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Summary 

This thesis embodies three separate studies on seis ­

mic waves . The f irst one is concerned with the orig in of 

the oscillatory nature of e arthquake waves . Different 

modes of generation have been discussed in some detail, 

particularly the theory of Kawasumi and that of Sharpe . 

The effect of the possible failure of Hooke ' s l aw on the 

nature of the seismic waves is also explained briefly . 

The second is a short note dealing with the physical 

basis of two kinds of observations : the observation of 

velocity and the observation of period . 

The third part is a study on the theory of FLANK 

WAVES . The basic difficulties of the o l d theory are 

pointed out and discussed. The phenomenon is explained 

in the light o f the wave theory , in considerable detail 

in the c a se of P waves and very briefly sketched for the 

case of SH waves . 
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I . ON THE ORIGIN OF OSCILLATORY EARTHQUAKE WAVES 

1. Introduction 

Concerning the origin of the oscillatory nature of the 

earthquake waves , current treatises on seismology generally 

give but very brief accounts , if at all . While sustained 

oscillations are almos t always recorded in the seismograms , 

the origin of the waves is usually impulsive or assumed so 

- elastic rebounds in most natural earthquakes and explo­

sions in the artificial ones . Besides , no appreciable dis ­

persion has been ob~erved in the body waves traveling 

through the earth's crust . The explanation is not at all 

obvious; thus there seems to be a gap in the tracing out of 

the life history of t~e disturbance . However , theories, 

t r.ough scattered in different publications , are not entire­

ly wanting . The present study is intended to give a con­

cise appraisal of some of the more plausible explanations . 

Certain extensions are also attempted so that a better un­

derstanding may be derived . 

2 . Discussion of Some kodes of Generation 

There are at least five WRys by which impulsive dis­

turbances may result in the manifestation of a train of os­

cillations . They are : (i) dispersion, (ii) selective ab­

sorption , (iii) multiple reflections , (iv) resonance , and 

(v) repeated faulting . Each o~ these , to be sur~ , supplies 
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a possible mode of generation, but it is quite doubtful 

whether any one of them is adeQUate by itself. 

The phenomenon of dispersion has been applied with con­
( 1 ) 

siderable success by Gutenberg and Hichter to surface 

waves for the delineation of the different structural units 

of the earth's crust . But then the mechanism of dispersion 

is interpreted in a different manner . In the case of body 

waves , dispersion has not yet been observed in the seismo-

gram. 
as composect 

A pulse may be conceived~of an infinite number of har -

monic components of different frequencies . If these compo-

nents , in passing through an absorptive medium, are absorbed 

differently for different frequencies , the combined effect 

no longer gives the impression of a pulse but a train of os-

suggested in cillations . Selective absorption has been 
(2) 

Stokes' theory of internal friction . It also plays an irn­
(4) 

Recently N. Ricker 
(3) 

portant role in elastic hysteresis . 

applied this effect in his wavelet theory , but his demon-

s tration does not seem to be free from ambiguity . For the 

longer waves , the observations of the M- and W- phases 

showed that the absorption is extremely small . That absorp-

tion alone is not sufficient to account for the observed os -

cillatory nature of the earthquake waves has long since been 

(1) B. Gutenberg and C. F . Richter , Ger . Beit . z . Geophys . 
4'7(1936)73- 131. 

(2) G. G. Stokes , Trans . Camb . Phil . Soc . 8 ( 1845)28'7- 319 . 
(3) Lord Kelvin, Papers , 3(1890)2'7 
(4) N. rticker , Geophys . 5(1940)348 , 6( 1941)254 , B. S . S . A. 

33(1943)19'7- 228 
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Multiple reflection is not likely to be of importance 

in the present phenomenon . Even granted the most favorable 

layering of the ground so thax multiple reflection will oc-

cur , the waves as observed in the seismograms of artificial 

explosions show sustained oscillations before any reflection 

is observed. 

Resonance will cause free oscilations of a certain part 

of the earth's crust with its characteristic frequency . Then 

waves arriving at the same station and traveling a similar 

path must show this same characteristic frequency . There is 

no conclusive evidence in the seismograms to confirm that 

this is the case . This cause , even if it were real , cannot 

be important in every case . 

Repeated faulting is probably the most plausible among 

the above explanations . In the first place , this mechanism 

conforms with the jerky wave forms as observed in the ini-

tial part of most seismograms . Also from the nature of the 

movements , it is very likely that the glidlng along the 

fault plane will take place only in discontinuous steps . 

Unless there is no friction along the fault plane (which 

seems unlikely) in which case there will be no wave radia-
(2) 

ted from the fault , a finite train of irregular waves 

should rather be the expected result . 

(1) ii . Jeffreys , Geophys . Suppl . 1(1925)282- 292 . 
(2) K. Sezawa, Bull . Earth . Res . Inst ., Tokyo , 14(1943)269-

279 



-4-

Associated with this is the finite speed of fracture. 

This necessitates a certain time duration of the original 

disturbance which supplies another cause of the oscillatory 

nature of the waves . This fact has been used by Gutenberg 
(1) 

and Richter in explaining the apparent lag of the origin 

time of P behind that of s. If faulting always starts from 

one point, it might seem possible to get some information a­

bout the length and orientation of the fault from the dura-

tion of the initial disturbance in the seismogram. However , 

the situation is complicated by the fact that the propaga-

tion of fracture is not necessarily uni- directional and that 

the speed of faulting is not constant , being dependent on 

the initial cond itions. 

3 . I nvest i gations based on the Th eories of Small Displace­
ments . 

So far , our discussions are confined to the oscilla-

tions that are transformed from single pulses , or due to su-

perposition of several pulses . The process , therefore , is a 

composite one , and the effect is more prominent at a larger 

distance from the source . The question may arise as to 

whether it is possible to generate oscillations from a sin­

gle process . The answer is affirmative , and the origin is 

to be sought in the hypocentral region . From this result , 

-it will be seen that the spreading of the pulses should be a 

property inherent in most earthquakes . For the ease of dis-

---------
(1) B . Gutenberg and C. F . Richter , B .S . S . A. 33(1943)269-

279 . 
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cussion and visualization, we assume that the source gives 

only longitudinal waves. It is evident that when both the 

latter and the transverse waves are present , the same result 

must still hold qualitatively . 

As an analo~y, let us first consider the motion of a 

pendulum in a resistive medium. If a blow is given to it , a 

damped oscillation will result , provided that the damping is 

below the c r itical value . The equation of motion of the 

pendulum is 

(1) ii + .2 E e + d · B = ¢ (t J 

where e is the displacement , € the damping constant and n/27T 

the natural frequency of the pendulum . ¢ is a function which 

represents the impulse due to the blow . If we put ex -=i€ + l nL - E' 

and f3 =- i € - .J n'--e , the solution of (1) is given by 

(2) 

Now in an elastic medium, the damping is not expected to be 

large; and if we imagine the longitudinal wave as generated 

by a sudden application of a pressure inside a spherical 

cavity in a homogeneous , infinite medium, we may have some 

degree of similarity in the effects . The main difference 

would be that in the present case , a progressive wave should 

be dealt with . This is exactly the premise of Kawasumi and 
( 1) 

Yosiyama . Assuming a pressure function p = ¢ (t) such that 

it starts at the time t = 0 , lasts for a duration ~' at a 

constant value -~ and is then removed, they are able to 

(l) H. Kawasumi and H. Yosiyama, Bull . Earth . Inst • Tokyo , 
13(1935)496-503 
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solve the wave equation for small displacements with the 

boundary conditions that the radi ~al displacement should be 

continuous and that the normal stress should be equal to the 

pressure applied at the surface o~ the cavity. Spherical 

symmetry is , of course , implied in the assumption that the me-

dium is infinite and homogenous . Their solution is 

aPoj"" e<ftdp ;-~:. w _ a,J~ ;.o e~!rr_ e•'f" dP 
¢ = -- e f dw- ~-rripr ptp- ot.Xp -{3> 

:27Tfr Cp - ot>Cp- f.>J -"'~ 
-.0 _ , 

(3) 

where ¢ - displacement potential whose derivative with re­

spect to the distance r gives the radi$al dis -

placement , 

p = density of the medium, a : radius of the cavity , 

T = retarded time = t - (r - a)/V , 

. .2 v' 2. v · v • 
0( ~ L - T -~ (- (- ) AV a V 1 

v = velocity of transverse wave , V : that of longi-

tudinal wave . 

Equation (3) is very similar to (2) except that the time is 

replaced now by the retarded time . This makes the vmve a 

progressive one . 

When 1, >o,the radi t al displacement u at a distance r from 

the source can be obtained by evaluating (3) and then differ­

entiating wi th respect to r . The result is 

( 4) 

---------- --
* There is a slight misprint in eq . (19) of the paper cited . 
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where ~ and A are the Lame constants . Vihen r is large , the 

first term may be neglected , and we obtain a simgle damped 

oscillation with period T and damping ratio 1 given by 

T = ~ra/ v / 1- rft , r = e n- /2): 
These results were originally worked out by Kawasumi 

and Yosiyama to substantiate the view that the energy car-

ried by the seismic waves is equal to the released strain 

energy of the medium . 
( 1) 

This view has been contested by 

Sezawa , but his arguments seem to be a little obscure . Nev-

ertheless , he did improve the above calculations in one re -

spect ; that is, the rapidity with which the pressure is ap­

plied also plays an important role in the resulting wave form . 
( 2) 

Recently , J . A. Sharpe reworked Sezawa's result along a 

more or less siffiilar line and put the final formula in a more 

elegant form, whereby he was able to explain some of the ob-

servations in applied seismology . 

