
Integrating Task and Data Parallelism

Thesis by
Berna Massingill

In Partial Ful�llment of the Requirements
for the Degree of
Master of Science

California Institute of Technology
Pasadena� California

����
�submitted � May �����

Caltech CS	TR	��	
�



Copyright c� Berna Massingill� ����

All Rights Reserved

ii



Abstract

Many models of concurrency and concurrent programming have been proposed� most can
be categorized as either task�parallel �based on functional decomposition� or data�parallel
�based on data decomposition�� Task�parallel models are most e�ective for expressing ir�
regular computations� data�parallel models are most e�ective for expressing regular com�
putations� Some computations� however� exhibit both regular and irregular aspects� For
such computations� a better programming model is one that integrates task and data par�
allelism� This report describes one model of integrating task and data parallelism� some
problem classes for which it is e�ective� and a prototype implementation�

iii



Acknowledgments

I want �rst to thank my academic and research advisor� K� Mani Chandy� without whose
guidance� support� and endless patience the work presented in this report would not have
been possible�

I also want to thank the other members of my research group�Carl Kesselman� John
Thornley� Paul Sivilotti� Ulla Binau� Adam Rifkin� Peter Carlin� Mei Su� Tal Lancaster�
and Marc Pomerantz�and Peter Hofstee� they listened to my ideas� read my prose� and
provided constructive criticism�

Finally� I want to thank Eric van de Velde� who provided a library of SPMD routines with
which to test my implementation and answered many questions� Ian Foster� Steve Tuecke�
Sharon Brunett� and Bob Olson� who explained the internal workings of the PCN imple�
mentation and helped me track down errors� and Chau�Wen Tseng� Seema Hiranandani�
and Charles Koelbel� who explained the implementation of Fortran �� D�

The research described in this report was supported in part by an Air Force Laboratory
Graduate Fellowship 	under the sponsorship of Phillips Laboratory at Kirtland AFB� Albu�
querque� NM
� in part by a Milton E� Mohr Graduate Fellowship 	administered by Caltech
�
in part by the Air Force O�ce of Scienti�c Research under grant number AFOSR��
������
and in part by the NSF under Cooperative Agreement No� CCR��
������ The government
has certain rights in this material�

iv



Contents

Preface x

Organization of this report � � � � � � � � � � � � � � � � � � � � � � � � � � � x
Terminology and conventions � � � � � � � � � � � � � � � � � � � � � � � � � � xi

� Overview of task and data parallelism �

��� Task parallelism � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Programming models � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Example programming notations � � � � � � � � � � � � � � � � � � � � �
����� Reasoning about programs � � � � � � � � � � � � � � � � � � � � � � � �
����� Application classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Data parallelism � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Programming models � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Example programming notations � � � � � � � � � � � � � � � � � � � � �
����� Reasoning about programs � � � � � � � � � � � � � � � � � � � � � � � �
����� Application classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
����� Implementation issues � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Integrating task and data parallelism �

��� A programming model for integrating task and data parallelism � � � � � � � 	
��� Alternative models � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� Problem classes for our model � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Coupled simulations � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Pipelined computations � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Reactive computations � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Inherently parallel computations � � � � � � � � � � � � � � � � � � � � ��

� Implementation overview ��

��� General speci�cations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� The task
parallel notation � � � � � � � � � � � � � � � � � � � � � � � � ��
����� The data
parallel notation � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Distributed data structures � � � � � � � � � � � � � � � � � � � � � � � ��
����� Calls to data
parallel programs �distributed calls� � � � � � � � � � � � �	

��� Support for distributed data structures in the task
parallel notation � � � � ��
����� The programming model � � � � � � � � � � � � � � � � � � � � � � � � � ��

v



����� Implementation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Support for distributed calls in the task�parallel notation � � � � � � � � � � ��

����� The programming model � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Implementation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��
 Synchronization issues � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Message con�icts � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
�� Con�icting access to shared variables � � � � � � � � � � � � � � � � � � ��

��
 Requirements for called data�parallel programs � � � � � � � � � � � � � � � � ��

� Implementation details� library procedure speci�cations ��


�� General information about the library procedures � � � � � � � � � � � � � � � �



���� Documentation conventions � � � � � � � � � � � � � � � � � � � � � � � �



���� Status information � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



���� Referencing arrays�array IDs � � � � � � � � � � � � � � � � � � � � � ��


�� Distributed�array procedures � � � � � � � � � � � � � � � � � � � � � � � � � � ��


���� Creating an array � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


���� Deleting a distributed array � � � � � � � � � � � � � � � � � � � � � � � �	


���� Reading an element � � � � � � � � � � � � � � � � � � � � � � � � � � � �	


���
 Writing an element � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


���
 Obtaining a local section � � � � � � � � � � � � � � � � � � � � � � � � 
�


���� Obtaining information about a distributed array � � � � � � � � � � � 
�


���� Verifying a distributed array�s borders � � � � � � � � � � � � � � � � � 
�


�� Distributed�call procedures � � � � � � � � � � � � � � � � � � � � � � � � � � � 




���� Making a distributed call � � � � � � � � � � � � � � � � � � � � � � � � 



� Implementation details� internals ��


�� Support for distributed arrays � � � � � � � � � � � � � � � � � � � � � � � � � � 
	


���� The array�manager server � � � � � � � � � � � � � � � � � � � � � � � � 
	


���� Library procedures � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


���� Internal representation of distributed arrays � � � � � � � � � � � � � � 
�


���
 References to distributed arrays � � � � � � � � � � � � � � � � � � � � � 
�


���
 Internal representation of local sections � � � � � � � � � � � � � � � � 
�


���� Explicit allocation and deallocation of storage for local sections � � � 




���� Support for foreign borders option � � � � � � � � � � � � � � � � � � 
�


�� Support for distributed calls � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


���� The do all program � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


���� The wrapper program � � � � � � � � � � � � � � � � � � � � � � � � � � 
	


���� The transformation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


���
 Examples of applying the transformation � � � � � � � � � � � � � � � ��


�� Architecture�speci�c issues � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Examples ��

��� Inner product � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Description � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� PCN program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

vi



����� Speci�cation for data�parallel program � � � � � � � � � � � � � � � � � ��

��� Polynomial multiplication using a pipeline and FFT � � � � � � � � � � � � � 	


����� Description � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	


����� PCN program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

����� Speci�cations for data�parallel programs � � � � � � � � � � � � � � � � ��

� Conclusions ��

	�� Summary of work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Proposals for additional work � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Extending the model� direct communication between data�parallel

programs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Reasoning about the model � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Reasoning about the extended model � � � � � � � � � � � � � � � � � � ��

A Overview of PCN syntax and terminology ��

A�� Program construction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


A�� Variables � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

A�� Communication and synchronization � � � � � � � � � � � � � � � � � � � � � � ��

A�
 Interface to other languages � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

B Implementation details� compiling� linking� and executing programs ��

B�� Transforming and compiling programs � � � � � � � � � � � � � � � � � � � � � �	

B�� Linking in data�parallel code � � � � � � � � � � � � � � � � � � � � � � � � � � ��

B�� Executing programs with the array manager � � � � � � � � � � � � � � � � � � ��

C Implementation details� additional library procedures ���

C�� Creating a de�nitional array from a tuple � � � � � � � � � � � � � � � � � � � �



C�� Creating a patterned de�nitional array � � � � � � � � � � � � � � � � � � � � � �
�

C�� Loading a module on all processors � � � � � � � � � � � � � � � � � � � � � � � �
�

C�
 Printing debugging and trace information � � � � � � � � � � � � � � � � � � � �
�

C�� Reduction operator max � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

D Implementation details� adapting existing data	parallel programs ��


D�� An example library of data�parallel programs � � � � � � � � � � � � � � � � � �
�

D�� Adapting the library � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



E Implementation details� required �les and installation procedure ���

E�� Obtaining the software � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

E�� Required �les � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

E���� Modi�ed �les � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	

E���� Added �les � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	

E�� Installation procedure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

vii



F Implementation details� transformation for distributed calls ���

F�� The transformed call � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

F�� The parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

F�� The �rst	level wrapper program � � � � � � � � � � � � � � � � � � � � � � � � � ���

F�
 The second	level wrapper program � � � � � � � � � � � � � � � � � � � � � � � ���

F�� The transformed call� continued � � � � � � � � � � � � � � � � � � � � � � � � � ���

F�
 The combine program � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

viii



List of Figures

��� Climate simulation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Fourier�transform pipeline � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Discrete�event simulation of reactor system � � � � � � � � � � � � � � � � � � ��

��� Generation of animation frames � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� A distributed data structure � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Control �ow in a distributed call � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Data �ow in a distributed call � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Concurrent distributed calls � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Partitioning and distributing an array � � � � � � � � � � � � � � � � � � � � � ��

��
 Decomposing an array � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Local section with borders � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Distributing an array � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Runtime support for distributed arrays � � � � � � � � � � � � � � � � � � � � � ��

���� Support for distributed calls�the wrapper program � � � � � � � � � � � � � ��


�� Polynomial multiplication using a pipeline and FFT � � � � � � � � � � � � � ��

ix



Preface

Many di�erent models of concurrency and of concurrent programming have been proposed�
Although models may di�er in many respects� most can be categorized as either task�
parallel �based on functional decomposition� or data�parallel �based on data decomposition��
Task�parallel models are general and �exible� and hence e�ective for expressing irregular
computations� but they can be di	cult to reason about and cumbersome for expressing
regular computations� Data�parallel models are more restricted� but they are very e�ective
for expressing regular computations and are easier to reason about� Some computations�
however� exhibit both regular and irregular aspects� For such computations� we propose that
a better programming model is one that integrates task and data parallelism� retaining the
�exibility of the former while exploiting the advantages of the latter� This report describes
one model of integrating task and data parallelism� some problem classes for which it is
e�ective� and a prototype implementation�

Organization of this report

The chapters of this report are organized as follows


� x� presents an overview of task parallelism and data parallelism�

� x� describes the proposed programming model for integrating task parallelism and
data parallelism and describes some problem classes for which the model is e�ective�

� x
 describes the overall design of a prototype implementation�

� x� presents detailed speci�cations for the prototype implementation�s library of pro�
cedures�

� x� discusses internal details of the prototype implementation�

� x� presents two example programs in detail�

� x� summarizes the work described in this report� presents conclusions� and suggests
directions for further research�

The report also includes the following appendices


x



� xA gives an overview of PCN syntax and terminology� �PCN ���� or Program Compo�
sition Notation� is the task�parallel notation used for the prototype implementation�	

� xB describes how to compile� link� and execute programs written using the prototype
implementation�

� xC describes additional library procedures included in the prototype implementation�

� xD presents a case study of adapting an existing library of data�parallel programs for
use with the prototype implementation�

� xE describes the required 
les and installation procedure for the prototype implemen�
tation�

� xF presents additional internal details of the prototype implementation�

Terminology and conventions

Concurrency and parallelism

Throughout this report� concurrency and parallelism have the same meaning� Processes A
and B are said to execute concurrently if the interleaving of their atomic actions is arbitrary�

Processes� processors� and virtual processors

In the mapping of a program to a machine� processes are assigned to physical processors�
If the machine does not have a single address space� data elements are also assigned to
physical processors� It is sometimes useful� however� to introduce an intermediate layer of
abstraction� the virtual processor �or abstract processor	 and to think of assigning processes
and data elements to virtual processors� which are then in turn mapped �not necessarily
one�to�one	 to physical processors� Virtual processors are considered to be entities that
persist throughout the execution of a program� if processors have distinct address spaces�
the virtual processors are considered to have distinct address spaces as well�

By mapping processes to di�erent virtual processors� the programmer can capture the idea
that the processes could be executed simultaneously� at the same time� the use of virtual
rather than physical processors achieves a degree of independence from the physical machine
and hence a degree of portability�

In the following chapters� for the sake of brevity� the term processor will be taken to mean

virtual processor��

In addition� it is assumed that each �virtual	 processor can be identi
ed by a unique number�
referred to as its processor number�

xi



Typesetting conventions

The following typesetting conventions are used in subsequent chapters�

� Typewriter font is used for literals�words that are to appear exactly as shown in

commands and programs� including program names� �le names� and variable names�

� Italics are used for variables�parts of commands and program statements that are

to be replaced by values of the user�s choice�

For example� the following gives the syntax for a program statement to assign a value to a

variable named X�

X �� Value

The characters �X ��	 must appear exactly as shown
 Value is to be replaced by a value of

the user�s choice�

xii



Chapter �

Overview of task and data

parallelism

As noted in the preface� although there are many di�erent models of concurrent program�
ming� most can be categorized as either task�parallel or data�parallel� The most important
di�erences between task�parallel models and data�parallel models are as follows�

� Task�parallel models emphasize functional decomposition� Data�parallel models em�
phasize data decomposition�

� A task�parallel program may contain multiple concurrently�executing threads of con�
trol� and these threads of control may interact� A data�parallel program initially has
a single thread of control and can contain multiple threads of control only as part
of a parallel FOR or DO loop �described in x��	��
 in which the concurrently�executing
threads of control do not interact�

� Task�parallel models are more general and hence have greater expressive power for
irregular computations� Data�parallel models are more restrictive and hence more
suitable for regular computations�

� Reasoning about task�parallel programs requires techniques other than those used to
reason about sequential programs and can be very di�cult� Reasoning about data�
parallel programs can be done with the same techniques used for sequential programs�

In the following sections� we describe task�parallel and data�parallel models in more detail�

�



��� Task parallelism

����� Programming models

In a task�parallel programming model� the focus is on decomposing the problem by dividing
it into �possibly di�erent� tasks� i�e�� on functional decomposition� There is a wide range of
programming models that can be categorized as task�parallel� Some aspects in which they
di�er are the following�

� The unit of concurrency� which can range from coarse�grained processes to individual
expressions or subexpressions�

� Whether concurrency is explicit or implicit�

� What constitutes an atomic action� i�e�� an action with which another processor cannot
interfere�

� Whether the number of processes or other units of concurrency is 	xed �static� or can
change during program execution �dynamic��

� Whether all processes share a single address space or some processes occupy distinct
address spaces�

� The mechanisms for communication and synchronization among concurrently�exe�
cuting units of computation� Communication and synchronization mechanisms can
be based on either message�passing �synchronous or asynchronous� or shared data
�through a variety of constructs including monitors� semaphores� and single�assignment
variables��

����� Example programming notations

Given the range of ways in which task�parallel models can di�er� it is not surprising that
the range of task�parallel programming notations is broad� Examples include the following�

� Imperative notations with support for communicating sequential processes� In such
notations� the basic unit of concurrency is the process� and concurrency is explicit�
Examples include the following�

� Fortran M 
��� which adds parallel blocks and asynchronous channel communi�
cation to Fortran 

�

� Cosmic C 
���� which adds process creation and asynchronous point�to�point
message�passing to C�

� Ada 
��� in which programs may de	ne tasks that execute concurrently� and in
which communication and synchronization are accomplished via the rendezvous
construct�

�



In the �rst two examples� each process has a distinct address space� in the last example�
concurrently�executing processes share an address space�

� Declarative notations� in which concurrency is implicit� there is a single address space�
the unit of concurrency is the �sub�expression� and synchronization is based on data
	ow� An example is the following


� Declarative Ada ���
� in which programs are written in a declarative style using
only single�assignment variables� Synchronization is controlled by the semantics
of the single�assignment variable
 Such a variable can have a value assigned to
it at most once� and attempts to read its value suspend until a value has been
assigned�

� Notations that combine imperative and declarative styles� Examples include the fol�
lowing


� PCN �Program Composition Notation� ��� �
� which combines features of im�
perative programming �sequential composition and multiple�assignment vari�
ables� with features of declarative programming �parallel composition and single�
assignment variables��

� CC�� �Compositional C��� ��
� which adds parallel loops and blocks� dynamic
process creation� explicitly�de�ned atomic actions� and single�assignment vari�
ables to C���

� Notations based on the Actors model ��
� An example is the following


� Cantor ��

 The basic unit of concurrency is the object� concurrently�executing
objects communicate via asynchronous message�passing� The computation is
message�driven
 An object is inactive until it receives a message� The object�s
response to the message may include sending messages to other objects� creating
new objects� or modifying its state� it performs a �nite number of such actions
and then either waits for another message or terminates�

What these diverse notations have in common is the potential for multiple interacting
threads of control�

����� Reasoning about programs

Reasoning about programs based on a task�parallel model can be very di�cult� Methods
of proof based on Hoare triples ���
 work well for sequential programs because the behavior
of any program depends only on its preconditions and the semantics of its statements� In
a program containing multiple concurrent processes� however� the behavior of each process
depends not only on its preconditions and the semantics of its statements� but also on its
environment �the actions of other concurrently�executing processes�� Proofs of concurrent
programs depend not only on showing that each process considered in isolation behaves
correctly� but also on showing that the processes interact correctly�

�



����� Application classes

Task�parallel models� especially those that allow dynamic process creation� are particularly
e�ective for expressing irregular or dynamic computations� such as those found in operating
systems and in discrete�event simulations�

��� Data parallelism

����� Programming models

In a data�parallel programming model� the focus is on decomposing the problem by decom�
posing the data� Large data structures are decomposed and distributed among processes
or processors� the computation is viewed as a sequence of operations on these distributed
data structures� and concurrency is obtained by acting concurrently on di�erent parts of
the data �		� 	
��

In the simplest view� then� a data�parallel computation is a sequence of multiple�assignment

statements� where a multiple�assignment statement is an assignment statement with mul�
tiple expressions on the right�hand side and multiple variables on the left�hand side� A
multiple�assignment statement has the following operational semantics� First evaluate all
right�hand�side expressions� then assign the values of the right�hand�side expressions to the
left�hand�side variables� Multiple�assignment statements may be implicit� as in whole�array
operations� or explicit� as in the FORALL statement of CM Fortran ��	��

Observe� however� that the idea of the multiple�assignment statement can be generalized
to include parallel FOR or DO loops in which each iteration of the loop is independent of all
other iterations� Each loop iteration constitutes a thread of control� the loop as a whole
consists of a collection of threads of control that begin together 
at loop initiation� and
terminate together 
at loop termination� but do not otherwise interact� Execution of such
a loop is the only situation in which a data�parallel program may have multiple threads of
control�

Thus� concurrency in a data�parallel computation can be�

� Implicitly speci�ed via an operation on a distributed data structure�

� Explicitly speci�ed via a multiple�assignment statement or a parallel loop�

Observe further that implicit concurrency and some forms of explicit concurrency imply a
single address space� often referred to as a global name space�

�



����� Example programming notations

Given that data�parallel models are all based on viewing a computation as a sequence of
multiple�assignment statements� it is not surprising that the range of data�parallel program�
ming notations is much narrower than the range of task�parallel notations� Examples of
data�parallel notations include�

� Connection Machine Fortran ���	� This set of extensions to Fortran 

 provides a
global name space and allows both implicit concurrency� in the form of operations
on distributed data structures� and explicit concurrency� in the form of multiple�
assignment statements �the FORALL statement��

� Fortran 

 D ���	� This set of extensions to Fortran 

 provides a global name space
and allows only implicit concurrency� inferred by the compiler from DO loops on ele�
ments of distributed data structures�

� High Performance Fortran ��
	� This set of extensions to Fortran �� ���	 provides a
global name space and allows both implicit concurrency� in the form of operations
on distributed data structures� and explicit concurrency� in the form of multiple�
assignment statements and parallel loops �the FORALL construct��

� Dataparallel C ���� ��	� This set of extensions to C allows explicit concurrency� in the
form of parallel loops �the domain select statement�� A global name space is provided�
in addition� each iteration of a parallel loop has a local name space�

����� Reasoning about programs

One of the biggest advantages of the data�parallel model is that it leads to concurrent
programs that we believe are no more di�cult to reason about than sequential programs�
To the extent that a data�parallel program follows the model described above� it is possible
to reason about it in the same way that one reasons about sequential programs� Even when
there are multiple concurrently�executing threads of control� each thread of control executes
independently of the others� Thus� we believe that it is possible to reason about each thread
of control in isolation� in the same way that one reasons about a sequential program�

Observe� however� that departures from the model�e�g�� parallel loops in which the concur�
rently�executing iterations of the loop are not independent�introduce the same di�culties
involved in reasoning about task�parallel programs�

����� Application classes

Data�parallel models are particularly e�ective for expressing regular computations� such as
the large array�based computations found in many scienti�c programs�






����� Implementation issues

It may be noted that the preceding discussion of data�parallel models excludes some widely�
used methods of writing concurrent programs based on data decomposition� most notably
the SPMD �single program� multiple data� method �described later in this section�� It is our
contention� however� that these methods are more properly viewed as ways of implementing
the programming model discussed above �x�������

There are a number of methods for implementing the data�parallel programming model de�
scribed in x������ The model maps readily to some architectures	 for example� it is easy to
see how a sequence of multiple�assignment statements can be performed on an SIMD �sin�
gle instruction stream� multiple data stream� architecture� In implementing a data�parallel
model on an MIMD �multiple instruction stream� multiple data stream� architecture� how�
ever� some care must be taken to ensure that the implementation preserves the semantics
of the programming model� The following two points must be considered in developing any
implementation of the data�parallel model


� The relationship between data elements and processes�

� The degree of synchronization between processes�

A distributed data structure� as brie�y de�ned in x������ is a data structure in which the
data is partitioned into sections and distributed among processes� This can be done in
either of the following two ways


� One data element per process� Multiple assignment can then easily be implemented
by having all processes simultaneously execute an assignment statement�

� Multiple data elements per process� Multiple assignment must then be simulated�
with each process executing a sequence of assignment statements� one for each of
its elements� Care must be taken in this case that the implementation preserves
the semantics of the programming model
i�e�� that evaluations of expressions on the
right�hand side of a multiple�assignment statement are based on the values of variables
before execution of the statement�

Inter�process synchronization can also be handled in di�erent ways� including the following


� Tight synchronization� i�e�� synchronization between each pair of consecutive oper�
ations� With this method� suitable for SIMD architectures� individual processing
elements execute a sequence of operations in lockstep� This method clearly preserves
the semantics of the programming model�

� Loose synchronization with a master process� With this method� suitable for MIMD
architectures� there is a master process that executes the initial single thread of
control� When control reaches an operation involving concurrency
e�g�� a multiple
assignment
the master process creates a number of concurrently�executing slave pro�
cesses that perform the operation and then terminate� returning control to the master
process� Synchronization thus consists of a series of fork�join operations� A sequence

�



of multiple�assignment statements can be implemented using a single fork�join pair�
provided such an implementation maintains the semantics of the programming model�

� Loose synchronization without a master process� With this method� suitable for
MIMD architectures and usually referred to as SPMD �single program� multiple data��
all processes execute the same program� each on its own data� This method� like
the preceding method� is loosely synchronized in that at a given instant� di�erent
processes can be executing di�erent parts of the program� As with the preceding
method� however� synchronization must be performed with su	cient frequency to
maintain the semantics of the programming model� Synchronization among processes
can be enforced in a number of ways
 a common method is the barrier construct�
which requires all processes to arrive at a particular point in the computation before
any of them can proceed beyond it�

SPMD implementations are often based on multiple address spaces� which is particu�
larly appropriate for multiple�address�space architectures but can be implemented on
single�address�space architectures as well� In a multiple�address�space SPMD imple�
mentation� each process has direct access only to its own portion of a distributed data
structure �referred to as a local section�
 to obtain data from another local section� it
must communicate with the process that owns the local section�

�



Chapter �

Integrating task and data

parallelism

As described in x�� both task parallelism and data parallelism have their strengths and
weaknesses� Task parallelism is extremely general and thus e�ective for expressing a wide
range of computations� including irregular and dynamic computations� However� this gen�
erality has a price� task�parallel programs can be di�cult to reason about� Data parallelism�
on the other hand� is fairly restrictive and hence most suitable for regular computations�
The restrictiveness of the model� however� means that data�parallel programs are usually
easier to reason about and understand than task�parallel programs� Further� the amount
of concurrency in a data�parallel program scales with problem size in a way that is not
generally true for a task�parallel program�

Thus� it is natural to ask whether we can integrate task and data parallelism into a single
programming model that combines the strengths of both� Such a programming model would
be particularly e�ective for problems that exhibit both task and data parallelism�

This chapter presents one such programming model and describes some classes of problems
for which it is appropriate� While our programming model is simple and restricted� it is
appropriate for a number of interesting problem classes� and its simplicity makes it easier
to de	ne and implement than a more general model�

��� A programming model for integrating task and data

parallelism

There are a number of classes of problems 
described in more detail in x���
 in which the
problems can� at the top level� be functionally decomposed into subproblems� some or all
of which are suitable for data decomposition� Such a problem can be readily expressed as

�



a task�parallel program in which one or more tasks are data�parallel programs�

Thus� we propose a simple programming model based on allowing data�parallel programs to
serve as subprograms within a task�parallel program� We de�ne the interaction as follows�

� The task�parallel program can call a data�parallel program in the same way that it
calls a sequential subprogram� The calling task�parallel program and the called data�
parallel program interact and share data only via call�return and parameter passing�
but parameters can include distributed data structures�

� The task�parallel program can create distributed data structures and perform simple
manipulations on them� This allows a more natural interaction with data�parallel
programs� much of whose data may be in the form of distributed data structures� In
particular� it allows the task�parallel program to transfer data from one distributed
data structure to another� as might be appropriate when the task�parallel program
calls several di�erent data�parallel programs�

For example� consider a task�parallel programming model in which a program consists of
a set of concurrently�executing sequential processes� Each process performs a sequence of
operations drawn from a repertoire of possible operations� typically including the following�

� Primitive operations 	e�g�� expression evaluation or assignment
�

� Calls to subprograms�

� Process creation�

� Communication and synchronization with other processes�

The key idea of our programming model is to add to this repertoire the following two kinds
of operations�

� Creation and manipulation of distributed data structures�

� Calls to data�parallel programs�

Exactly what a call to a data�parallel program involves depends on the implementation
of the data�parallel notation� but in any case a call to a data�parallel program is to be
semantically equivalent to a call to a sequential subprogram�

��� Alternative models

We believe that the model proposed in x��� combines simplicity with su
cient expressive
power to handle a variety of interesting problems� However� other models of integrating
task and data parallelism are possible and may be more appropriate for other classes of
problems�

�



For example� another simple model is based on allowing task�parallel programs to serve
as subprograms in a data�parallel program� In this model� one of the sequence of actions
performed by the data�parallel program can be a call to a task�parallel program� Parameters
to the called task�parallel program can include distributed data structures� calling a task�
parallel program on a distributed data structure is equivalent to calling it concurrently
once for each element of the distributed data structure� and each copy of the task�parallel
program can consist of multiple processes�

��� Problem classes for our model

In this section� we describe several classes of problems for which our programming model is
suitable�

����� Coupled simulations

A problem in this class consists of two or more coupled �interdependent� subproblems�
Each subproblem can be expressed as a data�parallel program� solution of the whole prob�
lem requires communication among the programs solving the subproblems� which can be
accomplished via a task�parallel top�level program�

Observe that if solutions to the di�erent subproblems exist in the form of di�erent data�
parallel programs optimized for di�erent architectures� it might be e�ective to solve the
coupled problem by coupling these subproblem solutions using a task�parallel program ex�
ecuting on a heterogeneous system�

Example� climate simulation �heterogeneous domain decomposition�

One type of coupled simulation problem is the heterogeneous domain decomposition� in
which the subproblems arise from dissimilar subdomains of the problem domain� An ex�
ample is a climate simulation� as illustrated by 	gure 
��� The simulation consists of an
ocean simulation and an atmosphere simulation� Each simulation is a data�parallel program
that performs a time�stepped simulation� at each time step� the two simulations exchange
boundary data� This exchange of boundary data is performed by a task�parallel top layer�

��



data-parallel data-parallel

task-parallel top level

ocean
simulation

atmosphere
simulation

Figure ���� Climate simulation

Example� aeroelasticity simulation �multidisciplinary design and optimization�

Another type of coupled simulation problem is the multidisciplinary design and optimization
problem ���	 in which the subproblems arise from applying di
erent analysis disciplines to
di
erent aspects of the problem� An example is an aeroelasticity simulation of a �exible
wing in steady �ight� Air�ow over the wing imposes pressures that a
ect the shape of
the wing� at the same time	 changes in the wing
s shape a
ect the aerodynamic pressures�
Thus	 the problem consists of two interdependent subproblems	 one aerodynamic and one
structural� As in the climate�simulation example	 each subproblem can be solved by a data�
parallel program	 with the interaction between them performed by a task�parallel top�level
program�

����� Pipelined computations

A problem in this class can be decomposed into subproblems that form the stages of a
pipeline� the stages execute concurrently as tasks in a task�parallel program	 and each stage
of the pipeline is represented by a data�parallel program�

Example� iterated Fourier�transform computation

An example is a Fourier�transform computation on multiple sets of data	 in which the
computation has the following form for each set of data�

�� Perform a discrete Fourier transform �DFT� on a set of data�

�� Manipulate the result of the transform elementwise�

�� Perform an inverse DFT on the result of the manipulation�

Examples of such computations include signal�processing operations like convolution	 cor�
relation	 and �ltering	 as discussed in ����	 and polynomial multiplication	 as described in
x����

��



Each of these steps can be performed by a data�parallel program� they can be linked to form
a ��stage pipeline� with the stages of the pipeline executing concurrently� as illustrated by
�gure ���� Each stage of the pipeline processes one set of data at a time� However� except
during the initial 	�lling
 of the pipeline� all stages of the pipeline can operate concurrently�
while the �rst stage is processing the N �th set of data� the second stage is processing the
�N � �
�th set of data and the third stage is processing the �N � �
�th set of data�

data-parallel data-parallel data-parallel

task-parallel top level

DFT manipulation
inverse
DFT

forward elementwise

Figure ���� Fourier�transform pipeline

����� Reactive computations

This problem class is a more general form of the pipeline class described in x������ A
problem in this class can be readily expressed as a reactive program�i�e�� a not�necessarily�
regular graph of communicating processes operating asynchronously�in which each process
is a data�parallel computation� and in which communication among neighboring processes is
performed by a task�parallel top�level program� If the task�parallel notation allows dynamic
process creation� the graph can change as the computation proceeds� adding and deleting
processes as needed�

Example� discrete�event simulation

One type of problem that can be formulated as a reactive computation is discrete�event
simulation� each process in the graph represents a component of the system being simulated�
and communication among processes represents the interaction of the system�s components�
If the events being simulated for some or all of the components of the system are su�ciently
computationally intensive� each component can be represented by a data�parallel program�
with the interaction between components handled by a task�parallel top�level program�

An example of such a system is a nuclear reactor� as illustrated by �gure ���� Components
of the system include pumps� valves� and the reactor itself� Depending on the degree of
realism desired� the behavior of each component may require a fairly complicated math�
ematical model best expressed by a data�parallel program� The data�parallel programs

��



representing the individual components execute concurrently� with communication among

them performed by a task�parallel top�level program�

data-parallel

data-parallel

data-parallel

task-parallel top level

simulation of simulation of

simulation of

reactorpump

valve

Figure ���� Discrete�event simulation of reactor system

����� Inherently parallel computations

A problem in this class can be decomposed into several independent subproblems� each of

which can be solved by a data�parallel program� with minimal or no communication among

them�

Example� animation

One such problem is the generation of frames for a computer animation� two or more frames

can be generated independently and concurrently� each by a di	erent data�parallel program�

as illustrated by 
gure ����

data-parallel data-parallel

task-parallel top level

generation of generation of
frame 1 frame 2

Figure ���� Generation of animation frames

��



Chapter �

Implementation overview

This chapter presents an overview of a prototype implementation of the model of integrating

task and data parallelism described in x���� We �rst describe general speci�cations for the

prototype implementation� We then present a more detailed programming model and an

overview of how it is supported in the prototype implementation�

��� General speci�cations

As de�ned in x���� our integration model has two key ideas� access to distributed data struc�

tures from task�parallel programs� and calls to data�parallel programs from task�parallel

programs� Thus� an implementation consists of the following components�

� In terms of the task�parallel notation� implementation requires providing support for

distributed data structures and for calls to data�parallel programs� including con�

current calls to di	erent data�parallel programs� We provide this support through

additions to a particular task�parallel notation�

� In terms of the data�parallel notation� implementation requires providing support for

execution under control of a task�parallel program� We provide this support not by

modifying a particular data�parallel notation� but by de�ning requirements that must

be satis�ed by a data�parallel program if it is to be called from the task�parallel

notation� Our goal is to allow existing data�parallel programs to be called from the

task�parallel notation with at most minor modi�cations�

In the remainder of this section� we describe the task�parallel notation chosen for the pro�

totype implementation� introduce an initial restriction on the data�parallel programs� and

present an overall design�

�




����� The task�parallel notation

The prototype implementation uses as its task�parallel notation PCN �Program Composi�
tion Notation� ��� �	
 PCN was chosen because it is simple� �exible� portable� and relatively
easy to reason about


It is important to note that� insofar as possible� design of the required extensions to the
task�parallel notation is intended to be independent of the particular notation used and
can be discussed without reference to the details of PCN syntax
 It is hoped that many
aspects of our implementation design are su�ciently general to be useful in developing
implementations based on other task�parallel notations


However� since the design involves extensions to a task�parallel notation� it is useful to begin
by summarizing the features of the particular task�parallel notation chosen for implemen�
tation


������� Program construction and concurrency

The basic idea of PCN� as its name suggests� is that programs are created by composing
other programs
 That is� a program is a composition of statements� each of which can
be a subprogram call or a primitive operation such as assignment
 the statements can be
composed in sequence or in parallel
 Execution of a parallel composition is equivalent
to creating a number of concurrently�executing processes� one for each statement in the
composition� and waiting for them to terminate


With regard to the prototype implementation� the important point is that PCN allows both
sequential and concurrent execution and supports dynamic process creation


������� Communication and synchronization

Communication and synchronization among concurrently�executing processes are accom�
plished using single�assignment variables
 Single�assignment variables can be written at
most once
 their initial value is a special �unde�ned� value� and a process that requires the
value of an unde�ned variable is suspended until the variable has been de�ned �assigned a
value�


With regard to the prototype implementation� the important point is that PCN provides a
�exible mechanism for communicating and synchronizing among processes


��



������� Variables

In addition to the single�assignment variables described in x�������� PCN supports multiple�
assignment variables� Multiple�assignment variables are like the variables of traditional
imperative programming languages� their initial value is unspeci	ed� and they can be as�
signed a new value arbitrarily many times�

With regard to the prototype implementation� the important point is that PCN supports
multiple�assignment variables� since the elements of a distributed data structure are vari�
ables of this type�

������� Avoiding con�icting access to shared variables

Many errors in concurrent programs arise from con
icting access to shared variables� PCN
is designed to prevent such errors by avoiding such con
icts� Con
icting accesses to a
shared single�assignment variable are impossible by the nature of such variables� A single�
assignment variable can change state at most once� from unde	ned to de	ned� after which
its value does not change� Since programs that require the variable�s value suspend until
the variable has been de	ned� all programs that read the variable�s value obtain the same
value� Con
icting accesses to shared multiple�access variables are prevented by the following
restriction� If two concurrently�executing processes share a multiple�assignment variable�
neither is allowed to modify its value�

With regard to the prototype implementation� the important point is that PCN provides a
simple way of avoiding con
icting access to shared variables� and thus provides a foundation
for avoiding con
icting access in programs that combine PCN and a data�parallel notation�
as discussed in x��
���

������� Interface to sequential languages

An integral part of PCN is support for calls to programs written in traditional imperative
languages� particularly C and Fortran� Single�assignment variables may be passed to the
called programs only as input� multiple�assignment variables may be passed as either input
or output� This support is based on an interface to the object code created by a C or
Fortran compiler� so it readily extends to support for data�parallel notations based on C or
Fortran�

������� Source�to�source transformations and higher�order functions

Associated with PCN is a notation for performing source�to�source transformations �Pro�
gram Transformation Notation� or PTN ����� PCN also provides some support for higher�

��



order program calls� it allows making a call to a program whose name is supplied at runtime
by the value of a character�string variable� While both of these features proved useful in
the prototype implementation� neither is essential�

����� The data�parallel notation

As noted at the beginning of x���� the prototype implementation does not involve modi�
�cations to a particular data�parallel notation� rather� it de�nes notation�independent re�
quirements for called data�parallel programs� A complete description of the requirements
is deferred until x��	� At this point� we impose a single initial requirement
 We restrict
attention to multiple�address�space SPMD implementations of data�parallel notations� as
described in x����	�

����� Distributed data structures

As described in x������ a distributed data structure is one that is partitioned and distributed
among processes� In a multiple�address�space SPMD implementation� then� the data in a
distributed data structure is partitioned into local sections� each containing one or more
individual data elements� which are then distributed one per processor� as in �gure ����
Each individual data element may be thought of as having both a global position �with
respect to the whole data structure
 and a local position �with respect to the local section
in which it appears
�

partition distribute

local sections

processor P(0)

processor P(1)

processor P(2)

processor P(3)

Figure ���
 A distributed data structure

In order to support concurrent calls to di�erent data�parallel programs� we extend this
model to allow the distribution to be restricted to a subset of the available processors�

In addition� we require that programs in the task�parallel notation be able to access the

��



distributed data structure as a global construct� i�e�� we require that a single program be

able to create a data structure distributed over many processors� and that a program be

able to access any element of the data structure in terms of its global position�

����� Calls to data�parallel programs �distributed calls�

With a multiple�address�space SPMD implementation� a data�parallel program consists of

a �xed set of processes� one per processor� Since the local sections of a distributed data

structure are assigned to processors in the same way� there is a one�to�one correspondence

between processes and local sections of a particular distributed data structure� and each

process is said to own the local section on the processor on which it executes� All processes

execute the same program� each on its own data� within the program� a distributed data

structure is represented by the local section� A process accesses data elements outside its

local section by communicating with the processes that own them� We refer to such a

program as an SPMD program�

Given the requirement for support for concurrent calls to di�erent data�parallel programs�

then� a call to an SPMD program from a task�parallel program implies concurrent execution

of the SPMD program on each of a subset of the available processors� with distributed�data

parameters represented by local sections� We term such a call a distributed call�

������� Control �ow

Figure ��	 illustrates the 
ow of control when a task�parallel program calls a data�parallel

program� When task�parallel program TPAmakes a distributed call to data�parallel program

DPA on a group of processors P � one copy of DPA is initiated on each processor in P � and

caller TPA suspends execution while the copies of DPA execute� When all copies of DPA

terminate� control returns to TPA� Each copy of DPA constitutes a process� created when DPA

is called and destroyed when DPA terminates�

call DPA

end of call

TPA

TPA

return

processor P(0)

DPA
return

processor P(2)

DPA
return

processor P(1)

DPA
return

processor P(3)

DPA

Figure ��	� Control 
ow in a distributed call

�




������� Data �ow

Figure ��� illustrates the �ow of data when a task�parallel program calls a data�parallel
program� When task�parallel program TPAmakes a distributed call to data�parallel program
DPA on a group of processors P with distributed data structure DataA as a parameter� one
copy of DPA is initiated on each processor in P � with a parameter that references the local
section of DataA� As indicated by the dotted lines� task�parallel program TPA has access
to DataA as a global construct� while each copy of data�parallel program DPA has access
to its local section of DataA� In addition� as indicated by the dashed line� the copies of
data�parallel program DPA can communicate� as described in x������

call DPA(DataA)

DPA(DataA.local(0))

DataA.local(0) DataA.local(1)

DPA(DataA.local(1)

processor P(1)processor P(0)

DataA

TPA

Figure ���	 Data �ow in a distributed call

������� Concurrent distributed calls

Figure ��� illustrates a more complex situation� in which two processes in the task�parallel
program call data�parallel programs concurrently� Task�parallel program TPA calls data�
parallel program DPA� passing distributed data structure DataA� while concurrently TPB calls
DPB with DataB� Solid lines indicate program calls� dashed lines indicate communication� and
dotted lines indicate data access� Observe that the two copies of DPA can communicate 
as
indicated by the dashed line in the �gure�� and that the two copies of DPB can communicate�
but that no direct communication between DPA and DPB is allowed� Any transfer of data
between DataA and DataB must be done through the task�parallel program�

�




DPA DPA

TPA

DataA

DPB

TPB

DataB
DPB

processor group A processor group B

Figure ���� Concurrent distributed calls

��� Support for distributed data structures in the task�

parallel notation

The prototype implementation supports only one kind of distributed data structure� the
distributed array� This section describes in detail our model of distributed arrays and gives
an overview of how they are supported in the task�parallel notation�

Although this model of distributed arrays is intended to be su�ciently general to be com�
patible with a variety of data�parallel notations� several aspects are based on the Fortran D
	
�� model and are speci
cally intended to support aspects of the Fortran D implementation�

����� The programming model

������� Introduction

The basic idea of a distributed array is this� An N �dimensional array is partitioned into one
or more N �dimensional subarrays called local sections � these local sections are distributed
among processors� There are a variety of methods for doing this� in the simplest method�
called block distribution� each local section is a contiguous subarray of the whole array� and
the processors are visualized as forming an N �dimensional array �referred to as a processor

grid� as well�

Figure ��� illustrates a simple example� A 
� by 
� array is partitioned into eight � by �

��



local sections and distributed among eight processors� which are conceptually arranged as a
� by � array� One element is blacked in to illustrate the relationship among elements of the
global array �on the left�� elements of the partitioned array �in the middle�� and elements
of the local sections �on the right��

partition distribute

local section

processor P(0,0) processor P(0,1)

processor P(1,1)processor P(1,0)

processor P(2,0) processor P(2,1)

processor P(3,1)processor P(3,0)

Figure ��	
 Partitioning and distributing an array

Observe that the dimensions of the local sections are related to the dimensions of the
processor grid� In general� an N �dimensional array can be distributed among P processors
using any N �dimensional process grid the product of whose dimensions is less than or equal
to P � �In the example above� a � by � process grid would be acceptable� but a � by �
process grid would not�� If the dimensions of the process grid are known� the dimensions of
each local section can be readily computed	 the i�th dimension of a local section is just the
i�th dimension of the global array divided by the i�th dimension of the processor grid� �We
assume for convenience that each dimension of the processor grid divides the corresponding
array dimension��

In the simplest scheme� local sections do not overlap� so each element of the original ar�
ray corresponds to exactly one element of one local section� Thus� each N �tuple of global
indices �indices into the original array� corresponds to a pair fprocessor�reference�tuple�

local�indices�tupleg� where processor�reference�tuple is an N �tuple reference to a processor�
and local�indices�tuple is an N �tuple of local indices �indices into the local section�� Con�
versely� each fprocessor�reference�tuple� local�indices�tupleg pair corresponds to exactly one
element of the original array� For example� in 
gure ���� the blacked�in array element has
global indices �����	 in the distributed array� this element is represented by local indices
���
� on processor �
�
�� We assume that indices start with ��

�




Further� we assume that each processor is identi�ed by a single number� referred to as a
processor number� and we assume that a multidimensional array is represented by a con�
tiguous block of storage� equivalent to a ��dimensional array� Thus� each N �tuple reference
to a processor ultimately corresponds to a single processor number� and each N �tuple of
local indices ultimately corresponds to a single index� �This mapping from multiple dimen�
sions to a single dimension can be either row�major or column�major� as described below in
x��	�����
 To continue the example of the preceding paragraph� if we assume a row�major
ordering� the blacked�in array element is represented by element � of the local section on
processor ��

������� Decomposing the array

Only block decompositions �as described in x��	����
 are allowed� but the user can control
the dimensions of the process grid and hence of the local sections�

By default� an N �dimensional array is distributed among P processors using a �square�
processor grid
an N �dimensional array each of whose dimensions is P

�

N � For example� a
	�dimensional array �N � 	
 is by default distributed among �� processors �P � ��
 using

a � by � processor grid ���
�

� � �
�

The user can specify some or all of the dimensions of the process grid� however� as described
below� Any dimensions that are not speci�ed are computed in a way consistent with the
default� If there are M speci�ed dimensions� and their product is Q� each unspeci�ed

dimension is set to �P
Q



�

N�M � For example� if a ��dimensional array �N � �
 is to be
distributed among �	 processors �P � �	
 with the second dimension of the processor grid
speci�ed as 	 �M � �� Q � 	
� the resulting processor grid has dimensions � by 	 by �

����
�



�

��� � �
�

The syntax for controlling the dimensions of the processor grid is based on Fortran D� for
each dimension of the array� the user can specify one of the following decompositions�

� block� to allow the corresponding dimension of the processor grid to assume the
default value�

� block�N�� to specify the corresponding dimension of the processor grid as N �

� �� to specify the corresponding dimension of the processor grid as �� i�e�� to specify
that the array is not to be decomposed along this dimension�

Figure ��� illustrates the e�ect of applying the following di�erent decomposition speci�ca�
tions to a ����by�	�� array and �� processors�

� The decomposition �block� block� implies a square ��by�� processor grid and local
sections of size ��� by ���

		



� The decomposition �block���� block���� implies a ��by�� processor grid and local
sections of size ��� by ��� �block���� block� is equivalent� as is �block� block

�����

� The decomposition �block� �� implies a 	
�by�	 processor grid and local sections of
size �� by ���� �I�e�� this is a decomposition by row only��

25 by 200 local sections

200 by 25 local sections
100 by 50 local sections

400 by 200 array

(block, block) (block(2), block(8)) (block, *)

Figure 
�
� Decomposing an array

������� Local sections

Each local section is a ��at� piece of contiguous storage� its size is computed as the product
of the local section dimensions� which are in turn computed as described in x
���	�	� The
user speci�es whether indexing of a multidimensional array� and hence of its local sections�
is row�major �C�style� or column�major �Fortran�style�� This allows support for calls to
data�parallel programs using either type of indexing�

Some data�parallel notations add to each local section borders to be used internally by the
data�parallel program� For example� Fortran D adds borders called overlap areas� which
it uses as communication bu�ers� Figure 
�� shows a local section with borders� The
local section has dimensions � by � and is surrounded by borders consisting of 	 additional
element at the beginning and end of each row and � additional elements at the beginning
and end of each column�

�




add borders

local section border of size 1

border of size 2

Figure ���� Local section with borders

If a notation makes use of such borders� we assume that local sections passed to it as
parameters must include borders� Thus� when an array to be passed to such a notation
is created� extra space must be allocated for borders� The simplest way to do this is for
the task�parallel program creating the array to explicitly provide the sizes of the required
borders� Alternatively� the user can indicate that the size of the borders is to be controlled
by the data�parallel program at runtime� With this approach� the user speci�es as part
of the array�creation request that the array	s borders are to be consistent with its being
passed as parameter number Parm number to data�parallel program Program name� The
code for Program name must then include a procedure Program name 
note the trailing
underscore� that� given Parm num as input� supplies the proper border sizes as output�
This approach allows the data�parallel notation to supply di�erent border sizes for each
parameter of each program�

Observe that once border sizes for an array have been established� they cannot be changed
without reallocating and copying all local sections of the array� Although this is an expensive
operation� it might be unavoidable if a single distributed array is to be used with two
di�erent data�parallel programs� Thus� support is also provided for 
verifying� a distributed
array	s border sizes�i�e�� comparing them to a set of expected border sizes and reallocating
and copying the array if a mismatch is found� The expected borders are speci�ed in the
same way as the original borders�either explicitly by the task�parallel program or under
control of the data�parallel program�

Finally� observe that this support for local section borders is limited to that required for
compatibility with data�parallel notations that require it� Locations in the border areas can
be accessed only by the data�parallel program� programs in the task�parallel notation have
access only to the interior 
non�border� data in the local sections�

������� Distributing the array among processors

The user speci�es the processors among which the array is to be distributed by providing
a ��dimensional array of processor numbers� 
The array is ��dimensional so that the task�
parallel notation need not directly support multidimensional arrays�� These processors are
conceptually arranged into a processor grid as described in x�������� with the mapping from
N �dimensional processor grid into ��dimensional array either row�major or column�major�

��



depending on the type of indexing the user selects for the array� One local section of the
array is then assigned to each processor�

Figure ��� illustrates distributing a ��by�� array X among � processors numbered �� 	� ��
and 
� Observe that when indexing is row�major� X����� is assigned to processor 	� but
when indexing is column�major� the same element is assigned to processor ��

x(0,0) x(0,1)

x(1,1)x(1,0)

x(0,0) x(0,1)

x(1,1)x(1,0) x(1,0)

x(0,1)x(0,0)

x(1,1)

column-major orderingrow-major ordering

processor 0 processor 2 processor 0 processor 4

processor 6processor 2processor 6processor 4

processors (0, 2, 4, 6)

Figure ���� Distributing an array

������� Operations on distributed arrays

The following operations on distributed arrays are supported in the task�parallel notation�

� Creating a distributed array� A single array�creation operation creates the entire
array� it is not necessary for the user program to explicitly perform the operation
separately on each processor�

� Deleting 
freeing� a distributed array� As with array creation� a single array�deletion
operation deletes the entire array�

� Reading an individual element� using global indices�

� Writing an individual element� using global indices�

� Obtaining a reference to the local section of a distributed array in a form suitable for
passing to a data�parallel program�i�e�� a direct reference to the storage for the local
section�

� Obtaining additional information about a distributed array�for example� its dimen�
sions�

	�



� Verifying that the local sections of a distributed array have the expected borders and
reallocating and copying them if not� as described in x�������� As with array creation
and deletion� a single array�veri�cation operation veri�es borders on the entire array�

With the exception of obtaining a reference to a local section� these operations are based
on viewing a distributed array as a global construct� as discussed in x������ Array creation
can be performed on any processor	 with the exception of obtaining a reference to a local
section� any of the remaining operations can be performed on any processor that includes a
local section of the array or on the processor on which the array�creation request was made�
with identical results� 
For example� a request to read the �rst element of a distributed
array returns the same value no matter where it is executed�� The exception� obtaining a
reference to a local section� clearly requires a local rather than a global view of the array�

����� Implementation

������� Syntax

Full syntactic support for distributed arrays would allow the user to create and manipulate
distributed arrays like non�distributed arrays� A distributed array would be created when
the procedure that declares it begins and destroyed when that procedure ends� and single
elements would be referenced� for reading or writing� in the same way as single elements of
non�distributed arrays�

Such full syntactic support� however� is beyond the scope of a prototype implementation� A
simpler approach is to implement the required operations using a library of procedures� one
for each of the operations described in x�������� Detailed speci�cations for such procedures
are given in x
���

With this approach� each distributed array is identi�ed by a globally�unique array ID 	 this
ID is created by the procedure that creates the array and is used for all subsequent references
to the array� This array ID is analogous to a �le pointer in C� It is a unique identi�er by
which other programs can reference the object 
�le or array�� Use of array IDs to reference
arrays is described further� with an example� in x
�����

������� Support

Since array creation and manipulation is performed by library procedures� no compile�
time support is needed for the operations described in x�������� However� in the prototype
implementation� support for allowing the called data�parallel program to control border
sizes� as described in x�������� is provided by a source�to�source transformation�

Runtime support for distributed arrays is provided by an entity called the array manager�
The array manager consists of one array�manager process on each processor	 all requests

��



by procedures in the task�parallel notation to create or manipulate distributed arrays are

handled by the local array�manager process� which communicates with other array�manager

processes as needed to ful�ll the requests� For example� if the request is for creating an

array� the local array�manager process must communicate with the array�manager processes

on all processors over which the array is to be distributed� while if the request is for reading

an element� the local array�manager process must communicate with the array�manager

process on the processor containing the requested element�

Figure ��� illustrates this design� There is one array�manager process on each processor�

and there is a communication path between every pair of array�manager processes� The

array manager maintains references to storage for local sections� it also stores dimensions

and other information about each distributed array� User processes in the task�parallel

notation perform operations on distributed arrays only by communicating with the local

array�manager process� Observe� however� that if a process in the task�parallel notation

passes a local section to a data�parallel program� the data�parallel program may access the

local section directly�

processor 0 processor 1

array manager

local section

user process
(task-parallel)

user process
(data-parallel)

Figure ���	 Runtime support for distributed arrays

��� Support for distributed calls in the task�parallel nota�

tion

This section describes in detail our model of distributed calls and gives an overview of how

they are supported in the task�parallel notation�


�



����� The programming model

The programming model for distributed calls is based on the description of SPMD data�
parallel programs in x������ Executing a distributed call to an SPMD data�parallel program
is equivalent to calling the SPMD program concurrently on each of a group of processors
�not necessarily all the available processors� and waiting for all copies to complete execution�
Parameters to the SPMD program can include local sections of distributed arrays	 and the
concurrently�executing copies of the SPMD program can communicate with each other just
as they normally would �i�e�	 if not executing under control of a task�parallel program��
Execution of the distributed call terminates when all copies of the called program have
terminated�

������� Parameters for the distributed call

A task�parallel program making a distributed call speci
es the following�

� the data�parallel �SPMD� program to be called�

� the processors on which the data�parallel program is to be executed� As when cre�
ating a distributed array �x��������	 these processors are speci
ed by means of a ��
dimensional array of processor numbers�

� the parameters to be passed to the data�parallel program�

������� Parameters for the called data�parallel program

To provide 
exibility	 the programming model de
nes several di�erent kinds of parameters
that can be passed from the task�parallel�notation caller to the called data�parallel program
in a distributed call� A parameter to be passed from the task�parallel caller to the called
data�parallel program can be any of the following�

� �input� A global constant�either a true constant or a variable whose value does not
change during execution of the called program� Each copy of the called program
receives the same value� it can be used as input only�

� �input�output� A local section of a distributed array� The calling program speci
es the
array as a global construct	 i�e�	 using its array ID� Each copy of the called program	
however	 gets its own distinct local section	 which can be used as input or output or
both�

� �input� An integer index� Each copy of the called program receives a unique value for
this parameter� the value is an index into the array of processors over which the call
is distributed	 and the variable can be used as input only�

��



� �output� An integer status variable to be used to pass information back to the caller�
Each copy of the called program has its own local status variable� which is to be
used as output� at termination of the called program� the values of these local status
variables are merged �using any binary associative operator�by default max� but the
user may provide a di�erent operator� into a single value that is then returned to the
caller� A distributed call can have at most one status variable�

� �output� A reduction variable� Such a variable is handled like the status variable�
i�e�� each copy of the called program sets a local value� and at termination the local
values are merged into a single value that is returned to the caller� Unlike the status
variable� however� a reduction variable can be of any type� including arrays� also� a
distributed call can have any number of reduction variables� This option is provided
to allow more �exibility in returning global information to the caller�

����� Implementation

������� Syntax

The task	parallel programmakes a distributed call by calling a library procedure distributed�
call� whose parameters allow the user to specify


� the data	parallel �SPMD� program to be called�

� the processors on which the data	parallel program is to be executed� speci�ed via a
�	dimensional array of processor numbers�

� the parameters to be passed to the data	parallel program� The di�erent types of pa	
rameters described above in x
�
���� are distinguished syntactically� Details of syntax
for all the types of parameters are given� with examples of their use� in x��
��� for
example� the syntax f�local�� Ag speci�es the local section of distributed array A�

������� Support

Execution of a distributed call on processors Procs consists of the following sequence of
actions


�� Creating a process for the called program on each processor in Procs�

�� Passing parameters from the caller to each copy of the called program� Some of the
types of parameters require special handling�for example� a local	section parameter
requires that a reference to the local section of the speci�ed distributed array be
obtained�


� Transferring control to the called program and waiting for all copies to complete�

�� Returning information to the caller as speci�ed by the call�s parameters�i�e�� merging
local values for any status or reduction variables�

��



The distributed call is considered to have terminated when all of these actions have been
completed�

As illustrated in �gure ����� one way to accomplish these actions is via a �wrapper	 program�
One copy of the wrapper program is executed on each processor in Procs
 each copy does
the following�

�� Obtains references to local sections of distributed arrays� using their array IDs�

�� Declares local variables for status and reduction parameters�

�� Calls the data
parallel �SPMD� program� passing it the proper parameters� including
the local sections and local variables from the preceding steps�

�� Communicates with other copies of the wrapper program to perform the required
merges for status and reduction variables�

DPA(DataA.local(0),
local_status_0)

DPA(DataA.local(1),
local_status_1)

call DPA(DataA, Status)

obtain local sections of DataA

merge local status variables to produce Status

call to DPA completed

DPA(DataA.local(0),
local_status_0)

DPA(DataA.local(1),
local_status_1)

call DPA(DataA, Status)

call to DPA completed

locate DataA.local(0) locate DataA.local(1)

wrapper program wrapper program

transform

merge local_status_0 merge local_status_1
into Status into Status

Figure ����� Support for distributed calls�the wrapper program

Since PCN provides a mechanism for source
to
source transformations� the prototype imple

mentation implements distributed calls primarily via compile
time transformations� Each
source call to the procedure distributed�call is used to generate a wrapper program with
the behavior described above and then is transformed into code to execute this wrapper
program concurrently on all processors in Procs�

��� Synchronization issues

Since it is possible to have a situation in which both task
parallel and called data
parallel
�SPMD� programs are concurrently executing� it is necessary to consider whether this in

troduces synchronization or communication problems in addition to those associated with

��



either program alone� What additional con�icts are possible and how they can be pre�
vented depends to some extent on the underlying communication mechanisms used by the
task�parallel implementation and the data�parallel implementation� Since communication
mechanisms can vary widely� we do not attempt a completely general discussion� Rather�
we focus on the situation where both implementations communicate using point�to�point
message�passing� In such an environment� there are two sources of possible problems� mes�
sage con�icts and con�icting access to shared variables�

����� Message con�icts

First� we consider whether the task�parallel program could intercept a message intended
for the called data�parallel program� or vice versa� Any such con�ict can be avoided by
requiring that both the task�parallel notation and the called data�parallel program use
communication primitives based on typed messages and selective receives� and ensuring
that the set of types used by the task�parallel notation and the set of types used by the
called data�parallel program are disjoint�

����� Con�icting access to shared variables

Next� we consider whether the task�parallel program and the called data�parallel program
could make con�icting accesses to a shared variable� Whether this happens depends in part
on the restrictions placed on simultaneous accesses to shared variables in the task�parallel
notation� we consider whether it is possible when the task�parallel notation is PCN�

As mentioned in x��	�	�
� PCN avoids con�icting accesses to shared variables by requiring
that if concurrently�executing processes share a variable� either it is a single�assignment
variable� or none of the processes modi�es its value� In the former case� the variable can
be written by at most one process� and every process that reads it obtains �after possible
suspension
 the same value� In the latter case� no con�icts can occur since none of the
processes changes the variable�s value�

Con�icts in a program based on the prototype implementation could take one of the fol�
lowing forms� con�icts between PCN processes� con�icts between PCN and data�parallel
processes� and con�icts between data�parallel processes� If the called data�parallel programs
are correct� then there are no con�icts between the data�parallel processes that comprise
a single distributed call� By virtue of the restriction described above� con�icts between
PCN processes do not occur� neither are there con�icts between subprocesses of concur�
rently�executing PCN processes� Since the data�parallel processes comprising a distributed
call are implemented as subprocesses of the calling PCN process� this restriction also rules
out con�icts between data�parallel processes in di�erent distributed calls and between a
data�parallel process and a PCN process other than its caller� Finally� con�icts between a
data�parallel process and its caller do not occur because the caller and the called program

�	



do not execute concurrently� Thus� the program as a whole is free of con�icting accesses to

shared variables�

��� Requirements for called data�parallel programs

This section de�nes the requirements that must be met by a data�parallel program if it is

to be called from the task�parallel notation�

SPMD implementation

As mentioned in x����	� the called data�parallel program must be based on a multiple�

address�space SPMD implementation� as described in x��	�
�

Relocatability

A called data�parallel program must be �relocatable�
 i�e�� it must be capable of being exe�

cuted on any subset of the available processors� This restriction has the following important

consequences�

� If the program makes use of processor numbers for communicating between its con�

currently�executing copies� it must obtain them from the array of processor numbers

used to specify the processors on which the distributed call is being performed� This

array can be passed as a parameter to the data�parallel program�

� The programmust not make use of global�communication routines� unless it is possible

to restrict those routines to a particular subset of the available processors�

Compatibility of parameters

The formal parameters of a called data�parallel program must be compatible with the

model described in this chapter� particularly in x��	���� and x������	� For example� a local

section is simply a contiguous block of storage� not a more complex representation of a

multidimensional array like the arrays of arrays sometimes found in C�based programs�

Compatibility of communication mechanisms

If the concurrently�executing copies of a called data�parallel program communicate� they

must do so in a way that does not interfere with the way processes in the task�parallel

notation communicate� as discussed in x������

�	



Language compatibility

A called data�parallel program must be written in a notation to which the task�parallel

notation supports an interface� However� observe that if the task�parallel notation supports

an interface to a particular sequential notation� this interface should also support calls to

data�parallel notations based on the sequential notation� In the case of PCN� the interface

to C and Fortran also supports calls to data�parallel notations that are implemented using

C or Fortran and a library of communication routines�

��



Chapter �

Implementation details� library

procedure speci�cations

As described in x������� and x�������� syntactic support for creating and manipulating dis�
tributed arrays and for making distributed calls is provided in the prototype implementation
via a set of library procedures� This chapter presents complete speci�cations for the library
procedures� Although the procedures are written in and callable only from PCN� the spec�
i�cations are as far as possible language�independent�

Additional information about using the prototype implementation appears in xB� which
explains how to compile� link� and execute programs	 and in xC� which describes additional
library procedures that� while useful� are not central to the implementation� For readers
completely unfamiliar with PCN� xA provides an overview of PCN syntax and terminology	
complete information about PCN may be found in 
�� and 

��

��� General information about the library procedures

����� Documentation conventions

Documentation for each procedure discussed in this chapter consists of the following�

� A short description of its function�

� A procedure heading giving its full name in the form module name�program name

and listing its formal parameters� Parameters are de�nitional �single�assignment�
unless otherwise stated� Annotation for each parameter indicates its expected type
and whether it is to be used as input or output� Parameters annotated as in are used
as input only and must have values assigned to them elsewhere	 parameters annotated
as out are used as output only and will be assigned values by the procedure�

��



� A description of the procedure�s precondition� The precondition describes what must
be true before the procedure is called� including restrictions on the actual parameters
beyond those imposed by the parameter annotations� The precondition may also
include comments on the meaning and usage of the parameters� A precondition of
TRUE indicates that there are no requirements aside from those given by the parameter
annotations�

� A description of the procedure�s postcondition� The postcondition describes what is
guaranteed to be true after execution of the procedure�

Together� the procedure heading� parameter annotations� precondition� and postcondition
constitute a speci�cation for the procedure�

For example� consider the procedure described by the following speci�cation�

double�it�

��in int�� In�

��out int�� Out

�

Precondition�

� TRUE�

Postcondition�

� Out � � � In

This speci�cation indicates that procedure double�it has one input parameter 	In
 and
one output parameter 	Out
� both de�nitional integers� at exit� the value of Out is twice the
value of In�

Observe that for a de�nitional variable X it is possible to speak of �the value of X
 with�
out ambiguity� since a value can be assigned to X only once� Thus� in preconditions and
postconditions� for de�nitional variable X we use �X
 to denote the value of X�

����� Status information

All of the procedures described in this chapter have an integer output parameter Status
whose value indicates the success or failure of the operation being performed� The possible
values of this parameter� with their meanings and the symbolic names used to reference
them in this chapter� are as follows�

symbolic name value meaning

STATUS�OK � no errors
STATUS�INVALID � invalid parameter
STATUS�NOT�FOUND � array not found
STATUS�ERROR �� system error

��



The Status parameter is a de�nitional variable that becomes de�ned only after the opera�
tion has been completed� so callers can use it for synchronization purposes if necessary�

����� Referencing arrays�array IDs

As described in x�������� a distributed array is referenced using a globally�unique array ID�
This array ID is a ��tuple of integers 	the processor number on which the original array�
creation request was made� plus an integer that distinguishes this array from others created
on the same processor
� It is set by the array�creation procedure and used for all subsequent
operations on the array� For example� the following program block creates and then frees a
distributed array with array ID A��

��

am�user�create�array��	out	� A�


�	in	� �double�
 Dims
 Procs
 Distrib
 Borders
 �row�


�	out	� Stat�� 


am�user�free�array��	in	� A�
 �	out	� Stat
�

�

��� Distributed�array procedures

The procedures described in this section provide support for the programming model of
distributed arrays de�ned in x������

����� Creating an array

The following procedure creates a distributed array�

am�user�create�array�

�	out 
�tuple of int	� Array�ID


�	in string	� Type


�	in array of int	� Dimensions


�	in array of int	� Processors


�	in tuple	� Distrib�info


�	in	� Border�info


�	in string	� Indexing�type


�	out int	� Status

�

Precondition�

� Type is �int� or �double��

��



� Dimensions are the array dimensions� length�Dimensions� is the number of dimen�
sions�

� Processors are the processors over which the array is to be distributed� The array
is distributed as described in x����	�
�

� Distrib�info describes how the array is to be decomposed� Length�Distrib�info�
� length�Dimensions�� and each Distrib�info�i� is one of the following


� �block��

� f�block�� Ng� where N is an integer or an integer�valued variable�

� ����

where these decomposition options are as described in x����	���

� Border�info de�nes borders for each local section of the array� as described in x����	���
�Recall that this feature is included for compatibility with some data�parallel nota�
tions� such as Fortran D�� Its value is one of the following


� ��� to indicate that local sections do not include borders�

� An array of integers� to directly specify the sizes of the borders� Length�Border�
info� is twice length�Dimensions�� and elements �i and �i�	 specify the border
on either side of dimension i� For example� for a ��dimensional array� a value
of ��� �� 	� 	� for Border�info indicates that each local section has a border
consisting of two extra rows above� two extra rows below� and one extra column
on either side of the local section� as illustrated in x����	���

� f�foreign�borders�� Program� Parm numg� where Program is a string and
Parm num is an integer� to allow a foreign�code �C or Fortran� program to
specify the sizes of the borders at runtime� as described in x����	��� This option
is designed to be used when the array being created is to be passed to program
Program as parameter Parm num� The foreign�code module containing Program
must contain a routine Program �note the trailing underscore in the name� of
the following form


Program �

	�in int�	 Parm�num�
	�out mutable array of int�	 temp�borders




� � �

where length�temp�borders� is twice length�Dimensions�� and� as above� ele�
ments �i and �i�	 of temp�borders specify the border on either side of dimen�
sion i�

For example� suppose a 	�dimensional array is being created and is to be passed
to Fortran program fpgm as its �rst parameter� The call to create�array would
specify Border�info as follows


f�foreign�borders�� �fpgm��� �g

��



�in calling Fortran from PCN� an underscore is always appended to the name of
the program to be called� and the source for fpgm would include a routine like
the following�

subroutine fpgm��iarg� isizes�

integer iarg

integer isizes���

if �iarg �eq� �� then

isizes��� 	 


isizes�
� 	 


else

���

endif

return

end

� f�borders�� Module� Program� Parm numg� where Module and Program are
strings and Parm num is an integer� to allow a PCN program to specify the sizes
of the borders at runtime� Users should not need to make use of this option
directly� but it is required to support the foreign�borders option described
above� as explained in x������ and so is included here for completeness� There
must be a PCN program of the following form�

Module�Program�


�in int�
 Parm�num�

�in int�
 N�borders�

�out array of int of length N�borders�


Borders

�

� � �

where the elements of Borders are as described for temp�borders above�

� Indexing�type is one of the following�

� �row� or �C�� to indicate row	major indexing of multidimensional arrays�

� �column� or �Fortran�� to indicate column	major indexing of multidimensional
arrays�

This parameter determines the indexing of both the array and the processor grid� as
described in x
�������

Postcondition�

� Status re
ects the success of the operation� x����� lists the possible values�

� If Status � STATUS�OK� Array�ID is a globally	unique identi�er that references an
array with the parameters given by the input parameters�


�



����� Deleting a distributed array

The following procedure deletes a distributed array and frees the associated storage�

am�user�free�array�

��in ��tuple of int�� Array�ID	

��out int�� Status




Precondition�

� TRUE�

Postcondition�

� Status re�ects the success of the operation� x����� lists the possible values�

� If Status 	 STATUS�OK
 the array has been deleted� i�e�
 subsequent references to
distributed array Array�ID will fail
 and its associated storage �for local sections� has
been freed�

����� Reading an element

The following procedure reads a single element of a distributed array
 given its global indices�

am�user�read�element�

��in ��tuple of int�� Array�ID	

��in tuple of int�� Indices	

��out�� Element	

��out int�� Status




Precondition�

� Length�Indices� is the number of dimensions of the array referenced by Array�ID�

� Each element of Indices is within range� i�e�
 each index is non
negative and less than
the corresponding dimension�

Postcondition�

� Status re�ects the success of the operation� x����� lists the possible values�

� If Status	 STATUS�OK
 Element is the element of the array corresponding to Indices

with type double or int
 depending on the type of the array� Element is �� otherwise�

��



����� Writing an element

The following procedure writes an element of a distributed array� given its global indices�

am�user�write�element�

��in ��tuple of int�� Array�ID	

��in tuple of int�� Indices	

��in�� Element	

��out int�� Status




Precondition�

� Length�Indices� is the number of dimensions of the array referenced by Array�ID�

� Each element of Indices is within range� i�e�� each index is non�negative and less than
the corresponding dimension�

� Element is numeric�

Postcondition�

� Status re	ects the success of the operation� x
���� lists the possible values�

� If Status 
 STATUS�OK� Element has been written to the element of the array corre�
sponding to Indices�

����� Obtaining a local section

The following procedure obtains the local section of a distributed array�i�e�� the local
section of the array on the processor on which the procedure executes� Users should never
need to call this procedure directly� its most common use is during a distributed call� where
it is automatically invoked by the distributed�call implementation� as described brie	y in
x������� and in more detail in x���� Its speci�cation is given here� however� for the sake of
completeness�

am�user�find�local�

��in ��tuple of int�� Array�ID	

��out array�� Local�section	

��out int�� Status




Precondition�

� TRUE�

Postcondition�


�



� Status re�ects the success of the operation� x����� lists the possible values�

� If Status � STATUS�OK	 Local�section is the local section of the array referenced
by Array�ID� Local�section is �� otherwise�

Because of the way the implementation handles local sections 
described in detail in x������	
the local section is returned in the form of a de
nitional array	 but it may be passed
to another program as a mutable array	 as is done automatically during execution of a
distributed call� The rationale for this unorthodox approach is explained in some detail in
x������ brie�y	 it was developed as a way to circumvent certain limitations of PCN�

����� Obtaining information about a distributed array

The following procedure obtains information about a distributed array�for example	 its
dimensions�

am�user�find�info�

��in 	
tuple of int�� Array�ID�

��in string�� Which�

��out�� Out�

��out int�� Status

�

Precondition�

� Which is one of the following�

� 
type
�

� 
dimensions
�

� 
processors
�

� 
grid�dimensions
�

� 
local�dimensions
�

� 
borders
�

� 
local�dimensions�plus
�

� 
indexing�type
�

� 
grid�indexing�type
�

Postcondition�

� Status re�ects the success of the operation� x����� lists the possible values�

� If Status � STATUS�OK	 Out is information about the array referenced by Array�ID	
as follows�

��



� If Which � �type�� Out is the type of the array elements��int� or �double��

� If Which� �dimensions�� Out is an array containing the global array dimensions�

� If Which � �processors�� Out is an array containing the processors over which
the array is distributed�

� If Which � �grid�dimensions�� Out is an array containing the dimensions of
the processor grid used to decompose the array�

� If Which � �local�dimensions�� Out is an array containing the dimensions of
a local section of the array� excluding borders�

� If Which � �borders�� Out is an array of size twice the number of dimensions
containing the sizes of the borders of a local section of the array� in the form
described in x������

� If Which � �local�dimensions�plus�� Out is an array containing the dimen	
sions of a local section of the array� including borders�

� If Which � �indexing�type�� Out is the indexing type of the array��row� or
�column��

� If Which � �grid�indexing�type�� Out is the indexing type of the processor
grid��row� or �column��

Out is �� otherwise�

����� Verifying a distributed array�s borders

The following procedure veri
es that the local	section borders of a distributed array are
as expected and� if not� corrects them if possible� As described in x�������� local	section
borders are provided for compatibility with notations that require them� Since an array
could be created �and its borders speci
ed
 in one PCN procedure and then passed to a
data	parallel program in another PCN procedure� it is useful to have some way of verifying
that the array�s borders are those expected by the data	parallel program� This procedure
performs that function� It veri
es that the referenced array has the correct indexing type�
row	major or column	major�and then compares its borders with the expected ones� If they
di�er� it reallocates the local sections of the array with the expected borders and copies all
interior �i�e�� non	border
 data�

am�user�verify�array�

�	in 
�tuple of int	� Array�ID�

�	in int	� N�dims�

�	in tuple	� Border�info�

�	in string	� Indexing�type�

�	out int	� Status




Precondition�

��



� N�dims is the number of dimensions of the array referenced by Array�ID�

� Border�info� Indexing�type are as described for create�array�� in x������

Postcondition�

� Status re�ects the success of the operation� x����� lists the possible values�

� If Status 	 STATUS�OK� then the array referenced by Array�ID has the speci
ed in�
dexing type and borders and unchanged interior �non�border
 data� The local sections
may have been reallocated and their data copied�

Examples

For example� suppose that ��dimensional array A has been created with row�major index�
ing and borders of size �� Suppose also that foreign�code program pgmA expects its 
rst
parameter to be an array with borders of size �� foreign�code program pgmB expects its 
rst
parameter to be an array with borders of size �� and both programs contain routines to
specify borders� as described in x������

The following call�

am�user�verify�array���in�� A� 	�


�foreign�borders�� �pgmA�� �
� �row��

��out�� Status�

will set Status to STATUS�OK�

The following call�

am�user�verify�array���in�� A� 	�


�foreign�borders�� �pgmB�� �
� �row��

��out�� Status�

will change the borders of A� reallocate all local sections and copy their interior data� and
set Status to STATUS�OK�

The following call�

am�user�verify�array���in�� A� 	�


�foreign�borders�� �pgmA�� �
� �column��

��out�� Status�

will set Status to STATUS�INVALID� since the indexing type in the procedure call does not
match that of A�

��



��� Distributed�call procedures

The procedures described in this section provide support for the programming model of
distributed calls de�ned in x������

����� Making a distributed call

The following procedure calls a program concurrently on one or more processors� with
parameters as described in x��������

am�user�distributed�call�

��in array of int�� Processors�

��in string�� Module�

��in string�� Program�

��in tuple�� Parameters�

��in string�� Combine�module�

��in string�� Combine�program�

��out int�� Status

�

Precondition�

� Actual parameters Module� Program� Combine�module� and Combine�program are
literals 		
 or strings� not variables
�

� There is a program Module�Program� 	If Module � 	
� program Program may be a
foreign�i�e�� non
PCN�program�
 The formal parameters of Module�Program are
compatible with the actual parameters derived from Parameters as described in the
postcondition�

� If Combine�module �� 	
� there is a program of the following form�

Combine�module�Combine�program�

��in int�� S�in��

��in int�� S�in��

��out int�� S�out

�

� � �

that combines S�in� and S�in� to yield S�out� Note that since this program assigns
a value to a de�nition variable� it must be a PCN program� Combine�module �� 	
 is
only meaningful if Parameters	i
 � 
status
 for some i�

� Parameters	i
 � 
status
 for at most one i�

� If Parameters	i
 � f
local
� Array IDg� then the array corresponding to Array ID

is distributed over Processors�

��



� If Parameters�i�� f�reduce��Type� Length� Reduce combine mod� Reduce combine

pgm� Variableg� then Type is �int�� �char�� or �double�� Combine mod and Com�

bine pgm are literals ��� or strings� not variables�� and there is a program of the
following form�

Reduce combine module�Reduce combine program�

�	in array of Type of length Length	� S
in��

�	in array of Type of length Length	� S
in��

�	out array of Type of length Length	� S
out




� � �

that combines S
in� and S
in� to yield S
out� If Length � 	� the three parameters
are scalars �identical with arrays of length 	�� Note that since this program assigns a
value to a de
nition variable� it must be a PCN program�

Postcondition�

� Module�Program has been executed on each processor in Processors� with actual
parameters New
parameters passed by reference and de
ned as follows�

� Length�New
parameters� � length�Parameters��

� For each i� New
parameters�i� is de
ned as follows�

� If Parameters�i� � f�local�� Array IDg�

� New
parameters�i� is the local section of the distributed array repre�
sented by Array ID� The local section is passed to the called program
as a mutable array of type �double� or �int�� depending on the type
of the distributed array represented by Array ID� and it may be used as
input or output or both�

� else if Parameters�i� � �index��

� New
parameters�i� is an index into Processors� with value j on pro�
cessor Processors�j�� This parameter is an integer and may be used
as input only�

� else if Parameters�i� � �status��

� New
parameters�i� is a local variable status
local� This parameter
is an integer and may be used as output only�

� else if Parameters�i� � f�reduce�� Type� Length� Combine mod� Com�

bine pgm� Variableg�

� New
parameters�i� is a local variable Variable local� This parameter
has type Type and length Length and may be used as output only�

� else�

� New
parameters�i� � Parameters�i�� Such a parameter is a global
�constant
� as described in x����	��� it may be of any type� but it may
be used as input only�

��



� If Parameters�i� � �status� for some i�

� If Combine�module �� ��� Status is the result of applying Combine�module�

Combine�program pairwise to the set of status�local values� one for every
copy of the called program�

� else Status is the maximum of status�local over all copies of the called pro�
gram�

Otherwise �i�e�� if no parameter is �status��� Status � STATUS�OK�

In any case� Status is assigned a value only on completion of all copies of Module�
Program�

� If Parameters�i�� f�reduce��Type� Length� Reduce combine mod� Reduce combine

pgm� Variableg� then the value of Variable is the result of applying Reduce combine

module�Reduce combine program pairwise to the set of Variable local values� one for
every copy of the called program�

Examples

The following examples illustrate distributed calls to C and Fortran programs with var�
ious types of parameters �constants� local sections� index variables� status variables� and
reduction variables�� In the examples� A references a 	�dimensional distributed array of
type �double�� Observe that� as noted in the postcondition for distributed�call� all
parameters are passed by reference�

Distributed call with index and local�section parameters

Consider the following distributed call to C program cpgm��

am�user�distributed�call	
�in�
 Procs� ��� �cpgm���

�Procs� Num�procs� �index�� ��local�� A

�

��� ���


�out�
 Status�

Called program cpgm� has the following form�

cpgm�	Procs� Num�procs� Index� local�section�

int Procs�� � 
� in �


int �Num�procs � 
� in �


int �Index � 
� in �


double local�section�� � 
� in
out �� local section of A �


���


�



Execution of the distributed call causes cpgm� to be executed once on each processor in
Procs� On processor Procs�j�� the value of parameter �Index is j� and the value of
parameter local�section is the local section of array A�a standard C array of type double�
When all copies of cpgm� have completed execution� variable Status in the calling PCN
program is set to STATUS�OK�

Distributed call with index� status� and local�section parameters

Now consider the following distributed call to Fortran program fpgm��

am�user�distributed�call�	�in�	 Procs
 ��
 �fpgm���


�Procs
 Num�procs
 �index�
 ��local�
 A

 �status�



��
 ��


	�out�	 Status� 


�Observe that in calling Fortran from PCN� an underscore is appended to the name of the
program to be called��

Called program fpgm� has the following form�

subroutine fpgm��procs
 num
 index
 local
 status�

c in� procs
 num
 index

c in	out� local

c out� status

integer procs���

integer num

integer index

double precision local���

integer status

���

Execution of the distributed call causes fpgm� to be executed once on each processor in
Procs� On processor procs�j�� the value of parameter index is j � �� �Its value is j � �
and not j because Fortran array indices start with �� while PCN indices start with 	�� The
value of parameter local is the local section of array A�a standard Fortran array of type
double precision� Before completing execution� program fpgm� must assign a value to
variable status
 when all copies of fpgm� have completed execution� variable Status in the
calling PCN program is set to the maximum value� over all copies of fpgm�� of local variable
status�

Distributed call with status� reduction� and local�section parameters

Finally� consider the following distributed call to C program cpgm��

��



am�user�distributed�call���in�� Procs� �	� 
cpgm�
�

�Procs� Num�procs� �
local
� A
� 
status
�

�
reduce
� 
double
� �� 
thismod
� 
combine
� RR

�


thismod
� 
min
�

��out�� Status� �

Called program cpgm� has the following form�

cpgm��Procs� Num�procs� local�section� local�status� other�output�

int Procs�	 � �� in ��

int �Num�procs � �� in ��

double local�section�	 � �� in�out �� local section of A ��

int �local�status � �� out ��

double other�output��	 � �� out ��

���

Program thismod�min� used to combine local status variables� is a PCN program of the
following form�

thismod�min�

��in int�� In��

��in int�� In��

��out int�� Out

�

���

Program thismod�combine� used to combine local variables for reduction variable RR� is a
PCN program of the following form�

thismod�combine�

��in array of double of length ��� In��

��in array of double of length ��� In��

��out array of double of length ��� Out

�

���

Execution of the distributed call causes cpgm� to be executed once on each processor in
Procs� On processor Procs�j	� the value of parameter local�section is the local section
of array A�a standard C array of type double� Before completing execution� program
cpgm� must assign values to variables �local�status �an integer� and �other�output �an
array of two double�precision reals�� When all copies of cpgm� have completed execution�
the values of these local variables are used to set Status and RR in the calling PCN program
as follows� Status is set to the result of combining the local values of �local�status� one
per copy of cpgm�� pairwise using program thismod�min� RR is set to the result of combining
the local values of �other�output pairwise using program thismod�combine�

	




Chapter �

Implementation details� internals

This chapter describes the internal design and operation of our prototype implementation�
that is� it describes the modi�cations and additions made to PCN to support the program�

ming model described in x����	 and x����	 and the library procedures described in x
� The
reader is assumed to be familiar with PCN syntax and terminology ��� 
� and to have some
knowledge of how PCN is implemented �
� 	���

Note that our implementation is based on PCN Version 	��� the modi�cations and additions
described in this chapter may not apply to later versions�

��� Support for distributed arrays

An overview of how the prototype implementation supports distributed arrays was presented
in x������ in this section� we present a more detailed description of that support�

����� The array�manager server

The array manager� as described in x�������� consists of one array�manager process on each

processor� Every application program that uses distributed arrays must be able to com�
municate with the local array�manager process� in addition� every array�manager process

must be able to communicate with every other array�manager process� The most obvious
approach to providing this communication is to establish explicit communication channels

among all the array�manager processes and between every application program that uses
distributed arrays and the local array�manager process�

This approach is somewhat cumbersome� however� so our implementation instead makes

use of the PCN server mechanism provided in PCN Version 	��� Like the array manager�







the PCN server consists of one server process per processor� Any program can communicate
with the local PCN server process via a server request� which has the following syntax�

� request type �request parameters�

The ability to service a particular request type is referred to as a capability� New capabilities
may be added to the server by loading �via the PCN runtime command load� a module that
contains a capabilities directive and a server program� The capabilities directive lists the
new request types to be supported� the server program processes server requests of those
types� After such a module has been loaded� the PCN server passes all server requests
of the types listed in the module�s capabilities directive to the module�s server program�
in the form of a tuple whose elements are the request type �a character string� and the
request parameters� For example� after loading the array manager� which adds a free�

array capability� the following server request�

� free�array�A�� Status�

will be routed by the PCN server to the array	manager server program� as a tuple of the
following form�

f�free�array�� A�� Statusg

Observe that this routing of a server request from the application program through the
PCN server to the array	manager server program is all local to a processor� Routing the
request to the array	manager server program on another processor can be accomplished�
however� by executing the server request on the desired processor via the �Processor number

annotation�

Thus� application programs can communicate with server programs without explicit commu	
nication channels� Further� the communication can be bidirectional� Bidirectional commu	
nication occurs when one of the parameters of the server request is an unde
ned de
nitional
variable that is set by the server program� in the free�array request above� Status is such
a variable�

By implementing the local array	manager processes as server programs using this feature�
we avoid the need for de
ning explicit communication channels for the array manager�
communication between array	manager processes and between application processes and
array	manager processes is automatically provided by the PCN server mechanism�

In order to support the operations on distributed arrays described in x����
�� and the library
procedures described in x���� the array	manager server program processes the following
types of server requests�

� create�local� which creates a local section for a distributed array�

� create�array� which creates a distributed array by making a create�local request
on every processor in the array�s distribution�

��



� free�local� which frees a local section of a distributed array�

� free�array� which frees a distributed array by making a free�local request on every

processor in the array�s distribution�

� read�element�local� which reads an element of the local section of an array�

� read�element� which translates global indices into a processor reference and local

indices and makes a read�element�local request on the appropriate processor�

� write�element�local� which writes an element of the local section of an array�

� write�element� which translates global indices into a processor reference and local

indices and makes a write�element�local request on the appropriate processor�

� find�local� which obtains a reference to the local section of a distributed array�

� copy�local� which reallocates the local section of a distributed array with di�erent

borders and copies its data�

� verify�array� which compares a distributed array�s actual borders to the speci�ed

expected borders and� if they do not match� makes a copy�local request on every

processor in the array�s distribution�

� find�info� which obtains information�dimensions� for example�about a distributed

array�

Observe that the requests fall into two categories�requests corresponding to one of the

array�manipulation operations described in x��	�
��� and operation�local requests that are

used internally by the array manager as described in the preceding list�

Processing of all of these request types is straightforward given the internal representation

of arrays described in x��
���

����� Library procedures

One somewhat inconvenient aspect of the server mechanism described in x��
�
 is that�

considered as a program statement� a server request completes immediately� Thus� in order

for an application program to guarantee that a particular server request has been serviced�

the request must contain a variable that will be set by the server when the request has been

serviced� and the application program must explicitly test whether that variable has been

set� For example� to verify that the free�array request shown in x��
�
 has been serviced�

the application program in which the request appears must explicitly test variable Status�

Since it can be cumbersome to thus explicitly wait for server requests to be serviced� our

implementation provides the library procedures described in x��	� The function of each

library procedure is to issue the appropriate server request and wait for it to be serviced�

The library procedure terminates only after the request has been serviced� so an applica�

tion program can� for example� perform a sequence of distributed�array manipulations by

sequentially composing calls to the appropriate library procedures� without explicit checks

�




for termination of the array�manager server requests� Since the syntactic requirements for
some parameters� particularly those for array creation� can be involved� some of the li�
brary procedures also perform syntax checking on their input parameters before making
the appropriate array�manager server request�

����� Internal representation of distributed arrays

Each array�manager process keeps a list of tuples� each tuple in the list represents a dis�
tributed array� When an array is created� an entry is added to the array manager�s list on
every processor over which the array is distributed� as well as on the creating processor�
when an array is freed� the corresponding entry is invalidated to prevent further access�
Each array�representation tuple consists of the following elements�

� A globally�unique ID �a tuple consisting of the creating processor�s processor number
and an integer that distinguishes the array from others created on the same processor	�

� The type of the array elements �double or int	�

� The dimensions of the global array� stored as a 
�dimensional array�

� The processor numbers of the processors over which the array is distributed� stored
as a 
�dimensional array�

� The dimensions of the processor grid over which the array is distributed� stored as a

�dimensional array�

� The dimensions of a local section of the array� exclusive of borders� stored as a 
�
dimensional array�

� The sizes of the borders around a local section� stored as a 
�dimensional array of
length twice the number of dimensions� with values as described in x����
�

� The dimensions of a local section of the array� including borders� stored as a 
�
dimensional array�

� The indexing type of the array �row�major or column�major	�

� The indexing type of the array�s processor grid �row�major or column�major	�

� A reference to the storage for the local section� x
�
�
 discusses our implementation�s
representation of local sections in more detail�

This representation contains some redundant information�for example� the dimensions of
a local section can be computed from the dimensions of the global array and the dimensions
of the processor grid�but we choose to compute the information once and store it rather
than computing it repeatedly as needed�


�



����� References to distributed arrays

As described in x������ a distributed array is referenced in a PCN program by its unique
ID� this ID is created by a create�array request and must be supplied for all other array�
manager requests� During processing of an array�manager request� the array manager uses
the array ID to locate the array	s internal representation 
the tuple described in x������� As
noted in x������ such a representation occurs in the array manager	s list on each processor
that contains a local section of the array and on the processor on which the initial array�
creation request was made� Thus� our implementation supports the model described in
x��
����� A create�array request for a distributed array can be made on any processor�
even one that will not contain a local section of the array� With the exception of local�
section requests� subsequent requests involving the array can be made on the creating
processor or on any of the processors over which the array is distributed� A local�section

request� however� clearly requires a local rather than a global view of the array� and thus
can be made only on a processor that contains a local section of the array� i�e�� on one of
the processors over which the array is distributed�

����� Internal representation of local sections

The approach taken by our implementation to representing local sections of distributed
arrays is somewhat unorthodox� Its design is based on the following observations� The
actual storage for a local section cannot be a true mutable� since we want to represent
each array by a tuple as described in x������ and a mutable cannot be included as an
element of a tuple� Neither can it be a true de�nition variable� however� because de�nition
variables are single�assignment� and a local section must be multiple�assignment� Further�
for e�ciency reasons it is desirable to explicitly allocate and deallocate storage for local
sections using the C memory�management routines rather than relying on PCN	s normal
mechanism for allocating storage for variables� PCN	s normal method is to allocate space for
both de�nitional and mutable variables on its internal heap� which is copied during periodic
garbage collection� for large arrays� this copying is expensive� Our implementation therefore
provides support for a third category of array variables that are explicitly allocated and
deallocated with the C memory�management routines� We refer to an array in this category
as a pseudo�de�nitional array� �de�nitional� because it is created without a declaration and
thus syntactically resembles a de�nition variable� and �pseudo�� because it is intended to be
used as a multiple�assignment variable and thus semantically resembles a mutable variable�

Local sections are implemented as pseudo�de�nitional arrays� which allows them to be
manipulated in the desired way� They can be incorporated into and retrieved from tuples
as if they were de�nitional arrays� and they can also be passed to PCN or foreign�code
programs as mutable arrays� with the following stipulations�

� Passing a pseudo�de�nitional array as a mutable gives rise to compiler warning mes�
sages� as described in xB���

��



� Any use of a pseudo�de�nitional array as a mutable must be preceded by a data��

guard� to ensure that it has been de�ned and to provide proper dereferencing� This
requirement must be and is met in all library procedures and in procedures generated
by the source�to�source transformation described in x���� Application programs� how�
ever� normally need not be aware of the restriction� since there is no need for explicit
use of pseudo�de�nitional arrays except in the library procedures and the generated
procedures�

� Like a mutable array� a pseudo�de�nitional array may only be shared by two concur�
rently�executing processes if neither process writes to it�

����� Explicit allocation and deallocation of storage for local sections

Source�level support for the explicitly�allocated pseudo�de�nitional variables used to imple�
ment local sections �x��	��
 is provided by the following new PCN primitive operations�

� build�Type� Size� Def �� This primitive operation creates an array of type Type and
size Size and de�nes de�nition variable Def to be that array� Type must be a literal
�int� or �double�� Size can be a constant or a variable� Storage is allocated using
the C function malloc���

� free�Variable�� This primitive operation deallocates �frees
 the storage associated
with Variable using the C function free���

These primitive operations are used in the array�manager implementation to allocate and
deallocate storage for local sections�

Runtime support for pseudo�de�nitional variables requires minor modi�cations to the PCN
emulator� The PCN emulator 
	�� represents both de�nitional and mutable variables using
data structures that combine header information �type and length
 with actual data and�or
pointers to data� All data is allocated on the emulator�s internal heap using the emulator
instructions build�static� build�dynamic� and build�def� each of which reserves space
and builds a particular type of data structure in the reserved space� Data is never explicitly
deallocated� rather� periodic garbage collection removes data that is no longer in use�

Since the internal representation of data includes support for pointers to other data struc�
tures� no modi�cation to the representation is required to support references to data allo�
cated outside the heap� Support for explicitly allocating and deallocating storage outside
the heap is provided using malloc and free emulator instructions� and support for build�
ing data structures in the explicitly�allocated storage is provided using modi�ed versions of
the build�static and build�dynamic emulator instructions� �Since support for pseudo�
de�nitional variables is limited to arrays� no modi�ed version of the build�def emulator
instruction is needed�
 Data allocated outside the heap is manipulated in the same way as
data on the heap� except during garbage collection� when it is not moved or copied�

��



Thus� runtime support for explicit allocation and deallocation of pseudo�de�nitional ar�
rays requires minor modi�cations to the garbage collection procedure� plus support for the
following new emulator instructions�

� malloc�Tag� Num� Reg�� To execute this instruction� the emulator allocates space�
using the C malloc�� function� for Num objects of type Tag with a total combined
length given by the cell pointed to by Reg� It puts the pointer to the newly allocated
space in the emulator�s SP register� �This instruction was originally designed as part of
more general support in PCN for explicitly�allocated variables and is thus somewhat
more general than is necessary for this use�	

� m�build�static�Reg� Tag� Size� and m�build�dynamic�Tag� Reg�� Reg��� To exe�
cute these instructions� the emulator proceeds as for the current build�static and
build�dynamic instructions� except that it uses the SP register �assumed to have been
set by a preceding malloc instruction	 to point to the next available space instead of
the HP �heap pointer	 register�

� free�Reg�� To execute this instruction� the emulator frees the space pointed to by
register Reg� using the C free�� function�

The new primitive operations build and free are compiled into the new emulator instruc�
tions as follows�

� A free primitive operation is compiled directly into a free emulator instruction�

� A build primitive operation is compiled into a sequence of emulator instructions� The
following primitive operation�

build�Type� Size� Def �

is compiled into the following sequence of emulator instructions�

malloc�Type� 
� Rm�

m�build�dynamic�Type� Rm� Rj�
define�Rn� Rj�

where Rm is the emulator register representing Size� Rn is the emulator register
representing Def� and Rj is a work register�

Note that every use of a de�nitional variable set by a build operation� including a free

operation� must be preceded by a data�� guard� This has two purposes�

� To ensure that the storage has in fact been allocated before attempting to use it�
particularly important if the storage is to be used as a mutable or freed with a free

operation�

� To provide proper dereferencing�

��



����� Support for foreign�borders option

As described in x������� and x������ our implementation provides a way for a data�parallel
program to specify the borders for local sections of a distributed array� This is done by
calling am�user�create�array or am�user�verify�array with a Border�info parameter
of the following form	

f�foreign�borders�� Program� Parm numg

Program must in turn contain a routine Program that supplies the correct borders�

At runtime� then� programProgram must be executed� PCN supports higher�order program
calls
calls to a program whose name is supplied at runtime by the value of a character�
string variable
but this support does not extend to calls to foreign�code �non�PCN� pro�
grams� since the names of foreign�code programs to be called must be 
xed at compile time�
Our implementation resolves this di�culty by using a source�to�source transformation to

rst generate a PCN wrapper program that calls the desired foreign�code program Pro�

gram and then replace the Border�info parameter with one that will result in a call to
the wrapper program when the array is created or veri
ed�

The required source�to�source transformation replaces every tuple in the input module of
the following form	

f�foreign�borders�� Pgm name� Parm numg

with a tuple of the following form	

f�borders�� Current module� New program� Parm numg

where Current module�New program is an inserted program of the following form �using
the documentation conventions of x������	

New program�

��in int�� Parm�num�
��in int�� N�borders�
��out array of int of length N�borders�� Borders

	

int temp�borders
N�borders� �

f�
Pgm name ���in�� Parm�num� ��out�� temp�borders	

Borders 
 temp�borders

g

When procedure am�user�create�array or am�user�verify�array is called with a Border�
info parameter of the form f�borders�� Module� Program� Parm numg� it executes a
program call of the following form	

��



Module�Program�Parm num� � � N dims� Borders�

where N dims is the number of dimensions of the array being created or veri�ed� The
create�array or verify�array procedure then uses the resulting array Borders to de�ne
the borders for the array�

Example

Suppose input module xform�ex� contains the following tuple�

Borders � ��foreign�borders�	 �cpgm�	 �


In the transformed module� this statement is replaced with the following tuple�

Borders���borders�	�xform�ex��	�make�borders���	�


and the transformed module contains the following program�

make�borders���Parm�num	N�borders	Borders�

int temp�borders�N�borders
�

� � cpgm��Parm�num	temp�borders�	

Borders�temp�borders




��� Support for distributed calls

An overview of how the prototype implementation supports distributed calls was presented
in x������ in this section� we present a more detailed description of that support�

����� The do�all program

As described previously in x������� and x���� a call to am�user�distributed�call must
result in executing the desired program concurrently on many processors� It is relatively
straightforward to write a PCN procedure that performs such an operation� its speci�cation
	using the conventions of x��
�
� is as follows�

am�util�do�all�

��in array of int�� Processors	

��in string�� Module	

��in string�� Program	

��in tuple�� Parms	

��in string�� Combine�module	

�




��in string�� Combine�program�

��out�� Status

�

Precondition�

� There is a program of the following form�

Module�Program�

��in int�� Index�

��in tuple�� Parms�

��out�� Status

�

� � �

� There is a program of the following form�

Combine�module�Combine�module�

��in Type�� S�in��

��in Type�� S�in	�

��out Type�� S�out

�

� � �

where all parameters have the same type Type and length Length�

Postcondition�

� For each i with � � i � length�Processors�� Module�Program has been executed on
processor Processors
i� as follows�

Module�Program���in�� i� Parms� ��out�� S�i�

where each S�i is a distinct variable of the same type Type and length Length as the
parameters of Combine�module�Combine�program�

� Status has the same type Type and length Length as the parameters of Combine�
module�Combine�program and a value that is the result of pairwise combining the
values of the S�i�s using Combine�module�Combine�program�

Since there is a one	to	one correspondence between the parameters of do�all and the
parameters of am�user�distributed�call� do�all could be used to perform distributed
calls were it not for two di
culties� First� as noted earlier �x����
�� support in PCN for
higher	order program calls does not include calls to foreign	code programs� Second� as noted
in x�������� processing of some types of parameters �local sections� for example� requires a
wrapper program�

Thus� our implementation provides support for distributed calls via a source	to	source trans	
formation that �rst generates an appropriate wrapper program and then replaces the call
to am�user�distributed�call with a call to do�all that results in the wrapper program
being executed concurrently on the speci�ed processors�

��



����� The wrapper program

Our programming model for distributed calls� as described in x�������� includes support for
passing the following kinds of parameters to the called data�parallel program�

� Global constants�

� Index variables�

� Local�section variables�

� Status variables�

� Reduction variables�

Support for many of these options must be provided by the wrapper program that is to be
called by do�all� From the speci	cation of do�all� the wrapper program will be called
with the following parameters�

� An index parameter Index� used as input� The value of this parameter is di
erent for
each copy of the wrapper program�

� An input parameter Parms� The value of this parameter is the same for each copy of
the wrapper program� Like the corresponding parameter of am�user�distributed�
call� however� this parameter can be a tuple containing array IDs and other data�

� An output parameter Status� Each copy of the wrapper program assigns a value to its
status parameter� do�all combines these values pairwise using the combine program
speci	ed by its parameters and then assigns the result to the do�all status parameter�
Observe� however� that this parameter can be a tuple� given an appropriate combine
program�

The wrapper program must transform these parameters into the proper parameters for the
called data�parallel program� This is done as follows�

� Global constants� These are included in the tuple passed to do�all and then to the
wrapper program as Parms� the wrapper program extracts them from the tuple�

� Index variables� The wrapper program obtains the required value from its Index

parameter�

� Local�section variables� Array IDs for local�section variables are included in the tuple
passed via the Parms parameter� the wrapper program obtains the required reference
to each local section by calling am�user�find�local with the appropriate array ID�

� Status and reduction variables� The wrapper program declares a local mutable vari�
able for each such variable� On completion of the called program� the wrapper program
combines all such variables into a single tuple of the form flocal status� local reduction
�� local reduction �� � � �g� A new combine program� generated along with the wrapper
program and speci	ed by do�all as its combine program� merges these tuples pairwise
into an output tuple of the same form� The calling program �i�e�� the program making
the distributed call
 then extracts the elements of this output tuple and assigns them
to its status and reduction variables�

��



����� The transformation

Thus� the transformation used by our implementation to support distributed calls must

accomplish the following�

� Transform the original call into a block containing a call to do�all and statements

to assign values to status and reduction variables�

� Generate a wrapper program�

� Generate a combine program�

The generated wrapper program must do the following�

� �Unbundle� the tuple passed as Parms�

� Declare local variables for status and reduction variables�

� Obtain local sections of distributed arrays�

� Call the speci�ed data�parallel program�

� Combine local status and reduction variables into a single tuple� where the �rst ele�

ment of the tuple represents status and remaining elements represent reduction vari�

ables�

Observe that the size of local reduction variables can depend on a global�constant parameter

provided as an element of Parms� Since the value of such a parameter cannot be extracted

before declarations of local variables are processed� the wrapper program must actually

consists of two nested wrapper programs� an outer or �rst�level program to extract from

the Parms tuple any parameters needed to declare local variables� and an inner or second�

level program to perform the actions described above�

The generated combine program must do the following�

� Pairwise combine tuples of status and reduction variables� applying to each element

of the tuple the appropriate combining procedure� For a reduction variable� the ap�

propriate combining procedure is the one given in the parameter speci�cation for the

reduction variable� For a status variable� the appropriate combining procedure is

either the one speci�ed in the distributed call or the default� am�util�max�

A detailed speci�cation of such a transformation is presented in xF�

����� Examples of applying the transformation

The examples in this section illustrate how the transformation supports passing various

kinds of parameters to a called program�

	




Distributed call with index and local�section parameters

Suppose input module xform�ex� contains the following statement�

am�user�distributed�call���in�� Processors� 	
� �cpgm��

�Processors� P� �index�� ��local�� AA

�

	
� 	
� ��out�� Status�

In the transformed module� this statement is replaced with the following block�

��� am�util�do�all�Processors��xform�ex����wrapper����

��Processors�P���AA

�

�xform�ex����combine�����l���

Status��l�	�





Since there are no reduction variables� the status variable returned by the do�all call ��l��
is a tuple with a single element whose value is used to set variable Status�

The transformed module contains the following two wrapper programs�

wrapper���Index�Parms��l��

� � Parms����l�
 ��

wrapper����Index��l���l���

default ��

�l���




wrapper����Index�Parms��l��

� � Parms����l���l�����l�
 ��

��� am�user�find�local��l���l���l���

� � �l�����data��l�� ��

� � cpgm��l���l��Index��l���

make�tuple����l���

�l�	�
��


�

default ��

�l���





�

default ��

�l���




Data�parallel program cpgm is called from the second�level wrapper program with four
parameters corresponding to the four parameters speci�ed in the original distributed call	s


�



parameters tuple� two global constants whose values are the values of Processors and
P� an index variable whose value is supplied by do�all�s Index parameter� and the local
section of the distributed array referenced by AA� This local section is obtained by the
wrapper program by calling am�user�find�local with array ID equal to AA� Since the
original distributed call contains no status or reduction variables� the wrapper program
returns as its status a tuple with a single element whose value is determined by the success
of the am�user�find�local call� �If the distributed call meets the precondition de�ned in
x��	�
 for am�user�distributed�call� the am�user�find�local call will return a status
of STATUS�OK� i�e�� ���

The transformed module also contains the following combine program�

combine���C�in��C�in��C�out�

	 
 data�C�in���tuple�C�in���length�C�in������length�C�in����� �


	�� make�tuple���C�out��

data�C�out� �


am�util�max�C�in�����C�in�����C�out����

��

default �


C�out��

�

Since the original distributed call contains no status or reduction variables� the combine
program combines the single
element tuples returned by the wrapper programs using the
default status
combining program am�util�max�

Distributed call with status and local�section parameters

Suppose input module xform�ex� contains the following statement�

am�user�distributed�call���in�� Processors� ��� �cpgm��

	Processors� P� 	�local�� AA�� �status���

��� ��� ��out�� Status�

In the transformed module� this statement is replaced with the following block�

	�� am�util�do�all�Processors��xform�ex����wrapper����

		Processors�P�AA�����

�xform�ex����combine�����l���

Status��l����

�

Again� since there are no reduction variables� the status variable returned by the do�all

call ��l�� is a tuple with a single element whose value is used to set variable Status�

The transformed module contains the following two wrapper programs�

��



wrapper���Index�Parms��l��

� � Parms�	��l
� �


wrapper����Index��l
��l���

default �


�l�	�

�

wrapper����Index�Parms��l��

int local�status�

� � Parms�	��l���l���l���� �


��� am�user�find�local��l���l���l���

� � �l�		��data��l�� �


� � cpgm��l���l���l��local�status��

make�tuple����l���

�l����	local�status

��

default �


�l�	�

�

��

default �


�l�	�

�

Data�parallel program cpgm is called from the second�level wrapper program with four

parameters corresponding to the four parameters speci�ed in the original distributed call�s

parameters tuple� two global constants whose values are the values of Processors and P�

the local section of the distributed array referenced by AA� and a local status variable� The

local section of AA is obtained by the wrapper program by calling am�user�find�localwith

array ID equal to AA� Since the original distributed call contains a status variable but no

reduction variables� the wrapper program returns as its status a tuple with a single element

whose value is that returned by cpgm in local�status�

The transformed module also contains the following combine program�

combine���C�in��C�in��C�out�

� � data�C�in���tuple�C�in���length�C�in��		��length�C�in��		� �


��� make�tuple���C�out��

data�C�out� �


am�util�max�C�in�����C�in�����C�out����

��

default �


C�out	�

�

Since the original distributed call contains a status variable but no reduction variables and

does not specify a combine program for the status variable� the generated combine program

�	



combines the single�element tuples returned by the wrapper programs using the default
status�combining program am�util�max�

Distributed call with status� reduction� and local�section parameters

Suppose input module xform�ex� contains the following statement�

am�user�distributed�call���in�� Processors� 	
� �cpgm��

�Processors� P� ��local�� AA
� �status��

��reduce�� �double�� ��� �xform�ex��� �combine�it�� RR

�

�am�util�� �max�� ��out�� Status�

In the transformed module� this statement is replaced with the following block�

��� am�util�do�all�Processors��xform�ex����wrapper����

��Processors�P�AA����
���
�

�xform�ex����combine�����l���

Status��l�	�
�

RR��l�	�





Since the original distributed call contains one reduction variable� the status variable re�
turned by the do�all call ��l�� is a tuple with two elements� Its �rst element is used to
set variable Status� and its second element is used to set reduction variable RR�

The transformed module contains the following two wrapper programs�

wrapper���Index�Parms��l��

� � Parms����l���l�
 ��

wrapper����Index��l���l���l���

default ��

�l���




wrapper����Index�Parms��l���l��

int local�status�

double �l�	�l�
�

� � Parms����l���l���l�����
 ��

��� am�user�find�local��l���l���l���

� � �l�����data��l�� ��

� � cpgm��l���l���l��local�status��l���

make�tuple����l���

�l�	�
�local�status�

�l�	�
��l�


�

	




default ��

�l���

�

��

default ��

�l���

�

Data�parallel program cpgm is called from the second�level wrapper program with �ve pa�

rameters corresponding to the �ve parameters speci�ed in the original distributed call�s

parameters tuple� two global constants whose values are the values of Processors and P�

the local section of the distributed array referenced by AA� a local status variable� and a

local reduction variable of type double� The local section of AA is obtained by the wrapper

program by calling am�user	find�local with array ID equal to AA� The length of the local

reduction variable is obtained from the length speci�ed in the original distributed call� The

correct value� �	� is passed from the do�all call to the �rst�level wrapper program as part

of the parameters tuple� The �rst�level wrapper program extracts it from the parameters

tuple and passes it directly to the second�level wrapper program� where it is used in the

declaration of the local reduction variable �l
� Since the original distributed call contains

a status variable and one reduction variable� the wrapper program returns as its status a

tuple with two elements� the �rst containing the value returned by cpgm in local�status

and the second containing the value returned by cpgm in the local reduction variable �l
�

The transformed module also contains the following combine program�

combine���C�in��C�in��C�out


� � data�C�in�
�tuple�C�in�
�length�C�in�
����length�C�in�
��� ��

��� make�tuple���C�out
�

data�C�out
 ��

am�util	max�C�in�����C�in�����C�out���
�

data�C�out
 ��

combine�it�C�in�����C�in�����C�out���


��

default ��

C�out��

�

Since the original distributed call contains a status variable and one reduction variable and

speci�es combine programs for both the status variable and the reduction variable� the gen�

erated combine program is somewhat more complicated than in the preceding examples�

Recall that the wrapper program returns a tuple whose �rst element represents a status

variable and whose second element represents a reduction variable� The generated combine

program combines two tuples of that form to produce an output tuple of the same form�

Thus� the �rst element of the output tuple produced by the generated combine program is

the result of combining the �rst elements of the input tuples using the combine program


�



speci�ed for the status variable� am�util�max� and the second element of the output tu�

ple is the result of combining the second elements of the input tuples using the combine
program speci�ed for the reduction variable� xform�ex��combine�it� Program xform�

ex��combine�it� supplied by the user� must perform a similar operation� combining two
input arrays of type double and length �� to produce an output array of type double and

length ���

��� Architecture�speci�c issues

As described in x��	��� care must be taken to ensure that the communication mechanisms
used by PCN and those used by the called data�parallel programs do not interfere with each
other� Since the communication mechanisms used by PCN are di
erent for di
erent archi�

tectures� whether additional modi�cations are required for either PCN or the data�parallel
programs depends on both the architecture being used and the data�parallel programs to

be called� This section does not attempt to address all combinations of architecture and
communication mechanisms� Instead� it discusses an example of such modi�cations based

on our experience in testing the prototype implementation�

As discussed in xD� our prototype implementation was tested with a library of data�parallel
programs whose communication mechanism is based on the untyped message�passing rou�

tines of the Cosmic Environment ���
� The PCN implementation for the Symult s�����
on which testing was performed� uses the same message�passing routines as its commu�

nication mechanism� As noted in x��	��� when communication is based on point�to�point
message�passing� the messages must be typed� Thus� for this combination of architecture

and communication mechanisms� the required modi�cation to the PCN implementation is to
replace untyped messages with typed messages of a �PCN� type and to replace non�selective
receives with receives that select messages of the �PCN� type� The required modi�cation

to the library of data�parallel programs is to similarly replace the use of untyped messages
with messages of a �data�parallel�program� type�

��



Chapter �

Examples

This chapter presents two examples of using the prototype implementation to integrate
data�parallel programs into a task�parallel program� For each example we present the
following�

� A brief description of the computational task and an overview of the program�

� Complete code for the task�parallel program� The code is written in PCN and uses
the library procedures described in x� and xC� An overview of PCN syntax appears
in xA�

� Speci�cations for the data�parallel programs� using the speci�cation format described
in x������ The data�parallel programs are based on the example library described in
xD�

��� Inner product

����� Description

This somewhat contrived example brie	y illustrates the use of distributed arrays and a
distributed call� The program does the following�

�� Creates two distributed vectors 
��dimensional arrays��

�� Passes them to a data�parallel program that does the following�


a� Initializes them� setting the i�th element of each vector to i 
 ��


b� Computes their inner product�

�� Prints the resulting inner product�

��



����� PCN program

The following PCN program performs the described computation�

������������������������������������������������������������������������

������������������������������������������������������������������������

simple example of interface to message�passing C�

call a routine to initialize two distributed vectors

and compute their inner product

������������������������������������������������������������������������

������������������������������������������������������������������������

�include �am�h�

�foreign	

�� object code for called program ��

�C
simple�test
iprdv�o��

�� support libraries for test
iprdv�o ��

����Interface�General�cfull�cmatvecnd��ARCH��a��

����Interface�General�full�matvecnd��ARCH��a��

����Interface�General�att�attnd��ARCH��a�




go	Done


��

stdio�printf	�starting test�n�� ��� 

 �

�� start array manager ��

am
util�load
all	�am�� 

 �

�� define constants ��

sys�num
nodes	��out�� P
 �

am
util�node
array	��in�� ����P� ��out�� Processors
 �

Local
m � � �

M � P � Local
m �

am
util�tuple
to
int
array	��in�� �M�� ��out�� Dims
 �

Distrib � ��block�� �

Borders � �� �

�� create distributed vectors ��

am
user�create
array	��out�� Vector�
ID�

��in�� �double�� Dims� Processors� Distrib� Borders� �row��

��out�� 

 �

am
user�create
array	��out�� Vector�
ID�

��in�� �double�� Dims� Processors� Distrib� Borders� �row��

��out�� 

 �

�� call data�parallel program test
iprdv once per processor ��

am
user�distributed
call	��in�� Processors� ��� �test
iprdv��

��



�Processors� P� �index�� M� Local�m�

local�Vector��ID�� local�Vector��ID��

reduce��double�� �� �am�util�� �max�� InProd�	�


�� 
�� �
out
� �� �

�
 print result 
�

stdio�printf��inner product� �g�n�� �InProd	� �� �

�
 free vectors 
�

am�user�free�array�Vector��ID� �� �

am�user�free�array�Vector��ID� �� �

stdio�printf��ending test�n�� �	� �� �

Done � 
�

	

����� Speci�cation for data�parallel program

The speci�cation for data�parallel program test�iprdv is as follows�

�
���������������������������������������������������������������������

test inner product

���������������������������������������������������������������������
�

void

test�iprdv�Processors� P� Index� M� m� local�V�� local�V�� ipr�

int Processors
� � �
 in 
�

int 
P � �
 in 
�

int 
Index � �
 in 
�

int 
M� 
m � �
 in 
�

double local�V�
� � �
 out 
�

double local�V�
� � �
 out 
�

double 
ipr � �
 out 
�

�


Precondition�

Processors are the processors on which the program is being

executed�

PP � �
P� �� length�Processors��

�
Index� indicates which processor this is �Processors

Index���

MM � �
M� �� �global� length of distributed vector V��

mm � �
m� �� length of local section of V��

local�V� is the local section of V��

local�V� is the local section of V��

Postcondition�

V�
i� �� V�
i� �� i�� for all i �� �� MM����

�
ipr� �� inner product of V� and V��


�

��



��� Polynomial multiplication using a pipeline and FFT

����� Description

This example is a pipelined computation that performs a sequence of polynomial multi�
plications using discrete Fourier transforms� where the transforms are performed using the
FFT �fast Fourier transform� algorithm� This computation is representative of a class of
computations involving Fourier transforms� as discussed in x������

The computational task is to multiply pairs of polynomials of degree n � 	� where n is a
power of �� Input is a sequence of pairs of polynomials �F�� G�
F�� G�
 � � � 
Fj� Gj 
 � � ��� each
of degree n � 	� Each input polynomial is represented by its n coe�cients� Output is a
sequence of polynomials �H�� H�� � � � � Hj � � � ��� each of degree �n� �� with Hj � Fj �Gj for
all j� Each output polynomial is represented by �n coe�cients�

The product of two polynomials can be computed as follows


	� Extend each input polynomial to a polynomial of degree �n�	 by padding with zeros�
and evaluate each extended polynomial at the �n �n�th complex roots of unity� I�e��
for input polynomial with coe�cients �f�� f�� � � � � f�n���� compute the complex values
� �f�� �f�� � � � � �f�n���� where

�fj �
�n��X

k��

fke
��ijk

�n � j � �� � � � � �n� �

Each e
��ij
�n � where i denotes

p
��� is a distinct �n�th complex root of unity� Since

these �fj 	s are simply the inverse discrete Fourier transform of the fj 	s� they can be
computed using an inverse FFT�

�� Multiply the two resulting �n�tuples of complex numbers elementwise
 the resulting
�n�tuple represents the values of the desired output polynomial at the �n roots of
unity�

�� Fit a polynomial of degree �n � � to the resulting points� I�e�� if � �f�� �f�� � � � � �f�n��

represent the complex values of a polynomial of degree �n��� determine its coe�cients
�f�� f�� � � � � f�n��

 this is equivalent to solving the system of equations

�n��X

k��

fke
��ijk

�n � �fj � j � �� � � � � �n� �

It can be shown that this system of equations is satis�ed by �f�� f�� � � � � f�n��
� where

fj �
�

�n

�n��X

k��

�fke
�

��ijk
�n � j � �� � � � � �n� �

These fj 	s� however� are simply the discrete Fourier transform of the �fj 	s and can thus
be computed using a forward FFT�

��



Figure ��� illustrates the overall structure of a program based on this algorithm� Both for�
ward and inverse FFTs can be performed by data�parallel programs� as can the elementwise
multiplication step� For each input pair of polynomials� the two inverse FFTs �one for each
input polynomial� can be done concurrently	 the three steps in the computation �inverse
FFT� combine� and forward FFT� can execute concurrently as the stages of a pipeline� as
described in x
���
�

combine

FFT
inverse

inverse
FFT

FFT
forward

Figure ���� Polynomial multiplication using a pipeline and FFT

The data�parallel programs used for the FFTs are based on the discussion of the FFT in


��� The programs perform the transform in place� i�e�� replacing the input data with the
output data	 such an in�place transform is possible if either the input data or the output
data is in permuted order� where the index permutation function for a problem of size 
m

is the bit�reversal �
m

that maps an m�bit integer i to the integer formed by reversing the m
bits of i� The inverse transform in the �rst stage of the pipeline accepts input in bit�reversed
order and produces output in natural order	 the forward transform in the third stage of the
pipeline accepts input in natural order and produces output in bit�reversed order�

����� PCN program

The following PCN program performs the described computation�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

FFT example program

�����������������������������������������������������������������������

�����������������������������������������������������������������������

�include �am�h�

�include �stdio�h�

�include �C�fft�fftdef�h�

�define THISMOD �fft�ex�

��



�foreign�

�� object code for fft�� programs ��

�C�fft�fft�o��

�� object code for compute�roots� rho�proc	 support for fft�� ��

�C�fft�fftlib�
ARCH
�a��

�� support libraries for fft��� etc� ��

����Interface�General�cfull�cmatvecnd�
ARCH
�a��

����Interface�General�full�matvecnd�
ARCH
�a��

����Interface�General�att�attnd�
ARCH
�a��

����Interface�General�cfull�cmatvecnd�
ARCH
�a�

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

main program

�����������������������������������������������������������������������

�����������������������������������������������������������������������

go�

N� ��in int��

Infile� ��in string��

Outfile� ��in string��

Done ��out��

�

��

Precondition


N is the size of the input polynomials	 N is a power of ��

Infile is the input file name	 it contains pairs of

polynomials of degree N��� each pair represented by

its N �real� coefficients�

Outfile is the output file name	 it contains the output

polynomials �each the product of a pair of input

polynomials�	 each is of degree ��N � � and is

represented by its coefficients �printed as complex

numbers� though the imaginary part will be � if

round�off error is ignored��

The number of available processors� P� is an even power of ��

with P �� � and �P��� �� N�

Postcondition


Output as described has been written to Outfile�

��

FILE infile�FD 	

FILE outfile�FD 	

�	

�� start array manager ��

am�util
load�all��am�� ��out�� �� �

�� set things up ��

���

��



�� �real� problem size is ��N� � ��LL ��

NN � ��N �

find	log�
��in�� NN� ��out�� LL� �

�� groups of processors ��

sys�num	nodes
��out�� P
� �

P � P
 � 
 �

Procs�a	� � � �

Procs�b	� � P �

ProcsC	� � ��P �

Procs�	� � ��P �

am	util�node	array
��in�� Procs�a	�� �� P�

��out�� Procs�a� �

am	util�node	array
��in�� Procs�b	�� �� P�

��out�� Procs�b� �

am	util�node	array
��in�� ProcsC	�� �� P�

��out�� ProcsC� �

am	util�node	array
��in�� Procs�	�� �� P�

��out�� Procs�� �

�� array dimensions� etc� ��

am	util�tuple	to	int	array
��in�� ���NN�� ��out�� Dims� �

Distrib � ��block�� �

am	util�tuple	to	int	array
��in�� ���NN� P��

��out�� Eps	dims� �

Eps	distrib � ����� �block�� �

No	borders � �� �

C	indexing � �C� �

�� open files ��

stdio�fopen
��in�� Infile� �r�� ��out�� infile	FD� 	� �

stdio�fopen
��in�� Outfile� �w�� ��out�� outfile	FD� 	�

� �

�� create distributed arrays� etc� ��

���

�� arrays for input�output data ��

am	user�create	array
��out�� A�a�

��in�� �double�� Dims� Procs�a� Distrib�

No	borders� C	indexing� ��out�� S�a� �

am	user�create	array
��out�� A�b�

��in�� �double�� Dims� Procs�b� Distrib�

No	borders� C	indexing� ��out�� S�b� �

am	user�create	array
��out�� A��

��in�� �double�� Dims� Procs�� Distrib�

No	borders� C	indexing� ��out�� S�� �

�� arrays for roots of unity 
for FFT� ��

am	user�create	array
��out�� Eps�a�

��in�� �double�� Eps	dims� Procs�a� Eps	distrib�

No	borders� C	indexing� ��out�� ST�a� �

am	user�create	array
��out�� Eps�b�

��in�� �double�� Eps	dims� Procs�b� Eps	distrib�

No	borders� C	indexing� ��out�� ST�b� �

am	user�create	array
��out�� Eps��

��in�� �double�� Eps	dims� Procs�� Eps	distrib�

��



No�borders� C�indexing� ��out�� ST�� �

�� tuples of streams for communication ��

make�tuple�P� Streams	a� �

make�tuple�P� Streams	b� �

make�tuple�P� Streams��


 �

�� initialize roots of unity �for FFT� ��

���

ST	a 

 STATUS�OK ��

am�user�distributed�call���processors�� Procs	a�

��program�� ��� �compute�roots��

��parms�� ���in�� NN� ��out�� local�Eps	a�
�

��combine program�� ��� ���

��status�� SE	a� �

ST	b 

 STATUS�OK ��

am�user�distributed�call���processors�� Procs	b�

��program�� ��� �compute�roots��

��parms�� ���in�� NN� ��out�� local�Eps	b�
�

��combine program�� ��� ���

��status�� SE	b� �

ST� 

 STATUS�OK ��

am�user�distributed�call���processors�� Procs��

��program�� ��� �compute�roots��

��parms�� ���in�� NN� ��out�� local�Eps��
�

��combine program�� ��� ���

��status�� SE��


 �

�� main pipeline loop ��

S	a 

 STATUS�OK� S	b 

 STATUS�OK� S� 

 STATUS�OK�

SE	a 

 STATUS�OK� SE	b 

 STATUS�OK� SE� 

 STATUS�OK ��

���

read�infile���in�� N� infile�FD�

��out�� Instream�a� Instream�b� ��in�� ��� ��� �

phase	���in�� Procs	a� NN� LL� ��inout�� A	a�

��in�� Eps	a� Instream�a�

��out�� Streams	a���Procs	a��� �

phase	���in�� Procs	b� NN� LL� ��inout�� A	b�

��in�� Eps	b� Instream�b�

��out�� Streams	b���Procs	b��� �

combine���in�� ProcsC� Streams	a� Streams	b�

��out�� Streams����ProcsC��� �

phase����in�� Procs�� NN� LL� ��inout�� A��

��in�� Eps�� Streams��

��out�� Outstream� ��in�� �����Procs���� �

write�outfile���in�� NN� outfile�FD� Outstream�


 �

�� finish up ��

���

�� free arrays ��

am�user�free�array���in�� A	a� ��out�� �� �

am�user�free�array���in�� A	b� ��out�� �� �

��



am�user�free�array���in�� A�� ��out�� �	 �

am�user�free�array���in�� Eps
a� ��out�� �	 �

am�user�free�array���in�� Eps
b� ��out�� �	 �

am�user�free�array���in�� Eps�� ��out�� �	 �

�� close files ��

stdio�fclose���in�� infile�FD� ��out�� �	 �

stdio�fclose���in�� outfile�FD� ��out�� �	

� �

Done � 
�

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

phase
� inverse FFT

�����������������������������������������������������������������������

�����������������������������������������������������������������������

phase
�

Procs� ��in array of int��

NN� ��in int��

LL� ��in int��

Array�ID� ��inout distributed array��

Eps�array�ID� ��in distributed array��

Instream� ��in stream of double��

Outstreams ��out tuple of streams��

	

��

Precondition�

NN � problem size �twice the size of the input polynomials	�

LL � log��NN	�

Eps�array�ID contains the NN NN�th complex roots of unity�

Instream contains NN�� real numbers�

Postcondition�

Array�ID contains the �complex	 inverse FFT of NN numbers� of

which the first NN�� are the numbers from Instream and

the last NN�� are �� in natural �not bit�reversed	 order�

Each element of Outstreams contains the complex numbers �each

represented by two doubles	 corresponding to one local

section of Array�ID�

��

��

Instream �� 
� ��

��

�� get input �NN��	 and pad ��

get�input���in�� NN��� LL� Array�ID� Instream�

��out�� Instream�tail	 �

pad�input���in�� NN��� NN� LL� Array�ID	 �

�� perform inverse FFT on distributed array ��

am�user�distributed�call���processors�� Procs�

��



��program�� ��� �fft�reverse��

��parms�� ���in�� Procs� length	Procs
� �index��

NN� INVERSE� local	Eps�array�ID
�

��inout�� local	Array�ID
��

��combine program�� ��� ���

��status�� �
 �

�� write results into output streams� saving

stream tails ��

make�tuple	length	Outstreams
� Outstreams�tail
 �

am�user�distributed�call	��processors�� Procs�

��program�� THISMOD� �dbl�array�to�stream��

��parms�� ���in�� �index�� local	Array�ID
�

��out�� Outstreams� ��in�� Outstreams�tail� �

��combine program�� ��� ���

��status�� �
 �

�� recurse ��

phase
	��in�� Procs� NN� LL� Array�ID� Eps�array�ID�

Instream�tail�

��out�� Outstreams�tail


� �

default ��

�� set all elements of Outstreams to �� ��

tuple�fill	��in�� Outstreams� ��


�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

combine� combine streams of complex numbers via pairwise multiplication

�����������������������������������������������������������������������

�����������������������������������������������������������������������

combine	

Procs� ��in array of int��

Instreams
� ��in tuple of streams��

Instreams�� ��in tuple of streams��

Outstreams ��out tuple of streams��




��

Precondition�

Each element of Instreams
 and Instreams� is a stream of

doubles� each successive pair of doubles represents

a complex number�

Postcondition�

Each element of Outstreams is a stream of doubles� each

successive pair of doubles represents a complex

number that is the product of the corresponding

complex numbers from Instreams
 and Instreams��

��

��



���

am�user�distributed�call���processors�� Procs�

��program�� THISMOD� 	combine�sub
	�

��parms�� ���in�� 	index	� Instreams
� Instreams��

��out�� Outstreams� �

��combine program�� 
�� 
��

��status�� ��

�

�����������������������������������������������������������������������

combine�sub
�

Index� ��in int��

Instreams
� ��in tuple of streams��

Instreams�� ��in tuple of streams��

Outstreams ��out tuple of streams��

�

��

Precondition� postcondition�

As for combine�� above� but restricted to the Index�th

element of each tuple�

��

���

combine�sub����in�� Instreams

Index�� Instreams�
Index��

��out�� Outstreams
Index��

�

�����������������������������������������������������������������������

combine�sub��

Instream
� ��in stream of double��

Instream�� ��in stream of double��

Outstream ��out stream of double��

�

��

Precondition� postcondition�

As for combine�� above� but restricted to a single stream�

��

��

Instream
 �� 
Re
� Im
 � Instream
�tail� �

Instream� �� 
Re�� Im� � Instream��tail� ��

���

Re � Re
�Re� � Im
�Im� �

Im � Re��Im
 � Re
�Im� �

Outstream � 
Re� Im � Outstream�tail� �

combine�sub����in�� Instream
�tail� Instream��tail�

��out�� Outstream�tail�

� �

default ��

Outstream � 
�

�

��



�����������������������������������������������������������������������

�����������������������������������������������������������������������

phase�� forward FFT

�����������������������������������������������������������������������

�����������������������������������������������������������������������

phase��

Procs� ��in array of int��

NN� ��in int��

LL� ��in int��

Array�ID� ��inout distributed array��

Eps�array�ID� ��in distributed array��

Instreams� ��in tuple of streams��

Outstream� ��out stream��

Outstream�tail ��in stream��

	

��

Precondition�

NN � problem size �twice the size of the input polynomials�

same size as the output polynomial	


LL � log��NN	


Eps�array�ID contains the NN NN�th complex roots of unity


Each element of Instreams contains the complex numbers �each

represented by two doubles	 corresponding to one local

section of Array�ID� if these numbers are inserted into

Array�ID� the result is NN complex numbers representing

the input to the forward FFT� in natural �not

bit�reversed	 order


Postcondition�

Array�ID contains the �complex	 forward FFT of the NN complex

numbers from Instreams �as described above	� in

bit�reversed order


Outstream contains the elements of Array�ID �each represented by

two doubles	� in natural order� followed by

Outstream�tail


��


�

tuple�Instreams	� Instreams��� �� �� ��


�

�� read data from input streams� saving stream tails ��

make�tuple�length�Instreams	� Instreams�tail	 �

am�user�distributed�call���processors�� Procs�

��program�� THISMOD� �stream�to�dbl�array��

��parms�� 
��in�� �index�� ��out�� local�Array�ID	�

��in�� Instreams� ��out�� Instreams�tail� �

��combine program�� ��� ���

��status�� �	 �

�� perform forward FFT on distributed array ��

��



am�user�distributed�call���processors�� Procs�

��program�� �	� 
fft�natural
�

��parms�� ���in�� Procs� length�Procs�� 
index
�

NN� FORWARD� local�Eps�array�ID��

��inout�� local�Array�ID�
�

��combine program�� �	� �	�

��status�� �� �

�� write results from distributed array to output stream ��

put�output���in�� NN� LL� Array�ID� ��out�� Outstream�

��in�� Outstream�mid� �

�� recurse ��

phase����in�� Procs� NN� LL� Array�ID� Eps�array�ID�

Instreams�tail�

��out�� Outstream�mid� ��in�� Outstream�tail�


 �

default ��

Outstream � Outstream�tail




�����������������������������������������������������������������������

�����������������������������������������������������������������������

get�input� get input from stream into distributed array

�����������������������������������������������������������������������

�����������������������������������������������������������������������

get�input�

N� ��in int��

LL� ��in int��

Array�ID� ��inout distributed array��

Instream� ��in stream��

Instream�tail ��out stream��

�

��

Precondition�

Instream contains N real numbers�

LL � log����N��

Postcondition�

Array�ID �size ��N� contains the complex equivalents of the

N real numbers from Instream� in bit�reversed order

�i�e�� for jj � � �� N��� the element of Array�ID

with index bit�reverse�LL� jj� is the jj�th number

from Instream��

��

��

get�input�sub����in�� LL� �� N� Array�ID� Instream�

��out�� Instream�tail�




�����������������������������������������������������������������������

��



get�input�sub��

LL� ��in int��

Index� ��in int��

Limit� ��in int��

Array�ID� ��inout distributed array��

Instream� ��in stream��

Instream�tail ��out stream��

�

	


Index � Limit� Instream 
� 
Element � Instream�mid� ��

	�

bit�reverse���in�� LL� Index� ��out�� P�Index� �

am�user�write�element���in�� Array�ID� 	��P�Index��

Element� ��out�� �� �

am�user�write�element���in�� Array�ID� 	��P�Index����

���� ��out�� �� �

get�input�sub����in�� LL� Index��� Limit� Array�ID�

Instream�mid� ��out�� Instream�tail�

� �

default ��

Instream�tail � Instream

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

put�output� put output from distributed array into stream

�����������������������������������������������������������������������

�����������������������������������������������������������������������

put�output�

NN� ��in int��

LL� ��in int��

Array�ID� ��in distributed array��

Outstream� ��out stream��

Outstream�tail ��in stream��

�

��

Precondition�

NN � problem size�

LL � log��NN��

Array�ID contains NN complex numbers� in bit�reversed order�

Postcondition�

Outstream contains the NN numbers from Array�ID �with each

complex number represented by two doubles�� in

natural �not bit�reversed� order� followed by

Outstream�tail�

��

��



���

put�output�sub����in�� LL� 	� NN� Array�ID� ��out�� Outstream�

��in�� Outstream�tail


�

�����������������������������������������������������������������������

put�output�sub��

LL� ��in int
 log��problem size
��

Index� ��in int��

Limit� ��in int��

Array�ID� ��in distributed array��

Outstream� ��out stream��

Outstream�tail ��in stream��




��

Index � Limit ��

��

bit�reverse���in�� LL� Index� ��out�� P�Index
 �

am�user
read�element���in�� Array�ID� ���P�Index��

��out�� Re� �
 �

am�user
read�element���in�� Array�ID� ���P�Index����

��out�� Im� �
 �

Outstream � �Re� Im � Outstream�mid� �

put�output�sub����in�� LL� Index��� Limit� Array�ID�

��out�� Outstream�mid� ��in�� Outstream�tail


� �

default ��

Outstream � Outstream�tail

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

read�infile
 read input from file into stream

�����������������������������������������������������������������������

�����������������������������������������������������������������������

read�infile�

N� ��in int��

infile�FD� ��in file descriptor��

Stream�a� Stream�b� ��out streams��

Stream�a�tail� Stream�b�tail ��in streams��




��

Precondition


N is the size of the input polynomials�

infile�FD is an �open
 input file containing an even number of

sets of N real numbers �each set representing a

polynomial
�

��



Postcondition�

Stream�a contains the first N numbers from the input file�

followed by Stream�a�tail�

Stream�b contains the next N numbers from the input file�

followed by Stream�b�tail�

��

FILE infile�FD �

	�

read�infile�sub
���in�� N� infile�FD� ��out�� Stream�a�

��in�� Stream�a�mid� 
� ��out�� Status�a� �

read�infile�sub
���in�� N� infile�FD� ��out�� Stream�b�

��in�� Stream�b�mid� Status�a� ��out�� Status�b� �

	


Status�b � � ��

read�infile���in�� N� infile�FD�

��out�� Stream�a�mid� Stream�b�mid�

��in�� Stream�a�tail� Stream�b�tail� �

default ��

	��

Stream�a�mid � Stream�a�tail �

Stream�b�mid � Stream�b�tail

�

�

�

�����������������������������������������������������������������������

read�infile�sub
�

Count� ��in int��

infile�FD� ��in file descriptor��

Stream� ��out stream��

Stream�tail� ��in stream��

Status�in� ��in int��

Status�out ��out int��

�

FILE infile�FD �

	


Count � �� Status�in � � ��

	�

stdio�fscanf���in�� infile�FD� ��f�� 	Num��

��out�� Status�mid� �

	


Status�mid � � ��

	�

Stream � �Num � Stream�mid� �

read�infile�sub
���in�� Count�
�

infile�FD� ��out�� Stream�mid�

��in�� Stream�tail� Status�mid�

��out�� Status�out�

� �

default ��

��



���

Stream � Stream�tail �

Status�out � Status�mid

�

�

� �

default ��

���

Stream � Stream�tail �

Status�out � Status�in

�

�

	
���������������������������������������������������������������������

�����������������������������������������������������������������������

write�outfile� write output from stream into file

�����������������������������������������������������������������������

���������������������������������������������������������������������
	

write�outfile�

NN� 	
in int
	

outfile�FD� 	
in file descriptor
	

Stream 	
in stream
	




	


Precondition�

NN is the size of the output polynomials�

outfile�FD is an �open
 output file�

Postcondition�

Stream contains NN pairs of doubles� each representing a

complex number�

The NN pairs of doubles have been written to the output file�


	

FILE outfile�FD �

��

Stream �� �� ��

��

write�outfile�sub��	
in
	 NN� outfile�FD� Stream�

	
out
	 Stream�tail
 �

write�outfile�	
in
	 NN� outfile�FD� Stream�tail


�

�

	
�������������������������������������������������������������������
	

write�outfile�sub��

Count� 	
in int
	

outfile�FD� 	
in file descriptor
	

Stream� 	
in stream
	

��



Stream�tail ��out stream��

�

FILE outfile�FD �

��

Count 	 
� Stream �� 
Re� Im � Stream�mid� �	

��

stdio�fprintf���in�� outfile�FD� ���g� �g��n�� �Re� Im��

��out�� �� �

write�outfile�sub����in�� Count��� outfile�FD� Stream�mid�

��out�� Stream�tail�

� �

default �	

��

stdio�fprintf���in�� outfile�FD� ��n�� ��� ��out�� �� �

Stream�tail � Stream

�

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

dbl�array�to�stream� copy array of doubles to stream

�����������������������������������������������������������������������

�����������������������������������������������������������������������

dbl�array�to�stream�

Index� ��in int��

array�section� ��in array of double��

Outstreams� ��out tuple of streams��

Outstreams�tail ��in tuple of streams��

�

��

Precondition�

TRUE�

Postcondition�

Outstreams
Index� consists of the elements of array�section�

followed by Outstreams�tail
Index��

��

double array�section
� �

���

dbl�array�to�stream�sub����in�� 
� length�array�section��

array�section� ��out�� Outstreams
Index��

��in�� Outstreams�tail
Index��

�

�����������������������������������������������������������������������

dbl�array�to�stream�sub��

I� ��in int��

Size� ��in int��

��



array� ��in array of double��

Outstream� ��out stream��

Outstream�tail ��in stream��

�

double array�� 	


�

I � Size 
�


��

Outstream � �array�I� � Outstream�mid� �

dbl�array�to�stream�sub����in�� I��� Size� array�

��out�� Outstream�mid� ��in�� Outstream�tail�

� �

default 
�

Outstream � Outstream�tail

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

stream�to�dbl�array� copy stream of doubles to array

�����������������������������������������������������������������������

�����������������������������������������������������������������������

stream�to�dbl�array�

Index� ��in int��

array�section� ��out array of double��

Instreams� ��in tuple of streams��

Instreams�tail ��out tuple of streams��

�

��

Precondition�

Instreams�Index� consists of N doubles followed by a tail T�

where N is the size of array�section�

Postcondition�

Each element of array�section has been assigned a value from

Instreams�Index��

Instreams�tail�Index� is the tail T�

��

double array�section�� 	


��

stream�to�dbl�array�sub����in�� �� length�array�section��

��out�� array�section� ��in�� Instreams�Index��

��out�� Instreams�tail�Index��

�

��


































































��

stream�to�dbl�array�sub��

I� ��in int��

Size� ��in int��

��



array� ��out array of double��

Instream� ��in stream��

Instream�tail ��out stream��

�

double array�� 	


�

I � Size� Instream �
 �Elem � Instream�mid� ��


��

array�I� �
 Elem �

stream�to�dbl�array�sub����in�� I��� Size� ��out�� array�

��in�� Instream�mid� ��out�� Instream�tail�

� �

default ��

Instream�tail 
 Instream

�

��















































































































































tuple�fill� set all elements of tuple to given value















































































































































��

tuple�fill�

T� ��in tuple��

Item ��in��

�

��

Precondition�

TRUE�

Postcondition�

Each element of T is Item�

��


��

tuple�fill�sub����in�� length�T���� T� Item�

�

�����������������������������������������������������������������������

tuple�fill�sub��

Index� ��in int��

T� ��in tuple��

Item ��in��

�


�

Index �
 � ��


��

T�Index� 
 Item �

tuple�fill�sub����in�� Index��� T� Item�

�

��



�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

find�log�� find �integer	 base
� log of an integer

�����������������������������������������������������������������������

�����������������������������������������������������������������������

find�log��

In� ��in int��

Out ��out int��

	

��

Precondition�

TRUE�

Postcondition�

Out � floor�log��In		�

��


�

In �� � 
�


��

Out � � � Mid �

find�log��In��� Mid	

� �

default 
�

Out � �

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

pad�input� set elements of �complex� array to �� with indexing

in bit
reversed order

�����������������������������������������������������������������������

�����������������������������������������������������������������������

pad�input�

Index� ��in int��

Limit� ��in int��

LL� ��in int��

Array�ID ��inout distributed array��

	

��

Precondition�

LL � log��NN	� where NN is the size of Array�ID�

Postcondition�

For jj � Index �� Limit
�� the element of Array�ID with

index bit
reverse�LL� jj	 is ��

��



��

��

Index � Limit ��

��

bit	reverse
��in�� LL� Index� ��out�� P	Index� �

am	user
write	element
��in�� Array	ID� ���P	Index��

���� ��out�� 	� �

am	user
write	element
��in�� Array	ID� ���P	Index����

���� ��out�� 	� �

pad	input
��in�� Index��� Limit� LL� Array	ID�

�

�

�����������������������������������������������������������������������

�����������������������������������������������������������������������

bit	reverse
 reverse bits

�����������������������������������������������������������������������

�����������������������������������������������������������������������

bit	reverse


Bits� ��in int��

Index� ��in int��

P	Index ��out int��

�

��

Precondition


TRUE�

Postcondition


P	Index is the bitwise reversal of Index� using Bits bits�

��

int temp �

��

rho	proc
��in�� Bits� Index� ��out�� temp� �

P	Index � temp

�

����� Speci�cations for data�parallel programs

The data�parallel program for the combine step is procedure combine in the PCN program�

its speci�cation appears as part of the program in x������

The speci�cations for data�parallel programs fft�reverse and fft�natural are as follows�

�����������������������������������������������������������������������

FFT
 input in bit�reversed order� output in natural order

		



�����������������������������������������������������������������������

void

fft�reverse�Processors� P� Index� N� Flag� epsilon� bb�

int Processors�	 
 �� �in� ��

int �P 
 �� �in� length�Processors� ��

int �Index 
 �� �in� ��

int �N 
 �� �in� problem size ��

int �Flag 
 �� �in� inverse�forward ��

complex epsilon�	 
 �� �in� N�th roots of unity ��

complex bb�	 
 �� �in�out� input�output of transform ��

��

Precondition�

Processors are the processors on which the program is being

executed


PP � ��P� �� length�Processors�
 ��P� is a power of �


��Index� indicates which processor this is �Processors��Index	�

NN � ��N� is the size of the global array BB� the array to be

transformed
 NN is a power of � and NN �� PP


��Flag� �� INVERSE or FORWARD


epsilon is the NN NN�th roots of unity


bb is the local section of BB�in�� the array to be transformed


global indexing is in bit�reversed order


Postcondition�

bb is the local section of BB�out�� the transform of BB�in�


global indexing is in natural order


if ��Flag� �� INVERSE� BB�out� is the inverse FFT of BB�in�


else BB�out� is the forward FFT of BB�in� �including

division by ��N��


��

�����������������������������������������������������������������������

FFT� input in natural order� output in bit�reversed order

�����������������������������������������������������������������������

void

fft�natural�Processors� P� Index� N� Flag� epsilon� bb�

int Processors�	 
 �� �in� ��

int �P 
 �� �in� length�Processors� ��

int �Index 
 �� �in� ��

int �N 
 �� �in� problem size ��

int �Flag 
 �� �in� inverse�forward ��

complex epsilon�	 
 �� �in� N�th roots of unity ��

complex bb�	 
 �� �in�out� input�output of transform ��

��

Precondition�

Processors are the processors on which the program is being

executed


��



PP � ��P� �� length�Processors�� ��P� is a power of ��

��Index� indicates which processor this is �Processors	�Index
��

NN � ��N� is the size of the global array BB� the array to be

transformed� NN is a power of � and NN �� PP�

��Flag� �� INVERSE or FORWARD�

epsilon is the NN NN
th roots of unity�

bb is the local section of BB�in�� the array to be transformed�

global indexing is in natural order�

Postcondition�

bb is the local section of BB�out�� the transform of BB�in��

global indexing is in bit
reversed order�

if ��Flag� �� INVERSE� BB�out� is the inverse FFT of BB�in��

else BB�out� is the forward FFT of BB�in� �including

division by ��N���

��

These programs in turn require sequential programs compute�roots and rho�proc with

the following speci�cations�

�����������������������������������������������������������������������

compute roots of unity

�����������������������������������������������������������������������

void

compute�roots�N� epsilon�

int �N � �� �in� problem size nn ��

complex epsilon	
 � �� �out� nn
th roots of unity ��

��

Precondition�

nn � �N is a power of ��

length�epsilon� � nn�

Postcondition�

If omega denotes the primitive nn
th root of unity

�e����PI�i�nn���

epsilon	j
 � j
th power of omega�

��

�����������������������������������������������������������������������

do bit
reverse map

�����������������������������������������������������������������������

void

rho�proc�np� tp� returnp�

int �np � �� �in� number of bits ��

int �tp � �� �in� ��

int �returnp � �� �out� ��

��

��



Precondition�

TRUE�

Postcondition�

��returnp� contains the rightmost ��np� bits of ��tp� in

reverse order and right�justified�

��

��



Chapter �

Conclusions

��� Summary of work

In this report� we present a programming model for one approach to integrating task par�
allelism and data parallelism� The model is based on allowing task�parallel programs to
call data�parallel programs with distributed data structures as parameters� Although it is a
simple and restricted model� it is nonetheless applicable to a number of interesting problem
classes �x����� The prototype implementation �x�� x	� x
� demonstrates that it is possible�
in the context of SPMD implementations of data parallelism� to develop a consistent de�
tailed description of our model and to implement it readily using an existing task�parallel
notation� PCN �
� �
� Further� the adapting of an example library of existing data�parallel
programs �xD� demonstrates that the model allows reuse of existing data�parallel code�

��� Proposals for additional work

����� Extending the model� direct communication between data�parallel
programs

The model as proposed allows direct communication within a single data�parallel program
�as� for instance� between the concurrently�executing copies of an SPMD implementation of
the program�� However� it requires that all communication between di�erent data�parallel
programs go through the common task�parallel calling program� two concurrently�executing
data�parallel programs cannot interact� This makes the model simpler and easier to reason
about� but it creates a bottleneck for problems in which there is a signi�cant amount of
data to be exchanged among di�erent data�parallel programs�

To avoid such bottlenecks� our programming model should be extended to allow concur�

��



rently�executing data�parallel programs called from a task�parallel program to communicate
directly� One promising approach is to allow the data�parallel programs to communicate
using channels de�ned by the task�parallel calling program and passed to the data�parallel
programs as parameters� This approach could be readily implemented using Fortran M
��� �in which processes communicate using channels	 as the task�parallel notation� Such
a Fortran M implementation could be based on the same design used for the prototype
implementation� Since Fortran M is an extension of Fortran 

� a Fortran M implementation
would also allow straightforward integration of Fortran�based data�parallel notations such
as High Performance Fortran ��
� and Fortran D �����

����� Reasoning about the model

In this report� we take an informal approach to specifying the programming model �x�	 and
to discussing the correctness of programs based on the model �x���	� This informal approach
is appropriate for an initial description and implementation� but it is not su�ciently rigorous
to provide a foundation either for con�dent reasoning about large and complex programs
or for the extension described above �x
����	�

A more formal approach to the existing model has two parts� First� the model should be
speci�ed more precisely� and not just in the context of SPMD implementations of data
parallelism� Second� the underlying assumptions should be investigated and validated� One
such assumption �mentioned in x�����	 is that it is valid to reason about data�parallel
programs as if they were sequential programs� this assumption should be justi�ed� Another
more important assumption is that a data�parallel program that is correct in isolation
remains correct when incorporated into a task�parallel program� this assumption should
also be justi�ed�

����� Reasoning about the extended model

The value of a more formal approach is even more evident when considering the proposed
extension in x
���� �direct communication between data�parallel programs	� Since this ex�
tension increases the complexity of the model� its de�nition should be as precise as possible
to ensure that the model remains consistent and reasonable� More importantly� allowing
interaction between component data�parallel programs complicates the task of reasoning
about correctness� a more formal approach will allow us to reason more con�dently about
programs containing such interactions� We hope that if we can justify our assumptions
about the existing model �that correct data�parallel programs remain correct when called
in isolation from a task�parallel program	� as proposed in x
����� this justi�cation can be
extended and applied to the more general situation� i�e�� that we can determine what re�
strictions on the interaction of the data�parallel programs are required to preserve their
correctness�

��



Appendix A

Overview of PCN syntax and

terminology

This appendix gives a very brief description of PCN syntax as an aid for those readers

completely unfamiliar with PCN� Complete information about PCN may be found in ���
and ����

A�� Program construction

A PCN program is a composition of smaller programs and�or primitive operations� Three

types of composition are allowed�

� Sequential composition	 in which the elements being composed are executed in se

quence� For example	

��

pgmA�� �

pgmB��

�

means �execute pgmA��	 and then execute pgmB����

� Parallel composition	 in which the elements being composed are executed concurrently�

For example	

���

pgmA�� �

pgmB��

�

means �execute pgmA�� and pgmB�� concurrently��

�




� Choice composition� in which at most one of the guarded elements being composed is

executed� based on the values of their guards� For example�

��

X � � ��

pgmA�� �

X 	 � ��

pgmB��




means �execute pgmA�� if X is greater than zero� execute pgmB�� if X is less than zero�

and do nothing otherwise��

Composition can be nested� for example�

���

�� pgmA��� pgmB�� 
 �

�� pgmC��� pgmD�� 





indicates that two blocks are to be executed concurrently� in one block� pgmA�� and pgmB��

are to be executed in sequence� while in the other block� pgmC�� and pgmD�� are to be

executed in sequence�

Also� elements in a sequential or parallel composition can be guarded� for example�

��

X 
� � �� pgmA�� �

X 

 � �� pgmB��




is equivalent to

��

��

X � � �� pgmA��


 �

��

X 

 � �� pgmB��







i�e�� it indicates a sequence of two operations� First� if X is greater than zero� execute pgmA

��� otherwise� do nothing� Second� if X is equal to zero� execute pgmB��� otherwise� do

nothing�

��



A�� Variables

PCN supports two distinct categories of variables� single�assignment variables� referred to
as de�nition variables or de�nitional variables� and multiple�assignment variables� referred
to as mutable variables or mutables�

De�nition variables can be assigned a value ��de�ned	
 at most once� initially they have a
special �unde�ned	 value� and a statement that requires the value of an unde�ned variable
suspends until a value has been assigned� Mutable variables are like the variables of tra�
ditional imperative programming languages� they can be assigned a value any number of
times� and their initial value is arbitrary�

De�nition variables and mutable variables can be syntactically distinguished by the fact
that mutables are declared with types and lengths �for arrays
 as in a C program� while
de�nition variables are not declared� A de�nition variable is assigned a type and a length
at the same time it is assigned a value�

De�nition variables can be scalars� arrays� or tuples� syntactic support is provided for lists
as a special case of ��tuples� The empty list� denoted ��� is often used as a null value
for de�nition variables� used for example when the variable must be assigned a value for
synchronization purposes but the particular value is not of interest�

A�� Communication and synchronization

Communication and synchronization among concurrently�executing processes are accom�
plished via de�nition variables� For example� a single stream of messages between two
processes can be represented as a shared de�nitional list whose elements correspond to
messages�

A�� Interface to other languages

PCN programs can call programs written in imperative languages such as C and Fortran�
such programs are referred to as �foreign code	� A de�nition variable may be passed to a
foreign�code program for use as input� the foreign�code program does not begin execution
until the de�nition variable has been assigned a value� Mutable variables may be passed to
a foreign�code program for use as either input or output�


�



Appendix B

Implementation details�

compiling� linking� and executing

programs

This appendix presents additional PCN�speci�c information about compiling� linking� and
executing programs using the prototype implementation� The reader is assumed to be
familiar with PCN syntax and with how to compile� link� and execute PCN programs� An
overview of PCN syntax appears in xA� complete information about PCN may be found
in ��	 and �
	� It is also assumed that the reader is familiar with how to compile programs
in the data�parallel notation being used� �As described in x��
 and x���� the prototype
implementation may be used with a variety of data�parallel notations��

Note that the information in this section is based on PCN Version 
�� and may not be
consistent with later versions�

B�� Transforming and compiling programs

Support for distributed calls and for some parameter options for array creation and ver�
i�cation requires that the user�s source program be preprocessed by a source�to�source
transformation that constitutes part of the prototype implementation� The transforma�
tion is written in PTN �Program Transformation Notation� ��	� which is part of the PCN
environment� To preprocess and compile a program� use the command�

form�module name� am�user�ptn�go���

where module name is the module to be preprocessed and compiled� This command applies
the source�to�source transformation am�user�ptn�go�� to the programs in the module and


�



compiles the result� producing the usual PCN compiler output �les module name�pam and
module name�mod� Additional forms of the form command are described in ����

Because of the way local sections are handled in the implementation �described in detail in
x	�
�	�� warning messages of the following form may occur during compilation�

Error� Definition variable De�nition variable is passed to

a mutable inmodule�calling procedure callingmodule�called procedure

where calling procedure has the form wrapper�number or wrapper��number� These mes

sages can be ignored� the program still compiles and executes properly� The user may also
ignore warning messages of the following form�

Warning� Index is a singleton variable inmodule�procedure

where procedure has the form wrapper�number or wrapper��number �

B�� Linking in data�parallel code

Like other foreign
code programs� data
parallel programs must be linked into a custom PCN
executable �runtime system� before they can be called by a PCN program� The procedure
for linking in foreign code is straightforward and is described fully in ��� and brie�y here� It
requires object code for the foreign program and any associated libraries �e�g�� of message

passing routines�� Observe that since the requirement is for object code and not for source
code� a data
parallel source program may be transformed into object code with a standard
C or Fortran compiler� with an extended C or Fortran compiler� or with a combination of
preprocessor and compiler�

For example� suppose module simple�ex�pcn contains the following directive�

�foreign�

�C�simple�test�iprdv�o�	

����Interface�General�cfull�cmatvecnd�
ARCH
�a�	

����Interface�General�full�matvecnd�
ARCH
�a�	

����Interface�General�att�attnd�
ARCH
�a�

�

This directive indicates that references to foreign code in module simple�ex�pcn are to be
satis�ed using the object ���o� and library ���a� �les listed� The symbol 
ARCH
 is replaced
at link time with the appropriate architecture�e�g�� sun
�thus allowing the creation of
di�erent executables for di�erent architectures� �This would be appropriate� for example� for
programs that execute on a combination of host computer and multicomputer nodes�� The
PCN linker automatically replaces the su�x �o with the appropriate su�x for the target
architecture�for example� �o for Sun � and �s�����o for the Symult s��
� multicomputer�

��



After simple�ex�pcn has been transformed and compiled into simple�ex�pam� as described
in xB��� the following command creates a PCN executable that includes the foreign code
needed by simple�ex�

pcncc �o simple�ex�pcnexe simple�ex�pam

The new executable �runtime system� is �le simple�ex�pcnexe� and it is used instead of
the standard runtime system �pcn� to execute programs in simple�ex�pcn�

B�� Executing programs with the array manager

Before executing a program that uses distributed arrays� the array manager must be started
on all processors� This can be done in one of two ways�

� From within the PCN runtime environment� issue the following command�

load��am���all

� In the program that will make use of the array manager� make the following call�

am�util	load�all��am�
 Done variable�

where Done variable is a de�nition variable that will be set when the array manager
has been loaded on all processors�

The load command is described in more detail in 	
�� the load�all�� procedure is described
in more detail in xC�
�

The prototype implementation also includes a version of the array manager that produces
a trace message for each operation it performs� To load this version� replace �am� in the
above command or procedure call with �am�debug��







Appendix C

Implementation details� additional

library procedures

In addition to the library procedures described in x�� the prototype implementation includes
additional procedures that are used in the sample programs in x� and that users may
�nd helpful in writing their own programs� This appendix documents those procedures�
Documentation conventions are as described in x������

C�� Creating a de�nitional array from a tuple

The following procedure creates a de�nitional array from a tuple of integers�

am�util�tuple�to�int�array�

��in tuple of int�� Tuple�

��out array of int�� Array

�

Precondition�

� TRUE�

Postcondition�

� Length	Array
 � length	Tuple
�

� For � � i � length	Tuple
�
Array	i
 � Tuple	i
�

���



C�� Creating a patterned de�nitional array

The following procedure creates a de�nitional array of the following form�

��rst � �rst � stride� �rst � � � stride� � � ��

It is intended to be useful in creating arrays of processor �node� numbers�

am�util�node�array�

��in int�� First�

��in int�� Stride�

��in int�� Count�

��out array of int�� Processors

�

Precondition�

� Count � 	�

Postcondition�

� Length�Processors� 
 Count�

� Processors	
� 
First�

� For 	 � i � Count�
Processors	i�
� 
Processors	i� � Stride�

C�� Loading a module on all processors

The following procedure loads a module on all processors� that is� it is equivalent to exe

cuting the PCN runtime command load �as described in ���� on all processors� It can be
used� for example� to start the array manager on all processors� as described in xB���

am�util�load�all�

��in string�� Server�name�

��out�� Done

�

Precondition�

� There is a module Server�name�

Postcondition�

� Server�name is loaded on all processors� and Done 
 	��

�	�



C�� Printing debugging and trace information

Concurrently�executing uses of the usual PCN mechanisms for writing to standard output
�print and stdio�printf� may produce interleaved output� The following procedure writes
to standard output �atomically��i�e�	 output produced by a single call to this procedure
is not interleaved with other output�

am�util�atomic�print�

��in list�� To�print

�

Precondition


� TRUE� Elements in the input list To�print can be constants �e�g�	 character strings�
or variables of any type	 including tuples and arrays�

Postcondition


� A line containing the elements of the list To�print	 plus a trailing carriage return	
has been generated and written to standard output �atomically�� The line prints only
after all de�nition variables referenced in the list To�print become de�ned�

For example	 if X has the value �	 the following procedure call


am�util�atomic�print��	The value of X is 	
 X
 	�	��

prints the following line


The value of X is 
�

C�� Reduction operator max

The following procedure �nds the maximum of its inputs� It can be used	 for example	 to
combine status or reduction variables as described in x
�����

am�util�max�

��in�� In



��in�� In�


��out�� Out

�

Precondition


� In
	 In� are numeric�

Postcondition


� Out is the maximum of In
 and In��

���



Appendix D

Implementation details� adapting

existing data�parallel programs

As described in x���� the prototype implementation was designed to allow reuse of existing
data�parallel programs with at most minor modi�cations� This appendix presents a case
study of adapting an existing library of data�parallel programs for use with the prototype
implementation�

D�� An example library of data�parallel programs

The data�parallel programs used to test the prototype implementation were obtained by
adapting an existing library of data�parallel linear�algebra programs� These programs�
supplied by Eric Van de Velde of the Applied Mathematics department at Caltech� were
written by hand�transforming algorithms based on the data�parallel programming model
into SPMD message�passing C� using the methods described in �	�
�

The programs comprise a library of linear�algebra operations� including the following�

� Creation of distributed vectors ���dimensional arrays
 and matrices �	�dimensional
arrays
�

� Basic vector and matrix operations on distributed vectors and matrices�

� More complex operations on distributed vectors and matrices� including LU decom�
position� QR decomposition� and solution of an LU�decomposed system�

���



D�� Adapting the library

x��� describes the requirements that must be met by data�parallel programs to be called
from the prototype implementation� The following modi�cations were made to the example
library to comply with those requirements�

SPMD implementation

No changes were required�

Relocatability

Explicit use of processor numbers was con�ned to the library�s communication routines�
These routines were modi�ed� replacing references to explicit processor numbers with ref�
erences to an array of processor numbers passed as a parameter to the called data�parallel
program�

Compatibility of parameters

The data�parallel programs in the library accepted as parameters only data local to the
processor	 parameters could include references to distributed arrays� This model is com�
patible with the prototype implementation in most regards� However� the programs in the
library represented a distributed array as a C data structure containing array dimensions
and a pointer to the local section� and the local section of a multidimensional array was
an array of arrays� The programs were modi�ed to instead represent distributed arrays as

�at� local sections	 this required revision of all references to multidimensional arrays and
was tedious but straightforward�

Compatibility of communication mechanisms

Communication among concurrently�executing copies of the data�parallel programs in the
library was based on sending and receiving untyped messages point�to�point using the Cos�
mic Environment 
CE� ���� communication primitives� For some architectures 
for example�
the Symult s����� which was used for testing the interface between the prototype implemen�
tation and the adapted data�parallel programs�� PCN employs the same CE communication
primitives� As described in x������ message con�icts in such an environment can be pre�
vented by requiring PCN and the data�parallel programs to use distinct types of messages�
say a 
PCN� type and a 
data�parallel�program� type� As described in x���� as part of the
prototype implementation� the PCN runtime system was modi�ed to use typed messages

���



of a �PCN� type rather than untyped messages� The example library�s communication

routines were similarly modi�ed to use typed messages of a �data�parallel�program� type�

Language compatibility

Since the data�parallel programs were written in C� with communication performed by

calls to the CE communication routines� they could be called from PCN without change�

However� some C preprocessor �define directives were changed to avoid con	icts with

similar directives in the prototype implementation�


��



Appendix E

Implementation details� required

�les and installation procedure

This appendix describes the �les that comprise the prototype implementation and how to
install them in conjunction with PCN Version ����

E�� Obtaining the software

PCN may be obtained by anonymous FTP from Argonne National Laboratory� as described
in ��	� Note that the prototype implementation is based on PCN Version ��� and may not
be compatible with later versions of PCN�

The additional �les described in this appendix� plus a README �le detailing installation pro

cedures� can be obtained by sending electronic mail to the author at berna�vlsi�caltech�
edu�

E�� Required �les

This section describes the �les that comprise the implementation� Files with the su�x �pcn

contain PCN source code� �les with the su�x �ptn contain source code for PTN source

to
source transformations� �les with the su�x �c contain C source code� and �les with the
su�x �h contain C preprocessor directives 
to be incorporated into one or more of the other
�les via an �include directive��

The �les are divided into two categories� modi�ed versions of �les that are part of the
standard PCN implementation� and added �les�

���



E���� Modi�ed �les

The prototype implementation of distributed arrays requires support for the build and
free primitives� as described in x������ This support is contained in the following �les�

� Modi�ed compiler �les�
co�ass�pcn� co�en�pcn� co�instr�pcn� pcnmod�h� ptn�mass�pcn� ptn�pp�pcn�

� Modi�ed emulator 	runtime system
 �les�
debug�c� defs�h� emulate�c� gc�c� macros�h� utils�c�

As described in x���� additional minor modi�cations to the PCN implementation may be
required� depending on the architecture and on the communication mechanisms used by the
data�parallel programs to be called� The prototype implementation does not attempt to be
completely general in this regard
 it includes only those modi�cations required to support
calling the example library of data�parallel programs described in xD on the Symult s�����
These modi�cations are contained in the following �les�

� Modi�ed emulator �les�
sr�ce�c� sr�ce�h�

E���� Added �les

The following added �les contain the library procedures described in x� and xC and all
supporting code� including the source�to�source transformations described in x� and xF�

� am�pcn�main module for the non�debug version of the array manager� containing a
capabilities directive and a top�level server program�

� am�create�pcn�procedures to process create�array requests�

� am�debug�pcn�main module for the debug version of the array manager 	described
in xB��
� containing a capabilities directive and a top�level server program�

� am�find�pcn�procedures to process find�local and find�info requests�

� am�free�pcn�procedures to process free�array requests�

� am�main�pcn�main server program for the array manager� called from the top�level
server programs in am�pcn and am�debug�pcn�

� am�rw�pcn�procedures to process read�element and write�element requests�

� am�user�pcn�distributed�array and distributed�call library procedures� as described
in x��

� am�util�pcn�utility and support procedures� including those described in xC�

� am�vfy�pcn�procedures to process verify�array requests�

���



� am�h�preprocessor macros�

� am�border�parm�ptn�ptn�source�to�source transformation for foreign�borders op�
tion of procedures am�user�create�array and am�user�verify�array�

� am�distrib�call�ptn�ptn�source�to�source transformation for distributed calls�

� am�user�ptn�ptn�top�level source�to�source transformation� it calls the transforma�
tions in am�border�parm�ptn�ptn and am�distrib�call�ptn�ptn�

� am�util�ptn�ptn�utility and support procedures for the source�to�source transfor�
mations�

� am�sys�c�additional C utility and support procedures� these procedures perform
functions that are di�cult or cumbersome in PCN�

� am�sys�pcn�PCN interfaces to the procedures in am�sys�c�

E�� Installation procedure

The installation procedure for the prototype implementation is described in detail in a
README �le� which can be obtained as described in xE��� Brie	y� the steps in installing our
implementation are as follows


�� Install PCN Version ��� in a local PCN installation directory install directory�

�� Copy the array manager �les into install directory�

�� Edit the array manager Makefile for the desired con�guration
s� 
sun� and�or sun��
ce� to specify install directory�

�� Install the array manager in install directory by performing compiles and links with
the provided script and make �les�

�� Run the provided tests to verify proper installation�

���



Appendix F

Implementation details�

transformation for distributed

calls

x��� presents an overview and examples of the source�to�source transformation used to sup�

port distributed calls� This appendix gives a detailed speci�cation for the transformation�

Documentation conventions are as described in x������ and values for status variables are

as described in x������

F�� The transformed call

Every program call in the input module of the following form	

am�user�distributed�call�Processors�

Module� Program�

Parms�

Combine status module� Combine status program�

Status�

is converted into a block of the following form	

f��
am�util�do�all�Processors�

Current module� Wrapper program�

Wrapper actual parms�

Current module� Combine program�

Combine result� �

data�Combine result� ��

�
�



Status � Combine result��� �
additional statements for reduction variables

g

where Current module�Wrapper program �the �rst�level wrapper program� and Current

module�Combine program �the combine program� are inserted programs� as described in
xF�� and xF�� respectively� andWrapper actual parms and additional statements for reduction
variables are as described in xF�	 and xF�
 respectively�

F�� The parameters

Recall from x����� that a call to am�user�distributed�call uses parameter Parms to
specify the parameters to be passed to the data�parallel program� De�ne the following
notation for Parms 


� Write Parms as fP�� P�� � � � � Png�

� Let A�� A�� � � � � Am be the distributed arrays such that Pi � f�local�� Ajg for some
i and j� i�e�� the distributed arrays corresponding to local�section parameters�

� Let V�� V�� � � � � Vp be the variables such that Pi � f�reduce�� Typek � Lngk� Modk�
Pgmk� Vkg for some i and k� i�e�� the reduction variables�

To de�ne the actual parameters for the wrapper program �variable Wrapper actual parms

in xF��� and the parameters to pass to the data�parallel program �line �w	� in xF���� begin
by de�ning WA�� � � � � WAn and NP�� � � � � NPn as follows


� If Pi � f�local�� Ajg


� WAi � Aj

� NP i � LSj � the local section of Aj

� else if Pi � �index�


� WAi � �� the PCN placeholder dummy variable

� NP i � Index� an input integer that represents an index into Processors� passed
by am�util�do�all to the wrapper program

� else if Pi � �status�


� WAi � �� the PCN placeholder dummy variable

� NP i � local�status� a mutable integer that must be set by Module�Program

� else if Pi � f�reduce�� Typek� Lngk� Modk� Pgmk� Vkg


� WAi � �� the PCN placeholder dummy variable

� NP i � localk� a mutable of type Typek and length Lngk that must be set by
Module�Program

���



� else�

� WAi � Pi

� NP i � Pi

De�ne ProgramID as follows�

� If Module � ���

� ProgramID � Program

� else�

� ProgramID � Module�Program

De�ne Wrapper actual parms� as mentioned in xF��� as follows�

Wrapper actual parms � ffWA�� � � � � WAng� Lng�� � � � � Lngpg

where the Lngk�s are the lengths speci�ed for the reduction variables�

F�� The �rst�level wrapper program

Now de�ne Current module�Wrapper program as follows�

Wrapper program�

��in int�� Index�
��in tuple�� Parms�
��out tuple�� Combine result

�

f�
Parms �	 fWAparms� L�� � � � � Lpg 
�

Wrapper� program �Index� WAparms� Combine result� L�� � � � � Lp� �
default 
�

Combine result 	 STATUS�INVALID

g

where Wrapper� program 	the second
level wrapper program� is another inserted program
in module Current module� as described in xF���

F�� The second�level wrapper program

De�ne Current module�Wrapper� program as follows�

���



Wrapper� program�

��in int�� Index�
��in tuple�� Parms�
��out tuple�� Combine result�
��in int�� L�� � � � � Lp
�

int local�status � �w��
Type

�
local��L�� �

� � �

Typep localp�Lp� �

f	

Parms 	
 fM�� � � � � Mng ��

f



am�user�find�local�Mj�� LS�� S�� �
� � �

am�user�find�local�Mjm� LSm� Sm� �
f	

S� 

 STATUS�OK� � � � � Sm 

 STATUS�OK�
data�LS��� � � � � data�LSm� ��

f�

ProgramID�NP�� � � � � NPn� � �w��
make�tuple�p� �� Combine result� �
Combine result��� 
 local�status �

�w��
Combine result��� 
 local� �
� � �

Combine result�p� 
 localp
g �
default ��

Combine result 
 STATUS�INVALID

g �
g �
default ��

Combine result 
 STATUS�INVALID

g

If there is no i such that NP i � local�status� line �w�� is omitted� and in line �w���
Combine result��� is de	ned to be STATUS�OK


F�� The transformed call� continued

De	ne the additional statements for reduction variables mentioned in xF
� as follows�

If p � �� there are none
 if p � �� there is one additional statement of the following form

���



for each k such that � � k � p�

data�Combine result� ��

Vk � Combine result�k�

F�� The combine program

For each p such that � � k � p� de�ne

PgmIDk � Modk	Pgmk

De�ne Status PgmID as follows�

� If Combine status module �� ���

� Status PgmID � Combine status module	Combine status program

� else�

� Status PgmID � am
util	max

De�ne Current module	Combine program as follows�

Combine program�

��in tuple�� C
in
�

��in tuple�� C
in��

��out tuple�� C
out

�

f�

tuple�C
in
�� tuple�C
in���

length�C
in
� �� p� �� length�C
in�� �� p� � ��

f��
make
tuple�p� �� C
out� �

data�C
out� ��

Status PgmID�C
in
���� C
in����� C
out���� �

data�C
out� ��

PgmID
�
�C
in
�
�� C
in��
�� C
out�
�� �

� � �

data�C
out� ��

PgmIDp�C
in
�p�� C
in��p�� C
out�p��

g �

default ��

C
out � STATUS
INVALID

g

���



Bibliography

��� G�A� Agha� Actors� A Model of Concurrent Computation in Distributed Systems� The

MIT Press� �����

�	� American National Standards Institute� Inc� The Programming Language Ada Refer�

ence Manual� Springer Verlag� ���
� ANSI�MIL�STD����
A����
�

�
� W�C� Athas and C�L� Seitz� The Cantor user report� version 	��� Technical Report

	
	� Computer Science Department� California Institute of Technology� January �����

��� K�M� Chandy and C� Kesselman� The CC�� language de�nition� Technical Report

CS�TR��	��	� California Institute of Technology� ���	�

�
� K�M� Chandy and S� Taylor� An Introduction to Parallel Programming� Jones and

Bartlett� �����

��� E�J� Cramer� P�D� Frank� G�R� Shubin� J�E� Dennis� and R�M� Lewis� On alterna�
tive problem formulations for multidisciplinary design optimization� Technical Report

TR�	�
�� Rice University� December ���	�

��� I�T� Foster� Program Transformation Notation� A tutorial� Technical Report ANL�

���
�� Argonne National Laboratory� Mathematics and Computer Science Division�
�����

��� I�T� Foster and K�M� Chandy� FORTRAN M� A language for modular parallel pro�

gramming� Technical Report MCS�P
	�����	� Mathematics and Computer Science
Division� Argonne National Laboratory� October ���	�

��� I�T� Foster and S� Tuecke� Parallel programming with PCN� Technical Report ANL�

���
	� Argonne National Laboratory� �����

���� I�T� Foster� S� Tuecke� and S� Taylor� A portable run�time system for PCN� Technical

Report ANL�MCS�TM��
�� Argonne National Laboratory� �����

���� G�C� Fox� What have we learnt from using real parallel machines to solve real prob�
lems� In Proceedings of the Third Conference on Hypercube Concurrent Computers

and Applications� pages �����

� ACM� �����

��	� G�C� Fox� S� Hiranandani� K� Kennedy� C� Koelbel� U� Kremer� C��W� Tseng� and M��

Y� Wu� Fortran D language speci�cation� Technical Report CRPC�TR������ Center
for Research on Parallel Computation� December �����

���



���� P�J� Hatcher and M�J� Quinn� Data�Parallel Programming on MIMD Computers� The
MIT Press� �����

���� P�J� Hatcher� M�J� Quinn� A�J� Lapadula� B�K� Seevers� R�J� Anderson� and R�R� Jones�
Data	parallel programming on MIMD computers� IEEE Transactions on Parallel and

Distributed Systems� �
��
�������� �����

���� High Performance Fortran Forum� High Performance Fortran language speci�cation�
version ���� Technical Report CRPC	TR������ Center for Research on Parallel Com	
putation� Rice University� ���� 
revised Jan� ������

���� W�D� Hillis and G�L� Steele Jr� Data parallel algorithms� Communications of the ACM�
��
���
���������� �����

���� C�A�R� Hoare� An axiomatic basis for computer programming� Communications of the

ACM� ��
���
�������� �����

���� M� Metcalf and J� Reid� Fortran �� Explained� Oxford Science Publications� �����

���� W�H� Press� B�P� Flannery� S�A� Teukolsky� and W�T� Vetterling� Numerical Recipes

in C� The Art of Scienti�c Computing� Cambridge University Press� �����

���� C�L� Seitz� J� Seizovic� and W�	K� Su� The C programmer�s abbreviated guide to
multicomputer programming� Technical Report CS	TR	��	��� Computer Science De	
partment� California Institute of Technology� January �����

���� Thinking Machines Corporation� CM Fortran Reference Manual� September �����
Version ���	����

���� J� Thornley� Parallel programming with Declarative Ada� Technical Report CS	TR	
��	��� Computer Science Department� California Institute of Technology� �����

���� E�F� Van de Velde� Concurrent scienti�c computing� Draft� California Institute of
Technology� ����� To be published by Springer	Verlag�

���


