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Abstract

Emerging applications of networked control and distributed computing are character-

ized by decentralization of information and the need to exchange it over potentially

unreliable communication networks. This results in novel interactive communication

scenarios that are incompatible with conventional information and coding theoretic

approaches. To address this gap, through the early and late 1990’s, a new information

theoretic notion called anytime reliability and a new coding paradigm called tree codes

were proposed. Although the central role of tree codes in several interactive communi-

cation problems such as distributed control and computing has been well understood,

there have been no practical constructions till date. For the first time, we have an

explicit ensemble of linear tree codes with efficient encoding and decoding for the

class of erasure channels. In the process, we have developed novel non-asymptotic

sufficient conditions on the kind of communication reliability required to stabilize

control systems over noisy channels. We also study the application of tree codes to

interactive protocols over erasure networks and illustrate their benefits through the

example of average consensus.
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Chapter 1

Introduction

Fueled by rapid advances in embedded systems technology and communications in-

frastructure, cheaply available smart devices with small form factors, capable of sens-

ing, computing and wireless communications, have proliferated throughout many ap-

plications. These advances have enabled monitoring and data collection from an

unprecedented variety of areas encompassing weather and environment, medical care,

energy consumption, vehicular traffic, public spaces, structural health monitoring of

man-made constructions and even online social networks.

The next logical step in this evolution is to use this data to control and influ-

ence the physical world in an automated manner with minimal human intervention.

Possible instances of this new paradigm include the smart grid that is capable of meet-

ing fluctuating demands by automatically augmenting or switching between various

renewable/nonrenewable power supplies [2], intelligent highway systems [42], smart

homes that automatically adjust according to the needs of the occupants [43], net-

worked city services and formation flying of underwater/aerial vehicles/satellites [65],

to mention just a few. Widely referred to as cyberphysical systems and/or networked

control systems, they have inspired a lot of research and developmental activity of

late.

Essential to understaning and realizing such networked control systems in prac-

tice is a convergence of tools from computing, communications and control. There

has been significant effort by the research community in this direction in recent

years [1, 44, 57, 70, 84]. Two important features of networked control systems are
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decentralization of information and the need to exchange it over potentially unreli-

able communication networks. Consequently, one of the key challenges (e.g., [70])

in building future networked control systems is to integrate information theory and

control theory, two fields that have traditionally developed almost completely in-

dependently of each other. The work presented in this thesis is motivated by this

challenge and is broadly made up of two parts, namely decentralized estimation and

communication for control.

1.1 Control Theory

Control theory, at its simplest, is concerned with regulating the behavior of dynam-

ical systems through output feedback. A typical control system is comprised of the

plant or the dynamical system, the measurement unit which measures the output of

the plant, the control unit or controller which uses the output to determine appro-

priate feedback and the actuation unit which applies the feedback determined by the

controller. This is illustrated in Figure 1.1.

Feedback control played a key role in the development of technologies ranging

from power, transportation, and manufacturing to communication, and data stor-

age/retrieval. For example, man’s journey to the moon would not have been possible

without feedback control. One of the earliest applications of feedback control is the

centrifugal governor which is a primitive cruise control used in early Watt steam

engines. More routine applications include autopilots in aviation, regulation and con-

trol of the electrical power grid, and high-accuracy positioning of read/write heads in

disk drives. In most traditional applications, the associated control systems are fully

centralized, i.e., the plant, measurement, control and actuation units are all hard-

wired together. A very rich theory of classical feedback control has been developed

over the past century, key milestones include Nyquist stability criterion [72], Wiener

filter [108], state-space approach and Kalman filteirng [52, 53], H∞-control [26, 40],

LQG control and the separation principle [50]. Common to all these developments is

the traditional model of control systems depicted in Figure 1.1.
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In contrast, cyber-physical systems are characterized by different levels of decen-

tralization in their structure. At a high level, the measurement unit and the control

unit are not colocated. In addition, each is comprised of arrays of sensors and actua-

tors that in turn communicate with each other over a network as depicted in Figure

1.2. We already see instances of this in the form of control area networks (CAN) in

modern vehicles where different control sub-systems such as window controllers, cruise

control system and headlight positioning systems communicate over a shared network

layer. As a result of this decentralization, most of the classical control techniques do

not apply directly.

Early work on decentralized control appeared in [109] where Witsenhausen used

a simple instance of a decentralized optimal control problem to disprove the conjec-

ture that affine control laws are optimal for sufficiently centralized linear-quadratic-

Gaussian (LQG) control systems. There has subsequently been a lot of work on

studying the effect of nonclassical information structures that arise in decentralized

control of which [109] is an example. An early survey can be found in [88] and more

recent papers include [8, 77, 83]. This body of work assumes that communication

between different components is instantaneous and perfect.

Research on the effects of communication constraints in distributed control did

not appear until more recent years [9, 15, 110, 111]. The presence of communication

channels in the feedback loop of control systems raises important fundamental ques-

tions on conventional information theoretic approaches for achieving communication

reliability. Control theory and information theory make incompatible sets of mod-

eling assumptions on real life systems. Whereas control theorists tend to assume

that all communication is reliable and delay free, information theorists can guaran-

tee reliability only in the asymptotic limit of large delay. Resolving this dichotomy

between delay and reliability is key to developing a more integrated systems theory

of networked control systems. We elaborate on this below.
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Controller
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Figure 1.1: A control system

Network

S1 S�. . .A1 Am. . .
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Controller

Process

Wednesday, May 2, 2012Figure 1.2: A networked control system: Si, Ai and Ci denote sensors, actuators and
controllers respectively
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1.2 Information Theory and Control Theory

In his landmark paper [94], Shannon laid the mathematical foundations of modern

communication systems. Influenced by Turing’s work, Shannon emphasized treating

messages as discrete symbols as opposed to continuous waveforms and coined the

currency of bits. He realized that sending just one bit over a channel and reproducing

it accurately at the other end is impossible but reproducing a whole bunch of them

is not. This is because a channel is unpredictable over one use but becomes very

predictable over several uses, thanks to law of large numbers. For example, if the

channel flips each bit with probability p and independently of the rest, then over n

channel uses it would flip approximately np bits with a very high probability. This

motivated the idea of block coding.

When encoding a message, we break it up into blocks of k bits each, add redun-

dancy and encode each block independently into a larger block of n bits (e.g., Figure

1.3). The rate of the code is k/n and the optimal decoder selects the most likely

input given the channel outputs. Shannon showed that the corresponding probability

of decoding error vanishes to zero if and only if the rate is smaller than the channel

capacity. This is a beautiful theory and an elegant result. Though Shannon only

showed existence of block codes that achieve capacity, thanks to sixty years of coding

theory, we now have several practical codes that reach the Shannon limits in many

ways. Some examples include low density parity check (LDPC) codes with message

passing decoding [32, 61, 81, 82], convolutional codes with Viterbi decoding [105], al-

gebraic geometric codes with Berlekemp-Massey or list decoding [13, 39, 63], Polar

codes [5] and so on.

All these techniques achieve reliability at the expense of encoding and decoding

delay. The greater the delay, higher the reliability. Delay is seen as a necessary

evil and over time has received much less attention. This was not a problem in

traditional communication systems since most applications were delay tolerant, e.g.,

cellular speech communication where encoding/decoding delay is imperceptible. But

such conventional coding techniques are not appropriate in the context of networked
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Encoder,
Rate = k/n

p(y|x)x ∈ Xn y ∈ Ynb ∈ Fk
2Alice Bob

Wednesday, April 25, 2012

Figure 1.3: Block coding

control systems since delay can severely degrade the performance of the system and

even result in instability. This marks a key difference between the philosophy of

information theory and that of control theory. Control theory deals with real time

constraints where as information theory largely lives in asymptopia. Furthermore,

information theory largely deals with one way communication while in distributed

control, communication is interactive, i.e., the plant measurements to be encoded are

determined by the control inputs which in turn are determined by how the controller

decodes the corrupted plant measurements.

To address these incompatibilities, through the early and late 1990s, a new infor-

mation theoretic notion called anytime reliability and a new coding paradigm called

tree codes were proposed in [84] and independently in [92] respectively. Tree codes

are central to several distributed applications including distributed computation and

distributed control. But there were no explicit constructions of tree codes since and

the subject has remained in the realm of pure theory. For the first time, we have

an explicit ensemble of tree codes with efficient encoding and decoding for a class of

communications channels called erasure channels which are used in practice to model

links under packetized communication, this includes the internet and wireless links.

We also study their application to implementing protocols within a group of agents

connected by a communication graph with erasure links. We will explain the key

contributions of this thesis in greater detail in the following section.

1.3 Contributions

In this section, we briefly review the contents of each chapter and outline the main

contributions. The chapters can be read mostly independently from each other. This

is particularly true of Chapter 2 which focuses mainly on decentralized estimation
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while the remaining chapters focus on error-correcting codes for distributed control

and general interactive communication problems.

1.3.1 Decentralized Estimation

Rapid advances in embedded systems technology have lead to a proliferation of cheap

and often low quality sensors with wireless communication capabilities for measuring

and recording various physical phenomenon. A wireless sensor network refers to a

network of such sensors used to monitor large physical spaces. Initially motivated by

military applications like battlefield surveillance, today they are widely used in many

areas ranging from industrial applications such as process monitoring and control, and

structural health monitoring, environmental applications such as endangered species

monitoring, and consumer applications like automatic climate control in homes and

offices. The most common sensor network architecture involves collecting the sensor

measurements over a network at a fusion center which aggregates the measurements

and uses them to perform a desired task. There is often a scheduling algorithm that

schedules different subsets of sensor to make measurements at each time which are

then quantized and communicated back to the fusion center. We study the problem

of optimal estimation using quantized measurements with a focus on sensor network

applications in Chapter 2.

There are a number of applications that have natural power and bandwidth con-

straints for reasons ranging from stealth, desired longevity (e.g., due to difficulty in

replacing the sensors) and shared communication medium with other technologies,

etc. Consequently, the measurements are often coarsely quantized and hence quanti-

zation effects cannot be ignored. In contrast to classical LQG cotrol where a single

measurement unit has access to all the analog measurements, there is no single entity

in the network that has access to all the analog sensor measurements. As a result,

classical estimation techniques do not apply in this context.

We considered the problem of optimally estimating the state of the system using

quantized sensor measurements in the case where the plant is described by a linear
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Gaussian State-space model and the measurements are linear. Due to the non-linear

nature of the problem, analytical approches fail in this setup and a natural alterna-

tive often suggested in the literature is to use particle filters. Particle filtering is a

numerical technique which is best described as a sequential monte carlo algorithm.

We exploit the State-space structure of the plant to propogate most of the state

information analytically and use the particle filter to propogate only the essential

nonlinearity in the estimation algorithm. The result is an extremely efficient numeri-

cal filter that can optimally track the state using far fewer particles (up to two orders

of magnitude fewer) than conventional particle filters. We call this the Kalman-Like

Particle Filter (KLPF) and describe it in detail in Chapter 2. We also present new

results on the distribution of the state conditioned on quantized measurements and

conclude the Chapter with simulations that compare the performance of the KLPF

with those from the literature.

1.3.2 Distributed Control

While in Chapter 2, we focus primarily on the effects of quantization on optimal es-

timation, in the remaining chapters we shift focus to the case where communication

is not only rate limited but also stochastic and noisy. A natural approach in this

case would be to quantize and packetize each plant measurement and communicate

it to the controller. Motivated by such a setup, the authors in [95] considered the

problem of optimal LQG control when plant measurements are subject to erasures. It

was shown that if the plant is open-loop unstable, closed-loop mean-squared stability

is not possible whenever the erasure rate exceeds a threshold that is determined by

the plant dynamics. This suggests that conventional notions of communication relia-

bility centered around block coding are inadequate when considering communication

channels that are in the feedback loop of control systems.

The problem of stabilizing an unstable system over a noisy channel captures the

essential complexity of coding for control. An information theoretic framework for

this problem was first studied by Sahai in [84] where the notion of anytime reliability
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was proposed as the right metric for measuring communication reliability for control.

Roughly speaking, an encoder and decoder pair over a communication channel is said

to be (R, β)−anytime reliable if the communication rate is R and the probability

of incorrectly decoding a bit that was sent d time steps ago decays exponentially in

d with exponent β. [84] developed sufficient conditions on the rate R and exponent

β for stabilizing scalar unstable processes in closed-loop which are also necessary if

there is perfect channel feedback from the decoder to the encoder. In particular, if the

plant eigen value is λ, then one needs R > log |λ| and β > 2 log |λ| for mean-squared

stability. These bounds were extended to the case of vector-valued processes with

channel feedback in [87].

The plant is said to be mean-squared stable in closed-loop if the second moment of

the state is asymptotically finite. The sufficient conditions on the rate and exponent

proposed in [84, 87] that ensure closed loop stability are asymptotic in nature. The

same is true of the sufficient conditions presented in [62,64,66,71,100] which deal with

the case where the communication channels are rate limited but noiseless. In other

words, the second moment of the state will be finite but can be arbitrarily large. In

practice, one cares about keeping the state small rather than just finite. Motivated

by this spirit, we present in Chapter 3 novel non-asymptotic sufficient conditions on

the rate and exponent for closed-loop stability of linear State-space processes over

noisy channels. Moreover we consider the case where there is no feedback from the

decoder to the encoder. To the best of our knowledge, this has not been considered

before in the literature. Even though the sufficient conditions developed in Chapter

3 are non-asymptotic, the thresholds on the rate and exponent depend only on the

system parameters, in particular, on the co-efficients of the characteristic polynomial

of the plant. We also show that the thresholds are asymptotically tight. In the

process of proving these sufficient conditions, we developed novel filtering algorithms

for tracking the state using quantized measurements.
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1.3.3 Error-Correcting Codes for Control

The sufficient conditions on the rate and exponent of anytime reliable codes developed

in [86, 87] and Chapter 3 are predicated upon the existence of error-correcting codes

that achieve such reliabilities. One needs so called tree codes in order to achieve any-

time reliability over memoryless channels under maximum-likelihood (ML) decoding.

Tree codes first appeared in the work of Schulman [79,92] in the context of distributed

computation. Schulman used tree codes to simmulate interactive protocols between

a network of agents and showed that tree codes exist. The main contribution of [92]

is to effectively provide an interactive analogue of Shannon’s noisy channel coding

theorem which considered one way communication. In particular, [92] proved that

one can simulate any interactive protocol between a pair of agents while suffering a

constant slowdown and guaranteeing an error probability that is exponentially small

in the length of the protocol. The focus was on achieving constant slowdown no mat-

ter how small the constant was. Distributed control can also be viewed as an instance

of interactive communication but the emphasis is much more on the constants. In

this case, the rate R which is the slowdown and the exponent β corresponding to the

error probability need to be simultaneously large enough.

Even though the significance of tree codes in interactive communication problems

has been understood for nearly two decades, there have been no practical construc-

tions till date. The existence of tree codes proved in [92] is not with high probability.

This is in contrast with Shannon’s results in [94] where he proved not only that ca-

pacity achieving codes exist but that almost all random codes achieve capacity. We

bridge this gap in our understanding of tree codes in Chapter 4. For the first time,

we showed the existence of linear tree codes with high probability. In other words,

we prove that codes drawn from an appropriate ensemble of causal linear codes which

we call the Toeplitz ensemble are (R, β)−anytime reliable with high probability for

rates upto Shannon capacity and exponent up to the expurgated exponent [11]. This

significantly improves upon the known rate and exponent pairs for which anytime

reliable codes are known to exist.
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Tree codes require ML decoding at each time step to be anytime reliable. Perform-

ing ML decoding at each time step is impractical for most communication channels,

e.g., for the binary symmetric channel the complexity of performing ML decoding

at time t is 2Ω(t). A sequential implementation of ML decoding is presented in [92]

for which the computational complexity at any decoding instant is stochastic and

the probability of performing L operations decays as L−γ for some γ > 0. For small

enough rates, one can show that γ > 1 and hence the average decoding complexity at

any time instant is bounded. Similar observations were made in [76]. These consti-

tute the best known results on the existence and decoding complexity of tree codes

for any channel.

Note that ML decoding of linear codes over the erasure channel boils down to

solving systems of linear equations. In Chapter 5, we exploit the linearity of the

codes developed in Chapter 4 to propose an efficient decoding algorithm for the

erasure channel. The decoding algorithm has bounded average complexity at any

decoding instant for all rates up to the Shannon capacity and the probability of

performing L operations decays as 2−Ω( 3√L). This is a significant improvement over

those available in the literature and works very well in practice. In Chapter 5, we also

discuss possible approaches to construct efficient tree codes for the binary symmetric

channel. We conclude the chapter with simulations that combine the results from

chapters 3, 4, and 5.

1.3.4 Application to Interactive Protocols

In [79], the authors show that tree codes can be used to simulate protocols over a

group of agents connected to each other through an arbitrary directed communication

graph with noisy links. They showed that one can simulate protocols with a constant

slowdown and a probability of error that vanishes exponentially fast in the length

of the protocol. The results were presented for the case where the noisy channels

were binary symmetric channels. We leverage the efficient tree code constructions

developed in chapters 4 and 5 to develop novel algorithms to simulate protocols over



12

erasure networks in Chapter 6. We use the thresholds on rate and exponent of anytime

reliable codes developed in Chapter 4 to provide much tighter bounds on the speed

of the simulation. We apply these results to consensus problems in Chapter 7.

In a network of agents, consensus refers to the process of achieving agreement

between the agents in a distributed manner. In the context of consensus problems, the

unreliability of communication links between nodes has been traditionally modeled

by allowing the underlying graph to vary with time. In other words, depending on the

realization of the link erasures, the underlying graph at each time instant is assumed to

be a subgraph of the original graph. Implicit in this model is the assumption that the

erasures are symmetric: if at time t the packet from node i to node j is dropped, the

same is true for the packet transmitted from node j to node i. However, in practical

wireless communication systems this assumption is unreasonable and, due to the lack

of symmetry, standard averaging protocols cannot guarantee that the network will

reach consensus to the true average. In Chapter 7, we use coding to overcome this

limitation and in general improve the performance of consensus algorithms.
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Chapter 2

Kalman-Like Particle Filter

2.1 Introduction

In classical control and state estimation theory, the observer and the controller are

assumed to be colocated. For partially observed Gaussian state-space models, it

is well known that the minimum mean-squared error estimate of the state can be

computed recursively and efficiently using the Kalman filter. With rapid advances

in communication and sensing technology, there are increasingly many applications

such as distributed tracking and control where measurement and control signals are

communicated over noisy channels with a finite capacity. As a result, analog measure-

ments need to be quantized before being communicated. In recent years, motivated

primarily by power and bandwidth limitations in wireless sensor network applications

(e.g., long endurance sensor networks for endangered species monitoring [14]), there

has been a renewed interest in developing estimation algorithms using only coarsely

quantized measurements. There has been a considerable amount of research in de-

veloping energy efficient algorithms for network coverage and decentralized detection

and estimation using quantized sensor observations [54,55,59].

The problem of estimation with quantized measurements is almost as old as the

Kalman filter itself. An early survey on the subject can be found in [24]. Most of

the earlier techniques for estimation using quantized measurements centered on us-

ing numerical integration methods to approximate the optimal state estimate. The

advent of particle filtering [6, 23, 37] created a whole new set of tools to handle non
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linear estimation problems. For example, [54] proposes a particle filtering solution for

optimal filtering using quantized sensor measurements. But, quantizing sensor mea-

surements can lead to large quantization noises when the observed values are large

which then leads to poor estimation accuracy. A natural alternative is to quantize

the prediction error. In [110], this coding technique is referred to as the ‘generalized

mean coder-estimator’ technique and under a very restrictive state-space model, this

estimator is shown to be open-loop mean-squared stable if the quantizer rate is suf-

ficiently high. The same scheme is independently proposed in [80, 113], where it is

referred to as the ‘sign of innovation’ method. Under a simplifying assumption that

the prior conditional state density is approximately Gaussian, the optimal filter takes

a simple analytical form, which we refer to as the multiple-level-quantized Kalman

filter (MLQ-KF), whose error covariance satisfies a modified Riccati recursion (MLQ-

Riccati) of the type that appears in a different context in [95]. When the state is

available at the sensor, [116] studies an adaptive quantization technique and proves

that it can track an unstable process in open-loop with a finite mean-squared error.

If the Gaussian assumption of [80, 113] were realistic, convergence of the MLQ-

Riccati must mean the convergence of the error of the MLQ-KF. [99] provides ex-

amples for which the actual error performance of MLQ-KF does not converge to the

MLQ-Riccati which means that the assumption of Gaussianity is not generally true.

Therefore, we present a closer examination of the conditional state density in this

chapter. We derive a novel stochastic characterization of the conditional state den-

sity (see Theorem 2.1). A careful literature review reveals that related observations

have been made in [25] and [3]. In particular, with some effort, [25] can be used to

derive Theorem 2.1 while [3] constitutes a special case of the results presented here.

Using Theorem 2.1, it is straightforward to see that the conditional state density is

not Gaussian. This is to be expected given the non linear nature of quantization. In

fact, it is what we refer to as a generalized closed skew normal (GCSN) distribution,

which is very similar to those studied in [4,7,35,36,60,75]. Specializing this result to

state-space models, we develop a novel particle filtering approach, which we call the

Kalman-like particle filter (KLPF), to estimate the state using quantized measure-
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Table 2.1: Notation for Chapter 2

ui:j {ui, . . . , uj}
〈X, Y 〉 E(X − EX)(Y − EY )T

‖X‖2 〈X, X〉
L(X1, . . . , Xn) Linear span of the random variables (X1, . . . , Xn)

B(R) The Borel σ-field over the reals
Nd(µ, Σ) d-dim Gaussian random variable with mean µ and covariance Σ

φd(x; µ, Σ) 1

(2π)d/2
√

det(Σ)
exp (−xT Σ−1x

2
)

i.e., probability density function of Nd(µ, Σ)
Φ(x) P (X ≤ x), where X ∼ N(0, 1)

Φ(x, ; µ, σ2) P (X ≤ x), where X ∼ N(µ, σ2)
Φ(S; µ, Σ) P (X ∈ S), where X ∼ N(µ, Σ) and S ∈ B(R)

ments/innovations and study its asymptotic behavior. Finally, we show that under

the information pattern studied, the classical separation property between estimation

and control holds for the finite horizon LQG problem. The separation principle has

been observed in several settings (see, e.g., [101,117]). It should be noted that for such

separation results to be useful in practice, one needs a way to compute the MMSE

estimate of the hidden state and this is primarily what we address through this work.

The proposed filter requires far fewer particles than that of a particle filter applied

directly to the original problem [99], as will be shown through various simulations. A

preliminary version of this work appeared in [98].

The notation to be used in the rest of the chapter is summarized in Table 2.1.

Also, the notion of optimality to be used throughout is mean squared error optimality.

2.2 Problem Setup and Motivation

The broader problem that one would like to solve can be cast as causal estimation

of a random process {xn} using a quantized version, {qn}, of the associated measure-

ment process {yn}. The encoding/quantization of {yn} into {qn} is determined by

the information available at the encoder/observer at each time. We will limit our
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attention to Gaussian state-space models, i.e., we consider the following system

xn+1 = Fnxn + G1wn + G2un (2.1a)

yn = Hnxn + vn (2.1b)

where xn ∈ Rd is the state, yn ∈ R is the observation, and wn ∈ Rp and vn ∈ R

are uncorrelated Gaussian white noises with zero means and covariances W and R,

respectively. The initial state, x0, of the system, is also a zero mean Gaussian with

covariance P0 and is uncorrelated with both wn and vn. un is the control input, which

is set to 0 whenever we consider open-loop estimation. For a given sequence of control

inputs {un}, the minimum mean-squared error estimate of xn given y0:n, which we

denote with x̂kf
n|n, can be computed recursively using the following Kalman filtering

equations (e.g., [50])

x̂kf
n+1|n+1 = x̂kf

n+1|n + FnP
kf
n|n−1H

T
n

(
HnP

kf
n|n−1H

T
n + R

)−1 (
yn −Hnx̂

kf
n+1|n

)
(2.2a)

x̂kf
n+1|n = Fnx̂

kf
n|n + G2un, x̂kf

0|−1 = 0 (2.2b)

P kf
n+1|n = FnP

kf
n|n−1F

T
n + W − FnP

kf
n|n−1H

T
n

(
HnP

kf
n|n−1H

T
n + R

)−1

HnP
kf
n|n−1F

T
n

(2.2c)

and P kf
0|−1 = P0.

2.2.1 Motivation

In classical LQG control, the controller is colocated with the observer and hence,

at each time n, has access to y0:n, i.e., all uncoded measurements up to time n.

The controller’s goal is then to determine the optimal control law un to minimize a

given quadratic cost function. This problem is well understood. Increasingly many

modern control systems employ multiple sensors and actuators that are not colocated.

Towards addressing this paradigm, there has been considerable amount of work on

estimation and control under communication constraints, a representative sample
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being [15, 66, 71, 86, 100, 114]. Here, the observer and the controller are separated by

a communication channel. Hence the observer causally quantizes the measurements

y0:n to obtain qn which is suitably encoded and communicated over the channel at

time n.

Sensor networks provide a slightly different setting. A salient feature of [15, 66,

71, 86, 100, 114] is the presence of a single observer in the system that has access to

all the uncoded measurements y0:n. However, in sensor networks, each sensor acts as

an observer. A time n, according to a given schedule, a particular sensor makes a

measurement yn, appropriately quantizes it to qn and communicates it to the fusion

center. Note that different sensors could use different measurement matrices. So, in

general the measurement matrix Hn can vary with time. The fusion center uses the

received quantized measurements q0:n to estimate the state xn. Figure 2.1 outlines

the overall filtering paradigm1. It is assumed that the sensors do not communicate

between themselves. So, the quantized measurement qn will be a function of the

sensor’s own analog measurement yn and potential feedback from the fusion center.

Unlike the classical case, there is no single entity in the network that has access to

all the analog measurements y0:n. Also, when a control input un is to be applied to

the state-space process xn, it is assumed that the fusion center determines un and

applies the control input. So, we consider the setting where sensing takes place in a

distributed manner but the controller is centralized.

In both cases above, the controller/fusion center needs to estimate the state using

quantized measurements. Due to energy and bandwidth limitations, sensor networks

provide a more compelling case for developing estimation algorithms using coarsely

quantized measurements. Through most of the chapter, we focus only on estimation.

Except in Section 2.6, where we study the separation between estimation and control,

the control input un in (2.1) is assumed to be absent, i.e., un = 0.

1Here, we assume that the sensor communicates with the fusion center using a discrete rate-
limited noiseless channel.
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xn+1 = Fxn + G1wn

Hnxn

yn = Hnxn + vn

Figure 2.1: WSN with a fusion center: The sensors act as data gathering devices.
Si denotes the ith sensor and in the above figure, S` is making the nth measurement
using the measurement matrix Hn.

2.2.2 Quantized Innovations and the Gaussian Assumption

A popular quantization scheme proposed for sensor networks is ‘quantized innova-

tions’. In this scheme, at each time n, the scheduled sensor makes the measure-

ment yn and also receives feedback from the fusion center in the form of a predic-

tion ŷn|n−1 = Eyn|q0:n−1. The sensor then quantizes its analog measurement yn as

qn = g(yn − ŷn|n−1) for some fixed finite quantizer g(·). Under the simplifying as-

sumption that the prior xn|q0:n−1 is Gaussian, filtering equations of the following

form have been obtained for x̂n|n , Exn|q0:n−1 in [80, 113].

x̂n|n = x̂n|n−1 + L (qn)
PnH

T
n

(HnPnHT
n + R)1/2

x̂n+1|n = Fnx̂n|n

Pn|n = Pn − λ
PnH

T
n HnPn

HnPnHT
n + R

(2.3a)

Pn+1 , Pn+1|n = FnPn|nF
T
n + G1WGT

1 (2.3b)

The value of λ and the mapping L (qn) depend on the quantization scheme used and

are detailed in [113]. In particular, if qn = sign
(
yn − ŷn|n−1

)
, λ = 2

π
and L (qn) =
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π
qn. Eqs. (2.3a) and (2.3b) constitute the MLQ-Riccati with parameter λ. The

above filter is optimal if the conditional distribution, p (xn|q0:n−1), is Gaussian, which

we will prove is generally a bad approximation. [98, 99] provide examples where the

error performance of the filters in [80, 113] do not track the MLQ-Riccati that they

were predicted to, i.e., Eq. (2.3). In order to understand the problem better, we take

a closer look at the conditional law of xn|q0:n in the following section. When {xn}

and {yn} are jointly Gaussian, we will provide a novel stochastic characterization

of xn causally conditioned on the quantized measurement process {qn}. This, in

turn, allows us to identify the conditional density of xn|q0:n to be, what we refer

to as, a generalized closed skew normal distribution. We also use it to propose a

novel filtering technique for the above problem which reduces to an elegant particle

filter when {xn} and {yn} have linear state-space structure and outperforms the

filters proposed in [80,113], while providing much needed theoretical insight into the

problem. Although the present work is motivated by sensor network applications, the

results obtained are quite general as will become evident.

A note about the subscripts in Fn and Hn: In order to reduce notational clutter, in

the rest of the chapter, we will drop the subscripts and just write F and H. In other

words, we will present all results for the ‘time invariant’ case. The corresponding time

varying versions can be obtained by simply replacing F (H) with Fn (Hn) wherever

needed. The only exception to this rule is Corollary 2.4 which is applicable only to

the time invariant case.
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2.3 A Stochastic Characterization of the Condi-

tional State Density

Suppose {xn} and {yn} are jointly Gaussian, then it is well known that the probability

density of xn conditioned on y0:n is a Gaussian with the following parameters

xn|y0:n ∼ Zn + Rxny0:nR−1
y0:n

y0:n where (2.4)

Zn ∼ Nd(0, Rxn −Rxny0:nR−1
y0:n

Ry0:nxn︸ ︷︷ ︸
,R∆

xn,y0:n

) (2.5)

When {xn} has an underlying state-space structure and {yn} is a linear measure-

ment of {xn} corrupted by additive white Gaussian noise, as defined in Eq. (2.1),

it is well known that the Riccati recursion in (2.2c) propagates the error covariance

P kf
n , R∆

xn,y0:n
= ‖xn − Exn|y0:n‖2. We would like to address the problem of optimal

estimation using a quantized version of the observation process {yn}. Let {qn} de-

note the quantized measurements obtained by causally quantizing {yn}, i.e., qn is a

measurable function of y0:n. We will show that the probability density of xn condi-

tioned on the quantized measurements q0:n admits a characterization very similar to

Eq. (2.4). We state the result in the following Theorem.

Theorem 2.1. The state xn conditioned on the quantized measurements q0:n can be

expressed as a sum of two independent random variables as follows

xn|q0:n ∼ Zn + Rxn,y0:nR−1
y0:n

[y0:n|q0:n] , where (2.6)

Zn ∼ Nd(0, R
∆
xn,y0:n

) (2.7)

Proof. See Appendix 2.9.1.

