj(t)). Error bars were derived from the counts in 

individual histogram bins by treating those bin-counts as Gaussian random 

variables. For example, if ML'!.t counts fall in a single bin flt, then we assume 

the uncertainty in ML'!.t is aM = ..,;M;;;, and we propagate errors as random 

variables to get 

and 

2 
aL'!.t 

(2.7) 

(2.8) 

The resulting Cv values were plotted against flt (Figure 2.3) for all but the 

slowest two histograms for each cell (i.e., for all histograms within which the 

instantaneous rate varied by no more than 33%). Cv values from histograms 

with less than ten counts were also excluded, so that each cell contributed 

eight or fewer points to a plot of Cv. This entire normalization procedure was 

repeated for every one of our 249 cells. Had Cv been calculated only from the 

total lSI histogram for a single cell (i.e., without using the multi-histogram 

method), equally high values would have resulted (Cv ~ 0.7- 1.1); but such 

histograms would have confounded high and low firing rates, and would thus 

have been difficult to interpret. 

2.3.2 Inaccuracy of Analysis Method 

The statistics of spike trains are not precisely defined for non-stationary pro-

cesses. But we are only concerned with the approximate variability of the 
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Figure 2.3: Variability of Neurons in Areas Vl and MT. Cv characterizes 
the normalized width of a histogram. The scattered points were obtained from lSI 
histograms like those in Fig. 2.2 (only points with "Et :5 30 msec are shown). Filled 
squares are reliable points (crcv/Cv :5 0.1), crosses are less reliable Cv values. The 
main systematic bias of the analysis method was to underestimate Cv for large lSI's 
(~t ~ 20 msec). The slightly higher firing rates of the Vl neurons resulted from the 
choice of such faster neurons for analysis; no other differences are apparrent between 
the two areas. 
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spike train, so let us suppose for the moment that our data represent a sim

plified process in which each lSI was generated randomly, according to some 

distribution with fixed Cv and variable rate. Would the analysis method de

scribed above reveal the true (generating) value of Cv? We will discuss some 

of the limitations of this multi-histogram analysis method, and then show a 

simulation which suggests that our method is indeed suited to our purposes. 

The above method underestimated Cv for low firing rates, because some long 

ISis were excluded from their proper histograms. Some spike trains were only 

500 msec long; thus ISis longer than that duration obviously could not be 

counted. A more stringent limit was the width of the lSI histogram from 

which Cv was calculated (100 bins of 1 msec each), which truncated the tails 

of lSI distributions with large !lt and high Cv (e.g., !lt 2:: 25 msec). In all 

these cases, truncating the tail of a broa<;l lSI distribution artificially narrows 

the histogram, and reducing the estimated Cv below its true value. 

In other cases, this analysis overestimated Cv . This artificial broadening of 

the lSI histogram can occur, for instance, when the firing rate changes during 

the rate-averaging period i: a smooth variation in firing rate would be mis

construed as a high random variability. Although this effect obviously occurs 

during the onset of spike adaptation (in the early part of the PSTH, when 

the average rate changes most quickly), it can also occur at the lowest rates 

measured for one cell, for which a single histogram has a higher fractional vari

ability than at higher rates (e.g., a 60-90Hz histogram contains 33% frequency 

variability, vs. 10% for a 270-300 Hz histogram). 
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A further artifact occurred at high firing rates, when the width of a single time

bin (1 msec) becomes comparable to the shortest ISis observed (.6.t ~ 2 msec) . 

This effect is most pronounced when the true histogram is very narrow and 

steep-sided, so that the "rounding error" (about 0.5 msec) induced by shifting 

each lSI to a neighboring bin increases the histogram's width significantly. 

In order to quantify these combined effects, we numerically simulated spike 

trains with the following characteristics: 1) each lSI was generated by a gamma 

probability distribution with constant and known Cv, variable mean rate, 

and a resolution of 1 msec; 2) each train was 500 msec long; 3) the mean 

rate dropped linearly to 0.33 of its starting value within 250 msec (modelling 

adaptation); 4) starting rates for different trains were chosen to give a range of 

.6.t ~ 2 - 30 msec (comparable to the monkey ISis) between the very fastest 

and very slowest mean ISis observed. The more variable of these artificial 

trains looked just like real trains from monkey. At each Cv, 500 simulated 

trains at different rates were analyzed together by our normalization method 

described above. In addition, the slowest 100 trains were separately analyzed, 

to better resolve the slowest ISis. 

The comparison of the Cv values yielded by this analysis with the Cv of the 

random processes generating the trains (Figure 2.4) confirms the two points 

outlined above: this method systematically overestimates Cv when both Cv 

and .6.t are low, and systematically underestimates Cv when both are high. 

But for fast-firing, highly variable cells-like those observed in our analysis

this method introduces a systematic bias that is no greater than a few percent. 
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Figure 2.4: Accuracy of the Multi-histogram Normalization Method. 
Computer-generated spike trains (having roughly the same mean firing rates and 
adaptation course as the monkey data) were randomly generated from gamma
function lSI distributions of various Cv (1.0, 0.71, 0.33, 0.11) with 1 msec resolu
tion. We analyzed these fake trains by the same method used for the monkey data, 
analyzing slow and fast trains separately to resolve Cv at both long and short lSI 
values. The resulting Cv values (connected squares) were compared with the rate
independent Cv value of the generating distribution (horizontal lines). The analysis 
method underestimated high Cv at long lSI values, and overestimated low Cv at 
short lSI values. But high Cv values at short lSI (like those observed in monkey) 
were not systematically biased more than a few percent. Thus, the drop in Cv at the 
left of Fig. 2.3 is real, but the drop at the right is an artifact of the analysis method. 
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While our normalization method seems to account for spurious effects intro

duced by a variable firing rate, there remains the fact- not modelled by the 

foregoing simulation- that Cv itself can vary as well. In fact, this changing 

Cv is observed in the monkey cells: lower firing rates of individual cells have 

a higher Cv (see sections 2.4.3 and Appendix B). 

If several processes with the same rate (and thus the same .6-t) but different Cv 

values have their ISis binned in the same histogram, the resulting histogram 

(for example, a sharp peak on a broad base) will have the same mean .6-t as 

each process separately. The new value of the variance about that mean is 

given by the weighted mean of the two variances of the individual histograms, 

so that the composite Cv value will be bounded by the Cv 's of those separate 

processes. Because our claim in this chapter is that the Cv values we observe 

in monkey lie outside a certain predicted range, the fact that those observed 

Cv's may themselves only be averages of several true values still requires that 

most of the true values remain outside the range. 

As a further check that our high Cv values did not result from peculiarities 

of the normalization method, we compared rate-normalized values with those 

obtained from adapted, constant-rate portions of MT spike trains without time

dependent normalization: the two methods gave identical Cv. We also found 

that changing the PSTH bin-size from l = 20 msec to l = 5 msec made no 

difference in the computed Cv, even during strong adaptation. 
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2.3.3 Variability in the Interspike Interval 

The approximate Cv values measured and illustrated in Fig. 2.3 are in good 

agreement with reports of Cv at lower firing rates of cortical cells (Burns and 

Webb 1976; Noda and Adey 1970): Cv ~ 0.5 - 1. Visual inspection of the Cv 

plots did not reveal any systematic differences in Cv between cells in MT and 

V1; we did not pursue this question further. 

Both sets of data show an increase of Cv values from the shortest ISis measured 

(3 msec) up to longer ISis (10-15 msec). As discussed in the previous section, 

the possible drop in Cv at high values of the interspike interval (30 msec) 

is most likely a measurement artifact which underestimates Cv when both 

Cv and fit are large (Fig. 2.4). The drop for low values of the lSI (high 

firing frequencies), on the other hand, is a real effect and is in agreement with 

standard models (see below). While most histograms did not have sufficient 

counts to justify a functional fit, Cv values near unity are characteristic of the 

exponential lSI distributions of a Poisson process, the most random type of 

spike distribution possible. 

2.3.4 Variability in the Number of Spikes 

As a further test of the variability of these spike trains, we analyzed the num

ber of spikes Sj occurring in a train in response to a specific and constant 

stimulus. We plotted the variance in the number of action potentials per 

stimulus presentation (a~) against the average number of spikes Savg for the 
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same non-bursting trains studied above. As is evident from the log-log plots 

in Figure 2.5, a~ is scattered widely about the mean spike number in area 

V1 , and equal to or above the mean spike number in area MT. In the case 

of our large number of MT neurons, we found that the response variance in 

MT scales approximately as a~ ex 5 5 / 4 . In the case of a pure Poisson process, 

the variance in the number of events is equal to the mean. Thus, their ratio 

should be unity, independent of firing rate. This measure can be used as an 

alternative to Cv when data is so sparse or average rates so variable that the 

multi-histogram method breaks down; the explicit relation between Cv and 

normalized variance is given in Appendix I. 

2.4 Analytical Models 

In this and the following sections, we will attempt to account for this high 

degree of variability using simple analytical models of the spiking process. 

2.4.1 Integrate-and-Fire Neuron 

A neuron is most simply modelled as a single capacitance with an associated 

membrane potential V , which can be stepwise increased by pulses of constant 

charge, each pulse incrementing V by a fixed amount. When V exceeds a 

certain threshold voltage, the model neuron produces an output spike and 

immediately resets its voltage to the resting value V = 0 (for references to 

this "integrate-and-fire" model, see Tuckwell 1989; also Knight 1972) . The 
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Figure 2.5: Comparison of the Variance in Spike Count for Monkey and 
Simulated Pyramidal Cells. Plots of the number of spikes Si in a train for a 
continuous stimulus and the variance u~ in that number indicate the firing variability 
over longer times; the log-log scale contains values from a few spikes to hundreds. 
Values for monkey cells are crosses, in agreement with those obtained for the same 
areas by Snowden et al. (1992). The diagonal line represents the prediction for 
a purely random Poisson process at constant rate (u~ = S). The connected filled 
squares on both graphs are values given by the "barely plausible" and "conventional" 
simulations (section 2.5.1), and have far lower variability than that observed in real 
cells. 
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neuron's "threshold" can be expressed in terms of the number of pulses (an 

integer Nth 2:: 1) necessary to bring the cell from rest to discharge. 

We further assume that these delta-function-like pulses arrive completely ran

domly in time (Poisson distributed), with a mean rate of arrival R . Through

out out study, we assume that the synaptic input pulses are drawn from a 

Poisson distribution (we will re-examine this crucial assumption at the end of 

the discussion). This randomness assumption is consistent with superposing 

many independent but possibly non-Poisson input spike trains (Cinlar 1972). 

An analogy illustrates this effect: the many regular but independent handclaps 

from an audience can superpose to form applause which sounds like shot-noise. 

Large numbers of spike-trains can be superposed to produce more variability 

than a Poisson train only if the individual spikes from the various trains are 

temporally synchronized (a highly non-random but important situation, which 

we consider in section 2.6.5 and Appendix E). 

This kind of integrating neuron gives one output pulse for every Nth input 

pulses. As a result, the lSI of the output is just the sum of the Nth interpulse 

intervals between the cell's previous spike and the final pulse which triggered 

the cell's response. With Poisson-distributed pulses, the probability distribu

tion p(~t) of their sum- and hence the predicted shape of the output lSI 

histogram- is a gamma function of order Nth- 1 (Tuckwel11989), 

p(~t) ex (R~t)Nth-l exp( -R~t). (2.9) 

Integration of this function over ~t yields the mean and standard deviation, 
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namely 

f:J.t = fo+oo f:J.t p( f:J.t) df:J.t _ Nth 

fo+oo p(f:J.t) df:J.t R 
(2.10) 

and 

(2.11) 

which give 

C - O"D.t - 1 v- = - --
f:J.t .JN;h 

(2.12) 

Thus, for this "integrate-and-fire" model of a nerve cell with independent 

synaptic input, Cv is independent of firing rate, since both f:J.t and a-D.t scale 

inversely with R. 

To apply this model to real cells, we suppose that an approximate threshold 

depolarization for a pyramidal cell is 20 m.V from rest to firing, and typical 

depolarizations for a single excitatory EPSP onto a pyramidal cell (in rat 

visual cortex) are in the range 0.05 - 0.5 m. V per excitatory input (reported 

for detectable monosynaptic contacts among pyramidal cells in rat cortex by 

Mason et al., 1991). These admittedly crude values yield Nth 2:: 40 EPSP's, 

and Cv ~ 0.16, i .e., the cell should spike rather regularly. The fact that 

eq. 2.12 predicts Cv < 0.5 for all threshold values Nth > 3 spikes (while 

empirically Cv > 0.5) constitutes the central difficulty this chapter sets out to 

explore. 
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2.4.2 Refractory Period 

Real nerve cells, however, cannot fire a second action potential immediately 

after a first, since the sodium channels must deactivate and be repolarized 

before further activation. As a result, the cell undergoes a short "absolute 

refractory period," during which it cannot be discharged, followed by a much 

longer "relative refractory period" during which it is difficult to discharge. 

A convenient oversimplification to this case is to modify the perfect integrate-

and-fire model by the addition of an absolute refractory period t0 ("dead time") 

immediately after resetting, during which the neuron is entirely inactive and 

after which it resumes normal function. Because the same time t0 is added to 

each and every interspike interval Llt, the net effect is to shift the entire lSI 

histogram (eq. 2.9) rightwards by t0 : 

p(Llt) ex [R(Llt- t0 )]Nth-1 exp[-R(Llt- t0 )] for Llt > t0 , 

p( Llt) 0 for Llt ~ t0 (2 .13) 

This refractory period now gives the neuron a characteristic timescale, so we 

cannot expect it to have identical statistics at all firing rates. In particular, 

the value for G"f::..t (eq. 2.11) now depends on Llt- to rather than on Llt, so that 

the new value of Cv does depend on the mean lSI: 

Cv = _1_ (E- to)< _ 1_ 
~ Llt - .JN;h 

(2.14) 

The refractory period has little effect for b..t ~ to (since in this case Cv ~ 

1/~), but as Llt -+ t0 the output spike train becomes extremely regular 

( Cv -+ 0), regardless of Nth (see Figure 2.6). In general, the Cv for this 
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simple model of a refractory period is always less than t he Cv of the standard 

integrate-and-fire model ( eq. 2.12). This result is easy enough to understand: 

the very fastest the cell can fire is once every t0 , when the integration period is 

much shorter than t 0 and contributes little variation. The sudden drop in Cv 

in the fastest-firing monkey cells for very small values of b.t suggests that this 

effect- rather than Nth- is the dominant influence in the regularity of those 

cells (see Fig. 2.9; we chose a conservative t0 = 1.0 msec for all comparisons, 

because a larger t 0 , leading to an even lower value of Cv, would only increase 

the gap between the predicted Cv and monkey data). 

2.4.3 Leaky Integrate-and-Fire Neuron 

It is well known that depolarizations do not persist forever, but that pertur-

bations of membrane voltage tend to decay toward the resting potential (in 

this section we assume Erest = 0 for mathematical simplicity). The simplest 

physical model of this current "leak" is the inclusion of a passive membrane 

conductance (1/ Rm), in parallel with the capacitance of the perfect integra-

tor. (This "leaky" or "forgetful" integrator is described in detail by Stein 

(1967a) and Knight (1972).) The "leaky integrator" has a decay time con-

stant T = RmCm, giving a behavior between discharges of 

dV 
dt 

v . 1 - - + mput pu ses 
T 

(2.15) 

The passive decay inherent in eq. 2.15 is a simplification of the action of active, 

voltage-dependent conductances in the membrane of the soma and proximal 

dendrites. However, it does allow us to capture the essential qualitative aspects 
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of temporal decay. But despite decades of effort (Tuckwell 1989), the lSI 

histogram and Cv for even this simple model are not available in closed form. 

Our predictions for the Cv of this model come from numerical simulation of 

eq. 2.15, using a realistic value for the membrane time constant ofT= 13 msec 

in the presence of random input pulses (Mason et al. 1991 ). 

Qualitatively, the leak term has litt le effect on the Cv at high firing rates 

(~t ~ T ), because there is not sufficient time to significantly discharge the 

capacitance through the leak before the threshold Nth is reached. But at very 

low firing rates (~t ~ T) the output spikes are nearly random (Cv ~ 1) 

because the neuron operates as a "coincidence detector" for occasional bursts 

of input pulses. In this mode, the membrane potential V "forgets" when the 

last firing occurred, so that the subsequent firing time is virtually independent 

of the previous time, i.e., the model neuron's output nearly approximates a 

Poisson process. Thus the neuron smoothly interpolates between a low Cv 

(given by eq. 2.14) and the maximum possible Cv = 1 as the output lSI 

increases. 

A plot of Cv against ~t for this model for various levels of thresholds Nth 

illustrates the conflict between the predicted and our observed results (see 

Figure 2.7) . These results show that Cv > 0.5 only occurs for f:::..t > lOT or 

Nth~ 3 (low threshold). The case of a small T , such that f:::..t ~ T , corresponds 

to the situation where a large membrane leak exists in the cell's membrane. 

The conflict between theory and data is greatest for the fastest-firing cells 

(!:::..t < T ~ 13 msec) ; in that regime the leaky-integrator prediction is approx-
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imately given by eq. 2.14. A contour-plot for Cv as a function of Nth and r, 

using a fixed output spike rate R = 1/ 6.t = 200 Hz and absolute refractory 

period t 0 = 1 msec, is shown in Figure 2.8. It is evident that in order to 

achieve high variability (i.e., Cv > 0.7) at these high rates (which are compa

rable to those in our faster cells), T has to be a fraction of a msec, or Nth must 

be only 1 or 2! In fact, the model best fitting the monkey data is that for a 

neuron which performs no temporal integration, having Nth = 1 (Figure 2.9). 

2.4.4 Realistic Parameters and Modifications 

In light of the serious discrepency between the monkey data and the simple 

theory for random input to an integrator, we investigated several modifica

tions to the theory. The modifications, like the foregoing analysis, are only 

approximate. When possible they are given as correction coefficients to the 

perfect integrator with refractory period (eq. 2.14). The resulting patchwork 

of approximations outlines the major probable influences of these various bio

physical modifications on lSI variability. We reserve the detailed equations for 

Appendices A, B, and C, and outline here the qualitative effects. 

Irregular EPSP Magnitude 

Our previous model includes a crude approximation of random excitatory 

postysynaptic potentials (EPSPs) of constant amplitude and arriving randomly 

in time. However, the magnitude of EPSPs is expected to vary greatly, depend-
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The uppermost curve shows the theoretical upper bound on Cv for a pure Poisson 
spike train with "dead-time" t 0 = 1.0 msec. The observed Cv of macaque cortical 
cells lies much closer to the maximum possible than it does to the Cv predicted by a 
neuron model which performs significant temporal integration. 
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ing on their location on the dendritic tree, quantal fluctuations, etc. Clearly, 

including random EPSP amplitude as an additional source of variability will 

increase the variability in the cell's synaptic input and hence its firing. Re

cent in vitro two-electrode intracellular recordings in pyramidal cells in rat 

visual cortex have shown that the variation in amplitude of unitary EPSPs 

(from different synapses) is nearly equal to the average amplitude of these 

unitary EPSPs (0.05- 0.5 mV; Mason et al. 1991). Even after incorporat

ing such variable-sized synaptic input into the perfect integrate-and-fire model 

(Appendix C), Cv only increases from its old value of )1/ Nth to 

Cv = )2/Nth· (2.16) 

This factor of .;2 is not sufficient to remove the discrepancy between the model 

and our monkey data. 

Finite EPSP Width 

The model above assumes that EPSCs are instantaneous current pulses, which 

can carry variability at arbitrarily high temporal frequencies. But even the 

fastest unitary synaptic currents last between 1 - 2 msec (in the case of fast, 

non-NMDA, glutamergic synapses; Hestrin et al. 1990), blurring the total 

synaptic current and reducing its variability. Due to this smoothing effect, 

we conclude in Appendix A that Cv in a typical case would be reduced by a 

factor of 2 below the value predicted above, thus compounding the discrepancy 

between predicted and observed Cv 's . 
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Adaptation and Hyperpolarizing Currents 

The simplified model above does not take into account hyperpolarizing currents 

(such as the IAHP potassium current which produce "spike adaptation," or the 

slow inhibitory GABAB synaptic inputs). The main predicted effect of such 

currents is to reduce the firing rate, by effectively cancelling a portion of the 

depolarizing current. As the rate reduces, the mean lSI increases, and allows 

time for more EPSPs to impinge on the cell before each firing. These extra 

EPSPs carry with them some added variability, so that Cv will increase above 

the predicted value as the lSI increases (Appendix B). This effect, which is 

very common in the monkey cells and the compartmental simulation following, 

is not strong enough to account for the discrepency between the model and 

the monkey data; in addition, it cannot change the predicted Cv for spikes 

during the early, non-adapted portion of the cell's response. 

2.5 Compartment Models 

Even with the modifications discussed above, we had to make a certain number 

of risky simplifications. For instance, we did not account for the complex 

dynamics of cellular excitability or its known dendritic morphology, nor did 

we include a treatment of the effect of fast synaptic inhibition. To answer 

these criticisms we studied the firing properties of a biophysically very detailed 

model of a single cortical pyramidal cell using conventional compartmental 

techniques. 
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2.5.1 Biophysical Modeling of a Cortical Pyramidal 

Cell 

We simulated the firing properties of a layer V pyramidal cell (see inset in 

Figure 2.10) from primary visual cortex, whose detailed morphology was re

constructed following intracellular filling with horseradish peroxidase (HRP) 

during in vivo experiments in the anesthetized, adult cat (Douglas, Martin 

and Whitteridge 1991). Its dendritic tree was described as a list of 186 one

dimensional cables of specified length and diameter, all of which were assumed 

to be passive (see Appendix F). The cell body contained seven voltage- and 

calcium-dependent currents; a fast, classical sodium current INa (with peak 

conductance per membrane area of 200 mScm-2), a slow, non-inactivating 

sodium current INa,s (1 mScm-2
), a 1 -type calcium current l ea (0.2 mScm-2

), 

and four potassium currents (delayed rectifier IDR (120 mScm-2), transient 

IA (1 mScm.-2 ), calcium-dependent IK(Ca) ( 45 mScm-2
) and a non-inactivating 

IM current (0.6 mScm-2 ). These currents were modelled using Hodgkin

Huxley like rate constants (Bush and Douglas 1991) . This model was studied 

in detail by 0. Bernander (Bernander et al. 1991), using the very efficient 

single neuron simulator NEURON, provided by Hines (1989; Appendix F). 

The somatic spiking threshold and response to injected current for the simu

lated cell matched those recorded intracellularly in vivo (for more details see 

Bernander et al. 1991). 

We used an effective passive specific membrane resistance of 26,000 Ocm2 

throughout the cell. Under these conditions, the somatic membrane potential 
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stabilized at -75 m V, with a spiking threshold of about -48 m V, a somatic 

passive time constant of 30 msec and an input resistance of 42 MD, corre

sponding to a good and stable intracellular recording from in vivo cat pyra

midal cells (Douglas and Martin 1991). All synaptic inputs were modelled 

as transient increases in the membrane conductance, 9syn(t) ext exp( -tjtpeak) 

with g(tpeak) = 9peak, in series with the synaptic reversal battery Esyn · 

"Conventional" and "Barely Plausible" Simulations 

We then ran two distinct sets of simulations to study the temporal variability 

of the discharge of this pyramidal cell. In one case ("conventional" or "c." sim

ulation), we used synaptic conductance amplitudes and distributions in rough 

agreement with experimental findings, while for a second set of simulations 

("barely plausible" or "b.p.") we pushed these parameters to the limits of the 

accepted ranges in order to increase the temporal variability. The b.p. simula

tion therefore reflects the outer range of temporal variability compatible with 

a passive dendritic membrane and independent synaptic inputs. 

Both sets of simulations included both excitatory as well as inhibitory synaptic 

input. Perhaps the single most important source of inhibition comes from 

"basket cell" and "chandelier cells," one of which may form up to 30 inhibitory 

synapses directly on the recipient neuron's cell body. In the "conventional" 

model, simulated input from a basket cell activated 30 synchronous somatic 

inhibitory GABAA synaptic events (9peak = 0.1 nS; ipeak = 5 msec; Erev = 

-70 m V). All 30 synapses were randomly but jointly activated at the average 
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rate of 450Hz. The maximum, saturated GABAA conductance at one synapse 

(due to several consecutive events) was set to 0.5 nS. These 30 basket cell 

synapses contributed a mean somatic conductance increase of 10 nS (this value 

is in the range reported by Douglas and Martin (1991 ), for the total amount 

of inhibition). 

For the "barely plausible" model, the number of these inhibitory synapses 

was kept constant, but 9peak was tripled to 0.3 nS and the synaptic conduc

tance saturation was eliminated (allowing consecutive synaptic inputs to add 

in time) , so that the net inhibitory conductance change at the soma fluc

tuated around 60 nS. The resting potential at the cell body stabilized (as 

before) at around -72 m V. By temporarily removing all the active currents 

at the cell body, we estimated the resulting average input resistance and pas

sive time-constant during the inhibitory synaptic barrage as RN = 11 Mn and 

T = 7 msec for the "barely plausible" cell, and RN = 30 MO and T = 13 msec 

for the "conventional" model. Since the intracellular recorded values of RN and 

T for the reconstructed cell were 23 MO and 20 msec respectively (Bernander 

et al. 1991), the "conventional" case study represents a realistic cortical cell 

simulation. As mentioned above, the b.p. model will push Cv towards higher 

values by decreasing the effective membrane time constant. 

Excitatory input was provided to the "conventional" model by placing ex

citatory synapses at 20 different locations throughout the basal and apical 

tree. The excitatory synapses were assumed to be voltage-independent of the 

AMPA or non-NMDA type (Esyn = 0 mV; mean conductance ?ipeak = 0.5 nS; 
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tpeak = 1.5 msec). Furthermore, smce individual synaptic amplitudes may 

vary, the value of 9peak for each synaptic event was chosen from an exponential 

probability P(g) ex: exp( -g jg), so synaptic events had a high variability in 

amplitude, even events occurring at the same location. These values led to 

somatic EPSPs ranging from a mean of 0.4 m V peak potential and 4 msec rise 

time for the most proximal synapse to about 0.5 fJ, V for the most distal one. 

These values are within the range reported in rat visual cortex slice pyramidal 

cells for unitary EPSPs evoked by stimulating a single presynaptic pyrami

dal cell (Mason et al. 1991), and with values obtained with spike-triggered 

averaging of EPSPs in cat visual cortex (Komatsu et al. 1988). 

In the "conventional" model, much of the variability carried by individual 

EPSPs was attenuated and smoothed out as their current passed through the 

capacitive dendritic cables toward the soma. In order to reduce dendritic atten

uation and temporal smoothing in the "barely plausible" model, and thereby 

increase Cv, all excitatory synapses were placed on the proximal apical den

drite only 60 fJ,ffi away from the soma, where the synapses' electrical coupling 

to the soma would be strongest, while still remaining consistent with exper

imental observations of synaptic position. At each synapse ipeak = 0.3 msec 

and 9peak = 10 nS, giving rise to a very large somatic EPSP (mean depolariza

tion 1.6 m V) within 1 msec. This simulation only required the simultaneous 

occurrence of 19 of these "giant" EPSPs on average to bring the cell from rest 

to the firing threshold. 

Synapse activation times were random (with a fixed probability per unit time), 
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with average rates chosen to yield output spike rates comparable to those ana

lyzed from the monkey ( 40- 200 Hz). This required total excitatory synaptic 

activation rates of 100-400 kHz for the conventional model and 8.5- 4 7 kHz 

for the barely plausible simulation. The integration step size used by NEURON 

was dt = 0.1 msec, with random synaptic activation summed over 0.02 msec 

subintervals. The simulations generated nearly 700 spike trains of 230 ("c.") 

or 470 msec ("b.p.") duration. In order to avoid any systematic biases, we 

analyzed these spike trains with the exact same normalization method out

lined in section 2.3.1. Table 2.1 gives the values of the EPSP rates used as 

well as the number of spikes produced and Figure 2.10 gives one example of 

a 200 msec excerpt of the somatic potential for typical c. and b.p. simula

tions. Figure 2.11, Figure 2.12, and Figure 2.13 show the resulting spike trains, 

histograms, and Cv. 