Other conditions being the same , Sharpe solved the 

problem by first assuming the pressure rrom an explosive 

source to be a step fUnction of the form 

p(t) = Po· for t = 0 

• 0 for t ~ 0 

and then generalizing the result by use of Duhamel ' s integral 

to a pressure function of the general form . For the former 

case and with a Poisson ' s ratio oft, he obtained the radi~al 

(1) K. Sezawa , ibid . 13 (1935)740- 748 , -- and K. Kanai , ibid. 
K. Sezawa, ibid . 14(1936)149- 154 14(1236)10- 16 , 

(2) J . A. Sharpe , Geophysics , 7(1942)144- 154 , 311- 321 , 9(1944) 
131- 142 . 
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displacement u at a distance several times the radius of 

the cavity or larger as given by 

(5) 

wT 

u == a•R, e - {Y S/nwT 
.2.fi.?r 

for T ~ o 

== 0 

For the general pressure function , the integral 

(6) 
r r 

u CT ) =_E... ) . p r n J U(T-n)dn 
ciT 

I) 

l ... _~ J ..., - 3Q 

i s used . t 1 ( ) ( -~t ) In par icu ar , if p r is of the form R 1 - e , 

Sezawa and Kanai have obtained u in its dependence on q 

which signifies the speed at which the pressure is varied. 

However , their expression is too long to be included here . 

From (5) , the following conclusions concerning waves 

generated in an explosion can be drawn : 

(1) Larger wave amplitude is obtained if the charge is 

buried in a less f rigid formation ; 

(ii) Larger amplitude is obtained from a larger cavity ; 

(iii)Higher frequency of the wave may result from either a 

higher v or a smaller a ; 

(iv) Explosives of higher speed give larger amplitudes 

(from the solution of Sezawa and Kanai) . 

It must be pointed out here that all these results , ei ­

ther those of Sharpe or those from the Japanese school , hold 

strictly only for small wave amplitudes . The assumption 

that the stress-strain relation is linear and contains only 

the first derivatives has been tacitly made in all the cal-

culations . This is certainly true when the body wave has 

tl~aveled some distance from the source , and the displacement 
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has become small . But in the near vicinity of the source, 

especially when it is of the explosive type, Hooke's law is 

not expected to be valid . The remarks in the next section 

are just an attempt to present one of the complications that 

would thus possibly follow . 

3 . Note on a Possible Failure of Hooke's Law 

We first notice that the ordinary wave equation will 

no longer hold in the present case . Let us take the next 

simplest relation between stress and strain, that it is 

still linear but contains also the higher derivatives . Then 

the kinetic energy T and the potential energy W per unit vol-

ume of the medium may be written in the following forms : 

(7) - ...L ( JS )z T - :1. f p t I 

where S is the displacement , and the a's are constants (we 

consider only the one - d i mensional case) . By Hamilton's 

principle 

t, ! XL 
J 1 dt ( T - W) dX = o ' 

t , ~' 

the equation of motion can be wri tten as 

( 8) 

Multiplying both sides by ~i and integrating , we obtain 

(9) 
. t 

.1. JS)' _2[ :?W _ _E. .JW + ;JL J W _ __ _ 1 JS dt 
2 p { at =) ;;~x ~s · ;?X ;;;s" ;;.x• ;;;s · ~ 
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If we substitute a wave form S = A cos(wt - kx) in this ~ 

last expression and take the mean value , we have 

(10) .... (I) 

When Hooke ' s law holds , all the a's vanish except a 1 • Then w=j;• .k 

and ;;w .,. B!.. = wave velocity . This means that the medium is 
() /< k 

non- dispersive . But if the other a ' s do not all vanish, 

and any s_inusoidal wave will be dispersed in the 

vicinity of the source . If the potential energy is given by 

an even more complicated expression than (7) , then (10) will 

be more complicated too and BwjE>k will not be constant a 

fortiori . 

With this simple picture , we may imagine that a disturb-

ance , even generated by an impulsive force , must necessarily 

propagate dispersively in the neighborhood of the source , 

owing to the fact that the displacement is too large to jus­

tify Hooke's law·. The pulse will then be spread into a 

spectrum. When the wave travels some distance away from the 

source , the displacement becomes small , and the ordinary 

wave equation holds . The whole train will then travel through 

the medium without dispersion . What is observed as a non-

dispersive wave train may actually be the net result of a dis -

persive process which has already been completed . If this i s 

the case , a more intensive disturbance and a less elastic me-

dium should be associated with a broader initial wave train . 

On the other hand, if the disturbance is small or if the me-

dium around the source is very rigid, the pulse may travel a-

- ----··- - - - -
(1) T . H. Havelock, Camb . Math . Tract , No . 17, 1914. 
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way without appreciable dispersion . In that case , a solitary 

wave may be observed in the seismogram . 

These remarks are admittedly only qualitative . They 

are intended to show that many interesting phenomena may be 

expected when the restriction to Hooke's law is broadened. 

On the other hand, when the linear relation is not valid , 

the principle of superposition cannot hold; consequently , 

Fourier's integral and Duhamel's formula cannot be used in 

these simple forms . This has a particular significance when 

a comparison is made between the theoretical ground movement 

and observations , because no instrument has a constant mag-

nification over all ranges of f requencies . 

So far as is known, the general theory of spherical 

waves of finite amplitude is not available even for a fluid . 

The problem is , indeed, a very difficult one . Not only is 

the mathematical diff icul ty almost insurmountable at present , 

but also the physical nature of the process is not well un-

derstood . In this connection, attention nay be called to a 
(1) 

paper by J . J . Unwin in which a step-by-step method has 

been developed for dealing with solutions of problems con-

nected with the production of waves by spherical concentra-

tions of compressed air . Several interesting results have 

been brought out which are not expected from the theory for 

small amplitudes . One of these is that from a single re-

gion of condensation, a train of waves is produced instead 

of a single crest propagated outward . This agrees quite well 

with our qualitative conjecture . 

(1) J . J . Unwin, Proc . Roy . Soc . Lond . Al78(1941)153-170 
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II . ON OBSERVATIONS 

1 . Observation of Wave Velocity 

In finding the velocity of a moving object , we may fol­

low one of three procedures : (i) observing its arrival times 

at several fixed positions , (ii) observing its positions at 

certain chosen times , or (iii) observing its change of po­

sition with tine continuously as in taking a speed- record . 

This l ast one is not always possible . The calculation of 

wave velocity from readings on seismograms at different sta­

tions falls into the first category . We have tacitly assumed 

that the ratio of the distance between two stations to the 

difference in arrival times would give us the velocity o f 

the wave in the ordinary sense of the word . This is true 

when the beginnings of the P phase are used . If this is not 

the case , then there are occasions when the identity of the 

wave is really ambiguous, because the wave form suffers var­

ious changes in the course of its propagation . One of the 

cownon practices to identify a wave in appli ed seismology i s 

to mark the maxima . Then, it appears that the measurements 

according to the three different procedures listed above do 

not necessarily give the same velocity . It is , therefore , 

worth while to make a closer examination of the physical 

meanings of the quantities defined by the measurements . In-

deed , the discrepancy is not expected to be large , and it may 

even seem to be trivial in some cases . But it is an under-
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lying principle usually taken for granted, which merits some 

investigation . 

If the medium is perfectly elastic and the wave observed 

is a disturbance strictly obeying the ordinary wave equation, 

our discussion will be quite superfluous , as will evidently 

be seen later . But what we have actually observed on the 

earth ' s surface is the net result of a compos ite process ow-

ing to several factors . I nstead o f enquirin g about the dif-

ferent mechanisms , we will study the problem just from the 

kinematic point of view. 

Assume that the amplitude of a wave decreases with the 

distance , according to a certain law (there must be a de -

crease of amplitude even from purely energy consideration) . 

~ince we will not be able to follow the third procedure in 

seismic observation anyway , we will confine the comparison 

to the first two . In the diagram, let ac be the locus of 

the maxima of the amplitude of the wave at different places . 

Amp· 

a 
\ 

' \. 
' \. 

~ 
',b d 

-----ne--
1 : .... .... 
II~ 
I I -..., C 

Then at any station whose posi -

tion is denoted by r , the time 

corresponding to the maximum am-

plitude in the seismogram (point 

d in the diagram) may really re-

fer to the wave whose maximum b 
I I 

...__,..._ ___ ....:...I ~~------r corresponds to the position r ' • 
r ' r 

The time corr esp onding to our 

rea l maximum e is not given by the time corresponding to max-

imum on the seismogram . Since the times thus measured d o not 
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correspond to the maximum of the amplitude at the two posi­

tions , the ratio of the distance to time ~ill not in gener-

al give the true velocity . It will yield the correct result 

only when the wave is of a certain type . 