Comparing Eqs. (2.4) and (2.6), the only difference is that the measurement vector

y0:n has been replaced by the random variable y0:n|q0:n. It is easy to see that y0:n|q0:n

is a multivariate Gaussian random variable truncated to lie in the region defined by

q0:n. It is worth noting that the covariance of xn|q0:n, denoted by ‖xn|q0:n‖2, is given
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by

‖xn|q0:n‖2 = R∆
xn,y0:n

+ Rxn,y0:nR−1
y0:n
‖y0:n|q0:n‖2R−1

y0:n
Ry0:n,xn (2.8)

Stating loosely, as the quantization scheme becomes finer, y0:n|q0:n clearly converges

to y0:n and xn|q0:n approaches a Gaussian as is well known. Using Theorem 2.1, it is

easy to see that xn|q0:n is not Gaussian in general, contrary to the assumption made

in [80,113]. Infact it belongs to a class of distributions, which we call the Generalized

Closed Skew Normal Distributions (GCSN) (e.g., [35]), the details of which are given

in the following section.

2.3.1 The Conditional State Distribution

Using Baye’s rule, it is easy to see that

p(xn|q0:n) = p(xn)
p(q0:n|xn)

p(q0:n)
= φd(xn; 0, Rxn)

Φn(Sq0:n ; Ry0:n,xnR−1
xn

xn, R
∆
y0:n,xn

)

Φn(Sq0:n ; 0, Ry0:n)
(2.9)

R∆
y0:n,xn

, Ry0:n −Ry0:n,xnR−1
xn

Rxn,y0:n

where Sq0:n ∈ B(Rn) is the region in which y0:n lies that is implied by a specific

realization of the quantized measurements q0:n. For example, consider the sign of

innovation scheme, i.e., qn = sign(yn − ŷn|n−1). Then qn = 1 implies that yn ∈

(ŷn|n−1,∞), call this interval Sn,q0:n . Then, we can write Sq0:n as Sq0:n = {y0:n ∈

Rn+1|yi ∈ Si,q0:i
, 0 ≤ i ≤ n}. The subscript q0:n is to emphasize that everything is

conditioned on a fixed observation record, q0:n.

The form of the distribution in (2.9) is very similar to what is studied in the statis-

tics literature as the Closed Skew Normal distribution, which is defined as follows.

Definition 2.1 (Chapter 2, [35]). Consider d ≥ 1, n ≥ 1, µ ∈ Rd, ν ∈ Rn, D an

arbitrary n × d matrix, Σ and ∆ positive definite matrices of dimensions d × d and

n × n respectively. Then the probability density function of the closed skew normal
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distribution CSN(µ, Σ, D, ν, ∆) is given by

CSN(y; µ, Σ, D, ν, ∆) = φd(y; µ, Σ)
Φn(−∞, D(y − µ); ν, ∆)

Φn(−∞, 0; ν, ∆ + DΣDT )
(2.10)

Stochastically, CSN(µ, Σ, D, ν, ∆) is the probability density of X conditioned on

the even Z −D(X −µ) < 0, where X ∼ Nd(µ, Σ) and Z ∼ Nn(ν, ∆) are independent

and the inequality Z − D(X − µ) < 0 is component-wise. One can arrive at this

characterization by a simple application of Baye’s rule. Skew normal distributions

have generated a lot of interest ( [4, 7, 35, 36, 60, 75]) because they provide a much

needed tool to handle skewness in statistical modeling and have a good number of

properties in common with the standard normal distribution, such as closure under

marginalization and conditioning. In particular, such skew distributions arise via

hidden truncation processes. In the context of estimation using quantized measure-

ments, this truncation is the consequence of quantization, so such skew distributions

naturally show up here. For example, consider the sign of innovation scheme given

by qn = sign(yn − ŷn|n−1), where ŷn|n−1 = Eyn|q0:n−1. In this setup, as will be shown

below, the conditional law of xn|q0:n is a closed skew normal distribution. Consider

a fixed observation record q0:n. Let ξi = qiyi and Rξ0:n = diag(q0:n)Ry0:ndiag(q0:n).

Then we have

p(q0:n) = Pr
(
qi(yi − ŷi|i−1) ≥ 0,∀ 0 ≤ i ≤ n

)
=

∫
· · ·
∫

qiyi≥qiŷi|i−1

0≤i≤n

φn+1 (y0:n; 0, Ry0:n) dy0:n

=

∫
· · ·
∫

ξi≥qiŷi|i−1

0≤i≤n

φn+1 (ξ0:n; 0, Rξ0:n) dξ0:n

= Φn+1 (−∞, 0; νn, Rξ0:n) , where νn = [q0ŷ0|−1, . . . , qnŷn|n−1]
T (2.11)
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Similarly, one can show that

p(q0:n|xn) = Φn+1

(
−∞, Rξ0:n,xnR−1

xn
xn; νn, R

∆
ξ0:n,xn

)
(2.12)

where Rξ0:n,xn = diag(q0:n)Ry0:n,xn and R∆
ξ0:n,xn

= Rξ0:n − Rξ0:n,xnR−1
xn

Rxn,ξ0:n . Using

Eqs. (2.11) and (2.12), we get

p(xn|q0:n) = p(xn)
p(q0:n|xn)

p(q0:n)

= φd (xn; 0, Rxn)
Φn+1

(
−∞, Rξ0:n,xnR−1

xn
xn; νn, R

∆
ξ0:n,xn

)
Φn+1 (−∞, 0; νn, Rξ0:n)

=⇒ p(xn|q0:n) = CSN
(
xn; 0, Rxn , Rξ0:n,xnR−1

xn
, νn, R

∆
ξ0:n,xn

)
(2.13)

In order to capture the effect of a general quantization scheme, one would need a

straightforward generalization of the CSN distribution. It is obtained by considering

the probability density of

X| (Z −D(X − µ) ∈ S), where S ∈ B(Rn). This will result in probability density

functions of the form (2.9). We will refer to such distributions as the generalized

closed skew normal distributions (GCSN), which are formally defined as follows.

Definition 2.2. For x ∈ Rn and S ∈ B(Rn), we define the generalized closed skew-

normal distribution,

GCSNd,n(x; µ, Σ, D,S, ∆), as follows

GCSNd,n(x; µ, Σ, D,S, ∆) , φd (x; µ, Σ) Ld,n(.)

Ld,n(.) =
Φn (S; D (x− µ) , ∆)

Φn (S; 0, ∆ + DΣDT )
(2.14)

Now, suppose {xn} and {yn} have the state-space structure of (2.1) and suppose

W is positive definite for all n ≥ 0. Then the evolution of the conditional state

distribution with time is completely characterized by the following theorem.

Theorem 2.2 (Conditional State Distribution). The probability density function of

xn|q0:n is given by GCSNd,n+1

(
xn; 0, Rxn , Ry0:n,xnR−1

xn
,Sq0:n , R∆

y0:n,xn

)
. The recursions
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relating the parameters of the distributions of xn−1|q0:n−1 and xn|q0:n are given by

Rxn = FRxn−1F
T + G1WGT

1 , Ry0:n,xn =

Ry0:n−1,xnF T

H

 (2.15a)

Ry0:n =

 Ry0:n−1 Ry0:n−1,xnAT HT

HFRxn,y0:n−1 R + HRxnHT

 , Ry0 = R + HRx0H
T (2.15b)

Sq0:n = Sq0:n−1 ∩ {yn ∈ Sn,q0:n} (2.15c)

Proof. See Appendix 2.9.2.

When the full measurements y0:n are available, the conditional state density is

completely characterized by its mean and covariance which are propagated by the

traditional Kalman filtering equations (Chapter 9, [50]). When only the quantized

measurements are available, it is interesting to note that the conditional state dis-

tribution is completely characterized by a finite number of parameters which are

propogated as given in Theorem 2.2. So, Eq. (2.15) constitutes the equivalent of

the traditional Kalman filtering equations in the case when only the quantized mea-

surements are available. In fact, one can write non-trivial formulae for the mean and

covariance of a GCSN, but computing them will quickly become infeasible since the

dimensions of some of the matrices involved in Eq. (2.15) grow with time. Except,

Sq0:n , all other parameters are independent of the specific realization of the quantized

measurements and hence, in principle, can be propagated offline. Theorem 2.1 can be

used to translate any results on the properties of the closed skew normal distribution

into additional insights on the current problem. Next we discuss a special case where

we derive closed form Kalman-like recursions for the mmse estimate of the state and

the corresponding estimation error.

2.3.2 A Comment on Quantizing the True Innovation

Suppose {xn} and {yn} have the linear state-space structure of (2.1) with {yn} being

a scalar measurement process. The innovations process associated to {yn} is denoted
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by {en}, i.e., en = yn − Eyn|yn−1 and Ren , ‖en‖2. The following notation shall be

used in the rest of the chapter.

x̂n|m , Exn|q0:m, x̂n , x̂n|n−1, x̂kf
n|m = Exn|y0:m, x̂kf

n , x̂kf
n|n−1

Pn|m , ‖xn − x̂n|m‖2, Pn , Pn|n−1

P kf
n|m , ‖xn − x̂kf

n|m‖
2, P kf

n , P kf
n|n−1

For ease of exposition, we assume a fixed quantizer g(.) whose quantization intervals

are given by {(z0, z1), (z1, z2), . . . , (z`−1, z`), (z`, z`+1)}, where z0 = −∞ and z`+1 =

∞. So, if qn = g
(
en/R

1/2
en

)
, then a realization of q0:n would imply that ej/R

1/2
ej ∈

(zlj , zlj+1), j ≤ n for some 0 ≤ lj ≤ `. With this setup, we have the following result.

Theorem 2.3 (Optimal Estimation Using Quantized ’True’ Innovations). The mmse

estimate of xn using q0:n, denoted by x̂n|n, and the associated estimation error, denoted

by Pn|n, are given recursively by the following equations

x̂n|n = Fx̂n−1|n−1 +
P kf

n HT√
HP kf

n HT + R

φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)
(2.16a)

Pn|n = FPn−1|n−1F
T − α

P kf
n HT HP kf

n

HP kf
n HT + R

+ G1WGT
1 (2.16b)

α =
∑̀
k=0

(φ(zk)− φ(zk+1))
2

Φ(zk+1)− Φ(zk)
, z`+1 ,∞, z0 , −∞ (2.16c)

P kf
n+1 = FP kf

n F T − FP kf
n HT HP kf

n F T

HP kf
n HT + R

+ G1WGT
1 (2.16d)

Proof. See Appendix 2.9.3.

Corollary 2.4 (Convergence of the Error Covariance). Suppose F is stable and Λ is

the unique positive semidefinite solution to the discrete-time Lyapunov equation

Λ = FΛF T + G1WGT
1

and let P kf be the unique positive semidefinite solution to the following discrete-time
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algebraic Riccati equation (DARE)

Z = FZF T − FZHT HZF T

HZHT + R
+ G1WGT

1

And let P f = P kf − P kfHT HP kf

HP kfHT + R
. Then the error covariance Pn|n −→ P , where P

is given by

P = αP f + (1− α)Λ (2.17)

Further, if F is unstable, then, irrespective of the quantization scheme used, Pn|n −→

∞.

Proof. See Appendix 2.9.4.

For a fixed number of quantization levels, the value of α can be optimized by

choosing {zj}`j=1 appropriately. The above innovation coding scheme was introduced

in [15] but closed form expressions for the optimal state estimate and the correspond-

ing estimation error of the form stated above were not presented. The fact that

Pn|n diverges if F is unstable seems to be common knowledge (for eg, see [101]), the

authors are not aware of a concrete proof before this work.

Note that the above scheme is not suited for distributed applications where no

observer in the network has enough information to compute the innovations process.

In general, the problem of optimal state estimation using quantized measurements

does not admit an analytically tractable solution like the one above. This necessitates

a numerical solution. But, using the insight of Theorem 2.1, we will show that x̂n|n

can be numerically approximated with a complexity that is, in most cases, comparable

to the classical Kalman filter. In the following section, we outline the general particle

filtering technique which will then be specialized to solve the problem of optimal state

estimation using quantized measurements by exploiting Theorem 2.1.
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2.4 The Kalman-Like Particle Filter

A promising approach to recursive estimation in nonlinear problems is particle fil-

tering. For easy reference, a basic bootstrap filter for the case when {xn} and {yn}

have state-space structure of (2.1) is outlined below. For example, if one uses the

sign of innovation scheme, qn = sign(yn − ŷn|n−1), it is easy to see that the impor-

tance weights are given by ωi
n = Φ

(
qnH(xi

n|n−1 − x̂n|n−1); 0, R
)
. The particles in Alg

1 describe the conditional state density p (xn|q0:n) and simulations suggest that one

needs upwards of a thousand particles to get satisfactory error performance for most

systems. In what follows, we use Theorem 2.1 to develop a novel particle filtering

technique (KLPF) which converges to the optimal filter much faster than the generic

filter outlined in Alg 1. The difference lies in using particles to describe a probability

density with a much smaller covariance than the conditional state density. We begin

by noting that

Exn|q0:n = Rxn,y0:nR−1
y0:n

Ey0:n|q0:n (2.18)

So, it should suffice to propogate particles that are distributed as the random variable

ξn|q0:n where

ξn = Rxn,y0:nR−1
y0:n

y0:n (2.19)

The Kalman-like particle filter does exactly this, it propagates the conditional law

ξn|q0:n. Note that x̂n|n = Eξn|q0:n.

Recall that the quantizer output, qn at time n, is obtained by quantizing a scalar-

valued function of yn, q0:n−1. So, upon receiving qn and using the previously received

quantized values q0:n−1, the fusion center infers that yn ∈ Sn,q0:n for some Borel

measurable set Sn,q0:n .

In order to develop a particle filter to propogate ξn|q0:n, one needs to understand

the following evolution of the probability densities, p(ξn−1|q0:n−1) → p(ξn−1|q0:n) →

p(ξn|q0:n). We will begin by computing the likelihood ratio between p(ξn−1|q0:n−1)
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Algorithm 1 Particle Filter

1. Set n = 0. Let {αM}M≥1 be a nondecreasing sequence of positive integers2. For
i = 1, · · · , MαM , initialize the particles, xi

0|−1 ∼ p(x0) and set x̂0|−1 = 0

2. At time n, using measurement qn = gn (y0:n), the importance weights are calcu-
lated as follows

ωi
n = p

(
qn|xn = xi

n|n−1, q0:n−1

)
.

3. Measurement update is given by

x̂pf,M
n|n =

MαM∑
i=1

ωi
nx

i
n|n−1

where wi
n are the normalized weights, i.e.,

ωj
n =

ωj
n∑M

i=1 ωi
n

4. Resample M particles from the above MαM particles with replacement as fol-
lows. Generate i.i.d random variables {J`}M`=1, such that P (J` = i) = ωi

n. Then

x`
n|n = xJ`

n

5. For i = 1, · · · , MαM , predict new particles according to,

xj
n+1|n ∼ p

(
xn+1|xn = xi

n|n, q0:n

)
, i.e.,

xj
n+1|n = Fxi

n|n + G1w
j
n, (i− 1)αM + 1 ≤ j ≤ iαM

where {wj
n}

MαM
j=1 are sampled according to p (wn|xn = xi

n, q0:n). For the linear
state-space model of (2.1), the process noise, wn, is independent of the state,
xn, and the measurements, q0:n. So, {wj

n}
MαM
j=1 are just i.i.d Nd(0, W ).

6. Set x̂pf,M
n+1|n = Fx̂pf,M

n|n . Also, set n = n + 1 and iterate from step 2.
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and p(ξn−1|q0:n).

Lemma 2.5 (Measurement Update). The likelihood ratio between the conditional

laws of ξn−1|q0:n and ξn−1|q0:n−1 is given by

p(ξn−1|q0:n)

p(ξn−1|q0:n−1)
∝ Φ (Sn,q0:n ; HFξn−1, Ren) (2.20)

Proof. See Appendix 2.9.5.

So, if {ξi
n−1|n−1}i is a collection of particles distributed according to the law

p(ξn−1|q0:n−1). Then using Lemma 2.5, one can generate a new collection of par-

ticles {ξ`
n−1|n}` that are distributed according to the law p(ξn−1|q0:n) as follows. With

each particle ξi
n−1|n−1, associate a weight ωi = Φ

(
Sn,q0:n ; HFξi

n−1|n−1, Ren

)
. Generate

i.i.d random variables {J`}` such that P (J` = i) ∝ ωi and set ξ`
n−1|n = ξJ`

n−1|n−1. This

is the standard resampling technique from steps (3) and (4) of Alg 1. Note that this

amounts to a measurement update since we update the conditional law p(ξn−1|q0:n−1)

upon receiving the new measurement qn.

Now consider the time update, i.e, going from p(ξn−1|q0:n) to p(ξn|q0:n). We will

need the following result, the proof of which is simple.

Lemma 2.6. The random variable yn|ξn−1, q0:n is a truncated Gaussian and its prob-

ability density function is given by φ (Sn,q0:n ; HFξn−1, Ren).

Observe that ξn is the mmse estimate of the state xn given y0:n. Since {xn} and

{yn} have the state-space structure, it is well known that the Kalman filter propagates

ξn recursively as follows

ξn = Fξn−1 + Kf
n

(
yn −HFξn−1

)
, where (2.21a)

Kf
n =

P kf
n HT

HP kf
n HT + R

(2.21b)

Lemma 2.6 together with (2.21) completely describes the transition from p(ξn−1|q0:n)

to p(ξn|q0:n). Taking cue from step 5) of Alg 1, suppose {ξ`
n−1|n}` is a collection of

particles distributed as p(ξn−1|q0:n), then a new collection of particles {ξi
n|n}i that are
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distributed as p(ξn|q0:n) can be obtained as follows. For each ξ`
n−1|n, generate {yi

n|n}

for (`− 1)αM + 1 ≤ i ≤ `αM , i.i.d according to the law

p(yn|ξn−1 = ξ`
n−1|n, q0:n) = φ

(
Sn,q0:n ; HFξ`

n−1|n, Ren

)
and set ξi

n|n = Fξ`
n−1|n + Kf

n

(
yi

n|n −HFξ`
n−1|n

)
.

Summarizing everything, we can desribe the Kalman-like particle filter as follows.

Algorithm 2 Kalman-Like Particle Filter (KLPF)

1. At n = 0, generate {yi
0|0}

MαM
i=1 ∼ N(S(q0); 0, Ry0). Compute ξi

0|0 = Kf
0 yi

0|0

2. At time n, for each particle {ξi
n−1|n−1}, compute the weight as

ωi
n = Φ

(
Sn,q0:n ; HFξi

n−1|n−1, Ren

)
(2.22)

Normalize the weights to get ωi
n = ωi

nPMαM
i=1 ωi

n

3. Resample M particles from the above MαM particles with replacement as fol-
lows. Generate i.i.d random variables {J`}M`=1, such that P (J` = i) = ωi

n. Then

ξ`
n−1|n = ξJ`

n−1|n−1

4. Measurement update: Generate yi
n|n i.i.d from φ

(
Sn,q0:n ; HFξ`

n−1|n, Ren

)
, for

(`− 1)αM + 1 ≤ i ≤ `αM and obtain the new particles {ξi
n|n} as follows

ξi
n|n = Fξ`

n−1|n + Kf
n

(
yi

n|n −HFξ`
n−1|n

)
(2.23)

The measurement updated estimate is given by

x̂klpf,M
n|n =

1

MαM

MαM∑
i=1

ξi
n|n (2.24)

5. Set x̂klpf,M
n+1|n = Fx̂klpf,M

n|n . Also, set n = n + 1 and iterate from step 2.

From (2.23) and (2.24), it is clear that the KLPF amounts to running MαM

Kalman filters in parallel that are driven by the measurements {yi
n|n}

MαM
i=1 and taking
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their average to get x̂klpf,M
n|n . This is why we refer to the filter as the Kalman-like

particle filter.

2.4.1 KLPF Needs Fewer Particles

We will briefly argue why the KLPF needs fewer particles than the regular particle

filter applied directly to the original problem. The particle filter outlined in Alg 1

propogates particles that at each time are distributed as p(xn|q0:n). The KLPF, on

the other hand, propogates particles that are distributed as p(ξn|q0:n). Recall from

Theorem 2.1 that

xn|q0:n = Zn + Rxn,y0:nR−1
y0:n

[y0:n|q0:n] = Zn + ξn|q0:n

Further, since Zn is independent of ξn|q0:n, the covariance of xn|q0:n, ‖xn|q0:n‖2, is

given by

‖xn|q0:n‖2 = ‖Zn‖2 + ‖ξn|q0:n‖2 = P kf
n|n + ‖ξn|q0:n‖2

Hence, the covariance of xn|q0:n is larger than that of ξn|q0:n. In particular, as the

number of quantization levels increases (appropriately), the covariance of xn|q0:n con-

verges to P kf
n|n while the covariance of ξn|q0:n converges to zero. As a result, with

the same number of particles, the estimation error of the regular particle filter will be

larger than that of the KLPF. Stated differently, for the same estimation performance,

KLPF can do with far fewer particles. This can be substantiated mathematically by

the following well known result in particle filtering literature.

Lemma 2.7 (Asymptotic Normality, e.g., Chapter 9 [21]). Consider a scalar3 linear

state-space model (2.1) and let x̂n|n = Exn|q0:n. Also suppose limM→∞ αM = +∞

(e.g., choose αM = log(M)), then asymptotically the normalized estimation error of

Alg 1 and the KLPF converge, in distribution, to Gaussians whose variances are given

3This result can be extended to vector-valued state-space models by applying the above lemma
one component at a time.
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as follows

√
M
(
x̂pf,M

n|n − x̂n|n

)
D−→ N

(
0, ‖xn − x̂n|n‖2

)
(2.25a)

√
M
(
x̂klpf,M

n|n − x̂n|n

)
D−→ N(0, σ2

n|n), where (2.25b)

σ2
n|n ≤ ‖ξn − ξ̂n|n‖2 = ‖xn − x̂n|n‖2 − P kf

n|n (2.25c)

Simulations suggest that KLPF needs dramatically fewer particles as the quan-

tization becomes finer. This will be demonstrated through examples in Section 2.7.

Even for reasonably fine quantization, say 2 to 3 bits, ‖ξn − ξ̂n|n‖2 is much smaller

than ‖xn − x̂n|n‖2. In such examples, simulations suggest that the KLPF delivers

close to optimal performance, i.e.,
∣∣∣x̂klpf,M

n|n − x̂n|n

∣∣∣ is small with high probability, for

M ≤ 100.

Note that Lemma 2.7 does not provide any quantitative information about how

many particles one would need to get a desired performance. In practice one would

be interested in bounding P
(
|x̂klpf,M

n|n − x̂n|n| > B
)

for finite M . All such results in

the existing literature (e.g., [21, 22]) are available only for bounded functions of the

state, i.e., for a bounded and appropriately well-behaved function f(.), the behavior

of P
(
|f(x̂klpf,M

n|n )− f(x̂n|n)| > B
)

is fairly well understood. Clearly functions of the

form f(x) = x, which is what we are interested in, are not bounded and hence these

results do not apply. In order for KLPF to be practically useful, one would need

bounds on ‖xn − x̂n|n‖2 and on P
(
|x̂klpf,M

n|n − x̂n|n| > B
)

for finite M .

2.5 Consistency and Convergence of the KLPF

There is a vast body of literature on the convergence behavior of particle filters,

[20–22,104] being a representative sample. In this section, we will show that

√
M
(
x̂klpf,M

n|n − x̂n|n

)
and

√
M
(
x̂pf,M

n|n − x̂n|n

)
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converge in distribution to zero mean Gaussian random variables. In particular, the

former converges to a Gaussian random variable with a much smaller variance than

the latter. For ease of exposition, we present all results for a scalar-valued state-

space model, i.e., xn ∈ R. This can be extended to the vector case by treating

xn one component at a time and is straightforward. Most of the literature on the

convergence of particle filters assumes the traditional measurement model, where the

current measurement, conditioned on the current state, is independent of the past

measurements. This is clearly not true for the quantization scheme we are considering.

qn is not undependent of q0:n−1 conditioned on xn. But the techniques themselves are

quite general and can be easily extended to the more general measurement model at

hand. Before presenting the convergence results on the particle filters proposed in

the previous section, we need to introduce a couple of simple definitions. A sample

of particles {zi}Mi=1 with associated weights {wi}Mi=1 is said to constitute a weighted

sample {zi, wi}Mi=1. For such a sample, consistency and asymptotic normality are

defined as follows.

Definition 2.3 (Consistency). The weighted sample {(zi, wi)}1≤i≤M is said to be

consistent for the probability measure ν and the set C ⊆ L1 (R, ν) if for any f ∈ C,

M∑
i=1

wi∑M
j=1 wj

f
(
zi
) P−→ ν(f), as M →∞

Definition 2.4 (Asymptotic Normality). Let F be a class of real-valued measurable

functions on R, let σ be a nonnegative function on F, and let {αM} be a nondecreasing

real sequence diverging to infinity. We say that the weighted sample

{(zi, wi)}1≤i≤M is asymptotically normal for (ν,F, σ, {αM}) if for any function f ∈ F,

it holds that ν(|f |) <∞, σ2(f) <∞ and

αM

M∑
i=1

wi∑M
j=1 wj

[
f(zi)− ν(f)

] D−→ N
(
0, σ2(f)

)
, as M −→∞ (2.26)

In words, asymptotic normality implies that the estimation error is distributed

as a zero-mean Gaussian with a fixed variance that is independent of the number
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of samples, M , when M is large. Note that consistency follows from asymptotic

normality.

We present the convergence results for the case αM → ∞ since it allows a clean

interpretation of the asymptotics. These can be extended to the more general case of

αM → α > 0 at the expense of more involved notation without giving any additional

insight into the problem. Also, if a measure ν admits a density p, we use ν and p

interchangeably and the context would make it clear.

Theorem 2.8 (Weak convergence of Algorithm 1). The following holds true

1. If {xi
0|−1, 1}

MαM
i=1 is consistent for

(
p(x0), L

1
(
R, p(x0)

))
, then for any n > 0,

{xi
n|n}Mi=1 is consistent for

(
p (xn|qn) , L1

(
R, p (xn|qn)

))
2. If in addition {xi(0| − 1), 1}MαM

i=1 is asymptotically normal for(
p(x0), L

2
(
R, p(x0)

)
,Varp(x0)(.),

√
MαM

)
, then for any n > 0, {xi

n|n}Mi=1 is

asymptotically normal for
(
p (xn|qn) , L2

(
R, p (xn|qn)

)
,Varp(xn|qn)(.),

√
M
)
, in

particular

√
M
(
x̂pf,M

n|n − x̂n|n

)
D−→ N

(
0, ‖xn − x̂n|n‖2

)
(2.27)

In particular, whenever lim supn ‖xn − x̂n|n‖2 < ∞, the above result implies that

x̂pf,M
n|n → x̂n|n as M →∞.

Theorem 2.9 (Weak Convergence of Algorithm 2). The following holds true

1. If {ξi
0|0, 1}

MαM
i=1 is consistent for

(
p(ξ0|0), L

1
(
R, p(ξ0|0)

))
, then for any n > 0,

{ξi
n|n}Mi=1 is consistent for

(
p (ξn|qn) , L1

(
R, p (ξn|qn)

))
2. If in addition {ξi

0|0, 1}
MαM
i=1 is asymptotically normal for(

p(ξ0|0), L
2
(
R, p(ξ0|0)

)
,Varp(ξ0|0)(.),

√
MαM

)
, then for any n > 0, {ξi

n|n}
MαM
i=1 is

asymptotically normal for
(
p (ξn|qn) , L2

(
R, p (ξn|qn)

)
, σn|n,

√
MαM

)
, in partic-
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ular, for f(x) = x,

√
M
(
x̂klpf,M

n|n − x̂n|n

)
D−→ N(0, σ2

n|n(f)), where (2.28)

σ2
n|n(f) ≤ ‖ξn − ξ̂n|n‖2 = Rxn,y0:nR−1

y0:n
‖y0:n|q0:n‖2R−1

y0:n
Ry0:n,xn

(2.29)

Proofs for Theorem 2.8 and Theorem 2.9 follow from a straightforward extension

of the results in Chapter 9 of [21]. Now, note that the asymptotic normality and

consistency of {ξi
0|0} and {xi

0|−1} follows from the fact that they are drawn i.i.d from

p(ξ0|q0) and p(x0), respectively. This observation, coupled with Theorem 2.8 and

Theorem 2.9, proves the correctness of the brute force particlef filter and the KLPF.

In addition to proving the correctness of the KLPF, Theorem 2.9 proves that the

asymptotic variance of the estimates from Alg 2 is typically much smaller than that for

Alg 1. The particles in the KLPF describe the random variable Rxn,y0:nR−1
y0:n

y0:n|q0:n.

Its variance decreases to zero as the number of quantization levels increases. On the

other hand, the variance of xn|q0:n cannot be smaller than P kf
n|n. As a result KLPF

needs dramatically fewer particles as the quantization becomes finer. This will be

demonstrated through examples in Section 2.7. In practice, for most systems, ‖ξn −

ξ̂n|n‖2 is much smaller than ‖xn − x̂n|n‖2. In such examples, simulations suggest that

the KLPF delivers close to optimal performance, i.e.,
∣∣∣x̂klpf,M

n|n − x̂n|n

∣∣∣ is small with

high probability, for M ≤ 100. Though Theorems 2.8 and 2.9 prove the correctness

and characterize the asymptotic behavior of the particle filters, there is more to be

understood about the rates of convergence of the two algorithms. That is, in practice

one would be interested in bounding P
(
|x̂klpf,M

n|n − x̂n|n| > B
)

for finite M . All such

results in the existing literature (e.g., [22]) are available only for bounded functions

of the state. Clearly functions of the form f(x) = x, which is what we are interested

in, are not bounded. Note that asymptotic normality only tells us that

P
(√

M |x̂klpf,M
n|n − x̂n|n| > B

)
−→ 2Φ(B; 0, σ2

n|n(f)), where f(x) = x
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Controller

Noiseless
Discrete Channel

Encoderwn

vn

xn+1 = Fxn + G1wn + G2un

yn = Hxn + vn

yn

un

qn = gn(yn, q0:n−1)

qn

un

Figure 2.2: Measurement feedback control

In order to implement the KLPF in practice, one would need bounds on ‖xn− x̂n|n‖2

and on

P
(
|x̂klpf,M

n|n − x̂n|n| > B
)

for finite M .

2.6 The Separation Principle

Consider the closed-loop system outlined in Figure 2.2.

The traditional finite horizon linear quadratic Gaussian (LQG) problem [40] is

one where the control input, un, is constrained to be a causal and linear function of

the measurements y0:n, i.e., un = Ln(y0, . . . , yn) for some linear function Ln(.) (or

un = Ln(x0, . . . , xn) in the full-information case) and the objective is to minimize a

finite horizon quadratic cost function, which can be written as follows

min
{Ln}0≤n≤M

E{x0,wN ,vN}J
c(N), where (2.30a)

J c(N) =
N∑

n=0

[
uT

nMuun + xT
nMxxn

]
+ xT (N + 1)Mox(N + 1) (2.30b)

In the full-information case, it is well known that the optimum control action at time
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n, un, depends only on the current state xn and is given by (Chapter 9, [40])

un = −Kuxn, where (2.31a)

Ku = (Mu + GT
2 MoG2)

−1GT
2 MoA (2.31b)

whereas in the case of measurement feedback, the optimal control is given by un =

−Kux̂
kf
n|n, where x̂kf

n|n = Exn|y0:n, which is linear in y0:n due to Gaussianity of the

process and measurement noise4. Note that the control gain in the measurement

feedback case is the same as in Eq. (2.31) and this is the well known separation

principle (e.g., Chapter 9, [40]).