In order to test whether these low Cv results depended on the details of our 

voltage-dependent somatic currents, we introduced two modifications to the 

detailed kinetic schemes of the fast sodium current responsible for the action 

potential in the "b.p." simulation (see Appendix G for the equations mod

elled). One modification lowered the firing threshold by lowering the midpoint 

voltage Vi;2 at which the steady-state value of the sodium activation particle 

(moo ) was half its maximum (i.e., 0.5; see Appendix G for the equations mod

elled). When Vi;2 was lowered from -40 m V to -50 m V, the firing threshold 

was reduced proportionately, but the cell's firing variabillity in response to 

random synaptic input only increased slightly (as would be expected in the 

integrator model, for which a lowered value of the firing threshold gives rise 
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I SIMULATION II avg. EPSP rate I # spikes S in a train II # trains l 
47kHz 104.6 ± 1.5 100 

"Barely Plausible" . 26kHz 66.5 ± 1.5 100 
16kHz 43.7 ± 1.5 100 

8.5 kHz 23.7 ± 1.3 248 

"Conventional" 400kHz 42.6 ± 0.5 50 
232kHz 32.1 ± 0.4 50 

103kHz 21.0 ± 0.5 50 

Table 2.1: Predictability of Number of Spikes in Simulated Pyramidal 

Cell. The compartmental-model simulation using passive dendrites produced 

a very predictable number of spikes for a given average EPSP rate. Shown are 

EPSP rates, the spike number S (averaged over all trains at that rate), and 

the number of trains simulated at that rate. Note that the variability in spike 

number is far smaller than the 1/../S variation expected for Poisson-distributed 

spikes. 
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Figure 2.10: Somatic Potential of a Simulated Pyramidal Cell. A compartmen
tal model (with passive dendrites) of a reconstructed striate-cortex layer-V pyrami
dal cell (inset) produced the somatic voltage traces shown upon exposure to random 
EPSP's and IPSP's. (left) Somatic voltage in the "conventional" simulation, with 
tpeak = 1.5 msec, 9mar = 0.5 nS, with excitatory synapses distributed randomly 
throughout the dendritic tree. (right) Simulated somatic voltage in the "barely plau
sible" simulation, which used parameters at the edge of accepted ranges to create the 
most variability possible: a fast and strong EPSP (tpeak = 0.3 msec, 9peak = 10 nS) 
and all synapses located on the apical dendrite 60 p.m from the soma. Note the 
adaptation in firing frequency following onset of the "stimulus." 
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Figure 2.11: Firing Statistics of Detailed Pyramidal Cell Simulation. Our 
compartmental model produced the spike trains shown upon exposure to random 
EPSP's. The left column used "barely plausible" parameters to simulate a more vari
able output; the more regular simulation at right used "conventional" parameters. 
(A,B) Sample spike trains from each simulation. (C,D) PSTH from the same sim
ulations. The prominent millisecond structure in the PSTH (especially the first 50 
msec) result from the highly regular simulated trains, in which early spike times are 
well correlated with the onset of stimulation. Although the simulation parameters 
were fairly conventional, the highly regular spiking they produced was not observed 
in most cortical neurons. (E,F) Interspike-interval histograms from the same neuron. 
The broadness of these histograms arises from the combination of different mean fir
ing rates in one histogram, an artifact which is eliminated in the multi-histogram 
analysis of Cv. 
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Figure 2.12: Interspike-Interval Histograms of Simulated Spike Trains. At 
left are histograms using 1.0 msec bins, with data from the "barely plausible" com
partmental model, analyzed as described in section 2.3. At right are histograms 
from the "conventional" model (here shown as analyzed using 0.1 msec bins and 
20 histograms for greater resolution). Note that both models have much narrower 
histograms than the Macaque data, especially at short lSI values (high firing rates), 
reflecting the unnaturally high regularity of these simulated trains. 
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Figure 2.13: Comparison of Cv Values from Compartmental Simulations 
with Macaque data. Scattered crosses are Cv from areas Vl and MT. All sets 
of connected points represent simulations with random EPSP input to our detailed 
model of a reconstructed pyramidal cell. All data shown were analyzed with the 
same method (using 1.0 msec bins). The upper sets of filled squares are from four 
different EPSP rates in the "barely plausible" simulations, with fast EPSP duration, 
high 9peak, and all synapses near the soma. The lower sets of filled squares resulted 
from three EPSP rates in the "conventional" model, with slower and smaller synapses 
distributed over the dendritic tree. The Cv exhibited by this model is much lower 
than for the "b.p." case, because more EPSP's (130) were needed to fire the cell, and 
because high-frequency variation in the input is attenuated by the dendritic tree and 
the slow tpeak of the synapses. Note that for lSI's less than 10 msec both simulations 
give Cv values far less than those observed in monkey. 



"Conventional" 
0.2 cv 0.4 cv 

0.3 / b a 

0.1 0.2 
t 

LS"t(msec) 
0.1 

00 2 4 6 8 00 10 20 

"Barely Plausible" 

0.4 
cv 0.8 cv 

c 0.6 . ~ d 
t 

0.2 0.4 
' . 

I • 0.2 

00 2 4 00 10 20 

Figure 2.14: Comparison of Cv from Compartmental Simulations with In
tegrator Models. Scattered points represent the Cv's of simulated spike trains at 
various average EPSP rates; curves are predictions from the modified perfect inte
grator ( eq. 2.17), using the appropriate values of Nth, tpealo and initial l:lt, and with 
to= 1.5 msec. Cv values were calculated with 0.1 msec bin-width and 20 histograms 
to avoid artificially broadening the histograms. The "conventional" model with aver
age EPSP rate of 400kHz (a) and 103kHz (b). The "barely plausible" model with 
average EPSP rate of 43 kHz (c) and 21 kHz (d). These models required roughly 
Nth = 18 EPSP's ("b.p." model) or Nth = 130 EPSP's ("c." model) to trigger the 
first spike. At high firing rates the simulations produced very regular spiking, he
cause of their refractory periods, dendritic attenuation of high-frequency signals, and 
non-impulse EPSP's. At lower firing rates (LSt > 5 msec), those influences decreased, 
and the dominant effect became adaptation, as IAHP increased Cv by reducing only 
the DC portion of the random EPSP input current. The reasonable fits in three of 
the four cases suggest that the modified integrator model accounts for most of the 
statistical properties of the biophysical simulation (but not the monkey data), despite 
the model's many drastic simplifications. 
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to a lower value of Nth and hence a slight ly higher Cv ). 

In an alternative modification, the initial Hodgkin-Huxley-like currents (INa, IvR) 

were kept, while all other active currents were blocked, so that the simulated 

cell's firing rate in response to current injection showed the steep onset of 

spiking typical of a Hodgkin-Huxley-like system. The response of this model 

to the same random synaptic events tested above only differed in an absence 

of adaptation; the variability remained the same (not shown). 

Simulation Results 

The very regular spike trains from these simulations led to low Cv values, in 

particular at high firing rates: for !:l.t < 5 msec (i.e., firing rates above 200 Hz) 

Cv < 0.2, rising to 0.65 (b.p.) or 0.3 (c.) for !:l.t > 10 msec (Figure 2.13). 

Thus, they fail to reproduce by a large margin our experimentally measured 

variability at high firing rates. 

One indicator of the regularity of the generated action potential traces is that 

different simulated spike trains sharing a common average input EPSP rate 

(but with distinct time structures due to the random synaptic activation times) 

had virtually identical total numbers Sj of spikes. For a fixed excitatory in

put rate, Sj varied by only a few percent, far less than the ~ variation 

expected of a totally random point process or observed for our monkey data 

(see Table 2.1 and Figure 2.5). 

Another indicator of the extreme spiking regularity of the "conventional" sim-
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ulation was the presence of prominent peaks on the PSTH long after stimulus 

onset (Figure 2.11 D); the trains were so regular that a single spike's occur

rence could be predicted to a few milliseconds even 150 msec after the first 

spike fired! For these simulations of a passive-dendrite pyramidal cell, there 

exists over one order of magnitude difference between the expected and the 

measured variability. 

2.5.2 Comparison of Compartmental and Analytical 

Model 

It has been argued that the leaky integrator is such a simplified model of a 

real neuron-especially at high firing rates-that little can be learned from it. 

But our simulations do not support this view. 

While researchers usually believe that cortical neurons integrate synaptic in

puts to produce output spikes, they often criticize the various models ' simplifi

cation that the number of synchronous EPSP's required to fire (Nth) does not 

depend on firing rate or previous history. Such criticism is entirely justified. 

In fact , our simulation could generate values of Nth varying by more than a 

factor of four, depending on such circumstances. For instance, the "barely 

plausible" model required on average about 19 simultaneous EPSPs to fire 

from rest. After adaptation, a greater number was required. 

To what extent could a simple analytical model capture the firing properties 

of the detailed pyramidal cell simulation? We chose as a model the perfect 



CHAPTER 2. A PARADOX 61 

integrator with refractory period, modified for adaptation and random-height, 

non-impulse EPSPs (eq.s 2.14 and 2.16 above; A.9 and B.8 in the Appendices; 

we multiplied all the correction terms without considering their impact on one 

another). A leak term was not included, since its effect could only be studied 

by computer simulations; furthermore , any reasonable leak term would be 

overwhelmed by the adaptation term. When combined, these modifications 

yielded the prediction 

Cv /2 (LS:i - to) v N;;. b.t 
(2.17) 

where b.tst is the mean lSI at the start (fastest part) of the spike train. We 

chose t 0 = 1.5 msec (the minimum possible interspike interval in our simula-

tions), and tpeak directly from the corresponding simulations. For the threshold 

Nth we used the number of simultaneous EPSPs necessary to fire the cell from 

rest, although other definitions could have been plausibly used instead. 

Equation 2.17 gave a reasonable fit to three of the four simulated Cv's (see 

Figure 2.14) from the "barely plausible" and "conventional" models. In the 

poorest match (the fastest "barely plausible" simulation), the variability pre-

dieted by eq. 2.17 was too high by a factor of two; Cv values of the other two 

simulations were predicted within ten to twenty percent. Such good fits are 

surprising, because the modified integrator model includes neither dendritic 

effects, shunting terms, nor relative refractory period. 

While the entire modified integrator model seems to agree well with the entire 

compartmental simulation, it is less certain whether that agreement results 

from the combined agreements of each separate term, or only the fortuitous 
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cancellation of disagreements. As a test, a baseline simulation was generated, 

and each separate modification added separately to it. The baseline simulation 

used the same synaptic conductances and membrane currents as the "conven

tional" model, but with each synapse location of constant strength (rather than 

variable) at 70 kHz over 20 locations. This simulation had higher variability 

than predicted at intermediate rates (open squares in Figure 2.15), probably 

because the rapid change in firing rate caused by spike-adaptation broadened 

the intermediate-rate histograms (see section 2.3.2). 

The first modification to this simulation was to remove all non-linear conduc

tances from the soma except the spiking Hodgkin-Huxley ones, so that the 

modified cell did not exhibit spike-adaptation; this resulted in more regular 

firing than the baseline simulation, while firing at a constant rate (Figure 2.15 

A). This simulation matched the prediction almost exactly. 

The second modification included random-amplitudes in the already randomly

timed synaptic events of the baseline simulation (re-creating the "conven

tional" simulation above). This resulted in a significant increase in Cv, close 

to that predicted (figure 2.15 B). The third modification reduced the dura

tion of the synaptic conductances by a factor of five (from tpeak = 1.5 ms to 

tpeak = 0.3 ms ), while keeping its area constant (increasing 9veak from 0.5 nS 

to 2.5 nS). This modification was predicted to almost double Cv at the 

highest firing rates; the fact that it did not suggests that at those rates, the 

relative refractory period (not modelled) is important at limiting variability 

(Figure 2.15 D). This effect occurs because firing a spike during the relative 
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Figure 2.15: Modifications to the Integrator Model. All plots show simulations 
from the "conventional" model with fixed-amplitude synaptic currents (the "base
line"model, open squares) and predictions from the integrator model with refractory 
period 1.5 ms, Nth = 80, and spike-adapation currents (thin curves). (A ), The re
moval of spike-adaptation currents causes regular firing at a fixed high rate (filled 
squares); the prediction of the integrator model falls just between those simulated 
Cv values. (B ), When random amplitude synaptic currents are added to the baseline 
model, both predicted and simulated firing variability increases (thick curve, filled 
squares). (C), Synaptic conductance values fivefold faster than the baseline model's 
(but with similar area) lead to a predicted increase in firing variability at the high
est rates (thick curve) ; no such increase is evident (filled squares). (D), correlations 
among inputs EPSPs at the 10% level predict only a slight increase in variability 
(thick curve) of simulations (filled squares). 
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refractory period requires many more than Nth EPSPs, so that the output 

spikes are more regular. The prediction might also have failed because addi

tional high-frequency components of these faster EPSPs were mostly filtered 

out by the dendritic tree, an influence which is not included in the integrator 

model. 

The final modification was to include moderate correlations among synaptic 

firing times (as described and quantified later, using the contribution coefficient 

Cc, in Appendix D and section 2.6.5) Here, one EPSP had a 10% above

random chance-Cc = 0.1-of being preceded or followed by another within 

5 ms. Such coincidences lead to a slight increase in the average depolarization 

of each independent random "event" (single or paired EPSPs), which should 

be reflected in a slightly decreased Nth (eq. 2.24). The 10% correlation used 

here should have reduced Nth from about 80 to about 72, a change much 

smaller than the uncertainty in estimating Nth for this complicated cell in the 

first place. As expected, there was no significant change in the simulated Cv 

(figure 2.15 D). 

2.5.3 Active Dendritic Simulation 

The foregoing model included voltage-dependent conductances only at the 

soma, leaving the entire dendritic tree passive. In that case, the neuron will act 

as an integrator, with low firing variability. How could dendritic nonlinearities 

affect our results? 
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It is known that dendrites in hippocampal and neocortical pyramidal cells can 

generate TTX-insensitive aU-or-none electrical events that most likely involve 

calcium conductances (Wong, Prince, and Basbaum 1979; Amitai et al. 1992; 

Jones, Kunze, and Angelides, 1989; Regehr and Tank 1991; Westenbrook, 

Ahlijanian, and Catterall, 1990; see also Huguenard, Hamill, and Prince 1989). 

But the relatively long duration of such events (20-50 msec) would carry little 

high-frequency variability in current to the soma. Because there is not much 

detailed data available, we conducted an explicitly unrealistic simulation of 

active dendritic conductances, intending only to show that they are in principle 

capable of producing high firing variability in response to random input. 

We reasoned that since the soma spikes in response to currents from the den

drites, we must make the dendritic currents as variable as possible. Variability 

in dendritic current relative to its mean sustained value can arise in general 

from two mechanisms: 1) fast, strong depolarizing impulses (such as spikes), 

which add both variable and sustained components to the dendritic current, 

and 2) fast repolarizing impulses, which remove the sustained component of 

current contributed by the spikes. Fast repolarization increases the variable 

(AC) component of dendritic currents and reduces the sustained (DC) com

ponent. 

In simulations of dendritic spikes, we chose strong values of the repolarizing 

current lvR, so that the voltage at the soma returned within a few milliseconds 

to nearly the same voltage it had before the dendritic spike (without this very 

strong rectifying current, the somatic depolarization persisted, decaying slowly 
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with the cell's passive time constant). Because the cell carried little lasting 

memory of a spiking event, the cell did not integrate dendritic spikes, but only 

fired upon the coincidence of several of them. 

We therefore simulated active Hodgkin-Huxley-like conductances in the basal 

terminal branches, between their tip and most distal branching. We matched 

the mean sodium conductance to its somatic value (GNa = 200 mScm-2 ), 

and used a fast potassium conductance twice that value (or 3.5 times the 

somatic GDR) to accomplish the repolarization outlined above. Even with 

these very strong conductances, most neighboring dendritic terminal branches 

were decoupled, so that a spike in one would not necessarily fire its neighbor. 

In addition, most voltage-dependent conductances in the soma were removed, 

along with the basket-cell inhibition and all apical input simulated earlier. As 

a result this "bare" neuron contained only Hodgkin-Huxley-like mechanisms 

and a passive membrane with time constant of about 30 msec. Each basal 

dendritic compartment was subdivided into 20 sub-compartments (1600 sub

compartments total) to ensure that the high-frequency dendritic fluctuations 

were integrated faithfully. Apical dendrites were left passive and unstimulated 

because they consumed large computational resources while contributing little 

voltage to the soma. 

Each of 42 active dendritic terminal branches was stimulated with single trig

gering pulses, each pulse instantly resetting the local membrane voltage to 

-40 m V and initiating a dendritic spike. Each dendritic spike caused a peak 

somatic depolarization between 2 - 9 m V . Each terminal branch was stimu-
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lated independently of the others, but the input to a single terminal branch 

was not random: we allowed for an absolute refractory period of 2 msec after 

each spike's firing before choosing a random time at which to fire it again. 

This requirement increased the regularity of the dendritic input and limited 

the speed at which the dendritic spikes could fire, hence keeping the soma's 

output spike rate lower than we desired. 

As a result of this bombardment by dendritic spikes (up to 22 dendritic 

spikes/msec), the somatic voltage fluctuated strongly about a roughly con

stant -65 m V (Figure 2.16 A). As desired, there was a large variability in the 

somatic voltage without significant sustained depolarization. Each of the three 

dendritic spike rates used produced a constant average output spike rate, so 

that we could analyze with a single histogram the Cv values of each of the 20 

trains simulated at that rate (Figure 2.16 B). Cv values were 0.6 - 0.8, sig

nificantly above those for the passive-dendrite models, and in the same region 

as the monkey data; the variance in spike-number O"~ reached nearly Poisson 

values (0.7S). 

In order to isolate the relative contributions to firing variability of the den

dritic sodium currents, the potassium currents, and the triggering pulses, we 

performed the same simulation for two related scenarios. In one scenario, 

we reduced lvR currents by a factor of ten from their values above, leav

ing enough delayed rectification to reset the local sodium channels but not 

enough to significantly repolarize the soma after a dendritic spike. This simu

lation naturally required less frequent dendritic spiking to fire the soma; when 
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Figure 2.16: Highly Variable Spiking Caused by Simulated Strong Dendritic 
Nonlinearities. Our layer-V pyramidal cell described above was endowed with only 
Hodgkin-Huxley-like conductances at the soma and on the most distal branches of 
the basal dendrites; no other active currents or synaptic inhibition were included. 
Dendritic spikes (thin line in inset) were triggered in each of 42 active basal branches at 
a random time more than 2 msec after its previous firing, and independent of the other 
branches' triggerings. (A) The most variable somatic firing occurred for dendritic 
dendritic potassium conductances 9DR twice the strength of the sodium conductance, 
because the strong repolarization cut short the somatic depolarization (thick line 
in inset), thereby preventing temporal integration. (B) Less variable firing occurred 
when the dendritic 9DR was reduced to 1/10 of its above value, thereby allowing spikes' 
depolarization to accumulate in the cell body over time and permitting temporal 
integration of dendritic spikes. (C) The control case: highly regular spiking occurred 
in dendrites with no active conductances, as many triggering pulses were integrated to 
fire the cell. (D) Cv values for the three aforementioned simulations: strong IvR (top 
curve), weak lvR (lower curve), and passive dendrites (bottom curve) . Each square 
represents the Cv calculated from 20 simulated trains at a constant firing rate. Only 
the case with strong dendritic 9DR yielded high output firing variability consistent 
with the monkey data. 
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its output rate was adjusted to match that of the strong-InR case above, it 

produced Cv values about half as large (0.2- 0.4), suggesting that fast active 

rectifying currents in the dendrites can be an indispensable contribution to 

output variability (Figure 2.16 C) . 

A small portion of the soma's depolarization arrived not through active con

ductances, but merely from the triggering pulses which reset terminal branch 

voltages randomly to -40 m V. We verified that the triggering pulses by them

selves contributed virtually no variability to the output by eliminating all ac

tive dendritic currents, while keeping the triggering pulses; the cell's response 

at the same output rates above was extrememly regular (Cv = 0.02- 0.07; 

Figure 2.16 D) . 

2.6 Discussion 

We will now briefly review the assumptions underlying our spike train analysis, 

discuss the experimental data and then list possible objections to our compart

mental modeling efforts. We will finish by describing some of the implications 

of our analysis. 
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2.6.1 Statistical Assumption Underlying our Data Anal-

. 
YSIS 

There exists a very rich literature concerned with the statistical analysis of 

spike trains using the theory of stochastic point processes (Perkel et al. 1967; 

Tuckwell 1989) . Almost invariably, it is assumed that the spike generating 

process is a stationary one, so that the underlying probability distribution of 

these point events does not change with time, or depend on a "starting" time 

(Burns and Webb 1976; Correia and Landolt 1977; Teich et al. 1977; Lan-

sky and Radii 1987) . However, the spike trains used in our study all occur 

following stimulation, and their response is non-stationary. The most promi-

nent such non-stationarity is the decrease in firing rate with time (Figure 2.1 

C,D), reflecting both adaption processes intrinsic to the cell as well as network 

effects. 

Since we were not concerned with the detailed fitting of analytical distribution 

functions to the interspike-interval histograms of these spike trains, we tried 

to account for the nonstationarity inherent in the data by using the simple 

normalization process described in Section 2.3.1. That method calculated an 

approximate instantaneous firing rate from the PSTH and the stimulus efficacy, 

and used that rate to create several separate, near-stationary histograms for 

Cv analysis. 

We also concluded that the firing variability arises at a fast timescale, i.e., 

milliseconds, rather than at the slower timescale of varying average rates, i.e. , 
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tens of milliseconds. In a different study;we had computed the autocorrelation 

functions associated with the single cell data derived from macaque area MT 

(Bair, Koch, Newsome, and Britten 1992). The absence of a broad central 

peak around the origin- associated with a process whose mean rate varied 

slowly over time (see Figure 7 in Perkel et al. 1967)-suggested that adjacent 

fast ISis were uncorrelated, so that a fluctuating mean rate did not contribute 

to the high firing variability we observed. 

But in some MT cells a broad autocorrelogram peak (50-200 msec) did exist 

in the absence of any structure in the PSTH; we interpret this to mean that 

the firing rate fluctuated randomly. To estimate the fast-timescale variability 

in that situation, we computed Cv from many tiny histograms of only ten 

adjacent ISis each. Those Cv values were widely scattered about a mean 10-

20% below the Cv computed by the multi-histogram method (section 2.1), 

suggesting that those neurons fire quite irregularly at fast as well as slow 

timescales. 

2.6.2 The Variability of Cortical Cell Firing 

We measured the degree of variability of the neuronal spike discharge in a 

large number of non-bursting visual cortical cells in two different but related 

manners. One study was of the variability in the intervals between consecutive 

action potentials. Its principal result is shown in Figure 2.3: for firing rates 

up to several hundred Hertz, the value of Cv is close to 1 (characteristic of a 

random Poisson process) for both V1 and MT cells. 



CHAPTER 2. A PARADOX 72 

We also measured the variability in the number of action potentials in a single 

train for both sets of data (Figure 2.5). Our finding that the variance of cell 

firing increases roughly linearly with the mean response rate is well known for 

cells in cat and monkey primary visual cortex (Heggelund and Albus 1978; 

Tolhurst, Movshon and Dean 1983; Parker and Hawken 1985; Vogels, Spileers 

and Orban, 1989; Zohary, Hillman and Hochstein 1990), and has recently also 

been established for cells in area MT of the alert macaque monkey (Snowden 

et al. 1992). Our results here are compatible with the known literature, and 

are also approximately consistent with a description of spiking as a Poisson 

process (see above). 

2.6.3 Analytical Results 

In an attempt to understand the origin of the observed variability in the neu

ronal discharge, we analyze the variability of the impulse activity of different 

integrate-and-fire models. Our primary assumption is that these models-as 

well as the passive compartmental models- spatially and temporally integrate 

synaptic input from a large number of independent processes. Our results can 

be qualitatively explained by the Central Limit Theo1·em, which states that 

as the number n of incoming independent random variables Xi goes to infin

ity, the random variable defined by the mean over x;, i.e., x = (1/n) Zi=I x; 

has an asymptotically normal (i.e., Gaussian) distribution, with mean identi

cal to the mean of the population Xi and with standard deviation scaling as 

1/ vfii of the population's standard deviation. In other words, if a neuron can 
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only be brought to fire action potentials by summing over dozens or more of 

independent synaptic inputs, it should fire very regularly! 

This intuition is born out by an analysis of the Cv of different integrator mod

els, which are summarized in the contour plot (Figure 2.8). The high Cv value 

we observe experimentally can only be obtained by either assuming that Nth 

is very small, i.e., that 1 or 2 inputs are sufficent to trigger the cell, or that the 

time-constant T is a fraction of a millisecond (Figure 2.9), thereby preventing 

any effective temporal integration from occurring. Further modifications to 

the leaky-integrator model, such as hyperpolarizing (adapting) currents (Ap

pendix A) and the finite width and variable amplitude of EPSPs (Appendices 

Band C), do not change in any significant manner our fundamental conclusion 

that integrator models produce very regular output trains at high firing rates. 

2.6.4 Biophysical Detailed Simulations 

It can be argued that simple integrator models do not provide a realistic de

scription of cortical pyramidal cells. In order to satisfy ourselves that a more 

realistic neuron which integrates many independent EPSPs is still inconsistent 

with the measured high variability, we numerically simulated the dynamical 

properties of a HRP injected and reconstructed neocortical, layer V, pyramidal 

cell. While the shape and electrical properties of this cell were derived from cat 

visual cortex, its properties are not likely to differ fundamentally from those in 

monkey visual cortex, the source of our variability data. We acknowledge that 

some of our monkey cells-especially the fastest-firing ones- may have been 
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rapidly firing interneurons rather than pyramidal cells ( Agmon and Connors 

1992). But we chose a pyramidal (rather than interneuron) cell model because 

pyramidal cells are far more common and larger, and hence probably represent 

the majority of the monkey cells recorded. 

Conceptually, we would like to distinguish these simulations according to 

whether the cell acts as an integrator or whether it acts as a high fidelity tem

poral coincidence detector. Accordingly, for the majority of our simulations, 

we assumed that the dendritic tree contained no voltage-dependent membrane 

conductances (integrator mode), while in a second, more exploratory set of 

simulations we endowed the distal part of the basal dendritic tree with strong 

nonlinearities (coincidence mode). 

Passive Dendrites: Integrator Mode 

If the simulated pyramidal cell was bombarded by massive amounts of fast , 

excitatory synaptic conductance inputs of the non-N-methyl-D-aspartate (non

NMDA) type, such that it fired at the high firing rates observed in our monkey 

data, then its output firing-even in the "barely plausible" simulation-was 

much more regular than the monkey cells' firing. Both the experimental and 

the modelling data are compared by the variability in the number of action po

tentials per trial, and by the rate-normalized Cv . Thus, in spite of the complex 

dynamics of the seven voltage- and time-dependent currents at the soma, the 

simulated cell essentially still acted like an integrator, and its low variability 

was predicted by a modified integrator model (eq. 2.17; Figure 2.14). 
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Similar to the integrate-and-fire model discussed above, high Cv values could 

only be obtained if single EPSPs were very large (greater than 10m V, thereby 

reducing Nth to 1 or 2), or if the passive time-constant was in the submillisec

ond range. But these ranges are excluded by intracellular recordings. Evidence 

from neocortical and hippocampal slice recordings report a range of unitary 

EPSPs between 0.05 m V and 3m V, with the majority of averaged EPSPs less 

than 0.5 m V (Thompson et al. 1988; Sayer et al. 1990; Mason et al. 1991; 

McNaughton et al. 1981). Those measurements do include the multiple con

nections which single input axons often make on individual cells. Occasionally, 

much larger EPSPs have been observed (C. Stevens, personal communication). 

And recordings from the cell body of cortical pyramidal cells yield values of T 

on the order of 10 to 20 msec in the intact animal (Creutzfeldt et al. 1964; 

Douglas et al1991), and much larger values in slice neurons using the patch 

clamp technique (Spruston and Johnson 1992), all well beyond the necessary 

submillisecond range. We did not simulate any voltage-dependent (NMDA) 

synaptic input, since the long decay times (20- 50 msec; Hestrin et al. 1990) 

of the NMDA-associated conductance would dramatically reduce variability in 

synaptic currents. Modification of other cellular parameters, such as lowering 

the threshold for initiation of action potentials or blocking all but the fast 

sodium and the delayed rectifier potassium current, had very little effect on 

the Cv values. 