Probabl y we can illustrate the idea more clearly by a 

sample calculation . 

the form 

Let us consider the amplitude factor of 

t' 
t"' - k X:-

A .xn e 

This amplitude changes with both time and distance . Keeping 

the time fixed , we have the maximum given by 

X = t. J.zj or 

If the distance is kept constant , then 

and the velocity obtained by the readings at different sta­

tions will be given by 

which is different from the value given above , unless m = n . 

In fact , if it is only the maximum of the wave which we 

are going to use , we can ask the general question : Vfuat type 

of wave fUnctions will give the same velocity by the two 

methods of observations? Let us assume a wave :function of 

the form¢ = ¢(x) t) . Then to find the meximum by keeping the 

time constant , ~ould amount to putting ¢x = 0 . The velocity 

with which this maximum travels may be found by differentia-

ting this latter equation with respect to time , and we have 

.J.. ../... J .t = 0 
'f~t: + 'Pu Tt 
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To find the maximum trace in the seismogram , we have ~ = 0 . 

The velocity with which t his trace- maximum travels will be 

given by 

¢>tt + =0 . 

In order that these two agree , we should have 

=0 

or P.u 4tt. _ <!); = o 

In Monge's notation , this is of the type rt - s = 0 whose 

solution may be readily obtained by use of a Legendre's 

transfor.mation . Written parametrically, it is as follovrs : 

p = at - x A(a) - B(a) 

0 : t - x A ' (a) - B ' ( s;l} 

where both A and B are arbitrary functions and a is a para-

meter . 

It is to be pointed out here that each of the solutions 

of the ordinary wave equation also satisfies the above dif-

ferential equation . However , being non- linear , it is not 

satisfied by the sum of different solutions . Physically, 

this means that the velocity of the trace- maximum will be e -

qual to the wave ve locity when we are observing a single 

wave . Vfhen waves of different velocities are observed, the 

resulting amplitude will not in g€neral satisfy the above 

condition . In p&rticular, the observation of the group ve-

locity of the dispersed wave train may not be the same quan­

tity as in the theory , and the comparison must be made with 

c are . 
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2 . Observation of the Period 

The idea of the period has a precise meaning only when 

it refers to an infinite train of waves of the same form . 

When an irregular wave form is considered, a harmonic analysis 

is usually applied, and the period means any one of its har­

monic components. But in the case of the seismograms , the 

process of harmonic analysis is too tedious to be applicable , 

and the word period as generally alluded to in the litera­

ture has , str1ctly speaking , only a qualitative meaning . The 

usual way to determine a period is to find a finite train of 

waves which are approximately of the same form and then take 

the average period in that interval . It is usually assuffied 

that if a pure wave form is found in the seismogram, even 

for a short interval , the reality of that period is vouch­

safed; but , actually, this is not exactly the case . The 

wave function which would give an apparently pure wave form 

within a finite interval can be found by means of the Fbur­

ier's integral . The following analysis is by no means new . 

It is intended to emphasize the limitation and justification 

o: an experimental procedure which is so often followed in 

seismometry but seems to have been taken for granted in its 

theoretical foundation . 

Consider the finite wave train within the interval 

-d/2~xfd/2 . Let the wave velocity be constant and the ap­

proximate period of the wave within this interval be T e which 

corresponds to the wave length A • . Let k = 2~/~ . 
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any time t , we may assume the wave 

be represented by 

,{/ •fo X 
'I' "" e 

ny Fourier's theorem, we have 

1/' = ir L·:~ jirJSJe;(z-pJkd~ 
!i 

~ _1. j "" ;,lot dl / ... ...L [e' t.C. - J>f3 
.27r e j_ !1. ;; _.., ~ 

But the second integral is given by 

e-• ·rl.-." >fJ}d/z. 
= 

S/;,( .t.- k) t-
1-. - k 

where the second term is neglected, being small compared 

with the first one . This is really the amplitude factor o f 

the harmonic component in the first integral . To see how 

this amplitude factor varies with k, we may plot its square 

against k in order to avoid the alternating signs , viz . we 

will plot the factor 

A z == 
si"n• j(J.-k) d 

(l.- 1 ] ' 

against k . This is the familiar intensity factor for the 

diffraction of light by a single slit . The graph is as shown. 

We have , therefore , several bands of periods , whereas if 

there is only one period, we would have a single line . 

Even if we neglect all the 

minor maxima , we will still have 

to consider all the periods em-

bodied in the central region . 

'J.'he width of this region depends 

upon the value of d in reference 

to .,.\ • Let there be n whole wave:s 
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in the interval considered . It is quite easy to determine 

the inaccuracy in assigning only one period T0 to the band. 

The order of magnitude of the error may be measured by the 

range of period between the central maximum and the first 

minimum. The latter i s given by 

Changing into period, we have 

_!:I. - .232-
To V TV 

or T = To n/ ( n - 1 ) 

The difference of this and the period To which corresponds 

to the central maximum is 

L\ T -'-­"" To n _ , 

It is thus seen that it would be quite impossible to assign 

a period if there is only one complete pure wave in the in-

terval; but if n is large , the period corresponding to the 

central maximum which is also the average period in the in-

terval, would give a very fair approxi mation . 



-1~-

III . THEORY OF THE FLANK WAVE 

1 . General Introduction 

Owing to the ease o f visualization and the ma t h ematic ­

al s impl icity , the method o f geome t r ical op t i cs as appli ed 

to the propagatio n of ela stic waves h as met wi th g reat suc ­

cess in the past and has been responsible for most of the 

early development in the science of seismology . Even at 

present , it is still very important in the more complicated 

problems i~ that it offers the only feasible way to map out 

the approximate geometry of the wave paths . Nevertheless , 

the method has severe limitations especially with regard to 

the distribution of energy . That it gives only the first 

approximation of the true picture has also been recognized . 

A better approach to the calculation of energy is fram 

the concept of plane waves . The intensity of energy is 

then derived from the wave amplitude . The calculation is 

still simple , and the wave paths thus found are precisely 

the same as those obtained from the ray method , because 

Snell's law still holds . However , this latter follows not 

from Fermat's principle , but from the boundary conditions 

which also determine the partition of the wave amplitudes in 

reflection and refraction. 

In electromagnetic waves which have only transverse com­

ponents (or in acoustic waves which are longitudinal) , the 

reflected and refracted amplitudes are given by the well 
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known Fresnel's formulae . The energy relation can then be 

readily derived . I n seismic waves , the situation is a little 

more complicated because of the coexistence of both the lon-

gitudinal and the transverse waves . From the continuity of 

the displacements and the continuity of stresses at the 

boundary, four linear algebraic equations connecting the dif-

ferent amplitudes may be obtained. The solution of these is 

thus very simple . All these amplitudes must also satisfy the 

energy relations which have been derived by Knott and by Blut . 

The relations given by Knott are expressed in terms of dis-

placement potentials and those of Blut , in terms of the dis -

placements themselves . As an illustration, we will give a 

simplified derivation of Blut ' s equations . * 

Consider a longitudinal wave incident on a plane bound-

ary . Let A, Ar, Br, A1 , Bf be the amplitudes of the various 

waves where A signifies longitudinal , B, transverse , sub-

script r , the reflected and subscript f the refracted waves . 

Let the corresponding angles with the normal be denoted by 

9, 8r , ¢r , ef , If;; (Fig . 1) . Now for a plane sinusoidal wave 

of the form 

A 
i(OJt- f ) 

u = e 

where r is in the direction of propagation, the 

mean energy per unit volume is given by 

Fig . 1 

(1) C . G. Knott , Phil . l•1• g . (5)48(1899)64- 97 . 
(2) H. Blut , Zeit . f . Geophys . 8 (1932) 130- 144 , 305- 322 
* In both Blut ' s papers and in the abstract by l1.acelwane , the 

energy relations are obtained by way of the energy integral and 
the stress - strain relations . However , if the displacements are 
already known as fUnctions of time , this detour seems to me 
quite unnecessary, as is indeed shown above . 
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pbeing the density . The mean energy flux contributed by 

the incident wave through an element of area .6 S on the 

boundary is evidently 

Equating similar expressions for each of the five waves 

passing through AS , we obtain immediately 

p, A' 1/j Sin z (} 
. -S/ne 

/i A/If SI;.,~Bf + fiB/~ S/fl24 
S/n 6!f s;n f>:l 

With the aid of Snell ' s law , this can be written as 

I _ A/ 8/ S/n2 F,.. B. Af sin 2 'if" -t- .fl. §l Sin .z~ 
- A• + A' $;.,2/J + f1 A"' s;..,.z.s P, I .1/nzB 

In exactly the same manner and with similar notations , 

we have for the case of an incident SH wave , 

J = 
B, z R Bl s/n .2 w 
- -1---
B• f, 8' Sin 2'f 

and for the case of an incident SV wave , 

Ar' I = -B' 

It should be noted here that both the above equations 

and those of Knott are derived under the assumption that 

the waves are plane . I n case this assumption is not justi-

fied , phenomena may exist such that they cannot be explained 

in the light of the above picture . For the lack o~ a better 

name , we shall call these phenomena second order eff ects . 