Consider the case when only the quantized measurements {qn} are available and

the control action un is allowed to be a causal function (not necessarily linear) of

the quantized measurements, i.e., un = fn(q0, . . . , qn), where fn(.) is any function

measurable w.r.t the sigma field generated by q0:n. Consider the following control

problem

min
{fn}0≤n≤M

E{x0,wN ,vN}J
c(N) (2.32)

Note that the encoder/quantizer is fixed and the above minimization is over all possi-

ble control actions that are causal and measurable functions of the encoder outputs.

Theorem 2.10 (The Separation principle). The solution to (2.32) is given by the

following certainty equivalent control law

un = −KuExn|q0:n (2.33)

where Ku, given by (2.31b), is the same control gain as in the full-information case.

Proof. The proof for this more general measurement model is a straightforward gen-

eralization of the proof presented in chapter 9, [40].

4In the absence of Gaussianity, x̂kf
n|n would be the linear least-mean-squared estimate of xn given

y0:n
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Let x̂n|n , Exn|q0:n and x̃n|n , xn− x̂n|n. Then under the optimal control action,

using the orthogonality of x̂n|n and x̃n|n, and simple algebra, EJ c
n can be decomposed

as follows

EJ c
n = tr

(
MoRxN+1

)
+

N∑
n=0

tr
(
(KT

u MuKu + Mx)Rxn

)
︸ ︷︷ ︸

JLQ

+ Ex̃T
N+1|N+1Mox̃N+1|N+1 + E

N∑
n=0

x̃T
n|nMxx̃n|n︸ ︷︷ ︸

P c
e,N

(2.34)

JLQ is the cost under full-state information and P c
e,N is the cost that depends on the

estimation error covariance. So, the LQG problem of (2.32) reduces to minimizing

P c
e,N , completely decoupling estimation and control. Hence the problem of joint op-

timal estimation and control using quantized measurements reduces to one of finding

the optimal causal encoding/quantization rule (see [16] for an interesting treatment

of the optimal causal quantization problem). The separation result is not surpris-

ing and similar observations in the case of full-state information at the encoder were

made in [101]. The separation principle equipped with the Kalman-like particle filter

constitutes a computationally feasible framework to solve the optimal LQG problem

using quantized measurements.

2.7 Simulations

The purpose of the following simulations is two fold, 1) to demonstrate that the KLPF

needs far fewer particles than a näıve particle filter and 2) to demonstrate that the

Gaussian assumption on the prior p(xn|q0:n−1), often used in the literature, can be

quite inaccurate. Recall that in Alg 1, the particles describe the full probability den-

sity of the state conditioned on quantized measurements. While in the KLPF, part of

the information about the conditional state density is captured neatly by the Kalman

filter. So, the particles describe a truncated Gaussian which has a much smaller co-
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variance than the conditional law of the state given the quantized observations. We

give a few examples in this section to demonstrate the effectiveness of KLPF. We

wrote the system matrices for all the examples in triangular form so that the eigen

values can be easily read off from the diagonl entries.

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time - n

‖
x
n
−

x̂
n
|n
‖
2

 

 

1 bit Riccati
50 Particles (KLPF)

50 Particles (Alg 1)

(a) 1 bit MLQ-KF, Alg 1 and KLPF
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(b) 2 bit MLQ-KF, Alg 1 and KLPF

Figure 2.3: Example 1: Both in (a) and (b), KLPF achieves good performance with re-
markably few particles and hence has a complexity of the same order as that of a Kalman
filter.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

time - n

‖
x
n
−
x̂
n
|n
‖
2

 

 

1 bit MLQ-Riccati

1 bit MLQ-KF

500 Particles (KLPF)

500 Particles (Alg 1)

(a) 1 bit MLQ-KF, Alg 1 and KLPF
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(b) 2 bit MLQ-KF, Alg 1 and KLPF

Figure 2.4: Example 2: In (a), 1 bit MLQ-KF clearly diverges while KLPF converge to the
optimal filter. From (b),2 bit MLQ-KF also diverges while KLPF performs well with just
50 particles. When using 2 bits, Alg 1 with 50 particles is orders of magnitude worse than
KLPF and hence is not shown in the same plot

In all the plots in this Section, ‘1-bit’ stands for ‘sign of innovation’ and ‘2-bit’

stands for a quantization rule with quantization intervals given by (−∞,−1.2437),

(−1.2437,−0.3823), (−0.3823, 0.3823), (0.3823, 1.2437) and (1.2437,∞). If the inno-

vation falls in the interval (−0.3823, 0.3823), no measurement update is done, so that



40

0 50 100 150 200 250 300
10

0

10
2

10
4

10
6

10
8

10
10

time − n

lo
g
‖
x

n
‖

2

 

 

2 bit MLQ-Riccati

2 bit MLQ-KF
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(b) The KLPF can control the plant

Figure 2.5: Example 3: The plot for the KLPF has been shown over a longer time
horizon of 1000 time instants to demonstrate convincingly that the KLPF can stabilize
the unstable plant.
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Figure 2.6: Example 4: Riccati is larger than the optimal error. This confirms that
the optimal filter does not track the modified Riccati.

2 bits will suffice to represent the output of the above quantizer. The numbers in

front of Alg 1 and KLPF denote the number of particles required to approximate the

optimal filter closely. Clearly, KLPF requires far fewer particles than Alg 1. Also evi-

dent from Examples 1 and 2 is the fact that KLPF needs dramatically fewer particles

as the quantization becomes finer.

Example 1 : A simple tracking system can be characterized by the following pa-

rameters, F =
[

1 τ
0 1

]
, H = [ 1 0 ], W =

[
τ4

4
τ3

2

τ3

2
τ2

]
, R = 0.81 and P0 = 0.01I3. Let the

sampling period be τ = 0.1. The plots are presented in Fig 2.3.

Example 2 : Consider a linear time invariant system of the form (2.1) with the

following parameters: A =
[

0.95 1 0
0 0.9 10
0 0 0.95

]
, h = [ 1 0 2 ], W = 2I3, R = 2.5 and P0 =



41

0.01I3, where Im denotes an m×m identity matrix. Note that A is a stable matrix.

As can be seen from Fig 2.4, 1 bit MLQ-KF and MLQ-KF diverge but KLPF delivers

optimal performance with much fewer particles than Alg 1. With the addition of just

1 bit, the required number of particles drops from 500 to 50.

In Example 1, note that KLPF works with much fewer particles than in Example

2. One can attribute this to the much higher value of the optimal mean squared error

in Example 2 than in Example 1, as can be seen from Figs 2.3 and 2.4.

Example 3 - Closing the loop: Here, we consider a system for which xn+1 =

Fxn + wn + un and yn = Hxn + vn, where F =
[

1.1 1 1
0 1 1
0 0 1

]
, H = [ 1 1 1 ], wn ∼ N3(0, I3)

is the process noise, vn ∼ N(0, 1) is the observation noise and un is the control input.

Also, consider the finite horizon quadratic cost function
∑N

n=0 ‖xn‖2. Then the control

policy that minimizes this cost is clearly un = −Fx̂n|n. As seen from Fig 2.5, the 2

bit MLQ-KF fails to stabilize the system while KLPF stabilizes it with 100 particles.

Example 4 : In [98], it was noted that the error performance of the optimal filter

tracked the modified Riccati and it appeared that the modified Riccati is at least an

upper bound on the error. This was investigated further with more examples and

as seen in Figure 2.6, the optimal filter does not track the modified Riccati. This

still leaves the possibility that the modified Riccati is an upper bound. Figure 2.6

corresponds to the system defined by F =

[
0.95 1 1 0 0
0 0 .9 7 1
0 0 0.6 2 0
0 0 0 0.7 0.
0 0 0 0 0.5

]
, H = [ 1 0 1 0 2 ], W = 2I5,

R = 2.5 and P0 = 0.01I5

2.8 Summary

We propose a Kalman-like particle filter (KLPF) to optimally track and control a

linear Gauss Markov process over a sensor network using quantized measurements.

The technique is general and works for an arbitrary causal quantization scheme. In

the examples studied, the KLPF required moderately small number of particles and

therefore can obtain close to optimal performance with a computational complexity

comparable to the conventional Kalman filter. We also showed that the classical

separation principle between estimation and control holds. This allowed us to perform
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optimal LQG control using quantized measurements.

An important open issue is to determine the number of particles necessary to

closely approximate the optimal filter. In order to determine this, one needs upper

bounds on the estimation error of the optimal filter and also understand the rate

of convergence of particle filters. The error covariance matrix of the optimal filter

seems to be upper bounded by the modified Riccati recursion introduced in [95].

Determining whether this is the case, and if so, why, remains an interesting open

question. In particular, any meaningful upper bound on the estimation error of the

optimal filter is necessary for practical applicability of the Kalman-like particle filter.

2.8.1 What If Communication Is Unreliable?

The focus of the present chapter has been on the optimal estimation of the state

using quantized observations from a collection of sensors. The distributedness in this

set up arises out of the absence of a single entity in the system which has access to

all the true measurements. The primary focus is then on the quantization technique

to be used at the sensors and the estimation technique to be used at the fusion

center. In this setup, even though the communication between the sensors and the

fusion center is rate limited, it is not noisy. But in practice, the data exchanged

between the sensors and the fusion center is subject to errors. There could be many

sources of such errors. It could be due to the communication channel itself, such as

when the medium of communication is wireless which is true in most applications of

practical interest. It could also be due to network congestion caused by competition

for shared resources (e.g., an array of micro-actuators and sensors sharing a network).

As a result, communication between different components of a networked control

system (e.g., sensors and fusion center) can be fundamentally unreliable. Motivated

by such a setup, we shift our focus to the problem of communicating data between

various components while guaranteeing the right kind of communication reliability.

It turns out that the notion of communication reliability prevalant in traditional

communication systems is inadequate when the communication channel is present in
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the feedback loop of a control system. In Chapter 3, we turn our attention to this

interplay between the control and the communication problem.

2.9 Appendices

2.9.1 Proof of Theorem 2.1

The theorem will be proved by showing that the moment generating fuction of xn|q0:n

can be seen as the product of two moment generating functions corresponding to the

two random variables in Eq. (2.6). Note that the moment generating function of a

d−dim random variable X is given by MX(s) = EesT X , ∀ s ∈ Rd.

p(xn|q0:n) =

∫
p(xn, y0:n|q0:n)dy0:n

Noting that p(xn|y0:n, q0:n) = p(xn|y0:n), we can write

EesT xn|q0:n =

∫
esT xnp(xn|y0:n)p(y0:n|q0:n)dxndy0:n

(∗)
= e

1
2
sT R∆

xn,y0:n
s

∫
esT Rxn,y0:nR−1

y0:n
y0:np(y0:n|q0:n)dy0:n︸ ︷︷ ︸

, mfg of Rxn,y0:nR−1
y0:n

y0:n|q0:n

=⇒ Mxn|q0:n(s) = MZn(s)My0:n|q0:n(R−1
y0:n

Ry0:n,xns) (2.35)

where Zn ∼ Nd(0, R
∆
xn,y0:n

). In getting (∗), we used the fact that

xn|y0:n ∼ Nd(Rxn,y0:nR−1
y0:n

y0:n, R
∆
xn,y0:n

)

For any random variable Y , it is easy to see that MY (AT t) = MAY (t). The result

is now obvious from Eq. (2.35). Note that if {xn} and {yn} have the state-space

structure, then R∆
xn,y0:n

= P kf
n|n.
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2.9.2 Proof of Theorem 2.2

p (xn|q0:n) = p (xn)
p (q0:n|xn)

p (q0:n)

= p (xn)
p (y0:n ∈ Sn+1|xn)

p (q0:n)

= φd (xn; 0, Rxn)
Φn+1

(
Sn+1; Ry0:n,xnR−1

xn
xn, ∆n

)
Φn+1 (Sn+1; 0, Ry0:n)

Now Ry0:n,xn = 〈y0:n, xn〉 = [〈Yn−1, Axn−1 + G1wn〉, 〈yn, xn〉]T =
[
Rxn,y0:n−1 , H

T
]T

.

The recursion for Ry0:n follows similarly.

2.9.3 Proof of Theorem 2.3

Recall the definition of ξn from (2.19) and note that (2.21) propagates ξn. Recall that

{en} denotes the innovations process associated to the observation process {yn}. So,

en = yn − Eyn|yn−1 = yn −HFξn−1. Now note that x̂n|n , Exn|q0:n = Eξn|q0:n. So,

from (2.21), we have

x̂n|n = FEξn−1|q0:n + Kf
nEen|q0:n

Since qi depends only on ei that is independent of ej ∀ i 6= j, we have

Eξn−1|q0:n = Eξn−1|q0:n−1 = x̂n−1|n−1 and

Een|q0:n = Een|qn = Een|
(
en ∈ (zln , zln+1)

)
= ‖en‖2

φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)
=

√
HP kf

n HT + R
φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)

So, we have

x̂n|n = Fx̂n−1|n−1 +
P kf

n HT√
HP kf

n HT + R

φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)
(2.36)
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The corresponding error covariance is straightforward using orthogonality. One can

rewrite (2.36) as

xn − x̂n|n +
P kf

n HT√
HP kf

n HT + R

φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)
= xn − x̂n−1|n−1

Using orthogonality of xn − x̂n|n and
P kf

n HT√
HP kf

n HT + R

φ(zln)− φ(zln+1)

Φ(zln+1)− Φ(zln)
, the result

follows.

2.9.4 Proof of Corollary 2.4

Under the detectability and stabilizability assumptions, we know that P kf
n = ‖xn −

Exn|yn−1‖2 converges to P kf . Let P f be the steady state value of P f
n , ‖xn −

Exn|y0:n‖2. Then

P kf = FP fF T + G1WGT
1

P f = P kf − P kfHT HP kf

HP kfHT + R

Also, Λ = FΛF T + G1WGT
1 . Now let Bn , Pn|n − αP f − (1 − α)Λ and Mf,n ,

P kf
n HT HP kf

n

HP kf
n HT + R

. Also let Mf denote the steady state value of Mf,n. Then from (2.16b),

we have

Bn = FPn−1|n−1F
T + G1WGT

1 − αMf,n − αP f − (1− α)Λ

= FPn−1|n−1F
T + G1WGT

1 − αMf,n − α
(
FP fF T + G1WGT

1 −Mf

)
. . .

. . .− (1− α)
(
FΛF T + G1WGT

1

)
= F

(
Pn−1|n−1 − αP f − (1− α)Λ

)
F T + α (Mf −Mf,n)

= FBn−1F
T + α (Mf −Mf,n)
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Since Mf,n → Mf , for each ε > 0, there exists an M large enough such that −εI �

Mf−Mf,n � εI for all n > N . Then Bn → B and B satisfies (Lemma D.1.2 from [50])

−ε
(
I + FF T + F 2(F T )2 + . . .

)
� B � ε

(
I + FF T + F 2(F T )2 + . . .

)
(2.37)

Since F is strictly stable and (2.37) is true for each ε > 0, B = 0. If F is unstable, it

is easy to see that Pn|n diverges to infinity.

2.9.5 Proof of Lemma 2.5

An application of Baye’s rule gives

p(ξn−1|q0:n)

p(ξn−1|q0:n−1)
=

P (qn|q0:n−1, ξn−1)

P (qn|q0:n−1)
∝ P (qn|q0:n−1, ξn−1)

Now, we have

P (qn|q0:n−1, ξn−1) = E
[(

Iyn∈Sn,q0:n

)
|q0:n−1, ξn−1

]
= E

[
E
(
Iyn∈Sn,q0:n

)
|yn−1

]
|q0:n−1, ξn−1

= E Φ (Sn,q0:n ; HFξn−1, Ren) |q0:n−1, ξn−1

= Φ (Sn,q0:n ; HFξn−1, Ren)
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Chapter 3

Sufficient Conditions for
Closed-Loop Stability Over Noisy
Channels

3.1 Introduction

At its simplest, control theory is concerned with regulating the behavior of dynamical

systems using output feedback. A typical control system is comprised primarily of a

dynamical system, an observer which measures the output of the dynamical system,

a controller which uses the output to determine what feedback to apply and an ac-

tuator that applies the feedback determined by the controller. The controller needs

to apply the control input in real time, and delay can result in loss of performance

and/or instability. In most traditional control systems, the measurement and con-

trol subsystems are either colocated or hard-wired together and hence, there is no

measurement loss. There are increasingly many applications on the horizon where

we have systems that are remotely controlled over unreliable communication chan-

nels and networks. Broadly classified as cyber-physical systems, examples include

the smart grid, distributed computation, intelligent highways, etc. (e.g., [70]). They

are characterized by need to transmit measurement and control signals over noisy or

bandwidth-limited channels. In such applications the conventional approach of using

block coding to make the channels error-free is inappropriate as it introduces delay,

which is anathema to the controller. On the other hand, purely control-theoretic
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methods are also not appropriate because the measurements received by the con-

troller are unreliable. Such a situation calls for a marriage of communication theory

and control theory. The resulting area of control under communication constraints

has received significant interest in recent years.

3.2 Background

Several aspects of the problem have been studied in the literature. In the con-

text of rate-limited deterministic channels, significant progress has been made (e.g.,

[64, 66, 71]) in understanding the bandwidth requirements for stabilizing open-loop

unstable systems. [62] considered feedback stabilization over stochastic communica-

tion channels where the stochasticity is modeled by a variable rate digital link and

the encoder has causal knowledge of the number of bits transmitted error free. A

result typical of this body of work can be described as follows. Consider the setup

in Figure 3.1 where the noiseless digital channel allows up to R bits per time step of

plant evolution on average. Then closed-loop stability is possible if and only if

R >
∑
λi

max{0, log |λi|} (3.1)

where {λi} are the plant eigenvalues. The quantity on the right-hand side of (3.1) is

often referred to as the intrinsic entropy rate of the plant.

One of the earliest papers to investigate the issues of communication constraints

in control is [9] where the authors considered the problem of controlling plants over

Gaussian channels with perfect feedback. Here perfect feedback implies that the

channel encoder has causal knowledge of the channel outputs seen by the decoder.

In such a setup, [9] showed that the encoder and the controller that minimize a

quadratic cost are all linear and a more extensive treatment of this setup appears

in [101]. In general, when the communication channel has continuous input and

continuous output, has perfect feedback and imposes average power constraint, then

it is possible to stabilize unstable systems over this channel using memoryless linear
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encoders and controllers. Most channels in practice have discrete valued input and do

not have perfect feedback, e.g., the internet that is best modeled as a packet erasure

network.

Motivated by applications of networked control over packet erasure networks, [96]

studied the problem of optimal LQG control of an open-loop unstable system when

the measurements from the plant to the controller are subject to erasures and showed

that closed-loop mean-squared stability is not possible if the probability of erasure

exceeds a certain threshold. Similar results were obtained in [45, 67, 78, 90] in the

case when the communication between the control unit and the actuation unit is

prone to erasures. A result of this type is described as follows. Consider the case

where the channel from the plant to the controller is error free but the control signals

transmitted from the controller to the actuator are subject to Bernoulli erasures with

erasure probability p. In such a setup, the state evolution is given by

xt+1 = Fxt + Ztut + wt, t = 0, 1, . . .

Here {Zt} is i.i.d Bernoulli(1 − p), i.e., Zt = 0 with probability p and Zt = 1 with

probability 1− p. Then E‖xt‖2 grows unboundedly if and only if

√
p >

1

ρ(F )

where ρ(F ) is the spectral radius of F . So, if the erasure rate is high enough it is not

possible to stabilize the system in closed-loop even with the optimal control law. This

necessitates the need to encode the measurement and control signals to compensate

for the channel errors. This is the purview of information and coding theory.

Shannon’s single user information theory is concerned with reliable one-way com-

munication of a message, that is available in its entirety, from a sender to a receiver

over an unreliable channel. Reliability is achieved at the price of encoding-decoding

delay. The focus is on communicating the message reliably and the associated delay

is not of central concern. But in control systems, it is much more important to apply
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an approximate feedback signal in real-time than to apply an accurate signal with a

large delay. This is because feedback control systems are generally robust to such

inaccuracies but are not as robust to delay (e.g., [56]). As a result, block encoding

of the measurements is not applicable because the controller needs real time infor-

mation about the system so that an appropriate control input can be applied. This

is especially critical when the system being controlled is open-loop unstable. Any

encoding-decoding delay translates into the system growing increasingly unstable.

Consequently, a lot of literature is focused on stabilizing unstable systems since they

accentuate the sensitivity of control systems to delay in the feedback loop.

It turns out that one needs the right trade-off between delay and accuracy in order

to be able to stabilize unstable systems over noisy channels. Conventional notions of

communication reliability such as block error probability are not compatible with this

trade-off and consequently conventional error-correction techniques are inadequate.

We will illustrate this trade-off through a simple example before continuing with the

rest of the literature review followed by a chapter outline.

Anytime reliability through a toy example: Owing to the duality between estima-

tion and control, the essential complexity of stabilizing an unstable process over a

noisy communication channel can be captured by studying the open-loop estimation

of the same process. We will motivate the kind of communication reliability needed

for control through a simple example.

Example 3.1 (An Unstable Random Walk). Consider tracking the following random

walk,

xt+1 = λxt + wt

where wt takes values ±1 with equal probability. Also x0 = 0 and |λ| > 1. Suppose

an observer observes xt and communicates over a noisy communication channel to

an estimator. Also assume that the estimator knows the system model and the initial

state x0 = 0. The objective then is for the estimator to track the state with an

asymptotically bounded mean squared error.
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The observer clearly needs to communicate whether wt is 0 or 1. Note that the

observer only has causal access to {wi}, i.e., at any time t, the observer has access to

{w0, . . . , wt−1}. Let the encoding function of the observer at time t be ft : GFt
2 7→ X n,

where X is the channel input alphabet and n is the number of channel uses available

for each step of the system evolution. The encoding and decoding operations are

depicted in Figure 3.3. Upon receiving the channel outputs until time t, the estimator

generates estimates {ŵ0|t, ŵ1|t, . . . , ŵt−1|t} of the noise sequence {w0, w1, . . . , wt−1}.

Then, the estimator’s estimate of the state, x̂t+1|t, is given by

x̂t+1|t =
t∑

j=0

λt−jŵj|t (3.2)

Suppose P e
d,t = P

(
argminj(ŵj|t 6= ŵj) = t− d + 1

)
, i.e., P e

d,t is the probability that

the position of the earliest erroneous ŵj|t is at time j = t−d+1. The probability here

is over the randomness of the channel. From (3.2), we can bound E
∣∣xt+1 − x̂t+1|t

∣∣2
from above as

∑
w0:t,ŵ0:t|t

P
(
w0:t, ŵ0:t|t

) ∣∣∣∣ n∑
j=1

λt−j(wj − ŵj|t)

∣∣∣∣2

≤
∑
d≤t

P e
d,t

∣∣∣∣ t∑
j=t−d+1

λt−j(wj − ŵj|t)

∣∣∣∣2
≤ 4

(|λ| − 1)2

∑
d≤t

P e
d,t|λ|2d

Clearly, a sufficient condition for lim supt E
∣∣xt+1 − x̂t+1|t

∣∣2 to be finite is as follows

P e
d,t ≤ |λ|−(2+δ)d ∀ d ≥ do, t > to and δ > 0 (3.3)

where do and to are constants that do no depend on t, d. Any encoder-decoder pair

that guarantees a reliability of the type (3.3) is said to be anytime reliable. We will

define it more precisely in Section 3.4. In the example above, we need to communicate

one information bit for each step of the plant evolution and this does not depend on
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Plant

Controller

Noiseless Digital
Channel

Noiseless Digital
Channel

Monday, April 9, 2012

Figure 3.1: Stabilizing systems over noiseless digital channels with a data rate limit

Controller

Scalar process

Noisy channel

Monday, April 9, 2012

(a) Stabilizing scalar processes without
channel feedback

Controller

Vector valued
process

Noisy
channel Feedback

Monday, April 9, 2012

(b) Stabilizing vector-valued processes with chan-
nel feedback

Figure 3.2: Anytime capacity is the right notion for stabilizing systems over noisy
channels

the system eigen value λ. This is an artifact of the discrete noise model in which

noise takes only two possible values. For more common noise models, the number of

information bits that need to be communicated in each time step will depend on λ.

In the context of control, it was first observed in [86] that exponential reliability

of the form (3.3) is required to stabilize unstable plants over noisy communication

channels and the notion of anytime reliability was introduced as the appropriate

measure of communication reliability for channels that are in the feedback loop of

control systems. Furthermore, [86] and [87] presented sufficient conditions on the

rate of communication required and the size of the exponent in the exponential decay

of P e
t,d for closed-loop stability for the scenarios depicted in Figures 3.2(a) and 3.2(b),

respectively.
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Figure 3.3: Causal encoding and decoding
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Monday, April 9, 2012

Figure 3.4: Stabilizing systems over noisy channels without channel feedback

3.3 Outline

In this chapter, we present novel nonasymptotic sufficient conditions for stabilizing

vector-valued state-space processes over noisy channels for the setup shown in Figure

3.4. In Section 3.5, we present sufficient conditions for the case of scalar-valued

measurements and in Section 3.6 we treat the vector case. We discuss the results and

compare them with those in the literature in Section 3.7.

3.4 Problem Setup

The notation to be used in the rest of the Chapter is summarized in Table 3.1.

Consider the following mx−dimensional unstable linear system with my−dimensional

measurements. Assume that (F, H) is observable and (F, G) is controllable.

xt+1 = Fxt + Gut + wt, yt = Hxt + vt (3.4)
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Table 3.1: Notation for Chapter 3

H(.) The binary entropy function
H−1(y) The smaller root of the equation H(x) = y

For a matrix F , F abs(F ), i.e., F i,j = |Fi,j|.∀ i, j
ρ(F ) Spectral radius of F

For a vector x, x(i) The ith component of x
1m [1, . . . , 1]T , i.e., a column with m 1’s

For w, v ∈ Rm, w ≷ v Component-wise inequality
log(.) Logarithm in base 2

For 0 ≤ x, y ≤ 1, KL (x‖y) x log
x

y
+ (1− x) log

1− x

1− y
,

i.e., Kullbeck-Leibler divergence
between Bernoulli(x) and Bernoulli(y)

where

F =



−a1 1 0 . . .

−a2 0 1 0
...

...
. . .

−am−1 . . . . . . 0 1

−am 0 . . . . . . 0


, H = [1, 0, . . . , 0]

where ρ(F ) > 1, ut is the mu−dimensional control input and, wt and vt are bounded

process and measurement noise variables, i.e., ‖wt‖∞ < W
2

and ‖vt‖∞ < V
2

for all

t. Note that we do not make any distributional assumptions on the noise. The

measurements {yt} are made by an observer while the control inputs {ut} are applied

by a remote controller that is connected to the observer by a noisy communication

channel. We assume that the control input is available to the plant losslessly. We do

not assume that the observer has access to either the channel outputs or the control

inputs. As is shown to be possible, e.g., in [64,86], we do not use the control actions

to communicate the channel outputs back to the observer through the plant because

this could have a detrimental effect on the performance of the controller.

Before proceeding further, a word is in order about the boundedness assumption
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on the noise. If the process and/or measurement noise have unbounded support, it

is not clear how one can stabilize the system without additional assumptions on the

channel. For example, [115] assumes feedback of channel outputs to the observer in

order to stabilize an unstable process perturbed by Gaussian noise over an erasure

channel while [118] proposes a forward side channel between the observer and the

controller that has a positive zero error capacity. We avoid this difficulty by assuming

that the noise has bounded support which may be a reasonable assumption to make

in practice.

The measurements y0:t−1 will need to be quantized and encoded by the observer to

provide protection from the noisy channel while the controller will need to decode the

channel outputs to estimate the state xt and apply a suitable control input ut. This

can be accomplished by employing a channel encoder at the observer and a decoder

at the controller. For simplicity, we will assume that the channel input alphabet is

binary. Suppose one time step of system evolution in (3.4) corresponds to n channel

uses1, i.e., n bits can be transmitted for each measurement of the system. Then, at

each instant of time t, the operations performed by the observer, the channel encoder,

the channel decoder and the controller can be described as follows. The observer

generates a k−bit message, bt ∈ GFk, that is a causal function of the measurements,

i.e., it depends only on y0:t. Then the channel encoder causally encodes b0:t ∈ GFkt

to generate the n channel inputs ct ∈ GFn. Note that the rate of the channel encoder

is R = k/n. Denote the n channel outputs corresponding to ct by zt ∈ Zn, where

Z denotes the channel output alphabet. Using the channel outputs received so far,

i.e., z0:t ∈ Znt, the channel decoder generates estimates {b̂τ |t}τ≤t of {bτ}τ≤t, which,

in turn, the controller uses to generate the control input ut+1. This is illustrated in

Fig. 3.3.

With this setup, we can define the notion of anytime reliability as follows

Definition 3.1 (Anytime reliability). Given a channel that can carry n bits of

1In practice, the system evolution in (3.4) is obtained by discretizing a continuous time differential
equation. So, the interval of discretization could be adjusted to correspond to an integer number of
channel uses, provided the channel use instances are close enough.
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data for each time step of plant evolution, we say that an encoder-decoder pair is

(R, β, do)−anytime reliable over this channel if

P e
t,d ≤ 2−nβd, ∀ t, d ≥ do (3.5)

In some cases, we write that a code is (R, β)−anytime reliable. This means that there

exists a fixed do > 0 such that the code is (R, β, do)−anytime reliable.

Note that the exponent β is normalized with respect to the number of data bits n

that the channel can carry in each time step. For example, if the channel carries one

symbol per time step and the channel input alphabet has cardinality, say m, then we

set n = log m. We adopt this convention because we do not want the bounds on the

rate and exponent that we will compute in Chapter 4 to depend on n.

We will show in Sections 3.5 and 3.6 that (R, β)−anytime reliability with an

appropriately large rate, R, and exponent, β, is a sufficient condition to stabilize

(3.4) in the mean-squared sense2.

3.5 Sufficient Conditions for Stabilization — Scalar

Measurements

Recall that we do not assume any feedback about the channel outputs or the control

inputs at the observer/encoder. This is the setup we imply whenever we say that no

feedback is assumed. In this context [86] derives a sufficient condition for stabilizing

scalar linear systems over noisy channels without feedback while [87] considers sta-

bilizing vector-valued processes in the presence of feedback. So, to the best of our

knowledge, there are no results on stabilizing unstable vector-valued processes over a

noisy channel when the observer does not have access to either the control inputs or

the channel outputs.

We will develop two sufficient conditions for stabilizing vector-valued processes

over noisy channels without feedback. The two sufficient conditions are based on two

2can be easily extended to any other norm
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different estimation algorithms employed by the controller and neither is stronger

than the other. We will then show in Section 3.7.1 that both sufficient conditions are

asymptotically tight. For ease of presentation, we will treat the case of scalar and

vector measurements separately. We will present the sufficient conditions for the case

of scalar measurements here while vector measurements will be treated in Section 3.6

Consider the unstable mx−dimensional linear state-space model in (3.4) with

scalar measurements, i.e., ρ(F ) > 1, and my = 1. Suppose that the characteris-

tic polynomial of F is given by

f(z) , zmx + a1z
mx−1 + . . . + amx

Without loss of generality we assume that (F, H) are in the following canonical form.

