
The Reactive Kernel

Thesis by

Jakov N� Seizovic

In Partial Ful�llment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena� California

����

�Submitted Oct ��� �	

�
Caltech CS�TR�

��


brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Theses and Dissertations

https://core.ac.uk/display/11815576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii

Copyright c� ����

Jakov N� Seizovic

All Rights Reserved



iii

Acknowledgments

I would like to express my special thanks to my academic and research

advisor� Chuck Seitz� for his endless patience and his guidance through

the mind�boggling alternatives� My thanks also go to my fellow grad�

uate students� Wen�King Su� Bill Athas� and Dra�zen Borkovi�c� for all

the helpful discussions and for being there when I needed them the

most� to Hal Finney of Ametek� for his many suggestions on how to

improve the Reactive Kernel� and to Dian De Sha� our technical editor�

who admirably carried the heavy burden of always being the 	rst to

read my drafts�

The research described in this report was sponsored in part by the Defense Ad�

vanced Research Projects Agency� DARPA Order number 
���� and monitored

by the O
ce of Naval Research under contract number N���������K������ and in

part by grants from Intel Scienti	c Computers and Ametek Computer Research

Division�



iv



Contents

Acknowledgments iii

� Introduction �

��� Background � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Motivation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Reactive Kernel � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Overview of This Report � � � � � � � � � � � � � � � � � � � � � � � � �

� The Programming Environment �

��� Processes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Cosmic Environment � � � � � � � � � � � � � � � � � � � � � � � �

��� Messages � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Communication Primitives � � � � � � � � � � � � � � � � � � � � � � � �

� Scheduling �

��� Reactive Scheduling � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Scheduling Strategy � � � � � � � � � � � � � � � � � � � � � � � �

����� Fairness in Reactive Scheduling � � � � � � � � � � � � � � � � �	

��� The Remote Procedure Call � � � � � � � � � � � � � � � � � � � � � � �	

��� In
nite Computations � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Unfair Processes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Interrupt Messages� or� RK as a Message Processor � � � � � � � � � ��

��� Why Reactive Scheduling� � � � � � � � � � � � � � � � � � � � � � � � ��

� The Reactive Kernel ��

��� The Inner Kernel � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Dispatch Loop � � � � � � � � � � � � � � � � � � � � � � � �


����� System calls � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� The Handlers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Handler Environment � � � � � � � � � � � � � � � � � � � � � � ��

����� An Example of Programming with Handlers � � � � � � � � � ��

��� The Queue Management � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Storage Allocation � � � � � � � � � � � � � � � � � � � � � � � � � ��

v



vi CONTENTS

� The User Interface ��

��� Dispatch Mechanism � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� System Calls � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Choice�Point System Calls � � � � � � � � � � � � � � � � � � � ��

����� Regular System Calls � � � � � � � � � � � � � � � � � � � � � � ��

��� Process Creation and Termination � � � � � � � � � � � � � � � � � � � ��

��	 Time�Driven Scheduling � � � � � � � � � � � � � � � � � � � � � � � � �


� Storage Allocation ��

��� Storage Requirements � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Protection � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The Back�Reference Problem � � � � � � � � � � � � � � � � � � � � � ��

��	 A Solution for the Back�Reference Problem � � � � � � � � � � � � � � �


��	�� Terminology � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Space Complexity � � � � � � � � � � � � � � � � � � � � � � � � ��

��	�� Time Complexity � � � � � � � � � � � � � � � � � � � � � � � � �	

��	�	 The E�ect of the Distribution of Message Sizes � � � � � � � ��

��	�� Logical Addresses � Block Descriptors � � � � � � � � � � � � �


� Results and Future Work ��


�� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Where Next� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	



���� Handlers as the Compilation Target for High�Level Languages 	



���� Multiple�User Support � � � � � � � � � � � � � � � � � � � � � 	


Bibliography �	



Chapter �

Introduction

��� Background

A multicomputer� or message�passing concurrent computer� consists of N comput�
ing nodes� connected by a message�passing communication network �Figure �����

N computing nodes

CN��C�C�C�

COMMUNICATION NETWORK

Figure ���� A programmer�s view of a multicomputer

There is a copy of an operating system in each computing node� The node
operating system supports multiple processes and provides them with an interface
to the communication network �Figure ��	�� The communication network performs
the message routing� enabling each process to communicate with any other process�

The development of �rst�generation multicomputers began with the Cosmic
Cube project 
Seitz ��
� and continued with its commercial descendents� made by
Intel� Ametek� and N�Cube� All of the �rst�generation multicomputers used a
binary n�cube interconnection network and software�controlled store�and�forward
message routing�

Recently� the �rst representatives of second�generation multicomputers have
appeared as commercial products 
Seitz et al� ��b
� With the advances in single�

�



� CHAPTER �� INTRODUCTION

communication network

node operating system

user processes

queue

receive

queue

send

Figure ���� A multicomputer node

chip processor performance and RAM technology� the node performance and the
memory capacity of these machines have improved by about one order of magni�
tude� The performance of the message�routing network� however� has improved
by as much as three orders of magnitude� as a combined result of using wormhole

routing �Dally � Seitz 	
�� wide�channel and low�dimensional networks �Dally 	
��
and dedicated� high�performance routing hardware �Flaig 	
��

��� Motivation

Message Latency

As a result of the two�orders�of�magnitude improvement in the relationship be�
tween communication and computing performance of second�generation multicom�
puters� the network component of message latency has been reduced from a few



���� THE REACTIVE KERNEL �

thousands to a few tens of CPU instructions� For example� the message latency of
a ���Byte message traveling the longest distance in the ���node hypercube network
of a �rst�generation machine with store�and�forward routing is several milliseconds�
The same message would traverse the path between two corners of an 	�	 mesh
with hardware wormhole routing and a channel bandwidth of 
�MB

s
in 
���s� Thus�

the software component of message sending and receiving becomes the dominant
part of the overall message latency�

Process Model

Programming experience with multicomputers has shown that the node operating
system should not strictly enforce any particular process model� The process model
that is favorable for one particular programming language or application system
will bring unnecessary overhead to others� The operating system should be 
exible
and modular� to permit easy modi�cations and extensions�

��� The Reactive Kernel

This report describes the Reactive Kernel �RK�� a new node operating system
for multicomputers that better utilizes the performance of second�generation ma�
chines� Its main characteristics are�

� It streamlines message�handling to avoid redundant copying�

� It reduces context�switch overhead to� at most� one low�cost context switch
�equal to the cost of a system function call� per message�

� Its layered structure� with well�de�ned interfaces between the layers� provides
for easy recon�guration and optimization depending on the programming
model on hand� and

� It is a portable operating system suitable for running on both �rst� and
second�generation multicomputers�

Most of the ideas used in the design of RK came from the extensive program�
ming experience of W��K� Su� C�L� Seitz� and W�C� Athas in programming the
�rst�generation multicomputers� and were shaped into their present form during
��	�� The �rst implementation of RK was written in ��	� for the Cosmic Cube
by the author of this report� RK was later ported to the Ametek Series 
��� and
Intel iPSC�II�



� CHAPTER �� INTRODUCTION

��� Overview of This Report

Chapter � describes the programming environment in which we use multicom�

puters� Chapter � introduces Reactive Scheduling� and establishes the conditions

under which it can be used in multicomputers� Chapters � and � describe the

implementation of RK� and a programming interface for processes written in C�

Chapter � introduces a speci	c problem in the storage allocation in RK� and de�

scribes a solution� Chapter 
 reviews the achieved results� and discusses the pos�

sible improvements�



Chapter �

The Programming Environment

The programming environment described here in outline form is described in de�
tail in The C Programmer�s Abbreviated Guide to Multicomputer Programming