Their existence should not be interpreted as a contradic tion 

of the energy equations , but rather that they demand a modi-

' fication of the equations themselves . In wave propagation, 

it is the wave equation and the boundary conditions which 

are more fundamental . Fresnel's equations in optics and 

Zoeppritz ' equations in seismology, as well as the energy -
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equations of Knott or Blut , are all special cases applicable 

to plane waves only . 

Probably the most important as well as the most inter-

esting phenomena which shows the inadequacy of the plane 

wave assumption, is the refraction of waves in layered media . 

In both theoretical and auplied seismology, the basic formu­

l~for the calculation of the thickness of a crustal layer by 

the travel times of the refracted waves is derived purely 

from the consideration of geometrical optics . 

~~ 
' I The geometry of the ray path is as shown in 

the diagram where the ray coming from the Fig . 2 

source is supposed to be incident on the lower layer at the 

critical angle , travels along a path parallel to the inter-

face and emerges again at the same angle and is then record-

ed at the earth's surface . The wave can be observed at dif-

ferent points beyond a certain epicentral region . The path 

thus constructed agrees with that of the least time . The 

travel time curve is a straight line, as is confirmed by ob-

servations . At first , this appeared to be the correct in-

terpretation . But seismology has been developed to such a 

stage that one can no longer b~ content with only a super-

ficial agreement . The abov~ picture , though simple and sue-

cessful as it is , actually presents grave difficulties . 

First , if we t ake both contiguous media to be homogeneous , 

there is no reason that a ray after entering the lower me-

dium should return to the upper one . Even if it could re-

turn, as by assuming an increase of wave velocity with depth 
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it should not be observable in a wide region . Second, the 

grazing rays can come from the source in only one direction . 

The energy included in a narrow pencil of rays is small . 

This is also evident from rllut 1 s equations , for if ef or ¢f 

is a right angle , sin 28f or sin 2~f will vanish . Yet the 

observed energy of the refracted •.vave is quite appreciable . 

These difficulties are due to the fact that when the source 

is at a finite distance , as is assumed, the wave can no 

longer be regarded as plane . The interpretation of seismic 

refraction must therefore be sought directly from the wave 

equation and the boundary conditions . 

The problem of reflection and refraction of seismic 

waves has &Stually bePn studied from the wave theory by Jef­
(1 ) 

frey's for two particular cases and with the use of the 
(2) 

operator method . It was again studied by Muskat for a 

more general case with the ordinary differential equation an-

alysis . The emphasis of the latter was , however , laid on 

the justification of the minimal time paths . His final re ­
and 

sults , though only qualitative , ~finally become quite in-

volved , ~ are really very interesting . So far as mathe ­

matical formu~ is concerned, the problem may be regarded as 

solved . 

(1) 

( 2) 

The problem has also been attacked with some success by 

H. Jeffreys , Phil . wag . 23(1926)472-481; Gerl . rleit . z . 
Geophys . 30{1931)336-35G~ 

w . 1dUSka.t , Physics , 4(1933)14-28 
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the Japanese authors, among whom are Sezawa , Nakano and 
(1) 

Sakai , to mention just a few . The latter made an exten-

sive study of the case of an internal source emitting spher­

ical waves which then are incident on a free boundary . The 

problem was examined quite exhaustively and may appropriate-

ly be regarded as a continuation of Lamb's monumental 

work . (2) .however , since the boundary was assumed free , 

the question of refraction as discussed above, naturally 

would not arise . 

Yet crucial experiments were performed recentl y by a 

German scientist,o .v. Schmidt , who showed visually not on-

ly what is actually happening at the boundary, but also 

proved beyond doubt that the wave which we usually attrib­

uted to refraction is really a different entity . His ex-

periment will be described in the next section where a 

mathematical formulation of his theory is also attempted . 

Since then , theories have been worked out by several au-

thors who lin~ed more closelv the nronagation of seismic 

waves with that of electromagnetic radiation. It thus ap-

pears that there is still room for more examination . In 

the later sections, we will auproach the problem in a 

slightly different manner from that of Muskat and thus 

bring out a few points which were not emphasized in his 

work . Since this so - called refracted wave is really not 

what is meant in the ord inary sense of the word , we will 
{3) 

follow Ott and call it the "Flank Wave" . · 

Tl) T . Sakai , Proc • .t'hys . Math . Soc . Jap . 15(19;4 3)291; 
Geophys . Ma~ . 8(1934)1- 71 

( 2) H. Lamb , Phil . '.l.'rans . Lond . {A) ?03 ( 1904) 1 - 41 
(3t H. Ott , Ann . d . ~hysik , {5) 41(1942)443- 466 
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2 . Schmidt ' s Experiment and the Theory o f Characteristics . 

In his paper, 11 Ueber Knallwellenausbreitung in Fliiss­

igkeiten und festen Korpern" , published in 1938 , o.v. 
(1) 

Schmidt showed a series of spark photographs for the 

propagation of sound waves in two contacting media . The 

outstanding -feature of these photographs is the occurrence 

o f a conical wave front of considerable intensity in the 

rarer medium (of lower velocity) . His results may be 

graphically represented as f ollows : 

9 g 

Fig . 3 (liquids) Fig . 4 (solid in water) 

The first picture is for two liauids (xylol on NaCl solu­

tion) in contact , and the second for solid (aluminum plate 

or glass) in water . Considering only the first casp , we 

see that the whole wave- pattern consists of four distinct 

parts : the incident , the reflected, the transmitted and an 

additional conical wave front . This new wave front is in-

clined to the interface at exactly that an~le as is re ­

quired by the law of total reflection; namely , if v, is 

(1) o.v. Schmidt , Phys . Zeit . 39( 1938 )868- 875 



-26 -

the wave velocity in the upper and rarer medium and ~ 

that in the lower medium, then the angle of inclination e 

of the conical surface to the plane of contact is given 

by sin e : v, ;v, 

Since Fresnel's formulae admit of only three of these wave 

fronts , Schmidt concludes that there is a breakdown of the 

analogy between geometrical optics and seismology . He in-

terprets the phenomenon by use of an analogy with the 

shock wave in ballistics. Since the wave trace of the 

transmitted wave at the boundary travels with a velocity 

which exceeds the velocity of sound in the upper medium, 

Schmidt regards this fourth wave front as a "head wave" , 

due to this cause. 

In applied seismology, a similar mechanism has been 
( 1) 

suggested by C. H. Dix. The wave which we have discussed 

in the previous section and which is supposed to have trav-

eled along the path of Fig . 2 , is n o thing else than the new 

wave front in Schmidt's photographs . In the light of the 

latter, the process should not appropriately be called a 

refraction. 

We will now give a brief mathematical formulation of 

the head-wave theory . Exactly as in the case of the shock-

waves , it is based on the theory of characteristics of a 

differen~lequation . Without going into mathematical de -

tails, we may say that the characteristic is a surface on 

which the solution of a differen~lequation is discontin-

(1) C. H. Dix, Geophysics , IV(l939)208-2~ 1 
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uous , so that 1t cannot be uniquely determined from the 

initial data . This is what we have observed physically as 

a wave front defined as a traveling surface o f discontin-

uity . 

Let us now proceed to find the characteristics , or 

more exactly the bicharacteristics of the wave equation . 

Assume that the elastic media are homogeneous and iso -

tropic on both sides of the contact . The n the wave equa-

tion is of the form 

v' c/J = 

where ¢ signifies either the dilatation or the rotation 

according to whether the wave is longitudinal or trans -

verse . Wri tten in cylindrical coordinates , this becomes 

Let the source be in the medium 1 i n which the wave ve -

l oc ity is v, • Let the wave velocity in medium 2 be V.2 , 

and v, "' vL • For an observer moving with the velocity v:z. , 

we can make the substitution r : p- v2 t . ThPn the wave 

trace would be stat ionary with res pect to this moving ob-

server . We hav e thus 

Since there is an axial symmetry in our problem, the par-

tial deriv ative with respect to the azimuth e drops out 

and we have 
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The differential equation of the characteristics is 

The Cauchy's characteristic s of this equation are ~iven by 

= d z / h 
/ 

/ 
/ 

Eliminating f p and f z, v1e obtain 
/ 

' E - ( .!£ ) - f 8 = 5/n _, _!£ d p - w - 1 or ~ 

This is the slope of the wav e trace in the p - z Fig . 5 

nlane . Evidently the angle e is ~iven by sin 8 : ~ /v~ 

which is the angle for total reflection . Since it is in-

dependent of the az i muth, the wave surface must be a cone . 

With respect to a stationary observer , this wave will 

travel forward with a velocity ~ in the positive p - diree­

tion . In the direction normal to the front , the velocity 

of propagation is ev idently v, • 

I t should be pointed out here that in either the 

present treatment or in that of Dix , the intensity of the 

wave cannot be obtained . The interpreta.tion of Dix is 

based on the elementary form of the Huygens 1 principle 

which has long been known to be inadequate . In the 

'to~ , 

Kitchho~f's formulation, it requires the wave functions on 

both sides of the boundary to determine the solution unique-

ly . 

