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Abstract

We construct a canonical noncommutative spectral triple for every oriented closed Riemannian

manifold, which represents the fundamental class in the twisted K-homology of the manifold. This so-

called “projective spectral triple” is Morita equivalent to the well-known commutative spin spectral

triple provided that the manifold is spin-c. We give an explicit local formula for the twisted Chern

character for K-theories twisted with torsion classes, and with this formula we show that the twisted

Chern character of the projective spectral triple is identical to the Poincaré dual of the A-hat genus

of the manifold.
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Introduction

The notion of spectral triple in Connes’ noncommutative geometry arises from extracting essential

data from the K-homology part of index theory in differential geometry. The following are basic

examples of commutative spectral triples:

i) The spin spectral triple for a spinc manifold M with a spinor bundle S:

ς1 = (C∞(M),Γ(S), /D, ω),

where ω is the grading operator on S. The identity between the analytic and topological

indexes of /D is the Atiyah-Singer index formula for spinc manifold.

ii) The spectral triple for the signature for a Riemannian manifold M :

ς2 = (C∞(M),Ω(M), d+ d∗, ∗(−1)
deg(deg−1)

2 − dimM
4 ).

The index formula corresponding to this spectral triple is the Hirzebruch signature formula.

iii) The spectral triple for Euler characteristic for a Riemannian manifold M :

ς3 = (C∞(M),Ω(M), d+ d∗, (−1)deg).

The local index formula corresponding to this spectral triple is the Gauss-Bonnet-Chern the-

orem.
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In fact, every special case of Atiyah-Singer Index theorem corresponds to an instance of commutative

spectral triple (with additional structures when necessary). These spectral triples, like ς1, ς2, ς3, have

many nice properties such as “the five conditions” in Connes [8], and conversely, it is proved that

[8] any commutative spectral triple (A,H, D, γ) satisfying those five conditions is equivalent to a

spectral triple consisting of the algebra of smooth functions on a Riemannian manifold M , the

module of sections of a Clifford bundle over M and a Dirac type operator on it. Furthermore, if

(A,H, D, γ) satisfies an additional important property – the Poincaré duality in K-theory – which

means (A,H, D, γ) represents the fundamental class (i.e., a K-orientation) in K0(A), then it is

equivalent to a spin spectral triple ς1 for some spinc manifold. The spectral triple for Hirzebruch

signature ς2 (as well as ς3) does not have the property of Poincaré duality; however, we show in this

paper (Corollary 5.4, Theorem 6.1) that for every closed oriented Riemannian manifold there is a

canonical noncommutative spectral triple having the property of Poincaré duality in K0(M,W3(M)),

the twisted K-theory of M with local coefficient W3(M) - the third integral Stiefel-Whitney class.

This canonical spectral triple is called the projective spectral triple on M , and its center is unitarily

equivalent to ς2. The projective spectral triple is Morita equivalent to the spin spectral triple

provided the underlying manifold is spinc. On the other hand, in the paper of Mathai-Melrose-

Singer [19], a so-called projective spin Dirac operator was defined for every Riemannian manifold;

however, this operator is in a formal sense. It turns out that the projective spectral triple, in which

the Dirac operator is really an operator acting on a Hilbert space, just plays the role of the projective

spin Dirac operator.

A spectral triple that gives rise to Poincaré duality in KK-theory first appeared in Kasparov [17].

In Kasparov’s spectral triple (although there was no such terminology at that time), the algebra

is noncommutative and Z2-graded, but in many cases it would be much easier if the algebra is

ungraded, especially when considering its Dixmier-Douady class or passing it to cyclic cohomology

class via Connes-Chern character. The projective spectral triple constructed in this paper (Corollary

5.4)

(AW3
,HW3

, DW3
, γW3

)
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has a noncommutative but ungraded algebra, and it is in fact Morita equivalent to that of Kasparov’s.

To construct such a spectral triple, we first introduce in chapter 4 the notion of Morita equivalence

between spectral triples, then find in chapter 5 that the local spin spectral triples on small open

subsets of the manifold can be glued together, via Morita equivalence, to form a globally defined

spectral triple.

The noncommutative algebras underlying projective spectral triples are examples of Azumaya

algebras. In chapter 1 we review some basic theory on Azumaya algebras, such as the fact that

Morita equivalent classes of Azumaya algebras are classified by their Dixmier-Douady classes, and

that the K-theory of an Azumaya algebra A coincides with the twisted K-theory of the manifold

with the Dixmier-Douady class of A.

Mathai-Stevenson [20] showed that the K-theory (tensoring with C) of an Azumaya algebra A

is isomorphic to the periodic cyclic homology group of A via Connes-Chern character, and that the

latter is isomorphic to the twisted de-Rham cohomology of the manifold with the Dixmier-Douady

class of A via a generalized Connes-Hochschild-Kostant-Rosenberg (CHKR) map.

K0(M, δ(A))⊗ C ch
∼=

//

chδ(A)

∼=

))

HP0(A)

Chkr

∼=

ww
Hev

dR(M, δ(A))

In chapter 2, we find an alternative CHKR map (Theorem 2.5) for the special case that the Dixmier-

Douady class of A is torsion.

For an algebra A, a finite projective A-module E as a K-cocycle in the K-theory of A has a

Connes-Chern character ch([E ]) as a cyclic homology class, whereas a spectral triple on A as a

K-cycle in the K-homology group of A has also a Connes-Chern character as a cyclic cohomology

class, and the index pairing of a K-cocyle and a K-cycle is identical to the index pairing of their

Connes-Chern characters ([6, 7]). The main purpose of this paper is to compute the Connes-Chern

character of the projective spectral triple and identify it with the Poincaré dual of the A-hat genus

of the manifold.
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In chapter 7, with the help of the alternative CHKR map ρ and applying the Poincaré duality,

we obtain our main result, a local formula for the Connes-Chern character of the projective spectral

triple,

ch(AW3
,HW3

, DW3
, γW3

)(·) =
∑
m

1

2n(2m)!

∫
M

Â(M) ◦ ρ2m(·).
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Some conventions and notations

Throughout this paper, we assume the following:

Unless otherwise stated explicitly, all vector spaces, algebras, differential forms, and vector bun-

dles except cotangent bundles are considered over the field C of complex numbers.

The notation Γ(X,E) or Γ(E) for a fibre bundle E over X always stands for the space of smooth

sections of E.

For each function f : N→ C, we define the operator f(deg) : Ω(X)→ Ω(X) acting on the space

of differential forms on X to be the linear map given by

f(deg)ω = f(k)ω, ∀ω ∈ Ωk(X).
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Chapter 1

Azumaya Bundles, Twisted
K-theory, and Twisted
Cohomology

Suppose X is a closed oriented manifold. We use the notations

Mn =


Mn(C), n = 1, 2, . . .

K(H), n =∞
, Un =


U(n), n = 1, 2, . . .

U(H), n =∞
,

where n could either be a positive integer or infinity, H is an infinite dimensional separable Hilbert

space, K(H) is the C∗-algebra of compact operators on H, and U(H) is the topological group of uni-

tary operators with the operator norm topology. Kuiper’s theorem states that U(H) is contractible.

Let PUn = Un/U(1) be the projective unitary groups. In particular PU(H) = PU∞ is endowed

with the topology induced from the norm topology of U(H).

Let Aut(Mn) be the group of automorphisms the C∗-algebra Mn.

Fact 1. For every element g ∈ Aut(Mn), there exists g̃ ∈ Un, such that g = Adg̃. For every u ∈ Un,

Ad u = 1 if and only if u is scalar. In other words, as groups PUn
∼= Aut(Mn).

Fact 2. If n is finite, Un/U(1) ∼= SU(n)/{z ∈ C | zn = 1}.

Definition 1.1. An Azumaya bundle over X of rank n (possibly n =∞) is a vector bundle over X

with fibre Mn and structure group PUn.

Every Azumaya bundle of rank n is associated with a principal PUn-bundle and vice versa.
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Definition 1.2. The space A = Γ0(A) of continuous sections of an Azumaya bundle A over X

forms a C∗-algebra called an Azumaya algebra over X.

The following are examples of Azumaya algebras over X:

i) the algebra of complex valued continuous functions C0(X);

ii) C0(X)⊗Mn;

iii) if E is a finite rank vector bundle over X, the algebra of continuous sections of End(E),

Γ0(End(E));

iv) if X is an even dimensional Riemannian manifold, the algebra of continuous sections of the

Clifford bundle Cl(T ∗X), Γ0(Cl(T ∗X));

v) if E is a real vector bundle over X of even rank with a fiberwise inner product, the algebra of

continuous sections of the Clifford bundle Cl(E), Γ0(Cl(E)).

Note that examples i), ii), iii) are Morita equivalent (in the category of C∗-algebras, i.e., strongly

Morita equivalent) to C0(X), while example iv) or v) is Morita equivalent to C0(X) if and only if

X or E is spinc respectively.

Fact 3. The center of a finite Azumaya algebra over X is C0(X).

Fact 4. An Azumaya algebra A over X is locally Morita equivalent to C0(X).

The obstruction to an Azumaya algebra being (globally) Morita equivalent to its “center” is

characterized by its Dixmier-Douady class:

Definition 1.3. Every Azumaya bundle π : A→ X of rank n is associated with a cohomology class

δ(A) in H3(X,Z), called the Dixmier-Douady class of A, constructed as follows:

Let {Ui}i∈I be a good covering of X, and write Ui1···in for the intersection of Ui1 , Ui2 , · · · , Uin .

Suppose

ψi : Ui ×Mn
'−→ π−1(Ui), ∀i ∈ I,
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provide a local trivialization of A. Then ψ−1
i ψj : Uij ×Mn → Uij ×Mn give rise to the transition

functions gij ∈ C0(Uij ,Aut(Mn)). Pick g̃ij ∈ C0(Uij ,Un) such that Adg̃ij = gij and g̃ij = g̃−1
ji .

Thus Ad(g̃ij g̃jkg̃ki) = gijgjkgki = 1, which implies

µijk := g̃ij g̃jkg̃ki ∈ C0(Uijk,U(1)).

Therefore µ is a Čech 2-cocycle with coefficient sheaf U (1) : U 7→ C0(U,U(1)), since (∂µ)ijkl =

µjklµ
−1
iklµijlµ

−1
ijk = 1. The Čech 2-cocycle µ is also called the bundle gerbe structure of A. The short

exact sequence of sheaves

0 −→ Z −→ R
exp 2πi·−−−−−→ U (1) −→ 0,

where R is the sheaf U 7→ C0(U,R), induces an isomorphism of Čech cohomology groups

∂ : Ȟ2(X,U (1))
∼=−→ Ȟ3(X,Z).

Define the Dixmier-Douady class by δ(A) := ∂[µ]. More explicitly, pick νijk ∈ C0(Uijk,R) such that

exp 2πiνijk = µijk.

Then exp 2πi(∂ν)ijkl = (∂µ)ijkl = 1, which implies (∂ν)ijkl = νjkl− νikl + νijl− νijk ∈ Z are locally

constant integers on Uijkl. In fact, δ(A) = [∂ν] ∈ Ȟ3(X,Z).

Definition 1.4. Suppose that A is an Azumaya bundle, that A is the Azumaya algebra correspond-

ing to A, and that P is the principal PU-bundle associated to A. We say δ(A) = δ(P ) = δ(A) are

the Dixmier-Douady class of A and P respectively.

As a consequence of Kuiper’s theorem,

Proposition 1.5. For every cohomology class δ in H3(X,Z), there is a unique (up to isomorphism)

infinite rank Azumaya bundle (or algebra) with Dixmier-Douady class δ.

Proposition 1.6. Let A be an Azumaya bundle. If δ(A) = 0, then one can choose g̃ij so that g̃ij
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are the transition functions of a certain Hermitian bundle E over X, and A is isomorphic to K(E),

the bundle over X with fibres K(Ex).

Corollary 1.7. An Azumaya algebra A over X is Morita equivalent to C0(X) if and only if δ(A) =

0.

Corollary 1.8. Two Azumaya algebras A1, A2 over X are Morita equivalent if and only if δ(A1) =

δ(A2). Namely, Morita equivalence classes of Azumaya algebras are parameterized by H3(X,Z).

As a consequence of Fact 2,

Proposition 1.9. If A is an Azumaya bundle of finite rank n, then nδ(A) = 0.

For example, suppose X is a 2m-dimensional smooth manifold. The Clifford bundle Cl(T ∗X)

is an Azumaya bundle of rank 2m. Its Dixmier-Douady class δ(Cl(T ∗X)) = W3(X) is the third

integral Stiefel-Whitney class of X, and 2W3(X) = 0.

Proposition 1.10. If A1, A2 are two Azumaya bundles over X, then

δ(A1 ⊗A2) = δ(A1) + δ(A2).

Proposition 1.11. If A is an Azumaya algebra, then its opposite algebra Aop is also an Azumaya

algebra and

δ(Aop) = −δ(A).

Let δ be a cohomology class in H3(X,Z). Recall that (Rosenberg [23], Atiyah-Segal [1]) the

twisted K-theory K0(X, δ) can be defined by

K0(X, δ) = [P → Fred(H)]PU(H),

the abelian group of homotopy classes of maps P → Fred(H) that are equivariant under the natural

action of PU(H), where P is a principal PU(H)-bundle over X with Dixmier-Douady class δ(P ) = δ;

and where Fred(H) is the space of Fredholm operators on H. Twisted K-theory can also be defined
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with K-theory of a C∗-algebra:

K0(X, δ) = K0(A),

where A is an (infinite rank) Azumaya algebra over X with Dixmier-Douady class δ(A) = δ. One

can also define the twisted K1-group by K1(X, δ) = K1(A). The above two definitions of twisted

K-theory are equivalent (Rosenberg [23]). We will always use the second definition in this paper.

Proposition 1.12. The direct sum of twisted K-groups of X

⊕
δ∈H3(X,Z)

K•(X, δ)

forms a Z2 × H3(X,Z)-bigraded ring. The product Ki(X, δ1) × Kj(X, δ2) → Ki+j(X, δ1 + δ2) is

naturally defined.

Definition 1.13. Let c ∈ Ω3(X) be a closed 3-form, the twisted de Rham complex is the following

periodic sequence

dc−→ Ωev(X)
dc−→ Ωodd(X)

dc−→,

where dcω = dω + c ∧ ω. The twisted de Rham cohomology is H∗dR(X, c) = H∗(Ω∗(X), dc).

Proposition 1.14. If c is a closed 3-form, then H∗dR(X, c) ∼= H∗dR(X, zc) as isomorphic vector

spaces for all nonzero z ∈ C.

In particular, H∗dR(X, c) ∼= H∗dR(X,−c) as vector spaces. In fact, in some literatures such as [20],

the twisted coboundary dcω of ω is defined by dω − c ∧ ω.

Proposition 1.15. If a closed 3-form c1 = c2 + dβ for some β ∈ Ω2(X), then

−−−−→ Ωev(X)
dc1−−−−→ Ωodd(X) −−−−→y∧ exp β

y∧ exp β

−−−−→ Ωev(X)
dc2−−−−→ Ωodd(X) −−−−→

is a chain isomorphism. Therefore H∗dR(X, c1) ∼= H∗dR(X, c2) as vector spaces.



11

Chapter 2

Generalized Connes-Hochschild-
Kostant-Rosenberg
Theorem

In this section, we assume that M is a smooth oriented closed manifold, and that A is an Azumaya

bundle over M with a smooth structure in the sense that the transition functions for the vector

bundle A are smooth functions valued in the (Banach) Lie group PUn. Let A be the space of trace

class smooth sections of A, then A is a Fréchet pre-C∗-algebra densely embedded in A = Γ0(A). In

particular, if the rank n of A is finite, then A = Γ(A).

Given a PUn-connection ∇ : Ωk(M,A) → Ωk+1(M,A) on A, the image of the Dixmier-Douady

class δ(A) in H3
dR(M,R) can be represented by a differential 3-form in terms of the connection and

curvature (e.g., Freed [13]) as follows:

Let {Ui} be a good covering of M , and ψi : Ui ×Mn → A|Ui be a local trivialization compatible

with the smooth structure on A. Denote by gji ∈ C∞(Uij ,PUn) the transition function correspond-

ing to ψ−1
j ψi. Pick g̃ji ∈ C∞(Uij ,Un) so that Adg̃ji = gji. Let θi be the local connection forms of

∇ on Ui,

∇(ψi(O)) = ψi(dO + θi(O)),∀O ∈ C∞(Ui,Mn).

Then θi = g−1
ji θjgji + g−1

ji dgji. Pick θ̃i ∈ Ω1(Ui,Mn) if n 6=∞, or pick θ̃i ∈ Ω1(Ui,B(H)) if n =∞,

so that θi = adθ̃i. Thus

θ̃i = g̃−1
ji θ̃j g̃ji + g̃−1

ji dg̃ji + αij ,
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for some scalar valued 1-form αij ∈ Ω1(Uij). Let ωi be the local curvature forms of Ω = ∇2 : Γ(A)→

Ω2(X,A) on Ui,

Ω(ψi(O)) = ψi(ωi(O)),∀O ∈ C∞(Ui,Mn).

So ωi = dθi + θi ∧ θi, and ωi = g−1
ji ωjgji. Let ω̃i = dθ̃i + θ̃i ∧ θ̃i, then adω̃i = ωi, and ω̃i =

g̃−1
ji ω̃j g̃ji + dαij . Let Ω̃i = ψiω̃iψ

−1
i , then Ω̃i = Ω̃j + dαij . Since dαij + dαjk + dαki = 0, dα forms a

2-form valued cocycle, and since the sheaf of 2-forms is fine (or because of the existence of partition

of unity on M), there exist βi ∈ Ω2(Ui) so that 2πi(βi − βj) = dαij . We can define a generalized

2-form by Ω̃i − 2πiβi on Ui, and it is globally well-defined.

Theorem 2.1. 1). If A is a finite rank Azumaya bundle with connection ∇ and curvature Ω, then

there is a unique traceless σ(Ω) ∈ Ω2(M,A) such that adσ(Ω) = Ω.

2). If A is an infinite rank Azumaya bundle associated to a principal PU(H)-bundle P , with connec-

tion ∇ and curvature Ω, then there is a Γ(P ×PU(H) B(H))-valued 2-form σ(Ω) so that adσ(Ω) = Ω.

Here PU(H) acts on B(H) the same way as on K(H).

Proof. σ(Ω), up to a scalar valued 2-form, can be defined by Ω̃i − 2πiβi as above the theorem.

Theorem 2.2. If A is an Azumaya bundle over M with connection ∇ and curvature Ω, then

−∇(σ(Ω))
2πi represents the image of Dixmier-Douady class δ(A) in H3

dR(M).

Proof. First recall that the Čech-de Rham isomorphism between the third de Rham cohomology

H3
dR(M) and Čech cohomology Ȟ3(M,C) with constant coefficient sheaf C can be constructed as

follows. For any closed 3-form c ∈ Ω3(M), one can find β(c)i ∈ Ω2(Ui) so that dβ(c)i = c|Ui .

Since dβ(c)i − dβ(c)j = 0 one can find α(c)ij ∈ Ω1(Uij) so that β(c)i − β(c)j = dα(c)ij . Since

dα(c)ij + dα(c)jk + dα(c)ki = 0 one can find ν(c)ijk ∈ C∞(Uijk) so that (∂α(c))ijk = dν(c)ijk on

Uijk. Here ∂ denotes the coboundary operator on Čech cocycles. Likewise, since d(∂ν(c))ijkl =

(∂dν(c))ijkl = 0, one can find δ(c)ijkl ∈ C so that (∂ν(c))ijkl = δ(c)ijkl. The Čech-de Rham

isomorphism H3
dR(M)→ Ȟ3(M,C) is provided by the correspondence c 7→ δ(c).

Now let c be the 3-form −∇(σ(Ω))
2πi , then by Bianchi identity −∇(σ(Ω))

2πi = − 1
2πi∇(Ω̃i−2πiβi) = dβi,

thus we can choose β(c)i = βi, α(c)ij = αij , ν(c)ijk = νijk, and δ(c)ijkl = δijkl. Therefore it follows
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that c represents the image of δ(A) in H3
dR(M).

Recall that if B is a pre-C∗-algebra densely embedded in a C∗-algebra B, K0(B) = Kalg
0 (B) is

naturally isomorphic to K0(B). If B is a unital Fréchet algebra, K1(B) is defined to be the abelian

group of the equivalence classes of GL∞(B). We say that u, v ∈ GL∞(B) are equivalent if there is

a piecewise C1-path in GL∞(B) joining u and v. The definition of K1(B) can be extended to the

case of non-unital algebras so that the six-term exact sequence property always holds. For Azumaya

algebras, K∗(A) is naturally isomorphic to K∗(A) = K∗(M, δ(A)). We refer to [6, 7, 18] for the

definitions of Hochschild, cyclic and periodic cyclic homologies and cohomologies.

Definition 2.3. Following Gorokhovsky [15], define two maps

Chkr :
⊕
k even

C
red

k (A)→ Ωev(M) and Chkr :
⊕
k odd

C
red

k (A)→ Ωodd(M)

by the JLO-type ([16]) formula

Chkr(a0, a1, ..., ak) =

∫
s∈∆k

tr(a0e
−s0σ(Ω)(∇a1)e−s1σ(Ω) · · · (∇ak)e−skσ(Ω))ds. (2.1)

Here C
red

0 (A) = A and C
red

j (A) = A+⊗̂A⊗̂j , for all j 6= 0, with A+ being the unitalization of A and

⊗̂ the projective tensor product of locally convex topological algebras.

With the assumptions and notations above, the generalized CHKR theorem of Mathai-Stevenson’s

states that

Proposition 2.4 (Mathai-Stevenson [20]). 1). The map Chkr in (2.1) induces a quasi-isomorphism

between the two complexes

[−→ C
red

ev (A)
[−→ C

red

odd(A)
[−→,

0−→ Ωev(M)
0−→ Ωodd(M)

0−→;

and hence isomorphisms HHev(A) ∼= Ωev(M), HHodd(A) ∼= Ωodd(M).
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2). The map Chkr induces a quasi-isomorphism between the complex

[+b−−→ C
red

ev (A)
[+b−−→ C

red

odd(A)
[+b−−→, or equivalently,

b−→ HHev(A)
b−→ HHodd(A)

b−→

and the twisted de Rham complex

dc−→ Ωev(M)
dc−→ Ωodd(M)

dc−→;

and hence an isomorphism

Chkr : HP∗(A)
∼=−→ H∗dR(M, c), (2.2)

where c = −∇(σ(Ω))
2πi is a representative of the image of δ(A) in H3

dR(M).

3). The Connes-Chern character ch : K∗(A)⊗C→ HP∗(A) and the twisted Chern character

chδ(A) = Chkr ◦ ch : K∗(M, δ(A))⊗ C→ H∗dR(M, c)

are isomorphisms.

If δ(A) is a torsion class, then on the cyclic cycles level, there is an alternative way of constructing

the maps Chkr, which we will see, is closely related to the relative Chern character ([3]) of Clifford

modules.

Define ψk : A⊗̂k → A⊗̂C∞(M)Ω
k(M) by letting

ψ−1 = 0, ψ0 = 1, ψ1(a1) = ∇a1, ψ2(a1, a2) = (∇a1)(∇a2) + a1σ(Ω)a2,

ψk(a1, ..., ak) = (∇a1)ψk−1(a2, ..., ak) + a1σ(Ω)a2ψk−2(a3, ..., ak), ∀k ≥ 2. (2.3)

In other words, ψk(a1, ..., ak) is obtained as follows: Consider all partitions π of the ordered set

{a1, ..., ak} into blocks, where each block contains either one or two elements. Assign to each block

{ai} of π a term of the form ∇ai, and to each block {aj , aj+1} of π a term of the form ajσ(Ω)aj+1.
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Then let ψk,π be the product of these terms, and ψk(a1, ..., ak) be the sum of ψk,π over all such

partitions. So in its expansion, ψk(a1, ..., ak) consists of a Fibonacci number of summands. Then

let ρ : Ck(A)→ Ωk(M) be given by

ρk(a0, ..., ak) = tr(a0ψk(a1, ..., ak)). (2.4)

Theorem 2.5. If δ(A) is a torsion class, then the map ρk in (2.4) induces a homomorphism

ρ : Cλ∗ (A)→ Ω∗(M)/d(Ω∗−1(M)),

where Cλ∗ (A) is the Connes complex of A (cf. [6], [7]), and an isomorphism

ρ : HP∗(A)
∼=−→ H∗dR(M)

which coincides with Chkr in (2.2).

Proof. To see that the induced homomorphism Cλ∗ (A) → Ω∗(M)/d(Ω∗−1(M)) is well-defined, we

show that for all k ≥ 0,

(−1)k−1ρk(a0, . . . , ak) + ρk(ak, a0, . . . , ak−1) = d tr
(
a0 ψk−1(a1, ...ak−1) ak

)
,

for all ai ∈ A. Noticing that d ◦ tr = tr ◦ ∇, it suffices to show

(−1)k−1a0ψk(a1, .., ak) + ψk(a0, ..., ak−1)ak = ∇
(
a0ψk−1(a1, ..., ak−1)ak

)
, (2.5)

for all ai ∈ A+. In fact, it is easy to see (2.5) is true for k = 0, 1, 2. Suppose (2.5) holds for all

k ≤ m for some m. Then using ∇2 = adσ(Ω) and the Bianchi identity ∇(σ(Ω)) = 0, we have
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∇(a0ψm(a1, ..., am)am+1)

= ∇a0ψm(a1, ..., am)am+1 + a0∇ψm(a1, ..., am)am+1

+(−1)ma0ψm(a1, ..., am)∇am+1

= ∇a0ψm(a1, ..., am)am+1 + a0∇
(
∇a1ψm−1(a2, ..., am)

)
am+1

+a0∇
(
a1σ(Ω)a2ψm−2(a3, ..., am)

)
am+1 + (−1)ma0ψm(a1, ..., am)∇am+1

= ψm+1(a0, ..., am)am+1 − a0a1σ(Ω)ψm−1(a2, ..., am)am+1

−a0∇a1∇ψm−1(a2, ..., am)am+1 + a0∇a1σ(Ω)a2ψm−2(a3, ..., am)am+1

+a0a1σ(Ω)∇a2ψm−2(a3, ..., am)am+1 + a0a1σ(Ω)a2∇ψm−2(a3, ..., am)am+1

+(−1)ma0ψm(a1, ..., am)∇am+1

= ψm+1(a0, ..., am)am+1 − a0a1σ(Ω)ψm−1(a2, ..., am)am+1

+(−1)ma0∇a1ψm(a2, ..., am, 1)am+1 − a0∇a1ψm(1, a2, ..., am)am+1

+a0∇a1σ(Ω)a2ψm−2(a3, ..., am)am+1 + a0a1σ(Ω)∇a2ψm−2(a3, ..., am)am+1

+(−1)ma0a1σ(Ω)a2ψm−1(a3, ..., am, 1)am+1

+a0a1σ(Ω)a2ψm−1(1, a3, ..., am)am+1

+(−1)ma0ψm(a1, ..., am)∇am+1

= ψm+1(a0, ..., am)am+1 − a0a1σ(Ω)ψm−1(a2, ..., am)am+1

+(−1)ma0∇a1ψm−2(a2, ..., am−1)amσ(Ω)am+1

+a0a1σ(Ω)∇a2ψm−2(a3, ..., am)am+1

+(−1)ma0a1σ(Ω)a2ψm−3(a3, ..., am−1)amσ(Ω)am+1

+a0a1σ(Ω)a2σ(Ω)a3ψm−3(a4, ..., am)am+1

+(−1)ma0ψm(a1, ..., am)∇am+1

= ψm+1(a0, ..., am)am+1 + (−1)ma0∇a1ψm−2(a2, ..., am−1)amσ(Ω)am+1

+(−1)ma0a1σ(Ω)a2ψm−3(a3, ..., am−1)amσ(Ω)am+1

+(−1)ma0ψm(a1, ..., am)∇am+1

= ψm+1(a0, ..., am)am+1 + (−1)ma0ψm+1(a1, ..., am+1).
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Thus, by induction, identity (2.5) is proved.

To show that the induced map ρ : HP∗(A)→ H∗dR(M) is well-defined: First note that ρk ◦ [ = 0

on Ck+1(A). This means that the map Cλ∗ (A)/[(Cλ∗+1(A)) → Ω∗(M)/d(Ω∗−1(M)) is well-defined.

Then it suffices to show that the images of HP∗(A) under the map ρ are represented by closed forms.

We prove this only for the even case, and the odd case is similar. Since ch : K0(A) → HP0(A)

is an isomorphism, elements of HP0(A) are generated by ch[p] for [p] ∈ K0(A). Observe that

p(∇p)2i+1p = 0 for all idempotent p and i ≥ 0, then

ρ2k(chλ2k(p)) = (−1)k
(2k)!

k!
tr
(
p ψ2k(p, ..., p)

)
= (−1)k

(2k)!

k!
tr
(
pψ2(p, p)k

)
,

because any term in the expansion of p ψ2k(p, ..., p)p that has a factor p(∇p)2i+1p vanishes. Since

∇(pψ2(p, p)) = 0, it follows that ρ(ch[p]) is a closed form for all [p] ∈ K0(A).

Finally, we can prove that ρ : HP∗(A) → H∗dR(M) is an isomorphism identified with Chkr by

an argument on the Čech-de Rham bicomplex of M , just similar to the argument used in Mathai-

Stevenson [20].
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Chapter 3

Spectral Analysis of Spectral
Triples

In this section we review the definition and some analytical properties of spectral triples. Note that

a slight modification to the standard definition of spectral triple (cf. [10]) is made so that it will

be more convenient to develop the theory in this paper. In fact, in definition 3.6 we require that

the second entry H of a spectral triple (A,H, D) to be an A-module as well as the smooth Sobolev

domain of D, instead of the Hilbert space H̄. So in application in differential geometry, spectral

triples defined this way operate directly with smooth sections of vector bundles. For a spectral triple

in the conventional sense, that would be a strong requirement, as strong as the smoothness condition

in Appendix B in [11].

Suppose that D is a densely defined self-adjoint operator on a Hilbert space H, and that D has

compact resolvent. Let µ1 > µ2 > · · · be the list of eigenvalues of (D2 + 1)−1 in decreasing order,

and Vi ⊂ H be the eigenspace corresponding to µi for each i. Then every vector v ∈ H can be

uniquely represented as a sequence (v1, v2, . . . ) with vi ∈ Vi and
∑
i ‖vi‖2 <∞, and vice versa.

For every s ≥ 0, consider the following subspaces of H,

W s(D) = {(v1, v2, . . . ) ∈ H |
∑
i

µ−si ‖vi‖
2 <∞},
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with the norm ‖(v1, v2, . . . )‖s =
√∑

i µ
−s
i ‖vi‖2;

W s,p(D) = {(v1, v2, . . . ) ∈ H |
∑
i

µ
−sp/2
i ‖vi‖p <∞}, ∀p > 0,

with the norm ‖(v1, v2, . . . )‖s,p =
(∑

i µ
−sp/2
i ‖vi‖p

)1/p

; and

W s,∞(D) = {(v1, v2, . . . ) ∈ H | sup
i
µ
−s/2
i ‖vi‖ <∞},

with the norm ‖(v1, v2, . . . )‖s,∞ = supi µ
−s/2
i ‖vi‖. W s = W s,2 has a natural Hilbert space structure

and

Proposition 3.1 (Rellich). For each ε > 0, the inclusion W s+ε →W s is compact.

Proposition 3.2. W 1 ⊂ H is the domain of the self-adjoint operator D, and D : W 1 → H is a

Fredholm operator.

Let W∞ =
⋂
s>0W

s, then W∞ is a Fréchet space with a family of norms ‖ · ‖s. It is easy to

see that restricted to W∞, the mapping D : W∞ → W∞ is continuous with respect to the Fréchet

space topology.

We say the operator D is finitely summable or has spectral dimension less than 2d (for some real

number d > 0), if (D2 + 1)−d is a trace class operator.

Theorem 3.3. Suppose D has finite spectral dimension. If T ∈ B(H) is a bounded operator that

maps W∞ into W∞, then the restricted mapping T : W∞ →W∞ is also continuous.

The theorem can be proved by the following lemmas.

Lemma 3.4 (Sobolev embeddings). If D has spectral dimension less than 2d, then we have the

following obvious estimate:

‖v‖s,∞ ≤ ‖v‖s,p ≤
(∑

j

µdj

)1/p

‖v‖s+ 2d
p ,∞

, ∀v ∈ H,∀s ≥ 0,∀p > 0,

i.e., there are bounded embeddings W s+ 2d
p ,∞ ⊂W s,p ⊂W s,∞.
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Lemma 3.5. Suppose D has finite spectral dimension.

i) Let T : W∞ →W∞ be a continuous operator. Suppose for each j,

T (0, . . . , 0, vj , 0, . . . ) = (t1jvj , t2jvj , . . . ), ∀vj ∈ Vj ,

where (tij) is an infinite matrix with entries tij ∈ Hom(Vj , Vi). Then (tij) satisfies the property:

for any s > 0 there exist C and r > 0 such that

‖
∑
i

µ−si tij‖ < C + µ−rj , ∀j.

ii) Conversely any matrix (tij) with entries tij ∈ Hom(Vj , Vi) satisfying the above property repre-

sents a continuous operator T : W∞ →W∞.

Proof. i) For any v ∈W∞, we see that as n→∞,
∑n
j=0 vj → v in W s, therefore

∑n
j=0 vj → v in

W∞. Because T is continuous, it follows that T (
∑n
j=0 vj) = (

∑n
j=0 t1jvj ,

∑n
j=0 t2jvj , . . . ) →

Tv, hence (Tv)i =
∑
j tijvj . Suppose the claim is not true, then there must exist s > 0, such

that for any C and n, there is j(n,C) satisfying

‖
∑
i

µ−si tij(n,C)‖ > C + µ−nj(n,C).

Thus one may find an increasing sequence {j(n)}, such that

‖
∑
i

µ−si tij(n)‖ > µ−nj(n).

For each j, pick uj ∈ Vj so that ‖uj(n)‖ = ‖
∑
i µ
−s
i tij(n)‖−1 < µnj(n) and ‖

∑
i µ
−s
i tij(n)uj(n)‖ =

1, while uj = 0 if j 6= j(n),∀n. Then, because of the finite spectral dimension, u =
∑
j uj ∈

W∞, but T (
∑n
j=0 uj) does not converge in W 2s as n→∞, which yields a contradiction.
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ii) Suppose the matrix (tij) has that property. Define T : W∞ →W∞ by

(Tv)i =
∑
j

tijvj , ∀v ∈W∞.

For any sequence u(n) ∈W∞, we now prove that if u(n)→ 0 as n→∞ then Tu(n)→ 0. For

any s > 0,

‖Tu(n)‖2s = ‖
∑
i

µ−si
∑
j

tijuj(n)‖ ≤
∑
j

‖
∑
i

µ−si tijuj(n)‖

≤
∑
j

(C + µ−rj )‖uj(n)‖ = C‖u(n)‖0,1 + ‖u(n)‖r,1.

Since u(n) → 0 in W∞ implies ‖u(n)‖s′ → 0 for all s′, using Lemma 3.4, it follows that

‖Tu(n)‖2s → 0 for all s. So this implies Tu(n) → 0, and therefore T : W∞ → W∞ is a

continuous operator.

For any pre-Hilbert space H, we define the ∗-algebra B(H) = {T ∈ B(H̄) | T (H) ⊂ H, T ∗(H) ⊂

H}.

Definition 3.6. A triple (A,H, D) is said to be a unital spectral triple if it is given by a unital

pre-C∗-algebra A, a pre-Hilbert space H with a norm-continuous unital ∗-representation A → B(H),

and a self-adjoint operator D on H̄ called Dirac operator, with the following properties:

i) D has compact resolvent,

ii) W∞(D) = H,

iii) under the representation of A, the commutator [D, a] : H → H is norm-bounded for each

a ∈ A.

Besides, we always assume that A is a locally convex topological ∗-algebra with a topology finer

than the norm topology of A, and the representation A×H → H is jointly continuous with respect

to the locally convex topology of A and the Fréchet topology of H.
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Note that if (A,H, D) is a unital spectral triple, then W 1(D), the domain of D, also forms a left

A-module because of the last condition in the definition.

A spectral triple (A,H, D) is said to be even if there is a Z2-grading on H:

H = H+ ⊕H−,

so that the grading operator

γ =

idH+
0

0 −idH−

 : H → H

commutes with all a ∈ A and anti-commutes with D. Spectral triples equipped with no such gradings

are said to be odd .

Two spectral triples (A1,H1, D1) and (A2,H2, D2) with the isomorphic algebras are said to be

unitarily equivalent if there is a unitary operator U : H̄1 → H̄2 intertwining the two representations

of Ai and the two Dirac operators Di in an obvious way. For the even case the unitary operator U

also needs to be grade preserving.
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Chapter 4

Morita Equivalence of Spectral
Triples

In this section we introduce the notion of Morita equivalence of spectral triples. Let A be a pre-

C∗-algebra. Recall that a right A-module S is called a pre-Hilbert (or Hermitian) right A-module if

there is an A-valued inner product (·, ·) : S × S → A, such that for all x, y ∈ S, a ∈ A,

i) (x, y) = (y, x)∗,

ii) (x, ya) = (x, y)a,

iii) (x, x) ≥ 0, and (x, x) = 0 only if x = 0.

The norm on S is given by ‖x‖ = ‖(x, x)‖ 1
2 , and its norm completion S̄ (which is automatically a

pre-Hilbert right Ā-module) is called a Hilbert right Ā-module. Hilbert left modules can be defined

in the same manner. In particular, every Hilbert space is a Hilbert C-module.

If S is a pre-Hilbert right A-module, then its conjugate space

S∗ = {fx := (x, ·) | x ∈ S}

is a pre-Hilbert left A-module, and for all x, y ∈ S, a ∈ A,

afx := a(x, ·) = fx(a∗), (fx, fy) := (y, x), (fx, afy) = a(fx, fy).
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If S is a pre-Hilbert right A-module, BA(S̄) denotes the ∗-algebra of all module homomorphisms

T : S̄ → S̄ for which there is an adjoint module homomorphism T ∗ : S̄ → S̄ with (Tx, y) = (x, T ∗y)

for all x, y ∈ S̄. Define

BA(S) = {T ∈ BA(S̄) | T (S) ⊂ S, T ∗(S) ⊂ S}.

In particular, if A = C, then BC(S)=B(S). If A is unital and S is unital and finitely generated,

then BA(S) in fact consists of all A-endomorphisms of S, i.e., BA(S) = EndA(S).

Suppose A and B are unital pre-C∗-algebras. Let E be a unital finitely generated projective

right A-module, then as a summand of a free module, one can endow E with a pre-Hilbert module

structure (which is unique up to unitary A-isomorphism). Suppose B acts on E on the left, and the

representation B → BA(E) is unital, ∗-preserving and norm-continuous. We also assume that E is

also endowed with a topology induced from the locally convex topology of A, that B is locally convex

topological ∗-algebra with a topology finer than the norm topology, and that the representation

B × E → E is jointly continuous with respect to the locally convex topologies on B and E . We call

such a B-A-bimodule with the above structure a finite Kasparov B-A-module, then we introduce the

following

Definition 4.1. Suppose σ = (A,H, D) is a unital spectral triple. A σ-connection on a finite

Kasparov B-A-module E is a linear mapping

∇ : E → E ⊗A B(H)

with the following properties:

i) ∇(ξa) = (∇ξ)a+ ξ ⊗A [D, a],

ii) (ξ,∇ε)− (∇ξ, ε) = [D, (ξ, ε)],

for all a ∈ A, and ξ, ε ∈ E .

Note that by the notation (∇ξ, ε), which is a bit ambiguous, we really mean (ε,∇ξ)∗ ∈ B(H).
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Since E is finitely generated, it follows that for each b ∈ B, the commutator [∇, b] corresponds

to an element in B(E ⊗A H). It also follows that any two σ-connections on E differ by a Hermitian

element in B(E ⊗A H).

From the above data (A,H, D,B, E ,∇), one can construct a new spectral triple σE = (B,HE , DE)

for B (cf. Connes [7, §VI.3]). The pre-Hilbert space HE is E ⊗A H with inner product given by

< ξ1 ⊗A h1, ξ2 ⊗A h2 >=< h1, (ξ1, ξ2)h2 >, ∀ξi ∈ E , hi ∈ H.

The Dirac operator DE on HE is given by

DE(ξ ⊗A h) = ξ ⊗A Dh+ (∇ξ)h, ∀ξ ∈ E , h ∈W 1(D).

It is easy to see that the commutator [DE , b] = [∇, b] ∈ B(E ⊗A H) is bounded. To verify that DE

is self-adjoint with domain E ⊗AW 1(D), that W∞(DE) = HE , and that DE has compact resolvent,

it is adequate to check choosing one particular σ-connection on E , because bounded perturbations

do not affect the conclusions.

Recall that a universal connection on a pre-Hilbert right A-module S is a linear mapping ∇ :

S → S ⊗A Ω1
u(A) that satisfies the Leibniz rule

∇(sa) = (∇s)a+ δua,

and ∇ is said to be Hermitian if

(s,∇ε)− (∇s, ε) = δu(s, ε).

Here Ω1
u(A) is the space of universal 1-forms of A, and involutions (δua)∗ are set to be −δu(a∗).

Cuntz and Quillen [12] showed that only projective modules admit universal connections. Given a

universal Hermitian connection on a finite Kasparov module E , by sending 1-forms δua to [D, a], one
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can associate with the universal connection a σ-connection on E for any spectral triple σ = (A,H, D).

Let p ∈ Mn(A) be a projection (i.e., a self-adjoint idempotent n × n matrix). Now we consider

the right A-module pAn. There is a canonical universal connection on pAn which is given by the

matrix pdiag{δu, . . . , δu} or simply written as ∇(pa) = pδu(pa),∀a ∈ An, and this connection is

Hermitian.

Definition 4.2. A universal connection ∇ on a pre-Hilbert right A-module S is said to be projec-

tional if there is a unitary A-isomorphism φ : S → pAn for some n and some projection p, such that

∇ = φ−1 ◦ pδu ◦ φ.

A projectional universal connection on each finite projective pre-Hilbert A-module is unique up

to unitary A-isomorphism. If E is a finite Kasparov B-A-module admitting a universal connection

∇A and F is a finite Kasparov C-B-module admitting a universal connection ∇B, then there is a

twisted universal connection ∇B ◦∇A defined in an obvious way on the finite Kasparov C-A-module

F ⊗B E . Furthermore if ∇A and ∇B are projectional, then so is ∇B ◦∇A. This leads to a category of

noncommutative differential geometry NDG, consisting of formal objects XA for all unital pre-C∗

algebras A. The morphisms XA → XB in NDG are (isomorphism classes of) finite Kasparov B-A-

modules with projectional universal connections. It is not difficult to extend morphisms of NDG to

graded modules with super-connections in the sense of Quillen [22]; however in this paper, we only

focus on finite Kasparov modules with trivial gradings.

For an even spectral triple σ = (A,H, D, γ) with grading γ, σ-connections ∇ are required to be

odd operators, then for each (E ,∇), σE is also an even spectral triple with an obvious grading γE .

Denote by Sptr(A) = Sptr0(A)qSptr1(A) the set of even spectral triples and odd spectral triples

for A up to unitary equivalence, then Sptr yields a functor

NDG→ Set given by XA 7→ Sptr(A).

Remark 4.3. Baaj-Julg [2] established the theory of unbounded Kasparov modules and showed that

every element in the bivariant KK-theory can be represented by an unbounded Kasparov module.
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It would be nice if morphisms of NDG could be enlarged to unbounded (even) Kasparov modules

(E,D ,Γ) with a grading Γ and an appropriate universal connection∇, and thereby DE,D,Γ(ξ⊗Ah) =

Dξ⊗Ah+Γξ⊗ADh+Γ(∇ξ)h. The notion of connection for bounded Kasparov modules introduced

by Connes-Skandalis was well-known, whereas theory of connection for unbounded Kasparov modules

has been developed in a recent work by Mesland [21].

Definition 4.4. Two unital spectral triples σ1 = (A1,H1, D1) and σ2 = (A2,H2, D2) are said to

be Morita equivalent if A1 and A2 are Morita equivalent as algebras and there is a finite Kasparov

A2-A1-module E with a σ1-connection, such that E is an equivalence bimodule and σ2 is unitarily

equivalent to σE1 .

Theorem 4.5. The Morita equivalence between spectral triples is an equivalence relation.

Proof. Reflexivity: (A,H, D) is Morita equivalent to itself via the trivial connection ∇a = [D, a] on

A.

Transitivity: it is straight forward by definition.

Symmetry: suppose (B,HE , DE) is Morita equivalent to σ = (A,H, D) via a σ-connection ∇ on E .

Let F = E∗. Define ∇F : F → F ⊗B B(HE) by

(∇Ff)(ξ ⊗A h) = −f(∇ξ)⊗A h+ [D, fξ]h, ∀f ∈ F , ξ ∈ E , h ∈ H.

Here we use a map HE → H to represent an element in F ⊗B B(HE). One can verify ∇F is a

(B,HE , DE)-connection. Now we check (DE)F = D as follows,

(DE)F (f ⊗B ξ ⊗A h) = f ⊗B DE(ξ ⊗A h) + (∇Ff)(ξ ⊗A h)

= f ⊗B ξDh+ f(∇ξ)h+ (∇Ff)(ξ ⊗A h)

= fξDh+ f(∇ξ)h− f(∇ξ)h+ [D, fξ]h

= D(fξh).

(An alternative way to prove the symmetry property is using bounded perturbations of the σ-
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connection and σE -connection that are associated to projectional universal connections.)

In conclusion, Morita equivalence of spectral triples is an equivalence relation.

Remark 4.6. As a special case, A is Morita equivalent to itself via E = A. Using universal connections

on A, one can construct new spectral triples which are called inner fluctuations of spectral triples [9].

Morita equivalence of spectral triples (A,H, D1) and (A,H, D2) with the same A and H is different

from inner fluctuation of spectral triples, as the latter is generally not an equivalence relation when

A is noncommutative. For instance, any spectral triple (A,H, D) with a finite dimensional matrix

algebra A and a finite dimensional Hilbert space H, has an inner fluctuation (A,H, 0), whereas

(A,H, D) is not an inner fluctuation of (A,H, 0) as long as D 6= 0. In general, if we confine

ourselves to equivalence bimodules with universal connections, the symmetry property in the above

proof does not hold. However if we restrict the universal connections on equivalence bimodules to

the projectional ones, the symmetry property holds again.

Similar to Sptr(A), let SptrM(A) denote the set of spectral triples over A up to Morita equiva-

lence. In other words, SptrM(A) is the set of spectral triples over A up to unitary equivalence and

bounded perturbations of Dirac operators. SptrM yields a functor

NDG→ Set, XA 7→ SptrM(A),

and the induced morphisms SptrM(E ,∇) do not depend on the choice of spectral-triple-connections

∇ on E .

Suppose (E ,∇) is a morphism in HomNCG(XA, XB), then there is a free right A-module Am

and a projection p in Mm(A) such that E ∼= pAm. Let {e1, ..., em} be the standard generators of

Am. For each b in B, one can find a matrix α(b) in pMm(A)p, such that bpei =
∑
j

ejαji(b).

The K-theory, Hochschild (co)homology and (periodic) cyclic (co)homology are all functors on

the category NDG. For instance, suppose (b0, ..., bn) is a Hochschild n-cycle representing an element
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Φ ∈ HH∗(B), then E(Φ) ∈ HH∗(A) is the Hochschild n-cycle given by the Dennis trace map

tr(α(b0)⊗ · · · ⊗ α(bn)) =
∑

i0,...,in

(αi0i1(b0), αi1i2(b1), ..., αini0(bn)).

Note that α depends on the choice of the isomorphism E ∼= pAm; however, it does induce the

well-defined morphisms E : HH∗(B)→ HH∗(A).

Furthermore, the Connes-Chern characters [6] are natural transformations from the K-theory

functor XA 7→ K0(A) to periodic cyclic homology functor XA 7→ HP0(P ), and from functors

XA 7→ Sptr0(A), Sptr0
M(A) and K0(Ā) to the periodic cyclic cohomology functor XA 7→ HP 0(A).

The naturalness of Connes-Chern characters is illustrated in the following commutative diagrams

K0(B)
E−−−−→ K0(A)

ch

y ch

y
HP0(B)

E−−−−→ HP0(A),

Sptr0(A)
(E,∇)−−−−→ Sptr0(B)

ch

y ch

y
HP 0(A)

E−−−−→ HP0(B).

Proposition 4.7. The following diagrams

K0(A) × Sptr0(A)
Ind−−−−→ ZxE y(E,∇)

∥∥∥
K0(B) × Sptr0(B)

Ind−−−−→ Z,

HP0(A) × HP 0(A) −−−−→ CxE yE ∥∥∥
HP0(B) × HP 0(B) −−−−→ C,

and

K0(A) × Sptr0(A)
Ind−−−−→ Zych

ych

y
HP0(A) × HP 0(A) −−−−→ C,

commute.
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Chapter 5

Gluing Local Spin Structures on
Riemannian Manifolds via Morita
Equivalence

We can apply the above theory to spectral triples on Riemannian manifolds. By gluing local pieces

of spectral triples via Morita equivalence, we construct a so called projective spectral triple, the

Dirac operator of which was defined in a formal sense by Mathai-Melrose-Singer [19].

Let X be a closed oriented Riemannian manifold of dimension n. Suppose X is spin or spinc.

Let Cln denote the complex Clifford algebra of Rn. In this paper we use the following convention

for the definition of Clifford algebras

Cln :=< u ∈ Rn|uv + vu = −2(u, v),∀u, v ∈ Rn > .

Decomposed by the parity of degree, Cln = Cl0n ⊕ Cl1n. Write

Bn =


Cln ∼= M2m(C)

Cl0n ∼= M2m(C)

and Bx =


Cl(T ∗xX)

Cl0(T ∗xX)

when n = 2m is even

when n = 2m+ 1 is odd.

(5.1)

Denote by Cl(X) and B(X) the vector bundles over X whose fibers at a point x ∈ X are Cl(T ∗xX)

and Bx. Let Sn = C2m be the standard spinor vector space, and we fix a specific isomorphism

c : Bn → EndC(Sn).
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Let ωn = i[
n+1
2 ]e1 · · · en ∈ Cln, then when n is odd, Bn = ωnCl1n. This indicates a homomorphism

c : Cln → EndC(Sn). When n is even, Sn = Sn+ ⊕ Sn− is graded by the eigenspaces of ωn, which

are invariant under the action of Spin(n).

Let PFr(X) and PSpin(c)(X) denote the orthonormal oriented frame bundle and the principal

Spin(n) or Spinc(n)-bundle over X respectively. Then

Cl(X) = PFr(X)×SO(n) Cln = PSpin(c)(X)×Ad Cln.

The spinor bundle over X is the associated Spin(c)(n)-bundle

SX = PSpin(c)(X)×c Sn.

The Clifford algebra bundle acts naturally on the spinor bundle, c : Cl(X) ×X SX → SX , which is

given by

(p, ξ)× (p, s) 7→ (p, c(ξ)s), ∀p ∈ PSpin(c)(X), ξ ∈ Cln, s ∈ Sn.

When n is even, ωn induces a grading operator ω on SX = SX+ ⊕ SX−.

Denote by /D the Dirac operator on SX . Let E be a Hermitian vector bundle over M with a

Hermitian connection ∇E . Let A = C∞(X), B = Γ(B(X)), and E = Γ(E). Then the well-known

spin spectral triple

(A,H, D) = (C∞(X),Γ(SX), /D) (5.2)

is Morita equivalent to the following spectral triple with a noncommutative algebra

(B,HE , DE) = (Γ(End(E)),Γ(E ⊗ SX), /D
E

), (5.3)

via the finite Kasparov module E with (A,H, D)-connection associated to ∇E . Here /D
E

denotes

the twisted Dirac operator on the vector bundle E ⊗ SX .

Now interesting things happen when a manifold has no spinc structure: The spinor bundle does
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not exist, and neither does the spin spectral triple. However, as constructed later in this section, for

any closed oriented Riemannian manifold, not necessarily spinc, there is a canonical noncommutative

spectral triple:

Definition 5.1. The projective spectral triple of a closed oriented Riemannian manifold M is defined

to be

(AW3
,HW3

, DW3
) := (Γ(B(M)), (1 + ∗)Ω(M), (d− d∗)(−1)deg), (5.4)

if M is odd dimensional, and

(AW3
,HW3

, DW3
, γW3

) := (Γ(B(M)),Ω(M), (d− d∗)(−1)deg, ∗(−1)
deg(deg +1)

2 −n4 ), (5.5)

if M is even dimensional.

We can consider that projective spectral triples are obtained by gluing local spin spectral triples

in the following way:

Let M be a closed oriented Riemannian manifold of dimension n, not necessarily spinc. Let

{Ui} be a good covering of M . Then on each local piece we have the principal Spin(n)-bundle

Pi = PSpin(Ui), the associated spinor bundle Si = SUi , the spin connection ∇i, and the Dirac

operator /Di. Over each intersection Uij = Ui ∩ Uj 6= ∅, there is up to ±1 ∈ Spin(n) a unique

homeomorphism of principal bundles

αij : Pi|Uij → Pj |Uij , such that αij(pig) = αij(pi)g, ∀pi ∈ Pi|Uij , g ∈ Spin(n).

This homeomorphism induces up to ±1 a Clifford module homomorphism αij : Si|Uij → Sj |Uij ,

αij(p, s) = (αij(p), s), ∀p ∈ Pi|Uij , s ∈ Sn.
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For each triple overlap Uijk = Ui ∩ Uj ∩ Uk 6= ∅, write

σijk = αki ◦ αjk ◦ αij |Uijk ,

then {σijk} represents a Čech cocycle in Ȟ2(M,Z2), and the corresponding singular class w2(M) ∈

H2(M,Z2) is the second Stiefel-Whitney class. Let Lij = HomCl(Uij)(Si|Uij , Sj |Uij ) denote the

line bundle of the Clifford module homomorphisms of Si and Sj over Uij , then αij is the canonical

section of Lij . {Lij} forms a gerbe of line bundles over M characterized by the Dixmier-Douady class

δ(B(M)) = W3(M) (the third integral Stiefel-Whitney class). We refer [4] for (twisted) K-theory of

bundle gerbes.

If M is spin, then for each Uij there is βij ∈ Z2, such that {βijαij} satisfies the cocycle condition.

That means the local spinor bundles Sij can be glued together as a global spinor bundle via the

Clifford module isomorphisms βijαij . The difference between two different sets of such {βij} is a

cocycle in Ȟ1(M,Z2) which parameterizes distinct spin structures on M .

If M is spinc, then for each Uij there is βij ∈ C∞(Uij , U(1)), such that {βijαij} satisfies the

cocycle condition. That means the local spinor bundles Sij can be glued together as a global

spinor bundle via the Clifford module isomorphisms βijαij . β
2
ij also satisfies the cocycle condition,

and the Čech cocycle {β2
ij} ∈ Ȟ1(M,U(1)) corresponds to the canonical line bundle L of a spinc

structure. The difference between two different sets of such {βij} is a cocycle in Ȟ1(M,U(1)) which

parameterizes distinct spinor bundles on M .

Denote by C∞(Ūi) the space of smooth functions on Ui that can be extended to a smooth

function on a small open neighborhood Vi of Ūi, and likewise denote by Γ(Ūi, ·) for extendable

smooth sections. Take Ei = Γ(Ūi, Si), then the “local spin spectral triple”

(Ai,Hi, Di) = (C∞(Ūi),Γ(Ūi, Si), /Di) (5.6)
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is Morita equivalent to the local spectral triple

(Bi,HEii , D
Ei
i ) = (Γ(Ūi, B(Ui)),Γ(Ūi, Si ⊗ Si), /D

Si
i ). (5.7)

Remark 5.2. We use here the triple (5.6) to formulate the spin structure of the open subspace Ui,

but it is by definition not a spectral triple, for the compact resolvent condition fails. However,

it can naturally act on the relative K-theory for the pair of spaces (Vi, Ui) or (Y, ι(Ui)) to get an

index, where Y is any compact Riemannian spin manifold that admits an isometric embedding

ι : Vi → Y . By excision property, the choice of Vi is irrelevant. In this sense the triple (5.6)

represents a relative K-cycle. One may also think of the standard treatment using the nonunital

spectral triple (C∞c (Ui), L
2(Ui, Si), /Di) with the algebra of smooth functions with compact support.

See Gayral-Gracia-Bond́ıa-Iochum-Schücker-Várilly [14] for a set of axioms for nonunital spectral

triples which is proposed to set up the notion of noncompact noncommutative spin manifolds. This,

however, will cause some subtleties when considering Morita equivalence and smoothness condition.

Because the collection of maps {αij⊗αij} satisfy the cocycle condition, the vector bundles Si⊗Si

and Dirac operators DEii can be glued together to form a vector bundle N over M and a Dirac op-

erator DN on N , so that (B|Ui ,Γ(M,N)|Ui , DN |Ui) are unitarily equivalent to (Bi,HEii , D
Ei
i ), where

B = Γ(M,B(M)). Thus we succeed to construct a globally well-defined spectral triple (B,Γ(N), DN )

on M .

Proposition 5.3. The global vector bundle N is isomorphic to B(M), and Γ(N) is isomorphic to

Γ(B(M)) as both Γ(B(M))-modules and pre-Hilbert spaces.

Proof. Let S∗n be the dual vector space of the standard spinor vector space Sn. We endow S∗n with a

left Bn-module structure by γ∗(b)fx := fb̄x = (x, b̄∗·), for all x ∈ Sn, b ∈ Bn, where b̄ is the complex

conjugation of b, and b∗ is the adjoint of b ∈ Bn ∼= M2m(C). Since Bn is a simple algebra, up to a

scalar there is a unique Bn-module isomorphic from Sn to S∗n. We fix one specific unitary Bn-module

isomorphism Tn : Sn → S∗n. Then Tn induces a Clifford module isomorphism of bundles T : Si → S∗i ,

given by (p, s) 7→ (p, Tns), for all p ∈ Pi, s ∈ Sn. Let S∗i = Pi ×γ∗ S∗n, and let α∗ij : S∗i → S∗j denote
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the Clifford module isomorphism given by α∗ij(p, f)) = (αijp, f), for all f ∈ S∗i . The mappings T on

Ui and Uj are compatible, namely the diagram below commutes on Uij .

Si

αij

��

T // S∗i

α∗ij

��
Sj

T // S∗j

Then one can glue the bundles S∗i ⊗ Si ∼= EndC(S∗i ) together as a global bundle B(M) via the

maps α∗ij ⊗ αij , and T induces an isomorphism from N to B(M). Then it is easy to verify the

proposition.

Corollary 5.4. When M is odd dimensional, one can take the bundle N = (1 + ∗)
∧∗

(T ∗CM), then

the spectral triple (B,Γ(N), DN ) is the projective spectral triple

(AW3
,HW3

, DW3
) = (B, (1 + ∗)Ω(M), (d− d∗)(−1)deg); (5.8)

and when M is even dimensional, take N =
∧∗

(T ∗CM), then the spectral triple (B,Γ(N), DN ) with

the grading on Γ(N) obtained from the grading on Si is the even projective spectral triple

(AW3
,HW3

, DW3
, γW3

) = (B,Ω(M), (d− d∗)(−1)deg, ∗(−1)deg(deg +1)/2−n/4), (5.9)

and its center (A,HW3 , DW3 , γW3) is unitarily equivalent to the spectral triple for Hirzebruch signa-

ture. For any a ∈ A, the commutator [DW3
, a] is just the right Clifford action of da on HW3

.

Theorem 5.5. If M is spinc, the projective spectral triple on M is Morita equivalent to the spin

spectral triple.

Proof. Let S be the global spinor bundle over M . There exist local half line bundles L
1/2
i , such

that L
1/2
i are characterized by {βij} as local transition functions, L

1/2
i ⊗ L

1/2
i = L |Ui , and

S|Ui = L
1/2
i ⊗ Si. There also exists a hermitian connection ∇1 on L 1/2 such that the Spinc-

connection ∇|Ui = 1⊗∇i +∇1⊗ 1, where ∇i is the Spin-connection on Si. Then follows the Morita
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equivalence of the spectral triples

(C∞(M),Γ(M,S), /D) = (A,H, D) ∼ (A,HL−1

, DL−1

)

∼ (B, (HL−1

)S , (DL−1

)S) = (AW3 ,HW3 , DW3).

We see that the projective spectral triple is defined for any closed oriented Riemannian manifold

regardless of whether the manifold is spinc or not. The projective spectral triple depends only on

the metric and orientation of M and does not depend on the choice of the local spinor bundles Si.
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Chapter 6

Projective Spectral Triple as
Fundamental Class in K0(M,W3)

In this section we see how projective spectral triples represent the fundamental classes in the twisted

K-homology K0(AW3) ∼= K0(M,W3).

Denote by Cgr the Z2-graded algebra of sections of Clifford bundle Cl(T ∗M) over M (even

dimensional only), then every Clifford module E over M can be considered as a finitely generated

projective right Cop
gr -module, and a Clifford connection ∇E on E gives rise to a Dirac operator DE

on E. Then E 7→ IndDE defines a canonical homomorphism

K0(Cop
gr )

Ind−−→ Z.

By Morita equivalence, K0(Cop
gr ) can be replaced by the K-theory of an ungraded algebra, K0(AW3

),

and the homomorphism Ind becomes the operation of pairing with the projective spectral triple.

Theorem 6.1 (Poincaré duality). For an even dimensional closed oriented manifold M , the pro-

jective spectral triple ς = (AW3
,HW3

, DW3
, γW3

) represents the twisted K-orientation as a cycle of

the twisted K-homology K0(AW3) ∼= K0(M,W3), and hence gives rise to the Poincaré duality

K0(M,W3 − c)
_[ς]−−−→∼= K0(M, c), or K∗(M, c)×K∗(M,W3 − c)

nondegenerate−−−−−−−−−→
pairing

Z,

for all c ∈ H3(M,Z). Here the cap product can be defined by [E ] _ [ς] = [ςE ] for any finite Kasparov
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C∞(M)-AW3
-module E.

For odd dimensional M , the Poincaré duality reads

K∗(M, c)×K∗+1(M,W3 − c)
nondegenerate−−−−−−−−−→

pairing
Z, ∀c ∈ H3(M,Z).

See Kasparov [17], Carey-Wang [5], and Wang [24] for details. When c is 0, this is a special case

of the second Poincaré duality theorem [17] in KK-theory.
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Chapter 7

Local Index Formula for Projective
Spectral Triples

In this section we present a local index formula associated to the projective spectral triple for every

closed oriented Riemannian manifold M of dimension 2n. Let A = C∞(M). Denote by

ς = (B,H, D, γ) = (AW3
,HW3

, DW3
, γW3

)

the projective spectral triple of M defined in the preceding sections. Suppose a K-class [p] or [E ] in

K0(B) is represented by a projection matrix p = (pij) ∈ Mm(B) or by a right B-module E = pBm.

Let DE denote the twisted Dirac operator on HE = E ⊗B H = pHm associated to the projective

universal connection ∇E : E → E ⊗B Ω1
u(B) on E , namely ∇E(pb) = pδu(pb) and DE(ph) = pD(ph),

∀b ∈ Bm, ∀h ∈ Hm.

The left B-module H = H+ ⊕ H− is Z2-graded and so is HE = HE+ ⊕ HE−. Denote by DE± the

restrictions of DE to HE± → HE∓. The index of DE is

Ind(DE) = dim kerDE+ − dim kerDE−.

Using the well-known local index formula (cf.[3]), we have

Ind(DE) =

∫
M

Â(M)ch(HE/S).
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Â(M) is the Â-genus of the manifold M ,

Â(M) = det1/2

(
R/2

sinh(R/2)

)
∈ Ωev(M).

The relative Chern character ch(HE/S) is explained as follows. We consider H, and HE as well,

as right Clifford modules with right Clifford actions cR. The connection ∇ : H → H ⊗A Ω1(M)

on H induced by the Levi-Civita connection on M is a right Clifford connection. We can define a

right Clifford connection ∇HE : HE → HE ⊗A Ω1(M) on HE by ∇HE (ph) = p∇(ph). Denote by

RH
E ∈ EndA(HE)⊗A Ω2(M) the curvature of the connection ∇HE ,

RH
E

= ∇H
E
∇H

E
= p(∇p)(∇p) + p∇2 ◦ p,

and denote by T the twisting curvature, that is T = RH
E −RS , where

RS = cR(R) =
1

4
RijklcR(el)cR(ek)ei ∧ ej ,

and Rijkl are the components of the Riemannian curvature tensor on M under an orthonormal frame

{ei}. One can verify that T = p(∇p)(∇p)− pcL(R)p. With the above notations, the relative Chern

character is

ch(HE/S) = 2−ntr exp(−T ).

So we have an explicit local index formula

Ind(DE) = 2−n
∫
M

Â(M)tr exp(−p(∇p)(∇p) + pcL(R)p). (7.1)

From the viewpoint of noncommutative geometry,

Ind(DE) =< [p], [ς] >=< ch[p], ch[ς] >,
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where ch[p] ∈ HP0(B) and ch[ς] ∈ HP 0(B) are the periodic Connes-Chern characters of [p] and [ς]

respectively. On the other hand, in terms of twisted Chern characters, as defined below,

chW3
[p] := Chkr(ch[p]) ∈ Hev(M,C), chW3

[ς] := (Chkr∗)−1(ch[ς]) ∈ Hev(M,C), (7.2)

the index pairing can be written as

Ind(DE) =< [p], [ς] >=< chW3 [p], chW3 [ς] > .

We now try to give local expressions of ch[p], ch[ς], chW3
[p], and chW3

[ς] as well as their relation

(7.2) explicitly. The periodic Connes-Chern character ch[p] is represented by a sequence of cyclic

cycles {chλ0 (p), chλ2 (p), ...}, where

chλ2m(p) = (−1)m
(2m)!

m!
tr(p⊗2m+1) ∈ Cλ2m(B).

This sequence satisfies the periodicity condition S(chλ2m+2(p)) = chλ2m(p). An alternate way to

represent ch[p] is to use normalized ([,b)-cycles, that is

ch
([,b)
2m (p) = (−1)m

(2m)!

m!
tr((p− 1

2
)⊗ p⊗2m).

As for the Connes-Chern character of ς, one can apply Connes-Moscovici [11] local index formula

to get a normalized ([,b)-cocycle. However, when trying to derive from Connes-Moscovici’s formula

an expression in terms of integrals of differential forms on M , one will be confronted with a very

much involved calculation of Wodzicki residues of various pseudo-differential operators. On the other

hand, based on the appearance of formula (7.1), one can get a Cλ-cocycle chλ(ς) =
∑
m

ch2m
λ (ς) as

follows:

Let T (b1, b2) = (∇b1)(∇b2)− b1cL(R)b2, and define ρ0
2m : B⊗2m+1 → Ω2m(M) by

ρ0
2m(b0, ..., b2m) = tr(b0T (b1, b2) · · ·T (b2m−1, b2m)).
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Then the relative Chern character ch(HE/S) = 1
2n(2m)!ρ

0
2m(chλ2m[p]).

It is easily seen that 1
2n(2m)!

∫
M
Â(M)ρ0

2m(b0, ..., b2m) is a Hochschild cocycle but not cyclic

cocycle if m ≥ 2. By applying Theorem 2.5, we know that

ρ2m(b0, ..., b2m) = tr(b0ψ2m(b1, ..., b2m)) (2.4)

is a cyclic cocycle, and that ρ2m(chλ2m(p)) = ρ0
2m(chλ2m(p)) for all p with [p] ∈ K0(B). Thus by

Theorem 2.5 and the duality theorem (Thm. 6.1), we have the following conclusions:

Theorem 7.1. The cyclic cocycle chλ(ς) =
∑
m

ch2m
λ (ς), where

ch2m
λ (ς)(b0, ..., b2m) =

1

2n(2m)!

∫
M

Â(M)ρ2m(b0, ..., b2m), ∀bi ∈ B,

represents the Connes-Chern character ch[ς] of the projective spectral triple ς.

Theorem 7.2. The Connes-Chern character and the twisted Chern character are related by

ch[ς] = chW3
[ς] ◦

∑
m

ρ2m, and chW3
[p] =

∑
m

ρ2m(chλ2m[p])

as identical periodic cyclic cohomology classes and de Rham cohomology classes respectively.

Corollary 7.3. The twisted Chern characters of [p] and [ς] can be represented by

chW3
[p] = 2n(deg)! ch(HE/S), chW3

[ς] =
1

2n(deg)!
[Â(M)] _ [M ]

respectively.
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