While an inherently random firing mechanism could in principle account for 

the high variability we observe in monkey cells, some research (in other neuron 

types) has suggested that the spike-firing mechanism is very reliable. Calvin 
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and Stevens (1968) concluded that cat spinal motoneurons derive at least 

90% of their already small firing-time variability from variability in synaptic 

currents. Bryant and Segundo (1976) found that various neurons in Aplysia 

gave virtually identical responses patterns to repeated injections of white-noise 

current. This reliability occurs because the types of statistical fluctuation 

expected from spike-generating mechanisms-for instance, random channel 

openings-have small quantal size, so their collective effects are reasonably 

constant over a reasonably large membrane area (Strassberg and DeFelice 

1992). In general, only the largest quantal effects-such as EPSP arrivals-will 

contribute significantly to firing variability. 

Active Dendrites: Coincidence Mode 

We also simulated active dendritic conductances whose random triggering 

maximized the cell's firing variability. We found it very difficult to "con

struct" a pyramidal cell that fires as irregularly as the monkey cells. For such 

events to cause highly variably somatic firing, the dendritic spikes must be 

large, fast, and strongly repolarizing. Only under these conditions do we see 

high variability for spikes before adaptation sets in. Yet we do not claim that 

such dendritic nonlinearities exist, but only that they can, in principle, explain 

the observed variability. 

The most important characteristic of this simulation, and the reason why it 

produced such high variability of output firing~ was that it did not perform 

temporal integration of dendritic spikes, but only c~incidence-detection among 
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them. This property became evident in the cell's strikingly strong response 

to slightly synchronized inputs: when dendritic spikes were re-organized to 

fire in simultaneous pairs (rather than singley) at the same average rate as 

before, the cell's output firing rate increased by over 50%. Such coincidence

detection is analogous to the "logic operations" postulated to take place among 

dendritic spines (Shepherd et al. 1989), and has been discussed for leaky

integrator models operating at much slower rates (Bugmann 1991). But in 

such a scheme, the individual output spikes would represent the fundamental 

elements of logical computations at the millisecond scale, rather than mere 

"noise" in an average firing rate which is averaged out over tens to hundreds 

of milliseconds. 

2.6.5 Network Effects 

Of the many parameters which we need to reevaluate in light of this dis

crepency, perhaps the most intriguing is the possibility that the individual 

synaptic events impinging onto a cortical neuron are not independent after 

all. In that case, the Central Limit Theorem would not apply any more. In 

particular, what if the EPSPs arriving from different neurons were synchro

nized? What degree of synchrony could account for the firing variability of 

our cells, and where might it come from? 

Weakly synchronized EPSPs would not be sufficient. In all of the foregoing 

models (except the T < 1 msec case), the neuron's output variability directly 

reflects the variability of its synaptic input current. Therefore, if many small 
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EPSPs are to account for the observed high output variability, they must be 

strongly synchronized, so that the resulting input current is just as variable 

as a current composed of individual 10 - 15 m V events (i.e., the effective 

Nth :::; 2). Any significant number of non-synchronized EPSC's would create 

a nearly DC "background" current, which would reduce the variability of the 

net input current and hence of the output firing. Such strong synchrony might 

result from network effects such as burst synchronization (Bush and Douglas 

1991; Koch and Schuster 1992). 

For synchronized firing to explain the Cv results presented here, a near

majority of the EPSPs must participate in coincidences at the millisecond 

scale, because high output variability from an integrator-model still requires a 

high variability in synaptic input current, A quantitative estimate of the type 

and amount of synchrony necessary to create a given firing variability is given 

in Appendix E; the surprising result is that even moderate amounts of spik

ing synchrony (as measured between cell pairs by cross-correlation methods) 

can mask much stronger synchrony in the whole cell population, so that the 

highest levels measured might account for much of the variability observed. 

Regardless of the order of correlations assumed among a perfect integrator's 

EPSPs, a pairwise "contribution coefficient" of Cc ~ 0.2 (among the highest 

measured, Toyama et al. 1981) can yield Cv ~ C;1 = 0.44 (see eqs. E.19 

and E.24). This represents a significant increase in variability, although not 

enough to solve the paradox by itself. 

While those amounts of firing synchrony are still not sufficient to cause the 
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high variability discussed here, that synchrony is too large to have resulted 

from integrator-type model neurons under any reasonable input configura

tions, as shown in Appendix F ... but a millisecond-scale coincidence-detecting 

model neuron can easily account for that paradoxical synchrony of cortical 

firing. This second paradox results from the same root cause as the variabil

ity paradox-the fact that integrator-model firing times are better determined 

by their previous firing than by their present input- and may prove equally 

instructive. 

Highly synchronized EPSPs were first proposed as the "reverberation" in a 

"cell assembly" by Hebb (1949), and later as "synfire chains" by Abeles (1990). 

As evidence, Abeles cites millisecond precision in repeated interspike intervals 

observed in various locations of monkey cortex in his laboratory (Abeles 1982) . 

Similarly precise ISis are reported by Strehler and Lestienne (1986) for mon

key visual cortex, Frostig et al. (1985) for cat medial frontal cortex, and 

Legendy and Salcman (1985) for cat striate cortex. But highly synchronized 

inputs would raise serious questions about the "stochastic" nature of neurons 

(Knight 1972; Sejnowski 1981; Hinton and Sejnowski 1986), and the resulting 

justification for population coding and massive redundancy. 

It is tempting to invoke chaotic dynamics to explain this firing irregularity, 

especially because these cells contain coupled nonlinear mechanisms and be

cause chaotic behavior has been observed in other neural systems (Freeman 

and Van Dijk 1987) . But this particular system showed no noticable chaotic 

behavior in all the simulations performed, and real cortical cells show virtually 
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no firing irregularity when injected with DC current , so a chaotic explanation 

must await a means of producing the chaotic dynamics inside a single cell. 

2.6.6 Conclusion 

According to our current understanding of pyramidal cells, only a few situ

ations could cause near-random, fast firing in these cells: a very strong in

hibitory leak (leading to an effective membrane time constant T ~ 0.2 msec); 

extremely strong synaptic events(> 10 m V depolarization per EPSP); strong 

and fast nonlinear dendritic all-or-none events, with fast repolarization; or 

highly synchronized, non-random synaptic input. In short: either the cell 

must have extremely large, fast depolarizations, or it must have a very fast 

mechanism for repolarizing the membrane during "integration." In both these 

cases, the high lSI variability results directly from an equally high variability 

in the currents arriving at the soma. Neither case corresponds to temporal 

integration over small, independent, excitatory synaptic events. 

The traditional view of cortical firing variability has been that information is 

only carried in the average spike rate (frequency code) ; scatter about that rate 

represents random "noise," whose particular structure is of no use. According 

to this view, a neuron which fires very randomly carries uncertain information, 

because of the inevitable scatter in the number of counts in any time window

only a few distinct counting rates can be distinguished in a short integration 

time. Thus, a highly irregular neuron is the "worst possible" at carrying 

information in its average rate. Stein (1967b) found that such a frequency-



CHAPTER 2. A PARADOX 81 

coding neuron has a channel capacity decreasing roughly as log(1 / Cv) for 

large integration times. While such frequency-coding is very inefficient, it 

is robust to perturbation of individual spike times, and it does not require 

complicated postsynaptic neurons to "decode" its message. Furthermore, high 

variability may have useful properties. It can help a neuron to "explore" its 

nearby synaptic vector-space during unsupervised learning (Mazzoni et al. 

1991). And it may enable neurons to implement multiplicative (quadratic) 

computations (Srinivasan and Bernard 1976; Suarez and Koch 1989; Koch 

and Poggio, 1992;). 

The alternative view is that each spike's arrival time signifies an independent 

message of some sort (an asynchronous binary pulse code). If each message 

(spike) has the same probability of arrival, independent of the other messages, 

then the resulting spike train is Poisson (by definition), and the spike train 

carries the maximum amount of Shannon information possible for its fixed 

bandwidth and firing rate (Stein 1967b; the less predictible a spike is, the 

more information it carries.) Thus, a highly irregular neuron would be the 

"best possible" for carrying information in its individual spike times, although 

the nature of the information encoded and the ability of subsequent neurons 

to use it may be unclear. Further experimental and computational studies are 

required to determine whether cortical computations occur at the millisecond 

level. 



Chapter 3 

A Solution: submillisecond 

coincidence detection in active 

dendritic trees 

3.1 Introduction 

The fundamental output of a cortical neuron is a single action potential lasting 

about a millisecond, which can in many cases cause an equally brief excitatory 

synaptic current. But can a single neuron use that temporal precision in its 

computation? 

In search of a possible cellular basis for millisecond-scale computations, this 

chapter tests the upper limit of computational bandwidth in individual cortical 
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pyramidal cells by postulating one situation-the presence of active spiking 

conductances in distal dendrites-in which such a cell might preferentially 

respond to synchronized EPSP's . Rough analytic predictions and detailed 

simulations of a reconstructed pyramidal cell together suggest that such a 

cell could in principle perform submillisecond coincidence detection. Previous 

related work by others has included numerical simulations which explored 

the computational properties of active dendritic trees (without emphasizing 

fast time~cales; Jaslove 1992; Shepherd et al. 1989; Shepherd and Brayton 

1987), and analytical work which yielded far more sophisitcated expressions for 

electrical activity in dendrites (Jack et al. 1983) than the simplified expressions 

used here. 

This chapter has two sets of goals: 

1) To explore the requirements of high-frequency coincidence dis

crimination; to present "proof-of-concept" simulations showing that 

postulated membrane properties might perform such computations 

in a realistic cell model; to show that such membrane properties 

are consistent with published intracellular recordings; and to spur 

debate on whether such fast computations actually occur. 

2) To describe dendritic spiking by simple analytical expressions 

accurate at the 70-80% level, which are based only on physical 

principles and constants, and which use no free fitting parame

ters. These approximations should demonstrate that the effects 

are mostly understood, and in addition should provide simple seal-
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ing expressions which can extrapolate results from the few simu

lated parameter regimes into unsimulated territory. If successful, 

these approximations and scaling formulae will be a useful back-of

the-envelope adjunct to brute-force simulations, and may provide 

a conceptual link between the fundamental cable equations and 

numerical simulation of them. 

84 

We must beg the reader's indulgence when many of these mathematical sim

plifications pile so deep upon each other that the original phenomenon is ob

scured. We have tried to include "plain English" summaries throughout this 

chapter and in the Discussion, so that someone uninterested in the mathemat

ical details can skip the equations. 

This analysis invokes two unorthodox assumptions: that thin distal dendrites 

contain strong and fast Hodgkin-Huxley-like conductances (e.g., sodium spik

ing conductances), and that synaptic conductances (EPSCs) in those dendrites 

may have local depolarizations of tens of millivolts and durations well less than 

a millisecond. These assumptions are defended in the Discussion, and some 

experimental tests for them are proposed. 

3.2 Cable Theory at Fast Timescales 

The starting point for analysis of an active dendritic tree is the analysis of a 

passive one. We can consider a typical dendrite as a semi-infinite passive cable 
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of fixed diameter, which contains distributed conductances and capacitances: 

ra ; (~) 
2 

=intracellular axial resistance (rt/em) 

1 
9m 1rdGm = - =membrane conductance per fiber length (rtem)-1 

rm 

em 1rdCm = membrane capacitance per fiber length ( F /em) 

d branch diameter (em) 

(Jack et al. 1983). Synapses and active channels are usually characterized 

by conductances in Siemens (S, e.g., 9m), and passive properties are usually 

given by resistances (rt, e.g., rm)· But both units describe the same physical 

mechanisms, so we will try to use whichever units are most often cited. 

For a time-independent (stationary) voltage imposed at one point on the den-

drite, the distance over which that voltage decays along the dendrite is the 

familiar electrotonic space constant 

\ ( )-1/2 ADC = ra9m , (3.1) 

which limits the physical spread of signals much as their temporal duration is 

limited by the membrane time-constant 

rmCm (3.2) 

But for time-dependent voltages, the presence of membrane capacitance re-

duces the distance over which voltages spread below the electrotonic length. In 

the high-frequency regime, the capacitive (diffusive) term dominates the con-

ductive (dissipative) leak, so that the relevant length constant is given only 

by capacitance, intracellular resistance, and time, and membrane resistance 
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can be ignored. We will investigate this regime of timescale t ~ Tm, without 

discussing the case of fast events with strong membrane leaks, as simulated by 

Jaslove (1992) and Shepherd (1987, 1989). 

For this situation we will find a time-dependent length constant At which will 

approximate the spatial and temporal scale at which voltages spread and decay 

in response to a brief current pulse, such as might result from a synaptic event 

or a spike inside a dendrite. 

When rm = CXJ, the cable equation reduces to the diffusion equation (Jack 

1983, eq. 3.7): 

av 
TaCm 8t (3.3) 

If an instantaneous pulse containing charge Q is injected at timet = 0 at the 

end x = 0 of such a semi-infinite cable, then its voltage distribution will be 

Vo(x, t) 2Q ( 1 (x)2) 
uemvf21i exp -2 -;;. (3.4) 

where 

(3.5) 

But real membrane currents are not infinitely brief or strong, so we will adjust 

this solution to include two timescales: the duration t0 of the current pulse 

(assumed to be rectangular), and the timet elapsed after the end of the current 

pulse. Let us first use the delta-function expression Vo to find the approximate 

response Vapp to a current pulse, which will have the same functional form as 

V6 , but will be displaced in time by f:lt (so that at t = 0 the charge is already 

somewhat spread out away from x = 0). 
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First let us find b.t. Suppose we have a steady current pulse between t = -t0 

and t = 0; we can compute the actual voltage at t0 by the convolution of the 

delta function with the current's time window. We want to replace that steady 

pulse with a single delta-function at time -b.t, so that the approximated 

voltage at t = 0 is the same as the voltage measured at time b.t resulting from 

a delta-function at t = 0: 

Vavv(O, 0) = Vs(O, b.t) (3.6) 

We require that these two methods produce the same voltage peak at t = 0, 

X= 0: 

_!_ jo dt'Vs(O, -t') 
to -to 

1 jo - dt'( -t')-1/2 
to -to 

to 
4 

Vs(O, b.t) (3.7) 

(3.8) 

b.t (3.9) 

So a current pulse of duration t0 ending at t = 0 is approximated by a single 

delta-function at t = -to/4, giving us a new CTt to use in the expression for 

voltage in the dendrite: 

Vapp(x, t) -
2~ exp (-! (-=-) 2

) 
CTtCm 27r 2 CTt 

(3.10) 

where 

2(t + t0 /4) 
raCm 

(3.11) 

fort > 0 

Now we can find the length-scale over which charge is distributed, by defining 

a length >.(t) over which uniformly distributed charge would have the same 
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voltage as the peak of the approximate distribution, 

Q Vapp(O, t) (3.12) 
A(t)em 

A(t) 
1r( t + t0 /4) 

(3.13) 
TaCm 

1r(t + t0 /4)d 
(3.14) 

4RiCm 

~ lOOpm ( d f' c + to/4 f' C00!1cm f' . 
l.O~tm 0.25 ms ~ 

co-• ~:/=') 1/2 (3.15) 

The last expression (giving A(t) ~ 100 ~tm for a dendrite of diameter 1.0 ~tm 

subject to a current pulse of duration 1.0 ms) is intended to allow easy ex-

trapolation to other parameter values. In contrast, the value of Ave for such 

a fiber (with 1/Gm = 30k0cm 2 ) is much longer, 

Ave = 610 ~tm (3.16) 

We can define in a similar fashion the total capacitance C(t) charged by such 

a pulse, again assuming a constant voltage spread over a length .\(t): 

C(t) CmA(t) (3.17) 

(1rd)3
/

2 (Cm(t + to/4))
112 

2 ~ 
(3 .18) 

_ 12 ( d )
312 (t + to/4)

112 
(2000cm)

1
/

2 

~ 3.1 X 10 F 1 0 0 25 R . . . ~tm . ms , 

( 
c )1/2 

10-6 ~t;/cm2 (3.19) 

With this capacitance and the pulse charge Q we can estimate the voltage 

as a function of time, which we will do in the following sections. Although 

a real current pulse may have a complex shape, and a real cell will contain 
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branches of various diameters and geometries, this approximation shows the 

dominant effect: the capacitance charged by a fast pulse will be smaller than 

that charged by a slow pulse, and hence the peak voltage will be greater for 

the same amount of charge. And that voltage decays dramatically at the 

timescale of the pulse itself-rather than at the much slower timescale of Tm

allowing very strong and quickly-repolarizing EPSPs to exist inside dendrites. 

Such fast, localized depolarizations could in turn trigger voltage-dependent 

conductances in the dendrites, enabling the cell to perform (in principle) many 

simultaneous, near-independent computations at fast timescales. 

3.2.1 Simulated Pyramidal Cell 

Because the previous and following expressions are intended to augment (rather 

than replace) numerical simulation of the membrane equations, they will be 

compared to a compartmental simulation of an anatomically reconstructed 

and physiologically characterized layer 5 pyramidal cell from cat striate cor

tex. Simulations of this cell model without active dendrites have previously 

been successfully compared to the original cell's behavior at rest and under DC 

current clamp (Bernander et al. 1991). While this is still an entirely theoretical 

exercise- the comparison of two types of theory is in no sense an experimental 

test-it will help clarify the strengths and weaknesses of the approximations. 

The compartmental model contained 1890 compartments (Figure 3.1). The 

soma and basal dendrites (where active conductances could reside) were mod

elled as connected cylinders with length at most 10 11-m, using the NEURON 
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program provided by Hines (1990). Apical dendrites remained passive, and 

had longer compartments (up to 200 p,m). Passive cell properties were those 

described above; spines were not included, but a correction for them is made 

in section 3. 7. 

The passive time constant was about r = 30 ms. (The actual membrane 

conductance was not uniform across the entire cell, but was slightly stronger 

within 60 p,m of the soma. That conductance was equivalent to the steady

state conductance which would be produced by 500 GAB AA and 500 GAB AB 

synapses firing at 1 Hz each. See Bernander et al. 1991 for further de

tails). The membrane capacitance was 1 p,Fjcm2 , and intracellular resistiv

ity 200 Ocm. Integration time-steps were 50 psec; finer time-steps changed 

spiking amplitudes and time-courses by less than 5% (within the range of 

approximation desired here), but slowed computation significantly from the 

"minute-per-6 ms" usually used. 

The only active properties investigated were those of the Hodgkin-Huxley

like equations (Hines 1990, and Appendix G), for which both sodium and 

potassium currents had fixed, voltage-independent equilibration times ( r( h) = 

0.5 ms,r(m) = 0.05 ms,r(K) = 2.0 ms) and conductances (GNa,GK) which 

were adjustable as parameters. The reversal potentials of those conductances 

were ENa =50 mV and EK = -95 mV; the threshold potential at which each 

opened was Vi;2 = -40 m V. Dendritic spikes were triggered in the center 

of terminal branches by conductance alpha-functions with peak time 0.1 ms 

and peak conductance 12 nS (unless otherwise specified); these parameters 
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Figure 3.1: (A) A layer V pyramidal cell, as recorded, reconstructed, and simulated 
by Bernander et al. (1991) from cat striate cortex. (B) A caricature of the compart
mental model of that cell, as modelled by Bernander et al. (1992) and used here. 
All passive-membrane areas in the simulation of dendritic spiking are shown in grey; 
Hodgkin-Huxley-like active membrane conductances were placed only on the 44 basal 
terminal branches (in black). The thicker, shorter regions between the soma and the 
black terminal branches are dendritic "trunks." (C) An action potential in a single 
terminal branch (thin curve) will create a brief, small depolarization at the soma 
(thick curve). 
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are consistent with some intracellular recordings, as discussed in section 3.9. 

In most of these simulations the soma was left passive, because the simula-

tions usually characterized only small somatic depolarizations well below firing 

threshold; an active soma makes virtually no difference. But the most distal 

basal dendrites almost always contained active conductances (/Na and lDn), 

in order to simulate the influence of dendritic spikes on each other and on the 

soma. 

Because somatic spiking is triggered mainly by instantaneous membrane poten-

tial, the primary variable measured here was depolarization. b. Vsoma represents 

the peak increase in voltage above the initial "resting" value Erest = -75 m V 

or -65 mV, 

max [Vsoma - Erestl 
t 

(3.20) 

In the following expressions, Erest often approximates Vsoma, since their dif-

ference is usually much smaller than the potentials which dominate current 

flow. 

3.3 Fast EPSPs in Thin Terminal Branches 

The basal dendritic tree of this pyramidal cell has a structure which easily 

lends itself to a some simplification. The soma gives rise to ten thick basal 

dendritic trunks, each of which typically branches several times in the proximal 

20-30 J.Lm before terminating in long ( > 200 pm), thin ( < 1 J.Lm) distal terminal 
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branches (Figure 3.1). When a brief synaptic conductance opens in the center 

of such a terminal branch, only a small region is strongly depolarized, and for 

only a brief length of time. 

The large depolarization occurs because the dendrite is thin, so that only a 

small, nearby capacitance can be charged by a synaptic event . The rapid repo

larization occurs because the soma and other dendrites together have a much 

larger capacitance, onto which the synaptic charge diffuses. As this section 

will show, this repolarization does not require a fast membrane time-constant, 

and indeed still occurs in the limit of zero membrane conductance. Such large, 

quickly-repolarizing synaptic events will not occur at the soma, because the 

soma has a larger capacitance (hence a smaller peak depolarization), and be

cause the thin dendrites around the soma do not provide much of a "sink, onto 

which the somatic depolarization can quickly equilibrate. Rall (1964) noted 

that this capacitive effect allows a faster-than-exponential EPSP decay at the 

soma, which could let the cell selectively fire in response to precisely timed 

excitatory synaptic events. Such precision in all these cases stems from his 

discovery that local EPSPs in branched structures always decay faster than 

Tm (as reviewed in Jack et al. 1983). 

What is the peak depolarization and time-course of a local EPSP inside a thin 

dendrite, if we assume only capacitive diffusion of charge (i.e., no leak terms)? 

We derive an approximation which gives only a very coarse estimate of the 

amplitude and timescale of fast EPSPs inside thin dendrites, and compare 

them to simulated EPSPs. 
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Suppose the synaptic conductance has the traditional form of an alpha-function 

with peak conductance 9peak and time-to-peak ipeak, 

9syn( i) ( gpeak ) texp(1- tjipeak), 
ipeak 

(3.21) 

so that 9syn(tpeak) = 9peak· We can approximate the synaptic current by assum-

ing that the local peak depolarization ~ Vdend is small relative to the synaptic 

driving potential Esyn - Erest, so that the synaptic current is proportional to 

the synaptic conductance: 

fsyn(t) (3.22) 

The true current only reaches zero at infinite time, so we can take the end 

of the current pulse as occurring at time t = 3tpeak, when over 80% of the 

eventual charge has passed through the synapse. 

{3tpeak 
Qsyn ~ Jo Isyn(t)dt (3.23) 

(3.24) 

This synapse does not pass constant current (as assumed above), but has a 

current peak at ipeak and a voltage peak (in simulations) at about 2tpeak· But 

simplified expressions for charge distribution (eqs. 3.10 and 3.13-3.15) do not 

account for the structure of the current pulse; they only describe a pulse after 

it has finished. Our "best guess" is to start our approximated EPSP at time 

3tpeak (when most of the synpatic current is finished), but to assume that all 

of that charge arrived in an impulse at the time of the actual peak current 

(i.e., at ipeak, i.e., ~t = 2tpeak before we "start" the synapse, over twice as long 

as the value ~t = 3tpeak/4 which would occur in Vapp' eq. 3.10). Because the 
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charge distributes itself over a capacitance C(t) on both sides of the synaptic 

site, our predicted EPSP there will be 

V(O, i > 3ipeak) 
Qsyn 

~ 

2C(t) 

0.8eRtf2
gpeakipeak(Esyn- Erest) 

(1rd)3f2 (Cm(i- 3ipeak + 2ipeak))112 

(3.25) 

(3.26) 

We cannot account for the rising part of the EPSP, during which an impulse 

of charge is explicitly inappropriate; such a rise is not even graphed in Figure 

3.2. This approximation has many flaws: the approximation neglects current 

flow out the dendrite's end into the soma, the synapse saturates towards Erev, 

and we ignore the 20% of charge contained in the alplha-function's tail. But 

eq. 3.26 predicts the magnitude and initial time-course of simulated EPSP's 

(Figure 3.2) to within 20%. The simulation here used a terminal branch 

of diameter 1.05 J.Lm, with a single synaptic event located halfway along its 

226 J.Lm length (Esyn = 0 m V; 9peak = 6 nS; 0.05 :S; ipeak :S; 0.4 ms ). The 

prediction worked best for short times, for which the charge was confined to 

the dendrite. For times t > 3 ms, the simulated EPSP dropped off much 

faster than predicted by eq. 3.26 because the proximal end of the dendrite 

was effectively grounded by the soma. 

This model is also accurate in predicting the EPSP decay. We can quantify 

the EPSP duration by the time T1; 2 from its peak to half its peak amplitude. 

The simple model decays by 1/2 when 

2ipeak 

TJ/2 + 2ipeak 

1 

2 
(3.27) 

(3.28) 
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Figure 3.2: (A) A fast synaptic conductance in a terminal dendritic branch, over 
100 p,m from the soma, can create a strong, brief, local depolarization Vdend· Curves 
are simulated EPSP's, with 9peak = 6 nS and various ipeaki connected points are 
predictions by a simple model, which assumes that the peak depolarization occurs 
at time 4tpeak, carries total charge 0.8egpeaktpeak(Esyn- Ere.st) (eq. 3.25), and decays 
with time due to charge diffusion in an infinite capacitive cable. (A) ipeak = 0.05 ms, 
(B) ipeak = 0.1 ms, (C) tpeak = 0.2 ms, (D) tpeak = 0.4 ms. Because the simple model 
is based on an infinitely strong current impulse, it cannot account for the rising phase 
of an EPSP. But this model does explain the fast decay and the fact that the peak 
voltage scales roughly with .,;r;;;:k, rather than linearly in tpeak as the total charge 
does. Note that somatic depolarizations (shown below each curve) are typically a 
hundredfold weaker than dendritic EPSPs, and lack the fast repolarization. 



CHAPTER 3. A SOLUTION 97 

This very narrow pulse-width matches almost exactly the t 1; 2 of EPSPs with 

fast ipeak = 0.05 and 0.1 ms, and agrees within 25% for the longer ipeak · 

Such fast EPSPs, which result from capacitive charge-equilization rather than 

resistive decay, allow in principle submillisecond coincidence-detection among 

individual EPSP's. If the dendritic shaft were active, two simultaneous, co

localized synaptic events could drive the local membrane above threshold (e.g., 

.6. "V;,eak ~ 2 X 20 m V for tpeak = 0.1 ms ), but those same two events would 

not initiate a spike if separated by only a millisecond. In contrast, the EPSP 

at the soma would decay at least ten-fold more slowly (rm ~ 15- 30 ms, 

Bernander et al. 1990) , rather than in the submillisecond range. In addition, 

these capacitive effects mean that the local peak amplitude of an EPSP scales 

as .,;r;;;:k, rather than linearly as the total charge does. 

While locally only two events might fire a dendrite, the somatic depolarization 

of the single synaptic event is a hundredfold smaller (D. V.oma ~ 0.2 m V) and 

lasts far longer (decaying with Tm ~ r 1; 2 ), so that the soma would need to 

temporally integrate many events to fire (a more rigorous distinction between 

temporal integration and coincidence-detection will appear in section 3.8). 

The small somatic depolarization for the tpeak = 0.1 ms dendritic synapse 

and its fast somatic rise-time are in the range of monosynaptic depolarizations 

observed in cortical somatic recordings (see section 3.9). 
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3.4 Active Dendritic Terminal Branches 

What happens when active conductances in one of those distal terminal branches 

create a dendritic spike? One trustworthy solution involves solving the Hodgkin

Huxley equations (which are themselves approximations) in a one-dimensional, 

dissipative, dispersive membrane. Here we will only describe a very approxi

mate view of this dendritic spiking. 