F =



−a1 1 0 . . .

−a2 0 1 0
...

...
. . .

−am−1 . . . . . . 0 1

−am 0 . . . . . . 0


, H = [1, 0, . . . , 0]

Owing to the duality between estimation and control, we can focus on the problem

of tracking (3.4) over a noisy communication channel. For, if (3.4) can be tracked

with an asymptotically finite mean-squared error and if (F, G) is stabilizable, then

it is a simple exercise to see that there exists a control law {ut} that will stabilize

the plant in the mean-squared sense, i.e., lim supt E‖xt‖2 < ∞. In particular, if the

control gain K is chosen such that F + GK is stable, then ut = Kx̂t|t will stabilize

the plant, where x̂t|t is the estimate of xt using channel outputs up to time t. In

control parlance, this amounts to verifying that the control input does not have a

dual effect [10]. Hence, in the rest of the analysis, we will focus on tracking (3.4).

The control input ut therefore is assumed to be absent, i.e., ut = 0.
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3.5.1 Hypercuboidal Filter

We bound the set of all possible states that are consistent with the estimates of the

quantized measurements using a hypercuboid, i.e., a region of the form

{x ∈ Rmx|a ≤ x ≤ b}

where a,b ∈ Rmx and the inequalities are component-wise.

Since we assume that the initial state x0 has bounded support, we can write

xmin,0|−1 ≤ x0 ≤ xmax,0|−1 and suppose using the channel outputs received till time

t − 1, we have xmin,t|t−1 ≤ xt ≤ xmax,t|t−1. Since H = [1, 0, . . . , 0], the measurement

update provides information of the form x
(1)
min,t|t ≤ x

(1)
t ≤ x

(1)
max,t|t while there will be

no additional information on other components of xt. Note that an estimate of the

state is given by the midpoint of this region, i.e., x̂t|t = 0.5(xmin,t|t + xmax,t|t). If we

define ∆t|t = xmax,t|t − xmin,t|t, then the estimation error is asymptotically bounded

if every component of ∆t|t is asymptotically bounded. Using such a filter, we can

stabilize the system in the mean-squared sense over a noisy channel provided that

the rate R and exponent β of the (R, β)−anytime reliable code used to encode the

measurements satisfy the following sufficient condition

Theorem 3.1. It is possible to stabilize (3.4) in the mean-squared sense with an

(R, β)−anytime code provided

R > Rn =
1

n
log2

mx∑
i=1

|ai|, β > βn =
2

n
log2 ρ(F ) (3.6)

Proof. See Appendix 3.9.1

Before proceeding further, we will provide a brief sketch of the proof. Note that

∆t|t = xmax,t|t − xmin,t|t is a measure of the uncertainty in the state estimate. From

Lemma 3.7, ∆t+1|t = F∆t|t + W1mx . The anytime exponent is determined by the

growth of ∆t in the absence of measurements, hence the bound βn = 2 log2 ρ(F ). The

bound on the rate is determined by how fine the quantization needs to be for ∆t to be
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bounded asymptotically. It will be shown in Section 3.9.5 that ρ
(
F
)

is always larger

than ρ (F ). By using an alternate filtering algorithm, which we call the Ellipsoidal

filter, one can improve this requirement on the exponent from βn > 2 log2 ρ(F ) to

βn > 2 log2 ρ(F ). But this will come at the price of a larger rate.

3.5.2 Ellipsoidal Filter

One can alternately bound the set of all possible states that are consistent with the

estimates of the quantized measurements using an ellipsoid

E(P, c) ,
{
x ∈ Rmx|〈x− c, P−1(x− c)〉 ≤ 1

}
This can be seen as an extension of the technique proposed in [93] to filtering using

quantized measurements. If mx = 1, ρ(F ) = ρ(F ). So, let mx ≥ 2.

Let x0 ∈ E(P0, 0) and suppose using the channel outputs received till time t −

1, we have xt ∈ E(Pt|t−1, x̂t|t−1). Since H = [1, 0, . . . , 0], the measurement update

provides information of the form x
(1)
min,t|t ≤ x

(1)
t ≤ x

(1)
max,t|t, which one may call a slab.

E(Pt|t, x̂t|t) would then be an ellipsoid that contains the intersection of the above

slab with E(Pt|t−1, x̂t|t−1), in particular one can set it to be the minimum-volume

ellipsoid covering this intersection. Lemma 3.9 gives a formula for the minimum-

volume ellipsoid covering the intersection of an ellipsoid and a slab. For the time

update, it is easy to see that for any ε′ > 0 and Pt+1 = (1 + ε′)FPt|tF
T + W 2

4ε′
1mx1

T
mx

,

E(Pt+1, F x̂t|t) contains the state xt+1 whenever E(Pt|t, x̂t|t) contains xt. This leads to

the following lemma, the proof of which is contained in the discussion above. For

convenience, we write Pt for Pt|t−1.

Lemma 3.2 (The Ellipsoidal Filter). Whenever E(P0, 0) contains x0, for each ε′ > 0,

the following filtering equations give a sequence of ellipsoids
{
E(Pt|t, x̂t|t)

}
that, at each
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time t, contain xt.

Pt+1 = (1 + ε′)FPt|tF
T +

W 2

4ε′
1mx , x̂t+1 = Fx̂t|t (3.7a)

Pt|t = btPt − (bt − at)
Pte1e

T
1 Pt

eT
1 Pte1

, x̂t|t = ξt
Pte1√
eT
1 Pte1

(3.7b)

where at, bt and ξt can be calculated in closed form using Lemma 3.9, and e1 is the

mx−dimensional unit vector e1 = [1, 0, . . . , 0]T .

Using this approach, we get the following sufficient condition.

Theorem 3.3. It is possible to stabilize (3.4) for mx ≥ 2 in the mean-squared sense

with an (R, β)−anytime code provided

R > Re,n =
1

n
log2

[
√

mx

mx∑
i=1

|ai|θi−1

]
(3.8a)

β > βe,n =
2

n
log2 ρ(F ) (3.8b)

where θ =
√

mx

mx−1

Proof. See Appendix 3.9.4

3.6 Sufficient Conditions for Stabilization — Vec-

tor Measurements

As in the scalar case, we will assume without loss of generality that (F, H) are in

a canonical form (is obtained from a simple transformation of Scheme I in Section

6.4.6 of [49]) with the following structure. F is a q × q block lower triangular matrix

with F i,j denoting the (i, j)th block. So, F i,j = 0 if j > i. F i,j is an `i × `j matrix
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and
∑q

i=1 `i = mx. The diagonal blocks F i,i have the following structure.

F i,i =



−ai,1 1 0 . . .

−ai,2 0 1 0
...

...
. . .

−ai,`i−1 . . . . . . 0 1

−ai,`i
0 . . . . . . 0


while the off-diagonal blocks do not have any specific structure. The measurement

matrix H is of the form H =
[
HT

1 , HT
2

]T
where H1 is a q×mx matrix of the following

form

H1 = block diag {[1 0 · · · 0] , 1× `i, i = 1, . . . , q} (3.9)

H2 does not have any particular structure and is not relevant. Note that the charac-

teristic polynomial of F , is given by f(z) =
∏q

i=1

(
z`i + ai,1z

`i−1 + . . . + ai,`i

)
.

If the Hypercuboidal filter is used, then Theorem 3.1 can be extended to the case

of vector measurements is as follows.

Theorem 3.4. It is possible to stabilize (3.4) in the mean-squared sense with an

(R, β)−anytime code provided

R > Rv,n =
1

n

q∑
i=1

max

{
0, log

`i∑
j=1

|ai,j|

}
, β > βv,n =

2

n
log2 ρ

(
F
)

(3.10a)

Proof. See Appendix 3.9.2

The thresholds if one uses an Ellipsoidal filter are given as follows.

Theorem 3.5. It is possible to stabilize (3.4) in the mean-squared sense with an
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(R, β)−anytime code provided

R > Rve,n =
1

n

q∑
i=1

max

{
0, log

[
√

mx

`i∑
j=1

|ai,j|θj−1

]}
, β > βve,n =

2

n
log2 ρ (F )

(3.11a)

where θ =
√

mx

mx−1
�

We skip the proof for Theorem 3.5 since it is very similar to that of Theorem 3.4.

3.7 Discussion — Asymptotics and the Stabiliz-

able Region

The sufficient conditions derived above are non-asymptotic in the sense that measure-

ments are encoded every time step. Alternately, one can encode the measurements

every, say, ` time steps, and consider the asymptotic rate and exponent needed as `

grows. This is often the form in which such sufficient conditions appear in the lit-

erature [66, 71, 86]. Even though the sufficient conditions in Sections 3.5 and 3.6 are

non-asymptotic, note that they depend only on the system matrices F , H and not on

the noise distribution. In order to compare our results with those in the literature,

we examine the sufficient conditions in the asymptotic limit of large `.

3.7.1 The Limiting Case

Note that encoding once every ` measurements amounts to working with the system

matrix F `. So, one can calculate this limiting rate and exponent by writing the

eigenvalues of F , {λi}mi=1, as λi = µn
i and letting n scale. The following asymptotic

result allows us to compare the sufficient conditions above with those in the literature

(e.g., [66, 71,86]).

Theorem 3.6 (The Limiting Case). Write the eigenvalues of F , {λi}mx
i=1, in the form

λi = µn
i . Letting n scale, Rn, Rv,n, Re,n, Rev,n converge to R∗, and βn, βv,n, βe,n,
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βev,n converge to β∗, where

R∗ =
∑

i:|µi|>1

log2 |µi|, β∗ = 2 log2 max
i
|µi| (3.12)

Proof. See Appendix 3.9.5.

For stabilizing plants over deterministic rate-limited channels, [71] showed that a

rate R > R∗, where R∗ is as in (3.12), is necessary and sufficient. So, asymptotically

the sufficient condition for the rate R in Theorem 3.1 is tight. But it is not clear if one

do with an exponent smaller than β∗ = 2 log2 maxi |µi| asymptotically when there is

no feedback. Though the above limiting case allows one to obtain a tight and an intu-

itively pleasing characterization of the rate and exponent needed, it should be noted

that this may not be operationally practical. For, if one encodes the measurements

every ` time steps, even though Theorem 3.6 guarantees stability, the performance

of the closed-loop system (the LQR cost, say) may be unacceptably large because of

the delay we incur. This is what motivated us to present the sufficient condition in

the form that we did above.

3.7.2 A Comment on the Trade-Off Between Rate and Ex-

ponent

Once a set of rate-exponent pairs (R, β) that can stabilize a plant is available, one

would want to identify the pair that optimizes a given cost function. Higher rates

provide finer resolution of the measurements while larger exponents ensure that the

controller’s estimate of the plant does not drift away; however, we cannot have both.

One can either coarsely quantize the measurements and protect the bits heavily or

quantize them moderately finely and not protect the bits as much. One can easily

cook up examples using an LQR cost function with the balance going either way.

Studying this trade-off is integral to making the results practically applicable.
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3.7.3 Stabilizable Region

Using the asymptotic sufficient condition in Theorem 3.6 and the thresholds on rate

and exponent that we will derive in the next Chapter (see Theorem 4.8), we can

discuss the range of the eigenvalues of F , i.e., {|µi|}mx
i=1, for which the ηth moment

of xt in (3.4) can be stabilized over some common channels. Since we are interested

in the asymptotics, we assume the same limiting case as in Section 3.7.1. Firstly,

consider the scalar case, i.e., mx = 1 and let the eigenvalue be µ. An anytime reliable

code with rate R and exponent β can stabilize the process in (3.4) for all µ such that

log2 |µ| < min

{
R,

β

η

}

So, a scalar unstable linear process in (3.4) can be stabilized over a MBIOS channel

with Bhattacharya parameter ζ provided

log2 |µ| < log2 |µmax| = sup
R<C,β<Eζ(R)

min

{
R,

β

η

}
(3.13)

The stabilizable region as implied by the threshold in [86] is given by

log2 |µ| < log2 |µmax| = sup
R<C,β<Er(R)

min

{
R,

β

η

}

For η = 2, the stabilizable region for the BEC and BSC is shown in Figure 3.5 where

|µmax| is plotted against the channel parameter. Consider a vector-valued process

with unstable eigenvalues {|µi|}mi=1. Such a process can be stabilized by a rate R and

exponent β anytime reliable code provided R >
∑m

i=1 log |µi| and β > log (maxi |µi|).

So, given a channel with Bhattacharya parameter ζ for which the rate exponent curve

(R,Eζ(R)) is achievable, the region of unstable eigenvalues that can be stabilized is

given by {µ ∈ Rm, | ∃R < C 3
∑m

i=1 log |µi| < R and log (maxi |µi|) < Eζ(R)},

where C is the Shannon capacity of the channel. For example, let m = 2 and η = 2.

Figure 3.6a shows the region of (|µ1|, |µ2|) that can be stabilized over three different

channels, a binary symmetric channel with bit flip probability 0.1 and binary erasure
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BSC(ǫ) - Theorem 7.4
BSC(ǫ) - Theorem 5.2, [5]
BEC(2ǫ) - Theorem 7.4
BEC(2ǫ) - Theorem 5.2, [5]

Figure 3.5: Comparing the stabilizable regions of BSC and BEC using linear codes

channels with erasure probabilities 0.1 and 0.2, respectively.

We will now compare these results with the case when there is perfect feedback

of the channel outputs at the observer/encoder. [87] considered a priority queuing

method for stabilizing vector-valued unstable processes over channels with perfect

feedback. Bits from different unstable subsystems are placed in a FIFO queue. Bits

are given preference in decreasing order of the size of the eigenvalue of the correspond-

ing subsystem. So, bits coming from a subsystem with a larger eigenvalue are given

preference over those from a subsystem with a smaller eigenvalue. A bit is removed

from the queue once it is received correctly. Since the feedback anytime capacity of

a binary erasure channel is known [85], one can use Theorem 6.1 in [87] to derive

the region of eigenvalues that can be stabilized by such a scheme. In Fig. 3.6b, we

compare the region of (|µ1|, |µ2|) that can be stabilized with and without feedback

over a binary erasure channel with erasure probability 0.2. As one would expect, the

region is much larger when there is feedback. Note that the stabilizable regions in

Fig. 3.6 are only achievable and not necessarily tight.



66

1 1.05 1.1 1.15 1.2 1.25
1

1.05

1.1

1.15

1.2

1.25

|µ1|

|µ
2
|

 

 

BEC(0.1)
BSC(0.1)

(a) Each curve represents the outer boundary of
the stabilizable region.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

|µ1|

|µ
2
|

 

 

BEC(0.2) with feedback
BEC(0.2) without feedback

(b) Stabilizable region with and without feed-
back

Figure 3.6: Comparing the stabilizable region of different channels

3.8 Summary

We presented various non-asymptotic and hence operationally more meaningful suf-

ficients conditions for stabilizing unstable linear processes over a noisy channel using

an (R, β)−anytime reliable code. Even though the results were non-asymptotic in na-

ture, the thresholds depend only on the properties of the state-space matrix F . The

sufficient conditions presented here and in [86, 87] are predicated on the existence

of (R, β)−anytime reliable codes. This is the subject of the next Chapter where we

present, for the first time, an explicit ensemble of linear anytime reliable codes.
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3.9 Appendices

3.9.1 Proof of Theorem 3.1

The analysis will proceed in two steps. We will first determine a sufficient condition

on the number of bits per measurement, nR, that are required to track (3.4) when

these bits are available error free. We will then determine the anytime exponent

nβ needed in decoding these source bits when they are communicated over a noisy

channel.

Let ∆t|τ , xmax,t|τ−xmin,t|τ be the uncertainty in xt using {bτ ′}τ ′≤τ , i.e., quantized

measurements up to time τ . For convenience, let ∆t ≡ ∆t|t−1. Then, the time update

is given by the following lemma.

Lemma 3.7 (Time Update). The time update relating ∆t+1 and ∆t|t is given by

∆t+1 = F∆t|t + W1mx

Proof. From the system dynamics in (3.4), the following is immediate

∆
(i)
t+1 = W + max

{∣∣∣±ai∆
(1)
t|t + ∆

(i+1)
t|t

∣∣∣ , ∣∣∣∆(i+1)
t|t

∣∣∣ , ∣∣∣ai∆
(1)
t|t

∣∣∣}
= |ai|∆(1)

t|t + ∆
(i+1)
t|t + W, i ≤ m− 1

∆
(m)
t+1 = |am|∆(1)

t|t + W

In short, the above equations amount to ∆t+1 = F∆t|t + W1mx .

Towards the measurement update, the observer simply quantizes the measure-

ments yt according to a 2nR−regular lattice quantizer with bin width δ, i.e., the

quantizer is defined by Q : R 7→ {0, 1, . . . , 2nR − 1}, where Q(x) = bx
δ
c mod 2nR. In

order for this to work, we need δ2nR ≥ ∆
(1)
t for any time t. Assuming that the rate,

R, is large enough, we will first find the steady state value of the recursion for ∆t,

which we then use to determine R. At each time t, the observer can communicate

the measurement yt to within an uncertainty of δ, i.e., the estimator knows that the

measurement lies in an interval of width δ. Adding to this the effect of the obser-

vation noise, −V
2
≤ vt ≤ V

2
, the estimator knows x

(1)
t to within an uncertainty of
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∆
(1)
t|t = δ + V . Note that ∆

(i)
t|t = ∆

(i)
t for i 6= 1. Combining this observation with

Lemma 3.7, it is straightforward to see that ∆t converges, to say ∆tu, in exactly mx

time steps, i.e., ∆t = ∆tu for all t ≥ mx. The subscript ‘tu’ in ∆tu denotes ‘time

update’. The following result is now immediate.

Lemma 3.8 (Steady State value of ∆t). ∆tu = (δ + V )Lua + WLu1mx, where a =

[|a1|, . . . , |am|]T and Lu = [`ij]1≤i,j≤m with `ij = Ii≤j.

Now, we need to go back and calculate R. So we just need

δ2nR ≥ max
{

∆
(1)
0 , ∆

(1)
1 , . . . , ∆(1)

mx

}
Further, a simple calculation gives

lim
δ→∞

∆
(1)
i

δ
= |a1|+ . . . + |ai|

The minimum rate is thus given by 1
n

log2

∑m
i=1 |ai| and this completes the proof

Theorem 3.1.

3.9.2 Proof of Theorem 3.4

The proof is very similar to that of Theorem 3.1. The observations are quantized as

follows. At any time, for 1 ≤ i ≤ q, the ith component of the measurement vector is

quantized using a 2nRi−regular lattice quantizer with bin width δi. The remaining

components of the measurement vector are ignored. The overall rate, R, is then given

by R = R1 + R2 . . . + Rq. The time update again is given by ∆t+1 = F∆t|t + W1mx .

The limiting values of {Ri}qi=1 are obtained by letting δ1 → ∞ and δi

δi+1
→ ∞. An

argument similar to the one in the previous section gives the following threshold,

Ri ≥ 1
n

max {0, log (|ai,1|+ |ai,2|+ . . . + |ai,`i
|)}.
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3.9.3 The Minimum-Volume Ellipsoid

Lemma 3.9 (Theorem 6.1 [38]). The minimum-volume ellipsoid E(P̂ , c) covering

{
x ∈ Rm|x ∈ E(P, 0), γ

√
hT Ph ≤ 〈h, x〉 ≤ δ

√
hT Ph

}
where |δ| ≥ |γ|, is given by

P̂ = bP − (b− a)
PhhT P

hT Ph
, c = ξ

Ph√
hT Ph

(3.14)

where

1. If γδ < − 1
m

, then ξ = 0, a = b = 1

2. If γ + δ = 0 and γδ > − 1
m

, then

ξ = 0, a = mδ2, b =
m(1− δ2)

m− 1

3. If γ + δ 6= 0 and γδ > − 1
m

, then

ξ =
m(γ + δ)2 + 2(1 + γδ)−

√
D

2(m + 1)(γ + δ)

a = m(ξ − γ)(δ − ξ), b =
a− aγ2

a− (ξ − γ)2

where D = m2(δ2 − γ2)2 + 4(1− γ2)(1− δ2)

If |δ| < |γ|, change x to −x and apply the above result. And it is easy to verify

that P̂ is indeed positive semidefinite. Also, a quick calculation shows that γ ≤ ξ ≤ δ.

This confirms the intuition that the center of the minimum-volume ellipsoid lies within

the slab.
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3.9.4 Proof of Theorem 3.3

The proof is in the same spirit as that of Theorem 3.1. We will first determine a

sufficient condition on the number of bits per measurement, nR, that are required to

track (3.4) when these bits are available error free. We will then determine the anytime

exponent nβ needed in decoding these source bits when they are communicated over

a noisy channel.

Consider the time update in (3.7a). Let P ij
t denote the (i, j)th element of Pt, then

the time update implies

P ii
t+1 = (1 + ε′)

(
a2

i P
11
t|t + P i+1,i+1

t|t − aiP
1,i+1
t|t − aiP

i+1,1
t|t

)
+

W 2

4ε′
, 1 ≤ i ≤ mx − 1

(3.15a)

Pmx,mx

t+1 = (1 + ε′)a2
mx

P 11
t|t +

W 2

4ε′
(3.15b)

Since the matrix Pt|t is positive semidefinite, we have P 1,i+1
t|t = P i+1,1

t|t and
(
P 1,i+1

t|t

)2

≤

P 11
t|t P

i+1,i+1
t|t . Using this in (3.15a), for 1 ≤ i ≤ mx − 1, we get

P ii
t+1 ≤ (1 + ε′)

(
|ai|
√

P 11
t|t +

√
P i+1,i+1

t|t

)2

+
W 2

4ε′
(3.16)

This prompts us to bound the recursion (3.7) by bounding the diagonal elements of

Pt. Now, considering the measurement update (3.7b), it is easy to see that

P 11
t|t = atP

11
t (3.17a)

atP
ii
t ≤ P ii

t|t ≤ btP
ii
t (3.17b)

We will first show that bt ≤ mx

mx−1
.

Lemma 3.10. bt ≤ mx

mx−1

Proof. To prove this, consider the setup of Lemma 3.9 and suppose |δ| ≥ |γ|. Then,



71

in cases 1) and 2), it is clear that b ≤ m
m−1

since |δ|, |γ| ≤ 1. In case 3), we have

b =
1− γ2

1− (ξ − γ)2/a
=

1− γ2

1− ξ−γ
m(δ−ξ)

≤ 1

1− ξ−γ
m(δ−ξ)

It suffices to show that ξ − γ ≤ δ − ξ. This easily follows from the formulae in case

3). The proof for the case when |δ| ≤ |γ| is obtained by replacing ξ with −ξ.

As in Section 3.9.1, the observer quantizes the measurements yt according to a

2nR−regular lattice quantizer with bin width δ. In order for the controller to know

yt to within a resolution of δ, it is not hard to see that one needs δ2nR > 2
√

P 11
t + v.

We begin by assuming that the rate R is large enough to provide the same resolution

δ on yt at each time t. The actual rate required to accomplish this will be calculated

determining an asymptotic upper bound on P 11
t . So, at time t, the controller knows

that yt to within a resolution δ and hence x
(1)
t to within a resolution of δ+V . Suppose√

P 11
t γt ≤ x

(1)
t ≤

√
P 11

t δt, where
√

P 11
t (δt− γt) ≤ δ + V . Then using Lemma 3.9 and

noting that γt ≤ ξt ≤ δt, we have

at = mx(ξt − γt)(δt − ξt) ≤
mx

4
(δt − γt)

2

=⇒ P 11
t at ≤

mx

4
(δ + V )2

Using this in (3.17a), we get

P 11
t|t = atP

11
t ≤

mx

4
(δ + V )2 (3.18)

Combining Lemma 3.10 and (3.18), we get

√
P 11

t|t ≤
√

mx

2
(δ + V ) (3.19a)√

P ii
t|t ≤

√
mx

mx − 1

√
P ii

t , i 6= 1 (3.19b)

In the following lemma, we will develop an upper bound on the diagonal elements
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of Pt which will help us determine an upper bound on P 11
t .

Lemma 3.11. Let ∆e,0 ∈ Rmx be such that ∆
(i)
e,0 = P ii

0 for 1 ≤ i ≤ mx and suppose

its evolution is governed by

∆e,t+1 = (1 + ε′)
1
2 F∆e,t|t +

W

2
√

ε′
1mx

∆
(i)
e,t|t =

 δ + V i = 1

θ∆
(i)
e,t i 6= 1

where θ =
√

mx

mx−1
. Then

√
P ii

t ≤ ∆
(i)
e,t and

√
P ii

t|t ≤ ∆
(i)
e,t|t for all t and 1 ≤ i ≤ mx.

Proof. The proof follows by combining the observations from (3.15), (3.16), (3.19).

Note that the recursion for ∆e,t above is very similar to that for ∆t in Section

3.9.1. So, the steady state value of ∆
(1)
e,t can be determined by a calculation similar

to that in Lemma 3.8. The desired threshold for R is obtained by letting δ →∞ for

a fixed ε′. Since ε′ can be made arbitrarily small, we get the following bound on R

R >
1

n
log

[
√

mx

mx∑
i=1

|ai|θi−1

]

Now, we need to determine the exponent needed to track (3.4) with a bounded mean-

squared error. In the absence of any measurements, it is easy to see from (3.7a) that

the growth of Pt is determined by the spectral radius of
√

1 + ε′F . Since ε′ can be

made arbitrarily small, in order to track (3.4) with a bounded mean-squared error,

we need an anytime exponent nβ > 2 log ρ(F ). This completes the proof.

3.9.5 The Limiting Case

There are several bounds in the Mathematics literature on the roots of a polynomial

in terms of the polynomial coefficients, a standard and near-optimal bound being the

Fujiwara’s bound which we state below.
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Lemma 3.12 (Fujiwara’s Bound). Consider the monic polynomial with complex coef-

ficients f(z) = zm+c1z
m−1+. . .+cm and let ρ(f) denote the largest root in magnitude.

Then

ρ(f) ≤ K(f) = 2 max

{
|c1|, |c2|

1
2 , . . . , |cm−1|

1
m−1 ,

∣∣∣cm

2

∣∣∣ 1
m

}

We will detail the proof for the case of scalar measurements. The extension to

the vector measurements will then suggest itself. Let F is any mx-dimensional square

matrix and f(z) denotes its characteristic polynomial. Then the following bounds

hold (for details see [97])

ρ(F ) ≤ ρ(F ) ≤ ρ(F )
m
√

2− 1
, K(f) ≤ 2ρ(F ) (3.20)

By the hypothesis of the lemma, the eigenvalues of Fn are of the form {µn
i }mx

i=1. To

emphasize the fact that F depends on n, we write it as Fn and ai as ai,n. Recall that

the characteristic polynomial of Fn is given by fn(z) = zmx + a1,nz
mx−1 + . . . + amx,n.

Let Iu , {i | |µi| ≥ 1}, then the following is easy to prove

lim
n→∞

|ai,n|∣∣a|Iu|,n
∣∣ = 0, i 6= |Iu|, lim

n→∞

1

n
log2

∣∣a|Iu|,n
∣∣ =

∑
i∈Iu

log2 |µi| (3.21)

From (3.21), it is obvious that limn→∞ Rn =
∑

i∈Iu
log2 |µi|. The asymptotics of

Re,n, Rv,n and Rev,n can be similarly derived. Also, from (3.20), it is clear that

limn→∞
1
n

log ρ
(
F n

)
= limn→∞

1
n

log ρ (Fn). The asymptotics of βn and βv,n now

follow immediately.
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Chapter 4

Error-Correcting Codes for
Interactive Communication

4.1 Introduction

We owe our current understanding of information and communication to the land-

mark paper [94], where Shannon laid down the theoretical foundations of modern

communication systems. Shannon provided the right mathematical framework to un-

derstand and study the problem of transmitting information reliably from a sender

to a receiver over an unreliable channel. Reliability is measured by the probability of

successfully recovering the message selected by the sender.

Prevailing wisdom at the time seemed to suggest that probability of error cannot

be reduced to zero without simultaneously decreasing the rate of communication to

zero. Shannon disproved this myth by introducing the idea of block coding which was

one of the major breakthroughs in [94]. This is motivated by the observation that a

channel is unpredictable over a small number of uses but becomes very predictable

when used a large number of times. In other words, if a channel introduces errors

with probability p, then in n channel uses, it will introduce approximately np errors

with a high probability for large enough n. So, any code of length n that can correct

np or more errors will guarantee correct recovery of the message with high probability

while achieving a positive rate of communication. This gave rise to the idea of block

coding.
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For example, as depicted in Figure 4.1, a binary message that needs to be encoded

is first divided it into blocks of appropriate size, say k, and each block is separately

encoded into a larger block of length, say n, by adding redundancy. The optimal de-

coder selects the message that is most likely given the channel outputs. The resulting

probability of decoding error goes to zero with increasing block length n if an only if

the rate of communication, R = k/n, is smaller than the Shannon capacity, C, of the

channel. After sixty years of coding theory, today we have many practical codes that

achieve the Shannon limits in several ways.

The salient features of the setup in Figure 4.1 are 1) communication is one-way,

2) the message is available a priori at the sender and 3) the receiver needs to wait

until it receives all the n channel outputs before it can decode the message, i.e., delay

is not a concern. This paradigm has worked and continues to work very well for

many practical delay tolerant applications where communication is essentially one

way. These include, data transfers over the internet, telecommunications, deep space

communication, data storage, etc. The setup above falls short when communication

is fundamentally interactive. We will motivate this through a simple example.

4.1.1 An Example of Interactive Communication

Suppose Alice and Bob wish to carry out a protocol/conversation as depicted in

Figure 4.2. Let x and y denote the initial inputs to Alice and Bob, respectively.

The objective is to not exchange x and y but to execute a protocol. For example,

x and y could denote the two halves of a program input and the protocol could

be to compute a function f(x, y) jointly in a distributed manner. In general, the

protocol could be anything. In the rest of the discussion, we will use the word

“protocol” much the same way as the word “message” is used in information the-

ory. The protocol proceeds as follows. Alice sends a bit a0(x) to Bob and Bob

responds with the bit b0(y, a0(x)). We call this round 0 of the protocol. Similarly

in round i, Alice sends ai (x, ai−1(.), bi−1(.), . . . , a0(.), b0(.)) while Bob responds with

bi (y, ai−1(.), bi−1(.), . . . , a0(.), b0(.)). Suppose that the protocol involves K rounds.
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The sequence of all messages transmitted by Alice (Bob) is X = {a0(.), . . . , aK−1(.)}

(Y = {b0(.), . . . , bK−1(.)}). One can treat X (Y ) as single message communicated by

Alice (Bob) in K rounds. But note that X is not available to Alice a priori, likewise

with Bob. It is revealed one bit at a time as the protocol unfolds, unlike the case of

one-way communication in Figure 4.1. Consider the problem of executing this proto-

col reliably over bidirectional noisy channels, i.e., bits sent from Alice (Bob) to Bob

(Alice) are subject to i.i.d bit flips, say.

