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Abstract

A natural goal in designing mechanisms for auctions and public projects is to maximize the social

welfare while incentivizing players to bid truthfully. If these are the only concerns, the problem is

easily solved by use of the VCG mechanism. Unfortunately, this mechanism is not computationally

efficient in general and there are currently no other general methods for designing truthful mech-

anisms. However, it is possible to design computationally efficient VCG-based mechanisms which

approximately maximize the social welfare.

We explore the design space of computationally efficient VCG-based mechanisms under submod-

ular valuations and show that the achievable approximation guarantees are poor, even compared

to efficient non-truthful algorithms. Some of these approximation hardness results stem from an

asymmetry in the information available to the players versus that available to the mechanism. We

develop an alternative Instance Oracle model which reduces this asymmetry by allowing the mecha-

nism to access some computational capabilities of the players. By building assumptions about player

computation into the model, a more realistic study of mechanism design can be undertaken.

Finally, we give VCG-based mechanisms for some problems in the Instance Oracle model which

achieve provably better approximations than the best VCG-based mechanism in the standard model.

However, for other problems we give reductions in the Instance Oracle model which prove inapprox-

imability results as strong as those shown in the standard model. These provide more robust hardness

results that are not simply artifacts of the asymmetry in the standard model.
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Chapter 1

Introduction

Combinatorial auctions and combinatorial public projects are two important allocation problems in

algorithmic mechanism design. The goal of each is to find a suitable allocation. A combinatorial

auction consists of a set of m items and n players. An allocation in a combinatorial auction is a

partition of the items S1, . . . , Sn such that each player gets the set Si ⊆ [m], and Si ∩ Sj = ∅ for

i 6= j. Some items may not be given to any player. A combinatorial public project consists of m

items, n players, and a parameter k. An allocation in a combinatorial public project is a subset

S ⊆ [m] of the items of size |S| = k.

In both cases, each player i has a value function vi over subsets of the items. Each value

function is assumed to be non-negative (vi(S) ≥ 0), non-decreasing (vi(S) ≥ vi(T ) for S ⊇ T ),

and normalized (vi(∅) = 0). We also assume that players only care about their own value, and not

about the value obtained by others. A mechanism for either of these problems takes in the valuation

functions v1, . . . , vm and returns an allocation A and a list of prices p1, . . . pn, where player i must

pay price pi. Being rational, each player seeks to maximize his quasi-linear utility function vi(A)−pi
(vi(Si)− pi for combinatorial auctions or vi(S)− pi for combinatorial public projects).

Before studying this problem, it is important to determine the goal which we wish the mechanism

to achieve. One natural goal is to maximize the revenue,
∑
i pi. Revenue maximization is important

and well-studied [31, 39, 40, 9, 26, 27, 11], but is not the goal we consider. Instead, we look at

maximization of the social welfare,
∑
i vi(A).

From a purely computational perspective, the complexity of this problem depends only on how

hard it is to find an allocation A maximizing or approximating the maximum value of
∑
i vi(A).

For example, when auctioning a single item, simply allocate it to the player whose value for the

item is highest. However, as rational players, every player would attempt to declare infinite value

for the item in order to ensure getting it. This is why prices are important. We must find a way

to set the prices such that the player with highest value gets the item. One way to achieve this is

to set the price paid by the winning player to the second-highest bid, and all other prices to zero.

This way, no player benefits by declaring a higher price (as if this causes the player to win, it will
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result in negative utility) and no player benefits by declaring a lower price (as this does not decrease

the payment for the player declaring a lower price). As everyone benefits most from declaring their

valuation correctly, we can assume that rational players will make truthful declarations under this

mechanism. Therefore, this mechanism results in the player with highest value getting the item.

The second-price mechanism for single item auctions was famously generalized by the Vickrey-

Clarke-Groves (VCG) mechanism [42, 10, 25]. In this rather simple scheme, one simply calculates

an optimal allocation A, then for each player i, calculate an optimal allocation A−i for all players

excluding i. Player i is then charged price pi =
∑
j 6=i vj(A−i) − vj(A) equal to the decrease in

social welfare of other players due to i’s participation. Player i is therefore incentivized to maximize

vi(A) +
∑
j 6=i vj(A)−

∑
j 6=i vj(A−i), which is the social welfare, minus a term that does not depend

on what player i declares. Thus, each player is incentivized to maximize the social welfare. So a

truthful mechanism is always available for maximizing welfare.

Further demonstrating the importance of the VCG mechanism, Roberts showed that for suf-

ficiently general problems, the VCG mechanism is the only truthful mechanism [38]. More recent

work has also made progress on demonstrating this result for more restricted problems [2, 29, 18, 36].

So the VCG mechanism is not only important because it is a truthful mechanism. It is important

because in many cases, it is the only truthful mechanism.

This can be problematic from a computational perspective. When finding an optimal allocation

is computationally infeasible, the VCG mechanism cannot be implemented. One might be tempted

to implement the VCG mechanism using an approximation algorithm, but the VCG mechanism

is only truthful if
∑
i vi(A) is always maximized by truthful reporting of valuation functions. [34]

described the class of approximation algorithms which can be truthfully implemented using the VCG

mechanism, which are known as maximal-in-range algorithms.

Every algorithm has a range R of possible allocations it can output depending on the input

given. For many familiar algorithms, R will be the set of all possible allocations. A maximal-in-

range algorithm always outputs an allocation A = argmaxA∈R
∑
i vi(A) which maximizes social

welfare within the range. Maximal-in-range algorithms can be tricky to design, as it can be difficult

to find a range which contains a good approximation of the social welfare for any instance and for

which the welfare-maximizing allocation can be efficiently found. The restriction to maximal-in-

range mechanisms can dramatically worsen the best achievable approximation ratio [14, 36].

1.1 Definitions and Notation

In this section, we formally define the important terms used in this dissertation and provide the

definitions of and notation for the problems studied. We use m to denote the number of items

in an allocation problem and n to denote the number of players. We begin by defining valuation
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functions. Valuation functions are central to the problems studied in this dissertation, as they define

the preferences of the players.

Definition 1.1 (Valuation Function). A valuation function v is a function v : 2[m] → R+∪{0} from

subsets of [m] = {1, . . . ,m} to the non-negative real numbers. A valuation function is normalized to

v(∅) = 0 and monotone, so that v(S ∪ T ) ≥ v(S) for all sets S, T .

In order to achieve the best possible outcome, we wish to maximize the the overall sum of player

valuations. We call this sum the social welfare.

Definition 1.2 (Social Welfare). The social welfare of an allocation is the sum over each player

of the player’s value for the allocation. If there are n players with valuation functions v1, . . . , vn,

the social welfare of A is
∑
i vi(A). The social welfare of a combinatorial auction or combinatorial

public project is the maximum social welfare of any allocation, maxA
∑
i vi(A).

The first problem we consider is the combinatorial public project problem.

Definition 1.3 (Combinatorial Public Project). A combinatorial public project consists of n players

[n], m items [m], and a parameter k. Each player i has a valuation function vi. An allocation A

consists a subset S of [m] of size k. The social welfare of A is
∑
i vi(S).

We also study combinatorial auctions.

Definition 1.4 (Combinatorial Auction). A combinatorial auction consists of n players [n] and m

items [m]. Each player i has a valuation function vi. An allocation A consists of n subsets of [m],

S1, . . . , Sn such that Si ∩ Sj = ∅ for i 6= j. The social welfare of A is
∑
i vi(Si).

All valuations which we study are subadditive.

Definition 1.5 (Subadditive). A valuation function v is subadditive if v(S ∪ T ) ≤ v(S) + v(T ) for

all sets S, T .

Most of the functions we study are also submodular.

Definition 1.6 (Submodular). A valuation function v is submodular if v(S ∪ T ) + v(S ∩ T ) ≤

v(S) + v(T ) for all sets S, T .

In both auctions and public projects, players wish to maximize their utility.

Definition 1.7 (Utility). Given a valuation function v and a set of prices p1, . . . , pm, the utility of

a set S is v(S)−
∑
i∈S pi.

A set which maximizes utility is called a demand set.

Definition 1.8 (Demand Set). Given a valuation function v and a set of prices p1, . . . , pm, a demand

set is a set S maximizing the utility, v(S)−
∑
i∈S pi.
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Demand sets are not important just because of their relation to utility maximization. They are

also necessary to define the class of gross substitutes, which contains several of the valuation classes

we study.

Definition 1.9 (Gross Substitutes). A valuation function v satisfies the gross substitutes property

if for any two sets of prices p1, . . . , pm and q1, . . . , qm such that qi ≥ pi and S is a demand set for

p1, . . . , pm, that there exists some demand set T for q1, . . . , qm such that S ∩ {i : pi = qi} ⊆ T . In

other words, the items which were already demanded and did not have their prices raised remain in

a demand set.

We call the process that leads to allocations and prices a mechanism.

Definition 1.10 (Mechanism). A mechanism M is an algorithm which takes in an instance of an

allocation problem and returns an allocation A and a list of prices p1, . . . , pn.

The mechanisms that we are interested in are those in which players are not incentivized to lie

about their valuations. These are called truthful mechanisms.

Definition 1.11 (Truthful Mechanism). A mechanism M is truthful if for any player with value

vi and any values v1, . . . , vi−1, vi+1, . . . , vn for players other than i, player i’s utility vi(A) − pi is

maximized by declaring vi.

One way to create a maximal-in-range mechanism is through the use of VCG payments.

Definition 1.12 (VCG Payments). The VCG payment for player i given an allocation algorithm A

is defined as follows. Let S be the allocation determined by i given all player values, and S−i be the

allocation A determines if we replace vi with 0. The VCG payment is pi =
∑
j 6=i vj(Si)− vj(S−i).

VCG payments result in a truthful mechanism if the algorithm they are applied to is maximal-

in-range.

Definition 1.13 (Maximal-in-Range (MIR)). An allocation algorithm A is maximal-in-range if

there exists a set of values CS for each set S such that for any valuation functions v1, . . . , vn, A

returns a set S which maximizes
∑
i vi(S) over the range of A.

The use of a maximal-in-range algorithm together with VCG payments is the only known general

way to truthfully maximize social welfare, and remains an active area of study [16, 18, 29, 36]. We call

mechanisms which use maximal-in-range algorithms with VCG payments VCG-based mechanisms.

Maximal-in-range algorithms are a special case of affine maximizers.

Definition 1.14 (Affine maximizer). An allocation algorithm A is an affine maximizer if there

exists a set of values CS for each set S such that for any valuation functions v1, . . . , vn, A returns a

set S which maximizes
∑
i vi(S) +CS over the range of A. Note that maximal-in-range mechanisms

are a special case of affine maximizers where CS = 0 for all S.
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1.1.1 Notation

A class of combinatorial auction or combinatorial public project problem can be defined by three

important factors. The first is the type of problem, auction, or public project. The second is

the class of valuation functions that v1, . . . , vn belong to. Finally, we have the number of players

n. Individual problems will also have different numbers of items m and for combinatorial public

projects, parameters k. But we classify instances by type of problem, class of valuation functions,

and number of players. All three of these factors can affect the difficulty of mechanism design. In

order to clearly express what each of these factors are, we use a three-part notation. We will explain

this notation using the example PC2, which we will now explain.

The first part of the notation denotes whether the problem is a combinatorial auction or a

combinatorial public project. For a combinatorial auction, we use an A and for a combinatorial

public project, we use a P . So in the example PC2, the problem is a combinatorial public project.

The second part denotes the class of valuation functions allowed. This is simply one or more

letters following the A or P . In the example PC2, the class of valuation functions is the one denoted

by C, which refers to capped-additive valuations. We will define capped additive valuations as well

as other valuation classes and how they are denoted in Section 1.1.2.

The final part of the notation is an optional subscript. If present, it is the number of players. If

not, the number of players is not limited. So PC2 is the combinatorial public projects problem with

2 capped-additive players and PC is the combinatorial public projects problem with an unbounded

number of capped-additive players.

1.1.2 Problem Definitions

In this dissertation, we study problems for which the valuation functions are subadditive. This class

of functions (also known as complement-free) is important to the study of combinatorial auctions

[15, 22, 23, 30, 44]. In particular, we study valuation functions drawn from a complement-free

hierarchy (see Figure 1.1) based on the classes studied in [30, 33]. The classes we study in this

hierarchy are defined below. All of the submodular valuation functions have succinct representations.

Definition 1.15 (Succinct Representation). A valuation class has a succinct representation if func-

tions in the class can be uniquely identified by a representation which has size polynomial in the

number of items m and in log(vi([m])), the log of the maximum value for any set.

Succinct representation is important if we want to study computational complexity, as compu-

tational complexity is based on input size. For example, if the input size for a public project is 2m,

then it is possible to enumerate all
(
m
k

)
≤ 2m possible allocations in polynomial time in order to find

the one which maximizes social welfare.
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Subadditive
(Complement-Free)

Fractionally-
Subadditive (XOS) Submodular

Gross Substitute Capped-Additive
(Budget-Additive)

Weighted 
Coverage

Multi-Unit-Demand 
(OXS)

Unit-Demand (XS) Additive (OS)

Scaled Coverage

Coverage

2-{0,1}-Unit-
Demand

Figure 1.1: The Complement-Free Hierarchy. The valuation classes studied directly in this dis-
sertation are marked by rounded nodes. The names in parentheses are alternative names which
are sometimes also used to refer to these classes. We do not use these alternative names in this
dissertation.

Definition 1.16 (Additive (A)). An additive valuation vi has value vji for each item j and the value

of a set S is vi(S) =
∑
j∈S v

j
i . Additive valuations are not discussed much in this dissertation, as

we can show fairly easily that both PA and AA have polynomial-time solutions (see Theorem 1.2).

Before proving that PA and AA have polynomial-time solutions via Theorem 1.2, we require a

helpful lemma.

Lemma 1.1. There exists an algorithm which for any k,m, finds the k largest or smallest items

from an unordered array of length m in O(m) time.

Proof. We will show how to find the k largest items. To find the k smallest items, simply reverse

the comparisons in this process. [3] shows that the kth largest item in an array of length m can be

found in O(m) time independent of k. To find the other k − 1 larger items, simply iterate through

the array twice. On the first pass, add any items which are greater than the kth largest item to the

list of the kth largest items. This pass may result in a list of length less than k, as there may be

some items equal to the kth largest which belong on the list. So on the second pass, add items equal

to the kth largest item until the list has k items.

After this process, the list that has been built contains all items greater than the kth largest

item, and none less than it. It also has length k, as there must be at least k items greater than
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or equal to the kth largest item (including itself). Therefore, this list contains the k largest items.

Since finding the kth largest item takes O(m) time, as do each of the 2 passes, the total running

time of this algorithm is O(m).

Theorem 1.2. Both AA and PA can be solved in O(mn) time where m is the number of items and

n is the number of players.

Proof. For AA, the social welfare is simply
∑
vji over pairs i, j such that item j is assigned to player

i. So this is maximized by assigning each item j to the player i with the maximum value of vji . For

each item it only takes O(n) time to find this maximum, for a total of O(mn) time over m items.

For PA, the social welfare of a set S is
∑
j∈S

∑
i v
j
i . So to maximize the social welfare, simply

choose the k items with highest value for
∑
i v
j
i . These m sums can be found in O(n) time each, for

a total of O(mn) time. By Lemma 1.1, the k highest sums can then be found in O(m) time, for a

total of O(mn) time.

Definition 1.17 (Unit-Demand (U)). A unit-demand valuation vi has a value vji for each item j

and the value of a set S is the maximum value of any item in S, vi(S) = maxj∈S v
j
i . vi can be

succinctly represented by the m values vji .

Definition 1.18 (`-{0,1}-Unit-Demand (`U)). An `-{0,1}-unit-demand valuation vi is a unit-

demand valuation for which vji is either 0 or 1 for each j, and for which vji = 1 for at most `

values of j.

We will mostly consider the 2-{0,1}-unit-demand valuation (2U).

Definition 1.19 (Multi-Unit-Demand (MU)). A multi-unit-demand valuation vi consists of several

unit-demand valuations v
(j)
i . In order to compute the value vi(S) of a set S, one item is assigned

to each unit-demand valuation function, and the values for each function are summed. The value is

the maximum possible such sum,

vi(S) = max
S1,...,S`
Si⊆S

Si∩Sj=∅

∑
j

v
(j)
i (Sj).

Lemma 1.3 shows that vi(S) is computable in polynomial time. Lemma 1.5 shows that any multi-unit-

demand function vi can be succinctly represented by at most m2 unit-demand valuation functions.

Lemma 1.3. If vi is a multi-unit-demand valuation function over m items, it is possible to compute

vi(S) = max
S1,...,S`
Si⊆S

Si∩Sj=∅

∑̀
j=1

v
(j)
i (Sj)

for any set S ⊆ [m] in time polynomial in m and `.
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Proof. Given a partition S1, . . . , S` of S, the value computed by the partition is
∑`
j=1 v

(j)
i (Sj) =∑`

j=1 v
(j)
i ({s∗j}) for some s∗j in each Sj . So in order to maximize the value, we need only to optimally

match each valuation function to an item. This can be accomplished via maximum weighted bipartite

matching. Create a bipartite graph in which one side has m nodes corresponding to the items,

and the other has ` nodes corresponding to the functions v
(1)
i , . . . , v

(`)
i . The edge between nodes

corresponding to item j and function v
(j)
i has weight v

(j′)
i (j). Thus, a maximum weighted matching

maximizes
∑
v

(j′)
i (j) over all matchings of items j to functions v

(j′)
i . As a maximum weighted

matching on a bipartite graph with m + ` nodes can be found in time polynomial in m and `, this

completes the proof.

Computing the value of a set S for a single multi-unit-demand player is equivalent to computing

an optimal allocation in an auction with several such players. So Lemma 1.3 implies the following

corollary.

Corollary 1.4. AMU (and therefore also AU) can be solved exactly in polynomial time.

Proof. Suppose we have n players with multi-unit-demand functions v1, . . . , vn, where vi(S) =

maxS1,...,S`i

∑
j v

(j)
i (Sj). We create a single multi-unit-demand function V with unit-demand func-

tions V (i,j) = v
(j)
i . The value of a set S is the maximum over all partitions

S(1,1), . . . , S(1,m), S(2,1), . . . , S(2,m), . . . , S(n,1), . . . , S(n,m)

of
∑

(i,j) v
(j)
i (S(i,j)). Note that this is equivalent to giving player i

⋃
j S(i,j). So the maximum social

welfare in the AMU instance is the value of [m] to the single player we have created. Therefore,

Lemma 1.3 shows that AMU can be solved exactly in polynomial time.

Lemma 1.5. For any multi-unit-demand valuation vi(S) =
∑`
j=1 v

(j)
i (S), there is a set M of size

at most m2 such that

vi(S) = max
S1,...,S`
Si⊆S

Si∩Sj=∅

∑
j∈M

v
(j)
i (Sj).

Furthermore, this set can be found in O(m`) time.

Proof. If ` ≤ m, this is trivially true. So assume ` > m.

Each item j either contributes to the value or not. If it does, it must be matched to one of

the m valuation functions v
(j)
i that have maximum value for j. One of these is always available to

match with j, as the other m− 1 items can only be matched to at most m− 1 of these. So for any

maximum value matching, we only need to consider the at most m valuation functions per item that

they might be matched to it in an optimal matching, for a total of m2 valuation functions.
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Lemma 1.1 shows that we can find the m functions of highest value for item j in O(`) time.

Since this is repeated m times, once for each item, the total time is O(m`).

Definition 1.20 (Capped-Additive (C)). A capped-additive valuation vi has value vji for each item

j and a value cap c. The value of a set S is the minimum of the sum of all values in S and the value

cap, vi(S) = min(
∑
j∈S v

j
i , c). vi can be represented succinctly by the m values vji = vi({j}) and the

budget cap ci = vi([m]).

Definition 1.21 (Coverage (COV)). A coverage valuation vi has a subset V ji ⊆ U of some universe

U associated with each item j and the value of a set S is the size of the union of the corresponding

sets, vi(S) =
∣∣∣⋃j∈S V ji ∣∣∣. vi can be represented succinctly by the sets V ji if |U | has a polynomial

bound.

Definition 1.22 (Scaled Coverage Valuation (SCOV)). A scaled coverage valuation vi has a subset

V ji ⊆ U of some universe U associated with each item j as well as a scaling factor α and the value

of a set S is α times the size of the union of the corresponding sets, vi(S) = α
∣∣∣⋃j∈S V ji ∣∣∣. vi can be

represented succinctly by the sets V ji together with the scale factor α if |U | has a polynomial bound.

Definition 1.23 (Weighted Coverage Valuation (WCOV)). A weighted coverage valuation vi has a

subset V ji ⊆ U of some universe U associated with each item j as well as a weight wu for each u ∈ U .

The value of a set S is the size of the sum of wu over items u covered by sets V ji corresponding to

items j ∈ S,

vi(S) =
∑

u∈
⋃
j∈S

V ji

wu.

vi can be represented succinctly by the sets V ji together with the weights wu if |U | has a polynomial

bound.

Definition 1.24 (Fractionally-Subadditive (FS)). A fractionally-subadditive valuation vi has ` addi-

tive functions v
(1)
i , . . . , v

(`)
i . The value of a set S is the maximum value over the ` additive functions,

vi(S) = maxj v
(j)
i (S). vi is represented by the ` additive functions v

(1)
i , . . . , v

(`)
i . Lemma 1.6 shows

that arbitrary vi cannot be represented succinctly regardless of choice of representation. As we are

interested in valuations with succinct representations, our results deal with ` ∈ poly(m), making our

representations succinct.

Lemma 1.6. For each m > 0 and any choice of representation, there exists a fractionally-subadditive

valuation function vi for 2m items with vi(S) ≤ 2m2 which requires at least 2m bits to represent.

Proof. We will prove this by showing that there are at least 2(2m
m ) fractionally-subadditive valuation

functions. As there are only 2(2m
m ) − 1 strings with fewer than

(
2m
m

)
bits, this proves that

(
2m
m

)
bits are required for at least one of these valuations. The binomial coefficient

(
2m
m

)
is equal to the
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number of subsets of [2m] of size m and 2m is the number of subsets of [m]. For each subset M

of [m], there is a corresponding subset M ′ of [2m] of size m containing all elements of M , plus

items m + 1, . . . ,m + (m − |M |). Thus,
(

2m
m

)
≥ 2m, so showing that there are 2(2m

m ) different

fractionally-subadditive functions over m items proves that one of them requires at least 2m bits to

represent.

The 2(2m
m ) valuation functions are defined as follows. Let

(
[2m]
m

)
be the set of subsets of [2m] of

size m. For each M⊆
(

[2m]
m

)
, let

vM(S) =

 (m+ 1) · |S|, |S| < m or S ∈M

m · |S|, |S| ≥ m and S /∈M
.

Let M,M′ be distinct subsets of
(

[2m]
m

)
. We will show that vM and vM′ are different functions. As

M and M′ are different, there exists some set S that is in one of them but not the other. Without

loss of generality, assume M contains some set S that M′ does not. By the above definition,

vM(S) = (m+ 1) ·m, as all sets in M have size m. As S /∈M′, vM′(S) = m ·m, which is different

from (m+1) ·m for m > 0. Thus vM 6= vM′ for everyM 6=M′, so there are 2(2m
m ) distinct functions

vM, one for each set M⊆
(

[2m]
m

)
.

To complete the proof, we need only see that for everyM⊆
(

[2m]
m

)
, vM is fractionally-subadditive.

We construct additive functions vTM for each T ⊆ [2m] as follows. For |T | < m or T ∈M,

vTM({s}) =

 m+ 1, s ∈ T

0, otherwise
.

For |T | ≥ m and T /∈M,

vTM({s}) =

 m, s ∈ T

0, otherwise
.

This defines the additive functions vTM(S) =
∑
s∈S v

T
M({s}). Using these, we define the fractionally-

subadditive function

vM(S) = max
T

vTM(S).

For any T , vTM(S) ≤ (m+1)·|S|. If |S| < m or S ∈M, vSM(S) = (m+1)·|S|. So vM(S) = (m+1)·|S|.

For S > m, we consider two cases. For |T | ≤ m, vTM(S) ≤ m · (m+ 1), as each s ∈ T has value at

most m+ 1 and |T | ≤ m. Since |S| > m, this is at most m · |S|. For |T | > m, the value of each item

is at most m and there are only |S| items, for a total value of at most |S| ·m. Since vSM(S) = m · |S|

achieves this bound, vM(S) = m · |S|.

Finally, we have the case that S is such that |S| = m,S /∈M. For |T | < m, the maximum value

for any set is (m + 1) · |T | ≤ (m + 1) · (m − 1) = m2 − 1 < m · |S|. For T ∈ M, there are at most
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m − 1 items in both S and T , so the maximum value is again at most (m + 1) · (m − 1) < m · |S|.

For |T | ≥ m,T /∈M, the value is at most m · |S|, which is achieved by vSM(S). So vM(S) = m · |S|.

By the above three cases, we have shown that

vM(S) =

 (m+ 1) · |S|, |S| < m or S ∈M

m · |S|, |S| ≥ m and S /∈M

is fractionally-subadditive, completing the proof.

1.2 Overview of Results

In Chapters 3 and 4 we show hardness results for VCG-based mechanisms for combinatorial public

projects and combinatorial auctions, respectively. These results for the valuation classes studied in

this dissertation are summarized in Figure 1.2.

Valuation Class Problem Best MIR Approximation Ratio

Additive
PA 1
AA 1

Unit-Demand
PUn 1
P2U

√
m [New]

AU 1

Multi-Unit-Demand
PMU2 1 [New]
PMU3

√
m [New]

AMU 1

Capped-Additive
PC2

√
m [New]

ACn n [New]
AC min(n,O(

√
m)) [New]

Coverage PCOV1
√
m [New]

Fractionally-Subadditive
PFSn 1
PFS

√
m [New]

Figure 1.2: The best approximation ratios achievable by a polynomial-time maximal-in-range algo-
rithm assuming that NP does not have polynomial circuits. When n is used as a subscript, it refers
to any constant n. A

√
m upper bound for public projects with subadditive players is shown in [41],

so all
√
m are proven in this dissertation via a lower-bound of m1/2−ε for all ε > 0.

For certain cases in Chapter 3, we are able to show a few results about general truthful mech-

anisms. VCG-based approximation algorithms cannot approximate P2U with a ratio better than
√
m, but we show a truthful 2-approximation. We extend the VCG-based hardness result for PCOV1

to show that any polynomial-time truthful mechanism for PSCOV1 cannot approximate the social

welfare better than
√
m unless NP has polynomial circuits.

In Chapter 3, we also show some computational results which do not take truthfulness into

account. These results are summarized in Figure 1.3.

Finally, in Chapter 5 we present a new model that builds computational complexity on top of
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Valuation Class Problem Bounds on Approximation Ratio r

Unit-Demand
PUn, constant n r = 1

PU r = e/(e− 1) [New]

Multi-Unit-Demand

PMU2 r = 1 [New]
PMU3 1 [New] < r ≤ 3/2 [New]

PMUn, 4 ≤ n ≤ 9 1 [New] < r ≤ e/(e− 1)
PMU10 1 + ε [New] < r ≤ e/(e− 1) (no FPTAS)
PMU r = e/(e− 1) [New]

Capped-Additive
PC1 r = 1

PCn, constant n ≥ 2 r = 1 + ε (FPTAS) [New]
PC r = e/(e− 1) [New]

Fractionally-Subadditive
PFSn, constant n r = 1

PFS 2log1−γ(min(n,m)) [New] ≤ r ≤ min(ε · n,
√
m) [41]

Figure 1.3: Computational results shown in Chapter 3. Equality refers to matching upper and lower
bounds, up to arbitrarily small ε factors. All e/(e− 1) upper bounds are from [32]. When ε is used,
it refers to any constant ε > 0.

truthfulness in order to reduce the asymmetry in the definitions of truthfulness and computational

efficiency. For a mechanism to be truthful, no lie can exist which may benefit a player, even if this lie

is hard to compute. So the mechanism is limited by computational efficiency, but the hypothetical

players it is designed for are not. This asymmetry is precisely what leads to the result that PSCOV1

is hard to approximate truthfully, as any truthful mechanism must limit its range so much that even

computationally intractable lies do not exist. Under the model we develop in Chapter 5, we are able

to show that PCOV2 is hard to approximate truthfully even when PCOV1 has a polynomial-time

truthful solution. This allows for more robust hardness results that do not depend on assuming that

players are more computationally powerful than mechanisms.
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Chapter 2

Alternate Approaches

In this chapter, we consider approaches to the study of truthful mechanisms which are not the focus

of this dissertation. These approaches are randomized algorithms and communication complex-

ity. Outside of this chapter, our primary interest is the computational complexity of deterministic

algorithms.

2.1 Randomized Algorithms

Our hardness results only hold for deterministic mechanisms. Recent results [13, 19, 20] show that

randomization can sometimes allow for improved approximation ratios. In particular, [19] shows

that there exists a randomized FPTAS for ACn for any constant n which satisfies a randomized

notion of truthfulness. Other results have shown that randomization can be of no help depending

on the problem and the version of randomized truthfulness used [7, 12].

A universally truthful mechanism is one which chooses a truthful mechanism from some distri-

bution, then runs it. Universally truthful mechanisms can also be used to improve on the hardness

results for PU, PMU, and PC, as we show in Theorem 2.1 and Corollaries 2.3, 2.4, and 2.5 below.

Definition 2.1 (Universally Truthful). A universally truthful mechanism M consists of several

truthful mechanisms M1, . . . ,M`. M chooses a mechanism Mi randomly from some distribution

and runs it in order to determine an allocation and payments.

Theorem 2.1. There exists a universally truthful mechanism for PU which runs in O(km) time

and achieves an expected approximation ratio of at most n/k.

Proof. For each subset T ⊆ [m], |T | = k we define a mechanismMT . MT arbitrarily orders elements

of T = {t1, . . . , tk}, then iteratively builds up sets S0, . . . , Sk and allocates Sk. It starts with S0 = ∅
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and adds items according to

Si =

 Si−1 ∪ {argmaxjv
j
ti}, argmaxjv

j
ti /∈ Si−1

Si−1 ∪ {minj /∈Si−1
j}, otherwise

where argmaxjv
j
ti refers to any single item j which maximizes vjti . MT sets pi = 0 for all i, so no

players make payments. The universally truthful mechanism chooses a size k subset T uniformly at

random, and uses mechanism MT .

An item is added at each step, so |Sk| = k and we end up with a valid allocation. To see that this

allocation has an expected social welfare of at least k/n, first note that players in T have their values

maximized by construction. As we are choosing T uniformly at random, each player has chance k/n

to be in the first T , so each player gets at least a k/n fraction of his maximum value in expectation.

Thus, the expected approximation ratio is at most n/k.

Now, we need only see that eachMT is truthful and runs in polynomial time. Players i /∈ T are

ignored, so they have no incentive to lie. Players in T have their value maximized, so they also have

no incentive to lie. Thus, MT is truthful.

MT runs in time O(km) independent of T . There are k iterations to compute the sets S1, . . . , Sk.

Each iteration only requires finding argmaxjv
j
i and minj /∈Si−1

vji , each of which can be found in O(m)

time. Checking whether argmaxjv
j
i is in Si−1 takes O(|Si−1|) ⊆ O(m) time. Thus, each step takes

O(m) time. vti(Si−1) is then compared to maxj v
j
ti , with the corresponding item possibly being

added to Si−1 to arrive at Si. As there are only m such values, this step also only requires O(m)

time. So each iteration requires only O(m) time, for a total of O(km) time.

The idea in Theorem 2.1 can be generalized to show that for any valuation function V and any

constant `, that if PV` can be solved exactly, there is a universally truthful n/` approximation for

PV.

Theorem 2.2. Let V be a class of valuation functions. If PV` can be solved exactly in polynomial

time, there exists a polynomial time universally truthful mechanism which approximates the social

welfare of PV with a ratio of n/`.

Proof. Similarly to the proof of Theorem 2.1, we construct a mechanism MT for each subset T ⊆

[n], |T | = `. This mechanism runs an algorithm which exactly maximizes the social welfare for the

players in T and ignores all other players. This is different from the mechanism in the proof of

Theorem 2.1 in that we find an S which maximizes
∑
i∈T vi(S) rather than maximizing vi(S) for

each i ∈ T . Players outside of T are charged 0 and players in T are charged VCG payments.

Let S∗ be an optimal allocation and AT be the allocation found by MT . The expected social
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welfare is ∑
T⊆([n]

` )

1(
n
`

) ∑
i∈[n]

vi(AT ).

As the players in T maximize their social welfare,
∑
i∈[n] vi(AT ) ≥

∑
i∈T vi(S

∗). So the expected

social welfare is at least

∑
T∈([n]

` )

1(
n
`

) ∑
i∈T

vi(S
∗) =

1(
n
`

) ∑
T∈([n]

` )

∑
i∈T

vi(S
∗).

Since each player i appears in
(
n−1
`−1

)
sets T of size `, the above double summation is equal to∑

i∈[n]

(
n−1
`−1

)
vi(S

∗). Note that `
(
n
`

)
= n

(
n−1
`−1

)
(as both count the number of ways to select a com-

mittee of size ` with a chairperson from a group of n people), so

1(
n
`

) =
`

n
(
n−1
`−1

) .
Using this identity, we get a total social welfare of at least

1(
n
`

) ∑
i∈[n]

(
n− 1

`− 1

)
vi(S

∗) =

(
n−1
`−1

)(
n
`

) ∑
i∈[n]

vi(S
∗)

=
`
(
n−1
`−1

)
n
(
n−1
`−1

) ∑
i∈[n]

vi(S
∗)

=
`

n

∑
i∈[n]

vi(S
∗).

So this mechanism has an expected value of at least `/n times the maximum social welfare, giving

an expected approximation ratio of at most n/`.

Now, we need only to see that this is universally truthful and runs in polynomial time. Each

MT is truthful for players outside of T because their valuations do not affect the outcome. MT

runs in polynomial time if PV` can be solved exactly in polynomial time, and truthfulness follows

from the use of VCG payments.

Using Theorem 2.2, we get the following corollaries.

Corollary 2.3. For any constant `, there exists a polynomial-time universally truthful mechanism

for PFS which achieves an expected approximation ratio of at most n/`.

Proof. This follows from Theorem 2.2 and Theorem 3.21, which shows that PFS` can be solved in

polynomial time for any constant `.

Corollary 2.4. There exists a polynomial-time universally truthful mechanism for PMU which

achieves an expected approximation ratio of at most n/2.
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Proof. This follows from Theorem 2.2 and Theorem 3.13, which shows that PMU2 can be solved in

polynomial time.

Corollary 2.5. There exists a polynomial-time universally truthful mechanism for PC with an

expected approximation ratio of at most n.

Proof. This follows from Theorem 2.2. We need only see that PC1 can be solved exactly in poly-

nomial time. Clearly, allocating the k items of highest value to the single player will maximize the

social welfare. Thus, PC1 can be solved in polynomial time, completing the proof.

2.2 Communication Complexity

Another approach to showing the hardness of mechanism design is communication complexity.

Rather than show that a problem is difficult to compute the answer to or that truthfulness combined

with computational efficiency leads to inapproximability, a communication complexity approach

shows that even attaining enough information to solve the problem requires excessive communi-

cation. If a problem requires exponential communication to solve, then it is impossible to find a

polynomial-time solution regardless of truthfulness. This approach has been useful for demonstrating

hardness of subadditive auctions [17, 28, 35] and, more recently, public projects [12].

Unfortunately, this strategy does not work for problems where the valuations have succinct

representations. If each valuation functions can be represented in space polynomial in m, then

each player need only communicate polynomial information to the mechanism in order for an exact

solution to be found, after which VCG payments allow for an exact truthful solution. We restrict

our attention in this dissertation to succinctly represented valuations.

Succinct representation need not be a complete barrier to communication complexity results.

Query models limit the communication to the mechanism posing certain questions to the players,

then receiving the answer back. The two query types of interest in this dissertation are value queries

and demand queries.

Definition 2.2 (Value Query). A value asks what the value of a set S is to player i. A value query

thus consists of a set S. The response to a value query is vi(S).

Definition 2.3 (Demand Query). A demand query asks for a demand set for player i under prices

p1, . . . , pm. A demand query thus consists of a set S and a set of m prices p1, . . . , pm. The response

to a demand query is a set S maximizing vi(S)−
∑
j∈S pj.

A polynomial number of demand queries are sufficient to compute a value query [4], so demand

queries are strictly more powerful.

In the query model, it is possible that even a valuation with succinct representation could require

exponential communication, as seen in Lemma 2.6 below.
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Lemma 2.6. PFS1 requires exponential communication to solve exactly if communication is limited

to value queries. Furthermore, this is true even when v1 is chosen from a set of valuation functions

which can be represented in Õ(m2) bits.

Proof. We will build a function by first picking a set T ⊆ [m] of size |T | = m/2. We build the

fractionally subadditive function out of the following additive functions. For i = 1, . . . ,m,

v
(i)
1 (S) =

 1, i ∈ S

0, otherwise

as well as v
(m+1)
1 (S) = 2|S|/m and v

(m+2)
1 (S) = |S ∩ T |(2/m + 1/m2). Set v1(S) = maxi v

(i)
1 (S).

v
(1)
1 , . . . , v

(m+2)
1 require Õ(m) bits each, as they each need only have m values, 1 for each item, and

each value requires Õ(1) bits. As there are O(m) functions each requiring Õ(m) bits, there are a

total of Õ(m2) bits required to represent v1.

Claim 2.6.1.

v1(S) =


1, 0 < |S| < m/2

1 + 2/m, S = T

2|S|/m, otherwise

.

Proof. First, let S = ∅. Then v1(S) = 0, as all of the functions that S consists of are additive. This

corresponds to the above case 2|S|/m = 2(0)/m = 0.

If 0 < |S| < m/2, v
(i)
1 (S) ∈ {0, 1} for i ≤ m and for every i ∈ S, v

(i)
1 (S) = 1. So v1(S) ≥ 1.

Furthermore,

v
(m+1)
1 (S) = 2|S|/m

< 2(m/2)/m

= 1

and

v
(m+2)
1 (S) = |S ∩ T |(2/m+ 1/m2)

≤ |S|(2/m+ 1/m2)

≤ (m/2− 1)(2/m+ 1/m2)

= 1 + 1/m− (2/m+ 1/m2)

= 1− 1/m− 1/m2

< 1.
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So v1(S) = 1.

Now, consider S = T .

v
(m+2)
1 (T ) = |T ∩ T |(2/m+ 1/m2)

= |T |(2/m+ 1/m2)

= (m/2)(2/m+ 1/m2)

= 1 + 2/m

v
(i)
1 (T ) ≤ 1 < 1 + 2/m for i ≤ m, so these won’t be the maximum.

v
(m+1)
1 (T ) =

2|T |
m

=
2(m/2)

m

= 1

< 1 + 2/m,

so this isn’t the maximum either. So v1(T ) = 1 + 2/m.

Now, suppose |S| = m/2, S 6= T . As S 6= T , |S ∩ T | < |S| = m/2, so |S ∩ T | ≤ m/2− 1. So

v
(m+2)
1 (S) = |S ∩ T |(2/m+ 1/m2)

= (m/2− 1)(2/m+ 1/m2)

= m/2(2/m+ 1/m2)− (2/m+ 1/m2)

= 1 + 1/m− (2/m+ 1/m2)

< 1 + 1/m− 1/m

= 1

v
(m+1)
1 (S) = 2|S|/m = 1. For i ≤ m, v

(i)
1 (S) ≤ 1. So v

(m+1)
1 (S) = 1 = 2|S|/m.

Finally, let |S| > m/2. v
(m+1)
1 (S) = 2|S|/m. As |S| > m/2, 2|S|/m ≥ 1 + 2/m. Note that

|S ∩ T | ≤ |T | = m/2, so

v
(m+2)
1 (S) = |S ∩ T |(2/m+ 1/m2)

≤ (m/2)(2/m+ 1/m2)

= 1 + 1/(2m)

< 1 + 2/m

≤ 2|S|/m.
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For i ≤ m, v
(i)
1 (S) ≤ 1 < 2|S|/m, so the maximum value is v1(S) = 2|S|/m.

Now, consider an instance of PFS1 with a single player whose valuation is constructed as above

for some T and k = m/2. For any allocation S 6= T , |S| = m/2, so the social welfare is 2|S|/m = 1.

If T is allocated, the social welfare is 1 + 2/m. Thus, in order to maximize the social welfare, T

must be allocated.

We now show that finding T requires exponentially many value queries in the worst case. In

particular, we show that this requires
(
m
m/2

)
− 1 queries. Suppose a query is made with a set

S, |S| 6= m/2. In this case, v1(S) only depends on |S|. So nothing is learned about T by making this

query. Now, suppose |S| = m/2. Then v1(S) = 1 regardless of T if S 6= T and 1 +m/2 if S = T . So

if S 6= T , this query only rules out S.

Suppose we make queries S = {S1, . . . , S`} where Si 6= T for all I, and let T = {S : |S| =

m/2, S /∈ S}. For every S ∈ T , S = T is consistent with the queries so far. So while |T | > 1, we

don’t know what T is, so for some T , the next query is not T . Thus, in the worst case, we make

queries S 6= T until |T | = 1. As |T | starts at
(
m
m/2

)
and each query reduces it by at most 1, it

requires
(
m
m/2

)
− 1 queries in the worst case before |T | = 1. Thus, it requires exponentially many

value queries to maximize the social welfare.

A result like Lemma 2.6 is interesting, but ultimately any communication complexity result de-

pends on an inability to communicate player valuations. We feel that this type of result is unsatisfy-

ing for succinctly represented valuations, and therefore avoid the use of communication complexity.

To demonstrate the ineffectiveness of this approach for the problems we study, we show that value

queries are sufficient to produce a succinct representation for all of the submodular valuation classes

in Figure 1.1 other than multi-unit-demand. As a polynomial number of demand queries are suf-

ficient to simulate a value query [5], this also demonstrates that demand queries can be used to

produce a succinct valuation.

Lemma 2.7. There exists a polynomial-time algorithm which finds a succinct representation for a

capped-additive valuation using only value queries.

Proof. A capped-additive valuation can be represented by the per-item values vji for each j and the

value cap c. v({j}) = vji , so this value query is sufficient to find vji and v([m]) = min(c,
∑
j v

j
i ), so

this query either finds c or shows that c is large enough that the actual value of c is irrelevant. Thus,

setting c = v([m]) yields a succinct representation for vi. This only requires m+ 1 queries, which is

polynomial in m.

Corollary 2.8. There exists a polynomial-time algorithm which finds a succinct representation for

an additive valuation using only value queries.
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Proof. Additive valuations are a special case of budget-additive valuations, so this is a special case

of Lemma 2.7.

Lemma 2.9. There exists a polynomial-time algorithm which finds a succinct representation for a

unit-demand valuation using only value queries.

Proof. As in Lemma 2.7, we can find the per-item values vji by querying the values vi({j}). This

fully describes the unit-demand valuation and takes only O(m) time.

Lemma 2.10. Let A be a randomized algorithm which makes demand queries about a valuation

function v, and outputs a possible representation r of v. For any constants ε, δ > 0, if A outputs a

correct representation r of v with probability at least ε, then for sufficiently large m, it makes more

than 2m/4 queries with probability at least 1− δ.

Proof. In order to show this, we will build an exponentially large set of valuation functions such

that any given query will have the same result on all but at most one of the functions.

We create a set of valuation functions over m = 2` + 1 items. For each set T ⊆ [2`] such that

|T | = `, we define a function vT such that for any S ⊆ [2`],

vT (S) =

 2|S|, |S| ≤ `

2`+ 1, otherwise

vT (S ∪ {2`+ 1}) =


2|S|+ 3, |S| < `

2`+ 1, S = T

2`+ 2, otherwise

.

Let S∗ be the set returned by a demand query with prices p1, . . . , pm. If p1, . . . , pm are such that

S∗ is a demand set for each vS , S ∈
(

[2`]
`

)
, nothing is learned from this query. So we will analyze

this assuming that there exists some S, T such that S∗ is a demand set for vT but not vS .

Claim 2.10.1. Let p1, . . . , pm be a demand query such that for some S, T , there exists some S∗ that

is a demand set for vS but not for vT . Then one of the following is true:

1. For some R ∈ {S, T}, R ∪ {2` + 1} is the only demand set for all value functions vL, L 6= R

and R ∪ {2`+ 1} is not a demand set for vR

2. S ∪ {2` + 1} and T ∪ {2` + 1} are the demand sets for all value functions vL, L 6= S, T and

S ∪ {2`+ 1} is the only demand set for vT and T ∪ {2`+ 1} is the only demand set for vS.

Proof. We will examine two cases of S∗.
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The first case we examine is that S∗ = T ∪ {2`+ 1}. Let S′ be a demand set for vS . Assume by

way of contradiction that that S∗ 6= S′.

vT (S′)−
∑
j∈S′

pj ≥ vS(S′)−
∑
j∈S′

pj because S′ 6= T ∪ {2`+ 1}

≥ vS(S∗)−
∑
j∈S∗

pj because S′ is a demand set for vS

= 2`+ 2−
∑
j∈S∗

pj

> 2`+ 1−
∑
j∈S∗

pj

= vT (S∗)−
∑
j∈S∗

pj ,

which contradicts that S∗ is a demand set for vT . So if S∗ = T ∪ {2` + 1} is a demand set for vT ,

it is also a demand set for any vS . Therefore, S∗ 6= T ∪ {2`+ 1}.

The second case we consider is that S∗ 6= T ∪ {2` + 1}. In this case, we will now show that

T ∪ {2`+ 1} is the only demand set for vS for any S 6= T . Suppose by way of contradiction that vS

has some demand set S′ 6= T ∪ {2`+ 1}. Note that S′ 6= S ∪ {2`+ 1}, as if S′ = S ∪ {2`+ 1},

vT (S′)−
∑
j∈S′

pj > vS(S′)−
∑
j∈S′

pj

≥ vS(S∗)−
∑
j∈S∗

pj because S′ is a demand set for vS

= vT (S∗)−
∑
j∈S∗

pj because S∗ 6= T ∪ {2`+ 1}, S′.

So

vT (S′)−
∑
j∈S′

pj ≥ vS(S′)−
∑
j∈S′

pj because vT (S′) < vS(S′)⇒ S′ = T ∪ {2`+ 1}

> vS(S∗)−
∑
j∈S∗

pj because S′ is a demand set of vS but S∗ is not

= vT (S∗)−
∑
j∈S∗

pj because S′ 6= S ∪ {2`+ 1}, T ∪ {2`+ 1},

which contradicts that S∗ is a demand set of vT . So the only demand set for vS under prices

p1, . . . , pm is T ∪ {2`+ 1}.

Note that if every S 6= T does not have S∗ as a demand set, the above proof shows that every

vS has T ∪ {2` + 1} as a demand set, satisfying case 1. So now we assume that there exists some

U 6= T where vU has S∗ as a demand set. Let T ′ = T ∪ {2`+ 1}. Suppose by way of contradiction
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that vU has a demand set U ′ which is neither T ∪ {2`+ 1} nor S ∪ {2`+ 1}.

vU (U ′)−
∑
j∈U ′

pj = vS(U ′)−
∑
j∈U ′

pj

< vS(T ′)−
∑
j∈T ′

pj because T ′ is the only demand set for vS

= vU (T ′)−
∑
j∈T ′

,

which contradicts that U ′ is a demand set for vU . So the only possible demand sets for vU are

S ∪ {2` + 1} and T ∪ {2` + 1}. Note that if these are both demand sets for vU , then they are the

both demand sets for any demand function vW other than vS and vT as all these functions have the

same values on these sets. This is case 2 in the statement of the claim.

If only one of these sets is a demand set for vU , then as S∗ 6= T ∪ {2` + 1} is a demand set for

vU , S∗ must equal S ∪ {2`+ 1} and be the only demand set for vU . Similarly, this will be the only

demand set for any vW other than vS , satisfying case 1 in the statement of the claim.

So looking at the two cases in Claim 2.10.1, any query that can differentiate between two functions

will either have the same result for all valuations other than vT , or it will return one of T ∪ {2` +

1}, S ∪ {2`+ 1} indicating that the valuation is not vS or not vT . Note that if we make two queries

of the first type, one for vS and one for vT , that we learn everything that the second type of query

could have shown, plus possibly confirmation that the valuation function is vT . Thus, any query

matching the second case in Claim 2.10.1 can be simulated by two queries matching the first case

in Claim 2.10.1. Thus, we can assume that all queries match the first case with only a factor of 2

increase in the number of queries. So every query will result in T ∪{2`+1} for all valuation functions

except vT , and is therefore an indicator for whether the valuation function is vT . We denote such a

query by QT .

Now, suppose that we choose a valuation function vT by choosing T uniformly at random. We

will show inductively that if we only make γ different queries QS , the probability that one of the

queries is equal to QT is γ/
(

2`
`

)
. For γ = 0, this is trivially true. If this is true for γ, then by

symmetry, all sets S such that QS has not been asked are equally likely. So the probability of any

of these is 1/
((

2`
`

)
− γ
)

. Thus, the probability that query γ + 1 is the first query equal to QT is

(
1− γ(

2`
`

)) 1(
2`
`

)
− γ

=

(
2`
`

)
− γ(

2`
`

) · 1(
2`
`

)
− γ

=
1(
2`
`

) .
So the probability that some query of the first γ+ 1 is QT is the probability that one of the first γ is

QT , plus the probability that query γ+1 is the first one equal to QT , or γ/
(

2`
`

)
+1/

(
2`
`

)
= (γ+1)/

(
2`
`

)
.

Thus, the probability that QT is queried within 2 · 2m/4 queries is 2 · 2m/4/
(

2`
`

)
. For any δ > 0,
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2 · 2m/4 ∈ o
((

2`
`

))
, so 2 · 2m/4/

(
2`
`

)
is less than δ for sufficiently large m.

Note that if none of the 2 · 2m/4 queries is QT , then the remaining
(

2`
`

)
− 2m/4 sets of size ` are

T with equal probability by symmetry. So the probability of returning the correct one after these

queries is 1/
((

2`
`

)
− 2 · 2m/4

)
, which is less than ε for sufficiently large `, as 2 · 2m/4 ∈ o

((
2`
`

))
.

As QT is not queried within 2 · 2m/4 queries with probability at least 1 − δ, this shows that with

probability 1−δ, A must perform more than 2 ·2m/4 queries QS . As 2 ·2m/4 queries QS are sufficient

to simulate any 2m/4 queries, this shows that for sufficiently large m, A must perform more than

2m/4 queries with probability at least 1− δ.

Now, we need only to see that vT is a multi-unit-demand function. We will define ` + 1 unit-

demand valuation functions. The first ` will be identical and defined by

v
(i)
T (S) =


0, S = ∅

3, 2`+ 1 ∈ S

2, otherwise

which is unit-demand, as it gives value 2 to items 1 through 2` and value 3 to item 2`+ 1. The last

unit-demand function is the one that depends on T ,

v
(`+1)
T =

 1, S ∩ ([2`] \T ) 6= ∅

0, otherwise

which is unit-demand because it gives value 1 to everything in [2`]\T and 0 to everything else.

Now we consider valuations over sets S ⊆ [2`]. If |S| ≤ `, then each of the items in S can be

matched with one of the first ` unit-demand valuations, for a value of 2 each. As the other valuation

gives each of these value at most 1, this is the maximum possible per-item value. So the total value

is 2|S|.

If |S| > `, then there is at least one item in S from [2` \T ]. Match this item with v
(i)
T for value 1,

and match ` of the other items with the first ` for value 2`. This gives a total value 2`+ 1, and each

unit-demand valuation yields maximum value for items in S. Thus, the value of this set is 2` + 1.

So our construction is equal to vT (S) above.

Now we consider valuations over sets S ∪ {2` + 1} for S ⊆ [2`]. If |S| < `, then one of the first

` unit-demand functions can be matched with item 2` + 1 for value 3, and all other items can be

matched with others of the first ` items for value 2|S|, for a total value of 2|S|+ 3. No higher value

is possible, as no unit-demand function values 2` + 1 more than 3, and no unit-demand function

values anything in S more than 2.

If S = T , then nothing can be matched with v
(`+1)
T for any value, as v

(`+1)
T gives value 0 to items

in T as well as to `+ 1. So we have 2 possibilities. First, we don’t match item 2`+ 1. In this case,
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we can match all items in S to the first ` unit-demand valuations for value 2`. Otherwise, we match

item 2` + 1 to one of the first ` unit-demand valuations, and ` − 1 items from S to the rest for a

total value 3 + 2(`− 1) = 2`+ 1. So the value in this case is 2`+ 1.

Finally, we are left with the case |S| ≥ `, S 6= T . We are again left with 2 possibilities. If item

2` + 1 is not matched, we have value at most 2` + 1, 1 from v
(`+1)
T and 2 from every other v

(i)
T .

Otherwise, since |S| ≥ ` and S 6= T , there is some item from [2`] \T in S. Match this item to v
(`+1)
T

for value 1. Match item 2` + 1 to one of the first ` unit-demand valuations, and ` − 1 of the other

items to the rest. This gives value 1+3+2(`−1) = 2`+2. All unit-demand valuations not matched

with item 2`+ 1 have maximum value given that they are not matched with this item. So no higher

value can be found in this case. Thus, the value for S ∪ {2` + 1} is 2` + 2 in this case. So our

construction is equal to vT (S ∪ {2`+ 1}) above, completing the proof.

Lemma 2.11. There exists a polynomial-time algorithm which finds a succinct representation for

a weighted coverage valuation using only value queries if the universe U over which the weighted

coverage valuation is defined has polynomial size.

Proof. The valuation vi consists of subsets S1, . . . , Sm of U , together with weights wu. Let Tu =

{j : u ∈ Sj} for each u ∈ U . If two elements u, u′ of U have identical sets Tu, Tu′ , then the valuation

does not change if we replace them with a single element u′′ with set Tu′′ = Tu and wu′′ = wu+wu′ .

So we will construct a representation in which each element u ∈ U has a unique set Tu. If we can

find all the sets Tu together with their corresponding weights wu, we can construct the succinct

representation by simply creating a universe U with an element u for each Tu we find and creating

sets S1, . . . , Sm such that u is in each set Sj , j ∈ Tu.

We find all the sets Tu through an iterative process which finds all sets Tu ∩ [1], . . . , Tu ∩ [m]. At

each step, we keep track of the weights of the sets we’ve built so far,
∑
Tu∩[i]=T wu. We begin with

the empty set and
∑
Tu∩∅=∅ wu = vi([m]).

Given all sets Tu ∩ [j], we find the sets Tu ∩ [j + 1] and their corresponding sum of weights as

follows. For a given set T ⊆ [j], let w be the total weight of sets Tu such that Tu ∩ [j] = T . We want

to figure out the total weights of sets such that Tu ∩ [j + 1] = T and the weight of sets such that

Tu ∩ [j + 1] = T ∪ {j + 1}. If we make two queries to compute vi({j + 1} ∪ [j] \T )− vi([j] \T ), the

resulting difference is the total weight of sets Tu which contain j + 1 but do not contain anything

from [j + 1] \T . So this is the total weight of subsets of T ∪ {j + 1} which contain j + 1.

In order to find the weight of Tu ∪ {j + 1}, we need to subtract the weight of sets which contain

j + 1 and are proper subsets of T . If we process each T in order of size, then each of these has

already been computed as the weight of some Tu′ ∩ [j + 1] which is a proper subset of T ∩ [j + 1]

containing j + 1. So we can subtract these weights to find the weight for Tu ∩ [j + 1] = T ∪ {j + 1}.

Subtracting this from w, we get the total weight of sets Tu such that Tu ∩ [j + 1] = T .
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After iterating through all T , we have computed the total weight of each of the at most |U |

sets Tu ∩ [j + 1] with nonzero weight. We need not keep track of sets with 0 weight, as these

aren’t part of the valuation. So after m iterations, we can construct a succinct representation.

Each iteration requires that we make at most 2 queries and O(|U |) subtractions per set Tu. As

U is polynomial in size, each iteration thus takes O(|U |2) ∈ poly(m) time, for a total runtime of

m · poly(m) ∈ poly(m).

Corollary 2.12. There exists a polynomial-time algorithm which finds a succinct representation for

a coverage valuation using only value queries.

Proof. A coverage valuation is a special case of weighted coverage where all weights are 1, so we

need only find a weighted coverage representation as in Lemma 2.11, then create wu copies of each

item u.

Corollary 2.13. There exists a polynomial-time algorithm which finds a succinct representation for

a scaled coverage valuation using only value queries.

Proof. As scaled coverage is a special case of weighted coverage where all weights are equal, we can

begin by finding a weighted coverage valuation as shown in Lemma 2.11. Unlike in Corollary 2.12,

we can’t simply pull the answer out of the weights. If all weights are equal, this is possible, but

there may be multiple copies of some items, resulting in different weights in the weighted coverage

representation. To find an appropriate scale factor, pick an item u ∈ U . Assuming there are ` copies

of u, the scale factor is α = wu/`. This is consistent if each wu′/α is an integer for each u′ 6= u.

So we need only check values of ` starting at 1 and increasing until we find a consistent α. If |U | is

polynomial in a representation of vi, then ` ≤ |U |, so finding α only requires a polynomial number of

iterations, after which we can create wu/α copies of each u to arrive at a succinct representation.

We build a model in Chapter 5 in which mechanisms make use of queries in addition to succinct

representations.
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Chapter 3

Combinatorial Public Projects

The combinatorial public projects problem was first introduced in [36], where it was shown that

efficient truthful mechanisms cannot achieve an approximation ratio better than
√
m for general

submodular valuations unless NP has polynomial circuits. This matches a
√
m truthful approx-

imation algorithm shown in [41] which only requires the ability to compute value queries, which

can be trivially computed in polynomial time directly from the definition of all valuation classes we

consider (except for multi-unit-demand, for which polynomial-time computation of value queries is

demonstrated in Lemma 1.3). The hardness result was shown in two parts. First, it was demon-

strated that all truthful mechanisms for the problem are affine maximizers (see Definition 1.14),

then it was shown that affine maximizers cannot achieve a constant approximation ratio unless NP

has polynomial circuits.

As combinatorial public projects are a relatively new problem class, we seek to get an under-

standing of the purely computational issues as well as the results when truthful computation is

taken into account. In this way, we hope to gain a better understanding of the problem by looking

into which features lead to worst-case computational hardness and which ones lead to hardness to

approximate truthfully.

As we will show, public projects retain their computational complexity even for very simple

valuation classes. Some of these classes are so simple that truthful approximations which are not

VCG-based exist and can even achieve better approximation ratios than the bounds we show for

maximal-in-range mechanisms. We will demonstrate some of these truthful mechanisms for a few

interesting cases.

Our VCG-based hardness results make use of the VC-dimension.

Definition 3.1 (Shattered). Let S be a subset of the power set 2U for some universe U . A set

T ⊆ U is shattered by S if {s ∩ T : s ∈ S} = 2T .

Definition 3.2 (VC-dimension). Let S be a subset of the power set 2U for some universe U . The

VC-dimension of S is the size of the largest set T ⊆ U such that T is shattered by S. We say that
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T exhibits the VC dimension of S.

In order to demonstrate a large VC dimension, we use the Sauer-Shelah lemma.

Lemma 3.1 (Sauer-Shelah Lemma). Let S be a subset of 2T where |T | = ` and |S| >
∑k−1
i=0

(
`
i

)
.

The VC dimension of S is at least k.

As the binomial coefficients in this lemma are not particularly useful for our purposes, we make

use of the following corollary.

Corollary 3.2. Let S be a subset of 2T with |T | = `. For any constants α > 0, δ > α, and ε > 0,

the following holds for all sufficiently large `: if |S| > (1 + ε)ε`
δ

then S has VC dimension at least

`α.

Proof. Note that for sufficiently large `, `α < `/2, so
(
`
`α

)
≥
(
`
i

)
for i < `α.

`α−1∑
i=0

(
`

i

)
≤

`α−1∑
i=0

(
`

`α

)

≤ `α
(
e`

`α

)`α
= `α

(
e`1−α

)`α
= (1 + ε)α log1+ε `+`

α log1+ε(e`
1−α)

= (1 + ε)`
α((1−α) log1+ε `+log1+ε e+o(1))

= (1 + ε)`
α(`o(1))

= (1 + ε)`
α+o(1)

which is less than |S| = (1 + ε)ε`
δ

for sufficiently large `, since δ > α. Thus, for sufficiently large `,

|S| >
∑`α−1
i=0

(
`
i

)
, so by Lemma 3.1, S has VC dimension at least `α.

The general approach we will use is to first show that the range of any maximal-in-range algorithm

which achieves an approximation ratio better than
√
m must have a VC-dimension of at least mα

for some constant α. Thus, there are mα items which are allocated in every possible way, with the

rest of the items coming from outside of this set to reach an allocation of size k. As the Sauer-

Shelah lemma is non-constructive, we use this to produce a non-uniform reduction which embeds an

NP-hard problem into the set of items exhibiting the VC dimension of the range.

The embedding must be done carefully, so that an optimal solution involves some subset of the

items exhibiting the VC dimension, together with enough arbitrary items from outside the set to

reach an allocation of size k, as k > mα and we have no guarantee of how the range behaves outside

of the set exhibiting its VC dimension. After this, we see that if the algorithm runs in polynomial
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time, we have created a non-uniform family of polynomial circuits for an NP-hard problem. So the

algorithm cannot run in polynomial time unless NP has polynomial circuits.

3.1 Unit-Demand Valuations

Unit-demand players are those for whom each item is given a value, and the value of a set S is the

maximum value of any item in S. For a formal definition, see Definition 1.17. 2-{0,1}-unit-demand

players are unit-demand players who have value 0 or 1 for each item, and value 1 for at most 2 items

(see Definition 1.18).

Theorem 3.3. No polynomial-time algorithm for PU has an approximation ratio of e/(e − 1) − ε

for any constant ε > 0 unless P = NP.

Proof. We will show an approximation preserving reduction from MAX-t-COVER. The problem of

MAX-t-COVER takes as input a collection of subsets F of a set A and an integer t. The goal is

to find t sets in F which have a union of maximum cardinality. It was shown in [21] that MAX-t-

COVER cannot be approximated in polynomial time to within e/(e− 1)− ε for any constant ε > 0

unless P = NP.

Consider a MAX-t-COVER instance over set A with F = {S1, . . . , Sm} and number of sets to be

chosen t. We create a PU instance with m = |F| items and n = |A| players. Let A = {a1, . . . , an}.

Player i’s valuation function vi(S) = maxSj∈S v
j
i is defined by

vji =

 1, ai ∈ Sj
0, otherwise

.

So the value for player i is 1 if ai is contained in some set Sj ∈ S and 0 otherwise. As there is one

player for each item, the social welfare is the number of items in the union of sets in S. By setting

the number of resources allowed to be chosen to k = t, the maximum social welfare is equal to the

cardinality of the maximum t cover. So if we can approximate the social welfare to within any factor

α, we get an α-approximation of MAX-t-COVER as well. So by [21], no polynomial time algorithm

can approximate PU with a factor of e/(e− 1)− ε unless P = NP.

The above hardness of approximation is tight, as a greedy approximation achieves a ratio of

e/(e − 1) [32]. Note that as unit-demand is a special case of multi-unit-demand and of capped-

additive, Theorem 3.3 implies the following corollary.

Corollary 3.4. No polynomial-time algorithm for PMU or for PC has an approximation ratio of

e/(e− 1)− ε for any constant ε > 0 unless P = NP.
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Note that the above proof required n players. With only a constant number of players, a

polynomial-time exact algorithm is possible.

Theorem 3.5. For any constant n, PUn can be solved in polynomial time.

Proof. In the case that n ≤ k, it is possible to simply choose an item j maximizing vji for each player

i, then choose more items arbitrarily to reach k items. This achieves the maximum value for each

player, and thus maximizes social welfare. This clearly only requires polynomial time.

If n > k, then there are
(
m
k

)
≤ mk < mn possible allocations. As n is a constant, mn is

polynomial in n. So we can simply enumerate all possible solutions in polynomial time, computing

the social welfare of each to find the maximum.

We now consider the limits of truthful mechanisms with unit-demand and 2-{0,1}-unit-demand

valuations. We begin by showing limits on maximal-in-range mechanisms. To help with this, we

will first show a lemma based on work in [36].

Lemma 3.6. Let V be a valuation class such that for any set T , it is possible to create an instance

of PV (PVn) where the social welfare of a set S is equal to |S ∩ T |. Then any algorithm for PV

(PVn) which approximates the social welfare to within m1/2−ε must have a range with VC-dimension

at least mα.

Proof. Let A be an algorithm for PV (PVn) with range RA. Let k = m1/2+ε. We construct a set

T ⊆ [m] by including each i ∈ m with probability m−1/2+ε. Consider an instance where the social

welfare of a set S is |T ∩S|. We will show that any S ∈ RA is exponentially unlikely to approximate

the maximum welfare to within m1/2−ε, necessitating that |RA| is exponentially large to have a

probability of 1 of approximating T to within m1/2−ε.

Applying a Chernoff bound, we find that for any 0 < δ < 1/2, the probability that |T | <

(1− δ)m1/2+ε (and therefore, that the maximum social welfare is less than (1− δ)m1/2+ε) is at most

e−δ
2m1/2+ε/2. Applying another Chernoff bound, the probability that |T ∩S| ≥ (1 + δ)mε is at most

e−δ
2mε/4. However, (1−δ)m1/2+ε

(1+δ)mε = 1−δ
1+δm

1/2 ≥ m1/2/3, which is greater than m1/2−ε for sufficiently

large m. So the first Chernoff bound tells us that the probability that some element S ∈ RA has

|S ∩T | > (1 + δ)mε must be at least 1− (e−δ
2m1/2+ε/2) in order to guarantee an approximation ratio

of at most m1/2−ε. By the union bound, we thus have

|RA| ≥
1− e−δ2m1/2+ε/2

e−δ2mε/4

= eδ
2mε/4 − e−(δ2m1/2+ε/2−δ2mε/4)

> eδ
2/4mε − 1

∈ eΩ(mε).
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Now, we simply apply Corollary 3.2 to see that for some constant α, this implies that RA has a VC

dimension of at least mα.

Lemma 3.7. Any algorithm which approximates P2U with a ratio of m1/2−ε must have VC dimen-

sion mα for some constant α > 0.

Proof. Given a set T , we can construct an instance of P2U such that the social welfare of a set S

is |S ∩ T | as follows. Set n = |T | and label the items in T as T = {t1, . . . , tn}. Each player i has a

valuation function

vi(S) =

 1, t1 ∈ S

0, otherwise

which is 2-{0,1}-unit-demand because it sets vji to either 0 or 1 and only has vji = 1 for the one

value j = i. Adding these values over S to find the social welfare, we get value 1 for each ti in S, so

the social welfare is the number of ti in S, or |S ∩ T |.

Now we can apply Lemma 3.6 to show that any algorithm which achieves a m1/2−ε ratio has VC

dimension at least mα.

Theorem 3.8. No polynomial-time maximal-in-range mechanism can approximate P2U within

m1/2−ε for any constant ε > 0 unless NP ⊆ P/poly.

Proof. Our proof uses a general structure similar to [36], where the use of VC dimension to bound

the approximation ratios of maximal-in-range mechanisms is introduced. Lemma 3.7 shows that

any mechanism which approximates P2U within m1/2−ε has VC dimension mα for some α. We can

perform a non-uniform reduction using the subset of items which realizes the VC dimension.

Re-order the items such that the mα items corresponding to the set which realizes the VC-

dimension are the first mα items. As Corollary 3.2 is non-constructive, this step is not uniform. We

show a reduction from vertex cover with mα vertices. Let k′ be the parameter such that the vertex

cover instance is positive if there is a vertex cover of size at most k′. Note that k′ ≤ mα ≤ k. Label

the vertices V1, . . . , Vmα and the edges E1, . . . , E`.

The first 2|E| players correspond 2 to each edge, and have value 1 if the corresponding edge is

covered. So for i = 1, . . . , ` vi(S) = maxj∈S v
j
i where

vji =

 1, Vj ∈ Ei
0, otherwise

which is 2-{0,1}-unit-demand because each edge contains exactly 2 vertices. For i = ` + 1, . . . , 2`,

let vi = vi−`, so there are 2 players with each of the above valuations. Finally, we have m −mα

more players 2`+ 1, 2`+m−mα, one corresponding to each item outside of [mα]. Player 2`+ i has
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valuation

v2`+i(S) =

 1, mα + i ∈ S

0, otherwise

which is 2-{0,1}-unit-demand because only one item has value 1 and the rest have value 0.

If an allocation S maximizes the social welfare, the vertices corresponding to items chosen from

[mα] form a vertex cover. To see this, suppose that there is an S which maximizes the social welfare

and does not correspond to a vertex cover. As k ≥ mα and not all items in [mα] are chosen, some

item j in S is larger than mα. As we don’t have a vertex cover, some edge Ei = (Vj′ , Vj′′) is not

covered, so j′ is not in S. Consider the social welfare of the set {j′} ∪ S\j which replaces j with j′

in S. The welfare decreases by 1 as player 2`+ j −mα loses value 1, but this is more than offset by

an increase of 1 each for players i and i + `. So the total change in social welfare is an increase of

1, contradicting that S maximized the social welfare.

So the maximum social welfare is obtained when the items from S ∩ [mα] correspond to a vertex

cover. The social welfare from these items is 2`, as each of the first 2` players has value 1 for such

an allocation. The remaining items add value 1 each to the welfare, as each of the other items is

only valued by 1 player. So if we have a vertex cover of size C, the social welfare is 2`+ k − C. So

given the maximum social welfare, we can determine the size of the minimum vertex cover.

The maximal-in-range algorithm will find the maximum social welfare, as [mα] realizes its VC

dimension. So for every subset of [mα], there is an element in the range which contains all items in

that subset, together with enough items from [m]\[mα] to reach k items. Thus, the range includes

a set which corresponds to a minimum vertex cover and therefore maximizes the social welfare.

As vertex cover is NP-hard and this was a non-uniform reduction, the algorithm cannot run in

polynomial time unless NP ⊂ P/poly.

Theorem 3.8 shows that no maximal-in-range algorithm can achieve an approximation ratio better

than
√
m for P2U. In contrast, a simple non-adaptive greedy algorithm achieves an approximation

ratio of 2 without even requiring payments. This establishes a large gap between what is achievable

via maximal-in-range and general truthful mechanisms.

Theorem 3.9. There exists a computationally efficient algorithm for P`U that achieves an approx-

imation ratio of ` and is truthful without payments.

Proof. We use a simple algorithm.

1. For each item j let sj = |{i : vi({j}) = 1}|.

2. Sort the m items in decreasing order by the value of sj , breaking ties arbitrarily

3. Output the set S consisting of the k first resources in the above ordering.
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First, we show that the algorithm runs in polynomial time. Note that 0 ≤ sj ≤ n for all j, so a

bucket sort can be used to perform the sorting in O(m+ n) time. Selecting the k smallest elements

after sorting only requires O(k) time. So this is a linear time algorithm.

We will now show that this has an approximation ratio of at most `. Let S be the allocation

chosen by the above algorithm. Every player has a value of either 0 or 1 for S. If a player has a

value of 1, we call that player satisfied. For each resource j, let sj be the number of players satisfied

by {j}. For any set T ,
∑
j∈T sj is an upper bound on the social welfare of T . As S contains the k

elements which individually satisfy the largest number of players, S maximizes
∑
j∈S sj for sets of

size k. So
∑
j∈S sj is an upper bound on the maximum social welfare. Furthermore, as players give

value to at most ` items each, each player is satisfied by at most ` items in S, so the social welfare

of S is at least 1/`
∑
j∈S sj , or at least 1/` times the maximum social welfare. This shows that the

algorithm has an approximation ratio of at most `.

Now, we will show that this algorithm has an approximation ratio of at least `, to demonstrate

that it is exactly ` in the worst case. Consider the P`U instance with ` players, 2` − 1 items and

k = `. Let player 1 have value 1 for items 1 through ` and player i + 1 have value 1 only for item

`+ i. If we allocate items 1 and `+ 1 through 2`, we achieve the maximum possible welfare of `, as

each player has value 1. However, each item satisfies exactly one of the players. So if we sort the

items, they may remain in order 1, . . . , 2`. Thus, this algorithm will choose items 1 through `, and

only player 1 will have nonzero value, resulting in a welfare of 1. So this algorithm is a factor of `

from the maximum social welfare in this case.

Finally, we need only show that this algorithm is truthful without payments. Using this as a

mechanism for P`U, each player submits an `-{0,1}-unit-demand function. For the sake of analysis,

we will interpret this as votes for each of the at most ` items valued by the player. The algorithm as

described then chooses the k items with the highest vote tallies. We will consider 2 possible types of

lies. First, suppose a player votes for some items which he does not value. This can only change the

outcome if it moves one or more of these items into the top k, displacing other items which would

have been in the top k without this lie. At best, this change is not helpful, and at worst, all of the

items which the player values will be displaced, resulting in a loss of value. So there is no incentive

for this type of lie.

Now, suppose that a player lies by not voting for an item he values. The only way this can

change the outcome is if it lowers the vote total enough that the item is no longer in the top k. As

the player’s value is maximized by having this item in the top k, there is no incentive to change

the outcome in this way. As there is no incentive for either kind of lie, the player will submit his

valuation function truthfully.
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3.2 Multi-Unit-Demand Valuations

Multi-unit-demand valuations (termed “OXS” in [30, 33]) are a generalization of unit-demand val-

uations in which a player has several unit-demand functions and can assign items to each one (see

Definition 1.19).

Unit-demand valuations are a special case of multi-unit-demand valuations, and so our negative

results in Sec. 3.1 for P2U extend to PMU. We will therefore focus on PMUn for constant n.

Lemma 1.3 shows how value queries can be computed in polynomial time via bipartite matching. In

Theorem 3.13, we show how a similar idea can be used to compute exact solutions to PMU2 (and

therefore also PMU1) in polynomial time. First, we show hardness results for PMUn, n ≥ 3.

Theorem 3.10. PMU3 is NP-hard.

Proof. We reduce from 3-Dimensional Matching (3DM). Given a 3DM instance M ⊆ [q]× [q]× [q],

the goal is to determine whether there exists a set M ′ ⊂ M of size q such that no two members

of M ′ share a coordinate. Our reduction is as follows. There are m = |M | items. Label the items

M = {M1, . . . ,Mm}. The number of items to be chosen is k = q. If there is a set of size q such

that no two members share a coordinate, then there are q different values for each coordinate in the

set. We will simply create a player for each coordinate that has a valuation equal to the number of

distinct values seen in that coordinate, so that the social welfare is maximized with a value of 3q if

no two items coincide on any coordinate.

The ith player values set S by the number of different values for the ith coordinate in triples

corresponding to items in S. This valuation is multi-unit-demand because it can be built out of

the q unit-demand valuations that value 1 to any item corresponding to a triple with a j in the ith

coordinate and 0 to all other items. The maximum possible value is q (1 from each unit-demand

valuation), and this is only achievable if every possible value of the ith coordinate appears in S.

If there exists a 3-dimensional matching, we can assign the items corresponding to the triples in

the matching to arrive at a social welfare of 3q. If there is no 3-dimensional matching, then any q

of the triples will not cover all values of all coordinates, so for any set of k = q items, some player

will have value less than q, for a total value less than 3q. Thus, the maximum social welfare is 3q iff

the 3DM instance is positive.

We now build on the proof of Theorem 3.10 to show that PMU3 cannot be approximated better

than
√
m by a VCG-based mechanism.

Theorem 3.11. No computationally efficient maximal-in-range mechanism can approximate PMU

to m1/2−ε for any constant ε > 0 unless NP ⊂ P/poly.

Proof. The proof here is essentially similar in style to that of Theorem 3.8, in that the proof of

NP-hardness can be modified to work within the set which exhibits the VC dimension. As 2-{0,1}-
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unit-demand is a special case of multi-unit-demand, Lemma 3.7 shows that any algorithm with a

ratio of at most m1/2−ε has a range with VC dimension at least mα.

Re-order the items so that the first mα correspond to the VC dimension. We reduce from 3DM

as in the proof of Theorem 3.10. Perform this reduction with 3DM instance with mα triples. The

players have value for the items in [mα] according to the reduction in the proof of Theorem 3.10.

We now add unit-demand valuations to player 1’s valuation function. For each item j > mα, we

add a unit-demand function for player 1 which values j at 1/(k + 1) and all other items at 0. So

the social welfare of an allocation S becomes the number of distinct indices covered by the triples

corresponding to items in S ∩ [mα], plus 1/(k+ 1) times the number of items larger than mα. Thus,

a social welfare of 3q + (k − q)/(k + 1) is achievable iff there is a 3-dimensional matching.

Running the algorithm will result in the set which maximizes the social welfare, as its range

includes all possible subsets of of [mα] and the social welfare depends only on how many items

outside of [mα] are chosen, not which ones are chosen. Thus, the algorithm cannot run in polynomial

time unless NP ⊂ P/poly.

While Theorem 3.10 leaves open the possibility of a PTAS for any constant number of players,

we can rule out this possibility by presenting a hardness of approximation result for 10 (or more)

players.

Theorem 3.12. There exists a constant ε > 0 such that it is NP-hard to approximate the PMU10

to a ratio of 1 + ε.

Proof. We will reduce from MAX-3SAT-5. This is a special case of MAX-3SAT in which each

variable occurs in exactly 5 clauses. Consider an instance of MAX-3SAT-5 consisting of ` clauses,

c1, . . . , c`. Because each clause has 3 variables and each variable is contained in 5 clauses, there are

3`/5 variables v1, . . . , v3`/5. We will start by reducing to an instance with n unit-demand players,

then demonstrate that these players can be compressed into 10 multi-unit-demand players without

changing the social welfare of any set.

There are 6`/5 items, 2 corresponding to each variable. For each variable vj , we will have two

items labeled j and j. Choosing j corresponds to setting vj to true, while choosing j corresponds

to setting vj to false. We allow k = 3`/5 items to be chosen, so one value can be chosen for each

variable.

There are two classes of players. The first class has ` players, one corresponding to each clause.

The player corresponding to clause ci has value 1 for each item j such that vj is in ci and 1 for

each item j such that ¬vj is in ci. Thus, these players have value 1 if their clause is satisfied and 0

otherwise.

The second class of players has 3`/5 players, one for each variable. The player corresponding to

vj has value 5 for items j and j and 0 for all other items. If there is some item j for which both
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j and j are chosen, then by the pigeonhole principle, there is some j′ for which neither j′ nor j′ is

chosen. This leads to a loss of 5 to the social welfare from these players compared to replacing one of

j, j with one of j′, j′. As the social welfare from players of the first class for both j and j is at most

5, choosing j and j′ rather than j and j cannot decrease the social welfare. Thus, we will assume

without loss of generality that any allocation corresponds to a proper assignment to the variables of

the MAX-3SAT-5 instance.

As each allocation corresponds to a proper assignment, the social welfare from the first class

of players is the number of satisfied clauses and the social welfare from the second class of players

is exactly 3`. So the total social welfare is 3` plus the number of satisfied clauses. Thus, a social

welfare of 3`+ x corresponds to an assignment satisfying x clauses.

It was shown in [21] that there exists a positive constant δ such that it is NP-hard to distinguish

between the case that all clauses are satisfiable in a MAX-3SAT-5 instance and that only a 1 − δ

fraction are. Let ε be a positive constant such that 1/(1 + ε) > 1− δ/4. If the instance of MAX-3-

SAT that we are reducing from is one in which all ` clauses are satisfiable, then in the produced PU

instance, the corresponding assignment has a social welfare of 4`. So if it is possible to approximate

the social welfare to a factor of 1 + ε, we will find a social welfare of at least

1

1 + ε
4` > (1− δ/4)4`

= 4`− δ`

= 3`+ (1− δ)`.

As mentioned above, a social welfare of 3`+x corresponds to an assignment satisfying x clauses,

so this demonstrates the existence of an assignment satisfying more than a 1 − δ fraction of the

clauses, allowing us to distinguish between the case that all clauses are satisfiable and the case that

at most a 1 − δ fraction are satisfied. As this is NP-hard, we have shown that approximating the

social welfare for these unit-demand players to within 1− ε is NP-hard as well.

Finally, we show how these 8`/5 unit-demand players can be combined into 10 multi-unit-demand

players without changing the social welfare. We do so by combining groups of unit-demand players

that don’t value any of the same items into a single multi-unit-demand player. Then the multi-unit-

demand value to that player of any set is the sum of the values of each of the individual unit-demand

players, as no two unit-demand valuations will count the same item twice for any player. Note that

we can assume without loss of generality that there is no i for which the clause players never

value i (or similarly, i), as we could simply remove all players valuing i or i, then perform a 1 − ε

approximation to find the best k− 1 items for the remaining players, and then add either item i or i

to the resulting allocation to get an improved approximation. Thus, each item i or i is only valued

by at most 4 clause players.
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Start with 10 multi-unit-demand players with value 0 for all sets of items. We add the unit-

demand valuations to their valuations greedily, beginning with the valuations of the clause players.

For each unit-demand clause player, simply add its valuation to any multi-unit-demand player which

does not yet value any of the 3 items it values. Since each item i or i is valued by at most 3 other

clause players and there are three items valued by any clause player, there are at most 3 ·3 = 9 multi-

unit-demand clause players with values for these 3 items. Thus, one of the 10 multi-unit-demand

players can accommodate the value of this unit-demand player.

Now, we add the second class of players, each of which values items i and i at 1 for some i.

For each i, there are 5 clause players which value either i or i. So the player from the second class

corresponding to i can be added to the valuations of one of the 5 multi-unit-demand players that do

not yet value items i or i from the clause valuations.

Thus, we can compress these valuations into 10 multi-unit-demand players while preserving

the social welfare of every assignment. As the social welfare is preserved, it remains NP-hard to

approximate the social welfare to within a factor of 1 + ε.

We now show that PMU2 can be optimally solved in a computationally efficient manner via

minimum cost flow.

Theorem 3.13. There exists a polynomial-time truthful mechanism which solves PMU2 exactly.

Proof. As we are solving the problem exactly, a truthful mechanism is implied by the VCG payments.

So we demonstrate the theorem with a polynomial time algorithm.

Our algorithm uses minimum cost flow, for which an optimal integral solution (one in which flow

along each edge is integral) can be found in polynomial time [37]. Minimum cost flow is similar to

network flow, except that each edge has a cost and the goal is to find a flow with f units of flow and

minimum total edge cost. We now formally describe the algorithm.

Input: an instance of PMU2 where each player i has a multi-unit-demand valuation vi such that

each vi is composed of wi unit-demand valuations v
(1)
i , . . . , v

(wi)
i (see Definition 1.19).

1. Step I: Add “dummy” unit-demand valuations (that equal 0 for all subsets of resources)

if necessary to ensure that w1 = w2 = w ≥ k. This simplifies our description and analysis.

2. Step II: Create a minimum-cost flow network (see Fig. 3.1). In addition to the source

and target nodes s and t, the network contains node pi,r corresponding to player i’s rth unit-

demand valuation v
(r)
i , and two nodes q1,j and q2,j for each resource j ∈ [m]. The edge set

contains an edge from s to each node p1,j , and an edge from each node p2,j to t. In addition,

for each j ∈ [m], create an edge from q1,j to q2,j . Set the cost of each of these edges to be 1.

Let vmax be a positive real value that is strictly higher than both players’ values for any single

resource (say, vmax = maxi∈[2],j∈[m] vi({j}) + 1). Create, for each j ∈ [m], r ∈ [w], an edge
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p1,1

p1,2

s t

q1,1

q1,2

q1,3

q2,1

q2,2

q2,3

p2,1

p2,2

Figure 3.1: example of minimum-cost flow network construction for w = 2 and m = 3.

from p1,r to q1,j of cost vmax− v(r)
1 ({j}) and an edge from q2,j to p2,r of cost vmax− v(r)

2 ({j}).

Observe that all costs are positive.

Set the capacities of all edges to be 1.

3. Step III: Compute a minimum-cost flow f with flow value k and integer flow along each

edge (i.e., the flow along each edge is in {0, 1}).

4. Step IV: Set S to be the subset of [m] such that j ∈ S iff the flow in f along the

edge from q1,j to q2,j is positive. Observe that the k units of flow in f emanating from s

must traverse exactly k edges of the form (q1,j , q2,j), and hence |S| = k.

5. Step V: Output the allocation S.

Clearly, the mechanism is computationally efficient (recall that the computation of minimum-cost

flow with integer values is tractable [37]). So we need only show that the algorithm maximizes the

social welfare.

Observe that the k units of flow in f emanating from s, and the k units of flow going into t use

edges that have a total cost of 2k, and that the k units of flow along the edges from q1,j nodes to q2,j

nodes traverse edges that have a total cost of k. Hence, the total cost of these edges is 3k regardless

of how the flow f is achieved.

Consider j ∈ S (computed in Step IV of the mechanism). Observe that because there is 1 unit of

flow traversing the edge (q1,j , q2,j), there must be exactly one incoming edge leading to node q1,j , and

exactly one outgoing edge leaving node q1,j , on which the flow in f is 1. Consider an edge (q1,j , q2,j)

and let (p1,r, q1,j) and (q2,j , p2,r′) be the other edges incident on q1,j and q2,j through which the flow

in f equals 1. Observe that the total cost of these two edges is 2vmax − v(r)
1 ({j}) − v(r′)

2 ({j}). We

define c : S → Z+ to be the function that maps each j ∈ S to the total cost of the incoming and

outgoing edges to q1,j and q2,j (not including the edge between them).

Now, for some pair of partitions of S P1 = (P 1
1 , . . . , P

w
1 ) and P2 = (P 1

2 , . . . , P
w
2 ),
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∑
j∈S

c(j) = 2kvmax −
w∑
r=1

v
(r)
1 (P r1 )−

w∑
r=1

v
(r)
2 (P r2 )

≥ 2kvmax − max
P=(P 1,...Pw)

w∑
r=1

v
(r)
1 (P r)− max

P=(P 1,...,Pw)

w∑
r=1

v
(r)
2 (P r)

= 2kvmax − v1(S)− v2(S),

where the maxima in the above equations are taken over w-partitions of S.

Therefore, the total cost of flow f (including the edges leaving s, the edges entering t and the

edges leading from the q1,j ’s to the q2,j ’s) is at least 2kvmax + 3k minus the social welfare of the

set S. Choosing the set maximizing the social welfare and the incoming and outgoing flows that

correspond to the unit-demand valuations that maximize each vi guarantees a total cost of exactly

2kvmax + 3k minus the maximum social welfare. Hence, the computation of the k-flow of minimum

cost determines the value of the social-welfare maximizing outcome, and the set S produced achieves

this maximum.

Through use of VCG payments, the above algorithm becomes a truthful mechanism for PMU2.

We saw in Corollary 2.4 that the above algorithm can also be used to produce a universally truthful

n/2 approximation for PMU. As PMUn is a special case of PMU, this mechanism also provides an

n/2 approximation for PMUn. For n = 3, this is a fairly good approximation ratio.

Corollary 3.14. There is a polynomial-time universally truthful mechanism for PMU3 which has

an approximation ratio of at most 3/2 in expectation.

3.3 Capped-Additive Valuations

Intuitively, a capped-additive valuation is a valuation function that is additive (the value for each

bundle of resources is the additive sum of the per-resource values) but value stops being added after

the value cap is reached (see Definition 1.20).

2-{0,1}-unit-demand valuations are a subclass of capped-additive valuations (where the value

cap is c = 1), and so our negative results in Sec. 3.1 for P2U extend to PC. So we focus on PCn for

constant n. Observe that finding the optimal solution for PC1 is in P, as we need only find the k

most valuable items. We show that PC2 is NP-hard.

Theorem 3.15. PC2 is NP-hard.

Proof. We reduce from Subset Sum, where we are given a set of positive integers w1, . . . , w` and

a target t, and the goal is to find a subset of w1, . . . , w` that sums to t. Given an instance of

Subset Sum, we construct an instance to our problem with m = 2` items, k = `, and 2 players with
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valuations v1(S) = min(
∑
j∈S 2vji , 2t) and v2(S) = min(

∑
j∈S v

j
2, C), where C = k ·maxj wj and vji

are defined by

vj1 =

 2wj , j ≤ `

0, otherwise

vj2 =

 C/k − wi, j ≤ `

C/k, otherwise
.

Observe that if there exists a subset S s.t.
∑
i∈S ai = t, by choosing the set of resources

S′ = S ∪ {`+ 1, . . . , 2`− |S|} we have v1(S′) + v2(S′) = C + t.

Conversely, consider an allocation S of size k with social welfare of at least C + t. Consider the

subset of items in S with index at most `. If the corresponding values wi sum to more than t, then

player 2 would have total value less than C − t, while player 1 would have value of only 2t, for a

total value of less than C + t. If the corresponding values sum to less than t, then the social welfare

would be C plus the sum of the values wi, which is less than C + t. So there must be a subset of

w1, . . . , w` which sums to t.

However, using dynamic programming we obtain an FPTAS for any constant number of players.

Theorem 3.16. There exists an FPTAS for PCn for any constant n.

Proof. We will use a dynamic programming procedure. First, let c be the maximum effective value

cap. That is,

c = max
i

max
S⊆[m],|S|=k

vi(S).

For any i and any set S of size at most k, vi(S) ≤ c. c can be found by taking S to be the k items

of highest value for player i, then computing vi(S) and comparing these for all i. Note that the

optimal social welfare is at least c.

We divide the interval [0, c] into nm/ε segments, each of length εc/(nm), and denote p(x) =

bx ·mn/(εc)c. We will maintain an n-dimensional table A with (nm/ε)n entries (this is polynomial,

as n is constant), where in each entry Ai1,...,in we will store a subset S ⊆ [m] of minimum cardinality

for which p(v1(S)) = i1, . . . , p(vn(S)) = in, if such a subset exists. For every subset S ⊆ [m]

contained in A, A(S) shall denote the cell in A containing S, namely cell Ap(v1(S)),...,p(vn(S)).

We fill the table using the following procedure. We initialize the table with the empty set in all

entries. At stage j, for each subset S contained in A at the start of stage j such that |S| < k, let

T = A(S ∪ {j}). If |S ∪ {j}| ≤ |T | or T = ∅, we set A(S ∪ {j}) = S ∪ {j}. After the mth stage, we

are done filling the table in, so we iterate over all entries in the table and choose the subset of size k

with highest social welfare. The procedure runs in O((m+ 1) · (mn/ε)n) steps, which is polynomial

in m and 1/ε as required.
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Let O denote the optimal solution and let Oj = {i ∈ O : i ≤ j}. By induction on the stage of

the algorithm, we can show that after stage ` there is a subset S` in A such that |S`| ≤ |O`| and for

every player i we have that vi(O`)− vi(S`) ≤ `εc/(mn). For ` = 0 the claim is trivial, as both sides

of the equation are 0.

For a ` ≤ m, first consider the case that ` /∈ O`, if S`−1 is still in A, then S`−1 still satisfies the

inductive hypothesis. Otherwise, A(S`−1) contains some new set S`, such that |S`| < |S`−1|. Since

` /∈ O` O` = O`−1, so |O`| = |O`−1| ≥ |S`−1| > |S`|. Furthermore, because each cell only contains a

range of values of length εc/(nm) for each player, each player’s value can only have decreased by at

most εc/(nm). So

vi(O`)− vi(S`) = vi(O`−1)− vi(S`)

≤ vi(O`−1)− (vi(S`−1)− εc/(mn))

= (vi(O`−1)− vi(S`−1)) + εc/(mn)

≤ (`− 1)εc/(mn) + εc/(mn)

= `εc/(mn).

Otherwise, ` ∈ O`. Consider S`−1 ∪ `. Let S` be the allocation contained in cell A(S`−1 ∪ {`}|.

Note that since |S`−1| ≤ |O`−1| < |O`| ≤ k, S`−1 ∪ {`} is a valid candidate for cell A(S`−1 ∪ `). So

|S`| ≤ |S`−1|+1 ≤ |O`−1|+1 = |O`|. Now consider vi(O`)−vi(S`). Note that since S` is in table cell

A(S`−1∪{`}), vi(S`) ≥ vi(S`−1∪{`})−εc/(mn). If vi(S`−1∪{`}) = ci, then vi(S`) ≥ ci−εc/(mn), so

vi(O`)−vi(S`) ≤ ci−(ci−εc/(mn)) = εc/(mn), which is at most `εc/(mn) for ` ≥ 1. So the inductive

hypothesis holds. Otherwise, vi(S`−1 ∪ {`}) = vi(S`−1) + vi({`}) and vi(O`) ≤ vi(O`−1) + vi({`}).

So

vi(O`)− vi(S`) ≤ vi(O`)− (vi(S`−1 ∪ {`})− εc/(mn))

≤ vi(O`−1) + vi({`})− (vi(S`−1) + vi({`})− εc/(mn))

= vi(O`−1)− vi(S`−1) + εc/(mn)

≤ (`− 1)εc/(mn) + εc/(mn)

= `εc/(mn).

So we have proven that for all `, vi(O`) − vi(S`) ≤ `εc/(mn) for some S` contained in table A.

In particular, vi(Om)− vi(Sm) ≤ εc/n. Summing over i, we find that
∑
i vi(Om)−

∑
i vi(Sm) ≤ εc.

As
∑
i vi(Om) ≥ c, εc ≤ ε

∑
i vi(Om), so

∑
i vi(Om) −

∑
i vi(Sm) ≤ ε

∑
i vi(Om), or

∑
i vi(Sm) ≥

(1 − ε)
∑
i vi(Om). This completes the proof, as

∑
i vi(Om) is the optimal social welfare and the

social welfare of the allocation returned by our algorithm is at least
∑
i vi(S`).
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We now demonstrate that although there exists an FPTAS for PCn, no maximal-in-range algo-

rithm can approximate even PC2 to any constant factor.

Theorem 3.17. No computationally efficient maximal-in-range algorithm can approximate PC2 to

within m
1
2−ε for any constant ε > 0 unless NP ⊂ P/poly.

Proof. As in the proofs in previous sections, we begin by showing that for any T , we can construct

an instance for any T such that the social welfare of a set S is |S ∩ T |. We simply set vj1 = 1 for

j ∈ T and vj1 = 0 for j /∈ T , c1 = |T |, and v2(S) = 0 for all S. Now, by Lemma 3.6, we know that

for some constant α, the range has VC dimension at least mα. Re-order the items such that [mα]

realizes the VC dimension. We now show modify our previous proof such that an exact solution can

be found by examining all subsets of [mα].

Consider the NP-hardness reduction used in Theorem 3.15. The number of resources which are

valued by player 1 at 0 and player 2 at C/k doesn’t matter as long as it’s larger than ` and at least

k, because this is equivalent to adding 0 values to a subset sum instance. So we can embed this

reduction from a set of size mα into the values of items [mα], and give items mα + 1, . . . ,m value

0 for player 1 and C/k for player 2. The reduction remains valid, as we have essentially added a

polynomial number of zeroes to the subset sum instance.

All possible allocations are simply some subset of [mα], together with enough items larger than

mα to reach k. As particular choice of items larger than mα does not matter, the algorithm contains

all relevant allocations in its range. Thus, using the same reduction with this modification, we see

that a maximal-in-range algorithm for PC2 with an approximation ratio of m1/2−ε can be used

to solve subset sum instances of size mα, and therefore does not run in polynomial time unless

NP ⊂ P/poly.

3.4 Coverage Valuations

Intuitively, in a coverage valuation each item corresponds to a set of elements in some universe U ,

and the value of each set of items S ⊆ [m] equals the number of elements of U covered by the union

of the corresponding sets. For a formal definition, see Definition 1.21. We also consider scaled and

weighted versions of this problem (see Definitions 1.22 and 1.23).

[36] shows that no computationally-efficient and truthful mechanism for combinatorial public

projects with 2 players with submodular valuation functions can obtain an approximation ratio

better than
√
m. One might suspect that the hardness of truthful computation in [36] stems from

the conflict of interests between the two players. When there is only one player, the interests of the

mechanism designer and the single player are aligned because the social welfare is the player’s value.

Surprisingly, our next result demonstrates that algorithmic mechanism design can be non-trivial
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even in single-player environments. This seemingly paradoxical result raises intriguing questions.

The questions raised by Theorem 3.18 and Corollary 3.19 were the inspiration behind the work in

Chapter 5, so these results are particularly important.

Theorem 3.18. No computationally efficient maximal-in-range mechanism for PCOV1 achieves an

approximation ratio of m1/2−ε for any constant ε > 0 unless NP ⊆ P/poly.

Proof. We begin by showing that for any T , we can construct an instance with social welfare |T ∩S|

for each set S. This is rather simple, as we need only set V j1 = {j} for j ∈ T and V j1 = ∅ for j /∈ T .

So vi(S) = | ∪j∈S V j1 | = |{j ∈ S : S ∈ T}| = |S ∩ T |. Thus, by Lemma 3.6, any maximal-in-range

algorithm for PCOV1 which achieves an approximation ratio of m1/2−ε must have a VC dimension

of at least mα for some constant α.

We now show a reduction from the NP-hard t-COVER [21] with mα sets. In t-COVER, the

input is mα subsets T1, . . . , Tmα of a universe E = {E1, . . . , E`}, and an integer t, and the objective

is to determine whether there are t sets that cover E. We now construct the valuation function of

player 1. We create a universe U = [2`+m]. To define the coverage valuation v1 we need to define

the sets S1, . . . , Sm ⊆ U (see Definition 1.21). Re-order the resources such that the mα resources

corresponding to this VC-dimension are the set [mα]. For each j ∈ mα, let

Sj = {i : Ei ∈ Tj} ∪ {i+ ` : Ei ∈ Tj}

so Sj contains two items corresponding to each element of Tj . For each j ∈ {mα + 1, . . . ,m} let

Sj = {2`+ j}.

Consider the social welfare of an allocation. If the allocation contains r items from [mα] and

k − r items from mα + 1, . . . ,m, then the social welfare is k − r plus twice the size of the number

of items covered by sets Tj such that j is in the allocation. Furthermore, if not all items from E

are covered, the welfare can be improved by at least 1 by removing an item from mα + 1, . . . ,m

and replacing it with an item from [mα] which covers some missing item, as it will cover both j and

`+ j. So any set maximizing the social welfare corresponds to a cover of E.

If the minimal number of sets needed to cover E in t-COVER is r, then the optimal social

welfare in our PCOV1 instance is 2|E|+ k− r. As the optimal outcome only depends on finding the

right subset of items from [mα] to choose and [mα] exhibits the VC dimension of the range of the

maximal-in-range algorithm, the algorithm will exactly maximize the social welfare. So subtracting

the social welfare from 2|E| + k, we get r, the size of the smallest possible cover of E. Thus, such

an algorithm cannot run in polynomial time unless NP ⊆ P/poly.

Corollary 3.19. No truthful polynomial-time algorithm for PSCOV1 can achieve an approximation

ratio of m1/2−ε for any constant ε > 0 unless NP ⊆ P/poly.
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Proof. We begin by presenting a simple characterization of truthful mechanisms for combinatorial

public projects with a single player. Our characterization shows that every truthful mechanism is

an affine maximizer (see Definition 1.14).

Lemma 3.20. Any truthful mechanism for a combinatorial public project with a single player must

be an affine maximizer.

Proof. Let R be the range of a truthful mechanism for a single-player public project. In truthful

mechanisms, the payment of a player is independent of his own valuation function, and can only

depend on the outcome and on the valuations of the other players. Otherwise, the player would be

incentivized to lie in some situations to receive the same set with a smaller payment. As there is

only one player, we can associate each outcome r ∈ R with the payment pr that player 1 must pay

if r is allocated. As the mechanism is truthful, for any valuation function v, the mechanism must

output some allocation S ∈ R which maximizes v(S)− pS over R. This matches the definition of an

affine maximizer (with CS = −pS), completing the proof.

Now, simply note that if a mechanism for PSCOV1 is an affine maximizer, it returns a set

maximizing v1(S) + CS . Let Cmax = maxS |CS | + 1 If we take an instance of PCOV1 and set the

scale factor to α = 2m·Cmax, the affine maximizer returns a set S maximizing (2m·Cmax)|
⋃
j∈S V

j
1 |+∑

j Cj , but 2m·Cmax > |
∑
j∈S pj−

∑
j∈S′ pj | for any S, S′ ⊆ 2[m], so a set S′ will be chosen over S by

the affine maximizer if it contains even one more element. Thus, the affine maximizer is a maximal-

in-range algorithm for the PCOV1 instance, and Corollary 3.19 follows from Theorem 3.18.

3.5 Fractionally-Subadditive Valuations

Intuitively, a valuation is fractionally-subadditive (termed “XOS” in [30, 33]) if it is the maximum

of a collection of additive valuations (see Definition 1.24).

Although multi-unit-demand players are a special case of fractionally subadditive players in

general, using our representation for fractionally subadditive valuation functions to represent multi-

unit-demand valuations leads to an exponential increase in description size. So while 3 multi-unit

demand players result in an NP-hard problem, combinatorial public projects and combinatorial

auctions with any constant number of fractionally-subadditive players can be solved in polynomial

time.

Theorem 3.21. PFSn and AFSn can be solved in polynomial time for any constant n.

Proof. For each player i, vi(S) = maxj v
(j)
i (S), where the v

(j)
i are additive functions. So for each S,

there is some collection of values j1, . . . , jn such that vi(S) = vjii (S). Let S∗ be the optimal allocation

and let j∗1 , . . . , j
∗
n be such that vi(S

∗) = v
(j∗i )
i (S∗). Because S∗ maximizes the social welfare, S∗ also
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maximizes the social welfare of the additive public project where player i has valuation v
(j∗i )
i . This

public project can be solved in O(mn) = O(m) time by Theorem 1.2.

So in order to find S∗, we need only find j∗1 , . . . , j
∗
n. Fortunately, there are only linearly many

additive functions j
(`)
i for each i, as the number of functions j

(`)
i cannot exceed the size of the

input in our representation. Let L be the maximum number of additive functions in any player’s

valuation. The number of possible choices for j1, . . . , jn is O(Ln), which is polynomially large for

constant n. So we can try all possible values of j1, . . . , jn and solve each public project in O(m)

time, for a total polynomial runtime of O(mLn). As one of the choices will be equal to j∗1 , . . . , j
∗
n,

one of these iterations will find S∗. So by taking the set which maximizes social welfare, we can find

S∗ in polynomial time, which solves PFSn.

We can use the same trick to compute optimal allocations for combinatorial auctions. Let

S1, . . . , Sn be an optimal allocation for an instance of AFSn. Then for some j∗1 , . . . , j
∗
n, S1, . . . , Sn

is also an optimal solution for the auction with valuation functions v
(j∗1 )
1 , . . . , v

(j∗n)
n . Theorem 1.2

shows that we can solve this auction, so we again need only enumerate over all possible values for

j∗1 , . . . , j
∗
n and solve each auction in order to find an optimal solution. By the same reasoning as

above, there are only O(Ln) possible choices of j∗1 , . . . , j
∗
n, for a total runtime of O(mLn).

Much like with unit-demand, fractionally-subadditive functions become hard to approximate

truthfully when the number of players becomes unlimited. In fact, this is a corollary of Theorem 3.8

because unit-demand is a special case of fractionally-subadditive functions in which each additive

function gives nonzero value to at most 1 item. This maintains succinct representation, as at most

m additive functions are required. Thus, we get Corollary 3.22.

Corollary 3.22. No polynomial-time maximal-in-range mechanism can approximate PFS within

m
1
2−ε for any constant ε > 0 unless NP ⊆ P/poly.

We now show a result which does not depend on the assumption of truthfulness using a re-

duction from LABEL-COVERmax to PFS which preserves an approximation gap. First, we define

LABEL-COVERmax and discuss the complexity of its approximation. A LABEL-COVERmax in-

stance consists of a regular bipartite graph G = (V1, V2, E), a set of n labels [n], and for each edge

e ∈ E a partial function Πe : [n] → [n]. Consider applying a label from [n] to each of the vertices,

such that a vertex v has label lv. We say that the edge e = {x, y} for x ∈ V1, y ∈ V2 is satisfied if

Πe(lx) = ly. The goal of LABEL-COVERmax is to find an assignment of labels to the nodes in V1

and V2 such that each node has exactly one label and as many edges as possible are satisfied. It was

shown in [1] that LABEL-COVERmax is quasi-NP-hard to approximate.

Theorem 3.23 ([1]). For any sufficiently small constant γ > 0, it is quasi-NP-hard to distinguish

between the following two cases in LABEL-COVERmax: (1) YES case: all edges are covered, and
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(2) NO case: at most a 2− log1−γ n fraction of the edges are covered, where n is the size of the

LABEL-COVERmax instance.

We make use of Theorem 3.23 to show a similar hardness result for PFS.

Theorem 3.24. For any sufficiently small constant γ > 0, it is quasi-NP-hard to obtain an approx-

imation ratio of 2log1−γ(min(n,m)) for PFS.

Proof. We prove this using a gap-preserving reduction from LABEL-COVERmax: We are given as

input an instance of LABEL-COVERmax consisting of a graph G = (V1, V2, E), a set of labels [n],

and a set of partial functions Πe for each e ∈ E. We create a PFS instance with |V1| players, one

corresponding to each node in V1. For convenience, we assume V1 = [|V1|], so we can refer to the

node corresponding to player i as node i. There are |V2| · n items. We associate each item with

some pair (w, `) ∈ V2 × [n]. Let j(w,`) refer to the item associated with (w, `). We now define the

fractionally-subadditive valuation vi of each player i. For every label l ∈ [n], we define the additive

valuation function v
(l)
i by

v
(l)
i ({j(w,`)}) =

 1, {i, w} ∈ E and Π{i,w}(l) = `

0, otherwise
.

So v
(l)
i (S) is equal to the number of edges incident on i which can covered if we choose label l for

vertex i and choose label ` for vertex w for each j(w,`) ∈ S. Note that if both jw,` and jw,`′ are in

S, this will count {i, w} as covered if Π{i,w}(l) is equal to either ` or `′.

The fractionally-subadditive valuation of player i is defined by

vi(S) = max
l∈N
{ai,l(S)}.

So player i gets the value for the best possible choice of a single label for vertex i given the label

choices for V2 implied by S. We set the number of items chosen to be k = |V2|.

If the LABEL-COVERmax instance is a YES case, we can find a set of resources with social

welfare |E|. Simply take any labeling that covers every edge and for every w ∈ V2, choose the

resource j(w,`), where w ∈ V2 is labeled by ` in the labeling. Call this set S. vi(S) equals the degree

of node i, so the social welfare given these resources is |E|.

We now show that if the LABEL-COVERmax instance is a NO case, then the maximum social

welfare is bounded by 2−
log1−γ min(n,m)

6 |E| for sufficiently large n. Note that if n′ is the size of the
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LABEL-COVERmax instance, our construction guarantees min(n,m) ≤ n′. So our bound is at least

2−
log1−γ (n′2)

6 |E| = 2−21−γ log1−γ n′
6

> 4 · 2−2 log1−γ n′
6 for sufficiently large n′

= 4 · 2−
log1−γ n′

3 .

In order to simplify our expressions in the rest of the proof, let α = 2−
log1−γ n

6 . Using the above

bound, we see

α ≥ 4 · 2−
log1−γ n′

3 . (3.1)

Suppose by way of contradiction that we reduced from a NO case, but the maximum social welfare

is at least α|E|.

Let S be a set of resources with a social welfare of at least α|E|. Recall also that each player

i’s fractionally-subadditive valuation vi is defined as the maximum over a set of additive valuations

v
(l)
i . Define li such that vi(S) = v

(li)
i (S). We will define a labeling in which each i ∈ V1 is labeled

with li.

For any fixed w, v
(li)
i assigns a value of 1 to at most one of the resources (w, `) for ` ∈ [n].

Moreover, v
(li)
i can only assign value to a resource (w, `) if {i, j} ∈ E. We say that an edge between

vertex i ∈ V1 and vertex w ∈ V2 is satisfied by the set S if (w,Π{w,j}(li)) ∈ S. Observe that the

total social welfare value of S equals the number of edges satisfied by S.

Let d be the number of edges incident on a vertex in V2. AsG is a regular bipartite graph, d = |E|
|V2| .

Let V ′2 denote all vertices w ∈ V2 in which the number of edges incident on w satisfied by S is at

least αd/2. A counting argument shows that |V ′2 | ≥ α
2 |V2|: If |V ′2 | were less than α

2 |V2|, the number

of satisfied edges incident upon vertices in V ′2 is at most |V ′2 |d < α
2 |E|, and the number of satisfied

edges incident upon vertices outside of V2 would be less than |V2|α2 d = α
2 |E|. So summing these, we

would see that the number of satisfied edges is less than α|E|, a contradiction. So |V ′2 | ≥ α
2 |V2|.

If S contains β different items j(w,`) for a fixed w, we say that w is labeled β times by S. Since

there are k = |V2| items chosen, at most α
4 |V2| of the nodes j ∈ V2 are labeled more than 4

α times

by S. So letting V ′′2 be the subset of V ′2 which is labeled at most 4
α times by S,

|V ′′2 | ≥ |V ′2 | −
α

4
|V2| =

α

2
|V2| −

α

4
|V2| =

α

4
|V2|.

Since S labels each w ∈ V ′′2 at most 4
α times, and S satisfies at least α

2 d edges incident upon

each vertex in V ′′2 (because V ′′2 ⊆ V ′2), we can find a single label `, j(w,`) ∈ S that satisfies at least

α
2 d/

4
α = α2

8 d of the edges incident upon w. So if we label each w ∈ V ′′2 according to Sj , and label
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each i ∈ V1 by the li, we have a labeling that satisfies at least

|V ′′2 |
α2

8
d ≥ α

4
|V2|d ·

α2

8
=
α

4
|E| · α

2

8
=
α3

32
|E|

edges, regardless of how the vertices in V2 − V ′′2 are labeled. This contradicts that we had a NO

case, as we can see by (3.1) that

α3

32
|E| >

(
4 · 2−

log1−γ n′
3

)3

32
= 2− log1−γ n′ |E|.

Thus, we see that the maximum social welfare of our PFS instance is at least |E| if we reduced

from a YES case, and at most α|E| if we reduced from the NO case. Therefore, it is quasi-NP-hard

to achieve an approximation ratio of 2
log1−γ min(n,m)

6 .

Finally, we need only show how to remove the 1/6 factor in the exponent. For sufficiently large

n,m, and γ′ < γ, 2
log1−γ

′
(min(n,m))
6 < 2log1−γ(min(n,m)), and we have shown that it is quasi-NP-hard

to achieve an approximation ratio of 2
log1−γ

′
(min(n,m))
6 , which is a better ratio than 2log1−γ(min(n,m)),

proving the theorem.
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Chapter 4

Combinatorial Auctions

In this chapter, we analyze auctions with capped-additive valuations. A capped-additive valuation

vi consists of a value vji for each item and a value cap ci. Unlike the combinatorial public projects

studied in Chaper 3, allocations are not a single set, but rather a partition of the items among the

players. We begin by demonstrating a maximal-in-range approximation algorithm for subadditive

auctions which was originally shown in [15].

Given valuation functions vi for each player i, form a bipartite graph G = (V1, V2, E) with

V1 = {P1, . . . , Pn}, V2 = {I1, . . . , Im} and E = {{Pi, Ij} : i ∈ [n], j ∈ [m]}. Define a weight function

on the edges w({Pi, Ij}) = vi({j}). Find a maximum weighted matching in G with edge weights w.

Call the value of this matching Vmatching.

Now, consider vi([m]), the value to player i of getting all the items. Let Vall = maxi vi([m]), and

let i∗ be the player that maximizes vi([m]).

If Vmatching ≥ Vall, allocate item j to player i for each edge {Pi, Ij} in the maximum matching.

Otherwise, allocate every item to player i∗.

Theorem 4.1 ([15]). The above algorithm is maximal-in-range and achieves a min(n, 2m1/2) ap-

proximation of the social welfare under subadditive valuations.

Proof. The range of this mechanism is all allocations in which each player gets at most one item,

together with the allocations in which one player gets all items. Vmatching is the maximum value

possible in which each player gets at most one item, while Vall is the maximum value in which some

player gets all items. As the allocation gets the maximum of these, it is the maximum over the

entire range.

For n players, the maximum social welfare is at most n · Vall. So this algorithm is at most an n

approximation. We now proceed to show that this algorithm is also at most a 2
√
m approximation.

Consider an allocation A = S1, . . . , Sn which maximizes the social welfare. There are at most
√
m players who get

√
m or more of the items each. Call this set of players Phigh, and call the others

Plow.
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Vall is at least as great as the maximum value received by any player in Phigh. Thus, Vall is at

least 1/|Phigh| ≥ 1/
√
m times the social welfare from players in Phigh. So if the players in Phigh

account for at least half the social welfare, the maximum social welfare is at most 2
√
m times Vall.

Otherwise, the players in Plow account for at least half the social welfare. Consider the allocation

in which every player in Plow receives the item in Si maximizing vi({j}). Since the valuations are

subadditive and each player in Plow receives at most
√
m items, the total value from players in Plow,

each player gets at least a
√
m fraction of his value from the optimal allocation. Since Vmatching is

the maximum value of any allocation in which each player gets at most one item, Vmatching is at

least as good as this allocation. So the social welfare from Plow in A is at most
√
mVmatching. Thus,

since Plow gets at least half the social welfare, the social welfare of the optimal allocation is at most

2
√
m times Vmatching.

As Vall is always an n approximation and one of Vall, Vmatching is a 2
√
m approximation of

the social welfare, assigning items to achieve the max of these two welfares yields a min(n, 2
√
m)

approximation.

4.1 Hardness for MIR Mechanisms

In this section, we prove a hardness result for maximal-in-range algorithms for AC and ACn via

Theorem 4.2:

Theorem 4.2. No polynomial-time maximal-in-range algorithm for AC with n = n(m) ≤ mη for

positive constant η < 1/2 can approximate the social welfare with a ratio of n(1 − ε) for positive

constant ε unless NP ⊆ P/poly.

4.1.1 Our Proof

The proof of Theorem 4.2 is more difficult than the proofs of maximal-in-range approximation

hardness in Chapter 3. This is because allocations in a combinatorial public project are simply

subsets of the items, which allow for easy use of the Sauer-Shelah lemma through Corollary 3.2. We

turn the partitions in the range into something more like subsets in order to apply the Sauer-Shelah

lemma. First, Lemma 4.5 shows how we can restrict to a subset of the items for which a large subset

of the range allocates them all. In the 2-player case, this means that each item is either allocated

to player 1 or player 2, so the allocations can be represented as the subset of items allocated to

player 1, and we can apply the Sauer-Shelah lemma. Lemma 4.6 shows how if there are more than

2 players, all but one can be grouped together so we can again represent the range by just the set

of items allocated to one player.

Finally, Lemma 4.7 shows how the large VC dimension shown by applying the Sauer-Shelah
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lemma allows an NP-hard problem to be solved by any maximal-in-range mechanism with approxi-

mation ratio of n(1− ε), completing the proof of Theorem 4.2.

Theorem 4.2 gives us the following corollary, which shows that it is not possible to find a

polynomial-time maximal-in-range mechanism that achieves an approximation much better than

the min(n, 2m1/2) in Theorem 4.1.

Corollary 4.3. For any positive constant ε and any relation n = n(m) ≤ poly(m), no polynomial-

time maximal-in-range auction mechanism can approximate the social welfare for AC with n players

and m items to a ratio of min((1− ε)n,m1/2−ε) unless NP ⊆ P/poly.

Proof. Suppose by way of contradiction that there exists a polynomial-time maximal-in-range al-

gorithm A which achieves a min(n(1 − ε),m1/2−ε) approximation ratio. Let η = 1/2 − ε/2 and

n′(m) = min(n(m),mη). We construct a polynomial-time maximal-in-range mechanism A′ for

n′ = n′(m) ≤ mη players from A by simply running A with the first n′ players, and all other players

given vi = 0. This produces an allocation of items to n players, from which we produce an allocation

to n′ players by not allocating any items which are given to players larger than n′.

Now we will see that A′ produces an approximation ratio of at most n′(1 − ε). For n ≤ mη,

n′ = n, and A has an approximation ratio of min((1 − ε)n,m1/2−ε) ≤ (1 − ε)n = (1 − ε)n′. For

n ≥ mη, A has an approximation ratio of

min((1− ε)n,m1/2−ε) ≤ m1/2−ε

= m1/2−ε/2 ·m−ε/2

= mη ·m−ε/2

= n′ ·m−ε/2

< n′(1− ε) for m > (1− ε)−2/ε.

So A achieves a ratio of n′(1 − ε) when n ≥ mη for m > (1 − ε)−2/ε. For m ≤ (1 − ε)−2/ε, m has

a constant bound, so A′ can find an exact solution by trying all n′
m ∈ poly(n′) possible allocations

and choosing the one with maximum social welfare.

Thus, A′ gets an approximation ratio of n′(1− ε) for a function n′ = n′(m) ≤ mη, contradicting

Theorem 4.2.

Note that because Corollary 4.3 applies to any relation n = n(m) between the number of players

and players, it shows that unless NP has polynomial circuits, the best polynomial-time maximal-

in-range approximation for AC is min(n,O(
√
m)), as well as that the best such approximation for

ACn for constant n is n.

We begin the proof of Theorem 4.2 by examining the structure of the range.
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4.1.2 The Counting Argument

Let A be a maximal-in-range algorithm with range R ⊆ ([n]∪{?})m, where for x ∈ R, xi = j means

that item i is given to player j, while xi = ? indicates that no player is given item i. For S ⊆ [m],

we define RS to be the subset of the range where all of the items in S are assigned to players,

RS = {x ∈ R : xi 6= ? ∀i ∈ S}.

When considering RS we wish to focus on the players that the items in S are assigned to, so we

define TS to be the projection of RS to the indices in S. So TS ⊆ [n]|S|.

In order to show that A can solve an NP-hard problem, we will need find a subset of the items

which are allocated in enough ways to exactly solve an NP-hard problem. Finding a large TS so

that we can ignore the issue of unassigned items is the first step toward this goal. We begin with a

helpful lemma.

Lemma 4.4. For any positive constant ε and any m,n for which the binomial coefficients below are

positive, (
m

εm/n

)(
((1+2ε)/n)m

εm/n

) < ( n

1 + ε

)εm/n
.

Proof. First, note that

(
m

εm/n

)(
((1+2ε)/n)m

εm/n

) =

εm/n−1∏
i=0

m−i
εm/n−i

εm/n−1∏
i=0

((1+2ε)/n)m−i
εm/n−i

=

εm/n−1∏
i=0

m−i
εm/n−i

((1+2ε)/n)m−i
εm/n−i

=

εm/n−1∏
i=0

m− i
((1 + 2ε)/n)m− i

.

Now, we bound the individual terms of the above product:

m− i
((1 + 2ε)/n)m− i

≤ m

(1 + 2ε)m/n− i

<
m

(1 + 2ε)m/n− εm/n

=
n

(1 + 2ε)− ε

=
n

1 + ε
.
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Multiplying the εm/n terms together, we have

(
m
αm

)(
((1+2ε)/n)m

εm/n

) =

εm/n−1∏
i=0

m− i
((1 + 2ε)/n)m− i

<

εm/n−1∏
i=0

n

1 + ε

=

(
n

1 + ε

)εm/n
which proves the lemma.

Using the above lemma, we can now show that there must be some large TS .

Lemma 4.5. Let A be a maximal-in-range algorithm for AC which approximates the social welfare

with a ratio of n/(1 + 2ε), for positive constant ε. There exists a set S ⊆ [m] with |S| = εm/n where

TS has size |TS | ≥ (1 + ε)εm/n.

Proof. To begin, we associate with each x ∈ [n]m a set of capped-additive valuation functions

vx,i(S) = min
(∑

i∈S v
j
x,i, ci

)
where

vjx,i =

 1 xj = i

0 otherwise

ci = m.

Let x be an arbitrary element of [n]m. Because A approximates the social welfare with a ratio of

n/(1 + 2ε) and the maximum social welfare of the instance with players whose valuation functions

are vx,1, . . . , vx,n is m, there must be an allocation r in the range R of A such that ri = xi for at

least ((1 + 2ε)/n)m different indices i. Let Sx be the set of these indices,

Sx = {i : ri = xi}.

There are at least
( |Sx|
εm/n

)
≥
(

((1+2ε)/n)m
εm/n

)
subsets S′ ⊆ Sx of size εm/n. For each such set S′, TS′

contains the projection of x to S′. If TS contains the projection of x to S, we say that x is covered

by TS . If t ∈ TS is the projection of x to S, we say that t covers x. Note that each x is covered by

at least
(

((1+2ε)/n)m
εm/n

)
sets TS of size |S| = εm/n.

For a subset S ⊆ [m], define C(S) to be the number of vectors x ∈ [n]m which are covered by

TS . Since each x ∈ [n]m is covered by at least
(

((1+2ε)/n)m
εm/n

)
sets TS with |S| = εm/n,

∑
S⊆[m],|S|=εm/n

C(S) ≥ nm
(

((1 + 2ε)/n)m

εm/n

)
. (4.1)
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Suppose by way of contradiction that for every subset S ⊆ [m] of size εm/n, |TS | < (1+ε)εm/n. Using

this assumption, we will find a bound on
∑
S⊆[m],|S|=εm/n C(S) which contradicts (4.1). Consider

a subset S ⊂ [m] such that |S| = εm/n. Each t ∈ TS covers nm−εm/n elements of [n]m. So

C(S) < (1 + ε)εm/nnm−εm/n, which gives the bound

∑
S⊆[m],|S|=εm/n

C(S) <

(
m

εm/n

)
(1 + ε)εm/nnm−εm/n. (4.2)

Combining bounds (4.1) and (4.2), we have

(
m

εm/n

)
(1 + ε)εm/nnm−εm/n > nm

(
((1 + 2ε)/n)m

εm/n

)
,

which we simplify to (
m

εm/n

)(
((1+2ε)/n)m

εm/n

) (1 + ε)εm/n > nεm/n. (4.3)

By Lemma 4.4, we get(
m

εm/n

)(
((1+2ε)/n)m

εm/n

) (1 + ε)εm/n <

(
n

1 + ε

)εm/n
(1 + ε)εm/n = nεm/n,

which contradicts (4.3), proving that there exists some S ⊆ [m] with |S| = εm/n such that |TS | ≥

(1 + ε)εm/n.

4.1.3 Using the VC Dimension

In Chapter 3, showing a 2Ω(m) sized subset of the range was enough to show large VC-dimension

and move on to the reduction. One more step is required with three or more players because for

n > 2 there exist sets of size (n − 1)m ≥ 2m such that no item is ever allocated to player n. So

an exponentially large subset does not imply that some polynomial-sized subset of the items is

allocated in every way. To get around this difficulty, we map TS injectively from [n]εm/n into 2[εm]

by combining all but one of the players into a meta-player. We then apply the Sauer-Shelah lemma

via Corollary 3.2 to show that there is a polynomial-sized subset of the items which are allocated in

every possible way in the meta-player auction. We finish by showing how finding the exact solution

in the restricted meta-player auction allows for a solution to the NP-hard subset sum problem.

Definition 4.1 (φi,Φi). Let U = {uji : i ∈ [n], j ∈ [m]}. Let φi(r) = {uji : rj = i}. So φi(r) is the set

of uji such that item j is allocated to player i in the allocation r. We define Φi(T ) = {φi(t) : t ∈ T}.

The next lemma is the main lemma in this section; it applies to the large set TS shown to exist

in Section 4.1.2.
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Lemma 4.6. Let A be a maximal-in-range algorithm for AC with n players and m items, with

n = n(m) ≤ mη for positive constant η < 1/2. For all sufficiently large m, if there exists a subset

S ⊆ [m] with |S| = εm/n such that |TS | ≥ (1+ε)εm/n, then there exists a player i∗ such that Φi∗(TS)

has VC dimension at least
√
ε ·m1/2−η.

Proof. Let U = {uji : i ∈ [n], j ∈ [m]}. We define f : [n]εm/n → 2U by f(x) = {uji : xj = i}. So uji is

in f(x) if the allocation defined by x gives item j to player i. Note that this differs from φi in that i

is not specified. So f(x) =
⋃
i φi(x). Similar to our definition of Φi, we define F (T ) = {f(t) : t ∈ T}.

Note that for x 6= x′, there must be some j such that xj 6= x′j . Thus, f(x) contains ujxj , and

f(x′) does not. So f is injective, and therefore

|F (TS)| = |TS | ≥ (1 + ε)εm/n.

Note that (1 + ε)εm/n ≥ (1 + ε)εm
1−η ≥ (1 + ε)ε(εm)1−η . We can apply Corollary 3.2 (with α = 1/2,

δ = 1− η > α, and ` = εm) to conclude that for sufficiently large m (and therefore sufficiently large

` = εm), F (TS) has VC dimension at least (εm)1/2.

Let Q be a set of size at least (εm)1/2 which exhibits the VC dimension of F (TS). Let UI = {uji :

j ∈ [m]}. Partition Q into sets Qi = Q∩Ui. There are n parts in the partition, so
∑
i |Qi| = (εm)1/2,

which implies that there is some i∗ ∈ [n] for which |Qi∗ | ≥ (εm)1/2/n.

Because Q is shattered (see Definition 3.1) by F (TS) so is Qi∗ . As Qi∗ is shattered by F (TS),

it is also shattered by Φi∗(TS), as, if there exists a t ∈ F (TS) such that t ∩ Qi∗ = V , there is a

corresponding t′ = {uji ∈ t : i = i∗} ∈ Φi∗(TS) such that t′ ∩ Qi∗ = V (as the only items in either

intersection are of the form uji∗ , and t and t′ agree on these items). So φi∗(TS) has VC dimension

at least |Qi∗ | ≥ (εm)1/2/n ≥
√
ε ·m1/2−η.

For a more intuitive understanding of Lemma 4.6, consider viewing all players other than i∗ as a

single meta-player. Lemma 4.6 states that there is a polynomially large set of items which are fully

allocated in every possible way under this 2-player view.

4.1.4 Embedding Subset Sum

We now show that if φi∗(TS) has VC dimension at least mα for constant α > 0, we can embed a

subset sum instance into the auction in such a way that it is solved by A. We use a reduction similar

to one used in [30] to show that exactly maximizing the social welfare of these auctions is NP-hard.

Lemma 4.7. Let A be a polynomial-time maximal-in-range auction for auctions with n players and

m items. Suppose there exists a constant α > 0 such that for all sufficiently large m, there exists a

player i∗ and a subset S ⊆ [m] such that φi∗(TS) has VC dimension at least mα. Then NP ⊆ P/poly.
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Proof. Let T ′ be a set which exhibits the VC dimension of φi∗(TS). Let L = {j : uji∗ ∈ T ′}. The

subset of items in L are allocated in every possible way by A, if we consider only whether an item

is given to player i∗ or to some other player. For ease of exposition we re-order the items so that L

is the set of the first mα items. Let a1, . . . , amα be a subset sum instance with target sum K. For

all players i 6= i∗, we set

vij =

 aj , j ≤ mα

0, j > mα

ci =
∑
j

aj

and for player i∗, we set

vji∗ =

 2aj , j ≤ mα

0, j > mα

ci∗ = 2K.

If there is a subset V of {a1, . . . , amα} with sum K, there is an allocation in A’s range with social

welfare of
∑
j aj + K. This can be any assignment where player i∗ gets the items in V , the other

items from the first mα are allocated arbitrarily to other players, and items greater than mα are

allocated or not arbitrarily. A’s range must contain such an assignment because the first mα items

are allocated in every possible way in A’s range. So A will output an assignment with social welfare

at least
∑
j aj +K if there is a subset summing to K.

If there is no subset of {a1, . . . , amα} summing to K, A will assign player i∗ a subset M ⊆ [m]

such that
∑
j∈M aj 6= K. If

∑
j∈M aj < K, the social welfare is at most

∑
j /∈M

aj +
∑
j∈M

2aj =

∑
j /∈M

aj +
∑
j∈M

aj

+
∑
j∈M

aj

=
∑
j

aj +
∑
j∈M

aj

<
∑
j

aj +K.
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If
∑
j∈M aj > K, player i∗ gets value 2K. So the total value is at most

∑
j /∈M

aj + 2K =
∑
j /∈M

aj +

∑
j∈M

aj −
∑
j∈M

aj

+ 2K

=

∑
j /∈M

aj +
∑
j∈M

aj

−∑
j∈M

aj + 2K

=
∑
j

aj −
∑
j∈M

aj + 2K

<
∑
j

aj −K + 2K

=
∑
j

aj +K.

So unless there is a subset V with sum K, every assignment has social welfare less than
∑
j aj +K.

Taking L as advice, we can therefore solve a subset sum instance with mα values in polynomial time.

Therefore, subset sum is in P/poly, so NP ⊆ P/poly.

4.1.5 Proof of the Main Result

We can now prove Theorem 4.2. Suppose that there exists a a polynomial-time maximal-in-range

mechanism A which achieves an approximation ratio of n(1 − ε) for AC with m items and n =

n(m) ≤ mη players for a positive constant η < 1/2. Let ε′ be the positive constant such that

n/(1 + 2ε′) = n(1− ε). By Lemma 4.5, for each m there exists a subset S ⊆ [m] of size ε′m/n such

that |TS | ≥ (1 + ε′)ε
′m/n. By Lemma 4.6, this implies that for sufficiently large m, there exists an i∗

such that φi∗(TS) has VC dimension at least
√
ε′ ·m1/2−η. Since η < 1/2, we have

√
ε′ ·m1/2−η ≥ mγ

for some fixed positive constant γ. By Lemma 4.7, we thus have that NP ⊆ P/poly. So a polynomial

time maximal-in-range algorithm for AC with m items and n = n(m) ≤ mη players implies that NP

has polynomial circuits.

4.2 Super-Polynomially Many Players

In this section, we observe that our results can be extended to handle the case where n is not

bounded by a polynomial in m, at the expense of a stronger complexity assumption. For n larger

than m, our technique shows a limit of m1/2−ε on the approximation ratio of any mechanism which

runs in time polynomial in m. However, an efficient mechanism need only run in time polynomial

in the input size, which is at least as large as n, in order to represent all n valuation functions. So

the runtime need only be polynomial in n, which is greater than poly(m) if n is not bounded by a

polynomial in m.
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To see how larger values of n affect the necessary complexity assumptions, consider the case

where n is sub-exponential in m. Applying the same reduction leads to a circuit family of size

poly(n,m) (or sub-exponential in m), which solves subset sum instances of size mγ for constant

γ > 0, and this implies that NP has sub-exponential size circuits. So for sub-exponential n = n(m),

there is no polynomial-time algorithm for AC with m items and n = n(m) players unless NP has

sub-exponential circuits.

If n is sufficiently large as a function of m, it can even become possible to solve AC in polynomial

time unconditionally.

Theorem 4.8. There exists a maximal-in-range mechanism M for auctions with n players and

m items, which maximizes the social welfare and runs in polynomial time when Bm ∈ O(poly(n)),

where Bm is the mth Bell number, the number of partitions of [m] into any number of disjoint subsets

with union [m].

Proof. If Bm ∈ O(poly(n)), it is possible to enumerate all of the partitions of [m] into any number

of disjoint subsets in polynomial time. For each such partition into sets S1, . . . , Sk, we need only

find the maximum social welfare obtainable by giving each set Sj in the partition to some player ij .

If we find this maximum for every partition, we can take the maximum such value as the maximum

social welfare.

To find the maximum welfare for a partition, create a bipartite graph G = (V1, V 2, E) with

V1 = {S1, . . . , Sk}, V2 = [n] and E = V1 × V2. Define a weight function w({Sj , i}) = vi(Sj). A

maximum weighted bipartite matching results in the maximum sum of
∑
j vij (Sj), so this is the

maximum social welfare obtainable with this partition.

The amount of time required to compute the maximum welfare for each partition is polynomial

in the size of the graph, which is polynomial in n and k ≤ m. The number of partitions is polynomial

in n, so the total runtime is polynomial in n and m.



58

Chapter 5

Reducing Asymmetry in
Truthfulness

In Chapter 3, we saw the strange result of Corollary 3.19 that PSCOV1 cannot be truthfully ap-

proximated better than
√
m in polynomial time unless NP ⊆ P/poly. This is extremely surprising,

as truthfulness should intuitively be easy to achieve when incentives are aligned. In the case of

PSCOV1, both the player and the mechanism aim to maximize the social welfare if all payments are

zero. Because incentives are aligned, one should expect that the restriction to truthfulness would

not prevent use of the worst-case optimal e/(e− 1) polynomial-time approximation algorithm.

The hardness to approximate PSCOV1 truthfully may seem to be just a strange quirk that can

easily be ignored, as single player public projects lack players with competing interests, and therefore

are not even really games. It is not a problem if techniques from algorithmic game theory fail when

applied to situations which are not games. However, this issue cannot be ignored if we wish to

study PSCOVn for n ≥ 2 or even PSCOV. These cannot be approximated efficiently and truthfully

because they contain PSCOV1 as a special case. In order to ignore the PSCOV1 hardness result,

we must somehow first eliminate the PSCOV1 as the source of complexity for these problems.

Our counter-intuitive hardness result for PSCOV1 is a result of asymmetry in the definition

of “efficient truthful mechanism.” In order to be efficient, a mechanism is limited to polynomial

computation. In order to be truthful, there must not exist a lie by which a player could benefit. It

does not matter whether it is possible to find this lie in polynomial time. For example, if we solve

PSCOV1 using a greedy e/(e − 1) approximation and implement this as a mechanism, the player

must find a solution which approximates the social welfare better than e/(e − 1) in order to lie

effectively. It is NP-hard to approximate PSCOV1 better than e/(e− 1), but the existence of such

a lie still demonstrates that this mechanism is not truthful.
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5.1 Different Approaches

The most obvious approach to solve this problem is to redefine truthfulness in a manner that

takes player computation into account. For example, a mechanism is truthful if no polynomial-time

algorithm can compute a lie. This approach immediately fails, as a polynomial-time algorithm could

simply have a lie built in for just one special case in which a beneficial lie is possible. If we are using

the greedy algorithm for PSCOV1, the player’s algorithm need only have the optimal solution for

one case that the greedy algorithm fails to solve exactly.

If truthfulness is instead defined such that a mechanism is truthful if no polynomial-time al-

gorithm can compute a lie in the worst case, we still run into problems. Building lies for special

cases into a polynomial-time algorithm no longer demonstrates that an algorithm is not truthful,

but truthfulness loses much of its meaning. Now, a mechanism may be hard to construct a lie for in

the worst case, but easy to construct a lie for in the average case. We do not wish to classify such

a mechanism as truthful.

Based on these observations, one might consider average case complexity as the proper tool with

which to redefine truthfulness. This approach can be complicated by players who have algorithms

specifically tailored to their particular valuation function. It also depends heavily on the distribution

assumed. For these reasons, average case complexity is not the approach we take.

5.1.1 Communication Complexity

The hardness for truthful mechanisms for PSCOV1 goes away if the mechanism is allowed to ask

the player which allocation it would prefer. Noting this, one might suggest that a communication

complexity approach would be the proper avenue for a solution to this conundrum. If we simply look

at number of bits of communication necessary to find a solution in the multi-party communication

complexity model, then Corollary 2.13 shows that only a polynomial number of bits are necessary

in order to communicate the succinct representation of any PSCOVn or PSCOV instance. So under

a communication complexity model, we cannot hope to show hardness for PSCOVn and PSCOV.

Corollary 2.13 also shows that the same is true even if communication is limited to value queries.

5.1.2 The Nisan-Ronen Approach

In [34], a “Second Chance” mechanism was suggested to address the asymmetry between truthfulness

and efficiency. The mechanism can use any allocation algorithm A. The players submit their

valuation functions to the mechanism, and A is used to compute an allocation. Next, each player

i submits a function fi which maps the n valuation functions submitted by the players to n new

valuation functions for which the player believes A will compute an allocation with better social

welfare.
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Each fi is applied to the submitted valuations to arrive at a new collection of valuations. A is

then applied to each of these to arrive at n additional candidate allocations. Of the n+1 allocations

computed by the mechanism, the one with maximum social welfare is chosen. VCG-style payments

are used to ensure that each player is incentivized to maximize the social welfare. So any player

who wishes to lie should prefer to put that lie into the function fi.

Unfortunately, the need to compute each player’s function fi requires the mechanism to limit

the computation time of fi to some polynomial nc. So a player capable of more computation than

this nc limit would still benefit more by lying than by submitting a good fi, so this approach still

suffers from a similar asymmetry problem.

5.1.3 Our Approach

We propose a new general class of mechanisms which take advantage of player computation. Instead

of trying to get a handle on player computation and limiting it to the resources available to the

mechanism, our mechanism makes use of the same resources that players are using to lie. The

mechanism supplements its own computation by making queries to the players. For example, in

order to lie a player may need to be able to compute which allocation they prefer given a set of

per-item prices which they would be charged. We call such a query in a public project a k-demand

query. We will also define an analogous query for combinatorial auctions, called a demand query.

In the public project with one coverage valuation player described above, making a k-demand

query with item prices all equal to 0 results in a solution to the problem. By assuming that the

player has the computational capabilities necessary to lie, we are able to come up with a mechanism

where lying is no longer beneficial. The use of VCG payments incentives the player to maximize

social welfare, so as long as the mechanism maximizes social welfare there is no benefit to lying.

A further advantage of our approach is that it can be used to model various assumptions of player

power by choosing appropriate types of queries.

Proving that a mechanism like the one above finds an exact solution does not require any more

new concepts or techniques. But not every pairing of an oracle and a mechanism design problem

will result in an exact algorithm. Some classes of queries will not be powerful enough to allow for

better mechanisms. The second main contribution of this dissertation is a framework for analyzing

the computational complexity of these allocation problems paired with queries, as well as several

substantive results showing hardness within this framework, thus strengthening the results from

previous chapters.

5.1.4 Oracles and Reductions

We model the ability of players to answer queries as instance oracles.
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Definition 5.1 (Instance Oracle). Consider an n-player game A, with instances described by

(a1, . . . , an), where ai is the private information held by player i. An instance oracle O is a black

box function such that for some f , on input x it returns the n results f(x, a1), . . . , f(x, an).

For example, an oracle for k-demand queries would take prices p1, . . . , pn as the input x and for

each i return f(x, ai), the set of k items which maximizes player i’s utility with prices x. Note that

this differs from a traditional oracle in that part of the input is fixed to the player valuations. So

even if the k-demand query is NP-hard in general, an instance oracle for demand queries would not

necessarily allow the mechanism to solve arbitrary NP-hard problems. For example, if in a particular

instance, all players happen to have valuation functions ai(S) = 0 for all sets S, a k-demand query

instance oracle would simply return the items with the k lowest prices. This can easily be computed

in polynomial time and therefore adds no power over polynomial computation.

We denote a problem A with associated oracle O by AO. We can now define complexity classes

in terms of problems with oracles. The class IONP is the class of all problems AO such that A ∈ NP.

O can be any oracle. In order to show reductions between these problems, we need to modify the

idea of a polynomial-time reduction to take the oracles into account. We do so as follows.

We say that AO reduces to BQ (or AO ≤IO BQ) if there is a polynomial time reduction r from A

to B such that for any a, a ∈ A⇔ r(a) ∈ B and O can be used on a to answer queries to Q on r(a).

So a reduction pairs a standard reduction (optionally making use of O) from A to B together with

a way to simulate Q using O. This means that even showing AO ≤IO AQ can require a nontrivial

reduction in order to be able to simulate Q on the result of the reduction, as seen in Section 5.6.1.

A problem AO ∈ IONP is IONP-complete if AO ∈ IONP and for all BQ ∈ IONP, BQ ≤IO AO.

Note that if A is NP-complete, AO is IONP-complete for any O ∈ FP. Most of the proofs of IONP-

completeness in this dissertation either show that O ∈ FP or reduce from an IONP-hard problem

AO where O is a trivial oracle (one for which the output does not depend on the input).

Instance oracle reductions fulfill the standard properties expected of reductions, as can be seen

by the following lemmas.

Lemma 5.1. If AO ≤IO BQ and BQ has a polynomial-time solution, then A can be solved in

polynomial time using queries to O.

Proof. Let a be an instance of A. As AO ≤IO BQ, we can create an instance b of B which has

the same solution of A and for which queries to Q on b can be simulated in polynomial time using

queries to O on A. Thus, we can solve b in polynomial time using the algorithm for BQ, with only

a polynomial slowdown for query computation. As a and b have the same solutions, this solves a in

polynomial time.

Lemma 5.2 (Contrapositive of 5.1). If AO ≤IO BQ and no algorithm can solve AO in polynomial

time, then no algorithm can solve BQ in polynomial time.
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Proof. Suppose by way of contradiction that no algorithm can solve AO in polynomial time, but

some algorithm exists which can solve BQ in polynomial time. By Lemma 5.1, the existence of a

polynomial-time algorithm for BQ implies one for AO, contradiction that no algorithm can solve AO

in polynomial time.

Lemma 5.3. If AO ≤IO BQ and BQ ≤IO CR, then AO ≤IO CR.

Proof. Let R1 and R2 be the reductions from A to B and from B to C, respectively. We can simply

compose R1 and R2 to find a reduction from A to C. Now, we need only see how queries to R on

C can be simulated in polynomial time using queries to O on A. Consider some query x to O. This

can be simulated in polynomial time using a polynomial number of queries y1, . . . , y` to Q on the

intermediate instance of B. Furthermore, each query y1, . . . , y` can be simulated in polynomial time

using queries to O on A. Thus, we can simulate queries to R on instances produced by our reduction

in polynomial time using O.

5.1.5 Definitions

We study two instance oracles. The first is the demand oracle alluded to in Section 5.1.4.

Definition 5.2 (Demand oracle (dem)). A demand oracle takes as input a list of prices p1, . . . , pm

and for each player i, returns a set S maximizing vi(S)−
∑
j∈S pj. This definition is the same for

both auctions and public projects.

We also define a similar oracle which is more useful in public projects.

Definition 5.3 (k-demand oracle (kdem)). A k-demand oracle takes as input a list of prices

p1, . . . , pm and for each player i, returns a set S, |S| = k maximizing vi(S)−
∑
j∈S pj. This oracle

is only defined for public projects, as auctions have no parameter k.

5.1.6 Our Results

Our results are comprised of several reductions, pictured in Figure 5.1. Reductions between prob-

lems shown are indicated by black-headed arrows. All other reductions are from existing NP-hard

problems paired with arbitrary oracles (as the oracles are not used in the reduction). The IONP-

hard public projects also cannot be approximated by a maximal-in-range algorithm to a factor better

than
√
m using the associated oracles unless NP has polynomial circuits.

Figure 5.2 shows the hardness results shown in this chapter for maximal-in-range polynomial time

mechanisms. All problems listed cannot be approximated better than
√
m unless NP has polynomial

circuits.
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PC2
kdem

AC2
dem PC2

dem

PCOV2
dem

PCOV2
kdem

ACdem
PC3

kdem

PC3
dem

Figure 5.1: A summary of the results shown in this chapter, excluding those from Section 5.2.
Arrows with a dark head indicate a reduction from the problem at the start of the arrow to the one
at the end. Arrows with a clear head indicate a reduction which is implied by IONP-hardness. The
circled problems are IONP-hard.

Valuation class hard problems

Unit-demand
P2Udem

P2Ukdem

Multi-unit-demand
PMU3

dem

PMU3
kdem

Capped-additive
PC3

dem

PC3
kdem

Coverage
PCOV2

dem

PCOV2
kdem

Fractionally-subadditive
PFSdem

PFSkdem

Figure 5.2: The hardness results for maximal-in-range mechanisms for public projects. The column
labeled “hard problems” refers to problems which are both NP-hard and cannot be approximated
better than

√
m by a polynomial-time maximal-in-range mechanism unless NP has polynomial cir-

cuits. We do not list problems which contain others in the table as special cases. So we do not list
PUdem because P2Udem is already in the table.

We also use techniques from Chapter 3 to extend our IONP-hardness results to also show that

none of the IONP-hard public projects can be approximated better than
√
m unless NP has poly-

nomial circuits. We begin with a few results which easily follow from results in earlier chapters.

5.2 Simple Results

We show a few simple results here in the instance oracle model. First, we demonstrate that proof

techniques from previous chapters do not always work in the instance oracle model by showing how

instances of PC2 and AC2 produced in reductions in earlier chapters become easy with access to

a kdem or dem oracle. After this, we will show how many of the hardness results from previous

chapters immediately become IONP-hardness results with dem and kdem oracles, as these queries

can be computed in polynomial time.
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5.2.1 Special Cases of Games with 2 Capped-Additive Valuations

In the reductions showing that PC2 and AC2 are NP-hard, the instances produced have the property

that Player 2 has value cap c2 =
∑
j∈[m] v

j
2, so that this player actually has an additive valuation

function. We show that instance oracles can be used to solve this special case, necessitating a new

proof if IONP-hardness is desired.

Theorem 5.4. In the special case where Player 2 has an additive valuation function, both AC2
dem

and PC2
kdem can be solved exactly in polynomial time.

Proof. In the case of AC2
dem, consider the demand query to Player 1 with prices pj = vj2. This will

return a set S maximizing

v1(S)−
∑
j∈S

pj = v1(S)−
∑
j∈S

vj2

= v1(S)−
∑
j∈S

vj2 −

∑
j∈[m]

vj2 −
∑
j∈[m]

vj2


= v1(S)−

∑
j∈[m]

vj2 −

∑
j∈S

vj2 −
∑
j∈[m]

vj2


= v1(S)−

∑
j∈[m]

vj2 −

∑
j∈S

vj2 −

∑
j∈S

vj2 +
∑
j∈SC

vj2


= v1(S)−

∑
j∈[m]

vj2 −

− ∑
j∈SC

vj2


= v1(S) +

∑
j∈SC

vj2 −
∑
j∈[m]

vj2

= v1(S) + v2(SC)−
∑
j∈[m]

vj2.

As
∑
j∈[m] v

j
2 does not depend on S, the set S therefore maximizes v1(S) + v2(SC). So (S, SC) is

an optimal allocation for this instance. Thus, an optimal allocation can be found with only one

demand query.

In the case of PC2
kdem, consider the demand query to Player 1 with prices pj = −vj2. This will

return a set S of size k maximizing

v1(S)−
∑
j∈S

pj = v1(S)−
∑
j∈S
−vj2

= v1(S) + v2(S)

so S is an optimal allocation, and can be found with only one query, completing the proof.
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5.2.2 Hard Problems with Easy Oracles

In this section, we show how demand and k-demand queries can be answered for many of the

valuation classes we study, leading to hardness results which are directly implied by earlier hardness

results without oracles. Note that all results, both NP-hardness results and those for maximal-in-

range algorithms, are preserved in the presence of oracles which can be computed in polynomial

time.

Lemma 5.5. For any V such that

• both PV2 and AV2 can be solved optimally in polynomial time

• additive functions are a special case of V , and can be constructed with a succinct representation

in V in time polynomial in m

• given a valuation function v, it is possible to construct a valuation function v′(S) = v(S) +∑
j∈S wj in polynomial time for any non-negative values w1, . . . , wm

it is possible to compute demand and k-demand queries for V in polynomial time.

Proof. Given a valuation function v, we create an instance of AV2 in order to answer a demand

query as follows. Let wj = max(0,−pj). So wj is −pj when pj is negative, and 0 otherwise. Player

1 has valuation function v1(S) = v(S) +
∑
j∈S wj and player 2 has additive valuation function

v2(S) =
∑
j∈S v

j
2 where vj2 = max(pi, 0). So vj2 is pi when p is positive and 0 otherwise. Both of

these functions can be constructed in polynomial time by the assumptions about V in the statement

of the lemma.

Given v1, v2, let S, SC be an allocation maximizing the social welfare, so player 1 gets items S

and player 2 gets items SC . If the allocation maximizing the social welfare does not allocate all

items, allocate any left-over items arbitrarily so that the allocation is of this form. The social welfare

of a set S is equal to

v1(S) + v2(SC) = v(S) +
∑
j∈S

wj +
∑
j∈SC

vj2

= v(S)−
∑

j∈S,pj<0

pj +
∑
j∈SC

vj2

= v(S)−
∑

j∈S,pj<0

pj +
∑
j∈[m]

vj2 −
∑
j∈S

vj2

= v(S)−
∑

j∈S,pj<0

pj −
∑
j∈S

vj2 +
∑
j∈[m]

vj2

= v(S)−
∑

j∈S,pj<0

pj −
∑

j∈S,pj≥0

pj +
∑
j∈[m]

vj2

= v(S)−
∑
j∈S

pj +
∑
j∈[m]

vj2.
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As
∑
j∈[m] v

j
2 does not depend on S or SC , the optimal allocation maximizes v(S)−

∑
j∈S pj , and is

therefore an answer to the demand query with prices p1, . . . , pm. Furthermore, as AV2 can be solved

optimally in polynomial time, we can find this query result in polynomial time.

In order to answer a k-demand query, we construct an instance of PV2 as follows. Let pmax =

maxj pj . Player 1 has valuation function v1 = v and player 2 has additive valuation function

v2(S) =
∑
j∈S v

j
2 where vj2 = pmax − pj . Note that pmax − pj ≥ 0. Both of these can be constructed

in polynomial time by the assumptions in the statement of this lemma. The social welfare of a set

S of size k is equal to

v1(S) + v2(S) = v(S) +
∑
j∈S

pmax − pj

= v(S)−
∑
j∈S

pj +
∑
j∈S

pmax

= v(S)−
∑
j∈S

pj + k · pmax.

As k · pmax does not depend on S, the optimal allocation maximizes v(S)−
∑
j∈S pj , thus giving an

answer to a k-demand query with prices p1, . . . , pm. Furthermore, as PV2 can be solved optimally

in polynomial time, we can find this query result in polynomial time.

Now, we need only show that the valuation classes multi-unit-demand and fractionally-subadditive

both meet the criteria outlined in Lemma 5.5.

Lemma 5.6. Both demand and k-demand queries can be computed in polynomial time for valuation

functions from the classes multi-unit-demand and fractionally-subadditive.

Proof. First, we will show that this is the case for multi-unit-demand. Theorem 3.13 shows that

PMU2 can be solved in polynomial time and Corollary 1.4 shows that AMU2 can be solved in

polynomial time. So we need only to see how to construct additive valuation functions and how to

construct v′(S) = v(S) +
∑
j∈S wj in polynomial time.

In order to construct an additive valuation function vi(S) =
∑
j∈S v

j
i , we simply construct the

m unit-demand functions

v
(j)
i (S) =

 vji , j ∈ S

0, otherwise

and the multi-unit-demand function vi(S) = maxS1,...,Sm

∑
j v

(j)
i (Sj) is the additive function we

desire.

In order to construct a valuation function v′(S) = v(S) +
∑
j∈S wj , we take two steps. First, we

add wj to the value of each item j in each unit-demand function. That way, if j is the item which

gets value from a particular unit-demand function, the total value increases by wj . Furthermore,

we add m additional unit-demand functions vextra(S) = maxj∈S wj . Thus, any items j ∈ S which
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don’t add to the value originally can be matched to these extra valuation functions for an extra

wj value. So both matched and unmatched items j add wj to the total, giving the set S value of∑
j∈S wj , plus the value of the original matching corresponding to this. So this is maximized by the

new value v′(S) = v(S) +
∑
j∈S wj .

Now, we show this for fractionally-subadditive functions. Theorem 3.21 shows that both AFS2

and PFS2 can be solved optimally in polynomial time. As a fractionally-subadditive valuation is

simply the maximum over additive valuations, an additive valuation can be constructed in polynomial

time by simply making a function which is the maximum over a single additive valuation. Finally,

we can create a function v′(S) = v(S) +
∑
j∈S wj by simply adding wj to the value of j in each

additive function that v is composed of. Thus,

v′(S) = max
`

(v(`)(S) +
∑
j∈S

wj)

= (max
`
v(`)(S)) +

∑
j∈S

wj

= v(S) +
∑
j∈S

wj

which completes the proof.

As unit-demand valuations are a special case of multi-unit-demand, this also implies the following

corollary.

Corollary 5.7. It is possible to compute demand and k-demand queries for unit-demand valuation

functions in polynomial time.

Lemma 5.6 and Corollary 5.7, together with previous hardness results, give us the following

hardness results.

Theorem 5.8. PUkdem, PUdem, PMU3
kdem, PMU3

dem, PFSkdem, and PFSdem are all IONP-hard

and furthermore cannot be approximated by a polynomial-time maximal-in-range mechanism with a

ratio of m1/2−ε unless NP ⊆ P/poly.

5.3 Coverage Valuations

One of the more surprising results from Chapter 3 is that no truthful mechanism can achieve an

approximation ratio for PSCOV1 better than
√
m unless NP ⊂ P/poly. Clearly, PSCOV1

kdem and

even PWCOV1
kdem have polynomial time solutions, as a single oracle call can determine the social

welfare maximizing set. We show that PCOV2
kdem and PCOV2

dem are IONP-hard.

Theorem 5.9. PCOV2
dem and PCOV2

kdem are both IONP-hard.
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Proof. We reduce from the NP-hard problem of vertex cover on a 3-regular graph G = (V,E) [24].

By Vizing’s theorem [43], there exists an edge coloring of this graph using 4 colors such that no two

adjacent edges share the same color. Furthermore, there is a standard constructive proof of Vizing’s

theorem in [6] which demonstrates how such a coloring can be found in polynomial time. We begin

by coloring the edges using colors C1, C2, C3, C4. Let E1 be the set of edges colored C1 and C2 and

E2 be the set of edges colored C3 and C4. An example illustrating the effects of partitioning the

edges into sets E1 and E2 appears in Figure 5.3.
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G = (V,E) (V,E1) (V,E2)

Figure 5.3: A 3-regular graph G, together with graphs representing the edge sets E1 and E2.

There are m = |V | items. Let V = {v1, . . . , vm}. Each item j corresponds to the vertex vj .

Player 1 has a valuation v1(S) = |
⋃
j∈S V

j
1 | where

V j1 = {e ∈ E1 : vj ∈ e}

is the set of edges colored C1 or C2 incident on vj . So the value of a set S to player 1 is the number

of edges colored C1 or C2 incident upon the vertices corresponding to the values in S. Player 2’s

value is defined similarly, with

V j2 = {e ∈ E2 : vj ∈ e}.

The social welfare for allocating a set S is the number of edges incident upon vertices corre-

sponding to values in S. So there is a social welfare of at least |E| iff there is a vertex cover of size

at most k. This completes the reduction.

Now that we have demonstrated a reduction, we need only show that the dem and kdem queries

can be computed in polynomial time to complete the proof of IONP-hardness. A query consists of a

list of item prices p1, . . . , pm. For each player, we must find a set maximizing the difference between

the number of appropriately colored edges covered and the sum of the item prices. We achieve this

in two steps. We will focus on player 1, as the solution for player 2 can be found in the same manner

by symmetry.

First, we examine each connected component in G1 = (V,E1). As illustrated by Figure 5.3, the
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fact that G1 can be edge colored with 2 colors implies that each of these components is a path or a

cycle. Label these components P1, . . . , Pc. For each component Pi, we compute the at most n values

P ji , the maximum value obtainable for player 1 choosing at most j items corresponding to vertices

in Pi. These values can be computed by a simple dynamic programming approach as follows.

For a path Pi with ` vertices, order the vertices from one end to the other. Label these vertices

ρ1, . . . , ρ`. For each α from 0 to ` and i from 0 to `, we compute two values. We compute αji , the most

value obtainable using j vertices from ρ1, . . . , ρi−1. We also compute βji , the most value obtainable

using j vertices from ρ1, . . . , ρi which necessarily includes ρi. So αji is the most value not using ρi,

and βji is the most value using it. Note that αji = max(αji−1, β
j
i−1) and βji = max(αj−1

i−1 +2, βj−1
i−1 +1)

for i < c and βjc = max(αj−1
c−1 + 1, βj−1

c−1 ). The last two formulas come from observing that if we

add vertex ρi to a cover, which uses vertices from ρ1, . . . , ρi−1, it may cover edges {ρi−1, ρi} and

{ρi, ρi+1}. The first edge is already covered if ρi−1 is in the cover, and the second edge only exists

for i < c. Note that the first edge only exists for i > 1, so we set base cases αj1 = 0, βj1 = 1 for any

path containing at least 1 edge. As i and j are both bounded by n, these values can all be computed

in O(|Pi|2) time via a dynamic programming table. We then have P ji = max(αjc, β
j
c ).

For a cycle with c + 1 nodes, we simply choose a node in the path, and include it in the cover.

This covers two edges. Remove these two edges and use the above algorithm to compute the best

covers for each of the remaining paths. Set P ji to be the maximum of αj−1
c + 2, βj−1

c + 2. Repeat

this for every possible choice of node to remove at the beginning, and take the maximum value of

P ji found by this method (and set P 0
i = 0). This computes the correct value because if the node

removed is in the actual best cover using j items, it covers the two edges incident on it, and the

other j − 1 items form a best cover of the remaining path. The path algorithm is run |Pi| times, so

this requires O(|Pi|3) time.

Next, we combine these partial results for each connected component using more dynamic pro-

gramming. Let U ji be the maximum utility using at most i items from components P1, . . . , Pi. Note

that U ji = max` U
j−`
i−1 + P `i , which is the maximum value using j − ` items from P1, . . . , Pi−1 and `

items from Pi. As both i and j are limited by n, these can be computed by dynamic programming

in time O(n2).

The total runtime for this is at most
∑
iO(|Pi|3) + O(n2) = O(n3). After these computations,

the answer to a kdem query is simply Ukc , and the answer to a dem query is maxi U
i
c . We can also

return the corresponding sets of items by backtracking through the dynamic programming table or

keeping a copy of the set which achieves the value in each cell of the table. Either approach only

requires polynomial overhead at each step.

Thus, we have shown an NP-hardness reduction for PCOV2 in which both kdem and dem queries

can be answered in polynomial time. Thus, both PCOV2
kdem and PCOV2

dem are IONP-hard.
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We can now apply techniques from Chapter 3 to strengthen the above proof into a proof that no

MIR algorithm can approximate PCOV2
kdem or PCOV2

dem to a factor better than
√
m.

Theorem 5.10. No polynomial time maximal-in-range algorithm for PCOV2
kdem or PCOV2

dem

has an approximation ratio of m1/2−ε for any constant ε unless NP ⊂ P/poly.

Proof. In the proof of Theorem 3.18, we showed how Lemma 3.6 implies that that any maximal-

in-range mechanism for PCOV1 (a special case of PCOV2) must have a range with VC dimension

at least mα for some constant α > 0. That is, for every subset S of these mα items, there is an

allocation S′ in the range that contains S, together with k−|S| items from the other m−mα. We use

this fact to embed the previous reduction in the mα items in such a way that the maximal-in-range

algorithm solves it exactly.

Assume that a polynomial-time maximal-in-range algorithm A for PCOV2
kdem or PCOV2

dem

achieves an approximation ratio of m1/2−ε. Order the items such that the first mα are the ones

that exhibit the VC dimension of A’s range. This ordering corresponds to the polynomial advice in

P/poly. Perform a reduction from a vertex cover instance with mα vertices to these mα items as in

the proof of Theorem 5.9, but for each edge, create k + 1 corresponding items in each set, rather

than just 1. This has the effect of multiplying the social welfare by k + 1. For the other m −mα

items, add m−mα new elements nmα+1, . . . , nm to U1, and set V ji = {nj} for j > mα.

Now, A will find a set of k items with social welfare (k + 1)|E| + k − k′ iff there is a set of k′

vertices which covers the original graph. Clearly, if A finds a set with welfare (k + 1)|E| + k − k′,

then this must correspond to a covering of the graph in order to get the (k+ 1)|E| term, as the total

value from items greater than mα is at most k. The rest of the welfare must therefore come from

having at least k − k′ items chosen from items greater than mα. So the covering must have had at

most k′ items.

Furthermore, if there exists such a covering, it will be found by A, as every possible subset of

the mα items is in As range and A is maximal-in-range. The rest will be filled in by the other

m −mα items, but the way in which these are chosen doesn’t matter by construction. So A will

solve PCOV2, demonstrating that NP ⊆ P/poly.

Now, we need only see that we can still simulate the oracle queries in order to show that the

oracles do not add any extra power beyond that of polynomial circuits. We already know how to

simulate queries to determine the best coverage choosing j of the mα items corresponding to the

original reduction. We can also choose the best j of the m−mα items by simply choosing the j with

lowest price, as the added value of j of these items depends only on j and not on which particular

items are chosen. So we can find the best j items overall by checking all i and finding the best i from

the first mα, and the best j− i from the rest. Thus, we can still compute the dem and kdem queries

in polynomial time by either taking the maximum utility for k items, or the maximum utility for j
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items over all j.

5.4 Three-Player Public Projects

In this section, we examine PC3
dem and PC3

kdem, and show that they are both IONP-hard and

cannot be approximated to a factor better than
√
m by an efficient maximal-in-range mechanism

unless NP has polynomial circuits. We begin by proving the following theorem.

Theorem 5.11. PC3
kdem and PC3

dem are IONP-hard.

Proof. We reduce from 3-dimensional matching (3DM). A 3DM instance consists of a set of triples

T ⊆ [k]× [k]× [k], and the decision problem is does there exist a set M ⊆ T , |M | = k such that for

each i ∈ [3], j ∈ [k], there is an element of M such that its ith coordinate is j?

Starting from such an instance of 3DM, we create the following instance of PC3. Let τ =

2dlog2 |T |e+1 (so τ > |T |). For each item (α1, α2, α3) ∈ T , create an item i such that

• Player 1 values i at τ3k+1 + τ2k+α1 − τk+α2

• Player 2 values i at τ3k+1 + τk+α2 + τα3

• Player 3 values i at τ3k+1 − τ2k+α1 − τα3

and

• Player 1 has budget k · τ3k+1 +
∑
j∈[k] τ

2k+j − τk+j

• Player 2 has budget k · τ3k+1 +
∑
j∈[k] τ

k+j + τ j

• Player 3 has budget k · τ3k+1 +
∑
j∈[k]−τ2k+j − τ j .

We now show that there exists a set M ⊆ T of size k covering each coordinate iff there is a set of k

items that gives each player value equal to its budget.

Lemma 5.12. The above reduction is a valid reduction from 3-dimensional matching to PC3.

Proof. Assume that there exists a set of k items S such that all budgets are met or exceeded. If

player 1’s budget is exceeded, then either

∑
(α1,α2,α3)∈S

τ2k+α1 >
∑
j∈[k]

τ2k+j (5.1)

or ∑
(α1,α2,α3)∈S

τk+α2 <
∑
j∈[k]

τk+j . (5.2)
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If (5.1), this player 3 would be under budget, a contradiction. Otherwise, (5.2) means that player 2

is under budget, also a contradiction. So we have

∑
(α1,α2,α3)∈S

τ2k+α1 =
∑
j∈[k]

τ2k+j (5.3)

∑
(α1,α2,α3)∈S

τk+α2 =
∑
j∈[k]

τk+j . (5.4)

If
∑

(α1,α2,α3)∈S τ
α3 >

∑
j∈[k] τ

j , then player 3 is under budget, and if
∑

(α1,α2,α3)∈S τ
α3 <

∑
j∈[k] τ

j ,

then player 2 is under budget. So

∑
(α1,α2,α3)∈S

τα3 =
∑
j∈[k]

τ j . (5.5)

Together, (5.3), (5.4), and (5.5) imply that for every j, there is some α1 = j, some α2 =

j, and some α3 = j, implying a 3-dimensional matching. Now, we note that if a 3-dimensional

matching exists, then choosing the corresponding items will result in all 3 budgets being met. So a

3-dimensional matching exists iff there is some set of items for which the social welfare is equal to

the sum of the players’ budgets.

In order to complete the proof of Theorem 5.11, we now need show how demand and k-demand

queries for instances produced by the reduction can be computed in polynomial time. We show that

for any ` ∈ [m], the utility maximizing set of size ` for any player can be computed in polynomial

time. Using this, it is trivial to compute demand and k-demand queries by taking the maximum

utility over all ` or just taking the utility for ` = k, respectively.

Lemma 5.13. For any set of item prices p1, . . . , pm and any `, it is possible to compute the utility

maximizing set of size ` for any player resulting from the reduction in this section in polynomial

time.

Proof. Each player has a value function of the form

v(S) =
∑

(α1,α2,α3)∈S

τ3k+1 ± τ (3−i)k+αi ± τ (3−j)k+αj

for some 1 ≤ i < j ≤ 3. For any ` < k, the player’s budget cannot be reached, so the utility

maximizing set consists of the ` items with maximum individual utility. For ` > k, the budget will

be exceeded by any set of items, so the ` items of smallest price are chosen. We now need only to

examine the ` = k case.

In this case, we can ignore the τ3k+1 terms, as they will always sum to k · τ3k+1. Now, for

each value αi from k to 1, we consider 3 cases. Either zero, one, or more than one items with ith
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coordinate αi are chosen.

If zero, then we know that if the sign of τ (3−i)k+αi is positive, the budget will be exceeded, and

if negative, the budget will not be reached. In either case, it is easy to choose the items with smaller

αi values by either maximizing individual utility or minimizing prices.

If more than one item, we also know that the budget will either be exceeded or not met based

on the sign of τ (3−i)k+αi , so we choose the 2 of lowest price or highest utility, then choose items to

fill out the rest of the k with smaller or equal αi values based on lowest price or highest individual

utility.

Finally, if we choose exactly 1 such item, we move on to αi − 1. We reserve the choice of item

corresponding to αi until later. If we reach a point where the budget will definitely be reached or

not, we can choose the item of smallest price or highest utility accordingly.

After we have iterated through all k values of α∗i , we move on to values α∗j of αj . Again we have

3 possibilities, zero, one, or more than one items. With one item, we still move on. With zero items

or more than one item, we again know whether the budget will be exceeded, but it is more difficult

to determine how to maximize utility. We use weighted bipartite matching for this purpose.

We use a graph G = (V1, V2, E). V1 = {v1, . . . , vk} corresponds to the values of αi which must

each be covered once and

V2 = {w1
a∗j+1, . . . , w

1
k} ∪

⋃
`∈[k]

{w`1, . . . , w`α∗j−1} ∪
⋃
`∈T

w`j ,

where T is equal to either ∅ or [k], depending on whether we want zero or more than one item with

this value.

For each triple (α1, α2, α3) in the 3-dimensional matching instance, we add an edge {vαi , w`αj}

for each w`αj in V2. We give these edges weight either equal to the negative of the price of the

corresponding item (if we’re choosing more than one item for α∗j and will therefore exceed the

budget) or equal to the utility (if we’re choosing 0 items for α∗j and will therefore not reach the

budget). After this weighting, shift the weights by adding the same positive value to all of them to

ensure that they are all positive.

Let Wmax be the maximum edge weight. To ensure that at least 2 items corresponding to α∗j are

chosen, add Wmax · k to the weights of edges incident on w1
αj and w2

αj . To ensure that one item is

chosen corresponding to each w1
k, . . . , wα∗j+1, add Wmax · k to the weights of edges incident on these

as well. As Wmax · k is larger than the weight of any matching consisting of edges not given this

extra factor, any maximum matching must match edges incident on all vertices from w1
α∗j+1, . . . , w

1
k,

as well as w1
α∗j

and w2
α∗j

if they exist.

Compute a maximum weighted k matching. This will result in a set of edges corresponding to

an allocation that covers each αi exactly once, each αj > α∗j exactly once, and α∗j either 0 or more
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than one time as appropriate while maximizing utility.

The last step is to notice that after all αj are covered exactly once, the budget is exactly reached.

So the above procedure can be used to find the maximum allocation with α∗j = 0.

Now that we have shown how to compute the utility maximizing set, we need only show that

the computation only requires polynomial time. At each step going through αi or αj , we consider

covering αi or αj 0, 1, or more than 1 time. We have shown how to compute the solution for 0 or

more than 1 in polynomial time. For exactly 1, we simply move on to the next step of the algorithm.

So we have 2k steps, each requiring polynomial time, which comes out to a polynomial runtime

overall.

After completing all steps, the set which maximizes the utility is the set of maximum utility

computed at any step in the algorithm. Thus, the utility maximizing set will be found by the end

of the algorithm.

This completes the proof of Theorem 5.11

As with Theorem 5.10, PCOV2, the proof of Theorem 5.11 can be modified to show that PC3
kdem

and PC3
dem cannot be approximated well by maximal-in-range mechanisms.

Theorem 5.14. No polynomial time maximal-in-range algorithm for PC3
kdem or PC3

dem has an

approximation ratio of m1/2−ε for any constant ε unless NP ⊂ P/poly.

Proof. In Theorem 3.17, we showed how Lemma 3.6 can be used to show that any algorithm for

PC2 (a special case of PC3) which achieves an approximation of at least m1/2−ε must have a range

with VC dimension at least mα for some constant α. As in the proof of Theorem 5.10, we embed the

reduction into these mα items, and design valuations for the other m−mα items such that exactly

k − k′ of them will be chosen in an optimal allocation and can be considered separately from the

mα items from the original reduction when answering dem and kdem queries.

The m−mα items not corresponding to those in the initial proof have a very simple valuation.

Player 1 values them at τ4k, and players 2 and 3 value them at 0. Player 1’s budget is increased by

(k − k′)τ4k.

If more than k − k′ of these extra items are chosen, then fewer than k′ of the original items are

chosen, and therefore players 2 and 3 do not reach their budgets. If fewer than k′ − k of these extra

items are chosen, then player 1’s budget cannot be reached. So in the optimal allocation, k′ of the

original mα items are chosen, and the other k − k′ are chosen arbitrarily from the rest. So this

algorithm will find the optimal solution, which will in turn solve the original instance.

Now, we need to see that the ability to compute demand sets of size ` for any ` is preserved.

This is easy, as we need only determine the best way to choose i items from the first mα and `− i

from the rest. This is trivial for players 2 and 3, as we simply choose i items as in Lemma 5.13, then

choose the `− i items of lowest price from the rest (as these do not affect the value).
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The contribution from the ` − i items chosen from the other m −mα to player 1’s value is the

same regardless of choice, so the ` − i of these that are chosen must be those of lowest price. If

`− i < k− k′, then player 1’s budget can not be exceeded, so simply choose the i of greatest utility.

If `− i > k− k′, then player 1’s budget is exceeded by these items alone, so the other i chosen must

be those of lowest price.

Otherwise, ` − i = k − k′. This leaves the remaining budget and item prices for the mα items

the same as in the original reduction. Therefore, the proof of Lemma 5.13 demonstrates how to

compute the solution to this part of the query. By taking the result of maximum utility over all i,

we can thus compute the query response in polynomial time.

5.5 Auctions with Many Players are Hard

In this section, we show that PCdem ≤IO ACdem, proving that capped-additive auctions with demand

queries are IONP-hard, as we have already shown that PC3
dem is IONP-hard, and PC3

dem is a special

case of PCdem.

Theorem 5.15. PCdem ≤IO ACdem

Proof. We prove Theorem 5.15 via the following reduction.

Reduction 5.1. We begin with an instance of PCdem in which player i has value vji for item j and

value cap ci, and k items are to be chosen. We produce an instance of ACdem with mn + k items

and n+m players.

The first mn items, we label with pairs (i, j) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The final k items, we

label α1, . . . , αk. For i = 1, . . . , n,

• Player i has value vji for items (i, 1), . . . , (i,m) and value 0 for all other items.

• Player i has budget ci.

Let C =
∑
i ci + 1. For j = 1, . . . ,m,

• Player n+ j has value C for items (1, j), . . . , (n, j), value nC for items α1, . . . , αk, and value

0 for all other items.

• Player n+ j has budget nC.

The idea behind Reduction 5.1 is that each item from the public project is turned into n new

items and that for each original item, either all of the first n players get a copy, or one of the last

m players receives all of the copies. Any of the last m players that does not receive all copies of his

item instead receives one of the items α1, . . . , αk. These free up k items to be given to each of the

first n players while allowing the last m players to all reach their budgets.
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Lemma 5.16. Let S1, . . . , Sm+n be an allocation to an auction produced by Reduction 5.1. If

S1, . . . , Sm+n has social welfare at least mnC, then for all but k values j from 1 to m, every item

(i, j), i = 1, . . . , n is allocated to player n+ j.

Proof. Suppose by way of contradiction that there exists an allocation with social welfare at least

mnC, yet there are k + 1 players n+ j who don’t receive all of the items (i, j). At most k of these

players receive some item αi, and thus have value nC. Thus, one of these players has value at most

(n− 1)C, as it receives at most n− 1 items with value each C, and has 0 value for all other received

items. So the social welfare from players n+ j, j = 1, . . . ,m is at most mnC−C. The social welfare

from players i = 1, . . . , n is strictly less than C by definition, for a total social welfare strictly less

than mnC − C + C = mnC, a contradiction.

Lemma 5.17. A public project has social welfare V iff the auction produced by Reduction 5.1 has

social welfare V +mnC

Proof. If the public project has social welfare V , let S be the allocation achieving that welfare. The

following allocation has social welfare V +mnC in the auction. For every i = 1, . . . , n, give player i

the items {(i, j) : j ∈ S}. For every j ∈ [m]\S, give player n+ j the items {(i, j) : i ∈ [n]}. For the

remaining k players n+ j, j ∈ S, give them each one of the items αi, i = 1, . . . , k.

The players i = 1, . . . , n have values equal to that from the public project, so they contribute V

to the social welfare. The players n+ j, j = 1, . . . ,m each have value nC, for a total contribution of

mnC. Thus, the social welfare of this allocation is V +mnC.

Now, suppose that the auction has social welfare V + mnC for some V > 0. By Lemma 5.16,

for all but k values j from 1 to m, every item (i, j), i = 1, . . . , n is allocated to player n+ j. Let S

be the set of k values j from 1 through m such that not every (i, j) is allocated to player n+ j. As

players n+ j, j = 1, . . . ,m have total value at most mnC, players 1 through n must have total value

at least V . Furthermore, player i has value at most min(
∑
j∈S v

j
i , ci), as the only items that it gets

value from that are not given to players n + j are (i, j), j ∈ S. Thus,
∑
i min(

∑
j∈S v

j
i , ci) ≥ V , so

allocation S has social welfare at least V in the original public project.

Lemma 5.18. The demand oracle in a public project can be used to compute answers to demand

queries in the auction resulting from Reduction 5.1.

Proof. To simulate a query to player i, simply query player i in the public project with price for

item j taken from the price (i, j), as these are the only items the player values. Add all other items

with negative price to arrive at the query result.

To simulate a query to player n + j, there are only a few relevant choices for value. Either the

αi of minimum price is chosen, or the ` items (i, j) of lowest price for some `. In addition to these,
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add all items of negative price to arrive at the proper query result. Clearly, one of these choices

maximizes utility and they can all be computed in polynomial time.

As we have shown a valid reduction and the ability to simulate oracle queries, Lemmas 5.16,

5.17, and 5.18 together prove Theorem 5.15.

5.6 The Relative Power of k-Demand and Demand Queries

In the previous sections, we demonstrated IONP-hardness. Here, we show how IONP reductions can

be used to better understand the relationships between problems whose hardness we have not exactly

determined. The three problems we examine are PC2
kdem, PC2

dem, and AC2
dem. For these three

problems, we do not have proofs of IONP-hardness or polynomial-time algorithms using the oracles.

We demonstrate that PC2
kdem can be reduced to the other two, and is therefore a potentially easier

problem.

5.6.1 Public Projects Self-Reduction

In this section we show a self-reduction between PC2 and itself that allows for dem queries to be

simulated by kdem queries, showing that the dem oracle is no more powerful than the kdem oracle.

Theorem 5.19. PC2
kdem ≤IO PC2

dem.

Proof. We prove Theorem 5.19 via the following reduction.

Reduction 5.2. We start with an instance of the combinatorial public projects problem with 2

capped-additive players. Player i has value vji for item j and value cap ci. Let D = 2mmax(c1, c2).

The reduction produces an instance with 2 capped-additive players, where

• Player i has value wji = vji +D for item j

• Player i has value cap di = ci + kD.

We assume without loss of generality that for all i, j, vjj ≤ ci.

Lemma 5.20. A public project has social welfare V iff the public project produced by Reduction 5.2

has social welfare at least V + 2kD.

Proof. Consider player i’s value for a set S of size k. In the original public project, the value is

min

∑
j∈S

vji , ci

 .
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In the instance produced by the reduction, player i’s value is

min

(∑
i∈S

w
(i)
j , ci

)
= min

(∑
i∈S

vji +D, ci + kD

)

= min

(∑
i∈S

vji , ci

)
+ kD.

So summing over both players, if there is a social welfare of V for set S in the original auction, there

is a social welfare of V + 2kD for S in the auction produced by Reduction 5.2.

Lemma 5.21. The kdem oracle for a public project can be used to answer dem queries for the

public project resulting from Reduction 5.2 in polynomial time.

Proof. Consider the result of a dem query for player i with prices p1, . . . , pm. There are 3 possible

cases:

Case 1: It returns a set S, |S| > k. In this case, the value of the set to player i is at least

min((k+ 1)D, ci + kD). As D > ci, (k+ 1)D > ci + kD, so this minimum is di = ci + kD regardless

of the choice of S. Thus, the query will simply return a set of size at least k + 1 of minimum price.

This is either the k + 1 items of lowest price, or all items of negative price if there are more than

k + 1 of these.

Case 2: It returns a set S, |S| < k. In this case, the value of the set to player i is at most

min((k−1)(D+ci), ci+kD). As (k−1)ci < D, this is less than min((k−1)D+D, kD+ci) = kD ≤ di.

So the budget is not reached, and the utility of S is the sum of the individual utilities of the items

in S. Thus, S consists of the at most k − 1 items of maximum positive utility.

Case 3: It returns a set S, |S| = k. In this case, player i’s utility is

min

∑
j∈S

v
(i)
j +D, bi + kD

−∑
j∈S

pj = min

∑
j∈S

v
(i)
j , bi

+ kD −
∑
j∈S

pj .

To find a set of size k maximizing this utility, we simply need a set of size k maximizing

min

∑
j∈S

vji , ci

−∑
j∈S

pj ,

which is exactly what the original kdem oracle returns for player i given prices p1, . . . , pm.

So by computing the results for each of these three cases, we can choose the one with maximum

utility and return it as the result of the dem query. The solutions to all of these cases can be

computed in polynomial time as shown above, so dem query results can be computed in polynomial

time.
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As we have a valid reduction, and the kdem oracle can simulate the dem oracle on instances

produced by the reduction, we have proven Theorem 5.19.

5.6.2 Reducing Public Projects to Auctions

In this section, we reduce from PC2 to AC2 in such a way that the kdem oracle can again be used

to simulate the dem oracle.

Theorem 5.22. PC2
kdem ≤IO AC2

dem.

Reduction 5.3. We begin with a public project in which the goal is to choose k items, and player i

has valuation function vi(S) = min(
∑
j∈S v

j
i , ci). Assume without loss of generality that ci ≥ vji for

all i, j.

Let W =
∑
i v
i
2 and C = max(c1, c2,W ) + 1. We create an instance of AC2 with the players 1,2

defined by wi(S) = min(
∑
j∈S w

j
i , dj) where:

• Player 1 has value wj1 = vj1 +mC for item j.

• Player 1 has value cap d1 = c1 +mkC.

• Player 2 has value wj2 = mC − vj2 for item j.

• Player 2 has value cap d2 = c2 +m(m− k)C −W .

We claim that the original public project has social welfare at least V iff the auction produced has

social welfare at least V +m2C −W .

Lemma 5.23. In an optimal allocation for the auction produced by Reduction 5.3, player 1 gets k

items and player 2 gets m− k items.

Proof. Suppose by way of contradiction that player 1 gets fewer than k items in an optimal allocation.

Let S be the set of items player 1 gets. Player 2 has value at most d2 = c2 +m(m− k)C −W .

Player 1 has value at most

∑
j∈S

vj +mC ≤ (k − 1)C + (k − 1)mC,
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so the social welfare is at most

d2 + (k − 1)C + (k − 1)mC = c2 +m(m− k)C −W + (k − 1)C + (k − 1)mC

= c2 +m(m− 1)C + (k − 1)C −W

≤ c2 +m(m− 1)C + (m− 1)C −W

= c2 + (m+ 1)(m− 1)C −W

= c2 + (m2 − 1)C −W

< m2C −W because C > c2.

However, any allocation for which player 1 gets k items and player 2 gets m − k items has social

welfare of at least k ·mC + (m− k)mC −
∑
j v

j
2 = m2C −W . So any allocation in which player 1

gets k items and player 2 gets m− k items has higher social welfare than one in which player 1 gets

fewer than k items.

Now, suppose by way of contradiction that player 1 receives more than k items in an optimal

allocation. Then player 1 has value at most d1 = c1 + mkC. Player 2 receives a set S of at most

m− (k + 1) items, so player 2 has value at most

∑
j∈S

wj2 =
∑
j∈S

mC − vj2

≤
∑
i∈S

mC

≤ (m− k − 1)mC

so the social welfare is at most

d1 + (m− k − 1)mC = c1 +mkC + (m− k − 1)mC

= m2C + c1 −mC

< mcC + C −mC because c1 < C

= m2C − (m− 1)C.

For m > 1, (m− 1)C > W , so

m2C − (m− 1)C < m2C −W.

This is again less than the lower bound of m2C −W for giving k items to player 1 and m− k items

to player 2, completing the proof that player 1 gets k items and player 2 gets m−k in any allocation

which maximizes the social welfare.
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Lemma 5.24. A public project has social welfare at least V iff the auction produced using Reduc-

tion 5.3 has social welfare at least V +m2C −W .

Proof. Suppose the original public project has social welfare V . Let S be a set of k items achieving

this social welfare, so that V = v1(S) + v2(S). Give S to player 1, and SC = [m]\S to player 2. In

the auction allocation described above, player 1 will have value

w1(S) = min

∑
j∈S

wj1, d1


= min

∑
j∈S

(vji +mB), c1 +mkB


= min

mkB +
∑
j∈S

vji , c1 +mkB


= min

∑
j∈S

vj1, c1

+mkB

= v1(S) +mkB
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for S and player 2 will have value

w2(SC) = min

∑
j∈SC

wj2, d2


= min

∑
j∈SC

mC − vj2, c2 +m(m− k)C −W


= min

m(m− k)C +
∑
j∈SC

−vj2, c2 +m(m− k)C −W


= min

∑
j∈SC

−vj2, c2 −W

+m(m− k)C

= min

∑
j

vj2 −W

+
∑
j∈SC

−vj2, c2 −W

+m(m− k)C

= min

∑
j

vj2 +
∑
j∈SC

−vj2

−W, c2 −W
+m(m− k)C

= min

∑
j

vj2 −
∑
j∈SC

vj2, c2

−W +m(m− k)C

= min

∑
j∈S

vj2, c2

−W +m(m− k)C

= v2(S)−W +m(m− k)C

for SC . So the social welfare of (S, SC) is

w1(S) + w2(SC) = v1(S) +mkC + v2(S)−W +m(m− k)C

= v1(S) + v2(S) +m(m− k + k)C −W

= V +m2C −W.

So if there is an allocation S with social welfare V in the original public project, there is an allocation

in the auction produced by the reduction with social welfare V +m2C −W .

Now, suppose that there is an allocation in the auction produced by the reduction with social

welfare V +m2C−W . By Lemma 5.23, we know that player 1 gets exactly k items and player 2 gets

m−k items. Let S be the set allocated to player 1 and SC = [m]\S be the set allocated to player 2.

We can assume that all items are allocated, as this will only increase the welfare. As shown above,

player 1 has value w1(S) = v1(S) +mkC and player 2 has value w2(SC) = v2(S) +m(m−k)C−W ,

for a total social welfare of w1(S) +w2(SC) = v1(S) + v2(S) +m2C−W . So if the auction resulting

from the reduction has social welfare V + m2C −W , then the set S of items allocated to player
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1 satisfies v1(S) + v2(S) = V . Therefore, the original public project has social welfare at least V ,

completing the proof.

Now we need only see that the kdem oracle on the original public project can be used to answer

oracle queries for dem in the auction resulting from the reduction in polynomial time.

Lemma 5.25. The kdem oracle an instance of PC2
kdem can be used to answer dem queries in the

PC2
dem instance resulting from Reduction 5.3 in polynomial time.

Proof. Consider the result S of the dem query. We will examine 6 cases, 3 for each player.

Case 1a: dem returns a set S for player 1, |S| > k. In this case, the value to player 1 of any set

of size k + 1 or more is at least (k + 1)mC > d1, so any set of size k + 1 of more will give the same

value. So to maximize the utility, S must be the k + 1 items of lowest price. If there are more than

k + 1 items of negative price, S is all items of negative price.

Case 1b: dem returns a set S for player 1, |S| < k. In this case, the value to player 1 of any set

of size k− 1 or less is at most (k− 1)(C+mC) = kmC−mC+kC−C < kmC < d1. So the budget

is not reached. Thus, query result is simply the at most k − 1 items of highest non-negative utility.

Case 1c: dem returns a set S for player 1, |S| = k. In this case, we have already seen that

player 1’s utility is min
(∑

j∈S v
j
1, c1

)
+ mkC, so the query result is a set of size k maximizing

min
(∑

j∈S v
j
1, c1

)
−
∑
j∈S pj , which is exactly what the kdem oracle gives us as the result for player

1 with prices p1, . . . , pk.

Case 2a: dem returns a set S for player 2, |S| > m− k. In this case,

∑
j∈S

wj2 =
∑
j∈S

(mC − vj2)

≥ (m− k + 1)mC −
∑
j∈S

vj2

≥ (m− k + 1)mC −W

> c2 + (m− k)mC −W because mC > c2

= d2,

so player 2 has value w2(S) = min(
∑
j∈S w

j
2, d2) = d2 regardless of the choice of S. So as in case

1a, S is the set of size at least m− k + 1 with lowest total price.

Case 2b: dem returns a set S for player 2, |S| < m − k. In this case, the value to player 2 of
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any set of size m− k − 1 or less is at most

∑
j∈S

wj2 = (mC − vj2)

≤
∑
j∈S

mC

≤ (m− k − 1)mC

= m(m− k)C −mC

< m(m− k)C −W

≤ c2 +m(m− k)C −W

= d2,

so the budget is not reached. Thus, as in case 1b, S is simply the at most m−k− 1 items of highest

non-negative utility.

Case 2c: dem returns a set S for player 2, |S| = m − k. We have already seen that player

2’s utility for S is min
(∑

j∈SC v
j
2, c2

)
+ m(m − k)C −W . So we need only find a set S of size k

maximizing min
(∑

j∈SC v
j
2, c2

)
−
∑
j∈S pi, as m(m− k)C −W does not depend on S. If we make

a query to kdem with prices −p1, . . . ,−pm we get a set T maximizing

min

∑
j∈T

vj2, c2

−∑
j∈T
−pj = min

∑
j∈T

vj2, c2

− ∑
j∈TC

pj +
∑
j∈[m]

pj ,

which in turn maximizes min
(∑

j∈T v
j
2, c2

)
−
∑
j∈TC pj , as

∑
i∈[m] pi does not depend on the choice

of T . Setting S = TC , we have found a set maximizing min
(∑

j∈SC v
j
2, c2

)
−
∑
i∈S pi.

So in order to solve a dem query, we simply need to compute candidates for each of the 3 cases for

each player, then choose the result of highest utility. Each candidate only requires polynomial time

to compute given access to the kdem oracle for PC2
kdem, so the entire procedure runs in polynomial

time.

Lemma 5.24 shows that we have a valid reduction, and Lemma 5.25 shows that we can simulate

the oracle after the reduction, completing the proof of Theorem 5.22.
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Chapter 6

Conclusions

We have explored the landscape of VCG-based mechanisms for combinatorial public projects and

combinatorial auctions with subadditive valuation functions. We saw that for public projects, hard-

ness to approximate with a maximal-in-range mechanism better than a
√
m ratio can follow fairly

easily from worst-case hardness. The
√
m can follow so easily from worst-case hardness that some

1-player games become harder to approximate truthfully than under pure computation.

We also saw that the same ideas can be used to show hardness of approximation for VCG-based

mechanisms for combinatorial auctions. These results do not follow quite as easily, however, as

auctions are not as amenable to the study of truthfulness as public projects. Determining the com-

plexity of VCG-based mechanisms for auctions with fractionally-subadditive and coverage valuations

remains an open problem.

Most importantly, we developed a framework for the study of mechanism design problems which

allows player computation to be taken into account. Within this framework, we were able to replicate

most of the maximal-in-range hardness results for combinatorial public projects, as well as many of

the NP-hardness results for both auctions and public projects. This allowed us to demonstrate that

these results are very robust and not just artifacts of the definitions used. How this framework can

be applied to other problems in the auction and public project domains, as well as other domains

entirely remain interesting open problems.
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