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Summary

This thesis embodies three separate studies on seis-
mic waves. The first one is concerned with the origin of
the oscillatory nature of earthquaske waves. Different
modes of generation have been discussed in some detail,
particularly the theory of Kawasumil and that of Sharpe.
The effect of the possible failure of Hooke's law on the
nature of the seismic waves is also explained briefly.

The second is a short note desling with the physicsl
basis of two kinds of observations: the observation of
velocity and the obserVatioﬁ of period.

The third part is a study on the theory of FLANK
WAVES. The basic difficulties of the old theory are
pointed out and discussed. The phenomenon is explained
in the light of the wave theory, in considerable detail
in the case of P waves and very briefly sketched for the

case of SH waves.
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I. ON THE ORIGIN OF OSCILLATORY EARTHQUAKE WAVES
= 1. Introduction

Concerning the origin of the oscillatory nature of the
earthquake waves, current treatises on seismology generally
give but very brief accounts, 1f at s#ll. While sustained
oscillations are almost alwayé recorded in the seismograms,
the origin of the waves is usually impulsive or assumed so
- elastic rebounds in most natural earthquakes snd explo-
sions in the artificial ones. Besides, no appreciable dis-
persion has been observed in the body waves traveling
through the earth's crust. The explanation is not at all
obvious; thus there seems to be a gap in the tracing out of
the life history of the disturbance. However, theories,
though scattered in different publications, are not entire-
ly wanting. The present study is intended to give a con-
cise appraisai of some of the more plausible explanations.
Certain extensions are also gttempted so that a better un-

derstanding may be derived.
2. Discussion of Some lodes of Generation

There are at least five ways by which impulsive dis-
turbances may result in the manifestation of a trszin of os-
cillations. They are: (1) dispersion, (ii) selective ab-
sorption, (iii) multiple reflections, (iv) resonance, and

(v) repeated faulting. Each of these, to be sure, supplies



a possible mode of generation, but i1t is quite doubtful
whether any one of them is adequate by itself,

The phenomenon of dispersion has been agplied with con-
siderable success by Gutenberg and Richter(lltc surface
waves for the delineation of the different structursal units
of the earth's crust. But then the mechanism of dispersion
is interpreted in a different manner. In the case of body
waves, dispersion has not yet been observed in the seismo-
gram.

os composed

A pulse may be conceived, of an infinite number of har-
monic components of different frequencies. If these compo-
nents, in passing through an absorptive medium, are absorbed
differently for different frequencies, the combined effect
no longer gives the impression of a pulse but a train of os-
cilllations. Selective absorption has been suggested in
Stokes' theory of internal friction.(z) It also plays an im=-
portant role in elastic hysteresis.(S) Recently N. Ricker(4)
applied this effect in his wavelet theory, but his demon-
stration does not seem to be free from smbiguity. For the
longer waves, the observations of the M- and W- phsases
showed that the absorption 1s extremely small. That absorp-

tion alone is not sufficient to account for the observed os-

cilllatory nature of the earthquake waves has long since been

(1) B. Gutenberg and C.F. Richter, Ger. Beit. z. Geophys.
47(1936)73-131.
(2) G.G. Stokes, Trans. Camb. Phil. Soc. 8(1845)£87-319.
(3) Lord Kelvin, Papers, 3(1890)27
(4) N, Ricker, Geophys. 5(1940)348, 6(1941)254, B.S.S.A.
33(1943)197-228



(1)
indicated by Jeffreys.

Multiple reflection is not likely to be of importance
in the present phenomenon. Even granted the most favorable
layering of the ground so that multiple reflection will oc-
cur, the waves as observed in the seismograms of artificial
explosions show sustained oscillations before any reflectiom
is observed.

Hesonance will cause free oscilations of a certain part
of the earth's crust with its characteristic frequency. Then
waves arriving at the same station and traveling a similar
path must show this same characteristic frequency. There is
no conclusive evidence in the seismograms to confirm that
this is the case. This cause, even if it were real, cannot
be important in every case.

Repeated faulting is probably the most plausible among
the above explanations. In the first place, this mechanism
conforms with the jerky wave forms as observed in the ini-
tial part of most seismograms. Also from the nature of the
movements, it is very likely that the gliding along the
fault plane will take place only in discontinuous steps.
Unless there is no friction along the fault plsne (which
seems unlikely) in which case there will be no wave radia-
ted(z)from the fault, a finite train of irregular waves

should rather be the expected result.

i - o= . - R

(1) H, Jeffreys, Geophys. Suppl. 1(1925)282-292.
(2) K. Sezawa, Bull. Earth. Res. Inst., Tokyo, 14(1943)269-
279



Assoclated with this is the finite speed of fracture.
This necessitates a certain time duration of the original
disturbance which supplies another cause of the oscillatory
nature of the waves. This fact has been used by Gutenberg
and Richter(l)in explaining the apparent lag of the origin
time of P behind that of S, If faulting always starts from
one point, it might seem possible to get some information a-
bout the length and orientation of the fault from the dura-
tion of the initial disturbance in the seismogram. However,
the situation is complicated by the fact that the propaga-
tion of fracture is not necessarily uni-directional and that
the speed of faulting is not constant, being dependent on
the initial conditions.
3. Investigations based on the Theories of Small Displace-

ments.

So far, our discussions are confined to the oscilla-
tions that are transformed from single pulses, or due to su-
perposition of several pulses, The process, therefore, is a
composite one, and the effect is more prominent st a larger
distance from the source. The question may arise ss to
whether 1t is possible to generate oscillations from a sin-
gle process, The answer is affirmative, and the origin is
to be sought in the hypocentral region. From this result,
it will be seen that the spreading of the pulses should be a

property inherent in most earthqueskes. For the ease of dis-

(1) B. Gutenberg and C.F. Richter, B.S.S.A. 33(1943)269-
279.
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cussion and visualization, we assume that the source gives
only longitudinal waves. It 1s evident that when both the
latter and the transverse waves are present, the same result
must still hold qualitatively.

As an gnslogy, let us first consider the motion of a
pendulum in a resistive medium. If a blow is given to it, a
damped oscillation will result, provided that the damping is
below the critical value. The equation of motion of the
pendulum is
(1) b & 2e6 » 08 = FiE)
where 6 is the displacement, € the damping constant and n/2»
the natural frequency of the pendulum, $ 1s a function which
represents the impulse due to the blow. If we put¢x=£€+ﬂ5j2?
and p=ic€ -yn*-€, the solution of (1) is given by

o

(2) B == ok _ﬁip_ﬂm)e“:ﬁwdw

W) (peXp-pAs
Now in an elastic medium, the damping 1s not expected to be
large; and if we Imagine the longitudinal wave as generated
by a sudden application of a pressure inside a spherical
cavity in a homogeneous, infinite medium, we may have some
degree of similarity in the effects. The main difference
would be that in the present case, a pfogressive wave should
be dealt with. This is exactly the premise of Kawasumi and

(1)
Yosiyama. Assuming a pressure function p = §(t) such that

it starts at the time t = 0, lasts for a duration t, at a

constant value -PB, and is then removed, they are sble to

(1) H. Kawasumi and K. Yosiyama, Bull. Earth. Inste Tokyo,
13(1935)496-503



solve the wave equation for small displacements with the
boundary conditions that the radiaal displacement. should be
continuous and thet the normal stress should be equal to the
pressure applied at the surface of the cavity. Spherical
symmetry is, of course, implied in the assumption that the me-

dium is infinite and homogenous. Their solution is

=t

> el . £ [ etre?”
(3) $ =Jg’;’fgl r,f%i;:—;’%ie"’bw"“’ =¥ o
where ¢ = displacement potential whose derivative with re-
spect to the distasnce r gives the radieal dis-
placement,
P = density of the medium, =a = radius of the cavity,
T = retarded time = t - (r - a)/V, 7%=7T -t
i Zp e WIEET, peidf - AT
v = velocity of transverse wave, V = that of longi-

tudinal wave.
Equation (3) is very similesr to (2) except that the time 1is
replaced now by the retarded time. This makes the wave a
progressive one.
When 7, >0,the radisal displacement u at a distance r from
the source can be obtained by evaluating (3) and then differ-

entiating with respect to r. The result is

§
(8) u = SE[H [ & o et E -l € S IR ]

# There is a slight misprint in eq. (18/ of the paper cited.
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where p and A are the Lamé constants. When r is large, the
first term may be neglected, and we obtain a simple damped
oscillation with period T and damping ratio 7 given by

T =mwa/v/i- (), y - TR

These results were originally worked out by Kawasumi
and Yosiyama to substantiate the view that the energy car-
ried by the selsmic waves is equal to the released strain
energy of the medium. This view has been contested Dby
Sezawafl)but his arguments seem to be a little obscure. Nev-
ertheless, he did improve the above Qalculations in one re-
spect; that is, the rapidity with which the pressure is ap-
plied also plays an important rdle in the resulting wave form.
Recently, J.A. Sharpe(z)reworked Sezawa's 1result slong =
more or less similar line and put the final formula in a more
elegant form, whereby he was able to explain some of the ob-
servations in epplied seismology.