The interpretation of Schmidt ' s experiment f rom the 

point of view of the wave theory was first given by Joos 
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(1) 
and Teltow for the particular case when the source is ex-

actly on the boundary . The result was taken directly from 
(2) 

SommerfPLd 1 s classical work on the attenuation of wire-

less waves . The solution was extended to the case 
(3) 

source is away from the boundary by Ott with the 
( 4 ) 

when the 

use of 

Weyl ' s method which is a modification of that of So~er­
(5) 

f eld . The detailed paper of Krtiger published recently 

gave ·the solution even more mathematical rigor and brought 

out the identity of the two methods of solution. 

The result s presented in the next sections were a ctua l -

ly worked out just after the appearance of the paper of Joos 

and Teltow and were i ntended as an extension of their re -

sults . The method of solution is the one originally used by 

s orn@rfi e l d in his 1909 paper . vVhen the pole of the i ntegral 

is very near to its branch point, the method is n o t v ery ac -

cu rate . But the me t hod i s much simpler than the others , and 

for our purpose it seems that the a pproxi mation is ~ood e -

nough to bring out the salient points . besides , it indica tes 

a general chara cter of the problem which h a s already been ex-

empli fied by M.u s kat 1 s work . We will illustrate this point 

further by wor king out the case of the SH wave also . For 

completeness , we will give a brief account of the setting up 

of the wave equations and the conditions at the boundary . 

( 1) G J oos and J . Tel tow, Phys • ~eit . 40 (1939)289- 293. . 
( 2) A. Sommerfeld Ann . d . Phys . 28 (1909)665 - 7 36 
(3) H. Ott , loc . cit . 
(4) rl . Weyl , Ann . d . Phys . 60(1919)481- 500 
(5) Iv1 . Kru~er , Zeit . f . Physik, 1 21(1943)377- 437 
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3 . Equations of Motion and Boundary Conditions. 

A. The Equations of Motion . It has been shown by Love 

that longitudinal and transverse waves cannot be saparated 

if gravity is taken into account . However , the effect is 

very small; henceforth in our discussion, the dispersion of 

elastic waves due to gravity or any other external force 

will -be neglected . 

The equations of motion for an isotropic, homogeneous 

elastic medium are 

( 1 ) 

where u , v , w are the components of the displacement , Xx, Y x , 

etc . components of the stress and f the density o f the me ­

dium . Substituting from the stress - strain rel a tions 

{2) X, = A J ~ ~~ j~ 

( ~ll 2.!! ) 
= ~ 1i + J.X 

where ~ = £!!:. + iJr! + i:.!J! is th dil ti d ' 11 ;n ~~ dz e a on an ,.., f' are the Lame 

constants , we get readily 

(3) 

riere , S : u i ~ v 3 + w k is the displacement vector . By 

performing the operations of diver~ence and curl on both 

sides of (3) , we get the usual wave equations for dilation 

and distortion . 

( 4) 

(5) 

( ). <t" "-f' ) VL J 

-
Jf- v~t:J 

== 

= 

a .. J' 
PTti 

a~~ 

fw 
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where · ~ : iv x ~ is the rotation . 

Wave equations are usually expressed in terms of func ­

tions other than ! and i , because in so doing, the equations 

mi~ht admit more readily of solutions . In this connection, 

we may apply the well known theorem that any v ector may be 

split into two parts which are respectively lamellar and 

solenoidal only, viz ., 

(6) s = ? ~ + t7X A 
#-A 

The first part accounts for the dila~ion and the second for 

the distortion . Substituting from (6T- the value of S in (3) , 

we obtain 

v [ f "' -t- 2p > v~ ¢>- p ~:, J + t7 x [ JA ~l A - P J-;1. ] =- o 

Since A is arbitrary to the extent of an additional v~ , ~ 

being any scalar , we can choose A in such a way that 

( 7) 

Then 
(8) 

= 

B. The Dilatation and Distortion Functions The quan-

tity A is a vector , but from the nature of the problem, we 

can usually consider only one of its components . This com-

ponent can be represented by a scalar function such that its 

derivatives would conform to the condition of a curl and the 

function itself satisfies (7). To illustrate this, lPt us 

consider a plane wave . We can so orient our coordinate axes 

that one of them lies in the wave front . Let it be z . Then 

all the derivatives with respect to z will vanish . Writing 
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out the u and v components of (6), we have 

H + 
dAz 

u. = iH 'I 
g!£ ;,Az 

v = -
~ ,ax 

It is thus seen that both u and v depend on the derivatives 

of ¢ and A.,_ only . un the other 

w 
aA1 _ 

= dX 

hand, we have 

~Ax ~ 
'1 ..,. ~;z. 

which is independent of -& afld ~. We can therefore write 

A1 as a scalar function ~ and obtain 

(9) = ~ + u u ;n .;1 

,. = £1!. a 
.ill( tJ'~ 

w - w (1) 
These equations appear to have been first used by Green 

in his famous paper , "On the Reflexion and Refraction of 

Light" . The functions ¢ and ~ were later applied to e -

lastic displacement and are known as the d ilatation and 

distortion _functions . The corresponding .wave equations 

are 

(10) 
~ 
,rt'" 

It must be noted that (9) and (10) are applicable to plane 

waves only . 

Since VIe are more interested in waves which have sym-

~try about an axis , we will next find the appropriate d ila­

tation and distortion functions for this case . For this 

purpose , we may express the vector A as the curl of another 

vector .cl , Then 
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t7 )( A = v X v X B = v V· B - v ... B 

If we assume that B has only the z - component , then we can 

write 

It is a lso evident that if Bz satisfies (7) , so will A. If we 

us e cylindrica l coordina tes and write f for Bz, we may e xpress 

the components of the displacement as follows : 

M a~; 
1,.(, = + -----;t dl'd~ 

(11) 

£1 ~ ... .., 1. 
+ -w = n· /A-4:z. 

The corresponding wave equations are : 

(12) 

(13) = f d;:: 

a" I/! 
~~ 

It should be p o inted out here that in writing I a s the c url 
~t~hic!t has o"(r ~ht! z..c.c-npt>nmf 

of another vecto~, we would be dealing with displacements in 

the plane of incidence only . This is suitable for the case 

of P and SV waves . Since the displacement in SH wave is peP-

pendicular to the plane of incidence , we may treat it sepa-

ratel~ For this case , we may assume that the vector A itseLf 

has only the z - component . On a ccount of the axial symme try, 

both the r - and z - components of the displacement vanish . 

Denoting the ~ -component of the displacement by v and Az by 

-X, we have 

(14) u = o, ' w = 0 

and the wave e quation 
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(15J 

C. Boundary Conditions . For a slipless contact of 

two media , the fundamental conditions at the boundary are 

the continuity of displacements and the continuity of 

stresses. For the case of plane waves , the conditions have 

been discussed in detail in Macelwane ' s book . We will dis -

cuss here the more general cases: 

(i) When there are only longitudinal waves . We have then 

The continuity o f normal d i splacement gives 

(16) - at z -= 0 . 

The normal stress is 

The continuity of thi s g i ves 

(17) at z - 0 , 

since this condition should hold at all times . 

(ii) When there are only SH waves . Here , t.he continuity of 

the ¢ - component of the displacement gives 

at z = 0 . 

But since this holds for all r ' s , we have 

(18) at z : 0. 

The continuity of the tangential stress gives 

(19) at z -:. 0. 

(iii) WhPn both P and SV are present . For the preRent case, 

we have to use both the tangential and the n ormal components 
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of the displacement and the stres s . 

From (11), the continuity of u ~ives 

(20) ~ 'P, + d./ 
37 ~r~.z 

The continuity of w gives 

(21) 

The tangential stress is g iven by 

I~ ( ~ + 2.!£ ) -,; z = r ~;;: a r 

at z - 0 . 

By equation (11) , the continuity of this results in 

(22) 

The normal stress is given by 

r~z =::AI+ :2f' S~· 
The continuity of this gives 

(23) 

at z .. 0 , where 

4 . On .Longi tudinal Waves in Two :b1edia in Cont act 

A. The Problem. Let us first consider the case thich has 

been briefly described by Jo s s and Teltow. The source of dis-

turbance is supposed to.be exactly on the boundary between two 

media, and the transverse waves are absent . Admittedly, this 

situation is too much idealized, but the salient features of 

the method of solution anpear to be more easily brought out 

by this simplification . 

As shovn1 in Fig 6 , we t ake the source noint as the origin 
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of a cylindrical coordinate system and the surfac e of con-

tact betwe en the two media as the plane z = 
0 . If the media are assumed homogeneous, 

we should have a symmetrical wave pattern 

about the z-axis. ~et the densities of the 

media be d enoted by p, and R , the elastic 

constants by >. , and ).. .. , and the wave ve - fig . 6 . 

loci tie s in the media by v , and v~ • The rigidities of both 

media are assumed zero , and the velocities refer to the lon-

gitudinal waves . ~et a harmonic spherical wave tra in be 

generated at the source , and we will study the stationary 

state only . For this case , we have the radial a nd the ver-

tical components o f the displacement given by 

(24) 

The wave equation for the stationary stste is 

{25) v .. <p + h" q> = 0 

where J, '- :;w .. /v~ , the time factor e-,.wt being omitted from 

all the calculations since it does not affect the results 

and can be taken into account at any time . The boundary 

cond itions are 

(26) = 

at z = 0 . These have been derived fUlly in the previous sec-

tion . The present problem is to solve (25) under the con­

d itions (26) and (27) . In order to determine the solution 

uni quely , we must also impose the conditions that there a re 

only divergent waves and that the wave functions must vanish 
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at infinity . If there is absorption in the medium, viz., 
( 1) • 

i f his complex, Sommerfeld has proved that the solution 

of this problem is unique. But i ~ neither of our media is 

absorptive, as we would assume that both h, and h~ are real, 

the solution will not be unique in the sense that we can 

superpose a free oscillation on the solution. Since we are 

not interested in the free oscillations , we will assume 

that they are absent &nd consider at first that both h , and 

h .l are complex and then make their imaginary parts approach 

zero . 

B. l!ethod of Solution . By the method of separation of 

variables, it is readily seen that the particular solution 

of (25) is of the form 

where ~ is the usual notation for Bessel function of the 

first kind and zero order ,~ a ~arameter and C an arbitrary 

constant . To make the solution finite when z apuroaches in-

finity , we may write 

for z >O 

for z~o 

the real part of the square root being always taken to be 

positive when ~ is real and large . 

Since the v1ave equation is linear, we can write C, and 

C~ as arbitrary functions of ~ and then inte~rate w1th re-

spect to ~ from 0 to ~ • The resulting integrals will still 

be solutions . Let the d isturbance be a spherical wave of 

\1) A. Sommerfeld, loc . cit . 
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the form eihR/R . Then we may write the expre ssion of ~ and 

¢z. 

(28) 

(29) 

as follows : 

z > 0 

ff:z. = z < O 

where R2 = r 2 + zc , f 1 and f 2 are two a r bitrary fUnctions 

to be determined from t he boundary conditions . The ampli -

tud~ of the waves i n the two media are so chosen that they 

will satisfy the condition (27) when R is v ery small . 

To determine f 1 and f 2 , we ~'Till make use of the well 

knowm formulae 

z > 0 

(30) ::. 1 eo _!__ l a r) e ll"-h• z d l z < 0 
o .;r~-;," (1) 

in the theory o f Bessel funct i ons which were due to Lamb 
(2) 

and Soromer.teld independent l y . Substituting from (28) , 

(29) and (00) in (27) , we find 
0() 

r ()(J j _L 
J, [ -:;!.Lh;·· + ~ itU]J,ar)tlt =-, [ Jr.~k +fa. /;..lD)J;rto411. 

By means of the Fourier- Bessel theorem, we can equate the in-

tegrands and obtain 

(31 ) = fl.iC!.J- f:ilt.). 

To satisfy (27) , ·we note that fz (:_,·},I? 
R :a." when z = 0 . Di.f-

fe r entiating under the integral signs ~ the secon d parts of 

~l and ¢2 and then ~~vating the integrands , we have 

(32) -1 r--h~ f, a) = .. II·- h ... f. q ). 

(31) and (32 ) are two linear algebraic equations for f J and 

(1) H. Lamb, loc . cit . (2) ~ . Sommerf eld , loc . cit . 
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f 2 , and the solutions are readily obtained as 

1 .;~--~~-
= .ff~-11... IN r-;,,· + f~l I'-IV f, ('1 .. ) 

(33) 
{ ~~--~~ 

f; 0 ) =- /'C'-h~.~ fNIQ;i- + R.r~ 

Substituting (~3) in (28) and (29) and simplifying, we 

get the final integral expressions for ¢1 and ¢, as fol -

lows : 

01:1 
/Fh:· z 

(34J ~ :::/ p, +f.. J,J rr) e- - I l a'r z > 0 
o f,N 

( 35) ' 
~ .. /~ P. + f,_ J.t lr) e vl.__;,* ... z! tiJ,. z < 0 

= 
• f., IV 

where 
f, v J'·- h .... + f...o/ I'"-11,'-N = 

In these integrals , the paths of integration as well as the 

constants ~ and h 1 are real . however , in order to use the 

method of contour integrals , we consider h , and h~ as com-

plex numbers and then assume their i maRinary parts approach-

in~ zero . The integrations will then be carried out in a 

complex ~- plane . 

Since J. ( ~ r J is infinite when t- z ,· ot1 , we will split it 

into the form 

..2 J;, ( ~ t ) = H, { r r ) + J-1~ t t r ) 

where H1 and H2 are the two Hankel functions wh&Be asymp -

to tic expressions are 

;v/:x i(X- -J ) 
H, ex ) e 

(36) 

""'I-#; 
- i ( x- f ) 

Ha-l X) e 

H1 vanishes in the first and H2 , in the fourth quadrant when 

x __,oo. npnce (34) and (35) may be rewritten in the forms 
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(37) 
2 >" , 

(38) J
CIO 

1
00 -

Cf,.::: f. +fi H,ltr) e+JC'--JI.'-zid!-+ f.+li J.l._ti..r//l .._h. .. \d'~ 
o 2f,N " :zf.,N 

where the first integrals are carried out in the first quad-

rant and the second integrals in the fourth . 

The singular points of the integrands are the two branch 

points h and h 
by 

and the po~e given~N = o. We wil l assume 

that in our problem, the upper medium is rarer so that P~ > P, 

and h ,> h11 (V:~..> V 1 ) . In Sommerfeld's solution of the electro-

magnetic problem, the integrals around the poles wil l give 

rise to terms which are inversely proportional to {r. Thes e 

terms were i dentified by Sommerfeld as the surface waves . 

It is on the realization of these surface waves that contro-

versies have arisen, and a large number o f papers have been 
on 

published all centering the rigorous evaluations of Sommer -
" 

feld 's integrals . But in our case where both h , and h 4 are 

real, and h 1> h 2 , and also ~> P,, this question of surface 

waves will not arise b e cause the pole of the integral lies 

in an inaccessible re~ion of the complex p l ane. To show 

this, we have , when N = O, 

p, .1 c r .. - h). .. ) = e.._ c r'--h, ... J. 
lienee 

P,t- f,_ .. 

By our assumed inequalities , both the numerator and the de-

nominator are neg ative . It follo~s that ~~ is posi t ive and 

't is real. Now 

- p, = 
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The left hand side is nep,ative and real . We have only to 

vary ~ along the real axis to see whether this is possible .• 

When ~ is greater than both h , and h~ , both radicals 

should be taken positive according to our previous conven-

tions which are required for the convergence of the inte-

grals . Hence the ratio is positive . When ~ is greater than 

h2 , but smaller than h 1 , thenJ~~A,' is purely imap.inary , and 

the above ratio is not real . When ~ is smaller than both h, 

and h 2 , then the arguments of both radicals change by -rr (we 

will draw our path of integration below the two branch 

points , because we will assume that they approach the real 

axis from the first quadrant) . Their ratio is , therefore , 

a~ain positive . Thus , there is no point in the sh~et of 

Riemantll ~> surface chosen that will make N vanish • . ~fe may , 
Wtll't! 

therefore , disregard the surfaceAentirely in the present 

problem. 8 

The integral along the real axis ,e - plane 

in the first quadrant may be replaced 

by the sum of the integrals along OB, 
h, 

along a curve at infinity and around 

the branch cuts drawn from h , and h 2 

to infinity \Fig . 7) . In the fourth 

quadrant , the integral along OA may Fig 7 

be replaced by the sum of integrals along OB1 and along a 

curve at infinity . The two integrals along paths at infin-

ity vanish on account of the asymptotic properties of H1 

and HL· The integrals along OB and OB ' cancel each other, 
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because 

H:1:. ( t r e _,..,. J = - 1-1, a r ) 0 

Hence we have 

'rhe right hand side is -r0B . On the left hand side , let 

l;e-i tr == ~~ 0 Yfe obtain at once 

I () 8 + I()8 • = o 

Thus , our integrals are reduced to those components along 

the branch cuts only . Let us denote the integral for ¢, by 

R and that for ¢:l. by R' • 

Since we take the real parts ofJC-h,~ and A/! 1-Ir .. ~ to be 

positive so long as we do not cross the cuts , we will draw 

the latter in such a way that along them, the real parts of 

the radicals vanish . Then 

(39) R, = , rJ- 2..---- H, , r e P. + o j -r « J ( t ) -I r- h,,. z 
2f, /'1 

where R 1 is the integral around the branch point h • Let 

J~t - ht ~ ± i# along two sides of the cut and substitute in 

the above equation . We have then 

p= .... 

1 o~ z p, .,.R. H,llne-'r !III 

:z R ., c _ "" I{ , f3 .., R v-f'"+h ... -h:o 
(40) R, = 

This integ~al has been evaluated by Sommerfeld and is equal 

to 

(41) 
.z. J ~/lt,r 

0 -- ih, ( f', + p ... ) [ f.. .. + -"• - p, ~ ... (J,,l._},,) P,.fh, ... -h:· rt. 
Z >D , 

provided that r is very large and z is small compared with r , 
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because the asymptotic expansion of H1 has been used. Re-

placinp; -J l'-h,~z by .Jl '--M z. in (39) and -,;.a.z by ..;-r+h!-h~-- in 

(40) we can eveluate the integral in a similar manner and 

obtain 

( 42) R,' =- t'h, ( p, + P.. J 
P, .. {l,, .. _ },;) 

..!... ;,/,, ,. +I;,, '--J.:- z 
e , .. 

for the second medium . In exactly the same manner , we can 

evaluate the integrals around the other branch point h z and 

obtain 

(43) R2. == -
;/,,_ ( f, ~ It) ...L ,;,,.,. -I;, .... - ..4 ... z 

2 >" 13 ~ (lt .. L -h,"') 
, ... e. 

(44) 
iha (~-1>IV { f,Y::..-h,') 

. :z } e;l,,r 
R,.' -IN n.~h.... ---;:;::- Z< tJ =-

We recall here that R• and Rz are the two space waves in me-

dium l and R,' and R; are those in medium 2 . We shall dis-

cuss some of the consequences of these equations in the fol -

lowing section . 

v. Discussion of Results . In solving the problem, we 

have tacitly assumed the following : 

l . Only longitudinal waves exist; 

2 . The disturbance is represented by a harmonic wave of an-

gular frequency ~; 

3 . For the media , p .. > P, , ., .. (= .Jk / f, ) > v, (=.J~,/p, ) and therefore 

h, > hz 

4 . A s tationary state has been reached; 

5 . In evaluating the integrals , asymptotic expansions of H1 

and H~ are used so that r is fairly large and z~r . How-

ever , it is known that the asymptotic expansions of the 

Hanke l functions give very good approximations even when 



their arguments are as small as 3 . 

6 . The source of disturbance is exactly on the plane of 

the contact . This condition, however, can be general-

ized and we will treat the case when the source is at a 

small distance away from the plane of contact in a lat -

er s ec tion . 

Equation (41) represents a space wave in medium 1 whose 

amplitude decreases as ljr2 and increases linearly with z . 

out this increase c annot be indefinite , bec ause z nust be 

small compared wih r . 

Equation (44) represents the corresponding wave in me ­

diun 2; but here , since /h, ' - h,'" is imaginary, the wave real­

ly consists of two parts whose phases differ by go •. Both 

this wave and the above one are propagated in the direction 

of r and are , therefore , at ~razin~ inc i dence to the plane 

of contac t . The phase velocity of the wave in medium 1 is 

given by v,.=- 4Jfh, and that in medium 2 p;iven by v& ,w/;,&1 in 

agreement wit h our initial assumptions . 

Since .J h,'--/,& .. is real , so in (42) , exp(h,'" - h & .. )~2 de-

creases very rapidly with z ( z.., tJ ) and we have a wave propaga-

ting in the direction of r with a velocity v 1 , but confined 

within a very thin layer below the interface . 

Equation (43) is the most intetersing . Rewriting it as 

follows 

(43a) !? = A 
,· rh .. r -/h, .. -h ... z) 

-.L e ,. ... 
where A i s a constant amplitude factor , we see at once that 

this represents a conical wave propagating in the medium 1 
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with a phase velocity given by 

( 4 5) c.v / .!h ... ~ (h,'-h ... J :: w l h, = v,. 

In any vertical plane passing through the source, the trace 

of the wave front is given by 

{46) h..r-J/ h • .. - A/ z = constant . 

'l'his is inclined to the interface at an angle p:i ven by 

(47) e = arc tan h z); h/- h .... = arc sin hJjh , = arc 

sin v, fv~ which is exactly the angle required in tota l re-

flection . 

Just to give an idea of the order of magnitude , we will 

estimate the ratio of the r - component of the displacement in 

this f _ank wave to that of the source . It is easy to see 

that this ratio j Q, j is g iven by 

(48) 

to the order of 1/r . Wi th period= 5 s e c . , v 1 = 3 km/sec , 

~ = 5 km/sed, = 2 . 5 , p = 2 . 7 and r = 100 km, we have 

jQr I = .2· 3 7u . 
Since the present case is too particular, we will give a 

more detailed calculation for the case in which the source 

is not on the contact . 

D. Longitudinal Waves when the Source is not on the 

Boundary . We will generalize the present problem by assum­

ing that the source is a t a d istance 11 d 11 from the boundary . 

As before , we assume the solution to be o f the fo rm 

(49) 2>D 

' 
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(50) 'Z<C , 

and proceed to determine g
1 

( t ) and g 1 t l ) from the boundary 

conditions ( 26) and ( 27). There is only one term in¢~, be-

cause the source is in the first medium. It shoul d be not -

ed that here 

In exactly the same manner as before , we obta in 

g, { l) 
= J e -.; r-;;;. cl f, .; r:::h1 - P, o/~ 

f. {l.._hl N (51) 
-

g~ ( t ) = 
.z ! e - r' l '-/.,.. d 

P,N 

Since we are intere sted only in the wav e s in medium l, we 

will investiga te '/J, only . lie have then 

t52) 

The integral represents the effec t g iven r1se by the d is-

continuity in the medium . we may rewrite it in the fo r m 

( 52a) A. = e;J.,~ +100

..1 ~ e_IJl:..h,•(2 #-tiLJ dt -~~ .;r-h: e- 1/!.J,,•ttl~:aJ.[firJ ~ l 
r , • R. P. N .arJ s II ll"J: L,. n () 1 0 - n, 

The f irst integral is of the same form as (34) and presents 

no additional feature. Let us denote the second integral 

by I . Splitting ~as before and using the same k ind of 

contoa rs , we may write 

(53) ! J j l'"_l_ ~ _,tj';.J,,L { z .. llf Ja {J~) d~ 
I = - -' _ ~ "L e n , s 

.J. 1'1 I T-7;:-

Ol'ld h~ 

The bra nch points are still h,". Denotin~ ·c·-h.~ ~ -P .... , we 

have 
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Integrating by parts and using the asymptotic expression 

I I .1 
H, r Zt J ~rzr e 

we obtain 
A.=•"' 

f
r • r ' -/-A ... +h.'--J,, .. { Z-t~ ) 

e ; ¥ 'I.IT e' l .tL ''t e r 
I... = ~ ~ ttA li=_==r=; .. ,= .. _=:A.=,_ fr-,-:-'fi-=t!-+ F>:-r-:::.,~"'r:::,=:=. L~~'J 

'!1·- ·r 
By use of the formula 

! ieo t - ·f 
;,;, e ,'lr ~tt) !k:: ~ jto)lf- e' ., 

r...,.oo J • r"t-
• 

the integral can be evaluated and we find 

Here, we get a similar equation to (43) . The wave front is 

given by 

(55) f-ur- ./h,t-h .... (z-+d) = c onstant , 

or h,.t- ./h, .. _~,.. .. z - constant 

It is , therefore , a conical wave . The velocity of propaga-

tion is again 

(56) 

and the angle of inclination of the front to the plane of 

contact , 

( 5?) 

which are the s ame as we obtained before . The integra l a -

round h 1 '.'ill again give an inhomogeneous wav e which is not 

of particular interest here . To calcula te the ratios of 

the amplitudes , we have to evaluate the first i~tegral of 

(52a) . Comparing with ( 43) , we see at once tha t it is e -
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oual to 

p, t::1 , i[h .. r- /h,.._J7 .... (zr"' J] 

- /h. P: f,. "(~:1...-h,') -;;. e 

Conbining this with (54) , we get finally the expression for 

the flank wave 
,_,.;,,_ ...1... ;[ h .,.r- .,t h.'--h·" (z-#,1)) 

(58) R2 = r e fi ln,"- h.'') 

using the same notations as before . Equations (~3) and 

{58) represent nothing e l se than the fourth wave front s in 

v . Schmidt ' s photo~ranhs . The present solution is an ex-

tension of the result of Joos and Teltow, who treated only 

the case when the source is exactly on the boundary . It 

should be pointed out here that this method of evaluating 

the inte~rals is valid only when the v eloc i ty contrast is 

large; otherwise , the two branch points ~ould be too near , 

and the present separa tion would break down . I n addition , 

the formulae hold only when z is small and r large . 

By equations {24) , it is quite easy to calculate the 

ratios of the radial and vertical components of this flank 

wave to those of the source \iaVe at the same point . 

We get 

(59) I ~0 I zh~l- _g_ Rz. 

h,(h,';...h.' ) [{ 71 

( 60) 
/~I 

:J.h .. I _t_ II" . - h, d V h.1
- no" f2- ,-z. 
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Table 1. Ratio of the Horizontal DisplacemEnts in the 
Flank Waves to those in the Source- Waves at the 
same point , with the following data : , vt = veloc­
ity of waves in the rarer medium = o .Kmf sec ., 1 = 
velocity ratio = v2/v1 = 1 . 2 , Q, = density ratio : 
R/~ = 1 . 11, d = distance of the source drom the 

interface ~ 15 km., r = horizontal distance from 
the source , T = period of the waves . 

r 
100 200 400 600 1000 2000 

T 

sec . 
0 . 1 0 . 0339 0 . 0 196 O. U098 0 . 0065 0 . 0039 0 . (;020 

0 . 2 0 . 0 798 0 . 0392 0 . 0196 0 . 0130 0 . 0078 0 . 0 040 

0 . 5 0 .1994 0 . 0983 0 . 0489 0 . 0326 0 . 0196 0 . 0098 

1 . 0 0 . 3988 0 .1965 0 . 0978 0 . 0651 0 . 0391 0 . 0 1 95 

* Table 2 . Ratios of the Vertical Displ acements for the 
same Data as above 

r 100 200 400 600 1000 2000 

T 
sec. 

