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Abstract

Particles suspended in a fluid are known to undergo variations in the local concentration in many

flow situations; essentially a compression or expansion of the particle phase. The modeling of this

behavior on a macroscopic scale requires knowledge of the effective bulk viscosity of the suspen-

sion, which has not been studied before. The bulk viscosity of a pure compressible fluid is defined

as the constant of proportionality that relates the difference between the mechanical pressure and

the thermodynamic pressure to the rate of compression. The bulk viscosity of a suspension is de-

fined analogous to that for a pure fluid as the constant of proportionality relating the deviation of

the trace of the macroscopic stress from its equilibrium value to the average rate of compression.

The compression flow drives the suspension microstructure out of equilibrium and the thermal mo-

tion of the particles tries to restore equilibrium. The Peclet number (Pe), defined as the expansion

rate made dimensionless with the Brownian time-scale, governs the departure of the microstructure

from equilibrium. The microstructural forcing in compression is monopolar for small Pe resulting

in a significantly slower spatial and temporal response of the microstructure compared to shearing

or diffusive motion.

We have determined the effective suspension bulk viscosity for all concentrations and all rates of

compression, accounting for the full thermodynamic and hydrodynamic interactions that particles

experience at the micro-scale. Current simulation techniques were enhanced to enable the dynamic

simulation of compression flows in a suspension. A ‘compression thinning’ of the suspension is

observed at small rates of compression and there is some ‘compression thickening’ at large com-

pression rates. The bulk viscosity diverges as the volume fraction nears maximum packing and is in

fact larger than the shear viscosity. Existing models for multiphase flows must therefore include the

bulk viscosity term to properly simulate variations in particle concentration.

An understanding of bulk viscosity effects in suspensions will enable the modeling of certain
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aggregation and separation behavior and lead to more accurate models for multiphase flows where

there are variations in the particle concentration, such as filtration or fluidization.



vii

Contents

Acknowledgements iii

Abstract v

List of Figures xviii

List of Tables xx

1 Introduction 1

2 Dilute Theory 9

2.1 Measurement of the bulk viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Bulk viscosity of a suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The O(φ2) correction to bulk viscosity . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Pair-evolution equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Hydrodynamic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Expressions for the bulk viscosity . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Numerical solution of the perturbed microstructure . . . . . . . . . . . . . 26

2.4.2 The O(φ2
b) bulk viscosity coefficients . . . . . . . . . . . . . . . . . . . . 28

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 The Bulk-Viscoelasticity of Suspensions 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Bulk viscosity of a suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



viii

3.3 Microstructure and bulk viscosity: No hydrodynamics . . . . . . . . . . . . . . . . 55

3.4 Temporal response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Effect of hydrodynamic interactions . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Stokesian Dynamics Simulations for Compressible Flows of Suspensions 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Suspension stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Stokesian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Review of the existing method . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Linear compressible flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 The Mobility matrix with expansion flow . . . . . . . . . . . . . . . . . . 88

4.3.4 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Accelerated Stokesian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Expansion flow in ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Equilibrium Properties via Simulation 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Suspension stress and the bulk viscosity . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Brownian Dynamics simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Scaling with volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.3 Temporal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Effect of hydrodynamic interactions . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Scaling with volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.2 Temporal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



ix

6 Simulation of Compression Flows in Suspensions 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Microstructure in compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4 Brownian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.1 Results and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Accelerated Stokesian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5.1 Results and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.6 Effect of shear on the hydrodynamic bulk viscosity . . . . . . . . . . . . . . . . . 178

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7 Concluding Remarks 213

Bibliography 217



x

List of Figures

2.1 The functions T Q
11 (solid line) and T Q

12 (dashed line) for equal-sized spheres vs the

dimensionless separation distance s. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Microstructural perturbation function f (r) for b/a = 1.00001 (dashed line) and b/a =

1000 (solid line) for |Peb| � 1. Both curves behave as 1/r for large r like the linear

response solution. For other values of b/a the perturbation f is intermediate between

these two curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Microstructural perturbation function f (r) close to the particle’s surface for full hy-

drodynamics, b/a = 1.00001 (dashed line) and for no hydrodynamics, b/a = 1000

(solid line) and Peb = −103. Both curves decay much faster than for small Peb. For

other values of b/a the perturbation f is intermediate between these two curves. . . . 34

2.4 Microstructural perturbation function f (r) at contact (r = 2) vs Peb for varying levels

of hydrodynamic interactions. All the curves have the same behavior and exhibit

a shear-thinning like behavior. The curve for no hydrodynamics corresponding to

(2.29) is shown by a solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Brownian part of the O(φ2
b) two-particle contribution to the bulk viscosity κB/η vs

b̂ − 1, for different negative values of Peb. . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Interparticle force part of the O(φ2
b) two-particle contribution to the bulk viscosity

κP/η vs b̂ − 1, for different negative values of Peb. . . . . . . . . . . . . . . . . . . 37

2.7 Rate-of-strain part of the O(φ2
b) two-particle contribution to the bulk viscosity κE/η

vs b̂ − 1, for different negative values of Peb. . . . . . . . . . . . . . . . . . . . . . 38



xi

2.8 The total O(φ2
b) two-particle contributions to the bulk viscosity (κB + κP + κE)/η vs

Peb, for varying levels of hydrodynamic interaction. Shear thickening is observed as

Peb → −∞. As b̂ → ∞ hydrodynamic interactions between particles decrease and

the total O(φ2
b) contribution goes to zero. . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Bulk viscosity for hard spheres of radius b with no hydrodynamic interactions. Only

the interparticle force comprising the hard sphere potential contributes to the bulk stress. 40

2.10 The O(φ2) two-particle contributions to the bulk viscosity for small Peb (linear re-

sponse regime) : Brownian κB/η (dashed line), interparticle-force κP/η (dot-dashed

line), rate-of-strain κE/η (dotted line) and total (κB + κP + κE)/η (solid line). Shown

here are the coefficients based on the actual particle volume fraction φ. . . . . . . . . 41

3.1 Real reduced functions for the bulk viscosity (solid curve) and shear viscosity (dashed

curve) of hard spheres with no hydrodynamic interactions. . . . . . . . . . . . . . . 72

3.2 Imaginary reduced functions for the bulk viscosity (solid curve) and shear viscosity

(dashed curve) of hard spheres with no hydrodynamic interactions. . . . . . . . . . . 73

3.3 The scaled Pressure autocorrelation function CP
NH (solid curve) for hard spheres with

no hydrodynamic interactions. The corresponding shear-stress autocorrelation func-

tion CS
NH (dashed curve) is also shown for comparison. . . . . . . . . . . . . . . . . 74

3.4 Real part of the reduced bulk viscosity function κ′r(α) as a function of the nondimen-

sional frequency α = ωb2/2D at varying levels of hydrodynamic interactions from

nearly full (b̂ − 1 = 10−6) to no hydrodynamics (b̂ ' 105). The steady expansion

limit of the bulk viscosity without hydrodynamics is κP(0) = 12ηφ2
b and with full

hydrodynamics κB(0) = 5.247ηφ2
b. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Imaginary part of the reduced bulk viscosity function κ′′r (α) as a function of the nondi-

mensional frequency α = ωb2/2D at varying levels of hydrodynamic interactions

from nearly full (b̂ − 1 = 10−6) to no hydrodynamics (b̂ ' 105). . . . . . . . . . . . 76

3.6 The elastic bulk modulus K′(α) as a function of the nondimensional frequency α =

ωb2/2D at varying levels of hydrodynamic interactions from nearly full (b̂−1 = 10−6)

to no hydrodynamics (b̂ ' 105). The high-frequency limit with full hydrodynamics

is K′(∞) ' 0.56(kT/a3)φ2
b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xii

5.1 The equilibrium osmotic pressure Π0 determined from Brownian Dynamics (open cir-

cles) and Accelerated Stokesian Dynamics — near field simulations (black squares)

nondimensionalized with nkT , as a function of the volume fraction φ. The data was

averaged over all the configurations occurring in the equilibrium simulations for each

φ for each of the simulation methods (∼ 106 realizations). The theoretical value given

by Π0 = 1 + 4φg0(2; φ) is also shown with g0(2; φ) data from Rintoul and Torquato

[1996] for the φ > 0.55. The pressure data from Speedy [1994] is also shown for the

metastable and glassy region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Pressure autocorrelation function from Brownian Dynamics with N = 100 particles

as a function of the diffusive time . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Pressure autocorrelation function from Brownian Dynamics with N = 1000 particles

as a function of the diffusive time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Comparison of the scaled pressure autocorrelation function CP
NH = CP

NHN/ (φg0(2; φ))

(5.22) from Brownian Dynamics with (a) N = 1000 and (b) N = 100 particles as a

function of the diffusive time for intermediate volume fractions. The plots illustrate

the faster decay of pressure fluctuations for N = 100 due to finite-cell-size effects.

For N = 1000 the data is aligned very closely with the analytical curve. . . . . . . . 128

5.5 Comparison of the scaled pressure autocorrelation function CP
NH = CP

NHN/ (φg0(2; φ))

(5.22) from Brownian Dynamics with (a) N = 1000 and (b) N = 100 particles as a

function of the diffusive time for high volume fractions. In both cases the time-scale

of decay increases with increasing volume fraction for φ ≥ 0.4. The data for φ = 0.05

is also shown to demonstrate that for low φ (largest cell size simulated) the simulation

data matches perfectly with the predicted theoretical curve. . . . . . . . . . . . . . 129

5.6 Stress relaxation time from data between 0 < τ ≤ 0.7 for the pressure autocorrelation

function from BD simulations with N = 1000. . . . . . . . . . . . . . . . . . . . . 130

5.7 Stress relaxation time from the data with fitted long-time tails between 0 < τ ≤ 200

for the pressure autocorrelation function from BD simulations with N = 1000. . . . 131



xiii

5.8 The scaled Pressure autocorrelation function from Brownian Dynamics CP
NH = CP

NHN/ (φg0(2; φ))

(5.22) with N = 1000 particles with fitted long-time tails for all volume fractions

simulated, as a function of the diffusive time. In plot (a) time is scaled with the bare

diffusivity of he particles and in (b) with the characteristic diffusivity D̂(φ). The latter

scaling collapses all the long-time tails onto the predicted theoretical curve. . . . . . 132

5.9 The Green-Kubo bulk viscosity κB from equilibrium Brownian Dynamics simulations

(solid diamonds), the MD simulation results of Sigurgeirsson and Heyes [2003] for

the bulk viscosity of hard sphere fluids (+ and *), and the scaled theoretical curve

(solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Shear stress autocorrelation function from Brownian Dynamics with N = 1000 parti-

cles as a function of the diffusive time. . . . . . . . . . . . . . . . . . . . . . . . . 134

5.11 The scaled Shear stress autocorrelation function CS
NH = CS

NHN/ (φg0(2; φ)) from

Brownian Dynamics with N = 1000 particles with fitted long-time tails in (b) for

all volume fractions simulated, as a function of the diffusive time. In plot (a) time

is scaled with the bare diffusivity of he particles and in (b) with the characteristic

diffusivity D̂(φ). The latter scaling collapses all the long-time tails onto the predicted

theoretical curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.12 The zero-shear viscosity ηB from equilibrium Brownian Dynamics simulations (solid

diamonds), the simulation results of Foss and Brady [2000] for ηB (open circles),

and the scaled theoretical curve (solid line). The simulation data was obtained from

equilibrium simulations with a total of ∼ 2 × 107 time-steps for each φ. . . . . . . . 136

5.13 Pressure autocorrelation function from Stokesian Dynamics simulations with N = 27

particles as a function of the diffusive time. For φ > 0.45 the decay is exponential as

the simulation cell size becomes small enough that the periodic boundary conditions

have the effect of diffusion in a finite box. . . . . . . . . . . . . . . . . . . . . . . . 137



xiv

5.14 Pressure autocorrelation function from Accelerated Stokesian Dynamics — near field

simulations with N = 1000 particles as a function of the diffusive time. For φ > 0.52,

CP
H decays much more slowly because the particles are in the glassy regime. At long

times the finite size of the simulation cell causes the pressure autocorrelation to decay

exponentially as the periodic boundary conditions simulate diffusion of the particles

in a finite box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.15 Scaled pressure autocorrelation function from ASDB-nf simulations CP
H = CP

HNDs
0(φ)/φg0(2; φ)

with N = 1000 particles as a function of the diffusive time, for (a) 0.05 ≤ φ ≤ 0.35

and (b) 0.35 ≤ φ ≤ 0.52. For the lower volume fractions the rate of decay decreases

as φ increases while for φ ≥ 0.35 the rate of decay increases with φ. The analytical

curve for no hydrodynamics is shown by the black curve and has the same long-time

behavior as the simulation data. Also shown is the zero-time limit from scaled dilute

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.16 Comparison of the scaled pressure autocorrelation function from ASDB-nf simula-

tions CP
H = CP

HNDs
0(φ)/φg0(2; φ) with the same cell size given by (a) L = 20.31b

and (b) L = 34.73b but for different volume fractions. The decrease in the rate of

decay with increasing φ for φ < 0.35 is evident in both plots, indicating that it is not

a finite-size effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.17 Stress relaxation time from data between 0 < τ ≤ 1 for the pressure autocorrelation

function from ASDB-nf simulations with N = 1000. . . . . . . . . . . . . . . . . . 141

5.18 Stress relaxation time from data between 0 < τ ≤ 200 with fitted long-time tails for

the pressure autocorrelation function from ASDB-nf simulations with N = 1000. . . 142

5.19 Scaled Pressure autocorrelation function from ASDB-nf simulations CP
H = CP

HNDs
0(φ)/φg0(2; φ)

with N = 1000 particles for all φ simulated, as a function of (a) the diffusive time and

(b) diffusive time scaled with the stress relaxation time-scale. The long-time tails

were obtained by fitting the analytical curve for no hydrodynamics (also shown) with

the corresponding temporal scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.20 The Green-Kubo bulk viscosity κB as a function of volume fraction from equilibrium

ASDB-nf simulations (solid squares) with N = 1000, SD simulations (shaded circles)

with N = 27, and the scaled dilute theory (solid line). . . . . . . . . . . . . . . . . 144



xv

5.21 The high-frequency bulk modulus as a function of volume fraction from equilibrium

ASDB-nf simulations (solid squares) with N = 1000, SD simulations (shaded circles)

with N = 27, and the scaled dilute theory (solid line). . . . . . . . . . . . . . . . . 145

5.22 Shear stress autocorrelation function from Accelerated Stokesian Dynamics — near

field simulations with N = 1000 particles as a function of the diffusive time. For

φ > 0.55 the system is in a glassy state so the shear stress autocorrelation decays

much more slowly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.23 The scaled shear stress autocorrelation function from ASDB-nf simulations with

N = 1000 particles as a function of the diffusive time. The scaling in (a) is with

the short-time self-diffusivity CS
H = CS

HNDs
0(φ)/ (φg0(2; φ)), and in (b) with the high-

frequency shear viscosity CS
H = CS

HN/
(
φg0(2; φ)η′∞(φ)

)
. The analytical curve for no

hydrodynamic interactions is also shown and has the same long-time behavior as the

simulation data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.24 The scaled shear stress autocorrelation function from ASDB-nf simulations with N =

1000 as a function of (a) the diffusive time, and (b) the diffusive time scaled with

the stress relaxation time scale. The shear stress autocorrelation is scaled with the

high-frequency shear viscosity CS
H = CS

HN/
(
φg0(2; φ)η′∞(φ)

)
. The long-time tails are

fitted with the analytical curve with no hydrodynamic interactions. . . . . . . . . . 148

5.25 The Green-Kubo shear viscosity ηB as a function of volume fraction from equilibrium

ASDB-nf simulations (solid squares) with N = 1000, Brownian Dynamics simula-

tions (shaded diamonds) with N = 1000, and the scaled dilute theory (solid line).

Also shown are the simulation results of Foss and Brady [1999] (empty circles), ex-

perimental results of Segrè et al. [1995], and experimental results of Cheng et al.

[2002]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.26 The high-frequency bulk viscosity due to interactions between particles as a function

of volume fraction from equilibrium ASDB-nf simulations with N = 1000, and the

scaled dilute theory (solid line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



xvi

5.27 The total contribution to the bulk viscosity due to interactions between particles as a

function of volume fraction from equilibrium ASDB-nf simulations with N = 1000.

Shown here is the direct hydrodynamic contribution (solid squares), the Green-Kubo

Brownian contribution (solid squares), and their sum (shaded circles). . . . . . . . . 151

6.1 Planar plots of the pair distribution function g(r) obtained from Brownian Dynamics

simulations for φ = 0.2 and φ = 0.45 at compression rates of Pe = −1 and Pe = −10.

Lighter regions indicate accumulation of particles. . . . . . . . . . . . . . . . . . . 181

6.2 Radial pair distribution in compression for φ = 0.2 obtained from Brownian Dynam-

ics with N = 1000, for rates Pe = −1 and −10. . . . . . . . . . . . . . . . . . . . . 182

6.3 Radial pair distribution in compression for φ = 0.2 obtained from Accelerated Stoke-

sian Dynamics with N = 100, for rates Pe = −1 and −10. . . . . . . . . . . . . . . . 183

6.4 Histogram of scaled particle hydrodynamic pressure moments 〈S H〉/Pe obtained from

Accelerated Stokesian Dynamics with N = 100, 200 distinct runs, for rates Pe = −1

(a) and −1000 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.5 Two examples of particles with high hydrodynamic pressure moment (〈S H〉/Pe > 10)

forming clusters distributed randomly in space at high rate (Pe = −1000), obtained

from Accelerated Stokesian Dynamics with N = 100. . . . . . . . . . . . . . . . . 185

6.6 Nondimensional interparticle-force contribution to the pressure in compression vs

Péclet number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55.

The open circles denote the equilibrium particle contribution to the osmotic pressure. 186

6.7 The excess interparticle-force contribution to the pressure in compression normalized

with φg0(2; φ) vs Péclet number, from Brownian Dynamics with N = 1000 for φ =

0.1 to φ = 0.55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.8 The nondimensional hard sphere bulk viscosity κP = κP/η vs Péclet number, from

Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55. . . . . . . . . . . . . . 188

6.9 The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)

vs Péclet number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55. 189



xvii

6.10 The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)

and scaled with the time-scale for stress relaxation given by D̂NH(φ) vs the scaled

Péclet number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55. . . 190

6.11 The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)

and scaled with the time-scale for stress relaxation given by D̂NH(φ) vs the scaled

Péclet number, from Brownian Dynamics with N = 100 for φ = 0.1 to φ = 0.55. . . . 191

6.12 Nondimensional Brownian contribution to the pressure in compression vs Péclet

number, from Accelerated Stokesian Dynamics — near field with N = 100 for

φ = 0.1 to φ = 0.5. The open circles denote the equilibrium particle contribution

to the osmotic pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.13 The nondimensional Brownian bulk viscosity contribution κB = κB/η vs Péclet num-

ber, from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to

φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.14 The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized

with φ2g0(2; φ)/Ds
0(φ) vs Péclet number, from Accelerated Stokesian Dynamics —

near field with N = 100 for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . 194

6.15 The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized

with φ2g0(2; φ)/Ds
0(φ) and scaled with the time-scale for stress relaxation given by

D̂H(φ) vs the scaled Péclet number, from Accelerated Stokesian Dynamics — near

field with N = 100 for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . 195

6.16 The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized

with φ2g0(2; φ)/Ds
0(φ) and scaled with the time-scale for stress relaxation given by

D̂H(φ) vs the scaled Péclet number, from conventional Stokesian Dynamics with N =

27 for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.17 The nondimensional hydrodynamic bulk viscosity contribution κH = κH/η vs Péclet

number, from Accelerated Stokesian Dynamics — near field with N = 100 for φ =

0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.18 The normalized excess hydrodynamic bulk viscosity contribution
(
κH(Pe) − κH(0)

)
/κH(0)

scaled with g0(2; φ) vs Péclet number, from Accelerated Stokesian Dynamics — near

field with N = 100 for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . 198



xviii

6.19 The normalized excess hydrodynamic bulk viscosity contribution
(
κH(Pe) − κH(0)

)
/κH(0)

scaled with g0(2; φ) and the time-scale for stress relaxation given by D̂H(φ) vs the

scaled Péclet number, from Accelerated Stokesian Dynamics — near field with N =

100 for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.20 The normalized excess hydrodynamic bulk viscosity contribution
(
κH(Pe) − κH(0)

)
/κH(0)

scaled with g0(2; φ) and the time-scale for stress relaxation given by D̂H(φ) vs the

scaled Péclet number, from conventional Stokesian Dynamics with N = 27 for φ =

0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.21 The total bulk viscosity contribution due to particle interactions κtot =
(
κH + κB

)
/η

vs Péclet number, from Accelerated Stokesian Dynamics — near field with N = 100

for φ = 0.1 to φ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.22 The total bulk viscosity at equilibrium and in compression with Pe = −1000, vs the

volume fraction φ. In both cases the scaling with φ is the same and the difference in

magnitude is not very significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.23 The hydrodynamic contribution to the bulk viscosity, also known as the high-frequency

bulk viscosity (κ′∞), for a sheared suspension vs the Péclet number of shearing. . . . 203

6.24 The effect of shearing on the high-frequency bulk viscosity (κ′∞) scaled with the effect

of shearing on the high-frequency dynamic viscosity (η′∞) vs the volume fraction φ. . 204

7.1 The suspending fluid is squeezed out as the filters enclosing a suspension are pushed

closer causing compression of the particle phase as they are pushed closer to each other.216



xix

List of Tables

5.1 Equilibrium Osmotic Pressure from Brownian Dynamics simulations. . . . . . . . . 152

5.2 Equilibrium Osmotic Pressure from ASDB-nf simulations. . . . . . . . . . . . . . . 153

5.3 Relaxation time-scale for the shear stress autocorrelation function from Brownian

Dynamics simulations with N = 1000 particles. . . . . . . . . . . . . . . . . . . . . 153

5.4 Relaxation time-scale for pressure autocorrelation function from Brownian Dynamics

simulations with N = 1000 particles. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5 Relaxation time-scale for pressure autocorrelation function from Accelerated Stoke-

sian Dynamics — near field simulations with N = 1000 particles. . . . . . . . . . . 155

5.6 Equilibrium (Green-Kubo) bulk viscosity for hard spheres from Brownian Dynamics

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7 Equilibrium (Green-Kubo) bulk viscosity for hard spheres with hydrodynamic inter-

actions from ASDB-nf simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.8 Equilibrium (Green-Kubo) bulk viscosity for hard spheres with hydrodynamic inter-

actions from conventional Stokesian Dynamics simulations. . . . . . . . . . . . . . 158

5.9 High-frequency bulk modulus for hard spheres with hydrodynamic interactions from

ASDB-nf simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.10 High-frequency bulk modulus for hard spheres with hydrodynamic interactions from

conventional Stokesian Dynamics simulations. . . . . . . . . . . . . . . . . . . . . 160

5.11 High-frequency bulk viscosity for hard spheres with hydrodynamic interactions from

ASDB-nf simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.12 Equilibrium (Green-Kubo) shear viscosity for hard spheres from Brownian Dynamics

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xx

5.13 Equilibrium (Green-Kubo) shear viscosity for hard spheres with hydrodynamic inter-

actions from ASDB-nf simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 The nondimensional particle-phase contribution to the osmotic pressure vs Pèclet

number, from Brownian Dynamics simulations with N = 1000, and 200 realizations

each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.2 Error estimates (±) for the nondimensional particle-phase contribution to the osmotic

pressure vs Pèclet number, from Brownian Dynamics simulations with N = 1000,

and 200 realizations each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.3 The nondimensional hard sphere bulk viscosity vs Pèclet number, from Brownian

Dynamics simulations with N = 1000, and 200 realizations each. . . . . . . . . . . . 207

6.4 The nondimensional particle-phase contribution to the osmotic pressure vs Pèclet

number, from Accelerated Stokesian Dynamics — near field simulations with N =

100, and 200 realizations each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.5 Error estimates (±) for the nondimensional particle-phase contribution to the osmotic

pressure vs Pèclet number, from Accelerated Stokesian Dynamics — near field sim-

ulations with N = 100, and 200 realizations each. . . . . . . . . . . . . . . . . . . . 209

6.6 The nondimensional Brownian contribution to the bulk viscosity with hydrodynamic

interactions vs Pèclet number, from Accelerated Stokesian Dynamics — near field

simulations with N = 100, and 200 realizations each. . . . . . . . . . . . . . . . . . 210

6.7 The nondimensional Hydrodynamic bulk viscosity contribution κH = κH/η vs Pèclet

number, from Accelerated Stokesian Dynamics — near field simulations with N =

100, and 200 realizations each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.8 Error estimates (±) for the nondimensional Hydrodynamic bulk viscosity contribution

κH = κH/η vs Pèclet number, from Accelerated Stokesian Dynamics — near field

simulations with N = 100, and 200 realizations each. . . . . . . . . . . . . . . . . . 212



1

Chapter 1

Introduction

The stress in a material undergoing deformation can be thought of as consisting of a thermodynamic

part, caused by inter-molecular forces that act to restore the original configuration of molecules in

the material, and a viscous part, due to the energy spent as the molecules relax into a new configura-

tion. In the case of an elastic solid, only the thermodynamic stress is present and it can be related to

the deformation with the help of a Young’s modulus for shear deformation and a Bulk modulus for

volume change. At the other extreme are fluids, which do not exhibit elastic behavior, and therefore

the stress is a function only of the rate of deformation of the fluid, in addition to the thermodynamic

pressure. The stress in a pure isotropic fluid can be related to the rate of deformation with the help of

two distinct coefficients of viscosity, or the transport coefficients. The shear viscosity η, which gives

the stress in response to incompressible shearing flow, is the most commonly encountered transport

coefficient. The bulk viscosity κ, also known as the second or expansion viscosity, is a measure

of the resistance of a fluid to change in volume, in addition to the thermodynamic resistance. For

example, when a fluid is expanding, the molecules are transformed into a less dense configuration.

The force required, and therefore the energy spent, in causing the change in density, is given by

the bulk viscosity. Specifically, the bulk viscosity relates the deviation of the normal stress from its

equilibrium value to the rate of expansion or compression of the fluid.

The transport coefficients are vital for understanding the flow behavior of fluids. The bulk

viscosity contribution to the fluid stress is significant only when there is a measurable unsteady

volume-change in the fluid, given that it has a nonzero bulk viscosity coefficient. In most com-

mon applications, the effects of bulk viscosity are not important and consequently it is the least

studied transport coefficient. However, the bulk viscosity of a fluid can be important when there
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is compression or expansion, such as in the absorption and dispersion of sound waves and indeed,

experimental techniques to measure the bulk viscosity are often based on acoustic absorption mea-

surements. The difference between the net absorption of acoustic energy and that predicted by

classical theories based on thermal conductivity and shear viscosity gives the contribution due to

bulk viscosity [Keizer 1987; Malbrunot et al. 1983].

Theoretical approaches for the calculation of bulk viscosity have made use of kinetic theory,

statistical mechanics [Kirkwood et al. 1949] and molecular dynamics [Hoover et al. 1980]. All

transport coefficients have been calculated for hard-sphere fluids by Sigurgeirsson and Heyes [2003]

using analytical as well as numerical methods. The bulk viscosity can be calculated directly from

the average decay of pressure variations in a molecular fluid by employing Green-Kubo relations

[Green 1952]. Another approach is to use the definition of the bulk viscosity given by the linear

thermodynamic force-flux relation [Eu 1998; Rah and Eu 1999]:

∆ ≡ 1
3 I : σ + pth = κ∇ · u, (1.1)

where ∆ is the excess normal stress, σ is the stress in the fluid, pth is the thermodynamic pressure,

and ∇ · u is the expansion rate of the fluid. The excess normal stress is driven by compression or

expansion of the fluid as shown in (1.1) and the bulk viscosity κ is the constant of proportional-

ity relating the two. In order to measure the bulk viscosity, the molecular fluid is subjected to a

compressional/dilational disturbance such as a sound wave, which causes a density variation. The

associated pressure variation is measured, and, along with knowledge of the equilibrium equation

of state of the fluid, the bulk viscosity can be calculated from (1.1).

Now consider a system of neutrally buoyant particles suspended in a fluid. The interactions

between the particles are governed by thermal, interparticle and hydrodynamic forces instead of

inter-molecular forces. The equilibrium normal stress in the suspension is the sum of the osmotic

pressure of the suspended particles and the fluid pressure. Let the particle microstructure — the

distribution of particles in space and time — be subjected to a uniform compression or expansion.

The resulting movement of particles will cause a disturbance flow in the fluid and there will be a

corresponding change in the overall stress in the suspension determined by the thermodynamic and

hydrodynamic interactions among the particles. The change in bulk normal stress as a result of the
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expansion gives rise to the bulk viscosity effect. The effective bulk viscosity for the suspension

can therefore be calculated analogously to that of a hard-sphere fluid, by relating the deviation of

the normal stress from its equilibrium value to the rate of compression/expansion of the particle

microstructure.

One may wonder why the bulk viscosity should be important, when in most practical appli-

cations of suspensions both the fluid and the suspended particles are incompressible. Although the

fluid and the particles may be not be compressible locally, when considered as a phase, both the fluid

and particle phases are compressible. The particles and fluid may separate from each other in some

regions and come closer in others, leading to local variations in particle volume fraction. When the

particles are forced closer or pulled apart, the fluid between them gets squeezed out or in, respec-

tively, and this squeezing motion generates an isotropic stress proportional to the rate of expansion,

i.e., a bulk viscosity effect. Furthermore, the bulk viscosity would be important in the construc-

tion of two-phase flow equations for modeling certain suspension flows. For example, in filtration

or compaction of a suspension the consolidation of the particle phase generates such a squeezing

(or compressive) flow, which contributes to the bulk stress. Mathematically, a term proportional

to ∇ · up, where up is the particle phase velocity, must be added to the momentum balance. The

coefficient of this term will be the effective bulk viscosity. The particle-phase momentum balance

combined with the particle-phase continuity equation gives a diffusion equation for the macroscopic

particle concentration [Nott and Brady 1994; Fang et al. 2002]. The addition of the bulk viscosity

term to the bulk stress will add a non-diffusive term to the particle concentration equation thereby

changing its mathematical type, and the temporal evolution of the concentration profile will now

be different. The bulk viscosity term has important implication for modeling unsteady flows in

suspensions, especially when there are rapid variations in particle concentration.

Bulk viscosity effects have been observed in many particulate systems where particles interact

via inertial or other inter-particle forces. Kinetic-theory based models that are used to describe the

rapid flow of granular media contain a contribution from the bulk viscosity, although the particles

and fluid making up the fluid are individually incompressible [Lun et al. 1984; Gidaspow 1994].

There are also well established expressions for the bulk viscosity of molecular fluids [Sigurgeirsson

and Heyes 2003]. Why should the situation be any different in a viscous suspension? There are

inter-particle interactions between particles in a suspension just like in granular flows or molecular
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fluids, except that the forces are transmitted via viscous fluid flows. In the colloidal regime the

microscale expressions for the shear viscosity terms are almost identical to those for molecular

fluids. Therefore, we expect that there should also be a contribution to the bulk viscosity in a

suspension. The only previous study on the bulk viscosity of two-phase materials that we are aware

of was done by G. I. Taylor, in which he determined the bulk viscosity of a dilute suspension

of bubbles expanding in an incompressible fluid by using energy dissipation arguments [Taylor

1954a,b]. We will show that the same result can be derived from mechanical arguments using the

framework we develop for determining the bulk viscosity of hard sphere suspensions. The focus

of the current study however, is on the complementary problem of rigid particles in a compressible

fluid.

From a theoretical perspective the bulk viscosity is the third kind of viscosity characterizing

the stress in a suspension. The suspension shear viscosity, which has been studied extensively,

corresponds to a quadrupolar distortion of the microstructure (configuration of particles at the micro-

scale) proportional to the deviatoric part of the rate-of-strain tensor. The ‘microviscosity’ which

gives the resistance to a particle moving in a suspension and hindered by the surrounding particles

(equivalent to the self-diffusion coefficient) [Khair and Brady 2006] has a dipolar forcing due to the

distortion of the microstructure along the line of motion. The bulk viscosity, as we shall show, has

a monopolar forcing because the disturbance in the microstructure is isotropic and proportional to

the trace of the rate-of-strain tensor. Thus the computation of the bulk viscosity completes the set of

possible rheological problems. Furthermore, a new hydrodynamic interaction function is needed for

computing the bulk viscosity and it has been determined in a related work [Khair et al. 2006], which

finally completes the set of hydrodynamic resistance and mobility functions for spherical particles.

The main purpose of this work is to extend the existing theoretical framework for computing the

transport properties of suspensions to include the effective bulk viscosity, and to determine the bulk

viscosity for all concentrations and all rates of compression/expansion of the particle phase.

We begin with determination of the effective bulk viscosity in the dilute limit for all rates of

expansion and compression in Chapter 2. The primary effect of particles suspended in an expand-

ing fluid is an O(φ) (where φ is the volume fraction of particles) contribution to the bulk viscosity

arising from the stress due to a disturbance flow caused by the rigid boundary at the surface of

the particle. The particle surface cannot expand with the surrounding fluid so there must be a dis-
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turbance flow to satisfy the no-slip condition at the surface. The disturbance velocity satisfies the

incompressible Stokes equations and therefore the correction to the bulk viscosity is proportional to

the fluid shear viscosity η and may not be negligible even for very dilute suspensions, depending on

the magnitude of the fluid’s bulk viscosity κ in comparison to η. In order to compute the correction

to the bulk viscosity due to interactions between particles it is necessary to determine the suspension

microstructure and how it is influenced by the imposed expansion flow. The particle microstructure

evolves from a competition between the imposed flow which drives the microstructure away from

its equilibrium state and the restorative Brownian motion which acts to restore equilibrium. These

competing effects are influenced by hydrodynamic interactions between the particles. The relative

importance of the expansion flow to the restorative Brownian motion is given by the Péclet num-

ber (Pe) which is defined as the bulk rate of expansion nondimensionalized with the time-scale of

Brownian motion. The Péclet number can be positive or negative corresponding to expansion or

contraction flow, respectively. For dilute suspensions the disturbance in the microstructure was ob-

tained by solving the pair Smoluchowski equation to determine the pair-distribution function g(r, t),

where r is the distance between the centers of two particles. The pair distribution function is normal-

ized with the time-dependent average particle number density n(t) so that the spatial perturbation in

the microstructure can be isolated. For small Péclet numbers the disturbance to the microstructure

was found to decay radially as 1/r as r → ∞, which can be attributed to the monopolar nature of

the forcing in expansion flow. The two-particle stresses were then averaged over the microstructure

to get the suspension bulk stress, and explicit expressions were derived for the bulk viscosity.

In Chapter 3 we study the time-dependent behavior of the suspension microstructure and the

bulk stress in an expansion flow, and determine the bulk-viscoelastic rheology of suspensions. The

monopolar nature of the forcing in expansion flow is also related to the temporal response of the

suspension, and manifests as a slow t−3/2 long-time decay of the Particle-pressure autocorrelation

function at equilibrium. This connection was established by studying the bulk-viscoelasticity of the

suspension in the linear-response regime by considering a rate of expansion that is uniform in space

but oscillatory in time. The Péclet number is now based on the amplitude of the oscillatory expan-

sion flow. The microstructural response is purely viscous in the zero-frequency limit corresponding

to steady expansion/contraction. The elastic response grows as the oscillation frequency ω increases

from 0 and as ω→ ∞ both the viscous and elastic response decay to zero. At very high frequencies
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the microstructure is barely perturbed because of the small amplitude of oscillation and so there is

no Brownian contribution to the bulk viscosity; only the direct hydrodynamic contribution remains.

At high particle concentrations the many-body interactions between particles become important

and lubrication interactions between nearly touching particles comprise the dominant contribution

to the bulk stress, necessitating the use of numerical simulations to calculate the total stress in the

suspension. Chapter 4 contains a description of how existing methods for the dynamic simulation of

suspensions were modified to allow expansion and compression of the particle phase. The Stokesian

Dynamics (SD) technique developed by Phillips et al. [1988]; Brady and Bossis [1988] has been

successfully employed for simulation of colloidal suspension for various flow regimes. However,

so far it has been restricted to simulation of incompressible flows only. In order to compute the bulk

viscosity from simulations the SD technique was adapted to allow for a uniform linear expansion

flow and to compute the trace of the stress tensor for determining the particle-phase pressure. The

Accelerated Stokesian Dynamics (ASD) [Sierou and Brady 2001] and the ASDB-nf [Banchio and

Brady 2003] techniques developed more recently to speed up the simulations were also adapted

for expansion flows. The updated simulation methods have enabled the study of a larger variety

of suspension flows where the particle phase may undergo expansion or compression either by

changing the number density of particle, or having the particles themselves expand or contract in

addition to any other imposed forcing, with full hydrodynamic interactions between particles. In

order to study the effect of hydrodynamic interactions on the microstructure Brownian Dynamics

(SD) simulations were also performed for comparison.

In Chapter 5 we present our results for the equilibrium properties of Brownian suspensions for a

wide range of concentrations. Numerical simulations of Brownian suspensions at equilibrium were

performed using both BD and ASD to calculate the pressure autocorrelation function. In the absence

of hydrodynamic interactions, scaling the results with the equilibrium pair-distribution function at

contact g(2; φ) collapses all the simulation data onto a single curve. The scaled pressure autocor-

relation data from our simulations matches very well with the analytical theory, thereby validating

the theoretical work. However, the temporal decay is so slow that the data gets reduced to just noise

and is unable to capture the t−3/2 decay. Therefore it is important to know from theory how the

long-time tails decay so that we can integrate the pressure autocorrelation function correctly to find

the bulk viscosity. The rate of decay of the stress autocorrelation functions was found to scale as the
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single particle Stokes-Einstein-Sutherland diffusivity at small concentrations and with the long-time

self-diffusivity at volume fractions greater than 35%. The long-time self-diffusivity affects the rate

of stress relaxation only when there is some caging of the particles at high concentrations. Knowing

the scaling of the pressure autocorrelation function the dilute theory results for the bulk viscosity

can be extrapolated for all concentrations simply by multiplying with g(2; φ). In the presence of hy-

drodynamic interactions the self-diffusivity of the particles also changes with concentration and an

additional scaling with the short-time self diffusivity is introduced. The direct hydrodynamic con-

tribution to the bulk viscosity was also computed by averaging over a large number of equilibrium

particle configurations.

Dynamic simulations of compression flow in suspensions were performed for a range of Péclet

number and the methodology and results are presented in Chapter 6. Compression of the particle

phase at high Pe causes the formation of an isotropic boundary layer of size 1/Pe around the par-

ticles in which there is an O(Pe) accumulation of particles as they are pushed towards each other

and the compression flow is balanced by Brownian diffusion of the particles. Lubrication forces

between particles in the boundary layer constitute the dominant contribution to the stress causing a

compression ‘thickening’ of the bulk viscosity at high Pe. Simulation of a compression flow implies

that the volume fraction of particles keeps changing with time, making it non-trivial to gather data

for any given φ from the numerical data. To overcome this problem a large number of simulations

were performed for each value of Pe and the rheological properties were averaged over all the runs

and also over some neighboring time steps in order to get good statistics. Further, the microstruc-

ture may not have reached steady state at the time of interest even though we start the simulation

at very small volume fractions. We found that steady state was reached at high Péclet numbers

while at lower values of Pe a steady state could not be reached. With the appropriate scaling all

the simulation data collapsed on the dilute theory prediction, especially in the large Pe limit, thus

providing valuable insight into the physical processes that determine the microstructure and stress

in compression flow of concentrated suspensions. In most practical situations the suspension would

also undergo shearing motion in addition compression or expansion. Hence we also studied the bulk

viscosity in a steadily sheared suspension.

Finally we conclude in Chapter 7 with comments on the importance and validity of our results

and possible experimental setups that could be used to measure the bulk viscosity. Macroscopic
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equations for the modeling of suspension flows with the bulk viscosity term are also derived and

used to simulate simple one-dimensional compression of a suspension to demonstrate bulk viscosity

effects in a macroscopic flow. The bulk viscosity adds an additional diffusive term to the momentum

balance for the particle phase, and therefore affects the temporal evolution of the concentration

profile on a macroscopic scale.
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Chapter 2

Dilute Theory

Understanding the rheological properties of suspensions is a vital step in designing efficient equip-

ment for numerous industrial applications and also for modeling many important natural phenomena

which involve fluid-particle flows. Although extensive research has been carried out on the macro-

scopic rheological properties of suspensions [Batchelor 1974; Phillips et al. 1988; Russel et al.

1989], the effective bulk viscosity has largely been neglected, probably because of the non-obvious

way in which such effects are manifested. For a pure fluid, the bulk viscosity κ, also known as

the second or expansion viscosity, relates the deviation of the normal stress from its equilibrium

value to the rate of expansion or compression of the fluid. The bulk viscosity measures the energy

dissipated in causing a change in the fluid’s density. For a suspension the effective bulk viscosity

is defined analogously to that of a pure fluid as the constant of proportionality relating the devia-

tion of the trace of the average macroscopic stress from its equilibrium value to the average rate of

expansion. The effective bulk viscosity is then a measure of the energy dissipated in changing the

number density (or volume fraction) of the particulate phase. Although the fluid and the particles

may be not be compressible individually, when considered as a phase, both the fluid and particle

phases are compressible. When the particles are forced closer or pulled apart, the fluid between

them gets squeezed out or in, respectively, and this squeezing motion generates an isotropic stress

proportional to the rate of expansion, i.e., a bulk viscosity effect. As a consequence, the bulk vis-

cosity may play an important role in the behavior of suspensions, especially when there is a rapid

and sharp variation in particle concentration — shocks in particle volume fraction — which occur

frequently in suspension flows.

The effective macroscopic properties, e.g., viscosity, sedimentation rates, diffusion coefficients,
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etc., of suspensions, have been studied extensively over a period of several decades. A detailed pro-

gram for relating the macroscopic properties of two-phase materials to the underlying microscale

physics when fluid mechanical interactions are important was laid out by G. K. Batchelor and

coworkers [Batchelor 1974]. They established the averaging procedure to pass from the microscale

to the macroscale [Batchelor 1970], determined the relevant particle interactions at the microscale,

e.g., for the shear viscosity [Batchelor and Green 1972a], and showed how the microstructure of

the suspension — the spatial and temporal distribution of particles — must be determined as part

of the problem in order to compute the averaged properties [Batchelor and Green 1972b; Batchelor

1977]. Although most of Batchelor’s results were limited to dilute suspensions, the procedure laid

out by him can be applied to all concentrations. Recent advances in computational techniques have

enabled the extension of this method to higher particle concentrations, even all the way up to close

packing [Brady and Bossis 1988; Phillips et al. 1988; Ladd 1990; Sierou and Brady 2001].

We followed the procedure laid out by Batchelor to determine the effective bulk viscosity of a

suspension of rigid spherical particles. Prior to this work, the only study of the bulk viscosity of

two-phase materials appears to be that of G. I. Taylor, in which he determined the bulk viscosity of

a dilute suspension of bubbles expanding in an incompressible fluid by using energy dissipation ar-

guments [Taylor 1954a,b]. We were able to show that our approach of computing the bulk viscosity

directly from the average macroscopic stress leads to the same result as Taylor’s for bubbles. The

focus of our study is, however, on the complementary problem of rigid particles in a compressible

fluid.

This chapter is organized as follows. In §2.1 we recall the definition of the bulk viscosity for a

pure compressible fluid as the constant relating the difference between the mechanical and thermo-

dynamic pressures to the rate of expansion. We then consider how the presence of particles in the

fluid affects the bulk viscosity. In §2.2 the effective bulk viscosity for a suspension is defined from

mechanical stress considerations. The expressions derived here can in principle be used to calculate

the bulk viscosity for all concentrations. In §2.3 we compute the O(φ2) correction to bulk viscosity

which arises from particle-pair interactions. Equations are derived to describe the pair-distribution

function for identical Brownian particles in a uniform expansion flow. The particles interact via an

excluded-volume interparticle potential whose range can be varied to study the influence of hydro-

dynamic interactions in a simple, systematic manner. The equations are solved numerically in §2.4
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and the resulting average stresses due to pair-interactions are used to determine the bulk viscosity.

Concluding remarks are given in §2.5.

2.1 Measurement of the bulk viscosity

The stress in a pure fluid is comprised of the thermodynamic pressure and the mechanical stress

originating from deformation of the fluid. For a Newtonian fluid, the mechanical stress is a linear

function of the rate of deformation and the total fluid stress can be written as

σ = −pthI + 2ηe +
(
κ − 2

3η
)

(∇ · u) I, (2.1)

where pth is the thermodynamic pressure, I is the isotropic tensor, η is the shear viscosity and

e = 1
2

[
∇u + (∇u)†

]
is the rate-of-strain tensor with u being the fluid velocity. When the fluid is

at rest, the stress is isotropic and equal to the thermodynamic pressure. The bulk viscosity κ is the

constant of proportionality which relates the difference between the mechanical pressure, defined

as the mean mechanical stress, and the thermodynamic pressure to the rate of volume expansion,

∇ · u, of a fluid undergoing deformation:

pmech ≡ −
1
3 I : σ = pth − κ∇ · u. (2.2)

If the fluid is incompressible, ∇ · u = 0, the mechanical and thermodynamic pressures are the

same, and the mechanical pressure is known to within an arbitrary constant. The bulk viscosity is a

measure of dissipation of energy in the fluid upon expansion.

Although experimental measurements of the bulk viscosity of a pure fluid are often made by

studying the absorption of acoustic waves in which there is a series of compressions and expansions,

one could have an experiment in which there is only expansion of the fluid at a given rate e (= ∇ · u),

and measure the mechanical pressure. The thermodynamic pressure of the fluid can be calculated

from its equation of state and the difference between the mechanical and thermodynamic pressures

gives the bulk viscosity times the rate of expansion.

A similar experiment can be carried out for measuring the bulk viscosity of a suspension in

which the fluid expands at a constant rate causing the particles also to move apart and the suspen-



12

sion to expand. Since the particles do not expand at the same rate as the fluid, they will create a

disturbance flow and thus dissipate more energy than the fluid would alone. The excess dissipation

is manifested as a change in the effective bulk viscosity of the material. The difference between the

mechanical pressure in the system and the equilibrium pressure gives the effective bulk viscosity

times the average rate of expansion of the suspension. We follow this approach to determine the

effective bulk viscosity.

While the above procedure completely defines and determines the bulk viscosity, its application

to suspension flows requires some comment. First, one could imagine carrying out just such an ex-

periment as outlined above — expand uniformly a fluid and measure the mechanical pressure, then

repeat the process with suspended particles. The difference between the two measurements gives

the particles’ contribution to the bulk viscosity. However, in many applications the particles and

fluid are incompressible and therefore carrying out such a procedure could be difficult. Instead, one

can exploit the compressibility of the particle phase (not the particles themselves) to define a bulk

viscosity. Compressing the particle phase will also generate a mechanical pressure proportional to

the rate of expansion (or compression) and thus a bulk viscosity effect. However, such a procedure

necessarily generates a spatial variation in particle fraction, which then complicates the determi-

nation of the bulk viscosity as a function of particle volume fraction. The approach taken here of

expanding the fluid allows us to pose a spatially homogeneous problem for determining the bulk

viscosity, and one expects the bulk viscosity determined by both approaches to be comparable.

2.2 Bulk viscosity of a suspension

Consider a homogeneous suspension of spherical particles with number density n in a compressible

Newtonian fluid of density ρ, shear viscosity η and bulk viscosity κ. The particles are small enough

so that the Reynolds number Re = ρUa/η (with U being a typical velocity and a being the radius

of the particles) is much less than unity, thus enabling the use of Stokes equations. The fluid is

made to expand everywhere in space at a uniform rate e (= ∇ · u). The imposed flow will cause

the suspended particles to move apart but they cannot expand with the fluid because they are rigid.

There will be a disturbance flow as the fluid has to move around the particles to compensate for their

rigidity and this disturbance flow will cause the stress on the particles to change, thereby affecting



13

the bulk stress in the suspension. A uniform compressive flow (negative expansion rate) could be

assumed as well without affecting the following derivation.

The bulk viscosity of the suspension is determined by computing the average stress in the mate-

rial in a way analogous to that for the shear viscosity [Batchelor and Green 1972b; Brady and Bossis

1988; Brady et al. 2006]. The ensemble or volume average of the Cauchy stress σ in the material is

given by

〈σ〉 = − 〈pth〉 f I + 2η 〈e〉 +
(
κ − 2

3η
)
〈∇ · u〉 I + n〈SH〉, (2.3)

where e is the rate of strain in the fluid, 〈. . . 〉 denotes an average over the entire suspension (particles

plus fluid), and 〈. . . 〉 f denotes an average over the fluid phase only. The average hydrodynamic

stresslet is defined as a number average over all particles by 〈SH〉 = (1/N)
∑N
α=1 SH

α , where the

stresslet of particle α is given by

SH
α = 1

2

∫
S α

[
(rσ · n + σ · nr) − 2

(
κ − 2

3η
)

(n · u) I − 2η (un + nu)
]

dS . (2.4)

The particle stresslet is the symmetric part of the first moment of the surface stress on the particle.

The integral is over the surface of particle α with normal n pointing into the fluid and r is the spatial

vector from the center of the particle to a point on its surface. In writing (2.4) it has been assumed

that there is no net force on the particle; an assumption that is relaxed below.

The stress resulting from Brownian motion of the particles as well as an interparticle-force

contribution −n〈xFP〉 must also be added to the bulk stress. In the present study a simple hard-

sphere interparticle potential is assumed that keeps the particles from overlapping. Inertial Reynolds

stresses could also be added, but since our interest is in low-Reynolds-number flows only, we ignore

the inertial part. The final form of the bulk stress can be written as

〈Σ〉 = − 〈pth〉 f I + 2η 〈e〉 +
(
κ − 2

3η
)
〈∇ · u〉 I − nkT I + n[〈SB〉 + 〈SP〉 + 〈SE〉], (2.5)

where it is assumed that there are no external couples on the particles [Brady 1993a]. The averaged
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particle stresslets can be expressed in terms of hydrodynamic resistance functions as

〈SB〉 = −kT
〈
∇ · RS U ·R−1

FU

〉
,

〈SP〉 = −
〈(

RS U ·R−1
FU +xI

)
·FP

〉
,

〈SE〉 = −
〈
RS U ·R−1

FU ·RFE − RS E
〉

: 〈e〉 , (2.6)

where the derivative is with respect to the last index of the inverse of the resistance matrix R−1
FU and

FP is the colloidal interparticle force.

The fluid velocity resulting from a uniform rate of expansion can be decomposed into a uniform

expansion and a disturbance (Stokes) velocity

u = 1
3 er + us, (2.7)

such that

∇ · u = e and ∇ · us = 0.

The disturbance flow created by the particles and the resulting fluid mechanical interactions sat-

isfy the usual incompressible equations of motion. The fluid stress associated with the uniform

expansion flow is

σe = − (pth − κe) I, (2.8)

while the disturbance stress is given by

σs = −psI + 2ηes and satisfies ∇ · σs = 0, (2.9)

where ps is the dynamical pressure distribution associated with the incompressible disturbance

Stokes flow. Note that since the disturbance flow (us,σs) satisfies the incompressible Stokes equa-

tion, the hydrodynamic interaction functions in (2.6), e.g. RFU , are the usual ones for incompress-

ible flow.

The suspension as a whole has a uniform average rate of expansion 〈e〉 ≡ 〈∇ · u〉, where the

averaging is done over the fluid and the particles; for rigid particles 〈e〉 = (1 − φ) e. The bulk
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viscosity is the scalar coefficient that when multiplied with the average rate of expansion gives the

difference between the mean suspension stress and the equilibrium stress. The suspension will be

in equilibrium when 〈e〉 ≡ 0 and in that case, the bulk stress is given by

〈Σ〉eq = −
(
〈pth〉

eq
f + Π

)
I, (2.10)

where Π is the osmotic pressure:

Π = nkT − 1
3 n[〈S B〉eq + 〈S P〉eq], (2.11)

and S denotes the trace of the corresponding stresslet, as in 〈SB〉eq = 1
3 〈S

B〉eqI, and the super-

script eq denotes an average over the equilibrium distribution of the suspension microstructure. The

effective bulk viscosity κe f f is therefore given by

κe f f ≡ κ +
(
−〈pth〉 f + 〈pth〉

eq
f

)
/〈e〉 + 1

3 n[(〈S B〉 − 〈S B〉eq) + (〈S P〉 − 〈S P〉eq) + 〈S E〉]/〈e〉 . (2.12)

Equation (2.12) together with equation (2.6) gives the general expressions which can be used to

calculate the effective bulk viscosity of a suspension for all concentrations and expansion or com-

pression rates. The Brownian and interparticle force contributions arise from interactions between

at least two particles and therefore contribute O(φ2) to the bulk viscosity. The stresslet due to the

imposed rate-of-strain 〈SE〉 is nonzero for a single particle and therefore contributes O(φ) to the

bulk viscosity.

The O(φ) contribution to bulk viscosity arises from the disturbance flow induced by the presence

of a single particle suspended in the uniform expansion flow. Since the particle cannot expand with

the fluid, the no-slip condition on its surface causes a disturbance flow:

us = − 1
3 e

a3

r3 r .

The particle stresslet from (2.4) is

S E = 4πa3
(
−pth + κe + 4

3 eη
)
,
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and the effective bulk viscosity from (2.12) is to first order in φ :

κe f f =
(
κ + 4

3ηφ
) 1

1 − φ
,

∼ κ +
(
κ + 4

3η
)
φ as φ→ 0, (2.13)

The 4
3ηφ term corresponds to the ‘Einstein’ correction to the bulk viscosity for a dilute suspension

of rigid spheres [Brady et al. 2006]. The factor of 1/(1 − φ) represents the difference between the

fluid and the bulk’s rate of expansion. The correction to the bulk viscosity is proportional to the

shear viscosity η and therefore may not be negligible even for very dilute suspensions, depending

on the magnitude of the fluid’s bulk viscosity κ in comparison to η.

The same formulation can be used to recover G. I. Taylor’s result for the bulk viscosity of a

dilute suspension of bubbles. In this case the suspending fluid is incompressible and the bubbles are

compressible. Consider a single bubble of radius a, bulk viscosity κp, and zero shear viscosity in

an incompressible fluid expanding uniformly with rate ep. Since only the volume occupied by the

bubble is expanding the average rate of expansion in the dispersion is 〈e〉 = epφ. The expanding

bubble surface creates an incompressible disturbance flow in the surrounding fluid

us = 1
3 ep

(
a3/r3

)
r. (2.14)

In contrast to the rigid particles problem the bubbles cause the pressure in the surrounding fluid to

change from its equilibrium value. The fluid pressure is determined through a normal stress balance

on the surface of the bubble, (σp−σ) ·n = 0 (neglecting surface tension effects, which can be added

but do not alter the final result anyway), and is given by

pth = pp − κpep −
4
3ηep, (2.15)

where pp is the equilibrium pressure inside the bubble and equal to the equilibrium pressure in the

surrounding fluid neglecting the capillary pressure due to surface tension. The resulting stresslet on

the bubble is

S E = 4πa3
(
−pp + κpep + 4

3ηep
)
, (2.16)
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and from (4.10) the effective bulk viscosity for the dispersion is found to be

κe f f =
[
κpφ + 4

3η(1 − φ)
] ep

〈e〉
(2.17)

=
[
κpφ + 4

3η(1 − φ)
] 1
φ

(2.18)

∼ κp + 4
3η/φ as φ→ 0. (2.19)

Thus we get the correction to the bulk viscosity as 4
3η/φ, a result first derived by Taylor [1954a,b].

The inverse dependence on φ is unusual and entails further comment. The small O(φ) concentra-

tion of bubbles produces a small rate of expansion (〈e〉 = φep) throughout the dispersion, however

the pressure field is perturbed over the entire surrounding fluid, which occupies a large O(1 − φ)

fraction of the total volume. Thus the dominant contribution comes from the fluid pressure term(
−〈pth〉 f + 〈pth〉

eq
f

)
/〈e〉 in (4.10), which is of O((1 − φ)/φ) ∼ O(1/φ) as φ → 0. In contrast the

change in the stresslet exerted by a rigid particle is localized to its surface and therefore contributes

O(φ) to the total stress, while the expanding fluid gives an average rate of expansion of O(1 − φ),

resulting in a correction to the bulk viscosity of O(φ) as φ→ 0. Both problems do have the same co-

efficient, namely 4
3η in the bulk viscosity correction because the disturbance flow in the surrounding

fluid is the same in both cases but with opposite sign.

2.3 The O(φ2) correction to bulk viscosity

The interaction between particle-pairs results in the O(φ2) correction to the bulk viscosity, and the

Brownian, interparticle-force and rate-of-strain stresslets may all contribute. There will be higher-

order corrections as well, resulting from interactions between three or more particles, etc.; however,

in the present study we limit ourselves to two-particle interactions only. It is necessary to determine

the spatial and temporal distribution of particles — the suspension microstructure — and how it is

influenced by the imposed expansion flow in order to compute the bulk viscosity.

2.3.1 Pair-evolution equation

In order to calculate the microstructure, the N-particle Smoluchowski equation for identical particles

is integrated over N − 2 particles [Russel et al. 1989] and results in the following pair-evolution
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equation after all three-particle effects are neglected:

∂P1/1

∂t
+ ∇r ·

[
UE

r + Mr ·
(
FP

r − kT∇r ln P1/1
)]

P1/1 = 0, (2.20)

where P1/1(r, t) is the conditional probability density of finding a second particle at r relative to one

at the origin, UE
r = UE

2 −UE
1 is the relative velocity of the two particles owing to the expansion flow,

Mr = 2 (M22 − M21) is the relative mobility, FP
r is the relative interparticle force and r = x2 − x1 is

the relative separation vector. The boundary condition of no relative flux at contact is written as

r̂ ·Dr ·∇rP1/1 = r̂ ·
[
UE

r + Mr·FP
r

]
P1/1 at r = 2a, (2.21)

where r̂ denotes a unit vector and Dr = kT Mr is the relative diffusivity of the pair. At large

separations, the probability density of finding a second particle is just the number density, or

P1/1 ∼ n(t) as r → ∞. (2.22)

The number density of particles is a function of time only, owing to the assumption of uniform

expansion or contraction. The conservation equation for the number density for uniform bulk ex-

pansion is given by
∂n
∂t

= − ∇· (〈u〉 n) = −n ∇· 〈u〉 = −n 〈e〉 . (2.23)

As a result, the number density varies exponentially in time as n(t) = n0e−〈e〉t.

The conditional probability density can be expressed in terms of of the number density and

pair-distribution function as P1/1 = n(t)g(r, t), and the resulting equation for the pair-distribution

function can be written as

∂g
∂t

+ 1
3 〈e〉 r · ∇g + ∇·

(
ÛE

+ M · FP
)

g = ∇ · D · ∇g, (2.24)

where ÛE
= UE − 1

3 〈e〉 r is the disturbance velocity relative to the imposed flow, and the subscript

r has been dropped for clarity. The contact boundary condition (2.21) remains the same for g,

while the far-field boundary condition (2.22) now becomes the time-independent statement g ∼ 1

as r ∼ ∞.
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The particle microstructure evolves from a competition between the imposed flow and the

restorative Brownian motion. The expansion flow drives the microstructure away from its equi-

librium state and Brownian diffusion acts to restore the equilibrium. These competing effects are

influenced by hydrodynamic interactions between the particles. The strength of the hydrodynamic

interactions can tuned by using the ‘excluded annulus’ model where the two-body interparticle po-

tential V(r) is given by

V(r) =


∞ if r ≤ 2b

0 if r > 2b
.

The length b (≥ a) is the excluded-volume, or thermodynamic radius of a particle and the center-to-

center separation between particles can be no less that 2b. This potential can be used to model inter-

actions arising from conditions such as surface roughness, grafted polymer chains or electrostatic

repulsion. Altering the tunable parameter b̂ ≡ b/a allows one to examine the role of hydrodynamic

interactions in determining the microstructure and the bulk viscosity. The particles experience no

hydrodynamic interactions as b̂ → ∞, while full hydrodynamic interactions between particles are

present when b̂ ≡ 1. With the excluded-annulus model, the interparticle force is implemented

through the no-flux boundary condition (2.22) at r = 2b and does not appear explicitly in the pair-

evolution equation. The volume fraction of particles based on the excluded-volume radius b now

has to be small for the diluteness assumption to hold, i.e., φb = 4πnb3/3 � 1.

The expansion flow is spherically symmetric, which allows us to write the relative particle

velocity as

UE = 1
3 〈e〉

(
r + bv′(r)

)
r̂, (2.25)

where v′(r), a function of the scalar separation r, is the non-dimensional disturbance velocity relative

to the imposed expansion flow. Similarly, the pair-distribution function will also be spherically

symmetric. Consequently, the non-dimensional pair-evolution equation with dependence on only

time and the scalar separation r is

∂g
∂t

+ Pebr
∂g
∂r

+ Peb
1
r2

∂

∂r
r2v′(rb̂)g =

1
r2

∂

∂r
r2G(rb̂)

∂g
∂r
, (2.26)

G(rb̂)
∂g
∂r

= Peb[2 + v′(2b̂)]g at r = 2,



20

and

g ∼ 1 as r → ∞ ,

where G(rb̂) = xa
22 − xa

21 [Kim and Karrila 1991] is the scalar function for the radial component of

the relative mobility of two particles, D = 2D[G(rb̂)r̂r̂ + H(rb̂)(I − r̂r̂)] [Batchelor 1976]. It should

be noted that the tabulated values of the hydrodynamic functions are scaled with the actual particle

radius a, whereas the radial distance in the given equations has been scaled with the excluded-

volume radius b. The relative diffusivity is scaled by its value at large separations, 2D. The Péclet

number is also based on the excluded-volume radius and is given by

Peb =

1
3 〈e〉 b

2

2D
,

where D = kT/6πηa is the diffusivity of an isolated particle. The time is nondimensionalized by the

diffusive time b2/2D. The Péclet number can be positive or negative corresponding to expansion or

contraction, respectively.

A steady-state solution can be found for the perturbed state radial-distribution function when

the expansion rate is negative (Peb < 0). The compression flow brings the particles closer together,

whereas Brownian and interparticle forces push them apart, resulting in an eventual steady-state of

the pair-distribution function. The overall number density, of course, increases with time as pre-

scribed by the compression flow. If the time scale for the evolution of the microstructure (diffusive

time) is the same as the time scale for increase in number density (〈e〉−1), the solution for g(r, t) will

not reach steady-state for a given volume fraction. Therefore care should be taken in defining the

steady-state bulk viscosity.

To obtain the steady-state solution of the perturbed microstructure, we write

g(r) = 1 + Peb f (r),

and the steady-state equation for f (r) becomes

G(rb̂)
∂2 f
∂r2 +

[
2G(rb̂)

r
+
∂G(rb̂)
∂r

− Peb
(
r + v′

)] ∂ f
∂r
−

(
2v′

r
+
∂v′

∂r

)
(1 + Peb f ) = 0, (2.27)
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with boundary conditions

G(2b̂)
∂ f
∂r

= [2 + v′(2b̂)](1 + Peb f ) at r = 2,

and

f ∼ 0 as r → ∞.

It should be noted that the disturbance to the pair-distribution function has merely been scaled by

Peb so that the resulting solutions for f (r) are comparable over a wide range of Péclet numbers. No

terms have been neglected and therefore, the results obtained are the full solution for f (r) (or g(r)).

An analytical solution was obtained for small values of Peb for either compression or expansion

by Brady et al. [2006], which corresponds to the linear-response regime. In this regime, the distur-

bance to the microstructure has a linear dependence on the Péclet number. Only the O(1) terms are

kept in (2.27) (the O(Peb) terms are neglected), which results in a first-order differential equation

for ∂ f /∂r that can be solved easily. The analytical solution is given by the quadrature

f (r) = −

∫ ∞

r

1

G(rb̂)

[
8
r2 + v′(rb̂)

]
dr, (2.28)

and is valid for both expansion and compression when |Peb| � 1. In the absence of hydrodynamics

b̂→ ∞, v′ = 0 and the solution reduces to

fNH(r) = −
8
r
.

For larger values of the Péclet number the O(Peb) terms cannot be ignored in the equation for f (r)

and therefore due to loss of linearity we do not expect to get the same solution for expansion and

compression.

Equation (2.27) can also be simplified for the case of no hydrodynamic interactions and an
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analytical solution valid for all negative Péclet numbers (compression flow) is given by

fNH(r) =
−2

∫ ∞
r

1
r2 e

1
2 Pebr2

dr
1
4 e2Peb + 2Peb

∫ ∞
2

1
r2 e

1
2 Pebr2dr

=

− 2
r e

1
2 Pebr2

+
√
−2πPeberfc

(
r
√
−

Peb
2

)
(
Peb + 1

4

)
e2Peb − Peb

√
−2πPeberfc

(√
−2Peb

) . (2.29)

The steady-state solution for no hydrodynamics when −Peb � 1 is given by

fNH(r) = −
4
3

e
1
2 Peb(r2−4)

(r/2)3 .

The results obtained from a numerical solution of (2.27) were found to be consistent with the ana-

lytical results given above in the respective limits. See Appendix A at the end of this chapter for the

detailed solution of the Smoluchowski equation with no hydrodynamic interactions.

In the case of positive expansion (Peb > 0), a steady-state solution could not be found: the

expansion flow along with the Brownian and interparticle forces causes the particles to move apart

and there is no steady microstructure in which these forces balance. The particles continue to move

apart forever at a rate proportional to Pebr, and g(r, t) → 0 around any given particle. However at

separations of r � ePebt the microstructure is unchanged because the disturbance has not propagated

that far and g(r, t)→ 1 in this outer region, thus satisfying the boundary condition at r → ∞. Again,

the overall number density decreases with time as prescribed by the expansion flow.

The unsteady equation (2.26) for the perturbed microstructure can be solved numerically and it

was found that g(r, t) → 0 in an ever increasing part of the solution domain as t → ∞, as expected.

At long times, the solution profiles for f (r) can be collapsed onto a single curve by scaling the

separation as r/ePebt. For the case of no hydrodynamic interactions the equation can be simplified

and solved analytically via a Laplace transform in time. The results obtained thus were consistent

with the unsteady numerical solution. It was found that for large positive Péclet numbers, as well

as at large times for any Peb > 0, the pair-distribution function at contact decreases exponentially

as g(2, t) ∼ e−4Pe2
bt. The implications of a continually expanding microstructure for the O(φ2)

contribution to bulk viscosity are not known. As a result, the current study focuses on negative

expansion rates — compression — only and the bulk viscosity is computed for all negative Péclet
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numbers.

2.3.2 Hydrodynamic interactions

In order to obtain a complete solution for the pair-distribution function with hydrodynamics, we

need to know v′(rb̂), the relative velocity between two force-and torque-free particles in an ex-

pansion flow. The motion of the particles is influenced by the hydrodynamic interactions between

them. The hydrodynamic interactions between two particles in Stokes flow can be expressed in the

form of a grand resistance matrix, relating the hydrodynamic force and stresslet to the velocity and

rate-of-strain according to

 FH

SH

 = −

 RFU RFE

RS U RS E

 ·
 U − U∞

−E∞

 , (2.30)

where the superscript ∞ denotes the imposed flow. Traditionally [Kim and Karrila 1991], only

traceless stresslets were considered. However, there is no such restriction on the stresslets or the

rate-of-strain. The pressure moment, defined as the trace of the particle stresslet was calculated by

Jeffrey et al. [1993] for two particles in an incompressible (traceless) Stokes flow. Specifically, the

pressure moment is related to the particle velocities and their rate-of-strain as

 S H
1

S H
2

 = −η

 P11 P12

P21 P22

Q11 Q12

Q21 Q22

 ·


U1 − U(x1)

U2 − U(x2)

E1 − E∞

E2 − E∞


, (2.31)

where Pαβ = π(aα − aβ)2XP
αβd relates the pressure moment to the particle velocities. The XP

αβ are

hydrodynamic resistance functions and d = (x2 − x1)/|x2 − x1|. The analogous expression for

the tensors relating the pressure moment to an imposed linear traceless shear flow was given as

Qαβ = π(aα − aβ)3XQ
αβ

[
dd − 1

3 I
]

, where the XQ
αβ are also hydrodynamic resistance functions. From

(2.30) and (2.31) and R†FE = RS U the relative velocity between two force- and torque-free particles
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in an expansion flow was found to be

v′(rb̂) = −
4
3

1

b̂
G(rb̂)

(
XP

11 − XP
12

)
, (2.32)

where the hydrodynamic functions are evaluated at rb̂.

During the course of this study, it became apparent that linear compressible flows (with a

nonzero trace) should also be considered for calculation of the pressure moments. When the im-

posed flow has a nonzero trace, there is an additional term in the resistance matrices. This term was

designated as T Q
αβ, so that the complete Qαβ function becomes

Q̂αβ = π(aα − aβ)3
[
XQ
αβ

(
dd − 1

3 I
)

+ T Q
αβ

1
3 I

]
, (2.33)

such that the trace of Q̂αβ is no longer zero by design. The scalar functions T Q
αβ were determined for

all separations and particles of different radii [Khair et al. 2006]. A lubrication theory expression

was derived for very small separations and multipole expansion was used for all other separations

following the method of Jeffrey and Onishi [1984]. A plot of T Q
11 and T Q

12 against the dimensionless

separation distance s is shown in Figure 2.1 for equal sized spheres. The two particle contribution to

the function is singular near contact scaling as T Q
αβ ∼ ξ

−1, where ξ = s − 2 and decays with scaling

T Q
11 ∼ s−4 and T Q

12 ∼ s−5 as s→ ∞.

The hydrodynamic functions described here were used to determine the particle stresslets re-

sulting from Brownian, interparticle-force and rate-of-strain interactions between particles and the

result was used to calculate the corresponding contributions to the effective bulk viscosity of the

suspension.

2.3.3 Expressions for the bulk viscosity

The O(φ2) contribution to particle stresslets arises from hydrodynamic interactions between parti-

cles, which can be expressed in terms of known hydrodynamic functions as done in Brady et al.

[2006]. The particle stresslets (2.6) are related linearly to the imposed flow conditions via a grand

resistance matrix, the elements of which contain the hydrodynamic resistance functions [Kim and
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Karrila [1991]]. For particle pairs the stresslets due to expansion flow can be simplified to give:

S B(r) =
2
3

kT

b̂

[
1
r

(
XP

12xa
21 + XP

11xa
11

)
+
∂

∂r

(
XP

12xa
21 + XP

11xa
11

)]
(2.34)

S P(r) =
1
2

kTδ(r − 2)
[
r + v′(rb̂)

]
(2.35)

S E(r) =
8
3
πa3ηS

[(
T Q

12 + T Q
22

)
−

1
4

b̂
(
XP

12 + XP
22

)
v′(r)

]
. (2.36)

The stresslets for particle-pair interactions were computed as a function of the interparticle distance

and then averaged over the particle microstructure using the pair-distribution function to get the

O(φ2) contribution to the bulk stress.

The deviation of the trace of the bulk stress from its equilibrium value divided by the average rate

of expansion gives the bulk viscosity of the suspension, which to second order in volume-fraction

of particles can be written as

κe f f =
(
κ + 4

3ηφ
) 1

1 − φ
+ (κB + κP + κE)φ2

b, (2.37)

where the three O(φ2
b) coefficients correspond to the Brownian, interparticle-force and rate-of-strain

contributions to the bulk viscosity. It should be noted that the volume fraction for the two-particle

contributions is based on the excluded-volume radius b of the particles. The explicit forms for these

contributions are given by

κB = −η
1

b̂2

1
2

∫ ∞

2

[
d
dr

[
XP

22xa
22 + XP

21xa
21

]
+

2
r

[
XP

22xa
22 + XP

21xa
21

]]∣∣∣∣∣∣
rb̂

f (r)r2dr,

κP = −η
1

b̂

3
2

v(2b̂) f (2),

κE = η
1

b̂3
2
∫ ∞

2

[
(T Q

12 + T Q
22)′ − 1

4 b̂
(
XP

22 − XP
21

)
v′(rb̂)

]
(1 + Peb f (r)) r2dr, (2.38)

where xa
αβ are the non-dimensional scalar mobility functions relating velocity to force [Kim and

Karrila 1991]. All the hydrodynamic functions are evaluated at rb̂ and the prime on (T Q
12 + T Q

22)

is a reminder that the isolated particle value has been removed. All the two-particle contributions

are positive and are proportional to the shear viscosity η as they arise from the incompressible

disturbance flow caused by the presence of the rigid particles.
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2.4 Results and discussion

2.4.1 Numerical solution of the perturbed microstructure

The complete steady-state pair-distribution equation (2.27) was solved numerically using a finite

difference method for a wide range of negative Péclet numbers. The resulting solution for f (r)

typically has a steep slope near contact (r = 2) and decays as r → ∞. The far boundary was chosen

at a large value of r such that the solution is expected to be close to round-off error in that region

and f was set to 0 at the far end. The location of the far boundary was varied until the solution

became independent of its position. The finite difference grid was discretized with a geometrically

increasing number of points closer to contact where the slope of f is expected to be steep, resulting

in a more accurate solution for f .

When the Péclet number is large, a boundary layer develops and the radial dimension has to be

scaled in order to get an accurate numerical solution. The thickness of the boundary layer is also

influenced by the strength of the hydrodynamic interactions. The following scaling was used for the

boundary-layer coordinate:

Y =
rβ − 2
ε

,

where ε = −1/Peb and β is given by

β =


b̂ if b̂ − 1 � ε

1 + ε(b̂ − 1) if b̂ − 1 ∼ ε and b̂ − 1 � 1

1 + ε3/2 otherwise

. (2.39)

The Y coordinate was further transformed as z = ln Y for the numerical solution, in order to ex-

pand the boundary layer further. Inside the boundary layer, the hydrodynamic functions present in

(2.27) are strong functions of the interparticle distance ξ = rb̂ − 2 when hydrodynamic interactions

are important (b̂ → 1). Therefore the relevant scaling is obtained by expanding ξ with the small

parameter ε. However, when hydrodynamic interactions are not important, boundary-layer effects

become more dominant and r − 2 is scaled instead with ε to get the scaled coordinate. In either

case, the relevant small parameter had to be added to the scaling in order to avoid having log of zero

at contact. In the case of nearly full hydrodynamic interactions, the appropriate small parameter is
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ε
(
b̂ − 1

)
and for weaker hydrodynamic interactions, a small parameter of ε3/2 was found to give

good results. These considerations led to the expressions for β defined in (2.39).

Second-order finite differences on the non-linear grid were employed to discretize the derivative

terms in (2.27). The finite difference matrices obtained for the steady-state equation were tridiag-

onal and were inverted using Gaussian elimination to obtain the solution. The unsteady equation

(2.26) was also solved numerically to explore the solution when Peb > 0. The “Method of Lines”

[Schiesser 1991], where the spatial part of the equation is discretized resulting in ordinary differen-

tial equations in time at each grid point, was used. The resulting set of equations was integrated in

time using widely available stiff ODE solvers [Shampine and Reichelt 1997].

Figure 2.2 shows f (r), the perturbation to the microstructure scaled by the Péclet number, for

small Peb(= −10−5) for the two limiting cases of no hydrodynamic interactions: b̂→ ∞ and nearly

pure hydrodynamic interactions: b̂ = 1.00001. The curves are the same as those obtained for the

linear response regime solution (3.33) because higher-order terms are negligible for small values of

Peb. The two curves are very similar and both decay as 1/r for large r. For intermediate values of

b̂, f (r) lies between these two curves.

A boundary layer is formed when |Peb| � 1. The perturbation of the microstructure takes

place inside this boundary layer and so, f (r) decays very rapidly within a very short distance of

the order of the boundary layer thickness ∼ O(1/|Peb|). Figure 2.3 shows f (r) for the case of no

hydrodynamic interactions: b̂ → ∞, and nearly full hydrodynamic interactions: b̂ = 1.00001 for

large Peb(= −103). Both the curves decay much faster than the curves for low Peb and their values

at contact are also smaller. In the case of no hydrodynamic interactions f (r) decays exponentially

at large distances as can be seen from (2.29), while in the case of nearly full hydrodynamics, f (r)

decays as 1/r away from contact.

The contact value of f (r) (at r = 2) is shown in Figure 2.4 as a function of the Péclet number

for varying levels of hydrodynamic interactions depending on the value of b̂. As Peb decreases,

f (2) converges to the linear-response solution. For large values of Peb, f (2) approaches a different

limiting value depending on b̂. In the case of no hydrodynamics, the limiting value can be verified

to be f (2) = − 4
3 (by simplifying (2.29) for large Peb). The limiting value for the case of full

hydrodynamics, b̂ ≡ 1 was numerically calculated to be f (2) ' −2.75. It can be seen from this

figure that f (r) decreases as the Péclet number becomes larger for all b̂ and eventually reaches a
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constant limiting value, which suggests that a ‘thinning’ of the averaged properties of the suspension

might take place as Peb → −∞.

2.4.2 The O(φ2
b) bulk viscosity coefficients

The two-particle contributions to the bulk viscosity due to Brownian, interparticle-force and rate-

of-strain interaction are shown as a function of the ratio of the excluded-volume to actual particle

radius b̂ = b/a in Figures 2.5, 2.6 and 2.7, respectively, for different values of Peb. For small Peb

the curves obtained are the same as those for the linear-response regime.

As b̂ → 1, the Brownian and rate-of-strain contributions reach a finite limiting value, while the

interparticle-force contribution vanishes (as (b̂ − 1)) because the relative particle velocity is zero

at contact (r = 2). The limiting values of the O(φ2
b) coefficients for full hydrodynamics, b̂ ≡ 1 as

Peb → 0 are κB = 5.348η and κE = 1.57η. For large Péclet numbers the Brownian contribution

vanishes as well because the motion of the particles is influenced more by the flow velocity and

Brownian motion becomes less important. As Peb → −∞ only the rate-of-strain contribution is

nonzero for full hydrodynamics with a limiting value of κE = 5.03η, which is also the limiting value

of the total O(φ2
b) contribution. There is also an O(φ2) term in the single-particle contribution to bulk

viscosity given by
(
κ + 4

3η
)

b̂−6, which is comparable to the two-particle contribution for all Péclet

numbers when b̂→ 1. The magnitude of this term is smaller than the total two-particle contribution

as long as the bulk viscosity of the fluid is not significantly greater than its shear viscosity.

As b̂ increases the hydrodynamic interactions are reduced and the Brownian and rate-of-strain

contributions decrease, while the interparticle-force contribution increases. Once b̂ exceeds a value

between 1.2 and 1.244 corresponding to the range of Peb → −∞ and Peb → 0, respectively, the

particles are kept so far apart by the excluded-volume interaction that all two-particle contributions

to the bulk viscosity decrease to zero, scaling as: κB ∼ b̂−7, κP ∼ b̂−1 and κE ∼ b̂−9 as b̂ → ∞. The

interparticle force contribution dominates over all the other terms in this limit, including the O(φ2)

single-particle contribution.

The total two-particle contribution to bulk viscosity as a function of the Péclet number for vary-

ing levels of hydrodynamics, depending on b̂, is shown in Figure 2.8. For small values of |Peb|

the value of the total contribution is close to the value obtained from the linear-response regime

solution. As |Peb| increases the Brownian contribution decreases faster than the rate-of-strain con-
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tribution grows, resulting in a net decrease in the bulk viscosity. As Pe → −∞, the Brownian

contribution goes to zero scaling as κB ∼ |Peb|
−1. Once |Peb| exceeds approximately 0.61, the

rate-of-strain contribution becomes dominant and the total bulk viscosity grows and then plateaus,

finally reaches a limiting value of ' 5.03η as Pe → −∞ in the limit of full hydrodynamic interac-

tions. Thus, a ‘thickening’ of the total bulk viscosity takes place as it does for the shear viscosity

[Bergenholtz et al. 2002]. The thickening effect is observed only when hydrodynamic interactions

are important (b̂ ≤ 1.2) and when the rate-of-strain contribution increases sufficiently to overcome

the Brownian contribution for large values of Peb. For values of b̂ > 1.2, only the interparticle force

contribution dominates and the other two contributions are negligibly small and, as a result, only a

thinning effect is observed.

The excluded annulus model can also be used to model hard spheres with no hydrodynamic

interactions by setting the actual sphere radius equal to the excluded volume radius b and setting b̂→

1. The Stokes-Einstein-Sutherland diffusivity of the particles in now given by D = kT/6πηb. From

(3.6) only the κP contribution is nonzero and depends only on the perturbation to the microstructure

at contact given by f (2). In a hard sphere system with no hydrodynamics only hard sphere collisions

of the particles contribute to the stress and there is no direct Brownian contribution or hydrodynamic

contribution. Particles see each other only when they touch and therefore only the pair-distribution

function at contact determines the total stress. In the absence of hydrodynamics the relative particle

velocity is simply v(rb̂) = r and the O(φ2) correction to the bulk viscosity is simply κP = −3 f (2)η.

The hard-sphere bulk viscosity contribution without hydrodynamic interactions is shown in Figure

2.9 as a function of the Péclet number. In the linear-response limit (Peb → 0) it asymptotes to a

value of κP = 12η and shear thins as Peb increases, eventually reaching a plateau at κP = 4η.

Finally, all the O(φ2
b) contributions vanish when hydrodynamic interactions are not important

(b̂ → ∞) because the volume fraction is based on the excluded-volume radius b. When b̂ � 1 the

actual volume fraction φ is so small that the particles are essentially isolated and only the single-

particle contribution to bulk viscosity remains. The inter-particle force coefficient decays most

slowly as 1/b̂ because the particle diffusivity D = kT/6πηa depends on the actual or hydrodynamic

size of the particle. The two-particle contributions can also be evaluated based on the actual volume

fraction φ, in which case they scale as: κB ∼ b̂−1, κP ∼ b̂5 and κE ∼ b̂−3 as b̂ → ∞. The Brownian

and rate-of-strain contributions still decay as b̂→ ∞, but the inter-particle force contribution grows
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because the range of repulsive forces increases with b̂ when the actual volume fraction is used. The

corresponding curves are shown in Figure 2.10 for the case of small Peb. The behavior for other

values of Peb will be qualitatively the same as b̂→ ∞.

2.5 Concluding remarks

The effective bulk viscosity of a suspension of particles in a fluid was defined based on the average

macroscopic stress in a way analogous to the definition of bulk viscosity for a pure fluid. The bulk

viscosity relates the deviation of the trace of the macroscopic stress from its equilibrium value to

the average rate of expansion of the suspension. Expressions were derived for computing the bulk

viscosity of a suspension undergoing uniform volume expansion for all volume fractions of particles

and for all expansion rates.

In the present study, the specific problem of a suspension of rigid spherical particles in a com-

pressible fluid undergoing uniform compression at a steady rate was considered in order to calculate

the bulk viscosity of the suspension to second order in the volume fraction of particles φ. However,

the general formulae derived for the bulk viscosity can also be used for arbitrary time-dependent

flows and should apply to bubbles and drops as well as rigid particles. The correction to bulk vis-

cosity was found to be proportional to the shear viscosity of the fluid, implying that the effective

bulk viscosity of the suspension may be significant even if the suspending fluid has a negligible bulk

viscosity.

The disturbance flow due to a single particle in an expanding fluid results in the O(φ) correction

to the bulk viscosity, while two-particle interactions lead to the O(φ2) correction. In the case of

a compressive flow, a steady-state solution for the pair-distribution function was obtained for all

negative Péclet numbers and used to calculate the bulk viscosity. It was shown that in the presence

of hydrodynamic interactions, a ‘thinning’ of the bulk viscosity takes place as the Péclet number

increases in magnitude starting from a very small negative value, but, as Peb → −∞, the stresslet

contribution due to the rate-of-strain becomes dominant, the bulk viscosity increases again similar

to a ‘thickening’ effect and eventually reaches a limiting value.

When the fluid is expanding (Peb > 0), however, a steady-state distribution of particles could

not be achieved. Even so, the unsteady equations can be solved numerically to obtain the evolu-
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tion of the particle microstructure in space and time. It should be noted that during the course of

compression, the volume fraction of particles continually increases to close packing (or decreases

in the case of expansion) and therefore, some care is needed in defining the bulk viscosity for a

given volume fraction. At very high rates of compression, the time scale for the evolution of the

microstructure may be the same or larger than the time scale for increase in number density. In

that case the number density cannot be assumed to be a constant for determining the steady-state

microstructure and therefore, a steady bulk viscosity will not exist. In most practical applications,

the suspension would also undergo shear in addition to expansion, and it may be useful to consider

the effects of a weak expansion rate on the microstructure in a sheared suspension and the resulting

bulk viscosity.
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Figure 2.1: The functions T Q
11 (solid line) and T Q

12 (dashed line) for equal-sized spheres vs the
dimensionless separation distance s.
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Figure 2.2: Microstructural perturbation function f (r) for b/a = 1.00001 (dashed line) and b/a =

1000 (solid line) for |Peb| � 1. Both curves behave as 1/r for large r like the linear response
solution. For other values of b/a the perturbation f is intermediate between these two curves.



34

2 2.0002 2.0004 2.0006 2.0008 2.001
r

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

f (r)

b/a! 1

b/a!"

Figure 2.3: Microstructural perturbation function f (r) close to the particle’s surface for full hy-
drodynamics, b/a = 1.00001 (dashed line) and for no hydrodynamics, b/a = 1000 (solid line)
and Peb = −103. Both curves decay much faster than for small Peb. For other values of b/a the
perturbation f is intermediate between these two curves.
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Figure 2.4: Microstructural perturbation function f (r) at contact (r = 2) vs Peb for varying levels of
hydrodynamic interactions. All the curves have the same behavior and exhibit a shear-thinning like
behavior. The curve for no hydrodynamics corresponding to (2.29) is shown by a solid line.
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Figure 2.5: Brownian part of the O(φ2
b) two-particle contribution to the bulk viscosity κB/η vs b̂− 1,

for different negative values of Peb.
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Figure 2.6: Interparticle force part of the O(φ2
b) two-particle contribution to the bulk viscosity κP/η

vs b̂ − 1, for different negative values of Peb.
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Figure 2.7: Rate-of-strain part of the O(φ2
b) two-particle contribution to the bulk viscosity κE/η vs

b̂ − 1, for different negative values of Peb.
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Figure 2.8: The total O(φ2
b) two-particle contributions to the bulk viscosity (κB + κP + κE)/η vs Peb,

for varying levels of hydrodynamic interaction. Shear thickening is observed as Peb → −∞. As
b̂→ ∞ hydrodynamic interactions between particles decrease and the total O(φ2

b) contribution goes
to zero.
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Figure 2.9: Bulk viscosity for hard spheres of radius b with no hydrodynamic interactions. Only the
interparticle force comprising the hard sphere potential contributes to the bulk stress.
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Figure 2.10: The O(φ2) two-particle contributions to the bulk viscosity for small Peb (linear re-
sponse regime) : Brownian κB/η (dashed line), interparticle-force κP/η (dot-dashed line), rate-of-
strain κE/η (dotted line) and total (κB +κP +κE)/η (solid line). Shown here are the coefficients based
on the actual particle volume fraction φ.
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Appendix A — Smoluchowski equation with no hydrodynamics

Pair distribution function

The pair-distribution equation is written as:

∂g
∂t

+ ∇ · (〈u〉 + u′)g = ∇ · D · ∇g (A-1a)

g ∼ n(t) as r → ∞ (A-1b)

n · (〈u〉 + u′)g = n · D · ∇g @ r = 2a (A-1c)

g = g0 @ t = 0 (A-1d)

Let g(r, t) = n(t)[1 + f (r, t)]. Now the pair distribution equation can be written as

ṅ(1 + f ) + n ḟ + ∇ · (〈u〉 + u′)[n(1 + f )] = ∇ · D · ∇[n(1 + f )]

˙ln n(1 + f ) + ḟ + ∇ · (〈u〉 + u′)(1 + f ) = ∇ · D · ∇(1 + f )

−S (1 + f ) + ḟ + ∇ · (〈u〉 + u′) f + ∇ · 〈u〉 + ∇ · u′ = ∇ · D · ∇ f

ḟ + 〈u〉 · ∇ f + ∇ · (u′ f ) + ∇ · u′ = ∇ · D · ∇ f (A-2a)

f ∼ 0 as r → ∞ (A-2b)

n · (〈u〉 + u′) f − n · D · ∇ f + n · (〈u〉 + u′) = 0 @ r = 2a. (A-2c)

With no hydrodynamic interactions, u = 0 and D = 2DI.

ḟ + 〈u〉 · ∇ f = 2D∇2 f (A-3a)

f ∼ 0 as r → ∞ (A-3b)

n · 〈u〉 f − 2Dn · ∇ f = −n · 〈u〉 @ r = 2a. (A-3c)
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Using 〈u〉 · ∇ f = 1
3 S r ∂ f

∂r , we get

∂ f
∂t

+
1
3

S r
∂ f
∂r

= 2D
1
r2

∂

∂r

(
r2 ∂ f
∂r

)
(A-4a)

f ∼ 0 as r → ∞ (A-4b)

2a
1
3

S f − 2D
∂ f
∂r

= −2a
1
3

S @ r = 2a. (A-4c)

Scale r ∼ O(a) and t ∼ O( a2

2D ). Define Pe = 1
3 S a2/2D. We get

∂ f
∂t

+ Per
∂ f
∂r

=
1
r2

∂

∂r

(
r2 ∂ f
∂r

)
or
∂2 f
∂r2 +

2
r
∂ f
∂r
− Per

∂ f
∂r
−
∂ f
∂t

= 0 (A-5a)

f ∼ 0 as r → ∞ (A-5b)

∂ f
∂r
− 2Pe f = 2Pe @ r = 2 (A-5c)

Solution for Pe>0

The pair distribution equation (A-5a) can be made independent of the Péclet number by scaling the

distance and time in the following way:

Let z = r
√

Pe and τ = tPe.

Using the above scaling, we get

∂2 f
∂z2 +

2
z
∂ f
∂z
− z

∂ f
∂z
−
∂ f
∂τ

= 0 (A-6)

1
z

(
z
∂2 f
∂z2 + 2

∂ f
∂z

)
−

(
z
∂ f
∂z

+ f
)

+ f −
∂ f
∂τ

= 0

∂2(z f )
∂z2 − z

∂(z f )
∂z

+ z f − z
∂ f
∂τ

= 0

Let y = z f ,

Let y = z f
∂2y
∂z2 − z

∂y
∂z

+ y −
∂y
∂τ

= 0
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The boundary conditions become

y ∼ 0 as z→ ∞ (A-7a)

1
z
∂y
∂z
−

f
z
− 2
√

Pe f = 2
√

Pe @ z = 2
√

Pe

⇒
∂y
∂z
−

(
1

2
√

Pe
+ 2
√

Pe
)

y = 4Pe @ z = 2
√

Pe. (A-7b)

The above equation can be solved by carrying out a Laplace transform in the time domain.

y(z, τ)→ Y(z, s) = r
√

PeF(r, s)

∂y
∂τ

= sY(z, s) − y(z, 0)

Initial condition : y(z, 0) = z f (z, 0) = 0

A Laplace transform of (A-7) gives

∂2Y
∂z2 − z

∂Y
∂z

+ (1 − s)Y = 0 (A-8)

Let x =
z
√

2
= r

√
Pe
2

∂2Y
∂x2 − 2x

∂Y
∂x

+ 2νY = 0 (A-9)

where ν = 1 − s.

The above equation (A-9) is a Hermite differential equation. The general solution of this equa-

tion is given by

Y = AHν(x) + BHν(−x)

where Hν(z) is a Hermite function of order ν. If ν = 0, 1, 2 . . . then B = 0. As z → ∞, |Hν(−x)| →

∞[Lebedev 1972]. Hence, using the boundary condition at z→ ∞, B = 0 and we get

Y = zF = AH1−s(x)

or F(r, s) =

AH1−s

(
r
√

Pe
2

)
r
√

Pe
(A-10)
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A Laplace transform of the boundary condition at r = 2 results in

∂F
∂r
− 2PeF =

2Pe
s

@ r = 2

Using H′ν(z) = 2νHν−1(z)[Lebedev 1972], we get

A =
2
√

Pe

s
[

(1−s)
√

2Pe
H−s

(√
2Pe

)
−

(
1

4Pe + 1
)

H1−s
(√

2Pe
)]

Substituting in (A-10)

F(r, s) =

2
r H1−s

(
r
√

Pe
)

s
[

(1−s)
√

2Pe
H−s

(√
2Pe

)
−

(
1

4Pe + 1
)

H1−s
(√

2Pe
)] (A-11)

As τ→ ∞, s→ 0 and

F(r, s)→
2
√

2Pe

s
[

1√
2Pe
−

(
1

4Pe + 1
)

2
√

2Pe
] = −

1
s

⇒ f (r,∞)→ −1

⇒ g(r,∞)→ 0 (A-12)

At r = 2,

F(2, s) =
1

s
[

(1−s)
√

2Pe
H−s(

√
2Pe)

H1−s(
√

2Pe)
− 1

4Pe − 1
] (A-13)

As z→ ∞, Hν(z) = (2z)ν
[
1 + O

(
1
|z|2

)]
[Lebedev 1972]. Hence, for Pe � 1

F(2, s) =
1

s
[

(1−s)
√

2Pe
(2
√

2Pe)−s

(2
√

2Pe)1−s −
1

4Pe − 1
] =

−4Pe
s(s + 4Pe)

⇒ f (2, τ) = −(1 − e−4Peτ)

or f (2, t) = −(1 − e−4Pe2t) (A-14)
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g(2, t) = n(t)
[
1 − (1 − e−4Pe2t)

]
= n(t)e−4Pe2t (A-15)

Solution for Pe<0

The pair distribution equation (A-5a) can be made independent of the Peclet number by scaling the

distance and time in the following way:

Let z = r
√
−Pe and τ = t(−Pe)

Using the above scaling, we get

∂2 f
∂z2 +

2
z
∂ f
∂z

+ z
∂ f
∂z
−
∂ f
∂τ

= 0 (A-16)

1
z

(
z
∂2 f
∂z2 + 2

∂ f
∂z

)
+

(
z
∂ f
∂z

+ f
)
− f −

∂ f
∂τ

= 0

∂2(z f )
∂z2 + z

∂(z f )
∂z
− z f − z

∂ f
∂τ

= 0

Let y = z f

∂2y
∂z2 + z

∂y
∂z
− y −

∂y
∂τ

= 0 (A-17a)

The boundary conditions become

y ∼ 0 as z→ ∞ (A-17b)

1
z
∂y
∂z
−

f
z

+ 2
√
−Pe f = −2

√
−Pe @ z = 2

√
−Pe

⇒
∂y
∂z
−

(
1

2
√
−Pe

− 2
√
−Pe

)
y = 4Pe @ z = 2

√
−Pe (A-17c)

The above equation can be solved by carrying out a Laplace transform in the time domain.

y(z, τ)→ Y(z, s) = r
√
−PeF(r, s)

∂y
∂τ

= sY(z, s) − y(z, 0)
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Initial condition : y(z, 0) = z f (z, 0) = 0

A Laplace transform of (A-17a) gives

∂2Y
∂z2 + z

∂Y
∂z
− (1 + s)Y = 0 (A-18)

Let x =
z
√

2
= r

√
−Pe

2

∂2Y
∂x2 + 2x

∂Y
∂x
− σY = 0

where σ = 2(1 + s)

The above differential equation can be transformed into Whittaker’s equation via the transfor-

mation Y = x−1/2e−x2/2W(ξ) where ξ = x2, κ = −
[
σ
4 + 1

4

]
= − s

2 −
3
4 and µ = 1

4 . The modified

equation is written as

∂2W
∂ξ2 +

−1
4

+
κ

ξ
+

(
1
4 − µ

2
)

ξ2

 W = 0 (A-19)

The general solution of this equation satisfying the boundary condition as z→ ∞ is given by

Wκ,µ(ξ) = Ae−ξ/2ξµ+ 1
2 U

(
1
2

+ µ − κ, 1 + 2µ, ξ
)

(A-20)

⇒ Y(x, s) = Axe−x2
U

(
s
2

+
3
2
,

3
2
, x2

)
⇒ F(r, s) =

A
√

2
e

Pe
2 r2

U
(

s
2

+
3
2
,

3
2
,−

Pe
2

r2
)

(A-21)

where U(a, b, z) is the Confluent Hypergeometric Function of the second kind. A Laplace transform

of the boundary condition at r = 2 results in

∂F
∂r
− 2PeF =

2Pe
s

@ r = 2

Using U′(a, b, z) = −aU(a + 1, b + 1, z) [Abramowitz and Stegun 1964], we get

A =

√
2

se2Pe
(

s
2 + 3

2

)
U

(
s
2 + 5

2 ,
5
2 ,−2Pe

)
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Substituting in (A-21)

F(r, s) =
e

Pe
2 r2

U
(

s
2 + 3

2 ,
3
2 ,−

Pe
2 r2

)
se2Pe

(
s
2 + 3

2

)
U

(
s
2 + 5

2 ,
5
2 ,−2Pe

) (A-22)

As τ→ ∞, s→ 0 and using U(a, a, z) = ezΓ(1 − a, z) [Abramowitz and Stegun 1964], we get

F(r, s)→
2
3s

Γ
(
− 1

2 ,−
Pe
2 r2

)
Γ
(
− 3

2 ,−2Pe
)

⇒ f (r,∞)→
2
3

Γ
(
−1

2 ,−
Pe
2 r2

)
Γ
(
− 3

2 ,−2Pe
) =

− 2Pe
r e

Pe
2 r2

+ Pe
√
−2Peπerfc

(
r
√
−Pe

2

)
(
Pe + 1

4

)
e2Pe − Pe

√
−2Peπerfc

(√
−2Pe

) (A-23)

In general, at r = 2,

F(2, s) =
U

(
s
2 + 3

2 ,
3
2 ,−2Pe

)
s
(

s
2 + 3

2

)
U

(
s
2 + 5

2 ,
5
2 ,−2Pe

) (A-24)

As z→ ∞, U(a, b, z) = z−a
[
1 + O

(
1
|z|

)]
[Abramowitz and Stegun 1964]. Hence, for |Pe| � 1

F(2, s) =
e2Pe (−2Pe)−

s
2−

3
2

se2Pe
(

s
2 + 3

2

)
(−2Pe)−

s
2−

5
2

=
−4Pe

s(s + 3)

⇒ f (2, τ) = −
4
3

Pe(1 − e−3τ)

or f (2, t) = −
4
3

Pe(1 − e3Pet) (A-25)

g(2, t) = n(t)
[
1 −

4
3

Pe(1 − e3Pet)
]
∼ −n(t)

[
4
3

Pe(1 − e3Pet) + O(1)
]
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Chapter 3

The Bulk-Viscoelasticity of Suspensions

3.1 Introduction

The monopolar nature of the microstructural disturbance in compression flows of suspensions has

important implications for the time-dependent behavior of the suspension rheology. In this chapter

we probe the temporal response of bulk suspension stress in the linear response regime of small

rates of deformation. This is accomplished by applying a spatially uniform small rate of expansion

that is oscillating in time and studying the frequency-dependent bulk viscosity. Most complex fluids

exhibit viscoelastic behavior in oscillatory shearing and we expect that viscoelasticity will also

be observed in oscillatory compression/expansion. On application of an oscillatory forcing the

suspension microstructure cannot always comply instantaneously to the imposed flow, and the out-

of-phase portion of the microstructural disturbance resists the forcing in an elastic manner. The

portion that does deform along with the imposed flow provides the viscous response, hence the

combined response is viscoelastic and the relative importance of the viscous response to the elastic

response depends on the frequency of oscillation. The viscoelasticity of suspensions in shear flow

has been studied extensively, see, e.g., Russel et al. [1989], and recently the theory for the ‘micro-

viscoelasticity’ was also established [Khair and Brady 2005]. Here we determine the viscoelastic

response for the third kind of viscosity — the bulk viscosity.

The frequency response of the suspension stress is especially relevant for the bulk viscosity

because the predominant method of measuring the bulk viscosity of materials is by applying an os-

cillating deformation by means of sound waves and measuring the energy dissipation for waves of

different frequency. This technique circumvents the problem of changing concentration of the sus-



50

pension if a steady compression or expansion flow is applied to probe the rheology. The frequency-

dependent response can also be thought of as a Fourier transform of the temporal response. Hence

the viscoelastic response of the suspension also provides valuable information about the temporal

behavior of the microstructure and stress relaxation. We begin with deriving the expressions for the

frequency-dependent bulk viscosity in the next section and in later sections we study the frequency

response and the temporal response with and without hydrodynamic interactions between particles.

3.2 Bulk viscosity of a suspension

We begin by defining the bulk viscosity of a suspension as done in Chapter 2 §2.2, by computing

the average stress in the material in a way analogous to that for the shear viscosity [Batchelor and

Green 1972b; Brady and Bossis 1988; Brady et al. 2006]. The bulk viscosity is the scalar coefficient

that when multiplied with the average rate of expansion gives the difference between the trace of

the mean suspension stress and the equilibrium stress. The effective bulk viscosity κe f f is given by

κe f f ≡ κ +
(
−〈pth〉 f + 〈pth〉

eq
f

)
/〈e〉 + 1

3 n[(〈S B〉 − 〈S B〉eq) + (〈S P〉 − 〈S P〉eq) + 〈S E〉]/〈e〉 , (3.1)

where pth is the thermodynamic pressure in the fluid, and 〈S B〉, 〈S P〉 and 〈S E〉 are the trace of

the average particle stresslets due to Brownian motion, interparticle forces and the imposed hydro-

dynamic flow respectively. The angle brackets 〈. . . 〉 denote an average over the entire suspension

(particles plus fluid), and 〈. . . 〉 f denotes an average over the fluid phase only. The Brownian and

interparticle force contributions arise from interactions between at least two particles and therefore

contribute O(φ2) to the bulk viscosity. The stresslet due to the imposed rate-of-strain 〈SE〉 is nonzero

for a single particle and therefore contributes O(φ) to the bulk viscosity. Calculation of the aver-

age particle stresslets requires the knowledge of the particle microstructure so that the stress can be

averaged over it.

For dilute suspensions, the particle microstructure can be described using the pair-distribution

function g(r, t) which represents the probability of finding a second particle at a distance r relative

to another particle in the suspension, at any time t. The governing equation for the pair-distribution
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function is the Smoluchowski equation derived in Chapter 2 §2.3:

∂g
∂t

+ Pebr
∂g
∂r

+ Peb
1
r2

∂

∂r
r2v′(rb̂)g =

1
r2

∂

∂r
r2G(rb̂)

∂g
∂r
, (3.2)

G(rb̂)
∂g
∂r

= Peb[2 + v′(2b̂)]g at r = 2,

and

g ∼ 1 as r → ∞ ,

where G(rb̂) = xa
22 − xa

21 [Kim and Karrila 1991] is the scalar function for the radial component of

the relative mobility of two particles, D = 2D[G(rb̂)r̂r̂+ H(rb̂)(I− r̂r̂)] [Batchelor 1976]. The inter-

particle disturbance velocity denoted as v′(rb̂) can also be expressed in terms of the hydrodynamic

functions as

v′(rb̂) =
4
3

1

b̂
G(rb̂)

(
XP

22 − XP
21

)
, (3.3)

where XP
αβ are the hydrodynamic resistance functions relating the pressure to the velocity as deter-

mined by Jeffrey et al. [1993]. The relative diffusivity is scaled by its value at large separations, 2D.

The Péclet number is based on the particle radius b and is given by

Peb =

1
3 〈e〉 b

2

2D
,

where D = kT/6πηa is the Stokes-Einstein-Sutherland diffusivity of an isolated particle. The time

is nondimensionalized by the diffusive time b2/2D. The Péclet number can be positive or negative

corresponding to expansion or contraction, respectively.

The above equation for the pair-distribution function is valid for all Péclet numbers. In order

to study the viscoelastic response of the suspension to an expansion flow, we consider a rate of

expansion that is uniform in space but oscillatory in time 〈e〉 = S eiαt, where α = ωb2/2D is

the oscillatory frequency ω nondimensionalized with the diffusive time-scale b2/2D. The Péclet

number is now based on the amplitude of the oscillatory expansion flow and defined as Peb =

1
3 S b2/2D. Additionally we restrict this analysis to the linear response regime for small departures

from equilibrium (|Peb| � 1) such that the amplitude of oscillation is small. In this regime the

perturbation to the equilibrium microstructure is linear in the external forcing, so to leading order
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in Peb we may write the pair distribution function as:

g = 1 + Peb f (r, α)eiαt,

where f is the scaled perturbation to the microstructure satisfying to first order in Peb:

iα f +
1
r2

∂

∂r

(
r2v′(rb̂)

)
=

1
r2

∂

∂r

(
r2G(rb̂)

∂ f
∂r

)
, (3.4)

G(rb̂)
∂ f
∂r

= 2 + v′(2b̂) at r = 2,

and

f ∼ 0 as r → ∞.

As the oscillatory expansion flow proceeds the average number density of particles also oscillates

in time according to (2.23), and the spatial disturbance in the microstructure relative to the average

number density is given by f (r, α).

The deviation of the trace of the bulk stress from its equilibrium value divided by the average rate

of expansion gives the bulk viscosity of the suspension, which to second order in volume-fraction

of particles can be written as [Brady et al. 2006]:

κe f f =
(
κ + 4

3ηφ
) 1

1 − φ
+ κE + κB + κP, (3.5)

where the last three terms are the O(φ2
b) contributions to the bulk viscosity corresponding to the

imposed rate-of-strain, Brownian motion and interparticle forces, respectively. It should be noted

that the volume fraction for the two-particle contributions is based on the excluded-volume radius b

of the particles. The explicit forms for these contributions are given by

κB = −η
φ2

b

b̂2

1
2

∫ ∞

2

[
d
dr

[
XP

22xa
22 + XP

21xa
21

]
+

2
r

[
XP

22xa
22 + XP

21xa
21

]]∣∣∣∣∣∣
rb̂

f (r)r2dr,

κP = −η
φ2

b

b̂

3
2

(
2 + v′(2b̂)

)
f (2),

κE = η
φ2

b

b̂3
2
∫ ∞

2

[
(T Q

12 + T Q
22)′ − 1

4 b̂
(
XP

22 − XP
21

)
v′(rb̂)

]
(1 + Peb f (r)) r2dr, (3.6)
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where xa
αβ are the non-dimensional scalar mobility functions relating velocity to force [Kim and

Karrila 1991]. All the hydrodynamic functions are evaluated at rb̂ and the prime on (T Q
12 + T Q

22)

is a reminder that the isolated particle value has been removed. All the two-particle contributions

are positive and are proportional to the shear viscosity η as they arise from the incompressible

disturbance flow caused by the presence of the rigid particles.

In the linear-response regime the hydrodynamic contribution (κE) involves averaging over the

equilibrium microstructure (O(Peb) terms are neglected) and so it is a purely real quantity indepen-

dent of α. The interparticle-force and Brownian contributions involve weighting over the perturbed

microstructure f (r, α), which is a complex function, and therefore they have a real and an imaginary

part. The real part corresponds to the viscous response to the imposed forcing and the imaginary

part gives the elastic response. Therefore it is useful to separate the effective bulk viscosity into a

real and an imaginary part as:

κe f f (α) = κ′(α) − iκ′′(α). (3.7)

The real part of the effective bulk viscosity is

κ′(α) = κ0 + κE + κ′B(α) + κ′P(α), (3.8)

where κ0 =
(
κ + 4

3ηφ
)

1
1−φ is the O(φ) bulk viscosity and κ′B and κ′P are the real parts of κB and

κP, respectively. The direct rate-of-strain contribution is purely hydrodynamic and therefore has no

frequency dependence as discussed above. The imaginary part of the effective bulk viscosity is

κ′′(α) = κ′′B(α) + κ′′P (α), (3.9)

where κ′′B and κ′′P are the real parts of κB and κP, respectively. The normalized elastic bulk modulus

of the suspension K′ is related to the imaginary part of the bulk viscosity by K′(ω) = K0 + ωκ′′(ω)

[Zwanzig and Mountain 1965], where K0 is the normalized zero-frequency bulk modulus (inverse

compressibility) of the suspension given by

K0 = −V
(
∂P
∂V

)
s
.
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The frequency dependent effective bulk viscosity can be computed for all frequencies by solving

(3.4) for f (r, α) and substituting in the expressions in (3.6). However, it is instructive to consider

the nature of the bulk viscosity in the high and low frequency limits. The high-frequency limit

is realized when the frequency of oscillation ω is much larger than the diffusive time-scale of the

particles b2/2D, corresponding to α → ∞. The forcing in this case is at such a high frequency

that the suspension microstructure is not perturbed from its equilibrium state at all, or f (r,∞) = 0.

Therefore only the direct hydrodynamic contribution remains and the bulk viscosity is purely real

and given by

κe f f (∞) = κ0 + κE .

The high-frequency bulk viscosity has no imaginary component and is therefore purely dissipative

in nature. On the other hand the low-frequency limit corresponds to a steady rate of expansion

(or compression), for which f is purely real as calculated by Brady et al. [2006], and so the bulk

viscosity is also purely real. The zero-frequency bulk viscosity is completely dissipative in nature

and given by

κe f f (0) = κ0 + κE + κ′B(0) + κ′P(0).

To isolate the frequency dependence of the bulk viscosity it is useful to define reduced bulk

viscosity functions. The reduced function for the real part of the bulk viscosity is defined as

κ′r(α) ≡
κ′(α) − κe f f (∞)
κe f f (0) − κe f f (∞)

=
κ′B(α) + κ′P(α)
κ′B(0) + κ′P(0)

, (3.10)

and the reduced function for the imaginary part of the bulk viscosity is

κ′′r (α) ≡
κ′′(α)

κe f f (0) − κe f f (∞)
=
κ′′B(α) + κ′′P (α)
κ′B(0) + κ′P(0)

. (3.11)

Both are dimensionless functions of the scaled frequency α only and vary between 0 and 1. The

dependence on volume fraction has also been scaled out.
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3.3 Microstructure and bulk viscosity: No hydrodynamics

First we consider the simplest model for the suspension where we neglect hydrodynamic interac-

tions between the particles. In this model each hard sphere behaves as a colloidal particle undergoing

Brownian motion and with a self-diffusivity given by the bare diffusivity, but the effect of the distur-

bance flow due to a particle on the other particles is neglected. Particles may only interact with each

other via hard-sphere collisions. This approach allows us to isolate the effect of Brownian motion

and inter-particle forces on the microstructure from the effect of hydrodynamic interactions, and is

instructive for understanding the nature of the perturbation. In terms of the excluded-annulus model

this limit corresponds to b̂ → ∞ for the computation of all the hydrodynamic functions. Note that

in this model for hard spheres with no hydrodynamic interactions there is actually no excluded an-

nulus, rather the spheres actually have a radius b and therefore the bare diffusivity is D = kT/6πηb.

The parameter b̂ only serves to control the strength of hydrodynamic interactions between particles.

In the absence of hydrodynamics there is no disturbance fluid velocity between any particle pair,

so v′(rb̂) = 0, and the relative radial mobility is simply G(rb̂) = 1. The Smoluchowski equation for

f (r, α) now becomes
1
r2

∂

∂r

(
r2 ∂ f
∂r

)
− iα f = 0, (3.12)

∂ f
∂r

= 2 at r = 2,

and

f ∼ 0 as r → ∞.

This is a modified spherical Bessel differential equation of order 0 after the coordinate transforma-

tion z =
√

iα, and its solution satisfying the boundary condition as r → ∞ is the modified spherical

Bessel function of the second kind. Applying the boundary conditions and simplifying, it has the

exact solution

f = −
8
r

1
(1 + z0)

ez0(1−r/2), (3.13)

where z0 = 2
√

iα. In the absence of hydrodynamic interactions only the stress due to interparticle

forces contributes to the bulk viscosity, which in the case of hard spheres arises only from hard-
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sphere collisions and is given by

κP(α) = −3 f (2, α)ηφ2
b. (3.14)

The single particle contribution to the bulk viscosity is still present. The O(φ2
b) hydrodynamic (κH)

and Brownian (κB) contributions are identically zero because they originate from hydrodynamic in-

teractions due to the imposed external forcing and Brownian motion, respectively. The O(φ2
b) steady

expansion bulk viscosity corresponding to α = 0 is given by κP(0) = 12ηφ2
b. At the other extreme is

the high-frequency limit (α → ∞) where f → 0 and so there is no interparticle contribution to the

bulk viscosity.

The frequency dependent solution for the microstructure can be broken into its real and imagi-

nary parts, from which we obtain the reduced bulk viscosity functions as

κ′r(α) =
κ′P(α)
κ′P(0)

= −
1
4
< f (2, α) =

1 + β

1 + 2β + 2β2 , (3.15)

and

κ′′r (α) =
κ′′P (α)
κ′P(0)

=
1
4
= f (2, α) =

β

1 + 2β + 2β2 , (3.16)

where β =
√

2α. Plots of the real and imaginary reduced viscosity functions are shown in Figure 3.1

and Figure 3.2 along with the reduced shear viscosity functions derived by Brady [1993b]. In the

high frequency limit (α → ∞) both bulk and shear reduced viscosities asymptote to zero with the

same dependence on α; only the coefficient is different. In the steady expansion/shear limit (α→ 0)

the real part of both viscosities asymptote to 1 and the imaginary part becomes zero as discussed

earlier, but the dependence on α is slower for the bulk viscosity. It is useful to examine the low

and high frequency asymptotic limits to understand the nature of the microstructural perturbation in

expansion flow and its effect on the bulk viscosity.

A Taylor series expansion of (3.13) for small α produces the following asymptotic form of the

microstructural deformation at contact:

f (2;α) ∼ −4
{
1 − (2α)1/2 + 2(2α)3/2 − i

(
(2α)1/2 − 4α + 2(2α)3/2

)}
+ O(α2). (3.17)

The first departure from steady state is O(α1/2) and it is present in both the real and imaginary
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parts. Equation (3.18) represents a direct balance between Brownian diffusion and the imposed

forcing. The deformation is dominated by Brownian motion except at r ∼ O(α−1/2) and larger

where diffusion is balanced by the external forcing. In the case of expansion flow the forcing is

radial resulting in concentration gradients that are in the radial direction only. Therefore diffusion

due to Brownian motion also takes place only radially. The forcing in expansion/compression flow

is therefore monopolar and decays as 1/r, as is evident from the value of f (r, α) = −8/r from

equation (3.13) in the limit α → 0. In contrast the microstructural perturbation in shear flow is

quadrupolar, decaying as 1/r3, as there is accumulation of particles in the compression axis and

depletion of particles in the expansion axis, resulting in Brownian diffusion in the radial as well as

tangential directions. Hence the nature of the disturbance in shear flow is fundamentally different

from that in expansion flow. This is evident in the Smoluchowski equation for shear flow of hard

spheres with no hydrodynamic interactions, given by [Brady 1993b; Cichocki and Felderhof 1991]:

1
r2

∂

∂r

(
r2 ∂ f
∂r

)
− 6

f
r2 − iα f = 0, (3.18)

∂ f
∂r

= −2 at r = 2,

and

f ∼ 0 as r → ∞.

The extra term −6 f /r2 stems from interparticle interactions perpendicular to the line joining

the centers between two particles in the suspension. Equation (3.18) is a modified spherical Bessel

differential equation of order 2 after the coordinate transformation z =
√

iα, and the exact solution

for f (r, α) is

f =
32
3

1
r3

 1 + z + 1
3 z2

1 + z0 + 4
9 z2

0 + 1
9 z3

0

 ez0(1−r/2), (3.19)

where z0 = 2
√

iα. Only the hard-sphere stress contributes to the shear viscosity in the absence of

hydrodynamics and so the reduced shear viscosity functions depend only on f (2, α), just like for the

bulk viscosity. The shear viscosity is given by [Brady 1993b]

ηP =
9
5

f (2, α)φ2
bη. (3.20)
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Expanding f (2, α) in a Taylor series for small values of α gives the asymptotic form

f (2, α) ∼
4
3

{
1 −

16
81

(2α)2 +
4
27

(2α)5/2 − i
(
2
9

(2α) −
4
27

(2α)5/2
)}

+ O(α3). (3.21)

The first departure from equilibrium is linear in α and is purely imaginary and therefore elastic in

nature. The next correction is O(α2) and is purely real. The more dominant response being out-of-

phase with the imposed flow is a consequence of the quadrupolar nature of the disturbance in shear

flow.

In the infinite frequency limit f = 0 but this solution does not satisfy the no-flux boundary

condition at contact. The perturbation about α → ∞ is singular and there is a boundary layer of

O(α1/2) around the particle in which diffusion balances the imposed forcing. Rescaling r to get a

stretched coordinate for the boundary layer y = (r − 2)
√

iα, and neglecting terms of O(α−1/2) the

Smoluchowski equation becomes simply

d2 f /dy2 = f , (3.22)

which has the solution

f (r, α) = −
2
√

iα
e−(r−2)

√
iα,

giving

f (2, α) = −(1 − i)
√

2α. (3.23)

Equation (3.22) is obtained for both expansion flow and shear flow after neglecting the O(α−1/2)

terms. On the scale of the boundary layer the surface of the particle appears flat and consequently

there is a one-dimensional balance between the oscillatory forcing and Brownian diffusion in both

cases. The boundary condition for shear flow is slightly different, giving f (2, α) = (1 − i)
√

2α. The

real and imaginary parts of f (2, α) and hence the shear and bulk viscosities vanish like α−1/2 as

α → ∞. This slow decay with α implies that the elastic bulk modulus of the suspension given by

K′(ω) = K′0 + ωκ′′(ω) diverges as α1/2 at high frequency; clearly an unphysical result. The hard-

sphere potential results in a delta function repulsion force at contact, which is responsible for the

divergence because the collision between particles is instantaneous and therefore the stress during
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an infinitesimal time-step containing the collision is infinite. The same behavior has been observed

for the elastic shear modulus G′(ω) and Brady [1993b] showed that the inclusion of hydrodynamic

interactions removes the divergence. In §3.5 we will show that accounting for hydrodynamics has

the same effect on the bulk modulus and it reaches a high-frequency plateau as α→ ∞.

3.4 Temporal response

We will now show that the monopolar forcing in expansion flow also affects the temporal response

of the suspension, and this connection is made via the frequency dependence of the microstructural

perturbation. The frequency-dependent behavior of the microstructure and bulk viscosity can be

thought of as the temporal Fourier transform of the corresponding time-dependent behavior in a

steady flow. A Fourier transform of 3.2 in the linear-response regime with no hydrodynamics gives

1
r2

∂

∂r
r2 ∂ f̂
∂r
− iα f̂ = 0, (3.24)

with boundary conditions

f̂ → 0 as r → ∞,

and
∂ f̂
∂r

= 2
[
πδ(α) +

1
iα

]
at r = 2, (3.25)

where f̂ (r, α) is the temporal Fourier transform of f (r, τ) and α is now the Fourier-domain fre-

quency. The term inside square brackets in 3.25 comes from the Fourier transform of the Heaviside-

step function due to the fact that at τ = 0 the system was at equilibrium and at τ > 0 a steady

compression/expansion flow was imposed. The solution for f̂ (r, α) is given by

f = −
8
r

1
(1 + z0)

[
πδ(α) +

1
iα

]
ez0(1−r/2), (3.26)

where again z0 = 2
√

iα. The only difference between 3.13 and 3.26 is the additional term due to

the Heaviside-step function in the Fourier transform analysis. Had we considered a continuously

oscillating forcing without an equilibrium initial condition the result from the Fourier analysis would

be identical to that from the frequency-dependent equations. Starting from an equilibrium initial



60

condition allows us to study how the microstructure approaches the nonequilibrium steady state

in the linear response regime. The microstructural disturbance at contact as a function of time is

obtained from a Fourier-Laplace inversion of 3.26 as

f (2, τ) = −4
(
1 − eτ/4Erfc

(√
τ

4

))
, (3.27)

which behaves as τ1/2 at short times and asymptotes to its long-time value as 1 − τ−1/2. In contrast

the microstructure in a shear flow asymptotes to its final value much faster as 1 − τ−5/2 [Brady

1994]. Thus the monopolar nature of the forcing in expansion/compression flow also manifests in

the temporal response as a very slow asymptotic approach to the final nonequilibrium steady-state.

Next we will explore the time dependence of microstructural relaxation of the fluctuations due

to Brownian motion. A well known way to calculate transport properties is to use Green-Kubo rela-

tions to get them from stress relaxation functions [Green 1952]. For the shear viscosity one would

use the shear stress autocorrelation function at equilibrium, and for the bulk viscosity the pressure

autocorrelation is used. Although the time-average of the particle-phase stress for a given volume-

fraction is a constant at equilibrium, Brownian motion produces fluctuations that lead to temporary

deviations in the stress. The pressure autocorrelation function depicts how quickly fluctuations in

the particle pressure are dissipated in time. Based on the work by Nagèle and Bergenholtz [1998] the

Green-Kubo relation for the frequency-dependent bulk viscosity of a suspension due to Brownian

motion is given by

κB(α) =
V
kT

∫ ∞

0
〈δΠ(0)δΠ(t)〉e−iωtdt, (3.28)

where the angle brackets denote an ensemble average over the equilibrium structure, V is the volume

of the system over which the averaging is done, t is the time, and δΠ(t) is the instantaneous deviation

of the osmotic pressure of the suspension from its equilibrium value. The high-frequency elastic

bulk modulus K′∞ = K′ (ω→ ∞) can also be obtained from the pressure autocorrelation function as

K′∞ − K′0 =
V
kT

lim
t→0
〈δΠ(0)δΠ(t)〉 (3.29)

Nondimensionalizing the osmotic pressure with nkT where n is the number density of particles, and

time with the diffusive time of the particles to give τ = t(2D/b2), equation (3.28) can be written
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using nondimensionalized quantities as:

κB(α)
η

=
9
4
φbN

∫ ∞

0
〈δΠ(0)δΠ(t)〉e−iατdτ, (3.30)

where φb is the volume-fraction of particles, N is the number of particles in volume V , η is the

fluid shear viscosity and Π(t) denotes the non-dimensional osmotic pressure. The Green-Kubo

formula can be regarded as a one-sided Fourier transform of the pressure autocorrelation function

〈δΠ(0)δΠ(t)〉, or equivalently a Laplace transform along the imaginary axis with the transform pa-

rameter s = iα. Therefore one can obtain the pressure autocorrelation function from an inverse

Laplace transform of the frequency-dependent bulk viscosity.

We define a scaled pressure autocorrelation function CP = 〈δΠ(0)δΠ(t)〉N/φb, and using (3.30)

we find that it is related to the bulk viscosity as:

CP =
4
9
L−1

 κ(s)
ηφ2

b.

 , (3.31)

whereL−1 denotes the inverse Laplace transform operator. The inverse transform must be evaluated

along the imaginary axis because s = iα and κ(s) is fully convergent along this contour, therefore

it is equivalent to the inverse Fourier transform in α. For hard spheres with no hydrodynamic

interactions the bulk viscosity is given by (3.14) and therefore we get

CP
NH =

4
3
L−1

{
4

1 +
√

4s

}
=

4
3

(
2
√
πτ
− eτ/4Erfc

(√
τ

4

))
, (3.32)

where Erfc is the complementary error function and the subscript NH stands for ‘No Hydrodynam-

ics’.

For small values of t the pressure autocorrelation function scales as t−1/2 with the asymptote

CP
NH ∼ 4/3

(
2/
√
πτ − 1

)
, which corresponds to the high-frequency limit of the bulk viscosity. The

same short-time scaling is observed for the shear-stress autocorrelation function without hydrody-

namics [Brady 1993b; Cichocki and Felderhof 1991]. Both the shear viscosity and the bulk viscosity

have the same α−1/2 high-frequency scaling which manifests in the stress relaxation functions as a

t−1/2 short time scaling for the shear stress and the pressure. This would imply that the elastic bulk

modulus given by (3.29) would diverge as α → ∞, which is not to be expected in real systems.
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Again, the inclusion of hydrodynamic interactions resolves this apparent aphysical behavior and

results in a relaxation function that plateaus to a constant as t → 0.

As t → ∞ the pressure autocorrelation decays as CP
NH ∼ (16/3

√
π)τ−3/2, obtained using an

asymptotic expansion of the complementary error function [Abramowitz and Stegun 1964]. This is

a very slow long-time decay of the pressure relaxation in comparison to the t−7/2 decay of the shear

stress relaxation function, and is a consequence of the slow α1/2 dependence of the bulk viscosity as

α→ 0. In fact this difference can be traced back to the monopolar nature of the forcing in expansion

flow due to which Brownian diffusion is strictly radial and so the microstructural disturbance decays

slowly as 1/r. In a shear flow the forcing is quadrupolar, there is Brownian diffusion in the radial

as well as tangential directions around the particle, and so the disturbance in the microstructure

is able to dissipate faster as 1/r3. The slower spatial decay of the disturbance in expansion flow

manifests as a slow t−3/2 temporal decay of the pressure autocorrelation. Figure 3.3 shows the

scaled theoretical stress-autocorrelation curves for the particle-pressure as well as the shear stress

in the absence of hydrodynamics. The analytical Laplace inversion of the shear viscosity as given

by (3.20) is not straightforward, therefore the relaxation curve for the shear stress was obtained

via numerical Laplace inversion of the frequency-dependent shear viscosity. It is apparent that

there is a wide gap between the long-time tails of the pressure and shear-stress relaxation function.

Additionally, the pressure autocorrelation function takes much longer to reach its asymptotic decay

of t−3/2.

3.5 Effect of hydrodynamic interactions

Neglecting hydrodynamic interactions allowed us to solve the Smoluchowski equation (3.4) exactly

and obtain an analytical expression for the bulk viscosity, but it led to some aphysical behavior

in the high-frequency limit for the elastic bulk modulus and in the short-time limit for the stress

autocorrelation function. In the high-frequency limit the interactions between particles that are

touching or nearly touching dominate the microstructure and stress. Hydrodynamic interactions

serve to dampen the particle collisions because the particles never actually come into contact with

each other due to lubrication flows between nearly touching particle surfaces, therefore the hard-

sphere potential plays no dynamic role. However, the strong lubrication forces arising from the no-
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slip boundary condition at contact ensure that the particles behave as hard spheres [Brady 1993a].

In the presence of hydrodynamics there is also an additional contribution from many-body far-field

interactions between all the particles.

It is useful to study the asymptotic behavior of the Smoluchowski equation (3.4) with hydrody-

namics (b̂→ 1) to understand the effect of hydrodynamic interactions on the frequency dependence

of the bulk viscosity. In the low-frequency limit (α → 0) the perturbation to the microstructure is

dominated by Brownian diffusion as in the no-hydrodynamics case. The perturbation in the steady

expansion limit (α = 0) was derived by Brady et al. [2006] as the quadrature

f (r) = −

∫ ∞

r

1

G(rb̂)

[
8
r2 + v′(rb̂)

]
dr. (3.33)

In the absence of hydrodynamics b̂→ ∞, v′ = 0 and G(rb̂) = 1 and the solution reduces to

fNH(r) = −
8
r
,

where the subscript NH stands for ‘No Hydrodynamics’. This is the limiting value of f (r, α) in

(3.13) as α → 0. In the presence of a small nonzero oscillatory frequency α the microstructural

disturbance is a slight deviation from the steady state result, and therefore has a monopolar forcing

decaying as 1/r both with and without hydrodynamics. At large distance (r ∼ α−1/2) where diffusion

balances the imposed forcing, the strength of hydrodynamic interactions is negligible and so we

expect the solution in this outer region to have the same α1/2 dependence as without hydrodynamics.

The perturbation closer to the particle must also match the outer solution further away so the bulk

viscosity must have a α1/2 dependence at low frequencies. The monopolar forcing is reflected in the

α1/2 dependence of the microstructural disturbance at small frequencies of oscillation in both cases.

Consequently we expect the pressure autocorrelation function in the presence of hydrodynamic

interactions to have the same t−3/2 long time behavior as without hydrodynamics.

The high-frequency limit is more interesting because Brownian diffusion is expected to balance

the imposed forcing inside a boundary layer close to the particle surface, but the hydrodynamic

mobility function inside the diffusive term itself asymptotes to zero near contact. To leading order

there is a balance between the oscillatory forcing and advection due to disturbance flows, giving the
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asymptotic solution f (r, α) = iW(rb̂)/α in the ‘outer region’ (r � α−1). This solution satisfies the

far boundary condition because v′(rb̂) → 0 as r → ∞ but it does not satisfy the no-flux boundary

condition at contact. In the ‘inner region’ close to particle contact there is a boundary layer where

Brownian diffusion balances the oscillatory forcing. Note that in the presence of hydrodynamics

there are two small parameters that will set the size of the boundary layer near contact. There is

the length scale set by the oscillatory frequency α, and there is also the length scale of lubrication

interactions δ ≡ b̂ − 1 and we will explore how the two length scales affect the size of the boundary

layer.

Retaining the hydrodynamic functions, equation (3.4) can be written as

G(rb̂)
∂2 f
∂r2 +

(
2
r

G(rb̂) +
∂G(rb̂)
∂r

)
∂ f
∂r
− iα f = W(rb̂), (3.34)

where the function

W(rb̂) ≡
1
r2

∂

∂r

(
r2v′(rb̂)

)
=
∂v′(rb̂)
∂r

+
2
r

v′(rb̂) (3.35)

is the contribution from disturbance flows around the particle. In the region close to particle con-

tact lubrication forces between particles are significant in the hydrodynamic limit. Therefore the

lubrication theory expressions for the hydrodynamic functions must be used in this region, given by

[Kim and Karrila 1991; Jeffrey et al. 1993]:

G(rb̂) ' 2ξ + 1.8ξ2 ln ξ + O(ξ2), (3.36)

∂G(rb̂)
∂r

' b̂ (2 + 3.6ξ ln ξ + O(ξ)) , (3.37)

and from (5.28)

v′(rb̂) ' −
1

b̂

(
2 + 3ξ ln ξ − coξ + O(ξ2)

)
, (3.38)

W(rb̂) = −

[
3 − c0 + 3 ln ξ +

2

rb̂
(2 + 3ξ ln ξ) + O(ξ)

]
, (3.39)

where ξ = rb̂ − 2 is the hydrodynamic separation between nearly touching particle surfaces and

c0 = 4.0653 is a constant. The no-flux boundary condition at r = 2 (2.21) using the lubrication form
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of the hydrodynamic functions is

∂ f
∂r

=
1

2b̂
(1 + c0 − 3 ln {2δ}) + O (δ) , (3.40)

where δ � 1 when hydrodynamic interactions are important. The mobility coefficient on the left-

hand side and the relative velocity on the right-hand side of the boundary condition both asymptote

to zero linearly in ξ as δ → 0, but the linear dependence cancels out and to leading order the

boundary condition specifies the slope of f (r, α) diverging slowly as ln δ. In the full hydrodynamics

limit where δ ≡ 0 both the sides are identically zero, hence the boundary condition is not defined.

There is no balance between diffusion due to hard sphere collisions and the imposed forcing at

contact because the mobility of touching particles is identically zero. The microstructure is set

solely by the interactions due to disturbance flows between particles in this limit. The existence of a

thermodynamic boundary layer near contact can therefore be attributed to hard-sphere interactions

between particles.

Keeping only the highest order terms in the coefficients, the Smoluchowski equation near parti-

cle contact is given by

(2(r − 2) + 4δ)
∂2 f
∂r2 + 2

∂ f
∂r
− iα f = W(r, δ). (3.41)

The separation between particle surfaces is be written as ξ ' r − 2 + 2δ to leading order in δ

using b̂ ' 1. First let us consider the limit of high frequency and relatively mild hydrodynamic

interactions such that α−1 � δ � 1. The innermost boundary layer in this case is of size α−1/2 and

within this region r − 2 � δ. We define the stretched coordinate z = (r − 2)
√

iα/4δ such that the

highest derivative in (3.41) is O(1) in the boundary layer. In order to satisfy the boundary condition

(3.40) f (z, α) must scale as α−1/2 to leading order. Therefore we expand it in inverse powers of α

as f (z, α) = f0α−1/2 + f1α−1 + O(α−3/2), substitute it in equation (3.41) and compare like powers of

alpha. The resulting equation and boundary conditions for f0 are

∂2 f0
∂z2 − f0 = 0, (3.42)

∂ f0
∂z

=

√
4δ
i

A0(δ) at z = 0,
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f0 → 0 as z→ ∞,

where A0(δ) = (1 + c0 − 3 ln {2δ}) /2, and have the solution

f0 = −

√
4δ
i

A0(δ)e−z. (3.43)

The perturbation decays to zero exponentially on the length scale of the boundary layer and to

leading order it scales as α−1/2. It is also proportional to δ1/2 implying that as hydrodynamic inter-

actions become stronger f0 → 0, and to leading order the perturbation will scale as α−1 with the

solution given by f1. A boundary layer solution can also be found for f1, and it will asymptote to

the outer solution
(

f1 → iW(rb̂)
)

outside the boundary layer. The far-field condition on f1 comes

from asymptotic matching of the inner and outer solutions. However, it is important to note that

when δ < α−1 there will be an inner boundary layer of size δ and therefore the above analysis is not

directly applicable.

Next we investigate the high-frequency limit with strong hydrodynamic interactions (δ � α−1 �

1). First consider the region where r−2 � δ. In this region the separation between particle surfaces

can be approximated as ξ ∼ 2δ, hence the Smoluchowski equation (3.41) suggests a boundary layer

of size δ in which the derivatives are all O(1). We define a scaled coordinate y = (r − 2)δ−1/2

and expand f (y, α) in powers of δ as f = h0 + h1δ + O(δ2). The resulting equation and boundary

conditions are
∂2

∂y2 (h0 + h1δ) +
∂

∂y
(h0 + h1δ) − iαδ (h0 + h1δ) = W(y, δ)δ, (3.44)

∂

∂y
(h0 + h1δ) = 2δA0(δ) at y = 0. (3.45)

As y→ ∞, f must asymptote to the solution in the outer boundary layer, which we shall study later.

It is evident from matching powers of δ in equation (3.44) and (3.45) that h0 is a constant. The

next correction to f will be O(δ) therefore h0 must be the asymptotic value of the outer boundary

layer close to contact, which is expected to be O(α−1), thereby implying that the solution in the next

boundary layer must asymptote to a constant near contact. The equation for h1 is

∂2h1

∂y2 +
∂h1

∂y
− iαh0 = W(y, δ), (3.46)
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with boundary conditions
∂h1

∂y
= 2A0(δ) at y = 0,

h1 → 0 as y→ ∞.

For the sake of simplicity we treat W(y, α) as a constant in (3.46) and get the solution

h1 =
(
e−y + y

)
(W(y, α) + iαh0) − 2A0e−y. (3.47)

Accordingly, the value of f in this region is a constant to leading order, with an O(δ) correction

which serves to satisfy the boundary condition at contact. Thus there is a balance between diffusion

due to hard sphere collisions and the imposed forcing in a boundary layer of size δ near contact

which results in an O(δ) correction to the perturbed microstructure. In the full hydrodynamics limit

(δ → 0) this boundary layer disappears completely and particle collisions do not play any role in

determining the microstructure.

Finally, in order to find the contact value of f and its behavior outside the thermodynamic

boundary layer we need to consider the region where δ � r−2 � α−1. Here the separation between

particle surfaces can be approximated as ξ ∼ r − 2 and the Smoluchowski equation (3.41) now

suggests a boundary layer of α−1 in which all derivatives are O(1). We define a scaled coordinate

x = (r − 2)α and expand f (x, α) in inverse powers of α as f = k1α
−1 + k2α

−2 + O(α−3). With this

rescaling and comparing like powers of α−1 the equation for k1 is given by

2x
∂2k1

∂x2 + 2
∂k1

∂x
− ik1 = W(x, α), (3.48)

with boundary conditions

k1 → αh0 as x→ 0,

k1 → iW(x, α) as x→ ∞.

This is a non-homogeneous modified Bessel differential equation. Again, for simplicity we approx-

imate W(x, α) as a constant in (3.48) and obtain the solution

k1 = A1K0
(√

2ix
)

+ iW(x, α),



68

where K0(z) is the zeroth order modified Bessel function of the second kind which decays to zero

as x → ∞, and A1 is a constant. In the x → 0 limit we can use the approximation K0(z) ∼ − ln z

[Abramowitz and Stegun 1964] and employ the lubrication expression for W(x, α) (3.39). Choosing

A1 such that k1 is constant in the limit x→ 0, we get

k1 = −6iK0
(√

2ix
)

+ iW(x, α), (3.49)

with the contact value

k1(0) = −
3π
2

+ i (3 ln(2α) + c0 − 5) . (3.50)

The imaginary part of the contact value scales as α−1 ln(α) with increasing α while the real part is

exactly −3π/2α−1. However, spatially the real part decays to zero on a length scale α−1 while the

imaginary part asymptotes to iW(rb̂), which has a much slower decay to zero. Therefore the imagi-

nary (or elastic) response dominates in the overall microstructural perturbation at high frequencies.

Thus in the full hydrodynamics limit (δ → 0) the O(α−1/2) disturbance given by f0 becomes

zero and the leading order disturbance to the microstructure is O(α−1), given by

f (r, α) = α−1
(
−6iK0

( √
2iα(r − 2)

)
+ iW(rb̂)

)
, (3.51)

and consequently the bulk elastic modulus asymptotes to a constant as α → ∞ in the limit of full

hydrodynamics. With the knowledge of f (r, α) the Brownian and interparticle-force contributions

to the bulk viscosity can be evaluated from (3.6). The interparticle-force contribution is zero in the

full hydrodynamics limit because the hard sphere collisions constituting the interparticle forces are

absent. The Brownian contribution has the same α−1 scaling as f (r, α), and accordingly the high

frequency elastic bulk modulus given by

K′(α)
(

a3

kT

)
=

1
3π
α
κ′′(α)
η

plateaus to a constant value as α → ∞. The high frequency limit of the K′(α) was calculated

numerically as described in the next section. The inclusion of hydrodynamic interactions corrects

the aphysical behavior of the bulk modulus at high frequencies. As a corollary, the short time
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temporal response of the microstructural disturbance is finite in the presence of hydrodynamics,

causing the pressure autocorrelation function to asymptote linearly to a constant as t → 0.

3.6 Numerical results

The Smoluchowski equation with full hydrodynamic interactions (3.34) was solved numerically

using finite-differences for a wide range of values of b̂ ≥ 1 and α to study the effect of varying

strength of hydrodynamic interactions on the frequency-dependent bulk viscosity. The far boundary

was chosen at a large value of r such that the solution is expected to be close to round-off error in

that region and f was set to zero at the far end. The microstructural perturbation decays slowly as

1/r in the low frequency limit (α → 0), and decays exponentially near contact on a length scale δ

in the high frequency limit (α → ∞). A logarithm transformation of the coordinate was employed

to shrink the domain far from particle contact and expand it close to contact, so that there are no

extreme gradients in the solution for any value of α or δ. In addition, the finite difference grid was

discretized with a geometrically increasing number of points closer to contact where the slope of f

is expected to be steep in the α→ ∞ limit, leading to a more accurate solution for f . The number of

grid points were also calibrated such that all the gradients were captured accurately, and increasing

the grid size did not change the results. The transformed coordinate is given by

z = ln(r − 2 + ε), (3.52)

where ε is a small parameter that determines the maximum stretching of the domain occurring at

particle contact. As ε → 0, the region close to contact (r − 2 → 0) gets stretched more and more

because z → −∞ at contact. The minimum value of z (at r = 2) is given by ln ε and controls the

coordinate stretching near contact. In the nearly-full-hydrodynamics limit at both high frequencies

(δ � α−1 � 1) and low frequencies (δ � α � 1), a value of ε � δ was chosen so that all the

physics in the hydrodynamic boundary layer is captured correctly. For frequencies of the order

α−1/2 ∼ δ, values of ε ∼ δα−1/2 and lesser were found to give good results. In the absence of

hydrodynamics (b̂ � 1), ε � α−1/2 was used in the high frequency limit while at low frequencies

ε ∼ 10−2 was sufficient to resolve the microsructure near contact correctly. The hydrodynamic
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functions for rb̂ > 2.001 were computed using twin multipole expansion [Jeffrey and Onishi 1984;

Jeffrey et al. 1993], and for rb̂ < 2.001 the lubrication theory expressions for the functions were

used. The bulk viscosity was computed numerically using (3.6) and the numerical solution for

f (r, α).

The zero frequency (steady expansion) bulk viscosity with full hydrodynamic interactions was

obtained numerically as κB(0) = 5.247φ2
bη. Figure 3.4 shows the real reduced bulk viscosity

function κ′r as a function of α with varying levels of hydrodynamic interactions prescribed by

b̂ − 1 = 10−6, 10−3, 10−2, 10−1 and 105. As α → 0 the bulk viscosity asymptotes to its steady

expansion value as α1/2 for all values of b/a. It undergoes a ‘frequency thinning’ as α increases

and eventually decays to zero as α → ∞. In the high frequency limit the microstructure is not

perturbed at all and therefore there is no Brownian contribution to the bulk viscosity. In the absence

of hydrodynamics (b̂ − 1 = 105) the real part of the bulk viscosity decays like α−1/2 as α → ∞, but

with full hydrodynamics the decay is almost O(α−2). Recall from the previous section that as b̂→ 1

the real part of the microstructural perturbation not only scales as α−1 but also decays to zero within

a boundary layer of size α−1, thereby giving a α−2 scaling for the real bulk viscosity obtained by a

spatial integration of the Brownian stress weighted with the perturbation. For intermediate values of

b̂ the transition from the full hydrodynamics scaling to the no-hydrodynamics scaling can be seen

as α increases and the scaling is governed by a boundary layer of size α−1/2.

Figure 3.5 shows a plot of the imaginary reduced bulk viscosity function κ′′r versus α for varying

levels of hydrodynamic interactions given by b̂ − 1 = 10−6, 10−3, 10−2, 10−1 and 105. In the low

frequency limit the perturbation to the microstructure is mostly in-phase with the imposed forcing,

hence the imaginary bulk viscosity vanishes as α→ 0. The frequency dependence does not change

with different values of b̂ because the microstructure is set by a balance between Brownian diffusion

and the oscillatory forcing over the entire domain in all cases. As α increases κ′′r also increases and

reaches a peak near α ∼ 0.25. As α → ∞ it again decays as α−1/2 in the absence of hydrodynamic

interactions, and as α−1 with full hydrodynamics. The imaginary response has the same scaling as

the real part when hydrodynamics are not important but as b̂→ 1 the imaginary response dominates

with the real part decaying much faster. For intermediate values of b̂ one can see a transition from

the α−1 scaling to the α−1/2 scaling as α increases.

In the high frequency limit with full hydrodynamic interactions the elastic bulk modulus has
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a finite value calculated to be K′(∞) ' 0.56(kT/a3)φ2
b. Figure 3.6 shows the bulk modulus as a

function of α for varying levels of hydrodynamic interactions. In the b̂ → 1 limit the bulk modulus

asymptotes to a constant as α → ∞ but for intermediate values of b̂ − 1 � 1 the bulk modulus

switches scaling from constant to O(α1/2) as α varies from α−1 � b̂ − 1 to α−1 � b̂ − 1. In

the absence of hydrodynamic interactions (b̂ � 1) the bulk modulus has a α1/2 scaling at high

frequencies, as discussed previously.

3.7 Conclusions

The frequency-dependent bulk viscosity was determined for dilute suspensions for all frequencies

both with and without hydrodynamic interactions between particles. Qualitatively it has the same

behavior as the shear viscosity and the microviscosity, but the response in the low frequency regime

is quite different. This is where the monopolar nature of the pressure relaxation differentiates the

bulk viscosity from other rheological properties. Perhaps the most significant find in this work

was the determination of an exact analytical expression for the pressure autocorrelation function.

Stress autocorrelations are notoriously difficult to study especially at long times, and the pressure

autocorrelation function even more so because it decays very slowly. With theoretical knowledge of

the pressure autocorrelation function we are now well equipped to analyze the data from numerical

simulations and experiments.
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Figure 3.1: Real reduced functions for the bulk viscosity (solid curve) and shear viscosity (dashed
curve) of hard spheres with no hydrodynamic interactions.
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Figure 3.2: Imaginary reduced functions for the bulk viscosity (solid curve) and shear viscosity
(dashed curve) of hard spheres with no hydrodynamic interactions.
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Figure 3.6: The elastic bulk modulus K′(α) as a function of the nondimensional frequency α =

ωb2/2D at varying levels of hydrodynamic interactions from nearly full (b̂− 1 = 10−6) to no hydro-
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b.
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Chapter 4

Stokesian Dynamics Simulations for
Compressible Flows of Suspensions

4.1 Introduction

Numerical simulations of particulate suspensions play an important role in the study of complex

fluids and multiphase materials. Simulations have been used to make accurate predictions of the

macroscopic equilibrium and transport properties of such materials and to study the microstructural

mechanics of the particles in a variety of flow situations [Brady and Bossis 1989; Brady and Foss

2000; Sierou and Brady 2002]. So far the simulation work has focused only on incompressible

flows of suspensions. More recently Brady, Khair, and Swaroop [2006] determined the ‘effective

bulk viscosity’ (also known as the second or expansion viscosity) for dilute suspensions in a linear

expansion flow. The bulk viscosity of a suspension relates the deviation of the trace of the macro-

scopic stress from its equilibrium value to the average rate of expansion. In this chapter we describe

the adaptation of the Stokesian Dynamics (SD) [Durlofsky, Brady, and Bossis 1987] and Accel-

erated Stokesian Dynamics (ASD) [Sierou and Brady 2001; Banchio and Brady 2003] techniques

for simulation of particles in a fluid to allow for expansion flow and calculation of the trace of the

particle-phase stress.

Simulating the expansion (or compression) of only the particle phase in a suspension would

necessarily lead to spatial variations in the particle volume-fraction, which makes it difficult to

determine the bulk viscosity for a given volume-fraction. This problem can be circumvented by

having the surrounding fluid expand or compress uniformly in space, leading to a homogeneous

expansion or compression of the particle phase as well. The imposed flow causes the suspended
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particles to move apart uniformly in space, but they cannot expand with the fluid, thereby producing

a disturbance flow as the fluid has to move around the particles. This disturbance flow causes the

stress on the particles to change, also changing the bulk stress in the suspension. The bulk viscosity

of the suspension is then determined by computing the deviation in average stress in the material in a

way analogous to that for the shear viscosity [Batchelor and Green 1972b; Brady and Bossis 1988],

and relating it to the average rate of expansion. We expect the bulk viscosity calculated by this

technique to be comparable to that for expansion of the particle phase only, because the contribution

to the isotropic stress in both cases is due to incompressible disturbance flows generated due to the

finite size of the particles as they move relative to each other. Brady, Khair, and Swaroop [2006]

derived the expressions for computing the bulk viscosity for a suspension of rigid particles in a

uniformly expanding fluid, and calculated the bulk viscosity for dilute suspensions at small rates of

expansion. Subsequently, the bulk viscosity for all rates of compression was determined to second

order in volume-fraction by Swaroop and Brady [2007]. At high particle concentrations the many-

body interactions between particles play a significant role in determination of the particle motion

and lubrication interactions between nearly touching particles comprise the dominant contribution

to the bulk stress. This necessitates the use of numerical simulation to calculate the total stress in

the suspension. In the following sections we will describe the Stokesian Dynamics and Accelerated

Stokesian Dynamics methods for simulation of suspension flows and how they were adapted for

linear compressible flows.

4.2 Suspension stress

Consider a homogeneous suspension of spherical particles with number density n in a compressible

Newtonian fluid of density ρ, shear viscosity η and bulk viscosity κ. The particles are small enough

that the Reynolds number Re = ρUa/η (with typical velocity U and particle radius a) is very small,

thus enabling the use of Stokes equations. The ensemble or volume average of the Cauchy stress in

the suspension is given by [Brady 1993a]

〈Σ〉 = − 〈pth〉 f I + 2η 〈e〉 +
(
κ − 2

3η
)
〈∇ · u〉 I − nkT I + n[〈SB〉 + 〈SP〉 + 〈SE〉], (4.1)
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where e is the rate of strain in the fluid, 〈. . . 〉 denotes an average over the entire suspension (particles

plus fluid), and 〈. . . 〉 f denotes an average over the fluid phase only. The trace of 〈e〉, given by

〈e〉 ≡ 〈∇ · u〉 is the average rate of expansion of the suspension. The average hydrodynamic stresslet

〈SH〉 = (1/N)
∑N
α=1 SH

α is defined as a number average over all particles, where the stresslet of

particle α is given by

SH
α = 1

2

∫
S α

[
(rσ · n + σ · nr) − 2

(
κ − 2

3η
)

(n · u) I − 2η (un + nu)
]

dS , (4.2)

where where n is the normal vector pointing outward on the particle surface, σ is the stress on the

particle surface and u is the fluid velocity. The particle stresslet is the symmetric part of the first

moment of the surface stress on the particle. The antisymmetric part of the first moment of the

stress constitutes the torque acting on the particle. The total hydrodynamic stresslet for a particle is

the sum of the contributions from the imposed rate-of-strain, Brownian motion of the particles and

inter-particle forces
(
SH = SE + SB + SP

)
.

The particle stresslets can be expressed in terms of hydrodynamic resistance functions as

SB = −kT∇ · RS U ·R−1
FU , (4.3a)

SP = −
(
RS U ·R−1

FU +xI
)
·FP, (4.3b)

SE = −
(
RS U ·R−1

FU ·RFE − RS E
)

: 〈e〉 , (4.3c)

where the derivative is with respect to the last index of the inverse of the resistance matrix
(
R−1

FU

)
and FP is the colloidal interparticle force. Here RFU(x) and RFE(x) are the configuration-dependent

resistance tensors that give the hydrodynamic force/torques on the particles due to their motion rel-

ative to the fluid and owing to the imposed flow respectively. The stresslets SB,SP and SE denote a

matrix of all the particle stresslets. The vector x denotes the configuration — position and orienta-

tion — of the particles. The tensors RS U and RS E are similar to RFU and RFE and relate the particle

stresslets to the particle velocity and the rate of strain. The combination of the resistance tensors is
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called the ‘Grand Resistance Matrix’:

R =

 RFU RFE

RS U RS E

 . (4.4)

For a given set of particle velocities U′ relative to the surrounding fluid, and fluid rate-of-strain E∞,

the forces, torques and stresslets for all the particles can be obtained from the Grand Resistance

Matrix as  F

S

 = −R ·

 U′

−E∞

 , (4.5)

where F is the combined force-torque vector for all the particles. The rigid particles cannot deform

with the fluid, hence the rate of deformation for the particles relative to the fluid is given by −E∞.

The particle velocities can be obtained using the grand resistance matrix if the forces and stresslets

are known, and vice-versa.

In this study we restrict our analysis to hard sphere suspensions, so the inter-particle force is

given only by the hard-sphere potential as

FP = 1
2 nδ(r − 2a), (4.6)

where n is the normal vector along the line of centers of two touching particles and δ is the delta

function at the surface of contact. With hydrodynamic interactions, a hard-sphere potential plays no

dynamical role because the relative mobility of two particles coming into contact goes to zero and

so the hard-sphere force causes no motion. The inter-particle force contribution to the bulk stress,

SP in (4.3c) is also zero because the RS U ·R−1
FU ·F

P term exactly cancels the xFP inter-particle stress.

Instead, the hard-sphere nature of the particles is accounted for by the no-slip boundary condition

on the surface of the particles and the Brownian contribution to the stress includes the hard-sphere

collisional contribution to the macroscopic stress [Brady 1993b].

When the suspension is in equilibrium (〈e〉 ≡ 0) the bulk stress is given by

〈Σ〉eq = −
(
〈pth〉

eq
f + Π

)
I, (4.7)
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where Π is the osmotic pressure:

Π = nkT − 1
3 n[〈S B〉eq + 〈S P〉eq], (4.8)

and S denotes the trace of the corresponding stresslet, as in 〈SB〉eq = 1
3 〈S

B〉eqI. The superscript eq

denotes an average over the equilibrium distribution of the suspension microstructure. The effective

bulk viscosity κe f f relates the deviation of the trace of the bulk stress from its equilibrium value to

the trace of the average rate-of-strain tensor:

1
3
(
I : 〈Σ〉 − I : 〈Σ〉eq) = κe f f

1
3 I : 〈e〉, (4.9)

therefore κe f f is given by

κe f f ≡ κ +
(
−〈pth〉 f + 〈pth〉

eq
f

)
/ 〈e〉 + 1

3 n[(〈S B〉 − 〈S B〉eq) + (〈S P〉 − 〈S P〉eq) + 〈S E〉]/ 〈e〉 . (4.10)

Thus with knowledge of the instantaneous particle configuration and velocities we can find the

forces and stresslets for all the particles, and from an ensemble average of the stresslets over a large

number of configurations the suspension bulk viscosity can be determined.

4.3 Stokesian Dynamics

Simulation of a particulate suspensions in Stokes flow poses at least two main problems. The first is

the determination of the many-body long-range interactions among particles. The disturbance in the

fluid velocity due to the motion of a particle decays slowly as 1/r, where r is the distance from the

particle, resulting in many-body hydrodynamic interactions between particles. Therefore calcula-

tion of the particle interactions cannot be truncated to a fixed range and no simple pairwise-additive

approximation can be made. In addition, the force required to move two particles relative to each

other increases in inverse proportion to the separation distance as the viscous fluid has to squeeze

through a narrow gap between them (lubrication effect), causing the particles to slow down consid-

erably at higher concentrations. The presence of lubrication forces makes conventional numerical

techniques (such as the boundary-integral technique) very computationally expensive because the
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flow near particle surfaces would have to be resolved in more detail as particles approach each other.

The second problem is the determination of the spatial distribution of particles (the microstructure)

and how it changes with time in response to any external forcing and due to Brownian motion. In a

dynamic process in which the particles undergo relative motion as in a shear flow for example, the

distribution of particles cannot be specified a priori but must be solved for as part of the problem.

4.3.1 Review of the existing method

The Stokesian Dynamics (SD) technique developed by Durlofsky, Brady and Bossis [1987] success-

fully accounts for both the many-body interactions and the near-field lubrication forces by splitting

the hydrodynamics into a far-field mobility calculation and a pairwise additive resistance calcula-

tion. This method was extended to infinite periodic suspensions [Phillips et al. 1988; Brady and

Bossis 1988] and has been used successfully to give accurate results for many problems where the

system size is of relatively little importance. Following is a brief overview of Stokesian Dynamics.

For N rigid particles suspended in a Newtonian fluid of viscosity η and density ρ, the motion of

the fluid is governed by the Navier-Stokes equations, while the motion of the particles is described

by the coupled N-body equation of motion:

m ·
dUp

dt
= Fh + Fp, (4.11)

which simply states that the mass times the acceleration equals the sum of the forces. In (4.11),

m is the generalized mass/moment-of-inertia matrix of dimensions 6N × 6N, Up is the particle

translational/rotational velocity vector of dimension 6N, and Fh and Fp are the hydrodynamic and

external force-torque vectors acting on the particles, also of dimension 6N each. When the motion

on the particle scale is such that the particle Reynolds number is small, the fluid equations of motion

becomes linear (Stokes equation) and the hydrodynamic forces and torques acting on the particles

in a bulk linear flow can be computed directly from the instantaneous particle configuration:

Fh = −RFU ·
(
Up − u∞

)
+ RFE : E∞. (4.12)

Here, u∞ is the translational/rotational velocity of the bulk linear flow evaluated at the particle center
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and E∞ is the externally imposed rate-of-strain tensor.

The long-range interactions are computed by expanding the force density on the surface of each

particle in a series of moments about the center of the particle. The zeroth moment is simply the

net force acting on a particle (plus a potential dipole for spherical particles), the first moment can

be decomposed into the torque and the stresslet, while higher moments are neglected. This level of

truncation gives the minimum set of unknowns per particle required in a bulk linear flow and has

been shown to give very accurate results for many hydrodynamic problems. The relation between

the far-field forces and stresslets and the far-field contribution to the particle velocities is given

succinctly by Faxén laws:

Up − u∞(x) = −
1

6πηa
F +

(
1 +

a2

6
∇

2
)

u f f , (4.13a)

Ωp − ω
∞(x) = −

1
8πηa3 T +

1
2
∇ × u f f , (4.13b)

−E∞ = −
3

20πηa
S +

(
1 +

a2

10
∇

2
)

e f f , (4.13c)

where the subscript f f stands for far-field. In the original implementation [Phung 1992] the particle

stresslets have 5 independent components corresponding to each particle and therefore are imple-

mented as a vector of size 5N in the SD algorithm. The imposed rate of strain E∞ also has 5

independent components and is implemented as a vector of size 5N. With the inclusion of expan-

sion flow the rate-of-strain tensor has an additional independent component given by the rate of

expansion, so it is implemented as a vector of size 6N with 6 components for each particle. There

must also be a corresponding entry for the pressure moment for each prticle, defined as the trace of

the stresslet tensor. Therefore the stresslets will also be implemented with a total of 6N independent

components.

The inverse of the grand resistance matrix, known as the grand mobility matrix (M∞) relates

the particle velocities and rate-of-strain relative to the bulk suspension velocity and rate-of-strain

respectively, to the force and stresslet acting on each particle. In an infinite suspension the velocity

field that would be present at any point in the suspension in the absence of the disturbance flows due

to the presence of a particle at that point, is given by the spatial average of the velocity field over

the entire suspension (the bulk suspension velocity). The mobility matrix is constructed in pairwise
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additive fashion from the Faxén laws for each particle pair and is simply a restatement of the Faxén

formulae for all the particles in matrix form. The mobility interactions are summed over an infinite

periodic lattice of the particle configuration using the Ewald summation technique as described

by Beenakker [1986]. Upon inversion of M∞ infinite reflections among all the moments and all

particles are computed [Durlofsky et al. 1987] and the far-field resistance matrix thus obtained

contains the true many-body interactions. The near-field lubrication interactions, which would only

be reproduced in (M∞)−1 if all multipole moments were included, are added to the resistance matrix

in a pairwise additive fashion to complete the grand resistance matrix:

R = (M∞)−1 + R2B − R
∞
2B, (4.14)

where R2B is the matrix of exact two-body resistance interactions [Jeffrey and Onishi 1984] and R∞2B

is the far-field contribution to the pair interactions from the inversion of the mobility matrix.

An evolution equation for the particle configuration is obtained by integrating (4.11) twice over

a time step ∆t larger than the inertial relaxation time τb = m/6πη0a but small compared with the

time over which the configuration changes leading to particle displacements given as

∆x =
{
u∞ + R−1

FU ·
[
RFE : E∞ + Fp]} ∆t + kT∇ · R−1

FU∆t + X(t) + O(∆t), (4.15)

where X(t) is the additional displacement due to Brownian motion, and (kT∇ · R−1
FU∆t) is a deter-

ministic displacement from the configurational-space divergence of the N-particle diffusivity. Thus

at each time step the disturbance force on each particle due to the presence of other particles in the

imposed flow is calculated and then used to determine the disturbance velocity for each particle.

The displacement due to Brownian motion is added as described later, and the particle stresslets are

calculated from (4.3a), (4.3b) and (4.3c). The particle positions are updated to get the new con-

figuration and the process is repeated. For more details the reader is referred to the doctoral thesis

of Phung [1992] who implemented the SD algorithm in FORTRAN. The same code was modified

for the current study. In an expansion/compression flow the size of the simulation cell must also

be adjusted at the same rate at which the particle are coming closer so that the particle images also

move closer at the same rate and the homogeneity of the infinite suspension is maintained.
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4.3.2 Linear compressible flow

Previously, Stokesian Dynamics has been used to simulate particles in incompressible flow situa-

tions. In order to simulate linear compressible flows, the bulk rate of compression or expansion

given by the trace of the rate-of-strain tensor E∞ must also be included. The pressure moment,

defined as the trace of the first moment of the stress, is an additional unknown that must also be

computed as part of the simulation. Jeffrey, Morris, and Brady [1993] calculated the two-body hy-

drodynamic resistance functions for the pressure moment in an incompressible linear flow. For a

given pair of particles labelled 1 and 2 the pressure moment is related to the particle velocities and

their rate-of-strain as

 S H
1

S H
2

 = −η

 P11 P12

P21 P22

Q11 Q12

Q21 Q22

 ·


U1 − U∞

U2 − U∞

−E∞

−E∞


, (4.16)

where Pαβ = π(aα + aβ)2XP
αβd relates the pressure moment to the particle velocities. The rigid

particles cannot deform so tha particle rate-of-strain is zero. The XP
αβ are hydrodynamic resistance

functions and d = (x2− x1)/|x2− x1|. The analogous expression for the tensors relating the pressure

moment to an imposed linear traceless shear flow was given as Qαβ = π(aα + aβ)3XQ
αβ

[
dd − 1

3 I
]

, where the XQ
αβ are also hydrodynamic resistance functions. These functions can also be used to

compute the induced force and deviatoric stresslet in a compressible linear flow by virtue of the

reciprocal relation (R†FE = RS U):



FH
1

FH
2

SH
1

SH
2


= −η



P11 P12

P21 P22

Q11 Q12

Q21 Q22


·

 −E∞kk

−E∞kk

 , (4.17)

where FH
α and SH

α are the hydrodynamic force and stresslet for particle α, and E∞kk is the trace of

the imposed rate-of-strain which is the bulk rate of expansion. The two-particle hydrodynamic re-

sistance functions for computing the pressure moment for particles due to an imposed compressible
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flow were computed by Khair et al. [2006] and designated as T Q
αβ, so that the complete Qαβ function

becomes

Qαβ = π(aα + aβ)3
[
XQ
αβ

(
dd − 1

3 I
)

+ T Q
αβ

1
3 I

]
, (4.18)

such that the trace of Qαβ is no longer zero by design. These new resistance functions are added to

RS U and RFE in the two-body lubrication part of the Grand Resistance Matrix (4.14). The particle

stresslets now have six independent components and are therefore implemented as a vector of size

6N, where the sixth component for each particle is the pressure moment, or trace of the stresslet.

The rate-of-strain tensor too has six independent components and is also implemented as a vector

of size 6N, with the sixth component given by 1
3 E∞kk for each particle.

The Faxén law for computing the pressure moment in a linear compressible flow is given by

S H
kk = −

16
3
πηa3E∞kk + 4πa3 ps (4.19)

where S H
kk is the trace of the stresslet (pressure moment), E∞kk is the trace of the rate-of-strain tensor,

and ps = pU + pE is the induced Stokes flow pressure due to the imposed particle velocities (pU)

and rate-of-strain (pE), including all reflected hydrodynamic interactions. The induced pressure ps

is simply the disturbance pressure associated with the disturbance Stokes flow us generated due to

the finite size of the particles and they are related as

ps = 2η
us · x

r2 , (4.20)

where x is the position vector in the same frame of reference as us. Equation (4.19) along with

(4.13a), (4.13b) and (4.13c) completes the set of equations needed to compute the mobility matrix

including the fluid expansion and the pressure moment. Note that the calculation of the pressure mo-

ment does not require the calculation of any additional reflected interactions, only the fluid pressure

associated with all existing reflected flows needs to be computed and that is given by the XP
αβ and

XQ
αβ resistance functions for particle pairs. The only reflected hydrodynamic interactions that were

not included previously are due to the linear compression E∞kk, and are given by the T Q
αβ resistance

functions which are now included in the updated RS E matrix. However, the two-body resistance

functions only give the contribution to the pressure moment due to lubrication interactions between



88

neighboring particles in a dense suspension.

4.3.3 The Mobility matrix with expansion flow

In order to compute the many-body far-field interactions we need to invert the pairwise mobility

matrix obtained from Faxén laws, including the disturbance flow due to linear compression. The

pair mobility functions are calculated using a truncated multipole expansion in combination with the

Faxén laws and the Ewald summation technique is used to include long range interactions between

infinite particles. Only the first-order disturbance due to a single particle in expansion flow given by

ui = −
1
3

E∞kka3 xi

r3 (4.21)

needs to be included in the mobility matrix. The disturbance flow given by (4.21) from each par-

ticle is simply added to u f f in (4.13a) and (4.13b) to get the far-field contribution to the particle

velocities due to the imposed expansion flow. The velocity field in (4.21) is purely kinematic in

nature as it simply accounts for the rigidity of the volume occupied by the particle in an otherwise

expanding fluid and so there is no disturbance pressure directly associated with it. However it does

affect the motion of the other particles which in turn generate secondary disturbance flows and the

Stokes pressure related with these reflected flows contributes to the particle pressure moments. The

reflected flows and the associated far-field forces, stresslets and pressure moments are computed

upon inversion of the Grand Mobility Matrix (M∞).

The Faxén laws (14.3) are implemented inM∞ in the form of mobility functions as described

by Durlofsky et al. [1987]. The relevant mobility functions for expansion flow can be summarized

as 

U1 − U∞

U2 − U∞

−E∞

−E∞


=



p11 p12

p21 p22

q11 q12

q21 q22


·

 S H
1

S H
2

 , (4.22)

where

pαβ =
1

6πηa2 xp
αβd, (4.23)

relates the particle velocities to the particle pressure moments, and the corresponding hydrodynamic
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mobility functions xp
αβ are:

xp
11 = xp

22 = 0 and xp
12 = −xp

21 = −
3
8

1
r2 . (4.24)

Similarly, the the rate-of-strain tensor is related to the pressure moments by

qαβ =
1

6πηa3

[
xq
αβ

(
dd − 1

3 I
)

+ tq
αβI

]
, (4.25)

with the relevant hydrodynamic mobility functions given by

xq
11 = xq

22 = 0 and xq
12 = xq

21 = −
9
8

1
r2 , (4.26)

and

tq
11 = tq

22 =
3
8

and tq
12 = tq

21 = 0. (4.27)

Since no reflected flows are included in the construction of the mobility matrix, the mobility func-

tions listed above only give the particle velocities and rate-of-strain due to the disturbance velocity

given by (4.21) arising from the rate of expansion. Thus, the pressure moment in (4.22) contains

only the single-particle self-contribution for each particle corresponding to the fluid disturbance

velocity in (4.21). The remaining far-field contribution to the pressure moment will be computed

from the Stokes pressure corresponding to all the reflected disturbance flows upon inversion of the

mobility matrix. The mobility matrix is constructed pair-wise for all the particles and long-range

interactions in an infinite system are evaluted using the Ewald summation technique. This is accom-

plished for the mobility functions in (4.22) by noting that

−
1
2
∇∇2r =

d
r2 (4.28)

and proceeding as in Beenakker [1986] but with ∇∇2r instead of the Rotne-Prager tensor.

As a corollary (M∞) is no longer symmetric because there is no compressible disturbance flow

that could be generated by the force or the traceless stresslet acting on a particle. Specifically, the
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transpose of the portion of the mobility matrix covered by (4.22) can be written as:

 −E∞kk

−E∞kk

 =
1

6πηa3

 0 0

0 0

tq
11I 0

0 tq
22I

 ·


FH
1

FH
2

SH
1

SH
2


(4.29)

This asymmetry arises because of the very nature of the pressure moment, in that it is simply a mea-

surement of the Stokes pressure associated with disturbance flows that have already been accounted

for except those resulting from expansion. Therefore we may add the pressure moment in the mo-

bility calculations but repeating any disturbance flows in the matrix to make it symmetric would be

physically incorrect. An imposed linear compressible flow leads to an incompressible disturbance

flow in the fluid, but an incompressible imposed flow does not cause any compressible disturbance

flow. Therefore the mobility matrix is no longer symmetric. Mathematically, this ensures that upon

inversion of the mobility matrix all the reflected interactions between particles are computed, in-

cluding those arising from compression, but no spurious interactions are computed for the pressure

moment. The RS E part of the far-field resistance matrix thus obtained does not contain the hydrody-

namic resistance functions for calculating the pressure moment due to the deviatoric rate-of-strain.

However, these are the same functions as the ones for calculating the contribution to the deviatoric

stresslet due to linear compression present in RS E , which are copied over to make the RS E ma-

trix symmetric. Similarly, the far field contribution to the RFE matrix arising from E∞kk must be

copied over to get the far-field contribution for the pressure moment in the RS U matrix. With these

modifications the SD technique can be used for modeling of compression flows in suspensions.

4.3.4 Brownian motion

In addition to the imposed flow, particles in suspension also undergo Brownian motion due to ther-

mal fluctuations in the surrounding fluid. This is modeled in Stokesian Dynamics by computing a

new set of Brownian forces acting on the particles at each time step [Brady and Bossis 1988]. The

Brownian force vector Fb is a Gaussian stochastic variable obeying the following statistics:

Fb = 0, Fb(0)Fb(t) = 2kT RFUδ(t), (4.30)
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where the over-bar denotes an ensemble average over the thermal fluctuations in the fluid, k is

Boltzmann’s constant, T is the absolute temperature, and δ(t) is the delta function. The correlation

at 0 and t is a consequence of the fluctuation-dissipation theorem for the N-particle system. The

Brownian forces are calculated as

Fb(t) =
√

2kT A ·Ψ(t) (4.31)

with

A · AT = RFU ,

where Ψ(t) is a normal deviate (Ψ(t) = 0 and Ψ(t)Ψ(t) = 1). The corresponding Brownian displace-

ments X(t) can be obtained by solving the system of linear equations given by

AT · X(t) =
√

2kT∆tΨ(t). (4.32)

The divergence of R−1
FU in the mean drift term (kT∇ · R−1

FU∆t) is evaluated numerically by using

a modified mid-point scheme as described in [Banchio and Brady 2003]. A similar scheme is used

to calculate the Brownian stresses, which also include a divergence in their expressions (4.3c). The

particle configuration is evolved by a fraction of the time step (∆t/n with n typically on the order

of 100) and the R−1
FU and RS U matrices are evaluated again with this configuration. The small step

is used to avoid particle overlaps in the intermediate configuration. The divergences can now be

calculated from the difference in the resistance matrices over the fractional time step. The Brownian

contribution to the pressure moment is computed simply by using the updated RS U matrix which

includes the XP
αβ resistance functions in the Brownian stress calculation and the far-field component

obtained from inversion of the mobility matrix.

4.4 Accelerated Stokesian Dynamics

The direct solution of (4.11) as implemented in the Stokesian Dynamics method is computationally

expensive since it involves the costly O(N2) calculation of the far-field mobility matrix and its costly

O(N3) inversion. This limits the simulation to N of the order of a hundred, where N is the number
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of particles in a unit cell with an infinite periodic array of cells. The two-body near-field resistance

matrices are stored in a sparse form by including only the nonzero contributions from neighboring

particles within a cutoff distance, thus allowing the construction of the sparse R2B − R
∞
2B matrix in

O(N) operations. The speed-limiting part is therefore the construction and inversion of the mobility

matrix.

An alternate approach to the SD method called Accelerated Stokesian Dynamics (ASD) was

developed by Sierou and Brady [2001] and reduces the computational cost to O(N log N) opera-

tions. In this approach the far-field forces are computed directly using an iterative procedure, thus

foregoing the need to even construct the complete mobility matrix (M∞) because only the product

of the matrix with a vector is required in the inversion procedure. The hydrodynamic force in (4.11)

is split into a far-field and a near-field part as

Fh = Fh
ff − RFU,nf ·

(
Up − u∞

)
+ RFE,nf : E, (4.33)

where the subscript ff denotes far-field and nf denotes near-field. The near-field resistance matrix in

(4.33) corresponds simply to the relevant component of R2B −R
∞
2B in (4.14). The particle velocities(

Up − u∞
)

can be taken from the previous time step or computed as a nested iterative procedure.

The far-field forces (and stresslets) for each particle are computed as an iterative procedure

starting with an initial guess, for which the forces in the previous time step may be used. The

force and stresslet acting on each particle is distributed over a uniform 3D grid as a set of point

forces using a particle-mesh (PME) technique [Hockney and Eastwood 1988]. This allows the use

of Hasimoto’s solution [Hasimoto 1959] of the Stokes equation for flow past a periodic array of

spheres to calculate the disturbance velocity in the fluid due to the point forces on the mesh nodes.

This is equivalent to calculating the far-field disturbance velocity due to the forces acting on the

particles. Next, the disturbance velocity at the center of each particle is found by interpolating from

the uniform grid and the Faxén laws are used to calculate the forces and stresslets on the particles.

This procedure is repeated until the forces converge. The new particle velocities are then found

from (4.33) by iterative inversion of the sparse RFU,nf matrix. This can be accomplished in O(N)

operations by making use of sparse solvers for which only the O(N) multiplication of the resistance

matrix with a vector is required.
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The advantage of using this technique is that Hasimoto’s solution for a periodic array of point

forces involves splitting the velocity field calculation into a wave-space part that can be computed

using Fast Fourier Transform (FFT) techniques, and a short-range real-space part that can be com-

puted in O(N) operations, based on a splitting parameter α. The wave-space contribution is calcu-

lated in O(N3
m log Nm) operations where Nm is the total number of grid points in each direction. An

optimum value of α and Nm can be found that will give reasonable accuracy and keep the computa-

tional cost down to O(N log N) operations. Using this method periodic systems with N of the order

of a thousand can be simulated on desktop workstations in a reasonable time with good accuracy.

4.4.1 Expansion flow in ASD

The far-field disturbance velocity due to the presence of rigid particles in an expanding fluid can be

modeled simply by treating each particle as a point fluid sink with strength S = 4
3πa3E, where E is

the rate of expansion in the fluid and a is the radius of the particles. The mass conservation equation

for the disturbance fluid velocity is now

∇ · u = −
∑

n

S nδ(x − xn) (4.34)

where the summation is over all the particles and xn denotes the position vector for the center of

particle n. One can show by solving (4.34) for a single particle that the disturbance velocity at a

distance r = a from the point sink is

v = −
1

4πr3 S x = −
1
3

Ex
a3

r3 , (4.35)

which is equal to the disturbance velocity due to the presence of a rigid particle of radius a in a

fluid expanding at rate E, given in (4.21). Note that in the absence of the particle the expanding

fluid would be equivalent to a continuous fluid source with density E in the volume occupied by the

particle. Therefore treating the particles as a fluid source of strength S essentially cancels out the

expanding fluid in the space it is occupying and thus the rigid nature of the particle is ensured.

Each point source is distributed over the PME mesh preserving the total source strength, as is

done for the force acting on a particle in ASD. The far-field disturbance velocity in the fluid due
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to the point sources on the grid is calculated using Hasimoto’s technique by splitting the velocity

field calculation into a wave-space part that can be computed using Fast Fourier Transform (FFT)

techniques, and a short-range real-space part. Expressions for the wave-space and real-space contri-

butions are derived in the appendix to this chapter. The fluid velocity due to the particle sources is

added to the velocity contribution from the forces and stresslets acting on the particles and interpo-

lated to find the far-field particle velocities using Faxén laws. Calculation of the pressure moment

is not required for determining the disturbance flows. This is equivalent to the asymmetric nature

of the mobility matrix in SD. The pressure moment is evaluated after the fact from the converged

particle forces and stresslets after the iterative inversion is complete. Calculation of the far-field

pressure moment was already implemented in ASD and expressions for the wave-space and real-

space contribution are given in the doctoral thesis of Sierou [2002]. The near-field contribution to

the pressure moment is computed from the hydrodynamic resistance functions as in the SD method.

4.5 Conclusions

We have described the changes made to the Stokesian Dynamics and Accelerated Stokesian Dynam-

ics techniques to enable simulation of compressible flows in suspensions. The updated simulation

methods have enabled the study of a larger variety of suspension flows where the particle phase

may undergo expansion or compression either by changing the number density of particles, or even

having the particles themselves expand or contract in addition to any other imposed forcing. The

changes can simply be added onto the existing algorithm and do not require extensive rewriting of

the code. The only portion that needs attention is the inversion of the mobility matrix in SD as it

is no longer symmetric with the inclusion of the pressure moment. This work also points out that

although the resistance matrix must necessarily be symmetric because it represents the dissipation

of energy by the viscous flows the mobility matrix need not be symmetric because it is primarily a

mathematical construct that enables the computation of many-body interactions in a straightforward

manner.
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Appendix B — Far-field velocity calculation for particles in an expan-

sion flow

Each particle can be treated as a point sink with strength S = 4
3πa3E, where E is the rate of

expansion in the fluid, and a is the radius of the particle. For a single particle in expansion flow, the

fluid conservation equation for the disturbance flow can be written as:

∇ · v = −S δ(x − x0), (B-1)

where x0 is the center of the particle. Since the only forcing in the problem is a scalar, the velocity

must be of the form v = f (r)S x. From the conservation of mass in a sphere of radius r centered at

x0 we get ∫
∂S

n · vdS =

∫
V0

∇ · vdV = −S (B-2)

f (r) = −
1

4πr3

v = −
1

4πr3 S x = −
1
3

Ex
a3

r3 . (B-3)

This is the known result for the disturbance flow around a particle in an expanding fluid. Now

consider a collection of N particles repeated in a periodic array. Again, each particle is represented

as a point sink with strength S = 4
3πa3E. The conservation equation for the disturbance flow is now

∇ · v = −
∑

n

S nδ(x − xn) (B-4)

where the summation is over all the particles. Doing a Fourier transform over the cell volume, this

becomes

−2πik · v̂k = −
1

V0
Ŝ k

where Ŝ k is the finite Fourier transform of all the point sinks and V0 is the cell volume. The source

strength for each particle is distributed over the PME grid preserving the total strength and average

location of the particle center. Therefore we don’t assume S to be constant for all the particles, and
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so we work with the FFT of S . The solution for the velocity is given by

v̂k = −
ikŜ k

2πV0k2 , k , 0 (B-5)

v = v0 +
∑
k,0

v̂ke−2πik·x = v0 −
i

2πV0

∑
k,0

Ŝ kk
e−2πik·x

k2 , (B-6)

where v0 = 0 for the present case. We proceed as in Hasimoto [1959] to evaluate the summation.

σm =
∑
k,0

e−2πik·x

k2m Ŝ k

=
πm

Γ(m)

∑
k,0

∫ ∞

0
e−πk2β−2πik·xŜ kβ

m−1dβ

=
πm

Γ(m)

∫ ∞

0
βm−1

∑
k

Ŝ ke−πk2β−2πik·x − Ŝ 0

 dβ. (B-7)

A splitting parameter α is introduced and the integral is split into two parts, one from 0 to α,

and the other from α to∞. Ewald’s theta transformation formula

∑
k

Ŝ ke−πk2β−2πik·x =
V0

β3/2

∑
n

e−π(x−xn)/βS n

is then applied to the integral from 0 to α. The general formula for the evaluation of σm now

becomes

σm =
πmαm

Γ(m)

V0α
−3/2

∑
n

φ−m+1/2

(
π(x − xn)2

α

)
S n −

S n

m


+
πmαm

Γ(m)

∑
k,0

Ŝ ke−2πik·xφm−1
(
παk2

) , (B-8)

where we have replaced β = α/ξ in the first integral and β = αξ in the second, and the function φν

is given by

φν(x) =

∫ ∞

1
ξνe−xξdξ.
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We need the derivative of σm with respect to x in order to evaluate v:

∂σm

∂x j
= −2πi

∑
k,0

k j
e−2πik·x

k2m Ŝ k (B-9)

= −4π2V0

 i
2πV0

∑
k,0

k j
e−2πik·x

k2m Ŝ k


v j =

1
4π2V0

∂σm

∂x j
, m = 1. (B-10)

Evaluating the derivative of σ1:

σ1 = πα

V0α
−3/2

∑
n

S nφ−1/2

(
π(x − xn)2

α

)
− 1 +

∑
k,0

Ŝ ke−2πik·xφ0
(
παk2

) (B-11)

∂σ1

∂x j
= −

2π2α−3/2V0

∑
n

S nφ1/2

(
πr2

α

)
x j + 2πi

∑
k,0

Ŝ kk je−2πik·x e−παk2

k2

 , (B-12)

where x j is shorthand for x j − xn
j and r = |x − xn|. The disturbance velocity can therefore be written

as

v j = −
α−3/2

2

∑
n

S nφ1/2

(
πr2

α

)
x j −

∑
k,0

Ŝ k
ik j

2πV0k2 e−παk2
e−2πik·x. (B-13)

Substituting S = 4
3πa3E, we get

v j = −
∑

n

En

3
2π
α3/2φ1/2

(
πr2

α

)
x j −

∑
k,0

Êk
3

2ik j

V0k2 e−παk2
e−2πik·x, (B-14)

where Êk is the finite Fourier transform of the expansion rate E distributed over a regular grid near

the center of each particle, and a is used to non-dimensionalize α and V0 in the two summations,

respectively.
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Chapter 5

Equilibrium Properties via Simulation

5.1 Introduction

Several transport properties of particle systems in the regime of small deviations from equilibrium

can be deduced from knowledge of the particle microstructure and fluctuations in the microstructure

at equilibrium. At high particle concentrations the simple closures used for the dilute theory are no

longer applicable and one must resort to numerical simulations to account for interactions between

multiple particles. In this chapter we describe the Brownian Dynamics, Stokesian Dynamics and

Accelerated Stokesian Dynamics simulations performed for Brownian particles at equilibrium and

the calculation of the suspension bulk viscosity from simulations.

5.2 Suspension stress and the bulk viscosity

The average bulk stress in a suspension can be written as [Brady 1993a]

〈Σ〉 = − 〈pth〉 f I + 2η 〈e〉 +
(
κ − 2

3η
)
〈∇ · u〉 I +

〈
Σp

〉
, (5.1)

where e is the rate of strain in the fluid, I is the isotropic tensor and 〈pth〉 is the thermal pressure of the

fluid. The angle brackets 〈. . . 〉 denotes an average over the entire suspension (particles plus fluid),

and 〈. . . 〉 f denotes an average over the fluid phase only. The trace of 〈e〉, given by 〈e〉 ≡ 〈∇ · u〉 is the

average rate of expansion of the suspension and the contribution to the isotropic stress due to fluid

expansion is κ 〈∇ · u〉 with κ the bulk viscosity of the pure fluid. The deviatoric stress contribution

from the fluid is 2η 〈e〉 where η is the fluid shear viscosity. The particle-phase stress
〈
Σp

〉
has the
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form 〈
Σp

〉
= −nkT I + n[〈SE〉 + 〈SB〉 + 〈SP〉], (5.2)

where −nkT I is simply the osmotic pressure due to the thermal kinetic energy of the Brownian

particles and 〈SE〉, 〈SB〉 and 〈SP〉 are the average hydrodynamic, Brownian and interparticle-force

particle stresslets (symmetric first moment of the force distribution integrated over the particle sur-

face). The number density of particles is given by n, and k and T are the Boltzmann constant and

fluid temperature, respectively. The particle stresslets include the stress due to the many body in-

teractions among all the particles, and this is the part that we compute via particle simulations. At

any given time the particle stresslets are a function only of the instantaneous particle configuration.

Finally, as defined in this work the effective bulk viscosity of the suspension is given by

κe f f =
(
κ + 4

3ηφ
) 1

1 − φ
+ κE + κB + κP, (5.3)

where the last three terms are the hydrodynamic, Brownian and interparticle-force contributions to

the bulk viscosity coming from many-body interactions and are obtained directly from the corre-

sponding average particle stresslets. The first term gives the single particle correction to the bulk

viscosity in a uniformly expanding fluid.

The direct hydrodynamic contribution to the stress due to the disturbance flows caused by the

finite size of the particles in an imposed flow is given by n〈SE〉, and it is directly proportional to the

applied rate of deformation. The Péclet number for an expansion flow defined as

Pe =

1
3 〈e〉 b

2

2D
,

is the rate of expansion 〈e〉 nondimensionalized by the diffusive time-scale of the particle b2/2D.

Here D = kT/6πηb is the Stokes-Einstein-Sutherland diffusivity of an isolated particle, and each

particle acts as a hard sphere of radius b. The corresponding hydrodynamic contribution to the bulk

viscosity is obtained from the hydrodynamic stresslet as

κE =
n〈S E〉

3 〈e〉
, (5.4)
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and therefore to first order in Pe it can be computed directly from the equilibrium microstructure

because the scaling with the rate of deformation 〈e〉 cancels out. Here S denotes the trace of the

corresponding stresslet, i.e., 〈S〉 = 1
3 〈S 〉I for an isotropic stresslet. In practice the hydrodynamic

contribution to the bulk viscosity for small deviations from equilibrium (|Pe| � 1) is computed by

averaging the hydrodynamic stress over an ensemble of equilibrium particle configurations.

The Brownian and interparticle-force contributions to the stress have a finite average value at

equilibrium independent of the rate of deformation because they originate from the thermal mo-

tion of the particles. Deviations from the equilibrium value occur only when the microstructure is

perturbed from equilibrium. The corresponding contributions to the bulk viscosity are given by

κB =
n〈S B〉 − n〈S B〉eq

3 〈e〉
and κP =

n〈S P〉 − n〈S P〉eq

3 〈e〉
, (5.5)

where the superscript eq denotes the equilibrium value. The κB and κP contributions can be eval-

uated numerically from dynamic simulation by generating deviations from equilibrium in the mi-

crostructure and computing the resulting change in the stress. However, for small deviations from

equilibrium it becomes difficult to isolate the excess stress caused by the imposed flow from thermal

fluctuations in the stress and increasingly longer simulations would be required to get good aver-

aging and obtain an accurate value for the bulk viscosity contributions. We avail ourselves of an

alternate approach to evaluating the transport properties at equilibrium, using Green-Kubo relations

to get them from stress autocorrelation functions [Green 1952]. The stress autocorrelation function

characterizes the nature and rate of relaxation of fluctuations in the stress due to Brownian motion.

For the shear viscosity one would use the shear stress autocorrelation function at equilibrium, and

for the bulk viscosity the pressure autocorrelation is used as [Nagèle and Bergenholtz 1998]

κB =
V
kT

∫ ∞

0
〈δΠ(0)δΠ(t)〉dt, (5.6)

where the angle brackets denote an ensemble average, V is the volume of the system over which the

averaging is done, t is the time, and δΠ(t) is the instantaneous deviation of the osmotic pressure of

the suspension from its equilibrium value. Nondimensionalizing the pressure fluctuations with nkT
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and time with the relative diffusive time of the particles as τ = t(2D/b2) we obtain the relation

κB =
9
4

Nφ
∫ ∞

0
〈δΠ(0)δΠ(τ)〉dτ, (5.7)

where N is the total number of particles in the volume V , φ is the volume-fraction of the particles

and κB = (κB + κP)/η is the total Brownian contribution to the bulk viscosity nondimensionalized

with the fluid viscosity. We define the nondimensional pressure autocorrelation function as

CP(τ) = 〈δΠ(0)δΠ(τ)〉.

In the absence of hydrodynamic interactions the direct Brownian contribution to the stress n〈SB〉

arising from interactions between the particles as they undergo Brownian motion becomes zero and

only the interparticle-force contribution n〈SP〉 remains. This work is restricted to hard spheres so

that the interparticle-force stress comprises only the force due to hard sphere collisions FP = 1
2 nδ(r−

2b), where n is the normal vector along the line joining the centers of two touching spheres and δ

is the delta function at the surface of contact. The interparticle force produces the total Brownian

stress in the case of hard spheres undergoing Brownian motion. Conversely, in the presence of

hydrodynamic interactions the particle surfaces never touch due to the strong lubrication forces

near contact and accordingly n〈SP〉 = 0, while n〈SB〉 accounts for all of the Brownian stress. The

hard sphere nature of the particles is preserved by the no-slip hydrodynamic boundary condition on

the particle surface. In the following sections we describe the determination of the bulk viscosity

via Brownian Dynamics in the absence of hydrodynamics, and using Stokesian Dynamics [Brady

and Bossis 1988] and Accelerated Stokesian Dynamics — near field [Banchio and Brady 2003]

simulations to account for the presence of hydrodynamic interactions.

5.3 Brownian Dynamics simulations

The “potential-free” technique developed by Foss and Brady [2000] was employed to perform

Brownian Dynamics simulations of hard spheres at equilibrium. Each particle is given a random

Brownian kick at each time step, and particle collisions are resolved by moving the overlapped

particles away from each other along the line joining their centers until they are touching. The
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interparticle force due to hard sphere interactions for each particle is estimated as

FP = 6πηb
∆xHS

∆t
, (5.8)

where ∆xHS is the particle displacement from resolution of all the overlaps with other particles in

time step ∆t. This can be thought of as the average Stokes drag on the particle during the course of

the hard-sphere displacement. The particle-phase contribution to the stress due to the collisions is

defined as the average stress over the volume V containing the N particles and is given by

〈
ΣP

〉
= −nkT I − n

〈
xFP

〉
, (5.9)

where the angle brackets denote an average over all the particles, x is the particle position and n

is the number density of particles. Since the particle collisions result from Brownian motion of

the particles, the stress computed from resolving the overlaps due to collisions gives the Brownian

stress of the particle phase. Note that there is a finite error associated with the interparticle force

computed from 5.8 as the O(∆t) error in ∆xHS also gets divided by ∆t. Further, as the volume

fraction increases the number of collisions to be resolved at each time step would also increase and

therefore the accumulated error in the stress calculation is expected to increase with increasing φ.

All the runs were started with particle configurations generated using a modified Lubachevsky-

Stillinger algorithm, in which hard spheres are grown in size and evolved according to Newtonian

dynamics with periodic boundary conditions along the cell sides [Skoge et al. 2006]. The codes

implementing this algorithm are generously available from Professor Torquato and were used for

generating the starting configurations. Simulations were performed with N = 100 and 1000 par-

ticles, with periodic boundary conditions applied at the simulation cell boundaries to emulate an

infinite suspension. A time step of ∆τ = 2 × 10−4 in units of the diffusive time-scale was used for a

total time of τ = 4000 for all volume fractions, broken up into eight distinct runs of τ = 500 for each

φ ≤ 0.4 and sixteen runs each of τ = 270 for φ > 0.4. The initial time steps in each simulation up-to

τ = 20 were not included in calculation of the autocorrelation functions as the starting configura-

tion was allowed to equilibrate during that time. The particles were allowed to undergo Brownian

motion without any affine displacement and all the components of the stress tensor arising from
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collisions between particles were recorded at each time step. The instantaneous particle pressure

was calculated as the trace of the stress tensor averaged over all particles:

Π(t) =
1
N

N∑
i=1

(
ΣP

xx + ΣP
yy + ΣP

zz

)
i
/3, (5.10)

and was averaged over the entire duration of the simulation to obtain the equilibrium pressure for a

given φ. Simulations were performed over a range of volume-fractions from φ = 0.05 to 0.55.

5.3.1 Simulation results

The equilibrium pressure obtained from the simulations is shown in Figure 5.1 and serves as a

primary check for the validity of the simulation method. The analytical value of the equilibrium

osmotic pressure given by

Π0 = 1 + 4φg0(2; φ) (5.11)

is also shown, where g0(2; φ) is the equilibrium pair-distribution function at contact evaluated using

the well known Carnahan-Starling (CS) equation of state [Carnahan and Starling 1969] for φ ≤ 0.55:

g0(2; φ) =
1 − 1

2φ

(1 − φ)3 . (5.12)

For higher volume fractions we have used the very precise values for g0(2; φ) determined by Rintoul

and Torquato [1996], which also match the CS equation of state at its limiting value of φ = 0.5. The

osmotic pressure obtained from Brownian Dynamics is seen to slightly underestimate the theoretical

value. We attribute this discrepancy to the error associated with the determination of the interparticle

force from particle collisions, which is larger for higher volume fractions as the number of collisions

to be resolved increases.

The pressure autocorrelation function was evaluated as an ensemble average over all the particle

configurations over the course of the simulation. Specifically, for any given simulation run

〈δΠ(0)δΠ(τ)〉 =
1

M − τ/∆τ

M−τ/∆τ∑
m=0

δΠ (m∆τ) δΠ (m∆τ + τ) , (5.13)

where M is the total number of time steps from the run included in the calculation, and δΠ(t) =
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Π(t)−
〈
Π
〉
. Further averaging was done over all the runs performed for a given φ. Since the pressure

was calculated as an average of the diagonal components of the stress, the cross-correlations among

the diagonal stress components are automatically included in the above expression for the pressure

autocorrelation function.

Figure 5.2 and 5.3 show the pressure autocorrelation function from Brownian Dynamics simu-

lations for various φ with N = 100 and 1000 particles, respectively. In the short-time limit the data

exhibits the expected t−1/2 scaling [Cichocki and Felderhof 1991; Brady 1993b] . At longer times

the decay is very slow due to the isotropic nature of the dissipation of pressure fluctuations. Figure

5.4 shows the simulation data scaled to match the theoretical prediction for the pressure autocorre-

lation function for φ = 0.2 to 0.35. The analytical expression for the scaled pressure autocorrelation

function using the time-scale for simulations τ = t(2D/b2) is given by

CP
NH(τ) =

4
3

(
2
√
πτ
− eτ/4Erfc

(√
τ

4

))
, (5.14)

where CP
NH(τ) = CP

NH(τ)N/ (φg0(2; φ)) as described in the next section. At short times the pressure

autocorrelation function is predicted to scale as t−1/2 with the asymptote CP
NH ∼ 4/3

(
2/
√
πτ − 1

)
,

and as t → ∞ it decays as CP
NH ∼ (16/3

√
π)τ−3/2. The pressure autocorrelation data is in excellent

agreement with the theoretical prediction in the t → 0 limit. At longer times the data for the smallest

volume fraction φ = 0.05 is in good agreement with the theory but there are variations in the rate of

decay at higher volume fractions. Both the N = 100 and N = 1000 systems exhibit similar behavior

so the system size apparently does not have any effect on the pressure autocorrelation data when

periodic boundary conditions are imposed. For 1000 particles at φ > 0.52 the particles were prone

to crystallization resulting in a pressure autocorrelation function that is much higher and does not

decay at all. The crystallization took place starting at φ > 0.5 with 100 particles.

For all the data the t−3/2 rate of decay of the pressure autocorrelation function is so slow that

the data gets reduced to just noise before being able to capture the long-time behavior for both the

N = 100 and N = 1000 systems. Therefore it is important to know from theory how the long-

time tails decay so that the pressure autocorrelation function can be integrated correctly to find the

bulk viscosity. The long-time tails were obtained by fitting the analytical curve from dilute theory

to the region shortly before the data becomes too noisy. The noise in the simulation results could
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be reduced by using a smaller time-step thereby capturing more of the long-time behavior, but

that would also increase the computational cost significantly. Having analytical knowledge of the

pressure autocorrelation curve alleviates the need for more simulation data for the long-time tails,

particularly because it is apparent from the figures that the simulation results follow the analytical

curve in the regions of low noise. We simply fit the dilute theory curve to the simulation data in the

region before the data becomes too noisy in order to obtain the long-time tails.

The Green-Kubo bulk viscosity in the absence of hydrodynamic interactions is shown in Figure

5.9. The Molecular Dynamics simulation results of Sigurgeirsson and Heyes [2003] for the bulk

viscosity of hard sphere fluids scaled with the zero-density bulk viscosity are also shown for com-

parison. Both the data are in reasonable agreement at small φ and have the same scaling at large

φ but there are significant differences in the intermediate φ regime. Although both the hard sphere

systems must have the same equilibrium properties, the mechanism of stress dissipation is differ-

ent in MD and BD simulations, hence the transport properties need not be identical. The particle

motion in BD is heavily damped because of the drag force exerted by the surrounding fluid, there-

fore particle momentum is not conserved. Additionally, at each time-step the particles experience

a random Brownian kick which completely changes the spatial distribution of particle momentum.

On the other hand, in MD simulations the particles start with an initial set of positions and mo-

menta which may be random but as the simulation proceeds the particle collisions are such that the

total momentum is conserved. Thus the distribution of momentum in time and space is different

in BD and MD. Since the dynamic properties such as the shear and bulk viscosity depend on the

rate of change of momentum in addition to the spatial distribution of particles, we do not expect the

transport properties obtained from BD and MD to be identical.

The shear stress autocorrelation function was also determined from the N = 1000 particle sys-

tems for validation of the simulations, and is shown in Figure 5.10. It decays much faster as t−7/2

and consequently the long-time tail is captured correctly in the simulation results. The Brownian

shear viscosity ηP
0 was calculated by numerically integrating the shear stress autocorrelation func-

tion without any fitting because the noise in the data is adequately low. The Green-Kubo expression

for shear viscosity in nondimensional form given by [Nagèle and Bergenholtz 1998]

ηB =
9
4

Nφ
∫ ∞

0
〈Σxy(0)Σxy(τ)〉dτ, (5.15)
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was used to calculate ηB, which is the Brownian contribution to the shear viscosity scaled with the

fluid viscosity. Since there is no preferred direction at equilibrium the yz and xz components of the

stress were also autocorrelated and included in the ensemble average in the Green-Kubo formula.

Figure 5.12 shows the Green-Kubo shear viscosity in the absence of hydrodynamic interactions

scaled with the fluid viscosity along with the simulation results of Foss and Brady [2000], which

are noticeably lower than our results at higher volume fractions. The difference is due to the higher

accuracy of the results from the present work because the time-step used is smaller (Foss and Brady

used a time-step of ∆τ = 2.5 × 10−4), and also because we fitted the analytical dilute theory curve

to the simulation data in order to obtain the long-time tails while Foss and Brady simply fitted the

tails with t−7/2, thereby losing some area under the stress autocorrelation curve. The total shear

viscosity for Brownian particles in a suspension would also includes the high frequency dynamic

viscosity, given by η′∞ = η
(
1 + 5

2φ
)

in the absence of inter-particle hydrodynamic interactions. The

high frequency dynamic viscosity represents the direct viscous contribution to the suspension stress.

5.3.2 Scaling with volume fraction

Next we turn our attention to the scaling of the stress autocorrelation functions with φ. The Smolu-

chowski description of the particle microstructure was used to relate the suspension stress to the

pair-distribution function [Brady 1993a]. In the absence of hydrodynamics the entire interparticle

contribution to the stress comes only from collisions between touching particles, so the stress can

be expressed as an integral of the pair-distribution function at contact:

n〈SP〉 = −n2kTb
∫

r=2b
r̂r̂g(r)dS , (5.16)

where r̂ = r/r is the outward normal on the reference particle surface. Small departures from equi-

librium in the microstructure can be expressed as a regular perturbation in Pe about the equilibrium

microstructure as

g(r, τ) = g0(r)
[
1 + Pe f (r, τ)

]
, (5.17)

where f (r, τ) is the first-order perturbation about equilibrium independent of Pe. Here the Péclet

number is defined based on the bare diffusivity of a particle, which determines the time-scale for
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decay of Brownian fluctuations. However as the volume fraction increases the rate of decay of

fluctuations slows down as is evident from Figure 5.5 and Figure 5.11. Therefore the characteristic

time scale of relaxation of the microstructure must be based on the volume fraction dependent

characteristic diffusivity defined as DD̂(φ), where D is the bare diffusivity and D̂(φ) provides the

scaling with φ. Hence we define

P̂e = Pe/D̂(φ) (5.18a)

f̂ (r) = D̂(φ) f (r) (5.18b)

τ̂ = D̂(φ)τ (5.18c)

as the scaled Péclet number, scaled perturbation about equilibrium and the scaled time, respectively.

The appropriate relaxation time scale for the microstructure is now given by b2/D̂(φ)D. With these

scaled variables we can scale up the dilute-theory results for f̂ (r) and get a reasonable estimate for

f (r) for all volume fractions. The perturbation in an expansion flow is isotropic and therefore f̂ is a

function only of the radial distance r between two particles. Consequently, the stress disturbance is

also isotropic and is only present in the trace of the bulk stress. Substituting the expression for g(r)

into (5.16) gives the following expression for the disturbance in the stress:

n
1
3
〈S P〉I + Π0I = −6φ2η 〈e〉

g0(2; φ)
D̂(φ)

f̂ (2b)I, (5.19)

where n〈S P〉 is the trace of the particle phase stress. The solution for f̂ (2b) with the scaling in

(5.30a) is obtained from the Smoluchowski equation as f̂ (2b) = −2 (note the factor of 2 in the

diffusive time scale used for the dilute theory). The bulk viscosity can now be derived for all

volume fractions using equation (5.5) as

κB

η
= 12φ2 g0(2; φ)

D̂(φ)
. (5.20)

The bulk viscosity can also be calculated from (5.7), therefore equating the two expressions for κB

we get

12φ2 g0(2; φ)
D̂(φ)

=
9
2

Nφ
D̂(φ)

∫ ∞

0
〈δΠ(0)δΠ(τ̂)〉dτ̂, (5.21)
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where the pressure autocorrelation function is now a function of the diffusive time scaled with D̂(φ).

The temporal scaling cancels out as it does not affect the magnitude of the pressure fluctuations,

rather it only prescribes the rate of decay of fluctuations.

Equation (5.21) suggests that defining the scaled pressure autocorrelation function as

CP
NH =

N
φg0(2; φ)

CP
NH (5.22)

should collapse the data for all volume fractions and for all values of N onto the predicted theo-

retical curve. Intuitively, in the absence of hydrodynamic interactions particles only interact with

their immediate neighbors. Hence the only change that any given particle experiences as the volume

fraction is changed is the pair-distribution function at contact and the change in the particle density

around it. This simple argument too would suggest scaling the magnitude of the pressure autocor-

relation function with φg0(2; φ). Indeed, the scaling in (5.21) collapses all the simulation data close

to the analytical curve for the pressure autocorrelation function (5.14), as shown in Figure 5.4 and

5.5.

5.3.3 Temporal scaling

The collapse of the scaled pressure autocorrelation data onto the analytical curve is perfect in the

short-time limit but at longer times the rate of decay deviates from the analytical curve by varying

amounts depending on the volume fraction. The pressure autocorrelation obtained from Brownian

Dynamics simulations for volume fractions up-to φ = 0.35 are shown in Figure 5.4 for N = 1000

and N = 100. The agreement of the simulation data with the analytical curve is very good for

φ = 0.05, but as φ increases there is a perceptibly faster decay of the pressure autocorrelation up to

φ = 0.2, where it stops becoming faster. For φ ≥ 0.4 the rate of decay is slower with increasing φ as

shown in Figure 5.5, indicating an increase in the time scale for relaxation.

For additional guidance we also look at the shear stress autocorrelation CS
NH = 〈Σxy(0)Σxy(τ)〉,

shown in Figure 5.10. The simulation data for CS
NH has much lesser noise and captures the long-time

decay correctly. Since both the shear and the pressure autocorrelation are just different measure-

ments from the same physical process we expect their magnitude and temporal behavior to have
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similar scaling with φ. The scaled shear stress autocorrelation defined as

CS
NH =

N
φg0(2; φ)

CS
NH , (5.23)

is shown in Figure 5.11(a) and indeed for small volume fractions it coincides very well with the

dilute-theory analytical curve 5.14. There is a slight decrease in the rate of decay with increasing φ

at small values of φ but it is very slight compared to the variations in the pressure autocorrelation

function. The theoretical curve for CS
NH was obtained from a numerical inverse Laplace transform

[Hollenbeck 1998] of the frequency-dependent shear viscosity for hard spheres without hydrody-

namics. It is quite clear from both figures that the time scale of relaxation is constant for φ ≤ 0.35

and increases monotonically with φ for higher volume fractions, similar to CP
NH in Figure 5.8(a).

Therefore the characteristic diffusivity scaling for stress relaxation must be D̂(φ) = 1 for φ ≤ 0.35

and a decreasing function of φ for φ > 0.35.

The exact behavior of the characteristic diffusivity D̂(φ) governing the relaxation of fluctuations

is not clear from theory, and several quantities have been suggested earlier. Brady [1993b] suggested

scaling time with the equilibrium short-time self-diffusivity as D̂(φ) = Ds
0(φ)/D, as it accounts for

the slowing down of the dynamics due to stronger hydrodynamic interactions between particles as

the volume fraction increases. He successfully used this scaling to collapse the experimental data

of van der Werff et al. [1989] for the frequency-dependent dynamic viscosity for the concentration

range 0.46 ≤ φ ≤ 0.6. In the absence of hydrodynamic interactions the short-time self-diffusivity

is simply the bare diffusivity for all φ and therefore scaling with Ds
0(φ) would not account for the

variations in temporal decay in our simulations.

A more suitable choice for the temporal scaling is the equilibrium long-time self-diffusivity

Ds
∞(φ) because it incorporates the effects of particle interactions with and without hydrodynamics.

The long-time self diffusivity corresponds to the motion of a particle on times long compared to

a2/D so that the particle has wandered far compared to its size, and in doing so exchanged places

with its neighbors and experienced many different configurations [Brady 1994]. The time-scale of

stress relaxation would scale as Ds
∞ if it was necessary for the particles to exchange places with a

neighbor in order to achieve a significantly different particle configuration such that the fluctuations

in particle-phase stress are no longer correlated. This is the case at high volume fractions when par-
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ticles are likely to get trapped in a ‘cage’ of neighboring particles. At low volume fractions particles

have more freedom to move around so that the particles can achieve significantly different config-

urations via collisions with neighboring particles alone, without having to travel far or exchange

places with a neighbor. This explains the uniform rate of stress relaxation at low concentrations and

the slowing down of the stress relaxation at higher concentrations. At intermediate concentrations

the particles would only need to distort the surrounding cage sufficiently without actually breaking

out of it for the microstructure to relax to a different state. Hence the relaxation time-scale would

be influenced by Ds
∞ but not be completely determined by it.

Our simulations indicate that the temporal scaling with Ds
∞ should start at approximately φ =

0.35. For smaller volume fractions the temporal scaling can be quantified by computing the relax-

ation time directly from the stress autocorrelation functions. From Figure 5.4 it is evident that the

change in relaxation rate does not depend on the number of particles, therefore it must be the result

of some physical process. The relaxation time for the pressure autocorrelation is defined as

τκ =

∫ ∞
0 〈τδΠ(0)δΠ(τ)〉dτ∫ ∞
0 〈δΠ(0)δΠ(τ)〉dτ

. (5.24)

However, since computing the relaxation time over the entire range of τ would require fitting the

tails to a known curve (for which we don’t know the correct temporal scaling yet) we compute

τκ(0.7) =

∫ 0.7
0 〈τδΠ(0)δΠ(τ)〉dτ∫ 0.7
0 〈δΠ(0)δΠ(τ)〉dτ

(5.25)

instead, i.e., the integral is evaluated only up-to τ = 0.7 where the data has not yet become too

noisy. Besides, the time scale integral computed with τ → ∞ in (5.25) will be unbounded because

〈τδΠ(0)δΠ(τ)〉 ∼ t−1/2 as τ→ ∞. The change in the relaxation rate is apparent even within this short

time boundary, hence τκ(0.7) should give a reasonable estimate for the change in temporal scaling.

The τκ(0.7) data is shown in Figure 5.6. There is a rapid decrease in the relaxation time-scale for

φ ≤ 0.2 and after that the relaxation rate is almost constant, indicating that there are possibly two

competing effects governing the time scale. At very small volume fractions, the addition of more

particles in the system would cause an increase in the number of collisions taking place and thereby

help in dissipating the stress and microstructural deformation faster. At small φ, an increase in
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the particle density is not sufficient to hinder the motion of the particles. Therefore there is a net

decrease in the time scale of relaxation as more collisions are taking place but the hindrance due to

the additional collisions is not enough to perceptibly slow down the movement of the particles. As φ

increases the hindering effect of more particles eventually catches up and balances out the entropic

effect that was helping to dissipate the stress, so that the relaxation time-scale stops changing after

φ = 0.2. Since there is no clear scaling to account for the competing effects we simply use the

polynomial fit given by τ f it(φ) for the temporal scaling in this regime. For higher volume fractions

the relaxation time-scale starts increasing due to ‘caging’ effects and therefore Ds
∞ is a better scaling

for φ ≥ 0.35.

Accordingly we define the characteristic diffusivity scaling as

D̂NH(φ) =


τ f it(0.05)/τ f it(φ), if φ < 0.35

Ds
∞,NH(φ)τ f it(0.05)

Ds
∞,NH(0.35)τ f it(0.35)

, if φ ≥ 0.35
(5.26)

so that D̂NH(φ) is a continuous function of φ, where the subscript NH stand for no hydrodynamics.

Here Ds
∞(φ) is the long-time self-diffusivity in the absence of hydrodynamic interactions. The values

for Ds
∞ were calculated from interpolation of the simulation results of Foss [1999]. The pressure

autocorrelation data plotted against time scaled as τ̂ = tb2/DD̂NH(φ) is shown in Figure 5.8(b), and

the shear stress autocorrelation data with the same temporal scaling is shown in Figure 5.11(b). For

both sets of data the long-time tails were obtained by fitting the corresponding analytical curves to

the simulation data with the temporal scaling given by (5.26). The simulation results and the fitted

tails collapse quite nicely onto the theoretical curve with this scaling. The time-scale of decay for

larger times including the long time tails given by τκ(200) and shown in Figure 5.7 has roughly the

same behavior as τκ(1). The scaled theoretical prediction for the bulk viscosity given by (5.20) is

shown in Figure 5.9 along with the Brownian Dynamics simulation results. The MD simulation

results of Sigurgeirsson and Heyes [2003] for the bulk viscosity of hard spheres scaled with the

zero-density shear viscosity are also shown on the same plot. The MD data does not have the same

scaling as our BD data for φ < 0.35 because the entropic effect of more Brownian particles helping

to dissipate the stress with increasing φ is absent. For higher φ the MD data also scales as Ds
∞ as
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expected. The theoretical prediction is in good agreement with our BD results with N = 1000 and

N = 100 particles. The scaled theory for the shear viscosity is shown in Figure 5.12 and is in very

good agreement with the BD results.

5.4 Effect of hydrodynamic interactions

The primary effect of hydrodynamic interactions is to dampen particle collisions due to the lubrica-

tion flows between nearly touching particle surfaces, resulting in stress autocorrelations that plateau

linearly to a constant value in the t → 0 limit. The hard sphere nature of the particles is preserved

by the no-slip hydrodynamic boundary condition at contact. Equilibrium simulations of particles

undergoing Brownian motion were performed using full Stokesian Dynamics (SD) with N = 27

particles and the Accelerated Stokesian Dynamics — near field (ASDB-nf) method with N = 1000

particles. In the SD method, the full far-field and near-field hydrodynamic interactions arising from

Brownian motion are computed between all particles at each time step. Since the Brownian forces

are uncorrelated in time the velocities from previous time steps cannot be used and fresh calcula-

tions must be performed at every step. This requirement makes the SD technique very slow because

the computational time of the calculations is O(N3), therefore only small particle systems with pe-

riodic boundaries were simulated with this method. Simulations were performed for a total time of

τ f = 500 with a time step of ∆τ = 5×10−4 for φ ≤ 0.4 and ∆τ = 10−4 for φ > 0.4, where τ = tb2/D.

Although the lubrication forces should prevent particles from touching, some overlap does occur at

high concentrations due to the finite time step implemented in simulations. The particle overlaps are

not explicitly resolved in SD and the particles normally move away without the overlap becoming

too severe.

The ASDB-nf method of Banchio and Brady [2003] is a much faster O(N) procedure where the

Brownian forces arising from far-field interactions are approximated in a mean-field manner and

only the near-field lubrication interactions are actually evaluated between particles. A time step

of ∆τ = 10−3 was used for all the ASDB-nf simulations with a total time of τ f = 1500. Particle

overlaps were explicitly resolved at each time step by moving the overlapped particles away from

each other along the line joining their centers until they are touching. The far-field diffusivities used

for the mean-field approximation are already corrected for an infinite system, hence the hydrody-
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namic interactions evaluated using this technique are independent of the number of particles in the

simulation cell. Finite-size effects may appear only due to the periodic boundary conditions used

for evaluating particle collisions. The far-field contribution to the pressure fluctuations is negligi-

ble because at equilibrium the osmotic pressure is completely determined by the lubrication forces

at contact as shown by Brady [1993a]. Therefore the particle pressure in the ASDB-nf method is

computed solely from pairwise lubrication interactions with a cutoff radius of r = 4b, so that the

favorable O(N) computational scaling is preserved. The SD simulations explicitly account for all

the far-field and near-field interactions for the pressure calculation and we shall see that there is

no noticeable difference between the SD and ASDB-nf results apart from finite-size effects due the

different number of particles simulated.

5.4.1 Scaling with volume fraction

It is instructive to look at how the φ scaling of the pressure autocorrelation function changes in the

presence of hydrodynamic interactions before analyzing the simulation results. From dilute theory

the perturbation to the equilibrium microstructure in the steady expansion linear-response limit is

given by the quadrature

f (r) = −

∫ ∞

r

1
G(r)

[
8
r2 + v′(r)

]
dr, (5.27)

where G(r) = xa
22 − xa

21 [Kim and Karrila 1991] is the scalar hydrodynamic function for the radial

component of the relative mobility of two particles, D = 2D[G(r)r̂r̂+H(r)(I− r̂r̂)] [Batchelor 1976].

The inter-particle disturbance velocity v′(r) can also be expressed in terms of the hydrodynamic

functions as

v′(r) =
4
3

G(r)
(
XP

22(r) − XP
21(r)

)
, (5.28)

where XP
αβ(r) are the hydrodynamic resistance functions relating the disturbance force on a particle

to the imposed expansion flow, determined by Jeffrey et al. [1993].

Departures from equilibrium in a non-dilute suspension are resisted by the effective relative dif-

fusivity between two particles in the suspension resulting from hydrodynamic interactions with all

the particles. As the particles become well separated D asymptotes to DDs
0(φ)I, the short-time self-

diffusivity of a particle and not the infinite dilution value D. Brady [1993b] used this argument to

rescale time and the Péclet number with Ds
0(φ), thereby proposing that the appropriate time scale
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for viscoelastic response is b2/DDs
0(φ). However, as discussed in the previous section this scaling

does not explain the rate of stress relaxation observed in our simulations. Instead we propose that

the short-time self-diffusivity primarily serves as the scaling for the strength of hydrodynamic in-

teractions between particles, i.e., we multiply the hydrodynamic mobility function G(r) with Ds
0(φ)

and the resistance functions XP
αβ(r) with 1/Ds

0(φ) to extend the dilute theory for all concentrations.

Thus the perturbation for all φ can be approximated as

f (r) = −
1

Ds
0(φ)

∫ ∞

r

1
G(r)

[
8
r2 + v′(r)

]
dr, (5.29)

where Ds
0(φ) is nondimensionalized with the bare diffusivity D and contains all the φ dependence of

the hydrodynamics. The scaling of v′(r) does not change because the inverse φ dependence in the

mobility and resistance functions cancels out.

The temporal scaling for stress relaxation D̂H(φ) is not clear from theory and we will deduce it

from the simulation results. Taking hydrodynamic interactions into account we define

P̂e = Pe/D̂H(φ) (5.30a)

f̂ (r) = D̂H(φ) f (r) (5.30b)

τ̂ = D̂H(φ)τ (5.30c)

as before with the appropriate relaxation time scale for the microstructure given by b2/D̂H(φ)D.

With these scaled variables f̂ (r) satisfies the usual two-particle Smoluchowski equation with hydro-

dynamics for all φ with the mobility functions scaled with Ds
0(φ). The disturbance in the Brownian

stress due to hydrodynamic interactions can be obtained by averaging the two-particle stress over

the perturbed microstructure as

n
1
3
〈S B〉I + Π0I = −

9
2
φ2η

〈e〉
D̂H(φ)

∫ ∞

2
∇ ·

(
RS U · R−1

FU

)
g0(r) f̂ (r)r2dr, (5.31)

where the hydrodynamic resistance tensors RS U and RFU are evaluated between particle pairs and

f̂ (r) is now the solution to the Smoluchowski equation with full hydrodynamics. We make a further

simplification by replacing g0(r) with g0(2; φ) and evaluating the integral to get the scaled dilute
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theory result for the bulk viscosity:

κB

η
= 5.348φ2 g0(2; φ)

D̂H(φ)Ds
0(φ)

. (5.32)

Comparing the expression for κB to (5.7) suggests that the scaled pressure autocorrelation func-

tion with hydrodynamic interactions should be defined as

CP
H =

NDs
0(φ)

φg0(2; φ)
CP

H , (5.33)

where the subscript H stands for hydrodynamics. We can also estimate the short-time limit of

the pressure autocorrelation function from the theoretical value of the frequency dependent bulk

modulus K′(ω) = ωκ′′(ω), where ω is the frequency of oscillatory compression/expansion and

κ′′(ω) is the imaginary component of the frequency dependent bulk viscosity. Nondimensionalizing

the frequency with the temporal time scale as α̂ = ωb2/D̂H(φ)D and using the scaling from (5.32)

we obtain the scaled dilute theory value of the high-frequency bulk modulus as

K′∞

(
b3

kT

)
= 0.567φ2 g0(2; φ)

Ds
0(φ)

. (5.34)

The high-frequency bulk modulus is related to the zero-time limit of the pressure autocorrelation by

K′∞ = V/kT 〈δΠ(0)δΠ(0)〉, from which we get the nondimensional zero-time limit

CP
H(0) = 2.377. (5.35)

The 1/Ds
0(φ) scaling of the zero-time stress autocorrelation actually derives from the generalized

fluctuation-dissipation theorem which gives the autocorrelation of the Brownian forces as

〈
FB(0)FB(t)

〉
= 2kT RFUδ(t), (5.36)

where RFU is the resistance tensor giving the forces/torques on the particles due to their motion

relative to the fluid. The short-time self-diffusivity Ds
0, which measures the average instantaneous
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mobility of a particle can be computed from an average over all configurations as

Ds
0 = kT

〈
R−1

FU,ii

〉
, (5.37)

where the subscript ii indicates that only the diagonal terms are included, and for the translational

diffusivity only the terms giving the translational velocity are included in the average. From (5.36)

and (5.37) we can deduce that
〈
FB(0)FB(t)

〉
∼ 1/Ds

0. Since the Brownian particle stress is simply

the first moment of the force distribution it must have the same scaling with φ as the Brownian

forces, thus giving 1/Ds
0 scaling for the Brownian stress autocorrelation. While the forces are cor-

related only instantaneously, the stress depends on the configuration of particles as well, hence the

stress autocorrelation decays with time as the configuration changes. Equivalently, one could invoke

the generalized Stokes-Einstein relation

η′∞(φ) �
1

Ds
0(φ)

, (5.38)

for all volume fractions coupled with the observation that the resistance matrices must scale as η′∞

which is the effective solvent viscosity at high volume fractions, to get the above scaling for the

Brownian forces.

5.4.2 Temporal scaling

The average pressure computed from SD and ASDB-nf equilibrium simulations is shown in Figure

5.1 and it matches almost perfectly with the theoretical curve. This demonstrates that the approxi-

mations made in the ASDB-nf method are valid for the purpose of this analysis. The nondimensional

pressure autocorrelation function CP
H(τ) computed from SD and ASDB-nf simulations is shown in

Figure 5.13 and Figure 5.14, respectively. The data from both sets of simulations has the same

behavior, with a linear plateau to a constant value in the short-time limit and slowly decaying to the

expected t−3/2 behavior at long-times. The data degenerates to random noise before reaching the

asymptotic long-time behavior. The rate of temporal decay can be seen to become slightly faster as

φ increases up-to φ ∼ 0.35, and starts slowing down for φ > 0.35 similar to the trend observed in

our Brownian Dynamics simulations.
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The SD simulations exhibit a sudden break in the increase of the relaxation time scale for φ >

0.45, not seen in the ASDB-nf simulations. This can be attributed to the small size of the particle

system used for SD simulations (N = 27). The simulation cell size keeps decreasing as φ increases,

and for φ ≥ 0.45 it is the cell length that sets the time scale of diffusion and stress relaxation. Further,

the long-time decay for φ ≥ 0.45 seems to be almost exponential as is characteristic of diffusion

in a closed box, instead of the expected asymptote to t−3/2. If the particles were diffusing in a

finite-sized box instead of an infinite suspension, the fluctuations in particle density would dissipate

exponentially due to the finite boundary conditions. Therefore the stress autocorrelation functions

would also have an exponential decay in the long-time limit. In an infinite suspension there are no

spatial boundary conditions forcing an exponential decay so the decay is algebraic. However, we

implement periodic boundary conditions to simulate an infinite suspension. When the simulation

cell size is smaller than the length over which the particles need to diffuse for fluctuations to decay

algebraically, the periodic boundary conditions begin to simulate the effect of being in a finite box

thus causing an exponential decay of the stress autocorrelation functions. We will use only the

ASDB-nf simulations for all the scaling analysis in order to minimize any finite-size effects. Even

with the ASDB-nf simulations for φ > 0.52, CP
H decays much more slowly because the particles

are in the glassy regime so that the microstructure is unable to relax by diffusion. At long times the

finite size of the simulation cell causes the pressure autocorrelation to decay exponentially as the

periodic boundary conditions simulate diffusion of the particles in a finite box.

Figure 5.15 shows the scaled pressure autocorrelation function CP
H = CP

HNDs
0(φ)/ (φg0(2; φ)) as

a function of the diffusive time τ for (a) φ ≤ 0.35 and (b) φ ≥ 0.35. The values of Ds
0 were taken from

the ASD simulations of Sierou and Brady [2001]. The scaling works very well for collapsing all the

curves in the short time limit but variations in the rate of decay at longer times prevent a complete

collapse of the data over all time. The zero-time limit from scaled dilute theory given by (5.35), also

shown on the plots, underestimates the simulation data by a small amount. The analytical curve for

the pressure autocorrelation function without hydrodynamics is also shown, and it is clear that at

long times the simulation data has the same asymptotic behavior as the analytical curve. The slight

decrease in the time scale of relaxation for smaller volume fractions was not expected and needs

further examination. First we need to eliminate cell-size effects so we compare the data for two

different volume fractions but with N such that the simulation cell has the same size for both cases.



118

Figure 5.16(a) shows the data for φ = 0.05,N = 100 and φ = 0.25,N = 500, both having a cell

length = 20.31b. Figure 5.16(b) shows the data for φ = 0.1,N = 1000 and φ = 0.25,N = 2500,

both having a cell length = 34.73b. The decrease in the relaxation time scale is evident in from both

figures, hence we can conclude that finite-size effects are not responsible. To quantify the rate of

decay we compute the relaxation time τκ as defined in (5.24), but since computing it over the entire

range of τ would require fitting the tails to a known curve we compute

τκ(1) =

∫ 1
0 〈τδΠ(0)δΠ(τ)〉dτ∫ 1
0 〈δΠ(0)δΠ(τ)〉dτ

(5.39)

instead, i.e., the integral is evaluated only up-to τ = 1 where the data has not yet become too noisy.

This way we can get a more rigorous estimate of the change in time-scale obtained strictly from the

simulation data. The values of τκ(1) for all φ are shown in Figure 5.17. Evidently the relaxation time

decreases rapidly for very small φ and slowly for larger φ up to φ = 0.35 after which it increases,

indicating that there might be competing effects that determine the time scale at small and large φ,

respectively.

An explanation for the low-φ temporal scaling can be had from observing the nature of contri-

butions to the Brownian stress and the process of structural relaxation. The Brownian stress can be

separated into a contribution ΣB1 from particles in contact, which is of the same form as in hard

sphere fluids, and a contribution ΣB2 from hydrodynamic interaction between all the particles:

n
〈
SB

〉
= −n2kTa

∫
r=2b

r̂r̂g(r)dS + nkT
〈
RS U · R−1

FU · ∇ ln PN
〉
, (5.40)

where PN(r, t) is the probability density for the N−particle configuration [Brady 1993a]. At small

volume fractions both ΣB1 and ΣB2 contribute significantly to the Brownian stress, which implies

that the total stress and its fluctuations are determined not only by the particles at contact but also by

the configuration of surrounding particles over the distance in which the hydrodynamic interactions

decay. The rate of decay of fluctuations in ΣB2 is determined by the rate at which the surround-

ing particles away from contact rearrange into a different configuration. As the volume fraction

increases, the number of particles and therefore the number of different configurations that can be

sampled in the region around a particle also increases, and consequently the stress gets de-correlated
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faster as new configurations are achieved more easily. This explains the initial decline in τκ seen

in Figure 5.17. On the other hand g(r) at contact also increases with increasing φ, and due to the

strong lubrication forces between particles at contact the ΣB1 contribution becomes more impor-

tant than ΣB2, thereby diluting the effect of fluctuations in ΣB2 on the stress relaxation. The stress

relaxation rate is eventually determined by ΣB1 only for large volume fractions. The reduced short-

time self-diffusivity of the particles due to stronger hydrodynamic interactions with increasing φ

also slows down the rate at which new configurations can be sampled but evidently it is not the

rate-determining factor at small φ. The long-time self-diffusivity does not govern the relaxation rate

until ‘caging’ effects in the microstructure become important, typically for φ > 0.35 as observed in

our BD simulations.

Thus there are several different competing processes that influence the rate of stress relaxation

for small volume fractions: the fluctuations in ΣB2 decrease τκ with increasing φ, while the increas-

ing dominance of ΣB1 and the reduction in Ds
0 tend to increase τκ and eventually win out at φ = 0.35,

at which point Ds
∞ also begins to influence the relaxation rate. It’s not clear how the combination of

these processes can be quantified, so we have approximated the relaxation time scale for φ ≤ 0.35

using τκ(1). For large φ one would expect the long-time self-diffusivity with hydrodynamic interac-

tions Ds
∞,H(φ) to set the time scale of relaxation but we found that for 0.35 ≤ φ ≤ 0.5 the long-time

self-diffusivity without hydrodynamics Ds
∞,NH(φ) provides a better temporal scaling for the simula-

tion data. This does not mean that hydrodynamics are not important in the temporal scaling, rather

Ds
∞,NH(φ) being a weaker function of φ than Ds

∞,H(φ) happens to yield a good approximation for

the combined effect of the competing processes discussed above. For φ > 0.5 the data scales well

with Ds
∞,H(φ). Taking all these considerations into account we define the characteristic diffusivity

for stress relaxation with hydrodynamic interactions as

D̂H(φ) =



τ f it(0.05)/τ f it(φ), 0.05 ≤ φ ≤ 0.35

Ds
∞,NH(φ)τ f it(0.05)

Ds
∞,NH(0.35)τ f it(0.35)

, 0.35 ≤ φ ≤ 0.5

Ds
0(φ)Ds

∞,NH(φ)τ f it(0.05)

Ds
0(0.5)Ds

∞,NH(0.35)τ f it(0.35)
, φ > 0.5

(5.41)
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such that D̂H(φ) is a continuous function of φ. Here we have used the approximation Ds
∞,H =

Ds
0Ds
∞,NH [Brady 1994]. The pressure autocorrelation data with long-time tails fitted with the ana-

lytical expression for no hydrodynamics is shown in Figure 5.19(a) as a function of the bare diffusive

time and in Figure 5.19(b) as a function of the scaled time given by τ̂ = b2/DD̂H(φ). The analyt-

ical curves used for fitting were computed as a function of the scaled time τ̂. The simulation data

collapses reasonably well onto a single curve with this scaling. The time-scale for stress relaxation

computed using data between 0 < τ ≤ 200 from ASDB-nf simulations with fitted long-time tails is

shown in Figure 5.18 and has the expected behavior.

5.4.3 Simulation results

The bulk viscosity calculated from the fitted simulation data is shown in Figure 5.20 for both the

SD and ASDB-nf simulations, along with the scaled theoretical curve given by (5.32) with D̂H(φ)

from (5.41). The discrepancy in the SD results for φ > 0.45 is due to the severe finite-size effects

in the simulations with only 27 particles. The high-frequency bulk modulus computed from the

zero-time limit of the pressure autocorrelation function is shown in Figure 5.21 along with the

scaled theoretical prediction given by (5.34). The scaled theory provides a good approximation for

the simulation results. It underestimates the bulk modulus by a constant factor although it has the

correct scaling with φ. The discrepancy in theory and simulation results is because the extrapolation

of the dilute theory to account for hydrodynamic interactions for all φ using Ds
0 is not exact, as

previously shown by Lionberger and Russel [1994].

We also computed the shear stress autocorrelation function and the shear viscosity, for which the

values are known from both simulation and experiments for a wide range of volume fractions. This

serves as an additional check on our simulations. The raw data for the nondimensional shear stress

autocorrelation function CS
H is shown in Figure 5.22. It is able to capture the t−7/2 long-time decay

of the shear stress autocorrelation before degenerating to noise, as the long-time limit is reached

much earlier than in the pressure autocorrelation. This can be attributed to the monopolar nature

of the decay of pressure fluctuations which results in a slow temporal decay, while the shear stress

exhibits a faster quadrupolar decay. We tried two different scalings for the magnitude of CS
H using
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the same arguments used for scaling CP
H :

CS
H,D =

NDs
0(φ)

φg0(2; φ)
CS

H , (5.42a)

CS
H,η =

N
φg0(2; φ)η′∞(φ)

CS
H , (5.42b)

(shown in Figure 5.23 (a) and (b), respectively) where η′∞ is the high-frequency shear viscosity

nondimensionalized with the fluid viscosity. The analytical curve without hydrodynamics is also

shown and clearly matches with the simulation data in the long-time limit. Looking at the short

time limit in the figure, it is evident that η′∞ provides a more accurate scaling for CS
H compared to

scaling with Ds
0. Although the generalized Stokes-Einstein relation 5.38 holds over a wide range

of concentrations, the agreement is not exact [Banchio et al. 1999]. This is likely because Ds
0 is

the inverse of the trace of RFU so it gives a good approximation for the scaling of the trace of RS U

(pressure moment), which is essentially the first moment of the forces obtained from RFU . Hence Ds
0

is the appropriate scaling for CP
H . In contrast, η′∞ is computed as an average of the deviatoric stress

components from RS E over an ensemble of equilibrium particle configurations in a linear shear flow.

Therefore it provides the best scaling for the strength of hydrodynamic interactions corresponding

to the deviatoric (shear) stress. This observation further supports the theory that the Ds
0(φ) scaling

in the bulk viscosity comes primarily from the scaling of the strength of hydrodynamic interactions.

The slowing down of the relaxation rate for φ > 0.35 is evident from the CS
H data but the faster

rate of decay for smaller φ is very diminished, although it is present. The rate of relaxation of the

shear stress is much faster than the pressure because of its quadrupolar nature, so the fluctuations

in ΣB2 are not fast enough to make a qualitative difference in the long time decay. The effect of

long-range fluctuations is more pronounced in the pressure relaxation because it is much slower due

to its monopolar nature. The behavior at high volume fractions is the same for both. Accordingly

we use the same temporal scaling for the shear stress as for the pressure autocorrelation given by

(5.41) but with τ f it(φ) = 1, thus ignoring the slight variations in the rate of decay for smaller volume

fractions. The scaled and fitted simulation data for CS
H is shown in Figure 5.24. All the curves for

high φ collapse very nicely onto a single curve and there is a slight variation in the temporal scaling

for small φ as expected. The Brownian shear viscosity computed from this data is shown in Figure

5.25, along with the simulation results of Foss and Brady [1999], experimental results of Segrè et al.
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[1995], and experimental results of Cheng et al. [2002]. The shear viscosity from BD simulations

is also shown to demonstrate the effect of hydrodynamic interactions, especially the increase in the

shear viscosity due to lubrication interactions at high φ. All the data match very nicely all the way

up-to the highest volume fraction studied, φ = 0.55. The scaled dilute theory is also shown and it

does an excellent job of predicting the shear viscosity for all φ.

Finally, the high-frequency bulk viscosity which gives the direct hydrodynamic contribution

was computed according to (5.4) by averaging over an ensemble of equilibrium configurations. The

direct hydrodynamic stress is given by

〈SE〉 = −
〈
RS U ·R−1

FU ·RFE − RS E
〉

: 〈e〉 , (5.43)

where the RS E resistance tensor includes the new hydrodynamic functions that give the trace of

the stress due to an imposed expansion flow, and RS U includes the functions for computing the

disturbance pressure due to the motion of other particles. The stress was computed by imposing

a uniform rate of expansion for all particles in a given configuration without actually simulating

their motion. It was averaged over 300 independent equilibrium configurations of 1000 particles for

each volume fraction to get the average bulk stress in an equilibrium suspension due to the imposed

expansion flow. The configurations used were taken at regular intervals from the equilibrium ASDB-

nf simulations for computing the stress autocorrelations, thus ensuring that all the configurations

were properly equilibrated. The high-frequency bulk viscosity with the single particle contribution

subtracted from it (κH = κ′∞ −
4
3ηφ) is shown in Figure 5.26. The simplest scaling would suggest

that since κH is a particle-particle contribution it should scale as φ2. Additionally, since it is a

measure of the pressure moment in an equilibrium configuration the scaling for higher volume

fractions must be closest to the equilibrium osmotic pressure Π0, which would account for the

increase in the particle pressure with φ. Although the equilibrium osmotic pressure in a suspension

is a thermodynamic property, it can be determined from purely hydrodynamic considerations along

with the scale factor of kT as shown by Brady [1993a]. Therefore the equilibrium osmotic pressure

should the same scaling with volume fraction as the pressure moment due to an imposed flow. Thus

rescaling the dilute theory for the direct hydrodynamic contribution to the bulk viscosity with the
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osmotic pressure we get

κH = 1.57φ2Π0(φ), (5.44)

and as seen on the figure this simple scaling agrees remarkably well with the simulation results.

The total contribution to the bulk viscosity due to interactions between particles is shown in Fig-

ure 5.27. This along with the single particle bulk viscosity completes all the contributions to the bulk

viscosity in the linear response regime of small Pe for all concentrations with full hydrodynamic

interactions. The hydrodynamic contribution is consistently smaller than the Brownian contribu-

tion and at higher volume fractions the Brownian bulk viscosity diverges much faster with φ. The

Brownian contribution to both the bulk and the shear viscosity scales as g0(2; φ)/DS
∞,H(φ)Ds

0(φ) and

therefore has a stronger divergence with increasing φ as seen in Figure 5.20 and Figure 5.25. Recent

experimental work by Cheng et al. [2002], also shown on the plots, suggests an exponential diver-

gence of the shear viscosity for higher concentrations in the glassy region. We expect the Brownian

bulk viscosity to also exhibit a similar behavior.

5.5 Conclusions

The equilibrium properties of suspensions can be used to get significant insight into the physical

processes that govern their rheological behavior. This chapter describes the equilibrium simulations

that were performed to study bulk viscosity effects in suspensions in the linear response limit for all

concentrations.

The Brownian Dynamics simulations we performed gave significant insight into the time scale

of stress relaxation. With only the thermodynamic and microstructural influences governing the

relaxation time scale it became apparent that there is no universal diffusive scaling for all volume

fractions. The long-time self-diffusivity governs the time scale of relaxation only at high volume

fractions when it is necessary for particles to break out of a cage or move a distance comparable

to their size to relax the microstructure into a different configuration. At small volume fractions

different configurations can be achieved without the particles having to move a significant distance.

The microstructure is relaxed primarily by particle collisions taking place at the bare diffusive time

scale.

The BD simulations also highlight that care must be taken when simulating processes that have
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a long time-scale for decay as the slow decay may not be captured in the simulations before the data

reduces to noise. We were able to deduce the correct decay of the autocorrelation functions from

viscoelastic theory and use it to compute the bulk viscosity. With knowledge of the correct scaling

we were able to predict the bulk and shear viscosities within reasonable accuracy by scaling up

the dilute theory expressions. Simulations with larger systems could be used to get more accurate

results, but one must be careful with very large systems at high volume fractions as they have been

known to crystallize faster than smaller systems and so may not give the correct temporal scaling

for metastable hard sphere fluids [Rintoul and Torquato 1996]. For very high volume fractions it

might be more appropriate to determine the rheological properties from non-equilibrium simulations

because the time scale of decay of the stress autocorrelation functions becomes very large.

The inclusion of hydrodynamic interactions introduces several new factors that affect the time

scale of relaxation significantly. The pressure autocorrelation data highlights the competition be-

tween long-range structural relaxation and the slowing down of the relaxation due to hydrodynamic

interactions, which was not noticeable in the shear stress autocorrelation. These factors govern the

relaxation time scale at small φ but eventually at high concentrations it is the long-time self dif-

fusivity that governs the structural relaxation. In the intermediate regime there is a competition

between several processes and so there is no single diffusivity that defines the relaxation time for all

concentrations.

Finally it must be pointed out that the monopolar nature of the pressure fluctuations is respon-

sible for its slow decay, with the consequence that there is more variability in the temporal scaling

as other processes get an opportunity to affect the time scale. The monopolar nature also results in

higher values of the bulk viscosity compared to the shear viscosity as it takes longer to dissipate

the fluctuations in pressure than those in the shear stress. Thus one cannot simply approximate the

bulk viscosity with the shear viscosity values as doing so will underestimate bulk viscosity effects

in the suspension flow. The bulk viscosity term is quite significant and it must be included in the

simulation of suspension flows when there are variations in the particle concentration.
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Figure 5.1: The equilibrium osmotic pressure Π0 determined from Brownian Dynamics (open cir-
cles) and Accelerated Stokesian Dynamics — near field simulations (black squares) nondimen-
sionalized with nkT , as a function of the volume fraction φ. The data was averaged over all the
configurations occurring in the equilibrium simulations for each φ for each of the simulation meth-
ods (∼ 106 realizations). The theoretical value given by Π0 = 1 + 4φg0(2; φ) is also shown with
g0(2; φ) data from Rintoul and Torquato [1996] for the φ > 0.55. The pressure data from Speedy
[1994] is also shown for the metastable and glassy region
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Figure 5.2: Pressure autocorrelation function from Brownian Dynamics with N = 100 particles as
a function of the diffusive time
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Figure 5.3: Pressure autocorrelation function from Brownian Dynamics with N = 1000 particles as
a function of the diffusive time.
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Figure 5.4: Comparison of the scaled pressure autocorrelation function CP
NH = CP

NHN/ (φg0(2; φ))
(5.22) from Brownian Dynamics with (a) N = 1000 and (b) N = 100 particles as a function of
the diffusive time for intermediate volume fractions. The plots illustrate the faster decay of pressure
fluctuations for N = 100 due to finite-cell-size effects. For N = 1000 the data is aligned very closely
with the analytical curve.
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Figure 5.5: Comparison of the scaled pressure autocorrelation function CP
NH = CP

NHN/ (φg0(2; φ))
(5.22) from Brownian Dynamics with (a) N = 1000 and (b) N = 100 particles as a function of
the diffusive time for high volume fractions. In both cases the time-scale of decay increases with
increasing volume fraction for φ ≥ 0.4. The data for φ = 0.05 is also shown to demonstrate
that for low φ (largest cell size simulated) the simulation data matches perfectly with the predicted
theoretical curve.
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Figure 5.6: Stress relaxation time from data between 0 < τ ≤ 0.7 for the pressure autocorrelation
function from BD simulations with N = 1000.
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Figure 5.7: Stress relaxation time from the data with fitted long-time tails between 0 < τ ≤ 200 for
the pressure autocorrelation function from BD simulations with N = 1000.
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Figure 5.8: The scaled Pressure autocorrelation function from Brownian Dynamics CP
NH =

CP
NHN/ (φg0(2; φ)) (5.22) with N = 1000 particles with fitted long-time tails for all volume frac-

tions simulated, as a function of the diffusive time. In plot (a) time is scaled with the bare diffusivity
of he particles and in (b) with the characteristic diffusivity D̂(φ). The latter scaling collapses all the
long-time tails onto the predicted theoretical curve.
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Figure 5.9: The Green-Kubo bulk viscosity κB from equilibrium Brownian Dynamics simulations
(solid diamonds), the MD simulation results of Sigurgeirsson and Heyes [2003] for the bulk viscos-
ity of hard sphere fluids (+ and *), and the scaled theoretical curve (solid line).
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Figure 5.10: Shear stress autocorrelation function from Brownian Dynamics with N = 1000 parti-
cles as a function of the diffusive time.
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Figure 5.11: The scaled Shear stress autocorrelation function CS
NH = CS

NHN/ (φg0(2; φ)) from Brow-
nian Dynamics with N = 1000 particles with fitted long-time tails in (b) for all volume fractions
simulated, as a function of the diffusive time. In plot (a) time is scaled with the bare diffusivity of
he particles and in (b) with the characteristic diffusivity D̂(φ). The latter scaling collapses all the
long-time tails onto the predicted theoretical curve.
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Figure 5.12: The zero-shear viscosity ηB from equilibrium Brownian Dynamics simulations (solid
diamonds), the simulation results of Foss and Brady [2000] for ηB (open circles), and the scaled
theoretical curve (solid line). The simulation data was obtained from equilibrium simulations with
a total of ∼ 2 × 107 time-steps for each φ.



137

Figure 5.13: Pressure autocorrelation function from Stokesian Dynamics simulations with N = 27
particles as a function of the diffusive time. For φ > 0.45 the decay is exponential as the simulation
cell size becomes small enough that the periodic boundary conditions have the effect of diffusion in
a finite box.
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Figure 5.14: Pressure autocorrelation function from Accelerated Stokesian Dynamics — near field
simulations with N = 1000 particles as a function of the diffusive time. For φ > 0.52, CP

H decays
much more slowly because the particles are in the glassy regime. At long times the finite size of the
simulation cell causes the pressure autocorrelation to decay exponentially as the periodic boundary
conditions simulate diffusion of the particles in a finite box.
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Figure 5.15: Scaled pressure autocorrelation function from ASDB-nf simulations CP
H =

CP
HNDs

0(φ)/φg0(2; φ) with N = 1000 particles as a function of the diffusive time, for (a) 0.05 ≤
φ ≤ 0.35 and (b) 0.35 ≤ φ ≤ 0.52. For the lower volume fractions the rate of decay decreases
as φ increases while for φ ≥ 0.35 the rate of decay increases with φ. The analytical curve for no
hydrodynamics is shown by the black curve and has the same long-time behavior as the simulation
data. Also shown is the zero-time limit from scaled dilute theory.
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Figure 5.16: Comparison of the scaled pressure autocorrelation function from ASDB-nf simulations
CP

H = CP
HNDs

0(φ)/φg0(2; φ) with the same cell size given by (a) L = 20.31b and (b) L = 34.73b but
for different volume fractions. The decrease in the rate of decay with increasing φ for φ < 0.35 is
evident in both plots, indicating that it is not a finite-size effect.
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Figure 5.17: Stress relaxation time from data between 0 < τ ≤ 1 for the pressure autocorrelation
function from ASDB-nf simulations with N = 1000.



142

0 0.1 0.2 0.3 0.4 0.5
φ

0 0

5 5

10 10

15 15

20 20

τκ(200)

Figure 5.18: Stress relaxation time from data between 0 < τ ≤ 200 with fitted long-time tails for
the pressure autocorrelation function from ASDB-nf simulations with N = 1000.
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Figure 5.19: Scaled Pressure autocorrelation function from ASDB-nf simulations CP
H =

CP
HNDs

0(φ)/φg0(2; φ) with N = 1000 particles for all φ simulated, as a function of (a) the diffusive
time and (b) diffusive time scaled with the stress relaxation time-scale. The long-time tails were
obtained by fitting the analytical curve for no hydrodynamics (also shown) with the corresponding
temporal scaling.
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Figure 5.20: The Green-Kubo bulk viscosity κB as a function of volume fraction from equilibrium
ASDB-nf simulations (solid squares) with N = 1000, SD simulations (shaded circles) with N = 27,
and the scaled dilute theory (solid line).
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Figure 5.21: The high-frequency bulk modulus as a function of volume fraction from equilibrium
ASDB-nf simulations (solid squares) with N = 1000, SD simulations (shaded circles) with N = 27,
and the scaled dilute theory (solid line).
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Figure 5.22: Shear stress autocorrelation function from Accelerated Stokesian Dynamics — near
field simulations with N = 1000 particles as a function of the diffusive time. For φ > 0.55 the
system is in a glassy state so the shear stress autocorrelation decays much more slowly.
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Figure 5.23: The scaled shear stress autocorrelation function from ASDB-nf simulations with N =

1000 particles as a function of the diffusive time. The scaling in (a) is with the short-time self-
diffusivity CS

H = CS
HNDs

0(φ)/ (φg0(2; φ)), and in (b) with the high-frequency shear viscosity CS
H =

CS
HN/

(
φg0(2; φ)η′∞(φ)

)
. The analytical curve for no hydrodynamic interactions is also shown and

has the same long-time behavior as the simulation data.
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Figure 5.24: The scaled shear stress autocorrelation function from ASDB-nf simulations with
N = 1000 as a function of (a) the diffusive time, and (b) the diffusive time scaled with the stress
relaxation time scale. The shear stress autocorrelation is scaled with the high-frequency shear vis-
cosity CS

H = CS
HN/

(
φg0(2; φ)η′∞(φ)

)
. The long-time tails are fitted with the analytical curve with no

hydrodynamic interactions.
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Figure 5.25: The Green-Kubo shear viscosity ηB as a function of volume fraction from equilibrium
ASDB-nf simulations (solid squares) with N = 1000, Brownian Dynamics simulations (shaded
diamonds) with N = 1000, and the scaled dilute theory (solid line). Also shown are the simulation
results of Foss and Brady [1999] (empty circles), experimental results of Segrè et al. [1995], and
experimental results of Cheng et al. [2002].
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Figure 5.26: The high-frequency bulk viscosity due to interactions between particles as a function
of volume fraction from equilibrium ASDB-nf simulations with N = 1000, and the scaled dilute
theory (solid line).
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Figure 5.27: The total contribution to the bulk viscosity due to interactions between particles as a
function of volume fraction from equilibrium ASDB-nf simulations with N = 1000. Shown here is
the direct hydrodynamic contribution (solid squares), the Green-Kubo Brownian contribution (solid
squares), and their sum (shaded circles).



152

φ N ∆t(2D/b2) Time steps Π0 Error(±)

0.05 1000 2 × 10−4 20 000 000 1.2236 0.0018

0.10 1000 2 × 10−4 20 000 000 1.5118 0.0014

0.15 1000 2 × 10−4 20 000 000 1.8863 0.0016

0.20 1000 2 × 10−4 20 000 000 2.3766 0.0011

0.25 1000 2 × 10−4 20 000 000 3.0250 0.0006

0.30 1000 2 × 10−4 20 000 000 3.8930 0.0014

0.35 1000 2 × 10−4 20 000 000 5.0739 0.0028

0.40 1000 2 × 10−4 20 000 000 6.7053 0.0054

0.45 1000 2 × 10−4 20 000 000 9.0153 0.0088

0.50 1000 2 × 10−4 15 000 000 12.3759 0.0070

0.52 1000 2 × 10−4 15 000 000 14.1565 0.0128

0.55 1000 2 × 10−4 5 000 000 17.5007 0.0495

0.58 1000 2 × 10−4 5 000 000 21.5468 0.2059

0.60 1000 2 × 10−4 5 000 000 28.6155 0.7070

Table 5.1: Equilibrium Osmotic Pressure from Brownian Dynamics simulations.
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φ N ∆t(2D/b2) Time steps Π0 Error(±)

0.05 1000 2 × 10−3 2 000 000 1.2257 0.0006

0.10 1000 2 × 10−3 2 000 000 1.5176 0.0010

0.15 1000 2 × 10−3 2 000 000 1.8992 0.0009

0.20 1000 2 × 10−3 2 000 000 2.4038 0.0027

0.25 1000 2 × 10−3 2 000 000 3.0757 0.0018

0.30 1000 2 × 10−3 2 000 000 3.9822 0.0016

0.35 1000 2 × 10−3 2 000 000 5.2237 0.0024

0.40 1000 2 × 10−3 2 000 000 6.9667 0.0063

0.45 1000 2 × 10−3 2 000 000 9.4453 0.0071

0.50 1000 2 × 10−3 1 500 000 13.1005 0.0302

0.52 1000 2 × 10−3 1 500 000 15.0720 0.0478

0.55 1000 2 × 10−3 900 000 18.5913 0.2460

0.58 1000 2 × 10−3 900 000 25.6836 0.1754

0.60 1000 2 × 10−3 900 000 36.6900 0.4836

Table 5.2: Equilibrium Osmotic Pressure from ASDB-nf simulations.

φ Ds
∞ τη τηDs

∞

0.0500 0.9228 0.1835 0.1693

0.1000 0.8437 0.1991 0.1680

0.2000 0.6803 0.1647 0.1121

0.3000 0.5096 0.1405 0.0716

0.4000 0.3283 0.2009 0.0659

0.4500 0.2304 0.3202 0.0738

0.5000 0.1320 0.4235 0.0559

0.5200 0.0981 0.8135 0.0798

0.5500 0.0473 2.1509 0.1017

Table 5.3: Relaxation time-scale for the shear stress autocorrelation function from Brownian Dy-
namics simulations with N = 1000 particles.
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φ τκ(0.7) τκ(200) Ds
∞(φ)τκ(200)

0.05 0.1671 10.6762 9.8515

0.10 0.1335 6.1263 5.1690

0.15 0.0972 4.4573 3.4006

0.20 0.0883 4.5219 3.0765

0.25 0.0688 3.9160 2.3071

0.30 0.0621 3.7567 1.9144

0.35 0.0446 3.3878 1.3681

0.40 0.0590 3.8578 1.2665

0.45 0.1231 5.5633 1.2816

0.50 0.1964 9.9689 1.3154

0.52 0.2249 10.3204 1.0123

Table 5.4: Relaxation time-scale for pressure autocorrelation function from Brownian Dynamics
simulations with N = 1000 particles.
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φ τκ(1) τκ(200) Ds
∞(φ)τκ(200)

0.05 0.2912 10.4930 9.6825

0.10 0.2647 9.5283 8.0394

0.15 0.2415 8.6424 6.5936

0.20 0.2379 8.6723 5.9002

0.25 0.2163 7.6328 4.4969

0.30 0.2162 7.5952 3.8705

0.35 0.2056 7.6431 3.0866

0.40 0.2299 8.3879 2.7536

0.45 0.3085 10.3517 2.3847

0.50 0.3476 14.2023 1.8740

0.52 0.3983 19.0036 1.8641

0.55 0.4537 34.0876 1.6123

0.58 0.4792 41.8469 0.8369

Table 5.5: Relaxation time-scale for pressure autocorrelation function from Accelerated Stokesian
Dynamics — near field simulations with N = 1000 particles.
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φ N ∆t(2D/b2) Time steps κB/η Error(±)

0.05 1000 2 × 10−4 20 000 000 0.0268 0.0010

0.10 1000 2 × 10−4 20 000 000 0.0953 0.0023

0.15 1000 2 × 10−4 20 000 000 0.1858 0.0041

0.20 1000 2 × 10−4 20 000 000 0.3688 0.0056

0.25 1000 2 × 10−4 20 000 000 0.6032 0.0099

0.30 1000 2 × 10−4 20 000 000 1.0675 0.0146

0.35 1000 2 × 10−4 20 000 000 1.7615 0.0244

0.40 1000 2 × 10−4 20 000 000 3.4603 0.0378

0.45 1000 2 × 10−4 20 000 000 8.3705 0.0544

0.50 1000 2 × 10−4 15 000 000 30.8720 0.0875

0.52 1000 2 × 10−4 15 000 000 55.3136 0.1195

Table 5.6: Equilibrium (Green-Kubo) bulk viscosity for hard spheres from Brownian Dynamics
simulations.
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φ N ∆t(2D/b2) Time steps κB/η Error(±)

0.05 1000 2 × 10−3 2 000 000 0.0229 0.0003

0.10 1000 2 × 10−3 2 000 000 0.0867 0.0008

0.15 1000 2 × 10−3 2 000 000 0.2102 0.0016

0.20 1000 2 × 10−3 2 000 000 0.4420 0.0023

0.25 1000 2 × 10−3 2 000 000 0.7661 0.0041

0.30 1000 2 × 10−3 2 000 000 1.4483 0.0063

0.35 1000 2 × 10−3 2 000 000 2.9776 0.0137

0.40 1000 2 × 10−3 2 000 000 7.0446 0.0285

0.45 1000 2 × 10−3 2 000 000 22.8100 0.0384

0.49 1000 2 × 10−3 1 500 000 60.6845 0.1215

0.50 1000 2 × 10−3 1 500 000 71.4577 0.1758

0.52 1000 2 × 10−3 1 500 000 218.2948 0.5120

Table 5.7: Equilibrium (Green-Kubo) bulk viscosity for hard spheres with hydrodynamic interac-
tions from ASDB-nf simulations.
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φ N ∆t(2D/b2) Time steps κB/η Error(±)

0.05 27 1 × 10−3 3 000 000 0.0240 0.0163

0.10 27 1 × 10−3 3 000 000 0.0827 0.0521

0.15 27 1 × 10−3 3 000 000 0.1964 0.0567

0.20 27 1 × 10−3 3 000 000 0.3114 0.1152

0.25 27 1 × 10−3 3 000 000 0.7329 0.1520

0.30 27 1 × 10−3 4 000 000 1.4751 0.2917

0.35 27 1 × 10−3 4 000 000 2.4339 0.5630

0.40 27 1 × 10−3 4 000 000 7.2241 0.7421

0.45 27 1 × 10−3 4 000 000 27.4283 2.2675

0.47 27 5 × 10−4 8 000 000 26.1497 2.0049

0.49 27 5 × 10−4 8 000 000 16.9814 1.7155

0.50 27 5 × 10−4 8 000 000 33.0086 3.2338

Table 5.8: Equilibrium (Green-Kubo) bulk viscosity for hard spheres with hydrodynamic interac-
tions from conventional Stokesian Dynamics simulations.
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φ N ∆t(2D/b2) Time steps K′∞b3/kT Error(±)

0.05 1000 2 × 10−3 2 000 000 0.0026 1.6663 × 10−6

0.10 1000 2 × 10−3 2 000 000 0.0125 3.9464 × 10−6

0.15 1000 2 × 10−3 2 000 000 0.0357 8.0360 × 10−6

0.20 1000 2 × 10−3 2 000 000 0.0815 1.1640 × 10−5

0.25 1000 2 × 10−3 2 000 000 0.1709 2.0572 × 10−5

0.30 1000 2 × 10−3 2 000 000 0.3390 3.1711 × 10−5

0.35 1000 2 × 10−3 2 000 000 0.6880 6.8662 × 10−5

0.40 1000 2 × 10−3 2 000 000 1.4302 1.4235 × 10−4

0.45 1000 2 × 10−3 2 000 000 3.0960 1.9187 × 10−4

0.49 1000 2 × 10−3 1 500 000 5.5672 6.0754 × 10−4

0.50 1000 2 × 10−3 1 500 000 6.2335 8.7901 × 10−4

0.52 1000 2 × 10−3 1 500 000 9.3763 2.5599 × 10−3

Table 5.9: High-frequency bulk modulus for hard spheres with hydrodynamic interactions from
ASDB-nf simulations.
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φ N ∆t(2D/b2) Time steps K′∞b3/kT Error(±)

0.05 27 1 × 10−3 3 000 000 0.0031 0.0001

0.10 27 1 × 10−3 3 000 000 0.0147 0.0003

0.15 27 1 × 10−3 3 000 000 0.0421 0.0003

0.20 27 1 × 10−3 3 000 000 0.0988 0.0006

0.25 27 1 × 10−3 3 000 000 0.2086 0.0008

0.30 27 1 × 10−3 4 000 000 0.4224 0.0015

0.35 27 1 × 10−3 4 000 000 0.8543 0.0028

0.40 27 1 × 10−3 4 000 000 1.7259 0.0037

0.45 27 1 × 10−3 4 000 000 3.5274 0.0113

0.47 27 5 × 10−4 8 000 000 4.3977 0.0100

0.49 27 5 × 10−4 8 000 000 5.5707 0.0086

0.50 27 5 × 10−4 8 000 000 6.5465 0.0162

Table 5.10: High-frequency bulk modulus for hard spheres with hydrodynamic interactions from
conventional Stokesian Dynamics simulations.



161

φ N Realizations κ′∞/η Error(±)

0.05 1000 400 0.0061 0.0014

0.10 1000 400 0.0296 0.0048

0.15 1000 400 0.0814 0.0033

0.20 1000 400 0.1808 0.0078

0.25 1000 400 0.3561 0.0147

0.30 1000 400 0.6551 0.0216

0.35 1000 400 1.1466 0.0281

0.40 1000 400 1.9690 0.0622

0.45 1000 400 3.3316 0.1974

0.50 1000 300 5.6014 0.1108

0.52 1000 300 6.9303 0.2920

0.55 1000 300 9.4979 0.2594

0.58 1000 200 14.4265 0.2901

0.60 1000 200 21.1343 0.4494

Table 5.11: High-frequency bulk viscosity for hard spheres with hydrodynamic interactions from
ASDB-nf simulations.
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φ N ∆t(2D/b2) Time steps ηB/η Error(±)

0.05 1000 2 × 10−4 20 000 000 0.0060 0.0002

0.10 1000 2 × 10−4 20 000 000 0.0283 0.0005

0.20 1000 2 × 10−4 20 000 000 0.1422 0.0012

0.30 1000 2 × 10−4 20 000 000 0.4648 0.0019

0.40 1000 2 × 10−4 20 000 000 1.7235 0.0044

0.45 1000 2 × 10−4 20 000 000 3.7821 0.0071

0.50 1000 2 × 10−4 15 000 000 9.4250 0.0116

0.52 1000 2 × 10−4 15 000 000 18.5061 0.0161

0.55 1000 2 × 10−4 15 000 000 59.6699 0.0288

Table 5.12: Equilibrium (Green-Kubo) shear viscosity for hard spheres from Brownian Dynamics
simulations.

φ N ∆t(2D/b2) Time steps ηB/η Error(±)

0.05 1000 2 × 10−3 2 000 000 0.0045 0.0001

0.10 1000 2 × 10−3 2 000 000 0.0208 0.0001

0.15 1000 2 × 10−3 2 000 000 0.0586 0.0003

0.20 1000 2 × 10−3 2 000 000 0.1333 0.0004

0.25 1000 2 × 10−3 2 000 000 0.3182 0.0008

0.30 1000 2 × 10−3 2 000 000 0.6355 0.0014

0.35 1000 2 × 10−3 2 000 000 1.5390 0.0039

0.40 1000 2 × 10−3 2 000 000 3.6116 0.0058

0.45 1000 2 × 10−3 2 000 000 10.4687 0.0090

0.49 1000 2 × 10−3 1 500 000 28.7002 0.0488

0.50 1000 2 × 10−3 1 500 000 39.7402 0.0662

0.52 1000 2 × 10−3 1 500 000 79.5143 0.1975

Table 5.13: Equilibrium (Green-Kubo) shear viscosity for hard spheres with hydrodynamic interac-
tions from ASDB-nf simulations.
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Chapter 6

Simulation of Compression Flows in
Suspensions

6.1 Introduction

Colloidal suspensions are known to exhibit non-Newtonian behavior, meaning that the rheological

properties change with the applied rate of strain. Thinning of the effective suspension shear vis-

cosity has been observed at low shear rates and thickening has been observed at high shear rates

[Gadala-Maria and Acrivos 1980; Brady and Morris 1997; Sierou and Brady 2002]. The nondimen-

sional number that defines the regime of flow is the Péclet number (Pe), which gives the ratio of the

applied forcing to the strength of Brownian motion. Shear thinning occurs as the contribution to the

effective shear viscosity of the suspension due to Brownian motion decreases with increasing Pe. In

the large Pe limit particles are pushed into the compression axis and depleted in the elongation axis

and Brownian motion is not strong enough to dissipate the disturbance. A boundary layer forms at

contact because of the rigid particle surfaces, inside which Brownian motion balances convection.

Lubrication forces are very strong in this region and cause the shear viscosity to increase, and this

is called shear thickening. In compression flow of suspensions we expect the same behavior, except

there must be ‘compression thinning’ at small Pe as Brownian motion becomes weaker than convec-

tion, and ‘compression thickening’ at high Pe as the convective flow pushes the particles together

leading to formation of an isotropic boundary layer in which there is accumulation of particles.

Dilute theory shows that the boundary layer thickness in compression is of order 1/Pe, while the

accumulation in the boundary layer is order Pe in both the limiting cases of no hydrodynamic inter-

actions and full hydrodynamics. The bulk viscosity therefore plateaus to a constant at large Péclet
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numbers. To study the high Pe response of concentrated suspensions we must resort to numerical

simulation.

Simulating the expansion (or compression) of only the particle phase in a suspension would

necessarily lead to spatial variations in the particle volume-fraction, which make it difficult to deter-

mine the bulk viscosity for a given volume-fraction. This problem can be circumvented by having

the surrounding fluid expand or compress uniformly in space, leading to a homogeneous expansion

or compression of the particle phase as well. The imposed flow causes the suspended particles to

move apart uniformly in space, but they cannot expand with the fluid and instead create disturbance

flows as the fluid has to move around the particles. This disturbance flow causes the stress on the

particles to change, also changing the bulk stress in the suspension. The bulk viscosity of the sus-

pension is then determined by computing the deviation in average stress in the material in a way

analogous to that for the shear viscosity [Batchelor and Green 1972b; Brady and Bossis 1988], and

relating it to the average rate of expansion. We expect the bulk viscosity calculated by this tech-

nique to be comparable to that for expansion of the particle phase only in an incompressible fluid,

because the contribution to the isotropic stress in both cases is due to incompressible disturbance

flows. In this chapter we describe the numerical simulations that were performed to determine the

bulk viscosity of a suspension at all rates of compression for a wide range of volume fractions.

6.2 Simulation procedure

All the compression simulations were started with a random configuration at a small volume frac-

tion of φ = 0.01, generated by simply placing the particles at randomly generated positions inside

the simulation cell and then resolving any particle overlaps. At this small volume fraction there are

few particle overlaps so that the random nature of the configuration is not affected by moving the

particles to resolve overlaps. At each time step compression was achieved by changing the dimen-

sions of the simulation cell in the x, y and z coordinates by LiPe∆t, where Pe is the Péclet number,

∆t is the nondimensional time step and Li is the size of the simulation cell along the ith coordinate

nondimensionalized with the particle radius b. The Péclet number is defined as the bulk rate of
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compression 〈e〉 nondimensionalized with the diffusive time-scale of the particles b2/2D as

Pe =

1
3 〈e〉 b

2

2D
, (6.1)

where D = kT/6πηb is the Stokes-Einstein-Sutherland diffusivity of the particles. Time was nondi-

mensionalized with the relative diffusive time scale of the particles b2/2D. For |Pe| > 1 the time

was additionally scaled with the Péclet number by replacing ∆t with ∆t/|Pe| so that changes in the

simulation cell size and particle positions are not too large for a single time-step. At the same time

an affine displacement of riPe∆t was applied to each particle where ri is the position vector of the

particle scaled with b, and displacements due to hydrodynamic interactions and Brownian motion

were also added to the particle positions. The Péclet number is positive for expansion flow and

negative for compression. Periodic boundary conditions were enforced to ensure that all particles

remain within the simulation cell and collisions between particles were resolved to remove any par-

ticle overlaps. In the case of Brownian Dynamics particle collisions were used to determine the

particle-phase stress, but in SD and ASD simulations the collisions are only an artifact of the finite

time step used because lubrication forces would prevent particle surfaces from ever touching, and

therefore collisions do not contribute to the stress. The cell volume changes by a factor of (1+Pe∆t)3

and therefore the change in volume fraction is ∆φ = φ/(1 + Pe∆t)3 at each time step. Since ∆φ is

proportional to the volume fraction φ itself, starting with a small φ causes the volume fraction to

change very slowly in the beginning of the simulation, thus allowing sufficient time for diffusive

and convective motion of the particles to balance each other to give a steady particle microstructure

before it reaches volume fractions of our interest, φ ≥ 0.1.

Although the number density of particles changes continuously with time in the simulations,

the distribution of particles relative to the average number density reaches a non-equilibrium steady

state in compression flow. The imposed flow acts to push the particles closer to each other thereby

driving the microstructure out of equilibrium, while Brownian motion drives diffusion against the

concentration gradients to restore equilibrium, and the competition between the two establishes the

steady microstructure. Starting the simulation with a small volume fraction allows the microstruc-

ture to achieve an almost steady state which we want to study before it reaches higher concentra-

tions. The constantly changing number density however, presents the problem of reliably collecting
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statistically good data for a given volume fraction of particles. One way in which we overcome this

hurdle is by performing a large number of simulations (200) for each Péclet number with the same

simulation parameters but starting with different initial configurations. The data for the desired

volume fractions is then extracted from each run and averaged to get an ensemble average. Addi-

tionally the data in each simulation run is averaged over several adjacent time-steps before and after

the time step where the volume fraction of interest is reached, such that the data between φ − 0.01

and φ + 0.01 is averaged for each φ. The change in the particle microstructure over short times

would be minimal and averaging over the time interval helps to reduce Brownian noise. As long

as the averaging is done over an equal number of time steps before and after the time of interest,

no additional error is introduced due to the changing concentration. Thus averaging over several

time steps in each run serves to reduce fluctuations due to Brownian motion of the particles and

averaging over all the runs reduces the error due to variations in the microstructure. For computing

the pair-distribution function of particles, averaging was done only across all the simulation runs

because changes in the microstructure over short times are negligible.

6.3 Microstructure in compression

As the compression flow proceeds, particles are pushed towards each other by the imposed forcing,

thus driving the system out of equilibrium with particles being closer to each other on average than

they would be at equilibrium. This shows up as an isotropic accumulation of particles at contact

(r = 2) in the pair-distribution function g(r), which is a function of the scalar particle separation only

because of the isotropic forcing. Brownian motion of the particles causes them to diffuse against

the concentration gradient that is built up near contact and makes g(r) decay with increasing r. For

small rates of compression the perturbation to the microstructure decays as 1/r. At higher compres-

sion rates a boundary layer of O
(
|Pe|−1

)
forms near contact in which Brownian diffusion balances

the compression flow and the microstructural perturbation decays to zero inside the boundary layer.

The magnitude of the microstructural perturbation inside the boundary layer is O (|Pe|) from dilute

theory analysis. Figure 6.1 shows a planar cross-section of the three-dimensional pair distribution

function computed from Brownian Dynamics compression simulations with 1000 particles. The

figure illustrates the isotropic nature of the forcing in compression and the stronger accumulation
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and faster decay of particle concentration near contact with increasing Pe. At higher volume frac-

tions the formation of an additional ring of higher concentration can be seen as the caging effect of

particles becomes more prominent, but the behavior of g(r) with varying Pe is still the same.

In all the simulations we start with an equilibrium particle configuration, so the microstructure

must evolve as part of the simulation. The time it takes to reach a steady state would be determined

by the diffusive time-scale of the particles and the distance over which they need to diffuse in order

to balance the compression flow. The simplest estimate for the diffusive time is b2/2Ds
∞(φ), where

Ds
∞ is the long-time self-diffusivity which accounts for the hindrance encountered by a particle as it

makes its way through the surrounding particle structure. In regions of accumulation of particles the

time scale of diffusion would be even slower than that given by Ds
∞. The long-time self-diffusivity is

a decreasing function of particle concentration so we expect that the approach to steady state would

be slower with increasing φ. However it is possible that the gradients in the microstructure reach

a steady state before reaching high values of φ so that only the particle density is increasing while

g(r) remains unchanged.

The imposed compression forcing is balanced by Brownian motion only in the boundary layer

so particles need to diffuse over a distance of O
(
|Pe|−1

)
for the microstructure to reach a steady state.

Figure 6.2 and Figure 6.3 show the radial pair-distribution function from BD and ASD simulations

respectively at Pe = −1 and Pe = −10 for φ = 0.2. The data from both simulations is almost

identical except for the value at contact, where lubrication forces in ASD simulations reduce the

particle mobility significantly, causing a stronger accumulation of particles. Clearly g(r) decays over

a much longer distance at Pe = −1 than at Pe = −10, because particles need to diffuse over a shorter

distance at larger values of Pe in order to balance the imposed forcing with Brownian diffusion. At

the same time the volume fraction also changes at a faster rate for larger Pe. Specifically the volume

fraction as a function of time is given by

φ(τ) = φ(τ)e−3Peτ. (6.2)

The change in volume fraction is exponential so that it changes very slowly at the start of our

simulations when φ ∼ 0.01 but changes very quickly at higher volume fractions which are in the

regime of interest. From the analysis in Appendix A in Chapter 1, the microstructural disturbance
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also approaches its long-time limit exponentially as e−3Peτ in the dilute limit for large Pe. Hence

even in the dilute limit we would not expect the microstructure to be able to keep up with the change

in volume fraction in the high Pe limit. Essentially the particles need to move a distance of O(1) on

average to be pushed into the boundary layer and this would not happen fast enough compared to

the rate of change of the volume fraction, so the boundary layer formation remains incomplete. For

small Pe the microstructure would change even more slowly (algebraically in the linear response

limit) as shown in Chapter 3 §3.4, and therefore would not achieve a steady state at any volume

fraction.

In the above discussion we assumed that the initial configuration of particles is spatially homo-

geneous. While this is true in an average sense because we start from equilibrium configurations,

any actual realization would have spatial inhomogeneities due to the random placement of particles.

Thus there would be some regions where particles are already very close to each other and some

other regions where particles are not close to any neighboring particle. At small Pe Brownian mo-

tion of the particles would cause these variations to dissipate and allow the particles to sample many

random configurations, so that relative to the rate of the imposed compression flow the particle dis-

tribution is mostly homogeneous. In this case there is actual competition between the compression

flow pushing the particles closer and Brownian motion dissipating the accumulation of particles.

Particles would need to move an O(1) distance in order to be pushed into the boundary layer. There-

fore at small Pe of compression we don’t expect the microstructural disturbance to reach a steady

state.

At large Pe however, Brownian motion is negligible so groups of particle that were already close

to each other are pushed even closer without any competition from Brownian diffusion, thereby cre-

ating clusters of particles scattered throughout the space where the boundary layer is formed very

quickly. This is evident from Figure 6.4 which shows a histogram of the instantaneous hydrody-

namic pressure moment of particles at rates of Pe = −1 and Pe = −1000 compiled over 200 runs

of ASDB-nf compression simulations. At small Pe the pressure moment values are all very close to

the average indicating that the particle distribution has been homogenized by Brownian motion. At

high Pe however the distribution of pressure moments is more spread out and there is a significant

number of particles that are quite a bit far from the mean, and these must be the particles that are

close to other particles and thereby increase the overall stress due to lubrication forces. A look at
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Figure 6.5, which shows two such examples of particles with pressure moment greater than a cutoff

value (〈S H〉/Pe > 10) deduced from the histogram with Pe = −1000, reveals that this is indeed the

case. Clusters and chains of particles distributed throughout space are clearly visible in the figures

and these are the regions of high particle pressures. There is a balance between the imposed flow

and the boundary condition at contact that is set up in these regions, due to hard sphere collisions

in the absence of hydrodynamics and lubrication forces near contact when hydrodynamics are im-

portant. The particle phase pressure in these regions would be much higher than in the rest of the

suspension, resulting in a total stress that is much closer to the steady state value than at smaller Pe.

Therefore at large Pe even though the suspension on an average does not reach steady state there

will be particle clusters throughout space depending on the initial configuration where the steady

state boundary layer is formed and these clusters would grow in size as the compression of particles

proceeds. The total particle-phase stress would be dominated by the stress in these clusters.

This does not undermine the results of the current topic because the main purpose of this study

is to determine the bulk viscosity at high Pe via simulation. Whether the microstructure reaches

the correct steady state or not may also depend on the number of particles used in the periodic

simulation cell, which determines the cell size for a given φ. If the size of the boundary layer is

comparable to or greater than the cell length, the decay of g(r) may not be captured correctly as the

periodic boundary conditions impose an additional constraint on g(r) at the cell boundaries.

6.4 Brownian Dynamics

In Brownian Dynamics simulations each hard sphere acts as a colloidal particle undergoing Brown-

ian motion with the time scale specified by its bare diffusivity, but the effect of the disturbance flows

due to the finite size of a particle on the other particles is neglected. Particles may only interact with

each other via hard-sphere collisions when they come into contact. This approach allows us to iso-

late the effect of Brownian motion and interparticle forces on the microstructure from the influence

of hydrodynamic interactions. The technique developed by Foss and Brady [2000] was employed

to perform the Brownian Dynamics simulations. Each particle is given a random Brownian kick

and an affine compression displacement at each time step, and particle collisions are resolved by

moving the overlapped particles away from each other along the line joining their centers until they
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are touching. The interparticle force due to hard-sphere interactions for each particle is estimated as

FP = 6πηb
∆xHS

∆t
, (6.3)

where ∆xHS is the particle displacement from resolution of all the overlaps with other particles in

time step ∆t. The particle-phase contribution to the stress due to the collisions is simply

〈
ΣP

〉
= −nkT I − n

〈
xFP

〉
, (6.4)

where the angle brackets denote an average over all the particles, x is the particle position and n is

the number density of particles. The stress calculated with this technique contains the total stress

due to Brownian motion as well as the contribution due to collisions resulting from the imposed

forcing — compression flow in this case.

The effective bulk viscosity of the suspension can be written as

κe f f =
(
κ + 4

3ηφ
) 1

1 − φ
+ κP, (6.5)

where the κP term is the contribution from hard sphere particle collisions obtained directly from the

trace of the stress as

κP =
n〈S P〉 − n〈S P〉eq

3 〈e〉
. (6.6)

Here S P denotes the trace of the corresponding stresslet (symmetric first moment of the force dis-

tribution integrated over the particle surface), i.e., 〈S P〉 = I :
〈
xFP

〉
. The superscript eq denotes the

value at equilibrium, which corresponds to the equilibrium osmotic pressure of the particle phase.

The first term in (6.5) gives the single particle correction to the bulk viscosity in a uniformly ex-

panding fluid. The collisional contribution to the bulk viscosity nondimensionalized with the fluid

shear viscosity can be written in terms of nondimensional quantities as

κP =
3
4
φ

(
Π − Π0

)
Pe

, (6.7)

where Π = 〈S P〉/3kT is the nondimensional particle-phase pressure and Π0 is its value at equilib-
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rium. The hard-sphere equilibrium osmotic pressure is

Π0 = 1 + 4φg0(2; φ), (6.8)

where g0(2; φ) is the equilibrium pair-distribution function at contact. An accurate value for g0(2; φ)

can be found from the well-known Carnahan-Starling (CS) equation of state [Carnahan and Starling

1969] for φ ≤ 0.55:

g0(2; φ) =
1 − 1

2φ

(1 − φ)3 . (6.9)

For higher volume fractions we have used the very precise values for g0(2; φ) determined by Rintoul

and Torquato [1996], which also match the CS equation of state at its limiting value of φ = 0.5.

Simulations were performed with N = 1000 particles for several values of Pe ranging from 0.1

to 1000, with 200 distinct runs for each value of Pe. The simulations were started with a time step of

∆t = 10−3 which was reduced to 2 × 10−4 after reaching a volume fraction of φ = 0.09, thus saving

computer time initially when the microstructure is changing very slowly and allowing for greater

detail and better statistics in the regime of interest. The rheological data was recorded at each time

step and particle positions were saved at volume fractions φ = 0.1, 0.15 . . . 0.55 with an interval

of 0.05. Values for the rheological properties were also evaluated for the same volume fractions

from the simulation data. Particle configurations recorded for each value of φ studied were used to

determine the pair distribution function averaged over all the runs for studying the microstructure.

6.4.1 Results and scaling

The contribution to the particle-phase pressure due to collisions between the particles, given by

Π − 1 = Π/nkT − 1 is shown in Figure 6.6 as a function of the Péclet number for compression.

The pressure asymptotes to its equilibrium value as Pe → 0 and for large values of Pe it scales

as |Pe|. In the large Pe limit the collisions driven by the imposed compression flow dominate

the stress and therefore the pressure increases as the forcing becomes stronger. In the absence of

hydrodynamic interactions the stress is completely determined by particle collisions as they come

into contact and since the accumulation of particles at contact is O(|Pe|) the corresponding stress

contribution is also O(|Pe|). Only the excess pressure due to the compression flow (Π−Π0) scales as
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Pe, so that at low rates of compression the excess pressure is negligible compared to the equilibrium

osmotic pressure. The osmotic pressure due to hard sphere collisions is known to scale as φg0(2; φ)

at equilibrium, which serves as the φ scaling for the average number of particle collisions [Brady

1993a]. Here g0(2; φ) is the equilibrium pair distribution function at contact. Therefore we attempt

to remove the φ scaling from the pressure by defining the normalized excess pressure as Πexcess =

(Π − Π0)/ (φg0(2; φ)), shown in Figure 6.7. This scaling collapses the data for all volume fractions

to a large extent but there is still some φ dependence in the data.

The dependence of the stress on volume fraction can be seen more clearly in the bulk viscosity

κP shown in Figure 6.8 and computed using (6.7), as the Pe dependence has been scaled out. The

bulk viscosity plateaus to a constant limiting value in the limit of large Pe for all volume fractions.

For smaller values of Pe there is a decrease in κP for φ < 0.2 as Pe increases, indicating compression

thinning of the bulk viscosity, but for higher φ the bulk viscosity is actually smaller at lower values

of Pe. The rate of change of volume fraction is exponentially faster at higher concentrations so there

is progressively less time for the boundary layer to form as φ increases. There would also be some

effect due to the finite cell size on which periodic boundary conditions are applied. Even though

only the contact value of the pair distribution function g(2; φ) is needed to determine the pressure,

the entire boundary layer must be set up correctly in order to get the correct value for g(2; φ). At

high values of Pe the size of the boundary layer is significantly smaller than the cell length, so the

periodic boundary conditions do not interfere with the formation of the boundary layer. The cell

length is smaller for higher volume fractions, hence at intermediate Pe the boundary layer formation

takes place correctly for small φ but not for larger values of φ. For even smaller Pe the size of the

boundary layer is too large for the simulation cell and the time required to reach steady state is also

very long compared to the rate at which φ changes. Thus the expected compression thinning of the

bulk viscosity at small Pe is not seen in our simulation results, except to some extent for φ < 0.2

and 1 ≤ −Pe ≤ 10.

The bulk viscosity normalized with φ2g0(2; φ) to scale out the φ dependence is shown in Figure

6.9 along with the analytical curve from dilute theory. The data for φ = 0.1 is in excellent agree-

ment with the dilute-theory prediction for −Pe ≥ 10. For smaller values of Pe it deviates from

the dilute-theory curve as discussed above. We shall consider only the high Pe limit for scaling

the bulk viscosity because it captures the correct physical behavior. For higher φ there is a mono-
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tonic increase with φ in the scaled bulk viscosity. The variations are small for φ ≤ 0.3 but increase

rapidly for higher φ. This behavior is reminiscent of the temporal scaling of the pressure autocorre-

lation function in equilibrium Brownian Dynamics simulations discussed in Chapter 5 §5.3.3. The

increase in bulk viscosity can be attributed the hindering effect of surrounding particles at higher

concentrations, which increases the diffusive time scale of the particles and the rate at which fluctu-

ations in the stress are dissipated, thus increasing the bulk viscosity. Since the excess stress comes

mostly from the boundary layer at contact, the entropic effect of surrounding particles outside the

boundary layer does not decrease the diffusive time scale for small φ as it did in the equilibrium

simulations. Accordingly, we define the diffusive time-scale

D̂NH(φ) =


1 if φ ≤ 0.3

Ds
∞(φ)/Ds

∞(0.3) if φ > 0.3
, (6.10)

where we use the approximation Ds
∞(φ) =

[
1 + 2φg(2; φ)

]−1 for the nondimensional long-time self-

diffusivity proposed by Brady [1994] as it produced the best collapse of the simulation data. The

scaled bulk viscosity defined as

κ̂P =
κP

η

D̂NH(φ)
φ2g0(2; φ)

, (6.11)

plotted as a function of the scaled Péclet number P̂e = Pe/D̂NH(φ) is shown in Figure 6.10. The data

for all volume fractions collapses with this scaling in the high Pe region. For smaller values of Pe the

scaled bulk viscosity data decreases with increasing φ because of the decreasing simulation cell size

and the longer times needed to reach steady state. The above results are all from simulations with

N = 1000 particles. Simulations were also performed with 100 particles to serve as a check because

the cell size would be smaller with fewer particles, and the scaled results are shown in Figure 6.11.

Note that the data for φ ≤ 0.2 deviates from the dilute-theory curve at larger Pe with 100 particles

than with 1000 particles, thus confirming that the cell size does influence the microstructure. For

an infinite system at steady state we expect κ̂P to be closer to the dilute-theory curve for all values

of φ and Pe. Thus the hard sphere bulk viscosity for concentrated systems scales as the number of

collisions taking place and the increase in the diffusive time-scale due to ‘caging’ effects at high

concentrations.
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6.5 Accelerated Stokesian Dynamics

The influence of hydrodynamic interactions on the bulk viscosity in compression was studied using

ASD simulations with 100 particles. The full far-field computation was performed for determining

the particle velocities and stress due to the imposed compression flow, while the ASDB-nf approx-

imation Banchio and Brady [2003] was employed for Brownian motion. The ASDB-nf method of

is an O(N) procedure where the Brownian forces arising from far-field interactions are approxi-

mated in a mean-field manner and only the near-field lubrication interactions are actually evaluated

between particles. The far-field diffusivities used for the mean-field approximation are already cor-

rected for an infinite system, hence the hydrodynamic interactions evaluated using this technique

are independent of the number of particles in the simulation cell. Finite-size effects may appear

only due to the periodic boundary conditions used for evaluating particle collisions. Conventional

Stokesian Dynamics simulations with 27 particles were also performed to serve as a test for the

simulation technique and to study the effect of having a smaller system size. The SD simulations

explicitly account for all the far-field and near-field interactions.

The particle-phase stress
〈
Σp

〉
can be written as

〈
Σp

〉
= −nkT I + n[〈SE〉 + 〈SB〉 + 〈SP〉], (6.12)

where −nkT I is the osmotic pressure due to the thermal kinetic energy of the Brownian particles

and 〈SE〉, 〈SB〉 and 〈SP〉 are the average hydrodynamic, Brownian and interparticle-force particle

stresslets (symmetric first moment of the force distribution integrated over the particle surface).

The direct hydrodynamic contribution to the stress due to the disturbance flows caused by the finite

size of the particles in an imposed flow is given by n〈SE〉, and it is directly proportional to the

applied rate of deformation. The hydrodynamic contribution to the bulk viscosity obtained from the

hydrodynamic stresslet is given by

κH =
n〈S E〉

3 〈e〉
, (6.13)

and in nondimensional form

κH =
1
4
φ
〈S E〉

Pe
, (6.14)
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where κH = κH/η and 〈S E〉 = 〈S E〉/6πηa3. In the presence of hydrodynamic interactions the parti-

cle surfaces never touch due to the strong lubrication forces near contact and accordingly n〈SP〉 = 0

while n〈SB〉 accounts for all of the Brownian stress. The hard sphere nature of the particles is pre-

served by the no-slip hydrodynamic boundary condition on the particle surface [Brady 1993a]. The

Brownian contribution to the stress has a finite average value at equilibrium given by the equilibrium

osmotic pressure due to the thermal motion of the particles. Deviations from the equilibrium value

occur only when the microstructure is perturbed. The Brownian bulk viscosity contribution is given

by

κB =
n〈S B〉 − n〈S B〉eq

3 〈e〉
, (6.15)

where the superscript eq denotes the equilibrium value. In nondimensional form

κB =
3
4
φ

(
ΠB − Π0

)
Pe

,

where κB = κB/η and ΠB = 〈S B〉/3kT is the nondimensional Brownian contribution to the particle-

phase pressure.

Simulations were performed with N = 100 particles for several values of Pe ranging from 0.1 to

1000, with 200 distinct runs for each value of Pe. The simulations were performed with a time step

of ∆t = 10−3 for Pe ≥ 1 and ∆t = 2 × 10−3 for Pe < 1, starting with a volume fraction of φ = 0.1.

The lubrication forces between particles near contact normally prevent particle overlaps, but any

overlaps encountered due to the finite time-step used in simulation were resolved at each step. In

case of a severe overlap the particles were moved back to their previous positions and the same step

was attempted again but with a different set of Brownian forces. At high Pe the particles were prone

to jamming beyond φ > 0.45. The iterative numerical inversion of the resistance matrix failed in

such cases and the simulation run was stopped. The far-field contribution to the particle velocities

changes negligibly for small changes in the particle positions. Hence the far-field computation was

performed only at predetermined intervals, starting with an interval of 50 time steps in the beginning

of the simulation and reducing the interval with increasing φ down to every 5 time steps for φ > 0.45.

For conventional SD the compression simulations were able to go up to higher volume fractions

(∼ 0.6) because the matrix inversion is exact and the number of particles was small which made the
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matrices less stiff. Eventually the SD simulations would stop due to severe particle overlaps.

6.5.1 Results and scaling

The Brownian contribution to the particle-phase pressure due to interactions between the particles,

given by ΠB − 1 is shown in Figure 6.12 as a function of the Péclet number for compression. The

pressure asymptotes to its equilibrium value as Pe → 0 and in the Pe → −∞ limit it asymp-

totes to a higher constant value. The Brownian stress comes from interactions between particles

in the boundary layer near contact which is of size O(|Pe|−1) while the accumulation near contact

is O(|Pe|), hence the Pe scaling from the microstructural perturbation cancels out and the Brow-

nian stress is therefore O(1). The Brownian bulk viscosity κB (shown in Figure 6.13) is obtained

as the excess pressure divided by the Péclet number, hence it decays as |Pe|−1 as Pe → −∞. For

small volume fractions (φ ≤ 0.2) some compression thinning is observed at intermediate values of

1 ≤ Pe ≤ 10 as well as κB decreases with increasing |Pe|, but for higher volume fractions the bulk

viscosity is constant even at these intermediate values of Pe. Variations with φ in the intermediate

and small Pe regime are due to the smaller cell sizes and slower diffusive times for higher volume

fractions as discussed in the previous section.

The bulk viscosity is expected to have primarily the same φ2g0(2; φ) scaling as in BD simula-

tions, except for an additional scaling with the short-time self-diffusivity Ds
0(φ) to account for the

increasingly stronger hydrodynamic interactions with increasing φ. Figure 6.14 shows the Brownian

contribution to the bulk viscosity scaled with φ2g0(2; φ)/Ds
0 where Ds

0 is already nondimensional-

ized with the bare diffusivity D. There is excellent collapse of the data for φ ≤ 0.35 and for higher

φ the bulk viscosity is also larger. Again, this indicates a slowing down of the diffusive time be-

cause of hindrance in the particle motion due to the ‘caging’ effect of surrounding particles at higher

concentrations. Hence we define the scaled Brownian bulk viscosity as

κ̂B =
κB

η

Ds
0(φ)D̂H(φ)

φ2g0(2; φ)
, (6.16)

where

D̂H(φ) =


1 if φ ≤ 0.35

Ds
∞(φ)/Ds

∞(0.35) if φ > 0.35,
(6.17)
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and the scaled Péclet number is given by P̂e = Pe/D̂H(φ). A plot of κ̂B vs P̂e is shown in Figure

6.15 and illustrates the much better collapse of the data with this scaling. The collapsed data is also

very close to the analytical prediction from dilute theory and has the same scaling with Pe.

At small Pe the agreement with the dilute-theory curve is worse because of finite cell size

effects. For comparison, the scaled results from SD simulations with 27 particles are also shown

in Figure 6.16. In SD simulations the full far-field interactions are computed for Brownian motion

at each time-step, causing the far-field self-diffusivity to be hindered by the periodic nature of the

interactions [Brady 1987; Banchio and Brady 2003]. Thus the diffusivity is artificially smaller in

SD resulting in a higher bulk viscosity. The mean-field approximation for the far-field diffusivity in

the ASDB-nf method eliminates the effect of periodicity on the self diffusivity.

The direct hydrodynamic contribution to the bulk viscosity is shown in Figure 6.17. Since the

hydrodynamic stress is proportional to Pe, κH asymptotes to a constant in the high Pe limit. The

simulation data for the hydrodynamic bulk viscosity can be collapsed for all φ by scaling the increase

in κH due to the compression flow (κH − κ′∞) with its value at equilibrium (given by κH
0 = κ′∞ −

4
3ηφ)

times the equilibrium pair distribution function g0(2; φ) as shown in Figure 6.18. The equilibrium

value κH
0 is O(φ2) and also accounts for hydrodynamic interactions, so this scaling is actually very

similar to the scaling used for κB. The collapse for φ ≤ 0.35 is very good and in excellent agreement

with the dilute theory in the high Pe limit, but for larger φ the scaled data is larger, indicating

that the ‘caging’ effect at high concentrations influences κH as well. Further scaling the data with

D̂H(φ) from (6.17) collapses the data for all φ onto the dilute theory curve for large Pe as shown

in Figure 6.19. For comparison, the scaled data from SD simulations (Figure 6.20) also collapses

onto a single curve but is lower than the ASD data because of hindered hydrodynamic interactions

between particles due to periodicity. As small Pe there is larger error in the data because of finite

size effects and the inability of the microstructure to reach the infinite system steady state.

Finally, the total bulk viscosity from ASD simulations is shown in Figure 6.21. This is to be

compared with Figure 6.8 from BD simulations. In both cases compression thinning is not observed

at high volume fractions. The compression thinning in the ASD data for small φ is also very small

because the Brownian contribution to the bulk viscosity κB is small compared to the hard sphere

bulk viscosity κP to begin with. Hence shear thinning of κB is less obvious in ASD simulations.

Finally it is instructive to contrast the bulk viscosity at equilibrium with its value at very high rates
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of compression. Figure 6.22 shows the total bulk viscosity at equilibrium and at Pe = −1000 as

a function of the volume fraction. Not only does the bulk viscosity have the same scaling with φ

at both extremes of Pe, the magnitude is also different only by a small factor for the entire range

of φ. Thus, although the bulk viscosity changes with the rate of compression, a reasonably good

approximation can be had for all Pe from the equilibrium bulk viscosity.

6.6 Effect of shear on the hydrodynamic bulk viscosity

It has been shown through experiments and simulation that concentrated suspensions exhibit shear

thickening at high rates of shearing [Gadala-Maria and Acrivos 1980; Brady and Morris 1997;

Sierou and Brady 2002]. This phenomenon is attributed to the accumulation of particles along the

compression axis caused by the strong shearing motion and depletion along the expansion axis.

At a large Péclet number of shearing (which gives the relative strength of shearing and diffusion,

Pesh = γ̇a2/D) the particles are unable to diffuse back to the equilibrium configuration and so the

microstructure is far from equilibrium. The strong lubrication forces in regions of high particle

concentration prevent the particle clusters from breaking up. The clustering of particles increases

the hydrodynamic stress in the system, thereby increasing the macroscopic dynamic viscosity of

the suspension. If we consider the sudden expansion of a suspension with such a microstructure,

the bulk viscosity would also be higher because the lubrication forces in the particle clusters would

also increase the trace of the hydrodynamic stress resulting from the expansion flow. Therefore we

expect the effect of strong shearing on the hydrodynamic bulk viscosity to be similar to the effect of

shearing on the dynamic viscosity of the suspension.

Stokesian Dynamics simulations were performed with particle configurations at various volume-

fractions subjected to different rates of shearing. The hydrodynamic bulk viscosity was evaluated

and averaged over all the configurations realized during the steady shear flow to obtain the macro-

scopic bulk viscosity for a strongly sheared suspension. The results for various volume-fractions

and Péclet numbers of shearing are shown in Figure 6.23. It is evident that there is an increase in

the hydrodynamic bulk viscosity at higher volume fractions and high Pesh, as expected. In order to

isolate the effect of shearing on the bulk viscosity we subtract the equilibrium hydrodynamic bulk

viscosity and also scale it with the same. The effect of shearing on the hydrodynamic suspension
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shear viscosity is isolated in the same way. Thus, the normalized effect of shearing on the bulk

viscosity (shown in Figure 6.24) is given by

κH =
κH(Pesh)/κH(0) − 1
ηH(Pesh)/ηH(0) − 1

. (6.18)

The simulation results for all Pesh collapse onto a single curve with this normalization, which goes

to show that the effect of shearing on the bulk viscosity is the same as the effect of shearing on the

dynamic viscosity. The change in the microstructure is identical for both quantities so the rate at

which they increase is also the same. The collapse for Pesh < 10 is not good because of the smaller

increase in κH and therefore higher error in κH . At smaller concentrations too there is more spread

in the data because of smaller variations in κH and ηH . Specifically, the relative increase in the

hydrodynamic bulk viscosity is approximately four times the relative increase in the hydrodynamic

shear viscosity for all values of Pesh at all concentrations.

Such a correlation can be used to estimate the bulk viscosity of a sheared suspension from the

known dynamic viscosity of the suspension. It must be possible to obtain a similar correlation

for expansion of only the particle phase as well. In most practical situations a suspension would

undergo shearing in addition to expansion, so it is important to consider the effect of shearing on the

effective bulk viscosity. At high shear rates the Brownian motion of the particles is overwhelmed

by the imposed shear flow, so the Brownian contribution to the bulk viscosity is also very small.

Therefore the hydrodynamic contribution to the bulk viscosity is most relevant in this case.

6.7 Conclusions

The work presented in this chapter is the first ever application of the Stokesian Dynamics paradigm

to compression of a suspension. The simulation results were verified by using two different tech-

niques, namely Stokesian Dynamics and Accelerated Stokesian Dynamics, and the results from

both are in good agreement. We were also able to successfully determine the scalings that can be

used to predict the bulk viscosity at high concentrations from the dilute analysis with reasonable

accuracy. The scaling gives valuable insight into the interplay of physical processes that determine

the microstructure and stress in compression. The size of boundary layer, and therefore the rate of
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compression, determines how long the system would take to reach a steady state and thus affects

the magnitude of the bulk viscosity. The long-time self-diffusivity sets the time scale of relaxation

at high volume fractions and the dissipation of stress outside the boundary layer is not important.

In most practical situations the compression flow may not last long enough to achieve steady

state. The results obtained here give the upper bound for the bulk viscosity in that case. The ac-

tual bulk viscosity would be somewhere between the equilibrium value determined in the previous

chapter and the high Pe limit. In most practical applications, the suspension would also undergo

shear in addition to expansion. The bulk viscosity for a small rate of expansion in a steadily sheared

suspension is relevant in such flow conditions. If the compression flow lasts long enough to distort

the steady sheared microstructure there would be an additional Brownian contribution to the bulk

viscosity not determined here. At small rates of shearing and compression the two flows can be

superimposed but such a superposition would not be correct at high rates of shearing and compres-

sion.
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(a) Pe = −1, φ = 0.2 (b) Pe = −10, φ = 0.2

(c) Pe = −1, φ = 0.45 (d) Pe = −10, φ = 0.45

Figure 6.1: Planar plots of the pair distribution function g(r) obtained from Brownian Dynamics
simulations for φ = 0.2 and φ = 0.45 at compression rates of Pe = −1 and Pe = −10. Lighter
regions indicate accumulation of particles.
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Figure 6.2: Radial pair distribution in compression for φ = 0.2 obtained from Brownian Dynamics
with N = 1000, for rates Pe = −1 and −10.
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Figure 6.3: Radial pair distribution in compression for φ = 0.2 obtained from Accelerated Stokesian
Dynamics with N = 100, for rates Pe = −1 and −10.
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(b) Pe = −1000

Figure 6.4: Histogram of scaled particle hydrodynamic pressure moments 〈S H〉/Pe obtained from
Accelerated Stokesian Dynamics with N = 100, 200 distinct runs, for rates Pe = −1 (a) and −1000
(b).
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Figure 6.5: Two examples of particles with high hydrodynamic pressure moment (〈S H〉/Pe > 10)
forming clusters distributed randomly in space at high rate (Pe = −1000), obtained from Acceler-
ated Stokesian Dynamics with N = 100.



186

0.01 0.1 1 10 100 1000
-6Pe

0.1 0.1

1 1

10 10

100 100

1000 1000

10000 10000

Π-1

φ = 0.55
φ = 0.5
φ = 0.45
φ = 0.4
φ = 0.35
φ = 0.3
φ = 0.25
φ = 0.2
φ = 0.15
φ = 0.1

BD, N=1000

∼|Pe|

Figure 6.6: Nondimensional interparticle-force contribution to the pressure in compression vs Péclet
number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55. The open circles denote
the equilibrium particle contribution to the osmotic pressure.
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Figure 6.7: The excess interparticle-force contribution to the pressure in compression normalized
with φg0(2; φ) vs Péclet number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55.
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Figure 6.8: The nondimensional hard sphere bulk viscosity κP = κP/η vs Péclet number, from
Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55.
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Figure 6.9: The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)
vs Péclet number, from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55.
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Figure 6.10: The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)
and scaled with the time-scale for stress relaxation given by D̂NH(φ) vs the scaled Péclet number,
from Brownian Dynamics with N = 1000 for φ = 0.1 to φ = 0.55.
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Figure 6.11: The nondimensional hard sphere bulk viscosity κP = κP/η normalized with φ2g0(2; φ)
and scaled with the time-scale for stress relaxation given by D̂NH(φ) vs the scaled Péclet number,
from Brownian Dynamics with N = 100 for φ = 0.1 to φ = 0.55.
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Figure 6.12: Nondimensional Brownian contribution to the pressure in compression vs Péclet num-
ber, from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to φ = 0.5. The
open circles denote the equilibrium particle contribution to the osmotic pressure.
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Figure 6.13: The nondimensional Brownian bulk viscosity contribution κB = κB/η vs Péclet number,
from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to φ = 0.5.
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Figure 6.14: The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized with
φ2g0(2; φ)/Ds

0(φ) vs Péclet number, from Accelerated Stokesian Dynamics — near field with N =

100 for φ = 0.1 to φ = 0.5.
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Figure 6.15: The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized with
φ2g0(2; φ)/Ds

0(φ) and scaled with the time-scale for stress relaxation given by D̂H(φ) vs the scaled
Péclet number, from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to
φ = 0.5.
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Figure 6.16: The nondimensional Brownian bulk viscosity contribution κB = κB/η normalized with
φ2g0(2; φ)/Ds

0(φ) and scaled with the time-scale for stress relaxation given by D̂H(φ) vs the scaled
Péclet number, from conventional Stokesian Dynamics with N = 27 for φ = 0.1 to φ = 0.5.
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Figure 6.17: The nondimensional hydrodynamic bulk viscosity contribution κH = κH/η vs Péclet
number, from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to φ = 0.5.
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Figure 6.18: The normalized excess hydrodynamic bulk viscosity contribution(
κH(Pe) − κH(0)

)
/κH(0) scaled with g0(2; φ) vs Péclet number, from Accelerated Stokesian

Dynamics — near field with N = 100 for φ = 0.1 to φ = 0.5.
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Figure 6.19: The normalized excess hydrodynamic bulk viscosity contribution(
κH(Pe) − κH(0)

)
/κH(0) scaled with g0(2; φ) and the time-scale for stress relaxation given by

D̂H(φ) vs the scaled Péclet number, from Accelerated Stokesian Dynamics — near field with
N = 100 for φ = 0.1 to φ = 0.5.
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Figure 6.20: The normalized excess hydrodynamic bulk viscosity contribution(
κH(Pe) − κH(0)

)
/κH(0) scaled with g0(2; φ) and the time-scale for stress relaxation given by

D̂H(φ) vs the scaled Péclet number, from conventional Stokesian Dynamics with N = 27 for
φ = 0.1 to φ = 0.5.
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Figure 6.21: The total bulk viscosity contribution due to particle interactions κtot =
(
κH + κB

)
/η vs

Péclet number, from Accelerated Stokesian Dynamics — near field with N = 100 for φ = 0.1 to
φ = 0.5.
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Figure 6.22: The total bulk viscosity at equilibrium and in compression with Pe = −1000, vs the
volume fraction φ. In both cases the scaling with φ is the same and the difference in magnitude is
not very significant.
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Figure 6.23: The hydrodynamic contribution to the bulk viscosity, also known as the high-frequency
bulk viscosity (κ′∞), for a sheared suspension vs the Péclet number of shearing.
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Figure 6.24: The effect of shearing on the high-frequency bulk viscosity (κ′∞) scaled with the effect
of shearing on the high-frequency dynamic viscosity (η′∞) vs the volume fraction φ.
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Π − 1

φ

−6Pe 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 1.5190 1.8825 2.3745 3.0096 3.8349 5.0084 6.5622 8.8082 12.229

0.316 1.5495 1.9336 2.4432 3.0966 3.9718 5.1504 6.8050 9.2112 13.077

1 1.6727 2.1598 2.7310 3.4846 4.5210 5.9998 7.9708 11.121 16.686

3.16 1.9663 2.6066 3.4555 4.5756 6.0863 8.2350 11.445 16.717 26.842

10 2.8392 4.1102 5.9026 8.2655 11.446 16.658 24.820 39.218 71.485

31.6 5.4934 8.7891 13.433 19.521 29.008 44.074 68.728 115.88 224.09

100 13.510 23.546 36.698 56.221 85.491 132.39 212.22 367.24 719.25

316 39.122 69.455 109.39 170.97 262.28 408.79 660.44 1136.7 2272.9

1000 122.22 215.08 349.63 538.59 836.87 1308.5 2104.6 3639.0 7317.7

Table 6.1: The nondimensional particle-phase contribution to the osmotic pressure vs Pèclet num-
ber, from Brownian Dynamics simulations with N = 1000, and 200 realizations each.
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Error(±) in Π − 1

φ

−6Pe 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.0640 0.0734 0.0983 0.1093 0.1291 0.1604 0.1828 0.2331 0.2963

0.316 0.0904 0.1041 0.1225 0.1440 0.1691 0.2419 0.2388 0.3133 0.4207

1 0.1260 0.1747 0.1980 0.2260 0.2866 0.3030 0.3810 0.4553 0.6292

3.16 0.2245 0.2280 0.3029 0.4136 0.4699 0.5608 0.6969 0.9838 1.5487

10 0.3833 0.5297 0.6686 0.7328 0.9156 1.2684 1.7294 2.6921 5.6285

31.6 0.7985 1.1225 1.5682 1.7670 2.4100 3.1102 5.2710 8.7292 18.493

100 1.8786 2.5282 3.7654 4.6476 7.3244 10.053 17.369 29.700 59.214

316 4.6035 6.3652 9.4529 13.498 18.342 32.707 53.238 95.570 195.97

1000 13.295 19.279 26.396 36.337 62.729 89.027 166.01 257.55 624.07

Table 6.2: Error estimates (±) for the nondimensional particle-phase contribution to the osmotic
pressure vs Pèclet number, from Brownian Dynamics simulations with N = 1000, and 200 realiza-
tions each.
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κP/η

φ

−6Pe 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.316 0.0536 0.1010 0.1897 0.2552 0.3368 0.3812 0.5527 1.2203 4.9928

1 0.0724 0.1846 0.3190 0.5171 0.8478 1.4583 2.2732 4.2526 9.6979

3.16 0.0647 0.1539 0.3073 0.5521 0.9370 1.5755 2.6983 4.9318 10.300

10 0.0597 0.1501 0.3173 0.5896 1.0196 1.8245 3.2601 6.1149 13.300

31.6 0.0567 0.1475 0.3149 0.5873 1.0730 1.9438 3.5328 6.8477 15.075

100 0.0540 0.1462 0.3089 0.5985 1.1016 2.0052 3.6992 7.2540 15.905

316 0.0536 0.1443 0.3048 0.5979 1.1039 2.0122 3.7238 7.2263 16.096

1000 0.0543 0.1439 0.3125 0.6025 1.1245 2.0528 3.7762 7.3507 16.437

Table 6.3: The nondimensional hard sphere bulk viscosity vs Pèclet number, from Brownian Dy-
namics simulations with N = 1000, and 200 realizations each.
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Π − 1

φ

−6Pe
1 − φ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.5290 0.9329 1.4321 2.0816 3.0190 4.2455 6.3048 8.9834 13.298

0.316 0.5402 0.9312 1.5010 2.1971 3.1552 4.6326 6.5801 9.9124 15.563

1 0.6371 1.0768 1.6648 2.4705 3.5866 5.2696 8.1500 12.859 23.409

2 0.7018 1.1982 1.9154 2.8652 4.2692 6.3803 10.073 17.011 33.957

5 0.8825 1.5068 2.4311 3.7830 5.7415 9.1664 15.319 28.740 65.459

10 1.0788 1.9096 3.0523 4.7490 7.4764 11.963 21.107 42.600 101.49

20 1.2734 2.2221 3.6577 5.7830 9.4987 15.450 28.390 57.515 135.37

50 1.4735 2.6452 4.3578 7.0357 11.407 18.875 35.000 71.747 155.18

100 1.6512 2.9026 4.7584 7.6023 12.615 21.327 39.577 76.160 –

316 1.7654 3.2593 4.9319 9.0381 13.110 24.251 42.647 70.700 –

1000 1.9536 3.5005 5.8261 9.2456 15.625 30.478 43.324 66.090 –

Table 6.4: The nondimensional particle-phase contribution to the osmotic pressure vs Pèclet num-
ber, from Accelerated Stokesian Dynamics — near field simulations with N = 100, and 200 real-
izations each.
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Error(±) in Π − 1

φ

−6Pe
1 − φ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.0726 0.1152 0.1305 0.1863 0.2147 0.2646 0.4797 0.5111 0.7999

0.316 0.0871 0.1309 0.1786 0.2179 0.2710 0.3930 0.4507 0.7665 1.1174

1 0.1221 0.1966 0.1991 0.2987 0.4063 0.5924 0.8019 1.5166 3.6437

2 0.1333 0.1998 0.2606 0.3645 0.4900 0.7947 1.2031 2.3982 6.0027

5 0.1970 0.2293 0.4425 0.6050 0.8006 1.4047 2.3825 4.6437 13.445

10 0.2201 0.3421 0.5330 0.6950 1.0683 2.0306 3.7724 9.6432 25.685

20 0.2652 0.3653 0.5927 0.9430 1.5286 2.6536 5.3461 12.514 31.319

50 0.3162 0.5213 0.8386 1.0913 2.1729 4.2318 8.6484 18.868 45.224

100 0.3715 0.5175 0.8278 1.4961 3.7415 7.9296 17.399 40.538 –

316 1.1666 0.6669 2.7372 5.9231 12.847 23.049 51.255 114.57 –

1000 0.5193 0.7424 4.6460 7.4982 40.662 64.268 142.66 224.71 –

Table 6.5: Error estimates (±) for the nondimensional particle-phase contribution to the osmotic
pressure vs Pèclet number, from Accelerated Stokesian Dynamics — near field simulations with
N = 100, and 200 realizations each.
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κB/η

φ

−6Pe
1 − φ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.0388 0.2318 0.2908 0.1127 0.8715 0.9632 11.366 22.043 58.430

0.316 0.0300 0.0691 0.3375 0.5839 1.1075 3.2734 6.2109 17.800 50.740

1 0.0579 0.1374 0.2909 0.5946 1.1820 2.5777 6.6723 16.474 51.342

2 0.0451 0.1169 0.2864 0.5933 1.2492 2.6346 6.2201 15.881 49.403

5 0.0361 0.0958 0.2306 0.5127 1.0676 2.4040 5.6358 14.989 48.113

10 0.0279 0.0799 0.1852 0.4012 0.8684 1.8795 4.5544 12.598 40.270

20 0.0188 0.0524 0.1266 0.2782 0.6292 1.3622 3.3696 9.0444 27.759

50 0.0095 0.0277 0.0664 0.1489 0.3253 0.7109 1.7444 4.6658 12.886

100 0.0057 0.0159 0.0377 0.0829 0.1859 0.4149 1.0095 2.4954 –

316 0.0020 0.0059 0.0126 0.0331 0.0619 0.1537 0.3486 0.7261 –

1000 0.0007 0.0021 0.0050 0.0108 0.0244 0.0637 0.1122 0.2125 –

Table 6.6: The nondimensional Brownian contribution to the bulk viscosity with hydrodynamic
interactions vs Pèclet number, from Accelerated Stokesian Dynamics — near field simulations with
N = 100, and 200 realizations each.
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κH

φ

−6Pe
1 − φ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.1663 0.2926 0.4691 0.7318 1.1331 1.7563 2.8806 4.5507 7.4523

0.316 0.1672 0.2924 0.4780 0.7467 1.1744 1.9128 2.9877 4.9679 8.5945

1 0.1717 0.3054 0.4864 0.7998 1.2580 2.0848 3.5189 6.1647 12.095

2 0.1751 0.3182 0.5251 0.8732 1.4376 2.4287 4.2219 7.9705 17.246

5 0.1858 0.3570 0.6274 1.0944 1.8855 3.2687 6.5384 12.630 31.305

10 0.1992 0.3893 0.6971 1.2635 2.2655 4.2893 8.6275 19.602 52.535

20 0.2137 0.4297 0.7946 1.4986 2.8244 5.5235 11.438 27.036 74.026

50 0.2257 0.4723 0.9037 1.7360 3.3402 6.7014 14.226 33.811 91.306

100 0.2319 0.4859 0.9393 1.8275 3.5571 7.1634 15.487 36.276 –

316 0.2362 0.5134 0.9983 1.9375 3.7446 7.2962 16.609 36.611 –

1000 0.2379 0.5071 0.9961 1.9268 3.7321 7.4580 16.174 38.315 –

Table 6.7: The nondimensional Hydrodynamic bulk viscosity contribution κH = κH/η vs Pèclet
number, from Accelerated Stokesian Dynamics — near field simulations with N = 100, and 200
realizations each.
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Error (±) in κH

φ

−6Pe
1 − φ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.0056 0.0160 0.0225 0.0532 0.0715 0.0982 0.2061 0.2347 0.4051

0.316 0.0107 0.0162 0.0323 0.0522 0.0852 0.1730 0.2084 0.3627 0.5699

1 0.0060 0.0215 0.0268 0.0633 0.1039 0.1991 0.2978 0.6584 1.7395

2 0.0073 0.0198 0.0338 0.0706 0.1388 0.2487 0.4429 1.0337 2.8281

5 0.0088 0.0271 0.0612 0.1244 0.2148 0.4117 1.0312 1.8455 5.9865

10 0.0111 0.0308 0.0583 0.1236 0.2538 0.6444 1.4966 4.1887 13.903

20 0.0137 0.0369 0.0782 0.1779 0.3851 0.8743 2.0010 6.1463 17.812

50 0.0168 0.0449 0.0998 0.2443 0.5373 1.2559 2.7754 7.3935 26.927

100 0.0188 0.0494 0.1098 0.2391 0.5117 1.2352 3.0167 7.8312 –

316 0.0195 0.0533 0.1235 0.2512 0.5573 1.1766 3.3583 7.8972 –

1000 0.0181 0.0486 0.1162 0.2414 0.5524 1.3172 2.8793 7.8422 –

Table 6.8: Error estimates (±) for the nondimensional Hydrodynamic bulk viscosity contribution
κH = κH/η vs Pèclet number, from Accelerated Stokesian Dynamics — near field simulations with
N = 100, and 200 realizations each.
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Chapter 7

Concluding Remarks

We have defined the effective bulk viscosity for a suspension of particles in a fluid in a way analo-

gous to the definition of bulk viscosity for a pure fluid. The bulk viscosity relates the deviation of

the trace of the macroscopic stress from its equilibrium value to the average rate of expansion of

the suspension. Previously the effective dynamic viscosity which gives the rheological response in

shear flow, and the microviscosity which gives the resistance experienced by a probe as it travels

through a suspension have been studied in detail. The bulk viscosity is the third kind of suspen-

sion viscosity and thus completes the set of rheological problems that can be studied. Indeed the

monopolar nature of the forcing in the linear response regime sets the bulk viscosity apart from the

other two viscosities in that it has the slowest spatial and temporal response.

Expressions were derived for computing the bulk viscosity of a suspension undergoing uniform

expansion for all volume fractions of particles and for all expansion rates. The Stokesian Dynamics

and Accelerated Stokesian Dynamics techniques for simulation of suspensions in Stokes flow were

modified to include expansion and compression of the fluid and the particle phase. The updated

simulation techniques can now be used to explore new kinds of flows such as particles that dynami-

cally change size. Our simulation results show that the bulk viscosity diverges at maximum packing

just like the shear viscosity and both are comparable in magnitude. At high rates of compression

there is enhancement of the bulk viscosity similar to the ‘thickening’ effect in a sheared suspension

but the high Pe plateau for the bulk viscosity is smaller than the shear viscosity. Care must be taken

in defining the bulk viscosity at very high rates of compression. If the time scale for the evolution

of the microstructure is the same as that for the number density, which will be the case at large

Péclet number, then a steady bulk viscosity will not exist. In such cases the bulk viscosity can be



214

estimated as being higher than its equilibrium value but smaller than its value in the large Pe limit.

If the suspension is undergoing uniform expansion, initially when the microstructure is undisturbed

the bulk viscosity would be given by its equilibrium value but as the particles move away from each

other the stress due to particle interactions will decrease rapidly and eventually the bulk viscosity

would be negligible.

In this work we have determined the bulk viscosity by applying a uniform rate of expansion to

the suspending fluid, which drives the expansion of the particle phase. However all the subsequent

interactions between particles are due to incompressible disturbance flows and would be present

as long as the particles are moving away from each other, even if the fluid is incompressible. Of

course in such a flow there would be an additional contribution due to the drag force of the fluid as

it squeezes between the particles, and this can be added separately from previously known expres-

sions. For example, consider a suspension between two filters such that the fluid can pass through

the filter material but the particles cannot (see Figure 7.1). If the filters are pressed together the fluid

will have to squeeze through the particle phase and come out of the filter. The particle phase on the

other hand will undergo a compression on the macroscopic scale as the particles are pushed closer.

The contribution to the stress due to hydrodynamic interactions between the particles as they move

is the piece given by the effective suspension bulk viscosity.

To appreciate the effects of the bulk viscosity on suspension transport, consider a 1D flow prob-

lem like the squeezing flow above. The standard mass and momentum balances for he particle phase

take the form
∂φ

∂t
+
∂

∂z
φup

z = 0, (7.1)

0 = − 9
2ηa−2φR(φ)up

z +
∂Σ

p
zz

∂z
, (7.2)

where R(φ) is the drag coefficient for the hydrodynamic drag force exerted by the fluid on the

particles.

In the absence of any bulk viscosity effect, (7.2) can be solved for the z-component of the

particle phase velocity and substituted into the mass balance to give a diffusion equation for the

particle concentration
∂φ

∂t
=
∂

∂z

(
2
9

a2

ηR

)
∂Π

∂z
. (7.3)
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This is the standard form of the shear-induced migration or diffusive flux model that has been used to

model suspension flows [Phillips et al. 1992; Leighton and Acrivos 1987b]. (Note that the osmotic

pressure in viscous suspensions is proportional to the shear rate.) The above simple derivation [Nott

and Brady 1994] shows that one should more properly consider stress-induced diffusion or migra-

tion. The bulk viscosity changes the dynamics because (7.2) now becomes a differential equation

for up
z and the temporal evolution of the concentration profile will be different. Note that at steady

state up
z = 0, there is a simple mechanical balance of stresses and the effects of the bulk viscosity

go away, as they should. Whenever we have unsteady flows, especially when there are rapid spatial

variations in concentration (which would give a large ∇·up), bulk viscosity effects will influence the

dynamics.

One should also be able to measure the bulk viscosity experimentally. The result obtained

here, that the change in bulk viscosity due to the presence of particles is proportional to the shear

viscosity of the fluid, may be used to design appropriate experiments. A direct way to measure

the bulk viscosity would be to suspend the particles in a gas (say in a microgravity environment

to reduce sedimentation) and then expand or compress the gas and measure the pressure required

to do so. Apart from this direct approach one can use macroscopic models of suspension behavior

to infer the bulk viscosity. The idea here is to add to the particle-phase momentum balance, a

bulk viscosity term proportional to the divergence of the particle phase velocity, κ∇ · up. Then

when compressing the particle phase, in filtration for example, there will be a stress generated

proportional to the rate of compression. Comparison of the experimental compression curve with

the model predictions will allow one to back out the bulk viscosity. It should be noted that there are

certain compression/expansion flows that cannot be properly modeled without acknowledging bulk

viscosity effects. For example, the transient expansion to fluidized beds at low Reynolds number

requires a stress contribution proportional to the rate of expansion.
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Figure 7.1: The suspending fluid is squeezed out as the filters enclosing a suspension are pushed
closer causing compression of the particle phase as they are pushed closer to each other.
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