Other conditions being the same, Sharpe solved the
problem by first assuming the pressure from an explosive
source to be a step function of the form

p(t) = p. for t =0
- 0 for t < 0
and then generalizing the result by use of Duhamel's integral

to a pressure function of the general form. For the former

case and with a Poisson's ratio of %, he obtained the radiesal

(1) K. Sezawa, ibid. 13(1935)740-748, -- and K. Kanai, 1bid.
K. Sezawa, 1bid. 14(1936)149-154 14(1936)10-16,

(2) J.A. Sharpe, Geophysics, 7(1942)144-154, 311-321, 9(1944)
131-142.



displacement u at a distance several times the radius of

the cavity or larger as given by

wT
ity == = g
= LHtE e SinewT for T =20
(5) YT sapr fw-22y
T <0
=0
For the general pressure function, the integrsal
'
(8) it =£_L-4 pny u(T-nydn
_qt
is used. In particular, if p(7) 1is of the form p (1 - e 4 }s

Sezawa and Kanal have obtalned u in its dependence on g
which signifies the speed at which the pressure is varied.
However, their expression 1is too long to be included here.

From (5), the following conclusions concerning waves
generated in an explosion can be drawn:

(1) Larger wave amplitude is obtained if the charge is
buried in a less frigid formation;

(11) Larger amplitude is obtained from = larger cavity;

(111)Higher frequency of the wave may result from either a

higher v or a smaller a;

(iv) Explosives of higher speed give larger amplitudes

(from the solution of Sezawa and Kanai),

It must be pointed out here that all these results, eil-
ther those of Sharpe or those from the Japanese school, hold
strictly only for small wave amplitudes. The asssumption
that the stress-strain relation is linear and contains only
the first derivatives has been tacitly made in all the cel-
culations. This 1s certainly true when the body wave has

traveled some distance from the source, and the displacement



G

has become small. But in the near vicinity of the source,
especially when it is of the explosive type, Hooke's law is
not expected to be valld. The remarks in the next section

are just an attempt to present one of the complications that

would thus possibly follow.
3. Note on a Possible Failure of Hooke's Law

We first notice that the ordinary wave equation will
no longer hold in the present case. Let us take the next
simplest relation between stress and strain, that it is
still linear but contains also the higher derivatives. Then
the kinetic energy T and the potential energy W per unit vol-

ume of the medium may be written in the following forms:

23
(7) T :fP(%'g)l, W= £a(%) S “’=(a ta( ).

where S is the displacement, and the a's are constants (we
consider only the one-dimensional case). By Hamilton's

principle
/'tz A
s dt/(T—W)d":”’
z, x

the equation of motion can be written as

S _ 2 oW _ 2 W | 2} om + o 28 2's
(8) P atn. i QX 93' ax.l 28" 2x3 23" =2 S ""‘97 > S = "7: 7 J"'C

Multiplying both sides by g% and integrating, we obtain

W _ 2 W | ]33 dt

(s) 23t 2
jP( 2t —J oxl 2s° T ox 28 T ox as~
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If we substitute a wave form S = A cos(wt - kx) in this I=
last expression and take the mean value, we have

)
(10) Pz o, K+ a,k"+ a,k 4 PR

When Hooke's law holds, all the a's vanish except g, . Thenund?k
and %% - £ = wave velocity. This means that the medium is
non-dispersive. But 1f the other a's do not all vanish,

%2’ # 4% and any sinusoidal wave will be dispersed in the
vicinity of the source. If the potential energy 1is given by
an even more complicated expression than (7), then (10) will
be more complicated too and J«¢/2k will not be constant a
fortiori.

With this simple picture, we may imagine that a disturb-
ance, even generated by an impulsive force, must necessarily
propagate dispersively in the neighborhood of the source,
owing to the fact that the displacement is too large to jus-
tify Hooke's law. The pulse will then be spread into a
spectrum. When the wave travels some distance away from the
source, the displacement becomes small, and the ordinary
wave equation holds. The whole train will then travel through
the medium without dispersion. Whaf is observed as s ncn-
dispersive wave train may actually be the net result of a dis-
persive process which hes already been completed. If this is
the case, 2 more intensive disturbance and a less elastic me=-
dium should be assoclated with a broader initial wave train.

On the other hand, if the disturbance is small or if the me-

dium around the source 1is very rigid, the pulse may travel a-

— . - e e et el

(1) T.H. Havelock, Camb. Math. Tract, No. 17, 1914.
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way without appreciable dispersion. In that case, a2 solitary
wave may be observed in the seismogram,

These remarks are admittedly only qualitative. They
are intended to show that many interesting phenomena may 5e
expected when the restriction to Hooke's law is broadened.

On the other hand, when the linesr relation is not: valid,
the principle of superposition cannot hold; consequently,
Fourier's integral and Duhamel's formula cannot be used in
these simple forms. This has a particular significance when
a comparison is made between the theoretical ground movement
and observations, becsuse no instrument has a constant mag-
nification over all ranges of frequencies.

So far as is known, the general theory of spherical
waves of finite amplitude is not available even for a fluid.
The problem is, indeed, a very difficult one. Not only is
the mathematical difficulty almost insurmountable at present,
but also the physical nature of the process is not well un-
derstood. In this connection, attention may be called to =
paper by J.J. Unwin(l)in which a step-by-step method has
been developed for dealing with solutions of problems con-
nected with the production of waves by spherical concentra-
tions of compressed air. Several interesting results have
been brought out which are not expected from the theory for
small amplitudes. One of these is that from a single re-
gion of condensation, a train of waves is produced instesad
of a single crest propagated outward. This agrees quite well

with our qualitative conjecture.

(1) J.J. Unwin, Proc. Roy. Soc. Lond. Al178(1941)153-170
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II. ON OBSERVATIONS

1. Observation of Wave Velocity

In finding the velocity of a moving object, we may fol-
low one of three procedures: (i) observing its arrival times
at several fixed positions, (1ii) observing its positions at
certain chosen times, or (iii) observing its change of po-
sition with time continuously as in taking a speed-record.
This last one is not always possible. The calculation of
wave velocity from readings on seismograms at different sta-
tions falls into the first category. We have tacitly assumed
that the ratio of the distance between two stations to the
difference in arrival times would give us the velocity of
the wave in the ordinary sense of the word. This is true
when the beginnings of the P phase are used. If this is not
the case, then there are occasions when the identity of the
wave 1s really ambiguous, because the wave form suffers var-
ious changes in the course of its propagation. One of the
common practices to identify a wave in applied seismology is
to mark the maxima. Then, it appears that the measurements
according to the three different procedures listed above do
not necessarily give the same velocity. It is, therefore,

worth while to make a closer examination of the physical

meanings of the quantities defined by the measurements. In-
deed, the discrepancy is not expected to be large, and it may

even seem to be trivial in some cases. But it is an under-
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lying principle usually taken for granted, which merits some
investigation.

If the medium is perfectly elastic and the wave observed
is a disturbance strictly obeying the ordinary wave equation,
our discussion ﬁill be guite superfluous, as will evidently
be seen later. But what we have actually observed on the
earth's surface is the net result of a composite process ow-
ing to several factors. Instead of enquiring sbout the d4dif-
ferent mechanisms, we will study the problem just from the
kinematic point of view.

assume that the amplitude of a wave decreases with the
distance, according to a certain law (there must be a de-
crease of amplitude even from purely energy consideration).
Since we will not be able to follow the third procedure in
seismic observation anyway, we will confine the comparison
to the first two. In the diagram, let ac be the locus of

the maxima of the amplitude of the wave at different places.

Awg: Then at any station whose posi-
tion is denoted by r, the time
a
LY corresponding to the maximum em-

N plitude in the seismogram (point

b 4 d in the diagram) may really re-
T
5:,/><:\ fer to the wave whose maximum b
I} \\c
i
— i r corresponds to the position r'.
il g

The time corresponding to our
real maximum e is not given by the time corresponding to max-

imum on the seismogram. Since the times thus measured do not
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correspond to the maximum of the amplitude at the two posi-
tions, the ratio of the distance to time will not in gener-
al give the true velocity. It will yield the correct result
only when the wave 1is of a certain type.