0 . 1 0 .176 0 .175 0 .174 0 .174 o.l74 0 .174 

0 . 5 0 . 882 0 . 873 0 . 870 0 . 870 0 . 870 0 . 870 

* Equations (59a ) and (60a) hold only for wave l engths 

small compared with r . Hence T cannot be too large . 

kms 

lans. 
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From these, we notice that the ratio of the horizontal com-

nonents varies approximately as the inverse epicentral dis -

tance when the latter is large, while the ratio of the v er-

tica l comp onents is almost constant . Contrary to the first 

order effect, these ratios depend not only on the density 

and v elocity contrasts, but also on the velocities them-

selves . This is to be expected , because the amplitude of 

this flank wave varies a s the inverse square of the dis -

tance . 

For c onvenience o f t abulation , let 7 = v~ jv, be the 

velocity contrast , o< = R/ P, the density contras t and T the 

period of the wave . Then (59) and (60) may also be written 

in the fo llowing forms: 

I~ I ..L ..!i -'- RL 
( 59a) = 7T (j. 1~- I ? 

.I. !'!.. I 
fll. 

(60a) l ~l -= 7T ()( ~ r"tA 

The t ables are c a lcula ted f or different v a lues of periods 

and epicentral dis t ances (val i d only for s mall T , because 

of the approximation we have used) . 

To integrate equation (52a) a round the branch point h 1 , 

we see that the f irs t integral is o f t he form (39) , and it 

will give rise to a wav e of the form (41) which is inhomoge-

neous , a nd its amplitude decreases as 1/rL. The second in­

teg r a l has a pol e a t h , c o incid ing with the branch point . 

However , the i ntegral is convergent and c an be integ r ated in 

a slightly different way . Rewrite it in the form 
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Let us make a vertical cut pa~ sing through h , a q shovm in 

F·i g . 8. Let t = - h ,. Then the limit of t will be f rom ,_· co 

to o and from o to ~ ~ • kaking the substitution, we h a ve 

(1~ {'tJ() J.. -If"-~' -Jtl-t'*'-"·J rz~/«1;- .'tlr-¥J 
1 = f + ) e _. e dt 

~o iot> D /'{ ./tft<fJ/rv r·sr 
t-plarte 

Since we have 

(61) 

we can also write the above equation as 

(62) 

whence we obtain Fig . 8 . 

(63) 
h ~ f-;- ..L ,J,,,. er'h,r 

1 ---::='=- - e - -=--~ .. f,/lr, ... -Jr.. (;h, It, I"' - p, r 

This is a cylindrical wave whose amplitude decreases only 

as the inverse first power of r. hence at a large distance , 

this should dominate all the other waves we obtained before . 

The above evaluation is made under the assumptions 

that r is large and z small compared with r . This means 

that the observation should be made very near to the boundary 

surface. When z is comparable with r, we can get a better 

aooroximation by taking out the fac t or e-/tl. -t·o·I.,J (z~J from f( t) 

and evaluating the integral 

. 1[ 

instead of using (61}. Let t = s e ' 2
• The above integral 
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is then changed into 

Making first the substitution s : u ~ and then the substitu-

tion v = rr u, we reduce the integral further into 

The second term under the radical sign may be neglected in 

comparison with the first . Completing the square in the 

exponent, the integral can readily be integrated, and we 

finally obtain 

(6la) 

rly use of this formula, we can get a second approximation 

of (62) which runs as : 

(63a) I = _L 
~ 0 r• r 

'h [ ... ~ ..1. { Z.+d)'L] 
t!.' ' ,.- .:z. ,. 

The wave front is , therefore , given by 

(64) 27" ... + (:Z.-+d/ : canst . r 

which is the equation of an ellipse with center off the ori-

gin . By rotating this around the z-axis , we will get a 

toroidal surface which seems to be strange . This is due to 

the various approximations we have made . We notice that 

the expression within the parenthesis in the exponent of 

(63a) is really the first two terms of the expansion of 

R' = [ r t. + ( Z+ d)'-rt = r .. 1 ( z.:.d) .. + 



-53-

and 1/r is the first term of the expansion of 1/R' , both be­

ing to the first power of 1/r. Substituting from thPse in 

(63a), we get 

(63b) I .. ... ...L. e ;h,R' 
f, I<' 

which is simply a spherical wave from the image point of the 

source . This is to be expected when the velocity contrast 

is fairly large . Our calculations , therefore, indicate very 

clearly the trend of approximations to the true picture . 

As a check of our calculations , we may point out that 

equations (58) and (63a) are exactly the same as the equa­

tions (18) and (20) in Muskat ,(l )paper , which are obtained 

in a different way (there is a difference in the factor 1/ P, 

which we have assumed for the source, but this is auite ar -

bi trary) . 

From these calculations, it seems that the method may 

also be applied to other problems of wave propagation in 

layered media . If the wave function in the rth medium is 

q; iven by 

<for =I 01

Fr ( {, h,, h._ ... h,.. , · · · h,. )].fl') ti~ 
0 

with branch points at h ,, h~, ... , we can obtain the dif-

ferent kinds of waves by evaluating the integrals around 

each of these. In particular , if a contiguous layer has a 

constant h r•• , which is smaller than h r, thP integrals aPound 

this may give rise to a flank wave (the refracted wave from 

this laye r in the customary usage o f the term} due to this 

layer . To illustrate this point, we will apply the same 
(1} lvl . Muskat , loc . cit. 
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method to the SH wave in a two-layer crust bounded by a 

free surface . 

5 . On SH Waves in a Two Layered Earth's Cr ust with 

a Free Boundary 

A. The Proble~ . This problem has been examined 
(1) 

in one aspect by Jeffreys for the interpretation of the 

origin of Love waves . The present study differs fro~ his 

both in the method of solution and in the point of view . 

As shown in Fig . 9 , we have a layer of thickness H 

resting on a mass of infinite depth . On top of this is free 

air . A source of spherical SH wave is situated at a dis -

tance d from the free boundary z = 0 . 

Accordin3 to section 3 , let the distor­

tion function be denoted by f . Using 

cylindrical coordinates , we have the 

components of displacement given by 

(D, d , o ) • .Let the various constants be 
~r 

as shown in the figure . For the sta-

tionary state and for a source of the form 

where k, = w/ '1, = 2...,./ ...\, the wave equation is 

and the boundary conditions are 

(65) = 0 a t 

(1) H. Jeffreys , loc . cit . 

z. 

R' 

d ---i 

v. J-,, p, ,k. 

Fig . 9 . 
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(66 ) 
z =-H. 

B. The Formal Solution. ~or convenience, l e t us as -

sume an imag e source of the same strength ~ at the ima~e 

point . This is pe r missible because it is a solution of the 

wave equa tion. As in the c ase of longitudinal waves, d esi~na-

t~ ~ t he wave function within the layer by 1.}1, and t hat b e low 

by th, we have evidently, 

Coj 

(68) '(
2 

= j cct)ell'-.t"z .I,arJ4{5 
0 

By (6 5), vre obtain at once Atf) =8UJ. Thus~ may be written as 

(67a) 

Let )'; ;:A)'f~-k, .. , 'h=l'f'--lr~'- · 

Substituting into (66 ) with the aid of {30) , we find 

whence, 

( 69) 

(70) 

;.J e-l-HeJ-r,dtf;.f.-f;•l'•> 

= T P·l. rft'{,H+f4l~~J'IH 

With these v a lues of A and C, e quations (67) and (68) may 

be written as 

( 71) 
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(72) ''· - j ""n .,. .. cr.+ I·/) ~· 'h U.r.li.. Zt t ") "t 
'!"'~ - " T e f<·"i·"'-Y-H"'}4"'r"tlq,H 

The sign conventions of the square roots are the same as in 

the previous section, in order to insure the convergence of 

the integrals . Here , we notice that there are an infinite 

number of poles of the integrals . These have been studied 

by Je ffreys in connection with the surface waves . We are 

concerned in this section only with the flank wave , which a-

gain ~ay be obtained by the integration around the branch 

point k~,as will be shown below: 

We will consider *, because this alone wil l give rise 

to waves propagating in the upper l ayer . The first two 

terms give the source and the wave re f lected from the free 

surface . Of the two parts of the integral , the first one 

will account for the effect of the surface z = - H, and the 

second will account for the effect of the free surface . 

Since this l atter will not yield the f lank wave , we will con-

sider the first part . We will try the following i-Rt sgr~l •xt'•sS/"" 

. 
which is only a part of the integral . 

(73) 

Make a cut through the branch point k 4 in such a way that the 

real nart of r~.. is zero , and then the substitution r .. ~- = -IL.· 

By the same formula (61) we get 

(74) I. -

which is seen of the same forn as (54) and the wave front is 
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BJ?;ain given by 

k~ r - j k,~-k.: z.. = constant 

Th~re are still other terms of the integral which will con­

tribute Slmilar results as (74) , but we need not go further 

than this illustration . The method gives onl y a rough es ­

timate and may not be rel i able unless all the Qi ngularities 

have been examined . 