A natural approach in such a setup could be to encode each bit individually using

a block code, say of length n (i.e., rate R = 1/n), before transmitting it over the

channel. If the probability of error for this block code is pe(n), and the probability

that the overall protocol is incorrectly executed is Pe(K), then it is easy to see that

Pe(K) ≥ pe(n). Now for Pe(K) → 0, we need pe(n) → no matter what K is. But

pe(n)→ 0 only when n→∞ in which case the rate of communication approaches 0.

We recovered the same dilemma that faced communication engineers before Shannon’s

work in [94]. It is thus clear that the conventional block error-correcting codes are

not appropriate when communication is fundamentally interactive. The problem of

controlling unstable processes over noisy channels that we discussed in Chapter 3 is

another instance of interactive communication and as we have seen is not amenable

to conventional techniques. In order to reliably simulate interactive protocols, one

needs an object called a tree code [92] which is essentially a causal encoding scheme

satisfying an appropriate Hamming-distance-like property. In spite of the fact that

tree codes have been identified to be central to interactive communication problems

for nearly two decades now, there has been scant practical progress due to lack of any

efficient constructions of tree codes. For the first time, we have an explicit ensemble

of linear tree codes that are anytime reliable with high probability.

4.2 Outline

We will begin by defining a tree code in Section 4.3 followed by a literature review in

Section 4.4. In Section 4.6, we introduce the notion of causal linear codes and provide
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1

Coding Theory

Encoder,
Rate = k/n

p(y|x)x ∈ Xn y ∈ Ynb ∈ Fk
2Alice Bob

Monday, April 9, 2012

Figure 4.1: A simple schematic to illustrate block coding

a sufficient condition for them to be anytime reliable. The main result appears in ...

4.3 Tree Codes

Let S be a finite alphabet. If C = (c1, . . . , c`) and C ′ = (c′1, . . . , c
′
`) are words of the

same length over S, the Hamming distance between C and C ′ denoted by ‖C − C ′‖

is the number of positions i in which ci 6= c′i.

Definition 4.1 (Tree Code [92]). An m-ary tree code over alphabet S, of distance

parameter α, is an infinite m−ary tree in which every edge of the tree is labeled with

a character from the alphabet S subject to the following condition. Let v1 and v2 be

any two nodes at some common depth h in the tree. Let h − d be the depth of their

least common ancestor. Let C(v1) and C(v2) be the concatenation of the letters on the

edges leading from the root to v1 and v2, respectively. Then ‖C(v1)− C(v2)‖ ≥ αd.

The tree defines a causal encoding scheme that at each time τ receives a letter bτ

from an m−ary alphabet as input and outputs a letter cτ ∈ S such that cτ = fτ (b1:τ ),

i.e., cτ is a causal function of the inputs while satisfying the afore-mentioned distance

condition. Figure 4.3 depicts a tree code where the input is binary.

4.3.1 Anytime Reliability Under Minimum-Distance Decod-

ing

We will argue concisely why the tree code property is necessary and sufficient for

anytime reliability. Recall that an encoder-decoder pair is said to be (R, β)−anytime

reliable over a channel if P
(
b̂τ+1|t 6= bτ+1

)
≤ 2−β(t−τ) where the probability is calcu-

lated only over the channel realizations. Assume that the channel input alphabet is S
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· · ·

1

Alice: a0(.)

Alice: a1(.)

Bob: b1(.)

Bob: b0(.)

Tuesday, April 10, 2012

Figure 4.2: The solid edges define the protocol. A realization of the protocol corre-
sponds to a path in the tree. If the protocol is correctly executed, Alice and Bob’s
messages would correspond to the outlined path

d

· · ·C C�

f1(0) f1(1)

f2(00) f2(01) f2(10) f2(11)

Figure 4.3: One can visualize any causal code on a tree. The distance property is:
‖C − C′‖H ∝ d. This must be true for any two paths with a common root and of
equal length in the tree
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for simplicity and suppose that the probability that the channel output being different

from the input is ε > 0. Furthermore suppose that ε < α/2 where α is the distance

parameter of the tree code and that the channel is memoryless. Then at an arbitrary

decoding instant, say t, b̂τ+1|t 6= bτ+1 implies that the channel must have introduced

at least α(t− τ)/2 errors during the time interval [τ + 1, t], the probability of which

is at most 2−D(α/2,ε)(t−τ) where D(α/2, ε) is the Kullback-Leibler divergence between

Bernoulli(α/2) and Bernoulli(ε). The tree code property is also necessary for anytime

reliability. To see this, suppose C = (c1, . . . , ct) is the actual codeword transmitted

by the encoder and suppose there exists another codeword C ′ = (c′1, . . . , c
′
t) such that

c1 6= c′1 and ‖C − C ′‖ is sublinear in t, then the probability of confusing between C ′

and C cannot be smaller than subexponential in t. As a result, the tree code property

is necessary and sufficient for anytime reliability.

4.4 Past Work

Early work on the problem of interactive communication over noisy channels appears

in [92] where Schulman studied it in the context of distributed computation. Inde-

pendently in [86], Sahai and Mitter studied it in the context of distributed control.

In [92], Schulman introduced a new coding paradigm called tree codes and used them

to show that one can simulate any interactive protocol between two agents over bidi-

rectional noisy channels with an error probability exponentially small in the length of

the protocol, i.e., Pe(K) ≤ 2−Ω(K), while suffering only a constant slowdown. Further-

more, Schulman showed that tree codes exist. This work constitutes an interactive

analogue to Shannon’s channel coding theorem. Although unlike [94], where Shannon

showed that capacity achieving block codes are abundant, Schulman does not show

that tree codes exist with high probability. This framework was extended to the case

of simulating protocols between a network of agents connected to each other in a

graph topology with unreliable links in [79].

In [76,86], it is shown that tree codes under maximum-likelihood (ML) decoding or

sequential decoding are anytime reliable. As outlined in Chapter 3, [86] also identifies
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that the rate and exponent are crucial to control, unlike [92] where a positive rate is

acceptable no matter how small it is.

The problem of simulating protocols over noisy channels has received attention in

recent years. In [19], the authors improve upon the algorithm proposed in [92]. If one

if willing to tolerate an error probability that is polynomially small in the length of

the protocol, then it is possible to come up with explicit code constructions for the

case of finite length two-party interactive communication, e.g., [18,27,68,91]. In [34],

the authors relax the notion of tree codes to define what they refer to as a potent tree

code and show how it can be used to simulate any finite length interactive protocol

with an error probability that is exponentially small in the length of the protocol.

Furthermore, [34] shows that a random construction of a labeled tree produces a

potent tree code with high probability.

4.5 Contributions

The explicit code constructions of [18,27,68,91] only guarantee a polynomially small

error probability and hence are not applicable in the context of control. It is also not

clear if such codes can be used to simulate protocols between more than two agents

as is shown possible with tree codes in [79]. We will discuss this in greater detail in

Chapter 6. The results in [34] do not apply to control either because potent tree codes

are obtained by relaxing the tree code property to allow for large portions of the tree

where the Hamming distance property does not hold true and hence the resulting

relaxation is not anytime reliable under ML decoding.

Even though the problem of stabilizing unstable processes over noisy channels

is an instance of an interactive communication problem, in some ways it places a

more stringent requirement on the error-correcting scheme than its counterparts in

distributed computation. Furthermore, all the encoding schemes explored thus far are

nonlinear in general and do not lend themselves to efficient decoding. A first step in

the direction of constructing practical tree codes is to impose linearity. For example,

ML decoding of a linear code over an erasure channel just amounts to solving linear
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equations which can be accomplished very efficiently. The main contributions of this

Chapter are the following

1. We prove that linear anytime reliable codes exist in Section 4.7

2. We demonstrate an explicit ensemble of causal linear codes almost all elements

of which are anytime reliable in Section 4.8

3. We present an efficient decoding algorithm for the erasure channel in Section

5.2

We begin by exploring causal linear codes in Section 4.6.

4.6 Linear Anytime Codes

As discussed earlier, a first step towards developing practical encoding and decoding

schemes for automatic control is to study the existence of linear codes with anytime

reliability. We will begin by defining a causal linear code.

Definition 4.2 (Causal Linear Code). A causal linear code is a sequence of linear

maps fτ : GFkτ
2 7→ GFn

2 and hence can be represented as

fτ (b1:τ ) = Gτ1b1 + Gτ2b2 + . . . + Gττbτ (4.1)

where Gij ∈ GFn×k
2 �

We denote cτ , fτ (b1:τ ). Note that a tree code is a more general construction

where fτ need not be linear. Also note that the associated code rate is R = k/n. The

above encoding is equivalent to using a semi-infinite block lower triangular generator
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Table 4.1: Notation for Chapter 4

Ht
n,R nt× nt leading principal minor of Hn,R

Ct
{
c ∈ {0, 1}nt : Ht

n,Rc = 0
}

Ct,d {c ∈ Ct : cτ<t−d+1 = 0, ct−d+1 6= 0}
‖c‖ Hamming weight of c

N t
w,d |{c ∈ Ct,d : ‖c‖ = w}|

wt
min,d argminw(N t

w,d 6= 0)

P e
t,d P

(
min{τ : b̂τ |t 6= bτ} = t− d + 1

)

matrix Gn,R given by

Gn,R =



G11 0 . . . . . . . . .

G21 G22 0 . . . . . .
...

...
. . .

...
...

Gτ1 Gτ2 . . . Gττ 0
...

...
...

...
. . .


One can equivalently represent the code with a parity check matrix Hn,R, where

Gn,RHn,R = 0. The parity check matrix is in general not unique but it is easy to see

that one can choose Hn,R to be block lower triangular too.

Hn,R =



H11 0 . . . . . . . . .

H21 H22 0 . . . . . .
...

...
. . .

...
...

Hτ1 Hτ2 . . . Hττ 0
...

...
...

...
. . .


(4.2)

where Hij ∈ {0, 1}n×n and n = n(1− R). In fact, we present all our results in terms

of the parity check matrix. Before proceeding further, some of the notation specific

to coding is summarized in Table 4.1.

The objective is to study the existence of causal linear codes which are

(R, β)−anytime reliable under maximum-likelihood (ML) decoding. With reference
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to Fig. 4.3, this amounts to choosing the branch labels, fτ (b1:τ ), in such a way

that they satisfy the distance property, and also are linear functions of the input,

b1:τ . Further, we are interested in characterizing the thresholds on the rate, R, and

exponent, β, for which such codes exist. In the interest of clarity, we will begin with

a selfcontained discussion of a weak sufficient condition on the distance distribution,

{N t
w,d, wt

min,d} (see Table 4.1), of a causal linear code so that it is anytime reliable

under ML decoding. This sufficient condition is an adaptation of the distance property

illustrated in Fig. 4.3 to the case of causal linear codes. In Section 4.7, we will

demonstrate the existence of causal linear codes that satisfy this sufficient condition.

The thresholds thus obtained will be significantly tightened in Section 4.9 by invoking

some standard results from random coding literature, e.g., [11, 33].

4.6.1 A Sufficient Condition

Suppose the decoding instant is t and without loss of generality, assume that the all

zero codeword is transmitted, i.e., cτ = 0 for τ ≤ t. We are interested in the error

event where the earliest error in estimating bτ happens at τ = t− d + 1, i.e., b̂τ |t = 0

for all τ < t−d+1 and b̂t−d+1|t 6= 0. Note that this is equivalent to the ML codeword,

ĉ, satisfying ĉτ<t−d+1 = 0 and ĉt−d+1 6= 0, and Ht
n,R having full rank so that ĉ can be

uniquely mapped to a transmitted sequence b̂. Then, using a union bound, we have

P e
t,d = P

 ⋃
c∈Ct,d

(0 is decoded as c)

 ≤ ∑
c∈Ct,d

P (0 is decoded as c) (4.3)

Consider a memoryless binary-input output-symmetric (MBIOS) channel. Let X and

Z denote the input and output alphabet, respectively. The Bhattacharya parameter,

ζ, for such a channel is defined as

ζ =


∫

z∈Z

√
p(z|X = 1)p(z|X = 0)dz if Z is continuous∑

z∈Z

√
p(z|X = 1)p(z|X = 0) if Z is discrete valued
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Now, it is well known (e.g., [89]) that, under ML decoding

P (0 is decoded as c) ≤ ζ‖c‖

From (4.3), it follows that P e
t,d ≤

∑
wt

min,d≤w≤nd N t
w,dζ

w. If wt
min,d ≥ αnd and N t

w,d ≤

2θw for some θ < log2(1/ζ), then

P e
t,d ≤ η2−αnd(log2(1/ζ)−θ) (4.4)

where η = (1 − 2log2(1/ζ)−θ)−1. So, an obvious sufficient condition for Hn,R can be

described in terms of wt
min,d and N t

w,d as follows. For some θ < log2(1/ζ), we need

wt
min,d ≥ αnd ∀ t, d ≥ do (4.5a)

N t
w,d ≤ 2θw ∀ t, d ≥ do (4.5b)

where do is a constant that is independent of d, t. This brings us to the following

definition

Definition 4.3 (Anytime distance and Anytime reliability). We say that a code Hn,R

has (α, θ, do)−anytime distance, if the following hold

1. Ht
n,R is full rank for all t > 0

2. wt
min,d ≥ αnd, N t

w,d ≤ 2θw for all t > 0 and d ≥ do. �

We require that Ht
n,R have full rank so that the mapping from the source bits

b1:t to coded bits c1:t is invertible. We summarize the preceding discussion as the

following lemma.

Lemma 4.1. If a code Hn,R has (α, θ, do)−anytime distance, then it is

(R, β, do)−anytime reliable under ML decoding over a channel with Bhattacharya

parameter ζ where β = α (log(1/ζ)− θ) �
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4.7 Linear Anytime Codes — Existence

Proving the existence of an anytime reliable causal linear code amounts to proving

the existence of a semi-infinite block triangular matrix Hn,R of the form (4.2) with

(α, θ, do)−anytime distance for some α > 0 and θ < log(1/ζ). In order to do so, for

each T > 0, we will prove by induction the existence of an nT × nT block triangular

matrix which we denote by Hn,R,T with (α, θ, d0)−anytime distance. Using Lemma

4.1, this will give us an (R, β, do)−anytime reliable code over any finite time horizon,

i.e., for each T > 0, there exists a causal linear code which under ML decoding

satisfies

P
(
b̂t−d+1|t 6= bt−d+1

)
≤ 2−nβd, ∀ d ≥ d0, d0 ≤ t ≤ T

Extension to the limiting case T →∞ is a technicality and is obtained by a straight-

forward application of König’s lemma (e.g., [58]).

The following lemma proves the existence of a linear anytime reliable code over a

finite time horizon.

Lemma 4.2 (Appropriate Weight Distribution). For each time T > 0, rate R > 0,

α < H−1(1−R) and θ > log(1/(21−R−1)), there exists a causal linear code H(n, k, T )

that has (α, θ, do)−anytime distance, where do is a constant independent of d, t and

T .

The proof is by induction and is detailed in the Appendix. Extension to the

semi-infinite case is straightforward and we state the result as a theorem.

Theorem 4.3 (Appropriate Weight Distribution). For rate R > 0, α < H−1(1 −

R) and θ > log(1/(21−R − 1)), there exists a causal linear code H(n, R) that has

(α, θ, do)−anytime distance, where do is a constant independent of d and t

We can now use this result to demonstrate an achievable region of rate-exponent

pairs for a given channel, i.e., the set of rates R and exponents β such that one can

guarantee (R, β) anytime reliability using linear codes. To determine the values of R
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that will satisfy (4.4), note that we need

log(1/(21−R − 1)) < log(1/ζ) =⇒ R < 1− log(1 + ζ)

With this observation, we have the following Corollary.

Corollary 4.4. For any rate R and exponent β such that

R < 1− log(1 + ζ), and

β < H−1(1−R)

(
log

(
1

ζ

)
+ log

(
21−R − 1

))

there exists a causal linear code that is (R, β, d0)−anytime reliable.

Note that for BEC(ε), ζ = ε and for BSC(ε), ζ = 2
√

ε(1− ε). Theorem 4.3 is

equivalent to proving that it is possible to choose labels in Figure 4.3 in such a way

that the labels are a linear function of the inputs and the distance property is satisfied.

Theorem 4.3 only proves existence of linear tree codes but existence again is not with

a high probability. The primary reason for this is the following, one needs

P
(
b̂t−d+1|t 6= bt−d+1

)
≤ 2−nβd (4.7)

to be true for all decoding instants t and all delays d. A natural technique to construct

such codes to choose the edge labels at random and insist that (4.7) be true for all t and

d. A näıve union bound over both parameters will not even guarantee existence. In

fact, in such a random construction, one can show that there will be large portions of

the tree where the labels will not satisfy the distance conditions with high probability.

This compels one to use an inductive argument. In what follows in Section 4.8, we

will remove the need for one of the union bounds by insisting on the code being time

invariant. This way, one will only need to guarantee (4.7) for all delays d.
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4.8 Linear Time Invariant Codes

Consider causal linear codes with the following Toeplitz structure

HTZ
n,R =



H1 0 . . . . . . . . .

H2 H1 0 . . . . . .
...

...
. . .

...
...

Hτ Hτ−1 . . . H1 0
...

...
...

...
. . .


The superscript TZ in HTZ

n,R denotes ‘Toeplitz’. HTZ
n,R is obtained from Hn,R in (4.2) by

setting Hij = Hi−j+1 for i ≥ j. Due to the Toeplitz structure, we have the following

invariance, wt
min,d = wt′

min,d and N t
w,d = N t′

w,d for all d ≤ min(t, t′). The code HTZ
n,R will

be referred to as a time-invariant code. The notion of time invariance is analogous to

the convolutional structure used to show the existence of infinite tree codes in [92].

This time invariance allows one to prove that such codes which are anytime reliable

are abundant.

Definition 4.4 (The ensemble TZp). The ensemble TZp of time-invariant codes,

HTZ
n,R, is obtained as follows, H1 is any fixed full rank binary matrix and for τ ≥ 2,

the entries of Hτ are chosen i.i.d according to Bernoulli(p), i.e., each entry is 1 with

probability p and 0 otherwise. �

For the ensemble TZp, we have the following result

Theorem 4.5 (Abundance of time-invariant codes). Let p = min{p, 1 − p}. Then,

for each R > 0 and

α < H−1(1−R log (1/(1− p))), θ > − log
[
(1− p)−(1−R) − 1

]
, we have

P
(
HTZ

n,R has (α, θ, do)− anytime distance
)
≥ 1− 2−Ω(ndo)

Proof. See Appendix 4.11.1

The thresholds on the anytime distance appearing in Theorem 4.5 are same as
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those appearing in Theorem 4.3. Hence the associated region of achievable rate-

exponent pairs is the same as in Corollary 4.4. The only difference is that Theorem

4.5 refers to the Toeplitz ensemble. We will state this as a separate result as follows.

Corollary 4.6. For any rate R and exponent β such that

R < 1− log(1 + ζ), and

β < H−1(1−R)

(
log

(
1

ζ

)
+ log

(
21−R − 1

))

if HTZ
n,R is chosen from TZ 1

2
, then

P
(
HTZ

n,R is (R, β, do)− anytime reliable
)
≥ 1− 2−Ω(ndo)

�

The constant in the exponent Ω(ndo) in Corollary 4.4 can be computed explicitly

and it decreases to zero if either the rate or the exponent approach their respective

thresholds. Further note that almost every code in the ensemble is (R, β)-anytime

reliable after a large enough initial delay do. In other words, a code in the ensemble is

not anytime reliable implies that there is no finite delay d0 beyond which (4.7) holds,

the probability of which is 0 by Corollary 4.6.

The Role of the constant d0 - For the purpose of stabilizing unstable plants over

noisy channels, it is sufficient to guarantee exponentially decaying error probability for

delays larger than any finite constant. This motivated the constant d0 when we defined

the notion of anytime reliability in Definition 3.1. The role of d0 in simulating general

protocols between two or more agents is more tricky. If the channels connecting the

agents are erasure links, the only effect d0 will have is to slowdown the protocol

further but only by a constant factor. In other words, (R, β, d0)−anytime reliable

codes can be used to simulate protocols between a network of agents connected to

each other with erasure links. But when the channels are not erasure links, it is not

clear if (R, β, d0)−anytime reliable codes can be used to simulate general protocols

when d0 > 1.
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The thresholds in Corollary 4.4 have been obtained by using a simple union bound

for bounding the error probability in (4.3). As one would expect, these thresholds

can be improved by doing a more careful analysis. It turns out that the ensemble

of random causal linear codes bears close resemblance to random linear block codes.

This allows one to borrow results from the random coding literature to tighten the

thresholds.

4.9 Improving the Thresholds

We will examine the Toeplitz ensemble more closely and show that its delay-dependent

distance distribution is bounded above by that of the random binary linear code

ensemble, which we will define shortly. This will enable us to significantly improve

the rate, exponent thresholds of Section 4.7 that were obtained using a simple union

bound.

4.9.1 A Brief Recap of Random Coding

For an arbitrary discrete memoryless channel, recall the following familiar definition

of the random coding exponent, Er(R), from [33]1

Er(R) = max
0≤ρ≤1

max
Q

[Eo (ρ,Q)− ρR] , where (4.9a)

Eo (ρ,Q) = − log2

∑
z∈Z

[∑
x∈X

Q(x)p(z|X = x)
1

1+ρ

]1+ρ

(4.9b)

In (4.9b), Q(.) denotes a distribution on the channel input alphabet. The ensemble

of random binary linear codes with block length N and rate R = K
N

is obtained by

choosing an (N−K)×N binary parity check matrix H, i.e., H ∈ GF
(N−K)×N
2 , each of

whose entries is chosen i.i.d Bernoulli
(

1
2

)
. For such an ensemble, any nonzero binary

word c ∈ GFN
2 is a codeword with probability 2−N(1−R). For a given block code, let

wmin denote the minimum-distance and Nw the number of codewords with Hamming

1We use base-2 instead of the natural logarithm
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weight w. A quick calculation shows that ENw =
(

N
w

)
2−N(1−R) and that wmin grows

like H−1(1−R)N with a high probability. A typical code in this ensemble is defined

to be one that has wmin ≈ H−1(1 − R)N and Nw ≈
(

N
w

)
2−N(1−R). A simple Markov

inequality shows that the probability that a code from this ensemble is atypical is at

most 2−Ω(N). For the typical code over BSC(ε), the block error probability decays

as 2−NEBSC(R) where the exponent EBSC has been characterized in [11]. As has been

noted in [11], these calculations can be easily extended to a wider class of channels. In

particular, the class of MBIOS channels admits a particularly clean characterization.

We present the following generalization of the result in [11] without proof.

Lemma 4.7. Consider a linear code with block length N , rate R and distance distri-

bution {Nw}Nw=1 such that

1. Nw = 0 if w ≤ H−1(1−R− δ)

2. Nw ≤ 2−N(1−R−δ+o(1))
(

m
w

)
for some δ > 0. Let the channel be a MBIOS channel with Bhattacharya parameter

ζ. Then the block error probability, Pe, under ML decoding is bounded as

Pe ≤ 2−N(Eζ(R)−δ′) (4.10)

where

Eζ(R) =

 H−1(1−R) log 1
ζ

, 0 ≤ R ≤ 1−H
(

ζ
1+ζ

)
Er(R) , 1−H

(
ζ

1+ζ

)
≤ R ≤ C

(4.11)

and δ′ → 0 as δ → 0.

Proof. The proof is a straightforward generalization of the result in [11].

4.9.2 The Toeplitz Ensemble

In the causal case, fix an arbitrary decoding instant t and consider the event that the

earliest error happens at a delay d. As seen before, the associated error probability
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depends on the relevant codebook Ct,d and its distance distribution {N t
w,d}nd

w=1. Recall

from Table 4.1 that

Ct,d , {c ∈ Ct : cτ<t−d+1 = 0, ct−d+1 6= 0}

Due to the Toeplitz structure, we have Ct,d = Cd,d. So, we drop the subscript t in

N t
w,d and write it as Nw,d. Note that Cd,d is determined by the matrix Hd

n,R. Let c be

a given nd-dimensional binary word, i.e., c ∈ GF nd
2 , and write c =

[
cT
1 , cT

2 , . . . , cT
d

]T
,

where cτ ∈ GF n
2 notionally corresponds to the n encoder output bits during the τ th

time slot. Suppose c1 6= 0, then it is easy to see that

P
(
Hd

n,Rc = 0
)

= 2−nd

Recall that n = n(1−R).

Now observe that ENw,d ≤
(

nd
w

)
2−nd. This is same as the average weight distribu-

tion of the random binary linear code with a block length nd and rate R. So, applying

Lemma 4.7, we get the following result.

Theorem 4.8. For each rate R < C and exponent β < Eζ(R), if HTZ
n,R is chosen from

TZ 1
2
, then

P
(
HTZ

n,R is (R, β, do)− anytime reliable
)
≥ 1− 2−Ω(ndo)

where C is the Shannon capacity of the channel and

Eζ(R) =

 H−1(1−R) log 1
ζ

, 0 ≤ R ≤ 1−H
(

ζ
1+ζ

)
Er(R) , 1−H

(
ζ

1+ζ

)
≤ R ≤ C

(4.12)

�

The problem of stabilizing unstable scalar linear systems over noisy channels in

the absence of feedback has been considered in [86]. [86] showed the existence of

(R, β)−anytime reliable codes for R < C and β < Er(R). The code is not linear in
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Figure 4.4: Comparing the thresholds obtained from Theorem 4.8 and Theorem 5.2
in [86]

general and the existence was not with high probability. Theorem 4.8 proves linear

anytime reliable codes for exponent, β, up to Eζ(R). When R < 1 − H
(

ζ
1+ζ

)
,

Eζ(R) > Er(R). So, Theorem 4.8 marks a significant improvement in the known

thresholds for stabilizing unstable processes over noisy channels, as is demonstrated

in Figures 4.4 and 3.5.

4.10 Summary

The sufficient conditions on the rate and exponent of anytime reliable codes devel-

oped in [86, 87] and Chapter 3 are predicated upon the existence of error-correcting

codes that achieve such reliabilities. One needs tree codes in order to achieve any-

time reliability over memoryless channels under maximum-likelihood (ML) decoding.

Tree codes first appeared independently in the work of Schulman [79, 92] in a dif-

ferent context of distributed computation. Schulman used tree codes to simmulate

interactive protocols between a network of agents and showed that tree codes exist ef-

fectively providing an interactive analogue of Shannon channel coding theorem which

considered one way communication.

Even though the significance of tree codes in interactive communication problems

has been understood for nearly two decades, there have been no practical construc-
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tions till date. The existence of tree codes proved in [92] is not with high probability.

The codes are also nonlinear in general and do not lend themselves to efficient de-

coding. In this Chapter, we attempted to bridge this gap in our understanding of

tree codes. For the first time, we showed the existence of linear tree codes. Moreover

we show that codes drawn from an appropriate time-invariant ensemble are anytime

reliable with a high probability. In other words, we prove that codes drawn from an

appropriate ensemble of causal linear codes which we call the Toeplitz ensemble are

(R, β)−anytime reliable with high probability for rates upto Shannon capacity and

exponent up to the expurgated exponent [11]. This significantly improves upon the

known rate and exponent pairs for which anytime reliable codes are known to exist.

In the next Chapter, we exploit the linearity of the codes to decode them efficiently

over erasure channels.
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4.11 Appendices

4.11.1 Proof of Theorem 4.5

We will begin with some preliminary observations.

Lemma 4.9 ( [51]). Let V be an m−dimensional vector space over GF2 and define

a probability function over V such that, for each v ∈ V , P (v) = p‖v‖(1− p)m−‖v‖. If

U is an `−dimensional subspace of V , then

P (U) ≤ max(p, 1− p)m−`

Proof. Suppose p ≤ 1/2. The proof for the other case is analogous. Let E be the

set of unit vectors, i.e., E = {v ∈ V | ‖v‖ = 1}. Then there is a subset, E ′, of E

with m − ` unit vectors such that V = U ⊕ span(E ′) and U ∩ span(E ′) = {0}. Let

u′ ∈ span(E ′), then

P (U + u′) =
∑
u∈U

P (u + u′) ≥
∑
u∈U

P (u)

(
p

1− p

)‖u′‖
= P (U)

(
p

1− p

)‖u′‖

Note that for distinct u′1, u
′
2 ∈ span(E ′), (U + u′1) ∩ (U + u′2) = ∅. Also note that

‖u′‖ ≤ m− ` ∀ u′ ∈ span(E ′).

1 = P (V ) = P

 ⋃
u′∈span(E′)

(U + u′)

 ≥ ∑
u′∈span(E′)

P (U)

(
p

1− p

)‖u′‖

Observe that there are exactly
(

m−`
i

)
vectors in span(E ′) with Hamming weight i.

So, we have

1 ≥ P (U)
m−∑̀
i=0

(
m− `

i

)(
p

1− p

)i

= P (U)

(
1

1− p

)m−`

This completes the proof.

Remark 4.1. The Toeplitz parity check matrix HTZ
n,R is full rank if and only if H1
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is full rank. This is why we fix H1 to be a full rank matrix in the definition of the

Toeplitz ensemble.

Recall that we choose the entries of Hi to be i.i.d Bernoulli(p) for i ≥ 2. Also

suppose p ≤ 1/2. The results for p ≥ 1/2 are obtained by replacing p with 1−p in the

subsequent analysis. Consider an arbitrary decoding instant, t. Since wt
min,d = wt′

min,d

and N t
w,d = N t′

w,d for all t, t′, we will drop these superscripts and write wt
min,d = wmin,d

and N t
w,d = Nw,d. Let c = [cT

1 , . . . , cT
t ]T , where ci ∈ {0, 1}n, be a fixed binary word

such that cτ<t−d+1 = 0 and ct−d+1 6= 0. Also, let Hn,R be drawn from the ensemble TZp

and let Ht
n,R denote the nt× nt principal minor of Hn,R. We examine the probability

that c is a codeword of Ht
n,R, i.e., P

(
Ht

n,Rc = 0
)
. Now, since cτ<t−d+1 = 0, Ht

n,Rc = 0

is equivalent to 
H1 0 . . . . . .

H2 H1 0 . . .
...

...
. . .

...

Hd Hd−1 . . . H1




ct−d+1

ct−d+2

...

ct

 =


0

0
...

0

 (4.13)

Note that (4.13) can be equivalently written as follows


Ct−d+1 0 . . . . . .

Ct−d+2 Ct−d+1 0 . . .
...

...
. . .

...

Ct Ct−1 . . . Ct−d+1




h1

h2

...

hd

 =


0

0
...

0

 (4.14)

where hi = vec(HT
i ), i.e., hi is a nn× 1 column obtained by stacking the columns of

HT
i one below the other, and Ci ∈ {0, 1}n×nn is obtained from ci as follows.

Ci =


cT
i 0 . . . . . .

0 cT
i 0 . . .

...
...

. . .
...

0 0 . . . cT
i

 (4.15)
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Since H1 is fixed, we will rewrite (4.14) as


Ct−d+1 0 . . . . . .

Ct−d+2 Ct−d+1 0 . . .
...

...
. . .

...

Ct−1 Ct−2 . . . Ct−d+1


︸ ︷︷ ︸

,C


h2

h3

...

hd


︸ ︷︷ ︸

,h

=


Ct−d+2

Ct−d+3

...

Ct

h1, Ct−d+1h1 = 0 (4.16)

Since ct−d+1 6= 0, Ct−d+1 has full rank n and consequently C has full rank (d − 1)n.