Probably we can illustrate the idea more clearly by a
sample calculation. Let us consider the amplitude factor of
the form "

B~ e—kg
This amplitude changes with both time and distance. Keeping
the time fixed, we have the maximum given by

j%(x'"e't %f) =g

X = 2 or v =E .
If the distance is kept constant, then
j;(t”‘e'*ﬁho, t = %A2E
and the velocity obtained by the readings at different sta-
tions will be given by
v -/Z

which is different from the value given above, unless m = n.

In fact, if it is only the maximum of the wave which we
are going to use, we can ask the general question: What type
of wave functions will give the same velocity by the two
methods of observations? Let us assume & wave function of
the form $ = @#(x,t). Then to find the meximum by keeping the
time constant, would amount to putting ﬁ,: 0. The velocity

with which this maximum travels may be found by differentis-

ting this latter equation with respect to time, and we have

X
be *+ 4‘2:‘5{ ==



To find the maximum trace in the seismogrsm, we have f, = O.
The velocity with which this trace-maximum travels will be
given by

X
¢tt * ¢tl 3 4

In order that these two agree, we should have

} bt Pu J

=0
¢tt ¢t,x
or ¢xx ¢tt i ﬂ: =g

In Monge's notation, this is of the type rt - s = 0 whose
solution may be readily obtained by use of a Legendre's
transformation. Written pasrametrically, it is as follows:

p

0

at - x A(a) - B(a)

t - x A"(a) - B (a)
where both A and B are arbitrary funcfions and a is & para-
meter.,

It is to be pointed out here that each of the solutions
of the ordinary wave equation also satisfies the sbove dif-
ferential equation. However, being non-linear, it is not
satisfied by the sum of different solutions. Physically,
this means that the velocity of the trace-maximum will be e-
gqual to the wave velocity when we are observing a single
wave. When waves of different velocities are observed, the
resulting smplitude will not in general satisfy the above
condition. In particylar, the observation of the group ve-
locity of the dispersed wave train may not be the same quan-
tity as in the theory, and the comparison must be made with

caree.
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2. Observation of the Period

The idea of the period has a precise meaning only when
it refers to an infinite train of waves of the same form.
When an irregular wave form is considered, s harmonic analysis
is usually applied, and the period means any one of its har-
monic components. But in the case of the seismograms, the
process of harmonic analysis is too tedious to be appliceble,
and the word period as generally azlluded to in the litera-
ture has, strictly speaking, only a qualitative meaning. The
usual way to determine a period is to find a finite train of
waves which are approximately of the same form and then take
the average period in that interval. It is usually assumed
that if a pure wave form is found in the seismogram, even
for a short interval, the reality of that period is vouch-
safed; but, actually, this is not exactly-the case. The
wave function which would give an apparently pure wave form
within a finite interval can be found by means of the Four-
ier's integral. The following analysis is by no means new,
It is intended to emphasize the limitation and justification
of an experimental procedure which is so often followed in
seismometry but seems to have been taken for granted in 1its
theoretical foundation.

Consider the finite wave train within the interval
-d/2<x<d/2. Let the wave velocity be constant and the ap-
proximate period of the wave within this intervsl be Te which

corresponds to the wave lengthA.. Let k = 2w/A.
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¥ At any time t, we may assume the wave
to be represented by
=8 N S

d
+
Fi .
" Ty Ja. T A ) ¢/~e*‘” for -Z2<x<+% .

Oy Fourier's theorem, we have

+@® oo = 2%
¥=35] ak f{ﬁ)e"(’rﬁ)kdﬁ = 5_’1-'/ e‘*’df/ e Pt n a8
~oo o0 L o0 Lo

: : 2 (&= f ket K
= j# 6““ d"‘/; EL[e‘ 173 l)ﬁ r e_t{l’o )ﬁjdp

But the second inteé}al is given by

TN o PR ST
'/4; B 2[ ¢ (k1) clhs x> J_ 4 £ -k

where the second term 1s neglected, being small compared
with the first one. This is really the amplitude factor of
the harmonic component in the first integrsl. To see how
this amplitude factor varies with k, we may plot its square
against k 1n order to avoid the alternating signs, viz. we
will plot the factor

3;0" 2‘("- —")d
(k. - k)"

against ke This is the familiar intensity factor for the

Al

diffraction of light by a single slit. The graph 1s as shown.
We have, therefore, several bands of periods, whereas if
there is only one period, we would have a single line.
. Even if we neglect all the
g minor maxima, we will still have
to consider 211 the periods em-
bodied in the central region.
‘he width of this region depends

\JA\J\J : upon the value of d in reference

ke toA . Let there be n whole waves
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in the interval considered. It is quite easy to determine
the inaccuracy in assigning only one period T, to the band.
The order of magnitude of the error may be measured by the
range of period between the central maximum and the first
minimum. The latter 1s given by

sin (k,- k)d/2 = =

Changing into period, we have

2w _ 2w _  zm _ 2m,
TV Tv. 4 hTV
or T = Ton/(n - 1)

The difference of this and the period T, which corresponds

to the central maximum is

=
AT =T -1

It is thus seen that it would be quite impossible to assign
a period if there is only one complete pure wave in the in-
terval; but if n is large, the period corresponding to the

central maximum which is glso the asverage period in the in-

terval, would give a very fair approximation.
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III. THEQRY OF THE FLANK WAVE
l. General Introduction

Owing to the ease of visualization and the mathematic-
al simplicity, the method of geometrical optics as applied
to the propagation of elastic waves has met with great suc-
cess in the past and has been responsible for most of the
early development in the science of seismology. Even at
present, it is still very important in the more complicated
problems in that it offers the only feasible way to map out
the approximate geometry of the wave paths. Nevertheless,
the method has severe limitations especially with regard to
the distribution of energy. That it gives only the first
approximation of the true picture has also been recognized.

A better approach to the calculation of energy is fraom
the concept of plane waves. The intensity of energy is
then derived from the wave amplitude. The calculation is
still simple, and the wave paths thus found are precisely
the same as those obtained from the ray method, because
Snell's law still holds. However, this latter follows not
from Fermat's principle, but from the boundary conditions
which also determine the partition of the wave amplitudes in
reflection and refraction.

In electromagnetic waves which have only transverse com-
ponents (or in acoustic waves which are longitudinasl), the

reflected and refracted amplitudes are given by the well
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known Fresnel's formulae. The energy relation can then be
readily derived. In seismic waves, the situation is a little
more complicated because of the coexistence of both the lon-
gltudinal and the transverse waves. From the continuity of
the displacements and the continuity of stresses at the
boundary, four linear algebraic equations connecting the dif-
ferent amplitudes may be obtained. The solution of these is
thus very simple. All these amplitudes must also satisfy the
energy relations which have been derived by Knott and by Blut.
The relations given by Knott are expressed in ﬁerms of dis-
placement potentials and those of Blut, in terms of the dis-
placements themselves. As an illustration, we will give a
simplified derivation of Blut's equations.#

Consider a longitudinal wave incident on 2 plane bound-
ary. Let A, Ar, B,, A;, B be the amplitudes of the various
waves where A signifies longitudinal, B, transverse, sub=-
seript r, the reflected and subscript f the refracted waves.
Let the corresponding angles with the normal be denoted by
8, &, ¢ ,8, P (Fig. 1)« DNow for a plane sinusoidal wave

of the form

P - 5

" =Ae'wt v ) A

where r is in the direction of propagation, the %

ds 7% Y, v, R
mean energy per unit volume is given by i, Y ne

Ar

A
=% 2
tpat =g PA W Fig. 1

ek

1) C.Ge. Knott, Phil., liug. (5)48(1899)64-97.

2) H. Blut, Zeit. f.Geophys. 8(1932) 130-144, 305-322

3* In both Blut's papers and in the abstract by Macelwane, the
energy relations are obtained by way of the energy integral and
the stress-strain relations. However, if the displacements are
already known as functions of time, this detour seems to me
quite unnecessary, as is indeed shown above.

(
(



pbeing the density. The mean energy flux contributed by
the incident wave through an element of area A4S on the
boundary is evidently

# PA @V 2s eass = g PA @YV %%ﬁ? s

Equating similar expressions for each of the five waves

passing through AS, we obtain immediately

pAY, S 28 BA,I-VI sinzé 0 ﬁ&,’-,,f’l"}?#r‘_ ﬂﬂf‘lﬁ-”""&.’ RBLY Sirzdy
S~ sy i S8, S B Sriz 8 Sir B¢

With the ald of Snell's law, this can be written as
A B sinz# AF sin 2 6f Sin 2%
=% * % 352z * 5 2 S * —P,g %l :nzp

In exactly the same manner and with similar notations,

we have for the case of an incident SH wave,

— 5 " R B sma2y
B8 £ 8 Sinzp

and for the case of an 1ncident SV wave,

It should be noted here that both the above equations
and those of Knott are derived under the assumption that
the waves are plane. In case this assumption is not justi-
fied, phenomena may exist such that they cannot be explasined
in the light of the above picture. For the lack of a better
name, we shall call these phenomena second order effects.
Their existence should not be interpreted as a contradiction
of the energy equations, but rather that they demand a modi-
fication of the equations themselves. In wave propagation,
it is the wave equation and the boundary conditions which

are more fundamental. Fresnel's equations in opties and

Zoeppritz' equations in selsmology, as well as the energy
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equations of Knott or Blut, are all special csses applicable
to plane waves only.