�Seitz et al� ��a��

��� Processes

The computation is expressed as the set of processes� A process is an instance of
a sequential program that can include statements that cause messages to be sent
and received� Each process has its own address space� and can interact with other
processes only by message passing� there is no global address space�

Processes can be created dynamically during the computation� but are bound
statically to the node in which they are created�

��� The Cosmic Environment

The Cosmic Environment 	CE
 is a host runtime system that supports the message�
passing programming environment� It can handle multiple processes on network
hosts� and it interfaces to one or more multicomputers�

CE in the host systems� together with RK in the multicomputer nodes� pro�
vides uniform communication between processes� independent of the multicom�
puter node or network host on which the processes are located� Under the CE�RK
system� message�passing programs run on multicomputers� as well as across net�
works of workstations� on sequential computers� and on shared�memory multipro�
cessors� Assuming that the computation is deterministic and that it does not
exceed the available computing resources� the results of the computation will not
depend on the way in which processes are distributed in the entire CE�RK system�

A process within the CE�RK environment is uniquely identi�ed with its refer�
ence� ie� the ordered pair 	node� pid
 that represents the node number and the






� CHAPTER �� THE PROGRAMMING ENVIRONMENT

process number within the node� respectively� The �xed numbering of nodes� to�
gether with the unique numbering of processes within each node� establishes the
global name space�

��� Messages

A message is the logical unit of information exchange between processes� Messages
can have arbitrary length� and although they may be handled di�erently by the
system according to their length and destination� these di�erences are completely
invisible to the programmer�

There is a bidirectional� unbounded channel between any two processes� Com�
munication actions are asynchronous� with messages queued as necessary in transit�
so that they have arbitrary delay from sender to receiver� The message order is
preserved between two processes in direct communication�

��� Communication Primitives

The communication primitives of the CE�RK system have their predecessors in the
communication primitives that were used in the Cosmic Kernel �CK	 
Su et al� ��
�
which was the original operating system for the Cosmic Cube� and in the versions
of CK that were written for the commercial multicomputers�

One of the di�erences between CK and RK is that in RK messages are sent
and received from dynamically allocated memory that is accessed both by user
processes and by the message system� Message bu�ers are character arrays with
no presumed structure� Message space can be allocated by�

p � xmalloc �length��

and deallocated by�

xfree �p��

The xmalloc and xfree functions are semantically identical to the UNIX malloc

and free� except that functions xmalloc and xfree operate on message space�
When message space has been allocated� and a message has been built into it�

the message can be sent by�

xsend �p� node� pid��

The xsend function also deallocates the message space� it is just like xfree� except
that it also sends a message�



���� COMMUNICATION PRIMITIVES �

Messages are received by�

p � xrecvb ���

and the pointer to the �rst available message will be returned� This is a blocking
function� it does not return until a message arrives for the requesting process�
The xrecvb function is like xmalloc� except that the contents and length of the
received message determine the initial contents and length of the block� After
the message is no longer needed� it should be freed by executing xfree�p� or
xsend�p�node�pid��

Besides these four� most often used functions� there is a multiple�send func�
tion� xmsend�p�count�list�� that sends the same message to count destinations�
speci�ed by the list array� another function that returns the length of the mes�
sage bu�er� xlength�p�� and a non�blocking receive function� xrecv��� that is a
version of xrecvb that may return a NULL pointer if there is no message for the
requesting process�

These communication primitives are the system primitives� and were chosen
because�

� They avoid unnecessary copying�

� The setup overhead is reasonably small�

� The mutual exclusion problem between the user process and the message
system is solved in a clean way�

� Di�erent communication primitives can be layered on the top of them very
e	ciently 
Seitz et al� ��a��

� They �t nicely into the Reactive Programming Model 
Section ����� and

� They map readily to implementations using native tasking systems on
multiprocessors 
Athas � Seitz ����



Chapter �

Scheduling

The Cosmic Kernel operating system� developed for the Cosmic Cube� and the
subsequent versions of CK� used in commercial �rst�generation multicomputers�
all employ conventional scheduling strategy � round�robin� with a �xed execution
period � to schedule processes within a multicomputer node �Seitz ��	
 This
particular scheduling interleaves the execution of processes� so that they appear to
operate concurrently


The communication primitives used in these �rst�generation machines � non�
blocking send and receive functions � attempt to exploit as much concurrency as
possible by allowing the user process to run simultaneously with the messages that
are being sent and received
 To avoid unnecessary context switching� the flick

primitive is used� with following semantics� A process� after determining that its
computation cannot proceed until a certain message has been received or sent�
suggests to the operating system that because no further progress is possible� this
is a good point for scheduling another process
 In this way� a process speci�es its
choice point


The behavior of Actors �Agha ��	 and of objects in the Cantor programming
language �Athas �
	 suggest that messages can be treated as tokens to run


As part of the RK operating system experiment� we have composed these two
concepts � choice points and treating the message as a token to run � into a
scheduling strategy that we call reactive scheduling
 From an early point in the
development of RK� it was clear that taking advantage of the very low network
component of the message latency would depend on the message�handling over�
head being as small as possible
 Reactive scheduling reduces the context�switching
overhead to� at most� one low�cost �equal to the cost of the system function call�
context switch per message


Under the reactive scheduler� processes behave much as Actors� and the Actor
model is su�cient to express any computation �Agha ��	� however� when applied to
an operating system used for running programs written in conventional sequential
programming languages� this model demonstrates serious de�ciencies


�



���� REACTIVE SCHEDULING �

In this Chapter we will �rst describe pure reactive scheduling� we will then
explain a few additions that provide�

� a clean abstraction mechanism�

� a way to handle in�nite computations� and

� a way to handle user�process errors�

��� Reactive Scheduling

����� Scheduling Strategy

With reactive scheduling on a multicomputer node� a process will be scheduled to
run only when there is a message for it� The process runs as long as it is making
progress �including the sending of messages	� it then speci�es its choice point by
executing a blocking�receive system call� thus notifying the operating system that
no further progress will be possible until another message is available� It is this
scheduling strategy that makes the processes reactive�

The behavior of a process is analogous to the behavior of an Actor� or� more
precisely� a rock�bottom Actor�

In the reactive model� there is a single receive queue in each multicomputer
node� and all messages arriving at a node are appended to that node
s queue�
A process is in one of two possible states� running or waiting to get a message
�Figure ���	�

WAITINGRUNNING

message request

message dispatch

Figure ���� Process states

A waiting process� P� starts running when the following two conditions have
been satis�ed� There are no running processes� and P is the destination of the
message at the head of the receive queue�

A running process changes its state to waiting when it reaches the choice point�
this is marked by the execution of the xrecvb system call� Therefore� when there
are no running processes� and no messages in the receive queue� the whole node
will be idle until the next message arrives� To enable a process to do some useful
work even if there are no messages for it� we have modi�ed the above strategy
by allowing processes to use the non�blocking�receive system call �xrecv	 as their



�� CHAPTER �� SCHEDULING

choice point� Thus� when there are no running processes� and no messages in the
receive queue� these processes are scheduled in round�robin fashion and receive a
NULL message�

The xrecvb function can be expressed in terms of xrecv� but the converse is
not true� therefore� in this chapter we refer to the xrecv as the receive system
call� and� unless otherwise stated� every claim made is valid for both xrecv and
xrecvb�

����� Fairness in Reactive Scheduling

The only way a process can do any useful work is by exchanging information with
the outside world� ie� by sending and�or receiving messages� This is the most
important assumption on which our choice of the scheduling strategy is based� We
say that a process is fair if at every point of its computation it is true that it will
eventually either send a message� receive a message� or terminate�

We will say that the scheduling is weakly fair if the following condition is
satis�ed	 If in the receive queue there is at least one message whose destination
is the process P� and P is in the waiting state� then P will eventually change its
state to running�

The necessary and su
cient condition for weak fairness in scheduling on a
certain node is that each user process on that node satis�es the reactive property�
ie� each running process eventually will either change its state to waiting �by
executing an xrecv� or terminate�

If we restrict ourselves to �nite computations only� all fair processes will satisfy
the reactive property by de�nition� since they eventually terminate� However� if we
are willing to support in�nite computations� the producers of an in�nite number
of messages become an important class of processes that are fair� but that do not
satisfy the reactive property� In Section 
�
� we show the simple modi�cation of the
scheduling strategy that enables us to guarantee the weak fairness in scheduling
on a multicomputer node� the only requirement is that all processes on that node
be fair�

��� The Remote Procedure Call

The reactive communication primitives de�ned in Section ��� do not enable user
processes to distinguish between the messages they receive� A process executes an
xrecv that asks for a message �whichever one happens to be �rst in the receive
queue�� Information on the �type� of message can be made a part of the message
body�

However� reactive primitives are insu
cient for providing a powerful abstrac�
tion mechanism� One way of providing an abstraction mechanism is to implement



���� THE REMOTE PROCEDURE CALL ��

the Remote Procedure Call �RPC�� whereby a process requests a service from an�
other process� and cannot continue the computation until the service has been
completed� An implementation of the RPC using the reactive primitives could use
a reply message that would be sent to the requester to acknowledge the completion
of the requested task� The reply message would have to be distinguishable from
all other messages that could arrive for the requesting process before the reply
message itself� The user of the RPC would have to know the structure of the
reply message and would have to make the structure of all other messages involved
in the computation distinguishable from it� This is contrary to the idea behind
abstraction� in which modules should be used as black boxes with certain I�O
behavior�

To enable the RPC to be used as an abstraction mechanism� we have augmented
the purely reactive model so that the process can be in one of three states� running�
waiting� or blocked �Figure 	�
��

RPC reply message dispatch

RPC reply message request

BLOCKED WAITINGRUNNING

message dispatch

message request

Figure 	�
� Process states

Each message has an additional �eld in the header to designate whether or not
it is a RPC reply message� Two additional message primitives are de�ned� The
xsendrpc sends the reply message� and the xrecvrpc puts the process into the
blocked state� where it remains until a reply message arrives for it�

All non�reply messages that arrive for the process in the blocked state have to
be queued for it� and delivered later� A simple change in scheduler can provide
for this� Instead of always scheduling the process that is the destination of the
message at the head of the receive queue� the scheduler will traverse the queue�
skipping the non�reply messages destined for processes that are in the blocked state�
If a reply message is found in the queue� and if its destination process is waiting�
this is considered to be a programming error� Keeping the undelivered messages
in the receive queue is ine�cient
 a description of an e�cient implementation can
be found in Section ��
���

We will also have to change our de�nition of weak fairness to comply with the
new process state graph� The scheduling is weakly fair if the following condition
is satis�ed� If in the receive queue there is a reply message whose destination is
process P� and P is in the blocked state� or if in the receive queue there is at least
one non�reply message for P� and P is in the waiting state� then P will eventually
change its state to running�



�� CHAPTER �� SCHEDULING

If all processes on a node satisfy the reactive property� this modi�ed version of
scheduling will still be weakly fair�

A su�cient condition to guarantee that the above�described error �a reply mes�
sage arriving for a waiting process	 will not occur is that the �rst state change of
a process that issued the RPC request be from running to blocked�

��� In�nite Computations

In�nite computations are legal in Actor systems 
Agha ��
� Although we claim that
processes scheduled using the reactive strategy will behave like Actors� we still have
problems in guaranteeing weak fairness with fair in�nite computations� speci�cally
with the in�nite production of messages� The reason for this anomaly is that Actor
languages use syntactic rules to guarantee that the reaction to any single received
message will take �nite time� and that in�nite message production can only be
the product of the action of an in�nite number of Actors� Our processes can be
written in any sequential programming language� hence� a compile�time check is
not applicable� since such in�nite behavior can be a legal construct in a language
at hand� Consider the following example�

while �TRUE� �

if � �m�xmalloc�n�� �� NULL �

xsend �m� node� pid��

	

The above computation is fair according to the de�nition from Section ������
and it is also a syntactically correct part of C program� however� this process
does not satisfy the reactive property� because it will never terminate or execute
an xrecv� Once this process is put in the running state� it will remain in that
state inde�nitely� therefore� scheduling on the node on which it resides will not be
weakly fair�

We will describe a modi�cation of the scheduling strategy that is su�cient to
guarantee weak fairness in scheduling on a multicomputer node� the only require�
ment is that all processes on that node be fair�

The scheduling strategy is identical to that described in Section ���� except for
the following state transition� When the process issues the xmalloc system call
to request a message bu�er� the process changes its state from running to blocked

and a reply message of size equal to that of the requested message bu�er is put at
the tail of the receive queue �sent to the requester	�

The only case in which the scheduling strategy de�ned in Section ��� cannot
guarantee weak fairness even though all the processes involved are fair is the case of
a process that will never either terminate or execute an xrecv� but that is still fair
because it sends an in�nite number of messages� To send any number of messages�



���� UNFAIR PROCESSES ��

a process needs at least that many message bu�ers� Since the only way to obtain
a message bu�er is to execute an xrecv� xrecvrpc� or xmalloc� the process will
eventually exit the running state� this is su�cient to guarantee weak fairness�

��� Unfair Processes

Thus far� we have considered scheduling only in an idealized environment in which
all processes on a certain node are fair� and our scheduling strategy has relied
heavily on that fact�

It is quite possible� and happens frequently� that an unfair process will be
spawned on a multicomputer node and scheduled to run� A programming error that
causes the process to be wrapped in an endless loop without any communication
action inside the loop body is an example of a situation that presents di�culties
for the scheduler� As de�ned so far� the reactive scheduler does not have a way to
handle this kind of error� and so an external mechanism is required to cope with
this problem�

An important issue here is how to detect an error and then decide to preempt
the running process� this work does not contain a clear answer to that question�
The weak semantics of the weak fairness prevents us from placing any �nite bound
on the time that a process can be running� In real implementations� however� this
problem is more of an arti�cial issue� We can use a process	selectable bound on the
time that it will be running� and use a timer to enforce it� If the bound is exceeded�
we can either assume an error and generate a restartable image of a process� or
simply put the process into the blocked state� and insert a reply message for it in
the receive queue 
in front of any other reply message already inside the receive
queue� that will be the token to run again�

��� Interrupt Messages� or� RK as a Message

Processor

So far� we have assumed that all processes on a multicomputer node are equally

un�important� Because of this� the scheduler was able to employ a simplistic
scheme� invoking the processes merely according to the message order in the receive
queue�

However� the e�ciency of implementation of an operating system requires mak	
ing certain �system
 processes more important in some sense than user processes�
For instance� a set of processes implementing a distributed �le system would re	
quire higher execution priority than user processes� so that �le system performance
will not depend on the weak fairness of the reactive scheduling�

To deal with this issue� we now introduce the notion of interrupt messages�



�� CHAPTER �� SCHEDULING

which have their own queue within a multicomputer node� and have execution
priority over the normal messages� If we think of RK as being a software imple�
mentation of a message processor� then the e�ect of interrupt messages is analogous
to that of hardware interrupts in an instruction processor�

To guarantee mutual exclusion� and for the same reasons that we usually dis�
able interrupts within the interrupt handling routines in the instruction processor�
processes that respond to normal messages should not be sent interrupt messages
�and vice versa� �Figure 	�	��

user processes

system processes

Figure 	�	
 System processes receive only interrupt messages� and user processes only

normal messages�

The only change to the scheduler is that it is given priority level information
at the time that it is invoked� so as to decide which receive queue to operate on�

The interrupt�message concept can be generalized readily to a system with n

levels of message priorities� corresponding to n interrupt levels� Again� any process
must receive messages of only one priority level� This requirement enables us to
make this scheme equivalent to the one using di�erent�priority processes� rather
than messages� The main reason for our preference for assigning priority levels to
messages� rather than to processes� is that we do not want the message interface
part �Section ��	� of the multicomputer node to have any notion about the process
structure�

��� Why Reactive Scheduling�

It might appear that we have gone to a lot of e�ort to develop a speci�c �reactive�
scheduling strategy� only to discover that we will still have to put in an escape� in
the form of an RPC� as well as something very similar to conventional� time�driven
scheduling� Our main objective� however� was to design a scheduling strategy
that would not penalize every computation with a constant penalty� We use the
scheduling that carries the minimum overhead for the kinds of computations that



���� WHY REACTIVE SCHEDULING� ��

occur most frequently in multicomputers� our design calls for rarely used features

to pay the larger price�

This particular scheduling strategy has been implemented in the RK operating

system� and it is described in Chapters � and ��



Chapter �

The Reactive Kernel

The Reactive Kernel is the product of an experiment in operating system design�
Our approach was analogous to that used in the design of a RISC processor� RK
employs simple and fast solutions for frequently used features� It is a portable
operating system� suitable for running on both �rst� and second�generation mul�
ticomputers� Its layered structure� with the well�de�ned interfaces between the
layers� provides for debugging and easy modi�cations and extensions�

The overall structure of the RK is illustrated in Figure ���� It consists of two
major parts	 the Inner Kernel 
IK�� and a set of handlers fH��H�� � � � �Hn��g�

IK

H
n��

H�

H�

H�

Figure ���	 The RK structure

��� The Inner Kernel

The IK operates on only the following four types of objects	 storage space� the
send queue and the receive queue� messages� and handlers� There is no notion of

��



���� THE INNER KERNEL ��

a user� the user interface is provided by a dedicated handler� and no other part of
the system has any information about that particular user interface�

The services provided by the IK can be grouped into two classes�

�� The dispatch mechanism� used by the IK to deliver the incoming messages to
the handlers� and

�� The services performed on request� invoked by a handler executing the system
call �sending a message� allocating storage��

����� The Dispatch Loop

From the standpoint of the IK� the handler is a function with an associated arbi	
trary data structure� The control 
ow in the system is very simple� The IK fetches
the message from the receive queue and delivers it to the handler speci�ed by the
tag information in the message header� If there are no messages in the receive
queue� handlers are selected in a round	robin fashion and given a NULL message�
The inner loop of the IK is�

main ��

�

MESSAGE �m�

struct handler�desc �

FUNC�PTR f�

DATA�PTR d�

� �h�

while �	� �

m 
 get�message ��h��

���h�
f�� �h�m��

�

�

Once the control has been given to a handler� it executes until it terminates
by executing a return statement� Thus� all operations performed by that handler
can be considered to be a single atomic action� This strategy requires that every
handler satisfy the reactive property� It has the obligation to terminate in a �nite
time and give control back to the dispatch loop�

����� System calls

Since the handlers are generally compiled separately from the IK� and linked as
independent objects� a handler executes a system call to obtain system services



�� CHAPTER �� THE REACTIVE KERNEL

from the IK� These services include sending messages� allocating storage� reporting
errors� and obtaining information on the current multicomputer con�guration�

As part of the system software� handlers are not accessible by the user� they run
in the same privileged mode of operation used by the IK� Handlers operate only
on variables from the stack and from the dynamically allocated space �the same
as used by the IK�� there is no data segment associated with a handler� Hence�
handlers do not have to go through a context switch to access the IK routines� the
system calls can be implemented with a IK	resident table used for indirect function
calls�

If the IK is always loaded on the same absolute address� which is typically the
case� the IK symbol table can be used at the handler link time� enabling handlers
to access IK services with zero overhead�

��� The Handlers

����� Handler Environment

Except for the special case of a NULL message being delivered to a handler� the
behavior of a handler is analogous to that of an Actor 
Agha ���� A handler is
invoked when the message at the head of the receive queue is tagged for it� as a
reaction to the message� it may send messages� create new handlers� and change its
persistent internal state �become a new handler�� By changing its state �including
its entry point�� a handler speci�es its replacement behavior� ie� it can replace itself
with an identical handler �default action�� self	destruct� or become a new handler�

A handler is similar to the kernel processes in other operating systems� but�
unlike the usual kernel process� no information is preserved for a handler by the
IK between the two invocations� any information must be saved explicitly by the
handler in its associated data structure� which resides in the dynamically allocated
space� A similar approach of using light	weight kernel processes can be found in

Kale 
 Shu ����

A handler may not be killed by any action other then self	destruction� Since the
IK has no knowledge of the data structure associated with a handler� the handler
itself is expected to do the cleaning	up task� If this property were not satis�ed�
the IK would have to do the garbage collection�

At boot time� the system consists of the IK and a single spawn handler� as
illustrated in Figure ���� The spawn handler is used to spawn other handlers�

The set of handlers to be used in a particular node of a multicomputer will
be determined at the time the node is allocated� this scheme provides the sys	
tem with additional �exibility� In the typical space	sharing mode of operation

Seitz et al� ��a�� we can have di�erent handler con�gurations on di�erent subsets
of the nodes of a single multicomputer�



���� THE QUEUE MANAGEMENT ��

spawn

IK

Figure ���� The RK structure at boot time

To support a particular programming language� or an application system� a
handler and a library are all that are necessary� A handler supporting programming
in C has been implemented and is described in Chapter ��

����� An Example of Programming with Handlers

Figure ��	 illustrates the process of spawning a new handler�
A handler 
rqst� that is requesting that a new handler be spawned sends a

message tagged for the spawn handler at the destination node� Having checked
that the required resources are available� spawn creates a new read handler� and
replies to rqst� The code for read handler is linked with the IK� just as the code for
spawn is� but� unlike spawn� no instances of read exist in the IK�resident handler
table at the boot time�

If the request has been granted� the rqst will send the code of the handler that
is being spawned 
or have it sent�� After the code has been received� possibly in
multiplemessages� read sends the acknowledging message to rqst� and becomes new
handler by changing the function�pointer 
eld of the appropriate handler desc

data structure�
With the algorithm described above� the use of multiple instances of read han�

dlers will permit the simultaneous spawning of more than one handler on the same
node�

��� The Queue Management

A multicomputer node exchanges information with the outside world only via
messages� Typically� the graph representing the connections between the multi�



�� CHAPTER �� THE REACTIVE KERNEL

read

spawnrqst

read

read

spawn

spawn

spawn

spawn

rqst

rqst

rqst

rqst

new

Figure ���� The spawning of a new handler

computer nodes is not fully connected� and message routing must be performed
to support a programming model in which each process can communicate with
every other process� Message routing is not part of the RK �Figure ���	� In 
rst�
generation multicomputers� routing is performed by a set of interrupt routines� in
second�generation multicomputers� it is done with hardware 
Flaig ���� In both
cases� the routing subsystem interacts with the rest of the node via dedicated
hardware or software that we will refer to as the message interface �MI	�

The RK communicates with the message interface via the send and the receive
queues� The send queue in general has multiple producers �handlers	 and a sin�
gle consumer �MI	� but since all the operations performed by a handler � from
invocation to termination � can be considered to be a single atomic action� the
send queue management reduces to a single�producer� single�consumer case� The
receive queue is analogous� where multiple producers are multiple communication
channels� and the consumer is the IK dispatch loop� The task of maintaining the



