CAVITY RINGDOWN SPECTROSCOPY OF THE NITRATE AND PEROXY RADICALS

Thesis by

Kana Takematsu

In Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2011

(Defended May 23, 2011)

© 2011

Kana Takematsu

All Rights Reserved

ACKNOWLEDGEMENTS

I know that the Ph. D. journey can be difficult, but my years at Caltech have been some of my happiest, and I owe it to the incredible love and support that I have received from my family and Caltech family over the last years. I also would never have begun this journey without the love and support of past teachers and friends. I don't think that I was ever the normal child, but I was always a loved child, and for that I am eternally grateful.

To my mother, father, and brother: Thank you for supporting me, not only the past years in school, but throughout my entire life. You always let me be me. I was lucky to be born your daughter and sister, and I will always love you.

To my advisor Mitchio: I've learned to become a better scientist and mentor from our work together. Somewhere along the way, you became not only my advisor but my trusted friend. Thank you. I also thank your wife Laurie and the girls Mei-Li and Jinny for their laughter and smiles.

To my thesis committee, Geoff, Harry, and Rudy: I couldn't have asked for a merrier trio. You represent to me the spirit of the scientific community: the camaraderie, the knowledge, and the joy. Thank you.

To my fellow Okumurons: You were not only my research peers but were my friends and family outside of the lab. To all the current and past lab members, Aaron, Andrew, David, Julie, Andrei, Laurence, Dave, Kathleen, Sigrid, Kathryn, Leah, Thinh, Matt, Aileen, and Nathan, to all the summer students, Jonathan, Heather, Alex, Eric, Matthew, Geoff, and Marcus, and to all the honorary Okumurons, Stan, Xu, Fred, Pin, and Ralph, thank you. Once an Okumuron, always an Okumuron. I'll always be yours.

To my friends at Caltech: There never was a girl who felt more loved. I apologize that I can't name everyone here individually, but thanks to the Potluck group, WMW, the floorball team, and the LA Dipoles. I also want to thank Jenelle and Adrienne. I've never had sisters, but you two are the best "older" sisters a girl could ever have. I also want to thank Laurence, who would have made an excellent twin.

To the various Caltech lab groups and collaborators: Thanks to the Blake, Barton, Sander, Wennberg, Seinfeld, and Rees groups for all the merriment and equipment. The gas phase and atmospheric communities have both been so kind. Anne, I owe you another Curious George book, and John, I make fun of you way too much. Terry and Ming-Wei, OSU was that much lovelier with your company

To Caltech staff: Thanks to Rick, Steve, Mike, and Tom for dealing with both me and the broken equipment, to Steve and Leah for orders, to Terry, Joe, and Ron for deliveries, to Carlette for fellowship work, to Linda, Anne, Agnes, Dian, and Laura for crazy paperwork, and to facilities for gas cylinders. Thanks also to Ernie, who is part of "Caltech staff" for me.

Finally, to my past teachers and friends: To my friends in high school and college, I learned from you how to be a better friend. To my teachers at Daniel and Prof. Darryl DesMarteau at Clemson, I learned from you how to be a better mentor. Thank you. To the University of Chicago, you gave me a chance to learn with the fellowship. It meant the world to me. And finally, to Prof. Laurie Butler and the Butler girls, you showed me the joys

of research. I never would have begun my journey without you. Thank you.

P.S. NSF and EPA: When I started the Ph. D. journey, I didn't even know that students get paid in graduate school. The fellowships gave me the freedom to pursue my dreams. I've made the best of my opportunities at Caltech and I have thoroughly enjoyed the journey. Thank you.

ABSTRACT

The chemistry of the Earth's atmosphere consists of complex networks of reactions. Photooxidation of volatile organic compounds (VOCs) in the atmosphere initiates free radical formation. These radicals attack other VOCs to form pollutants and secondary organic aerosols. Quantitative understanding of the radicals and reactions is needed for accurate modeling of the atmosphere. Many species are difficult to study due to low concentrations and short lifetimes. Spectroscopic methods in the ultraviolet and visible regions either do not have the sensitivity or the specificity to characterize these reactions. The work here examines the chemistry and physics of atmospheric radicals by using the sensitive and fast spectroscopic technique cavity ringdown spectroscopy (CRDS), to detect transient species in the near-infrared (NIR) region.

The nitrate radical NO₃ is a major nighttime oxidant in the troposphere. It is also a classic example of the breakdown of the Born-Oppenheimer approximation. The radical was first observed a century ago in atmospheric measurements. The structures of the three lowest electronic state however are still not well understood. Difficulties arise from the non-adiabatic Jahn Teller and Pseudo-Jahn-Teller effects. In Chapter 3, we examine the electronic-dipole forbidden $\tilde{A} \leftarrow \tilde{X}$ transition of NO₃ in the NIR to elucidate the \tilde{A} state of NO₃. In Chapter 4, we examine the role of NO₃ in atmospheric reactions by detecting the peroxy radical intermediate of the oxidation of 2-butene by NO₃.

The chlorine atom Cl is highly reactive and has been historically considered a coastal or marine layer oxidant. Studies now indicate that Cl atoms can play significant roles in urban mainland chemistry. Isoprene and 2-methyl-3-buten-2-ol (MBO232) are two important biogenic VOC

vii

emissions. Isoprene alone is responsible for emissions of 500 Tg C y⁻¹. The peroxy radical intermediates of the oxidation of isoprene and MBO232 by Cl have never been detected using absorption spectroscopy. Chapter 5 includes the first preliminary CRD spectra of the $\tilde{A} \leftarrow \tilde{X}$ transition of Cl-isoprenyl and Cl-MBO232 peroxy radials in the NIR. We also outline kinetic experiments to measure the rates of reaction between the Cl-substituted peroxy radicals and nitric oxide (NO) and hydroperoxy radical (HO₂) under high and low NO_x conditions in the troposphere.

TABLE OF CONTENTS

Acknowledgementsiii
Abstractvi
Table of Contents viii
List of Figures and Tablesxi
Chapter 1: Introduction1
1.1 The initial conversation1
1.2 Detection of transient species
1.3 The chemistry of the atmosphere: the role of the
peroxy radical
1.4 A puzzle for many: the nitrate radical
1.5 Summary
1.6 References
Chapter 2: Cavity ringdown spectroscopy and the apparatus 18
2.1 Introduction to cavity ringdown spectroscopy
2.2 The Raman cell as a near-infrared source
2.3 The pulsed CRDS apparatus
2.4 Summary
2.5 References
Appendix for Chapter 2
A-2.1 Calculation of the sensitivity
A-2.2 Photos and alignment of the Raman cell
A-2.3 Details of the pulsed CRDS apparatus
A-2.3.1 Overview of the Labview programs
A-2.3.2 Components of the optical cavity
A-2.3.3 Calibration of the spectra
A-2.3.4 Laser maintenance
A-2.3.5 Delay generators for control of the laser
firing
A-2.4 Lab safety and procedures
A-2.5 References
Chapter 3: The $\tilde{A} \leftarrow \tilde{X}$ transition of the nitrate radical (NO ₃):
elucidation of the non-adiabatic effects 74
3.1 Introduction to the chemical physics problem of NO_3 . 74
3.2 The dark \tilde{A} state of NO ₃ .
3.3 Experimental conditions 84
3.4 Observed spectra

3.4.1 Assignments	85
3.4.2 Fundamental vibrations	92
3.4.3 Jahn Teller Splitting in the $v_4' = 1$, $E'' \times e'$ level	95
3.5 Discussion	95
3.6 Summary	101
3.7 References	102
Appendix for Chapter 3	105
A-3.1 Brief overview of the Jahn Teller effect	105
A-3.2 Results from our previous CRDS study	.108
A-3.3 N ₂ O ₅ synthesis	.113
A-3.4 Nitric acid absorptions in the NIR region	.114
A-3.5 Calculations and simulations of NO ₂	116
A-3.5.1 PGopher simulations	116
A-3.5.2 Rotational constants	122
$A_{-3} = 3$ Simulation of the bands in Mathematica	124
A-3.6 Off-axis integrated cavity output spectroscopy	127
A_3 7 References	130
	102
Chapter 4: Detection of the peroxy intermediate in the	
α ovidation of 2-butene by the nitrate radical (NO ₂)	133
4.1 Introduction to NO ₂ as a tropospheric ovident	122
4.2 Detection of the 2 NO ₂ butyl perovy radical	136
4.2 Detection of the 2-NO3-butyl peroxy radical	126
4.2.1 The $NO_3 + 2$ -ducine system	120
4.2.2 Detection of peroxy faultais	140
4.3 Experimental conditions	140
4.3.1 The chemistry	140
4.3.2 Apparatus and scan details	.143
4.4 Results and discussion	.145
4.4.1 Observed spectra	.145
4.4.2 Verification of the peroxy radical spectrum	
4.5 Summary	150
4.6 References	151
	1 = 6
Appendix for Chapter 4	156
A-4.1 Long residence time experiments	156
A-4.1.1 NO ₃ + 2-butene	156
A-4.1.2 O_3 + 2-butene	157
A-4.2 References	160
Chapter 5: Detection of peroxy intermediates in the	
oxidation of volatile organic compounds by chlorine	
atoms	161
5.1 Introduction to chlorine atoms in the troposphere	161

5.2	Cl-per	roxy radical detection	164
	5.2.1	Background	164
	5.2.2	Preliminary scans of Cl-ethyl peroxy radical	165
	5.2.3	Cl-isoprenyl peroxy radical detection	168
	5.2.4	Cl-MBO232 peroxy radical detection	175
5.3	5.3 Cl-peroxy radical kinetics		
	5.3.1	Background	179
	5.3.2	Kinetics of the ethyl peroxy radical	182
5.4	Sumn	nary	191
5.5	Afterv	vord	191
5.6	Refere	ences	193

LIST OF FIGURES AND TABLES

Number

Fig. 1.1.	Different branches of atmospheric chemistry $\dots 2$
Fig. 1.2.	Sensitivity of spectroscopic measurements4
Fig. 1.3.	Electromagnetic spectrum6
Fig. 1.4.	Isoprene and its oxidation sites8
Fig. 1.5.	Chemical pathways of peroxy radicals10
Fig. 1.6.	Nitrate radical12
Fig. 2.1.	Pulsed cavity ringdown spectroscopy (CRDS)20
Fig. 2.2.	Laser and cavity modes in CRDS23
Fig. 2.3.	Rayleigh and Raman scattering25
Fig. 2.4.	Diagram of the pulsed CRDS apparatus27
Fig. 2.5.	Diagram of the CRDS optical cavity29
Fig. 3.1.	Molecular bonding orbitals of NO_3 74
Fig. 3.2.	Three lowest electronic states of NO_3 76
Fig. 3.3.	Transitions to the excited states of NO_3 80
Fig. 3.4.	$\tilde{A}^{_{2}}E''\otimes\upsilon_{_{4}}(e')$ manifold of NO_{3} 83
Fig. 3.5.	CRD spectrum of NO $_3$ in 7000-7600 cm ⁻¹ region .87
Fig. 3.6.	Diagram of observed vibronic bands of NO_3
Fig. 3.7.	CRD spectrum of the 4_1^0 band of NO ₃ 88
Fig. 3.8.	CRD spectrum of the 0_0^0 band of NO_3 90
Fig. 3.9.	CRD spectrum of NO $_3$ in 7790-7940 cm ⁻¹ region .91
Fig. 3.10	. CRD spectrum of the anomalous $2_0^1 4_0^1$ band92
Fig. 3.11	. Intensity borrowing mechanism for $2_0^1 4_0^1$ band97
Fig. 4.1.	Chemical pathways of NO ₃ + 2-butene137
Fig. 4.2.	UV spectra of methyl and ethyl peroxy radicals .138

Fig. 4.3. CRD spectrum of NO_3 from photolysis	142
Fig. 4.4. Conditions for NO_3 + 2-butene experiments	144
Fig. 4.5. CRD spectrum of 2-NO ₃ -butyl peroxy radical	147
Fig. 4.6. CRD spectrum of 2-butene	148
Fig. 5.1. Schematics of Cl addition to isoprene	163
Fig. 5.2. CRD spectra of Cl-ethyl peroxy radical	167
Fig. 5.3. Conditions for Cl + isoprene experiment	169
Fig. 5.4. CRD spectra of Cl-isoprenyl peroxy radical	171
Fig. 5.5. CRD spectrum of isoprene	172
Fig. 5.6. CRD spectrum of ethyl peroxy radical	175
Fig. 5.7. Isomers of Cl-MBO232 peroxy radicals	176
Fig. 5.8. CRD spectra of Cl-MBO232 peroxy radical	178
Fig. 5.9. CRD spectrum (un-subtracted) of MBO232	178
Fig. 5.10. Ethyl peroxy radical concentrations from	
kinetics model: Cl + ethane	184
Fig. 5.11. Ethyl peroxy radical concentrations from	
kinetics model: Cl + ethane + NO	186
Fig. 5.12. Ethyl peroxy radical concentrations from	
kinetics model: Cl + ethane + HO_2	189
Fig. A-2.1. Components of the Raman cell	37
Fig. A-2.2. Entrance flange of the Raman cell	38
Fig. A-2.3. Labview data collection program	42
Fig. A-2.4. Diagram of Pyrex ringdown cells	46
Fig. A-2.5. Diagram of photolysis ringdown cells	46
Fig. A-2.6. Diagram of optogalvanic apparatus	50
Fig. A-2.7. Typical optogalvanic spectroscopy signal	51
Fig. A-2.8. Optogalvanic spectra in the visible	52
Fig. A-2.9. Three-bore flow cell of the NY61 laser head .	58
Fig. A-2.10. Description of the step motor connections .	61

Fig. A-2.11. The DAQ card and dye laser connections62
Fig. A-2.12. Delays generators for timing control
Fig. A-2.13. Schematics for 20 Hz operation
Fig. A-2.14. Schematics for 5 Hz operation67
Fig. A-2.15. Preparation of a mixture gas cylinder70
Fig. A-3.1. Linear and quadratic JT effect107
Fig. A-3.2. D_{3h} and C_{2v} character tables108
Fig. A-3.3. CRD spectrum of the 2_0^1 and 4_0^1 bands110
Fig. A-3.4. Intensity borrowing mechanisms for the
2^1_0 and 4^1_0 bands111
Fig. A-3.5. Synthesis of N_2O_5
Fig. A-3.6 CRD spectra of HNO_3 (a) and (b) $\ldots \ldots 115$
Fig. A-3.7 PGopher simulation of the 4_0^1 band118
Fig. A-3.8 PGopher simulation of the 2_0^1 band118
Fig. A-3.9 PGopher simulation of the $4_1^0 2_0^1$ band119
Fig. A-3.10 PGopher simulation of the 4_1^1 band119
Fig. A-3.11 PGopher simulation of the $4_1^0 1_0^1$ band120
Fig. A-3.12 PGopher simulation of the 0_0^0 band120
Fig. A-3.13 PGopher simulation of the 4_1^0 band121
Fig. A-3.14 PGopher electric quadrupole model121
Fig. A-3.15 Structural parameters of NO ₃ 123
Fig. A-3.16 Schematics of off-axis ICOS128
Fig. A-3.17 Off-axis ICOS apparatus129
Fig. A-3.18 Off-axis ICOS spectrum of the 4_1^0 band131
Fig. A-4.1 CRD spectrum of NO ₃ + 2-butene157
Fig. A-4.2 The Criegee intermediate158
Fig. A-4.3 CRD spectrum of O ₃ + 2-butene159

Fig. A-4.4	Comparison of CRD spectra of NO_3 + 2-butene
	and O_3 + 2-butene159
Table 3.1.	Ground state frequencies of NO ₃ 78
Table 3.2.	Assignment of the $\tilde{A} \leftarrow \tilde{X}$ transitions NO ₃ 86
Table 3.3.	Vibrational frequencies of NO_3 from this work93
Table 5.1.	Kinetics model for Cl + ethane183
Table 5.2.	Kinetics model for Cl + ethane + NO185
Table 5.3.	Kinetics model for Cl + ethane + HO_2 188
Table A-2.	1. CRD mirrors in the laboratory47
Table A-2.2	2. Recipes for laser dyes52
Table A-2.3	3. Common laboratory baths71