Probably the most important as well as the most inter-
esting phenomena which shows the inadequacy of the plane
wave assumption, is the refraction of waves in layered media.
In both theoretical and applied seismology, the basic formu-
lelfor the calculation of the thickness of a crustal layer by

the travel times of the refracted waves is derived purely

from the consideration of geometrical optics.

The geometry of the ray path is as shown in \\\ £ L

the diagram where the ray coming from the Fig. 2
source is supposed to be incident on the lower layer at the
critical angle, travels along a path parallel to the inter-
face and emerges again at the same angle and is then record-
ed at the earth's surface. The wave can be observed at dif-
ferent points beyond a certain epicentral region. The path
thus constructed agrees with that of the least time. The
travel time curve is a straight line, as is confirmed by ob-
servations. At first, this appeared to be the correct in-
terpretation. But seismology has been developed to such a
stage that one can no longer be content with only a super-
ficial agreement. The above picture, though simple and suc-
cessful as it is, actually presents grave difficulties.
First, 1f we take both contiguous media to be homogeneous,
there 1is no reason that a ray after entering the lower me-
dium should return to the upper one. Even if it could re-

turn, as by assuming an increase of wave velocity with depth
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it should not be observable in a wide region. Second, the
grazing rays can come from the source 1n only one direction.
The energy included in & narrow pencil of rays is small.
This is also evident from Blut's equations, for if 8, or ¢
is a right angle, sin 26; or sin 20; will vanish. Yet the
observed energy of the refracted wave is quite appreciable.
These difficulties are due to the fact that when the source
is at a finite distance, as 1is assumed, the wave can no
longer be regarded as plane. The interpretation of seismic
refraction must therefore be sought directly from the wave
equation and the boundary conditions.

The problem of reflection and refraction of seismic
waves ?i? setually been studied from the wave theory by Jef-

frey's for two particular cases and with the use of the
operator method. It was again studied Dby Muskat(z)for a
more genersl case with the ordinary differential equation an-
alysis. The emphasis of the latter was, however, laid on
the justification of the minimal time paths. His final re-
sults, though only qualitative:i%inally become quite in-
volved, asnd are really very interesting. ©So far as mathe-
matical formulismis concerned, the problem may be regarded as

solved.

The problem has also been attacked with some success by

(1) H. Jeffreys, Phil. Mag. 23(1926)472-481; Gerl. Beit. z.
B Geophys. 30(1931)336-35e+«
(2) M. Muskat, Physics, 4(1933)14-28
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the Japasnese authors, among whom are Sezawa, Nakano and
Sakai,(l)to mention just a few. The latter made an exten-
sive study of the case of an internal source emitting spher-
ical waves which then are incident on a free boundary. The
problem was examined quite exhaustively and may appropriate-
ly be regarded as a continustion of Lamb's monumental
work.(2) 4However, since the boundary was assumed free,

the question of refraction as discussed above, naturally
would not arise.

Yet crucial experiments were performed recently by a
German scientist,0.¥. Schmidt, who showed visually not on-
ly what 1is actually happening at the boundary, but also
proved beyond doubt that the wave which we usually attrib-
- uted to refraction is really = different entity. His ex~
periment wiil be described in the next section where a
mathematical formulation of his theory is also attempted.
Since then, theories have been worked out by several au-
thors who lin¥ed more closelv the provagastion of seismic
waves with that of electromagnetic radiation. It thus ap-
pears that there is still room for more examinstion. In
the later sections, we will approach the problem in a
slightly different manner from that of Muskat and thus
bring out a few points which were not emphasized in his
work. Since this so-called refracted wave is really not

what is meant in the ordinary sense of the word, we will
(3) .
follow Ott and call it the "Flank Wave'.

(I] T. Sakail, Proc. rhys. Hath., SocC. Jap. 1b(19:5)201;
Geophys. Mag, 8(1934)1-71

(2) H, Lamb, Phil. *rans. Lond. (A4)203(1904)1-41

(3% H. Ott, Ann. d. physik, (5) 41(1942)443-466
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2. Schmidt's Experiment and the Theory of Characteristics.

In his paper, "Ueber Knallwellenausbreitung in Fliiss-
igkeiten und festen Korpern", published in 1938, 0.V.
Schmidt(l)showed a series of spark photographs for the
propagation of sound waves in two contacting media. The
outstanding feature of these photographs is the occurrence
of a conical wave front of considerable intensity in the

rarer medium (of lower velocity). His results may be

graphically represented as follows:

In

==

Fig. 3 (liquids) Fig. 4 (solid in water)

The first picture 1§ for two liquids (xylol on NaCl solu-
tion) in contact, and the second for solid (aluminum plate
or glass) in water. Considering only the first case, we
see that the whole wave-pattern consists of four distinct
parts: the incident, the reflected, the transmitted and an
additional conical wave front. This new wave front is in-
clined to the interface at exactly that angle as is re-

quired by the law of total reflection; namely, if v, is

(1) 0.V. Schmidt, Phys. Zeit. 39(1938)868-875



-

the wave velocity in the upper and rarer medium and v
that in the lower medium, then the angle of inclination ©
of the conical surface to the plane of contact is given
by sin 6 = v, /v,

Since Fresnel's formulae admit of only three of these wave
fronts, Schmidt concludes that there is a breakdown of the
analogy between geometrical optics and seismology. He in-
terprets the phenomenon by use of an analogy with the
shock wave in ballistics. Since the wave trace of the
transmitted wave at the boundary travels with a velocity
which exceeds the velocity of sound in the upper medium,
Schmidt regards this fourth wave front as a "head wave',
due to this cause.

In applied seismology, a similar mechanism has been
suggested by C.H. Dix.(l) The wave which we have discussed
in the previous section and which is supposed to have trav=-
eled along the path of Fig. 2, is nothing else than the new
wave front in Schmidt's photographs. In the light of the
latter, the process should not appropriately be called a
refraction.

We will now give a brief mathematical formulation of
the head-wave theory. Exactly as in the case of the shock-
waves, it is based on the theory of characteristics of a
differentulequation. Without going into mathematical de-
tails, we may say that the characteristic is a surface on

which the solution of a differentdequation is discontin-

(1) C.H. Dix, Geophysics, IV(1939)238-241
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uous, so that it cannot be uniquely determined from the
initial data. This is what we have observed physically as
a wave front defined as a traveling surface of discontin-
uity.

Let us now proceed to find the characteristiecs, or
more exactly the bichafacteristics of the wave equation.
Assume that the elasstic media are homogeneous and iso-
tropié on both sides of the contact. Then the wave egua-

tion is of the form

»eo
vid = i o

where ¢ signifies either the dilatation or the rotation
according to whether the wave is longitudinal or trans-

verse. Written -in cylindrical coordinates, this becomes

Let the source be in the medium 1 in which the wave ve-
locity is v, « Let the wave velocity in medium 2 be v, ,
and V,<V,; . For an observer moving with the velocity wv.,
we can make the substitution r = p - vit. Then the wave
trace would be stationary with respect to this moving ob-

server. We have thus

e e e W :
DFt QPJ. 2 P =¥ 5%.

Since there is an axial symmetry in our problem, the par-
tial derivative with respect to the azimuth © drops out

and we have
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Wiy ZE , o 2P , 2% _
(JI - ;/_; ) gf)l. * r ar o+ Pzz =gt

The differential equation of the characteristics is

(- E)EE) + (8) -»

The Cauchy's characteristics of this equation are given by

/ z z
dlf’/(/-r",:“—‘)'-,["o =dz/fz @
&,
Eliminating f. and f., we obtain o, 7
E p zZ q’x /
2 L -] 7 =

This is the slope of the wave trace in the p-z Fig. 5
plane. Evidently the angle © is given by sin 6 = v, /v,
which is the angle for total reflection. Since it is in-
dependent of the azimuth, the wave surface must be a cone.
With respect to a stationary observer, this wave will
travel forward with a velocity v, in the positive p-diree-
tion. In the direction normal to the front, the velocity
of propagation is evidently v, .