Let us suppose that one entire terminal branch-but not the dendritic trunk, 

other terminal branches, or the soma-is homogeneously coated with Hodgkin

Huxley-like channels, which can spike in response to synaptic currents (the 

black areas in Figure 3.1 B). Suppose (for a moment) that this terminal 

branch is connected directly to the soma (as is only one terminal branch in 

the reconstructed cell), and that the soma remains at resting potential. How 

much of the terminal branch will depolarize above threshold? How much 

current and charge will the spiking branch deliver to the soma, and to the 

other terminal branches? On what parameters do these results depend? 

First, we must ask which properties of the terminal branch itself will domi

nate: capacitive or resistive? Given a strong peak sodium conductance (during 

spiking) of GNa = 0.2 Scm-2 , we calculate a temporarily fast membrane time

constant 

Cm/GNa 

1 J.LF/0.2 S 

.005 ms 

(3.29) 

(3.30) 

(3.31) 
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This time-constant is far faster than the simulated time-constant of the sodium 

channels (here T( h) = 0.5 ms), suggesting that the capacitance of the terminal 

branch membrane itself will not seriously attenuate the spike's voltage within 

the spiking terminal branch. Furthermore, the passive membrane conductance 

(about 30 kncm2 ) is so much less than the peak active conductances that 

passive terms can be ignored; the only terms we will need inside the spiking 

branch are the axial and peak membrane conductances, ra and GNa· 

However, the capacitance of the soma and other terminal branches together 

will be substantial enough that they will not depolarize very much during the 

single dendritic spike. (We will assume this for now; this assumption will be 

verified by the results and simulations following) . So we ask: in what manner 

will the terminal branch sustain a spike, given the boundry conditions that 

the proximal end of it is effectively kept near resting potential, and the distal 

end is saturated near +50 m V? How much charge will it deliver to the soma 

during the spiking event? 

The best answers to these questions come from simulations. The actual behav

ior of a simulated dendritic spike is very complex: a strong synaptic event in 

the center of the terminal branch initiates positive feedback depolarization in 

nonlinear sodium and potassium conductances, which propagates away from 

the synaptic site in both proximal and distal directions. As a result, the mag

nitudes and time-courses of both currents vary dramatically from one end of 

the terminal branch to the other. 

To represent the net effect of these complicated interactions we can use sev-
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eral strikingly simple approximations. First, we can suppose that instead of a 

propagating action potential we have a single canonical Hodgkin-Huxley-type 

event, in which peak currents may vary along the branch, but all currents 

reach their peak values simultaneously. Then, we replace the complicated and 

temporally overlapping conductance curves 9Na(t) and 9K(t) with two non

overlapping triangular functions, whose peak value is assumed to lie at half 

the peak value used in the simulation ( G N a, G K) and whose duration is the 

conductance's simulated time-constant (T(h),T(I<)). This approximation is 

a very crude one, failing to account well for the sodium conductance's time 

course or for the potassium conductance's amplitude (Figure 3.3), but it will 

prove sufficient to explain many of the spike's influences. Because the sodium 

and potassium conductances are simplified not to overlap in time, the peak 

somatic depolarization occurs before any potassium current flows, and should 

be independent of GK (in simulations, changing GK from GNa/2 to 2GNa- a 

factor of four-changed ~ Vsoma by less than 10%, validating this approxima

tion). Unless otherwise noted, all simulations here used strong GK = 2GNa, 

as justified later in section 3.6. 

Now we will estimate the sodium current's effect on the soma. The voltage 

profile V(x) and transverse conductance 9Na(x) of this terminal branch are 

clearly inhomogenous, V being near rest ( -75 m V) at the soma end and near 

EN a ( = +50 m V) at the distal end. An axial current into the soma results from 

the sodium conductance. That conductance is open only above the threshold 

voltage Vi;2 (section 3.2), so that the axial current does not depend on Erest, 

but only on ENa - Vi;z. To find that current we will crudely characterize the 
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Figure 3.3: (A) Simulated active sodium and potassium currents inside a spiking 
basal dendrite (thick curves) are produced by Hodgkin-Huxley-like equations contain
ing characteristic temporal responses (rh, TK) and maximum conductance (GNa. , GK ). 
These conductances overlap in time, and vary in magnitude and shape along the 
dendrite. They can be approximated by two non-overlapping triangle functions (thin 
curves) with similar duration (rh,TK) and peak conductance (GNa./2,GK/2). The 
obviously poor match between the simulated conductances and these crude approx
mations does not prevent the approximations from predicting most of the influences 
of dendritic spikes on the soma and other dendrites. (B) A brief pulse ( ~ 1 ms) of 
depolarizing current from a dendritic spike only reaches the more proximal regions 
of the cell; the charge is deposited on a smaller region (relative to the whole cell) 
and produces a relatively higher peak depolarization. An approximation to the ca
pacitance charged is the parallel combination of the capacitance of the soma and the 
most proximal portions (black) of the apical dendrite ( 150 pm) and of the 43 other 
terminal basal branches (70 pm each). 
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active portion of the dendrite by a single input conductance in series with a 

battery ENa - Vi;2 • That input conductance is roughly given by two cable 

properties: (1) the intracellular axial resistance ra (D./em) and (2) the mean 

sodium conductance~ 0.5GNa7rd (D.cm)-1 (as averaged over the voltage range 

(3.32) 

(3.33) 

This is the "current-source" ( cs) approximation (Figure 3.4). The rightmost 

term is the input conductance of a semi-infinite cable with "leak" GNa/2 (Jack 

et al. 1983). This input conductance assumes that the entire active portion 

of the dendrite contains uniform, half-open sodium channels, although clearly 

the most proximal channels are fully closed and the most distal ones fully 

open. Most importantly, this approximation does preserve the scaling proper-

ties, showing how input conductance would change in response to changes in 

dendrite diameter, peak membrane conductance, or cytoplasmic resistivity. 

For example, the 1.0 J.Lm diameter dendrite simulated in Fig 3.5 is predicted to 

pass a current of 3.15 nA; the simulated value, as measured from the maximum 

proximal slope dVjdx, is 3.0 nA. No free parameters were needed to get this 

agreement between approximation and simulation. 

Because the voltage characteristics of spiking sodium channels are fairly con-

stant across various cell types, the driving voltage of about 100 m V should not 

vary. But the other parameters (dendrite geometry and sodium conductance) 

are more germane to the scale-dependence of dendritic spiking. In particular, 
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Figure 3.4: (A) A single spiking terminal branch (black) can be idealized as connected 
directly to the soma, with the peak voltage V(x) and peak sodium conductance 
9Na(x) varying along the branch's length. Axial current to the soma is produced in 
the region where V(x) is curved and 9Na is nonzero. An approximation to the peak 
current comes from choosing a representative input conductance and voltage for that 
region, and combining those into a current-source whose magnitude depends only 
on the membrane conductance and dendritic diameter (section 3.4). (B) When the 
terminal branch (black) is connected to the soma by a long dendritic trunk (grey), the 
branch's entire length may be driven above threshold, rendering the above current
source approximation invalid. In this case the best model for dendritic spiking is two 
resistors in series between EreiJt and ENa, representing the active membrane (Reff) 
and the passive trunk ( Rtk) . 



Figure 3.5: (left) Peak voltages V ( x) along two basal dendritic terminal branches 
during spiking events (thin line, a branch connected directly to soma; thick line, 
a moderately distal branch). Current into the soma is contributed by the curved 
regions; potentials below sodium threshold exist only in the left few microns of the 
proximal branch. (right) Somatic depolarizations for the same two spiking branches 
at various peak sodium conductance. The peak somatic potential change .6. Vaoma 

due to spikes in the proximal branch (filled squares) or the more distal branch (open 
squares) both follow the prediction (thin line, eq. 3.46) that somatic depolarization 

increases as ~-
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this approximation shows that the current injected by the dendrite into the 

soma is relatively insensitive to changes in peak sodium conductance, but is 

more sensitive to dendritic terminal branch diameter d, which affects both 

sodium conductance (per em) and intracellular axial resistance: 

Zcs ex ( GN•"'d' )'/' 
8ra 

(3.34) 

So Zcs ex (GNa) 112 (3.35) 

Zcs ex d3/2 (3.36) 

We can also find the length of the proximal dendrite which remains effectively 

"grounded" by the soma, and does not fire (called ht, for "length below thresh-

old"). In this region ~ Vdend remains below Vi1 2 , so the axial voltage drop ~ Vbt 

due to axial current ics along that length is ~ Vbt = Brest - Vi12 ~ 25 m V, so 

that 

(3.37) 

(3.38) 

So only the few most proximal microns of the dendrite are below firing thresh-

old. As can be seen in the simulation (Figure 3.5), the axial current in 

this region is constant (i.e., voltage is nearly linear in x) at a value of about 

3 x 10- 9 A. Note that Figure 3.5 shows the peak voltage values, which occur at 

slightly different times, rather than a particular "snapshot" at any one time. 

Figure 5 also shows that for these parameters, almost all the current into 

the soma is generated in the most proximal 30 pm of the terminal branch, 

where dVjdx and hence I are decreasing with x (i.e., curved). Regions more 
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distal than 30 f.t have constant peak voltage, and thus contain litt le net axial 

current. Those peak voltages in the proximal 30 f.tm are simultaneous on the 

spike's timescale, so that we do not need to consider propagation of the action 

potential. The fact that terminal branches longer than 30 f.tm did not increase 

somatic depolarization was verified by simulation. A truncated dendrite only 

30 f.tm long generated a .6. Vsoma only 10% less than that generated by an 

otherwise identical dendrite of length 27 4 f.tm. 

The above approximation was made for a dendritic terminal branch directly 

connected to the soma, so that its proximal end was held low, near Erest· But 

as long as that end of the terminal branch was below the activation potential 

of the sodium currents, its potential does not enter into ics, so that the spiking 

terminal branch can be viewed as a current (or charge) source- independent 

of its dendritic location or resting potential- rather than as a voltage source. 

In this approximation the somatic depolarization .6. Vsoma caused by a den-

dritic terminal branch should not depend on the intervening length of dendritic 

trunk, provided that the terminal branch's proximal end remains below Vi12 • 

But if there were a length of passive dendritic trunk with high resistance Rtk 

between the terminal branch and the soma (Figure 3.4 B) , would the peak 

current to the soma be reduced below ics? 

Yes. In the previous discussion, ics can be interpreted as resulting from a 

resistance Ref f between the location where the sodium conductances begin to 

open (i.e., Vi12 = - 40 m V) and EN a (Figure 3.4): 

R eff (3.39) 
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But this second model of spiking current is of two resistances Ref f and Rtk in 

series from ENa to Erest (Figure 3.4), so the resulting current from the above-

threshold dendrite is approximated by a "resistive-dendrite" expression, 

Zres 
ENa- Brest 

Rtk +Ref! 
(3.40) 

We now have two separate models for the current from a spiking dendrite 

arriving at the soma: the current-source model ( eq. 3.32) and the resistive-

dendrite model (eq. 3.40). We can combine them into a single prediction by 

noting that each model tends to overpredict current in the region in which 

it is not valid (e.g., ires is too large as Rtk ~ Ref f, and ics is too large when 

Rtk ~ Ref f). So a simple approximation is to calculate both currents for a 

given terminal branch, and then to choose the minimum of the two: 

Zax (3.41) 

This will be the predicted peak spiking current from an active dendrite to the 

soma, upon which many of this chapter's further approximations will be based. 

3.4.1 Somatic Depolarization from a Spike 

The net depolarization at the soma imparted by this current pulse can be 

calculated by knowing the total capacitance of the soma and of its proximal 

dendritic terminal branches. That pulse has duration r(h) = 0.5 ms, so the 

lengths of dendrite charged at its conclusion will be >.(t) = 70 flm for the distal 

basal dendrites and >.(t) = 150 for the apical dendrite. We can then assume 

that the charge is evenly distributed over the soma (of area 1230 fLm2
), over 
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the proximal 70 11m of each of the 43 other (non-spiking) terminal branches 

(mean diameter about 0.88 11m), and over the 150 11m of the apical dendrite 

(diameter 4.5 11m), for a total capacitance charged of 

~ 1.1 X 10-lO F (3.43) 

For simplicity, we ignore the variation in dendritic size and branching struc-

ture, and assume that each dendritic spike will create a voltage peak .6. Vsoma 

in accordance with the definition of C(t), eqs. 3.17-19. 

For the highly idealized triangular sodium conductance function outlined above 

(which will produce an axial current with similar time-course), the net (inte-

grated) charge Q deposited on Ctot will be the area under the triangle: half the 

product of the peak current and the current's duration. So the approximate 

net depolarization of the cell and dendrites due to the single dendritic spike 

ffill be given by 

(3.44) 

(3.45) 

2Ctot 
(3.46) 

This prediction was tested for each of the 44 terminal basal branches sepa-

rately, at both high and low peak sodium conductances ("strong HH," GNa = 

0.2 S- cm-2 ; "weak HH," 0.033 Scm-2 ). Figure 3.6 shows the peak somatic 

depolarization plotted against its value predicted from branch diameter and 

trunk resistance (eq. 3.46), so that a good match lies on the line with unit 
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slope. Most depolarizations lie within 20% of predicted values, showing the 

inherent soundness of the approximations. Histograms of .6. V:.oma show clus

ters around 6 m V ("strong HH") or 3 m V ("weak HH"); all of these isolated 

dendritic spikes are too small to fire a cell from Brest . 

The dependence of somatic depolarization on peak sodium conductance ap

pears in Figure 3.5, which shows .6. V:.oma predicted and simulated for two 

dendrites of nearly the same diameter ( 1. 0 J.Lm): one proximal, one distal. For 

both dendrites, .6. "Vsoma varies as JG;:., the weak dependence predicted by 

eq. 3.35 above. These simulations all are for active conductances which exist 

only on one branch at a time. 

3.5 Coupling Between Active Terminal Branches 

If all the terminal branches contain active conductances (with passive proximal 

trunks), can one terminal branch's firing induce another terminal branch to 

fire, or are the terminal branches effectively "de-coupled" from one another? 

3.5.1 Predicted Depolarization of Neighboring Branches 

Let us suppose terminal branch B1 fires , sending current down its connecting 

trunk to the soma (Figure 3.7). We examine its effect upon terminal branch 

B2 , connected to the soma by another trunk. If the trunks do not overlap, 

then the only common link between B 1 and B2 is the soma, and B2 will have 
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a depolarization no greater than .6. Vaoma (which, as we saw above, is too small 

to trigger a spike in B 2). But if the trunks share some common section T, with 

resistance RT, then the voltage drop across T due to B1 's firing will further 

raise the voltage at B2 • 

Let us first use the simplest possible approximation: we assume that the peak 

current from B 1 ( eq . 3.41) is the dominant effect, and that it reaches equi

librium in the local trunks, so that the depolarization at B 2 is approximated 

by the depolarization at the distal end of T (Figure 3. 7 B) (this approxima

tion neglects the dendrites' capacitive and leak effects). Then the peak voltage 

drop across trunk T ( .6. VT) is given by its axial resistance and the peak current 

through it: 

(3.47) 

The other component of the depolarization at B 2 is the somatic depolarization 

.6. Vaoma· We have calculated its peak value above ( eq. 3.46), but that peak 

occurs after the peak VT has passed, so that adding the two peak voltages 

(VT + .6. Vaoma) would give an overestimate of the true peak voltage reached 

at B 2 • Instead we will interpolate between two limiting cases. If the somatic 

voltage drop dominates (i.e., the shared trunk resistance is small), then we 

estimate t he peak voltage in the dendrite to be the somatic peak voltage ( eq. 

3.46; Figure 3.7C). But if the trunk voltage drop dominates (.6.VT ~ .6.Vaoma), 

then we take the peak in the dendrite to be the trunk voltage drop, added to 

the somatic voltage which exists at that time. Because the current pulse is a 

triangle, the peak spiking current occurs when only half the eventual somatic 
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Figure 3.6: Spikes in individual terminal branches produce somatic depolarizations 
consistent with predictions. Each of the 44 terminal branches was separately given 
active Hodgkin-Huxley-like kinetics and triggered to spike, while its 43 neighbors 
and the remaining cell contained only passive membrane properties. Plots of D. Vsoma 

(resulting from those dendritic spikes) against the values predicted by eq. 3.46 lie 
near the diagonal line of unit slope, which represents a perfect prediction (A, GNa = 
0.033 S cm-2 ; B, GNa = 0.2 S cm-2 ). Histograms show that D. V.oma cluster around 
3 mV (C, GNa = 0.033 Scm-2 ) or 6 mV (D, GNa = 0.2 S cm-2 ). In both A and B, 
filled points represent predictions by the current-source model ( eqs. 3.32 and 3.41 ), 
while open points were predicted by the resistive model (eqs. 3.40 and 3.41). 
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depolarization has occurred. 

So when RT is large, we assume .6. V.ama is half the value predicted by eq. 3.46, 

and we add this to the trunk's voltage drop to get the peak voltage increase 

.6. V.oma ,6. \/, 
2 + T (3.48) 

T(h)iax . R 
~ 

4
C + Zax T 

tot 
(3.49) 

A precise interpolation between these two cases ( .6. V.ama ~ .6. VT and .6. V.ama ~ 

.6. VT) would require a precise knowledge of the time-course of spiking current. 

For this inexact model, we can interpolate linearly between the two cases by 

a variables, which gives the fraction of somatic peak voltage (0.5 ::; s ::; 1) 

added to the peak trunk voltage drop. 

(3.50) 

(3.51) 

(i.e., s = 0.5 when .6. VT dominates, and s ~ 1.0 when .6. VT ~ 0). The 

interpolated voltage change at any basal dendrite due to the spiking of any 

other is then about 

(3.52) 

This approximation is very simplistic, in that it attempts to model highly 

transient events by interpolating between DC equations. But it works rather 

well. After triggering a spike in one of the most distal terminal branches 

on each of nine basal trunks, we recorded the peak voltages at the proximal 
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end of several representative terminal branches sharing part of the same trunk 

(only about half the measurement points were on the current-carrying trunk T; 

some measurement points were over 90 pm from it). Those peak voltages were 

predicted by eq. 3.52, using Rr along the common trunk T and calculating 

iax for the spiking terminal branch (the other parameters T(h) and Ctat were 

the same as before). 

In this simulation the other untriggered dendritic shafts were passive, so that 

they could not spike in response to the triggered spike. In a real cell all den

drites would (presumably) contain similar active conductances, so this model 

of a single isolated active branch is explicitly unrealistic, intended only to test 

the validity of eq. 3.52. 

The results are shown as the simulated b. VB2 plotted against the predicted 

value, so that a point on the line of unit slope would represent a prefect 

prediction (Figure 3.8). The fact that most points lie near that line shows 

that the peak voltage induced in neighboring terminal branches is determined 

primarily by the peak current injected and the resistance of the shared trunk, 

rather than by other dendritic properties. 

Those peak voltage increments (caused by spikes elsewhere) range from about 

0 - 80 m V for "strong HH," and 0 - 50 m V for "weak HH" (Figure 3.8). 

Because a terminal branch receiving greater than b. VB2 ~ 25 m V would ex

ceed threshold and fire (depending on Erest), many of those terminal branches 

would be triggered by the initial distal firing, increasing the trunk's b. Vr and 

probably recruiting still more terminal branches in a chain reaction. This 
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Figure 3.7: (A) When a terminal branch (Bt, black) spikes, it will cause a depolar
ization ~ VB 2 in a neighboring branch (B2 , white). To calculate the magnitude of 
the depolarization at B 2 due to B 1 , a simplified model assumes that B 2 is directly 
connected to the same dendritic trunk as B 1 , that B1 provides peak current in ac
cordance with eq. 3.40, and that the two terminal branches share a common section 
of dendritic trunk T with resistance RT. This model is represented by the circuit 
shown, where ~ VB2 is the sum of voltages produced across the cell' s capactitance 
~ ~oma and RT (see section 5) . (B) The contributions to ~ VB2 of somatic depo
larization (thin curve) and voltage drop across RT (dotted curve) depend on their 
relative magnitudes. When D. ~oma is relatively small, the peak D. VB2 (thick curve; 
arrow) only includes half the D. ~oma. (C) When D. ~oma dominates, nearly its full 
value contributes to D. VBl (arrow). A simple interpolation between these two cases 
uses a variable s (0.5 S s S 1.0; eq. 3.51) to determine the fractional contribution of 
~ ~oma to ~ VB2, and predicts ~ VB2 ( eq. 3.52). 
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"recruitment" effect is undesirable if the spiking terminal branches are to re

main decoupled, but may be useful for enhancing the depolarization caused 

by spikes in individual dendrites. 

3.5.2 Recruitment of Neighboring Branches by Spikes 

The present treatment does not examine how dendritic spikes propagate (action

potential style) with varying "safety factor" (Jaslove 1992), but whether a 

single dendritic spike will depolarize neighboring branches so that they also 

fire. 

The preceding simulations suggested that when all the terminal branches con

tain active conductances, a strong dendritic spike in one branch would of

ten trigger spikes in neighboring branches. Several such spikes firing in re

sponse to a single triggering event would obviously increase the event's peak 

somatic depolarization. Depending on the conductance strength and on the lo

cal branching geometry, that increased depolarization could either trigger still 

more branches, or it could saturate the local branches so that their combined 

somatic depolarization would be not much greater than that of an isolated 

branch. These competing effects make it difficult to predict the net somatic 

depolarization in response to a single triggering event, but simulation can re

solve the question. This kind of "chain reaction" has been simulated for inter

actions among active dendritic spines by Segev and Rall (1988) and Rall and 

Segev (1988), whose results are qualitatively similar to the present simulated 

interactions among spineless branches. 
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In the present simulations, each terminal branch was triggered separately, 

and peak .6. Vsoma plotted as a function of the independent-branch prediction 

(eq. 3.52). (This was identical to the method of section 3.4 and Figure 3.6, 

except that now all branches were active and Erest = -65 m V was higher, 

encouraging neighboring branches to fire). The results (Figure 3.9) show 

that most somatic depolarizations were above the values predicted for isolated 

dendrites, indicating significant recruitment: for the "weak HH" case ( G Na = 

0.033 Scm-2 ) , the mean depolarization was shifted from 2.7 mV to 3.5 mV, 

and for the "strong HH" case (GNa = 0.2 Scm-2 ) from 6 mV to about 13 mV. 

The "strong" case had four dendrites whose individual firings were capable of 

triggering all the basal dendrites, and about 1/6 of the 44 dendrites in this 

case delivered .6. Vsoma 2: 15 m V, which would be sufficient to bring the soma 

to firing threshold. 

So there is a qualitative difference between the "strong" and "weak" cases: 

strong active dendritic conductances tend to make individual branches more 

likely to fire together, and weak conductances make them more likely to fire 

independently. In all cases, some branches are much more influential than 

others, and it is often ( counterintuitively) the more distal ones which have the 

largest somatic influence, because the voltage drop across their shared Rtk can 

recruit many neighbors to fire. 

In both strong and weak cases, many individual dendritic branches could trig

ger other branches (i.e., branches were not decoupled). But still most triggered 

shafts could not alone bring the soma to firing threshold, even when recruit-
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Figure 3.8: Each dendritic spike depolarizes each neighboring branch B2 as predicted 
by the weighted sum of .6."Vsoma and .6.VT (eq. 3.52). When the most distal terminal 
branch on a common trunk was active and triggered, the peak depolarization .6. Vs2 

was measured at the proximal end of other terminal branches B2 (relative to Erest = 
-75 m V) . .6. VB2 plotted against the predicted depolarization (Figure 3. 7 and section 
3.5) has points lying near the diagonal line representing perfect predictions: (A) 
GNa = 0.033 S cm-2 ; (B) GNa = 0.2 S cm-2 • If the neighboring branches had 
also contained active conductances, most of the larger depolarizations observed (e.g., 
.6. Vs 2 > 25 m V) would have recruited those branches into firing in concert with the 
initially triggered branch. 



II~ 

"weak HH" 

~Vsoma SliD. ... 
6 

20 

mV # 
4 

10 

2 
A 

00 mV oo 
1 2 3 c 1 2 3 4 5 6 7 

~ Vsoma pred. mV 

"strong HH" 
~Vsoma SliD. •' . 20 

60 # 
40 mV 

10 

20 

B 
00 8 mV 00 2 4 6 20 40 60 

~Vsoma pred. D mV 

Figure 3.9: When all terminal branches contain active conductances, spikes in in
dividual terminal branches recruit other branches to fire, and produce somatic de
polarizations greater than predicted. All 44 terminal branches were given active 
Hodgkin-Huxley-like kinetics, but only one at a time was triggered. ~ V,oma resulting 
from those dendritic spikes (relative to Erest = -65 m V) is shown plotted against 
the values predicted by eq. 3.52 (points lying on the diagonal line represent a perfect 
predition): (A) GNa = 0.033 S cm-2

; (B) GNa = 0.2 S cm-2
• Points well above 

that line represent the synchronous firing of one or more neighboring active dendrites 
which are triggered by the first one's firing. Histograms show that the simulated 
~V,oma cluster around 3- 4 mV when GNa is small (C, GNa = 0.033 S cm-2), 

but that for larger GNa (D, GNa = 0.2 S cm-2 ) very large somatic depolarizations 
can sometimes result from a single synaptic event. Even in this case, most isolated 
events would not be sufficiently strong to bring the cell to a typical firing threshold 
of~ -50 mV. 
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ment was included. As a result, it would still take two or more events in concert 

to fire the soma, and the cell would act as a kind of "AND" -gate among den

dritic spikes. (The next sections deal with the circumstances under which a 

cell could use such cooperative dendritic events as a submillisecond-resolution 

coincidence-detector). 

If on the other hand the entire basal dendritic tree and soma (not just the 

terminal branches) contained strong active conductances, a single distal spike 

might drive the dendritic trunk above threshold. We can estimate that a 

typical firing trunk-of diameter 2 - 3.5 J.tm-would contribute a somatic de

polarization large enought to fire the entire cell (recall that iax scales as d312 , 

eq. 3.36, leading to a peak depolarization 3-6 times greater than the typical 

7 m V observed from 0.8- 1.0 J.tm branches in Figure 3.6) . 

This situation was tested, with "strong HH" conductances simulated over the 

soma and entire basal tree, and Erest = -65 mV. Of dendritic spikes initiated 

in 44 of the terminal branches separately, all but two (i.e., about 95%) caused 

the soma to fire. Because single branches typically fired the entire cell, the cell 

acted as an "OR" gate among those dendritic spikes. The computation might 

be still more complex if dendritic spikes were generated by the coincidence 

of synaptic events (sections 3.3 and 3.8; the cell would compute the "OR" 

function of many separate "AND" functions of EPSP's, making it an "AND

OR" cell). 
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3.6 Somatic Repolarization by Dendritic Spik-

There are two important ways a dendritic spike can influence the soma-it can 

depolarize the soma (as discussed above), or its delayed-rectifier (IvR) currents 

can repolarize the soma after the voltage peak has occurred, thus limiting 

temporal summation of sequential spikes. Both these effects strongly influence 

the cell's computational properties (see Discussion). Here we will qualitatively 

estimate the influence of IvR at the soma, while saving the mathematical and 

simulation details for Appendix H. 

A brief somatic depolarization will decay even without IvR, as the charge 

equilibrates into the dendrites (see the upper trace of somatic voltage in Fig-

ure 3.11 A,C). What determines the additional role of lvR in repolarizing the 

soma? Clearly, such variables as the peak conductances (GK and GNa), diam-

eter d, and resistivity R; all can change absolute depolarizations. But if we 

examine the relative repolarization of a spike- the fraction of sodium charge 

removed by potassium- then we must investigate properties which differ be-

tween the two conductances, rather than properties they share in common 

with the dendrite. 

One such difference is reversal potential. Because EK = -95 m V is much 

closer to E r est =~ -70 mV than is ENa =+50 mV, a potassium conductance 

has a smaller driving voltage and will pass a far smaller current than will a 

sodium conductance of equal magnitude. A lower Erest magnifies this effect, 
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as the driving potential between EK and Erest diminishes. Potassium con-

ductances' weaker current can be roughly canceled by their longer duration 

(T(K) = 2.0 ms vs. T(h) = 0.5 ms), so the net integrated potassium and 

sodium charge to the soma may be very similar for equal conductances. 

But when potassium conductances are much larger than sodium conductances, 

the peak potassium current is limited by the dendritic resistance between the 

active region and the soma ... strong potassium conductances cannot generate 

correspondingly large currents. Thus, it takes very strong potassium conduc-

tances (ranging from two to four times the peak sodium value, depending on 

Erest) to ensure that virtually no persistent somatic depolarization remains 

after a dendritic spike (Figure 3.10). For this reason, the ratio GK = 2GNa 

was used elsewhere in the chapter, unless othewise specified. 

3.6.1 Pulse Widths 

A dendritic spike with little persistent somatic depolarization is very brief. In 

fact, we can expect that the entire duration tv of the somatic depolarization-

approximated as a triangle-will be only the sum of its rise time T( h) and its 

fall time T(K), so its full-width at half maximum t1;2 would be about half that 

amount: 

tp 
,..._, ,..._, T(h) + T(K) (3.53) 

tl/2 >=:::: 
T(h) + T(K) 

(3.54) 
2 

tl/2 
,..._, 1.2 ms (3.55) ,..._, 
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Figure 3.10: The amount of somatic depolarization (due to a dendritic spike) which 
persists afterwards depends on the strength of the spike's delayed-rectifier current 
]DR· The time-course of somatic depolarization (simulated using strong active den
dritic conductances GNa = 0.2 S cm-2 ) is plotted for various ratios GK/GNa (A, 
Ere8t = -75 mV; C, Ere8t = -65 mV). A dimensionless measure of the persistent 
depolarization, .6.p, is the ratio of the somatic voltage 8 ms after triggering (filled 
circles) to its value in the near-absence of potassium currents (open circles); .6.p = 1 
represents no attenuation due to potassium currents, and Ap < 0 represents a spike 
which leaves the cell more polarized than before. Plots show .6.p at various G K / G N a 

for two resting potentials (B, Ere8t = -75 mV; C, -65 mV) and peak sodium con
ductances (GNa = 0.02 S cm-2 , open squares; GNa = 0.2 S cm-2 , filled squares). 
The thin curves are predictions by the highly simplified model (eq. H.16 and Figure 
10). Only at fairly strong GK /GNa > 2 and moderately high Ere8t = -65 m V can 
dendritic ]DR currents remove persistent depolarization, a condition necessary for 
efficient coincidence-detection among dendritic spikes. 



CHAPTER 3. A SOL UTI ON 123 

Measurement of t 1; 2 for the dendritic spikes simulated above (section 3.5, all 

dendrites active) show this to be the case (Figure 3.11). Most simulated pulse 

widths were near 1.2 ms, and a few wider pulses (1.3 -1.6 ms) occurred when 

one dendrite recruited others in firing, so that several sequential dendritic 

spikes appeared at the soma as one broader spike. This broadening was more 

prominent in the "strong HH" case, where stronger depolarizations caused 

more frequent recruitment. 

3.7 Capacitance of Dendritic Spines 

The pnmary influence of dendritic spines-which were not included in the 

above simulations-is to increase the membrane's effective capacitance and 

leak conductance by a factor of 2-3 (Jaslove 1992, Amitai et al. 1992). Leak 

conductance has proved unimportant at the fast timescales of this study, but 

a change in membrane capacitance can be critical. 

The membrane capacitance for the entire simulated cell was thus doubled, to 

test the influence of spines' added capacitance and to verify that the approxi

mations derived above can account for it. (This extra capacitance is equivalent 

to placing spines over the entire cell, including the soma; the simulation pro

gram could not assign separate Cm for dendrites and soma). In the case of an 

isolated EPSP inside a dendrite (section 4), a doubling of membrane capac

itance should decrease A(t) by 1/v'2and increase C(t) by v'2, decreasing the 

peak voltage by the same amount. So the 19 m V EPSP simulated earlier ( 
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Figure 3.11: Somatic depolarizations from dendritic spikes with strong GK have very 
brief durations. Histograms of somatic pulse-width t 112 (FWHM) for ~ "Vsoma in re
sponse to triggering synapses at each of the 44 terminal branches, with active con
ductances in all branches, Ere11t = -65 mV, and GK = 2GNa , as above (Figure 3.9) . 
When sodium conductance was weak (A, GNa = 0.033 S cm-2), depolarizations were 
smaller and fewer neighboring dendrites were recruited to fire, so that pulse-widths 
clustered near the value 1.2 ms predicted in section 3.6. For larger sodium con
ductances ( GNa = 0.2 S cm-2 ), larger depolarizations sometimes recruited several 
branches to fire sequentially, broadening the somatic pulse to values near 1.5 ms (the 
few cases in which all dendrites fired are not shown here). Depolarizations of such 
short duration could be used to perform sub-millisecond coincidence detection among 
dendritic spikes. 
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Figure 3.2; tpeak = 0.1 ms) is predicted to peak at only 13.5 m V with the 

doubled membrane capacitance; the newly simulated value was 14.4 m V, a 

difference of 7% from the prediction. 

A similar test was made for the somatic depolarization .6. "Vsoma due to a spike 

in that dendrite. The predicted effect on Ctot is similar, with the dendrites' 

effective capacitance increased by v'2 (through >.(t) and Cm) and the soma's 

capacitance doubled. The somatic peak earlier had been .6. "Vsoma = 8.3 m V , 

yielding a predicted 5.45 m V-which differed from the newly simulated peak, 

5.6 m V, by only 3%. We can conclude that dendritic spines' capacitance will 

decrease all peak depolarizations from the values simulated in rough accor

dance with these predictions. These predictions do not cover another impor

tant effect: the blurring of the somatic EPSP from a fast dendritic synapse 

(Figure 3.2). Fast dendritic EPSPs (Tpeak = 0.1 ms) can be broadened by 

the spines' capacitance from a long somatic rise-time of 0.6 msec (no spines, 

Cm = 1 J.LF/cm2 ) to an even longer 1.1 msec (with spines, Cm = 3J.Lmfcm2
) , 

which lies better within electrophysiological observations (Mason et al. 1991, 

Komatsu et al. 1988, Thompson et al. 1988; see section 3.9 for further details) . 

3.8 Quantifying Coincidence-Detection 

A neuron's ability to "detect" coincidences requires both that it fire in re

sponse to coincident dendritic events and also that it not fire as frequently 

in response to non-coincident events. So we should investigate the cell's re-
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sponse to a large ensemble of inputs, in order not to ignore some detail of the 

interactions between synaptic events. Here we attempt to quantify a neuron's 

"effectiveness" at coincidence-detection by idealizing two extremes forms of 

pulse input: perfectly even, regular pulse trains vs. pulses which are bunched 

optimally to fire the neuron as fast as possible. 

Consider a neuron receiving input events (either EPSPs or dendritic spikes) at 

fixed average rate fin· If those events are evenly spread out in time and posi-

tion (arriving at regular times on alternate dendrites, with the least chance of 

non-linear interaction), then the cell's output firing rate can be called fe, rep-

resenting the neuron's response to nearly "pure" temporal summation without 

coincidences. 

But if the input events at the same rate are optimally arranged-usually in 

exactly coincident volleys barely sufficient to fire the cell, with no events be-

tween volleys-then the cell will fire at a higher rate, !opt :2: fe (the "optimal" 

definition of fopt guarantees that no more effective temporal arrangement of 

the same input pulses can exist). Both these arrangements of input events, the 

"even" and the completely synchronized, are highly unnatural in a biological 

context; they are meant here only to represent the two extremes over which a 

cell might be conceived to operate. From those rates we can produce a dimen-

sionless number Ec, which represents the cell's "effectiveness" at distinguishing 

between coincidence-detection and temporal integration, 

Ec - 1 
_ fe 

fopt 
(3.56) 

o::; Ec ::::; 1' (3.57) 
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where Ec = 0 represents a cell which cannot distinguish coincidences, and 

Ec = 1 represents a cell which performs only coincidence-detection, with no 

temporal integration at all. 

3.8.1 Integrator-Models as Coincidence Detectors 

As a benchmark, we can easily calculate Ec for three well-known integrator-

models of cells (for references and descriptions of all three models, see Tuckwell 

1989, or Jack et al. 1983, ch. 11). These integrator models assume that all in-

put current pulses cause identical depolarization (unity) and have vanishingly 

brief duration, and that the cell fires and resets upon attaining a threshold 

depolarization of Nth pulses (e.g., Nth or more coincident input pulses will 

fire the cell). None of these models have spatial extent or explicit membrane 

conductances. 

The simplest model, the "perfect integrator," is a leak-free capacitor which 

accumulates depolarizing pulses until it reaches threshold, at which time it 

instantly fires and resets. Because Nth inputs accumulated over a long time 

produce exactly the same depolarization that Nth coincident inputs would 

produce, 

'perfect' : fe 

and Ec 

+ fin 
)opt= N ' 

th 

0 

In contrast, the leaky integrator model loses depolarization at a rate 

dV 
dt 

V- Erest 
T 

(3.58) 

(3.59) 

(3.60) 



CHAPTER 3. A SOLUTION 128 

so that inputs pulses are "forgotten" with time. This model fires in response 

to evenly spaced inputs as 

fe - rlog ( 1 - _____!_!:__ ) 
( N ) -l 

f inT 
(3.61) 

for 
Nth 

< 1 
finT 

(3.62) 

Je 0 otherwise (3.63) 

(Stein 1967a). But its response to optimally-timed coincident inputs (in volleys 

of Nth) is the same as that of the perfect integrator model, because the cell 

fires before the leak term can repolarize it: 

'leaky' : !opt 
fin 

(3 .64) -
Nth 

SO Ec - 1 + Nth (3.65) f- T log(1 - !!ta_) 
tn fin-r 

for 
Nth 

< 1 (3.66) 
finT 

Ec - 1 otherwise. (3.67) 

This expression for Ec is near unity only when 1N,h is near to or greater than 
tn'r 

one, i.e., using low input rates or very strong leak terms (Figure 3.12). 

The third model is the perfect integrator with refractory period, which cannot 

be triggered during a "dead time" t0 after each firing. The refractory period 

does not change this model 's response !opt to coincident inputs which arrive 

outside the refractory period, i.e., as long as the input does not try to make 

the integrator spike more often than once every t 0 , 

J: - fin < cl 
Jout - N 0 

th 
(3.68) 

so ! opt = fin/ Nth as before ( eq. 3.58). But a certain portion of evenly spaced 

inputs will fall in the refractory period, so the output rate saturates for high 
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Figure 3.12: Input-output characteristics U out vs. fin) of three integrator models for 
regular input, and their effectiveness at detecting coincident inputs pulses. (left) The 
perfect integrator with threshold delivers an output after every Nth input pulses (here 
Nth= 6) . A leaky integrator with decay constant rm cannot fire at input rates below 
Nth/rm (here rm = 3 ms ). A perfect integrator with absolute refractory period cannot 
fire again for time t0 after firing, so !out saturates at 1/to (here to = 1.0 ms ). (right) 
For a fixed input rate fin , both leaky and refractory models respond to coincident (or 
optimal) inputs as perfect integrators. Those stronger responses (relative to temporal 
integration of evenly timed inputs) gives an effectiveness measure E c, where E c = 1 
represents a model which performs no temporal integration, and Ec = 0 represents a 
model which cannot distinguish inputs according to coincidence. Note that the leaky 
integrator only serves as a good coincidence-detector ( Ec ~ 1) at low input rates. 
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input rates. Thus at high rates coincident inputs are more effective than evenly 

spaced ones, so Ec is increased: 

("refractory") fe _0_ +to (
N )-

1 

fm 

1 _ ( 1 + finto) -
1 

Nth 

(3.69) 

(3. 70) 

In summary, the refractory period can detect high-resolution temporal infor-

mation (Ec > 0) only at high input rates, while the leaky integrator does 

so only at low rates (Figure 3.12) . These models in combination would be 

more realistic, but analyzing them is well beyond the benchmark-only role 

they serve in this chapter. In addition, a refractory period is a poor model for 

coincidence-detection inside cortical cells, because it operates most effectively 

when the cell fires regularly, which cortical cells do not do. (See Pratt, 1989 

for computational applications of the refractory period for blocking axonal 

conduction.) 

3.8.2 Pyramidal Cells as Coincidence Detectors 

One potential method of coincidence-detection allows the coincidence of two 

or more submillisecond EPSPs in the same dendrite to cause a dendritic spike. 

In this case the dendrit ic branch thus acts as a kind of AND gate over synaptic 

events, with a dendritic spike as its output. If any one of those dendritic spikes 

can fire the entire cell, then the cell's output acts as an OR gate over dendritic 

spikes, and thus as an "AND-OR" gate over synapses. (The term "AND-OR" 

for this cell type is meant to characterize an approximate mode of operation; 
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by no means will the cell perform the exact logical function. (See Koch et 

al. (1992) for a survey of possible multiplicative interactions in neurons, and 

Shepherd et al. (1987, 1989) for a treatment of dendrites as AND-gates). 

A second type of coincidence-detection might use a spike in a single terminal 

dendrite as the fundamental input to the soma. Such a branch can briefly 

influence the soma both by directly depolarizing the soma and by firing neigh

boring branches which help depolarize the soma. Dendritic spikes cause much 

stronger somatic depolarization than dendritic EPSPs alone (typically 2-15 

m V vs. 100 - 200 11 V), so it is possible that only a few dendritic spikes 

in coincidence can fire the soma. But they can only contribute to precise 

coincidence-detection if their persistent depolarization is immediately removed 

by a very strong delayed-rectifier conductance (GK > GNa), so that the cell 

does not temporally integrate the dendritic spikes. This mode of operation 

can be dubbed an "AND" cell, although the cell only approximates a logical 

"AND" function over dendritic spikes. Both "AND" and "AND-OR" cells 

have behaviors which vary, depending on peak conductance strengths and fir

ing rates (as we will see below) . 

Defining or evaluating the coincidence-detecting effectiveness Ec for a realis

tic neural model is more difficult than for a simple integrator-model, since 

synaptic inputs on different dendrites have different amplitudes and interac

tions with one another. Thus, the "optimal" combination of coincident inputs 

to generate fopt is far from obvious among the myriad possiblities. This chap

ter presents only a rough estimate of Ec, based on simulations with the same 
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parameters as before (with the addition of Hodgkin-Huxley-like conductances 

at the soma, in order to create the somatic spikes which formed the output: 

GNa = 0.2 Scm-2
, GK = 0.12 Scm-2

, as used for the same cell in Bernander 

et al. 1991). 

To generate the even, regular synaptic input producing fe for both "AND" and 

"AND-OR" models, the 44 synaptic sites (one per distal basal dendrite) were 

fired in a particular listed order. In this case no synapse firing was immediately 

preceded or followed by another synapse sharing the same dendritic trunk (so 

that sequential events were electronically "far away" from each other on the 

dendritic tree). Only after about 5 firings would another site on the same 

trunk be fired, and only after all 43 other locations on the list had fired would 

the same synapse be fired again. 

To estimate the maximum output rate fopt for the "AND" cell, the same 

synapse order was used to generate coincident EPSPs, one EPSP per distal 

dendrite. These occurred in groups of M synchronous EPSPs, each EPSP 

typically causing a dendritic spike and all M dendritic spikes together causing 

a somatic spike. M should ideally just exceed the number of synchronous 

dendritic spikes necessary to fire the soma; in practice, the choice of M, like 

the choice of firing order, was estimated and led to large uncertainties in ! opt· 

M varied depending on firing rate, with 5 :::; M :::; 40 for the "weak HH" 

"AND" cell and 7 :::; M :::; 10 for the "strong HH" one. At the first firing 

time, the first M sites on the list were fired simultaneously; the next time 

fired the next M sites, and so on. Since M was chosen not to divide 44 
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evenly, a given synapse would participate in different groups on subsequent 

firings; firing times were chosen so that !opt (in units of sites/ sec) equalled fe, 

as required by their definitions. This method was by no means the optimal 

way for coincident events to fire the cell, but it was easily understood and 

implemented. Each dendritic "firing" resulted from a single strong EPSP 

(tpeak = 0.1 msec, 9peak = 18 nS) at the terminal branch's center. 

For the "AND-OR" cell, evenly-timed synaptic events occurred in the listed 

order (as above, with weaker synapses 9peak = 6 nS, which could not alone fire 

a dendrite). The cell performed temporal integration as those events slowly 

depolarized the soma. Higher output rates !opt resulted from pairs of such 

co-localized events (i.e., 9peak = 12 nS total in one dendrite), which together 

could typically fire the dendrite. (The ability of each single dendrite to fire 

the entire cell depended critically on the presence of very strong dendritic 

GNa = 0.5 nScm-2 and weaker GK = 0.25 nScm-2 throughout the dendritic 

tree). 

Coincident inputs fired the AND-OR cell typically about three times as fast as 

evenly spaced inputs did (Figure 3.13A-C). This effectiveness Ec ~ 0.5- 0.7 

is not "perfect," but does reflect a definite preference for coincidences. This 

preference results entirely from the capacitive properties of the cell, which 

make dendritic EPSP's much stronger than somatic ones. Unlike the AND cell, 

this model did not use lvR to prevent temporal integration, so that every EPSP 

in this model gave a persistent somatic depolarization and thus contributed 

slightly to temporal integration. 
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Figure 3.13: A simulated, reconstructed pyramidal cell can serve as a coincidence
detector when active conductances are present on its dendrites, as shown by these 
graphs of somatic voltage. If the entire basal tree contains strong Hodgkin-Huxley
like conductances (left column; GNa. = 0.5 Scm-2 ), the cell will fire slowly (at rate f e) 
due to evenly timed EPSPs (which do not initiate dendritic spikes), but fires faster 
(at fopt) when EPSP's at the same rate occur in optimally coincident pairs inside 
the same dendrite and thus fire dendritic spikes (A,B) . This preference for coincident 
inputs is quantified by values of Ec above zero (C). This cell requires simultaneous 
EPSP's on the same branch (an AND function), but fires the soma whenever any 
branch fires (OR function), so it can be dubbed an "AND-OR" cell. If instead the only 
dendritic conductances occur on terminal branches, but not on dendritic trunks (right 
column; GNa. = 0.2 Scm-2 ; "strong HH"), evenly-timed spiking branches cannot 
usually fire the soma; only coincident dendritic spikes (M ::::::: 8 at once) can fire the 
cell reliably (D,E) . This cell performs very little temporal integration of dendritic 
spikes, so that its effectiveness Ec as a coincidence-detector is high (near or equal to 
unity); it approximates an "AND" operation of M dendritic spikes. 
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The AND cell with "strong HH" dendritic conductances ( GNa = 0.2 Scm-2 ) 

did not perform temporal integration per se, since subthreshold dendritic 

spikes were quickly repolarized. But a few branches were capable of firing 

the soma alone (as in section 3.5.2), so that the cell's response to evenly timed 

dendritic spikes was low but not always zero. As a result, this cell only per

formed as a perfect coincidence-detector (Ec = 1) at low firing rates, and 

dropped to Ec ~ 0.4 when firing above 100 Hz (Figure 3.13 D-F). 

The AND cell with "weak HH" conductances (GNa = 0.033 Scm-2 ) acted 

as a perfect coincidence-detector, since it never fired under even the fastest 

(10,000 Hz) regular stimulation by dendritic spikes (Figure 3.14 A-C; for 

comparison, a leaky integrator with Nth = M = 10 would need a very fast T ::; 

1 ms to respond similarly, eqs. 3.64-3.67. As evidence that this ability resulted 

entirely from strong IDR currents, simulations suppressing those currents (i.e., 

GK /GNa = 0.05) produced a dramatic increase in response to regular dendritic 

spikes and a resulting reduction in Ec to neat zero (Figure 3.14 D-F). The 

difference between complete repolarization of spikes and temporal integration 

of them is strikingly evident in the top traces of Figure 3.14 A and D. 

Under coincident stimulation, both AND cells hyperpolarized to extremely low 

potentials ( ~ -90 m V) as a result of strong !DR currents and no counterbal

ancing depolarizing currents. As a consequence, many coincident events were 

required to fire these models from that low potential (e.g. , M > 5, larger than 

the 2 or 3 events needed to fire from Erest = -75 m V). Under even stimu

lation, Vsoma fluctuated near -65 m V, which is the potential at which each 
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Figure 3.14: When spiking conductances on terminal dendrites are strong enough to 
fire (self-repolarizing) dendritic spikes but still weak enough that a single dendritic 
spike does not fire the soma (e.g., "weak HH", GNa = 0.033 Scm-2 ), then the cell 
can act as a perfect detector of coincident dendritic spikes. With strong delayed
rectifier dendritic conductances (left column; GK = 0.066 Scm-2), these graphs of 
somatic voltage show that individual dendritic spikes quickly repolarize the soma to 
about -65 m V, so that no temporal integration of them occurs; the cell will not 
fire in response to evenly timed dendritic spikes, but only when they are coincident 
(A,B). Such a cell would be a perfect coincidence-detector (Ec = 1) at all realistic 
firing rates (C). This coincidence-detection ability disappears when dendritic delayed
rectifier currents are sharply reduced (right column; GK = 0.0016 Scm-2). While 
the cell still fires well in response to coincident dendritic spikes, it also can perform 
temporal integration of them (D,E; note the ramp-like voltages in the upper trace of 
D). The low values of Ec (F) show that this cell cannot distinguish between coincident 
and evenly timed dendritic spikes. 
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dendritic spike would be exactly repolarized for the K-conductance simulated 

(GK/GNa = 2; see section 3.6). This potential serves as a kind of reversal 

potential for the combined sodium and potassium currents which dominate 

the somatic voltage under regular dendritic spiking. 

3.9 Discussion 

Can a cortical cell perform millisecond computations, or only much slower 

temporal averaging? Many researchers believe that single-cell cortical compu

tat~on must be inherently slow, because of the enormous attenuation of high

frequency signals in thin dendrites and because of the high spiking variability 

(near-Poisson "noise") associated with single-unit cortical firing (Douglas and 

Martin 1991 ). But both of these influences can instead be interpreted as fa

cilitating single-spike computation. 

3.9.1 Requirements for Submillisecond Computation 

While the dominance of truly random "noise" in spike times would certainly 

preclude reliable computation at the single-spike level, the very existence of 

highly variable (and possibly non-random) spike trains suggests that the sin

gle neurons generating them are not performing much temporal integration 

(smoothing) of multiple EPSPs. In fact, such strong interspike-interval vari

ability is not consistent with current models of temporal integration of EPSP's, 

and might be effective instead at fast information transmission, as described 
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in Chapter 2. So the argument that high variability precludes high-frequency 

computation can be turned on its head: the high variability might indicate 

that the cell does use and transmit high-frequency information. While there is 

scattered indirect evidence for millisecond precision in spike patterns (Abeles 

1990; Strehler and Lestienne 1986; Frostig 1985; Legendy and Salcman 1985), 

we so far lack evidence that such precision plays a perceptual role outside the 

auditory system, where submillisecond computations are routine in echoloca

tion and binaural auditory localization. (An exception in vision is found in 

Burr's investigation (1979) of vernier acuity, where human observers perceived 

a vernier offset in a moving bar when its two halves were flashed as little as 

1.5 ms apart). 

The other argument against high-frequency computation-that dendritic ca

pacitance would filter out the high frequencies-can be likewise inverted, since 

that very property allows different parts of the cell to be well-isolated at high 

frequencies, and thus to carry out nearly independent fast computations. This 

ability is enhanced in a cell with long, thin distal dendrites. But this proposal 

requires some method of delivering the results of the brief, isolated computa

tions to the soma; passive dendrites cannot do it. 

But active dendrites can. And the most effective active conductances for 

maintaining isolation among dendrites would be fast (e.g., sodium rather than 

calcium) and totally repolarized (e.g., strong GK), so that no persistent de

polarization could couple the dendrites or allow temporal integration. Jaslove 

(1992) argues on theoretical grounds that such conductances are necessary to 
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overcome the very short length constants of thin dendrites. Experimental ev

idence relating to such conductances on terminal branches is discussed in the 

next section. 

While this chapter explores some possible functions of fast EPSPs and dis

tal dendritic Hodgkin-Huxley conductances, it does not treat the many other 

conductances-voltage-dependent and otherwise--thought to operate in distal 

dendrites of cortical and hippocampal pyramidal neurons (e.g., C a++, Westen

broek et al. 1990; NMDA-mediated, Regehr and Tank 1991). This deliberate 

omission has two motives. 

The first is that the fast sodium Hodgkin-Huxley conductances would make 

the best conceptual test of fast, isolated computations inside a dendritic tree. 

The better-known calcium conductances typically last about ten to twenty 

milliseconds, a timescale at which the capacitive decoupling discussed here 

would scarcely exist. The other motivation is simplicity- it is safer and easier 

first to understand and approximate the interactions between Hodgkin-Huxley

like conductances and the dendritic tree, before including other influences. 

Many aspects of this subject have been addressed before. Mel (1992a) has dis

cussed how voltage-dependent dendritic conductances (NMDA-receptor chan

nels) can store information. Jaslove (1992) investigated coincidence-detection 

in similar neuron models, and noted that strong G K can limit the propagation 

of dendritic spikes to the soma. But he did not discuss brief somatic depo

larizations caused by dendritic spikes which do not propagate to the soma. 

Koch and Poggio (1987) reviewed several kinds of multiplicative and binary 
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computations in dendritic cables and spines. 

Shepherd et al . . (1987, 1989) have also directly addressed the question of 

coincidence-detection of EPSPs in dendrites, but these studies (and Jaslove's, 

1992) differ from this one in at least one important way: they used a very 

strong passive membrane leak conductance (Shepherd, Tm = 2-4 ms; Jaslove, 

Tm ~ 2 ms), which so effectively isolated EPSPs in time (through rm) and in 

space (through -Ave) that the ability of non-leaky capacitive dendritic cables 

to isolate fast events was not emphasized. Those researchers instead discussed 

coincidence time-windows much longer than the submillisecond range. They 

also did not model their cells' net response to repeated synaptic events over 

the entire dendritic tree, so that the tradeoff between coincidence-detection 

and temporal integration was not explicit. Segev and Rall (1988) have inves

tigated the properties of hypothetical active spines (rather than whole den

drites), pointing out that excitatory and inhibitory synapses might trigger 

spine-spikes with subrnillisecond resolution (using different mechanisms than 

the subrnillisecond excitatory-excitatory coincidences explored here). 

The two mechanisms proposed here for fast membrane repolarization (which is 

necessary for coincidence-detection) are more energy-efficient than fast passive 

membrane time-constants. A strong passive membrane conductance draws a 

relatively large, constant amount of metabolic power in order to maintain 

the cell's resting depolarization. But the fast component of repolarization 

through capacitive charge-equilization requires no membane conductance at 

all, and repolarization by delayed-rectifier conducances only demands a large 
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membrane conductance (and the resulting power drain) just after a dendritic 

spike, but not while the cell is unexcited. 

3.9.2 Plausibility and Testability of Critical Assump

tions 

Submillisecond Synaptic Currents 

Part of this chapter postulates that submillisecond EPSCs exist inside cortical 

dendrites (sections 3.3 and 3.8.2). But the existence of such EPSCs is not sup

ported by direct recordings of EPSCs from a hippocampal dendrites. Electrical 

shock-induced EPSCs measured close to the soma inside cells in the hippocam

pal CAl region (Hestrin et al. 1990; Sah et al. 1990) have a fast (non-NMDA) 

component which lasts 3-15 ms, and a slower voltage-gated NMDA component 

lasting 50-100 ms. Even the fast component in those recordings is far too slow 

to produce the submillisecond charge-equilization modelled here (section 3.3). 

More importantly, measurements of EPSPs (potentials, not currents) in cortex 

are consistent with fast dendritic EPSCs. Spike-triggered averaging reveals 

subthreshold monosynaptic potentials with amplitudes in the 50 - 400 11-V 

range and rise-times from 0.5 - 1.0 ms (10-90% rise-time in rat visual cortex 

in vivo; Mason et al. 1991) to 0.8 - 2.4 ms (0-100% rise-time in cat visual 

cortex slice, Komatsu et al. 1988; 10-90% rise-time in hyperpolarized rat 

cingulate and sensorimotor cortex cells, Thompson et al. 1988). Although 

these researchers did not directly measure synaptic currents, we can assume 
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(to first order) that the dendritic EPSC duration cannot exceed the somatic 

EPSP rise-time, because the potential integrates a current which has been 

additionally smoothed by the intervening dendritic capacitance. In that case, 

the submillisecond EPSP rise-times reported by those researchers are probably 

due to synaptic currents lasting less than a millisecond (with corresponding 

tpeak :::;; 0.3 ms ). But the activation of NMDA-mediated conductances at 

moderate depolarizations could prolong the local EPSPs to tens of milliseconds 

(Thompson et al., 1988) , thereby reducing the temporal precision of single 

synaptic events. 