Since C is an (d− 1)n× (d− 1)nn matrix, its null space has dimension (d− 1)nn−

(d − 1)n. For (4.16) to hold, h must lie in an (d − 1)nn − (d − 1)n dimensional flat

which is contained in an (d−1)nn−(d−1)n+1 dimensional subspace. Using Lemma

4.9, we have

P (Ht
n,Rc = 0) ≤ (1− p)n(d−1)−1 (4.17)

=⇒ P
(
wmin,d < αnd

)
≤ (1− p)n(d−1)−1

∑
w′≤αnd

(
nd

w′

)
≤ (1− p)n(d−1)−12ndH(α)

= η2−nd((1−R) log2(1/(1−p))−H(α)) (4.18)

where η = (1− p)−n−1. Similarly,

P
(
Nw,d > 2θw

)
≤ 2−θwENw,d

≤ η2−θw

(
nd

w

)
(1− p)nd

≤ η2−nd(θw/nd−H(w/nd)+(1−R) log2(1/(1−p))) (4.19)

For convenience, define

δ1 = (1−R) log2(1/(1− p))−H(α)

δ2,w = θ
w

nd
−H

( w

nd

)
+ (1−R) log2(1/(1− p))
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We need to choose θ such that δ2,w > δ > 0 for all α ≤ w
nd
≤ 1. Now, define

θ∗ = max
x≥α

H(x)− (1−R)

x
(4.20)

Then for each θ > θ∗, there is a δ > 0 such that δ2,w > δ for all αnd ≤ w ≤ nd. A

simple calculation gives θ∗ = log2

(
1

21−R−1

)
. For such a choice of θ > θ∗, continuing

from (4.19), we have

P
(
∃αnd ≤ w ≤ nd 3 Nw,d > 2θw

)
≤ nd2−ndδ (4.21)

for some δ′ > 0. For some fixed do large enough, applying a union bound over d ≥ do

to (4.18) and (4.21), we get

P
(
∃ d ≥ do 3 wmin,d < αnd or Nw,d > 2θw

)
≤ 2−Ω(ndo) (4.22)

4.11.2 Proof of Theorem 4.3

The proof is by induction. Suppose Hn,R,T−1 has (α, θ, do)−anytime distance. Con-

struct Hn,R,T as follows.

Hn,R,T =



H11 0 . . . . . .

H21

... Hn,R,T−1

HT1


where H11 is chosen to be a full rank matrix and the entries of Hj1 ∈ {0, 1}n×n,

j ≥ 2, are drawn according to i.i.d Bernoulli(1
2
). We will show that if Hn,R,T−1 has

(α, θ, do)−anytime distance, then Hn,R,T will is also have (α, θ, do)−anytime distance

with a probability 1−2−Ω(ndo). Note that the probability is over the choice of {Hj1}Tj=1.

Let {wt
min,d, N

t
w,d}d≥do,t≤T be the weight distribution parameters associated to Hn,R,T .
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Since Hn,R,T−1 has (α, θ, do)−anytime distance, we have the following

wt
min,d ≥ αnd, ∀ do ≤ d ≤ t− 1, t ≥ do + 1

N t
w,d ≤ 2θw, ∀ w ≥ αnd, do ≤ d ≤ t− 1, t ≥ do + 1

Towards proving that Hn,R,T has (α, θ, do)−anytime distance, it remains to show the

following holds with a positive probability.

For t ≥ do, wt
min,t ≥ αnt, N t

w,t ≤ 2θw, ∀ w ≥ αnt (4.23)

Recall the notation from Table 4.1. Let c ∈ {0, 1}nt such that cτ<t−d+1 = 0 and

ct−d+1 6= 0, then it is easy to see that P
(
Ht

n,R,T c = 0
)

= 2−n(d−1). The rest of the

analysis follows exactly along the lines of the proof of Theorem 4.5 starting from

(4.17) with p = 1
2
. This gives the following result

P (Hn,R,T is bad|Hn,R,T−1 is good) =

P
(
{wt

min,d, N
t
w,d} do not satisfy (4.23)

)
≤ 1− 2−Ω(ndo)

In particular, there exists a choice of {Hj1}Tj=1 such that Hn,R,T has (α, θ, do)−anytime

distance, whenever Hn,R,T−1 has (α, θ, do)−anytime distance. For the inductive ar-

gument to be complete, one needs to prove that there exists a Hn,R,do that has

(α, θ, do)−anytime distance. This is already covered in the proof of the above in-

ductive step.
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Chapter 5

Efficient Decoding Over Erasure
Channels

5.1 Introduction

We have seen in Chapter 4 that tree codes under ML decoding are anytime reliable.

The complexity of performing ML decoding at any decoding instant t is exponentially

large in t which quickly becomes infeasible as t grows. The same was true of Shannon’s

noisy channel coding Theorem in [94] which required either typical set decoding or

maximum-likelihood decoding both of which required computation exponential in

the block length. An early and a very successful response to this problem was the

technique of sequential decoding introduced in the work of [28,47,48]. While the ML

decoder tries to find the most likely path in the coding tree by searching exhaustively,

the sequential decoder does so by searching only locally and hence performing far

fewer computations. The amount of computation performed by a sequential decoder

is stochastic and the average amount of computation per decoding instant is finite

if and only if the rate is smaller than the computational cutoff rate denoted by R0.

For a binary erasure channel with erasure probability ε, R0 is 1 − log(1 + ε). In

other words the computational savings afforded by the sequential decoder over the

ML decoder are meaningful only when the rate is smaller than R0. In particular, at

any decoding instant, the probability that one has to perform L computations decays

as L−γ and γ > 1 iff and only if the rate is smaller than R0. The authors in [76]
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observed that tree codes under sequential decoding are anytime reliable while [92]

also proposes a simple albeit suboptimal variant of a sequential decoder. Till date,

the sequential decoder is computationally the best known method for decoding tree

codes. In this chapter, we will exploit the linearity of the anytime reliable codes

discussed in Chapter 4 to propose an efficient ML decoder for the erasure channel. In

Section 5.4, we will propose an idea on how to construct efficiently decodable codes

for the binary symmetric channel.

5.2 Decoding Over the Binary Erasure Channel

Owing to the simplicity of the erasure channel, it is possible to come up with an

efficient way to perform maximum-likelihood decoding at each time step. Consider

an arbitrary decoding instant t, let c = [cT
1 , . . . , cT

t ]T be the transmitted codeword

and let z = [zT
1 , . . . , zT

t ]T denote the corresponding channel outputs. Recall that Ht
n,R

denotes the nt×nt leading principal minor of Hn,R. Let ze denote the erasures in z and

let He denote the columns of Ht
n,R that correspond to the positions of the erasures.

Also, let z̃e denote the unerased entries of z and let H̃e denote the columns of Ht
n,R

excluding He. So, we have the following parity check condition on ze, Heze = H̃ez̃e.

Since z̃e is known at the decoder, s , H̃ez̃e is known. Maximum-likelihood decoding

boils down to solving the linear equation Heze = s. Due to the lower triangular nature

of He, unlike the case of traditional block coding, this equation will typically not have

a unique solution, since He will typically not have full column rank. This is alright as

we are not interested in decoding the entire ze correctly, we only care about decoding

the earlier entries accurately. If ze = [zT
e,1, zT

e,2]
T , then ze,1 corresponds to the earlier

time instants while ze,2 corresponds to the latter time instants. The desired reliability

requires one to recover ze,1 with an exponentially smaller error probability than ze,2.

Since He is lower triangular, we can write Heze = s as He,11 0

He,21 He,22

 ze,1

ze,2

 =

 s1

s2

 (5.1)
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Let H⊥
e,22 denote the orthogonal complement of He,22, i.e., H⊥

e,22He,22 = 0. Then

multiplying both sides of (5.1) with diag(I, He,22), we get

 He,11

H⊥
e,22He,21

 ze,1 =

 s1

H⊥
e,22s2

 (5.2)

If [HT
e,11 (H⊥

e,22He,21)
T ]T has full column rank, then ze,1 can be recovered exactly. The

decoding algorithm now suggests itself, i.e., find the smallest possible He,22 such that

[HT
e,11 (H⊥

e,22He,21)
T ]T has full rank and it is outlined in Algorithm 3. Note that one

Algorithm 3 Decoder for the BEC

1. Suppose, at time t, the earliest uncorrected error is at a delay d. Identify ze

and He as defined above.

2. Starting with d′ = 1, 2, . . . , d, partition

ze = [zT
e,1 zT

e,2]
T and He =

[
He,11 0
He,21 He,22

]
where ze,2 correspond to the erased positions up to delay d′.

3. Check whether the matrix

[
He,11

H⊥
e,22He,21

]
has full column rank.

4. If so, solve for ze,1 in the system of equations[
He,11

H⊥
e,22He,21

]
ze,1 =

[
s1

H⊥
e,22s2

]
5. Increment t = t + 1 and continue.

can equivalently describe the decoding algorithm in terms of the generator matrix

and it will be very similar to Alg 3.

5.2.1 Encoding and Decoding Complexity

Consider the decoding instant t and suppose that the earliest uncorrected erasure is

at time t− d + 1. Then steps 2) and 3) in Algorithm 3 can be accomplished by just

reducing He into the appropriate row echelon form, which has complexity O
(
d3
)
. The
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earliest entry in ze is at time t−d+1 implies that it was not corrected at time t−1, the

probability of which is P e
d−1,t−1 ≤ η2−nβ(d−1). Hence, if nothing more had to be done,

the average decoding complexity would have been at most K
∑

d>0 d32−nβd which

is bounded and is independent of t. In particular, the probability of the decoding

complexity being Kd3 would have been at most η2−nβd. But, in order to actually solve

for ze,1 in step 4), one needs to compute the syndromes s1 and s2. It is easy to see that

the complexity of this operation increases linearly in time t. This is to be expected

since the code has infinite memory. A similar computational complexity also plagues

the encoder, for, the encoding operation at time t is described by ct = Gtb1+. . .+G1bt

where {bi} denote the source bits and hence becomes progressively hard with t.

We propose the following scheme to circumvent this problem in practice. We

allow the decoder to periodically, say at t = `(2T ) (` = 1, 2 . . .) for appropriately

chosen T , provide feedback to the encoder on the position of the earliest uncorrected

erasure which is, say at time t − d. The encoder can use this information to stop

encoding the source bits received prior to t − d, i.e., {bi} for i ≤ t − d − 1 starting

from time t+T . In other words, for τ > t+T , cτ = Gτ−t+d+2bt−d−1 + . . .+G1bτ . The

decoder accordingly uses the new generator matrix starting from t + T . In practice,

this translates to an arrangement where the decoder sends feedback at time t and

can be sure that the encoder receives it by time t + T . Such feedback, in the form of

acknowledgements from the receiver to the transmitter, is common to most packet-

based modern communication and networked systems for reasonable values of T . Note

that this form of feedback finds a middle ground between one extreme of having no

feedback at all and another extreme where every channel output is fed back to the

transmitter, the latter being impractical in most cases. The decoder proposed in Alg.

3 is easy to implement and its performance is simulated in Section 5.5.

5.2.2 Extension to Packet Erasures

The encoding and decoding algorithms presented so far have been developed for the

case of bit erasures. But it is not difficult to see that the techniques generalize to the
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case of packet erasures. For example, for a packet length L, what was one bit earlier

will now be a block of L bits. Each binary entry in the encoding/parity check matrix

will now be an L×L binary matrix. The rate will remain the same. So, at each time,

k packets each of length L will be encoded to n packets each of the same length L.

Recall that the anytime performance of the code is determined by the delay-

dependent codebook Ct,d and its distance distribution {N t
w,d}nd

w=1. In the case of

packet erasures, one can obtain analogous results by defining the Hamming distance

of a codeword slightly differently. By viewing a codeword as a collection of packets,

define its Hamming distance to be the number of non-zero packets. The definition of

the delay-dependent distance distribution {N t
w,d} will change accordingly. With this

modification, one can easily apply the results developed in Sections 4.6, 4.7 and the

decoding algorithm in Section 5.2 above to the case of packet erasures. For example,

a reasonably simple calculation will show that a rate exponent pair (R, β) that is

achievable in the case of binary erasures with bit erasure probability ε will be achiev-

able in the case of packet erasures with packet length L and packet erasure probability

εL. The converse is not true though and we will not delve into the calculations here.

Here we envision the anytime code operating on top of the existing packet com-

munication layer. One can alternately consider an alternate mode where the input

to the encoder is not packetized. That is, at each time, the encoder receives K bits,

say, where K is not necessarily a multiple of L and uses a linear tree code to map

these K bits to N bits where N is a multiple of L and corresponds to N/L packets.

The rate of this code is K/N and each block in the block lower triangular generator

matrix corresponding to the tree code will have dimension N ×K. The analysis will

be no different in this case.

5.3 Decoding Over the Binary Symmetric Channel

We will first discuss a natural algorithm to sequentially perform maximum-likelihood

decoding for a tree code [92]. We will then speculate on how this may be extended

to the case of the binary symmetric channel.
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5.3.1 A Sequential Decoder

Consider decoding an m−ary tree code over alphabet S and distance parameter α,

over a discrete memoryless channel with input and output alphabet S. Suppose

that the channel introduces an error with probability ε, i.e., the probability that the

channel reproduces the input at the output is 1 − ε. Further suppose that ε < α/2.

Let r = (r1, . . . , rt) denote the received word till time t. Let ĉτ denote the decoder’s

estimate of the input to the channel at time τ using channel outputs till time t− 1.

Also let ĉML
τ |t denote the corresponding ML estimate using channel ouputs received till

time t. Under the channel model assumed, maximum-likelihood estimation amounts

to minimum-distance decoding, i.e.,

ĉML
1:t|t = argmin

c∈C
‖r − c‖

. One can supply a simple certificate to verify if ĉτ = ĉML
τ |t .

Proposition 5.1. If ‖ĉ1:t − r‖ < αt/2, then ĉ1|t = ĉML
1|t

Proof. Note that

‖ĉML
1:t|t − r‖ ≤ ‖ĉ1:t − r‖ <

αt

2

Suppose on the contrary that ĉ1 6= ĉML
1|t . Then by the tree code property

‖ĉ1:t − ĉML
1:t|t‖ ≥ αt

So we have

‖ĉ1:t|t − r‖ = ‖ĉ1:t − ĉML
1:t|t + ĉML

1:t|t − r| ≥ ‖ĉ1:t − ĉML
1:t|t‖ − ‖ĉML

1:t|t − r‖ ≥ αt

2

which is a contradiction. Hence ĉ1 = ĉML
1|t .

Similarly if ‖ĉ1:t|t − r‖ < αt/2 and ‖ĉ1:t|t − r2:t‖ < α(t− 1)/2, then ĉ1 = ĉML
1|t and

ĉ2 = ĉML
2|t . One can proceed like this until the first instant τ when ‖ĉτ+1:t − rτ+1:t‖ ≥
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α(t− τ)/2. We will state this as a lemma for easy reference.

Lemma 5.2. Let

τ = argmax
i

{
‖ĉi:t − ri:t‖ <

α(t− i + 1)

2

}

Then ĉi = ĉML
i|t for all 1 ≤ i ≤ τ

With this observation, we are ready to describe the sequential decoder. Suppose

the decoder has computed the ML estimate ĉML
1:t−1|t−1 using channel outputs till time

t− 1. Extend ĉML
1:t−1|t−1 by one symbol arbitrarily to get a valid guess ĉ1:t, i.e., ĉ1:t =[

ĉML
1:t−1|t−1, ĉt|t−1

]
is a codeword. Use Lemma 5.2 to determine the longest prefix of ĉ1:t

that can be verified to match the ML codeword and let the length of this prefix be τ ,

i.e., ĉML
1:τ |t = ĉ1:τ . The remaining portion, ĉML

τ+1:t, can be determined by an exhaustive

search in the subtree of depth t− τ that is rooted at the node in the code tree that

is indexed by the prefix ĉML
1:τ |t.

5.3.2 Complexity

The total number of the operations performed at time t is equal to the sum of the

numbers to perform the following two tasks

1. Determining the longest prefix as in Lemma 5.2, and

2. Exhaustive search in the sub-tree

[92] shows how to perform 1) with a constant number of operations per time step.

The complexity of 2) is O
(
mt−τ

)
since the code tree is m−ary. Now

‖ĉτ+1:t − rτ+1:t‖ ≥
α(t− τ)

2
=⇒ ‖ĉML

τ+1:t−1|t−1 − rτ+1:t−1‖ ≥
α

2
(t− τ)− 1
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The probability of this event is at most 2−(t−τ−1)D(α/2,ε). The average complexity is

bounded above by

∑
`≥1

2−`D(α
2

,ε)m`

which is finite provided D(α/2, ε) > log m. One can guarantee this for small-enough

rates. The more general sequential decoding algorithms in [28,47,48] guarantee finite

average complexity for rates upto to the computational cutoff rate. One can rephrase

the complexity distribution as follows: the probability of having to perform L opera-

tions decays as L−γ for some γ > 0. For small-enough rates γ > 1 which is when the

average complexity is bounded. The same technique would apply to the linear tree

codes also but linearity allows one to improve the complexity distribution to have

a tail that decays as 2−Ω( 3√L) over erasure channels which is better than any poly-

nomial decay and performs very well in practice. Moreover the average complexity

is bounded for all rates up to the channel capacity. With this background, we will

speculate an approach to construct codes with similar complexity distribution over

the binary symmetric channel.

5.4 Can Linear Programming Decoding Be Any-

time Reliable?

We will briefly recap the fundamentals of the linear programming decoder proposed

in [30] before suggesting a possible sequential approach for the causal case. Consider

an arbitrary binary block code of length n and rate R = k/n described by a parity

check matrix H ∈ GFn−k×n
2 . Let C = {c ∈ GFn

2 |Hc = 0} and let r ∈ GFn
2 be the

vector received upon transmitting the zero codeword over a binary symmetric channel



107

with bit flip probability ε. Then the ML codeword is given by

ĉML = argmax
c∈C

p(r|c) = argmax
c∈C

∑
i

log p(ri|ci)

= argmax
c∈C

∑
i

log p(ri|ci)− log p(ri|0)

= argmin
c∈C

∑
i

[
log

p(ri|0)

p(ri|1)

]
ci

= argmin
c∈C

∑
i

γici, where

γi =

 1, ri = 0

−1, ri = 1

One can equivalently optimize the linear objective
∑

γici over the convex hull of C

which we denote with conv(C). conv(C) is also referred to as the codeword polytope

and is contained inside the n−dimensional hypercube [0, 1]n, and includes exactly

those vertices of the hypercube which are codewords. This relaxation gives the fol-

lowing linear program

ĉML = argmin
f∈conv(C)

n∑
i=1

γifi (5.3)

So the ML codeword can be computed in principle using the linear program in (5.3).

Even though one can express ML decoding as a linear program, one cannot solve it

efficiently because one needs exponentially many linear inequalities to describe the

polytope conv(C). Moreover it will be miraculous if the linear program (5.3) could be

solved efficiently since it is well known that ML decoding is NP-hard in general [12].

Feldman and his colleagues propose a natural relaxation to (5.3) in [30] and in [29]

prove that there exist codes which under the relaxed LP can correct a constant fraction

of errors. We will now describe this relaxation. The code C is described by the n− k

parity check equations each corresponding to a row of the parity check matrix H.

Let Ci be the set of n-bit words that satisfy the ith parity check equation. Then
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C = ∩n
i=1Ci and the following is obvious

conv(C) = conv (∩n
i=1Ci) ⊆

n⋂
i=1

conv(Ci) , PH (5.4)

PH is called the fundamental polytope and it contains the codeword polytope inside it.

Every codeword is a vertex of PH but PH has additional vertices which are commonly

referred to as pseudocodewords. Equation (5.4) suggests the following relaxation to

(5.3)

f̂LP = argmin
f∈PH

∑
γifi (5.5)

The motivation for the relaxation (5.5) is that when H is a low density parity check

(LDPC, e.g., [32]) matrix, the number of inequalities required to describe PH is linear

in the block length n [30]. As a result, the LP in (5.5) can be solved in O
(
n3
)

time.

We will need the following standard definition (e.g., [106]) before proceeding fur-

ther

Definition 5.1. The BSC pseudoweight, ‖.‖bsc, of a nonnegative n−dimensional vec-

tor f is defined as follows. Sort f is decreasing order of magnitude as f (1) ≥ . . . ≥

f (n). Then

‖f‖bsc = 2 max

{
j

∣∣∣∣∣∑
i≤j

f (i) <
∑
i>j

f (i)

}

Let KH denote the conic hull of PH . Then the minimum pseudoweight, ωmin, is defined

as

ωmin = min
f∈KH

‖f‖bsc (5.6)

To see why this definition is meaningful, assume that the zero codeword was trans-

mitted (this is without loss of generality as proved in [30]). Then (5.5) is equivalent
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to

f̂LP = argmin
f∈KH

∑
γifi (5.7)

Recall that γi = −1 if the channel flips the ith bit and γi = 1 otherwise. Suppose the

channel flipped fewer than ωmin/2 bits, then
∑

γifi =
∑

i:γi=1 fi −
∑

i:γi=−1 fi which

is strictly positive since |{i : γi = −1}| ≤ ωmin/2. As a result, f̂i = 0 for all 1 ≤ i ≤ n

is the unique minimum of (5.7) and hence the codeword is recovered correctly. So,

ωmin characterizes the number of worst case bit flips that the code can correct.

5.4.1 Sufficient Conditions

The minimum pseudoweight to LP decoding is what minimum Hamming distance

is to ML decoding. If ωmin = αn, then the LP decoder will give an error exponent

whenever ε < α/2 much the same way as the ML decoder would if the minimum

Hamming distance is linearly proportional to the block length. This correspondence

between Hamming distance for ML decoding and ωmin for LP decoding and the fact

that there exist linear block codes with ωmin = αn (e.g., [29]) leads us to wonder if it

is possible to construct causal linear codes with pseudoweight that increases linearly

with delay. Recall that the n(1−R)t× nt block triangular parity check matrix Ht
n,R

describes the causal code till time t (e.g., Table 4.1). Let P t
H denote the fundamental

polytope of Ht
n,R and Kt

H the conic hull of P t
H . Also define

ωt
min,d = min

{
‖f‖bsc

∣∣ f ∈ Kt
H , ft−d+1 6= 0

}
This definition is analogous to the definition of wt

min,d in Chapter 4 where we discussed

sufficient conditions on anytime distance for a causal linear code to be anytime reliable

under ML decoding.

Then the following property will ensure that the code is anytime reliable under

LP decoding.

Property 1. The delay-dependent minimum pseudoweight is linearly propoertional
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to delay, i.e.,

ωt
min,d = αnd, ∀ t, d ≥ d0 (5.8)

where d0 is a constant independent of t and d.

Note that if one performs LP decoding at every time step, then it easy to see that

Property 1 guarantees anytime reliability whenever the channel bit flip probability

ε is smaller than α/2. So Property 1 is a sufficient condition for anytime reliability

under LP. As mentioned earlier, there exists linear block codes with ωmin linearly

proportional to the block length [29]. Extending this to the causal case and more

importantly determining if it is even possible seems to be a challenging problem.

The complexity of performing LP at decoding instant t is O
(
t3
)

and hence is not

sustainable if the time horizon is large. In the context of distributed control, the

time horizon of operation is, in principle, infinite. So for LP decoding to be plausible,

we need to be able to perform it in such a way as to at least guarantee a constant

average complexity at any decoding instant. Carrying the correspondence between

ML decoding and LP decoding even further, it is natural to wonder if LP can be

performed sequentially much the same way as ML could be as shown in Section

5.3.1. The key to performing ML sequentially is Lemma 5.2. We will need a similar

certificate for the LP optimality of a pseudocodeword. Note that the linear program

in (5.5) can be equivalently written as

f̂LP
t|t = argmin

f∈Pt
H

‖r − f‖1 (5.9)

Central to Lemma 5.2 is a lower bound on the Hamming distance between any two

codewords (i.e., the tree code property). Similarly, the sequential algorithm in Section

5.3.1 will extend to the LP case trivially if there is a similar lower bound on the

`1−distance between any two pseudocodewords. We state it more precisely as follows

Property 2. Let f , f ′ be any two distinct pseudocodewords (i.e., distinct vertices of
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the fundamental polytope P t
H). Then the following is true

‖f − f ′‖1 ≥ βn(t− τ)

where τ + 1 is the earliest instant where they disagree, i.e., τ + 1 = argmini{fi 6= f ′i}.

If a causal linear code satisfies both Property 1 and Property 2, then it is anytime

reliable under LP decoding. Furthermore, one can perform the LP sequentially in

which case the probability of performing L computations at any time will decay1

as 2−Ω( 3√L). It is a challenging open problem to examine if codes satisfies the two

properties exist.

In the next Section, we present some simulations to demonstrate the efficacy of

Toeplitz codes over the erasure channel.

5.5 Simulations

We present two examples and stabilize them over a binary erasure channel with

erasure probability ε = 0.3. The number of channel uses per measurement is fixed

to n = 15. In both cases, time invariant codes H15,R ∈ TZ 1
2
, for an appropriate rate

R, were randomly generated and decoded using Algorithm 3. The controller uses the

Hypercuboidal filter to estimate the state.

5.5.1 Cart-Stick Balancer

The system parameters for a cart-stick balancer (also commonly called the inverted

pendulum on a cart) with state variables of stick angle, stick angular velocity, and

1Note that this is modulo the partial feedback of the form assumed in Section 5.2.1 that one may
need
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cart velocity, when sampled with sampling duration 0.1s are (Exercise 10.15 in [31])

F =


1.161 0.105 0

3.3 1.161 0.002

−3.265 −0.160 0.979

 , G = [−0.003 − 0.068 0.859]T , H = [10 0 0]

The characteristic polynomial of F is x3 − 3.3x2 + 3.27x − 0.98 and its eigenvalues

are 1.75, 0.98 and 0.57. So, F is open-loop unstable. Each component of the process

noise and measurement noise is i.i.d zero mean Gaussian with variance 0.01 truncated

to lie in [-0.025,0.025]. The control input is given by ut = −Kx̂t|t, where K =

[−81.55 − 14.37 − 0.04]. One can verify that F −GK is stable. In order to apply

Theorem 3.1, we write F in the following canonical form

Fo =


3.3 1 0

−3.27 0 1

0.98 0 0


Applying Theorem 3.1, one can stabilize xt in the mean-squared sense provided the ex-

ponent nβ > 2 log
(
ρ
(
Fo

))
= 4.1035 and the rate nR = k > log (3.3 + 3.27 + 0.98) =

2.1. For k = 5, there exist anytime reliable codes with exponent upto nβ = 4.27.

Figure 5.1 plots a sample path of the above system for a randomly chosen Toeplitz

code. It is clear from Figure 5.1(b) that the plant is stabilized.

5.5.2 Rate Vs. Exponent Trade-Off

This example is aimed at exploring the trade-Off between the resolution of the quan-

tizer and the error performance of the causal code. Consider a 3-dimensional unstable

system (3.4) with

F =


2 1 0

0.25 0 1

−0.5 0 0
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Figure 5.1: A sample path

G = I3 and H = [100]. Each component of wt and vt is generated i.i.d N(0, 1)

and truncated to [-2.5,2.5]. The eigenvalues of F are {2,−0.5, 0.5} while λ(F ) =

2.215. The observer has access to the control inputs and we use the hypercuboidal

filter outlined in Section 3.9.1. Using Theorem 3.1, the minimum required bits and

exponent are given by k = nR ≥ 2 and nβ ≥ 2 log2 2.215 = 2.29. The control input

is ut = −x̂t|t−1. For k ≤ 7, nβ ≥ 2.32. If k = 8, nβ = 1.32 < 2.29. For each value of

k ranging from 3 to 7, 1000 codes were generated from the ensemble TZ 1
2
. For each

code, the system was simulated over a horizon of 100 time instants and the LQR cost

has been averaged over 100 such runs. For a time horizon T , the LQR cost is defined

as 1
2T

∑T
t=0 E (‖xt‖2 + ‖ut‖2). In Figure 5.2(a), the cumulative distribution function

of the LQR cost is plotted for 3 ≤ k ≤ 7. The x−axis denotes the proportion of

codes for which the LQR cost is below a prescribed value, e.g., with k = 6, n = 15,

the cost was less than 15 for 85% of the codes while with k = 5, n = 15, this fraction

increases to more than 95%. The competition between the rate and the exponent in

determining the LQR cost is evident when we look at Figure 5.2(b). When k = 3,

the error exponent nβ = 6.3 is large. So, at any time t, the decoder decodes all the

source bits {bτ}τ≤t−1 with a high probability. Hence, the limiting factor on the LQR

cost is the resolution that the source bits bt provide on the measurements. But when

k = 7, the measurements are quantized to a high resolution but the decoder makes

errors in decoding the source bits. So, the best choice appears to be k = 5.
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Figure 5.2: The best choice of the rate is R = 5/15 = 0.33
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Chapter 6

Simulating Protocols Over Erasure
Networks

6.1 Background

We have seen in previous chapters how tree codes can be used in the context of

distributed control to stabilize unstable processes over noisy channels. We have also

discussed how tree codes were used to obtain an interactive analogue of Shannon’s

noisy channel coding theorem in [92]. The results in [92] were extended to the case

of arbitrary graphs in [79] where the authors showed that tree codes can be used to

simulate protocols over a group of agents connected to each other through an arbitrary

directed communication graph with noisy links. They showed that one can simulate

protocols with T rounds in time O
(
T log(∆+1)+T log N

)
with a probability of error

that vanishes exponentially fast in T , where N is the number of nodes and ∆ is the

maximum degree. The results were presented for the case where the noisy channels

were binary symmetric channels. The focus was on achieving exponentially small

error probability while suffering a constant slowdown and attention was not paid to

the size of the constants.

As recognized by the authors in [79], a major challenge in applying the techniques

in practice was the lack of efficiently encodable and decodable constructions of tree

codes. While this remains an open problem for general communication channels, we

have efficient constructions for the erasure channel as discussed in Chapters 4 and



116

5. The erasure case allows a considerably simpler algorithm for simulating protocols.

Together with the thresholds on achievable rate and exponent for linear Toeplitz codes

from Chapter 4, we can obtain a tighter characterization of simulating protocols over

erasure channels. We will apply these results to the problem of computing averages

over graphs in Chapter 7.

6.2 Problem Setup

Consider a group of N nodes denoted by N = {1, 2, . . . , N}. We assume that the

nodes are connected by an undirected communication graph G = (N , E) which is

often referred to as the interaction graph. Throughout the analysis G is assumed

to be fixed and not vary with time. Let A = [aij] denote the adjacency matrix of

G, i.e., aij = 1 if (i, j) ∈ E and 0 otherwise. We assume that the communication

between nodes is packetized. A generic protocol over such a network of agents can

be described as follows. A round of the protocol is one where every pair of neighbors

exchanges one packet. Let xij
t denote the packet sent by node j to node i in round

t and let Ni denote the neighbors of node i. Then in round t + 1, the packet sent

by node i to a neighbor j′, xj′i
t+1, is a function (either deterministic or random) of the

packets {xij
τ≤t}j∈Ni

received by node i from its neighbors up to round t. Each such

round is referred to as an iteration of the protocol. Even though we treat undirected

graphs here, the results trivially extend to digraphs.

We model the communication links between nodes as packet erasure links. We

denote the event of successful packet reception from node j to node i at time k with

the Bernoulli random variable X ij
k , i.e., X ij

k = 1 if the packet is received successfully

at time k and 0 otherwise. This notation is summarized in Table 6.1. We consider

two erasure models

1. Symmetric: X ij
k = X ij

k , and X ij
k , Xm`

k are independent of each other whenever

(i, j) /∈ {(m, `), (`, m)}, e.g., line of sight links.

2. Asymmetric: X ij
k , Xm`

k are independent of each other whenever (i, j) 6= (m, `),
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Table 6.1: Notation for Chapter 6

‖y‖, y ∈ RN

√∑N
i=1 y2

i , i.e., the two norm of y

N = {1, 2, . . . , N} the set of nodes
G = (N , E) the underlying communication graph

A = [aij] the adjacency matrix of G, i.e.,
aij = 1 if (i, j) ∈ E and 0 otherwise

Ni the set of neighbors of node i, i.e.,
Ni = {j′|aij′ = 1}

∆ largest degree of any vertex in G
p packet erasure probability

X ij
k 1 if the packet sent from node j to

node i at time k is successfully
received and 0 o.w

D(p, q) p log p
q

+ (1− p) log 1−p
1−q

i.e., Kullbeck Leibler divergence
between Bernoulli(p) and
Bernoulli(q)

in particular X ij
k and Xji

k are independent, e.g., wireless links.

6.3 Symmetric Link Failures

Note that the underlying interaction graph G is fixed while each link is modeled as

a packet erasure channel. The graph G is assumed to be connected and the links

are undirected. If all agents know that link failures are symmetric, then each link

is effectively a packet erasure channel with feedback. In each communication round,

node i would know that its packet transmission to node j is erased if it receives an

erasure from node j in the same round. We now define the communication protocol.

6.3.1 Protocol Implementation

A communication round is defined as one in which every node in the graph transmits

one packet to each of its neighbors. The nodes are said to have completed m iterations

if all of them successfully computed m iterations of the protocol. Note that this will
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in general take more than m communication rounds. Since each link is effectively an

erasure channel with feedback, the optimal communication scheme at each node is to

retransmit until successful reception. We describe this more precisely as follows. Let

e denote an erasure. For each edge j → i, we associate an input queue, Qij
in, and an

output queue, Qij
out. Qij

in,t contains the packets transmitted by node j to node i up to

and including communication round t while Qij
out,t contains the packets received by

node i from node j (e.g., Figure 6.3.1).

Also let bij
t denote the packet transmitted by node j to node i in communication

round t and let zij
t denote the received packet. Then

zij
t =

 bij
t w.p 1− p

e w.p p
(6.1)

Now if zji
t = e, then node j infers that bij

t was erased and hence retransmits it in

the next communication round unless bij
t was a ‘wait’ symbol which we describe as

follows. We say that a node i has ‘new data’ if it could compute one or more new

iterations of the protocol. During communication rounds where node j does not have

any new data to transmit, it transmits a wait symbol which we denote with w. The

transmission from node i to node j in round t is described in Algorithm 4.

Algorithm 4 Node i’s transmission to node j in round t

1: if zji
t−1 = e and bji

t−1 6= w then

2: bji
t = bji

t−1, i.e., retransmit
3: else
4: For each j′ ∈ Ni, let `t,j′ = max{`′ | xij′

`′ ∈ Qij′

out,t}
5: Compute `t = minj′∈Ni

`t,j′

6: if `t = `t−1 + 1 then
7: Compute xji

`t+1 using the protocol and set bji
t = xji

`t+1 (note that `t ≤ `t−1 +1)
for all j ∈ Ni

8: else
9: (i.e., `t = `t−1) set bji

t = w
10: end if
11: end if

The algorithm is illustrated through an example in Figure 6.1. Using such an
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algorithm, we have the following result.

Theorem 6.1. Let PM,R′ denote the probability that the network requires more than

M communication rounds to compute MR′ iterations of the protocol. Further suppose

that the packet erasure probability is p and that erasures are symmetric. Then

PM,R′ ≤ N2−M(D(1−R′,p)−log(∆+1)) (6.2)

In particular, whenever R′ satisfies

D(1−R′, p) > log(∆ + 1) (6.3)

PM,R′ decays exponentially fast in M . Recall that ∆ the maximum degree.

Proof. See Appendix 6.6.1.

The statement of Theorem 6.1 suggests a natural definition of the rate of the

simulation (i.e., Algorithm 4), Rs(p), as follows

Rs(p) = sup
{

R′ > 0 | lim
M→∞

PM,R′ = 0
}

(6.4)

Then Theorem 6.1 can be rephrased as Rs(p) ≥ R(p), where

R(p) , sup
R′≥0
{R′ | D(1−R′, p) > log(∆ + 1)} (6.5)

The proof technique is inspired by the technique used in [79]. We use the simpler

erasure model of communication to improve upon the thresholds one can obtain by

directly applying the technique in [79].

Note that that R(p) > 0 if and only if p < 1/(1 + ∆). This means that the proof

technique used here does not allow us to prove successful protocol simulation if the

erasure probability is larger than 1/(1 + ∆). We can demonstrate how to overcome

this. In fact, one can show that simulation will be successful with high probability

for all 0 ≤ p ≤ 1, we will state the result as follows.
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Theorem 6.2. Let PM,R′ denote the probability that the network requires more than

M communication rounds to compute MR′ iterations of the protocol. Further suppose

that the packet erasure probability is p and that erasures are symmetric. Then

PM,R′ ≤ N2−MD(R′,(1−p)|E|) (6.6)

In particular, whenever R′ satisfies

R′ < (1− p)|E| (6.7)

PM,R′ decays exponentially fast in M . Recall that N is the number of nodes and |E|

is the number of edges in the network.

Proof. See Appendix 6.6.3

Theorem 6.2 is equivalent to Rs(p) ≥ (1 − p)|E|. Putting the Theorems 6.1 and

6.2 together, we have

Rs(p) ≥ max
{
R(p), (1− p)|E|

}
(6.8)

The lower bounds on Rs(p) obtained in Theorems 6.1 and 6.2 are qualitatively very

different. While the latter depends on the number of edges, the former depends only

the degree of the graph. It will be interesting to unify the proof techniques for the

two Theorems to get a single tight lower bound on Rs(p), better even compute it.

6.4 Asymmetric Link Failures and Tree Codes

Now suppose packet erasures are not symmetric. Then a repetition code is not appli-

cable because a node does not know if its transmissions were decoded successfully or

not. Here, we will need to use tree codes. In Section 6.2, we assumed that an iteration

of the protocol corresponds to every pair of nodes exchanging one packet each. In

general, it could be more than one packet, say it is k. We will encode it using a tree
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Figure 6.1: Consider an instance of the queues at node i. Suppose its only neighbors
are nodes 1 and 2. In round 2, node i receives an erasure from node 2 and infers
that its own transmission to node 2 must also have been erased. As a result, node
i retransmits xi

1 to node 2 in round 3. Similarly in round 3, node i knows that its
transmission to node 1 was erased. Since the erased symbol was only a ‘wait’, node i
does not retransmit it in round 4. Instead, it checks if it can perform another iteration
of the protocol. In this case, it can and hence transmits the new data xi

2 to node
1. In round 5, node i does not have any new data to transmit to node 2 and hence
transmits a ‘wait’.

Qij
in,t

Qij
out,t ij

Thursday, April 26, 2012

Figure 6.2: Input and Output queues on an edge
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code to output n packets at each time (e.g., Section 5.2.2). Let the packet length be

Λ. The rate of the code is r = k/n. Here, one round of communication corresponds

to every pair of neighbors exchanging n packets each. Then under the asymmetric

erasure model, node i does not known which of the n transmitted packets have been

received by each of its neighbors in each communication round.

Consider the pair of nodes i, j and let bji
t denote the tth information packet destined

to node j from node i. Then the data actually transmitted by node i is given by

cji
` =

∑̀
`′=1

G`′b
ji
`′ (6.9)

Suppose that the code is (r, β, do)−anytime reliable so that we have P (b̂ji
`′|` 6= bji

`′ ) ≤

2−nΛβ(`−`′) for all ` − `′ ≥ do. We will further assume that do = 0. This does not

change the results qualitatively and will comment on its effect in Section 6.4.1. Let

the unnormalized exponent be β′ = nΛβ.

Since the channel is an erasure channel, the maximum-likelihood decoder amounts

to solving linear equations. This can be done recursively and efficiently as shown in

Chapter 5. Whenever the equations admit a unique solution to some of the variables,

those variables are correctly decoded. We leave the remaining variables as erasures

and do not venture a guess about their value. As a result, the decoder always knows

whenever it decodes something correctly.

6.4.1 Protocol Implementation

Like the case of repetition coding for symmetric erasures, for each link j → i, we

associate two queues Qij
in,t and Qij

out,t although with a slightly different meaning. The

queue Qij
in,t contains all the information packets transmitted by node j to node i

till round t. In other words, Qij
in,t = {bij

τ }τ≤t. On the other hand, Qij
out,t are node

i’s estimates of the information packets transmitted by node j so far, i.e., Qij
out,t =

{b̂ij
τ |t}τ≤t. With this setup, the mechanics of the protocol is very simple and is outlined

in Algorithm 5.
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Algorithm 5 Node i’s transmission to its neighbors in round t

1: For each j′ ∈ Ni, compute `t,j′ = max{`′ | xij′

`′ ∈ Qij′

out,t} and let `t = minj′∈Ni
`t,j′

2: Also compute mt,j′ = max{m′ | xj′i
m′ ∈ Qj′i

in,t} and let mt = minj′∈Ni
mt,j′

3: if `t + 1 > mt−1 then
4: Compute xji

mt−1+1 using the protocol and set bji
t = xji

mt−1+1 for all j ∈ Ni

5: else
6: set bji

t = w for all j ∈ Ni

7: end if

We can now compute bounds on the slowdown of the above simulation algorithm

and we state it as the following theorem.

Theorem 6.3. Let PM,R′ denote the probability that the network requires more than

M communication rounds to compute MR′ iterations of the protocol. Further suppose

that the packet erasure probability is p and that erasures are asymmetric. Suppose each

node uses a (R, β)−anytime reliable code. Then

PM,R′ ≤ N2
−M

“
(1−R′)β′

2
−H(R′)−log(∆+1)

”
(6.10)

In particular, whenever R′ satisfies

(1−R′)β′/2 > H(R′) + log(∆ + 1) (6.11)

PM,R′ decays exponentially fast in M .

Proof. See Appendix 6.6.2

Recall that r is the rate of tree code used. Then analogous to (6.4), we can define

the rate of the simulation described in Algorithm 5, Ra(r, p), as follows

Ra(r, p) = sup
{

R′ > 0
∣∣∣ lim

M→∞
PM,R′ = 0

}
(6.12)

where PM,R′ is as defined in Theorem 6.3. The Theorem is then equivalent to Ra(p) ≥
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ρ(r, p) where

ρ(r, p) , sup
R′≥0
{R′ | (1−R′)β′/2 > H(R′) + log(∆ + 1)} (6.13)

Note that the notation ρ(r, p) is justified because β′ is a function of the code rate

r. Then much like Section 6.3, it is easy to see that ρ(r, p) > 0 if and only if

β′ > 2 log(1+∆). Recall that β′ = nΛβ. So we can guarantee nΛβ > 2 log(1+∆) by

choosing an appropriately large n. It is interesting to note that much like in control,

it appears that we need a large enough exponent β′ in order to be able to simulate

protocols with a constant slowdown. Although it is not clear that this is necessary.

We had earlier assumed that we are given an (r, β, do)−anytime reliable code for

do = 0. A positive do affects the slowdown only by a constant factor. In other words,

Theorem 6.3 goes through by re-defining PM,R′ as the probability that the network

requires more than M communication rounds to compute MR′/do iterations of the

protocol. So, almost any code in the Toeplitz ensemble will guarantee successful simu-

lation with exponentially small error probability while suffering a constant slowdown.

The effect of do is then to reduce the simulation rate by a factor 1/do.

6.4.2 Comparison to Literature

The only point of comparison to the this type of result is the analysis in [79] which

deals with the binary symmetric channel. The proof technique there also applies to

the erasure case but the resulting bounds, as we will briefly argue, will be weaker1

than what was obtained in Theorem 6.3. For simplicity, consider the case when

the communication channels between nodes are binary erasure links with erasure

probability p. Also suppose that each communication round consists of exchanging n

bits between every pair of neighbors and that the rate of the tree code used at every

node is r. We will state here without proof that in such a setup the technique in [79]

1We must note though that this comparison is not completely fair since the erasure channel being
a simpler model than the binary symmetric channel admits tighter analysis.
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gives the following lower bound, ρS(r, p), on Ra(r, p)

ρS(r, p) = sup
R′>0

{
R′
∣∣∣∣ n2D

(
H−1(1− r), p

)
− log(∆ + 1) >

H(R′) + log(∆ + 1)

(1−R′)

}
(6.14)

The corresponding lower bound for the analysis presented here is

ρ(r, p) = sup
R′>0

{
R′
∣∣∣ (1−R′)

n

2
β > H(R′) + log(∆ + 1)

}
(6.15)

One can use Theorem 4.8 to compute β as a function of r and observe that the

resulting expression for β satisfies

β > D
(
H−1(1− r), p

)
which from (6.14) and (6.15) implies that ρ(r, p) > ρS(r, p).

6.4.3 Code Rate Vs Simulation Rate

Note that Ra(r, p) is the slowdown in the number of rounds of communication and

does not take into account the length of each round. Due to coding, the length of each

communication round is now larger due to the larger number of packets exchanged.

More precisely, the total number of packets exchanged in order to simulate T iterations

of the protocol when there is coding is approximately nT/Ra(r, p). On the other hand,

when communication is noiseless, T iterations requires exchanging nrT packets. The

overall slowdown, Rc(r, p), of this simulation is then given by

Rc(r, p) = rRa(r, p) (6.16)

A lower bound on Rc(r, p) is given by Rc(r, p) ≥ rρ(r, p). As r increases, it is easy

to see that ρ(r, p) decreases. In practice, one should choose a rate r that maximises

Rc(r, p). Given that we only have lower bounds on Rc(r, p), we can choose the rate

r that maximizes rρ(r, p). This trade-off is very similar to the trade-off between the
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Figure 6.3: Trade-Off between code rate and overall simulation rate

rate and exponent observed in the context of coding for control (e.g., Section 3.7.2).

We will demonstrate through a simple simulation. Consider the binary erasure case

(i.e., packet length Λ = 1) with k = 10 and a graph with maximum degree ∆ = 31.

Then the rate r can be adjusted by changing n. For a given erasure probability p, the

rate r that maximizes rρ(r, p), denote r∗(p), is numerically computed and the results

are plotted in Figure 6.4.3. The trade-off between coding rate and simulation rate is

clear in Figure 6.4.3 which plots rρ(r, 0.3) as a function of r.

6.5 Summary

Motivated by the availability of efficiently decodable linear tree codes, we considered

the problem of simulating protocols over erasure networks. We considered two erasure

models, symmetric (e.g., line of sight) and asymmetric (e.g., wireless). Symmetric and

asymmetric erasure models correspond to erasure channels with and without feedback

respectively. We use repetition codes in the symmetric case and tree codes in the

asymmetric case to simulate protocols with an exponentially small error probability

in the protocol length while suffering a constant slowdown, which we call the rate of

the simulation. We obtain novel lower bounds on the rate of the simulation and argue

that they improve upon those in the literature. We also comment on the trade-off
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between the rate of the tree code and the rate of the simulation and note that it is

very similar to the trade-off between the rate and exponent in the context of control.

In the next Chapter, we apply the simulation algorithms developed and studied here

to the problem of average consensus.
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6.6 Appendices

6.6.1 Proof of Theorem 6.1

We will begin by identifying the state of the protocol in Algorithm 4. For the sake

of clarity, we will refer to nodes using letters u, v, etc., instead of i, j. Recall that Nv

denotes the set of neighbors of v. For each node v at time t (i.e., after round t), we

associate |Nv| variables {nvu(t)}u∈Nv , where nvu(t) denotes the latest iterate of node

u that is available to node v at time t. In other words, nvu(t) is the largest integer τ

such that xvu
τ is available to node v. We further define

nv(t) , 1 + min
u∈Nv

nvu(t) (6.17)

Note that nv(t) is the latest iteration of the protocol that node v can compute at

time t. In other words, node v has computed {xuv
τ }τ≤nv(t) for all u ∈ Nv and no

more. With this setup, it is clear that Algorithm 4 would have executed minv nv(t)

iterations of the protocol till time t. Note that the rate of the protocol is then given

by R = limt→∞
minvnv(t)

t
, which is a random variable for a specific run of the protocol.

We now state the evolution of nvu(t) as a lemma below.

Lemma 6.4. Let Xvu
t = 1 if the edge (v, u) is erased in round t and 0 otherwise.

Then the evolution of nvu(t) is given by the following equation

nvu(t + 1) = nvu(t) + Xvu
t+11[nu(t)>nvu(t)] (6.18)

Proof. The proof follows from the following simple observations

1. nvu(t) increases by at most 1 in each step

2. In any round, if node u receives an erasure on a link, it will infer that its

transmission on that link was also erased. As a result, node u has knowledge of

nvu(t) at all times t
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3. In round t + 1, if either the edge (v, u) is erased or node u sends a w to node v,

then nvu(t + 1) = nvu(t)

4. Node u sends a ‘wait’ w to node v in round t + 1 if and only if nvu(t) = nu(t).

.

We say that round t got wasted at node v if nv(t− 1) = nv(t), i.e., node v could

not perform a new iteration of the protocol at time t. The proof idea is as follows: for

each node v at time t, we will argue that there exists a sequence of t edges of which

at least t− nv(t) edges have failed. We then union bound over all possible choices of

such t edges.

Before proceeding further, we define an object which we call the ‘trellis’, for lack

of a better word. Associated to any undirected graph G = (V , E) represented by

the adjacency matrix A, we define an infinite trellis T (G) = (VT , ET ) as follows.

Associated to each node v in V , there are countably infinitely many copies {k}k≥0 in

VT . Let I denote a |V| × |V| identity matrix. Then the nodes VT and edges ET of

T (G) are given by

VT =
⋃
v∈V

⋃
k≥0

{vk} (6.19a)

ET = {(vτ , uτ ′) | |τ − τ ′| = 1, (A + I)vu = 1} (6.19b)

The edges in ET are all undirected, i.e., (u0, v1) and (v1, u0) are treated as a single

edge. The trellis for an example network is given in Figure 6.4.

Definition 6.1 (time-like). Any sequence of edges (or a path), St, in the trellis T (G)

of the type

St =
{

(vt, u
(t−1)
t−1 ), (u

(t−1)
t−1 , u

(t−2)
t−2 ), . . . , (u

(1)
1 , u

(0)
0 )
}

will be called ‘time-like’ ending in node vt
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An edge (u
(τ)
τ , u

(τ−1)
τ−1 ) ∈ ET is said to be erased if there was an erasure on the edge

(u(τ), u(τ−1)) ∈ E in round τ . The time-like sequence St is said to have ` erasures if

` of the t edges in St were erased. We are now ready to state the key lemma from

which the proof of Theorem 6.1 follows easily.

Lemma 6.5. If after t rounds of communication, node v has performed nv(t) itera-

tions of the protocol, then there exists a time-like sequence of t edges ending in node

vt that have at least t− nv(t) erasures among them.

We will first prove Theorem 6.1 using Lemma 6.5. Suppose after t communication

rounds, node v performed Rt iterations of the protocol, for some R < 1 − p. Recall

that the probability of an erasure is p. Then there must be a time-like sequence of

t edges with at least (1 − R)t erasures, the probability of which is approximately

2−tD(1−R,p), where D(q, p) = q log(q/p) + (1 − q)log(1 − q/1 − p). Now there are at

most (∆ + 1)t choices of such time-like sequences. Then, doing a union bound over

all these sequences and over all nodes, we get

PR,t ≤ N(∆ + 1)t2−tD(1−R,p) (6.20)

where PR,t is the probability that the network performed Rt or fewer iterations of the

protocol in t rounds and N is the number of nodes in the network. This is the claim

in Theorem 6.1. We will now prove the lemma.

Proof of Lemma 6.5. For ease of presentation, we will introduce the following nota-

tion in the rest of the proof.

a) we will refer to any time-like sequence of τ edges ending in vτ that has τ − nv(τ)

or more erasures as a “witness” at vτ .

b) We will call a node u ∈ Nv a “bottleneck” for node v in round t iff nvu(t − 1) =

nv(t− 1)− 1, i.e., nvu(t− 1) = minu′∈Nvnvu′(t− 1).

The lemma claims that there is a witness at vt for all v ∈ V and t ≥ 0. We will

prove this by induction. The hypothesis is clearly true for t = 0. Suppose it is true



131

for all nodes v ∈ V and all τ ≤ t − 1. Recall that we say that round t at node v is

wasted only if nv(t − 1) = nv(t). There are two broad cases, round t gets wasted at

node v or it does not.

1) Suppose round t is not wasted, i.e., nv(t) = nv(t− 1) + 1. Then by the induction

hypothesis, there is a witness at vt−1. Appending the edge (vt−1, vt) to this witness

gives us a witness for vt.

2) It remains to consider the case where round t gets wasted at node v, i.e., nv(t) =

nv(t− 1).

We will divide case 2) above into two subcases: a) ∃ a u ∈ Nv s.t nu(t − 1) =

nv(t− 1)− 1 and b) such a neighbor does not exist.

a) If there is a neighbor u ∈ Nv such that nu(t− 1) = nv(t− 1)− 1, then the witness

for vt is obtained by appending the edge (vt, ut−1) to the witness at ut−1.

b) Here nu(t − 1) ≥ nv(t − 1) for all u ∈ Nv. Since |nu(τ) − nv(τ)| ≤ 1 for any τ ,

we can partition the neighbors of v into two classes Y = {u ∈ Nv | nu(t − 1) =

nv(t − 1)} and Z = {u ∈ Nv | nu(t − 1) = nv(t − 1) + 1}. Furthermore, let

B = {u ∈ Nv | nvu(t− 1) = nv(t− 1)− 1} denote the bottlenecks for v in round t.

We will further divide case b) above into two subcases: i) B ∩ Z = ∅ and ii)

B ∩ Z 6= ∅

i) B ∩ Z = ∅, i.e., there are no bottlenecks in the set of neighbors Z. Observe

that a bottleneck neighbor will not send a wait w. Also for any u ∈ B ∩ Y ,

nvu(t− 1) = nv(t− 1)− 1 = nu(t− 1)− 1. So, the data transmitted by node u to

node v in round t is xvu
nu(t), i.e., iteration nu(t) of the protocol. Since round t at

node v got wasted, at least one of the edges to a bottleneck neighbor must have

been erased in round t. Otherwise, node v would have been able to compute a

new iteration of the protocol and the round would not have been wasted. Suppose

the erasure happened on edge (v, u) for some u ∈ B ∩ Y . Then appending edge

(vt, ut−1) to the witness at ut−1 will give us the witness at vt.
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(b) Trellis associated to the network in (a)

Figure 6.4: This depicts the trellis associated to a network of three nodes connected
in a straight line. The thick lines represent edges.

ii) B ∩Z 6= ∅, i.e., there is a neighbor u ∈ B ∩Z such that nu(t− 1) = nv(t− 1) + 1

and nvu(t − 1) = nv(t − 1) − 1 = nu(t − 1) − 2. Furthermore, there must be a

neighbor u ∈ B ∩ Z whose transmission to v in round t must have been erased

(else there must be an edge to B ∩ Y which was erased and we revert back to

case i)). Note that nu(t− 2) ≥ nv(t− 1). It follows from Lemma 6.4 that node u

must have transmitted iteration nv(t− 1) in round t− 1 as well as round t and

both were erased since nvu(t) = nvu(t − 1) = nv(t − 1) − 1. Since this erasure

model considers symmetric erasures, the transmission from v to u in round t− 2

is also erased. Appending the edges (vt, ut−1) and (ut−1, vt−2) to the witness at

vt−2 gives us the witness for vt.

This completes the proof of Lemma 6.5.
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6.6.2 Proof of Theorem 6.3

We will begin the proof with three preliminary results before moving to the main

argument. Recall that an (R, β)−anytime reliable code is one that guarantees

P
(
b̂τ |t 6= bτ

)
≤ 2−nΛβ(t−τ+1)

where n is the number of packets transmitted in each communication round and Λ

is the packet length. To avoid clutter, we define β′ = nΛβ. For such a code that is

linear, we can say the following.

Lemma 6.6. Suppose {bi}i≥0 are encoded and decoded using a causal linear

(R, β)−anytime reliable code. Consider the following events

Y (τ ′1, τ1) : τ ′1 = 1 + argmax
`
{b̂`|τ1 = b`}

Y (τ ′2, τ2) : τ ′2 = 1 + argmax
`
{b̂`|τ2 = b`}

i.e., Y (τ ′i , τi) is the event that at decoding instant τi, the position of the earliest error

is at τ ′i for i = 1, 2. Furthermore, suppose that the intervals [τ ′1, τ1] and [τ ′2, τ2] are

disjoint. Then we have

P (Y (τ ′1, τ1) ∩ Y (τ ′2, τ2)) ≤ 2−β′(|τ1−τ ′1+1|+|τ2−τ ′2+1|) (6.21)

The probability above is only over the randomness of the channel.

Proof. Without loss of generality, assume that τ ′2 > τ1. Due to linearity, we can

assume without losing generality that the input bi = 0 for i ≥ 0. Let Ei denote the

portion of the erasure pattern introduced by the channel during the interval [τ ′i , τi]

that resulted in the event Y (τ ′i , τi). Then, we claim that P (Ei) ≤ 2−β′|τi−τ ′i+1|. This

follows from the simple observation that if the encoder input in the first τi − τ ′i + 1

instants is all zero and the corresponding channel erasure pattern is Ei, then Y (τ ′i , τi)

implies that at the decoding instant τi − τ ′i , the earliest error would have happened

at time 0, the probability of which is at most 2−β′|τi−τ ′i+1|.
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Since the intervals [τ ′1, τ1] and [τ ′2, τ2] are disjoint, the erasure patterns E1 and E2

correspond to independent channel uses. So we have

P (Y (τ ′1, τ1) ∩ Y (τ ′2, τ2)) ≤ P (E1, E2) = P (E1)P (E2)

The result now follows.

For ease of presentation, we introduce the following definition

Definition 6.2 (Error Interval). With respect to the notation in Lemma 6.6, we refer

to the interval [τ ′i , τi] as the error at time τi.

Before proceeding with the rest of the proof, we will recall a lemma from [92] and

state it here for easy reference.

Lemma 6.7 (Lemma 7, [92]). In any finite set of intervals on the real line whose

union J is of total length s there is a subset of disjoint intervals whose union is of

total length at least s/2

We will now state a version of Lemma 6.6 when the error intervals are not neces-

sarily disjoint.

Lemma 6.8. If {bi}i≥0 are encoded and decoded using a causal linear

(R, β)−anytime reliable code, then

P
(
b̂τ ′1|τ1 6= bτ ′1

, . . . , b̂τ ′m|τm 6= bτ ′m

)
≤ 2−

β′(
P

i |τi−τ ′i+1|)
2

Proof. The proof follows directly from Lemma 6.6 and Lemma 6.7.

We use an argument very similar to the one used in proving Theorem 6.1. We will

define a trellis ~T (G) exactly the same way we defined T (G) except that the edges ~ET
are now directed and they point forward in time, i.e., downwards w.r.t to the Figure

6.4(b). In other words, for neighbors (u, v) ∈ V , the edge (vt, ut−1) is directed from

node ut−1 to node vt and represents the transmission from u to v in round t.
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Recall the definition of a time-like sequence of edges, St, from Definition 6.1. Let

St =
{

(u
(t)
t , u

(t−1)
t−1 ), (u

(t−1)
t−1 , u

(t−2)
t−2 ), . . . , (u

(1)
1 , u

(0)
0 )
}

Let Bτ be the error interval at decoding instant τ on the edge node (u(τ), u(τ−1)) ∈ E .

We alternately call Bτ the error interval on the edge (u
(τ)
τ , u

(τ−1)
τ−1 ) ∈ ~ET . Then we

define |St| as follows

|St| =
∑

(v,u)∈E

|Bvu|, where (6.22)

Bvu =
⋃

τ :(u(τ),u(τ−1))=(v,u)

Bτ (6.23)

This definition is motivated by the fact that the packet erasure events during an error

interval on a given edge, say (v, u) ∈ E , are independent of those in an error interval

on a different edge (v′, u′) 6= (v, u) in any round of communication. So, intuitively

|St| captures the number of independent “bad” channel realizations seen by the edges

in St. In what follows, we will show a connection between the number of wasted

communication rounds at the node ut and the number |St|.

A witness at node vt is a time-like sequence of edges St such that |S| ≥ t− nv(t).

In Lemma 6.9, we will demonstrate a witness for vt for all v ∈ V and t ≥ 0. The

technique is very similar to the proof of Lemma 6.5 and hence we will only provide

a sketch of the proof. After that we will use Lemma 6.8 to prove that P (t− nv(t) ≥

m) ≤ (∆ + 1)t
(

t
m

)
2−mβ′/2 for any v ∈ V .

Lemma 6.9. If after t rounds of communication, node v has performed nv(t) itera-

tions of the protocol, then there exists a time-like sequence, St of t edges in ~ET ending

in node vt with |St| > t− nv(t)

Proof. The proof is obtained by repeating the same argument as in the proof of

Lemma 6.5 with the word ‘erasure’ replaced with the word ‘tree code error’. The

only case that needs a little bit of clarification is case 2-b-ii, i.e., round t is wasted

at node v and B ∩ Z 6= ∅, where B and Z retain the same meaning as before. In



136

this case, as before, there is a neighbor u ∈ Nv such that nvu(t) = nu(t − 1) − 2.

From Algorithm 5, it is clear that node the information xu
nu(t−1)−1 was encoded and

transmitted by node u to node v in round t−1 or before. Therefore, the error interval

on the edge (vt, ut−1) ∈ ~ET contains the interval [t − 1, t]. Let the witness at node

ut−1 be St−1,u. Append the edge (vt, ut−1) to St−1,u to get a new time-like sequence

which we call St,v. We claim that St,v is a witness at vt. This proof of this claim

follows from the following observations

1. When applying Lemma 6.8, we only to care about error intervals on the same

edge at different times

2. The edge (v, u) appears in the time-like sequence St,v for round t and hence, it

can possibly appear again only in St,v in round t− 2 or earlier. So, the length

of the union of the error intervals on the edges (vτ , uτ−1) ∈ St−1,u increases by

at least 2 with the addition of the edge (vt, ut−1). Hence we have

|St,v| ≥ |St−1,u|+ 2 ≥ t− 1− nu(t− 1) = t− nv(t)

This completes the proof.

Putting together Lemma 6.9 and Lemma 6.8, we have

P (t− nv(t) ≥ m) ≤ (∆ + 1)t

(
t

m

)
2−β′m/2

This completes the proof.