It should be pointed out here that in either the
present treatment or in that of Dix, the intensity of the
wave cannot be obtained. The interpretation of Dix is
based on the elementary form of the Huyvgens' principle
which has long been known to be inadequate. In the
Kigchhoff's formulation, it requires the wave functions on
both sides of the boundary to determine the solution unique-
1ly.

The interpretation of Schmidt's experiment from the

voint of view of the wave theory was first given by Joos
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and Teltow for the particular case when the source 1s ex-

actly on the boundary. The result was taken directly from
Sommerfeld's classical work(Z)on the attenuation of wire-
less waves. The solution was extended to the case when the
source is away from the boundary by Ott(S)with the use of
Wéyl's(4)method which is a modification of that of Sommer-
feld.. The detailed paper of Krﬁger(S)published recently
gave the solution even more mathematical rigor and brought
out the identity of the two methods of solution.

The results presented in the next sections were actual-
ly worked out just after the appearance of the paper of Joos
and Teltow and were intended as an extension of their re-
sults. The method of solution is the one originslly used by
Somgrfield in his 1909 paper. When the pole of the integral
is very near to its branch point, the method is not very ac-
curate. But the method is much simpler than the others, and
for our purpose it seems that the approximation is good e-
nough to bring out the salient points. Desides, it indicates
a general character of the problem which has already been ex-
emplified by Muskat's work. We will illustrste this point
further by working out the case of the SH wave also. For

completeness, we will give a brief account of the setting up

of the wave equations and the conditions at the boundary.

(1) GU. Joos and J. Teltow, Phys. Zeit. 40(1939)289-293.
(2) A. Sommerfeld. Ann. d. Phys. 28(1909)665-736

(3) H. ott, loc.cit.

(4) H., Weyl, Ann. d. Phys. 60(1919)481-500

(5) M. Kruger, Zeit. f. Physik, 121(1943)377-437
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3. Equations of Motion and Boundary Conditions.

A. The Equations of Motion. It has been shown by Love

that longitudinsl and transverse waves cannot be saparated
if gravity is taken into account. However, the effect is
very small; henceforth in our discussion, the dispersion of
elastic waves due to gravity or any other external force
will be neglected.

The equations of motion for an isotropic, homogeneous

elastic medium are

e _ X 3K, 2K .
(1) P~ ST T e

where u, vy, w are the components of the displacement, X,, Yr,
etc. components of the stress and P the density of the me-

dium. Substituting from the stress-strain relations

(24
(2) X, =Ad .2k G
w 4
Ay = FJ'%; +'%7) efe.
where J = %?* %?* %? is the dilation andA, g« are the Lameé

constants, we get readily

- P
(3) (A+ p)v3 + 78 = p53
Here, 8§~ ui+v i+ wk is the displacement vector. By
performing the operations of divergence and curl on both

sides of (3), we get the usual wave equations for dilation

and distortion.

rd

P 3¢

i >F
(5) F_vw- P-SE:

W

(4) (A+ 2p) 00
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where @ zivx & is the rotation.

Wave equations are ususlly expressed in terms of func-
tions other than §and #, because in so doing, the equations
might admit more readily of solutions. In this connection,
we may apply the well known theorem that any vector may be
split into two parts which are respectively lamellar and
solenoidal only, viz.,

(6) § =vé + vx A
The first part accounts for the dil;&ion and the second for
the distortion. Substituting from (6¥% the value of § in (3),

we obtain

V[(A+z/¢)v‘¢-p%‘$]+ VX[;.«V‘A'-P‘%?,] =0

Since A is arbitrary to the extent of an additional ve , «

being any scalar, we can choose A in such a way that

(7) v A = p34
Th .
(BTn A+ 2pd V" @ —P?;t—f =0

B, The Dilatation and Distortion Functions The quan-

tity A is a vector, but from the nature of the problem, we
can usually consider only one of its components. This com-
ponent can be represented by a scalar function such that its
derivatives would conform to the condition of a curl and the
function itself satisfies (7). To illustrate this, let us
consider a plane wave. We can so orient our €COordinate axes
that one of them lies in the wave front. Let it be z. Then

all the derivatives with respect to z will vanish. Writing



out the u and v components of (6), we have

w = —a-f + J'Az

ax 3}
2 242
74 = -a‘? - _é_l"

It is thus seen that both u and v depend on the derivatives

of ¢ and A,only. On the other hand, we have

24 @Ay 2%
w =_a_:y£— Sy T ez

which is independent of &~sard A, . We csn therefore write

A, as a scalar function ¥ and obtain

(9) u:—;—?-ﬁ %7;
o= g!*- 2%
w - W (1)

These equations appear to have been first used by Green
in his famous paper, "On the Reflexion and Refraction of
Light"®. The functions § and ¥ were later applied to e-
lastic displacement and are known as the dilatation and

distortion functions. The corresponding wave equations

2"

are (A+ 2090 = P 333
Woo p ¥
(10) BT = p at

p Ve = pER
It must be noted that (9) and (10) are applicable to plane
waves only.

Since we are more interested in waves which have sym-
metry about an axis, we will next find the appropriate dila-
tation and distortion functions for this case. For this
purpose, we may express the vector A as the curl of another

vector B, Then
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VXE =vax§ =VV-§-V"E
If we assume that B has only the z-component, then we can

write

It is also evident that if B, satisfies (7), so will A. If we
use c¢ylindrical coordinates and write ¥ for B,, we may express

the components of the displacement as follows:

4 aroz
(11) .
>V _ L 2¥
w = % F oZ* ,4. att

The corresponding wave equations are:

¥

(12) (A+2p)9¢ = P55
2 2 4
(13) rvy = pSp

It should be pointed out here that in writing A as the curl
which has only the z-component
of another vector,, we would be dealing with displacements in
the plane of incidence only. This is suitable for the case
of P and SV waves. Since the displacement in SH wave is per-
pendicular to the plane of incidence, we may treat it sepa=-
rately. For this case, we mey assume that the vector A itself
has only the z-component. On =sccount of the axial symmetry,
both the r- and z- components of the displacement vanish.
Denoting the {-component of the displacement by v and A, by
-X, we have

(14) im0, ¥, w0

and the wave equation
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1
(15) pvy = P53

C. Boundary Conditions. For a slipless contact of

two media, the fundamentel conditions at the boundary are
the continuity of displacements and the continuity of
stresses. ¥For the case of plane waves, the conditions have
been discussed in detail in Macelwane's book. We will dis-
cuss here the more genersl cases:

(i) When there are only longitudinal waves. ¥We have then

§ =v¢
The continuity of normal displacement gives
26, _ 2% :
(16) = 5= at z 0.

The normal stress is
T;z =A2 = AViP =
The continuity of this gives

(17) L e =P at z o,
since this condition should hold at all times.

(ii) When there are only SH waves. Here, the continuity of

the ¢-component of the displacement gives

2% _ 2%

2r r at z = 0.
But since this holds for all r's, we have
(18) . = %, at z = O.
The continuity of the tangential stress gives
(19) - M %"' =/‘*?;—f at z = 0.

(ii1) When both P and SV are present. For the present case,

we have to use both the tangential and the normal components



of the displacement and the stress.

From (11), the continuity of u gives

29, 220 _ 28, 2K & z = 0,
(20) 5;-!*- 570z S - S at 2z 0
The continuity of w gives
(21) 2% a‘l«"_/’%:z__a_g 2% _ AR 2K at z =0.
2z 1 7= ;‘,' v = 3z T Fz  ju Pt

The tangential stress is given by

7;-2 =/“(g—;$+

By equation (11), the continuity of this results in

ZE 2% "
(22) F'E}L[‘%é *32 f;? “’ ] ,a ;-.u-]at z =0.
The normal stress is given by

Tzz = Ad + 24 gf-
The continuity of this gives

(25)  po(K-s)ve eap(ibe 2 BB ) m (K 2 (282 - B 2R

at z = O, where £ - wrp/p, A= @ PSP,

4, On Longitudinal Waves in Two Media in Contact

A. The Problem. Let us first consider the case which has

been briefly described by Joes and Teltow. The source of dis-
turbance is supposed to.be exactly on the boundary between two
media, and the transverse waves are absent. Admittedly, this
situation is too much idealized, but the salient features of
the method of solution appear to be more easily brought out
by this simplification.

As shown in Fig 6, we take the source point as the origin
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of a cylindrical coordinate system and the surface of con-

tact between the two media as the plane z =

TZ

O. Lf the media are assumed homogeneous,

o

we should have a symmetrical wave pattern

L]

about the z-axis. Let the densities of the

b s s i

ARV

media be denoted by p and R, the elastic T 7

WA
constants by A, and A. , and the wave ve=- fig. 6.
locities in the media by v, and v,. The rigidities of both
media are assumed zero, and the velocities refer to the lon-
gitudinal waves. Let a harmonic spherical wave train be
generated at the source, and we will study the stationary

state only. For this case, we have the radial and the ver-

tical components of the displacement given by

(24) w=22, w=2

The wave equation for the stationary stste is

(25) vie +hte =90

where h*=w*/v* , the time factor gt being omitted from
all the calculations since it does not affect the results

and can be taken into account at any time. The boundary

conditions are

(26) 2¢ _ 2%
Zz 2z
k27) ﬁ‘?; &= B ?.a.

at z = O. These have been derived fully in the previous sec-
tion. The present problem is to solve (25) under the con-
ditions (26) and (27). In order to determine the solution
unigquely, we must also impose the conditions that there are

only divergent waves-and that the wave functions rmst vanish
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at infinity. If there is absorption in the medium, viz.,
if h is complex, Sommerfeid(l)has proved that the solution
of this problem is unique. But if neither of our media 1is
absorptive, as we would assumethat both h, and h. are rezal,
the solution will not be unique in the sense that we can
superpose a free oscillation on the solution. Since we are
not interested in the free oscillations, we will assume
that they are absent and consider at first that both h, and
h, are complex and then make their imaginary parts approach

Zero.

B. lMethod of Solution. By the method of separation of

variables, it is readily seen that the particuler solution

of (25) is of the form
CJ;(E'_)e:e‘/Z‘-/r"Z

where J, is the usual notation for Bessel function of the
first kind and zero order,}a narameter and C an arbitrary
constant. To make the solution finite when =z approaches in-

finity, we may write

¢, L(yrye ¥4 = for z>0
Ca£tZch'Jz”ﬁ‘z for z<0

the real part of the square root being always taken to be
positive when ! is real and large.

Since the wave equation is linear, we can write C, and
C, as arbitrary functions of ¢ and then integréte with re-
spect to § from O toeco . The resulting integrals will still

be solutions. Let the disturbance be a spherical wave of

(1) A. Sommerfeld, loc. cit.
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the form e1h3/n. Then we may write the expression of ¢ and

¢, as follows:

(28) ¢ = iz’g+/ﬁruzrzr1c"”"z’ fay z >0
MR - T TS
(29) ¢, = %T *fi(EJL(E’)e“!-h 34; 7z <0

where RZ = p° + 8%, fl and f2 are two arbitrary functions

to be determined from the boundary conditions. The ampli-
tudes of the waves in the two media are so chosen that they
will satisfy the condition (27) when R is very small.

To determine fy end fs , we will make use of the well

known formulae

ih R /"‘ y Tz
L_ = A Zf)e’ d:
= | Jiek Ll z 50
(30) o ,
.-_/ _;__. _Z[zr)c‘/mzd; z <0
o JIHE £1)

in the theory of Bessel functions which were due to Lamb
(2)
and Sommerfeld independently. Substituting from (28),
(29) and (30) in (27), we find
o0
T T g A)] [k =-/[——‘— +* RAD]L(kr4S.
= A L LR

By means of the Fourier-Bessel theorem, we can equate the in-

tegrands and obtain

4 11
—_— = == = llc;)-ﬁjfté’).
(31) =
2 hR
To satisfy (27), we note that 33 ij‘ =0 when z = 0., Dif-

ferentisting under the integral signs ©{ the second parts of
¢1 and o and then integuating the integrands, we have
(32) 4Tk L)y =Yk L),

(31) and (32) are two linear algebraic equations for f7 and

(1) H. Lemb, loc. cit. (2) 4., Sommerfeld, loc. cit.
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fo, and the solutions are readily obtained as

$y = ; Jl"xt -J-Z_‘:_h.'
f T VEPoh VIR AVTER

(53)
VITAS - /T-h}

L8 = AT BERE « RITA
Substituting (33) in (28) and (29) and simplifying, we

get the final integral expressions for §, and P, as fol-

lows:
- Itk z
(34) @ .-.-f ’PFFE"E Jtirye” S 2 z >0,
o0
ol » ‘f..=/ ————ﬁ*ﬂﬂ' .L(Zr)cﬁi:z’;zgdj =
where k

N = f’,\/!‘— xt" =2 ﬁ/f"’h"
In these integrals, the paths of integration as well as the

constants h, end h, are real. However, in order to use the
method of contour integrals, we consider h, and h, as com-
plex numbers and then assume their imaginery parts approach-
ing zero. The integrations will then be carried out in =
complex (-plane.

Since J, (¢r) is infinite when {— 2/, we will split it
into the form

2L (k) = H (¥r) + H,r)

where Hy and H2 are the two Hankel functions whese asymp-

totic expressions are

7 _ ita=F)
(36) e~ [ e
=== it~ %)
Hulx) ~ /34 €
Hl vanishes in the first and Hy, in the fourth quadrant when

X >0, llence (54) and (35) may be rewritten in the forms
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j VTR >+ VAP E 3 o
(37) % f .B_tft_ H, (rrie” Ty + f:en/ H. (e a7, z >

\ oo _.__._]‘. S 4 /Etb?z
e " =./ E%IH% H e T _*/2;"5}. Ho(Er)" T4 z<o0,

where the first integrals are carried out in the first quad-
rant and the second integrals in the fourth.

The singular points of the integrands are the two branch
points h and h and the pole giveﬁ?N = 0. We will assume
thet in our problem, the upper medium is rarer so that P >A
and h,>h, (w>v,). In Sommerfeld's solution of the electro-
magnetic problem, the integrals around the poles will give
rise to terms which are inversely proportional to yr. These
terms were identified by Sommerfeld as the surface waves.

It is on the realization of these surface waves thst contro-
versies have arisen, and a large number of papers have been
published all centeriné?the rigorous evaluations of Sommer-
feld's integrals. But in our case where both h, and h: are
real, and h,>h;, , and alsof, >p , this question of surface
waves will not arise because the pole of the integral lies

in en inaccessible region of the complex plane. To show

this, we have, when N = O,

B2 (Y -A) =R(E-A).
fence
gl _ ﬁl‘b‘l_&}'.l -
R*- R*
By our assumed inegualities, both the numerator and the de-

nominator are negstive. It follows that ¥* is positive and

¥ is real. Now

P Vit-A' (W =0).

- 3

£ VEI%-Ar
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The left hand side is negative and real. We have only to
vary ! along the real axis to see whether this is possible.
When £ is greater then both h, and h, , both radicals
should be taken positive according to our previous conven-
tions which are required for the convergence of the inte-
grals. Hence the ratio is positive. When I 1is greater than
h, , but smaller than h,, theanzi} is purely imaginary, and
the above ratio is not real. When ! is smaller than both h,
and h,, then the arguments of both radicals change by -7 (we
will draw our path of integration below the two branch
points, because we will assume that they approach the real
axis from the first quadrant). Their ratio is, therefore,
again positive. Thus, there is no point in the sheet of
RiemanAs surface chosen that will make N vanish.. We may,
therefore, disregard the surfacéfz;tirely in the present
problem. 8
The integrsl along the real axis £ - plane
in the first quadrant may be replaced

by the sum of the integrsls along 0B,

along a curve at infinity and sround 0 = i —
the branch cuts drawn from h, and h.

to infinity (Fig. 7). In the fourth g’

quadrant, the integral along OA may Fig 7

be replaced by the sum of integrals along 0B' and along a
curve at infinity. The two integrals along paths at infin-
ity vanish on account of the asymptotic properties of H,

and H,. The integrals along OB and 0B' cancel each other,
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because
Hy(¥re'™) = ~H, LE.

Hence we have

vy BB TR [ —
[H;([re") JPN ik / H (EIr) 'y
The right hand side is -IOB. On the left hand side, let
2e"=3’ We obtain at once

IaB + 0B’ =0

Thus, our integrals are reduced to those components along
the branch cuts only. Let us denote the integral for §, by
R and that for ¢, by R’

Since we take the real parts of JT*~Jp and N <A to be
positive so long as we do not cross the cuts, we will draw
the latter in such a way that aslong them, the real parts of

the radicals vanish. Then

(59) R, - R"‘PP:./_Z__'NJ__‘; H(:’)e—fzt—z,&z
2 A

where R, is the integral around the branch point h . Let
Ji'— A} =tip along two sides of the cut and substitute in

the above equation. We have then
p:-ﬁﬂ
(40) g = P*R H e FErar
! —_—
2[ Sacw AP RV-Frhih

This integral has been evaluated by Sommerfeld and is equal
to

thr
;/I, B+FR) ]e

(41) R, =- —'—*R—““[gtu.'-}u‘) N m

x>0,

provided that r is very large and z is small compared with r,
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because the asymptotic expansion of H, has been used. Re-
placing — 7 prz by yI1-h 2 in (39) and -z by /p*+h*-AF in
(40) we can eveluate the integrsl in a similar manner and
obtain

(42) R' —- th(R+R) 1 o hrrVhERE . s
)} o ML

Brlhi—h) T

2

for the second medium. In exactly the same manner, we can

evaluate the integrals around the other branch point h, and

obtain '
> I'A&r _/ﬁ: -‘l.-z'
(43) R: =- %{—%}%—j— ;’;‘, e 2 >0
(44) i b ) B SO e"[b"
R =- thEB] i el <o

We recall here that R, and R. are the two space waves in me-
dium 1 and R, and R, are those in medium 2. We shall dis-
cuss some of the consequences of these equations in the fol-
lowing section.

C. Discussion of Results. In solving the problem, we

have tacitly assumed the following:

l. Only longitudinal waves exist;

2. The disturbance is represented by 2 harmonic wave of an-
cular frequency w;

3. For the media, £ >R, va(=VL/E) > % (=VA7R ) and therefore
hy > h:

4. A stationary state has been reached;

5. In evaluating the integrals, asymptotic expansions of H,
and H, are used so that r is fairly large and z«r. How-

ever, it is known that the asymptotic expansions of the

Hankel functions give very good approximations even when



their arguments are as small as 3.

6. The source of disturbance is exactly on the plane of
the contact. This condition, however, can be general-
ized and we will treat the case when the source is at a
small distance away from the plane of contact in a lat-
er section.

Equation (41) represents s space wave in medium 1 whose
amplitude decreases as 1/r2 and increases linearly with z.
But this increase cannot be indefinite, becsuse z must be
small compared wih r.

Equation (44) represents the corresponding wave in me-
dium 2; but here, since/s’'- 4* is imaginary, the wave real-
1y consists of two parts whose phases differ by 90°. Both
this wave and the above one are propagated in the direction
of » and are, therefore, at grazing incidence to the plane
of contact. The phase velocity of the wave in medium 1 is
given by ¥ = /4, and that in medium 2 given by % =«/A, in
agreement with our initial assumptions.

Since VA -kt is real, so in (42), exp(h; - h. )%Zde-
creases very raplidly withz (z<¢) and we have a wave propaga-
ting in the direction of r with a velocity v, , but confined
within a very thin layer below the interface.

Equation (43) is the most intetersing. Rewriting it as
follows _
- L ped B e;(ﬁ.r-lza_"-_/:—.‘ z)
where A 1s a constant amplitude factor, we see at once that

this represents a conical wave propagating in the medium 1
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with a phase velocity given by

(45) W/ T hih = @lh =V

In any vertical plane passing through the source, the trace
of the wave front is given by

(46) . hr-)h-h' z = constant.

This is inclined to the interface at an angle given by

(47) € = arc tan thZF:7§:= erc sin h,/h, = arc
sin v /v, which is exactly the angle required in total re-
flection.

Just to give an idea of the order of magnitude, we will
estimate the ratio of the r-component of the displacement in
this fliank wave to that of the source. It is easy to see
that this ratio |Q] is given by

L )

e o1 = | BEGy
to the order of 1/r. With period = 5 sec., v, = 3 km/sec,
¥ = 5 km/sed, = 2.5, p = 2.7 and r = 100 km, we have

@] =23 7.
Since the present case is too particular, we will give a
more detailed calculation for the case in which the source
is not on the contact.

D. Longitudinal Waves when the Source is not on the

Boundary. We will generalize the present problem by assum-
ing that the source is at a distance "d" from the boundary.
As before, we assume the solution to be of the form

ih, R

(49) ¢ = ePR

-o-/j‘ ({)_[(;r)e"“'t—“" = at zZ>0
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0
(50) ¢ = / eI an ax, Sl
and proceed to determine g, (%) and g, (¥) from the boundary
conditions (26) and (27). There is only one term in§, , be-
cause the source is in the first medium. It should be not-
ed that here RY = r* + (2z-4)"

In exactly the same manner as before, we obtain

3 I e-VI=hid pTEE - RITR
(51) R /T=ht Y

2% & i il
W%

]

1

U AEP)

Since we are interested only in the waves in medium 1, we

will investigate P, only. We have then

-] —
(52) ¢ = ghR [y e TR piTR-BITK L by s 0
‘ PR P VIS A* N g

The integral represents the effect given rise by the dis-

continuity in the medium. We may rewrite it in the form

oo
IIIR z pLY 4 z >
s 2 3 -./IA( ;E -Hi.(du)[ P
(52a) ¢, = Sr— /’F i Toamdt - = Jian4i

The first integral is of the same form as (34) and presents
no additional feature. Let us denote the second integrzl
by I. Splitting J, as before and using the same kind of

contodrs, we may write

(53) = -a [ L JI-4 "’f‘;;‘ (2+g (3r)
T *°2/¥% &

— A

and ha

The branch points are still h, . Denoting I*-A'=-g%, we

have
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;:m

~ _J/ -AT AT (zed)
L ik B3 a, (prye =Y e AT

om  APPRRE LRt PAp R=RT

Integrating by parts and using the asymptotic expression

; _2— :'(ir-' })
H'czr) el e

we obtain

#:OU ) ) -/_ 5+A'L_"t (:'4)
- e"*/ wie?" a4 pe 't L5

rizmr 5 B & [ EIELp A RIFFAAY
By use of the formuls

F,

™) - _¢F
fm e/ frt) L folF e’ T,
[ I g

r—>oeoo

the integral can be evaluated and we find

(54) e i ~ e,.-[;,,,_,/r,tz;zz,ﬁ_]
= ﬂlcbat"ﬁob) r

Here, we get a similar equation to (43). The wave front is

given by
(55) hr - Jh*= b (244) = constant,
or hor = h*-b> 2 = constant

It is, therefore, a conical wave. The velocity of propaga-
tion is again

(56) W/ bR =Y

and the angle of inclination of the front to the plane of
contact,

(57) o = dant hJIEThE = Sin” Yih

which are the same as we obtained before. The integral a-
round h, will again give an inhomogeneous wave which is not
of particular interest here. To calculate the ratios of
the amplitudes, we have to evaluate the first integrsl of

(522). Comparing with (43), we see at once that it is e-



gual to
T hob - A Pt (zrat)]
-,-h‘ _81 ______&__-; = l[l'r I
2 Rv(h"ﬂ. % s
Combining this with (54), we get finally the expression for

the flank wave
20h [ bt~ B =hF (2240]
(58) Ry = —t— & /L2
= E_(m"'/h)
using the same notations as before. Equations (43) and

(58) represent nothing else than the fourth wave fronts in
'v. Schmidt's photographs. The present solution is an ex-
tension of the result of Joos and Teltow, who treated only
the case when the source is exactly on the boundary. It
should be pointed out here that this method of evaluating
the integrals is vzlid only when the velocity contrast is
large; otherwise, the two branch points would be too near,
and the present separastion would break down. In addition,
the formulae hold only when z is small and r large.

By equations (24), it is quite easy to calculate the
ratios of the radial and vertical components of this flank

wave to those of the source wave at the same point.

We get
(59) CY. S A »

e hhih) R T
(60) o) 2br 1 £ :
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Table 1. Ratio of the Horizontal Displacements in the
Flank Waves to those in the Source-Waves at the
same point, with the following data: v, = veloc-
ity of waves in the rarer medium = 6 km}sec., 7=
velocity ratio = vo/vy = 1.2, o= density ratio =
B/p = 1l.11, d = distance of the source drom the
interface = 15 km., »r = horizontal distance from
the source, T = period of the waves.

% ) 100 200 400 600 1000 2000 kms
secC.

0.1l 0.0339 0.0196 0.0098 0,0065 0.0039 0.0020

0.2 0.0798 0.0392 0.0196 0,0130 0.,0078 0.0040

0.5 0.1994 0.0983 0.0489 0.0326 00,0196 0.0098

1.0 0.3988 0.1965 0.0978 0.,0651 0.03921 0.0195

%
Table 2. Ratios of the Vertical Displacements for the
same Data as above

v 100 200 400 600 1000 2000 kms.
= .
SeCe.
0.1 0.176 0.175 (.174 0.174 o0.174 0.174
0.5 0.882 0.873 0.870 0.870 0.870 0.870

% Equations (59a) and (60a) hold only for wave lengths

small compared with r. Hence T cannot be too large.



From these, we notice that the rastio of the horizontal com-
ponents varies approximately as the inverse epicentral dis-
tance when the latter is large, while the ratio of the ver-
tical components is almost constant. Contrary to the first
order effect, these ratios depend not only on the density
and velocity contrasts, but also on the velocities them-
selves, This is to be expected, because the amplitude of
this flank wave varies as the inverse square of the dis-
tance.

For convenience of tabulation, let ¥ = v,/v, be the
velocity contrast, o =R /p the density contrast and T the
period of the wave. Then (59) and (60) may also be written

in the following forms:

T v _ K

(598) l—‘le = ™ o _y ri
Rl
wy _ L ML ——

\60a) |l = T % er rd

The tables are calculated Tfor different wvalues of periods
and epicentral distances (valid only for small T, because
of the approximation we have used).

To integrate equation (52a) around the branch point h,,
we see that the first integral is of the form (39), and it
will give rise to a wave of the form (41l) which is inhomoge-
néous, and its amplitude decreases as 1/r*. The second in-
tegral has a pole at h, coinciding with the branch point,
However, the integral is convergent and can be integrated in

a slightly different way. Rewrite it in the form



{a-t‘ﬂ)
LA - 3 a)d
Let] w e hanat

Let us make a vertical cut passing through h, as shown in
Fig. 8. Let t = -h,. Then the 1limit of t will be from ce

to 0 and from o to ¢e . MNaking the substitution, we have

_ 2 / f )_2_ ,:"‘7; “’“"”"”’"7)"'6"!"¥)

N Jitzem wir e il

Since we have

0-<0) g
(61) Jim / a'-"ﬂ,)_.--;zﬂm\/z

P00

we can also write the above equation as

=& - +amy(zed )= .3
62) / i azR -t /2 _an e hy
( L B =l dat , L4
whence we obtain Mg 8.
(63) T el W»./ Lghr gl

x ﬁfﬁ’l_h; ; b ¥ P, r

This is a cylindrical wave whose amplitude decreases only

as the inverse first power of r. dience at a large distance,

this should dominate all the other waves we obtained before.
The above evalustion is made under the assumptions

that r is large and z small compared with r. This means

that the observation should be made very near to the boundary

surface. When z is comparable with r, we can get a better

prcEs )uﬂofrom £(t)

approximation by taking out the factore

and evaluating the integral

- PRE = (t(t+2h) (2+d) dt
), € VT

0
instead of using (61¥. Let t = s e'?. The above integral
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is then changed into

seo X —
= =&F _ _p'® AW/ 20458’ T ds
e.,,_/ & p-& (z+d) =
o

PR

Making first the substitution s = u® and then the substitu-

tion v = yr u, we reduce the integrasl further into

S o e . ——————
~l ¢ P 'z X -
3_<=__/e_yz_ 24 o ohr R,
l)’ e

The second term under the radical sign mey be neglected in
comparison with the first. Completing the square in the
exponent, the integral can readily be integrated, and we

finally obtain

(o-co) x N
: . GCe 3k (244D LR -
(610)  Jin [ oo I gt e e O

e
By use of this formula, we can get 2 second spproximation

of (62) which runs as:

= 27
The wave front is, therefore, given by

(64) 2r*+ (z+d) = const. r

which is the equation of an ellipse with center off the ori-
gin. By rotating this around the z-axis, we will get a
toroidal surface which seems to be strange. This is due to
the various approximations we have made. We notice that

the expression within the parenthesis in the exponent of

(63a) is really the first two terms of the expansion of

< 2
R =[r+ (z+d)]% = p o g 2290, -
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and L/p is the first term of the expansion of 1/R’, both be-
ing to the first power of 1/r. Substituting from these in

(63a), we get

H "h R‘
p, __‘_ i’
(63Db) I, = pg €

which is simply = épherical wave from the image point of the
source. This is to be expected when the velocity contrast
is fairly large. Our calculations, therefore, indicate very
clearly the trend of approximations to the true picture.

As a check of our calculations, we may point out that
equations (58) and (63a) are exactly the same as the equa-
tions (18) and (20) in Muskatlgjpaper, which are obtained
in a different way (there is a difference in the factor !/g
which we have assumed for the source, but this is quite ar-
bitrary).

From these calculations, it seems that the method may

also be applied to other problems of wave propagation in

layered media. If the wave function in the rth medium is

given by

¢ =/ Fr (5 hyhnoobr by ) (27D dE

with branch points at h,, h,, ..., we can obtain the dif-
ferent kinds of waves by evaluating the integrals around
each of these. 1In particular, if a contiguous layer has a
constant hg, , which is smaller than h,, the integrals around
this may give rise to a flank wave (the refracted wave from
this layer in the customary usage of the term) due to this

layer. To illustrate this point, we will apply the same
T11I) M. Muskat, loc. cit.
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method to the SH wave in a two-layer crust bounded bv a

free surface.

5. On SH Waves in a Two Layered Earth's €rust with
a Free Boundary
A. The Problem. This problem has been examined

(1)

in one aspect by Jeffreys for the interpretation of the

origin of Love waves. The present study differs from his
both in the method of solution and in the point of view.

As shown in Fig. 9, we have a laver of thickness H
resting on a mass of infinite depth. On top of this is free
air. A source of spherical SH wave is situated at a dis-
tance 4 from the free boundary z = O. 22

According to section 3, let the distor-

tion function be denoted by ¥. Using ;:“EL-\ X
cylindrical coordinates, we have the Iﬁ . st} -
components of displacement given by . :>“ :;;ﬁ
u,%g,a). Let the various constants be

as shown in the figure. For the sta-

tionary state and for a source of the form Fig. 9.

kR
VR

where k =w@/v, =27/A the wave equation is
vy » k0¥ =0

and the boundary conditions sre

(]
Q
~

2¥
(65) .-2..-;- =0 at =

(1) H. Jeffreys, loc. cit.



(66) ¥ =¥, /4,(-39%) = /n[%—'?“) at z=-H.

B. The Formal Solution. For convenience, let us sas-

sume an image source of the same strength gt at the image
point. This is permissible because it is a solution of the
wave equation. As in the case of longitudinal waves, designa-
tmyg B+ the wave function within the layer by ¥ and that below

by ¥, we have evidently,

oo L —

KR gthR' ey oy

(67) ¥ - g‘kﬁ’* g’%‘ +7 /”tz)e‘” B 2rorar » 4/ s’ qanat
od

(68) ¥ = /ccr)e”“*"ﬂzrn’g

By (65), we obtain at once 4)=8(1) . Thusy may be written as

= kR HR ® E—
(67a) P = =2 =5 */4(1)44/:*- krz- L(iray
Let x =A/zt__h:.[ Zl. 2/51_‘,‘& 5

Substituting into (66) with the aid of (30), we find

7;‘ oM, T! e T(@H) | yyehyiH =cit)e

/‘:ichu—H)-l b le..);(d—rH ), i ALDShy(-+) = /h)’,cQ)e"‘”)

whence,

. . af e ey diu) -fol)
(69) Al = 7. Gk gt + pa ey
(70) CeEY = 2% Ay

e‘nH ﬁf?; d’lH“/k‘I], “}‘,H
With these values of A and C, eguations (67) and (68) may

be written as

-

(71) 11& _ e:’k:k & gf' R +/—£ &‘.)’,d(}‘l}'r‘hh} [e..):(z-fh‘i er'(z-Hf]J;/I’)"f
! R R' o X, MEshpH+p)ichyr
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. Y tz+H)d knedrd

The sign conventions of the square roots are the same as in
the previous section, in order to insure the convergence of
the integrals. Here, we notice that there are an infinite
number of poles of the integrals. These have been studied
by Jeffreys in connection with the surface waves. We are
concerned in this section only with the flank wave , which a-
gain may be obtained by the integration around the branch
point k,, as will be shown below:

We will consider ¥, because this alone will give rise
to waves propagating in the upper layer. The first two
terms give the source and the wave reflected from the free
surface. Of the two parts of the integfal, the first one
will account for the effect of the surface z = -H, and the
second will account for the effect of the free surface.
Since this latter will not yield the flank wave, we will con-
sider the first part. We will try the following inbegralespresen

which is oﬁly a part of the integral.

d} -FlziH-d) fr 1o H, a
(73) I =-:{'/£Te Ja, oy o s il i

Make 2 cut through the branch point k, in such a way that the
real part of 7, is zero, and then the substitution x* = - p
By the same formula (81) we get

c bt 1 e /EE )]

4) — .
(7 ) I &4 ,"‘ k‘_ {4".""‘3" Sn)/k;bk,‘H

which is seen of the same forn as (54) and the wave front is
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again given by

kv - J k- 2z = constant
There are still other terms of the integral which will con-
tribute similasr results as (74), but we need not go further
than this illustration. The method gives only a rough es-
timate and mayv not be reliable unless all the singularities

have been examined.