All of the distal dendritic EPSCs simulated here-even the fastest ones with 

tpeak = 0.05 ms-produced far longer somatic rise-times (about a millisecond), 

due to smoothing by realistic dendritic capacitances. Thus the simulated so

matic rise-times are in the same range as the experimental recordings (see 

section 3.7). Direct measurements of EPSC duration in cortex at low mem

brane potentials ( < 75 m V), combined with realistic cell models, might better 

determine whether very fast dendritic EPSCs exist. 

One provacative possibility is that the measured somatic EPSPs result from 

active dendritic spines. The fast time course is about the same for a sodium 

spiking current as for the synaptic currents simulated here. And the currents 

flowing though a synapse with 9peak ~ 5 nS are comparable to those which 

would flow though an excited spine stem with diamater 0.1 J.lm and length 

1.0 J.lm (and hence resistance 200 MD., or 5 nS; see Segev and Rall 1988 for 

further details). 
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Active Dendritic Conductances 

The two types of coincidence-detection proposed here--detection of coincident 

EPSPs inside dendrites, and of coincident dendritic spikes at the soma- both 

require the existence of strong Hodgkin-Huxley-like conductances inside thin 

terminal dendrites. Such conductances have not yet been unambiguously ob

served. 

There is some evidence for active conductances in the apical dendrites of both 

hippocampal (Jaffe et al. 1992) and cortical neurons (Amitai et al. 1992; 

Huguenard et al. 1988; see Adams (1992) for a review) . But such conduc

tances may not be sufficiently strong to sustain spikes, or may consist of cal

cium conductances (Amitai et al. 1990), which are too slow for submillisecond 

coincidence detection. Because the apical dendrite is morphologically very 

different from the basal terminal branches, it may serve a different function 

and its conductances may not reflect conductances on narrow distal branches. 

But there are no direct recordings from distal basal dendrites of cortical cells, 

because those dendrites are far too thin to be impaled with a recording elec

trode. 

If fast dendritic spikes do exist, they would be visible at the soma as potentials 

which repolarize much faster than the (presumed) membrane time constant. 

There are isolated reports of such "small spikes" in visual cortical cells which 

meet these criteria: they have amplitudes of 8 - 15 m V (greater than sin

gle EPSP's, but weaker than full-fledged action potentials), submillisecond 
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duration (full-width at half-maximum), and repolarization to Erest within a 

millisecond (Ferster 1986, 1987, 1988). These small spikes result from electri

cal shocks to the LGN (i.e., due to many coincident synaptic events, rather 

than to the monosynaptic events used in spike-triggered averaging). But it 

is neither clear whether the spikes' high amplitude comes from sodium con

ductances nor whether their fast repolarization results from active dendritic 

potassium conductances (or instead from strong, synchronized inhibitory con

ductances). If other researchers reproduce such spikes, one might determine 

the source of the fast repolarization by blocking the action of inhibitory GABA 

neurotransmitters. 

Such dendritic spikes might also be inferred from intracellular potentials in 

activated cells in vivo. As reported in simulations by B. Mel (1992b) and 

shown here, dendritic sodium spikes might only produce somatic potentials of 

a few millivolts, so that individual events could be nearly "invisible" as they 

blended together into "noise." An autocorrelation analysis of the subthreshold 

potential between spikes might show whether the observed fluctuations are 

mostly due to self-repolarizing events (e.g. , dendritic spikes) or to other less 

structured currents. 

But dendritic spikes might be sufficiently strong that a single one could fire 

the cell (e.g., in the "AND-OR" model). Under sensory stimulation, such 

a dendritic spike might be inferred from a somatic spike which rises from a 

voltage below the threshold found using current-injection. (A dendritic spike 

could reach its local "firing threshold" while the soma was still well below 
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threshold, so that the somatic spike would appear to arise "out of nowhere" 

from below threshold voltage. For an example, see the difference in apparent 

thresholds between the two traces of Figure 3.13 A). 

Distal dendritic conductances would not necessarily reveal themselves during 

intracellular stimulation, because a cell containing them could still behave as a 

temporal integrator of injected DC current (as occurs for the near-DC synaptic 

current in Figure 3.13 A) . 

Coincidence Detection in Cortical Cells 

There are other types of neurons-usually auditory neurons- which operate 

even faster than the submillisecond regime postulated here. For instance, in

dividual spikes in the auditory system of barn owl can phase-lock to tones of 

frequency up to 5-9 kHz (Sullivan 1985), although the cells responsible are 

morphologically very different from cortical pyramidal cells. Spikes from cells 

in the monaural nucleus of the echolocating big brown bat can lock to stimuli 

with a precision of 30 11-s (Covey et al. 1991). And single-EPSP coincidence

detection without temporal integration can take place in the cochlear nucleus 

of mice (Oertel et al. 1989), although in this case the excitation comes from 

very large somatic synapses (rather than from dendritic spikes) and the repo

larization comes from a fast membrane leak and inhibitory currents (rather 

than from active potassium conductances). 

Regardless of mechanism, a role for cortical cells as coincidence-detectors is 
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consistent with published cross-correlation data (Appendix D; the following 

qualitative argument is made more rigorous in Appendix F). Toyama et al. 

(1981), studying pairs of nearby cortical cells of similar response type in cat 

visual cortex, report that about 60% of cross-correlation histograms ( CCH's) 

between such cells have prominent, narrow peaks at zero. Those peaks typi

cally contain over 30% of the cells' spikes, meaning that about 30% of a pair's 

spikes are coincident (within 0.1 ms in many cases; see their figures 1,3, and 4). 

Other reports show wider and smaller cross-correlation peaks between cells in 

the same orientation column (Michalski et al. 1983), or as far apart as several 

mm (T'so et al. 1986). Nelson et al. (1992) find about 10% of cell pairs across 

cat visual areas 17 and 18 have centered CCH peaks a few milliseconds wide 

("towers"). 

Such narrow, monosynaptic CCH peaks are traditionally interpreted as re

sulting from a few cells providing direct "common input" to the two cells: 

a substantial fraction of shared presynaptic neurons would cause a similar 

fraction of shared output spikes. But the narrow, centered CCH peaks are 

also consistent with coincidence-detection: a collection of presynaptic neurons 

common to the two recorded cells, and firing in occasional coincidence, might 

trigger a disproportionately large proportion of the output spikes recorded 

from two coincidence-detecting neurons. While both explanations are consis

tent with the data, the coincidence-detector model makes fewer demands on 

the network than the "common-input" model, because coincidence-detectors 

preferentially amplify coincident signals, and therefore require less magnitude 

and synchrony in their input EPSPs to generate the same magnitude of CCH 
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peak. 

The coincidence-detection model also accounts more easily for the near-absence 

of off-zero CCH peaks relative to centered ones, a fact which would seem to 

indicate that while many cell pairs share common input, the source of common 

input is somehow seldom recorded. (To solve this paradox, Nelson et al. (1992) 

postulate a tiny subset of "driving" cells which induce synchrony by means 

of exceptionally strong synaptic excitation to a whole cell population.) But if 

cortical cells are like those proposed here, responding primarily to coincidences 

from multiple independent sources (each source driving both recorded cells), 

then neither source cell would correlate well with a recorded cell, leading to the 

observed deficit of off-center peaks, while the recorded cells would still correlate 

strongly with each other. See Appendix F ("Paradoxical Cross-Correlations") 

for a more rigorous and complete argument. 

3.9.3 Analytical and Simulation Results 

The simulated "toy model" used here- a realistic pyramidal cell morphology 

endowed only with simplified active conductances- demonstrates two princi

ples: 1) that many effects of dendritic spiking can be approximated by simple 

analytical expressions, and 2) that dendritic spikes can in principle approx

imate logic operations (e.g., "AND," "AND-OR") on submillisecond EPSPs 

with little temporal integration, even when the membrane time constant is 

much longer ( ~ 30 ms ). The crucial element for coincidence-detection is the 

quick repolarization of the membrane after a depolarizing pulse appears. One 
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mechanism for this repolarization is the passive voltage decay as charge from a 

submillisecond EPSC equilibrates across a dendrite's distributed capacitance 

and into the soma. Another mechanism is the active removal from the soma 

of charge by a dendritic spike's lnR· 

A quantitative measure of a model cell's effectiveness at coincidence-discrimination 

(Ec) compares the cell's stronger firing due to optimally coincident EPSPs to 

its weaker response to regularly distributed EPSPs (section 3.8). This artificial 

measure shows that a realistic pyramidal-cell morphology with active dendrites 

may discriminate fine temporal coincidences, and that the best model (the 

"weak HH AND" model) is a perfect coincidence-detector at even its highest 

firing rates (Figure 3.14). 

3.9.4 Conclusion 

The marriage of known cortical pyramidal cell morphology to postulated Hodgkin

Huxley-like conductances on distal basal dendrites yields a simplified model 

cell which can in principle discriminate EPSP arrivals at the submillisecond 

level. Such fast computation might be complementary to the slower and better

known coding by average spike rate, because many differently patterned pulse

trains can share a common average rate, and can thus carry independent infor

mation at both fast and slow timescales. The much higher bandwidth (kHz vs. 

Hz) of this hypothetical single-spike computation might prove a useful alterna

tive to the lower-frequency oscillations proposed to solve some cognitive tasks, 

such as feature segmentation and the "binding problem" (Engel et al. 1992) 
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and visual awareness (Crick and Koch 1990). But it remains to be seen exper

imentally whether single cortical cells contain the fast synaptic conductances 

and active distal dendrites necessary for submillisecond coincidence-detection, 

and whether those cells actually do perform parallel nonlinear computations 

with kilohertz bandwidth. 



Chapter 4 

An Application: 

Point-of-Origin Binding 

"Science is wonderful. Nowhere else can you get such a wholesale 

return in speculation for such a piddling investment of fact." 

attributed to Mark Twain 

4.1 Introduction 

A simple neural network can only "see" one thing at a time. When a network 

sees just one object, many of the network's analog neurons are active at once 

(representing different aspects of the object . .. shape, texture, color, motion, 

etc.), and those neurons all refer to the same single object . But if multiple 

objects are presented, then each feature aspect has several active neurons, and 
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there is no simple way to determine which active neuron refers to which object. 

The difficulty in associating individual neural responses with particular objects 

is called the "binding problem" (Figure 4.1). It is an outstanding problem not 

just in neural theory but in pattern recognition in general; detailed reviews of 

its implications are given in Engel et al. (1992) and Koch (1993). 

There are in general two ways to solve this problem. One is give each analog 

neuron a very small receptive field, so that it only responds over a region so 

small that one would only expect to find one object at a time there. This 

approach requires tiling the whole visual field with identical but displaced 

receptive fields (thus hugely increasing the number of neurons present), with 

each neuron responding a much smaller fraction of the time. This is not the 

way the brain solves the problem; we do not yet know how it does so. 

We do know that the brain increases visual neurons' receptive field sizes as 

their optimal stimuli become more specific. In a rough sense, this is like trying 

to make all neurons equally likely to be active, so that frequently encountered 

stimulus types cover small portions of the input space (small receptive fields), 

and rare ones cover more of the world (large receptive fields). For example, 

neurons in different cortical areas can respond to different features of the same 

object (e.g., form in V4 and info-temporal (IT), and motion in middle temporal 

(MT)); receptive field sizes in these areas are much larger than in V1, which 

responds to more common oriented contours. 

In this case we still have the problem of how to label or bind together the 

responses of individual neurons. Because traditionally a neuron's analog re-
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Figure 4.1: The Binding Problem. In this idealized example there are three classes 
of neurons: motion detectors (left), shape detectors (center) and position detectors 
(right), all with receptive fields spanning the square shown. In this example there is 
a chair (not moving), a moving cat, and a moving girl all stimulating the neurons. 
But when more than one stimulus is present in each receptive field, there is no way 
to use the neurons' firing rates alone to decide which shape-detector ought to be 
paired with which location-detector and with which motion-detector, because analog 
intensity signals do not carry independent information about their sources. 
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sponses already represents one stimulus property, there is no complementary 

information with which to distinguish two identical analog signals from one 

another... the only remaining way to distinguish them is through temporal 

modulation of the analog signal. Previous suggestions for temporal modu

lation to solve this binding problem have included oscillations of firing rate 

(Gray and Singer 1988) or synchrony of spikes within regular spike trains (von 

der Malsburg and Schneider 1986); a review is available in Koch (1993) . 

But temporal modulation demands a higher bandwidth of neural response 

than DC signals alone; by definition one cannot modulate a DC signal without 

)i)roadening its power spectrum away from zero. But in fact cortical spike trains 

do already have a very high bandwidth (hundreds of Hz), if one interprets 

their white-noise power spectra (Bair et al. 1992) and near-Poisson firing 

irregularity as broadband information rather than as noise. Can this "extra" 

bandwidth from irregularity be the same as the "missing" bandwidth needed 

for binding? Can binding be performed by individual spikes in an irregular 

train? 

I will speculate that the answer is "yes," outlining without hard evidence a 

scheme in which simple coincidence-detecting neurons produce highly irregular 

spike trains. Those trains' average rates will represent the individual stimulus 

intensity in the usual manner, but now the individual spike times will carry 

information relating neurons to each other. 

This proposed binding mechanism- we call it "Point-of-Origin Binding"- is 

different from some other binding in two respects. Most proposed binding 
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schemes assume that the neural code is an analog signal; those schemes bind 

or label neurons through either common values of average firing rate (Kammen 

et al. 1989), burst rate (von der Malsburg and Schneider 1986), or through 

temporal modulation of an average rate (Millner 1974; Sompolinsky et al. 

1991; Tononi et al. 1992; and Engel et al. 1992, and references therein). 

In contrast, Point-of-Origin binding links neurons by a slightly above-average 

rate of coincidences in their individual spikes; the detection of such subtle, 

millisecond-scale coincidences requires a highly sensitive cell such as the one 

proposed above. 

The second difference between this binding scheme and some others arises in 

deciding which neurons correspond to which objects. The binding in many con

ventional schemes is induced by global characteristics of features: one binds 

together neurons responding to similar colors, motions, positions, times of 

appearance, etc. Those are "top-down" approaches, requiring feedback or at

tractor dynamics to establish binding. The present method, like that of Horn 

et al. (1991), is purely "bottom-up." The Point-of-Origin scheme binds fea

tures together by preserving a temporal record of each neuron's spike input 

from earlier layers, so that "bound" neurons share a higher-than-random num

ber of coincident output spikes due to some shared input spikes. This method 

of multiplexing binding information with average spike rates requires that the 

bound features share some source neurons in common, so this method works 

only within a single modality (e.g., vision), but not between modalities. An 

example follows. 
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Let us consider a highly idealized visual task, just to illustrate the idea ( unre

alistic aspects will be discussed later). The example will have only two classes 

of neurons: those that detect shape (independent of position), and those which 

detect position, independent of shape. We wish to detect separately the shape 

and position of an object, and to bind them together afterwards. 

Visual patterns (letter shapes) will appear as black pixels on a white screen 

(leaving aside problems such as brightness, center-surround structure, stereo, 

motion, etc.). Each pixel's output is a random pulse train if the pixel is "on" 

and no pulses if the pixel is "off." The rate of one pixel's "on" output is Rp 

and the width of each spike (taken as a rectangle) is w, so that the duty cycle 

of a train (or the probability that its output will be 1 rather than 0) is 

( 4.1) 

If a pulse-width is taken to be one millisecond, then Pp is about equal to the 

spike rate in kHz. In fact, Pp has an upper bound of unity, while spike rate 

is in principle unlimited. But we will assume that spike rates are slow enough 

and widths narrow enough that the occasional overlap of closely-spaced pulses 

does not cause Pp to deviate much from spike rate. (In a real neuron, of course, 

refractory periods prevent this limit from being reached.) 
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4.2.1 Location-Detector Neurons 

A location-detector cell will be a simple coincidence-detector, firing a single 

output pulse of duration w if two input voltage pulses overlap (i .e., M = 2 in 

Appendix F and section 3.8; the simulations of chapter 3 actually produced 

no values of M less than 5, but five-fold coincidences are beyond the simple 

treatment here). The location-detector's inputs will be from a receptive-field 

region of RFL adjacent pixels (e.g., RFL = 9 in Figure 4 .2; the subscript 

"L" stands for "location," and "S" for "shape" or form). A single "on" pixel 

could not fire the detector, because a single input train lacks the necessary 

coincidences. Two "on" pixels could fire this detector, when spikes from those 

two pixels happen to coincide. In general, the rate at which this detector fires 

depends on the number of its input lines active (AL :::; RFL) and on the rate 

PP at which each produces pulses; we will require ALPp ~ 1 to ensure that 

output pulses remain rare. The chance of getting two pulses (from among AL 

active lines) to overlap at some point is 

2P;( ~L) 
- AL(AL- 1)P; + O(P:) 

(4.2) 

(4.3) 

(where the factor of two results from the non-zero width of both pulses). This 

firing probability PL can be interpreted as the firing rate of the location-

detector, which fires as an approximately quadratic function of the overlap AL 

of the stimulus image with the N-pixel receptive field. Super-linear functions 

have proved useful in many computations in vision (Suarez and Koch 1989; 

Koch and Poggio 1987 and 1992). 
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Figure 4.2: Simple Location-Detector Neurons. Each neuron is capable of re
ceiving input pulses from nine pixels (arranged in the receptive field shown), and only 
fires upon the coincidence ("1r") of two pulses. A pixel produces random pulses if it is 
"on," and no pulses if it is "off." The upper neuron, with no input, produces no out
put; the lower one has three active pixels and fires upon their occasional coincidences. 
In this model, such neurons tile the entire visual area with their small receptive fields. 
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But we are not only interested in average firing rates, but in spike-by-spike 

correlations. Whenever this detector fires, we know that 2 of its AL inputs 

carried pulses, so that each output pulse is correlated with any active input line 

with probability 2/ AL (e.g., 2/3 in the example of Figure 4.2). The random 

chance of finding a pulse on an input line is PP ~ 1, so that the correlation 

of output pulses with input pulses (to within one time window) is well above 

chance. This is the central principle of Point-of-Origin binding. 

The entire visual field will be tiled with such detectors with overlapping recep

tive fields, so that several adjacent ones will be fired by any localized stimulus, 

such as the letter-shapes discussed below. 

4.2.2 Shape-Detector Neurons 

Constructing a neuron which responds to a particular shape, independent of 

position, is a bit more complicated. We will first construct a single localized 

subunit which works like the location-detector above, and then tile the visual 

field with many subunits to make a single position-independent neuron. 

A subunit to detect a particular shape-for example 'X' or 'T' in Figure 4.3-

will have a receptive field of that shape. RFs will denote the number of pixels 

in a subunit's receptive field (RFs = 5 in the example of Figure 4.3) . The 

subunit's output rate will depend on the number of active input lines As in 

that receptive field as in eq. 4.2. 

But an optimal response from this subunit requires that the stimulus be exactly 
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Figure 4.3: Shape-Detector Neurons. Each neuron has a receptive field the size 
of the whole visual space, and is designed to respond if its preferred shape appears 
on one of its subunits anywhere in that space. A, The 'T' shape chosen, and a single 
subunit for the 'T'-detector. The subunit fires upon the coincidence of any two spikes 
from the pixels in its input (in the same manner as the location-detector does). B, 
An entire X-detector cell collects pulses from the many subunits which tile the visual 
space, and fires an output when any one of those subunits fires (i.e., it performs an 
OR function on its subunits) . 
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aligned with the subunit's receptive field. How do we make the response of 

the whole neuron position-independent? We let the shape-detector's output 

be the OR function of the whole set of subunits which tile the visual field: 

whenever any subunit fires, the shape-detector will fire. In the illustration 

given, the shape-detector's firing will be dominated by the single subunit with 

perfect overlap (i.e., As= 5), which will fire with probability 20Pi (eq. 4.3). 

For this particular pair of position and location detectors, careful overlaying 

of them shows that there are eight other subunits which are misaligned (e.g., 

with only As = 2); but outputs from any of those subunits will occur at the 

same time as spikes from the optimal subunit, and so will not contribute any 

additional output spikes. So an 'X' anywhere on the field will fire the cell at 

about 20Pi. A different shape-detector can be made by the same principles, 

merely by rearranging the As pixels of each subunit (e.g., the 'T' detector in 

Figure 4.3). 

The correlation of a shape-detector's output spikes with its input is higher 

than random, as was true for the location-detector: each output spike is coin

cident with (on average) 2/ As of an input spike for the optimal subunit, which 

contributes all the output spikes. So for the 'X' example, every output spike 

will be caused by 2/5 of an input spike, a fraction which should be well above 

chance. 
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4.2.3 Binding the Outputs 
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We now have our two classes of detectors: a large set of location-detectors (one 

at each visual location), and two shape-detectors (one for 'X' and one for 'T') 

which respond independent of position. How will this array of cells respond 

to multiple inputs, and how might the nature of the inputs be reconstructed 

from the cells' activity? 

Suppose the pixel screen contains exactly two objects: an 'X' in the upper 

left, and a 'T' in the lower right (Figure 4.4). Different neurons in both classes 

will fire: the 'X'-detector and the 'T'-detector (both firing at rate Ps ), and 

several location detectors. For simplicity, let us focus only on the fastest

firing location detectors, the upper-left one (with PL1 and As = 5) and the 

lower-right one (with PLr and As= 7; Figure 4.4). 

The shape-detectors will fire primarily but not entirely due to their optimum 

stimuli. As we saw above, optimal stimuli create a 20Pi firing rate... but in 

addition, each detector sees a non-optimal stimulus (X on a T-detector, or 

vice versa) in a few of its' subunits. One can show that a T will overlap on 

an X-detector and an X will overlap a T detector in six ways to drive two 

pixels (As = 2). As an upper bound on each detector's "background rate," 

we can take all of those possible pairs as being independent, so that all those 

misaligned subunits fire together with probability 12Pi ( eq. 4.3) (about half 

of their optimum rates), giving 

(4.4) 
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Now we can try to reconstruct the inputs from the outputs. If one only looks 

at the average spike rates (the traditional analog code), there are several ways 

to interpret these combined neural firings: 1) the correct way: X in upper 

left, T in lower right; 2) the reversed (incorrect) way: X in lower right, T in 

upper left; 3) a single combination of X and Tin one location, and something 

which is neither X nor T in the other location. Only some further clues could 

distinguish which interpretation is correct, based on analog signals alone. 

But the spike timing contains enough information to solve the problem. Con

sider the rate of coincidences among correctly matching neuron pairs. In this 

example, the location detector is driven by three of the same five pixels which 

drive either X or T shape-detectors, and additionally by two other pixels (X) 

or by four others (T) which do not drive the shape-detector (Figure 4.4). So 

any two correctly-matching detector pairs share a fraction of their inputs in 

common. Denoting this fraction by S, and denoting the absolute number of 

shared pixels by Acorn, we have 

( 4.5) 

(4.6) 

The values of Sin this example range from 3/5 to 3/7. The odd shapes of the 

detectors in this example were chosen to keep Acorn the same for both X and 

T. 

As is computed in Appendix F (eq. F.6), two coincidence-detecting neurons 

firing at the same rate and sharing S common input lines will have a fraction 

Cc of their output spikes coincident above chance. For this example, the X 
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Figure 4.4: Response to Multiple Stimuli. A, The shapes X and T and their 
overlap with location-detectors. Note that of the pixels driving the location detectors, 
in both cases three of those pixels also drive the optimal shape-detector (the inverted 
triangle of Figure 4.3). B, when an X is presented in one part of the visual space 
and aT is presented in another part, four detectors will fire strongly: the X-detector, 
the T -detector, an upper-left location detector, and a lower-right location-detector. 
While the average firing rates of those neurons do not indicate which shape is at 
which location, the correctly-matched neuron pairs will share a higher than random 
rate of coincident output spikes as a result of their three shared input spike trains, so 
that the original patterns can in principle be reconstructed. 
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shape provides input to its location and shape detectors at the same rate 

(AL = As) , so that eq. F.6 gives their above-random rate of coincidences in 

those detectors as roughly 

Cc ,....., ,....., 5
2 + 2 G) SPnon (4.7) 

Pnon - (1- S)PLI ( 4.8) 

Cc 
9 24 

(4.9) - 25 + 25pLI 

1 
( 4.10) :::::::: -

2 

(The term Pnon represents the chance that one of the unshared or non-common 

lines in a detector will fire). 

To find the chance of coincidences from incorrectly matched neurons, we might 

naively assume they are driven by entirely different input trains, which have 

no overlap at all. For instance, a lower bound on the chance that a spike from 

the X-detector is coincident with one from the (wrong) lower-right location 

detector would be found from their independent, random probabilities 

(4.11) 

These coincidences between incorrectly matching detectors will be rare, be-

cause we assume that spikes are rare (PL ~ 1, Ps ~ 1). But in the example 

here, each shape-detector actually receives about a third of its output spikes 

(e.g., 12/32, eq. 4.4) from subunits which overlap the non-optimal (or incor-

rect) stimulus. So a better estimate is to assume that coincidences between the 

incorrectly matching neuron pairs will scale accordingly: the X detector will 

have about a sixth of its spikes coincident with those of the (wrong) location 
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detector, while sharing about a third of its output spikes with its matching 

location detector. 

Because the correct binding solution has a much higher coincidence rate than 

the incorrect solution (1/3 > 1/6), the necessary binding information is em

bedded in the spike trains. If necessary, a further coincidence-detecting neuron 

(in a higher layer) could distinguish bound pairs from unbound pairs. 

4.3 Biological Implausibilities 

There are countless drawbacks to this scheme. For instance, it becomes un

workable when the random coincidence rates between feature-detector spikes 

are statistically indistinguishable from coincidence rates due to common source 

neurons. This can obviously occur if too many features are present at once, if 

the non-optimal features still fire detectors efficiently, or if there are too many 

detector types present. But such drawbacks will probably arise in any binding 

scheme, not just in this one. 

The disagreements with cortical biology are more glaring. At a cellular level: 

this scheme has ridiculously simple single cells, no explicit time-delays, no 

random synaptic transmission failures, no differences in synaptic strength, no 

inhibition, no cortical layers, no transient input components, no population 

coding, no columnar structure, and no feedback connections between cells 

or layers. At a visual-processing level: it has no realistic center-surround 

structure to its visual input, no scale-independence of patterns, no allowance 
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for temporal input patterns, no orientation selectivity, no distinction between 

"parvo" and "magno" information streams, and no "top-down" influences. 

I would like to improve upon this model in several ways. One could include 

input pulses which are non-rectangular, noisy, of different amounts of coin

cidence, and of different height (in order to limit the strength of numerous 

feedback connections) . The calculation of firing rates could be done more 

flexibly using a probability distribution for membrane voltage, rather than 

explicitly calculating coincidence probabilities for binary inputs . One might 

add a feedback mechanism to allow probabilistic temporal integration without 

sacrificing temoral precision; another type of feedback might be "top-down," 

increasing the firing probability of those local units which contribute to large

scale features. Slight increases in firing threshold might serve the function of 

inhibition, limiting the influence of positive-feedback loops and normalizing 

the firing rates of the network as a whole. 

4.4 Special Features 

While this example uses location and shape as the two distinguishing features 

of an object, there is no reason to limit the features to only two, or to those 

two types. The arguments above can used to bind neurons responding to 

any feature-types which can share common driver neurons: texture, color, or 

left-eye/right-eye differences (binocular disparity) . Motion-detection could be 

added by taking a temporal derivative of analog spike rate before coincidence-
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detection. There is also no reason that the driver neurons need to be individual 

pixels; they could equally be orientation detectors in V1, or in fact any kind 

of neuron which drives two or more higher-level detector types. The key point 

is that spikes in different feature-detectors share a common point of origin. 

It is also not necessary that those input or driver spikes be entirely random. 

But if input spikes are instead regular, then that regularity may be reflected 

in the feature-detectors' firing as well, so that correlations across time could 

appear among the detectors' output spikes. Such correlations would not in

validate the estimates of spiking and coincidence probability (as calculated 

above), but then a higher layer would need to average out those correlations, 

which would take longer than averaging over a Poisson process. 

The structure of the shape-detectors is like that of a sigma-pi neuron (Mel 

1990), whose output is the sum of local multiplications of inputs. But previous 

models of those have only considered analog computations, without temporal 

structure or spiking. 

For the Point-of-Origin scheme to work, there must be a significant overlapS 

in the inputs to two different feature-detector cells. As shown above ( eq. 4. 7) 

and in Appendix F (eq. F.6), the overlap in output spikes is roughly given by 

S 2 , so that neurons sharing a small S will have low coincidence rates and will 

be thus much more difficult to bind together. This effect would suggest that 

receptive fields be fairly coarsely tuned, to offer the maximum possible overlap 

between different feature types and the best chance of binding their detectors 

together. 
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4.5 Advantages 
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The twin assumptions in this project- coincidence-detecting neurons and 

Point-of-Origin binding- are too highly simplified to be biologically plausible 

by themselves; they are intended in the toy-model spirit of a McCulloch-Pitts 

neuron or a Hopfield net. Still, this general scheme has many biologically 

desirable properties: The computation is parallel and asynchronous. The vari

ous features are analyzed separately, but linked (through spike-synchrony) in a 

distributed representation. The irregularity of spiking is not a hard-to-explain 

nuisance which contaminates the analog firing rate, but an explicit form of 

information transmission. The full bandwidth of the axon is used (near the 

kilohertz scale), despite the fact that visual inputs arrive on a fifty-fold slower 

timescale. Coding explicitly requires the all-or-none nature of the action po

tential ("digitally"), instead of using pulses to transmit an analog firing rate. 

The scheme is inherently probabilistic, suggesting that a network might be 

robust to noise or damaged components. And coincidence-detecting neurons 

provide a straightforward mechanism for multiplying neural signals, and hence 

for the nonlinear computations which feature-detection requires. 

4.6 Conclusion 

Our brains can make sense of the world only because the world makes sense. 

Complicated as the world may be, its complexity pales in comparison to the 

complexity of the pattern-space it inhabits. Think of a TV screen tuned to 
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a vacant channel: all the countless pictures which might conceivably appear, 

pictures of sights real and imagined, are still never produced in the "snow" 

which best represents the huge combinatorial possibilities of the screen's indi

vidual pixels. Compared to unrestricted probability-space, the real world is a 

low-entropy state. 

An important aspect of the world's simplicity is the fundamental physical 

laws which govern the behavior of objects. Conservation of mass and charge 

guarantee that objects do not suddenly appear or disappear; conservation 

of energy and momentum govern their motion. Reproducable laws of optics 

determine how objects are illuminated, and how images of the world fall on 

our retinas and move when we do. 

All these laws not only make the world simpler than it might be, but they 

make many aspects of it separable: for example, the positions of objects and 

the ways in which objects move can be treated independently of the nature of 

objects themselves. And the persistence of objects from one moment to the 

next, combined with the finite number of object types we encounter, mean 

together that one might categorize object types, independently of where they 

are or how they move. It is thus possible to represent many aspects of the 

world most efficiently using a kind of product space, in which various aspects of 

objects (e.g., motion vs. form) are computed separately and later recombined ... 

such a scheme could represent the enormous complexity of the world by the 

near-infinite combinations of a finite number of computational elements. 

That it could be done does not mean it is done. But the existence in the 
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brain of separate form- and motion-sensitive pathways, with receptive fields 

large enough to accomodate many objects each, shows that some visual tasks 

are indeed divided, and must therefore be recombined. This recombination 

requires that a neuron's signal must not only correlate with its particular 

stimulus, but also with other neurons which represent complementary aspects 

of that stimulus. A neuron must somehow carry multiple types of information 

along its single output axon. And the fact that each neuron has only one 

stimulus to represent- while there are many other neurons to relate to, even 

when perceiving just two objects-suggests that the lion's share of information 

transmitted must correlate neurons with one another. 

This can be done by multiplexing the information in time. But multiplexing 

reqmres a high bandwidth, which in turn makes three demands on cortical 

signals: 

1) The neural signals must be capable of changing quickly. Action potentials 

are by nature very fast, and can in some specialized cases phase lock to the 

stimulus with 30 J.lS precision (e.g., the big brown bat, Covey et al. 1991). 

Much slower millisecond computations might in principle occur in cortical 

cells. 

2) That fast bandwidth must be used. In Fourier space, this means that the 

signals' power-spectrum must be broad rather than narrow, which is in fact 

the case for the near-flat power spectra of most cortical spike trains observed 

(Bair et al. 1992), due to their near-Poisson spiking process. In probability

space, this means that individual spikes must be unpredictable, so that each 
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one's arrival carries new information. Such irregularity does indeed seem to 

be the rule for all cortical neurons firing at all rates. 

3) That high-bandwidth channel must not be very noisy. When cortical cells 

are stimulated under controlled circumstances, their firing is quite regular and 

reproducible, suggesting a potentially reliable computation. But the individual 

synaptic inputs to such cells are known to be much less reliable; it is not yet 

known whether redundancy in synaptic firings can compensate for that. 

But in evaluating the nature of signals and noise in the cortical spike code, it is 

essential that the irregularity of cortical firing not be considered as "noise" a 

priori. We must first understand its source, the cell-to-cell synchrony embed

ded in it, and the perceptual tasks it might accomplish. Until we reach that 

understanding, it is possible in principle that the bothersome, unreproducible 

crackle of cortical action potentials is actually the sound of thought . 



Appendix A 

EPSP Width 

Here we modify the simple integrator model's prediction of Cv to account 

for the finite temporal duration of EPSPs. The integrate-and-fire neuron as

sumes that EPSPs result from instantaneous current impulses, which carry 

equal Fourier components at all frequencies and hence produce a frequency

independent input to the neuron. But in fact an actual Excitatory Post

Synaptic Current (EPSC) is not a 8-function, but arises from a conductance 

approximately of the form 

9syn(t) ex texp(-tjtpeak)· (A.l) 

As long as the membrane potential is well below the synapse's reversal poten

tial Erev, we can approximate the synaptic current by 

lsyn(t) ex texp(-tftpeak)· (A.2) 

The non-zero width of these EPSCs blurs a pulse-train's high-frequency infor

mation. We want to find the amount of that blurring in synaptic current at 

Ill 
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some test frequency j; the blurring is given by the decrease in Fourier am-

plitude of the blurred current train at f relative to the unblurred spike-like 

train. 

A train of realistic current impulses is given by convolving the individual 

synaptic current I(t) with the random "comb function" I:; 15(t - t;) of the 

spike-like inputs, 

J(t) = L /5(t- i;) * fsyn(t) (A.3) 

' 

The Fourier amplitude of I(t) at frequency f is just the product of the separate 

Fourier amplitudes :Ff(Isyn(t)) and :F1(8(t- ti)) (by the Fourier convolution 

theorem). The random comb contribution to Cv has already been determined 

(eq. 2.12), so we only need to examine synaptic current smoothing by the 

single-event term :F1 (Isyn ( t)). That attenuation A (f) of a single EPSC relative 

to a delta-function is the EPSCs Fourier amplitude at j, normalized by its area 

(found by using f = 0): 

A (f) 
IFf (Isyn(t))l 
I Fo (I syn ( t) ) I 

_ I f~oo fsyn(t) exp(27rijt)dt I 
f~oo fsyn(t)dt 
1 

(A.4) 

(A.5) 

(A.6) 

At what frequency f do we wish to evaluate this attenuation? Suppose that 

some spikes occur with mean interval tlt and some scatter c:: about that mean, 

so that sequential intervals are 

{6.t;} = (tlt + c::), (tlt- c::), (tlt + c::), (tlt- c::), ... (A.7) 



APPENDIX A. EPSP WIDTH 174 

This simplified example, with variability present only at a single frequency, 

has periodicity 2/lt, so that 

f 
1 

2/lt 
(A.8) 

(this is identical to the result got from the Nyquist Sampling Theorem). Using 

this estimate of J, we conclude that 

A(J) ~ 
1 

(A.9) 

~ 0.5, (A.10) 

for flt = 4 msec and tpeak = 1.5 msec. A(J) represents the attenuation of 

current variability at f reaching an integrate-and-fire neuron, due to synaptic 

blurring. If we suppose that this attenuation of current roughly corresponds to 

the attenuation of Cv (see eq. B.1), then A(J) (eq. A.9) should be multiplied 

by the perfect-integrator prediction (eq. 2.12). This blurring makes it more 

difficult to reconcile the observed variability with theory, even at low Nth: how 

can a neuron produce output varations whose frequency is higher than that 

contained in a single EPSP? 



Appendix B 

Spike Adaptation 

Her~ we modify the simple integrator model's prediction of Cv to account for 

the slower spiking which results from sustained hyperpolarizing currents. The 

spike rate in the monkey cells decreases by about half in the first 100-300 msec 

of a train. Some of this decrease is likely due to a decrease in synaptic input 

to the cell, but a major contribution to this slowdown is probably due to the 

"spike adaptation" potassium currents. How will these negative currents affect 

the predicted Cv values if the synaptic input remains unchanged? 

Because IAHP (considered as a single current) has a reversal potential much 

lower than the resting potential, it can be modelled (to first order) as a negative 

sustained current, which partly cancels the inward sustained portion of the -

EPSC while leaving its fluctuations unchanged. As a result, the mean lSI will 

increase during this adaptation. We wish to approximate the influence of this 

increased lSI on the perfect integrator with absolute refractory period (section 
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2.4.2). 

Let us assume a low variability in the perfect integrator model (Cv <t:: 1), 

so that t he proportional variation in time Cv = a .c.t/ tit to reach a fixed 

threshold of NthV is roughly the same as the proportional variation in the 

relative synaptic depolarization 8V/Vth arriving in the mean time interval tit: 

a.c.t 
tit 

(B.1) 

(B.2) 

As the negative current increases, firing frequency decreases, and the mean lSI 

during adaptation titAHP will increase above the lSI at the start of the train 

(B.3) 

But by assumption the depolarization necessary to reach firing threshold will 

remain constant: 

(B.4) 

How much variation in depolarization ( 8VAH p) will accumulate during that 

longer lSI? The rate of random EPSCs is assumed to be unchanged by the 

addition of negative adaptation current. So it is clear that the expected num-

her of EPSCs arriving in titAHP will increase, in proportion to titAHP· But 

the variation about that mean will not increase linearly with interval duration, 

but rather as its square root, as occurs in accumulating any large number of 

independent events in a single time period: 

(B.5) 
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The above formula applies only during the integration time, and is thus only 

valid for the perfect integrator without refractory period. Recognizing that the 

observed lSI contains the refractory period t0 means that the true integration 

time is /:).t - to, 

MAHP- to 

/:).tst - to 
(B.6) 

Combining eqs. B.2, B.4, and B.6 gives us an expression for Cv as a function 

of lSI for an adapting spike-train: 

~ Cv.,t 
MAHP - to 

/:).tst - to 

(B.7) 

(B.8) 

This rough result indicates that during spike adaptation, Cv will rise with the 

square root of /:).t, much faster than the leaky-integrator model suggests. Such 

a sharp increase in variability is indeed observed both in simulations (Figs. 

2.10-2.14) and in the monkey data. But the magnitude of the rise in Cv 

in simulations is not sufficient to account for the larger discrepancy between 

theoretical and observed Cv, nor can it account for the high Cv observed for 

early spikes, before the onset of adaptation. 



Appendix C 

Irregular EPSP Magnitude 

Here we modify the simple integrator model's prediction of Cv to account for 

variable magnitude in synaptic input pulses. 

Not all EPSPs have the same magnitude. In fact , the uncertainty in EPSP 

depolarization CTv may be nearly equal to t he average depolarization v (as 

reported in Mason et al. 1991), so that our model's input consists of EPSPs 

of random depolarization ( v ± uv) arriving at random times. Clearly this 

additional source of variation will increase Cv, but by how much? 

Let us assume a low variability in the perfect integrator model (as in Appen

dices A and B), so that the proportional variation in time Cv = a-6-t/ t:lt to 

reach a fixed threshold of Nth v is roughly the same as the proportional varia

tion in the relative synaptic depolarization 8V/Vth arriving in the mean time 
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interval Dot: 

(C.1) 

Because on average the cell receives Nth EPSPs during Dot, 

(C.2) 

The scatter about the average number of EPSPs is ..j]V;h, so we expect that 

the depolarization will be composed of Nth± .,JN;;, EPSP's, each of magnitude 

v ± av, that is 

Nth±,JN';h 
vth ± bV ~ L (v ± crv) (C.3) 

1 

Using the convenient (although inexact) assumption that a v is scattered about 

v in a Gaussian fashion, we can add the random variables in quadrature (root-

sum-square), dropping second-order terms: 

V,d 8V '" C"f' v) ± ~ ~ ~; 
NthV ± vjii:;. ± avjli:;. 

NthV ± jNth(v2 +a;). 

(C.4) 

(C.5) 

(C.6) 

By applying our assumption that the standard deviation of EPSP amplitude 

is about the same as its mean (av = v ; Mason et al. 1991) and combining eqs. 

C.1, C.2, and C.6 we arrive at 

(C.7) 

Cv ~ If· (C.8) 

(This result was derived in a different manner in Stein 1967a) . Thus, the max-

imal realistic variation in EPSP depolarization can only multiply the perfect 
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integrator's Cv (eq. 2.12) by v'2, not a sufficient amount to account for the 

discrepancies observed. 



Appendix D 

Cross-Correlation Analysis 

While the assumption that cortical cells fire completely independently has the 

appeal of simplicity and symmetry, it is not entirely accurate. The best-known 

and simplest method of describing correlations between spike trains is cross

correlation analysis, which is described in this section. 

D.l Formal analysis 

Cross-correlation analysis compares spike trains from two cells which are firing 

at the same time (comparison of more than two cells is difficult, both because 

recording from more than two cells at once is difficult and because the analy

sis and display of higher-order correlations is cumbersome; see Abeles (1990) 

and Softky and Kammen (1990)). The cross-correlation histogram, or "cross

correlogram," is essentially the multiplication of one spike train by another , 
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or the discrete form of the correlation function . 

Suppose we have spike trains A and B (of equal duration T), with discrete 

firing times labelled by tA; and tBj, and total spike counts N A and N B. The 

cross-correlogram CB-A(.6.t) is defined by 

NANB 
CB-A(.6.t) = L L 8Llt,(tBj-tAi), (D.1 ) 

i=l i=l 

where 8x,y = 0, 1 is the Kronecker delta function. For example, if a spike in 

train B is more likely than chance to arrive right after a spike in train A , 

there will be a peak in the cross-correlogram at positive .6.t. Coincidence is 

signalled by a peak at .6.t = 0. Anti-correlations appear as dips, and the 

absence of correlation appears flat. If both trains have average rates which 

are correlated as well, there will be broad peaks in the cross-correlogram in 

addition to the narrower peaks of single-spike correlations. Because the .6.t-

axis is reversed under exchange of spike trains, the total area under the features 

remains unchanged. 

The strength of correlations is easily measured by the "contribution coefficient" 

Cc(A) or Cc(B), or their mean Cc (Toyama et al. 1981). This approximate 

measure compares the above-chance number of spikes in a correlation peak 

Npk to the number of spikes in train A or B, thus estimating the fraction of 

total spikes in one train which are causally connected with the other train. So 

if the peak extends from .6.tmin to .6.tmax, then the contribution coefficient is 

(D.2) 

(D.3) 
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The height of the cross-correlogram outside the peak CB-A(f:::..tmax)d(f:::..t) is 

chosen as the baseline for determining the peak area. 

In the practice of looking at cross-correlograms, on which multiple peaks may 

be superposed, the area Npk under the peak can be subjective, depending on 

the width of the peak and on the time-window for "coincidence." (An example 

of the delicacy of this choice: in the case of a peak of half-width longer than 

the mean interspike time, one can in principle find more spikes under the peak 

than there are in the entire train, producing an uninformative and unphysical 

We had the opportunity to examine cross-correlation data of exactly the same 

sort as analyzed in Chapter 2: pairs of cells in monkey area MT responding 

to partially coherent motion of random dots. Significant correlations between 

those cells-which presumably serve as input to other similar neurons nearby

might help explain the high firing variability we observed. We thus analyzed 

the 11 pairs of cells recorded by Zohary and Newsome. We chose l!:::..tl ::; 7 ms 

as the region in which to count the area under the peak (see Figure D.1 for 

an example). This arbitary choice-a coincidence-window even wider than 

many of the mean interspike intervals-still led to low values of Cc ranging 

from 0.12 down to 0, with mean 0.03. A shorter estimate of the coincidence

window would lead to yet lower values of Cc and smaller contributions to 

variability. 
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Figure D.l: A sample Cross-Correlogram at Two Timescales . . A pairs of cells 
from visual area MT of monkey (Zohari and Newsome) exhibit the cross-correlations 
shown. A central peak (here between -4 and 6 ms) indicates the number of counts of 
a train which are coincident. Here the peak contains approximately 525 spikes, which 
is about 6% of the 8500 spikes in one train ( Cc = 0.06). The dip at zero is an artifact 
of the recording method, which could not reliably record two simultaneous spikes on 
its single electrode. 
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D.2 Influences of Recording Method 

But there are published reports of much stronger cross-correlation peaks than 

these, a situation which could result from the different cortical area studied or 

from the different recording method used. 

The Zohary data above recorded two separate cells from a single electrode, 

distinguishing them by the different V(t) shapes and peak heights of their 

action potentials. This is a common method, but it is usually incapable of 

recording two action potentials which occur within a millisecond of each other 

(i.e., when the separate action potentials would overlap); note the very low 

counts in the zero bin of Figure D.1 corresponding to few simultaneous counts 

from the two cells. Thus this method necessarily excludes the most tightly 

synchronized spikes of all... and there is evidence for such submillisecond 

synchrony in cortex. 

The most quantitative cross-correlation analyses published are from studies of 

cell pairs in primary visual cortex (V1) of anaesthetized cat, done by Toyama 

et al. (1981 ). That group used two different electrodes (penetrating the cor

tex from different directions), so that completely independent recordings were 

possible. Their recordings of 25-70 nearby cell pairs reveal average values of Cc 

around 0.2 (about ten times Zohary's values above), and several cell pairs with 

central peaks at zero only 0.1 ms wide. There remains the possibility that some 

such data reflect the accidental recording of the same as both electrode tips 

converge to within 100 11m (F. Worgotter, personal communication), although 
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the cells' responses and reconstructed locations seem to rule this possibility 

out in several cases. 

There are three important points about the Toyama et al. results. One is that 

they infer one cell's influence upon another (through the area of an occasional 

off-center peak) to have strength corresponding to the first cell "causing" about 

1/10 of the second cell's spikes (Cc ~ 0.1); this connection strength is much 

stronger than one would infer from the measured size of EPSPs, which typically 

contribute about only 1% of the depolarization necessary to trigger a cortical 

cell, but not strong enough to account for the common-input peaks observed 

(see Appendix F). 

A second point is that even those reports of a high average Cc ~ 0.2 (of 

centered peaks) would increase Cv to about 0.4 (through eq. E.19 and E.24), 

a significant amount but not enough to solve the Cv discrepancy by itself. A 

final point is that synchronization between cells at the 0.1 ms scale suggests 

that cortical cells are at least in principle capable of very fast information 

processmg. 



Appendix E 

EPSP Synchrony Influences 

Firing Variability 

Estimates of Synchrony in Cortex 

We can estimate the synchrony of EPSP input by comparing the measured 

output synchrony of nearby cells in cortex, as described above. Because nearby 

cells in cortex are strongly connected to one another, we can further suppose 

that a collection of many such cells provides input to an intergrator-model, and 

we can see whether the observed rate of coincidences between pairs of cortical 

cells (thought of as "input" cells) is enough to create highly irregular firing 

in an "output" cell. The integrator-model here will be the simplest "perfect" 

integrator, with no spatial extent, leak, or refractory period. 

Measurements of the cross-correlation between two spike trains can reveal the 
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number of coincident spikes. The details of the cross-correlation method, its 

temporal resolution, and its application to real spike trains are discussed in 

Appendix D. Here we will simply assume that any coincidences are perfect 

(no time dispersion), and we will use experimental estimates of pair-wise co

incidences (from Appendix D) to predict the rate of higher-order coincidences 

among a large population of cells. We then use that population estimate to 

produce a new estimate of the input variability to an integrator model, which 

will in turn give the integrator's new, higher Cv. 

We assume that any one cell will have a fraction Cc of its output spikes oc

curring at the same time as a nearby cell's spikes (Cc ~ 1 is the "contribution 

coefficient" of the neighbor to the target cell, as discussed for cross-correlation 

measurements in Appendix D). Different measurements have yielded values 

of Cc varying from zero to 0.9 (Toyama et al. 1981) for individual cell pairs, 

and from 0.03 to 0.5 across populations, depending on measurement methods 

and the area of cortex investigated (for futher references and a more detailed 

discussion of cross-correlation analysis, see Appendix D). 

Suppose that such pairwise correlations occur in a population of N neurons, 

each firing at the same average rateR, each pair having the same value of Cc. 

In this case a given spike train will have a fraction Cc of its spikes correlated 

with spikes from any other train, and the remaining fraction 1-Cc uncorrelated 

with spikes from that other particular train (although they may possibly be 

correlated with other spikes we do not record). Let us assume that all spikes, 

whether correlated or not, occur independently of others in the same train, 
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so that the timing of events from a single neuron is still Poisson. If those 

N neurons provided the EPSP input to an integrator model, then we can 

estimate the fraction of the population's spikes which are coincident, and the 

mean number of cells participating in each coincidence. Although we use the 

pairwise correlations observed, we must make assumptions about higher-order 

correlations (multiple cells firing at once) in the absence of any knowledge of 

them. That correlation must fall between two extremes: the minimal case, in 

which the only correlations between cells are pair-wise correlations like those 

we measure; and the maximal case, in which coincident events involve all the 

neurons. 

We will examine this simple population model in two regimes, as characterized 

by two parameters. One is the number of spikes (or multiplicity) m :::; N in 

each synchronous volley; if spikes tend to fire in pairs, then m = 2, but if the 

whole population fires at once, then m = N. The complementary parameter 

is the fraction of total spikes Pc :::; 1 which fall those volleys (rather than being 

uncorrelated with anything). If every spike fired is synchronized with other 

spikes in a volley, then Pc = 1; if only a tenth of the spikes participate in 

volleys, and the other nine tenths are completely unsynchronized with other 

spikes, then Pc = 0.1. These parameters are constrained by the population 

size N and by the amount of correlation Cc as follows . 

Suppose we calculate the chance that a single spike in one train is correlated 

(above random chance) with a spike in another train; this chance is Cc. The 

chance of the first spike being from some volley is Pc, as defined above. And 
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if the volley size is fairly large (m ~ 1), so that the number of other spikes in 

that volley is m- 1 ~ m, then the net chance of pairwise synchrony is 

(E.1) 

We will examine two extreme cases: the smallest possible volleys (of size m = 

NCc), with all spikes participating in a volley (Pc = 1) ; and the largest possible 

volleys (with m = N), where most spikes do not participate in volleys (Pc = 

Cc < 1). It will turn out that both volley sizes carry about the same variability. 

First the large-volley case. If the cells are maximally correlated (within the 

constraint of Pc = Cc measured), then all coincidences for all cells occur at 

exactly the same times, as the entire population fires in unison (m = N). 

In this case there are only two types of events: either all the neurons fire at 

once, or the various neurons fire independently of one another and of previous 

firings. This means that a single cell will fire a fraction Cc of its spikes as part 

of these giant collective events, and its remaining fraction of spikes (1- Cc) are 

random. In any given time interval ~T, the whole population will fire Cc~T R 

coincident volleys of N spikes per volley, and (1 - Cc)~T RN single random 

spikes (Figure E.1 A). Note that the number of volleys in the population 

response does not scale with N, while the number of single spikes does ... so 

a large population still has a correspondingly· large number of independent 

spikes occurring in it. 

In the simplest analysis, an integrator model exposed to such a population will 

"see" as input two superposed EPSP streams: one stream at rate (1- Cc)RN 

with EPSPs of unit amplitude, and one stream at rate CcR of amplitude N 
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Figure E.l: (A), A small population of N = 5 neurons firing in partial synchrony. 
While most individual firings are random, on a few occasions the entire population 
fires in a synchronous volley (arrows; here the multiplicity m = 5 and only about Pc ~ 
1/3 of the spikes participate in volleys). (B), The superposition of synaptic currents 
from those responses is equivalent to a single train containing many single events 
of unit amplitude and a few huge events of amplitude N . The standard deviation 
of event amplitude over that ensemble greatly increases the variability in current to 
an integrator model, and predicts that the model's firing irregularity will increase. 
(C) , In an alternative type of synchrony, every spike participates in volleys of equal 
size m (i.e., m = 3 and Pc = 1) . (D), In such a case, the number of independent 
events is typically far fewer, N;h is larger, and hence an integrator-model will fire 
more irregularly. 
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(Figure E.1 B). Let us suppose (for simplicity) that N =Nth, so that a single 

volley can just barely fire the integrator. While this may seem an extreme 

situation for real cortical cells, it at least guarantees that the intregrator's 

output firing rate is the same as the firing rate of any input cell. 

For this situation the number of independent EPSPs from the superposed 

streams necessary to fire the cell will be somewhat reduced. Of the events 

now appearing (as seen by the cell), most- a fraction (1- f)- still have unit 

amplitude. The remaining fraction f have amplitude N, where 

f = (E.2) 

(1- Cc)N 
(E.3) 

Note that a large N and a small Cc mean that f ~ 1. Let us examine the 

statistics of those events as they form a single superposed stream of input to 

the integrator. The average size of an event (A) has increased (slightly) above 

unity. Let A be the new amplitude: 

A = f X N + (1 -f) x 1 (E.4) 

(Recall that we assume that the high-amplitude synchronized events have ex-

actly N times the effect of single unsynchronized events, so that there are no 

amplifying or saturating nonlinearities, as there are in real cells). 

But there is no single event with amplitude A, just a lot of smaller ones and a 

few much bigger ones. So the "average" event now has a very large variability 

in amplitude as well as in time, 

u~ = (1 - f)(A- 1)2 + f(A- N)2 (E.5) 
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~ f ( N 2 
- 2N A) > 1 (E.6) 

because A- 1 is small and N is large. Now we can estimate the variability 

in the ou_tput spike times (relative to f:.t) is well approximated by the relative 

variability in depolarization accumulated during a fixed time f:.t; this is the 

same trick used in appendices A, B, and 1: 

(]' .6t 
~ 

8V 

f:.t v 
8V 
N' 

(E.7) 

(E.8) 

(E.9) 

We can then find 8V by combining the standard deviations as Gaussian ran-

dom variables, as we did in Appendix C. The number of independent events 

occurring in f:.t is (N/A) ± jN[A; the amplitude of each is A± O'A : 

N/A±..JNjA. 
V±8V 2::: (A±O'A) (E.10) 

1 

N ± ViiA ±[!I(]' A (E.ll) 

N ± VifA ± J (~)f(N2 - 2NA) (E.12) 

- N ± jNA + JN(N2 - 2NA)/A (E.13) 

~ N±NjJN/A (E.14) 

So we find the output variability when f ~ 1 to be 

Cv 
8V 

(E.15) 
N 

= [I; (E.16) 

~ {1h f (E.l7) 
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(E.18) 

(E.19) 

This approximation obviously breaks down for Cc ~ 1/3, at which value Cv 

will appear to decrease as the correlations become stronger. But we will not 

need it in that regime. 

What about smaller volleys? When every spike falls in some volley, and no 

unsynchronized spikes exist, then Pc = 1 and m = CcN (Figure E .1 C). This 

case is simpler, because all inputs are members of a volley, and all volleys- and 

hence all independent events-have equal size m = GeN. (In assuming that 

every spike participates in a volley of size at least m ~ 2, we implicitly assume 

Cc ~ 2/ N, so that this argument requires a large population or a strong cross-

correlation). Because the size of each independent event has increased from 

unity to m, the average size has obviously increased (Figure E.1 D), 

A = m (E.20) 

(E.21) 

so that only N;h < Nth independent events (volleys) are necessary to reach 

threshold: 

(E.22) 

If we again assume that N = Nth, then Cv IS available from the original 

perfect-integrator formula (eq. 2.12): 

Cv = (E.23) 

(E.24) 
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This small-volley variability is slightly larger than the one calculated using 

large volleys ( eq. E.19). Is this high enough to match the firing variability 

observed in cortex? Using the Zohary monkey data (which represents a prob

able lower bound of about Cc :::::: 0.03, Appendix D) , we would have Cv = 0.17; 

using the highest Cc values measured for populations ( (Cc) :::::: 0.2 for cat, 

Toyama et al. 1981), we would have Cv = 0.44, which is remarkably high, but 

not yet in the range of the monkey data (Cv:::::: 0.6- 1.0). 

There is a surpnsmg amount of synchrony in this small-volley case, even 

though the correlations assumed are the lowest-order possible. The total ab

sence of uncorrelated events, and the fact that volley size scales with popula

tion size, mean together that arbitrarily large neuron populations contain only 

the equivalent of N/CcN = C;1 independent trains of events. Slight degrees 

of pairwise correlation can still represent large amounts of synchrony-m ~ 1, 

with each spike "duplicated" many-fold- if all spikes participate in the corre

lations. 

Why do small pairwise correlations imply large amounts of synchrony in large 

populations? Each neuron in a population is in principle capable of contribut

ing a train of spikes which is independent of the other spike trains, so that in 

a rough sense the number of degrees of freedom is proportional to population 

size N. But each pairwise correlation represents an independent constraint on 

those degrees of freedom, and the pairwise correlations exist for all possible 

pairs of neurons in the population. So the number of constraints scales as N 2
, 

while the number of degrees of freedom scales only as N . 
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Both of these models of spiking synchrony are very simplistic. They both reach 

the same prediction of Cv, and both suggest that spiking synchrony alone can

not account for the high irregularity of cortical firing, when appearing as input 

to an integrator-model. (Appendix F further suggests that integrator-models 

would not be able to produce this degree of spiking synchrony either). But the 

second of these models, in which all spikes participate equally in synchronous 

volleys, shows that even slight amounts of measured synchrony between pairs 

of cells may mask a huge amount of multiplicity among individual spike events, 

and hence may reflect a large amount of synchrony, redundancy, and degener

acy in the population firing. 



Appendix F 

Paradoxical Cross-Correlations 

We suggested in section 3.9.2 that the abundance of narrow cross-correlation 

histogram ( CCH) peaks centered at zero time is better explained by neurons 

which act as single-pulse coincidence detectors than by traditional integrator 

neurons. Here is the explicit argument. 

While the most prominent cross-correlation features are those at 20-40 ms 

timescales (see a review in Engel et al. 1992), including the well-known 40 

H z oscillations in cat visual cortex (Gray and Singer 1988), those correla

tions are too wide to infer direct synaptic connections between cells. Here we 

will concentrate only on the very rarest and narrowest features found, dubbed 

"towers" by Nelson et al. (1992), which presumably indicate direct synaptic 

connections between two cells or between each of them and a common driver. 

Those cross-correlation studies in cat visual cortex (by and reviewed by Nelson 

et al. 1992) find that about 10% of cell pairs studied across areas of cortex 

1ft 
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share significiant spiking synchrony at zero mean time and 3 ms peak width, 

indicating that the cells share some common source of input; and the orienta

tion sensitivity of the correlations suggests a cortical origin. But almost never 

(e.g., in only one of twenty such correlated pairs) did they find the source 

of such input, as indicated by a narrow CCH peak displaced from zero time. 

Why? 

We will not consider in detail how one can so frequently find correlated cell 

pairs among millions of neurons picked essentially at random. But as one ex

ample of the problem consider that if 10% of cell pairs synchronize spikes at 

the 1% level (e.g., Cc ~ 0.01, as Nelson et al. suggest), then a solitary reference 

spike is likely to coincide with about .001 of a spike in any single other cell 

(above random chance). But that single other cell is drawn from a huge pop

ulation, possibly 100,000- for example a couple mm2 of cortex, with at least 

40,000- 100,000 neurons/mm2 (Abeles 1990). So in the population at large, 

the total number of spikes coincident with a reference spike- i.e., the spike's 

degeneracy or multiplicity m (Appendix E)- can be well over 100. While hur

ried experimenters are unlikely to ever find those 100 needles-in-a-haystack, 

that high inferred synchrony suggests two conclusions: 1) the number of in

dependent spiking events in cortex might be a hundredfold smaller than in a 

random distribution, severly limiting the usefulness of averaging over popu

lations of neurons (Britten et al. 1992); and 2) there exists some synchrony 

which might serve as input to a coincidence-detector, and which might in fact 

be the output of a coincidence-detector. 
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We will not consider the wider types of CCH peaks (30-200 ms) Nelson et 

al. examine; the focus here is on CCH peaks so narrow (3 ms typical) that 

they unambiguously indicate direct synaptic connections. We will construct 

predictions for such CCH peaks based on two caricature neural models sharing 

common sources of input. In all these cases we will assume that all cells fire at 

the same rate, which is in practice true only of averages over many recorded 

cells (although not of any particular pair). 

First the integrator-model. Suppose we have two recorded cells, A and B, each 

of which temporally integrates its excitatory inputs (without significant leak). 

The cells each receive excitatory synapses from Ncom "common" source cells 

(labelled by Ci, e.g., a pair (Ncom = 2) of source cells would be C1 and Cz). 

And each integrator receives an additional amount of uncorrelated, random 

input from other sources (the nature of which will prove to be unimportant). 

In order to describe the total influence of common input, independent of the. 

number of connections (Ncom) it is distributed over, we can designate the 

relative strength S of those combined common connections by the total depo

larization .6. Vc (out of vth) they would all cause together. S is related to Cc 

and Ncom as follows. S denotes the total fraction of each integrator's depo

larizing input which is shared with the other integrator, 0 :::;: S :::;: 1. A single 

one of those synaptic events (from one of the Ci) would raise a cell's poten

tial toward firing by a smaller amount, .6.V/Ncom· Because the cell requires a 

depolarization of vth to fire, a single event causes a relative potential change 

which depends on both the strength of common input and on the number of 
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input synapses over which that input is distributed: 

S ~lfciNcom 
-

Ncom Vth 
(F.1) 

Since all other input is random, and independent events have independent 

influences, we can assume that the cell's potential is equally likely to be any-

where between zero and Vth, so that a single event from the common input has 

probability S I Ncom of firing a recorded cell. The higher the number of cells 

(Ncom) the common input S is distributed over, the smaller each individual 

synaptic event will be. 

What fraction of output spikes will A and B have in common above chance, 

i.e., what will be the contribution coefficient Cc(AB)? (Because A and B 

fire at the same rate, Cc(AB) = Cc(BA).) Suppose A fires a spike. The 

chance that its spike came from one of the common inputs is S (Ncom common 

inputs with strength S I Ncom each). In that case, the further chance that B 

fires in response to the same particular event which fired A is S / Ncom, so the 

contribution coefficient is 

Cc(AB) = (F.2) 

Clearly, strong cross-correlations require strong connections from the common 

input source, and are more effective when the common input is concentrated 

in a single source rather than over many parallel, independent sources. For 

example, the strongest cross-correlation peaks (such as Cc(AB) ~ 0.3 within 

the same orientation column; Toyama et al. 1981) require that either a single 

neuron C be driving both A and B with connections effective enough to bring 

either one 2/3 of the way from rest to threshold, or that three common neurons 
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(C1 , C2 , C3 ) be so strong that any one of the three can fire A orB with a single 

synaptic connection (neither of these cases agrees with known connectivities 

or synaptic strengths). Even the weaker cross-correlations (e.g., Cc( AB) ~ 

0.02; Nelson et al. 1992, Figs. 1A and 6A) between cortical areas A17 and 

A18 of cat would require a single common cell driving both A and B with 

S ~ 0.15, corresponding to an EPSP strength of 3- 4 m V (still much larger 

than observed). 

This difficulty was identified by Nelson et al. (1992), who qualitatively pos-

tulated a sub-population of very strong, very rare common-input cells which 

cause A and B to synchronize (they implicitly assumed the integrator model, 

but did not calculate the strength of connections required) . The connections 

must be very strong because a common driver C; is less than perfectly corre-

lated with either A's orB's firing (S < 1); but A and Bare linked to each other 

only through C;, so that their correlation is even weaker than the correlation 

of either one with C;. 

The driver's contribution coefficient Cc(CA) (equal to Cc(CB)) is just the 

chance that a firing by cell C; causes a firing in A, i.e., 

Cc(CA) = S/Ncom (F.3) 

From this we find that the driving cell C; is always better correlated with A or 

B than A or B are ever correlated with each other, 

S/Ncom 
S 2 /Ncom 

s-1 > 1 

(F.4) 

(F.5) 
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This is a fum prediction about the correlations between intergrator-type cells: 

the cross-correlation peaks which are offset from zero (i.e., those attributed 

to direct synaptic connections) should be much stronger than those centered 

at zero. This is not true for the research which shows quantitative CCHs 

(Toyama et al. 1981; Neslon et al. 1992), but unfortunately those papers have 

usually not calculated Cc(AB), nor have they found enough offset peaks on 

which to base any conclusions. 

(That rarity of direct connections is a mystery in itself, but is hypothetically 

(although implausibly) accounted for by the existence of driving cells Ci which 

are not only strong but also extremely rare, so that one hardly ever records 

from them (Nelson et al., 1992)-even though they ostensibly account for a 

very large portion of cortical activity.) 

Can a simple coincidence-detector model for cortical cells explain the cross

correlation peaks any better? Yes. Let us take a super-simplified model, in 

which the soma acts as a coincidence-detector among all synapses equally, re

gardless of their dendritic location (this model is explicitly unrealistic, intended 

for conceptual illustration only). 

Suppose that A and Bare coincidence-detecting neurons. Each receives input 

from a large number of independent synapses N, and fires only when M (M ~ 

2) of them are coincident within some narrow time window (which is chosen so 

that A and Beach fire at the same average rate as each input synapse fires). 

The number of shared synapses from the driving cells (the Ci) is SN, so that 

S denotes the fractional strength of common input relative to total input for 
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each cell, as before (we will let M ~ SN for convenience). 

What is the above-random chance that A and B fire in synchrony, i.e., what 

is Cc(AB)? If A fires a spike, that means that M input pulses arrived within 

a time window, so we know that those M pulses were distributed somehow 

over the N synaptic sites of A. The chance that all M of them were among 

the SN sites common to B is about SM. If the M pulses in fact were all 

among the common synapses, then neuron B must fire as well. But B could 

also fire if, for some integteger i < M, (M- i) synaptic sites fired among the 

common input, and were coincident with i non-common sites firing. If we call 

Pnon the probability that one of the (1 - S)N non-common sites fires within 

a coincidence-widow, then the total probability that cell B fires in synchrony 

with cell A will be the contribution coefficient 

(F.6) 

The factor of 21-So,; comes from the chance of overlapping two independent 

pulses of non-zero width. The highest term (i = M), which is not included in 

this sum, is the baseline probability that two spikes will occur with no causal 

relationship; that term is also left out of the definition of Cc, eq. D .2, to make 

Cc represent an above-random probability. Note that this prediction does not 

depend on whether the common input is distributed over many input lines, 

and thus does not require a few very strong driver neurons, as the integrator-

model does. Clearly, large M dramatically decreases the correlations between 

cells sharing common input (roughly as SM), as the chance of finding enough 

coincidences in the common input becomes very small. 
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This scheme more easily accounts for strong common-input correlations. As 

a lower bound, we can assume that Pnon ~ 0, so that only the S M term 

contributes. In that case, for two neurons sharing fiteeen percent of their inputs 

(S = 0.15) and firing upon the coincidence of two, this yields Cc(AB) > 0.02, 

in the range found for correlations between cortical areas. (Even higher values, 

such as Cc(AB) ~ 0.3, are consistent with the known high connection overlap 

among neurons in the same orientation column). 

A slightly more accurate approach would coarsely estimate Pnon from some 

typical assumptions. For example, suppose the chance that any one (not each 

one) of the cell's inputs fires within a coincidence-window is P1 , and the chance 

that the cell itself fires is Pout· Then for a one-millisecond coincidence-window 

and an output firing rate of 50 Hz, 

pM 
1 

'"'-' 
'"'-' Pout (F.7) 

p1 ~ pl/M 
out (F.8) 

'"'-' 
'"'-' (50Hz X 1ms )1/M (F.9) 

0.021/M (F.10) 

The chance that one of the non-common inputs fires is scaled down from this 

estimate by (1 - S), so that we have 

(F.ll) 

For S = 0.15 and M = 2 (as above), this new estimate for Cc is about triple 

the previous estimate, being 0.058 instead of 0.02. This degree of correlation 

can occur because every input Ci (out of possibly hundreds or thousands) is 
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capable of gating A or B's firing, so that C;'s instantaneous influence is high 

(while its average influence is low, due to an absence of temporal integration). 

But what about the problematic correlation of A (or B) with its driving cells? 

Each driving cell has an equal chance of firing A, and each Ci and A fire at 

the same rate. So every time A fires, it does so in response to the firing of 

M of theN drivers. That means that each Ci has an average chance M/N of 

firing A, so that its contribution coefficient is 

M 

N 
(F.12) 

If M is typically between 2 and 5 (a reasonable range for the number of 

coincidences required to fire a cell, as in Chapter 3), and N is at least several 

hundred, then the connection between a driver Ci and a cell A would be very 

weak (Cc(CA) ::; .01). The crucial point is that in this coincidence-detector 

model with many inputs, the inevitable correlation between driver and cell 

is expected to be much weaker than the correlation between two cells sharing 

common input, and might be easily lost in the noise, or in the tail of a stronger 

central peak (as might occur if the driver and reciever cells happen to share 

common input). On the other hand, the integrator model predicts that direct 

connections should appear stronger on a CCH; there is no way such strong 

peaks could be lost in the noise. 

In summary: the coincidence-detector model can easily produce strong common-

input peaks when common input is shared among many input lines; the 

integrator-model can only produce strong central peaks if a few super-strong 

neurons provide common input . Also, two coincidence-detectors sharing com-
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mon input will typically exhibit much stronger correlations with each other 

than with their drivers (matching observations in cortex); in the integrator's 

case the opposite is true. 

The fundamental difference between the two models is that a spike out of an 

integrator depends primarily on the timing of its previous output spike, and 

only secondarily on its instantaneous input (common or otherwise). So an 

integrator is difficult to synchronize for exactly the same reason that it is diffi

cult to make fire irregularly: it has a strong individual memory of its previous 

firing, and other cells do not necessarily share that memory. Coincidence

detectors, on the other hand, have no memory at all, and respond only to 

their instantaneous input. When that input is shared among cells, their spikes 

reflect it directly, unaffected by history. 

So narrow CCH peaks at zero time are much easier to explain using coincidence

detecting neurons. But if cortical cells are indeed coincidence-detectors, we 

may have to reexamine the traditional interpretation of how we infer cortical 

connectivity from cross-correlation histograms. 



Appendix G 

Compartmental Modelling 

The simulation of the electrical behavior of single neurons has become so 

common and standardized that programs for it are available virtually "off

the-shelf." We used one of the most popular such programs, NEURON (Hines 

1990) , which is described below. 

Compartmental modelling takes advantage of the fact that most neurons

including cortical cells-are composed of long, thin branches, filled with a 

fairly uniformly conductive saline solution and surrounded by a conductive, 

capacitive membrane. Each branch can be locally modelled first as a uniform 

cylinder, thus approximating the entire cell as a collection of linked cylin

ders of various dimensions and membrane properties. Furthermore, at the 

timescales of known neural operation (kHz and below), the cylinders' electri

cal properties have no radial dependence (only axial), so that each cylinder 

can be approximated by a single capacitor Ci in parallel with a linear resistor 
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Ri = 1/Gi (and possibly in parallel also with one or more nonlinear resistors, 

whose conductances may depend on local voltage and voltage history). (See 

Figure F.2). These parallel combinations (representing the cell membrane) are 

connected together by the resistors representing the axial resistance through 

the intracellular saline fluid. Book-keeping routines in the simulation program 

ensure that the axial resistance is calculated directly from the fluid's bulk re-

sistivity and the cylinder's dimensions, just as the parallel capacitor-resistor 

values are calculated from the cylinder's membrane area. 

In the case of a passive branch (which contains no nonlinear resistors), the 

simulation merely adjusts the voltage on each cylinder section according to 

the local differential equations. For example, a new voltage on a section of a 

single cylinder i (with no branches) would be computed from the voltages on 

it and on its neighbors i + 1 and i - 1 at the previous time-step as 

Vi(t + b.t) 

(Vi - Vext)Gi 
ci 

(G.1) 

The nonlinear membrane properties are numerically integrated in the same 

way. But these equations are more complicated, depending on the voltage his-

tory through other intermediate variables. For example, the most important 

nonlinear membrane conductances, the Hodgkin-Huxley-like spiking conduc-

tances used here, are modelled as depending at any point in time on the values 

of parameters m and h (thought to represent the concentrations of ionic species 

which instantaneously adjust pores in the membrane). The two separate con-

ductances (for sodium and potassium) each have a parameter denoting the 



/ 

Figure G.l: Compartmental Simulation. A cell's dendrite is a branched tube of 
salt water (left), which can be electrically approximated as a collection of connected 
cylinders (center), and further approximated as a collection of one-dimensional circuit 
elements (right), whose interactions are then numerically simulated. 
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maximum possible conductance (9peak), a driving voltage (Erev), and the de-

pendence on history through m and h: 

9Na 

9K 9K,peak(V - EK )m'i< 

(G.2) 

(G.3) 

Them and h values reflect the voltage history as if they were physical particles, 

flowing into and out of the cell according to the dynamical equations 

dmNa mNa,ss- mNa 
(G.4) 

dt TNa,m 
1 

(G.5) mNa,ss 1 + exp ( V-~1{2,Na,m) 
GNa,m 

TNa,m 0.05 ms (G.6) 

0Na,m -3mV (G.7) 

Vi;2,Na,m -40 mV (G.8) 

dmK mK,ss- mK 
(G.9) - -

dt TK,m 
1 

(G.10) mK,ss 
1 + exp ( V-Vl/2,K,m) 

ei<,m 

TK,m 2 ms (G.ll) 

eK,m -3mV (G.12) 

Vi;2,K,m -40 mV (G.13) 

dh hss- h 
(G.l4) 

dt T 

hss 
1 

(G.15) 
1 + exp ( v-:~/2,h) 

Th 0.5 ms (G.16) 

em 3 mV (G.17) 
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Vl12,h = -45 m V (G.l8) 

These equations are similar to the original Hodgkin-Huxley equations, differing 

in the order of m used (m3 in the original H-H model, but here m 2 ) , and in 

the absence of any voltage-dependence in T. But both sets of equations are 

phenomenological models which can be adjusted to fit recordings from real 

neurons, and the differences between these two models pale in comparison to 

our uncertain knowledge of their parameters for use in cortical cells. 



Appendix H 

Somatic Repolarization by 

Dendritic Spiking 

Here we will estimate the ability of InR to repolarize the soma after a dendritic 

spike. To simplify this task let us only consider the current-source model ( eq. 

3.33) of dendritic spiking. 

As we saw in the current-source approximation above (section 3.4), the sodium 

current localizes its activity in the dendrite so that it provides a current to 

the soma which is roughly independent of somatic potential or intervening 

trunk resistance. The potassium current has no such choice of position, being 

activated in approximately the same physical place as the sodium currents 

(because the two conductances have similar threshold voltages). So let us 

think of the sodium current as arising from a resistance R+ , composed of both 

dendritic trunk and part of the terminal branch, which (briefly) connects the 
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soma to the sodium reversal potential (Figure H.1) and delivers current ics 

( eq. 3.33): 

(H.1) 

Because we pretend that the sodium and potassium currents do not overlap 

in time and are small, we can sum their contributions separately and ignore 

their interactions (Figure 3.3, Figure 3.10). If the sodium and potassium 

conductances are exactly equal and identically distributed on the terminal 

branch, then the axial potassium current to the soma-iK-uses the same R+ 

as sodium to connect the soma with EK, and 

(H.2) 

But what if the peak potassium conductance is adjusted to a value different 

from the sodium conductance? We can add a correction term b..R to R+, 

so that b..R = 0 when the two conductances are equal, but b..R deviates from 

zero as the potassium conductance deviates from the sodium conductance. The 

magnitude of that deviation can be seen from eq. 3.33 (containing the input 

resistance of an infinite cable) to scale with the square root of the potassium 

conductance, and is zeroed by the sodium conductance: 

b..R = {if;- J c;:1rd (H.3) 

So that 

(H.4) 

The current-source approximation allows us to compare the potassium current 

to the sodium current by a ratio which does not depend on the absolute con-



EN a- Erest 

I 

114 

LlR < 0 LlR > 0 
~~ 

Figure H.l : (A) The sodium conductance in a spiking terminal branch (black) can be 
thought of as briefly creating an effective resistance R+ between Ere•t and EN a· If the 
subsequent potassium conductance has the same magnitude and spatial distribution, 
then it has an identical circuit, using EK in place of ENa· (B) If the potassium 
conductance is stronger or weaker than the sodium conductance, then the above 
circuit can be modified by a correction term fiR. 
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ductance values or on the diameter of the terminal branch, using eqs. H .1-H.4: 

'/,K ~ ( E K - Erest) (H.5) 
'/,cs ics R+ + ~R 

1 ( (EK - E,.,) ) (H.6) 
ics ENa-:-Erw + ~R 

t c • 

EK- Erest 
(H.7) 

ENa- Erest + ics~R 

where 

(H.8) 

(H.9) 

The most important variable for somatic spike triggering is not current but 

depolarization. In particular, the repolarization by lK relative to the depolar-

ization by I Na will be given by the ratio of charges deposited at the soma: 

J iK(t)dt ~ iKT~]{) 
iKT(K) 
icsT(h) 

(H.10) 

(H.ll) 

When this ratio is unity, we can say that the potassium current has removed 

the depolarization caused by the sodium currents. Because the persistent 

somatic depolarization is the integral of these two opposing currents, we want 

to compare t he voltage after the spiking event to the voltage which would 

persist in the absence of repolarizing currents (Figure 3.10) . A convenient 

measure of that quantity is the persisitent somatic depolarization at time ta 

after the dendrit ic spike has occurred, 

(H.12) 

In the near-absence of any potassium currents, ~ V(ta) would have a maxi-

mum value of ~VNa(ta) (which is less than the peak ~Vsoma because charge 
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equilibrates in the cell after the peak depolarization occurs) . We can use these 

measures of persistent depolarization to define a dimensionless ratio .6-p: 

.6-V(ta) 
.6. VNa(ta) 
QK + QNa 

QNa 

1 + QK 
QNa 

1 (r(K)) EK- Erest 

+ r(h) ENa- Erest+ ( l%ii- 1) (ENa- vl/2) 

(H.13) 

(H.14) 

(H.15) 

(H.16) 

This peristent depolarization .6-P nears unity in the near-absence of potassium 

currents, crosses zero when the dendritic spike has no lasting somatic polar-

ization, and dips below zero if the soma is left at a lower potential than before 

the dendritic spike. The soma is more effectively repolarized when the resting 

potential is higher (further from EK ), and when the potassium conductance 

is stronger. (All other terms, such as reversal potentials and time-constants, 

are presumably fixed by properties of the individual channels or extracellular 

fluid, so they were not varied.) 

This coarse estimate ( eq. H .16) compares well with simulations of a repre-

sentative terminal branch for values of GK spanning a factor of one hundred 

(.05 Scm-2 -5.0 Scm-2 ) at two different reversal potentials ( -75 and -65 m V, 

Figure 3.10); simulations on other branches gave almost identical results. The 

only problem is that when GK = 0, the sodium channels in the dendrite 

would "latch on" and fire repeatedly-an undesirable situation. The lowest 

potassium conductance for which the sodium channels did not "latch on" was 

GK = .05 Scm-2 , so this value simulated the "no-potassium" depolarization 

.6. VNa(ta)· In simulations, the somatic potential dropped to about half its 
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peak value during the 3 - 4 ms it took for the charge to equilibrate in the 

cell (Figure 3.10 A,B), after which time the somatic depolarization decayed 

with the membrane time constant. The particular choice of measurement time 

(ta = 8 ms) did not significantly affect flp. 

The predicted values of persistent depolarization flp for various values of G K 

and Erest agree qualititively with the simulations, showing a sharp drop in 

persistent depolarization for small GK and a saturated minimum value of flp ~ 

0 for GK ~ GNa (Figure 3.10). The increasing deviation of the predicted 

curve from the simulated ones at these high-G K values occurs in part because 

of the poor model for 9K(t) (Figure 3.3), and in part because the prediction 

subtracts two opposing approximations (ics and iK ), whose inaccuracies still 

add. Because there are no free parameters, it is a bit surprising that this 

highly simplified model worked even as well as this at accounting for these 

highly nonlinear repolarizations over different dendrites and parameter values. 

These expressions and simulations suggest that a peak potassium conductance 

about twice the peak sodium conductance will leave virtually no persistent 

somatic depolarization after a dendritic spike for Erest = -65 m V (Figure 

3.10). This ratio of conductances was used throughout Chapter 3, unless 

otherwise specified. 



Appendix I 

Relation Between 

Spike-number Variance and Cv 

In Chapter 2 we tried to measure the variability of a spike-generating pro

cess. There are two easy methods of doing that; here we will find the relation 

between those two measures. 

The measure we concentrated upon was looking at the variability in time be

tween successive intervals, through the normalized width ( Cv) of an interspike

interval histogram. This method can work for trains of arbitrary length, but 

all trains must have the same stationary firing rate. 

The other method is the variability in number of spikes occurring in a given 

time period, through the normalized variance in the number of spikes S per 

trial ( u~/ S). This method requires that all trials have the same duration, but 
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can accomodate firing rates which change with time (as long as that change is 

the same within each trial). Both measures yield values of unity for Poisson 

spike trains and zero for perfectly regular trains. But how are the two measures 

related? 

Let us evaluate the simplest possible case: we generate spikes with stationary 

rate and Cv. From this process we will construct two distinct batches of spike 

trains: one batch of trains with a fixed duration but a variable number of 

spikes (the usual experimental protocol), and a second batch of trains with 

a fixed number of spikes and variable duration. By calculating each sort of 

variability separately, we can find their relationship. 

First the batch with a large but fixed number of spikes S per train. We can 

treat each separate lSI f:lti in each train as an independent random variable 

with standard deviation a D.t and mean tlt. The duration of each whole train 

is different, fluctuating randomly about the mean T with standard deviation 

aT. If we assume that all random variables are Gaussian-distributed, then 

S-1 

T±aT - L:~ti (I.l) 
i =l 

s 
~ l)~t ± <7D.t) (I.2) 

i=l 

- S~t±<7D.tVS (!.3) 

We can also interpret this variability in time as being a variability in firing 

rate about a mean valueR, so that 

R 

R±aR 

s 
T 

s 
T±aT 

(1.4) 

(!.5) 
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(1.6) 

The other batch of spike trains has fixed duration T (the same as the mean 

duration of the first batch), but the number of spikes per train varies as S±a-s. 

This variability can be gotten directly from the variability in firing rate, 

R±a-R- T-1 (S±a-s) (I. 7) 

~ (1 ± ~) (1.8) 

Equations 1.6 and 1.8 together show that the relative variability in spike num-

her is equal to the relative variability in train duration (as in eq. B .1), 

a-s 
s 

So the standard deviation in spike number will be 

VBa-D.t 
/}.t 

CvVS, 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

using the definition of Cv (eq. 2.4). So the normalized variance will be given 

by the square of Cv: 

a-s2 - c2 - v s (1.13) 

This formula only applies for a train at constant rate, for which Cv can be 

calculated directly from the lSI histogram. But if we apply it to a train with 

variable rate (such as real neural data), we find that the Cv values this formula 

yields are in the range of multiple Cv values found by the multi-histogram 
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method. For instance, the normalized variance is about 0.02 for the fastest 

"barely plausible" simulation, and about 0.005 for the fastest "conventional" 

simulation. The above formula yields Cv = 0.14 and Cv = 0.07 respectivey, 

while the multi-histogram analysis gives Cv = 0.1 - 0.3 and Cv = 0.03- 0.2 

(Figure 2.14). So even when significant temporal structure in the average 

spike rate (or PSTH) makes multi-histogram analysis unreliable, the variance 

in spike number can still indicate the intrinsic variability of the neuron's firing. 
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