6.6.3 Proof of Theorem 6.2

The bound (1− p)|E| is intuitively motivated by the following observation, in a given

round of communication, (1−p)|E| is the probability that none of the edges are erased.

As a result one would expect the fraction of communication rounds in which nodes

can perform an iteration of the protocol to be approximately (1 − p)|E|. The above

observation alone would not render a proof because successful communication could
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also mean that a node received only ‘waits’ from its neighbors and hence could not

compute an iteration of the protocol. The proof idea is simple but conveying it

requires some setup. Let W(t)
uv denote the event where node v transmits a ‘wait’ to

node u in round t. We introduce the following definition

Definition 6.3. Consider nodes v, u, u′ such that u ∈ Nv and u′ ∈ Nu. Also suppose

that node v transmits a ‘wait’ to node u in round τ and node u transmits a ‘wait’ to

node u′ in round τ + 1, i.e., events W(τ)
uv and W

(τ+1)
u′u happen. Then W(τ)

uv is said to

have caused W
(τ+1)
u′u if both the following conditions hold

(a) nu(τ − 1) = 1 + nuv(τ − 1)

(b) nu′u(τ) = nu(τ)

To understand the definition, observe that condition (a) implies that node v is a

bottleneck node for node u in round τ and condition (b) implies that node u′ already

knows nu(τ) after round τ . Node u could not perform a new iteration in round τ

since it received a ‘wait’ from a bottleneck node (in this case v) and hence sent a

‘wait’ to node u′. So, it is natural to blame W(τ)
uv for W

(τ+1)
u′u . Note that Definition

6.3 is further justified by the observation that a ‘wait’ in round τ will either have an

effect in round τ + 1 or will never. Also note that Definition 6.3 can be extended to

more than two waits by having conditions (a) and (b) hold for every pair of successive

‘wait’ events.

With that, we are now ready to state the main lemma. The lemma essentially

implies that ‘waits’ do not loop in the network. In other words, if in round τ a node v

transmits a ‘wait’, then this ‘wait’ will not cause the same node v to transmit another

‘wait’ in a future round τ ′ > τ .

Lemma 6.10 (‘Waits’ do not loop). Consider the sequence of events {W(τ+i−1)
ui+1ui

}`i=1

such that W(τ+i−1)
ui+1ui

is caused by W(τ+i−2)
uiui−1

for all 2 ≤ i ≤ `. Then the nodes {ui}`i=1

are all distinct.

Proof. Node u1 sent a ‘wait’ to node u2 in round τ implies that nu1(τ−1) = nu2u1(τ−

1). Furthermore, since W(τ+1)
u3u2

is caused by W(τ)
u2u1

, conditions (a) and (b) in Definition
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6.3 apply. In particular, condition (a) together with the first observation gives nu2(τ−

1) = nu1(τ − 1) + 1. Since node u2 could not perform a new iteration of the protocol,

we have nu2(τ) = nu2(τ − 1) = nu1(τ − 1) + 1. Repeating this argument for the

remaining nodes, we get

nui+1
(τ + i− 1) = nui

(τi − 2), ∀ 1 ≤ i ≤ ` (6.24)

Now suppose the nodes {ui}`i=1 are not all distinct. In particular, suppose u` = u1.

Then from (6.24), we have nu1(τ+`−2) = nu`
(τ+`−2) = `−1+nu1(τ−1) which is not

possible since nu1(.) can increment by at most 1 in each round and nu1(τ) = nu1(τ−1).

One will similarly arrive at a contradiction if any other node repeats in {ui}`i=1.

The implication of Lemma 6.10 is clear. If a node v sends a ‘wait’ in round τ to

any of its neighbors, then this ‘wait’ will not by itself stop node v from performing

an iteration of the protocol in a future round.

We are now ready to provide the main argument. Let d(v, u) denote the length

of the shortest path from node u to node v. So, if v ∈ Nu, then d(v, u) = 1 and

d(v, v) = 0. Let the diameter of the graph be δ, i.e., δ = maxu,v∈V d(v, u). And for

an edge euu′ ≡ (u, u′) ∈ E , we define

d(v, euu′) = min{d(v, u), d(v, u′)}

Let E (i)
v , {e ∈ E | d(v, e) = i}. In view of Lemma 6.10, it is not difficult to see that

an erasure on an edge in E (i)
v in round τ will have an effect (if any) at node v only in

round τ + i. Let Ai,τ denote the event that there is an erasure on an edge in E (i)
v in

round τ . Then for τ ≥ δ, it is easy to see that ∩δ
i=0A

c
i,τ−i implies that the round τ at

node v is not wasted, i.e., node v can compute an iteration of the protocol. In other

words

P (nv(τ) = nv(τ − 1)) ≤ 1− P

(
δ⋂

i=0

Ac
i,τ−i

)
= 1− (1− p)|E|
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Due to the erasure model, note that the even Ai,τ is independent of Ai′,τ ′ for (i, τ) 6=

(i′, τ ′). Let

Xτ = 1[nv(τ)=nv(τ−1)], Yτ = 1[∪δ
i=0Ai,τ−i]

Then from the above argument Xτ = 1 implies Yτ = 1 and {Yτ} are independent

Bernoulli random variables. Note that P (Yτ = 1) ≤ 1 − (1 − p)|E|. Let R′ = nv(t)
t

,

then we have

P (t− nv(t) = m) = P

(
t∑

τ=0

Xτ = m

)
≤ P

(
t∑

τ=0

Yτ ≥ m

)
≤ 2−tD(1−R′,1−(1−p)|E|)

= 2−tD(R′,(1−p)|E|)

The last inequality follows from a standard Chernoff bounding technique and is true

whenever R′ < (1− p)|E|. Union bounding over all nodes v ∈ V , we have

P (∃ v ∈ V 3 nv(t) ≤ R′t) ≤ N2−tD(R′,(1−p)|E|)

This completes the proof.
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Chapter 7

Application to Consensus Over
Erasure Channels

7.1 Introduction

In a network of agents, consensus refers to the process of achieving agreement be-

tween the agents in a distributed manner. Consensus problems, and in particular the

problem of reaching consensus on the average of the values of the agents, have been

around for a while and are often used to serve as a test case for studying distributed

computation and decision making between a group of nodes/processors/dynamical

systems [46, 73, 74, 102, 103, 107]. Most of the work in this area assumes that the

agents are connected via a fixed underlying graph or network. In many applications,

however, the links in the underlying graph are noisy or unreliable. In the context

of consensus problems, the unreliability of communication links between nodes has

been traditionally modeled by allowing the underlying graph to vary with time. In

other words, at each time instant some of the links are allowed to be erased, and

depending on the realization of the link erasures, the underlying graph at each time

instant is assumed to be a subgraph of the original graph. Furthermore, the dis-

tributed algorithm for reaching consensus remains unchanged: the same distributed

averaging algorithm is used, except that only the information received at each time

is used. An important assumption that is implicitly made in this model is that the

erasures are symmetric: if at time t the packet from node i to node j is dropped, the
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same is true for the packet transmitted from node j to node i. In practical wireless

communication systems this assumption is patently unreasonable: the additive noise

at the two nodes are independent and, furthermore, communication in the two direc-

tions occurs at either different times or over different frequency bands. If standard

averaging protocols are performed, this loss of symmetry can prohibit the network

from reaching consensus to the true average (standard consensus protocols require

that the “update” matrix be doubly stochastic, something that cannot be guaranteed

in the asymmetric case).

The goal of this Chapter is to explore the use of channel coding to improve the

performance of consensus algorithms, especially in the asymmetric case. For asym-

metric erasures we show that tree codes can be used to simulate the performance of

the original unerased graph. Thus, unlike conventional consensus methods, we can

guarantee convergence to the average in the asymmetric case. As expected, the price

is a slowdown in the convergence rate, relative to the convergence rate of the unerased

network. Nonetheless, the slowdown is still often faster than the convergence rate of

conventional consensus algorithms over erasure links.

7.2 Background

For a fixed communication graph G, a typical algorithm to achieve consensus is of the

following form.

xi
k+1 = wiix

i
k +

∑
j

wijx
j
k (7.1)

W obeys the underlying graph, i.e., for i 6= j, Wij = 0 if (i, j) /∈ E . In other words,

each node updates its value by taking a weighted sum of its own previous value with

those of its neighbors. In short, the equation can be written as

xk+1 = Wxk (7.2)
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Such an algorithm is said to achieve consensus if

lim
k→∞

xi
k = x0 ,

1

N

∑
j

xj
0 (7.3)

In such a static setup where the weights and the underlying interaction graph does

not change with time, it is clear that consensus is achieved if and only if

lim
k→∞

W k =
1

N
11T (7.4)

Further (7.4) holds if and only if the following conditions hold (e.g., [112])

1. W is doubly stochastic, i.e.,

1T W = 1T , W1 = 1 (7.5)

2. ρ
(
W − 1

N
11T

)
< 1

where ρ(.) is the spectral radius. Note that xk = W kx0. Under the above conditions,

xk → 1
N
11T xo = x0ones. The convergence rate, µ(W ), of the above consensus

algorithm is formally defined as

µ(W ) = sup
xo 6=x01

lim
k→∞

[
‖xk − x01‖
‖xo − x01‖

] 1
k

(7.6)

and is given by µ(W ) = ρ
(
W − 1

N
11T

)
. There is a considerable amount of work

that explores different choices of W and how it affects the rate of convergence of the

consensus algorithm (e.g., [112]).

For ease of exposition, we use a specific but natural choice of W (e.g., [74]) given

by W = I− εL, where L is the Laplacian of the interaction graph G, i.e., L = D−A.

D = diag{∆i} where ∆i is the degree of node i. Let 0 = λN(L) ≤ λN−1(L) ≤ . . . ≤

λ1(L) denote the eigenvalues of L. The multiplicity of the zero eigen value is the

number of connected components in the graph and λN−1(L) > 0 if and only if the

graph is connected.
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Table 7.1: Notation for Chapter 7

xi
0 the initial value at node i

x0 column of xi
0’s

x0 the initial average, i.e., 1
N
1T x0

ρ(.) spectral radius of a matrix
A ◦B Hadamard product,i.e.,

(A ◦B)ij = AijBij

A⊗B Kronecker product

For such a choice of W , the spectral radius is given by ρ(W − 1
N
11T ) = max{1−

ελN−1(L), ελ1(L)− 1}. We state this as a lemma for later reference.

Lemma 7.1. The convergence rate, µ, of (7.1) with W = I − εL is

µ = max{1− ελN−1(L), ελ1(L)− 1} (7.7)

So, the conditions 1) and 2) above are satisfied if and only if ε < 2
λ1(L)

. Further-

more, the convergence rate µ is maximized when the two quantities in (7.7) coincide,

i.e., when

ε = ε∗ =
2

λ1(L) + λN−1(L)
(7.8)

In particular, any ε < 1/∆ will work where ∆ = maxi ∆i. We remark that the results

presented here are independent of the choice of the weight matrix W . Whenever we

wish to write closed form expressions for the convergence rates, we use the specific

choice W = I − ε∗L for simplicity.

Note that aii = 0. Let xi
0 denote the initial value at node i. The objective is for the

nodes to compute the global average r = 1
N
1T x0, where 1 denotes an N -dimensional

column of ones and x0 is the column vector of the xi
0’s.
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7.2.1 Noisy Links

In practice, the communication links between nodes can be unreliable. Convention-

ally, this has been taken into account by allowing the interaction topology to change

with time. So, at time k, the connectivity between nodes is described by the graph

Gk where Gk can now vary with time. There is a considerable amount of literature

on the problem of achieving consensus under such time varying interaction topolo-

gies [17, 41,69,73,107].

The literature on consensus over time varying topologies only captures the sym-

metric case. Even though, consensus under very general conditions has been estab-

lished, not much appears to be available by way of the rate of convergence. Under

the asymmetric erasure model, the resulting interaction graph is effectively directed.

An edge between node i and j is replaced by a pair of directed edges. The effective

graph at any time depends on the packets that were erased in that round. Under

this setup, we define the adjacency matrix A = [aij] and the Laplacian L as follows;

aij = 1 if (i ← j) ∈ E and L = D − A with D = diag{∆i} and ∆i =
∑

j aij. The

resulting adjacency matrix and the Laplacian are not symmetric in general. As a

result, they are not doubly stochastic either, i.e., 1TL 6= 1T . When the graph G is

directed, (Olfati-Saber Murray 2007) prove that average consensus is achieved using a

fixed W = I− εL if and only if the interaction graph G is balanced, i.e., the in-degree

of each node is equal to its out degree [73]. But when the link failures are random,

the resulting interaction graph will generally not be balanced at every time step and

average consensus cannot be achieved.

Achieving average consensus can be naturally viewed as an instance of interactive

protocols over graphs. So we can simulate it over noisy links using tree codes as

described in Algorithm 5 in Chapter 6.

Before proceeding further, it is important to note that the simulation algorithm of

Chapter 6 is universal. Concomitant with this universality is that it may be an overkill

for specific instances of interactive protocols such as averaging. While Algorithm 5

will exactly simulate every iteration of the average consensus protocol, this may not
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be necessary in order to achieve average consensus. It is conceivable that a simulation

algorithm that allows mistakes will achieve average consensus faster than a universal

algorithm such as Algorithm 5. This is not a focus of the current Chapter.

7.3 Coding Vs. No Coding

When there are erasures and when there is no coding, an iteration of the consensus

algorithm at node i is given by

xi
k+1 = xi

k − ε
∑

j

aijX
ij
k (xi

k − xj
k) (7.9)

The effective adjacency matrix at time k is then Ak = A◦Xk, where Xk = [X ij
k ]. The

associated Laplacian is Lk = Dk − Ak where Di
k =

∑
j Aij

k =
∑

j aijX
ij
k .

To study the effect of coding we need to distinguish between the symmetric and

asymmetric erasure models. When the erasures are symmetric, i.e., when X ij
k = Xji

k ,

this means that node i (respectively, node j) knows what node j (respectively, i)

has received. For example, if node i successfully received a packet from node j, it

knows that node j also successfully received the packet intended for it; alternately if

node i receives an erasure from node j, it knows that the packet intended for node j

was also erased. In this case, the links between the different nodes are erasure links

with feedback (where the transmitter knows what the receiver receives). For erasure

links with feedback the optimal coding scheme on each link is retransmission, i.e.,

the transmitter retransmits its packet until it is received at the receiver. When the

erasures are not symmetric, one needs the more sophisticated tree codes.

7.3.1 Symmetric Erasures

The recursion (7.9) can written as xk+1 = (I − εLk)xk. The convergence rate of this

recursion when erasures are symmetric is given by the following lemma.

Lemma 7.2 (Symmetric Erasures). When the erasures are symmetric and i.i.d over
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time and space, the convergence rate of (7.9), µs
c which we define as

µs
c = sup

xo 6=x01
lim
k→∞

[
E‖xk − x01‖2

‖xo − x01‖2

] 1
2k

(7.10)

is given by

µs
c =

√
λ2(Γs) (7.11)

where Γs = E(I − εL0) ⊗ (I − εL0) is a deterministic matrix that is a function of

ε, p,L and can be computed explicitly in closed form. The subscript c indicates that

there is no coding and the subscript s in Γs is because the erasures are symmetric

Proof. See Appendix 7.4.1.

In this case, note that even without coding, the nodes achieve average consensus

albeit at a slower rate depending on the erasure probability p.

Now consider using repetition coding. To understand the rationale behind even

considering repetition coding, recall that the recursion (7.9) can be written as xk+1 =

(I − εLk)xk. Take expectation on both sides to get xk+1 = (I − εL)xk where the

bar indicates that they are expected values1. Since the link erasure probability is p,

L = I − ε(1 − p)L. Suppose ε = ε∗ as in (7.8). Then using Lemma 7.1, the rate of

convergence of xk to x01 can be calculated as

µ = max
{
1− ελN−1(L), ελ1(L)− 1

}
(7.12)

= max {1− ε(1− p)λN−1(L), ε(1− p)λ1(L)− 1} (7.13)

=
λ1(L)− λN−1(L)

λ1(L) + λN−1(L)
+

2pλN−1

λ1(L) + λN−1(L)
(7.14)

= µ +
2pλN−1

λ1(L) + λN−1(L)
(7.15)

where µ is the rate of convergence of the consensus protocol on the unerased graph.

Clearly µ > µ. Moreover the rate of convergence of xk to x01 is even slower (as

1this is inconsistent with the notation x0 which is a deterministic scalar but should not cause
any confusion
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compared to xk converging to x01). Since the repetition code simulates consensus

over the unerased graph whose convergence rate is µ, it can potentially result in

faster convergence if the overhead due to repetition is not too high.

Using Theorems 6.1 and 6.2, we can determine the convergence rate, µs
c, of con-

sensus using the repetition code (i.e., Algorithm 4) and it is given by

µs
c ≤ min{µR(p), µ(1−p)|E|} (7.16)

µ is defined in (7.7). The superscript and subscript in µs
c denote that it is the con-

vergence rate with coding under symmetric erasures. So, whenever µs
c < µs

c, coding

offers an advantage. In practice though, the computational overhead of doing repeti-

tion coding would probably far outweigh any benefits of being able to reach consensus

faster. The more interesting and relevant case is when erasures are asymmetric in

which there is no recourse coding.

7.3.2 Asymmetric Erasures

Since X ij
k and Xji

k are independent, they are not equal in general. Note that Lk1 = 1

but 1TLk 6= 1T in general which violates (7.5). Furthermore, the associated graph is

not balanced2 either, i.e.,
∑

j aijX
ij
k 6=

∑
i ajiX

ji
k , in general. In this case, the nodes

will not achieve average consensus. But under very mild conditions, it is well known

that the nodes achieve an agreement, i.e., xk → Y 1 where Y is a random variable

that does not necessarily concentrate around the initial average r. Nevertheless the

nodes reach agreement and we will characterize the rate of convergence below. But

tree codes allow us to simulate the original recursions, i.e., (7.1), and hence guarantee

asymptotic average consensus. Here, we characterize the mean-squared error of the

state from average consensus when no error correction is used.

Lemma 7.3 (Asymmetric Erasures). When the erasures are asymmetric and i.i.d

2A graph is said to be balanced if for every node in-degree is equal to out-degree.
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over time and space, we have

E‖xk − x01‖2 = (xo − x01)T ⊗ (xo − x01)T Γk
avec(I) (7.17)

Here I is an N ×N identity matrix and

Γa = E(I − εLT
0 )⊗ (I − εLT

0 ) (7.18)

where Γa is a deterministic matrix that is a function of ε, p,L and can be computed

explicitly in closed form. Furthermore ρ(Γa) = 1.

Proof. See Appendix 7.4.2.

Note that 1T Γa = 1T but Γa1 6= 1. Let c, ‖c‖ = 1 be the right eigen vector

of Γa corresponding to eigen value 1, i.e., Γac = c. Then, it is easy to see that

limk→∞ Γk
a = 1

N
c1T . Using this in (7.17), we get

lim
k→∞

E‖xk − x01‖2 = (xo − x01)T ⊗ (xo − x01)T c (7.19)

This proves that one cannot achieve average consensus without coding when link

failures are asymmetric. So, a major benefit of using tree codes in such cases is

to guarantee average consensus. Note that we ignore quantization effects which is

justified by the packet sizes used in practice. We can easily compute the rate of

convergence of the consensus protocol when tree codes are used. Recall that the

overall rate of the simulation protocol (i.e., Algorithm 5) is at least rρ(r, p) where r

is the rate of the tree code, p is the probability of packet erasure and ρ(r, p) is defined

in (6.13) as

ρ(r, p) , sup
R′≥0
{R′ | (1−R′)β′/2 > H(R′) + log(∆ + 1)}

The effective rate of convergence to average consensus achieved by using tree codes

is no worse than µrρ(r,p).
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7.3.3 A Simulation

We will perform a simple simulation to demonstrate the effectiveness of tree codes in

achieving average consensus and achieving it quickly. We will use a graph of 20 nodes

connected in a straight line as depicted in Fig 7.3.3. The packet length is 16. When

there is no coding, nodes exchange one packet each in every communication round.

For coding, we generate a random code from the Toeplitz ensemble (e.g., Chapter 4)

with rate 1/5, i.e., every packet is mapped to 5 packets and a communication round

now consists of exchanging these 5 packets between every pair of rounds. Each node

is initialized randomly with 0 or 1. Sample trajectories of the values at every node in

the graph are plotted in Figure 7.3.3. The plot clearly illustrates the fact that nodes

do not achieve average consensus without coding while they do with tree codes.
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Figure 7.1: One needs coding to achieve average consensus when packet erasures are
asymmetric
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7.4 Appendices

7.4.1 Proof of Lemma 7.2

Note that Lk1 = 0 whether or not the erasures are symmetric. Recall that r = 1
N
1T x0.

xk − x01 = (I − εLk−1)(xk−1 − x01) (7.20a)

xk − x01 = (7.20b)

(I − εLk−1)(I − εLk−2) . . . (I − εL0)︸ ︷︷ ︸
,Yk

(x0 − x01) (7.20c)

E‖xk − x01‖2 = (x0 − x01)T EY T
k Yk(x0 − x01)

= (x0 − x01)T ⊗ (x0 − x01)T vec(Pk) (7.21)

where Pk = EY T
k Yk. Recall that the erasure process is independent over time and

across links. Then we have

Pk = E(I − εLT
0 )Pk−1(I − εL0) (7.22a)

vec(Pk) = Γsvec(Pk−1), where (7.22b)

Γs = E(I − εLT
0 )⊗ (I − εLT

0 ) (7.22c)

Since erasures are symmetric, LT
0 = L0. Furthermore, we have vec(Pk) = Γk

svec(I),

where I is an N ×N identity matrix. Putting (7.21) and (7.22) together, we get

E‖xk − x01‖2 = (x0 − x01)T ⊗ (x0 − x01)T Γk
svec(I) (7.23)

So, the rate of convergence of the consensus algorithm in the absence of coding is

clearly determined by Γs. Observe that Γs is doubly stochastic, i.e., 1T Γs = 1T and

Γs1 = 1. It has one eigen value at 1 and all others are strictly smaller than 1 in

magnitude. Let λ2(Γs) denote the second largest eigen value in magnitude. Then
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clearly

lim
k→∞

Γk
s =

1

N2
11T (7.24)

and the rate of convergence is given by µs
c =

√
λ2(Γs)

7.4.2 Proof of Lemma 7.3

Except the claim ρ(Γa) = 1, everything else follows from Appendix 7.4.1. Since

Γa = E(I − εLT
0 ) ⊗ (I − εLT

0 ), the claim ρ(Γa) = 1 follows if ρ(I − εL0) = 1 which

is what we show. Recall that the random variable X ij
0 is defined as X ij

0 = 0 if the

link j → i is erased at time 0 and X ij
0 = 1 otherwise. For brevity, we will write X ij

instead of X ij
0 . Then it is easy to verify that one can write L0 as follows

L0 =
∑

aijX
ijei(ei − ej)

T (7.25)

where ei is the ith unit vector. In particular, the underlying Laplacian in the absence

of any erasures can be written as L =
∑

aijei(ei − ej)
T . For any x ∈ RN , we have

xT (I − εL0)x = xT
(
I − ε

2
(L0 + LT

0 )
)

x

= ‖x‖2 − ε

2

∑
aijX

ij(xi − xj)
2 ≤ ‖x‖2 (7.26)

Furthermore,

‖x‖2 − ε

2

∑
aijX

ij(xi − xj)
2 ≥ ‖x‖2 − ε

2

∑
aij(xi − xj)

2

= xT (I − εL)x ≥ −‖x‖2 (7.27)

The last inequality follows from the fact that ρ(I − εL) = 1. Combining (7.26) and

(7.27), we have |xT (I−εL0)x| ≤ ‖x‖2 for all x ∈ RN which implies that ρ(I−εL0) ≤ 1.

But L01 = 1, so ρ(I − εL0) = 1. Therefore ρ(Γa) = 1. This completes the proof.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

Fueled by rapid advances in embedded systems technology and communications in-

frastructure, cheaply available smart devices with small form factors, capable of sens-

ing, computing and wireless communications, have proliferated throughout many ap-

plications. These advances have enabled monitoring and data collection from an

unprecedented variety of areas encompassing weather and environment, medical care,

energy consumption, vehicular traffic, public spaces, structural health monitoring of

man-made constructions and even online social networks. The next logical step in

this evolution is to use this data to control and influence the physical world in an

automated manner with minimal human intervention. Possible instances of this new

paradigm include the smart grid, fully autonomous highway systems, and networked

city services just to mention a few. Widely referred to as cyberphysical systems and/or

networked control systems, they are conjectured to have a complexity comparable to

that of biological systems.

Essential to understaning and realizing cyberphysical systems in practice is an

integrated systems theory of computing, communications and control. There has

been significant effort by the research community in this direction in recent years

[1,44,57,70,84]. Two important features of networked control systems are decentral-

ization of information and the need to exchange it over potentially unreliable com-

munication networks. Consequently, one of the key challenges (e.g., [70]) in building
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future networked control systems is to integrate information theory and control the-

ory, two fields that have traditionally developed almost completely independently of

each other. The work presented in this thesis is motivated by this challenge.

In the first part of the thesis, we focused on decentralized estimation in the con-

text of sensor networks. This was motivated by applications where sensor communi-

cation is subject to severe power and bandwidth constraints. We proposed a novel

particle filtering technique called Kalman-like particle filter (KLPF) for optimally

tracking a linear Gaussian state-space process using quantized measurements. We

showed through simulations that the proposed filter outperforms conventional par-

ticle filtering techniques by orders of magnitude. Furthermore, unlike conventional

numerical techniques, the operations performed in the KLPF converge to the regular

Kalman filter as the quantization becomes finer. The KLPF constitutes an efficient

approach to peform optimal LQG control using quantized measurements. In this

setup, we assumed that the communication between the sensors and controller is

noiseless although it is rate limited. But the situation is different if the communica-

tion is stochastic and noisy and this is the subject of the second part of the thesis.

Conventional information theoretic techniques achieve communication reliability

at the expense of encoding and decoding delay. Larger the delay, higher the reliability.

Control theory on the other hand deals with real-time constraints. Delay in the

feedback loop can lead to severe loss of performance and/or instability. As a result,

when dealing with networked control systems that have noisy communication channels

in their feedback loop, one has to rethink how to achieve communication reliability

in a way that is compatible with control objectives.

To address such a scenario, through the early and late 1990’s, a new information

theoretic notion called anytime reliability and a new coding paradigm called tree codes

was proposed in [84] and [92] respectively. Tree codes are central to several distributed

applications including distributed computation and distributed control. But there

were no explicit constructions of tree codes since and the subject has remained in the

realm of pure theory.

For the first time, we gave an explicit construction of tree codes with efficient
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encoding and decoding for a class of communications channels called erasure chan-

nels which are used in practice to model links under packetized communication, this

includes the internet and wireless links. In the process, we have developed novel non-

asymptotic sufficient conditions on the kind of communication reliability required

to stabilize control systems that have noisy channels in their feedback loop. We also

studied the application of tree codes to interactive protocols between a group of agents

connected by a communication graph with erasure links. We further illustrated the

benefits of this approach through the example of average consensus.

8.2 Future Directions

Some immediate extensions of the work presented in this thesis are as follows

8.2.1 Going Beyond Stabilization

In the context of distributed control, this thesis focused mainly on communication

theoretic aspects of stabilizing unstable plants over noisy channels. This has been

achieved by insisting that the channel coder and decoder be anytime reliable. Noting

that tree codes are anytime reliable under maximum likelihood decoding, we con-

structed an explicit ensemble of linear time invariant tree codes and showed how to

decode them efficiently over the erasure channel. Recall that anytime reliability is

only a sufficient condition for stabilization and does not characterize the overall closed

loop performance. In practice, it is essential to go beyond mere stabilization and con-

sider the implications to closed loop performance of the various components such

as the source coder (i.e., quantizer), the channel coder (or the joint source-channel

coder), the decoder and the control law. We will observe through a simple example

why maximum likelihood decoding may be suboptimal when control performance is

measured by, say, the second moment of the state. This will serve to emphasize the

fact that networked control systems should be viewed in a truly integrated manner

rather than just as a sum of its parts.
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So we will consider optimally estimating the random walk of example 3.1. Recall

from Section 2.6 that the separation principle holds and hence optimal control reduces

to optimal estimation. The state xt in example 3.1 can be written as

xt = λxt−1 + wt (8.1)

=⇒ xt = λtw1 + . . . + λwt−1 + wt

The minimum mean squared error (MMSE) estimate of the state given the channel

outputs till time t, x̂mmse
t|t , is the conditional mean and is given by

x̂mmse
t|t = λtEw1|z0:t + . . . + λEwt−1|z0:t + Ewt|z0:t

where zτ denotes the channel outputs received during time step τ of (8.1). Since {wτ}

is i.i.d Bernoulli(1/2), the optimal source coder for this problem is obvious, it is to

encode each wt using one bit, say, bt, i.e., bt = 1 if wt = 1 and bt = 0 otherwise. So

Ewτ |z0:t = P (bτ = 1 | z0:t)− P (bτ = 0 | z0:t)

Clearly this is not accomplished by computing the maximum likelihood estimate of

{bτ}. One can instead compute x̂mmse
t|t using a sequential monte carlo technique such

as Algorithm 1. Clearly, maximum likelihood decoding is not necessarily the optimal

way to utilize the channel outputs.

The problem of stabilizing unstable plants over noisy channels primarily serves to

exemplify the sensitivity of control systems to delay in the feedback loop. An impor-

tant step is to go beyond mere stabilization and characterize the overall performance

and robustness of a decentralized control system. This involves figuring out optimal

real-time joint source-channel coding/decoding schemes which itself is a major open

problem with only basic structural results available.
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8.2.2 Anytime reliable codes for other channels

Tree codes require ML decoding to be anytime reliable. Unlike the erasure channel

where ML decoding reduces to solving linear equations, ML decoding is computa-

tionally intractable for most other channel models. In the case of block coding for

example, suboptimal surrogates for ML decoding have been developed for practical

use, e.g., message passing algorithms, linear programming decoding and bit flipping

for low density parity check codes. Similar analogs of efficiently encodable and de-

codable constructions of anytime reliable codes do not exist for other channels, e.g.,

binary symmetric channel and additive white Gaussian noise channel. So, a major

open problem is to come up with explicit code constructions with efficient decod-

ing for channels other than the erasure channel. In this context, we explored some

causal constructions inspired by low density parity check (LDPC) codes and linear

programming decoding. Initial investigations and simulation studies over the binary

symmetric channel showed promise. A plausible theoretical roadmap is proposed in

Chapter 5 and is an interesting direction to pursue.

8.2.3 Performance of the Kalman-Like Particle filter

Even though the KLPF is an optimal filter, its error performance is not known. The

mean-squared error performance is also useful in determining the number of parti-

cles that are needed in practice. In general, there are no decentralized estimation

algorithms for linear Gaussian state-space processes with provable performance guar-

antees. The performance of distributed estimation algorithms in the sensor network

literature is often predicted based on simplifying assumptions which can sometimes

be quite inaccurate. An interesting open problem is to come up with decentral-

ized estimation algorithms for sensor network applications with provable performance

guarantees.

Emerging applications of cyberphysical systems provide a fertile ground for many

interesting open problems and research directions. The problems listed above consti-

tute only the tip of the iceberg.
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