���� THE QUEUE MANAGEMENT ��

Channels

Input

Channels

Output

Receive Queue

Send Queue

Dispatch Loop

Handlers

Reactive KernelMessage InterfaceRouting Chip

Figure ���� The structure of a multicomputer node

mutual exclusion of producers has to be performed by the routing subsystem or

the MI�

Because the queue is shared by the RK and the MI� which operate concurrently�

mutual exclusion has to be enforced� The single�producer� single�consumer queue

can be e�ciently implemented by using the data structure illustrated in Figure ��	�

The queue consists of zero or more list elements with their end�
ags equal to

�� and one last element with its end�
ag equal to �� The producer owns put� the

pointer to the last element of the queue� and the consumer owns get� the pointer

to the �rst element�

To put a message in the queue� the producer puts it into the last element�

extends the queue with a new element with its end�
ag equal to �� and then resets

the end�
ag from the element that is no longer the last one�

The above algorithm can be proved correct
 the only requirement is that the

read and write operations on a single variable be atomic actions� The nice feature

of the algorithm is that neither the put nor the get pointer is a shared variable


this reduces the interference between the producer and the consumer�



�� CHAPTER �� THE REACTIVE KERNEL

�� � �

putget

next

end

msg

next

end

msg

next

end

msg

next

end

msg

Figure ���� The structure of the queues

��� The Storage Allocation

In the RK environment� storage allocation is in the critical path that limits the

communication performance of the multicomputer� and a signi�cant part of the

e�ort in implementing the RK is in storage	allocation strategy� Chapter 
 describes

our implementation and gives an analysis of its performance�



Chapter �

The User Interface

The support of programming at the user level� either in a particular programming
language or within an application system� requires a user interface� this consists
of a handler and a library� This chapter describes an implementation of the user
interface for the C programming language�

The user interface performs the following tasks�

�� Dispatching incoming messages to user processes�

�� Servicing user system calls� and

�� Creating and terminating processes�

We have implemented the reactive process scheduling� including the additional
RPC mechanism� as described in Section ���� The scheduling task itself is done
implicitly by the �rst two tasks above� A process starts running when a message
is dispatched to it� and it changes its state to waiting or blocked by specifying its
choice points� these are special system calls�

��� Dispatch Mechanism

Because the control 	ow between the user
interface handler and the user processes
it supports is analogous to the control 	ow between the Inner Kernel �IK� and
handlers �Section 
������ we refer to this dedicated handler as the Reactive Handler

�RH��
An example of the data structure used by the RH is illustrated in Figure ����

It consists of a process table� a set of handler descriptors� and a set of process
descriptors�

A system consisting of the RH and a set of handlers managed by the RH �no
user processes� can be viewed as another level of recursive implementation of the
model� A message� along with the right to use the processor� propagates down the
handler tree until it reaches its �nal destination�

��



�� CHAPTER �� THE USER INTERFACE

Reactive HandlerInner Kernel

handler

process

process

handler

�

process
table

handler
descriptor

function

data

process
descriptor

pointer

code
segment

data
segment

stack

process
name

process
descriptor

pointer

code
segment

data
segment

stack

process
name

handler
descriptor

function

data

handler
descriptor

function

data

Figure ���� Structure of the Reactive Handler

The handlers managed by the RH are used to create and terminate processes�

obtain information on the current state of a particular user process� and handle

other operating�system services� Examples of handler usage can be found in Sec�

tions ����� and ��	�

The reactive scheduling of user processes 
ts in this model� however� since both

stack and static data have to be preserved for the user between two invocations� a

user process cannot be called as a function� a context switch is required�

reactive�handler �h� m�

struct handler�desc �h�

MESSAGE �m�

�



���� SYSTEM CALLS ��

if �message�destination�is�a�handler�m��

call�the�destination�handler �h� m��

else

run�the�destination�process �h� m��

return�

�

Process descriptors contain all information necessary for performing a context
switch in the particular hardware environment� their structure is implementation
dependent�

��� System Calls

A user process executes system calls to obtain system services from the kernel� To
keep the operating system design modular� system calls are serviced by the handler
in the user interface� and the handler can in turn invoke IK services� if necessary�

At the user process link time� however� it is not known where the code �or data�
of any particular handler will reside� since the handlers are themselves loaded
at multicomputer�allocation time� A possible solution would be to have an IK�
resident table of entries that would be 	lled up by the user�interface handler upon
loading� and to have the user processes use that table to access the handler services�
The same mechanism could be used to direct error handling to the RH� since it is
typically the handler
s job to handle all exceptions caused by the user processes
that it manages�

This solution is not satisfactory when we have multiple user�interface handlers
loaded at the same time� each supporting its own group of user processes� The
table described above would have to be reinitialized on a per�message basis before
a context switch could be executed to allow a user process to run� An acceptable
solution introduces an additional level of translation� There is a single entry �or
a few of them� in the IK that is modi	ed by the user�interface handlers on a per�
message basis� and each handler contains a table of entry points for the system
services that it provides�

User processes execute two classes of system calls�

�� System calls that �as a side e�ect� specify choice points� and

�� System calls that do not a�ect the scheduling�

����� Choice�Point System Calls

The exit� xrecv� xrecvb� and xrecvrpc �and possibly xmalloc� as explained in
Section 
�
� system calls are members of the 	rst class� Upon any of these calls�



�� CHAPTER �� THE USER INTERFACE

control is given back to the RH� with an exactly inverse action to the context switch
performed at the message�dispatch time� Depending on the system call executed�
a process will be killed �exit�� put into the waiting state �xrecv�� or put into the
blocked state �xrecvrpc�� The xrecvb function can be implemented as a library
function using the xrecv� or a process that executes xrecvb can be put into a
waiting state and marked as not willing to accept the NULL message�

Except for xrecvrpc� the implementation of all system calls in this class can
be done with the message�dispatching mechanism described in Section ��	� During
the RPC� however� non�reply messages have to be saved on a queue associated with
the blocked process� We use the following implementation for the RPC
 An entry
in the process table corresponding to the blocked process is changed to point to a
handler descriptor of a special wait handler� In this way� each message destined
for the blocked process will instead be delivered to its associated wait handler� The
wait handler is responsible for �ltering out the non�reply messages and managing
the queue of them�

����� Regular System Calls

All remaining system calls� as de�ned in �Seitz et al� 

a�� are in the second class�
Within this class� system calls that involve the CE�RK services that are not res�
ident on the same node with the requesting process �spawn� ckill� print� and
execute� are implemented using the RPC mechanism�

Implementation of the calls for services that can be resolved within the node
is straight�forward �xsend� xsendrpc� xfree� xlength� mynode� mypid� nnodes�
cubedim� clock� and led��

��� Process Creation and Termination

The process�spawning mechanism is analogous to the handler�spawning mechanism
described in Section ������ If there are multiple instances of the same process on
a single node� the code segment is shared� To avoid unnecessary access to the �le
system� the initialized part of the data segment is kept with the code� and copied
to the data segment of each new process instance�

A special ckill handler is a member of the set of handlers managed by the RH�
and its job is to terminate user processes� It has a higher priority then do user
processes� and accepts interrupt messages �Section ����� thus� it can be used to
terminate user processes without waiting for them to exit the running state�



���� TIME�DRIVEN SCHEDULING ��

��� Time�Driven Scheduling

The mechanism for falling back on time�driven scheduling for long�running pro�
cesses described in Section ��� has been implemented� The handling of the timer
interrupt is redirected to the RH routine as shown in Section ���� A user process is
preempted if it does not leave the running state during its time�slice� and a reply
message is put into the receive queue for it 	in front of any other reply message
already there
 as a token to run again�



Chapter �

Storage Allocation

This chapter includes a fairly detailed analysis of a solution for a speci�c problem

in operating system design� A reader not interested in the details of the operating

system implementation may skip Section ����

��� Storage Requirements

The choice of storage allocation strategy for RK depends on a number of parame�

ters� the frequency of the requests for allocation and deallocation� the distribution

of the sizes of the requested blocks� the time between allocation and deallocation

of a particular block� the protection requirements�

In RK� there are three major storage classes�

�� The storage used for the user process code and data�

�� The storage required by the RK for queues� message descriptors� process descrip�

tors� and

�� The storage where the messages reside�

The �rst class is characterized by infrequent allocation and deallocation re�

quests� which occur only during process creation and termination� Block sizes in

this storage class are typically the largest in the system� and the con�guration re�

mains unchanged for the longest time periods� These characteristics suggest that

the allocation strategy should be as e�cient as possible in terms of storage uti�

lization� preferably without fragmentation� even if that requires a time�ine�cient

algorithm�

The most important requirement for the second class is speed� Most of the

system services provided by the RK will use the storage from this class� Typically�

the requested block size is the smallest in the system� and the blocks	 lifetimes

are the shortest� The allocation scheme for constant�size blocks� with constant

allocation and deallocation times� is the most appropriate for this class�


�



���� PROTECTION ��

The third class is midway between the �rst two� in respect to the block size
as well as the frequency of allocation requests� The message size typically ranges
from a few bytes to several kilobytes� the time that messages spend in the system
is determined by the user� and ranges from a few tens of CPU instructions to the
lifetime of a process� This storage class requires an e�cient algorithm for allocating
blocks of di�erent sizes�

��� Protection

The protection requirements for the �rst two storage classes do not di�er from
those in any other multiple	process operating system and are not the subject of
our interest in this work�

Because the storage pool in which the messages reside has to be accessible by
each process on a node� its protection requirements are more restricted� The two
most frequently used hardware	enforced protection mechanisms in today
s ma	
chines are based on assigning access rights to segments or pages� In the �rst
approach� the process is assigned a set of segments� generally of arbitrary sizes�
whose number is limited by the number of segment registers in the processor� In
the second approach� the process is assigned an arbitrarily large set of �xed	size
pages� The segment approach is not applicable to the problem since a process
can at any time have an arbitrary number of references to messages� The paging
mechanism can be employed by assigning a number of pages to each message�

A number of algorithms for storage allocation exist in the literature� the par	
ticular one used for each of the classes will depend on the hardware organization
of the computer �and vice versa�� No particular memory allocation scheme was
considered to be su�ciently general and portable for inclusion in the RK spec	
i�cation� rather� an interface that consists of a number of functions for storage
allocation and deallocation is de�ned� and this interface is used as a part of the
design speci�cations for porting of the RK�

��� The Back�Reference Problem

Various algorithms for the storage allocation of di�erent	size blocks and the analy	
sis of their e�ciency can be found in 
Knuth ���� All of them have in common the
feature that for each used block of memory� there is an associated data structure�
called a descriptor� that contains the relevant information about the correspond	
ing block� This scheme creates a back�reference problem� ie� given the pointer to
a particular memory block� how to �nd the appropriate descriptor�

An obvious solution is to keep the descriptor pointer or the whole descriptor
within the memory block itself� however� this solution is an unsatisfactory� since
the misuse of pointers by user processes could cause an operating system error�



�� CHAPTER �� STORAGE ALLOCATION

What is needed is a dictionary� ie� a set representation with the insert� delete�
and member operations� The set elements are descriptors� and the keys are pointers
to the memory blocks�

Let Nmax be the number of di�erent keys� � � key � Nmax� and Nmsg be the
number of used memory blocks in the memory� One possible solution for imple�
menting a dictionary is to maintain a linear list of all used memory blocks� The
memory required is minimal� O�Nmsg�� the time required for the insert operation
is O�	�� but the time required for member and delete operations is O�Nmsg�� The
other extreme is to have an array indexed by the key� In this case� all operations
on the set can be done in O�	� time� but the memory required is O�Nmax��

��� A Solution for the Back�Reference Problem

The following analysis evaluates the performance of the compromise solution
 the
algorithm used is based on �Morrison �
�� The idea of the algorithm is as follows�
To access an element of the set� we perform digital searching �Knuth ��� along the
N �ary tree for k steps� whereby with each step we reduce the number of possible
elements by a factor of N � After k steps� we are left with at most n � Nmax

Nk possible
outcomes� and we resolve the remaining ambiguity by the sequential search� The
linear list solution is the special case of this scheme for k � �� and the array
solution is the special case for N � Nmax� k � 	�

Figure ��	 illustrates the data structure used by the algorithm for one set of
parameters� The leaves of the N �ary tree are linear lists of the elements of the set�
containing at most n elements� The structure shown corresponds to the worst case�
when all Nmax possible elements are in the set� We will refer to the graph that
represents the set containing the maximum number of elements as the complete

tree�

Figure ��	� Set representation for N � �� k � �� Nmax � Nmsg � 
�� n � �



���� A SOLUTION FOR THE BACK�REFERENCE PROBLEM ��

A node of the tree exists if� and only if� it has at least two children� and all
other nodes are �skipped�� An example subset structure is shown in Figure ����

Figure ���	 An example subset representation

The set of nodes in the path to a leaf is dependent on all elements currently in
the set� but not on the previously performed operations on the set�

Performance of the algorithm clearly depends on the number of elements in
the set
 this corresponds to the number of messages in our system� To evaluate
that dependence� we will �rst do an analysis of a hypothetical system in which all
messages are of the same size
 later� we will show how the distribution of message
sizes a�ects the obtained results�

����� Terminology

The general case is represented in Figure ����
The level information is embedded in the node and does not change� It does

not necessarily correspond to the length of path from the root to that node� except
in a complete tree�

To simplify the notation� we will assume that the N 
ary tree does not change
dynamically� However� all the nodes that are not present �ie� �skipped�� in the
actual implementation will be considered dead
 ie� they have zero memory require

ments� and take zero time to be operated on� All other nodes are live�

We will say that a �xed node or edge covers a leaf if� and only if� it is in the
path from the root to that leaf� Therefore� a node at the level i� � � i � k covers
Nk�i leaves� and each of its outgoing edges covers Nk�i�� leaves�

Let Nmax be the number of available slots in which messages can reside� where
each leaf of the tree has n � Nmax

Nk slots� All slots and all messages are of unit size�
Let Nmsg be the number of messages present in the slots� When a new message
arrives� it is randomly placed into any of the free slots� with equal probability	

�

Nmax�Nmsg
� A message is released after an arbitrary length of time that does not

depend on the slot in which it resides�



�� CHAPTER �� STORAGE ALLOCATION

level

k����
�

Nk
��

�

N��

N
N��

�N��

Nk
�N

Nk
�N��

�
�

N��

Figure ���� General case set representation

Then� if there are Nmsg messages in the system� each of the Cmax �
�
Nmax

Nmsg

�
possible ways to choose which Nmsg out of Nmax slots is used is equally probable�
We will refer to each one of these choices as a con�guration�

Throughout the analysis� we will assume that

�
n

k

�
�

�
n�

k��n�k��
� n � k

� � n � k
� 	��
�

����� Space Complexity

Let N be a �xed node at level i� � � i � k� Let Pdead	i�Nmsg� be the proba

bility that N is dead� given that the number of messages in the system is Nmsg�
Let Cdead	i�Nmsg� be the number of con�gurations for which N is dead� We are
averaging across all con�gurations� so

Pdead	i�Nmsg� �
Cdead	i�Nmsg�

Cmax

� 	����



���� A SOLUTION FOR THE BACK�REFERENCE PROBLEM ��

The node N is dead if� and only if� there is at least one message for at most
one of its outgoing edges in the slots that that edge covers�

Cdead�i�Nmsg� � N

�
Nmax � �N � ��Nmax

N i��

Nmsg

�
� �N � ��

�
Nmax �

Nmax

N i

Nmsg

�
� ��	��

In the 
rst term� we count the con
gurations with all slots covered by at least
N � � outcoming edges of N being empty	 We should also take into account
con
gurations for which there are no messages in any of the slots covered by N �
but this has already been included N times in the 
rst term� so the second term
makes a necessary adjustment	

Let Kavg�Nmsg� be the average number of nodes in the tree	 Averaged across
all possible con
gurations�

Kavg�Nmsg� �
k��X
i��

N i��� Pdead�i�Nmsg��� ��	��

In the worst case�

Kmax �
k��X
i��

N i �
Nk � �

N � �
� ��	��

Nmsg

Mavg

N�����

N���

N���

N��

N��

������	

�����
�

�
���

�����

����

����

����


���

�

Figure �	�� Memory requirements for Nmax � �
��� k � logNNmax� k� � �� k
 � 


The memory required by a single node is N � k�� where k� is the constant
overhead� and the memory used by an entry in the linked list is k
	 The average
memory requirements of the algorithm are

Mavg�Nmsg� � �N � k�� �Kavg�Nmsg� � k
 �Nmsg� ��	��



�� CHAPTER �� STORAGE ALLOCATION

with the maximum

Mmax � �N � k��
Nk � �

N � �
� k�Nmax� ��	
�

����� Time Complexity

LetM be any one �xed message in the system with a total of Nmsg messages	 The
time required to access M is proportional to the number of live nodes we have
to go through in order to reach it	 Let Pskipped�i�Nmsg� be the probability that a
node N at level i that covers M is dead� and Cskipped�i�Nmsg� be the number of
con�gurations for which this is the case	 These con�gurations occur when for all
outgoing edges of N � except the one covering M� there are no messages in the
slots they cover	

Cskipped�i�Nmsg� �

�
Nmax � � � �N � ��Nmax

N i��

Nmsg � �

�
��	
�

Pskipped�i�Nmsg� �
Cskipped�i�Nmsg��

Nmax��

Nmsg��

� ��	��

The average length of the path from the root to the leaf containingM is

Lavg�Nmsg� �
k��X
i��

�� � Pskipped�i�Nmsg��� ��	���

N�����

N���

N���

N��

N��

N��

Nmsg

Lavg
��

��

�

�

�

�

����	�
����������

Figure �	�� Average tree depth for Nmax � ����� k � logNNmax



���� A SOLUTION FOR THE BACK�REFERENCE PROBLEM ��

Let Plength�i�Nmsg� be the probability that there is exactly i� �� � i � n�
messages in the list containing M�

Plength�i�Nmsg� �

�
Nmax�n

Nmsg�i

�
�
Nmax��

Nmsg��

� ������

The probability that we will have to go through exactly d� �� � d � n� levels
in order to reach M is

Pdepth�d�Nmsg� �
nX

i�d

�

i
Plength�i�Nmsg�� ����	�

and in the average case we will have to go through Davg�Nmsg� levels to reach a
message


Davg�Nmsg� �
nX

d��

d Pdepth�d�Nmsg�� ������

On average� the total time is proportional to

Tavg�Nmsg� � Lavg�Nmsg� �Davg�Nmsg�� ����
�

and the maximum time is

Tmax � k � n � k �
Nmax

Nk
� ������

Tree�Recon�guration Cost

Finally� let us look at how often we have to change the con�guration of the tree�
ie� how often a node changes the state from dead to live or vice versa�

Let us assume that there are Nmsg messages in the system� and that we want
to discard message M� Let S � fNij� � i � kg be the set of nodes� where Ni is a
node at the level i in the path from the root to the leaf in which M resides� Let
j be the largest integer such that Nj is live� This means that one of the pointers
in the Nj is pointing to M� and Ni� j�� � i � k are skipped since they are dead�
When we deallocateM� it may happen that we also need to change the state of Nj

to dead� This will happen if M is the only message in the slots covered by one of
the outgoing edges of Nj� and if exactly one of its remaining N�� outgoing edges
has at least one message in the slots it covers� Let E be the edge from Nj�� to Nj�
If the deallocation resulted in �killing� Nj� then there were at least two messages
covered by E prior to deallocation� therefore� after the deallocation� there will be
at least one message covered by it� This means that the state change from live to
dead does not propagate towards the root� ie� at most one of the nodes in the tree
can change its state during the deallocation� The probability that the node at the



�� CHAPTER �� STORAGE ALLOCATION

level i will change its state from live to dead when deallocating a message from
the system with Nmsg is

Pchange�i�Nmsg� �
�N � ��

�
Nmax��N���

Nmax

Ni��

Nmsg��

�
� �N � ��

�
Nmax�

Nmax

Ni

Nmsg��

�
�
Nmax��
Nmsg��

� � ������

and the probability that we will have to recon�gure the tree upon deallocating a
message is

Pdealloc�Nmsg� �
k��X
i��

Pchange�i�Nmsg�� ����	�

N��� N��� N�� N��

N�	

Nmsg

Pdealloc

�
	

�
�

�
�

�
�

�
�

�
	

������
		�����	��

Figure ���
 Tree�recon�guration probability for Nmax � ��
�� k � logNNmax

Since the con�guration of the tree does not depend on the order in which
allocations and deallocations are performed� the probability that we will have to
change the con�guration upon allocating a message in the system containing Nmsg

messages is
Palloc�Nmsg� � Pdealloc�Nmsg � ��� ������

����� The E�ect of the Distribution of Message Sizes

To get more realistic results� we will look at the performance of the above�described
algorithm on message sizes of a given distribution� LetM be a multiset of positive
integers� jMj � Nmsg� each integer representing the size of one message in the
system� There are a total of Nmax unit�size slots in the system� and a message of
size s can be placed in any s consecutive free slots� We will calculate Pstart�i�M��
which is the probability that a slot i is the bottom of any message in a system
containing Nmsg messages with the given message�size distribution described with
the multisetM�



���� A SOLUTION FOR THE BACK�REFERENCE PROBLEM ��

Let SM � fsij� � i � zg be a set of positive integers obtained by removing all
duplicate elements fromM� Let ni� � � i � z represent the number of occurrences
of si inM� Let sum�A� be the function de�ned on multisets such that sum�A� �P

j�A j�
To �nd C�A� n�	 which is the number of ways to place the messages represented

by a multisetA into the n consecutive free slots	 we will de�ne multiset ZA	 which
consists of n � sum�A� elements all equal to zero �one for each unused slot� and
multiset A� � A � ZA� Then C�A� n� is equal to the number of permutations of
A�


C�A� n� �

��
�

jA�j�

jZAj�
Q

z��

i��
ni�

� n � sum�A�

� � n � sum�A�
�

���
��

QjAj
i��

�jZAj�i�Q
z��

i��
ni�

� n � sum�A�

� � n � sum�A�
�

����
�
Let P�A� be the set of all possible	 distinct	 ordered pairs �P��A��P��A��	

such that P��A� and P��A� are obtained by partitioning the multiset A into two
multisubsets�

The probability that there is a message of size s starting at slot k in the system
with Nmax slots and messages represented by the multisetM is

P��s� k�M� �

P
P�M�fsg� �C�P��M�fsg�� k� � C�P��M�fsg�� Nmax � s � k��

C�M� Nmax�
�

������
and the probability that there is a message of any size starting at slot k is

Pstart�k�M� �
X

s�SM

P��s� k�M�� ������

Probability Pstart�k�M� has been calculated for uniform	 linear	 quadratic	 and
exponential message�size distributions	 for a wide variety of values for Nmax and
Nmsg parameters� There is no noticeable e�ect due to message�size distribution�
A typical case is illustrated in Figure ����

With the assumption that the size of a single message does not exceed a few
percent of the storage pool wherein the messages reside �which is typically the
case�	 Pstart�k�M� di�ers fromNmsg�Nmax less then ��	 except for the edge e�ects�
This makes our results for the space and time complexity a good approximation
in the case of non�unit�size messages�

����� Logical Addresses � Block Descriptors

Since most second�generation multicomputers will support some form of virtual
memory	 the original speci�cation of the back�reference problem has to be slightly
modi�ed
 Given the logical address of a memory block	 we have to �nd the block



�� CHAPTER �� STORAGE ALLOCATION

Nmsg����U������

Nmsg����U������

Nmsg����U����	�

k

Pstart�k�M� �Nmax


�

��

��

��

������	����
�����

Figure ���� Probability that a message starts at slot k� Message�size distribution is

uniform� maximum message size is equal to ��� Nmax 	 
���� The U parameter

represents the used portion of the message pool�

descriptor of the corresponding physical block� One possible solution is to do the
logical
to
physical address translation �rst� and then use the physical address as a
key for the dictionary we have described�

An alternative approach is to increase the size of the set that we are work

ing with from Nmax to Nmax � Ncontext� where Ncontext is the number of di�erent
logical
to
physical maps that the hardware supports� In this case� the key for the
dictionary would be the logical address extended with the �eld indicating the map
used�

Which approach should be used has to be determined by comparing the ad

ditional searching cost with the savings due to eliminating the logical
to
physical
address translation�



Chapter �

Results and Future Work

��� Summary

The work presented in this report is an experiment in operating system design�
It was motivated primarily by the desire to better utilize the performance of the
second�generation multicomputers�

When the design of the RK got started� we created a wish list� Here is what
we wanted the RK to be� together with what we think the RK became�

� simple�We identi�ed the key features of a multicomputer operating system�
and tried for a minimalistic solution� The approach used in the design of
the RK is much like that of a RISC processor� employing simple and fast
solutions for frequently used features� This approach led us to the simplistic
scheduling strategy and streamlined message handling� The resulting kernel
is very small and simple� and still provides the full set of functions needed in
a multiple�task node operating system�

� portable � The implementation�dependent parts of RK �memory allocation�
context switching	 are well isolated from the rest of the design� The port
of the code developed on the Cosmic Cube to the Ametek Series 
��� was
achieved without any serious di
culties� while retaining about ��� of the
original code� The port to the Intel iPSC�II is in progress�

� modular � The careful layering of the RK structure� with well�de�ned in�
terfaces between the layers� provides for easy modi�cations and extensions�
RK can be tested and tuned by incrementally adding more�complex features
without interfering with the already tested ones�

� fast�Although we have reduced the number of context�switches to� at most�
one per message� made the cost of a single context�switch equal to that of the
ordinary system function call� and decreased the number of CPU instructions
in message�handling by about a factor of three� the software component is still

��



�� CHAPTER �� RESULTS AND FUTURE WORK

the dominant part of message latency� Part of the reason for this comes from
the necessity of satisfying protection requirements� and could be eliminated
if� for instance� the code for user processes were a result of a compilation
procedure that could guarantee no misuse of message pointers� However�
any additional signi�cant decrease in the software component of the message
latency would require architectural support�

��� Where Next�

����� Handlers as the Compilation Target for High�Level

Languages

Initially� the idea of splitting the RK into two fairly independent parts � the Inner
Kernel and the set of handlers � came about from a realization that separating
the concerns would make the implementation easier� and make future modi�ca�
tions straight forward� However� W�C� Athas� use of the handler environment as
a compilation target for the Cantor programming notation� and the work of L�V�
Kale and W� Shu on the Chare�Kernel �Kale 	 Shu 

�� have convinced us that
elaborating on the handler environment will be bene�cial�

����� Multiple�User Support

So far� we have used multicomputers in a space�sharing environment in which each
user allocates a number of multicomputer nodes� Although there may be more
then one process on a node� all belong to that same user� Commercial second�
generation multicomputers already support hardware protection for multiple�user
programming� and shortly will provide distributed �le systems� and virtual memory
on the nodes� RK can easily provide for multiple users without any modi�cations�
each user will have a personal handler to manage the set of processes belonging to
that user�

Still lacking is a way to manage resources in a multicomputer� In an ideal
environment� all software would be written for multicomputers� including editors�
compilers� etc� and organized as a collection of many relatively small cooperating
processes� that would be mapped automatically onto the available nodes by the
underlying kernel mechanism� The smaller the processes� the easier the problem of
load balancing becomes� and we can do reasonably well with random process place�
ment� provided that the communication latency does not depend heavily on the
distance between communicating nodes� This is already true for second�generation
multicomputers�



Bibliography

�Agha ��� G�A� Agha� Actors� A Model of Concurrent Computation in

Distributed Systems� MIT Press� �����

�Aho et al� 	
� A�V� Aho� J�E� Hopcroft� J�D� Ullman�The Design and Analysis

of Computer Algorithms� Addison�Wesley� ��	
�

�Athas �	� W�C� Athas� Fine Grain Concurrent Computation� Caltech
Computer Science Technical Report ��


�TR��	�� ���	�

�Athas � Seitz ��� W�C� Athas� C�L� Seitz� Multicomputers� Message�Passing

Concurrent Computers� IEEE Computer� pp� ��

� August
�����

�Dally �	� W�J� Dally� A VLSI Architecture for Concurrent Data Struc�

tures� Kluwer Academic Publishers� ���	�

�Dally � Seitz �	� W�J� Dally� C�L� Seitz� Deadlock�Free Message Routing in Mul�

tiprocessor Interconnection Networks� IEEE Transactions on
Computers� pp� �
	����� May �����

�Flaig �	� C�M� Flaig� VLSI Mesh Routing Systems� Caltech Computer
Science Technical Report ��

��TR��	�� ���	�

�Kale � Shu ��� L�V� Kale� W� Shu� The Chare�Kernel Language for Parallel

Programming� A Perspective� University of Illinois at Urbana�
Champaign Technical Report �UIUCDCS�R�����
���� �����

�Knuth ��� D�E� Knuth� The Art of Computer Programming� Fundamental
Algorithms� Addison�Wesley� �����

�Knuth 	�� D�E� Knuth� The Art of Computer Programming� Sorting and

Searching� Addison�Wesley� ��	��

�Morrison ��� D�R� Morrison� PATRICIA � Practical Algorithm To Retrieve

Information Coded in Alphanumeric� Journal of the ACM� pp�
��
���
� �����


�



�� BIBLIOGRAPHY

�Seitz ��� C�L� Seitz� Concurrent VLSI Architectures� IEEE Transactions
on Computers� pp� ���	
����� Dec� �
���

�Seitz ��� C�L� Seitz� The Cosmic Cube� Communications of the ACM�
pp� ��
��� Jan� �
���

�Seitz et al� ��a� C�L� Seitz� J� Seizovic�W��K� Su� The C Programmer�s Abbrevi�

ated Guide to Multicomputer Programming� Caltech Computer
Science Technical Report �CS�TR������� �
���

�Seitz et al� ��b� C�L� Seitz� W�C� Athas� C�M� Flaig� A�J� Martin� J� Seizovic�
C�G� Steele� W��K� Su� The Architecture and Programming of

the Ametek Series ���� Multicomputer� Proceedings of the �
��
Hypercube Conference� �
���

�Su � Seitz ��� W��K� Su� C�L� Seitz� Object�Oriented Event�Driven Simulation

in Submicron Systems Architecture Semiannual Technical Re�

port� pp� ��
��� Caltech Computer Science Technical Report
������TR����� �
���

�Su et al� �	� W��K� Su� R� Faucette� C�L� Seitz� C Programmer�s Guide to

the Cosmic Cube Caltech Computer Science Technical Report
������TR��	�� �
�	�


