
THE ROLES OF MAJORIZATION AND GENERALIZED
TRIANGULAR DECOMPOSITION IN COMMUNICATION

AND SIGNAL PROCESSING

Thesis by

Ching-Chih Weng

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended June 2nd, 2011)



ii

c© 2011

Ching-Chih Weng

All Rights Reserved



iii

Acknowledgments

I still remember the day I first met my advisor, Professor P. P. Vaidyanathan, during an admission

interview back in February of 2006. I was nervous, but hopeful at the same time, for the potential

to study under such an esteemed scholar. When he told me that he would gladly take me under

his wing, I was ecstatic—my parents thought I won a secret lottery of some sort because I was

overfilled with joy. It is therefore now, five years later, that I express my most sincere gratitude to

Prof. Vaidyanathan. He is a true gentleman, whose considerate guidance and careful nurturing led

me to complete one of the most important milestones in my life. Without his advice and inspiration,

my academic career would not have been the same. In every respect, he is the perfect teacher and

a role model and I know all of his students will continue to learn from as we journey through our

lives.

I would also like to thank members of my defense and candidacy examining committee: Pro-

fessor Yaser Abu-Mostafa, Professor Babak Hassibi, Dr. Andre Tkacenko, and Dr. Kevin Quirk.

Their knowledge and expertise have been instrumental to my study at Caltech. I studied infor-

mation theory from Yaser, and stochastic signal processing from Babak; I learned communication

theory with Kevin, and Andre’s excellent papers on filter bank theory built a solid basis for my

own academic research.

In regard to providing me with the financial resources to pursue this degree, I would like to

thank the Office of Naval Research (ONR) and Taiwan’s TMS scholarship from the National Sci-

ence Council. Because of their generous support, I was able to join Caltech’s excellent academic

environment. This is a unique place on Earth because of all the researchers and scholars that have

contributed their knowledge to better human lives, and continue to do so with uncompromising

dedication. It has been an honor to be a part of their extraordinary community.

Speaking of scholars, my personal appreciations go to my current and former labmates, Profes-

sor Byung-Jun Yoon, Professor Borching Su, Dr. Chun-Yang Chen, Piya Pal, and Chih-Hao Liu. I



iv

was very fortunate to work with these smart people, and enjoyed all the stimulating discussions

and joyful moments that we shared. In particular, Borching and Chun-Yang are like two big broth-

ers to me. Coming from a similar cultural background, their encouragement and friendship are

treasures that I will continue to cherish.

My special thanks go to Christina Lin. She has brought me infinite happiness since our eyes

met the very first time. I am so grateful to have her in my life. Also, Christina’s parents, Alex and

Irene Lin, have been more than supportive, treating me like their own son.

Being raised in a traditional Taiwanese family, I sometimes find it difficult to express love and

affection verbally to my dear parents, Chang-Yi Weng and Li-Chuan Huang. However, it is only

with their unconditional love that I grew to become the man that I am today. They have worked

hard to provide me with my education and all the resources that I may have taken for granted. A

simple “thanks” is not enough to show them my deepest appreciation, but I hope to make them

proud. In addition, I would like to thank my brother, Pei-Chao, and sister, I-Han, for their support

and for taking care of my parents when I am abroad. I am also grateful to my grandfather Shu-Gen

Weng, and grandmother Tsui-Hsiu Weng Lu. I know that grandma has always watched me with a

loving eye from above.

Lastly, I would like to thank all those who have helped me, knowingly or unknowingly, in this

universe. There might be forces out there beyond my comprehension, but I am truly grateful for all

the encounters and opportunities. Life may be short by the universe standard, but I will continue

to take this positive energy and embark on new endeavors. Thank you!



v

Abstract

Signal processing is an art that deals with the representation, transformation, and manipulation of

the signals and the information they contain based on their specific features. The field of signal pro-

cessing has always benefited from the interaction between theory, applications, and technologies

for implementing the systems. The development of signal processing theory, in particular, relies

heavily on mathematical tools including analysis, probability theory, matrix theory, and many oth-

ers.

Recently, the theory of majorization, which is an extremely useful tool for deriving inequalities,

was introduced to the signal processing society in the context of MIMO communication system

design. This also led many researchers to develop a fundamental matrix decomposition called

generalized triangular decomposition (GTD), which was general enough to include many existing

matrix orthogonal decompositions as special cases.

The main contribution of this thesis is toward the use of majorization and GTD to the theory and

many applications of signal processing. In particular, the focus is on developing new signal pro-

cessing methods based on these mathematical tools for digital communication, data compression,

and filter bank design. We revisit some classical problems and show that the theories of majoriza-

tion and GTD provide a general framework for solving these problems. For many important new

problems not solved earlier, they also provide elegant solutions.

The first part of the thesis focuses on transceiver design for multiple-input multiple-output

(MIMO) communications. The first problem considered is the joint optimization of transceivers

with linear precoders, decision feedback equalizers (DFEs), and bit allocation schemes for fre-

quency flat MIMO channels. We show that the generalized triangular decomposition offers an

optimal family of solutions to this problem. This general framework incorporates many existing

designs, such as the optimal linear transceiver, the ZF-VBLAST system, and the geometric mean de-

composition (GMD) transceiver, as special cases. It also predicts many novel optimal solutions that
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have not been observed before. We also discuss the use of each of these theoretical solutions under

practical considerations. In addition to total power constraints, we also consider the transceiver

optimization under individual power constraints and other linear constraints on the transmitting

covariance matrix, which includes a more realistic individual power constraint on each antenna.

We show the use of semidefinite programming (SDP), and the theory of majorization again pro-

vides a general framework for optimizing the linear transceivers as well as the DFE transceivers.

The transceiver design for frequency selective MIMO channels is then considered. Block diagonal

GMD (BD-GMD), which is a special instance of GTD with block diagonal structure in one of the

semi-unitary matrices, is used to design transceivers that have many desirable properties in both

performance and computation.

The second part of the thesis focuses on signal processing algorithms for data compressions and

filter bank designs. We revisit the classical transform coding problem (for optimizing the theoretical

coding gain in the high bit rate regime) from the view point of GTD and majorization theory. A

general family of optimal transform coders is introduced based on GTD. This family includes the

Karhunen-Loéve transform (KLT), and the prediction-based lower triangular transform (PLT) as

special cases. The coding gain of the entire family, with optimal bit allocation, is maximized and

equal to those of the KLT and the PLT. Other special cases of the GTD-TC are the GMD (geometric

mean decomposition) and the BID (bidiagonal transform). The GMD in particular has the property

that the optimum bit allocation is a uniform allocation. We also propose using dither quantization

in the GMD transform coder. Under the uniform bit loading scheme, it is shown that the proposed

dithered GMD transform coders perform significantly better than the original GMD coder in the

low rate regime.

Another important signal processing problem, namely the filter bank optimization based on

the knowledge of input signal statistics, is then considered. GTD and the theory of majorization

are again used to give a new look to this classical problem. We propose GTD filter banks as sub-

band coders for optimizing the theoretical coding gain. The orthonormal GTD filter bank and the

biorthogonal GTD filter bank are discussed in detail. We show that in both cases there are two

fundamental properties in the optimal solutions, namely, total decorrelation and spectrum equaliza-

tion. The optimal solutions can be obtained by performing the frequency dependent GTD on the

Cholesky factor of the input power spectrum density matrices. We also show that in both theory

and numerical simulations, the optimal GTD subband coders have superior performance than op-
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timal traditional subband coders. In addition, the uniform bit loading scheme can be used in the

optimal biorthogonal GTD coders with no loss of optimality. This solves the granularity problem

in the conventional optimum bit loading formula. The use of the GTD filter banks in frequency se-

lective MIMO communication systems is also discussed. Finally, the connection between the GTD

filter bank and the traditional filter bank is clearly indicated.
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Chapter 1

Introduction

Signal processing is an art that deals with the representation, transformation, and manipulation of

signals and the information they contain based on their specific features. It is a technology that

spans an immense set of disciplines. The field of signal processing has always benefited from the

interaction between theory, applications, and technologies for implementing the systems. The de-

velopment of signal processing theory, in particular, relies heavily on mathematical tools including

analysis, probability theory, matrix theory, and many others. The theory of majorization, which is

an extremely useful tool for deriving inequalities, was recently introduced to signal processing so-

ciety. This also led researchers to develop a fundamental matrix decomposition called generalized

triangular decomposition (GTD), which was shown to be general enough to include many existing

orthogonal matrix decompositions as special cases.

The present thesis is a contribution towards the use of these newly developed mathematical

tools in several important signal processing problems. In particular, we focus on the signal pro-

cessing for communications and filter bank designs. With these powerful mathematical tools at

hand, we revisit some classical problems and show that the theories of majorization and GTD pro-

vide a general framework for solving these problems. For some important new problems, these

new tools also provide elegant solutions.

In this introductory chapter, we review the history and development of the problems of focus

in this thesis, namely, the MIMO transceiver optimization and signal-adapted filter bank optimiza-

tion. Every attempt is to make the present text as self-contained as possible, and the introduction

is meant to serve this purpose. Due to the large volume of the literature, the summary here is only

directly related to the current thesis and is by no means a complete treatment of all past work. The

readers interested in more comprehensive treatments are referred to [65, 75, 107], and especially
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Chapter 9 of [111].

1.1 MIMO Transceiver Optimization

1.1.1 MIMO Channel Models

The first part of this thesis focuses on the communication system design, in particular, transceiver

design for multiple-input multiple-output (MIMO) channels. We consider modeling the communi-

cation channels as linear time invariant (LTI) systems with additive noise. The focus is on MIMO

channel models because they represent a unified way to model a wide variety of many different

types of communication scenarios. Also, the matrix-vector notation can be conveniently used to

handled MIMO channel models. This fact is crucial for applying elegant matrix theory results to

many communication system design problems.

The models we considered are the MIMO frequency flat channel model, and the MIMO fre-

quency selective channel model, which are shown in Fig. 1.1(a) and Fig. 1.1(b), respectively. Here

x(n) is the NT × 1 transmitted signal, y(n) is the NR × 1 received signal, and e(n) is the NR × 1

additive noise introduced by the channel. The NR × NT channel matrix is modeled as H(ejω) for

the frequency selective case. When the channel is memoryless, the channel is modeled as the con-

stant matrix H. In these linear models, the received signal is the channel noise plus the transmitted

signal after being linearly distorted by the channel. For frequency flat channels, the input/output

relation of the system is

y(n) = Hx(n) + e(n),∀ integer n.

For frequency selective channels, the received signal y(n) is the noise e(n) plus the output of the

filter H(ejω) in response to x(n). The MIMO channel models are general enough to model many

different communication scenarios, as we will see from several examples in the following.

1. Channels of wireless multi-antenna systems: The recent growth of wireless communication sys-

tems has drawn much attention to the problem of increasing system capacity. Since the radio

spectrum available for wireless service is limited, spectral efficiency is therefore of primary

concern to develop modern systems with bandwidth and power constraints. The multi-

antenna system is a way to generate spatial diversity and greatly increase capacity in the
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(a)

(b)

Figure 1.1: (a) Frequency flat MIMO channel model. (b) Frequency selective MIMO channel model.

wireless systems. If spatial diversity is simultaneously exploited at both the transmitter and

the receiver, it is natural to use a MIMO representation. In this setting, NR is the number of

receiving antennas, and NT is the number of transmitting antennas.

2. Blocked scalar channels with finite memory: The scalar channels with memory can be converted

to MIMO channels without memory in a number of ways. Two of the most common tech-

niques for this are the zero-padding and cyclic-prefix precoding techniques [89]. The zero-

padding precoding produces the effective frequency flat channel matrix H having Toeplitz

structure, and the cyclic-prefix precoding produces circulant matrix H. The elements of H

in each case can be obtained from the time domain samples of the channel coefficients. The

cyclic-prefix precoding is in particular of great interests since it leads to OFDM and DMT

systems, which have great performance advantages in wireless communication systems and

digital subscriber line (DSL) systems.

In addition to the two examples mentioned above, there are many other common communica-

tion scenarios that can be modeled appropriately as MIMO channel models. These include multi-

carrier systems on frequency selective channels, systems exploiting polarization diversity, and code

division multiple access (CDMA) channels. Note that the structures of H and H(ejω) depend com-

pletely on the specific application at hand. In this thesis, we consider the generic transceiver opti-



4

mization problem with any given H or H(ejω)

1.1.2 Transceiver Optimization and History

Transceiver optimization has had a long history since the 1950s. Because of the technological break-

through of DSL, MIMO, and wireless communications, research in this area has become very in-

tense since the 1990s. However, much of the recent work has its roots in the mathematical meth-

ods and signal models in earlier papers. This is the reason why we shall review the history of

transceiver optimization in somewhat detailed fashion. The readers interested in more compre-

hensive treatments are referred to Chapter 9 in [111].

Fig. 1.2 shows the transceiver models we consider in this thesis. The channel H(ejω) (frequency

selective in general) is assumed to be with dimension NR × NT , and e(n) is the additive channel

noise. Here s(n) is the M × 1 symbols, x(n) is the transmitted signal, y(n) is the received signal,

and ŝ(n) is the input to the scalar decision devices. Fig. 1.2(a) shows the linear transceiver with

precoder F(ejω), and equalizer G(ejω). Fig. 1.2(b) shows the DFE transceiver with precoder F(ejω),

feedforward filter G(ejω), and feedback filter B(ejω). Note that the successive decision feedback

and decoding is performed at the receiver. The matrix B(ejω) is therefore restricted to be strictly

upper triangular for casual implementation. In both systems, the transmitted signal x(n) is the

symbol s(n) after linearly precoded by F(ejω), and the received signal y(n) is formed by channel

noise e(n) plus the transmitted signal distorted by the channel H(ejω). Also note that the model in

Fig. 1.2 is general enough to model the frequency flat case. If the channel is frequency flat, where

the channel is a constant matrix H, then all the other matrices in Fig. 1.2 are also constant matrices.

The transceiver optimization problem is to optimize {F(ejω),G(ejω)} for the linear transceiver,

or {F(ejω),G(ejω),B(ejω)} for the DFE transceiver, subject to appropriate constraints under some

assumptions of the channel state information available, such that some measure of performance is

optimized. This simple model leads to a multitude of interesting optimization problems depending

upon the applications. For example, one may wish to minimize the bit error rate under a total

average power constraint or individual antenna power constraints. One may also consider the

quality of service problem to minimize the transmitted power under some bit rate and bit error

rate constraints for subchannels.

Before the MIMO model was introduced to the communication society, researchers had been

attempting to optimize the single-input single-output (SISO) transceivers under different assump-
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Figure 1.2: (a) The general form of linear transceivers with channel H(ejω), precoder F(ejω), and
equalizer G(ejω). (b) The general form of DFE transceivers with channel H(ejω), precoder F(ejω),
feedforward filter G(ejω), and feedback filter B(ejω). Note that the successive decision feedback
and decoding is performed at the receiver. The matrix B(ejω) is restricted to be strictly upper
triangular for casual implementation.
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tions on the channel state information (CSI). CSI at the receiver (CSIR) is traditionally obtained via

the transmission of pilot symbols that allows the estimation of the channel. CSI at the transmitter

(CSIT), on the other hand, cannot be directly obtained as such. One scheme to obtain CSIT is to send

the transmitter the quantized version of channel coefficients once the receiver estimates the chan-

nel. Another popular scheme is the so-called limited feedback technique, in which the receiver feeds

back the index of the precoder in the predetermined codebook to inform the transmitter which pre-

coding scheme to use. Although the CSIT may not be perfect in practice, it is still crucial to discuss

theoretically how to jointly optimize the transmitter and receiver assuming perfect CSIT and CSIR

are both at hand. This serves as a performance upper bound and gives insight to practical designs.

At the same time, it is also important to consider the more robust designs, i.e., the situation where

perfect CSIT and/or CSIR is not available.

The history of linear transceiver optimization (also see Chapter 9 of [111] for more detailed

review) can be dated back to the paper by Costas [16] in 1952, in which for the identity continu-

ous channel the author addressed the problem of optimizing prefilter and postfilter to minimize the

mean square error of the reconstructed signal. It was shown that the optimal scheme is of the form

that adopts some Wiener-type receiver and some power loading on the transmitted signal across

frequency. Optimization of the transceivers for discrete symbol streams under channel distortions

was then considered by Berger and Tufs [6]. The Wiener-type receiver was again shown to be opti-

mal, and the transmission scheme is similar to the fashion of Costas but with some modifications.

In 1971, Chan and Donaldson [11] extended the optimization to cover sampling and quantization

as in digital communication systems. The design of filters for the case of bandlimited channels was

later addressed by Chevillat and Ungerboeck [13].

Another line of research is on replacing the linear receiver by the decision feedback equal-

izer (DFE) to combat the inter-symbol interference (ISI). In general, DFEs are superior to linear

equalizers—slight for good channels, moderate for channels with severe attenuation distortion, and

substantial for channels with spectral nulls. Price [84] assumed a zero-forcing condition and found

the joint optimum DFE receiver and linear transmitter. The joint MMSE transmitter and receiver

were later obtained by Salz [87]. Several other authors of important papers on DFE transceiver

optimizations include Falconer and Foschini [22], Messerschmitt [66], and Witsenhausen [118].

Optimization of transceivers for MIMO channels was considered as early as the 1970s [45].

The milestone paper by Salz in 1985 [88] considered the problem of optimizing continuous-time
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square MIMO filters for the case of transmitting a discrete time sequence through a continuous

time channel under the average power constraint. Salz showed that the optimal equalizer was

identified to be a Wiener-type filter and the transmitter was obtained from the Karush-Kuhn-Tucker

(KKT) condition for constrained optimization. By using a theorem based on the concept of Schur-

convexity provided by Witsenhausen, Salz showed that the optimal solution can be obtained by

diagonalizing the channel using singular value decomposition (SVD), and deriving the optimal

filters for the diagonal channel. This diagonalization was later to be observed ubiquitously in

various MIMO transceiver optimization problems. In 1988 Malvar and Staelin [63] addressed the

transceiver optimization for rectangular channel and transceiver matrices. Instead of total power

constraints, individual antenna power constraints are also considered in [45] and [63]. Besides

linear transceivers, the MIMO DFE transceiver optimization was addressed by Yang and Roy in

[138], in which the authors proposed the optimal system that minimizes the MSE simultaneously

minimizes the geometric MSE.

In 2003 Palomar et al. [73] officially introduced the theory of majorization and Schur-convexity

to the linear transceiver optimization, and thus unified many existing works in the literature. In

this milestone paper, the authors proposed a formulation that covers a wide range of objective func-

tions and constraints for MIMO transceiver optimization problems. The solutions can be divided

into different classes depending upon whether the objective function is Schur-convex or Schur-

concave. If the objective function is Schur-concave in the mean square errors of the subchannels,

the diagonalizing structure is always optimal. If the objective is Schur-convex, the optimal solution

diagonalizes the channel after a very specific rotation of the transmitted symbols. Many of the ex-

isting works were shown to be special cases within this framework. Since this paper, the theory of

majorization and convex optimization became more heavily used in this field.

In 2005, Jiang et al. [36] considered the DFE transceiver optimization and proposed the geo-

metric mean decomposition (GMD) to decompose the channel matrix as parallel subchannels with

equal gains. It was shown that the GMD system is optimal within the class of zero-forcing DFE lin-

ear precoded transceivers. Jiang et al. further considered the MMSE version and proposed uniform

channel decomposition (UCD) design [37]. The UCD system is particularly attractive since it could

provide substantial gain compared to the GMD system when there is channel null. At the same

time, it maximizes the diversity as well as the mutual information between the input and output of

the channel. Independent results on the DFE transceiver optimization at the same time were also
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published by Zhang et al. [142], and Xu et al. [137]. A unified framework for DFE transceivers

under total average power constraints, which can be seen as a parallel counterpart of Palomar et

al.’s 2003 linear transceiver paper, was also reported in [41], and independently in [90]. Based on

the concept of multiplicative majorization, the framework covers a wide range of objective func-

tions and the solutions are divided into different classes depending upon whether the objective

function is Schur-convex and Schur-concave in the logarithms of the MSEs in the subchannels. The

UCD scheme was shown to be optimal for the class of Schur-convex functions. For the class of

Schur-concave functions, the optimal solution becomes the degenerate linear transceiver.

It is sometimes desirable to optimize the transceiver system with specific quality of service

(QoS) for each of the subbands, which could be assigned to different users. Pandharipande and

Dasgupta [18] extended the work of [50] and used majorization theory to established some results

for digital multitone (DMT) systems. In 2004, Palomar et al. extended their 2003 milestone paper

and considered the QoS problem [77] for linear transceivers. Jiang et al. on the other hand consid-

ered the QoS problem for DFE transceivers and proposed the so-called tunable channel decomposition

(TCD) [39]. This later led them to the discovery of generalized triangular decomposition (GTD) [38].

Most of the results described above assume the channel, precoder, and equalizer to be constant

matrices. For frequency selective channels, some of the early papers considered frequency de-

pendent precoder and equalizers. The solution ended up being ideal unrealizable filters [88, 138].

These papers still have great value since they provide a theoretical upper bound and give insight

to design practical systems. More recently some researchers considered the transceivers with finite

memory and showed how to design these filters for practical applications. For example, Mertins

[67] constrained the precoder to be a FIR matrix but the receiver can in general to be IIR. The work

of Phoong et al. [81] restrained both the precoder and equalizer to be FIR filters. The paper by

Vijaya Krishna and Hari [113] considered the optimization of minimum redundancy precoders,

which was originally proposed by Lin and Phoong [80].

As mentioned previously, most of the results described above assume perfect channel state in-

formation at both transmitters and receivers (perfect CSIT and CSIR). More recently the robust

designs, which focus on assuming perfect CSIR but imperfect CSIT, also attracted attention. Lim-

ited feedback is the most popular way to obtain approximate CSIT. An excellent review on this

topic up to 2008 can be found in [55]. In particular, in the series papers by Love and Heath

[56, 57], Grassmannian codebook was found to optimize some performance upper bounds of linear
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transceivers for many different communication scenarios. This framework was later extended to

the DFE transceivers in [91], and Grassmannian codebook was again found to be useful.

Such is the very brief history of transceiver optimization. Researchers across many decades have

devoted themselves to this field. As mentioned above, the 2003 paper by Palomar et al. officially

brought the theory of majorization and Schur-convexity into this field and changed the way people

view these problems. By considering the DFE transceiver counter part, Jiang et al. discovered a

novel matrix decomposition—generalized triangular decomposition (GTD) that was shown to be

useful in the MIMO transceiver QoS problem. This thesis continues this line, and further shows that

the theory of majorization and GTD is useful not only in the scenarios described in these earlier

papers, but also in broader signal processing applications including other important transceiver

optimization problems, transform coding problems, and filter bank optimization.

1.2 Transform Coder and Signal Adapted Filter Bank Optimiza-

tion

A filter bank (FB) is used to decompose a signal into several bands, which are then processed in-

dependently and combined. Processing resources can be allocated according to specific features

in each of the subbands. The optimization of filter banks based on knowledge of input statistics

has been of great interest in signal processing for a long time. The transform coder optimization,

before the time of the filter bank, was first considered by Huang and Schultheiss [33] in the 1960s.

Since then, there have been many advances in the theory of filter banks, wavelets, and their ubiq-

uitous signal processing applications including data compressions, signal denoising, and digital

communications.

Fig. 1.3 shows the standard M -channel filter banks which can be found in many signal process-

ing books, e.g., [107]. The subband processors Pi can represent many kinds of linear or nonlinear

operations, such as a hard threshold device, a linear multiplier, and a quantizer. This structure is

said to be a uniform filter bank because all the decimators are identical. The uniform filter bank is the

focus of this thesis. Using the polyphase notation introduced in [107], we can redraw the uniform

filter bank structure in the form of Fig. 1.4. The system is said to be biorthogonal if the filters are
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such that the polyphase matrices R(ejω) and E(ejω) satisfy

R(ejω)E(ejω) = I

for all ω. This is also called the perfect reconstruction (PR) property. The reason is that in the

absence of any subband processing, the PR property implies x̂(n) = x(n) for all n. For the special

case where the polyphase matrix E(ejω) is paraunitary (i.e., unitary for all ω) and R(ejω) = E†(ejω),

the filter bank is called an orthonormal filter bank. In this case, the set of M filters {Hk(ejω)} is said

to be orthonormal, and the set of synthesis filters can be shown to be Fk(ejω) = H∗k(ejω).

A filter bank whose filters depend on knowledge of the input statistics is called a signal-adapted

filter bank. The subband coding problem, which is an instance of the signal-adapted filter bank

design problems, is to quantize the subband signals rather than to quantize the original signal

directly, based on the knowledge of input statistics. While other performance measures in the rate-

distortion sense are possible, one measure that receives much attention is the theoretical coding gain.

The coding gain maximization problem is equivalent to the minimization of the average mean-

square error of the reconstructed quantized signal by designing the filter bank and the bit allocation

scheme.

 M !"M

 M !"M

Analysis Bank

 M !"M

Subband

processors
Synthesis Bank

Figure 1.3: The M -channel maximally decimated filter bank with uniform decimation ratio M .

In the literature, the usual assumption is that the input signal x(n) is a cyclo wide sense sta-

tionary process with period M (abbreviated CWSS(M )). It should be noted that x(n) is CWSS(M )
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Figure 1.4: The polyphase representation of the M -channel maximally decimated filter bank.

if and only if the M -fold blocked version x(n) is wide sense stationary (WSS), meaning that the

mean and autocorrelation of x(n) do not depend on n. In this thesis, we will adopt this assump-

tion and also assume that x(n) and hence x(n) are zero mean. In addition, we will assume that

we only have knowledge of the second order statistics of x(n), namely the autocorrelation function

Rxx(k) = E[x(n)x†(n− k)]. The power spectral density (psd) matrix Sxx(ejω), which is simply the

Fourier transform of Rxx(k), will often appear in the discussion.

We now give a brief overview of the past work in this field. For the special case where the

matrices E(ejω) and R(ejω) are constant, the system in Fig. 1.4 is said to be a transform coder. In

1963, Huang and Schulthess [33] formulated the transform coding problem, and showed that the

Karhunen-Loéve transform (KLT) with some bit loading formula maximizes the coding gain. The

KLT essentially performs eigenvalue decomposition (EVD) of the input covariance matrix, and

produces uncorrelated subband signals. In 2000, Phoong and Lin [79] revisited this problem and

proposed the prediction-based lower triangular transform (PLT) that gives the same maximized

coding gain. The PLT coder performs Cholesky decomposition of the input covariance matrix. Us-

ing linear prediction, the PLT coder produces uncorrelated subband signals and only performs the

quantization on the innovations after subtracting linearly predicted signals. For the unconstrained

filter order case, the research started in the late 1980s. Theoretical results on the optimization of a

two channel orthonormal filter bank were developed by Unser in [103]. A closely related idea called
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the principal component filter banks (PCFB) was introduced and developed in [100]. Theoretical re-

sults for the optimality of an orthonormal filter bank with unconstrained filter order was developed

by Vaidyanathan in [106]. It was shown that there are two necessary and sufficient conditions for

the optimal orthonormal subband coder, namely, total decorrelation and spectrum majorization. For

the case of biorthogonal filter banks, it was conjectured by Vaidyanathan and Kirac that the op-

timal structure is the cascade of the optimal orthonormal filter bank, and a set of half-whitening

filters applied to the signal in each individual subband [109]. This conjecture was later proven to

be true by Moulin et al. in [70]. The authors in [70] also showed the two fundamental properties,

total decorrelation and spectrum majorization, are also two necessary conditions for optimality of

biorthogonal filter banks. The same group of researchers also extended their work and derived the

optimal subband coders when there is no perfect reconstruction constraint [68].

These theoretical results provide a nice performance bound on the filter banks with uncon-

strained filter order. However, finite length filter implementation methods are needed for practice.

The finite impulse response (FIR) solutions to the orthonormal and biorthogonal filter banks are

also discussed extensively in the literature [44, 58, 69, 70, 97, 98, 102].

As mentioned earlier, principal component filter bank (PCFB) is a closely related concept. PCFB

was shown to be simultaneously optimal for a variety of objective functions within the class of

orthonormal filter banks. By definition, a PCFB for an input psd Sxx(ejω) and for a class C of filter

banks, if it exists, is one whose subband variance vector

σ = [σ2
v0 σ

2
v1 · · · σ

2
vM−1

]T

additively majorizes any other subband variance vector arising from any other filter bank in C. In

addition to being optimal for coding gain and mean-squared error in the presence of quantization

noise, the PCFB has also been shown to be optimal for any concave function of σ [3]. This fact was

later again explained by Jahromi et al. in the language of majorization and Schur-convexity [34].

Although PCFB has optimal characteristics, they are only known to exist for some special cases of

filter banks. It is known that for M = 2, PCFB always exists for any class of orthonormal filter

banks. For general M , however, the existence of PCFB is no longer guaranteed. If C is the class

of all transform coders, the PCFB is the KLT coder. If C is the class of filters with unconstrained

order, the PCFB is the optimal orthonormal subband coder that performs the frequency dependent

KLT for x(n). Although as such these filters are in general unrealizable, they serve to compute the
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upper bound on the performance we can expect from paraunitary filter banks.

Such is the very brief review of the filter bank optimization problem. The research in this field,

since as early as Huang and Schultheiss’ transform coding paper, has been continued for almost

five decades. In this thesis, we introduce the generalized triangular decomposition (GTD), which

was originally developed in the MIMO communication society, to this field. We will show that

the concept of GTD and the theory of multiplicative majorization give this classical problem a

completely new look. Many novel coder structures are proposed, and several theoretical results

are established. The connection of the GTD filter bank to the PCFB will also be indicated.

1.3 Outline and Scope of the Thesis

There are two major signal processing problems considered in detail in this thesis. The first prob-

lem of focus is transceiver designs for MIMO communications (Chapter 3, 4). We consider many

different MIMO communication scenarios, including the optimization of DFE transceivers when

bit allocation is allowed, QoS problem for DFE transceivers, transceiver design under individual

antenna power constraints, and also the transceiver design for frequency selective channels. Based

on the concept of majorization and the use of generalized triangular decomposition, many novel

designs are proposed, and performance analyses are provided. The second problem of focus is the

data compression and signal-adapted filter bank optimization (Chapter 5, 6). We first revisit the

classical transform coding problem. Then, based on GTD, we propose and optimize a new sub-

band coding structure, which can be shown to have superior performance than the existing ones.

Many theoretical results as well as practical concerns will be presented. The connection between

the current thesis and existing work in literature will also be clearly indicated. In the following we

briefly discuss the scope of each chapter.

1.3.1 Review of Majorization, Matrix Theory, and Generalized Triangular De-

composition (Chapter 2)

In Chapter 2 we review the concepts of majorization, matrix theory, and generalized triangular

decomposition, on which many results of this thesis are based. We start by introducing the intu-

ition and mathematical formulation of additive majorization. The closely related concept of Schur-

convexity and Schur-concavity is then introduced. Besides additive majorization, multiplicative
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majorization is introduced as well.

Then, we review the connections between majorization and the matrix theory. Additive ma-

jorization is closely related to the properties of diagonal elements and eigenvalues of Hermitian

matrices. On the other hand, multiplicative majorization is the complete characterization of the

relation between singular values and eigenvalues of complex-valued square matrices. We then

introduce the generalized triangular decomposition (GTD) developed by Jiang et al.. This decom-

position is very fundamental and incorporates many existing well-known matrix orthogonal de-

compositions as special cases. Several examples of the GTD will be discussed in this chapter as

well. Finally, we will review some mathematical properties of the block diagonal geometric mean

decomposition (BD-GMD).

1.3.2 Transceiver Designs for MIMO Frequency Flat Channels (Chapter 3)

In Chapter 3, we consider several transceiver design problems for frequency flat MIMO channels

using GTD and majorization theory. Mainly two scenarios are considered in detail.

The first part of this chapter considers the joint optimization of MIMO transceivers with linear

precoders, decision feedback equalizers (DFEs), and bit allocation schemes. It is shown that the

generalized triangular decomposition (GTD) offers an optimal family of solutions. The optimal

linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation, as

well as the DFE transceiver using the geometric mean decomposition (GMD), are members of this

family. The QR-based system used in the VBLAST system is yet another member of the optimal

family and is particularly well suited when limited feedback is allowed from receiver to transmit-

ter. Thus, GTD provides a general theoretical framework for this optimization problem, and gives

insight on the practical designs.

While most of the literature of transceiver designs focus on the total power constraints for wire-

less communications, the second part of this chapter considers the joint transceiver optimization

problem for MIMO channels under more realistic individual antenna power constraints. The linear

transceiver as well as the transceiver with linear precoding and MMSE-DFE are considered. For

both types of transceivers, we show that the optimization problems for a wide range of objective

functions can be formulated as semi-definite programming (SDP) optimization problems. Based on

the result of majorization, after solving the SDPs, specific rotation is then performed to obtain the

optimal solution. For both types of transceivers, the framework developed here is general enough
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to also incorporate any finite number of linear constraints to the covariance matrix of the input.

1.3.3 Transceiver Designs for MIMO Frequency Selective Channels (Chapter

4)

While the previous chapter focuses on frequency flat MIMO channels, this chapter is devoted to

transceiver designs for MIMO frequency selective channels. We consider using the block-diagonal

GMD (BD-GMD), a novel matrix decomposition that was originally proposed by Lin et al. in 2008

[47] for MIMO broadcast channel, to design the DFE transceivers. Two new BD-GMD transceivers

are proposed: the ZF-BD-GMD system, where the receiver is a zero-forcing DFE (ZF-DFE), and

the MMSE-BD-GMD system, where the receiver is a minimum-mean-square-error DFE (MMSE-

DFE). We show that the BD-GMD systems have many optimal properties and at the same time

computationally efficient. These make the proposed BD-GMD favorable designs for frequency

selective MIMO channels.

1.3.4 The Role of GTD in Transform Coding (Chapter 5)

In this chapter we revisit the classical transform coding problem from the view point of GTD and

majorization theory. In the first part of this chapter, a general family of optimal transform coders

(TC) is introduced based on GTD. This family includes the Karhunen-Loéve transform (KLT), and

the generalized version of the prediction-based lower triangular transform (PLT) introduced by

Phoong and Lin in 2000 [79], as special cases. The coding gain of the entire family, with optimal

bit allocation, is equal to those of the KLT and the PLT. Other special cases of the GTD-TC are the

GMD (geometric mean decomposition) and the BID (bidiagonal transform). The GMD in particu-

lar has the property that the optimum bit allocation is a uniform allocation; this is because all its

transform domain coefficients have the same variance, implying thereby that the dynamic ranges

of the coefficients to be quantized are identical.

The theoretical results established in the first part of this chapter are based on the high bit rate

assumption. However, the performance of the GMD transform coder is degraded significantly in

the low rate case. In the second part of this chapter, we introduce dither quantization to tackle this

problem. The precoders and predictors in the GMD transform coders are redesigned accordingly.

Two modified transform coders are proposed: the GMD subtractive dithered (GMD-SD) trans-

form coder where the decoder has access to the dither information, and the GMD non-subtractive
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dithered (GMD-NSD) transform coder where the decoder has no knowledge about the dither. Un-

der the uniform bit loading scheme, it is shown that the proposed dithered GMD transform coders

perform significantly better than the original GMD coder in the low rate regime.

1.3.5 The Role of GTD in Filter Bank Optimization (Chapter 6)

In this chapter we consider the filter bank optimization based on the knowledge of input signal

statistics. GTD and the theory of majorization is again used to give a new look to this classical

problem. We propose the GTD filter bank as a subband coder for optimizing the theoretical coding

gain. The focus is on perfect reconstruction orthonormal GTD filter banks and biorthognal GTD

filter banks. In both cases, we show that there are two fundamental properties in the optimal

solutions, namely, total decorrelation and spectrum equalization. The optimal solutions can be obtained

by performing the frequency dependent GTD on the Cholesky factor of the input power spectrum

density matrices. We also show that in both theory and numerical simulations, the optimal GTD

subband coders have superior performance to optimal traditional subband coders. In addition,

the uniform bit loading scheme, with no loss of optimality, can be used in the optimal biorthogonal

GTD coders. This solves the granularity problem in the conventional optimum bit loading formula.

The proposed GTD filter banks can also be used in MIMO communication systems. We consider

the transceiver with linear precoding and zero-forcing decision feedback equalization for MMO

frequency selective channels. The quality of service (QoS) problem of minimizing the transmitted

power subject to the bit error rate and total bit rate constraints is considered. Optimal systems with

orthonormal precoder and unconstrained precoder are both derived and shown to be related to the

frequency dependent GTD of the channel frequency response.

1.4 Notations

The notations used throughout this thesis are defined as follows. Boldfaced lower case letters rep-

resent column vectors. Boldfaced upper case letters and calligraphic upper case letters are reserved

for matrices. Superscripts ∗, and T , as in a∗, AT denote the conjugate and the transpose, respec-

tively. Superscripts A† and AH both denote transpose-conjugate operations. A# represents the

pseudo-inverse of A. [v]i denotes the ith element of vector v, [A]i denotes the ith row of ma-

trix A, and [A]ij denotes the entry at the ith row and the jth column of matrix A. For vector x,
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the notation diag(x) denotes the diagonal matrix with diagonal terms equal to the elements in x.

In figures, “↑ N” and “↓ N” denote the signal upsampler and downsampler, respectively [107].

For any x ∈ Rn, x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the elements of x in descending order, and

x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the elements of x in ascending order. For two real vectors x and

y, x �+ y or y ≺+ x denotes that x additively majorizes y [65]. For two complex vectors x and y,

x �× y or y ≺× x denotes that x multiplicatively majorizes y [75].
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Chapter 2

Review of Majorization, Matrix
Theory, and Generalized Triangular
Decomposition

In this chapter we will give a brief overview of the necessary mathematical preliminaries, on which

many of the results in this thesis are based. We will first introduce majorization theory, Schur-

convexity, and the relation to matrix theory. Then, we will review the generalized triangular de-

composition (GTD). A special case of GTD, namely the block-diagonal geometric mean decompo-

sition (BD-GMD), will also be introduced.

2.1 Review of Majorization and Schur Convexity

The idea of majorization and Schur-convexity is very fundamental to many problems in linear alge-

bra and optimization. One of the earliest references on this topic is the book by Hardy, Littlewood,

and Pólya [29]. More recent references include Marshall and Olkin [65]. The relation between ma-

jorization theory and matrix theory is discussed extensively in [32]. Many of the results reviewed

in this chapter are used in the thesis. The readers interested in more comprehensive treatments are

also referred to [111].

2.1.1 Additive Majorization and Schur Convexity

The idea and motivation of introducing majorization might be best explained by the following

sentence in Marshall and Olkin [65]: There is a certain intuitive appeal to the vague notion that the

components of a vector x are “less spread out” or “more nearly equal” than are the components of a vector y.
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The notion of majorization makes this precise.

Definition 2.1: (Additive Majorization.) For any x,y ∈ Rn, the vector x is said to additively

majorize y (or y is additively majorized by x), and is denoted as x �+ y if and only if1

k∑
i=1

x[i] ≥
k∑
i=1

y[i], ∀k = 1, 2, · · · , n− 1

and

n∑
i=1

x[i] =
n∑
i=1

y[i]

�

From the above definition it can be seen that the notion of majorization is invariant to any

permutation of the elements in the vector, i.e.,

x �+ y if and only if Π1x �+ Π2y

for any permutation matrix Π1 and Π2. The ordering “�+” defined on Rn is a preordering but not

partial ordering (see p.13 of [65]). However it is also partial proper ordering if it is regarded as an

ordering of sets of numbers rather than as an ordering of vectors. It it important to remember that

two sequences may not have any majorization relationship.

One simple observation is that the vector of the arithmetic mean of the elements is always

additively majorized, which is shown in the following example.

Example 2.1: Let x ∈ Rn, and x denote the constant vector with the value equal to the arithmetic

mean of the elements in x, i.e., 1
n

∑n
i=1 xi. Then, x �+ x. ♦

The notion of majorization is closely related to Schur-convexity. Specifically, Schur-convexity

characterizes the differentiable functions that preserve the ordering �+ on Rn (see p.53 of [65]).

Definition 2.2: (Schur-Convexity.) A real-valued function φ defined on a set A ⊆ Rn is said to be

Schur-convex on A if

x ≺+ y on A ⇒ φ(x) ≤ φ(y).

1The notation x[i] is defined in Sec. 1.4.
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In addition, φ is said to be Schur-concave if and only if −φ is Schur-convex. �

Note that the sets of Schur-concave and Schur-convex functions do not form a partition of the

set of all functions. This fact will be illustrated later in Fig. 2.1.

There are many beautiful examples of Schur-convex/concave functions that arise in optimiza-

tion problems in signal processing and communications. Some of the examples follow from the

theorems presented in this section. The first theorem shows the relation between convex functions

and Schur-convex functions [29, 65].

Theorem 2.1.1 The inequality

n∑
i=1

g(xi) ≥
n∑
i=1

g(yi)

holds for all continuous convex functions g : R → R if and only if x �+ y. Therefore, the function

f(x) =
∑n
i=1 g(xi) is a Schur-convex function in x. ♦

Example 2.2: (Log-Product.) Let g(x) = log(x) for any positive x and thus g is convex. The

function

f(x) =
N∑
i=1

g(x) =
N∑
i=1

log(x) = log

(
N∏
i=1

xi

)

is Schur-convex. ♦

Example 2.3: (The average probability of error of MIMO communication systems.) The average sym-

bol error probability of a scalar Gaussian communication channel is given by (see p.383 - p.385 of

[111])

Pe(y) = cQ(A/
√
y),

where c and A are constants depending on the constellations (the size of PAM or QAM signaling)

used and the signal power, y is the error variance, and Q(·) is the Q-function. It was shown that

Q(A/
√
y) is convex in y for y < A2/3. Therefore, the average symbol error probability of a M-

channel MIMO communication system is given by

Pe(y) =
c

M

M∑
k=1

Q(
A
√
yk

).
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Using Thm. 2.1.1, it can be shown that Pe(y) is Schur-convex if yk < A2/3 for all k. ♦

There are a number of simple but useful facts relating to compositions that involve Schur-convex

and Schur-concave functions (p.61 of [65]). If g(x) is Schur-convex then f(x) = h(g(x)) is Schur-

convex, as long as h(·) is a non-decreasing real function of its argument. More relations are shown

as follows:

g(x) is Schur-convex and h(y) is non-decreasing⇒ f(x) is Schur-convex;

g(x) is Schur-convex and h(y) is non-increasing⇒ f(x) is Schur-concave;

g(x) is Schur-concave and h(y) is non-decreasing⇒ f(x) is Schur-concave;

g(x) is Schur-concave and h(y) is non-increasing⇒ f(x) is Schur-convex.

2.1.2 Multiplicative Majorization

The notion parallel to additive majorization is multiplicative majorization, which finds application in

various signal processing problems [133, 28, 38].

Definition 2.3: : (Multiplicative Majorization [65, 38].) For any x,y ∈ Rn
+, the vector x is said to

multiplicatively majorize y (denoted as x �× y) if and only if

k∏
i=1

x[i] ≥
k∏
i=1

y[i], ∀k = 1, 2, · · · , n− 1

and

n∏
i=1

x[i] =
n∏
i=1

y[i].

�

From these two definitions, we observe that if all elements of x and y are positive, then

x �× y⇐⇒ ln(x) �+ ln(y)

In the following we give few examples of multiplicative majorization.
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Figure 2.1: The illustration of the relations between sets of functions [41].

Example 2.3: Let x ∈ Rn
+ and x̂ denotes the constant vector with the value equals to the geo-

metric mean of the elements in x, i.e. n
√∏n

i=1 xi. Then

x �× x̂.

♦

A type of function closely related to the notion of multiplicative majorization is the composition

of Schur-convex functions and the exponential function. The composition f ◦ exp : RN → R is

defined as

f ◦ exp(x) ≡ f(ex1 , ex2 , · · · , exN ).

The following theorem is a direct consequence of the composition rule of Schur-convex func-

tions with increasing convex functions.

Theorem 2.1.2 (a) The composite function f◦exp is Schur-convex if function f : R ⊆ Rn is Schur-convex.

(b) If the composite function f ◦ exp is Schur-concave, then f : R ⊆ Rn is Schur-concave. ♦

Theorem 2.1.2 is very useful in optimizing the MIMO transceiver with the linear precoder and

decision feedback equalizer [41]. Fig. 2.1, which was first presented in [41], illustrates the relation

between functions that map arguments from Rn to R.
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2.2 Relation to Matrix Theory

There are several important facts connecting matrix theory and the notion of majorization. These

beautiful results in the matrix singular values and eigenvalues of a square matrix, or eigenvalues

and diagonal terms of a Hermitian matrix, serve as the foundation of the results established in this

thesis.

2.2.1 Hermitian Matrices

The first result we present here was proved by Schur in 1923. It relates the diagonal elements of a

Hermitian matrix to its eigenvalues [65].

Theorem 2.2.1 (Diagonal elements and eigenvalues of a Hermitian matrix [31, 65].) Let R be an n × n

Hermitian matrix with diagonal elements denoted by the vector d and eigenvalues denoted by λ. Then

λ �+ d. (2.1)

That is, for a Hermitian matrix, the vector of eigenvalues majorizes the vector of diagonal elements. ♦

For Theorem 2.2.1, the converse is also true. Therefore, the notion of additive majorization is

the strongest relation we can have between the diagonal elements and the eigenvalues of Hermitian

matrices.

Theorem 2.2.2 (Existence of a particular Hermitian matrix, see Thm 4.3.32 in [31].) Let λ,d ∈ Rn, and

satisfy (2.1), then there exists a Hermitian matrix M such that d is the vector of diagonal elements of M,

and λ is the vector of eigenvalues of M.

The above two theorems are very important in the optimization of transceivers for MIMO chan-

nels. One nice application is Witsenhausen’s observation used in [88]. The other use of these two

theorems is in the unified framework of linear transceiver optimization provided by Palomar et. al

in [73]. The following example is very crucial in establishing the results of [73].

Example 2.4: Let d,λ ∈ Rn denote the vector of diagonal elements and the vector of eigenvalues

of a Hermitian matrix M, respectively. Let d̄ = d̄× [1, 1, · · · , 1]T denote the vector with all elements

equal to the arithmetic mean of elements in d. Thus, λ �+ d �+ d̄, and by Theorem 2.2.2, there

exists a Hermitian matrix M′ such that the vector of the eigenvalues is λ and the vector of diagonal
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elements is d̄. Here is a way to obtain such matrix. Suppose the eigenvalue decomposition of M

is M = TΛT†. Let Q be any unitary matrix with identical magnitudes for all its elements, i.e.,

|[Q]ij | = 1/
√
n. Examples of such matrices are the normalized DFT matrix and the normalized

Hadamard matrix for certain values of n [49, 73]. Let M′ = Q†T†ΛTQ, then for any diagonal of

M′,

[M′]kk =
n∑
i=1

[Q†]kiλi[Q
†]ik =

1

n

n∑
i=1

λi = d̄.

Therefore, M′ is an example of a Hermitian matrix with diagonal elements d̄ and eigenvalues λ. ♦

2.2.2 Complex-Valued Square Matrices

The fundamental results on the relation between eigenvalues and singular values of a square

complex-valued matrix was first established by Weyl in 1949 [134]. The findings can be presented

as follows:

Theorem 2.2.3 (Eigenvalues and singular values [134, 32, 140].) Let M ∈ Cn×n, and let λi and σi denote

the eigenvalues and singular values of M, respectively. Then

[ σ2
1 , · · · , σ2

n ]T �× [ |λ1|2, · · · , |λn|2 ]T . (2.2)

That is, multiplicative majorization relationship exists in eigenvalues and singular values of a complex valued

matrix. ♦

It is surprising that the converse is also true. This important result was established by Horn in

1954 [30].

Theorem 2.2.4 (The converse of Theorem 2.2.3, see [30] or Thm 3.6.6 in [32].) Let σ ∈ Rn
+, and λ ∈ Cn.

Suppose σ and λ satisfy (2.2), then there exists a square matrix M ∈ Cn×n such that σ is the set of singular

values of M, and λ is the set of eigenvalues of M. ♦

These two theorems establish the complete characterization of the relation between eigenvalues

and singular values of a square matrix. The algorithms to obtain such matrices were given in

[30, 32].
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2.3 Generalized Triangular Decomposition

Generalized triangular decomposition (GTD) was developed by Jiang et. al. in 2007 [38]. It utilizes

the multiplicative majorization relation of eigenvalues and singular values in a square matrix, and

also generalizes this relation to rectangular matrices. To be more specific, the theorem statement of

GTD is as follows.

Theorem 2.3.1 (Generalized triangular decomposition.) Let H ∈ Cm×n be a rank-K matrix with singular

values σh,1, σh,2, · · · , σh,K in descending order. Let r = [r1, r2, · · · , rK ] be any vector which satisfies

a ≺× h, (2.3)

where a = [|r1|, |r2|, · · · , |rK |] and h = [σh,1, σh,2, · · · , σh,K ]. Then there exist matrices R, Q, and P such

that H can be decomposed as

H = QRP†, (2.4)

where R is aK×K upper triangular matrix with diagonal terms equal to rk, and Q ∈ Cm×K and P ∈ Cn×K

both have orthonormal columns. ♦

According to the GTD factorization algorithm described in [38], if H and r are real-valued, then

the matrices Q, R, and P can be taken to be real-valued.

The GTD can also be viewed as triangularization of the input matrix H by two semi-unitary

matrices (P and Q) on both sides. There are many standard decompositions that can be regarded

as special instances of the GTD. These are listed below. The first five can be found in standard

texts [25, 31], while the sixth was proposed by Jiang et. al. in the context of MIMO transceiver

optimization.

1. The singular value decomposition (SVD), H = UΣV† where Σ is a diagonal matrix containing

the singular values on the diagonal.

2. The Schur decomposition, H = Q∆Q† where ∆ is an upper triangular matrix with eigenvalues

of a square matrix H on the diagonal.

3. The QR decomposition, H = QR where R is an upper triangular matrix (here P = I).
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4. The complete orthogonal decomposition, H = Q2R2Q
†
1, where H† = Q1R1 is the QR factoriza-

tion of H† and R†1 = Q2R2 is the QR factorization of R†1.

5. The bidiagonal decomposition, H = QBP†, where B is a bidiagonal and upper triangular matrix

(page 251 of [25]).

6. The geometric mean decomposition (GMD) [36], H = QRP† where R is an upper triangular ma-

trix with the diagonal elements equal to the geometric means of the positive singular values.

The computation of performing GTD has the same asymptotic complexity as the singular value

decomposition [38]. Jiang et. al. provided a numerically stable algorithm to compute any GTD

with prescribed diagonal elements as long as the multiplicative majorization relation is satisfied.

The algorithm starts by performing the singular value decomposition to obtain the diagonal matrix

with singular values on the diagonals. Then, successive Givens rotations are performed to produce

the middle upper triangular matrix with prescribed diagonal elements. Note that the singular

values are invariant under Givens rotations. The details of this algorithm and a computer code

implementation can be found in [38].

2.3.1 Block-Diagonal Geometric Mean Decomposition

The block diagonal geometric mean decomposition (BD-GMD) is a special case of the GMD. In

BD-GMD, one of the unitary matrices in (2.4) is restricted to be block diagonal. The price paid is

that the diagonal elements of the middle triangular matrix can no longer be made equal. Instead,

they are block-wise equal. To be more specific, consider the matrix decomposition of the following

form. Suppose H ∈ Cm×n is with full column rank n and we are seeking the decomposition

H† = PLQ†,

where Q is a m× n matrix with orthonormal columns, L is a n× n lower triangular matrix, and P

is a n× n block diagonal matrix of the form diag(P1,P2, · · · ,PK) where each block Pi is a unitary

ni × ni matrix. The task is to find a matrix decomposition such that the diagonal elements of L are

equal in blocks of n1, · · · , nK elements respectively. This decomposition was proposed by Lin et.

al. in [47] to address the transceiver design problems for MIMO broadcast channels.



27

The algorithm proposed by [47] is as follows. First, rewrite the decomposition as

H†1

H†r

 =

P1 0

0 Pr

L1 0

A Lr

Q†1

Q†r

 (2.5)

where H†1 and Q†1 are n1 ×m submatrices, and L1 and P1 are n1 × n1 square matrices. H†r denotes

the remaining lower part of the matrix H†. Expanding the above equation gives the following two

equations

H†1 = P1L1Q
†
1 (2.6)

and

H†r = PrAQ†1 + PrLrQ
†
r. (2.7)

From Equation (2.5), it can be seen that by performing the GMD, the diagonal elements of L1

can be made equal. Since Q has orthonormal columns, the submatrices Q1 and Qr are orthonormal

to each other. Thus, from Equation (2.7), multiplication by the projection matrix I−Q1Q
†
1 gives

H†r(I−Q1Q
†
1) = PrLrQ

†
r.

Here, the right side of the above equation has the same form as in (2.5), so the algorithm proceeds

recursively. To solve for A, equation (2.7) is multiplied by P†r and Q1 on the left and right hand

side, respectively, giving

A = P†rH
†
rQ1.

This decomposition then has equal diagonal elements in each block of L. After performing the

BD-GMD, the matrix H† can be decomposed as follows:

H† =


H†1

H†2
...

H†K

 =



P1 0 · · · 0

0 P2
. . .

...
...

. . . . . . 0

0 · · · 0 PK


︸ ︷︷ ︸

P



L1 0 · · · 0

× L2
. . .

...
...

. . . . . . 0

× · · · × LK


︸ ︷︷ ︸

L


Q†1

Q†2
...

Q†K


︸ ︷︷ ︸

Q†

, (2.8)
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where P is unitary and also block diagonal, and each submatrix Li has equal diagonal elements.
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Chapter 3

Transceiver Designs for MIMO
Frequency Flat Channels

In this chapter we consider the optimization of transceivers for frequency flat MIMO channels.

The first part of this chapter studies the optimization of MIMO transceivers with linear precoders,

decision feedback equalizers, and bit allocation schemes. Considered first is the minimization of

the average transmitted power, for a given total bit rate and a specified set of error probabilities for

the symbol streams. While this joint optimization has not been addressed in the past, a variety of

related transceiver designs have been studied previously. When the transmitter has perfect channel

information, four major optimization problems have been considered. First, for fixed precoder and

DFE matrices, the optimal bit loading problem has been studied in [9]. Second, for the case where

the bit allocation is fixed to be uniform, joint optimization of the precoder and DFE matrices is

a well studied problem [36, 37, 41, 90, 137, 142]. Third, for the case of linear transceivers, the

joint optimization of the precoder, the (linear) equalizer, and bit allocation has been studied in

[48] (under ZF constraint), and in [74] (without ZF constraint). Fourth, if the precoding matrix is

restricted to be a diagonal matrix where only power loading applies, the optimization of rate and

power allocation for the systems with DFE receiver has been discussed in [14]. If no perfect channel

state information is present (only channel statistics known at the transmitter), the optimization of

power and rate allocation for the system with DFE receiver was addressed in [83].

As summarized above, bit loading, precoder, and receiver design optimizations have been stud-

ied extensively. However, current literature lacks a discussion that reviews bit loading, linear pre-

coder, and DFE jointly when perfect channel information is available at both ends of the transceiver.

To begin solving this problem, we start with the minimization of transmitted power for a specified

set of error probabilities for the symbol streams. We show that the generalized triangular decom-
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position (GTD) introduced in [38] offers an optimal solution. The GTD in fact gives rise to a family

of solutions, with the bit allocation details changing from solution to solution. We will see in par-

ticular that the optimal linear transceiver with optimal bit allocation, which has a linear equalizer

rather than a DFE, is a member of this family of solutions. This shows formally that, under optimal

bit allocation, optimum linear transceivers achieve the same transmitted power as optimum DFE

transceivers with bit allocation. These discussions assume that the bit allocation formula is real-

izable (i.e, the bits are nonnegative integers). The DFE transceiver based on the geometric mean

decomposition (GMD) [36] is another member of the above family of optimal solutions, and is such

that the optimal bit allocation formula yields identical bits for all symbol substreams, when the

specified error probabilities are identical for the substreams. DFE with GMD therefore achieves

minimum power even without the need for bit allocation. In a way this complements one of the

results in [36], namely, when all symbol streams are constrained to have identical bits, the average

bit error rate (BER) for fixed power is minimized by the GMD. Other special cases arising from the

GTD family of optimal DFE systems include the VBLAST system [135], and a new solution called

the bidiagonal (BID) transceiver. Two other optimization problems are then considered: (a) mini-

mization of power for specified set of bit rates and error probabilities (the QoS problem), and (b)

maximization of bit rate for a fixed set of error probabilities and power. It is shown in both cases

that the GTD yields an optimal family of solutions.

The second part of this chapter considers the joint transceiver optimization problem for fre-

quency flat MIMO channels under other constraints. The linear transceiver as well as the DFE

transceiver are considered. Instead of only the total power constraint, in this section we also con-

sider the more realistic per-antenna power constraints on the transmitter [45, 139]. This is because

in practice each antenna is limited individually by its equipped power amplifier. In [45], the MMSE

problem under individual power constraints is solved sub-optimally using a numerical approach.

In [139], the multiuser down-link transceiver design problem is considered. The total power con-

straint might still be needed since the antennas might rely on a common power supply. Under

these constraints, we consider the linear transceiver case and also the simple nonlinear case, i.e.,

linear precoding with DFE at the equalizer.

The problem of optimizing linear transceivers subject to individual power constraints was ad-

dressed in [45, 73, 76], in different contexts, but transceivers with DFE were not considered. In [45],

the authors considered the MMSE problem, and solved it sub-optimally using numerical methods.
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In [73], the authors considered only Schur-concave objective functions subject to the individual

power constraints. However, the problem of optimizing the transceiver for other important ob-

jective functions (e.g., Schur-convex functions, including average BER) was not addressed. Direct

use of the results of [73] to address this case is nontrivial. In [76] the author considered shaping

constraints on the transmitted signal covariance matrix. However, as acknowledged by the author

in [76], the paper introduced a stronger artificial constraint that leads to a sub-optimal solution.

Our work is to tackle these unsolved problems in the literature. For the linear transceiver

case, we first consider the minimum AM-MSE (Arithmetic Mean of Mean Square Errors) design.

We show that it can be reformulated as a semi-definite program (SDP), which can be solved nu-

merically by convex optimization tools. Then, among the family of minimum AM-MSE linear

transceivers, we develop a method to find the one that minimizes the average bit error rate as well

as many other objective functions. This second step is achieved by appealing to majorization the-

ory. Similarly, for the transceivers with linear precoding and DFE, we first consider the minimum

GM-MSE (Geometric Mean of Mean Square Errors) design. We show that it can also be reformu-

lated as an SDP, and solved efficiently. Then, among the family of minimum GM-MSE designs, we

develop a method to find the one that minimizes the average bit error rate as well as many other

objective functions.

Based on majorization theory [65], we will argue that the minimal average BER transceiver

design method developed in this section can also be applied to a wider class of objective functions.

Also, we will show that under the framework developed here, any additional linear constraints on

the covariance matrix of the transmitted signals can be further added, and the problem is solved

both in theory and practice with no difficulty. Examples of such constraints may be spatial power

masks. This was formulated but not elaborated in [76]. In addition, it is shown in Section 3.3.5 that

our framework includes the case studied in [76].

The content of this chapter is mainly drawn from [123, 128], and portions of it have been pre-

sented in [119, 120, 125].

3.1 Outline

This chapter is organized as follows. Sec. 3.2 discusses the joint optimization of linear precoder,

DFE receiver, and bit loading for MIMO communication systems. In Sec. 3.3 we consider the linear

and DFE transceiver design problems under a finite number of linear constraints on the transmit
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covariance matrix, including total power constraint and individual antenna power constraints. Fi-

nally, the conclusions are made in Sec. 3.4.

3.2 MIMO Transceivers with Decision Feedback and Bit Loading

In this section, we consider MIMO transceivers with a linear precoder and a decision feedback

equalizer (DFE), with bit allocation allowed at the transmitter end. Zero-forcing and QAM sig-

naling are considered throughout, and the perfect channel information is assumed to be known to

the transmitter and the receiver. This section is structured as follows. In Sec. 3.2.1, we formulate

the power minimization problem. In Sec. 3.2.2, we show that under optimal bit allocation, opti-

mum linear transceivers achieve the same minimum value for transmitted power as optimum DFE

transceivers with bit allocation. In Sec. 3.2.3 we present a transceiver structure based on general-

ized triangular decomposition of the channel matrix, and prove that such a system always achieves

the minimum power given in Sec. 3.2.2. We also report several special cases of the optimal solutions

developed from GTD. Some of these are known structures (SVD, GMD, and VBLAST or QR-based)

and some are new (e.g., the bi-diagonal structure). Two other optimizations are also considered

in Sec. 3.2.4: (a) minimization of power for fixed set of bit rates and error probabilities (the QoS

problem), and (b) maximization of bit rate for fixed power and error probabilities. It is shown in

both cases that the GTD yields optimal solutions. Sec. 3.2.5 and 3.2.6 present the simulation results.

3.2.1 Problem Formulation

The transceiver we consider is shown in Figure 3.11. Here H is a J × N memoryless channel

matrix, and the additive Gaussian noise n is assumed to have zero-mean and covariance matrix

E{nn†} = σ2
nI. It is assumed that H is deterministic and known to the transmitter and receiver

(perfect CSIT and CSIR). The linear precoder matrix is denoted as F. The vector s(n) represents

the M transmitted symbol streams sk(n) (with time argument n deleted in all discussions). The

received signal is y = Hx+n,where x = Fs. The DFE equalizer consists of the feedforward part G

and feedback part B. Causality of decision feedback is ensured by restricting B to be strictly upper

triangular. With s̃ denoting the signal vector after the decision device, the input to the decision

device has the form ŝ = GHFs − Bs + Gn. Under the assumption of correct past decisions, i.e.,
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s̃ = s (a good assumption in the high SNR regime), this yields

ŝ = (GHF−B)s + Gn. (3.1)

n Covar. n
2 I

^

n

+

n

s ŝ+

M N J M

yx
F H G decision

s~

MM B

Figure 3.1: The MIMO transceiver with linear precoder and DFE.

Eq. (3.1) shows that the system described above has an effective transfer matrix GHF −B from s

to ŝ, and an additive noise term Gn. It therefore has the zero-forcing (ZF) property if

GHF−B = I. (3.2)

Zero-forcing will be assumed throughout the section, so that

ŝ = s + Gn. (3.3)

Without this assumption the problems to be addressed are more difficult, and will be left for

the future. Since GHF = I + B is upper triangular with unit diagonal elements, it has rank M . To

make the zero-forcing assumption possible, H is assumed to have rank K ≥M.

In the following sections, we will first discuss the problem of minimizing the transmitted power

subject to a specified total bit rate and a specified error probability in each substream. Assume the

components sk of s are zero-mean uncorrelated processes representing independent data streams

with power Pk so that the input covariance is

Λs = E{ss†} = diag(P1, P2, · · · , PM ). (3.4)

We assume the kth data stream is a bk-bit QAM constellation. From (3.3), since the error vector

at the input of the decision device is e = ŝ − s = Gn where n is zero-mean Gaussian, the error
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components ek are zero-mean Gaussian with variance

σ2
ek

= σ2
n[GG†]kk. (3.5)

The probability of error for the kth symbol stream is then [85]

Pe(k) ≈ 4(1− 2
−bk
2 )Q

Ç 
3Pk

(2bk − 1)σ2
ek

å
, (3.6)

where Q(τ) =
∫∞
τ
e−t

2/2dt/
√

2π. Under the high bit rate assumption (bk >> 1) we have 2bk − 1 ≈

2bk and 1− 2−bk/2 ≈ 1. By rearranging Eq. (3.6) we then get

Pk
σ2
ek

≈ 2bk

3

Å
Q−1

Å
Pe(k)

4

ãã2
, (3.7)

whereQ−1(·) denotes the inverse function ofQ(·). This is the average power to noise ratio required

for the kth QAM stream to operate at error probability Pe(k) with bk-bits.

In this section we will regard the error probability Pe(k) as the quality of service (QoS) specifi-

cation. For the special case of DMT systems one takes all Pe(k) to be equal [48]. The total power

transmitted on the channel can be written as

Ptrans = Tr(FΛsF
†) = Tr(F†ΛsF) =

M∑
k=1

Pk[F†F]kk.

Substituting from (3.7) we can rewrite this as

Ptrans =
M∑
k=1

dk2bkσ2
ek

[F†F]kk, (3.8)

where

dk =
1

3

Å
Q−1

Å
Pe(k)

4

ãã2
, (3.9)

which is determined by the specified probability of error. From (3.8) and (3.5) the transmitted

power can then be written as

Ptrans =
M∑
k=1

ck2bk [F†F]kk[GG†]kk, (3.10)
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where

ck = σ2
ndk =

σ2
n

3

Å
Q−1

Å
Pe(k)

4

ãã2
. (3.11)

Therefore the problem of minimizing the transmitted power subject to the specified BER and total

bit rate constraints, and the zero-forcing constraint can be written as follows:

min
F,G,B,{bk}

Ptrans =
M∑
k=1

ck2bk [F†F]kk[GG†]kk (3.12)

s.t. (a)
1

M

M∑
k=1

bk = b

(b) GHF−B = I

Ideally, we should also impose the constraint that bk be nonnegative integers. But the problem

is not analytically tractable in that case. For the high bit rate case (large b) the optimal bit allocation

formula derived next yields positive bk, which can be rounded to integers without severe loss of

optimality.

3.2.2 Minimum Power Achieved by DFE Systems

For the minimization of (3.12), we first observe that

Ptrans =
M∑
k=1

ck2bk [F†F]kk[GG†]kk

≥ M
M∏
k=1

(ck2bk [F†F]kk[GG†]kk)
1
M

= c2b(
M∏
k=1

[F†F]kk)
1
M (

M∏
k=1

[GG†]kk)
1
M ,

where we have used the AM-GM inequality, and the fact that

b =
1

M

M∑
k=1

bk. (3.13)

Here

c = M(
M∏
k=1

ck)
1
M . (3.14)
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Equality can be achieved in the AM-GM inequality if and only if the terms are identical for all k,

that is,

ck2bk [F†F]kk[GG†]kk = A

for some constant A. Taking logarithms on both sides we get

bk = D − log2 ck − log2[F†F]kk − log2[GG†]kk, (3.15)

where D is a constant, chosen such that (3.13) is satisfied. Eq. (3.15) is called the optimum bit load-

ing formula.1 For any fixed precoder F, receiver {G,B}, and specified probabilities of error Pe(k),

the bit allocation that minimizes the transmitted power is given by (3.15). With this bk, the quanti-

ties Pk are computed from setting σ2
ek

as in (3.5). With Pk so chosen, the specified probabilities of

error are met, and the total power Ptrans is minimized. This minimized power is

Ptrans = c2b(
M∏
k=1

[F†F]kk)
1
M (

M∏
k=1

[GG†]kk)
1
M ), (3.16)

and depends only on F and G, which will be chosen to minimize (3.16) further. First we derive the

optimal G:

Lemma 3.2.1 When the precoder F and the feedback filter B are given, the optimal feed-forward filter G for

minimizing the transmitted power in (3.16) subject to the zero forcing condition (3.2) is:

Gopt = (I + B)(HF)], (3.17)

where (HF)] = (F†H†HF)−1F†H†, which is the minimum-norm pseudo inverse of (HF). ♦

Proof: See Appendix. �

The zero-forcing constraint yields the form (3.17), which can also be found in other references

such as [137], where a different problem is solved (mean square error minimized subject to zero-

forcing, without bit allocation). The main point of the lemma is that the pseudo inverse (HF)]

should be taken to be the minimum norm pseudoinverse. This also happens in [137] but the proof

1In general (3.15) can yield noninteger or even negative bk. However in the high-bit-rate case (large b), bk are large
enough to be replaced with integer values without compromising optimality severely. The conclusions derived in the fol-
lowing discussions are valid only under this assumption which has often been made in other papers [50, 48]. Incorporating
the positive integer constraint directly into the problem makes it analytically non-tractable.
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techniques for the two problems are different.

Substitute for Gopt into (3.16) we get

Ptrans = c2b(
M∏
k=1

[F†F]kk)
1
M × (

M∏
k=1

[(I + B)(F†H†HF)−1(I + B)†]kk)
1
M .

Hadamard’s inequality for positive definite matrices yields

M∏
k=1

[F†F]kk ≥ det(F†F)

and

M∏
k=1

[(I + B)(F†H†HF)−1(I + B)†]kk

≥ det((I + B)(F†H†HF)−1(I + B)†)

= det((F†H†HF)−1),

where we use the fact that det(I + B) = 1 since I + B is upper triangular with diagonal terms all

equal to unity. Substituting the above result into the transmitted power, we have

Ptrans ≥ c2b
Ç

det(F†F)

det(F†H†HF)

å 1
M

.

In the Appendix we prove that

Ptrans ≥ Pmin = c2b

(
1∏M

k=1 σ
2
h,k

) 1
M

, (3.18)

where {σh,k}Mk=1 are the first M dominant channel singular values. Note that Pmin in (3.18) is

exactly equal to the form derived for a linear transceiver with optimal bit loading [48]. This means,

the extra freedom provided by the decision feedback receiver structure does not reduce the power

needed to achieve the specified bit rate and probability of error. So we have proved:

Theorem 3.2.2 Linear versus DFE transceiver: Consider the DFE system of Fig. 3.11 and assume the

bit rate b and error probabilities Pe(k) are fixed. Then under optimal bit allocation and zero-forcing, the

minimum transmitted power obtained by optimizing F,G, and B is given by Pmin defined in Eq. (3.18).

This same minimum power can also be achieved by a linear transceiver (a transceiver with B = 0) by
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optimizing F,G, and the bit allocation under the zero-forcing constraint. ♦

Thus, when bit loading is allowed, DFE with linear precoding has the same performance as linear

transceivers! However, the DFE system with linear precoding actually provides more choices of

possible configurations that achieve the Pmin in (3.18). This interesting observation will be elabo-

rated further in the following subsections.

3.2.3 GTD-Based Transceivers

We now show that the generalized triangular decomposition (GTD) can be used to construct opti-

mal solutions to the problem (3.12). Before diving into any specific realization, we describe in detail

the GTD-based method to construct the transceiver matrices F,G,B. Here are the steps involved:

1. Given the channel H, we first choose a set of diagonal elements rk for R such that (2.3) holds,

and express H in the GTD form (2.4), thereby determining a set of matrices P,Q and R.

2. We then show how to choose the precoder F, the receiver matrices G and B, and the bit

allocation such that the transmitted power achieves the minimum value Pmin given by (3.18).

The first step offers considerable freedom, since any choice for the diagonal elements rk =

[R]kk is acceptable as long as (2.3) holds. We will choose the K elements rk as follows: (a) Choose

r1, r2, . . . rM to be any set of positive numbers multiplicatively majorized by the first M dominant

singular values σh,1 ≥ . . . ≥ σh,M of the channel. (b) Choose rM+1, . . . rK to be σh,M+1, . . . , σh,K or

any permutation thereof. The choice in (a) implies in particular that

M∏
k=1

[R]2kk =
M∏
k=1

σ2
h,k. (3.19)

With [R]kk chosen as above, assume the channel has been expressed as in Eq. (2.4). We are now

ready for the second step. We begin by choosing N ×M precoder as

F = [P]N×M . (3.20)

Thus the columns of the precoder are the first M columns of P. We then choose the feedforward

matrix as

G = (diag([R]M×M ))
−1

G0, (3.21)
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where

G0 = [Q†]M×J . (3.22)

Since P and Q have orthonormal columns, the columns of F are orthonormal, and so are the rows

of G0. Finally, the feedback matrix B is determined by the zero forcing condition B = GHF − I.

To simplify this, observe first that

GHF = (diag([R]M×M ))
−1

G0QRP†F

= (diag([R]M×M ))
−1
(

IM 0
)

R

Ñ
IM

0

é
= (diag([R]M×M ))

−1
[R]M×M .

Here we have used the facts that

G0Q = (IM 0) and P†F =

Ñ
IM

0

é
which follow from the choices of (3.20) and (3.22), and the column orthonormality of P and Q.

Thus the expression for the feedback matrix becomes

B = GHF− I = (diag([R]M×M ))
−1

[R]M×M − I. (3.23)

This is strictly upper triangular since R is upper triangular. Fig. 3.2 shows the structure of the GTD

transceiver just described.

n White noise

yx ŝ+s
M N J M

yx
F P+ R
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s~
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B
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Figure 3.2: The proposed form of optimal solution for the DFE transceiver.
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With the above choice of transceiver matrices the error variance (3.5) in the kth substream becomes

σ2
ek

=
σ2
n

[R]2kk
. (3.24)

Substituting into Eq. (3.8) the transmitted power needed to satisfy the specified QoS and bit rate

constraints can be expressed as

Ptrans =
M∑
k=1

dk2bk [F†F]kkσ
2
ek

=
M∑
k=1

dk2bk

[R]2kk
σ2
n.

Since σ2
ndk = ck (from (3.11)), this simplifies to

Ptrans =
M∑
k=1

ck2bk

[R]2kk
. (3.25)

We now show that the system in Fig. 3.2 with F,G, and B chosen as described achieves optimality

for problem (3.12), provided the bit allocation is chosen appropriately:

Theorem 3.2.3 With the bit allocation chosen as

bk = log2

Ñ
c

M
2b

(
1∏M

k=1 σ
2
h,k

) 1
M

é
− log2(ck) + log2([R]2kk), (3.26)

for 1 ≤ k ≤ M , the system in Fig. 3.2 with F as in (3.20), G as in (3.21), and B as in (3.23), achieves the

minimized power for the specified {Pe(k)} and bit rate constraint. ♦

Proof: Observe first that (3.26) satisfies the total bit constraint because

M∑
k=1

bk = log2

(( c

M

)M 2Mb∏M
k=1 σ

2
h,k

)
− log2

M∏
k=1

ck + log2(
M∏
k=1

[R]2kk)

= Mb− log2

( 1∏M
k=1 σ

2
h,k

)
+ log2

( M∏
k=1

[R]2kk

)
= Mb,

using (3.19) and c = M(
∏M
k=1 ck)

1
M . Next, (3.26) implies

ck2bk

[R]2kk
=

c

M
2b
( 1∏M

k=1 σ
2
h,k

) 1
M

. (3.27)
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Substituting into (3.25) we get

Ptrans =
M∑
k=1

ck2bk

[R]2kk
= M × c

M
2b
( 1∏M

k=1 σ
2
h,k

) 1
M

. (3.28)

Since this is the minimum achievable power Pmin (see discussion leading to Eq. (3.18)), the proof

is complete. �

The extra flexibility in designing the transceivers, offered by this GTD-based DFE system, must

be carefully understood. Recall that the bit loading formula for the linear transceiver to achieve the

minimum transmitted power is [48]

bk = D − log2 ck + log2(σ2
h,k), (3.29)

where σh,k are fixed numbers given to us by the channel. The values computed from (3.29) are not

guaranteed to be integers, or even nonnegative. For the GTD-based DFE system, the bit loading

scheme (3.26) can be written as

bk = D − log2 ck + log2([R]2kk). (3.30)

The freedom of the GTD-based system allows us to reshape the value of [R]kk as long as the multi-

plicative majorization property (2.3) is satisfied. This flexibility may be used, for example, to ensure

that the bit loading scheme in (3.30) is realizable. So, even though the linear transceiver with bit

allocation (3.29) can achieve the same minimum power (3.28) as any optimal DFE transceiver, the

bit allocation formula in the GTD-based DFE opens up more freedom.

We now make an interesting observation about the powers Pk in the optimal system. Substitut-

ing (3.24) into (3.7) and using the definition of ck in (3.11) we find

Pk =
2bkck
[R]2kk

. (3.31)

Substituting from (3.30) it then follows that Pk = 2D for all k. Thus in the optimal system which has

orthonormal columns for the precoder F, the powers Pk are identical for all k. Since Ptrans =
∑
k Pk

from (3.31) and(3.25), we therefore have Pk = Ptrans/M for all k.

In Chapter 2 we mentioned many examples of the GTD, such as SVD, Schur decomposition,

GMD, and so on. Some of these have already appeared in the literature in different contexts. Each of



42

these serves as a specific realization of the optimal DFE transceiver acheiving minimum transmitted

power, provided the bits are allocated as in Eq. (3.26). Each realization has a different choice of rk

(= [R]kk) satisfying the majorization condition (2.3), and in all cases, we restrict the precoder F to

be the orthonormal choice (3.20). G is chosen as in (3.21), and B as in (3.23). We now elaborate on

these different realizations arising from different GTD forms of H = QRP†.

1. SVD Transceiver - the Linear Transceiver. The singular value decomposition (SVD) of the chan-

nel matrix can be written as H = UΣV†, where U and V are unitary and Σ is a diagonal

matrix. Since R = Σ is diagonal, the feedback matrix B = 0 from (3.23), and the system

reduces to a linear transceiver as in Fig. 3.3. This optimal solution for linear transceivers was

proposed in [48].

n White noisen White noise
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Figure 3.3: The SVD system, which represents a linear transceiver.

2. GMD Transceiver. The geometric mean decomposition (GMD) was introduced in [36]. The

GMD of the channel H has the form H = QRP†, where Q and P have orthonormal columns,

and R is an upper triangular matrix. Furthermore the firstM diagonal elements of R are identical,

and equal to the geometric mean of the M dominant channel singular values. For the case

where the specified error probabilities Pe(k) (hence ck) are identical for all k, it follows from

(3.26) that there is no need for bit allocation, that is, bk = b for all k. Unlike other special cases

of the GTD such as the SVD, the question of bk becoming unrealizable (i.e., taking noninteger

or negative values) therefore does not arise.
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3. QR Transceiver - ZF-VBLAST System. The QR decomposition of the channel matrix can be

written as H = QR, where Q has orthonormal columns, and R is upper triangular. This

yields a special case of the GTD transceiver, where the precoder is F =

Ñ
IM

0

é
, and can be

implemented at no cost. See Fig. 3.4. This system leads to the ZF-VBLAST system, widely

used in MIMO wireless communication [135].
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Figure 3.4: The QR transceiver, which has the lazy precoder. This is identical to the ZF-VBLAST
system.

The optimal transceiver design usually assumes that H is known at the transmitter side. This

assumption is not generally true. The more practical scheme would be the so called limited

feedback scheme, in which the receiver uses a low rate feedback channel to tell the transmitter

to use one of the precoders in a pre-determined codebook of precoders [56].

The QR based transceiver with bit loading is very suitable in limited feedback systems be-

cause the precoder matrix is identity, and only the bit loading vector [b1 . . . bM ] needs to be

known.2 The receiver can compute {bk} from (3.15), quantize it to the bit loading vector near-

est to the vectors in a predetermined codebook, and feed back the index of that vector to the

transmitter. The design of this codebook is an interesting problem, but is beyond the scope

of this thesis. Intuitively, this scheme will perform better than limited feedback schemes

using the Grassmann codebook [91, 56], since the Grassmann codebook aims to cover the

Grassmann manifold [92] while the bit loading codebook only tries to cover M -vectors with

integer valued entries. This intuition is supported by Monte Carlo simulations in Sec. 3.2.6.

2In the scheme described in [14], the power allocation Pk also should be fed back, but in the GTD based optimal system
Pk = Ptrans/M for all k as shown at the end of Sec. 3.2.3.
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It is reassuring to know that since all GTD-based systems are optimal when the bit loading

formula is realizable, this QR based special case has no loss of optimality even though it offers

a simple precoder and a simple way to perform limited feedback.

4. Bidiagonal Transceiver. It is well-known [25] that any J × P matrix H can be factored as H =

QRP†, where Q and P have orthonormal columns, and R has the bidiagonal form

R =



d1 f1 0 · · · 0

0 d2 f2 · · · 0

...
. . . . . . . . .

...

0 · · · · · · dP−1 fP−1

0 · · · · · · 0 dP

0


.

With the channel represented in this bi-diagonal form, the feedback matrix given in (3.23)

becomes

B =



0 f1 0 · · · 0

0 0 f2 · · · 0

...
. . . . . . . . .

...

0 · · · · · · 0 fM−1

0 · · · · · · 0 0


.

Therefore the implementation of the DFE will be very simple since we need only to feed

back one previous decision for detecting the current symbol. Also, the computation of the

bidiagonal decomposition is inexpensive [25]. To the best of our knowledge, this kind of

system has not previously been reported in transceiver literature.

Summarizing, any of the above four GTD-based systems achieves optimality. However, each

one of them has some special features, which might be useful in different situations. Also, it is

possible that other GTD-based systems exist with potential benefits in specific situations.

3.2.4 Other Transceiver Problems Solved by GTD-Based Transceiver

We now consider two variations of the transceiver optimization problem. The first problem we

consider is the quality of service problem, in which we want to minimized the transmitted power
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subjects to the individual BER and bit rate constraints in each subchannel. The second problem

we consider is the bit rate maximization problem, in which we maximize the bit rate subject to

the transmitted power and BER constraints. We will show that both of these two problems have

solutions based on the GTD.

Quality of Service (QoS) Problem

The quality of service problem in MIMO communication has been considered by a number of

authors [77, 39, 28]. In these papers the QoS is defined in the output SINR sense, and furthermore

there is no bit allocation. In fact, reference [28] addresses a special case of the problem discussed in

[39], namely the case where the channel H = I. Here we consider a different situation where the

error probability Pe(k) (equivalently the constants ck in Eq. (3.11)) and bit rate bk of each substream

are specified to be the QoS parameters. We will show that under some multiplicative majorization

condition, we can customize the GTD-based transceiver to obtain an optimal solution that mini-

mizes power subject to the QoS specifications {ck, bk}. More precisely, the problem considered here

is

min
F,G,B

Ptrans (3.32)

s.t. (a) GHF = I + B

(b) {ck, bk} fixed (QoS for data stream k).

Having the GTD concept in mind, we know that if we are able to find a matrix F0 such that

{ck2bk}Mk=1 ≺× {σk(HF0)}Mk=1,

we are able to find some semi-unitary matrix Q, such that if the precoder is chosen as F = F0Q,

the QoS constraint is satisfied exactly. With such precoder, the transmitted power is proportional

to Tr(FF†) = Tr(F0QQ†F†0) = Tr(F0F
†
0). Therefore, we can transform the QoS problem (3.32) in

the following form:

min
F0

Tr(F0F
†
0) (3.33)

s.t. {ck2bk}Mk=1 ≺× {σ2
k(HF0)}Mk=1
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Let φk denote the square of the k-th largest singular value of F0. By Theorem H.1 of [65], we

can further transform problem (3.33) to be

min
φk

M∑
k=1

φk (3.34)

s.t. {ck2bk}Mk=1 ≺× {σ2
h,kφk}Mk=1

To solve problem (3.34), we can further perform some parameter transformations. Let αk =

lnφk, and βk = ln
ck2

b
k

σ2
h,k

. Substituting these into (3.34), we obtain

min
αk

M∑
k=1

eαk (3.35)

s.t. β1 ≤ α1

β1 + β2 ≤ α1 + α2

...
M∑
k=1

βk =
M∑
k=1

αk.

The objective function in problem (3.35) is convex in αk, and the constraints are all affine, thus

it is a convex optimization problem and can be numerically solved efficiently. However, in the

following we provide a theorem based on the majorization theory to obtain the solution without

performing numeric convex optimization programs under some conditions.

Theorem 3.2.4 For the QoS problem (3.32), the following are true: (a) The minimum required power to

achieve the specification will be at least as large as

Pmin = c2b

(
1∏M

k=1 σ
2
h,k

) 1
M

,

where c = M(
∏M
k=1 ck)

1
M and b =

∑M
k=1 bk/M .

(b) This Pmin is achievable if

{c12b1 , · · · , cM2bM }
c2b/M

≺×
{σ2

h,1, · · · , σ2
h,M}

(
∏M
k=1 σ

2
h,k)

1
M

, (3.36)

that is, if the vector on the left which is determined by the QoS constraints, is multiplicatively majorized by
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the vector on the right which is determined by the channel. ♦

Proof: See Appendix. �

This system, which achieves Ptrans = Pmin under condition (3.36), will be referred to as the

custom GTD-based system, since the value of the precoder and equalizer are not computed solely

depending on H, but also depending on the given QoS {ck, bk}. This example shows that the GTD-

based system has much more flexibility than the linear transceiver system.

It should be pointed out here that when the QoS specification {ck, bk} is identical for all k, the

custom GTD reduces to the GMD. This is because the multiplicative majorization relation (3.36)

always holds in this case.

Bit Rate Maximization Problem

The bit rate maximization problem subject to transmitted power constraint is the dual of the

problem described in Eq. (3.12). It will be shown that the GTD transceiver gives the optimal

solution. For the special case of linear transceivers this problem was considered in [46]. Consider

again the system with the zero-forcing condition. Under the high bit rate assumption, bk can be

rearranged as

bk ≈ log2

Å
Pk

σ2
ekdk

ã
, (3.37)

where dk represents the bit error rate via (3.9). Therefore, the problem of maximizing the average

bit rate for fixed set of bit error rates {dk} and total power can be written as

max
F,G,B,{Pk}

b =
1

M

M∑
k=1

log2

Å
Pk

σ2
ekdk

ã
(3.38)

s.t. (a) Tr(FΛsF
†) ≤ Ptotal

(b) GHF = I + B (zero-forcing),

where Λs = diag(P1, P2, · · · , PM ). The power constraint can be rewritten as

M∑
k=1

Pk[F†F]kk ≤ Ptotal.

We solve the above optimization problem in two stages. First we find the optimal power Pk for

given F, G, and B, under the power constraint. We then derive the optimal transceiver matrices.

Suppose {P ∗k } are optimal for problem (3.38), then the KKT condition [8] states that there exists α
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such that

α ≤ 0, (3.39)

∂

∂Pk

(
1

M

M∑
k=1

log2(
Pk

σ2
ekdk

) + α
( M∑
k=1

Pk[F†F]kk − Ptotal
))∣∣∣∣∣

Pk=P∗k

= 0,

and

α
( M∑
k=1

Pk[F†F]kk − Ptotal
)∣∣∣

Pk=P∗
k

= 0. (3.40)

By solving these equations, we get α = −M
Ptotal loge 2 , and the optimal power allocation

P ∗k =
Ptotal

M [F†F]kk
. (3.41)

Observe that when the triplet {F,G,B} is fixed, Eq. (3.38) is concave in the vector [P1 ... PM ]. So

the preceding solution represents a maximum (rather than minimum) of Eq. (3.38). The derivation

of (3.41) is similar to the one in [46] for linear transceivers. Using (3.41) in (3.38) and simplifying,

we have

b = log2

(
M∏
k=1

Ptotal

Mck[F†F]kk[GG†]kk

) 1
M

(3.42)

Thus, the problem of maximizing the bit rate is reduced to maximizing (3.42) subject to zero forcing.

But maximizing (3.42) is equivalent to minimizing (3.16). The latter minimization can be achieved

with the GTD and results in Ptrans = Pmin given by (3.18). So it follows that the optimal solution

is such that

M∏
k=1

[F†F]kk[GG†]kk = 1/
M∏
k=1

σ2
h,k (3.43)

Substituting this into (3.42) the maximized bit rate becomes:

bmax = log2

(
Ptotal
c

(
M∏
k=1

σ2
h,k)

1
M

)
(3.44)

This is exactly the maximum bit rate that has been achieved with linear transceivers, as shown in
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[46]. Thus, whenever bit allocation is permitted, the DFE transceiver offers no advantage over the

linear transceiver, as far as maximizing the bit rate is concerned.

For completeness recall that the GTD based optimal solution has matrices F = [P]P×M , G0 =

[Q†]M×J , G as in (3.21), and B as in (3.23). Since this achieves the maximum bit rate, all the special

cases discussed in Sec. 3.2.3 maximize bit rate. Jiang et. al. considered a different problem in

[36] where they showed that the GMD system achieves maximum channel throughput (defined in

terms of mutual information) with uniform bit allocation, for the case of large SNR. This result is

consistent with our result in this section for the actual bit rate, which holds for any GTD.

3.2.5 Simulation Results with Perfect CSI

Here we present simulations for the case where the channel is known to the transmitter and the

receiver. We consider a number of methods in the comparison. These include the linear transceiver

based on SVD, and DFE-based transceivers based on GMD, QR decomposition, and bi-diagonal

decomposition BID. For these methods, whenever the bit loading formula (3.15) is not realizable

due to finite constellation granularity, we replace it with the optimal bit loading algorithm in [9],

and take the precoder and equalizer matrices to be the optimum ones determined by the theory.

In addition, we introduce a new procedure that allows us to achieve the minimum power Pmin

of Eq. (3.18) with integer bit allocation for the special case of equal ck (equal error probabilities for

all k). This procedure will be denoted as the GB method (generalized bit allocation method) in all

simulations. It exploits the freedom offered by the GTD in choosing the diagonal elements Rkk of

the lower triangular matrix R. Since the method is somewhat involved we first describe it briefly

before proceeding with the simulation examples.

Assume ck is identical for all k. The method that we refer to as generalized bit allocation (GB)

proceeds as follows. First we compute bk using (3.29), and truncate it to the nearest even integer

to get a square QAM constellation (replacing bk with zero if it turns out to be negative). We then

check if the bit rate constraint
∑
k bk = Mb is satisfied with equality. If this is not the case, then we

adjust bk in one of two possible ways depending on the situation. For convenience assume bk is

renumbered such that bk ≥ bk+1.

1. If
∑
k bk < Mb we replace bM with bM + 2 until either

∑
k bk = Mb or bM−1 = bM . In the

former event we stop. If the latter is true but
∑
k bk < Mb still prevails, we replace bM−1

with bM−1 + 2, and continue the process. If we reach a point where bM−n−1 > bM−n =
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. . . = bM−1 = bM for some n > 1, with
∑
k bk < Mb still prevailing, then we replace bM−n

with bM−n + 2. Repeated application of this procedure leads to a bit allocation that satisfies∑
k bk = Mb.

2. If
∑
k bk > Mb we modify the preceding in the obvious way: We replace b1 with b1 − 2 until

either
∑
k bk = Mb or b1 = b2. In the former event we stop. If the latter event is true but∑

k bk > Mb still prevails, we replace b2 with b2 − 2, and continue the process. If we reach

a point where b1 = b2 = . . . = bn > bn+1 with
∑
k bk > Mb still prevailing, then we replace

bn with bn − 2. Repeated application of this procedure leads to a bit allocation that satisfies∑
k bk = Mb.

Let {bi1, bi2 . . . biM} denote the final bit allocation resulting from this algorithm (superscript i is for

“integer”) and let {b1, b2 . . . bM} denote the initial allocation from (3.29). We have
∑
k bk =

∑
k b

i
k

by construction. Furthermore, if {σh,k} has a wide distribution, then the final bit allocation satisfies

[
bi1 bi2 . . . biM

]
≺+

[
b1 b2 . . . bM

]
. (3.45)

The notation ≺+ means that the vector on the left is additively majorized by that on the right

[65, 32]. The next step depends upon whether this happens or not. Suppose (3.45) indeed holds

(which is often the case as seen through simulations). If ci = c/M for all i then by using (3.29) we

verify that this is equivalent to the multiplicative majorization condition (3.36). Now, with [R]kk

defined as in (3.30) or more precisely

bik = D − log2 ck − log2([R]2kk), (3.46)

Eqn. (3.36) (hence (3.45)) is equivalent to the condition (2.3) demanded by the existence of the

specific GTD. This means that there exists a GTD for the channel H such that both (3.36) and the

integer bit allocation (3.46) hold simultaneously.

According to Theorem 3.2.3, this design therefore achieves minimum power while at the same

time satisfies the integer bit rate constraint for the case where ci = c/M for all i. This is precisely

the beauty of the GTD. We have successfully exploited the flexibility in bit allocation offered by the

freedom to choose the diagonal elements [R]kk in the GTD.

There remains one more case to be considered, namely the situation where the majorization rela-

tion (3.45) does not hold. In this case we have observed that the SVD transceiver (linear transceiver)
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with integer bit allocation (3.46) typically yields a smaller BER than all the other GTD methods. So

we simply use the SVD system whenever the second situation prevails.

In the following we assumeM = N = 4 and J = 5. So the channel matrix H is of size 5×4; each

of its entries [H]km is drawn from a iid Gaussian distribution with zero mean and unit variance. For

each realization of this random H we compute the BER, and average it over 1000 such realizations.

The additive noise is complex circular Gaussian with average power normalized to 0 dB. Gray

encoded bits are adopted. The results are given in terms of bit error rate versus transmitted power.

Here we compare the uncoded bit error rate. Since in all our designs the MSE matrix is diagonal,

this makes the overall systems act like a set of parallel AWGN channels. Channel coding may

be further added to provide coding gain independent of the transceiver designs discussed in the

thesis. Decision feedback is operative in all the systems being compared, except in the special case

of the SVD system.

Example 1: High bit rate case: In this example we consider GTD transceivers with bit allocation

approximating (3.26). We assume ck = c/M (identical error probabilities Pe(k)) for all k. The GTD

system minimizes the required power to the value Pmin given in (3.18). Fig. 3.5 shows the sim-

ulated BER plots for the case where
∑
k bk = 40, that is, there are 40 bits to be allocated into the

four signal substreams. It can be observed that all systems perform about the same. This is con-

sistent with Theorems 1 and 2 under the assumption of high bit rate. Notice in particular that the

SVD system without DFE is almost as good as the systems with DFE. For the GB method, integer

bit allocation is handled as described in this subsection. For all other methods, whenever the bit

loading formula (3.15) is not realizable due to finite constellation granularity, we replace it with

the optimal bit loading algorithm in [9], and take the precoder and equalizer matrices to be the

optimum ones determined by the theory. Forcing bk to be integers usually results in Pe(k) being

only approximately equal; the plots are based on BER values averaged over all k. As explained at

the end of Sec. 3.2.3, the powers Pk are identical for all k.

Example 2: Low bit rate case: For the methods compared above, the theory in this section predicts

identical performance under the “high bit rate” assumption. This was essentially confirmed in the

preceding example. In the present example we will see that the performances are quite different

from each other in the low bit rate case. This example is similar to Example 1 with the difference

that
∑
k bk = 14. Fig. 3.6 shows the BER plots. In this case, oftentimes the SVD will drop the

substreams for which the corresponding singular values are too small (by not allocating any bits
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Figure 3.5: Example 1. BER versus Tx-Power for
∑
k bk = 32.
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Figure 3.6: Example 2. BER versus Tx-Power for
∑
k bk = 14.
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for them). However, the GMD system will never drop any substream; instead it will force each

of the substreams to have equal error variance and allocate about the same number of bits. If

a substream is very bad (noisy), this strategy will seriously degrade the performance. But the

SVD system simply drops the bad sub-channels, therefore retaining good performance. Note that

this behavior of GMD is due to the zero-forcing constraint enforced throughout the section. For

the MMSE receiver without the zero-forcing constraint, this effect may disappear. For the “GB”

method we drop the bad substreams as in SVD. This is why both the “GB” and the SVD systems

outperform other methods when there are some very bad sub-channels. Note that this effect is not

so noticeable in the high bit rate case. Also the “GB” method does not have the non-integer bit

allocation problem that all other methods suffer from (unless (3.45) fails in which case we replace

it with SVD as explained before). This is why our GB method performs the best among all the

systems.

Example 3. Fixed, identical constellations: In this example we fix bk = 6 bits for each k (64-QAM

streams), and all ck (i.e., error probabilities Pe(k)) are identical. The term “custom” stands for

the custom-GTD system with [R]kk obtained from (3.30). In this example since Pe(k) and bk are

identical for all k, the custom GTD system reduces to the “GMD” system, which is known to be

optimal in terms of BER [36]. Fig. 3.7 shows the performances of various GTD systems. Clearly

GMD and custom GTD outperform other GTDs.
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Figure 3.7: Example 3. BER versus Tx-Power when bk = 6 for all k.
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Example 4. Fixed, non-identical constellations: This is similar to Ex. 3 with the difference that the

fixed constellations have non-identical bits: [8, 8, 6, 6] (i.e., 256-QAM, 256-QAM, 64-QAM, and 64-

QAM). Fig. 3.8 shows the BER plots. Again, “custom” denotes the custom GTD system with [R]kk

obtained from (3.30), and so it has minimum power for fixed BER. It can be observed from the plots

that the custom GTD significantly outperforms all other methods including the GMD. This clearly

demonstrates the advantage offered by the flexibility of the GTD. However, among the other four

methods, there is no theory as to which one performs better.
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Figure 3.8: Example 4. BER versus Tx-Power when bit vector is fixed as [8, 8, 6, 6].

3.2.6 Simulation Results with Limited Feedback

We now consider the limited feedback scheme. As in earlier sections, zero-forcing is assumed, and

ck (equivalently error probabilities Pe(k)) are identical for all k. We assume M = 4, and N = J = 5

so that the 5 × 4 orthonormal precoders in the Grassman codebook published in [57], [92] can

be used. It is assumed that feedback from the receiver to the transmitter is error free. As in the

previous section, each of the channel entries [H]km is drawn from an iid Gaussian distribution with

zero mean and unit variance. For each realization of this random H we compute the BER, and

average it over 1000 such realizations. The schemes considered are as follows:

1. The scheme proposed in [56] based on the so-called projection 2-norm criterion. This is a

linear transceiver with an orthonormal precoder, with no bit allocation or power allocation.
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It uses a 8-bit Grassmann codebook [57, 92] to represent a set of 256 precoder matrices. The

receiver feeds back the 8 bits to the transmitter to tell which precoder ought to be used. This

system is referred to as “Lin-limited-FB.”

2. The minimun-BER DFE design proposed in [91] which uses a 8-bit Grassmann codebook in

conjunction with GMD. This is referred to as “GMD-limited-FB.” It has bk = b for all k.

3. The QR based DFE design. The precoder is identity, and the receiver feeds back only bit

loading information {bk} as described in Sec. 3.2.3. This will be referred to as “QR-limited-

FB.”

4. We also show the BER plots for the optimal DFE system based on GMD with perfect CSI at

the transmitter. This ideal system has the smallest BER, which is shown for reference. This

system is referred to as “GMD-perfect-CSI.”

Like the first method, the last three methods also have identical powers Pk for all k, but for a

different reason as described at the end of Sec. 3.2.3. We present BER plots for two cases: the case

where
∑
k bk = 32 (Fig. 3.9) and where

∑
k bk = 24 (Fig. 3.10). From the plots we see that the

proposed “QR-limited-FB” scheme performs significantly better than the state-of-the-art limited

feedback schemes [56, 91], and comes close to the optimal “GMD-perfect-CSI” scheme. Note that

the Grassmann codebook aims to cover the Grassmann manifold of orthonormal precoder matrices

[92, 5] while the bit loading codebook in the “QR-limited-FB” scheme only has to cover integer

valued vectors
[
b1 b2 . . . bM

]
.

We now discuss some details about the “QR-limited-FB” scheme. As described before, the code-

book here is a set of integer vectors which specifies to the transmitter what bk are. After the receiver

calculates bk from (3.15), it quantizes the vector
[
b1 b2 . . . bM

]
to the nearest vector in the code-

book. In the simulation we also restrict the codebook to have vectors with each bk no less than 4

for Fig. 3.9 (and 2 for Fig. 3.10). Also, we use square QAM, so the possible number of bits in each

substream will be even. The size of the codebook is therefore (11× 10× 9)/(3× 2) = 165. This

requires less than 8 bits of feedback from receiver to transmitter. Even with such limited feed back,

the proposed “QR-limited-FB” scheme performs very well indeed.
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Figure 3.9: BER versus Tx-Power with limited feedback (8 feedback bits per block, and 32 bits
transmitted per block).
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Figure 3.10: BER versus Tx-Power with limited feedback (8 feedback bits per block, and 24 bits
transmitted per block).
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3.2.7 Concluding Remarks

We have presented a method for the joint optimization of the matrices {F,G,B} and the bits {bk} in

a transceiver with DFE. It was formally shown that when the bit allocation, precoder, and equalizer

are jointly optimized, linear transceivers and transceivers with DFE have identical performance in

the sense that the transmitted power is identical for a given bit rate and error probability. We also

proved that any GTD-based system achieves the optimal performance. The GTD family also yields

optimum solutions for the QoS problem and the bit rate maximization problem. Many existing

systems are identified to be special cases of the GTD-based system, and some new GTD-based

transceivers were also indicated. The QR-based GTD has the advantage of offering a simple way

to do limited feedback by sending the bit allocation information from the receiver to transmitter.

3.3 MIMO Transceivers with Linear Constraints on Transmit Co-

variance Matrix

In this section we revisit the optimization of multiple-input multiple-output (MIMO) communica-

tion systems. Instead of only the total power constraint, in this section we also consider the more

realistic per-antenna power constraints on the transmitter. In this MIMO system, the transmitter

has M antennas sending independent information to the receiver equipped with N antennas. The

signal vector consisting of M substreams is assumed to be linearly transformed by the channel

matrix H, and corrupted by the additive Gaussian noise.

3.3.1 Signal Model and Problem Formulation

The transceiver model is similar to the case discussed in Sec. 3.2 and can be represented as in

Fig. 3.11. Rn is the covariance matrix of the additive Gaussian noise; H is the channel matrix;

F is the precoder; G is the receiving filter; B is 0 for linear transceiver case, and strictly lower

triangular [112] for the system with linear precoding and DFE. The difference between the current

model and the one considered earlier is that the channel matrix H here is a M ×M square matrix.

This constraint will later be relaxed and discussed. The per-antenna power constraints can be

formulated as

(E[Fss†F†])ii = (FF†)ii ≤ Pi, ∀i = 1, 2, · · · ,M (3.47)
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The total power constraint can be written as

Tr(FF†) ≤ Ptotal. (3.48)
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Figure 3.11: The system with linear precoding and DFE.

Here we want to minimize the uncoded bit error rate subject to the individual and total power

constraints. This problem formulation is slightly different from those considered by previous pa-

pers [90, 73, 45], which considered only either the total power constraint or the individual power

constraints. It will be elaborated later that because of the introduction of the constraints (3.47), the

nice quasi-analytic form of the optimal solutions obtained in [73] is gone. However, since the con-

vexity of the problem still holds true, the optimal solution can be obtained by numerical search as

we show in the following sections. In this section, we will establish the link between the optimal

transceiver design problems and the SDPs. Also, the majorization theory is used to further simplify

the considered problems.

It can be observed that the optimal receiver structures do not change due to the individual

power constraints when F is given in both cases. In the following we briefly review the optimal

receiver structures [73, 90, 75]. In the linear transceiver case, it turns out that with no loss of opti-

mality [75] we can use the Wiener filter to be the receiver, i.e.,

Gopt = F†H†(HFF†H† + Rn)−1.

If the Wiener filter Gopt is used, the resulting error covariance matrix (MSE matrix) can be written

as

E := E[ee†] = I− F†H†WHF,
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where

W = (HFF†H† + Rn)−1.

This can be rewritten in the following form by using matrix inversion lemma [73]:

E = (I + F†H†R−1n HF)−1.

Note that Gopt is both optimal in the sense of maximizing SINR in each substream as well as

minimizing the mean square error. In this case, the SINR can be related to the MSE as [73]:

SINRi =
1

MSEi
− 1. (3.49)

The optimum decision feedback equalization with successive decoding for MIMO channels is

considered in [112]. First, the feedforward filter is Gopt = CF†H†R−1y , and the resulting MSE

matrix can be written as

E := E[ee†] = C(I + F†H†R−1n HF)−1C† = CMC†,

where M is defined as

M := (I + F†H†R−1n HF)−1,

and C := I+B. It can also be shown that the optimal C can be chosen as [90] C = diag([L11, · · · ,LMM ]T )L−1,

where L is the lower triangular Cholesky factor of M, i.e., M = LL†. The resulting MSE matrix will

be E = diag([L2
11, · · · ,L2

MM ]T ). Under these choices, the SINR and MSE in each substream also

have a nice relation as in (3.49) as shown in [112].

3.3.2 Linear Transceivers

In this section we will focus on solving the problem of minimizing BER subject to individual and

total power constraints for the linear transceiver case. We use the two-step approach. In the first

step we will minimize the AM-MSE (arithmetic mean of mean square error) of the system. This is

done by reformulating the problem as a semi-definite program (SDP) as we shall see. In the second

step, we will argue that there is a set of systems in the minimum AM-MSE family that minimizes
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the average error probability among all linear transceivers {F, G}. That is, the average BER is the

smallest possible. An approach to find one of such optimal transceivers will also be given.

The minimum AM-MSE problem with per-antenna and total power constraints can be cast as

the minimization of Tr(E), where E is the MSE matrix as discussed before. In the following we will

adopt the trick in [59] to formulate the current problem to be a SDP. By similar derivation as in [59]

we have

Tr(E) = M −N + Tr(WRn).

Since M and N are constants and Rn is known, the AM-MSE depends only on W, which is a

function of F. Furthermore, if we define U := FF†, we can write W = (HUH† + Rn)−1.

This equation can be replaced with W0 � (HUH† + Rn)−1 (as discussed in [59]). Also it holds

true if and only if the following linear matrix inequality holds (p. 472 in [31])Ñ
HU†H† + Rn I

I W0

é
� 0. (3.50)

Therefore, the final form of problem formulation can be written as

min
U,W0

Tr(W0Rn) (3.51)

s.t. (a) (U)ii ≤ Pi, ∀i = 1, 2, · · · ,M

(b) Tr(U) ≤ Ptotal

(c) U � 0

(d)

Ñ
HUH† + Rn I

I W0

é
� 0.

In (3.51) the objective function is linear, and the constraints are either linear or positive semi-

definite. Therefore, the problem (3.51) is an SDP problem [105]. This ensures that the global mini-

mum of (3.51) can be found in polynomial time, when the precision of the solution is specified.

Now consider any given precoder F, where a unitary matrix Ψ is further inserted in front of

F. We notice that this substitution does not change the individual power in each antenna nor the

AM-MSE [10]. In the high SNR region, the average BER is an increasing Schur-convex function [73]

in the vector diag(E). Therefore we have
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Pbr =
1

M

M∑
i=1

αQ

Ç 
β · ( 1

Eii
− 1)

å
≥ αQ

Ç 
β · ( 1

1
M Tr(E)

− 1)

å
, (3.52)

where α and β are constants depending on the QAM constellation. It is now clear that the lower

bound is minimized by minimum AM-MSE. The equality is achieved by choosing the matrix Ψ to

equalize the MSE in each substream.

Now we provide an approach to obtain one of the optimal minimum BER solutions. Tak-

ing any solution of UAM to the problem (3.51), the optimal minimum AM-MSE solution FAM

can be taken as any Cholesky factor of UAM . Let V denote the unitary matrix that diagonal-

izes F†AMH†R−1n HFAM : F†AMH†R−1n HFAM = VΣV†. The optimal precoder can be taken as

Fopt = FAMVΦ, where Φ denotes the unitary matrix such that the MSE matrix has the identi-

cal diagonal elements. The existence of such unitary matrix Φ is given by [65]. Φ can be taken as a

matrix with constant magnitude in each of its entries. Examples of such Φ are the Hadamard ma-

trix and the discrete Fourier transform (DFT) matrix [73]. Note that such Φ are not unique, which

means the minimum BER system is not unique.

3.3.3 DFE Transceivers

In this section we will focus on solving the problem of minimizing the BER subject to individual

and total power constraints for the system with DFE and linear precoding. We will take the two-

step approach. In the first step we will minimize the GM-MSE (geometric mean of mean square

error) of the system. This is done by formulating the problem as a semi-definite program (SDP), as

we shall see. In the second step, we will argue there is a set of systems in the minimum GM-MSE

family, which yields the minimum average BER among all transceivers {F, G, B}. A method to

find one such optimal transceiver is also discussed in this section.

Since E = CMC†, and C is a lower triangular matrix with diagonal terms equal to the identity,

we have the relation det(E) = det(CMC†) = det(M) =
∏M
i=1 L2

ii, which is the product of the MSE

in each substream. Therefore, the minimization of the geometric mean of the MSEs is equivalent to

the minimization of the determinant of M.

Since M has the form as in Sec. 3.3.1, we have det(M) = det(IM + F†H†R−1n HF). Note that for

any m × n matrix X, we have the equality det(Im + XX†) = det(In + X†X). Therefore we have

det(IM + F†H†R−1n HF) = det(IN + R
− 1

2
n HFF†H†R

− 1
2

n ), where R
− 1

2
n is the Cholesky factor of the
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noise covariance matrix Rn. By setting U := FF†, we can rewrite the problem of minimizing the

GM-MSE in the following form:

max
U

log det(IN + R
− 1

2
n HUH†R

− 1
2

n ) (3.53)

s.t. (a) (U)ii ≤ Pi, ∀i = 1, 2, · · · ,M

(b) Tr(U) ≤ Ptotal

(c) U � 0.

This reformulation holds true because the log(·) function is a monotone function when the ar-

gument is positive. Problem (3.53) has been considered by several authors [105], [104]. It is an

SDP-representable problem, and can be solved numerically by the interior point method efficiently

[104]. See [104] and the references therein for more detailed discussions about the determinant

maximization problem. To summarize, the minimum GM-MSE problem can be solved numerically

efficiently, to a specified precision by the typical SDP solver.

First we observe that substituting any F with Fnew := FΨ for some unitary matrix Ψ does not

change the GM-MSE nor the individual power in each antenna. In the high SNR region Pbr is a

Schur-convex increasing function in the vector g = [log(E11) log(E22) · · · log(EMM )] [90]. Based

on those observations, we have

Pbr =
1

M

M∑
i=1

αQ

Ç 
β · ( 1

Eii
− 1)

å
≥ αQ

Ñ√
β · ( 1

M
»∏M

i=1 Eii

− 1)

é
= αQ

Ç 
β · ( 1

M
√

det(E)
− 1)

å
. (3.54)

It is now clear that the lower bound is minimized by minimum GM-MSE. The equality is achieved

by choosing the matrix Ψ to equalize the MSE in each substream.

Now we provide a way to compute one solution for the optimal precoders. Suppose we already

found the solution UGM to the problem (3.53). The minimum GM-MSE precoder FGM can be taken

as any Cholesky factor of UGM . Suppose V is the unitary matrix diagonalizing F†GMH†R−1n HFGM :

F†GMH†R−1n HFGM = VΣV†.
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Recall that the MSE matrix will be as in Sec. 3.3.1. From GTD theory, it can be shown that there

exist unitary matrices Q and Φ such that (I + Σ)−
1
2 = QRΦ†, where R is an upper triangular

matrix with diagonal terms all equal to the geometric mean of the diagonal terms of (I + Σ)−
1
2 .

The optimal Fopt can be taken as Fopt = FGMVΦ†, where Φ is the unitary matrix obtained by

the triangular decomposition discussed above. Note that such Φ are not unique, which means the

minimum BER system is not unique.

3.3.4 Numerical Simulations
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Figure 3.12: Comparing four transceivers for 100 channel realizations, with each antenna power
≤ 9. The x-axis represents the total power constraint.

We choose M = 4, N = 5, and per-antenna power constraints to be [P1, P2, P3, P4] = [9, 9, 9, 9].

The total power is varied in the simulation. The constellations are all QPSK. The noise is additive

white Gaussian, with covariance matrix Rn = I. “OPT-MMSE-nodist” denotes the optimal MMSE

design but without distributing the MSE in each substream. “OPT-MMSE-dist” denotes the optimal

MMSE design with the MSE in each substream identical, which is the method proposed in this

section. “Naive-nodist” denotes the case where the power constraints are satisfied by using the

simple choice Fnaive = diag([P1, P2, · · · , PM ]). if the total power constraint is not violated. If the
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choice violates the total power constraint, then we take

Fnaive =
Ptotal∑M
i=1 Pi

× diag([P1, P2, · · · , PM ]).

“Naive-dist” corresponds to the case where the precoder matrix is F = FnaiveVΦ, where Φ is to

force the MSE matrix to have identical diagonal elements. Note that this method is exactly the one

that was proposed in [76]. In Fig. 3.12 we provide the simulation of the linear transceivers for

BER averaged over 100 channel realizations. The channel entries are drawn from an i.i.d. Gaussian

distribution. It can be seen that the typical performance of the proposed method is significant.

When the total power constraint is more than
∑M
i=1 Pi = 36 (or15.56dB), the total power constraint

is actually inactivated. Therefore we can see the performance saturate after this point.

3.3.5 Concluding Remarks

In this subsection we gives several remarks on the extension of the framework developed here, the

relation to literature, and the case where there is rectangular precoder.

Schur-Convex Objective Functions and Additional Linear Constraints

It can be observed that the discussion given above relies only on the fact that the average BER

is a Schur-convex and increasing function of MSEs. Therefore the same concept can also be applied

to other objective functions that have these two properties. Many examples of such optimization

problems are provided in [73] for the linear transceiver case, and in [38, 90] for the DFE case. For

all such objective functions, the systems discussed in the previous subsections are optimal.

It can also be seen that in the framework developed in this section, any finite number of lin-

ear constraints on the covariance matrix of the transmitted signals can be further added with no

difficulty. This is because when the problem (3.51) or the problem (3.53) has one more constraint

added: f(FF†) ≥ 0, where f(FF†) is a linear function in the elements of covariance matrix FF† of

the transmitted signal, it still remains an SDP.

Several examples of such linear constraints were addressed in [76], such as spectral masks in

cable systems to control the crosstalk among DSL users, and limiting the power transmitted along

some directions in wireless systems. Here we elaborate further about spatial masks constraints in

the wireless systems. Suppose a is some spatial steering vector of interest, then the power along

the direction is proportional to a†FF†a. Suppose we want to limit the power transmitted along this

direction of interest, the constraint on the transmitted signal covariance becomes a†FF†a ≤ α, for
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some constant α. This equation can be rewritten as a†FF†a = Tr(FF†aa†) ≤ α, which is a linear

constraint in the transmitted covariance matrix FF†. Therefore the framework here can be easily

modified to include this kind of constraints, both for the linear transceiver and the DFE with linear

precoding.

Relation to Literature

An idea similar to the one discussed here was proposed in [76] where the author considered

shaping constraints on the linear transceivers. In [76], the constraint on the covariance matrix of

the transmitted signals is FF† � S, which means the matrix S − FF† is positive semi-definite.

However, there is a difference between our work and [76], i.e., our constraint is componentwise

while the constraint in [76] is the positive definiteness constraint. This is why our approach needs

to be more involved (reformulating the problem to be a SDP for solving the minimum-AM MSE).

Our approach has some advantages over that in [76].

1) Our work as well as some work in the literature, for example [139] and [45], precisely capture

the individual power constraints. As acknowledged by the author in [76], the individual power

constraints (3.47) are replaced with the tighter constraint (as Eq.(7) in [76]):

FF† � diag([P1, P2, · · · , PM ]).

This artificial replacement yields a solution in which the nondiagonal elements of FF† are zero.

We will see that the optimized solutions to the individual power constraint problem need not have

zero nondiagonal elements for FF†. Therefore, the solution obtained in [76] is a sub-optimal solu-

tion to the individual power constraint problem. This fact will be amply shown in the numerical

simulations.

2) As we argued in earlier, the power constraint along a direction should be like what is dis-

cussed in this section. It is shown here that this problem can be optimally solved under our frame-

work. In [76] the author needs to find a shaping upper bound for the covariance matrix. However,

the procedure of finding the tight upper bound was not trivial [76].

3) Actually, our framework can incorporate the problem discussed in [76]. This can be seen

from the fact that the constraint in [76], U � S, can be added in our framework, and the problem

remains SDP. In our work, we also consider the optimization of the transceivers with DFE and

linear precoder, while in [76] only linear transceivers are considered.

However, there are some disadvantages of our formulations compared to [76] when dealing
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with the shaping constraint problems.

1) Our framework can only deal with square precoding matrix.

2) Given the SDP formulation, the optimal signaling direction cannot be characterized, whereas

[76] gives a nice interpretation.

3) The computational complexity of our approach is much higher than [76] because of the need

to solve the SDP. Solving an SDP requires O(M6) flop counts for each iteration.

Rectangular Precoder

If the precoder matrix F is not square, for example, when the channel matrix H is N × P and

P > M , the rank of U should be no greater than M . This rank constraint should be further added

into the problem formulation (3.51) and (3.53), which will destroy the convexity of the problem.

Generally speaking, the rank-constrained problem is difficult to solve optimally. Therefore we

propose a heuristic way to take care of this issue.

When P > M , suppose we first relax the rank constraint, then the rank-relaxed covariance

matrix U is solved by the SDP solver as before. Now we denote U =
∑P
i=1 λiuiu

†
i , where λi are

the eigenvalues of U with non-increasing order and ui are the corresponding eigenvectors with

dimension P × 1. Then we can take F = [
√
λ1u1 · · ·

√
λMuM ]Φ, where Φ is a M ×M unitary

matrix. This will result in FF† =
∑M
i=1 λiuiu

†
i , which is a rank-M approximation of U. Matrix Φ

can be obtained later as before, to distribute the MSE equally in each substream. It can be easily

shown that with this approximation, the individual and total power constraint are still satisfied

provided the original U is also in the feasible set of the problem formulation (3.51) and (3.53).

The remaining eigenvalues may be scaled at this point to improve the system performance while

maintaining the power constraints.

3.4 Conclusions

In this chapter we have presented several transceiver design applications where the concept of GTD

and majorization is very useful. In Sec. 3.2 we have shown that under the zero-forcing condition,

the minimum power required to achieve the specified probability of error by jointly designing the

DFE transceivers and the bit loading scheme is the same as the one achieved by linear transceiver

with bit loading. However, the presence of DFE gives many freedoms in the design. We showed

that any instances in the GTD transceiver family are optimal solutions. In fact, many existing

works in the literature can be incorporated into this GTD framework, while many new optimal
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designs were also proposed. In Sec. 3.3 we have discussed the transceiver design problem with

more realistic constraints, i.e., individual power constraints on the transmitted antennas or any

linear constraints on the transmit covariance matrix. We have shown that the semi-definite pro-

gramming (SDP) technique gives a nice framework to unify the design for linear transceivers and

DFE transceivers. Furthermore, the theory of majorization was useful to obtain the minimum BER

solutions.

3.5 Appendix

3.5.1 Proofs of Lemma 3.2.1

Proof: First note that the zero-forcing constraint is satisfied by Gopt:

GoptHF−B = (I + B)(HF)]HF−B = I.

Suppose there is another G′ satisfying the zero-forcing constraint with the given F and B, i.e.,

G′HF = I + B. Define ∆ = Gopt −G′. Since both Gopt and G′ satisfy the zero-forcing constraint,

it follows that

∆G†opt = ∆HF(F†H†HF)−†(I + B)†

= (GoptHF−G′HF)(F†H†HF)−†(I + B)†

= 0.

Therefore

[G′G′†]kk = [(Gopt −∆)(Gopt −∆)†]kk

= [(GoptG
†
opt + ∆∆†]kk

≥ [GoptG
†
opt]kk,

where we have used ∆G†opt = 0 in these inequalities. Therefore we have smaller sub-channel noise

variances if we replace G′ with Gopt, hence with given bit rate and probabilities of error, a lower

transmitted power can be achieved. �
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3.5.2 Proofs of Theorem 3.2.4

Proof: Part (a) is true because the problem (3.12) discussed in previous sections is a relaxed version

of the current problem (3.32). We prove part (b) by constructing a system that achieves Pmin when

(3.36) holds. If (3.36) holds then the majorization condition (2.3) can be satisfied by choosing [R]kk

to be positive square roots of

[R]2kk =


Mck2

bk (
∏M

k=1
σ2
h,k)

1
M

c2b
, for k = 1, 2, · · · ,M.

σ2
h,k , for k = M + 1, · · ·K,

(3.55)

where K is the rank of H. Then by the existence of GTD, there exists a K × K upper triangular

matrix R, such that the decomposition H = QRP† is true, where Q and P have orthonormal

columns. Now choose the transceiver matrices F,G, and B as in (3.20), (3.21), and (3.23). Then

Ptrans is as in (3.25). Substituting from (3.55) we get Ptrans = Pmin indeed.

�
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Chapter 4

Transceivers Designs for MIMO
Frequency Selective Channels

In high rate digital communication systems, multiple-input-multiple-output (MIMO) frequency se-

lective (FS) channels complicate the transceiver design process because of the inter-block-interference

(IBI) effect. However, by applying the zero-padding precoding technique, we can eliminate the IBI

and convert the FS channel into an equivalent MIMO block channel [12, 89]. With MIMO block

channels, many researchers have developed transceiver designs to match the channel characteris-

tics and to mitigate the noise interference [12, 73, 75, 89, 90]. One of the approaches is to focus on

linear precoding and decision feedback equalization (DFE).

If the channel state information (CSI) is available both at the transmitter and the receiver sides,

in terms of minimizing the average BER under the transmitted power constraint, the optimal sys-

tem with linear precoding and zero-forcing DFE (ZF-DFE) [90], and the optimal system with linear

precoding and minimum-mean-square-error DFE (MMSE-DFE) [37], can both be derived from the

equivalent block channel matrix. For ZF-DFE, the optimal linear precoder matrix has orthonormal

columns; for MMSE-DFE, the optimal linear precoder no longer has orthonormal columns, instead

it has suitable power loading on the channel eigenmodes. However, precoding matrix with or-

thonormal columns is usually desired for simplicity reasons [142, 56, 99, 141]. Under the unitary

precoder constraints, the optimal systems1 for both receiver types can be derived. Nevertheless, it

is known that the derived optimal systems suffer from two drawbacks. First, they require a large

number of bits from the receiver to encode the full precoding matrix and feed it back to the trans-

mitter [90]. Second, the full precoding matrix multiplication is computationally complex. For the

1The optimal systems is referred to the optimal designs within the class of systems using unitary precoders and DFEs
(ZF or MMSE). These systems will be called the optimal systems through out this chapter.
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block channel derived from a zero-padded MIMO FS channel, these disadvantages become more

apparent when the block size is large.

The block diagonal GMD (BD-GMD) is proposed in [47] to design memoryless transceivers

for MIMO broadcast channels. In this chapter, we consider applying the BD-GMD technique to

design the zero-padded MIMO FS transceiver that solves the two mentioned drawbacks. Two novel

systems (which we call ZP-BD-GMD systems) are proposed: the ZF-BD-GMD system, which uses

block diagonal unitary precoder and ZF-DFE receiver, and the MMSE-BD-GMD system, which uses

block diagonal unitary precoder and MMSE-DFE receiver. We will show the following properties

of the proposed ZP-BD-GMD systems:

1. Because of the block diagonal structure of the precoder matrix, the proposed ZP-BD-GMD

systems solve the two implementation drawbacks of the optimal systems. It is also shown

that the receiver structures are simpler than those of the optimal systems. Therefore, the

ZP-BD-GMD systems have a much smaller implementation cost than the optimal systems.

2. For finite block sizes, it can be seen that any block diagonal unitary precoder system solves

the above drawbacks. In particular, ZP-BD-GMD systems are minimizers of the average BER

within the family of systems that use block diagonal unitary precoder. That is, the ZP-BD-

GMD systems have optimality for any block size. As block size gets larger and approaches

infinity, the average BER of the ZP-BD-GMD systems also approaches that of the optimal uni-

tary precoded systems. In other words, the ZP-BD-GMD systems are asymptotically optimal

within the systems that use unitary precoder, as the bandwidth efficiency approaches unity.

3. In all four unitary precoded systems (ZF-Optimal, ZF-BD-GMD, MMSE-Optimal, and MMSE-

BD-GMD), there is a tradeoff between the bandwidth efficiency and the average BER perfor-

mance. This suggests that one has to carefully design the block length to maintain the target

BER for both the ZP-BD-GMD systems and the optimal systems. In [72], a similar tradeoff

in single-carrier zero-padded SISO FS channels with linear equalization was reported. Thus,

this aspect of our work can be seen as an extension of [72].

4. In the case of the SISO channel, ZP-BD-GMD systems have the same performance as the lazy

precoder systems, i.e., systems with identity precoding matrix. Therefore, in SISO channels

the lazy precoder systems inherit the benefits of the ZP-BD-GMD systems, making the lazy

precoder transceivers asymptotically optimal in the class of systems with unitary precoder
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and DFE. While having the same performance, lazy precoders are more desirable than the ZP-

BD-GMD systems in terms of implementation cost. This is due to the fact that lazy precoders

can transmit data without CSI at the transmitter and precoding matrix multiplication.

These properties make the proposed ZP-BD-GMD systems more favorable designs in practical

implementation than the optimal systems.

The content of this chapter is mainly drawn from [130], and portions of it have been presented

in [127].

4.1 Outline

This chapter is structured as follows: In Sec. 4.2, we will introduce the communication model and

some preliminaries. Sec. 4.3 describes the proposed ZF-BD-GMD transceiver structure, which uses

a block diagonal unitary precoder and a ZF-DFE design based on BD-GMD of the effective channel

matrix. Several properties of the ZF-BD-GMD transceiver are discussed. The implementation cost

is also analyzed. Sec. 4.4 extends the idea to the MMSE-DFE case. The proposed MMSE-BD-

GMD system is discussed. Most of the results will be similar to the ZF case, so this section will

be brief. Sec. 4.5 explains that for the two ZF transceivers (ZF-Optimal and ZF-BD-GMD) and the

two MMSE transceivers (MMSE-Optimal and MMSE-BD-GMD), there exists a tradeoff between the

bandwidth efficiency and the BER performance. Sec. 4.6 discusses the SISO channel case, in which

the lazy precoder system is discussed. Sec. 4.7 presents the numerical simulation results related to

the topics in the chapter.

4.2 Signal Model

We consider a point-to-point communication system withNT transmitting antennas andNR receiv-

ing antennas. The input-output relation of the frequency selective MIMO channel can be expressed

as

yi =
L∑
k=0

Hkxi−k + ni, (4.1)

where xi is theNT×1 transmitted signal, H(z) = H0+H1z
−1+· · ·+HLz

−L is theLth orderNR×NT

frequency selective FIR MIMO channel, ni is the additive channel noise, and yi is the NR × 1
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received vector. The noise covariance matrix is assumed to be Rn = σ2
nI. The zero-padded system

transmits NP zero vectors after every K symbol vectors. That is, in K + NP symbol durations,

the following is transmitted: {x1,x2, · · · ,xK ,0, · · · ,0}. In order to prevent contamination from

previous blocks, one must choose NP ≥ L. The bandwidth efficiency is defined as

ε =
K

K +NP
. (4.2)

Therefore it is desirable to choose NP = L, so that the BW efficiency is maximized, and equal to

K/(K + L). Throughout the chapter, we assume NP = L. The I/O relation of the zero-padded

MIMO frequency selective system can be expressed as an equivalent block channel:


y1

y2

...

yK+L


︸ ︷︷ ︸

yZP,K

= HZP,K


x1

x2

...

xK


︸ ︷︷ ︸
xZP,K

+


n1

n2

...

nK+L


︸ ︷︷ ︸

nZP,K

, (4.3)

where

HZP,K =



H0 0 · · · 0

H1 H0
. . .

...
...

...
. . . 0

HL

...
. . . H0

0 HL
. . .

...
...

. . . . . .
...

0 · · · 0 HL



, (4.4)

and K in the subscript denotes that HZP,K has KNT columns. Note that Eq. (4.3) holds for any

NP ≥ L. We assume (K + L)NR ≥ KNT , so that the zero-forcing condition can be satisfied.

We consider the system where the transmitted vector is linear precoded by aNTK×NTK matrix

P:

xZP,K = Ps,

where s = {sT1 , sT2 , · · · , sTK}T , and si is the NT × 1 transmitted symbol vector. We use the usual
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assumption that the transmitted signal is zero-mean, white, and uncorrelated with the noise, i.e.,

E[sis
H
j ] = δ(i − j)σ2

sI and E[sinj ] = 0. Here we define a constant ζ, which stands for the noise to

symbol power ratio:

ζ
.
= σ2

n/σ
2
s . (4.5)

The average power of the transmitted vector xZP,K is restricted to be less than KNTσ2
s . Note that

the power constraint is proportional to K because K is the number of symbol vectors transmitted

in one block. Since E[ssH ] = σ2
sI, the power constraint can be written as

1

σ2
s

Tr(E[PssHPH ]) = Tr(PPH) ≤ KNT , (4.6)

which is a constraint expressed solely in terms of the precoder matrix. We assume each symbol is

selected from the same QAM constellation, i.e., no bit allocation is applied. In this case, the BER

will be the function of SINR of the input to the decision device (see Eq. (12) in [73]), i.e.,

BER(SINRk) = αQ(β
√

SINRk), (4.7)

where α and β are constants which depend on the constellation, and Q(·) is the Q-function defined

asQ(x) = (1/
√

2π)
∫∞
x
e−λ

2/2dλ. We are interested in the high SNR regime so that the BER function

is a convex function of the logarithm of the SINR [90].2

The optimization problem we are interested in is to minimize the average BER by designing a

linear precoder and a zero-forcing or MMSE decision feedback equalizer jointly under the power

constraint (4.6). We can treat the I/O relation (4.3) as an effective block channel communication sys-

tem. For the ZF-DFE case, the optimal solution is suggested by the Theorem 1 in [91]. The optimal

precoder is with no loss of generality a unitary matrix. The optimal receiver is the corresponding

ZF-DFE solution suggested in Sec. III of [91].

If the receiver is MMSE-DFE instead of ZF-DFE, the optimal precoder will no longer be unitary

[90, 37]. Instead, a suitable water-filling power loading to the channel eigenmodes is needed to

achieve the optimal performance [37]. However, unitary precoding is usually desired for simplicity

2The property we need for the discussion in this chapter is that the average BER is a Schur-convex function of the
logarithm of the effective subchannel gains (see Appendix A.(f) in [90] for details). Therefore, it should be noted that the
theorems developed in this chapter (Thm 4.3.4, Thm 4.3.5, Thm 4.5.1, and the corresponding properties of the MMSE-BD-
GMD systems) are not restricted to the average BER, but are also true for a broader class of metric.
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reasons [142, 56, 99, 141]. Therefore in this chapter, we restrict our interest only to the unitary

precoder case. In this case, the optimal system for MMSE-DFE can also be obtained.

Generally, the optimal precoders for both optimal ZF and MMSE systems are full matrices.

Therefore, the implementation of the optimal systems suffers from two disadvantages:

1. In the limited feedback scheme [55, 91], the channel state information is estimated by the

receiver, and the optimal precoder information is quantized (or quantized to some prede-

termined codebook) and fed back to the transmitter. Since the optimal precoder P is an

NTK ×NTK unitary matrix, it requires a large codebook for quantizing it to cover the whole

space of the NTK ×NTK unitary matrices.

2. Computation of the transmitted signal xZP,K = Ps is expensive for the full matrix multipli-

cation, and takes O(N2
TK

2) operations.

These two disadvantages are more severe when K is large, i.e., when the bandwidth efficiency

(4.2) approaches unity. To overcome these, we propose using the BD-GMD technique, which was

introduced in [47], to design the transceiver. We restrict the precoder to be block-diagonal, i.e.,

P = diag(P1,P2, · · · ,PK), where Pi is an NT ×NT unitary matrix. The block diagonal constraint

clearly simplifies the implementation:

1. Since there are only N2
TK out of N2

TK
2 elements that are nonzero, the required size of the

codebook is much smaller for covering the precoder matrix space.

2. To form the transmitted vector xZP,K = Ps, we only need to form xi = Pisi for i = 1, · · · ,K

and concatenate them. The complexity is onlyO(N2
TK) instead ofO(N2

TK
2) as in the optimal

precoder case without block diagonal constraint.

Although the block diagonal precoder gives these benefits, it is natural to ask how much the

performance degrades due to this constraint. In the following sections, we will discuss several

important properties of the proposed ZP-BD-GMD transceivers. It will be shown that the ZP-

BD-GMD system has similar performance as the optimal systems when the bandwidth efficiency

approaches unity. In addition, the receiver structure of the ZP-BD-GMD systems is computation-

ally simple. Also, we will prove that the ZP-BD-GMD systems are optimal within the family of

transceivers with DFEs and block diagonal unitary precoders.
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4.3 Transceivers with Zero-Forcing DFEs

The block-diagonal geometric mean decomposition (BD-GMD) technique was introduced in [47]

to design precoders with dirty paper coding for MIMO broadcast channels. The schemes in [47]

convert each user’s MIMO channel into parallel subchannels with identical SINRs, thus equal-rate

coding can be applied across the subchannels of each user.

In this chapter we use the BD-GMD idea for a new application – transceiver design for zero-

padded MIMO frequency selective channels. We introduce the proposed zero-forcing BD-GMD

(ZF-BD-GMD) system, which uses a block diagonal unitary linear precoder and a zero-forcing DFE.

Let us consider the BD-GMD of HH
ZP,K :

HH
ZP,K =



HH
0 HH

1 · · · HH
L 0 · · · 0

0 HH
0

. . . . . . HH
L

. . .
...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 HH
0 · · · · · · HH

L



=



P1 0 · · · 0

0 P2
. . .

...
...

. . . . . . 0

0 · · · 0 PK


︸ ︷︷ ︸

P



L1 0 · · · 0

× L2
. . .

...
...

. . . . . . 0

× · · · × LK


︸ ︷︷ ︸

L

QH ,

where Pi’s are NT × NT unitary matrices, Q is a (K + L)NR × KNT matrix with orthonormal

columns, each NT × NT matrix Li is lower triangular with equal diagonal elements. Also, “×”

refers to possibly nonzero entries. Note that in the ZF-DFE case, unitarity of precoder is not a loss

of generality [91], and so, this constraint will not be mentioned explicitly again.

The proposed ZF-BD-GMD transceiver is based on this decomposition. The block diagonal

precoder is chosen as the block diagonal matrix P, and the receiving feedforward filter is chosen

as QH . Since Q has orthonormal columns, the channel noise after QH is still white with variance

σ2
n. Since QHHZP,KP = LH , the effective channel from the input of precoder P to the output of

the feedforward filter QH at the receiver is the upper triangular matrix LH . The corresponding

effective channel noise is still white. This triangular structure facilitates simple decision feedback

equalization [38, 90]. Fig. 4.1 shows the transceiver structure of the ZF-BD-GMD system.
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Figure 4.1: The ZP-BD-GMD transceiver. The signal vector si is first linear precoded by the unitary
matrix Pi. The precoded symbol vectors and NP zero vectors are then passed through a parallel-
to-serial converter before transmitting to channel H(z). The receiver discards the contaminated
signals, and passes the clean signal through DFE. QH is the feedforward filter, and B is the feedback
filter, whose coefficients are obtained from the entries in L.
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As in many analyses of DFE systems [37, 90], we assume that there is no error propagation in

the feedback loop. Based on this assumption, after the decision feedback process, the overall ZF-

BD-GMD system behaves like a system with KNT independent parallel SISO AWGN subchannels.

Each subchannel has identical noise variance σ2
n, and the mth subchannel has subchannel gain

[L]mm, which is the mth diagonal entry of L. Since the transmitted symbol vector has energy σ2
s

per component, the SINR in mth stream before the detection device is

SINRm = |[L]mm|2σ2
s/σ

2
n = |[L]mm|2/ζ. (4.8)

The BER of mth stream will be the function of SINR as in (4.7), i.e.,

BER(SINRm) = αQ(β
√

SINRm) = αQ(β
»
|[L]mm|2/ζ) (4.9)

Therefore, to analyze the performance of the BD-GMD transceiver, we have to study the diagonal

entries of L.

Since the NT × NT lower triangular Li has identical diagonal entries, we shall denote it as ri.

This is the gain of the ith effective subchannel, i.e.,

ri ≡ [Li]kk, for k = 1, 2, · · · , NT .

From the property of BD-GMD (Eq. (21) in [47]), we have

ri =

Ç
det(HH

ZP,iHZP,i)

det(HH
ZP,i−1HZP,i−1)

å 1
2NT

(4.10)

Let us define

H̃m
.
=
[
HH
m HH

m+1 · · · HH
L

]


H0

H1

...

HL−m

 =
L∑

k=m

HH
k Hk−m (4.11)

for m = 0, 1, · · · , L, and H̃m = 0 for m > L. Let

H̃−k = H̃H
k .
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In particular, H̃0 is Hermitian. From the above definition (4.11), we have the following equation

HH
ZP,m+1HZP,m+1 =



H̃0 H̃1 · · · H̃m

H̃−1 H̃0
. . .

...
...

. . . . . .
...

H̃−m · · · · · · H̃0

 , (4.12)

which is a Hermitian block Toeplitz positive semi-definite matrix. From (4.11), it is also noted that

(
L∑
k=0

zkHH
k

)(
L∑
k=0

z−kHk

)
=

L∑
m=−L

H̃mz
−m.

Thus

H̃(ejω)
.
=

L∑
m=−L

H̃me
−jmω =

(
H(ejω)

)H
H(ejω), (4.13)

where H(ejω) =
∑L
k=0 Hke

−jωk. This shows that the matrix H̃(ejω) is always positive semi-definite,

and can be seen as the power spectrum density matrix of a fictitious wide-sense-stationary (WSS)

process z(n) formed by passing a unit-variance white input vector x(n) through an LTI system

with transfer function H(z). These quantities will be useful in characterizing the proposed system

performances.

In the following, we will provide several properties of ri, which characterize the performance

of ZF-BD-GMD systems. The following lemma is useful for deriving the properties.

Lemma 4.3.1 Suppose that the Hermitian matrices D and

A BH

B D

 are both positive definite, where D

has size n× n, A has size m×m and B has size n×m. Then, for any pair of matrices P and Q, where P

has size k ×m, and Q has size k × n, we have

[
P Q

]A BH

B D

−1 PH

QH

 � QD−1QH . (4.14)

Proof: See Appendix. �

Now, we are ready to introduce our first theorem.

Theorem 4.3.2 rm is non-increasing. That is, for m ≥ 1, rm+1 ≤ rm. ♦
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Proof: Based on the Block Toeplitz structure of HZP,m, we can write

HH
ZP,m+1HZP,m+1 =

H̃0 Cm

CH
m HH

ZP,mHZP,m

 =

HH
ZP,mHZP,m BH

m

Bm H̃0

 , (4.15)

where Bm =
[
H̃−m H̃−(m−1) · · · H̃−1

]
=
[
H̃−m Bm−1

]
, and Cm = [H̃1 H̃2 · · · H̃m] =

[Cm−1 H̃m]. By taking determinant on both sides of (4.15), we get

det(HH
ZP,m+1HZP,m+1) = det(HH

ZP,mHZP,m) det(H̃0 −Bm(HH
ZP,mHZP,m)−1BH

m),

where we have used the expression for determinants of partitioned matrices (p. 472 in [31]). Using

this in (4.10), rm can be written as

rm = det(H̃0 −Bm−1(HH
ZP,m−1HZP,m−1)−1BH

m−1)
1

2NT .

Therefore we have

Bm(HH
ZP,mHZP,m)−1BH

m

= [H̃−m Bm−1]

 H̃0 Cm−1

CH
m−1 HH

ZP,m−1HZP,m−1

−1  H̃H
−m

BH
m−1


� Bm−1(HH

ZP,m−1HZP,m−1)−1BH
m−1,

where the last inequality follows from Lemma 1. Subtracting the Hermitian matrix H̃0 from both

sides, we get

H̃0 −Bm(HH
ZP,mHZP,m)−1BH

m � H̃0 −Bm−1(HH
ZP,m−1HZP,m−1)−1BH

m−1.

Taking the determinant, we arrive at rm+1 ≤ rm. �

Theorem 6.4.1 states that the ZF-BD-GMD system creates unequal subchannel gains for the

effective parallel SISO subchannels, and the subchannel gains are in a non-increasing order. For a

given block sizeK, rK is the worst subchannel gain (because rm+1 ≤ rm). This rK is non-increasing

and has a limit:
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Theorem 4.3.3 The limit of rK as K →∞ is:

lim
K→∞

rK
.
= r = exp

Å
1

4NTπ

∫ π

−π
log det H̃(ejω)dω

ã
, (4.16)

where H̃(ejω) is defined in (4.13). ♦

Proof: By Eq. (4.10), r2NT
m+1 is the ratio of the determinant of the block Toeplitz matrices with

order m+ 1 and m. Applying Eq. (1.12) in [117], we have

lim
M→∞

r2NT

M = exp

Å
1

2π

∫ π

−π
log det H̃(ejω)dω

ã
, (4.17)

where we have also used Eq. (1.10) in [117]. Taking the 2NT -th root of (4.17), the theorem follows.

�

The preceding result holds under certain conditions that ensure the integrand above is well

behaved (see condition Eq. (1.8) in [117]).

It can be seen that if the matrix H̃(ejω) is close to singular in some frequency band, the value of

the above integral will be small. In this case, the asymptotic subchannel gain will be small, which

implies a poor BER performance. This is consistent with intuition.

To gain more understanding of these theorems, we refer the reader to Sec. 4.7 where we show

the channel gain behavior of a ZF-BD-GMD system for a MIMO FS channel for different block sizes

K. The optimal system has unitary precoder and identical subchannel gains for all the subchannels

[90]. It can be shown that for a given K, the value of the subchannel gains of the ZF-Optimal

system, which is denoted as gK , will be equal to the geometric mean of {r1, r2, · · · , rK}. That is,

gK =

(
K∏
k=1

rk

) 1
K

. (4.18)

Since from Theorem 6.4.1 we know that rk is non-increasing, gk is also non-increasing. It can also

be shown that gK → r as K → ∞, where r is defined in (4.16). Thus, the subchannel gains of the

ZF-Optimal system approach r as the block size increases. This is the intuition behind the third

theorem, which states the asymptotic optimality of the ZF-BD-GMD transceiver. In what follows,

P (x) is defined as

P (x)
.
= αQ(β

»
x2/ζ), (4.19)
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which denotes the BER as a function of the subchannel gain in the ZF-DFE systems with noise to

symbol power ratio ζ defined in (4.5).

Theorem 4.3.4 The average BER of the ZF-BD-GMD transceiver approaches the average BER of the opti-

mal system when the bandwidth efficiency approaches unity:

lim
K→∞

BERZFBDGMD(K) = lim
K→∞

BERZFoptimal(K) = P (r),

where K denotes the block size. ♦

Proof: Let us first focus on the BER of the ZF-BD-GMD system. From (4.7) and (4.9), we see

that the BER in the kth subchannel is only a function of channel gain [L]kk. It is clear that P (x) is

a continuous and decreasing function of its argument x. By Theorem 6.4.3, the channel gain ri is

non-increasing. Since P (·) is decreasing with its argument, we have P (ri+1) ≥ P (ri).

Let βK denote the average BER:

βK
.
= BERZFBDGMD(K) =

1

K

K∑
i=1

P (ri). (4.20)

It can be seen that βK is a non-decreasing sequence, so it converges (since it is upper bounded

by unity). It can shown that the limit will be P (r), where r is the limit of ri in Theorem 6.4.3. Thus

we have proved

lim
K→∞

BERZFBDGMD(K) = lim
K→∞

1

K

K∑
i=1

P (ri) = P (r).

Now let us look at the average BER of the ZF-Optimal system. The optimal system has unitary

precoder and identical subchannel gains for all the subchannels [90]. Since the product of the

subchannel gains is always det(HH
ZP,KHZP,K)

1
2 , the subchannel gain can be calculated by taking

the KNT -th root. The average BER becomes

BERZFoptimal(K) = P
(

det(HH
ZP,KHZP,K)

1
2KNT

)
.

The limit of det(HH
ZP,KHZP,K)

1
K is given by Eq. (1.5) in [117]:

lim
K→∞

det(HH
ZP,KHZP,K)

1
K = lim

K→∞
K
√
C exp

Å
1

2π

∫ π

−π
log det H̃(ejω)dω

ã
= r2NT ,
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where r is defined in (4.16), C is a constant, and we have used the fact that K
√
C approaches 1 when

K approaches infinity. Therefore,

lim
K→∞

BERZFoptimal(K) = lim
K→∞

P
(

det(HH
ZP,KHZP,K)

1
2KNT

)
= P (r).

This completes the proof. �

This theorem shows the asymptotic optimality of the ZF-BD-GMD transceiver. However, the

block size needs to be chosen according to the channel coherence time and cannot be too large in

a fast fading channel scenario [89]. Thus, it is important to characterize the performance of the

ZF-BD-GMD system for finite block sizes. The following theorem suggests the optimality of the

ZF-BD-GMD system for any finite block size.

Theorem 4.3.5 Consider the family of systems for zero-padded MIMO frequency selective channels with

fixed block size K that use block diagonal unitary precoders and ZF-DFEs. Within this family, the ZF-BD-

GMD system is one of the minimizers for the average BER. ♦

Proof: See Appendix. �

We now discuss the implementation cost of transmitter and receiver in the ZF-BD-GMD system.

As mentioned previously, the block diagonal structure of P is much simpler computationally than

the optimal precoder. We will see that the receiver structure of the ZF-BD-GMD system is also

much simpler than that of the optimal system.

For the transmitter side to form the transmitted vector xZP,K , we need multiplications of an

NT×NT matrix with anNT vectorK times, which has complexityO(KN2
T ). Compared toO(K2N2

T )

in the ZF-Optimal system, there will be K times saving.

Now let us look at the receiver side. The lower triangular matrix L consists of K2 blocks and

each block is an NT × NT matrix. The matrix Q consists of (K + L)K blocks and each block is an

NR × NT matrix. The theorem below shows that both L and Q contain many zero entries. The

consequence is that compared to the ZF-Optimal system, the saving in the implementation of the

feedback paths (L matrix) is in the order of O(K), and the saving in the implementation of the

feedforward filter (Q matrix) is about a factor of two.

Theorem 4.3.6 In the ZF-BD-GMD system, L and Q both have lower block bandwidth3 L, where L is

3The block bandwidth for a block matrix is defined similarly to the bandwidth defined in p. 152 of [25] original for
matrix with scalar entries.
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the order of the frequency selective channel. That is, whenever i > j + L, the (i, j)th block in L is a

0NT×NT
matrix, and the (i, j)th block in Q is a 0NR×NT

matrix. When K is large, there will be about

K
(
(L+ 1/2)N2

T +NT /2
)

possibly nonzero entries in L, and about NTNRK2/2 possibly nonzero entries

in Q. ♦

Proof: See Appendix. �

Here we provide a BD-GMD example for K = 4 and L = 1. We can see that both L and Q are

block banded matrices with lower block bandwidth L.
× ×

× ×

× ×

× ×


︸ ︷︷ ︸

HH
ZP,K

=


×

×

×

×


︸ ︷︷ ︸

P


×

× ×

× ×

× ×


︸ ︷︷ ︸

L


× ×

× × ×

× × × ×

× × × × ×


︸ ︷︷ ︸

QH

From this theorem we can see the implementation of the ZF-BD-GMD system is much simpler

than the ZF-Optimal system. The number of nonzero entries in L equals the number of feedback

paths in the DFE. Therefore, in contrast to the ZF-Optimal case, in which the number of nonzero

entries in the feedback matrix is (K2N2
T +KNT )/2, the saving of the ZF-BD-GMD system is in the

order O(K). The number of nonzero entries in Q equals the number of operations when the signal

is passed through the feedforward filter. In contrast to the ZF-Optimal case, in which the number

of nonzero entries in Q is about NTNRK2, the ZF-BD-GMD feedforward part saves about half of

the operations.

4.4 Transceivers with MMSE DFEs

Suppose some unitary precoder matrix P0 is used for the channel in (4.4), the MMSE-DFE receiver

[12] can be obtained by the QR decomposition of :

HZP,KP0

√
ζIKNT

 = Q0R0, (4.21)

where the ((K + L)NR +KNT )×KNT matrix Q0 has orthogonal columns, and R0 is aKNT×KNT

upper triangular matrix. The feed-forward filter QH is chosen as the first (K + L)NR columns
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of QH
0 . Under the no-error-propagation assumption, the MMSE-DFE system behaves like KNT

parallel uncorrelated SISO subchannels, and the SINR ρk in the kth SISO subchannel is [37, 12]:

ρk =
1

ζ
[R0]k,k − 1, (4.22)

which depends only on the diagonal terms of R0. Furthermore, the product of the diagonal terms

in R0 is a constant when the entries of H(z) are given, i.e.,

KNT∏
k=1

[R0]2kk

= det(RH
0 R0) = det(RH

0 QH
0 Q0R0)

= det
[
(HZP,KP0)H

√
ζI
]HZP,KP0

√
ζI


= det(HH

ZP,KHZP,K + ζI).

By the Schur-convexity argument [90] of BER function, the optimal P0 is the one that forces R0

to have equal diagonal entries, i.e.,

[R0]kk =
(
det(HH

ZP,KHZP,K + ζI)
) 1

2KNT

for all k = 1, · · · , NKT . The optimal system can be computed as follows: Consider the GMD [36]

 HZP,K

√
ζIKNT

 = QgRgP
H
g ,

where Rg has equal diagonal terms. Taking P0 = Pg , R0 = Rg , and Q0 =

I 0

0 PH
0

Qg , we are

able to arrive at the form (4.21) where R0 has equal diagonal entries.

Since in general P0 is a full matrix, the optimal unitary precoder system suffers from the same

two implementation problems as in the zero forcing case. Similar to the ZF case, in the following

we derive the BD-GMD system for the MMSE counterpart.



85

Consider the following BD-GMD

[
HH
ZP,K

√
ζI
]

= Pms



Lms,1 0 · · · 0

× Lms,2
. . .

...
...

. . . . . . 0

× · · · × Lms,K


︸ ︷︷ ︸

Lms

QH
ms, (4.23)

where Pms is a block diagonal unitary matrix, Lms,i is lower triangular matrix with equal diagonal

elements, and Qms has orthonormal columns. We shall refer to li as the channel gain of the effective

subchannels, i.e.,

li
.
= [Lms,i]mm, for m = 1, · · · , NT .

Then,HZP,KPms

√
ζI

 =

I(K+L)NR
0

0 PH
ms

HZP,K

√
ζI

Pms =

I(K+L)NR
0

0 PH
ms

Qms︸ ︷︷ ︸
Qnew

LHms,

where the second equality is obtained by substituting from (4.23). Note that Qnew has orthonormal

columns, and QnewLHms can be viewed as the QR decomposition of the left hand side.

The proposed MMSE-BD-GMD system is based on this decomposition. The block diagonal

unitary matrix Pms is used as the precoder. At the receiver, the feedforward filter is chosen as the

first (K + L)NR columns of QH
new, and the feedback filter can be obtained from Lms. The resulting

system, which we call the MMSE-BD-GMD system, has effectively KNT SISO channels, and the

SINR ρk in the kth subchannel is 1
ζ [Lms]kk − 1. Similar to the ZF-BD-GMD case, the MMSE-BD-

GMD system has several good properties, which we will discuss in the following.

First, analogous to Theorem 6.4.1, we can show that the SINR ρk in the kth SISO channel of

the MMSE-BD-GMD system, is non-increasing. Since ρk = 1
ζ [Lms]kk − 1, it is sufficient to show

that [Lms]kk is non-increasing. Suppose the diagonal term in Lms,m is denoted as lm, then proving

this is equivalent to proving that lm is non-increasing. Since lm is obtained from the BD-GMD of
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[
HH
ZP,K

√
ζI
]
, a relation similar to (4.10) can be obtained:

lm =

Ç
det(HH

ZP,mHZP,m + ζI)

det(HH
ZP,m−1HZP,m−1 + ζI)

å 1
2NT

. (4.24)

Since HH
ZP,m+1HZP,m+1 + ζI can be written as in (4.12) with H̃0 replaced by H̃0 + ζI, a similar

approach to the proof of Theorem 6.4.1 can be used here to show that lm is non-increasing, i.e.,

lm ≥ lm+1.

Second, we observe that since
Ä
HH
ZP,m+1HZP,m+1 + ζI

ä
can be written as in (4.12) with H̃0 re-

placed by H̃0 + ζI, we can replace H̃(ejω) with
Ä
H̃(ejω) + ζI

ä
as well, then apply similar technique

as in the proof of Theorem 6.4.3. Analogous to Theorem 6.4.3, by the above approach we can obtain

the limit of the subchannel gain. The worst subchannel gain converges to:

l
.
= lim
K→∞

lK = exp

Å
1

4NTπ

∫ π

−π
log det(H̃(ejω) + ζI)dω

ã
. (4.25)

Note that this formula should be compared with (4.16). From (4.25), since H̃(ejω) is positive

semi-definite, we have

det(H̃(ejω) + ζI) > det(ζI) = ζNT for all ω.

Thus, it can be shown that l >
√
ζ. This means that, in the MMSE case even when the channel is

close to singular in some frequency band, the effective channel gain will still be greater than
√
ζ

due to the additional term ζI. This is not the case in the zero-forcing systems, which can be clearly

seen from (4.16).

Third, for the BER performance of the MMSE-BD-GMD system and the MMSE-Optimal4 sys-

tem, we can also show that the asymptotic performance will be the same. This can be seen by the

following argument: Because of (4.7) and (4.22), we define

Pms(x) = αQ
(
β

 
x2

ζ
− 1
)
, (4.26)

4Here the MMSE-Optimal system denotes the joint optimal transceiver with MMSE-DFE receiver and linear precoder
under the unitary constraint.
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which denotes the BER function of the channel gain x for MMSE-DFE systems [12] with noise to

symbol power ratio ζ defined in (4.5). Since both systems convert the original system to NKT

independent SISO channels, the average BER depends on the effective subchannel gains. It can be

seen that Pms(x) is a continuous and decreasing function of x. Therefore, similar arguments as in

the proof of Theorem 4.3.4 can be used here to establish the following equation:

lim
K→∞

BERMSBDGMD(K) lim
K→∞

BERMSoptimal(K) = Pms(l),

where l is defined in (4.25). This implies that the MMSE-BD-GMD transceiver is asymptotic optimal

when K →∞.

Fourth, consider the family of systems for zero-padded MIMO frequency selective channels

with fixed block size K that use block diagonal unitary precoders and MMSE-DFEs. We can prove

that within this family, the MMSE-BD-GMD system is one of the minimizers for the average BER.

The proof is similar to that of Theorem 4.3.5 and omitted here.

Finally we consider the implementation cost of the MMSE-BD-GMD system. Since the precoder

matrix in MMSE-BD-GMD system is block diagonal, the transmitter implementation cost is the

same as the ZF-BD-GMD case. For the receiver part, we can prove that receiver implementation

cost is the same as that of the ZF-BD-GMD system. The proof is similar to the proof for Theorem

4.3.6, and is omitted here.

To summarize, the MMSE-BD-GMD system appears to be a more favorable design than the

MMSE-Optimal system in that it has much less implementation cost and similar BER performance.

If compared to its ZF-BD-GMD counterpart, the MMSE-BD-GMD system has the same implemen-

tation cost but better BER performance because it has no zero-forcing constraint.

4.5 Trade-Off between BW Efficiency and Performance

In this section, we will discuss the relationship between bandwidth efficiency and the system per-

formance for four different designs (all with unitary precoders) discussed in this section. These

four schemes are: the ZF-BD-GMD system, the ZF-Optimal system, the MMSE-BD-GMD system,

and the MMSE-Optimal system. The following theorem summarizes the performances of these

four systems when K increases, i.e., BW efficiency increases.
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Theorem 4.5.1 For all of the four mentioned schemes, and for any channel, the average BER is a non-

decreasing function in the information block size K. That is, the BER performance degrades as K increases.

♦

Proof: We will prove the theorem for the two zero-forcing systems. For MMSE case, similar

approaches can be applied to the proof and the details are left to the reader.

For the ZF-BD-GMD system, BER is determined by the SISO subchannel gains ri. In the proof of

Theorem 4.3.4, we have shown that βk in (4.20), which denotes the BER of the ZF-BD-GMD system

when block size is K, is a non-decreasing sequence. This proves the theorem for the ZF-BD-GMD

part.

For the ZF-Optimal system with information block size K, the effective SISO subchannels have

the same channel gain gK = (
∏K
i=1 ri)

1/K as in (4.18). Since ri is non-increasing, we have

gK = (
K∏
i=1

ri)
1
K ≥ (

K+1∏
i=1

ri)
1

K+1 = gK+1.

By the fact that P (·) is a decreasing function, we arrive at

BERZFoptimal(K + 1) = P

(
(
K+1∏
i=1

ri)
1

K+1

)
≥ P

(
(
K∏
i=1

ri)
1
K

)
= BERZFoptimal(K),

which proves the ZF-Optimal case. �

The bandwidth efficiency of a transmission can be defined as in (4.2). Thus, to increase K

implies to increase BW efficiency. Therefore, there exists a clear tradeoff between the bandwidth efficiency

and the BER performance for these four systems. This effect has been observed in the literature (see

p.635 and p.636 in [111] for the SISO case). Because of the tradeoff between BER and BW efficiency,

one has to choose K carefully to achieve the target BER. An adaptive rate control transmission

scheme similar to what is mentioned in [72] can be used here: if the target BER performance is not

attained with some K, the receiver asks the transmitter to reduce K to obtain a better BER, but at

the expense of losing the bandwidth efficiency.

The best BER is realized when K = 1. In this case, the ZF-BD-GMD system becomes equiv-

alent to the ZF-Optimal system (since the block diagonal constraint is no longer active), and the

MMSE-BD-GMD system is equivalent to the MMSE-Optimal system. The BER can be expressed as

P
(

det(H̃0)
1

2NT

)
for the ZF systems and Pms

(
det(H̃0 + ζI)

1
2NT

)
for the MMSE systems.
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4.6 ZP for SISO Frequency Selective Channel

In this section we discuss the situation when NT = NR = 1, i.e., the case of the SISO frequency

selective channel. The identity precoding matrix, in which the symbols and the padded zeros are

directly vectorized without any precoding, will be referred to as the “lazy precoder.” A system

with lazy precoder and DFE for the ZP-SISO-FS channel is shown in Fig. 4.2.

For SISO frequency selective channels, the zero-padded system with linear precoder and re-

ceiver has been discussed and optimally solved [89]. For the lazy precoder (where the precoding

matrix is just an identity matrix) and linear ZF or MMSE equalizer case, the tradeoff between band-

width efficiency and the BER performance has been established in [72]. In the following we will

explain that a similar tradeoff occurs when we use a DFE receiver. For NT = NR = 1 in the ZF-BD-

GMD system, each small block Pi in the block diagonal matrix P is a 1 × 1 unitary matrix, which

can be expressed as ejθi . The BD-GMD can be written as

HH
ZP,K =



ejθ1 0 · · · 0

0 ejθ2
. . .

...
...

. . . . . . 0

0 · · · 0 ejθK





r1 0 · · · 0

× r2
. . .

...
...

. . . . . . 0

× · · · × rk

QH

=



1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0

0 · · · 0 1





r1e
jθ1 0 · · · 0

× r2e
jθ2

. . .
...

...
. . . . . . 0

× · · · × rke
jθK

QH .

If we use a lazy precoder, the ZF-DFE structure will result in effective K SISO subchannels with

channel gains riejθi . In this case, the SINR is |riejθi |2/ζ = r2i /ζ. This is the same as that of the ZF-

BD-GMD system. Therefore, all the discussions about the ZF-BD-GMD system performance in Sec.

4.3 continue to hold. Directly following Theorem 4.5.1, we can show that for the system with lazy

precoder and ZF-DFE, the same tradeoff also exists. In [72], the author proved the tradeoff exists

between the BW efficiency and the BER performance for the lazy precoder with ZF or MMSE linear

receiver. Therefore, the point made here can be seen as an extension of [72] to the DFE receiver case.

From Theorem 4.3.4, we know that the ZF-BD-GMD system is asymptotically optimal for ZF-
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Figure 4.2: The ZP-BD-GMD transceiver for SISO channels. The lazy precoder is used. The vector
with signal symbols si appended with NP zeros is passed through a parallel-to-serial converter
before transmitting to the channel H(z). The receiver discards the contaminated signal, and passes
the clean signal through DFE. QH is the feedforward filter, and B is the feedback filter.

DFE receiver. Thus, for the SISO frequency selective channel case, the systems with lazy precoder

and ZF-DFE are asymptotically optimal in the class of systems with linear precoders and ZF-DFE receivers.

This property is especially attractive, since the lazy precoder has the practical advantage that the

transmitter does not require CSI. Also, it saves the multiplication and addition operations because

there is no linear precoding.

In the MMSE-DFE case, where we operate the BD-GMD on
[
HH
ZP.K

√
ζI
]
, we can also argue

similarly that the lazy precoder performance is the same as the MMSE-BD-GMD system. Thus, all

the discussions in this Section apply to the MMSE case as well. In particular, the systems with lazy

precoder and MMSE-DFE are asymptotically optimal in the class of systems with linear unitary precoder

and MMSE-DFE receiver.

4.7 Numerical Simulations

In this section, we provide numerical simulations to verify the theoretical results developed in this

chapter.
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The first example is to plot the subchannel gains of the ZF-BD-GMD and the ZF-Optimal sys-

tems for a MIMO (NT = 2, and NR = 3) frequency selective channel Ha(z) when K = 5 and

K = 10. Here Ha(z) = H0 + H1z
−1 + H2z

−2 + H3z
−3, and the coefficients of these matrices are

shown below:

H0 =


0.0476− 0.4556i −1.1298 + 1.2318i

0.5694 + 0.9440i 0.4338− 0.9422i

−1.0402 + 0.2657i 0.7277 + 0.2035i



H1 =


0.7978 + 1.2002i 0.2938− 0.2975i

−0.7598 + 0.4878i −1.0624 + 0.2195i

−0.1242 + 0.9503i 0.6558− 1.0261i



H2 =


−0.4325 + 0.6604i −0.9536 + 1.0979i

0.0105− 0.2053i −0.2412− 1.0218i

0.2921− 0.2946i 0.8198 + 0.9613i



H3 =


−0.0030 + 0.0512i −0.2331 + 0.3128i

−0.7642− 0.2375i −1.1634− 1.5280i

1.0184 + 0.2687i −0.2281 + 0.8638i



Fig. 4.3 shows the subchannel gains. For the ZF-BD-GMD systems, the first 10 subchannel gains

when K = 5 are the same as that when K = 10. This can be seen from (4.10). The 11th to the 20th

subchannel gains whenK = 10 are smaller than the first 10 subchannel gains. Also, the subchannel

gains are non-increasing with the subchannel index. This is consistent with Theorem 6.4.1. For ZF-

Optimal systems, all the subchannel gains are identical and equal (see Eq.(4.18)) to the geometric

mean of the subchannel gains in the ZF-BD-GMD system. For example, all the subchannel gains

equal 5.08 dB in K = 5 case. It can be seen that the subchannel gains for K = 10 equal 4.92 dB,

which is less than that for K = 5. This is consistent with Theorem 4.5.1, where the tradeoff exists

in the system BER performance and the BW efficiency. We also calculated the value of r defined in
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(4.16) by numeric integration. The result is r = 4.787dB and is shown in Fig. 4.3. From this figure,

we can also see the trend of the subchannel gains as K increases. As K increases, the subchannel

gains of the ZF-Optimal system will be lower and closer to the value of r. For K → infinity, these

channel gains should converge to r. This fact was also predicted by Theorem 4.3.4, which states

that both the ZF-BD-GMD systems and the ZF-Optimal systems will have BER close to P (r) for

very large K.
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ZF−BD−GMD,K=5

ZF−Optimal,K=5

ZF−BD−GMD,K=10

ZF−Optimal,K=10

r, as in Eq.(16)

Figure 4.3: The effective channel gain of ZF-BD-GMD and ZF-Optimal transceivers for channel
Ha(z).

In the following simulations, symbols are generated using gray encoded QPSK constellations

with symbol power σ2
s . In each case, 103 different channels are used for the Monte Carlo simula-

tions. These channels have the entries coming from i.i.d. complex zero-mean Gaussian distribu-

tions with unit variance. The additive channel noise has covariance matrix Rn = I.

In Fig. 4.4 and Fig. 4.5 we show the average BER simulation results with respect to different

values of σ2
s for the MIMO systems with NT = NR = 2, for ZF-DFE and MMSE-DFE case, respec-

tively. The MIMO channels are with order L = 2. The zero-forcing system performances for K = 3,

K = 10, and K = 20 are shown in Fig. 4.4. The ZF-Optimal system appears to have the best perfor-

mance for all K. The ZF-DFE system with lazy precoder has about 2 dB loss at BER= 10−5 when

K = 3 compared to ZF-Optimal. However, the ZF-BD-GMD only has about 0.3 dB loss. We can see

that the ZF-BD-GMD system indeed has similar performance as the ZF-Optimal system. For larger

K, the performance difference between the two systems becomes even smaller.
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The MMSE system performance with the same channel setting is shown in Fig. 4.5. Similar

conclusions as the ZF case can be made here for MMSE case. From these results, we see that the

BD-GMD systems have nearly optimal uncoded BER performance for both ZF and MMSE case,

and are much better than the lazy precoder systems. Compared to these two figures, we can see

that by using the MMSE-DFE systems, the average BER performance can be a little better than

using the ZF-DFE systems. It is important to note that the MMSE-BD-GMD systems have the same

implementation cost as the ZF-BD-GMD systems, thus the MMSE-BD-GMD systems is an even

better candidate in practice.
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ZFOPT,K=20

ZF−Lazy,K=3

ZF−Lazy,K=10

ZF−Lazy,K=20

Figure 4.4: The BER performance of the zero-forcing systems for MIMO (NT = NR = 2) Rayleigh
channels of order 3, with K = 3, K = 10, and K = 20. “ZFBDG” represents the ZF-BD-GMD
system; “ZFOPT” represents the ZF-Optimal system; and “ZF-Lazy” represents the lazy precoder
with zero-forcing DFE.

In Fig. 4.6 and Fig. 4.7 we show the simulation results for case of single transmitting antenna

and single receiving antenna. The SISO channels have L = 2. The zero-forcing system perfor-

mances for K = 3, K = 10, and K = 20 are shown in Fig. 4.6. The MMSE system performances for

the same channel settings is shown in Fig. 4.7. For largeK, lazy precoder case has BER performance

almost identical to that of the optimal systems. The simulation results confirm the discussions in

4.6. Also, when K is larger, the BER performance is worse. This confirms the tradeoff between BW

efficiency and BER.
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Figure 4.5: The BER performance of the MMSE systems for MIMO (NT = NR = 2) Rayleigh
channels of order 3, with K = 3, K = 10, and K = 20. “MSBDG” represents the MMSE-BD-
GMD system; “MSOPT” represents the MMSE-Optimal system; and “MS-Lazy” represents the
lazy precoder with MMSE-DFE.
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Figure 4.6: The BER performance of the zero-forcing systems for SISO (NT = NR = 1) Rayleigh
channels of order 3, withK = 3, K = 10, andK = 20. “ZFOPT” represents the ZF-Optimal system;
and “ZF-Lazy” represents the lazy precoder with zero-forcing DFE.
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Figure 4.7: The BER performance of the MMSE systems for SISO (NT = NR = 1) Rayleigh channels
of order 3, with K = 3, K = 10, and K = 20. “MSOPT” represents the MMSE-Optimal system; and
“MS-Lazy” represents the lazy precoder with MMSE-DFE.

4.8 Concluding Remarks

ZP-BD-GMD transceivers for zero-padded linearly precoded MIMO frequency selective channels

have been discussed in this chapter. We proposed the ZF-BD-GMD and the MMSE-BD-GMD sys-

tems. Both systems have block diagonal linear precoder matrices and thus simplify the implemen-

tation. We showed that the ZP-BD-GMD transceivers have performance similar to the optimal sys-

tems when the bandwidth efficiency approaches unity. Thus, both proposed systems appear to be

more favorable candidates for practical implementations. We also discussed the tradeoff between

the BW efficiency and the BER performance for the ZP-BD-GMD transceivers and the optimal sys-

tems. The lazy precoder in SISO channel was also discussed, and it was shown to be asymptotically

optimal.

An alternative way to eliminate the IBI in a MIMO FS channel, instead of using zero-padding,

is to use cyclic-prefix precoding. This will lead to a MIMO-OFDM system [94]. In this case, if

we transmit inverse-FFT-transformed signals and also perform FFT at the receiver, the effective

channel becomes a block-diagonal matrix. Thus, if we use block-diagonal precoder for this block-

diagonal effective channel, the optimal system design problem reduces to finding the optimal linear

precoder and ZF-DFE for the channel coefficients of each carrier, which can be solved by perform-
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ing the conventional algorithm (e.g. [90]) on each of them.

4.9 Appendix

4.9.1 Proof of Lemma 4.3.1

Proof: The proof is based on decomposing the matrix as

A BH

B D

 =

I BHD−1

0 I

∆D 0

0 D

 I 0

D−1B I

 ,
where ∆D = A −BHD−1B. By theorem 7.7.6 in [31], ∆D is positive definite. We can rewrite the

left hand side of (4.14) as

LHS

=
[
P Q

]ÑI BHD−1

0 I

∆D 0

0 D

 I 0

D−1B I

é−1 PH

QH


=

[
P Q

] I 0

−D−1B I

∆−1D 0

0 D−1

I −BHD−1

0 I

PH

QH


=

[
P−QD−1B Q

]∆−1D 0

0 D−1

PH −BHD−1QH

QH


= (P−QD−1B)∆−1D (P−QD−1B)H + QD−1QH

� QD−1QH ,

where in the last equality we have used the fact that ∆D is positive definite.

�

4.9.2 Proof of Theorem 4.3.5

Proof: Consider a system with block size K that uses the block diagonal unitary precoder P′ =

diag(P′1, · · · ,P′K). We call this system the P′-BD system. We will prove that the ZF-BD-GMD

system has average BER smaller than or equal to that of the P′-BD system.

For the P′-BD system, the corresponding optimal ZF-DFE can be obtained from the QR decom-
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position: HZP,KP′ = Q′L′H , where L′ is a lower triangular matrix. This can be rewritten as

HH
ZP,K =



P′1 0 · · · 0

0 P′2
. . .

...
...

. . . . . . 0

0 · · · 0 P′K


︸ ︷︷ ︸

P′



L′1 0 · · · 0

× L′2
. . .

...
...

. . . . . . 0

× · · · × L′K


︸ ︷︷ ︸

L′

Q′H ,

where each L′k is a lower triangular matrix, and the diagonal entries of L′k: [L′k]mm for k = 1, · · · ,K,

and m = 1, · · · , NT , are the subchannel gains of the P′-BD system. Similar to Eq. (20) in [47], from

the above equation we have

NT∏
m=1

|[L′k]mm|2 = det(L′kL
′H
k ) =

Ç
det(HH

ZP,kHZP,k)

det(HH
ZP,k−1HZP,k−1)

å
= r2NT

k , (4.27)

where rk is defined in (4.10), which stands for the subchannel gain of some subchannels in the

ZF-BD-GMD system.

First we note that the SINRs in the subchannels for both the ZF-BD-GMD system and the P′-

BD system relate to the subchannel gains by (4.8). Second, the Schur-convex function preserves

the partial ordering of majorization [65]. Therefore, to prove this theorem, what we need to prove

is that the vector consisting of the absolute values of the subchannel gains of the P′-BD system

multiplicatively majorizes the vector consisting of the subchannel gains of the ZF-BD-GMD system.

The following is devoted to prove this relation.

Let ap be defined as the product of the largest p absolute values of the subchannel gains of

the P′-BD system, and let bp be defined as the product of the largest p subchannel gains of the

ZF-BD-GMD system. What is left to be proved is the majorization relation:

ap ≥ bp, for p = 1, · · · ,KNT (4.28)

with equality when p = KNT .

Suppose we express integer p as p = τNT + σ, where τ and σ are the nonnegative integers and

σ < NT . Since Theorem 6.4.1 tells us that ri is non-increasing, we have

bp =

(
τ∏
s=1

rNT
s

)
rστ+1. (4.29)
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Let us form a permutation π′ of {|[L′k]mm|} (which may not be in a non-increasing order) to be:

π′ = [L1
′
[1], · · · ,L1

′
[NT ],L2

′
[1], · · · ,L2

′
[NT ], · · · ],

where Lk
′
[m] denote themth largest component in [|[L′k]11|, · · · , |[L′k]NTNT

|]. Let π′(q) denote the qth

element in π′. Since ap is the product taken from the largest p elements in π′, we have the following

inequality

ap ≥
p∏
q=1

π′(q). (4.30)

We note that rτ+1 is the geometric mean of [Lτ+1
′
[1], · · · ,Lτ+1

′
[NT ]], and therefore [rτ+1, · · · , rτ+1]

is always multiplicatively majorized [65, 90] by [Lτ+1
′
[1], · · · ,Lτ+1

′
[NT ]]. The consequence is that

(
σ∏
t=1

Lτ+1
′
[t]

)
≥ rστ+1. (4.31)

Observe that

p∏
q=1

π′(q) =

(
τ∏
s=1

rNT
s

)(
σ∏
t=1

Lτ+1
′
[t]

)
≥

(
τ∏
s=1

rNT
s

)
rστ+1 = bp,

where the first equality is from (4.27), and the second inequality is from (4.31). Combining the above

equations with (4.30), we have now proved that ap ≥ bp for p = 1, · · · ,KNT . When p = KNT , both

ap and bp equal
Ä
det(HH

ZP,KHZP,K)
ä1/2

, thus (4.28) is proved. This completes the proof.

�

4.9.3 Proof of Theorem 4.3.6

Proof: Let us reproduce the BD-GMD equation for the zero-padded systems:

HH
ZP,K = PLQH .

Now let us first prove Q is block banded with lower block bandwidth L. Since P is a unitary

block diagonal matrix, and L is a lower triangular matrix, PL will be a block lower triangular

matrix. Since the diagonal blocks of L have full rank, all the diagonal blocks in PL will have full

rank as well.
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Let us now look at the first row of HH
ZP,K . The (1, j)th block in HH

ZP,K is the product of the

(1, 1)th block in PL and the (1, j)th block of QH . For j > 1 +L, the (1, j)th block in HH
ZP,K is a zero

matrix. In this case, since the (1, 1)th block in PL has full rank, the (1, j)th block of QH must be a

zero matrix.

Now let us look at the second row of HH
ZP,K . For j > 1 + L, since the (1, j)th block of QH is

zero, the (2, j)th block in HH
ZP,K is the product of the (2, 2)th block in PL and the (2, j)th block of

QH . For j > 2 + L, the (2, j)th block in HH
ZP,K is a zero matrix. In this case, since the (2, 2)th block

in PL has full rank, the (2, j)th block of QH must be a zero matrix. Using a similar argument, we

are able to prove that Q has lower block bandwidth L.

Now let us prove L is block banded with lower block bandwidth L. The BD-GMD can be re-

written as

HH
ZP,KQ = PL,

where we know Q has lower block bandwidth L. If we look at the (i, j)th block in PL, it is the

product of the ith block-row in HH
ZP,K and the jth block-row in Q. Since HH

ZP,K is block banded

with upper block bandwidth L and Q is block banded with lower block bandwidth L, the (i, j)th

block of PL will be zero if i > j + L. This shows that PL has lower block bandwidth L. Since P is

a block diagonal matrix, this implies that L has lower block bandwidth L.

Since L is a lower triangular matrix, this theorem implies L is a block banded matrix with (L+1)

bands (including the main block diagonal). We can calculate the number of nonzero entries in L:

for the main block diagonal, there are K
(
N2

T+NT

2

)
nonzero entries; for the lower L bands, there

are ((K − 1) + (K − 2) + · · ·+ (K − L))N2
T =

Ä
(2K−L−1)L

2

ä
N2
T nonzero entries. Thus, the total

number of nonzero entries in L is K
(
N2

T+NT

2

)
+
Ä
(2K−L−1)L

2

ä
N2
T ≈ K

(
(L+ 1/2)N2

T +NT /2
)
,

which grows linearly with K when K is large.

We can also calculate the number of nonzero entries in Q. Note that zero entries are in the

lower kth band if k > L. Thus, the number of zero entries is (1 + 2 + · · · + (K − 1))NTNR =

NTNR(K2 − K)/2. Therefore the number of nonzero entries can be calculated as the number of

total entries minus the number of zero entries: NTNR(K+L)K−NTNR(K2−K)/2 ≈ NTNRK2/2

when K is large.

�



100

Chapter 5

The Role of GTD in Transform
Coding

In the first part of this chapter, a general family of optimal transform coders (TC) is introduced

based on the generalized triangular decomposition. This family includes the Karhunen-Loéve

transform (KLT), and the generalized version of the prediction-based lower triangular transform

(PLT) introduced by Phoong and Lin [79], as special cases. The coding gain of the entire family,

with optimal bit allocation, is equal to those of the KLT and the PLT. Other special cases of the

GTD-TC are the GMD (geometric mean decomposition) coder and the BID (bidiagonal transform)

coder. The GMD coder in particular has the property that the optimum bit allocation is a uniform

allocation; this is because all its transform domain coefficients have the same variance, implying

thereby that the dynamic ranges of the coefficients to be quantized are identical.

The above advantage of the GMD coder is shown to be true in the high bit rate case. However,

the performance of the GMD transform coder is degraded in the low rate case. There are mainly

two reasons for this degradation. First, the high bit rate quantizer model becomes invalid. Second,

the quantization error is no longer negligible in the prediction process when the bit rate is low.

In the second part of this section, we introduce dithered quantization to tackle the first difficulty,

and then redesign the precoders and predictors in the GMD transform coders to tackle the second.

We propose two dithered GMD transform coders: the GMD subtractive dithered transform coder

(GMD-SD) where the decoder has access to the dither information and the GMD non-subtractive

dithered transform coder (GMD-NSD) where the decoder has no knowledge about the dither. Un-

der the uniform bit loading schemes in scalar quantizers, it is shown that the proposed dithered

GMD transform coders perform significantly better than the original GMD coder in the low rate

case.
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The content of this chapter is mainly drawn from [122, 129], and portions of it have been pre-

sented in [121].

5.1 Outline

The chapter will be organized as follows. In Sec. 5.2 we will introduce the GTD transform coder.

We will show that the GTD transform coder framework unifies the existing optimal designs, and

also predicts many novel optimal structures. Since the theory developed in Sec. 5.2 depends on

the validity of high bit rate assumption, we observe some performance degradation for the GMD

transform coder when the bit rate is low. In Sec. 5.3 we address this problem by proposing the

dithered GMD coder. Two novel designs are proposed, namely, subtractive dithered GMD (SD-

GMD) and nonsubtractive dithered GMD coders. Finally, the conclusions are made in Sec. 5.4.

5.2 GTD Transform Coder for Optimizing Coding Gain

In transform coder (TC) theory, the Karhunen-Loéve transform (KLT) is known for its optimality

properties [2, 35, 107]. For example it provides maximum coding gain when high bit rate scalar

quantizers are used in the transform domain. The KLT essentially diagonalizes the autocorrela-

tion matrix of the input vector x before quantization. The decorrelated components are typically

quantized by independent scalar quantizers.

If the vector x being transformed is a blocked version of a scalar wide sense stationary (WSS)

process x(n), then the coding gain of the KLT can also be achieved by using a different kind of

transform called the prediction-based lower triangular transform or PLT, which was introduced

into the signal processing literature by Phoong and Lin [79]. The PLT is based on the theory of linear

prediction for the scalar WSS process x(n). PLT has smaller design cost because fast algorithms

such as the Levinson algorithm can be used instead of matrix diagonalization. The implementation

complexity for the PLT is 50% smaller than that of the KLT [79]. However, the PLT as introduced in

[79] is in the context of blocked versions of scalar WSS processes only, which is not applicable for

general WSS vectors processes.

This section introduces a general family for transform coding based on the generalized triangu-

lar decomposition (GTD). We will show that the GTD-TC family has the following features:
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1. Unlike the original PLT,1 the input vector x is not required to be a blocked version of a WSS

process, but when such is the case the complexity of the new transform can be made compa-

rable to that of the original PLT. One of the attractive features of the PLT is the existence of

a structure with unit noise gain, called the MINLAB structure [79]. The GTD based family

includes a PLT-like special case which also enjoys the MINLAB structure. In this sense it ex-

tends some of the features of the PLT for the case where x is not a blocked version of a scalar

process.

2. It includes the KLT and PLT as special cases.

3. The coding gain for any member of the family is equal to that of the KLT.

4. Like the KLT and the PLT the GTD family also produces a decorrelated set of components at

the inputs of the scalar quantizers. The GTD offers a great deal of freedom in the distribution

of the variances of these decorrelated transform domain components.

5. Other special cases of the GTD transform coder includes the GMD (geometric mean decom-

position) and the BID (bidiagonal transform).

6. The GMD in particular has the property that the optimum bit allocation is a uniform alloca-

tion. This follows from the fact that all transform coefficients have the same variance (same

dynamic range from a practical view point [93]) and thus the same machine word length can

be used for all coefficients. Recall here that the closed form formula for optimal bit alloca-

tion used by KLT and other transforms [35] often yields non-integer values for the bits. The

approximation of these with integers would lead to suboptimality of the transform coder.

Since the GMD-based method uses the same number of bits for all the transform domain

coefficients without compromising optimality, this disadvantage is not present any more.

The family of GTD coders therefore provides a unified framework for a number of optimal

linear transforms for high bit rate coders.

This section is organized as follows. Sec. 5.2.1 briefly reviews the KLT and the PLT. In Sec. 5.2.2

we discuss the proposed GTD-TC. Several examples of the GTD-TC, such as the GMD-TC and BID-

TC are given here. The use of GTD in progressive transmission will also be described. Sec. 5.2.3

1The original PLT, as introduced in [79], assumes that the input vector x is a blocked version of a scalar WSS process.
The natural extension of the PLT, will be shown to be optimal in terms of coding gain for any stationary vector process
(not necessarily a blocked version of a scalar process) with well-defined covariance matrix [33]. This generalization will be
referred to as the “PLT.” and the restricted one in [79] as the “original PLT” throughout the section.
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provides numerical simulations related to the topic discussed. In particular the theoretical claim

that the GMD-TC with uniform bit allocation is as good as the KLT with optimal bit allocation is

clearly demonstrated in this section.

Assumptions. All signals and transforms discussed in this section are assumed to be real-valued.

We assume that the M × 1 input x(n) is a zero mean real-valued wide-sense stationary vector

process, with positive definite covariance matrix Rx. The time argument n is dropped when re-

dundant.

5.2.1 Preliminaries and Reviews

The transform coder is shown in Fig. 5.1. The signal x is first multiplied by an M ×M matrix T

so that y = [y1 y2 · · · yM ]T = Tx. The quantizers are scalar quantizers, and are modeled as an

additive noise sources so that“yi = yi+qi. Suppose the ith quantizerQi has bi bits, then the variance

of the quantization error qi satisfies

σ2
qi = c2−2biσ2

yi , (5.1)

where σ2
yi is the variance of the signal input to the ith quantizer. This result generally holds under

the high bit rate assumption [35, 64, 107]. The constant c depends on the type of the quantizer

and the statistics of yi. It is assumed that all the scalar quantizers have the same c. The signal is

reconstructed at the decoder by multiplying with T−1.

The problem of minimizing the arithmetic mean of MSE (AM-MSE) of the reconstructed coef-

ficients E[||x − x̂||22], under the average bit rate constraint, is solved by the KLT [107]. The KLT

uses T = UT , where U is any M ×M orthonormal matrix such that Rx = UΣUT , where Σ is the

diagonal matrix of the eigenvalues {σ2
1 , · · · , σ2

M} of Rx (assumed to be in non-increasing order).

Under the high bit rate assumption (5.1), the optimal bit allocation is given by the bit-loading

formula [35, 107]

bi = b+
1

2
log2

σ2
i

det(Rx)
1
M

, (5.2)

where the average bit rate is constrained to be b bits per data stream. Note that σ2
i is actually the

signal variance of the transform coefficient yi. With the bit allocation choosen as in (5.2), the MSE

σ2
qi due to the ith quantizer becomes independent of i (as seen by substituting (5.2 ) into (5.1), with
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σyi = σi.). The resulting AM-MSE is

EKLT = c2−2b det(Rx)
1
M . (5.3)

It was shown in [106] that under the high bit rate assumption, it is not a loss of generality to assume

that the transform is orthonormal.2 It should be noted that the KLT decorrelates the signal, so the

components of y are statistically independent (under the Gaussian assumption) [24]. This is a

necessary condition for optimality (minimum MSE) under the use of scalar quantizers [35] in the

high bit rate case.
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Figure 5.1: Schematic of a transform coder with scalar quantizers.

The PLT, proposed in [79], is a signal dependent non-orthonormal transform, which utilizes lin-

ear prediction theory [35, 108]. It has the same decorrelation property as the KLT, and is shown to

have the same MMSE performance if the so-called minimum noise structure and optimal bit alloca-

tion are used [79]. In the article of Phoong and Lin [79], the original PLT is used for the vector x

obtained by blocking a scalar WSS x(n). In the following review of the PLT idea, it can be seen that

the PLT can actually be used for a vector process which need not to be a blocked version of a scalar

process. The development of [79] which was based on linear prediction theory does not apply in

this case, but some of the main conclusions continue to be true as we shall elaborate next.

Consider the LDU decomposition [31] of the covariance matrix Rx given by

Rx = LDLT . (5.4)
2It should be noted that the KLT is optimal among memoryless transforms. If T is replaced with T(z) which has memory,

then the lapped transform and its variations can be used to further improve the coding performance [1, 62]. In the lapped
transform the optimal transform is no longer necessarily orthogonal but biorthogonal [62]. Such transforms are popular in
modern practical transform coders [93].
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Here L is lower triangular with diagonal elements equal to unity, and D is a diagonal matrix with

positive diagonal elements. We can rewrite this as

(L−1R
1
2
x )(L−1R

1
2
x )T = D.

That is, L−1x has the diagonal covariance matrix D. So premultiplying x with L−1 results in decor-

relation. The transform coder with T = L−1 will be referred to as the PLT here, and its implemen-

tation is shown in Fig. 5.2. The multipliers skm in the figure are the coefficients in the matrix L.

In this implementation the quantizer noise is amplified by T−1 = L. A different implementation,

called the minimum noise structure I (MINLAB(I)) [82] is shown in Fig. 5.3. At each step of the

Minlab encoder as well as the decoder, a prediction is made based on the quantized data, whereas

in the structure in Fig. 5.2 the encoder makes predictions based on the original data but the decoder

makes predictions with quantized data. This structure is shown to have the unity noise gain prop-

erty [79]. It minimizes the AM-MSE if the bit loading for each quantizer follows the bit loading

formula:

bi = b+
1

2
log2

Dii

det(Rx)
1
M

. (5.5)

Note that Dii is actually the signal variance of the input to the ith quantizer. By choosing the bit

allocation as in (5.5), the MSEs at the output of the quantizers are made identical as seen by using

(5.5) in (5.1). The resulting AM-MSE will be

EPLT = c2−2b det(Rx)
1
M , (5.6)

which is the same as what the KLT can achieve when the optimal bit loading is applied. The reason

for the name PLT is that the multipliers skm are related to optimal linear predictor coefficients [79]

when x(n) is the blocked version of a scalar WSS process x(n). For simplicity we shall continue to

use the term PLT even when this is not the case. The PLT achieves the same optimal performance

as the KLT but with less computational complexity in the implementation. Other attractive features

are mentioned in [79].
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Figure 5.2: A direct implementation of the PLT.
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Figure 5.3: The PLT implemented using MINLAB(I) structure.
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5.2.2 Generalized Triangular Decomposition Transform Coder

In this subsection we will show how to construct the GTD-TC from a given covariance matrix. We

will also show that actually both the KLT and the PLT are special cases of the GTD-TC. Several

other interesting instances of GTD-TC, i.e., GMD-TC, BID-TC, and the combination of GMD-TC

with progressive transmission, will be discussed.

Consider the transform coding problem again. Suppose the LDU decomposition of Rx is Rx =

LDLT . Decompose D
1
2 LT using the GTD, i.e.,

D
1
2 LT = QRPT . (5.7)

Then we can express Rx as

Rx = PRTQTQRPT

= PL1diag([R2
11,R

2
22, · · · ,R2

MM ])LT1 PT ,

where L1 is a unit-diagonal lower triangular matrix which satisfies

L1diag([R11,R22, · · · ,RMM ]) = RT .

Note that because of the GTD theory, the multiplicative majorization property

[R2
11,R

2
22, · · · ,R2

MM ] ≺× [σ2
1 , σ

2
2 , · · · , σ2

M ] (5.8)

holds, where [σ2
1 , σ

2
2 , · · · , σ2

M ] are the eigenvalues of Rx with non-increasing order, i.e., σ2
1 ≥ σ2

2 ≥

· · · ≥ σ2
M . Note that (5.8) implies the fact that the diagonal terms of R cannot be arbitrarily chosen,

but have to satisfy the multiplicative majorization property.

If we pass the signal x through the orthonormal matrix PT to produce z, i.e., z = PTx, the

covariance of z is

Rz = PTRxP = L1diag([R2
11,R

2
22, · · · ,R2

MM ])LT1 .

Therefore, L1 is the lower triangular matrix of the LDU form of Rz . If now apply the PLT L−11 to

the signal z, the components of the resulting vector are decorrelated. The system is called GTD-TC,
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and is demonstrated in Fig. 5.4 for M = 4. Here we have used the MINLAB(I) structure [79]. The

multipliers skm are the entries of the matrix L−11 . For example, when M = 4,

L−11 =


1 0 0 0

s21 1 0 0

s31 s32 1 0

s41 s42 s43 1

 .

The bit loading formula becomes

bi = b+
1

2
log2

R2
ii

det(Rz)
1
M

= b+
1

2
log2

R2
ii

det(Rx)
1
M

, (5.9)

where we have used det(Rz) = det(PTRxP) = det(Rx). Note that the signal variance of the input

to the ith quantizer is R2
ii. Again, by using the bit loading formula (5.9), the MSEs of the outputs of

the quantizers are identical. This is the same property that the KLT and the PLT have, as introduced

in Sec. 5.2.1.

The AM-MSE is invariant to the orthonormal matrix P at the decoder, therefore the AM-MSE is

the same as the one for the PLT part for the transform coding of z. As in eq. (5.6), the MSE is

EGTD = c2−2b det(Rz)
1
M = c2−2b det(Rx)

1
M , (5.10)

which is the same as the MSE for KLT and PLT with optimal bit allocation. Note that this result is

true because of the minimum noise structure for the PLT (which has unit noise gain).
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Figure 5.4: The GTD transform coder implemented using MINLAB(I) structure.
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We can regard P and PT as the precoder and postcoder, and the system in between as the PLT part

as indicated in the figure. Since there are infinitely many GTD realizations [38], this framework

includes many transform coders that achieve the maximized coding gain. Actually it contains both

the KLT and the PLT as special cases:

1. Suppose in (5.7), the GTD {Q,R,P} is taken as the SVD of D
1
2 LT :

D
1
2 L = VΣ

1
2 UT .

In this case, we actually have Rx = LDLT = UΣUT , thus P = U, which consists of the

eigenvectors of the input covariance matrix. We also have Rz = UTRxU = Σ. In this case,

the GTD-TC is reduced to the KLT. The PLT part in Fig. 5.4 is simply a series of scalar quantizers,

and the optimal bit loading is according to the formula (5.2).

2. In (5.7), suppose {Q,R,P} is taken as the QR decomposition of D
1
2 L. Since D

1
2 L is by itself

an upper triangular matrix, we actually have P = I and Q = I. In this case, the GTD-TC reduces

to the original PLT-TC.

In the following, we will introduce three new transform coder schemes based on GTD theory.

Geometric Mean Decomposition – GMD

Suppose the GMD is used for the transform coder: in (5.7), R has all diagonal terms equal to

σ̄ = (
∏M
i=1 σi)

1
M . The bit loading formula becomes

bi = b+
1

2
log2

σ̄2

det(Rx)
1
M

= b, (5.11)

because det(Rx) = σ̄2M . The preceding equation says that all the quantizers are assigned the same

number of bits. This is a consequence of the fact that Dii in Eq. (5.5) are identical for all i. That is,

the variances of the quantizer inputs are all identical, which means that the dynamic ranges of the

signals being quantized are identical. This is a desirable property in practice.

Bi-Diagonal Transformation – Hessenberg Form
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A matrix B is said to be bidiagonal if it has the form demonstrated below for the 4× 4 case.

B =


b00 b01 0 0

0 b11 b12 0

0 0 b22 b23

0 0 0 b33

 .

If the GTD form of D
1
2 LT is QBPT , where B is a bi-diagonal matrix, then we call it the bi-diagonal

transform coder (BID-TC). It can be seen that

Rx = LDLT = PBTBPT ,

where BTB is a tri-diagonal matrix demonstrated below for size 4× 4:

BTB =


c00 c01 0 0

c10 c11 c12 0

0 c21 c22 c23

0 0 c32 c33


with cmk = ckm. This tri-diagonal form BTB is also known as the Hessenberg form [25] of Rx. The

advantages of the BID-TC coder lie in its reduced computational complexity. To reduce a symmetric

matrix to a tri-diagonal form by orthonormal transformation is computationally much less complex

compared to eigenvalue decomposition [25]. The detail of reducing a symmetric matrix to the tri-

diagonal form is discussed in [25], and requires only several Householder transformations. The

LDU decomposition for a symmetric tri-diagonal matrix is also easy, which requires only O(M)

operations now, instead of O(M2) for general symmetric matrices. Therefore, the design cost for

the BID-TC is less than KLT whereas the KLT requires iterative EVD computations. Also, due to the

bi-diagonal structure of B, the implementation cost for the inner PLT part is also reduced, which is

only in the order of O(M). This can be seen in Fig. 5.5, which shows the MINLAB(I) structure for

the BID-TC encoder. Signal feedforward paths are only required for the adjacent data streams. The

number of signal feedforward paths is much less than for the original PLT.

The detail comparison between the design and implementation costs for various GTD based

coders are summarized in Table 5.1.

Combination of GMD and Progressive Transmission
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Figure 5.5: The BID Transform coder implemented using MINLAB(I) structure.

Table 5.1: Design and Implementation Costs of Transform Coders
Design cost Impl. cost (precoder, PLT)

KLT EVD, O(M3) O(M2), 0
PLT LDU, O(M2) 0, O(M2)

GMD-TC EVD and GMD [38], O(M3) O(M2), O(M2)
BID-TC Hessenberg form O(M3) and easy LDU O(M ) O(M2), O(M )

General GTD-TC EVD and GTD [38], O(M3) O(M2), O(M2)

There are some applications where rapid transmission is required and a coarse signal approxi-

mation is first produced [61]. When more bits are available, the system progressively enhances the

performance by sending more information. Fig. 5.6 shows the example in which we divide the sig-

nal data streams after the linear transformation into three groups. The first group is the significant

group where theK1 data streams contain a coarse approximation of the signal. The second group is

the less significant group where the K2 data streams contain detailed information about the signal.

The third group of K3 streams is the least significant group where the remaining M −K1−K2 data

streams contain components which are close to zero after the linear transformation PT .
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Figure 5.6: Use of GTD-TC in the progressive transmission context.
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Suppose we adopt the GTD form in (5.7). We are looking for a transformation such that the

diagonal terms of R have the pattern

diag(R) = [σ̄1, · · · , σ̄1, σ̄2, · · · , σ̄2, σK1+K2+1, · · · , σM ],

where

σ̄1
2 = (

K1∏
i=1

σ2
i )

1
K1 , σ̄2

2 = (

K1+K2∏
i=K1+1

σ2
i )

1
K2 .

Here [σ2
1 , · · · , σ2

M ] are the eigenvalues of Rx with non-increasing order. P is the orthonormal ma-

trix obtained from the GTD theory. Note that this decomposition exists for anyK1,K2 combination,

since the multiplicative majorization property holds. Because the eigenvalues are in non-increasing

order, the first K1 substreams actually represent the first K1 principal components of the vector x,

and the next K2 substreams represent the next K2 principal components. Suppose for the signif-

icant group the total bit budget is b1K1, for the less significant group the total bit budget is b2K2,

and for the least significant group the average number of bits are zero. As shown in Fig. 5.6, for the

first and the second group we use the local PLT for each of them. It can be seen that the bit loading

formula under the high bit rate assumption will be

bi = b1 +
1

2
log2

R2
ii

(
∏K1
i=1 σi)

1
K1

= b1

for the first group, and

bi = b2 +
1

2
log2

R2
ii

(
∏K1+K2

i=K1+1 σi)
1

K2

= b2

for the second group. That is, uniform bit loading is used across the quantizers within each group.

The data streams in the third group are dropped (i.e., assigned zero bits).

It can be seen that the resulting AM-MSE of this transform coder is

1

M
(K1c2

−2b1 σ̄1 +K2c2
−2b2 σ̄2 + ΣMi=K1+K2+1σi).

When we only have a very low bit budget, we can allocate the bits to the first group to get the coarse

approximation of the signal. When we have more bits available, the information in the second

group is exploited to get the detail information of the signal. Hence the progressive transmission

scheme can be implemented when we are able to use uniform quantizers within each group. This
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shows one example of the flexibility that our proposed GTD-TC scheme can have. One can have

more groups of data streams where each group has a different bit budget.

5.2.3 Simulations

In this subsection we provide the numerical simulations for GTD based coders. The signal x is

generated by a zero-mean Gaussian vector process with prescribed covariance matrix Rx. The

number of data streams M = 8 in the experiments. Uniform roundoff quantizers are assumed.

Each quantizer adapts its step size according to the variance of the Gaussian input (pp. 818 of [107]).

We run the simulation for input covariance with high and low condition numbers, respectively. In

Fig. 5.7 and Fig. 5.10, the condition number is 107. In Fig. 5.8 and in Fig. 5.11 the condition

number is 103. For each case, we run the Monte Carlo simulations for calculating AM-MSE and

root-mean-square error (RMSE, which is the square root of AM-MSE). In each trial, we first generate

the input covariance matrix by multiplying a fixed diagonal matrix Λx with a randomly generated

orthonormal matrix on the left and its transpose on the right. Two choices of Λx are used. For the

so-called high condition number example,

Λx = diag
[
107 106 105 104 103 102 101 1

]
and for the low condition number example,

Λx = diag
[
103 103 102 102 101 101 1 1

]
.

The input vector x is then generated according to this covariance matrix. In the following we pro-

vide simulation comparisons of different transform coders with and without optimal bit allocation.

Optimal bit allocation: Fig. 5.7 and Fig. 5.8 compare the RMSE performance of different trans-

form coders with optimal bit allocation, for input covariance matrix with high and low condition

numbers, respectively. “Transform-wBL” means we adopt the specified transform with optimal bit

loading. For example “KLTwBL” uses the KLT with the bit loading formula (5.2). “PLTwBL” is

the method mentioned in [79], with the optimal bit loading formula (5.5). “UNCwBL” is the case

when we have no transform; we directly quantize the input x with optimal bit allocation as the bit



114

loading formula

bi = b+
1

2
log2

σ2
x,i

(
∏M
k=1 σ

2
x,i)

1
M

.

We perform a rounding operation on the bit loading formula to obtain integer values, and adjust

it a little bit to fit the bit budget: First we check if the bit budget is satisfied with equality. If the

number of bits is more/less than the bit budget, we decrease/increase 1 bit from the substream

with most/least number of bits. We repeat this until the bit budget is satisfied with equality. While

suboptimal, we believe this algorithm is not far from optimal in the high bit rate case. Since the

input to the quantizers xi are correlated to each other in general, direct scalar quantization without

transformation results in performance loss compared to the GTD-TCs even when the optimal bit

loading scheme is applied. “BIDwBL” is the bi-diagonal transform coder. The bit loading formula

is as in (5.9). “GMDTFC” is the GMD transform coder. Since the signal variance in each data

stream is the same, no bit loading is needed. This allows us to build the same scalar quantizers for

all data streams. It can be seen from the figure that with optimal bit loading, all GTD-TCs perform

about the same. This is consistent with the analysis made in Sec. 5.2.2. Direct quantization without

transforms (UNCwBL) results in about 5 bits per data stream performance loss for Fig. 5.7 and 1.7

bits loss for Fig. 5.8.

Fig. 5.9 plots the coding gain defined as

GTC =
MSEPCM
MSETC

, (5.12)

which is the ratio of the MSE of direct quantization MSEPCM (often referred to as pulse coded

modulation) to the MSE of the transform coder MSETC . It can be seen that the coding gain perfor-

mance of each method is approximately the same in the high bit rate regime.

Uniform bit allocation: Fig. 5.10 and Fig. 5.11 compare the RMSE performance of different trans-

form coders with uniform bit allocation, for input covariance matrix with high and low condition

numbers, respectively. Here “transform-nBL” means we adopt some specific transform with no

optimal bit loading, i.e., we allocate the same number of bits to each data stream. However, the

step size of each scalar quantizer is adapted according to variance of the Gaussian input (P.818 of

[107]). “KLTnBL” uses KLT for the transform. “PLTnBL” is the method mentioned in [79] but with

no bit loading. “UNCnBL” is the case when we have no transform but directly quantize the input x.
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Figure 5.7: Performance of different transform coders with optimal bit allocation. Input covariance
matrix has a high condition number (107).
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matrix has a low condition number (103).
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Figure 5.9: Comparison of coding gain of different transform coders with optimal bit allocation.
Input covariance matrix has a high condition number (107).
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Figure 5.10: Performance of different transform coders with uniform bit allocation. Input covari-
ance matrix has a high condition number (107).
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Figure 5.11: Performance of different transform coders with uniform bit allocation. Input covari-
ance matrix has a low condition number (103).

No bit loading is applied either. “BIDwBL” is the bi-diagonal transform coder with no bit loading.

“GMDTFC” is the GMD transform coder. It can be seen from the figure that with no bit loading

applied, GMD performs much better than the other methods, since the GMD without bit allocation

is theoretically as good as the other methods with optimal bit allocation.

In the simulation results, the reader will notice that for values of b (average number of bits)

exceeding three (the low condition number case), and exceeding six (for the high condition num-

ber case), the theoretical predictions are indeed verified to be true. Namely, with no bit allocation,

GMD performs much better than KLT, PLT, and the BID. These later methods with no bit allocation

have performance comparable to direct quantization. Furthermore, with optimal bit allocation, all

these methods (GMD, KLT, and BID) have identical performances. For small values of b [61], these

theoretical predictions (which are based on the high bit rate assumption) are seen to be (under-

standably) less and less true. The low bit rate effect appears to be more severe for the case where

the input covariance matrix has high condition number. Also, from the simulations we see that

the coding gain improvement of the proposed GTD-TC is more significant for the high condition

number case.
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5.3 Dithered GMD Transform Coder for Low Rate Applications

In the previous section we showed that all GTD transform coders achieve the maximum coding

gain with optimal bit allocation. Several new transform coders in the GTD transform coder family

were proposed and shown to have some good properties. In particular, the GMD transform coder

yields the maximum coding gain with uniform bit allocation, i.e., no bit allocation is needed.

However, many applications require very low rate transform coders [61]. In those scenarios, the

GMD transform coder performs poorly (as can be seen from Fig. 5.10). This is mainly due to two

reasons. First, in the high rate case, the uniform quantizer acts like an independent additive noise

source. This approximation is no longer valid in the low rate case, where the quantization noise

strongly depends on the quantizer input. Second, in the middle-PLT part of the GMD quantizer, the

quantized data is used for prediction. However, the prediction coefficients themselves are obtained

from the unquantized data. The effect of this mismatch is no longer negligible in the low rate

regime.

In this section, we propose two transform coding structures: the GMD subtractive dithered

(GMD-SD) transform coder and the GMD non-subtractive dithered (GMD-NSD) transform coder.

These two transform coders solve the two difficulties mentioned above in the low rate case. The first

difficulty is solved by using dithered quantization [116]. If the decoder has perfect knowledge of

the dither signal, the GMD-SD transform coder can be used. In absence of knowledge of the dither

signal at the decoder, we propose using the GMD-NSD transform coder. The dither signal is chosen

differently in each case in order for the quantization error to be uncorrelated with the quantizer

input. The second difficulty is solved by redesigning the prediction coefficients. The predictors

are derived from the second order statistics of the quantized data to accommodate the effect of

quantization noise. Based on these approaches, we are able to improve the coding performance

significantly in the low rate case compared to the original GMD coder.

5.3.1 Dithered GMD Quantizer

The dithered quantizer is shown to render the quantization noise statistics. Suppose that Q is a

scalar quantizer with step size ∆. In a dithered quantizer, the sum of the input signal x and the

dither w is passed through the scalar quantizer Q, where the dither is independent of the input.

The output signals of subtractive and nonsubtractive dithered quantizers are x̂ = Q(x + w) − w

and x̂ = Q(x + w), respectively. Assume that the maximum quantization error is less than ∆/2.
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It is shown in [27, 116] that (i) if the dither w is uniformly distributed on (−∆/2,∆/2] then the

quantization error of the subtractive dithered quantizer Q(x + w) − (x + w) is independent of the

input signal and is uniformly distributed on (−∆/2,∆/2], and (ii) if the dither w is the sum of n ≥ 2

independent random variables uniformly distributed on (−∆/2,∆/2], then the kth moment of the

quantization error of the nonsubtractive dithered quantizer Q(x + w) − x is independent of the

input distribution for k = 1, 2 . . . , n, and its variance is equal to (n + 1)∆2/12. In this subsection,

we propose to use dithered quantization along with the GMD coder. Also, a design method for

the predictors in the PLT structure used in the GMD coder is proposed to incorporate the low rate

mismatch.

We consider transform coder structures with dithered quantizers combined with the GMD

coder. Fig. 5.12 shows an example of the structure of a GMD subtractive dithered (GMD-SD) coder

with M = 3. The dither wi is added to the input of uniform quantizer Qi for i = 1, 2, . . . ,M . After

the uniform quantizer, the dither is subtracted from the quantized signal. The resulting signal is

then multiplied with the predictor coefficients s1i, s2i, . . . , sMi for the use of following substream

quantizers. The quantized signal ŷi is then stored or transmitted to the decoder side. The subtrac-

tive dither quantizer assumes the decoder has knowledge about the dither signal. In the decoder,

the dither is first subtracted. The resulting signal then undergoes the inverse operation of the pre-

diction process and the M ×M matrix P, which yields the reconstructed signal x̂.

In the non-subtractive dithered quantizer, the dither knowledge is lacking in the decoder. Fig.

5.13 shows the structure of GMD non-subtractive dithered (GMD-NSD) coder. In the encoder of

GMD-NSD, the quantized signal is directly multiplied with the predictor coefficients for the use of

following substream quantizers, without being first subtracted from the dither. For both cases, the

transform coder can be modeled as in Fig. 5.14, where the ith dithered quantizer is modeled as an

additive noise source ni. Note that the statistics of noise source ni are different in these two cases.

In the following, we will use the model in Fig. 5.14 to design the predictor coefficients. The

transformed signal z is passed through a prediction-based lower triangular transform coder [79]

implemented using the MINLAB structure [82]. The resulting encoded signal is ŷ = S(PTx +

n), where ŷ = [ŷ1, ŷ2, · · · , ŷM ]T , n = [n1, n2, · · · , nM ]T , and the prediction matrix S is a unit-

diagonal lower triangular matrix that consists of prediction coefficients in the MINLAB structure.

The covariance matrix of ŷ can be written as“Ry = SE[(z + n)(z + n)T ]ST = S(Rz + Rn)ST ,
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where we assume the noise samples are uncorrelated with the signal z. Therefore, the MMSE

prediction matrix can be obtained by viewing the signal covariance matrix of the middle-part (PLT

part) as Rz + Rn instead of Rz . By similar derivation as in Sec. III of [79], the MMSE lower

triangular prediction matrix can be written as

S = L−11 , (5.13)

where L1 is the unit-diagonal lower triangular matrix in the LDU decomposition of Rz + Rn:

Rz + Rn = L1DLT1 . (5.14)

Suppose that the noise variance depends only on the quantizer step size, and the noise sam-

ples are uncorrelated with each other.This is achievable by using a uniformly distributed dither for

subtractive dithered quantizer and a triangular-pdf dither for nonsubtractive dithered quantizer

(see [27, 116]). We will first assume that the step size of each quantizer can be made the same

(same step-size rule). This implies the signal substream to each quantizer has the same variance,

or equivalently “Ry = dI, where d is some constant. Later we will prove that this is possible with-

out bit allocation, but with the aid of properly designed precoder PT . Under this same step size

assumption, the noise covariance matrix Rn = σ2I, where σ2 is the noise variance that depends on

the step size. With the use of prediction matrix S in (5.13), the covariance matrix of the encoded

signal ŷ is “Ry = D, where D is a diagonal matrix. The question now is whether there exists an

orthogonal matrix P so that “Ry = dI. The following theorem asserts the existence of such P.

Theorem 5.3.1 Suppose A is some Cholesky factor of Rx, i.e., Rx = AAT . Consider the geometric mean

decomposition

AT

σI

 = QRPT , (5.15)

where R has equal diagonal entries r = [r r · · · r]. If the precoder PT in Fig. 5.14 is taken as the one in

(5.15), then “Ry = D = dI for some constant d. ♦

Proof: From (5.14), by using the MMSE prediction matrix S = L−11 , the covariance matrix“Ry = D. Thus we only need to prove that the LDU decomposition of Rz + σ2I = PTRxP + σ2I
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has D = dI. To prove this, observe that

PTRxP + σ2I = PT
[
A σI

]AT

σI

P

= PTPRTQTQRPTP

= RTR = L1DLT1 ,

where L1 is taken as r−1RT , and D = r2I. This completes the proof. �

This theorem suggests a method for finding the precoder PT . With such PT as the precoder and

S in (5.13) as the prediction matrix, we are able to have “Ry = r2I. Therefore, the scalar quantizers

of the dithered GMD transform coder can use uniform step size without bit allocation.

The design procedure for the GMD-SD (or GMD-NSD) transform coder, given the input covari-

ance matrix, is summarized in the following:

1. Determine the uniform quantizer step size ∆ according to the bit rate.

2. Determine σ from the quantizer step size, e.g., σ =
√

∆2/12 for GMD-SD using the uniform

pdf dither, and σ =
√

∆2/4 for GMD-NSD using the triangular pdf dither.

3. Compute the Cholesky factor A of Rx: AAT = Rx.

4. Compute the geometric mean decomposition as in (5.15).

5. Compute the LDU decomposition: PTRxP + σ2I = L1DLT1 , and take S = L−11 .
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6. Construct the transform coder structure using PT and S as in Fig. 5.12 and Fig. 5.13 for

GMD-SD and GMD-NSD transform coder, respectively.

The complexity of the successive decompositions in the above algorithm is in the same order

as that in the GMD transform coder described in [122]. A complete comparison of the design and

implementation costs of different transform coders can be seen in the previous section.

5.3.2 Numerical Example

In this subsection we provide numerical comparisons of several transform coders. The signal x

is generated by a zero-mean Gaussian vector process with prescribed covariance matrix Rx. The

number of data streamsM = 8 in the experiments. Uniform roundoff quantizers are assumed. Each

quantizer adapts its step size according to the variance of the Gaussian input (pp. 818 of [107]). For

each case, we run the Monte Carlo simulations for calculating the arithmetic mean of mean square

error (AM-MSE). In each trial, we first generate the input covariance matrix by multiplying a fixed

diagonal matrix Λx with a randomly generated orthogonal matrix on the left and its transpose on

the right. The input vector x is then generated according to this covariance matrix. Fig. 5.15 shows

the AM-MSE performance of different transform coders for Λx = 10−5×diag([107 106 · · · 100]). The

following five methods use the same number of bits in each of their quantizers: “KLT,” which uses

Karhunen-Loéve transform; “PLT,” which uses the original structure proposed in [79]; “Uncoded,”

which directly quantizes the signal; “BID,” which uses the bi-diagonal decomposition; “GMD,”

which uses the geometric mean decomposition. The KLT and the PLT with optimal bit allocation

but no dithering (represented as “KLTwBL” and “PLTwBL,” respectively) are also simulated for

comparison. It should be noted that under the high bit rate assumption, “GMD,” “KLTwBL,” and

“PLTwBL” coders achieve the same minimum AM-MSE performance.

The performances of the two new stuctures, “GMD-SD” and “GMD-NSD,” are also shown in

Fig. 5.15. In “GMD-SD,” the dither signal is generated from the uniform pdf that satisfies Schuch-

man’s condition [27]. In particular, it exhibits a variance of ∆2/12, where ∆ is the step size. In

“GMD-NSD,” the dither signal is generated from triangular-pdf (Sec. III.C. in [116]). This dither

pdf renders both the first and second moments of the total error independent of the quantizer input.

In particular, it is the unique choice of zero-mean dither pdf which renders the first two moments

of the total error independent of the input while minimizing the second [116]. The variance of the

error is ∆2/4. These two dithered GMD quantizers are designed by the method described in Sec.
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Figure 5.15: Performance of different transform coders.

From Fig. 5.15, we see that in the low rate regime, the two proposed dithered transform coders

have better performance than all the other transform coders. The two optimal-bit-allocated coders,

“KLTwBL” and “PLTwBL,” also perform worse than the two dithered transform coders due to

the collapse of the high rate assumption. It can also be seen that in the extremely low rate case

(one and two bits), there is a performance degradation in “GMD-SD” and “GMD-NSD.” This is

because at such low rate, the step size of the dither signal is too large, which makes the chance

of overflow much higher for Gaussian sources and violates the non-overflow assumption in the

dither quantizer theory [27]. In the high rate regime, the two proposed dithered GMD transform

coders perform comparably with the three coders (“KLTwBL”, “PLTwBL”, and “GMD”) which are

designed under the high rate assumption. The AM-MSE of “GMD-NSD” is approximately three

times of the AM-MSE of “GMD-SD”. For fixed AM-MSE, “GMD-NSD” needs to have about one

more bit than “GMD-SD” needs. The AM-MSE of “GMD” is between those two. The results of this

example suggest the following: If the dither signal is available both at the decoder, then “GMD-SD”

is a better candidate since it has the lowest AM-MSE in the low rate and high rate regimes; if the

dither is not available in the decoder, then we should use the “GMD” coder in the high rate regime,

and use “GMD-NSD” in the low rate regime.
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5.4 Concluding Remarks

In this chapter we have shown the use of GTD in transform coding problems. In the first part of

this chapter, a general family of optimal transform coders (TC) was introduced based on the GTD.

The coding gain of the entire family, with optimal bit allocation, is maximized. This family includes

KLT and PLT coders as special cases. Moreover, it can predict many novel structures which achieve

the same maximized coding gain. This shows the power of GTD in transform coding. One thing to

note for practical use is that, in situations involving the KLT, the discrete cosine transform (DCT)

is often used instead of the KLT. This is because the DCT is signal independent, computationally

efficient, and a good approximation of the KLT for a large class of signals with low-pass spectra

[62]. An analogous low-complexity approximation for the precoder P which arises in the GTD

implementation is not known at this time.

In the second part of this chapter we addressed the case of low bit rate coding using the dithered

GMD coder. We proposed two dithered GMD transform coders: the GMD subtractive dithered

transform coder (GMD-SD) where the decoder has access to the dither information and the GMD

non-subtractive dithered transform coder (GMD-NSD) where the decoder has no knowledge about

the dither. Both of these coders use uniform bit loading schemes. We have shown that the proposed

dithered GMD transform coders perform significantly better than the original GMD coder in the

low rate case.
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Chapter 6

The Role of GTD in Filter Bank
Optimization

The M -channel filter bank (FB) and subband coder (SBC) are commonly used in many signal pro-

cessing applications [62, 107, 114]. During the past several years, there has been a great deal of

interest in the theory and design of optimal signal adapted orthonormal and biorthogonal filter

banks in terms of theoretical coding gain criterion [1, 20, 58, 69, 70, 97, 106, 109]. The theoreti-

cal optimal SBC problem can be stated as follows: If the average bit rate b is given, what is the

best choice of analysis/synthesis filters {Hi(e
jω), Fi(e

jω)} (equivalently, the polyphase matrices

{E(ejω),R(ejω)}) that minimizes the average reconstruction error? Two well-known special cases

of this general scenario are the biorthogonal and orthonormal FBs. The FB is said to be biorthogo-

nal if R(ejω)E(ejω) = I for all ω. The FB is said to be orthonormal if E(ejω) is unitary for all ω and

R(ejω) = E†(ejω).

If E(ejω) is memoryless (i.e., E(ejω) is a constant matrix for all ω), it is called the transform

coding problem, and was addressed by Huang and Schultheiss [33]. The optimized system is called

the KLT coder. Later in [79], the authors proposed the prediction-based lower triangular transform

coder (PLT coder) which used the MINLAB structure [82], and showed that it can also achieve the

same optimality as the KLT coder. When the filter order is unconstrained (i.e., E(ejω) has infinite

memory), theoretical results on the optimal orthonormal filter bank are provided in [106]. It was

shown that there are two necessary and sufficient conditions for the optimal orthonormal SBC,

namely, total decorrelation and spectrum majorization. The theory of optimal orthonormal FB is closely

related to the principal component filter banks (PCFB) [3, 100]. For the case of biorthogonal filter

banks, it was conjectured that the optimal structure is the cascade of the optimal orthonormal filter

bank, and a set of half-whitening filters applied to the signal in each individual subband [109]. This
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conjecture was later proven to be true in [70]. [70] also showed the two fundamental properties,

total decorrelation and spectrum majorization, are also two necessary conditions for optimality of

the biorthogonal filter banks. The finite impulse response (FIR) solutions to the orthonormal and

biorthogonal filter banks are also discussed extensively in the literature [44, 69, 70, 102, 58].1

In Chapter 5 of this thesis, we proposed the GTD transform coder, which combines the idea

of linear precoding and the estimation stage of MINLAB structure. The GTD transform coder is

shown to be a general family of optimal transform coders that achieves the same theoretical coding

gain optimality as the KLT and the PLT coders. In this chapter we propose a novel structure for

the perfect reconstruction subband coders as shown in Fig. 6.1. This new structure can be seen as a

generalization of the GTD transform coder, where the precoder E(ejω) and the estimators Pij(ejω)

are all linear filters instead of one-tap multipliers. For this reason, we call such filter banks the GTD

filter banks. We optimize the theoretical coding gain performance of the proposed structures for the

unconstrained filter order case. We will discuss two cases in detail: The first case is the orthonormal

precoder case where E(ejω) is paraunitary, and is called the orthonormal GTD filter bank; the second

case is the general biorthogonal case where the only constraint is R(ejω)E(ejω) = I, and is called

the biorthogonal GTD filter bank. The more general case where biorthogonality is not imposed is not

considered here, as it is more involved.

The optimization of the perfect reconstruction GTD filter banks is challenging due to the non-

linear nature of the objective functions and the constraints. Interestingly, the theory for GTD FB

developed in this chapter is parallel to the theory in traditional FB. We will first show that there

are also two fundamental properties both in the optimal orthonormal GTD FB and in the optimal

biorthogonal GTD FB, namely, total decorrelation and spectrum equalization. From these properties,

we will derive the optimal solutions for each case. It will be shown that the frequency dependent

GTD of the Cholesky factor of the input spectrum density matrix is crucial in designing the op-

timal orthonormal GTD FB. For the case of biorthogonal GTD FB, we will show that the optimal

solution is achieved by cascading an optimal orthonormal GTD FB with a set of scalar filters that

are half-whitening filters for the subband signals. The performance of the two GTD FB classes

are all superior to traditional FB. The optimal orthonormal GTD FB and the optimal biorthogonal

GTD FB achieve exactly the determinant bounds derived in [109] for the traditional orthonormal FB

and biorthogonal FB, respectively, which are generally not achievable by traditional FB. We will

1The filter banks discussed in this paragraph will be referred to as traditional filter banks throughout this chapter.
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also show that if the FB is designed via the frequency dependent geometric mean decomposition

(GMD), then the FB is optimal. Another advantage of the GMD FB is that the bit loading scheme is

uniform. Therefore, it does not suffer from the bit loading granularity problem as in the traditional

FB [70].

The theory of optimal filter banks is not only useful in data compression but also in digital com-

munication [3, 18]. The notion of duality in the optimal DMT systems and biorthogonal subband

coders has been reported in [53]. We also find GTD filter banks useful in wireless communication

systems over slowly time-varying frequency selective channels with linear precoding and zero-

forcing decision feedback equalizers. Our focus is on the quality of service (QoS) problem, namely,

in minimizing the transmitted power subject to specified bit error rate and bit rate constraint. We

will show that the optimal systems are related to the frequency dependent GTD of the channel

response matrix.

The content of this chapter is mainly drawn from [133], and portions of it have been presented

in [131, 132].

6.1 Outline

This chapter is organized as follows. Sec. 6.2 formulates the perfect reconstruction GTD FB opti-

mization problems for subband coders. Sec. 6.3 and Sec. 6.4 provide mathematical derivations and

solutions to the optimal orthonormal GTD FBs and the biorthogonal GTD FBs, respectively. Some

discussions and performance comparisons of these FBs are presented in Sec. 6.5. Sec. 6.6 intro-

duces the use of GTD filter banks in the context of wireless communications. Concluding remarks

are made in Sec.6.7.

6.2 Subband Coder Signal Model

The GTD subband coder structure is shown in Fig. 6.1 for M = 4. Here the vector process x(n)

is the M -blocked version of the scalar process x(n). We assume that the vector process x(n) is

wide sense stationary (WSS). The power spectral density (psd) matrix of the WSS vector x(n) is

denoted by Sxx(ejω). We will find in sequel that the eigenvalues of Sxx(ejω) appear in various

denominators. To make this meaningful, we will assume throughout that Sxx(ejω) is nonsingular.

We denote by {ηi(ejω)} the set of eigenvalues of Sxx(ejω) ordered such that ηi(ejω) ≥ ηi+1(ejω) for
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Figure 6.1: The biorthogonal GTD subband coders for M = 4.

all ω.2

The signal x(n) first passes through a filter E(ejω). Let z(n) = [z0(n) z1(n) · · · zM−1(n)]T

denote the output of E(ejω). Before the quantizers, the signal z(n) passes through a frequency-

dependent PLT stage, where the MINLAB structure [82] is used to ensure unity noise gain. The kth

quantizer input vk(n) is the sum of the signal zk(n) and the filtered version of the quantized signal

v0(n), v1(n), up to vk−1(n). The filter Pik(ejω) is the estimation filter from the kth stream to the ith

stream. The decoder performs the inverse operations on the quantized data. The validity of the

MINLAB structure assumptions must rely on the high-bit-rate assumption where we assume that

the prediction based on the quantized data is not too much different from that on the unquantized

data. Under this assumption, the signal v(n) before the quantizer is the filtered version of x(n)

passing through the filter L(ejω)E(ejω), where L(ejω) is the filter used to represent the frequency

dependent PLT stage. In particular, L(ejω) is a lower triangular matrix with unity on its diagonals

for all frequencies.

Since x(n) is zero-mean and WSS, the quantizer inputs vi(n)’s are therefore zero-mean and

jointly WSS with psd matrix

Svv(e
jω) = L(ejω)E(ejω)Sxx(ejω)E†(ejω)L†(ejω). (6.1)

The ith quantizer input signal variance is therefore

σ2
vi =

∫ 2π

0

[Svv(e
jω)]ii

dω

2π
. (6.2)

2Note that if the vector process is obtained from blocking a scalar process, its power spectrum density matrix has pseudo-
circulant structure [110, 107]. However, we will see that the theory developed in this section does not depend nor utilize
this structure. Hence, the results of this section are not restricted to the blocked version of a scalar input process, but are
also true for any WSS vector process with well-defined power spectrum density matrix.
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To derive the coding gain expression, we model the quantizers with additive noise sources qi(n).

We assume these noise sources are jointly WSS, white, with zero mean and with variances of the

form

σ2
qi = c2−2biσ2

vi (6.3)

where bi is the number of bits assigned to the ith quantizer. So the quantizer noise psd Sqq(e
jω)

is a constant diagonal matrix with diagonal elements σ2
qi . This is the high-bit-rate assumption, and

is also used in the previous chapter. The average bit rate b = 1
M

∑M−1
i=0 bi is assumed to be fixed.

The reconstruction error vector is e(n) = x̂(n) − x(n). Based on unity noise gain property in

the MINLAB structure [82], the error vector e(n) can be regarded as the output of the synthesis

matrix R(ejω) in response to the quantization error q(n). Thus, the psd matrix of the error e(n) is

See(e
jω) = R(ejω)Sqq(e

jω)R†(ejω) The average mean square error of the coder εcoder is3

εcoder =
1

M
E[e†(n)e(n)] =

1

M
Tr(E[e(n)e(n)†])

=
1

M

∫ 2π

0

Tr(See)
dω

2π
=

1

M

∫ 2π

0

Tr(RSqqR
†)
dω

2π

=
1

M

∫ 2π

0

Tr(R†RSqq)
dω

2π

=
1

M

M−1∑
i=0

σ2
qi

∫ 2π

0

[R†R]ii
dω

2π

Using (6.3) and σ2
vi =

∫ 2π

0
[LESxxE

†L†]ii
dω
2π , we get

σ2
qi = c2−2bi

∫ 2π

0

[LESxxE
†L†]ii

dω

2π

Substituting into the preceding equation, this yields

εcoder =
1

M

M−1∑
i=0

c2−2bi
∫ 2π

0

[LESxxE
†L†]ii

dω

2π
×
∫ 2π

0

[R†R]ii
dω

2π

≥ c2−2b
M−1∏
i=0

(∫ 2π

0

[LESxxE
†L†]ii

dω

2π
×
∫ 2π

0

[R†R]ii
dω

2π

) 1
M

,

3For simplicity, from now on we drop the argument “ejω” when there is no confusion. For example, by See we mean
the psd matrix See(ejω).
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where we have used the AM-GM inequality [29]. This becomes an equality if the terms in the

summation are identical for all i, and can be accomplished by choosing the bi according to the

optimum bit loading formula4 similar to that in [109], i.e.,

bi = b+ 0.5 log2 σ
2
viK

2
i − 0.5

∑
i

log2 σ
2
viK

2
i /M, (6.4)

where K2
i =

∫ 2π

0
[R†R]ii

dω
2π . Let us define

φ =
M−1∏
i=0

∫ 2π

0

[LESxxE
†L†]ii

dω

2π

∫ 2π

0

[R†R]ii
dω

2π
. (6.5)

Therefore, the average MSE of the coder under optimal bit allocation becomes

εcoder = c2−2bφ1/M .

The coding gain of a coder is defined by comparing the average mean square value εcoder of the

reconstruction error x(n)− x̂(n) with the mean square value εdirect of the direct quantization error

(roundoff quantizer) with the same bit rate b. An expression for the coding gain GC can be written

as

GC =
εdirect
εcoder

. (6.6)

Thus, maximizing the coding gain is equivalent to minimizing φ by choosing {E(ejω),R(ejω),L(ejω)}

subject to some constraints. In this section, we consider problems similar to what was considered in

[106] and [109] – a theoretical performance bound of the infinite order perfect reconstruction filter

banks. We consider two classes of subband coders. The first class is when the precoder E(ejω) in

Fig. 6.1 is restricted to be paraunitary, i.e., E(ejω) is unitary for all ω. We call such filter banks the

orthonormal GTD filter banks, since the columns of E(ejω) are orthonormal for every frequency. In

4The optimum bit loading formula for conventional perfect reconstruction filter banks usually has the granularity prob-
lem, i.e., the number of bits in the formula needs to be rounded off to the nearest integer when used in practice. This results
in some performance loss. However, it will be seen later that this problem does not exist in the optimal orthonormal and
biorthogonal GTD FBs where uniform bit loading can be applied.
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this case, the optimization problem can be written as

minE,R,L φ

s.t. (a) R(ejω)E(ejω) = I

(b) E(ejω) is paraunitary. (6.7)

The second class is when the paraunitary precoder constraint is absent; we call such filter banks

the biorthogonal GTD filter banks, since the matrix E(ejω) and R(ejω) are biorthogonal pairs. In this

case, the optimization problem is

minE,R,L φ

s.t. R(ejω)E(ejω) = I. (6.8)

6.3 Optimal Orthonormal GTD Filter Banks

In this section, we discuss the coding gain optmization for the orthonormal GTD filter banks. Be-

cause of the paraunitary precoder constraint and the perfect reconstruction constraint, it can be

seen that R(ejω) is also paraunitary. Substitute this into (6.5), we have

φ =
M−1∏
i=0

σ2
vi =

M−1∏
i=0

∫ 2π

0

[LESxxE
†L†]ii

dω

2π
,

which is purely the product of subband signal variances. Thus, the problem of maximizing the

coding gain is the same as minimizing the product of subband variances. In the following we will

derive a set of necessary and sufficient conditions for the optimality of the orthonormal GTD filter

banks.

For orthonormal subband coders, Vaidyanathan proved that total decorrelation is necessary for

the optimal coders [106]. The same condition is also necessary for the optimal orthonormal GTD

filter banks.

Theorem 6.3.1 (Total Decorrelation Is Necessary) For fixed input psd Sxx(ejω), suppose a coder is optimal

(in the coding gain sense) within the class of all orthonormal GTD filter banks with optimal bit allocation.
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Then, the random processes before each quantizer are uncorrelated with each other, that is

E[vi(n)v∗k(m)] = 0 for i 6= k, and for all n, m. (6.9)

This condition will also be referred to as total decorrelation of the subbands. ♦

Proof: See Appendix A. �

Thus, for optimality, the random processes vi(·) and vk(·) must be decorrelated, not just the

random variables vi(n) and vk(n) for each time n. Equivalently, the psd matrix of the vector process

v(n) = [v0(n) v1(n) · · · vM−1(n)]T must be diagonal, i.e.,

Svv(e
jω) = diag([Sv0(ejω), · · · , SvM−1

(ejω)]T ). (6.10)

For the optimal orthonormal GTD filter banks if the precoder E(ejω) is given, the optimal esti-

mator matrices will be the one that satisfies (6.10). We can thus write the optimal estimator matrix

L(ejω) as a function of the precoder E(ejω). Based on this observation, we developed the following

Corollary which is useful later in deriving the optimal precoder.

Corollary 6.3.2 Given any E(ejω), the optimal L(ejω) in the orthonormal GTD FBs is given by L(ejω) =

L−1e (ejω). Here Le(e
jω) is a lower triangular matrix with unity on the diagonals, and such that

E(ejω)Sxx(ejω)E†(ejω) = Le(e
jω)D(ejω)L†e(e

jω), (6.11)

where D(ejω) is a diagonal matrix for all frequencies. Note that (6.11) can be regarded as an LDU decompo-

sition of E(ejω)Sxx(ejω)E†(ejω). ♦

Proof: This is a direct consequence of Theorem 6.3.1. �

We say that the set of the subband signals, or the set of subband signal power spectra {Svk(ejω)},

has spectrum equalizing (SE) property if

Sv0(ejω)∫ 2π

0
Sv0(ejω)dω2π

= · · · =
SvM−1

(ejω)∫ 2π

0
SvM−1

(ejω)dω2π

a.e., (6.12)

where a.e. is the abbreviation for almost everywhere, which means the set of ω such that (6.12) fails
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has measure zero. Note that σ2
vi = 1

2π

∫ 2π

0
Svi(e

jω)dω. Thus, (6.12) can also be written as

Sv0(ejω)

σ2
v0

= · · · =
SvM−1

(ejω)

σ2
vM−1

a.e. (6.13)

We are now ready to introduce the second necessary condition.

Theorem 6.3.3 (Spectrum Equalization Is Necessary for Optimal Orthonormal GTD Subband Coders) For

fixed input psd Sxx(ejω) and under the optimal bit allocation constraint, suppose an orthonormal GTD

subband coder is optimal (in maximizing the coding gain) among the class of all orthonormal GTD subband

coders. Then, the power spectras of the signals before quantizers have the spectrum equalizing property

(6.13).

Proof: See Appendix B. �

It can be shown that neither of the two conditions is individually sufficient. However, in the

following we will prove that if we put them together, that turns out to be sufficient!

Theorem 6.3.4 (Optimal Orthonormal GTD Subband Coders) When optimal bit loading is applied, the

coding gain of an optimal orthonormal GTD subband coder is maximum for a given input psd Sxx(ejω) if

and only if the signals before the quantizers vi(n) satisfy the following two properties:

1. Total decorrelation as in (6.9).

2. Spectrum equalization as in (6.13).

Proof: In view of earlier theorems, it only remains to prove that the total decorrelation and

the spectrum equalizing property together imply optimality. If the filter pair {E(ejω),T(ejω)} per-

forms total decorrelation, Svv(e
jω) must be diagonal. If this filter pair also results in the spectrum

equalizing property, then the product of the subband variances will be

M−1∏
i=0

σ2
vi =

M−1∏
i=0

∫ 2π

0

Svi(e
jω)

dω

2π

=

Ñ∫ 2π

0

(
M−1∏
i=0

Svi(e
jω)

) 1
M

dω

2π

éM

=

Ç∫ 2π

0

det Svv(e
jω)

1
M
dω

2π

åM
=

Ç∫ 2π

0

det Sxx(ejω)
1
M
dω

2π

åM
,
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where in the second equality we have used the spectrum equalizing property, in the third equality

we have used the fact that Svv(e
jω) is diagonal, and in the fourth equality we have used the fact

that det Svv = det LESxxE
†L† = det Sxx.

Therefore, if both total decorrelation and equalizing property are satisfied, the product of the

subband variances is a fixed and unique quantity, which depends only on Sxx(ejω). Since total

decorrelation and spectrum equalizing property are necessary for the optimality and since there is

only one value of the product of the subband variances satisfying these two conditions simultane-

ously, it follows that these two conditions leads to optimality. This completes the proof. �

We now discuss the set of the solutions that satisfy these two necessary and sufficient conditions.

By Eq. (6.10), in the optimal orthonormal GTD FBs the psd matrix of the vector process v(n) will be

the diagonal matrix D(ejω) for every frequency ω. Using (6.11), we can rewrite the Cholesky factor

of Sxx as

S†/2xx = QD
1
2 ΦL†eE, (6.14)

where Q is some paraunitary matrix, D1/2 is a diagonal matrix such that [D
1
2 ]ii = [D]

1
2
ii, and Φ is

some diagonal matrix with unit-magnitude diagonal elements representing the phase ambiguity in

the Cholesky decomposition.

We can see that Eq. (6.14) is actually a GTD form [38], where the middle upper triangular matrix

has the diagonal elements as in the diagonal matrix D(ejω). In order for the SE property (6.13) to

be true, the precoder E(ejω) should be chosen appropriately. More specifically, the precoder E(ejω)

should be chosen such that the diagonal matrix D(ejω) in frequency ω has diagonal elements

[D(ejω)]ii = M

»
det Sxx(ejω) ai, (6.15)

where the values in the set of numbers {ai} satisfy ai > 0 for all i, and
∏M−1
i=0 ai = 1. This also

means that [D(ejω)]ii/[D(ejω)]jj = ai/aj for all ω and all i, j = 0, 1, · · · ,M − 1. In order for this to

hold, we require that the scaled singular values of Sxx(ejω) multiplicatively majorizes (see Theorem

1 in [122]) the numbers {a0, · · · , aM−1}, i.e.,

{η0(ejω), · · · , ηM−1(ejω)}
M
√

det Sxx(ejω)
�× [a0, · · · , aM−1] (6.16)

for all ω. If for some vector [a0, · · · , aM−1], Eq. (6.16) is satisfied, then there exists a set of GTD filter
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banks such that the coding gain is maximized. In this case, we can plug in the subband variance

σ2
vi =

∫ 2π

0
[D(ejω)]ii

dω
2π to the bit loading formula (6.4) and get the optimal bit loading scheme for

the optimal orthonormal GTD filter banks:

bi = b+ 0.5 log2 ai. (6.17)

Therefore, ai can be interpreted as the indication of how to allocate the number of bits to each

subband. Note that there might be many sets of {ai} satisfying (6.16) for Sxx(ejω), and therefore

we have some freedom in choosing the bit loading vector according to the input psd.

For the case when [a0, · · · , aM−1] = [1, · · · , 1], eq. (6.16) is always satisfied. In this case, the GTD

(6.14) actually corresponds to the geometric mean decomposition (GMD), which always exists for

any full-rank matrix [38]. We call such filter banks the orthonormal GMD filter banks. It is always op-

timal because it satisfies the two necessary and sufficient conditions. The desirable property of the

orthonormal GMD filter banks is that the subband power spectrum will be completely equalized,

i.e., Svi(ejω) = Svj (ejω) for all i, j and for all ω. Also, the subband variances will also be equal for

all subbands. The optimal bit loading formula (6.17) becomes uniform bit loading, i.e., bi = b for all

i. If the average bit budget b is an integer, then the granularity problem in the optimal bit loading

formula is no longer present in the orthonormal GMD filter banks!

In the following we summarize the above discussions and provide a design procedure for the

optimal orthonormal GTD filter banks:

Design of optimal orthonormal GTD filter banks:

1. Find a set of numbers {a0, a1, · · · , aM−1} such that ai > 0 and
∏M−1
i=0 ai = 1. If (6.16) is

satisfied, go to step 2; otherwise, find another set of numbers {ai}.

2. Perform the frequency dependent GTD (6.14) on the Cholesky factor of Sxx(ejω), where

D(ejω) is related to a as (6.15). The precoder E(ejω) is obtained as in (6.14), and the esti-

mation filters are obtained as L(ejω) = L−1e (ejω).

3. Design the optimal bit loading scheme as (6.17).

Now let us discuss the performance of the optimal GTD filter banks. From the above proof in

Thm. 6.3.4, we know that the optimal GTD coder will produce the product of the subband variances
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∏M−1
i=0 σ2

vi =
Ä∫ 2π

0
det Sxx(ejω)

1
M
dω
2π

äM
. The MSE of the direct quantization is

εdirect = c2−b
1

M

M−1∑
k=0

∫ 2π

0

[Sxx(ejω)]kk
dω

2π

= c2−b
∫ 2π

0

Tr(Sxx(ejω))

M

dω

2π
.

Substituting these in (6.6), the maximized coding gain can thus be calculated as

GC =

∫ 2π

0
1
M Tr(Sxx(ejω))dω∫ 2π

0
M
√

det Sxx(ejω)dω
. (6.18)

Eq. (6.18) gives a nice closed-form expression for the optimal performance that orthonormal

GTD FBs can have. For the traditional filter bank optimization problem discussed in the literature

[106], it is well known that the coding performance can be further improved by relaxing the or-

thonormal constraint. It is thus natural to ask how much performance improvement we can get if

we relax the orthonormal precoder constraint in the GTD FBs. This will be addressed in the next

section.

6.4 Biorthogonal GTD Filter Banks

To solve the optimization problem (6.8), we first give a necessary condition.

Theorem 6.4.1 (Total Decorrelation Is Necessary for Optimality) The triplet {E(ejω),R(ejω),L(ejω)} is

optimal for (6.8) only if the subband processes vi(n) are totally uncorrelated to each other, i.e.,E[vi(n)v∗k(m)] =

0 for i 6= k and for all n, m. ♦

Proof: We use the proof technique similar to Theorem 6.3.1 and thus the detail is left to the reader.

�

From this theorem, it can also be shown that total decorrelation is achievable by choosing ap-

propriate L(ejω) for any given E(ejω). In the following we provide a corollary which is similar to

Corollary 6.3.2:

Corollary 6.4.2 Given any E(ejω) and R(ejω), the optimal L(ejω) in the biorthogonal GTD FBs is given

by L(ejω) = L−1e (ejω). Here Le(e
jω) is a lower triangular matrix with 1 on the diagonals such that the
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LDU decomposition of E(ejω)Sxx(ejω)E†(ejω) is Le(e
jω)D(ejω)L†e(e

jω), where D(ejω) is the diagonal

matrix for all frequencies. ♦

Substituting the result of Corollary 6.4.2 in (6.5), we can establish a lower bound on φ:

φ ≥
M−1∏
i=0

∫ 2π

0

[L−1e ESxxE
†L−†e ]ii

∫ 2π

0

[R†R]ii
dω

2π
(6.19)

≥

(∫ 2π

0

M−1∏
i=0

(
[L−1e ESxxE

†L−†e ]ii[R
†R]ii

) 1
2M

dω

2π

)2M

(6.20)

≥
Ç∫ 2π

0

(
det L−1e ESxxE

†L−†e det R†R
) 1

2M
dω

2π

å2M

(6.21)

=

Ç∫ 2π

0

(det Sxx)
1

2M
dω

2π

å2M

, (6.22)

where in (6.20) we have used Hölder’s inequality for integrals (6.9 in [29]), in (6.21) we have used

Hadamard inequality for positive definite matrices (7.8.1 in [31]), and in (6.22) we have used the

fact that det Le = 1 and det RE = det I = 1.

Now the question is, whether the bound (6.22) is achievable. The theorem below answers this

question in the affirmative, and in particular, this bound can be achieved by a restricted case (where

E can be decomposed as a paraunitary matrix U and a set of scalar filters) of biorthogonal GTD

coder which is shown in Fig. 6.2.

Theorem 6.4.3 (The Cascade of Optimal Orthonormal GTD Filter Bank and a Set of Half-Whitening Filters

is Optimal) The structure in Fig. 6.2, which is a restricted class of the biorthogonal GTD filter banks,

achieves (6.22). In particular, (6.22) can be achieved by using U(ejω) and {λi(ejω)}, where U(ejω) is the

precoder solution to the optimal orthonormal GTD filter banks in Section 6.3, and {λi(ejω)} is a set of half-

whitening filters determined by the input psd. In particular, we can use the same filter for all subbands, i.e.,

λi(e
jω) = λ(ejω). ♦

Proof: The proof is by construction. Consider the solution of the optimal orthonormal GTD

filter banks in Sec. 6.3 which performs the frequency dependent GTD for the Cholesky factor of

Sxx(ejω) (we reproduce Eq.(6.14) here without some modifications on the notations):

S†/2xx = QD
1
2 ΦL†xP, (6.23)
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where both Q and P are unitary matrices for all frequencies, Lx is a lower triangular matrix with

1 on the diagonals. The middle diagonal matrix D(ejω) is such that [D(ejω)]ii = M
√

det Sxx(ejω)ai,

where the values in the set {ai} satisfy ai > 0 and
∏M−1
i=0 ai = 1.

Therefore, Sxx = P†LxDL†xP. Note that P is exactly the precoder of the optimal orthonormal

GTD coders described in Sec. 6.3. Now, consider the system structure in Fig. 6.2. Let Λ(ejω) =

diag(λ0(ejω), · · · , λM−1(ejω)) denote the frequency response of the scalar filters. If we take U = P,

the psd matrix of y(n) can be expressed as Syy = ΛLxDL†xΛ
†. It can be proved that ΛLx = LyΛ

where Ly is a lower triangular matrix with 1 on the diagonals and [Ly]ij =
λj

λi
[Lx]ij . Therefore, Syy

can be expressed as Syy = LyΛDΛ†L†y . We can take the PLT part to be L = L−1y , and the resulting

psd matrix will be Svv = ΛDΛ†. Substituting these quantities in (6.5), we have

φ =
M−1∏
i=0

∫ 2π

0

[D]ii|λi|2
dω

2π

∫ 2π

0

|λi|−2
dω

2π
(6.24)

≥
M−1∏
i=0

Ç∫ 2π

0

([D]ii)
1/2 dω

2π

å2

(6.25)

=

Ç∫ 2π

0

(det Sxx)
1

2M
dω

2π

å2M

, (6.26)

where (6.25) is from the Cauchy-Schwartz inequality, and (6.26) is from the fact that [D(ejω)]ii =

M
√

det Sxx(ejω)ai and
∏M−1
i=0 ai = 1. The equality in (6.25) can be satisfied by choosing

λi(e
jω) = αi

(
[D]ii(e

jω)
)−1/4

=
αi

a
1/4
i

(
det Svv(e

jω)
)− 1

4M , (6.27)

where αi is any nonzero scalar multiplier. Thus, λi is the half-whitening filter in the ith subband.

If we choose αi = a
1/4
i , for all the subband we can use the same half-whitening filter that has the

frequency response

λi(e
jω) = λ(ejω) =

(
det Sxx(ejω)

)− 1
4M .

Therefore we just need to design one scalar filter λ(ejω) for all the subbands.

To summarize, we have constructed a biorthogonal GTD filter bank in the structure of Fig. 6.2

that achieves exactly (6.22), and is thus optimal for the problem (6.8). �



140

)(0
 

!
j
e )(

1

0

 
!

j
e

 

)(0 ny

)(
1

1

 
!

j
e

 

1

)(1
 

!
j
e

x(n)

)(  j
eU

^

)(  j
e

 
U

x(n)
)(1 ny

)(2 ny

)(
1

2

 
!

j
e

 

)(
1

3

 
!

j
e

 

)(2
 

!
j
e

)(3
 

!
j
e

)(3 ny

Middle frequency!dependent PLT Part )(  j
eR)(  j

eE

Figure 6.2: A restricted case of the biorthogonal GTD subband coders for M = 4.

Theorem 6.4.3 proves that the bound (6.22) is achievable. The proof also suggests a design

method for the optimal biorthogonal GTD filter banks. By working out the optimal bit loading

formula (6.4) of this design scheme, we can find that the bit loading is exactly the same as (6.17).

That is, the optimal biorthogonal GTD FBs have the same bit loading scheme as the corresponding optimal

orthonormal GTD FBs. This design method is summarized below.

Design of optimal biorthogonal GTD filter banks:

1. Perform the design procedure for optimal orthonormal GTD filter banks as described in Sec.

6.3 to obtained the precoder U(ejω) and the estimators Lx(ejω).

2. Design the half-whitening filter according to (6.27). The precoder is chosen as E(ejω) =

Λ(ejω)U(ejω). The estimators need to be recomputed according to Corollary 6.4.2.

3. Design the optimal bit loading scheme as (6.17).

For the case when the optimal orthonormal GTD filter banks are designed as GMD filter banks,

the diagonal matrix D(ejω) can be written as D(ejω) = M
√

det Sxx(ejω)I. Therefore, for all i we

have [D(ejω)]ii = M
√

det Sxx(ejω). This makes the optimal bit loading formula (6.4) correspond to

uniform bit loading, which does not have the granularity problem if the average bit budget is an

integer!

Theorem 6.4.3 not only shows the lower bound (6.22) can be achieved but also provides more

insight to this problem. The optimal solution to (6.8) must have φ equal to (6.22), and thus it

must satisfy all the equalities from (6.19) to (6.22). These conditions are necessary conditions of the
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optimal systems, and will be examined in the following. First, in (6.20) for the Hölder’s inequality

M−1∏
i=0

∫ 2π

0

[L−1e ESxxE
†L−1e ]ii

dω

2π
≥

(∫ 2π

0

M−1∏
i=0

[L−1e ESxxE
†L−1e ]ii

dω

2π

)M

to have equality, we require the spectrum equalizing property (6.13) to be satisfied. This gives us

another necessary condition for the optimal biorthogonal GTD filter banks:

Corollary 6.4.4 Spectrum equalization of Subband Signals is Necessary for Optimal Biorthogonal GTD

Filter Banks: The subband signals of the optimal biorthogonal GTD filter banks have the spectrum equalizing

property (6.13). ♦

Second, in (6.21) for the Hadamard inequality

M−1∏
i=0

[R†R]ii ≥ det(R†R)

to have equality, R†R needs to be diagonal. This shows that the matrix R(ejω) must be decompos-

able as a paraunitary matrix multiplying with a diagonal matrix. Therefore, the optimal solution to

(6.7) will definitely have the structure as in Fig. 6.2. This is stated as the following corollary:

Corollary 6.4.5 (Optimal Biorthogonal GTD FBs Necessarily Has a Decomposable Structure) The optimal

biorthogonal GTD filter banks have the structure as shown in Fig. 6.2. ♦

To summarize from Theorem 6.4.1, Corollary 6.4.4, and Corollary 6.4.5, the optimal biorthogonal

GTD filter bank also has total decorrelation and spectrum equalization as the two necessary conditions.

Furthermore, the optimal systems can be decomposed as the structure in Fig. 6.2. Surprisingly, all

of these results have a parallel fashion to the theory of traditional biorthogonal filter banks devel-

oped in [109] and [70]: Theorem 2.3 in [70] suggesting that total decorrelation is necessary, Lemma

2.6 in [70] suggesting that spectral majorization is necessary, and Theorem 2.7 in [70] suggesting

that the optimal biorthogonal filter banks have the decomposable structure as shown in Fig. 3 of

[70].

6.5 Performance Comparison of Optimal Filter Banks Designs

In Table 6.1 we compare the performance of the optimal subband coders in different coder classes.

Here {ηi(ejω)} is the set of ordered eigenvalues of Sxx(ejω). It is interesting to see that the perfor-
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Table 6.1: Features of Optimal Filter Banks Used in Subband Coders
φ (Coding Gain = σ2

x/φ
1/M ) Nec. and Suff. Conditions

Orth. SBC [106]
∏M−1
i=0

∫ 2π

0
ηi
dω
2π Total Decor., and Spec. Maj.

Biorth. SBC [70]
Ä∏M−1

i=0

∫ 2π

0

√
ηi
dω
2π

ä2
Total Decor., Spec. Maj., and opt. orth. FBs + scalar filters

Orth. GTD SBC
Ä∫ 2π

0
(det Sxx)

1
M
dω
2π

äM
Total Decor. and Spec. Eq.

Biorth. GTD SBC
Ä∫ 2π

0
(det Sxx)

1
2M

dω
2π

ä2M
Total Decor., Spec. Eq., and opt. orth. GTD FBs + scalar filters

mance of the optimal orthonormal GTD SBC and the optimal biorthogonal GTD SBC are exactly

the determinant bounds (not achievable for most input statistics) derived in [109] (see Eq.(39) and

Eq.(38) in [109]) for the orthonormal SBCs and the biorthogonal SBCs, respectively. We also list the

necessary and sufficient conditions for the optimal solutions in each case.

In the following we compare the coding gain performance of the optimal subband coders in

these four cases. We use an AR(1) test input with parameter ρ and an AR(2) process with poles

at z± = ρe±jθ. The AR(1) process is often used to model simple images in the literature, and

AR(2) process models certain types of image texture as mentioned in [69]. The recursion of the

autocorrelation function in AR(2) is rn = 2ρ cos θrn−1− ρ2rn−2 with r0 = 1 and r1 = (2ρ cos θ)/(1 +

ρ2). We also compare the performance with the theoretical bound on the coding gain, namely the

prediction gain given by [107]: Gth = σ2
x/exp (

∫ π
−π lnSxx(ejω)dω2π ), where Sxx(ejω) denotes the psd

of signal x(n).
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Figure 6.3: Coding gain of subband coders with M = 3 for the AR(1) process with ρ from 0.85 to
0.95.
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Figure 6.4: Coding gain of subband coders with M = 4 for the AR(2) process with ρ from 0.95 to
0.99 and θ = π/3.

Fig. 6.3 shows the coding gain for M = 3 and ρ from 0.85 to 0.95 for the AR(1) input. Fig. 6.4

shows the coding gain for M = 4, ρ from 0.95 to 0.99 and θ = π/3. It can be seen that in both cases

the optimal biorthogonal GTD coder is only about 0.1dB away from the theoretical bound and is

about 1dB better than the optimal biorthogonal subband coders [70]. This suggests the advantage

of using the GTD filter banks.

Fig. 6.5 and Fig. 6.6 show the coding gain of M from 2 to 10 for the AR(1) process with ρ = 0.95

and the AR(2) process with ρ = 0.975 and θ = π/3, respectively. It is known [107] that for M →

∞ the optimal orthonormal SBC approaches the theoretical bound (and therefore all four coders

approach the bound asymptotically as M → ∞). However, it can be seen that the performance of

the biorthogonal GTD coder is close to the bound even for small M . It is also interesting to see

that this coder class has monotone coding gain behavior with respect to the block size M for the

AR(1) input. However, such monotone behavior is not present for the AR(2) process. This fact was

actually also reported for the traditional orthonormal SBC in the literature [107]. However, It was

proved that the coding gain for block size M is definitely less than or equal to the coding gain for

block size kM where k is any positive integer. Fig. 6.5 and Fig. 6.6 suggest that this phenomenon

may also be true in the GTD subband coders.

We have shown the usefulness of the frequency dependent GTD in optimizing the perfect re-

construction filter banks in subband coders. In the next section we will show that the concept is
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Figure 6.5: Monotone behavior of the coding gain as a function of the number of channels for the
AR(1) process with ρ = 0.95.
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Figure 6.6: Nonmonotone behavior of the coding gain as a function of the number of channels for
the AR(2) process with ρ = 0.975 and θ = π/3.
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applicable in digital communication as well.

6.6 The Role of Frequency Dependent GTD in Transceivers for

the QoS Problem

s ŝ
n

+yx
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eF

Decision device

-
s~

M N J
M

MM
)(  j
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Precoder Channel Feedforward filter

Feedback filter

Figure 6.7: Schematic of a frequency selective transceiver with linear precoder and zero-forcing
DFE.

In this section we will discuss the role of frequency dependent GTD in optimizing the transceivers

for communication systems with frequency selective channels. We consider the wireless commu-

nication system with N transmitting antennas and J receiving antennas. The transceiver structure

is shown in Fig. 6.7. The channel frequency response is modeled as J × N matrix H(ejω). It is

assumed throughout that H(ejω) is fixed and the perfect channel state information (CSI) is known

at both ends of the communication links. The additive channel Gaussian noise is with no loss of

generality assumed to be white, i.e., Snn(ejω) = σ2
nI. The transmitted symbol vector s(n) is first

precoded using the precoder matrix F(ejω). At the receiver, zero-forcing (ZF) decision feedback

equalization (DFE) is adopted. The received signal y(n) is first passed through a feedforward filter

G(ejω). The simple successive decision feedback algorithm can be performed afterwards. The ma-

trix B(ejω) is used to represent the causal decision feedback filters across layers, and thus is strictly

upper triangular for every frequency.

We consider the optimization of linear precoder F(ejω), feedforward filters G(ejω), and feed-

back filters B(ejω), subject to the zero-forcing constraint for a channel matrix H(ejω). Here zero-

forcing condition is imposed here for tractability. The optimal decision feedback receiver for many

reasonable objective functions is the MMSE-DFE. The extension to the MMSE-DFE case is currently

under investigation. More specifically, we consider the quality of service (QoS) problem of mini-

mizing the transmitted power subject to the specified BER and total bit rate constraint. Under the
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assumption of correct decisions of the previous layers, the zero-forcing condition implies

G(ejω)H(ejω)F(ejω) = I + B(ejω) for all ω.

The signal before the decision device will be ŝ = s + n0, where n0 is the noise filtered by G(ejω).

The kth subchannel thus has the noise power

σ2
ek

= σ2
n

∫ 2π

0

[G(ejω)G†(ejω)]kk
dω

2π
.

Assume the components sk(n) of the transmitted symbol vector s(n) are zero-mean, uncorre-

lated (both in time and space) processes representing independent data streams with power Pk. So,

the input covariance is

E[s(n)s(m)†] = diag(P0, P1, · · · , PM−1)δnm (6.28)

and the psd matrix of the transmitted symbol is

Λs(e
jω) = diag(P0, · · · , PM−1).

We consider the case when the kth data stream is a bk-bit QAM constellation with transmitted

power Pk. As discussed in previous chapters, the probability of error for the kth symbol stream can

be written as

Pek ≈ 4(1− 2
−bk
2 )Q

Ç 
3Pk

(2bk − 1)σ2
ek

å
, (6.29)

where Q(τ) =
∫∞
τ
e−t

2/2dt/
√

2π. Under the high bit rate assumption (bk >> 1) we have 2bk − 1 ≈

2bk and 1− 2−bk/2 ≈ 1. By rearranging Eq. (6.29) we get

Pk
σ2
ek

≈ 2bk

3

Å
Q−1

Å
Pek
4

ãã2
, (6.30)

where Q−1(·) denotes the inverse function of Q(·). We can rewrite the above equation to be

Pk = ck2bkσ2
ek
, (6.31)
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where ck represents the constant related to the probability of error in the kth stream. The transmit-

ted power is a function of the precoder F(ejω):

Ptrans =
M−1∑
k=0

∫ 2π

0

[FΛsF
†]kk

dω

2π
=

∫ 2π

0

Tr(FΛsF
†)
dω

2π

=

∫ 2π

0

Tr(F†FΛs)
dω

2π
=
M−1∑
k=0

Pk

∫ 2π

0

[F†F]kk
dω

2π

This quantity is what we wish to minimize by designing the transceivers. By substituting (6.31)

into the above equation, the transmitted power can be written as

Ptrans =
M−1∑
k=0

ck2bkσ2
n

Ç∫ 2π

0

[F†F]kk
dω

2π

∫ 2π

0

[GG†]kk
dω

2π

å
≥ c2b

(
M−1∏
k=0

∫ 2π

0

[F†F]kk
dω

2π

∫ 2π

0

[GG†]kk
dω

2π

) 1
M

where we have used the AM-GM inequality, and c is a constant related to the specified probability

of error such that c = Mσ2
n

M

»∏M−1
k=0 ck. The equality can be achieved by appropriately choosing

the bit loading bk similar to [123]5. Let us define

ψ =
M−1∏
k=0

∫ 2π

0

[F†F]kk
dω

2π

∫ 2π

0

[GG†]kk
dω

2π
. (6.32)

The transceiver optimization problem can thus be written in the following manner. If the precoder

is restricted to have orthonormal columns, the optimization problem is

minG,F,B ψ

s.t. (a) G(ejω)H(ejω)F(ejω) = I + B(ejω)

(b) F(ejω) has orthonormal columns. (6.33)

5Here we relax the non-negative integer bit loading constraint for tractability. Later on we will see that the GMD
transceiver, which is an instance of optimal solutions, applies uniform bit loading and thus has no bit loading granular-
ity issue.
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If the orthonormal column constraint is not present, the problem becomes

minG,F,B ψ

s.t. G(ejω)H(ejω)F(ejω) = I + B(ejω). (6.34)

In the following we will discuss in detail how to solve these two problems. The design pro-

cedure is to first find some absolute lower bounds on the transmitted power for each case. Then

we will show that these bounds are achievable, and the examples of the optimal systems will be

given. We will see that the frequency dependent GTD of the channel frequency response plays an

important role in the optimal transceiver design.

For both problems (6.33) and (6.34), the following lemma characterizes the optimal feedforward

filters if the precoder and the decision feedback filters are determined.

Lemma 6.6.1 For both problems (6.33) and (6.34), when the precoder F(ejω) and the feedback filters B(ejω)

are given, the optimal feedforward filters G(ejω) for minimizing ψ subject to the zero-forcing constraint is

Gopt(e
jω) =

(
I + B(ejω)

) (
H(ejω)F(ejω)

)]
, (6.35)

where A] denotes the minimum norm pseudo-inverse of the matrix A, i.e., A] = (A†A)−1A† ♦

Proof: See Appendix. �

Substituting (6.35) into ψ in (6.32), we get

ψ ≥

(
M−1∏
k=0

∫ 2π

0

[F†F]kk
dω

2π

)
×

(
M−1∏
k=0

∫ 2π

0

[(I + B)(F†H†HF)−1(I + B)†]kk
dω

2π

)
.

Let us examine the factors on the right hand side of the above inequality. For the first term, we

have the following inequalities:

M−1∏
k=0

∫ 2π

0

[F†F]kk
dω

2π
≥

Ñ∫ 2π

0

M

Ã
M−1∏
k=0

[F†F]kk
dω

2π

éM

(6.36)

≥
Ç∫ 2π

0

M

»
det(F†F)

dω

2π

åM
, (6.37)

where (6.36) is from the Hölder’s inequality for integral, and (6.37) is from Hadamard inequality
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for positive definite matrices. For the second term, we have

(
M−1∏
k=0

∫ 2π

0

[(I + B)(F†H†HF)−1(I + B)†]kk
dω

2π

)

≥

Ñ∫ 2π

0

M

Ã
M−1∏
k=0

[(I + B)(F†H†HF)−1(I + B)†]kk
dω

2π

éM

(6.38)

≥
Ç∫ 2π

0

M

»
det((I + B)(F†H†HF)−1(I + B)†)

dω

2π

åM
(6.39)

=

Ç∫ 2π

0

M

 
1

det(F†H†HF)

dω

2π

åM
, (6.40)

where (6.38) is from the Hölder’s inequality for integral, (6.39) is from Hadamard inequality for

any positive definite matrices, and (6.40) is from the fact that det(I + B(ejω)) = 1 for all ω.

To summarize, we have established a lower bound on ψ:

ψ
1
M ≥

∫ 2π

0

M

»
det(F†F)

dω

2π

∫ 2π

0

M

 
1

det(F†H†HF)

dω

2π
, (6.41)

where the right hand side is purely a function of the precoder F. We can also optimize F to find

a better bound. However, one wonders whether these inequalities are achievable with equality,

and if so, what the conditions are. In the following we will answer these questions and derive the

optimal F(ejω) for both problems (6.33) and (6.34).

6.6.1 Transceivers with Orthonormal Precoder Constraint

For the case of orthonormal precoder, we have det(F†F) = 1 for all ω, and thus the first term on the

right hand side of (6.41) is unity. The optimization problem can be rewritten as

minF

∫ 2π

0

M

 
1

det(F†H†HF)

dω

2π

s.t. F(ejω) has orthonormal columns. (6.42)

The following lemma solves the optimization problem (6.42).

Lemma 6.6.2 The minimum achievable objective value to the optimization problem (6.42) is

ψ1 =

∫ 2π

0

M

√
1∏M−1

k=0 σ2
h,k(ejω)

dω

2π
,
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where σh,k(ejω) is the kth largest singular value of the channel matrix H(ejω) at frequency ω. ♦

Proof: See Appendix. �

Because of this lemma, we can have the following lower bound for ψ subject to the orthonormal

precoder constraint:

ψ ≥

(∫ 2π

0

M

√
1∏M−1

k=0 σ2
h,k(ejω)

dω

2π

)M
.

Now the question is whether this lower bound is achievable. This question is answered by exam-

ining the equality conditions of (6.36) to (6.40). Because F has orthonormal columns, equalities

in (6.36) and (6.37) are automatically satisfied. On the other hand, for (6.38) and (6.39) to have

equalities, we require that

[(I + B)(F†H†HF)−1(I + B)†]kk = A(ejω)ak,

where A(ejω) is some scalar multiplier, ak are some elements such that
∏M−1
k=0 ak = 1, and also

(I + B)(F†H†HF)−1(I + B)† is a diagonal matrix. We assume at frequency ω, H(ejω) has rank Kω ,

and Kω ≥M for all ω because of the zero-forcing assumption, i.e., there is no channel null.

Now consider some vector [a0, · · · , aM−1] such that

[σh,0(ejω), · · · , σh,M−1(ejω)]

M

»∏M−1
k=0 σh,k(ejω)

�× [a0, · · · , aM−1] (6.43)

for all ω. If (6.43) is satisfied, it means that there exists the GTD form of the channel matrix for every

frequency such that

H(ejω) = Q(ejω)R(ejω)P†(ejω), (6.44)

where R(ejω) is a Kω × Kω upper triangular matrix with diagonal elements rk(ejω) so that the

first M elements satisfy |rk(ejω)| = M

»∏M−1
k=0 σh,k(ejω)ak, and Q(ejω) and P(ejω) are both matrices

with appropriate dimensions and orthonormal columns.

We are now ready to design our transceiver based on this specific GTD form of the channel

matrix. We begin by choosing the precoder as

F(ejω) = [P(ejω)]N×M . (6.45)
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We then choose the feedforward matrix as

G(ejω) =
(
diag([R(ejω)]M×M )

)−1
G0(ejω), (6.46)

where

G0(ejω) = [Q†(ejω)]M×J . (6.47)

Since P(ejω) and Q(ejω) have orthonormal columns, the columns of F(ejω) are orthonormal, and

so are the rows of G0(ejω). Finally the feedback filters B(ejω) are determined by the zero-forcing

condition, and can be shown to have the form

B(ejω) =
(
diag([R(ejω)]M×M )

)−1
[R(ejω)]M×M − I. (6.48)

It can be verified that with such design, all the equalities in (6.36) - (6.39) are satisfied, and thus it is

optimal for the optimization problem (6.33). The following theorem summarizes the discussions.

Theorem 6.6.3 (Optimal solution for transceivers with orthonormal precoder) Suppose a = [a0, · · · , aM−1]T

is a vector such that (6.43) is satisfied. If the transceiver is designed as in (6.44) - (6.48), the transceiver is

optimal for the problem (6.33), and the minimum transmitted power is

Pmin,orth = c2b
∫ 2π

0

M

√
1∏M−1

k=0 σ2
h,k(ejω)

dω

2π
.

♦

Proof: This can be directly verified by substituting the equations (6.44) - (6.48). �

The optimal system described in Theorem 6.6.3 is based on the frequency dependent GTD (6.44).

This demonstrates again the role of GTD in optimizing the transceivers. In the next subsection we

will relax the orthonormal precoder constraint for optimizing the transceivers.

6.6.2 Transceivers with Arbitrary Precoder

In this section we discuss the transceiver design when the precoder is not restricted to have or-

thonormal columns, and we will call such transceiver an unconstrained ZF transceiver. First we

will give a lower bound for the transmitted power of the unconstrained ZF transceiver. We will
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then prove that this lower bound is achievable and the solution will again be related to the fre-

quency dependent GTD of the channel matrix.

The right hand side of (6.41) can be used as a lower bound on the required transmitted power.

We can further optimize the bound by choosing the precoder F. The optimization problem can be

written as

min
F

∫ 2π

0

M

»
det(F†F)

dω

2π

∫ 2π

0

M

»
det(F†H†HF)−1

dω

2π
. (6.49)

To solve the problem (6.49), we first use the Hölder’s inequality for integrals [29]:

∫ 2π

0

M

»
det(F†F)

dω

2π

∫ 2π

0

M

»
det(F†H†HF)−1

dω

2π
≥
Ç∫ 2π

0

2M

 
det(F†F)

det(F†H†HF)

dω

2π

å2

, (6.50)

where the equality holds when det(F†F)×det(F†H†HF) is constant for all ω. The following lemma

gives the minimum value of the right hand side of the above inequality.

Lemma 6.6.4 Assume H(ejω) has rank at least M for every frequency, and σh,k(ejω) is the kth largest

singular value of the channel matrix H(ejω) at frequency ω, then

∫ 2π

0

2M

 
det(F†F)

det(F†H†HF)

dω

2π
≥
∫ 2π

0

2M

√
1∏M−1

k=0 σ2
h,k

dω

2π
. (6.51)

♦

Proof: For every frequency ω, we can apply the techniques used in Appendix of [123] and prove

that

det(F†(ejω)F(ejω))

det(F†(ejω)H†(ejω)H(ejω)F(ejω))
≥ 1∏M−1

k=0 σ2
h,k(ejω)

.

By taking the integral of the 2M th root on both sides with respect to frequency ω ∈ [0, 2π), the

lemma is proved. �

Combining (6.41), (6.49) and Lemma 6.6.4, we actually showed a lower bound on the transmit-

ted power in the unconstrained ZF transceivers to be

Ptrans ≥ c2b
(∫ 2π

0

2M

√
1∏M−1

k=0 σ2
h,k

dω

2π

)2

.

In the following we will provide a design example showing that this bound is indeed achiev-
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able. Consider a set of numbers {a0, · · · , aM−1} satisfies (6.43) and so that the specific GTD (6.44)

exists. We are now ready to design our transceiver based on this specific GTD form of the channel

matrix. We begin by choosing the precoder as

F(ejω) = λ(ejω)[P(ejω)]N×M , (6.52)

where λ(ejω) is chosen to satisfy the equality in (6.50), or

|λ(ejω)|2

|λ(ejω)|−2
∏M−1
k=0 σ2

h,k(ejω)
= d

for some constant d.

Therefore,

λ(ejω) = d
1
4

(
M−1∏
k=0

σ2
h,k(ejω)

) 1
4

φ(ejω), (6.53)

where φ(ejω) is some arbitrary phase response with magnitude |φ(ejω)| = 1. We then choose the

feedforward matrix as

G(ejω) = λ−1(ejω)
(
diag([R(ejω)]M×M )

)−1
G0(ejω), (6.54)

where

G0(ejω) = [Q†(ejω)]M×J . (6.55)

Finally the feedback filters B(ejω) are determined by the zero-forcing condition, and can be shown

to have the form

B(ejω) =
(
diag([R(ejω)]M×M )

)−1
[R(ejω)]M×M − I. (6.56)

It can be verified that with such design, all the equalities in (6.36) - (6.39), (6.50), and (6.51), are satis-

fied, and thus it is optimal for the optimization problem (6.34). The following theorem summarizes

the discussions.

Theorem 6.6.5 (Optimal solution for transceivers with general precoder) Suppose a = [a0, · · · , aM−1]T

is a vector such that (6.43) is satisfied. If the transceiver is designed as in (6.44), and (6.52) - (6.56), the
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transceiver is optimal for the problem (6.34), and the minimum transmitted power is

Punc,min ≥ c2b
(∫ 2π

0

2M

√
1∏M−1

k=0 σ2
h,k

dω

2π

)2

.

♦

We have derived the optimal transceiver designs for the case of orthonormal precoder and un-

constrained precoder. The results of Theorem 6.6.3 and 6.6.5 give elegant design methods for both

cases – the optimal orthonormal precoder transceiver design can be obtained from a frequency

dependent GTD form of the channel matrix; the optimal unconstrained ZF transceivers can be ob-

tained by designing the optimal orthonormal transceiver first and then cascading with the filter

λ(ejω). This is very similar to the case of the subband coder case where the optimal biorthogonal

GTD subband coders can be obtained by using the optimal orthonormal GTD subband coders and

a set of scalar filters.

6.7 Concluding Remarks

We proposed the perfect reconstruction GTD filter bank structure for subband coding and devel-

oped the optimal orthonormal and biorthogonal GTD filter banks when the filter order is uncon-

strained. The optimal solution is related to the frequency-dependent GTD of the Cholesky factor of

the input psd matrix. The performance comparison between the GTD filter banks and the optimal

traditional PR filter banks was given. In particular, the optimal GTD filter banks achieve the deter-

minant bounds of the traditional PR filter banks [109]. The theory of optimal GTD filter banks is

parallel to that of the optimal traditional filter banks, and these results were summarized in Table

I. Furthermore, we extended the use of GTD filter banks to wireless communication systems, and

showed that the optimal transceiver in the QoS problem is related to the frequency-dependent GTD

of the channel response matrix.

While this chapter contributes to the understanding of the role of GTD in optimizing the perfect

reconstruction filter banks, it is also clear that there are some key unsolved issues. For example,

finding the FIR approximation for the optimal GTD filter banks will be an important problem.

Several more open problems, and the detail discussion, will be made in Sec. 7.2.
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6.8 Appendix

6.8.1 Proof of Theorem 6.3.1

Suppose a pair of the subband processes, say v0(·) and v1(·), are not uncorrelated. Then,E[v0(n)v∗1(n−

k)] = r 6= 0 for some k. We now show how to decrease the product of the variances by redesigning

the estimators. Suppose we use a delay z−k and an additional predictor −r from the 0th stream

to the 1st stream to produce the uncorrelated pair w0(n) and w1(n) (see Fig. 6.8, where L0(ejω)

denotes the remaining frequency dependent PLT part). Note that this fixed estimator −r works for

all n by the WSS property. The delay element can be absorbed into the paraunitary filter E(ejω),

as in the proof of Theorem 1 of [106]. The additional predictor can be absorbed into L(ejω) with-

out destroying its structure (i.e., lower triangular with 1’s on the diagonal). Also, since w1(n) is

different from v1(n), all the other estimators need to be changed correspondingly. However, it can

be seen that it is possible to make wi(n) = vi(n) for i ≥ 2 by changing these remaining estimators.

Thus the structure in Fig. 6.8 is the same as using a modified pair of filters {Enew(ejω),Lnew(ejω)}

where Enew(ejω) is still paraunitary and Lnew(ejω) is still lower triangular with diagonal entries all

equal to unity. We now check if the product of the first two subband variances has been reduced,

i.e., if σ2
w0
σ2
w1
< σ2

v0σ
2
v1 .

)()(

Q0

)(10
 jeP r 

)()( 00 nwnv  

x Q1
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.
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Figure 6.8: Increasing the coding gain by exploiting residual correlation.

Let Rw and Rv be the correlation matrices of the vectors [w0(n) w1(n)]T and [v0(n) v1(n −

k)]T . Note that by using {Enew(ejω),Lnew(ejω)}, the determinant is preserved, and thus det Rw =

det Rv. Note that the diagonal elements of Rw and Rv are the quantities σ2
wi

and σ2
vi . Since w0(n)
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and w1(n) are uncorrelated, we have

σ2
w0
σ2
w1

= det Rw = det Rv = σ2
v0σ

2
v1 − |r|

2 < σ2
v0σ

2
v1 ,

where r denotes the nonzero cross-correlation between v0(n) and v1(n− k). Thus, we have shown

that for optimality v0(·) and v1(·) need to be totally decorrelated. For the case where (i, k) 6= (0, 1),

if vi(·) and vk(·) are not totally decorrelated, similar arguments can be used. However, one has to

be careful about the predictor filters, since by adding additional predictor filter −r from ith stream

to kth stream, all the remaining estimators need to be changed correspondingly. It can be verified

that after the changes, the overall structure is still representable by Fig. 6.1, thus it is still inside

the orthonormal GTD coder class we are discussing. Therefore, we have proved optimality implies

total decorrelation between vi(·) and vk(·) for i 6= k. This completes the proof.

6.8.2 Proof of Theorem 6.3.3

Here we first consider the case of M = 2. Assume Sv0(ejω)/σ2
v0 6= Sv1(ejω)/σ2

v1 for all ω in a set that

has nonzero measure. Suppose we are able to produce w0(n) and w1(n) from v0(n) and v1(n) such

that Sw0
(ejω) = Sw1

(ejω) =
√
Sv0(ejω)Sv1(ejω). Then, we have

σ2
v0σ

2
v1 =

1

4π2

∫ 2π

0

Sv0(ejω)dω

∫ 2π

0

Sv1(ejω)dω

>
1

4π2

Ç∫ 2π

0

»
Sv0(ejω)Sv1(ejω)dω

å2

(6.57)

= σ2
w0
σ2
w1
,

where the inequality (6.57) is from the Hölder’s inequality on square-integrable real-value func-

tions. The inequality is strict since we have Sv0(ejω)/σ2
v0 6= Sv1(ejω)/σ2

v1 for some ω on a set that

has nonzero measure.

It only remains to prove that such [w0(n) w1(n)]T can be obtained from [v0(n) v1(n)]T with

permissible transformations in the proposed coder structure. By Theorem 6.3.1 we know that the

psd matrix of [v0(n) v1(n)]T is diagonal for all frequencies since they are totally decorrelated. Taking

the determinant on both sides of (6.1), we have

Sv0(ejω)Sv1(ejω) = det Svv(e
jω) = det Sxx(ejω).
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Consider the following decomposition:

S†/2xx (ejω) = Q†(ejω)R(ejω)P(ejω) (6.58)

where

R(ejω) = 4

»
Sv0(ejω)Sv1(ejω)

1 r(ejω)

0 1

 (6.59)

is an upper triangular matrix with diagonals equal to the geometric mean of
√
Sv0(ejω) and

√
Sv1(ejω).

Here Q(ejω) and P(ejω) are both 2 × 2 unitary matrices for all frequencies ω. The existence of this

decomposition is ensured by the GMD theory [38] for every frequency ω. Let [w0(n) w1(n)]T be the

signal constructed by passing [x0(n) x1(n)]T through filter P(ejω) and the predictor matrix R1(ejω),

where

R1(ejω) =

 1 0

−r∗(ejω) 1

 .
Thus, we can calculate the psd of [w0(n) w1(n)]T as follows:

Sww(ejω)

= R1(ejω)P(ejω)Sxx(ejω)P†(ejω)R†1(ejω)

=

 1 0

−r∗(ejω) 1

R†(ejω)R(ejω)

1 −r(ejω)

0 1


=

√Sv0(ejω)Sv1(ejω) 0

0
√
Sv0(ejω)Sv1(ejω)

 ,
where in the derivation we have substituted in (6.58) and (6.59). Therefore, if we use {E(ejω),L(ejω)} =

{P(ejω),R1(ejω)}, we are able to decrease the product of the stream signal variances. This com-

pletes the proof for the case M = 2. For greater M , a similar proof technique can be used, and this

is left to the reader.

6.8.3 Proof of Lemma 6.6.1

The proof of this lemma follows from similar arguments as in the proof of Lemma 1 in [123].

Suppose there is another G′(ejω) satisfying the zero forcing constraint with the given F(ejω) and
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B(ejω). By Lemma 1 in [123] we can prove that for every frequency ω, [G(ejω)′G†(ejω)′]kk ≥

[Gopt(e
jω)G†opt(e

jω)]kk. Since ψ is related to the integral of [G(ejω)G†(ejω)]kk as in (6.32), by inte-

grating the above inequality for ω from 0 to 2π we can prove this lemma.

6.8.4 Proof of Lemma 6.6.2

Suppose {σf,k(ejω)} denote the singular values of F†(ejω)H†(ejω)H(ejω)F(ejω) in descending or-

der. By the interlacing property [31] for the Hermitian matrices H†(ejω)H(ejω), we have

σ2
h,0(ejω) ≥ σf,0(ejω) ≥ σ2

h,1(ejω) ≥ · · · ≥ σf,M−1(ejω).

So,

1/
M−1∏
k=0

σf,k(ejω) ≥ 1/
M−1∏
k=0

σ2
h,k(ejω).

By integrating this equation, this lemma can be proved.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have studied many important problems of modern signal processing and com-

munication by using the theory of majorization and generalized triangular decomposition.

In Chapter 1, an overview of transceiver optimization and signal-adapted filter bank optimiza-

tion problems was given. In Chapter 2, we reviewed the mathematical preliminaries needed to

understand this thesis. In particular, the theory of additive and multiplicative majorization were

introduced. The connection between the notion of majorization and the matrix theory were then re-

viewed. Finally, the generalized triangular decomposition, as well as the block-diagonal geometric

mean decomposition, were introduced.

In Chapter 3 and 4, the roles of majorization and GTD in modern communication were studied.

Chapter 3 considered the transceiver optimization for frequency flat MIMO channels and Chapter

4 considered the transceiver design for frequency selective MIMO channels. In Chapter 3, we first

studied the problem of jointly optimizing the DFE transceiver with linear precoding and bit allo-

cation, under the total power constraint. We have proposed a general family of GTD transceivers,

which optimally solves the DFE transceiver optimization problem. The GTD family also yields op-

timal solutions for the QoS problem and the bit rate maximization problem. Many existing systems

are identified to be special cases of the GTD-based system, and some new GTD-based transceivers

were also indicated. The QR-based GTD has the advantage of offering a simple way to perform

limited-feedback by sending the bit allocation information from the receiver to transmitter. In the

second part of Chapter 3, we focused on the linear transceiver and DFE transceiver design under

any linear constraints on the transmit covariance matrix. These constraints include total power
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constraint, individual power constraints on the antennas, spectral masks in cable systems to con-

trol crosstalk among users, limiting power along some directions, and many more. A two-step

approach was proposed to tackle this problem. We first showed that the minimum MSE problem

(AM-MSE of GM-MSE, depending on types of transceiver considered) can be solved based on a

general semi-definite programming (SDP) framework. The theory of majorization was later used

to obtained minimum BER solutions.

In Chapter 4 we studied the transceiver design problem for MIMO frequency selective channels.

We focused on the DFE transceiver with linear precoder for the zero-padded frequency selective

channels. Using the block-diagonal GMD, we proposed the ZP-BD-GMD transceivers, for both

zero-forcing DFEs and MMSE DFEs. Because the block diagonal structure of the ZP-BD-GMD

transceivers, the implementation is greatly simplified. Performance of the ZP-BD-GMD were then

analyzed. Many desirable properties of the system were also discovered, and the proofs of these

properties were presented systematically.

In Chapter 5 and 6, we studied the roles of majorization and GTD in data compression sys-

tems. Chapter 5 revisited the transform coding problem and Chapter 6 considered the filter bank

optimization problem. In Chapter 5, a general family of optimal transform coders (TC) was intro-

duced based on the GTD. The use of GTD allows the signal variance to be distributed across the

subbands. The coding gain of the entire GTD transform coder family, with optimal bit allocation,

is maximized. This family includes KLT and PLT coders as special cases. Moreover, many novel

transform coders were proposed. In particular, the GMD transform coder can achieve the maxi-

mized coding gain with uniform bit loading, thus solving the bit granularity problem. While the

previous results are only applicable in the high bit rate case, in the second part of this chapter we

addressed the low bit rate coding using the dithered GMD coder. We have proposed two dithered

GMD transform coders: the GMD subtractive dithered transform coder (GMD-SD) and the GMD

non-subtractive dithered transform coder (GMD-NSD). Both of these two coders use uniform bit

loading schemes. We have shown that the proposed dithered GMD transform coders perform sig-

nificantly better than the original GMD coder in the low rate case.

In Chapter 6 we focused on the signal adapted filter bank optimization. We studied the use of

GTD to design the perfect reconstruction filter bank as a subband coder for optimizing the theoret-

ical coding gain. The theory of orthonormal GTD filter banks and biorthogonal GTD filter banks

were derived. We have shown that there are two fundamental properties in the optimal solutions,
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namely, total decorrelation and spectrum equalization. The optimal GTD filter banks, for both or-

thonormal and biorthogonal cases, can be obtained by performing the frequency dependent GTD

on the Cholesky factor of the input power spectrum density matrices. The connection between the

theory of GTD filter banks and the traditional linear filter banks were discussed. We then extended

the use of GTD filter banks to wireless communication systems, where linear precoding and zero-

forcing decision feedback equalization were used in frequency selective channels. We considered

the quality of service (QoS) problem of minimizing the transmitted power subject to the bit error

rate and total bit rate constraints. Optimal systems with orthonormal precoder and unconstrained

precoder were both derived and shown to be related to the frequency dependent GTD of the chan-

nel frequency response.

7.2 Future Work

There are various topics worthy of future research. While the thesis contributes to the understand-

ing of the roles of majorization and GTD in many signal processing problems, it is also clear that

there are some key unsolved issues. We summarize several open problems as follows:

1. Robust Transceiver Designs Against Channel Estimation Errors: In Chapter 3 and 4 we studied

the transceiver designs using majorization theory and GTD. The results were obtained based

on the assumption of perfect CSIR and CSIT. However, imperfect channel state information

arises in practical communication systems due to channel estimation errors. It is thus essen-

tial to have a robust design against these channel uncertainties. The theoretically optimal

transceivers using GTD derived in this thesis is a good start point for continuing this line of

research.

2. Signal Independent Transformation: In Chapter 5, we studied the use of GTD for transform

coding. One thing to note for practical use of transform coder is that, in situations involving

the KLT, the discrete cosine transform (DCT) is often used instead of the KLT. This is because

the DCT is signal independent, computationally efficient, and a good approximation of the

KLT for a large class of signals with low-pass spectra [62]. An analogous low-complexity

approximation for the precoder P, which arises in the GTD implementation, is not known

and worthy of pursuing.

3. FIR Approximation: In Chapter 6, we discussed the performance of the GTD filter banks when
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the filter order is unconstrained. The theory was useful in giving insight on how to design the

implementable finite order filter banks. While the FIR implementations of the traditional PR

filter banks are discussed extensively in the literature, the FIR approximation of the optimal

GTD filter banks is under investigation. Ideas from the design of traditional filter banks might

also be useful here. For example, [97] proposed the greedy algorithm for approximating FIR

paraunitary matrix that may be used to design the precoder P(ejω); the phase ambiguity used

in [98] to improve the design of the FIR filter banks may also be useful here since the phase

ambiguity is also present in the GTD case.

4. Parallel Theory to PCFB: Principal component filter banks (PCFB) are closely related to optimal

orthonormal filter banks. They are known to be optimal for objective functions that are Schur-

convex [65] in the subband variances [3, 34]. By modifying the proofs in Chapter 6, it is

possible to show that the GMD filter bank is optimal for a wider class of objective functions

that are Schur-convex in the logarithm of the subband variances. However, the algebraic

theory that is parallel to the linear filter bank version in [34], as well as possible applications

are still under investigation.

5. Relaxing the PR Constraint and the High Bit Rate Assumption: Traditional filter bank optimiza-

tion without the perfect reconstruction constraint was solved in [68]. The optimal GTD filter

bank without the PR constraint is challenging due to the nonlinear nature of the estimator

stage. On the other hand, the validity of the MINLAB structure relies on the high bit rate

assumption [82]. The low rate case for the GMD transform coder was discussed in Chapter

5. How to extend the GTD filter bank theory to the low bit rate case is currently also an open

problem.
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