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Abstract

This thesis concerns the dynamics of bubbly flows with a distribution of equilibrium bubble sizes.

The main goal is to formulate the physical and numerical models of continuum bubbly flows that

enable us to efficiently compute the average mixture dynamics. Numerical simulations are conducted

to quantify the effects of bubble size distributions on the averaged dynamics for several model flows.

First, the ensemble-averaged conservation laws for polydisperse bubbly flows are derived. One-

way-coupled flow computations are conducted to illustrate that the different-sized bubbles can os-

cillate with different frequencies. The resulting phase cancellations can be regarded as an appar-

ent damping of the averaged dynamics of polydisperse flows. A high-order-accurate finite-volume

method is then developed to compute the flow, paying special attention to issues of wave dispersion

and stiffness.

Next, computations of one-dimensional shock propagation through bubbly liquids are performed.

The numerical experiments reveal that the bubble size distribution has a profound impact on the

averaged shock structure. If the distribution is sufficiently broad, the apparent damping due to

the phase cancellations can dominate over the single-bubble-dynamic dissipation (due to thermal,

viscous, and compressibility effects) and the averaged shock dynamics become insensitive to the

individual bubble dynamics. One-dimensional cloud cavitation caused by fluid-structure interaction

is also solved to investigate the collapse of cavitation clouds with both monodisperse and polydisperse

nuclei. The phase cancellations among the cavitation bubbles with broad nuclei size distributions

are found to eliminate violent cloud collapse in the averaged dynamics.

Finally, shock propagation through a bubbly liquid-filled, deformable tube is considered. The

quasi-one-dimensional conservation law that takes into account structural deformation is formulated



vii

and steady shock relations are derived. The results are compared to water-hammer experiments; the

present shock theory gives better agreement with the measured wave speeds than linear theory. This

indicates that the gas-phase nonlinearity needs to be included to accurately predict the propagation

speeds of finite-amplitude waves in a deformable tube filled with a bubbly liquid.
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Chapter 1

Introduction

1.1 Motivation

Complex bubbly flows are ubiquitous in engineering flows, such as underwater explosions, indus-

trial piping systems and hydraulic machinery (Cole, 1948; Wylie & Streeter, 1993; Brennen, 1994).

Seawater near the sea surface contains fairly big bubbles due to breaking waves. Even for liquid

flows with small nuclei populations, the interaction with structures often produces tension waves

(or negative pressure regions) that can cause cavitation with heterogeneous nucleation, and complex

two-phase flow regimes are encountered. In most cases, cavitation has negative aspects that include

performance loss of hydraulic machinery, and cavitation noise and erosion (Arndt, 1981; Tijsseling,

1996; Bergant et al., 2006). The resulting gas or vapor bubbles lead to wave dispersion; the dynamics

of bubbly mixtures cannot be described by simple barotropic relations (Brennen, 1995, 2005). An

understanding of complex dynamics of such bubbly flows is still inadequate for many engineering

applications.

The dynamics of bubbly flows have been theoretically, numerically and experimentally studied

by many researchers. Difficulties with the physical and numerical modeling arise from the fact that

bubbly flows contain multiple time and spatial scales that range from individual bubble collapse to

average mixture dynamics. When it comes to tackling such a scale separation, it is practical to solve

mixture-averaged conservation equations rather than solving the full equations of motion for each

distinct phase; the mixture is considered to be a continuum or homogeneous medium. The term
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homogeneous flow often indicates a flow with negligible relative motion between the host liquid and

the bubbles (Brennen, 1995, 2005). In most of the previous studies, for simplicity and numerical

efficiency, the equilibrium bubbles are assumed single-sized; namely the mixture is monodisperse.

However, most flows of practical interest consist of bubbles with a broad range of the equilibrium

sizes. In this case, the mixture is polydisperse.

The goals of this thesis are to derive a continuum bubbly flow model that incorporates a distribu-

tion of equilibrium bubble nuclei sizes and develop a robust and efficient numerical scheme in order

to capture unsteady wave phenomena in bubbly flows. We use numerical simulations to quantify

the effects of polydispersity on average mixture dynamics for a series of model problems associated

with wave propagation and cavitation cloud collapse in liquids.

1.2 Historical perspective

1.2.1 Shock dynamics

Theoretical and numerical models have been developed to investigate shock dynamics in bubbly

flows. Most of the studies rely on continuum models for monodisperse mixtures. In the classic papers

of van Wijngaarden (1968, 1972), volume-averaged mixture quantities were derived in order to aver-

age out local scattering due to the dynamics of individual bubbles, and averaged conservation laws

for bubbly flows were formulated based on heuristic, physical reasoning. Zhang & Prosperetti (1994)

developed an ensemble-averaging technique to derive the mixture-averaged equations. By linearizing

van Wijngaarden’s equations, the dispersion relation can be obtained (Commander & Prosperetti,

1989). The computations of the mixture-averaged equations coupled to a Rayleigh-Plesset-type

equation for spherical bubble dynamics (Nigmatulin et al., 1988; Watanabe & Prosperetti, 1994;

Kameda & Matsumoto, 1996; Kameda et al., 1998) reproduced averaged shock structures. The

direct numerical simulations of shock propagation in bubbly liquids (Delale et al., 2005; Delale &

Tryggvason, 2008) are an important step to quantify the scattering effect.

A finite cloud of bubbles has been extensively studied as a canonical example. One of the earliest
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attempts is the work of van Wijngaarden (1964) that considered the collapse of a bubbly layer near

a wall. The study of the linearized dynamics of spherical bubble clouds (d’Agostino & Brennen,

1989) identified the natural frequencies of the cloud that can be much smaller than the natural

frequency of individual bubble oscillations. The nonlinear computations of bubble clouds (Chahine,

1982; Omta, 1987; Wang & Brennen, 1999; Colonius et al., 2000) indicate that cloud collapse can

generate higher pressure than that predicted by superposition of single-bubble calculations in the

corresponding one-way-coupling case (in which interactions among the bubbles through the averaged

field are ignored); this violent cloud collapse may account for cavitation noise and erosion. All of the

above analyses were confined to the case of monodisperse mixtures. However, the computations of

a spherical cloud with a distribution of equilibrium bubble sizes (Wang, 1999; Shimada et al., 2000)

suggest a profound impact of polydispersity on the averaged dynamics.

The continuum models have been validated by experiments. In the pioneering work of Campbell

& Pitcher (1958), shock propagation in a bubbly liquid-filled, vertical tube was considered, and their

results showed reasonable agreement with the steady shock relations derived from mixture-averaged

equations. Subsequent experiments (Noordzij & van Wijngaarden, 1974; Beylich & Gülhan, 1990;

Kameda & Matsumoto, 1996; Kameda et al., 1998) used a similar device with careful control of

bubble sizes, and identified oscillatory shock structures. Particularly, in the experiment of Kameda

et al. (1998), monodisperse mixtures with a spatially uniform bubble distribution were carefully

created; the experimental data were in quantitative agreement with their continuum bubbly flow

computations with accurate evaluations of individual bubble dynamics. Beylich & Gülhan (1990)

reported on the polydisperse case in which the smoothed shock structure was seen. Unfortunately,

experimental observations on the shock dynamics of polydisperse mixtures are rather limited.

1.2.2 Underwater explosions and cavitation

Cavitation reloading on submerged structures is of considerable interest in underwater explosion

(UNDEX) research (Rajendran, 2008). The fluid-structure interaction (FSI) often causes cloud

cavitation near the target surface, and the subsequent collapse of the cloud of cavitation bubbles can
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reload the target. In the pioneering study of Taylor (1950), the interaction of a plane shock with an

infinite flat plate was considered, and the linearized solutions that indicate the occurrence of negative

pressure in the non-cavitating liquid phase were obtained. Subsequently, the pressure cutoff model

that assumes uniform pressure within cavitating regions was proposed to modify Taylor’s theory

(Kennard, 1950; Temperley, 1950). Bleich & Sandler (1970) assumed bilinear fluids, and computed

cavitation in Taylor’s problem using a method of characteristics. Wardlaw & Luton (2000) simulated

close-in underwater explosions in multi-dimensions, and reproduced cavitation reloading based on

the cutoff model. More recently, Xie et al. (2007, 2008, 2009) employed a barotropic relation to

describe the state of cavitation cloud, and examined the effect of cavitation reloading on deformable

structures. Although these cavitation models may replicate quasistatic trends in cavitating flows, it

is not possible to accurately capture the unsteadiness.

UNDEX/FSI experiments have been conducted by structural engineers (Nurick & Martin, 1989;

Mair, 1999; Rajendran & Narasimhan, 2006a); the classical experimental configuration is a flat

plate with shock loading due to detonation of high explosives. The photographs of Eldridge et al.

(1950) illustrate a cloud of cavitation bubbles near a shock-loaded plate. Rajendran & Satyanarayana

(1997) and Rajendran & Narasimhan (2006b) observed cavitation reloading from pressure and strain

evolution on a deformed plate surface. Brett et al. (2000) and Brett & Yiannakopolous (2008) also

confirmed the collapse of cavitation clouds adjacent to a submerged cylinder loaded from a nearby

explosion. Chambers et al. (2001) considered explosions inside a water-filled tube and measured

cavitation reloading on the wall.

Dynamic loading of fluid-filled, deformable tubes can also be regarded as an UNDEX/FSI model

problem (Kedrinskii, 2005; Shepherd & Inaba, 2009). Liquid-filled tubes were first studied by Ko-

rteweg (1878) and Joukowsky (1898), who introduced a linear wave speed that accounts for the

compressibility of both the liquid and the structure. Later, Skalak (1956) include the effect of wave

dispersion caused by the structural dynamics on their linear theory. The Korteweg–Joukowsky wave

speed in the case of bubbly liquids was validated by Kobori et al. (1955). On the experimental side,

an underwater shock simulator in which the impact of an accelerated projectile in the axial direction



5

generates a coupled stress wave propagating in the tube and fluid was proposed independently by

Dashpande et al. (2006) and Espinosa et al. (2006). With a similar experimental setup, Inaba &

Shepherd (2010) measured flexural waves in a water-filled steel tube, and obtained reasonable agree-

ment with Skalak’s water-hammer theory. To the author’s knowledge, a (nonlinear) shock theory

that includes both structural compressibility and bubbles has not been presented previously.

1.3 Contributions and outline

The main contributions of this thesis are:

• Formulation of a continuum bubbly flow model that incorporates a distribution of equilibrium

bubble sizes.

• Development and verification of a high-order-accurate, shock-capturing algorithm to resolve

wave dispersion and stiffness in polydisperse bubbly flows.

• Robust computations of shock propagation in bubbly liquids and cloud cavitation caused by

structural interaction with UNDEX shocks.

• Quantification of the effects of polydispersity on average mixture dynamics.

• Assessment of cavitation reloading on structures in UNDEX problems.

• Derivation and validation of a steady shock theory of a bubbly liquid filled in a deformable

cylindrical tube.

The contents of this thesis are organized as follows. In chapter 2, the continuum and single-

bubble-dynamic models with their assumptions are presented, and the model limitations are dis-

cussed. One-way-coupled flow computations are also considered in order to clarify some funda-

mental issues arising in polydisperse flows. Chapter 3 provides the numerical scheme that includes

spatial discretization, time marching, and boundary condition implementation. The verification of

the numerical method is presented using some test problems. In chapter 4, one-dimensional shock
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propagation in dilute bubbly liquids is computed, and the effect of polydispersity on the averaged

shock dynamics is investigated. Parameter studies of probable bubble sizes, void fractions and shock

strengths are also conducted. Chapter 5 examines dynamics of cavitation clouds caused by struc-

tural interaction with UNDEX shocks that is modeled using Taylor’s theory. In chapter 6, shock

propagation through a bubbly liquid filled in a deformable cylindrical tube is considered. Quasi-

one-dimensional bubbly flow equations including FSI are formulated, and the steady shock relations

are derived. The theoretical and measured wave speeds are compared, and the model limitations

are discussed.
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Chapter 2

Physical model

The main goal of this chapter is to provide the system of equations that govern the averaged dynamics

of polydisperse bubbly flows. First, the continuum bubbly flow model is formally derived based

on an ensemble-averaging approach, and the model limitations are discussed. The single-bubble-

dynamic model that includes the effects of heat transfer, and liquid viscosity and compressibility

is then proposed. The resulting one-dimensional system are presented for computational purposes.

Moreover, the equality of ensemble and volume averages is discussed based on the ergodic hypothesis.

One-way-coupled flow computations are finally considered to elucidate the fundamental physics of

polydisperse flows.

2.1 Continuum bubbly flow model

2.1.1 Ensemble-averaged equations

With the ensemble-averaging technique of Zhang & Prosperetti (1994), one may formally derive

the continuum bubbly flow model in order to evaluate the average mixture dynamics. The key

concept of the ensemble averaging is to statistically treat the dynamical state of bubbly mixtures

in which a large number of realizations of spherical bubbles (or isotropic scatters) exist. In other

words, we discard any scattering effects in a specific realization, but explore the statistically averaged

dynamics. Even though direct interactions between the neighboring bubbles are minimal, there can

still appear (indirect) interactions among the bubbles through the averaged field; the problem is two-



8

way-coupled. In what follows, we present the ensemble-averaged conservation law for polydisperse

bubbly flow with the model assumptions. The complete description of the derivation can be found

in Zhang & Prosperetti (1994), and is also summarized in appendix A.

The continuum model assumes that (a) the bubbles are spherical; (b) mutual interactions among

the bubbles are negligible except through their effect on the mixture-averaged flow; (c) wavelengths

in the mixture are large compared to the mean bubble spacing; (d) the bubbles advect with the

ambient liquid velocity (no slip); and (e) density and velocity fluctuations in the liquid phase are

uncorrelated.

Assumption (a) implies that fission and coalescence of the bubbles are not permitted, so that the

bubble number is conserved in time. Assumption (c) is used for the model closure. Relative motion

between the phases has been shown to have minimal impact on linear wave propagation (d’Agostino

et al., 1988) and also plays a minor role in shock propagation (Kameda & Matsumoto, 1996).

Assumption (e) is reasonable due to the fact that the velocity fluctuations caused by the bubble

dynamics concentrate in the vicinity of the bubbles, where the liquid is effectively incompressible

(Prosperetti & Lezzi, 1986).

Under these assumptions, we write the ensemble-averaged equations as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂ρu

∂t
+ ∇ ·

[
ρuu + (pl − p̃)I

]
= 0, (2.2)

∂α

∂t
+ ∇ · (αu) = 3α

R3Ṙ2

R3
, (2.3)

where ρ is the mixture density, u is the mixture velocity vector, pl is the averaged liquid-phase

pressure, I is the identity tensor, α is the void fraction, R is the bubble radius, and Ṙ is the bubble

wall velocity. For dilute cases (i.e., low void fraction), the mixture density is well approximated by

(1 − α)ρl where ρl is the liquid density. The averaged liquid pressure may be described by the Tait
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equation of state (Thompson, 1972),

pl +B

pl0 +B
=

(
ρl

ρl0

)γ

=
1

ργ
l0

(
ρ

1 − α

)γ

, (2.4)

where ρl0 is the reference liquid density at the ambient pressure pl0, and γ and B denote stiffness

and tensile strength of the liquid, respectively. For water, we take γ = 7.15 and B = 304 MPa. Note

that the constant value of B implies the homentropic behavior of the liquid.

The term p̃ in the momentum flux in equation (2.2) represents pressure fluctuations due to the

phase interactions,

p̃ = α

(

pl −
R3pbw

R3
− ρ

R3Ṙ2

R3

)

, (2.5)

where pbw is the bubble wall pressure described by the dynamic boundary condition (Brennen, 1995),

pbw = pb − 4µl
Ṙ

R
− 2Υ

R
. (2.6)

Here, pb is the internal bubble pressure (sum of noncondensible gas pressure pg and vapor pressure

pv), µl is the liquid viscosity and Υ is the surface tension.

The overbar in equations (2.3) and (2.5) denotes moments with respect to the (normalized)

distribution of equilibrium bubble sizes, f(R0),

ϕ(x, t) =

∫ ∞

0

ϕ(x, t;R0)f(R0)dR0, (2.7)

where R0 is the equilibrium bubble radius corresponding to the ambient pressure and ϕ represents

any of R2Ṙ, R3pbw, R3Ṙ2 or R3. Note that the functional dependence of R0 on the size distribution

is assumed spatially uniform. This assumption is valid for all times due to the no-slip assumption (d).

For example, the void fraction is defined as

α =
4π

3
nR3, (2.8)
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Figure 2.1: Normalized distributions of the equilibrium bubble radius. The probable size, Rref
0 , is

set to be 10 µm.

where n is the number of bubbles per unit volume of the mixture and is conserved in time because

of the assumption (a); namely

∂n

∂t
+ ∇ · (nu) = 0. (2.9)

It should be noted that the phase interaction term p̃ does not appear in the volume-averaged

equations of van Wijngaarden (1968, 1972). For linearized dynamics of the bubbles, p̃ contains

corrections of order at most O(α2) so that the ensemble-averaged equations (2.1) to (2.3) reduce to

van Wijngaarden’s equations in the linear context.

2.1.2 Model distributions of equilibrium bubble sizes

We model the distribution of the equilibrium bubble radius using a lognormal function with the

probable size Rref
0 and standard deviation σ,

f(R∗
0) =

1√
2πσR∗

0

exp

(

− ln2R∗
0

2σ2

)

, (2.10)

where R∗
0 = R0/R

ref
0 . The lognormal function (2.10) approaches zero exponentially in the limit of

lnR∗
0 → ∞, so that contributions of extremely large sizes, which may deteriorate the continuum
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model accuracy, to integration (2.7) can be minimized. In the limit of σ → 0, the lognormal

function (2.10) reduces to the Dirac delta function,

f(R∗
0) = δ(R∗

0 − 1), (2.11)

which models monodisperse mixtures.

Figure 2.1 shows the measured nuclei size distributions in a water tunnel (Katz, 1978) and the

ocean (O’Hern et al., 1988), together with the lognormal function (2.10). It follows that σ = 0.7 may

be a reasonable value to model the actual distributions in engineering flows and the ocean, but we use

the distribution (2.10) as illustrative of the qualitative effects of polydispersity rather than to model

a particular system. The numerical methods developed in the next chapter are independent of this

choice, and an empirically determined distribution could easily be employed in future computations.

2.1.3 Model limitations

We now discuss specific limitations associated with assumptions (a) and (b) in section 2.1.1, which

are essential for deriving the continuum model (2.1) to (2.3).

The spherical-bubble assumption (a) implies no fission of the bubbles. Possible mechanisms

responsible for the fission are a re-entrant jet and a Rayleigh-Taylor-type instability (Brennen, 2002;

Johnsen & Colonius, 2009). If the thickness of the incident shock is comparable to or smaller than

the bubble sizes, the bubbles distort nonspherically and may finally result in fission due to the re-

entrant jet. However, the interaction of the averaged pressure field and the bubble cloud is known

to broaden the shock thickness. As a result, the bubble fission does not occur frequently if the shock

strength is sufficiently small (Beylich & Gülhan, 1990). For strong shocks, the bubble collapse is

so violent that nonspherical distortions arise and fission is likely. Accounting for bubble fission in

continuum models is a challenge not yet met.

For assumption (b) to be valid, the mean bubble spacing (l = n−1/3) must be much larger

than the bubble sizes. It follows from equation (2.8) that this condition is satisfied in the dilute
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limit (i.e., α→ 0). The acoustic theory of linear waves in monodisperse bubbly liquids (Carstensen

& Foldy, 1947; Commander & Prosperetti, 1989) is known to overestimate attenuation under the

resonant condition since the bubble/bubble interactions can never be ignored even in the dilute limit

(Waterman & Truell, 1961; Commander & Prosperetti, 1989). Inclusion of the broad size distribution

(e.g., large standard deviation σ in lognormal distribution (2.10)) can de-emphasize errors associated

with resonance since the probability that a bubble of certain size is under resonance is low among a

broad spectrum of R0 (Feuillade, 1996).

2.2 Single-bubble-dynamic model

2.2.1 Model assumptions

In order to close the continuum bubbly flow model, there is a need to solve the single bubble

dynamics, but the detailed conservation equations of both the liquid phase and the bubble contents

are computationally expensive. This necessitates employing a Rayleigh-Plesset-type equation with

the following simplifications. The spherical-bubble-dynamic model assumes that (f) the bubble

contents (noncondensible gas and vapor) have spatially uniform pressure; (g) the bubble contents

are perfect; (h) the liquid is cold (far from the boiling point); (i) the mass of noncondensible gas

in the bubble is unchanged; (j) phase change occurs instantaneously; (k) Fick’s law holds for mass

diffusion between the noncondensible gas and the vapor; and (l) the transport properties of the

bubble contents are constant.

The homobaric assumption (f) is valid since the inertia of the bubble contents is negligible com-

pared to that of the liquid. The cold liquid assumption (h) leads to undisturbed liquid temperature

at the bubble wall, so that the energy equation in the liquid phase is unnecessary to solve (Pros-

peretti et al., 1988; Preston et al., 2007). The typical bubble growth rate due to mass transfer of

dissolved air in water is so slow (compared to the bubble oscillation rate) that assumption (i) is

reasonable (Plesset & Prosperetti, 1977). Assumptions (h) and (j) imply constant vapor pressure

at the bubble wall, which is typically adequate except near the end of a violent bubble collapse
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(Fujikawa & Akamatsu, 1980).

2.2.2 The Gilmore equation

The equation of Gilmore (1952),

RR̈

(

1 − Ṙ

C

)

+
3

2
Ṙ2

(

1 − Ṙ

3C

)

= H

(

1 +
Ṙ

C

)

+
RḢ

C

(

1 − Ṙ

C

)

, (2.12)

is used to evaluate the spherical bubble dynamics. Here, the dot denotes the substantial time

derivative, and H and C are the enthalpy and the sonic speed, respectively, at the bubble wall in

the liquid:

H =

∫ pbw

pl

dp′l
ρl(p′l)

, C =




dpl

dρl

∣
∣
∣
∣
∣
pl=pbw





1
2

, (2.13)

where the bubble wall pressure pbw is given by equation (2.6). In the dilute limit, the averaged liquid

pressure pl can be considered to be farfield pressure from the bubble in an infinite liquid (Takahira,

2004). Substitution of the Tait equation of state (2.4) into the above definitions yields the following

expressions:

H =
γ

γ − 1

pl0 +B

ρl0

[(
pbw +B

pl0 +B

) γ−1
γ

−
(
pl +B

pl0 +B

) γ−1
γ

]

, (2.14)

C =

√

γ(pl0 +B)

ρl0

(
pl +B

pl0 +B

) γ−1
γ

+ (γ − 1)H. (2.15)

2.2.3 Equations for bubble contents

Consider the bubble energy equation, which is coupled to the Gilmore equation (2.12). The rate of

the bubble energy change equals the sum of work done by the bubble wall and energy transfered

due to the mass flux of vapor and the heat flux at the bubble wall; namely

d

dt

∫ R(t)

0

(ρgeg + ρvev)4πr
′2dr′ = 4πR2

(

−Ṙpb + cpvTwṁ
′′
v + kbw

∂T

∂r

∣
∣
∣
∣
w

)

, (2.16)
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where the subscripts g, v, b and w denote noncondensible gas, vapor, bubble contents (gas/vapor

mixture) and bubble wall properties, respectively, e is the internal energy, cp is the specific heat

at constant pressure, Tw is the bubble wall temperature, ṁ′′ is the mass flux, k is the thermal

conductivity, T is the temperature (defined inside the bubble) and r is the radial coordinate measured

from the bubble center. With assumptions (f) and (g), the energy balance (2.16) reduces to the

following equation (Nigmatulin et al., 1981; Prosperetti et al., 1988),

ṗb =
3γb

R

(

−Ṙpb + RvTwṁ
′′
v +

γb − 1

γb
kbw

∂T

∂r

∣
∣
∣
∣
w

)

, (2.17)

where γb is the specific-heat ratio of the bubble contents and R is the gas constant. In the derivation,

it is assumed that the specific ratio of noncondensible gas, γg, is nearly the same as that of vapor,

γv, so that γb ≈ γg ≈ γv. Note that the bubble wall temperature Tw is undisturbed for all times

and the vapor pressure pv is constant due to assumptions (h) and (j).

The species conservation (k) requires

ṁ′′
v =

Dρbw

1 − χvw

∂χv

∂r

∣
∣
∣
∣
w

, (2.18)

where χv is the mass fraction of the vapor and D is the binary diffusion coefficient. It follows from

the perfect gas law (g) that χvw and ρbw are written as

χvw =

[

1 +
Rv

Rg

(
pb

pv
− 1

)]−1

, (2.19)

ρbw =
pv

χvwRvTw
. (2.20)

The thermal conductivity for the bubble contents is taken from a semi-empirical formula (Bird et al.,

1960):

kbw =
xvwkv

xvwφvv + (1 − xvw)φvg
+

(1 − xvw)kg

xvwφgv + (1 − xvw)φgg
, (2.21)
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where

φpq =
1√
8

(

1 +
Mp

Mq

)− 1
2

[

1 +

(
µp

µq

) 1
2
(
Mq

Mp

) 1
4

]2

, (2.22)

xvw =
Mgχvw

Mv + (Mg −Mv)χvw
. (2.23)

Here, Mp (or µp) is the molecular weight (or the viscosity) of component p, and xvw is the mole

fraction of the vapor at the bubble wall.

For efficient computations, the temperature and concentration gradients, in equations (2.17) and

(2.18), at the bubble wall are estimated using the reduced-order model of Preston et al. (2007),

which has been shown to be accurate for small bubbles. The details of Preston’s model, together

with the (dimensionless) bubble-dynamic equations, are described in appendix B.

It should be noted that the polytropic gas obeys

pb = pv + pg0

(
R

R0

)−3κ

, (2.24)

where pg0 is the partial pressure of the noncondensible gas in the equilibrium state and κ is the

polytropic index; κ = 1 implies constant bubble temperature and κ = γg would model adiabatic

behavior. In this case, the bubble energy balance (2.17) is unnecessary to solve.

2.2.4 The conservation form

We now write the bubble-dynamic equations (parameterized by R0) in a conservation form, which

is suitable for shock computations (LeVeque, 1992):

∂nϕ

∂t
+ ∇ · (nϕu) = nϕ̇. (2.25)

In this form, the bubble-dynamic variables, ϕ, are treated as Eulerian variables (i.e., ϕ = ϕ(x, t;R0))

rather than Lagrangian particles (Watanabe & Prosperetti, 1994). Since we assume a large number
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of the bubbles in mixtures, the bubbles may be considered to be distributed continuously in space.

If we evaluate the heat and vapor fluxes using Preston’s model, the bubble pressure pb and the mass

of vapor mv (in addition to R and Ṙ) need to be included in ϕ.

2.3 The complete system

For simplicity, we write the resulting system in one dimension using a vector form:

qt + f(q)x = fs(q)x + s(q), (2.26)

where the subscripts denote partial derivatives. The column vectors are

q =







ρ

ρu

α

nϕ







, f =







ρu

ρu2 + pl

αu

nϕu







, fs =







0

p̃

0

0







, s =







0

0

3αR3Ṙ2

R3

nϕ̇







, (2.27)

where u is the x-component velocity and fs may be called the phase interaction flux. Note that the

source terms, fs and s, vanish in the equilibrium state. Given the conserved variables q, the bubble

number density is computed by

n =

√

4π

3α

∫ ∞

0

(nR)3f(R0)dR0. (2.28)

The quasilinear form of equation (2.26) is

qt + Aqx = fs(q)x + s(q), (2.29)
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where A is the Jacobian matrix (∂f/∂q). The eigenvalues of A are

λ1 = u− c̃l, λ2 = u+ c̃l, λ3 = λ4 = u. (2.30)

where c̃l is the sonic speed of the (Tait) liquid, cl, with corrections of order O(α):

c̃l =
cl

1 − α
=

1

1 − α

√

γ(pl +B)

ρl
. (2.31)

The matrix of the right (column) eigenvectors (satisfying Ari = λiri) of A is

R = [r1 r2 r3 r4] =















ρ ρ ρ 0

ρ(u− c̃l) ρ(u+ c̃l) ρu 0

α α α− 1 0

nϕ nϕ 0 1















, (2.32)

where the fields associated with r3 and r4 are linearly degenerate and represent the contact waves.

Note that the generalized Riemann invariants (Toro, 1999) reveal that across the contact waves, u

and pl are continuous but ρ, α and nϕ are discoutinuous. Correspondingly, the matrix of the left

(row) eigenvectors (satisfying liA = λili) of A is

L =















l1

l2

l3

l4















=















u+(1−α)c̃l

2ρc̃l

−1
2ρc̃l

1
2 0

−u+(1−α)c̃l

2ρc̃l

1
2ρc̃l

1
2 0

α
ρ 0 −1 0

(α−1)nϕ
ρ 0 −nϕ 1















. (2.33)

The right and left eigenvectors (2.32) and (2.33) are used for the transformation from the conserved

to the characteristic variables (i.e., p = Lq) or from the characteristic to the conserved variables

(i.e., q = Rp).
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2.4 Ensemble and volume averaging

Here, we consider the relation between ensemble and volume averages. The concept of volume aver-

aging is to average field quantities within a control volume of mixtures with specific, instantaneous

realizations of bubbly flows. For example, with the control volume V consisting of the liquid-phase

and gas-phase volumes (i.e., V = Vl + Vg), the dilute mixture density ρ can be defined as

ρ =
Vlρl + Vgρg

V ≈ Vlρl

V . (2.34)

In order that the mixture within V be considered homogeneous and the averaged wave structure

be well resolved, we need to choose an appropriate averaging volume and presuppose the scale

separation (Nigmatulin, 1979; Prosperetti, 2001):

l = n− 1
3 ≪ V 1

3 ≪ L, (2.35)

where l is the mean bubble spacing and L is the (averaged) wavelength in the mixture. On the

other hand, in ensemble averaging, we need not presuppose such a scale separation for deriving

the averaged equations; this enables us to rigorously manipulate differentiation and integration.

However, the scale separation assumption is ultimately still needed for the model closure.

Under the scale separation (2.35), the system can be considered homogeneous locally in space

and the equality between ensemble and volume averages (or the ergodicity property) will thus hold

(Batchelor, 1970; Biesheuvel & van Wijngaarden, 1984). In other words, if the wavelength of interest

is large enough to satisfy the scale separation, the ensemble-averaged quantities will be equivalent

to the volume averages. This observation is consistent with the fact that the ensemble-averaged

equations derived in section 2.1.1 are essentially the same as van Wijngaarden’s volume-averaged

equations (except for the phase interaction term p̃).

It is also instructive to mention the analysis of d’Agostino & Brennen (1989). They considered

the dynamics of a spherical (monodisperse) bubble cloud with radius Rc, under sinusoidal pressure
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forcing at infinity, with the implicit assumption that the cloud dimension is far smaller than the

wavelength associated with the pressure forcing (i.e., Rc ≪ L). That is, their cloud size corresponds

to the dimension of the control volume, V1/3, in the relation (2.35). A simple linear analysis reveals

that the cloud has an infinite set of natural frequencies:

ωi = ωN

[

1 +
12β

(2i− 1)2π2

]− 1
2

, (2.36)

where i is positive integers, ωN is the natural frequency of individual bubble oscillations and β is

termed the cloud interaction parameter defined as

β =
α0(1 − α0)R

2
c

R2
0

. (2.37)

Note in particular that the lowest natural frequency, ω1 = ωN(1+12β/π2)−1/2, can be much smaller

than the individual bubble frequency if β is far larger than unity (i.e., β ≫ 1). In the limit of β → 0,

on the contrary, the cloud interaction effect is minimized and all the bubbles tend to oscillate freely

with ωN . Namely, this parameter governs the extent of bubble-bubble interactions through the

averaged field.

With the aid of the cloud interaction parameter β, we revisit the scale separation problem. Now

that V1/3 can be replaced with Rc, the scale separation (2.35) may read

α
1
3
0 ≪ β ≪

(
L

Rref
0

)2

α0. (2.38)

Provided that there exists the value of β that satisfies the above relation, we can suitably choose

an averaging volume in instantaneous realizations of bubbly flows. In this case, the ensemble and

volume averages will again be equivalent. To meet the scale separation (2.38), we say that the

right-hand side, (L/Rref
0 )2α0, needs to be S times larger than the left-hand side, α

1/3
0 ; namely

L = S
1
2α

− 1
3

0 Rref
0 . (2.39)
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Figure 2.2: Integrands of the third moment µ3 for the inviscid Rayleigh–Plesset equation and the
viscous Gilmore equation. The equilibrium bubble size is assumed lognormally distributed with
Rref

0 = 10 µm and σ = 0.7.

If we take S = 102 and α0 = 10−3 as an example, the above relation yields L = 100Rref
0 . This

suggests that wavelengths shorter than this bound will not be accurately captured using continuum

models.

2.5 One-way-coupled flow computations

Before proceeding to two-way-coupled flow computations, we consider the evolution of moments

(2.7) in the one-way-coupling case where any bubble/bubble interactions are neglected (in the limit

of β → 0). Specifically, our interest is to predict the moments of bubble radius with respect to the

lognormal distribution (2.10):

µi(x, t) =

∫ ∞

0

Ri(x, t;R0)f(R0)dR0, (2.40)

where i is integers. For example, the third moment µ3(x, t) represents the mean bubble volume,

which is proportional to the void fraction (2.8). In the volume-averaging sense, µ3(x, t) can be

interpreted as the mean bubble volume within an averaging volume V centered at x.

We now consider the problem that air/vapor bubbles in water are initialized with lognormal
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Figure 2.3: As figure 2.2, but with Rref
0 = 50 µm.

distributions (2.10) at standard temperature and pressure (STP; 20 ◦C and 101 kPa) and then

forced according to a step-wise (farfield) pressure change from pl0 to 2pl0 at t = 0. This may

be a simple example to shock propagation in bubbly flows. The bubble dynamics are computed

by solving the inviscid Rayleigh–Plesset equation (with isothermal air) and the Gilmore equations

including acoustic, viscous and thermal damping as described in section 2.2. The time integration

is handled using a Runge–Kutta scheme with adaptive step-size control (Press et al., 1994). The

physical properties are taken from Lide (2006).

Figures 2.2 and 2.3 show the integrands of the third moment µ3, at three different times, for the

lognormal distribution with σ = 0.7, and Rref
0 = 10 µm and 50 µm, respectively. Time is normalized

by the time scale, Rref
0

√

ρl0/pl0, as in appendix B; t∗ denotes the normalized time. Note that the

integrands are initially (t∗ = 0) very smooth with the lognormal distribution of equilibrium bubble

sizes. For the inviscid case, the integrands become more oscillatory as the bubble oscillations evolve,

because the bubbles with different equilibrium sizes oscillate with different frequencies; eventually,

the different-sized bubbles oscillate totally out of phase. On the other hand, the bubble-dynamic

dissipation for small bubbles is found to be effective enough to damp down the dynamics. As a

result, the integrands for the viscous case are less oscillatory. Since the damping is more effective for

smaller bubbles (Plesset & Prosperetti, 1977; Brennen, 1995), the case with Rref
0 = 10 µm in figure
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Figure 2.5: As figure 2.4, but with Rref
0 = 50 µm.

2.2 shows the smoother integrands.

Figures 2.4 and 2.5 show the evolution of the third moment µ3(t
∗) for the cases of Rref

0 = 10 µm

and 50 µm, respectively. For reference, the monodisperse cases (σ = 0), for which no quadrature

is needed, are also plotted. It is interesting to note that the inviscid bubble oscillations in the

polydisperse case achieve a time-invariant value of the moment even though all the bubbles keep

oscillating without any damping. We say that the bubble oscillations reach a stationary statistical

equilibrium due to phase cancellations among bubbles with different sizes as presented in figures

2.2 and 2.3. The existence of the statistical equilibrium is mathematically proven by Colonius
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et al. (2008). We can say, in the volume-averaging sense, that at the statistical equilibrium, the

polydisperse bubble cloud does not oscillate in volume, regardless of oscillations of the individual

bubbles. Thus, the phase cancellations (that appear only in the polydisperse case) can be regarded

as an apparent damping of the average mixture dynamics (Smereka, 2002; Colonius et al., 2008). It

is also seen in the polydisperse case that the statistical equilibrium is rapidly achieved whereas the

moment with single-bubble-dynamic damping shows a gradual decay to the equilibrium state with

2pl0. Therefore, if the equilibrium bubble sizes are broadly distributed, the effect of polydispersity

can dominate over the bubble-dynamic damping.

2.6 Summary

This chapter provided the complete set of the governing equations for a continuum model of bubbly

flows. The ensemble-averaged equations incorporating a distribution of equilibrium bubble sizes

were obtained to described the average mixture dynamics. The single-bubble-dynamic model that

includes the effects of thermal, viscous and acoustic damping was also introduced to close the contin-

uum bubbly flow model. The system is written in a conservation form for robust shock computations.

We examined the relation between ensemble and volume averaging based on the ergodic hypothesis

and confirmed that the volume averages will be equivalent to the ensemble-averaged quantities if one

appropriately chooses averaging volume under the scale separation assumption. One-way-coupling

flow computations suggested that the different-sized bubbles oscillate with different frequencies and

the phase cancellations can be regarded as an apparent damping of the averaged dynamics of poly-

disperse bubbly flows.
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Chapter 3

Numerical method

This chapter presents a numerical method designed to conduct efficient and robust shock computa-

tions for polydisperse bubbly flows. The system is written in a conservation form and is discretized

using a finite-volume method with an approximate Riemann solver. Time marching, including a

time-step splitting technique that handles the stiffness, is introduced. Implementation of boundary

conditions is also discussed. Finally, the method is used to solve some test problems for verification

purposes.

3.1 Spatial discretization

3.1.1 Finite-volume reconstruction

Since shocks in bubbly flows often have oscillatory structures that result from bubble dynamics, we

favor the properties of high-order accurate resolution in complex smooth structures as well as shock

capturing. Herein, we choose a finite-volume (FV) weighted essentially non-oscillatory (WENO)

scheme (Liu et al., 1994) that contains such properties in addition to robustness.

The system (2.26) is discretized in FV fashion. Given a computational cell [xi−1/2, xi+1/2] where

i denotes the grid index, the cell-averaged conserved variables are defined as

q̄i(t) =
1

∆xi

∫ xi+1/2

xi−1/2

q(x′, t)dx′, ∆xi = xi+1/2 − xi−1/2, (3.1)
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so that q̄i approximates q at the cell center xi = (xi−1/2 + xi+1/2)/2. With the aid of equation

(3.1), the system is written in a semi-discrete form:

dq̄i

dt
= − fi+1/2 − fi−1/2

∆xi
+

fs
i+1/2 − fs

i−1/2

∆xi
+ s̄i. (3.2)

In FV methods, q̄i is reconstructed at each cell edge, and the numerical flux fi+1/2 is computed by

solving a Riemann problem with the left and right states (qL
i+1/2, qR

i+1/2).

In order to resolve the complex wave structures, we choose the fifth-order FV-WENO reconstruc-

tion (Liu et al., 1994; Shu, 1997) with monotonicity preserving bounds (Balsara & Shu, 2000). ENO

reconstruction (Harten et al., 1987) is based on adaptive stencils in the sense that interpolation

across discontinuities is automatically avoided. WENO schemes use a convex combination of all

the ENO candidate stencils for more efficient and accurate computations. To guarantee essentially

non-oscillatory solutions, it is safe to implement the WENO reconstruction in characteristic space

even though a local characteristic decomposition is computationally expensive (Qiu & Shu, 2002).

3.1.2 HLLC approximate Riemann solver

To compute the numerical flux fi+1/2, approximate Riemann solvers are conventionally used to solve

the Riemann problem that results from the reconstruction at each cell edge (Toro, 1999). We choose

the HLLC Riemann solver (Toro et al., 1994; Toro, 1999) that automatically satisfies the entropy

condition. The HLLC solver restores the contact waves that are ignored in the HLL solver (Harten

et al., 1983), and gives better resolutions of the contact discontinuities.

If the left and right states (qL, qR) are imposed at x = 0 and t = 0, the HLLC Riemann solution

is given by

qHLLC(x, t) =







qL if x/t ≤ sL,

q∗L if sL ≤ x/t ≤ s∗,

q∗R if s∗ ≤ x/t ≤ sR,

qR if x/t ≥ sR.

(3.3)
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The Rankine–Hugoniot conditions with the constraints across the contact waves (constructed for

the hyperbolic part) yield the expression for the intermediate (star) state:

q∗K =
sK − uK

sK − s∗







ρK

ρKs∗

αK

(nϕ)K







, (3.4)

where K = L or R. It follows from Einfeldt et al. (1991) that

sL = min
(
(u− c̃l)

Roe, uL − c̃Ll
)
, sR = max

(
(u+ c̃l)

Roe, uR + c̃Rl
)
, (3.5)

where the superscript “Roe” stands for the Roe averages (Roe, 1981). The momentum conservation

yields the expression for the intermediate wave speed (Batten et al., 1997):

s∗ =
pR

l − pL
l + ρLuL(sL − uL) − ρRuR(sR − uR)

ρL(sL − uL) − ρR(sR − uR)
. (3.6)

Using the HLLC solution (3.3), the HLLC fluxes are computed as

fHLLC = f
(
qHLLC

)
, fs HLLC = fs

(
qHLLC

)
. (3.7)

It is instructive to note that the (one-dimensional) divergence of the velocity field is approximated

by

∂u

∂x

∣
∣
∣
∣
i

≈ ui+1/2 − ui−1/2

∆xi
, (3.8)

where the cell-edge velocity is computed from the HLLC solution (3.3). The divergence ∇ · u is

needed for evaluating the rate of change of the liquid pressure (B.12).



27

3.2 Time marching

3.2.1 Unsplit time integration

Given the HLLC fluxes and the sources, the system written in a semi-discrete form can be integrated

in time. The simplest way is to employ explicit methods in which a single time step ∆t is used to

resolve both the convective and the bubble-dynamic terms. A third-order TVD Runge–Kutta scheme

(Shu & Osher, 1988; Gottlieb & Shu, 1998) is often used for stable shock computations. The choice

of ∆t depends on the constraint on the dimensionless Courant–Friedrichs–Lewy (CFL) number

(LeVeque, 1992; Toro, 1999; LeVeque, 2002), which is defined as the ratio of the physical wave speed

to the grid speed ∆xi/∆t. For one-dimensional computations, the maximum CFL number may be

defined as

CFL = ∆tmax
i

{ |ui| + (c̃l)i

∆xi

}

. (3.9)

For hyperbolic systems, a linear analysis shows that the CFL constraint is given by 0 < CFL ≤ 1.

However, the system (2.26) is not rigorously hyperbolic, and the bubble dynamics would alter the

stability condition.

3.2.2 Time-step splitting

In cases of strong shocks and cavitation, the bubble-dynamic sources are very stiff. As a result, the

unsplit time integration requires very small CFL number for stable bubble-dynamic computations.

This necessitates applying a splitting technique to solve the averaged fluid dynamics and the bubble

dynamics separately. One benefit of splitting schemes is that a well-established, tailor-made numer-

ical technique can be applied to each subproblem. For example, stiff ordinary differential equation

(ODE) solvers or implicit methods are suitable to handle the stiffness. However, we need to be

cautious about the splitting errors.

Consider the initial value problem (2.26) with initial condition q(x, tn) = qn where the super-

script n refers to the time discretization. We need to find q(x, tn+1) = qn+1 by integrating the
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system (2.26) over the time step ∆t = tn+1 − tn. First, we integrate the fluid-dynamic part:

q∗
t + f(q∗)x = fs(q∗)x, (3.10)

with the initial condition qn over the splitting time step ∆t (which satisfies the CFL constraint),

and then obtain the intermediate value q∗(x, tn+1). Next, we integrate the bubble-dynamic part:

q∗∗
t = s(q∗∗), (3.11)

where q∗(x, tn+1) is imposed as the initial condition at time tn. During the source term integration

from tn to tn+1, ρ, u and n are unchanged. In addition, it may be reasonable to assume that the rate

of change of the liquid pressure, ṗl, is constant during the integration of equation (3.11) because the

averaged fluid-dynamic time scale is typically much larger than the bubble-dynamic time scale. The

solution of equation (3.11), q∗∗(x, tn+1), is therefore regarded as an approximation to the numerical

solution qn+1 of the unsplit problem (2.26).

We now write the splitting scheme consisting of equations (3.10) and (3.11) as

qn+1 = S
(∆t)
2 S

(∆t)
1 qn, (3.12)

where S
(∆t)
1 and S

(∆t)
2 are the solution operators for the convective part (3.10) and for the bubble-

dynamic part (3.11), respectively, taken over ∆t. This procedure is called the Godunov splitting and

is only first-order accurate (Toro, 1999; LeVeque, 2002). Instead, the second-order Strang splitting

(Strang, 1968) can be used:

qn+1 = S
(∆t/2)
2 S

(∆t)
1 S

(∆t/2)
2 qn, (3.13)

where the operators are at least second-order accurate. It is pointed out in Sportisse (2000) that

if the splitting time step ∆t is much larger than time scales of stiff sources, a classical analysis of

the splitting error using ∆t → 0 no longer holds. A singular perturbation theory revealed that the
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Strang splitting (3.13) is only first-order accurate in such stiff cases.

3.3 Boundary conditions

3.3.1 Reflective boundaries

Reflective boundary conditions are used to model an impermeable solid wall that touches inviscid

flows. Now suppose that a wall surface is initially located at x1/2, the end of the computational

domain (x ≥ x1/2), but can move. If the displacement is sufficiently small, the wall motion can

be incorporated at the fixed point x1/2 in an Eulerian frame (Toro, 1999; LeVeque, 2002). This

situation is handled by solving a Riemann problem at x1/2 with the following fictitious conditions:

ρ0 = ρ1, u0 = 2uw − u1, (pl)0 = (pl)1, (nϕ)0 = (nϕ)1, (3.14)

where uw is the wall velocity and the quantities with the subscript 0 are defined at the fictitious

computational cell, outside the domain, that is centered at x0 = x1/2 − ∆x1/2. Note that the

conditions (3.14) with uw = 0 represent the case of stationary walls. To maintain the formal order

of accuracy of the reconstruction, we can add extra fictitious cells further away from the boundary

(Dadone & Grossman, 1994).

3.3.2 Nonreflective boundaries

The treatment of nonreflective boundaries is based on the work of Thompson (1987). His idea is

to evaluate only outgoing waves from a finite computational domain at the boundaries. Since the

outgoing waves depend only on the information within the boundaries, the waves are evaluated

using one-sided, upwind differencing. It should be noted that the fifth-order accuracy of the WENO

reconstruction cannot be retained near the nonreflective boundaries since the information outside

the domain is missing; thus, the lower-order accurate scheme needs to be used near the boundaries

(Johnsen, 2007).
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For computations of bubbly flows with finite void fractions, the sonic speed evaluation at the

boundaries is intractable because the waves are dispersive. For shock computations in chapter 4, the

sonic speed of mixtures in the quasistatic limit (Brennen, 1995), rather than c̃l in equation (2.31),

is used for the sonic speed evaluation:

c =

√

γ(pl +B)

ρ

κpl

αγ(pl +B) + (1 − α)κpl
. (3.15)

However, in this manner, high-frequency waves can be reflected back into the computational domain.

The domain is thus set to be large enough that the spurious waves do not contaminate the solution

of interest or the waves are effectively attenuated (due to bubble-dynamic damping) before reaching

the boundaries.

3.4 Verification

In the following test problems, we implement the method and investigate its performance. In section

3.4.1, linear wave propagation in a pure liquid is computed to confirm the numerical convergence. In

section 3.4.2, dispersive linear waves in a bubbly liquid are solved and their computed phase velocity

and attenuation are compared to the theoretical predictions. The continuum model limitation is

revisited, and the cloud effect in two-way-coupled flow computations is also examined. Finally, in

section 3.4.3, cloud cavitation caused by valve closure in a pipe flow is considered and the performance

of the time-step splitting schemes is quantified.

As mentioned in section 3.1, the fifth-order monotonicity-preserving FV-WENO reconstruction

is implemented in the characteristic space, and the HLLC Riemann solver manipulates the numerical

flux. The computational grid is uniform with ∆xi = ∆x (for all i). Runge–Kutta schemes with

uniform time step ∆t are used to march the entire system (for unsplit cases) or the convective terms

(for cases with time-step splitting). Besides, the transport properties of bubble contents are assumed

constant and taken from Lide (2006).



31

∆x L1 error L1 order L∞ error L∞ order
1/20 1.31 × 10−7 6.55 × 10−7

1/40 1.47 × 10−8 3.15 7.43 × 10−8 3.14
1/80 4.83 × 10−10 4.93 2.69 × 10−9 4.79
1/160 1.47 × 10−11 5.04 8.68 × 10−11 4.95
1/320 4.65 × 10−13 4.98 2.80 × 10−12 4.95

Table 3.1: Density convergence study for linear wave propagation in pure water. The errors are
normalized by the reference water density ρl0.

3.4.1 Convergence analysis

In order to confirm the accuracy of the WENO reconstruction, (non-dispersive) linear waves in a

pure water with α0 = 0 are considered. We impose the following initial condition in x ∈ [−0.5, 0.5]:

pl(x) = pl0

[

1 + ǫ exp

(

−x
2

h2

)]

, ul(x) = 0. (3.16)

Provided that ǫ is sufficiently small, nonlinearity in the governing equations is effectively eliminated,

and the perturbation would propagate with the sonic speed of water, cl0, at one atmosphere pl0.

Note that the pressure perturbations (in water) up to several hundred atmospheres can be regarded

as linear waves (Thompson, 1972). If the boundaries (at x = −0.5 and 0.5) are periodic, the solution

after one period would recover the initial conditions (3.16). The time integration is handled using a

fifth-order Runge–Kutta scheme with CFL ≈ cl0∆t/∆x = 0.1.

Table 3.1 summarizes the convergence analysis in which the error norm and the order of accuracy

are presented. The initial conditions (3.16) with ǫ = 0.1 and h = 0.1 are taken as the reference

solution to define the L1 and L∞ errors in the liquid density after one period. It is confirmed that

the accuracy asymptotes to the fifth order as the number of the computational cells increases.

3.4.2 Linear waves in a bubbly liquid

Consider one-dimensional linear wave propagation in an air/water mixture of α0 = 0.001 at STP.

Since the vapor pressure of water is much smaller than the ambient pressure, the vapor flux term

in equation (2.17) is omitted. The initial conditions (3.16) with ǫ = 10−4 and h = 4Rref
0 are
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Figure 3.1: Liquid pressure distribution at t = 10 µs for linear wave propagation in an air/water
mixture of α0 = 0.001 and Rref

0 = 10 µm at STP.

initially (t = 0) imposed to see wave dispersion. It is assumed that all the bubbles are initially

in equilibrium with the perturbed liquid pressure. It is also assumed that the equilibrium bubble

sizes are lognormally distributed with Rref
0 = 10 µm and σ. The time marching is handled using

a third-order TVD Runge–Kutta scheme (Shu & Osher, 1988; Gottlieb & Shu, 1998) with CFL ≈

c̃l0∆t/∆x = 0.1 and ∆x = Rref
0 . Noting that the isothermal natural period for the bubble size Rref

0

is 3.44 µs and is approximately 5000∆t, this time step will be small enough to resolve the bubble

dynamics. For the polydisperse case, the moment (2.7) is evaluated using Simpson’s rule with 101

quadrature points.

Figure 3.1 shows the averaged liquid pressure distribution at t = 10 µs for the linear wave propa-

gation in the monodisperse mixture (σ = 0) or polydisperse mixture (σ = 0.7). As in the experiment

of Kuznetsov et al. (1978), we observe wave dispersion due to bubble dynamics. Specifically, the

high-wavenumber waves propagate essentially with the sonic speed of water alone, cl0, but the waves

with low wavenumbers propagate more slowly than cl0. Note that the bubble size distribution with

σ = 0.7 smoothes out the oscillatory structure in the low-frequency signal.

To verify the present model, the phase velocity and attenuation of the linear waves are computed

from the numerical experiment, and compared to the acoustic theory (Ando et al., 2009) that can

be derived by linearizing the volume-averaged equations of van Wijngaarden (1968, 1972). The
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Figure 3.2: Phase velocity (left) and attenuation (right) of the linear waves in the air/water mixture.
The isothermal natural frequency for Rref

0 = 10 µm is 0.291 MHz.

computation of the phase velocity and attenuation is explained in appendix C. Figure 3.2 compares

the computed phase velocity and attenuation to the theoretical predictions. Quantitative agreement

in a wide range of frequency totally verifies the present method. It also follows from the phase

velocity plot that the waves with low and high wavenumbers in figure 3.1 correspond to the low-

frequency (quasistatic) and high-frequency (ultrasonic) regimes, respectively. The slight deviations

from the theory result from the reduced-order model of Preston et al. (2007) for evaluating heat

conduction at the bubble wall since Preston’s model is never exact for finite values of the Peclet

number; nevertheless, this enables us to avoid solving the detailed conservation equations inside the

bubble and therefore dramatically reduces the computational effort.

We now revisit the scale separation discussion (in section 2.4) to examine the continuum assump-

tion. In this example (α0 = 0.001, Rref
0 = 10 µm), the relation (2.38) now reads

0.1 ≪ β ≪ 0.001

(
L

Rref
0

)2

. (3.17)

For the right-hand side to be two orders of magnitude larger than 0.1, we need large wavelengths

to satisfy L/Rref
0 & 100. The low-wavenumber waves in figure 3.1 reasonably meet this constraint;

thus, we can suitably choose an averaging control volume with β ≈ 1 to define volume averages,
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which will be equivalent to ensemble averages. However, the high-wavenumber waves in figure 3.1

are larger than the bubble dimensions but comparable to the mean bubble spacing (≈ 0.16 mm for

σ = 0); the scale separation (3.17) does not hold and the continuum approach itself is invalid. In

summary, the continuum model is applicable to low-frequency waves in the quasistatic regime but

is less accurate in ultrasonic wave solutions.

Finally, we consider the corresponding one-way-coupled problem in order to quantify the two-

way-coupling effect in the polydisperse case. Provided that the cloud interaction is minimized (in

the limit of β → 0), the two-way-coupled problem at x = 0 may reduce to the one-way-coupling

case in which individual dynamics are excited by impulsive pressure forcing and all the bubbles

are oscillating independently with their natural frequencies ωN(R0). Our concern is to predict the

second moment of the perturbed bubble radius with respect to the lognormal distribution (2.10)

with σ = 0.7,

µ′
2(t) =

∫ ∞

0

[
R(t;R0) −R0

]2
f(R0)dR0, (3.18)

whereas the first moment µ′
1, for the case of linearized dynamics, vanishes at the statistical equilib-

rium (Colonius et al., 2008). For the one-way-coupled flow computation, the bubble dynamics are

computed by integrating the Gilmore equation with the physical dissipation as in section 2.5, and

the farfield pressure impulse is modeled by

pl(t) = pl0

[

1 + ǫ exp

(

− t2

T 2
f

)]

, (3.19)

where Tf is chosen to be small enough to ensure that the dynamics are independent of Tf .

Figures 3.3 and 3.4 present the integrands of µ′
2 at t = 2 µs and t = 10 µs, respectively. For the

two-way-coupling case, we plot the integrands at x = 0 where the narrow pressure perturbation is

initially imposed. In the inviscid and one-way-coupling case, the bubbles of any size keep oscillating

with ωN (R0) and their oscillations tend to be out of phase as they evolve; in the viscous cases, on

the contrary, oscillations of the small bubbles are damped down before the integrands become very

oscillatory as in the inviscid case, but there still appear phase cancellations among the different-sized
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bubbles of larger sizes. These phase cancellations can be interpreted as an apparent damping of low-

frequency wave propagation and augment the attenuation as seen in figure 3.2 (Ando et al., 2009).

It should be noticed that the two-way-coupling (or cloud) effect lowers the oscillation frequencies (as

discussed in section 2.4) so that the integrand becomes less oscillatory. In other words, the bubble

oscillations in the two-way-coupled flow more slowly reach the statistical equilibrium state in which

the different-sized bubbles oscillate totally out of phase.

The quadrature errors in computing µ′
2 at t = 10 µs are defined by comparing the values of the

integral using fourth-order-accurate Simpson’s rule (with varying the number of quadrature points

N) to their values using a far larger number, and plotted in figure 3.5. This plot suggests that the

moment in the two-way-coupled viscous flow computation can be predicted with fewer quadrature

points than in the one-way-coupling cases. This is consistent with the observation in figures 3.3

and 3.4 that the viscous and cloud effects make the integrand less oscillatory. Furthermore, in the

two-way-coupling case, 0.1-percent accuracy is achieved at N = 101. Hence, the solution for the

polydisperse case in figure 3.1 reasonably converges with respect to the integral over the bubble size

distribution.

Also in polydisperse flow computations in chapters 4 and 5, Simpson’s rule is employed to evaluate

the moments with respect to the lognormal distribution of equilibrium bubble sizes; 401 quadrature
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points are used for bubble screen computations in section 4.5, but otherwise 101 quadrature points are

used. These numbers of quadrature points are enough to obtain well converged solutions. However,

in practical calculations where 0.1-percent accuracy is too demanding, one can further decrease the

number.

3.4.3 Pipe flow with valve closure

Consider a water-hammer event in which a valve closes suddenly in pipe flows and the resulting

rarefaction waves that propagate downstream cause cloud cavitation. Because the system can be very

stiff due to violent collapse of cavitation bubbles, we favor solving the (averaged) fluid dynamics and

the bubble dynamics separately for efficient time integration. We now solve a one-dimensional water-

filled pipe flow with constant velocity (u0 = 0.5 m/s) and with air nuclei conditions (α0 = 10−6,

Rref
0 = 50 µm, σ = 0) at STP, and assume sudden closure of a valve at x = 0 and t = 0. The

reflective boundary conditions (3.14) with uw = 0 are imposed at x = 0 to replicate the valve

closure. The Godunov (3.12) and Strang (3.13) splitting schemes are implemented to integrate the

entire system in time; the third-order TVD Runge–Kutta scheme is used to compute the convective

terms and the Runge–Kutta scheme with adaptive step-size control (Press et al., 1994) resolves the

bubble-dynamic sources. The reference solution is taken as that obtained by the unsplit scheme

using the third-order TVD Runge–Kutta scheme with CFL = 0.01 and ∆x = 5Rref
0 . To examine

the spatial convergence, the solution on the finer grid with ∆x = Rref
0 is also obtained.

The spatial evolution of the averaged pressure and the void fraction at t = 0.16 ms for the

unsplit cases is presented in figure 3.6. Whereas the non-cavitating solution remains self-similar, the

solutions with bubble-dynamic computations show cloud cavitation behind the tension wave front.

The cloud collapse that may be identified as local minima of the void fraction is found to be well

captured on the coarser grid with ∆x = 5Rref
0 . In figure 3.7, the splitting solutions with ∆x = 5Rref

0

are compared to the reference solution in the void fraction in figure 3.6. With the fixed CFL number,

the Strang solution shows better agreement than the Godunov solution; the Strang solution with

CFL = 0.1 visually coincides with the unsplit solution.
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CFL L1 error L1 order L∞ error L∞ order
0.4 1.14 × 10−5 2.89 × 10−4

0.2 5.63 × 10−6 1.02 1.42 × 10−4 1.02
0.1 2.80 × 10−6 1.01 7.05 × 10−5 1.01
0.05 1.39 × 10−6 1.00 3.51 × 10−5 1.01

Table 3.2: Density convergence study for the Godunov splitting in the cavitation tube problem. The
errors are defined on the domain shown in figure 3.6 and normalized by water density ρl0.

CFL L1 error L1 order L∞ error L∞ order
0.4 5.65 × 10−6 1.41 × 10−4

0.2 2.80 × 10−6 1.01 7.14 × 10−5 0.987
0.1 1.40 × 10−6 1.01 3.58 × 10−5 0.996
0.05 6.97 × 10−7 1.00 1.79 × 10−5 0.998

Table 3.3: As table 3.2, but for the Strang splitting.

Tables 3.2 and 3.3 summarize the convergence analysis (with fixed ∆x but with varying ∆t) for

the Godunov and Strang splitting schemes, respectively. The error norm and the order of accuracy

are computed from the mixture density at t = 0.16 ms. Note that the global errors consist of

temporal and spatial errors. Since the void fraction field involves nonsmooth spatial variation as

observed in figure 3.6, the global errors will be contaminated by local spatial errors that decay as

∆x, not ∆x5. It turns out that both splitting schemes are at most first-order accurate as the time

step decreases, but the error for the Strang splitting is about half that for the Godunov splitting if

the CFL number is fixed. Nonetheless, we may say that the errors are fairly small even for large

CFL numbers.

3.5 Summary of the numerical implementation

In this chapter, the high-order-accurate FV method and the time-marching scheme with the time-

step splitting technique were developed to resolve wave dispersion and stiffness in continuum bubbly

flows and verified by solving some test problems. For all the computations in the following two

chapters, the fifth-order monotonicity-preserving FV-WENO reconstruction is implemented in the

characteristic space and the HLLC Riemann solver is used to compute the numerical flux. The
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grid stretching is adopted for the axisymmetric problems, but otherwise the computational grid is

uniform with ∆x = Rref
0 . For shock computations in chapter 4, the third-order TVD Runge–Kutta

scheme with uniform time steps (CFL = 0.1) is used to march the entire system. For cavitation

computations in chapter 5, the Strang splitting scheme is implemented to march the system in

time; the third-order TVD Runge–Kutta scheme with uniform time steps (CFL = 0.1) integrates

the convective terms and the Runge–Kutta scheme with adaptive stepsize control resolves the stiff

bubble-dynamic sources. For polydisperse flow computations, Simpson’s rule is employed to evaluate

the moments with respect to the lognormal distribution of equilibrium bubble sizes; 401 quadrature

points are used for bubble screen computations in section 4.5, but otherwise 101 quadrature points

are used.
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Chapter 4

Shock dynamics of bubbly flows

In this chapter, one-dimensional shock propagation through bubbly liquids is simulated to explore

the averaged shock dynamics. First, steady shock relations that can be used as initial conditions for

shock computations are derived based on a conventional control volume analysis. The experiment

of Kameda et al. (1998) is then simulated to validate the present method. Shock propagation

through polydisperse flows with a lognormal distribution of equilibrium bubble sizes is computed

and the effects of polydispersity on the averaged shock structure are quantified. Parameter studies of

probable bubble sizes, initial void fractions and shock strength are also conducted to investigate their

effects on the averaged dynamics. Finally, shock propagation through a bubble screen is computed

and the size distribution effect on the screen performance is discussed.

4.1 Steady shock relations

We first derive the steady shock relations that can be employed as initial conditions for shock

computations. In front of the shock, the bubbles are in equilibrium at (R0, T0, pl0) where T0 is the

initial temperature of the bubble contents. Far downstream of the shock front, the bubble dynamics

are finally damped out and the bubbles are once again in equilibrium at (RH , T0, plH) where RH is

the new equilibrium radius corresponding to the shock pressure plH > pl0. The specification of T0 in

the final equilibrium state follows from the assumption that the liquid temperature is undisturbed

and the bubble temperature eventually returns to the liquid temperature. Note that the bubble-
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dynamic sources (including the phase interaction term p̃) would vanish under the equilibrium state.

The one-dimensional conservation law for mass, momentum and bubble number density is now

written in a coordinate system (x′ = x− Ust and velocity u′) moving with the shock velocity Us:

∂ρu′

∂x′
= 0, (4.1)

∂

∂x′
(ρu′2 + pl − p̃) = 0, (4.2)

∂nu′

∂x′
= 0. (4.3)

Integrating equations (4.1) to (4.3) from upstream (denoted by subscript 0) to far downstream

(denoted by subscript H), it transpires that, independent of the detailed shock structure,

−ρHu
′
H = ρ0Us, (4.4)

ρHu
′2
H + plH = ρ0U

2
s + pl0, (4.5)

−nHu
′
H = n0Us, (4.6)

where ρ0 = (1 − α0)ρl0 and ρlH = (1 − αH)ρlH .

The shock pressure, plH , may be written as

plH =

(

pl0 − pv +
2Υ

R0

)(
RH

R0

)−3κ

+ pv − 2Υ

RH
, (4.7)

where the polytropic index κ is set to unity in order that the bubble temperature finally be back

to T0. For adiabatic bubbles, κ needs to be replaced with the specific ratio γg. It follows from

equations (4.4) and (4.6) that

nH =

[

(1 − α0)

(
pl0 +B

plH +B

) 1
γ

+
4π

3
n0R3

H

]−1

. (4.8)

With the aid of equations (4.7) and (4.8), the void fraction αH corresponding to plH can be deter-

mined.
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From equations (4.4) and (4.5), the steady shock speed becomes

Us =

√
√
√
√

plH − pl0

ρ0

(

1 − ρ0

ρH

) , (4.9)

and the induced velocity far downstream of the shock front is then given by

uH = u′H + Us =

(

1 − ρ0

ρH

)

Us. (4.10)

These steady shock relations are similar to those of Matsumoto & Kameda (1996). It is readily shown

that the shock speed (4.9) reduces to the sonic speed (3.15) if the shock strength is infinitesimal.

Consequently, the shock Mach number may be defined as Ms = Us/c.

4.2 Comparison to experiment

To validate the continuum bubbly flow model, we simulate the experiment of Kameda et al. (1998) in

which a spatially uniform bubble distribution was carefully created. We consider shock propagation

(with shock pressure plH = 2.157pl0) in an SF6/silicone-oil monodisperse mixture of α0 = 0.0024

and Rref
0 = 0.613 mm. The corresponding Peclet number for heat conduction is PeT = 3770 (see

the definition of PeT in appendix B). Note that the large value of PeT means that the thermal

boundary layer inside the bubble is thin compared to the bubble radius. The bubbles thus tend

to behave adiabatically; the adiabatic relation (2.24) with κ = γg = 1.09, rather than equation

(2.17), is solved. In addition, vapor pressure of the silicone oil at the room temperature is negligible

and is set to zero in the computation. Given the shock strength and the adiabatic assumption, the

shock Mach number is computed as Ms = 1.4. The steady shock relations with κ = γg are initially

imposed by a diaphragm at x = 0.

The comparison is made in figure 4.1 that shows the time history of the ensemble-averaged liquid

pressure at x = 1.462 m. In their experiment, the liquid pressure evolution is averaged over ten

experimental runs. The simulation well reproduces the amplitude and phase of the oscillations in
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Figure 4.1: Evolution of the averaged liquid pressure for shock propagation in an SF6/silicone-oil
mixture of α0 = 0.0024 and Rref

0 = 0.613 mm.

the averaged liquid pressure (so-called relaxation oscillations). The oscillation period τ is about

0.2 ms so that the wavelength is approximately Usτ ≈ 6 cm. On the other hand, the mean bubble

spacing is estimated as n−1/3 = 7.4 mm. It is therefore concluded that the continuum bubbly flow

model is accurate since these length scales satisfy the continuum assumption or the scale separation

constraint.

4.3 Effects of polydispersity on shock dynamics

We now consider unsteady and steady shock propagation through polydisperse bubbly liquids and

quantify the effects of polydispersity on the averaged shock dynamics. As an example, we compute

shock propagation (with shock pressure plH = 2pl0) in an air/water mixture of α0 = 0.005 at

STP where the equilibrium bubble size is lognormally distributed about Rref
0 = 10 µm and with

the standard deviation, σ, ranging from 0 to 0.7. Given the shock strength and the isothermal

assumption in equation (3.15), the corresponding shock Mach number is computed as Ms = 1.4 for

all σ. The steady shock relations with κ = 1 are initially imposed by a diaphragm at x = 0. We

judge steadiness by observing the first peak of the relaxation oscillations; if the peak pressure is

unchanged, the shock propagation can be considered to be in a steady state.
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4.3.1 Unsteady shock propagation

The unsteady shock propagation for the cases with σ = 0 and 0.7 is investigated in figure 4.2 where

the spatial evolution of the bubble radius for different equilibrium sizes (R∗
0 = 0.25, 0.5, 1, 2, 4) is

plotted to interpret the individual bubble dynamics. It is seen that the (high-frequency) precursory

pressure wave precedes the primary shock wave and propagates essentially with the sonic speed of

(pure) water. Whereas the precursory pressure wave in the monodisperse mixture is damped out,

that in the polydisperse case is still on the decay. This may be due to the fact that the bubble size

distribution decreases the attenuation of high-frequency waves as seen in figure 3.2. It also turns

out that only the small-sized bubbles can respond to such high-frequency excitation, for the natural

frequency of such small bubbles is comparable with or higher than the forcing frequency. As observed

in the low-frequency regime of the linear waves in figure 3.2, the bubble size distribution with σ = 0.7

smoothes the relaxation oscillations in the averaged pressure and void fraction distributions that

appear in the monodisperse case with σ = 0. It should be noticed that the different-sized bubbles

oscillate with different phases in the neighborhood of the primary shock front.

Figure 4.3 presents the spatial evolution of the averaged liquid pressure and the different-sized

bubbles (in the polydisperse mixture) at two different times at which the larger-sized bubbles still

show radial oscillations (with less effective bubble-dynamic damping). The shock profile in the

averaged pressure seems unchanged during this period, and the shock propagation can thus be

considered to be steady, regardless of unsteadiness associated with the individual bubble dynamics.

In other words, the bubble size distribution yields an apparent damping mechanism of the averaged

shock dynamics. In this example, we can say that the effect of polydispersity dominates over

the single-bubble-dynamic damping since the individual bubble dynamics have minor impact on the

averaged shock dynamics. Because the bubbles with different sizes can oscillate with different phases

as in the linear wave propagation in section 3.4.2, the phase cancellations in a polydisperse bubble

cloud occur locally and the polydisperse cloud does not oscillate in volume (or in void fraction) in

the volume-averaging sense. This collective effect thus leads to the smoothed shock structure.
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4.3.2 Steady shock structure

The steady shock structures in the averaged liquid pressure are plotted in figure 4.4 with varying

the standard deviation σ in the lognormal distributions (2.10). The position where the averaged

pressure is (pl0 +plH)/2 is set at x = 0. It transpires that the averaged shock structure becomes less

oscillatory and the first peak become less steep as the bubble size distribution broadens. That is,

the broader distribution can yield the more effective apparent damping, for the phase cancellation

effect is emphasized with increasing σ. If the distribution is sufficiently broad (σ = 0.7), the shock

profile in both averaged pressure and void fraction fields is practically monotonic; the polydisperse

bubble cloud does not show oscillations in the void fraction due to the phase cancellations among
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the different-sized bubbles and can be regarded to behave quasistatically in spite of the individual

bubble dynamics. Such a smoothed shock profile in a polydisperse mixture was experimentally

identified by Beylich & Gülhan (1990).

Finally, we check the the continuum model limitation. For the lognormal distributions (2.10),

the mean bubble spacing is computed by

l =

(
3α0

4π

)− 1
3

exp

(
3σ2

2

)

Rref
0 . (4.11)

For the case of α0 = 0.005 and σ = 0.7, we have l ≈ 20Rref
0 = 0.2 mm, which is much shorter than the

wavelength of the smoothed shock profile in figure 4.4; the scale separation constraint is adequately

satisfied. However, there may be an issue with the interaction between the largest bubbles, but this

is difficult to assess.

4.4 Effects of other parameters

We further conduct parametric studies of the probable bubble size, Rref
0 , and the initial void fraction,

α0, and investigate their effects on the steady shock structures. In all the examples presented here,

we also discuss the effects of the bubble size distributions using the lognormal function (2.10) with

σ = 0 and 0.7.

The effect of the probable bubble size Rref
0 is examined in figure 4.5, which shows the averaged

liquid pressure distributions for steady shocks (with shock strength plH = 2pl0) propagating in an

air/water mixture of α0 = 0.005 at STP. We consider three probable bubble sizes Rref
0 = 5 µm, 10 µm

and 20 µm. The spatial coordinate is normalized by Rref
0 . For the monodisperse cases, the first peak

in the relaxation oscillations decreases with increasing Rref
0 ; the bubble-dynamic damping depends

on the bubble sizes and is critical to the averaged shock structures in the monodisperse mixture.

However, the inclusion of the broad bubble size distribution leads to the fact that the shock profiles

coincide in the normalized coordinate. Namely, the dynamics of the polydisperse bubble cloud are

insensitive to the individual bubble dynamics, which are deemphasized by the apparent damping
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Figure 4.5: Effect of the probable bubble size, Rref
0 , on steady shock propagation in an air/water

mixture of α0 = 0.005 at STP. Ms ≈ 1.4 for all the cases.
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associated with the broad distribution.

The effect of the initial void fraction α0 is explored in figure 4.6 which presents the averaged

pressure distributions for steady shocks (with shock strength plH = 2pl0) in an air/water mixture of

Rref
0 = 10 µm at STP. We consider two initial void fractions α0 = 0.001 and 0.005; the correspond-

ing (isothermal) sonic speeds (3.15) of the mixture in the unperturbed states are c = 312 m/s and

142 m/s, respectively. In the normalized coordinate, xωN (Rref
0 )/c, where ωN (Rref

0 ) is the isother-

mal natural frequency for Rref
0 , the averaged shock structures coincide for both monodisperse and

polydisperse cases. That is, the initial void fraction simply changes the propagation speed, but the

shock profile remains similar.

4.5 Bubble screen problems

Bubble screens are a useful problem in understanding the fundamental physics of shock/bubble-cloud

interactions and are used to prevent damage of submerged structures due to UNDEX (Domenico,

1982). Reflection and transmission of linear wave propagation through a bubble screen were formu-

lated by Carstensen & Foldy (1947) and Commander & Prosperetti (1989). Here, shock/bubble-

screen interaction is considered as an application example of the bubbly flow computations.
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Figure 4.7: Spatial evolution of the averaged liquid pressure for shock propagation through an
air/water bubble screen of α0 = 0.005 and Rref

0 = 50 µm. The screen is placed between the dotted
lines. At t = 0, the precursory wave reaches a probe just downstream of the screen.

One-dimensional shock propagation through an air-bubble screen of α0 = 0.005 at STP in water

is now computed with the initial void fraction distribution:

α =







α0, if 0 < x < L,

ǫ, otherwise,

(4.12)

where 0 < ǫ ≪ α0 and L = 2 cm. The equilibrium bubble size in the screen (0 < x < L) is

lognormally distributed about Rref
0 = 50 µm and with σ = 0 and 0.7. The incident, right-going

shock with strength plH = 5pl0 is initially placed at x < 0.

The snapshots of the averaged liquid pressure distributions are shown in figure 4.7. At the left
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Figure 4.8: Evolution of the liquid pressure for the transmitted waves.

interface (x = 0), the incident shock reflects as a rarefaction wave and transmits as a shock due to

the fact that the acoustic impedance of the screen is smaller than that of water (i.e., ρc < ρlcl). The

transmitted shock trapped in the screen keeps reflecting at the interfaces, and the pressure inside the

screen eventually increases to the incident shock pressure. We see that the bubble size distribution

smoothes out the oscillatory structure of the trapped waves.

The pressure just downstream of the screen is presented in figure 4.8. The precursory waves

propagating with the sonic speed of water are measured at t = 0. Note that for the case with no

bubble screen, the probe measurement would show an instantaneous jump to plH at t ≈ 0. The

bubble size distribution with σ = 0.7 increases the amplitude of the precursory wave because the

distribution decreases the attenuation of high-frequency waves (see figure 3.2). The transmitted

shock waves leave the screen at late times, and the liquid pressure increases in a step-wise manner

because of the reflections of the trapped waves in the screen. As expected, the distribution makes

the averaged pressure evolution less oscillatory and broadens the averaged shock width. This implies

that the polydisperse bubble screen may be capable of more effectively cushioning UNDEX impulsive

loading than the monodisperse screen, but there is still a need to quantify the scattering effect in

each realization in order to further investigate the practical implications.
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4.6 Summary

One-dimensional shock propagation in bubbly liquids was simulated to quantify the effects of poly-

dispersity on the averaged shock dynamics. The steady shock relations were derived and employed

as the initial conditions. The comparison to the experiment of Kameda et al. (1998) demonstrated

that the present method is capable of resolving the oscillatory shock structure that appears in the

monodisperse case. The numerical experiments revealed that the averaged shock structure becomes

less oscillatory as the bubble size distribution broadens. If the distribution is sufficiently broad,

the shock profile is practically monotonic as experimentally identified by Beylich & Gülhan (1990).

Because the different-sized bubbles can oscillate with different frequencies, phase cancellations in

a polydisperse mixture occur locally. For cases with the broad size distributions, the polydisperse

cloud does not oscillate in volume (or in void fraction) due to the phase cancellations and can be

considered to behave quasistatically, regardless of individual bubble dynamics. In this case, the

effect of polydispersity dominates over the single-bubble-dynamic damping.
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Chapter 5

Dynamics of cavitation clouds

This chapter concerns the dynamics of cavitation clouds caused by the structural interaction with

an underwater shock. First, the classical UNDEX/FSI theories of Cole (1948) and Taylor (1950)

are reviewed, and the present FSI model with which we simulate the experiment of Rajendran &

Satyanarayana (1997) is presented and verified. One-dimensional cloud cavitation with monodisperse

and polydisperse nuclei is then simulated to clarify the fundamental mechanism of the inception and

collapse of cavitation bubbles.

5.1 Sequence of underwater shock events

The sequence of events of interest in UNDEX can be summarized as follows:

• A solid explosive such as trinitrotoluene (TNT) detonates and rapidly produces a gas bubble

with very high pressure.

• The gas bubble expands and produces a strong shock that propagates spherically in the ambient

water.

• The shock interacts with interfaces such as the solid target, the seabed and the sea surface.

• There often appear tension waves in water due to structural deformation during reflection or

acoustic impedance mismatch.
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• The resulting tension waves can cause cloud cavitation, and violent collapse of the cloud of

cavitation bubbles may follow.

Particularly, we are now interested in the interaction of UNDEX shocks with the target and the

subsequent cloud cavitation. The cloud collapse can account for erosion of the submerged structures

(Brennen, 1994, 1995). In the following, we review Cole’s empirical formula for the shock evolution

and Taylor’s fluid-structure interaction model. These classical theories are employed in the present

simulations.

5.2 Modeling of underwater shock problems

5.2.1 Cole’s formula for shock evolution

As the spherical shock propagates outward, it can be regarded as a linear wave that attenuates as

1/r where r is the distance from the center of the bubble that is the product of the detonation

of a condensed explosive. Following Cole (1948), the typical evolution of the shock pressure may

be represented by an instantaneous pressure increase (with the peak pressure ps) followed by an

exponential decay (with the time constant τ):

pl(t; z, rs,ms) = pl0(z) + ps(rs,ms) exp

(

− t

τ(rs,ms)

)

, (5.1)

where z is the underwater depth. The peak pressure and time constant depend on the standoff

distance, rs, and (the TNT equivalent of) the charge mass, ms, and are empirically given by

ps = 52.2

(

m
1/3
s

rs

)1.13

[MPa], (5.2)

τ = 96.5m1/3
s

(

m
1/3
s

rs

)−0.22

[µs], (5.3)

where the parameters are based on the SI units.

Suppose that the standoff distance is far larger than the dimension of the target, we can treat
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Figure 5.1: Schematic of Taylor’s fluid-structure interaction problem.

the spherical wave (5.1) as a one-dimensional (right-going) wave:

pl(x, t) =







pl0, if x > clt,

pl0 + ps exp
(

x−clt
clτ

)

, otherwise.

(5.4)

Note that the waves are assumed to propagate with the (constant) sonic speed of water, cl.

5.2.2 Taylor’s free plate model

Consider the fluid-structure interaction problem of Taylor (1950) in which an UNDEX plane shock

interacts with a movable rigid plate as depicted in figure 5.1. The plate is assumed to be “free” and

“air-backed,” meaning that the plate dynamics depend only on the pressure force from the water

side. It is also assumed that cavitation does not occur even when water is under tension.

Let pi and pr be the pressures of the incident and reflected waves, respectively, at the plate

surface (x = 0). Newton’s second law requires

mp
dup

dt
= pi + pr, (5.5)

where mp is the mass of the plate per unit area and up is the plate velocity. It is assumed that the

acoustic relation holds:

pr = pi − ρlclup. (5.6)
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Figure 5.2: Evolution of the wall pressure with different values of ψ.

From equations (5.5) and (5.6) with pi = ps exp(−t/τ) and up(0) = 0, the plate velocity and the

reflected pressure at x = 0 are written as

up(t) =
2psτ

mp(1 − ψ)

[

exp

(

−ψt
τ

)

− exp

(

− t

τ

)]

> 0, (5.7)

pr(t) =
ps

1 − ψ

[

(1 + ψ) exp

(

− t

τ

)

− 2ψ exp

(

−ψt
τ

)]

, (5.8)

where the dimensionless parameter ψ is defined as ψ = ρlclτ/mp. The evolution of the plate

displacement is described by

xp(t) =
2psτ

2

mp(1 − ψ)

[
1

ψ

{

1 − exp

(

−ψt
τ

)}

−
{

1 − exp

(

− t

τ

)}]

, (5.9)

and the final displacement is thus

xp(∞) =
2psτ

2

mpψ
=

2psτ

ρlcl
. (5.10)

The evolution of the resulting pressure (i.e., superposition of the incident and reflected waves)
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in 0 < x < clt is

pl(x, t;ψ) = pl0 + ps

[

exp

(

−x+ clt

clτ

)

+
1 + ψ

1 − ψ
exp

(
x− clt

clτ

)

− 2ψ

1 − ψ
exp

(

ψ
x− clt

clτ

)]

. (5.11)

Specifically, the temporal evolution of the pressure on the plate wall is

plw(t;ψ) = pl0 +
2ps

1 − ψ

[

exp

(

− t

τ

)

− ψ exp

(

−ψt
τ

)]

. (5.12)

Note that the wall pressure shows an instantaneous increase of the double incident shock strength

at the collision time (i.e., plw(0;ψ) = pl0 + 2ps), regardless of the value of ψ. It is readily shown

that the minimum pressure is given by

plw(tmin;ψ) = pl0 +
2ps

1 − ψ

[

exp

(
2 lnψ

1 − ψ

)

− ψ exp

(
2ψ lnψ

1 − ψ

)]

< pl0, (5.13)

where tmin = 2τ(ψ − 1)−1 lnψ.

The wall pressure history with varying the value of ψ is plotted in figure 5.2. Unlike the stationary

wall case (ψ = 0), the plate motion can yield tension in water and this tension wave can thus cause

cavitation near the plate. Because the plate with smaller inertia more promptly responds to the

shock loading, the time to achieve the minimum pressure decreases as the plate mass mp decreases.

However, the duration of the tension part increases with increasing mp (or decreasing ψ). This

implies that Taylor’s FSI parameter ψ will affect cavitation inception dynamics that depend strongly

on the duration of negative pressure as well as its amplitude.

5.2.3 Boundary conditions with plate dynamics

If the plate displacement is sufficiently small, we can incorporate the plate dynamics as boundary

conditions in an Eulerian frame; specifically, we substitute uw = −up into the reflective boundary

conditions (3.14) where uw is the induced fluid velocity at x = 0 and up is updated by solving

equation (5.5). The small displacement condition will be satisfied if the final displacement (5.10) is
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Figure 5.3: Comparison of the theoretical and computed liquid pressure distributions in Taylor’s
problem with ps = 10pl0 and ψ = 20 in pure water (no bubbles).

far smaller than the relaxation length of the UNDEX shock; namely

xp(∞)

clτ
=

2ps

ρlc2l
≪ 1, (5.14)

where the denominator, ρlc
2
l , is 2.2 GPa for water. This suggests that the implementation of the

moving wall boundary conditions will be valid for shock pressures up to several megapascals.

In figure 5.3, the reflection of the UNDEX shock (ps = 10pl0 ≈ 1 MPa) at the plate (ψ =

20, x = 0) is simulated based on the nonlinear Euler equations for non-cavitating water (CFL =

0.5, ∆x = clτ/2000, α0 = 0). The initial pressure and velocity perturbations due to the shock

wave are determined with the acoustic relation. The reflective boundary conditions with the plate

dynamics are implemented at the left boundary (x = 0); the nonreflective boundary conditions

with the incoming wave evaluation are imposed at the right boundary (x = clτ). Note that this

example adequately satisfies the small displacement constraint (5.14). The computation shows good

agreement with the theoretical prediction, indicating that the linear theory is reasonably applicable

to shock problems in this pressure range.
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Figure 5.5: An example of the evolution of pressure measured at the plate center (Rajendran &
Satyanarayana, 1997).

5.2.4 Model problems

In figure 5.4, the configuration of the present model problem that replicates that of Eldridge et al.

(1950) and Rajendran & Satyanarayana (1997) is presented. One side of the circular plate is covered

with an air-filled cylindrical tube, and the plate is loaded from the other side. The plate is assumed

to be rigid so that Taylor’s FSI model can be employed. The intent is to observe cloud cavitation

and its subsequent collapse near the surface of a shock-loaded plate.

In the experiment of Rajendran & Satyanarayana (1997), an air-backed steel plate (300× 250×

4 mm, mp = 31.4 kg/m2) was loaded by a shock due to UNDEX with z = 2 m, rs = 0.8 m and
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ms = 1 g. Figure 5.5 shows typical pressure evolution measured at the plate center. They claimed

that the two impulses that follow just after the UNDEX shock reflection are due to the collapse

of cavitation bubbles near the loaded plate. With their parameters and Cole’s formulas (5.2) and

(5.3), the peak pressure and relaxation time of the UNDEX shock are computed as ps = 4.98 MPa

and τ = 15.2 µs, respectively. Assuming that the cylindrical tube attached to the plate is massless,

the corresponding Taylor’s FSI parameter is computed as ψ = 0.72. For comparative purposes, the

different value of ψ is also considered. Because of the additional mass of the cylindrical tube, the

smaller value (e.g., ψ = 0.1) may be better to replicate their experiment.

5.3 One-dimensional cloud cavitation

With the neglect of the wave diffraction effect in the model problem in figure 5.4, one-dimensional

cloud cavitation caused by the interaction of the UNDEX shock and the free plate is simulated

based on the continuum bubbly flow model and Taylor’s theory. We now consider the shock with

ps = 4.98 MPa and τ = 15.2 µs and the free plate with ψ = 0.1 and 0.72. The shock front is initially

located three computational cells (3∆x = 3Rref
0 ) away from the plate surface at x = 0; the shock-

induced velocity is determined from the steady shock relation (4.10). The air nuclei size in water

(T0 = 20 ◦C, z = 2 m) is assumed lognormally distributed about Rref
0 = 50 µm and with σ = 0 and

0.7. The initial nuclei concentration is set to be α0 = 10−5 that may be a representative value for

tap water (Kedrinskii, 2005). In the following, we observe the dynamics of cavitation clouds in the

inception and collapse stages and also discuss the effect of polydispersity on the collapse dynamics.

5.3.1 Inception process

In figure 5.6, we observe the evolution of the shock reflecting from the plate with ψ = 0.1 and the

subsequent cloud cavitation in the case of monodisperse nuclei. The nuclei are compressed by the

shock and show some oscillations in volume behind the shock front. Despite the fact that the initial

nuclei concentration is as small as 10−5, the sharp shock front decays due to their bubble-dynamic
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Figure 5.6: Spatial evolution of the averaged liquid pressure (top) and the void fraction (bottom)
for the UNDEX shock reflecting from the free plate with ψ = 0.1. The time is measured from when
the incident shock collides with the plate at x = 0.

effect as it evolves. The following tension wave leads to the growth of the cavitation bubbles. The

relaxation tail of the reflected shock exhibits oscillations in the averaged pressure field in accordance

with the volumetric oscillations of the cavitation clouds. The case with decreasing the plate inertia

(ψ = 0.72) is presented in figure 5.7. Now that the plate responds to the loading more promptly,

the relaxation tail of the shock shortens. As a result, the cloud expansion is more violent and the

corresponding pressure rise is augmented.

The wall pressure histories for the cases with ψ = 0.1 and 0.72 are compared in figure 5.8.

For reference, we also plot the non-cavitating solutions (5.12) in which the minimum (or the most

negative) wall pressures for ψ = 0.1 and 0.72 are encountered at tmin = 0.078 ms and 0.036 ms,
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Figure 5.7: As figure 5.6, but with ψ = 0.72.

0 0.1 0.2 0.3
−2

0

2

4

6

8

10

t [ ms]

p
l
w

[M
P

a
]

 

 
ψ = 0.1  w/ cavitation
ψ = 0.1  w/o cavitation
ψ = 0.72  w/ cavitation
ψ = 0.72  w/o cavitation

Figure 5.8: The computed wall pressures in figures 5.6 and 5.7 and the non-cavitating solu-
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Figure 5.9: As figure 5.6, but for cloud collapse at late times.

respectively. The time for the minimum pressures is longer than the isothermal natural period

of bubble oscillations, 2π/ωN(Rref
0 ) = 0.017 ms. It should be noticed that the negative pressure

duration (at which water is under tension) substantially disappears due to cavitation caused by the

structural interaction with ψ = 0.1. In this case, the decay time tmin is about five times as long

as the period of bubble oscillations, so that the nuclei tend to respond to the pressure forcing in a

quasistatic manner. In other words, the inception of cloud cavitation can occur immediately after

the pressure falls below the vapor pressure. The tension wave with ψ = 0.72, on the contrary, leads

to the negative pressure duration because of the inception delay. This example thus suggests that

the cavitation inception is sensitive to the rate of change in liquid pressure to negative values.
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Figure 5.10: As figure 5.7, but for cloud collapse at late times.

5.3.2 Collapse of cavitation clouds

The cavitation clouds in figures 5.6 and 5.7 begin to collapse and the shock forms from the plate

surface as presented in figures 5.9 and 5.10, respectively. Note that the cloud collapse in the case

of ψ = 0.72 starts earlier due to the observation that the wall pressure with increasing ψ returns to

the ambient pressure more quickly in the non-cavitating case (see figure 5.2). The resulting shock

pressure increases to the ambient pressure as the shock evolves. Behind the shock front, the clouds

exhibit some oscillations in void fraction (or in volume); the cloud dynamics lead to oscillatory

shock structures in the averaged pressure field as seen in shock propagation through monodisperse

bubbly liquids in chapter 4. It is more obvious in the case of ψ = 0.1 that the violent collapse yields

remarkable increases in the averaged pressure. However, the shock induced by the cloud collapse
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is far weaker than the incident shock and cannot explain the cavitation reloading as observed in

Rajendran & Satyanarayana (1997). Hence, in this particular example, the one-dimensional cloud

collapse is not violent enough to produce strong shocks that can account for the cavitation reloading.

5.3.3 Cavitation with polydisperse nuclei

We now consider cavitation with polydisperse nuclei and investigate the effects of nuclei size distribu-

tions on the averaged dynamics of cavitation clouds. As an example, we compute the UNDEX/FSI

problem using the lognormal distributions (2.10) of air nuclei sizes with σ = 0 and 0.7. It is assumed

that the bubbles behave adiabatically (κ = γg = 1.4).

In figure 5.11, we observe the evolution of the shock reflecting from the plate with ψ = 0.72

and the subsequent cloud cavitation. Behind the shock front, the different-sized nuclei bubbles (in

the polydisperse case) oscillate with different frequencies. In this example with σ = 0.7, the phase

cancellation effect is so strong (compared to the individual bubble dynamics) that the void fraction

distribution is smoothed out. Moreover, the growth of the cavitation cloud with polydisperse nuclei

is more gradual, for the larger bubbles respond to external forcing less promptly as seen in the bubble

radius distribution. Note that the nuclei bubbles grow to a similar size, regardless of the equilibrium

sizes (unless the surface tension is effective enough to hinder the bubble expansion). Also note that

the dimensions of the resulting cavitation bubbles with polydisperse nuclei are larger than in the

monodisperse case even though the void fractions of the clouds near the plate are similar. This may

be due to the fact that the initial bubble number density decreases as the distribution broadens:

n0 = α0

(
4π

3
Rref3

0

)−1

exp

(

−9σ2

2

)

. (5.15)

Noting that the number density change is substantially negligible, the cavitation bubbles with poly-

disperse nuclei need to further expand to reach the same void fraction of cavitation clouds.

Figure 5.12 shows the evolution of the cavitation clouds collapsing from the plate at a late time.

It is seen that the collapsing bubbles in the polydisperse case oscillate with different frequencies.
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The resulting phase cancellations eliminate violent cloud collapse in the void fraction distribution

despite the individual bubble collapse. The averaged liquid pressure is also smoothed out because

of the gradual cloud behavior. Hence, if the distribution is sufficiently broad, the phase cancellation

effect plays a major role in the collapse stage and the averaged cloud dynamics are insensitive to

the individual bubble dynamics.

5.4 Summary

The dynamics of cavitation clouds caused by the structural interaction with an underwater shock

were simulated based on the classical UNDEX/FSI theories of Cole (1948) and Taylor (1950). Com-

putations of one-dimensional cloud cavitation in monodisperse nuclei were performed to examine

the inception and cloud collapse. The cavitation inception is shown to be sensitive to the rate of

change in liquid pressure to negative values. If the relaxation time of the tension wave is sufficiently

large, the inception can occur immediately after the pressure falls below the vapor pressure. It also

transpires that the one-dimensional cloud collapse leads to oscillatory shock structures in the aver-

aged liquid field but is not violent enough to produce strong shocks that can account for structural

damage from the cavitation reloading. The computation with polydipserse nuclei shows that the

phase cancellations among the collapsing bubbles with broad nuclei size distributions can eliminate

violent cloud collapse in the averaged dynamics.
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Chapter 6

Shock theory of a bubbly liquid in

a deformable tube

The goal of this chapter is to develop the steady shock theory for a bubbly liquid in a deformable

cylindrical tube. The quasi-one-dimensional versions of the ensemble-averaged equations are formu-

lated to take into account structural deformation. The steady shock relations are derived and the

nonlinear effect due to the gas-phase nonlinearity is examined. For validation purposes, experiments

are conducted in which a free-falling steel projectile impacts the top of an air/water mixture in

a polycarbonate tube, and stress waves in the tube material are measured to infer wave speeds.

Finally, the model limitations are discussed.

6.1 Quasi-one-dimensional FSI equations

In what follows, we include the effect of FSI in the (one-dimensional) ensemble-averaged equations

derived in section 2.1.1. Let A be the internal cross-sectional area of the cylindrical tube. We

now make the following simplifications: (a) the tube area changes are small and gradual in the flow

direction; (b) the tube inertia is negligible; (c) the liquid pressure is only balanced by the hoop stress;

and (d) the viscous shear stress on the inner wall is negligible. As a result of these assumptions, the

tube area is given quasistatically by (Tijsseling, 1996)

A = A0

[

1 +
2a0

Eh
(pl − pl0)

]

, (6.1)



72

where a is the internal tube radius, h is the wall thickness, E is Young’s modulus of the tube

material, and the subscript 0 denotes the initial (undisturbed) values. Note that the effect of p̃ is

ignored in this expression.

With a conventional control volume analysis, the quasi-one-dimensional versions of equations

(2.1), (2.2) and (2.9) (in terms of the cross-sectionally averaged quantities) become

∂ρA

∂t
+
∂ρuA

∂x
= 0, (6.2)

∂ρuA

∂t
+

∂

∂x

[
ρu2A+ (pl − p̃)A

]
= pl

∂A

∂x
, (6.3)

∂nA

∂t
+
∂nuA

∂x
= 0. (6.4)

With the aid of equation (6.1), the momentum equation (6.3) is rewritten as

∂ρuA

∂t
+

∂

∂x

[

ρu2A+ (pl − p̃)A− A0a0

Eh
p2

l

]

= 0. (6.5)

6.2 Steady shock speeds

6.2.1 Sonic speeds

We first derive the sonic speeds of the bubbly liquid with and without FSI. These are needed to

define the shock Mach numbers. For convenience, we define the bulk modulus of the mixture, K, as

1

K
=

1 − α

Kl
+

α

Kg
, (6.6)

where Kl and Kg are the bulk moduli of the liquid and gas, respectively. For Tait liquids, we

have Kl = γ(pl + B). If the effects of the vapor and the surface tension are neglected, we may

take Kg = κpl where κ is the polytropic index of the gas. Note that in the low-frequency limit,

the polytropic index approaches unity so that the bubbles behave isothermally (Brennen, 1995).

With the mixture bulk modulus (6.6), the sonic speed of the mixture (in which the bubbles behave
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quasistatically) becomes

c =

√

K

ρ
=

√
√
√
√

Kl/ρ

1 + α
(

Kl

Kg
− 1
) . (6.7)

In the dilute limit (α→ 0),

c→ cl =

√

Kl

ρl
, (6.8)

where cl is the sonic speed of the liquid alone.

We now include the effect of the structural compressibility on the mixture sonic speed (6.7). The

Korteweg–Joukowsky wave speed for the mixture may be defined and evaluated as

cJ =

(
1

A

∂ρA

∂pl

∣
∣
∣
∣
κ

)− 1
2

=
c√

1 + η
=

√
√
√
√

Kl/ρ

1 + α
(

Kl

Kg
− 1
)

+ ηl

, (6.9)

where η and ηl determine the extent of fluid-structure coupling for the cases of the mixture and the

liquid alone, respectively:

η =
2Ka0

Eh
, ηl =

2Kla0

Eh
.

This wave speed (6.9) for the mixture is identical to that of Kobori et al. (1955). It yielded good

agreement with their experiments. Note that the structural compressibility reduces the linear wave

speed in the mixture (i.e., cJ < c). In the dilute limit,

cJ → clJ =
cl√

1 + ηl
, (6.10)

where clJ is the (non-dispersive) wave speed for the case of the liquid alone.

Skalak (1956) quantified the tube inertia and the Poisson’s ratio effects on linear waves (also see

Tijsseling et al., 2008). Even for the case of pure liquids, the inclusion of the tube inertia leads to

wave dispersion. Skalak’s extended theory of water hammer predicts the following wave speeds for

the pure liquid case:

c1, c2 = cl

[

r3 ∓
√

r23 − 4r22(1 − ν2)(2r1 + r2)

2(2r1 + r2)

]1/2

, (6.11)
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where

r1 =
ρl

ρs

a0

h
, r2 =

c2s
c2l
, r3 = 2r1r2 + r2 + r22(1 − ν2), cs =

√

E

ρs(1 − ν2)
.

Here, cs, ρs and ν are the (longitudinal) sonic speed, the density and the Poisson’s ratio of the

tube material, respectively. The wave speeds c1 and c2 are the extended versions of the Korteweg–

Joukowsky wave speed clJ (for infinite wave length) and the precursory wave speed, respectively.

For example, water (cl = 1480 m/s) in the polycarbonate tube (E = 2.13 GPa, ρs = 1200 kg/m3,

ν = 0.37, a0 = 3h = 19.1 mm) used in the experiments (see section 6.3) would yield

clJ = 553 m/s, c1 = 547 m/s, cs = 1430 m/s, c2 = 1440 m/s.

It follows that the speed c1 is only slightly lower than the Korteweg–Joukowsky speed clJ . Hence, if

the wave length is sufficiently long (compared to the tube radius a0), the effects of the tube inertia

and of Poisson coupling are negligible. We also notice that the precursory wave speed c2 is very

close to the sonic speed of the tube material.

6.2.2 Steady shock relations

Following the derivation of the steady shock relations (without FSI) in section 4.1, we develop those

for a shock in a bubbly liquid in a deformable cylindrical tube. Integrating the quasi-one-dimensional

equations (6.2), (6.5) and (6.4), in a frame moving with the shock speed Us, from upstream (denoted

by subscript 0) to far downstream (denoted by subscript H), we find

−ρHu
′
HAH = ρ0UsA0, (6.12)

ρHu
′2
HAH + g(plH) = ρ0U

2
sA0 + g(pl0), (6.13)

−nHu
′
HAH = n0UsA0, (6.14)



75

where u′ is the velocity measured in a coordinate system moving with Us, and

g(pl) = A0

(

1 − 2pl0a0

Eh

)

pl +
A0a0

Eh
p2

l . (6.15)

From equations (6.12) and (6.13), the steady shock speed becomes

Us =

√
√
√
√

g(plH) − g(pl0)

ρ0A0

(

1 − ρ0A0

ρHAH

) , (6.16)

and the induced velocity far downstream of the shock front is then given by

uH = u′H + Us =

(

1 − ρ0A0

ρHAH

)

Us, (6.17)

where the mixture density, ρH , at plH is determined with the isothermal bubble assumption as in

section 4.1. Noting that the shock speed (6.16) approaches the Joukowsky wave speed (6.9) in the

limit of plH → pl0, the shock Mach number may be defined as Ms = Us/cJ . It should also be noticed

that in the limit of infinite structural stiffness (E → ∞), the steady shock relations derived in this

section reduce to the standard result for bubbly flows without FSI.

6.2.3 Gas-phase nonlinearity

We document the steady shock relations for the case of bubbly water with ηl = 6.14 where the value

of ηl is computed based on the properties of the polycarbonate tube that is used in the experiments

described in section 6.3. For simplicity, we ignore the effects of vapor pressure and surface tension.

Figure 6.1 demonstrates the effects of the initial void fraction and the shock pressure on the shock

speed and Mach number. Note that plH = pl0 indicates the linear wave cases, in which the shock

speeds (6.16) and (4.9) reduce to the sonic speeds (6.9) and (6.7), respectively. It follows from

figure 6.1 (left) that the reduction in the shock speed due to structural compressibility is minimized

for finite values of α0 since the gas-phase compressibility dominates over the compressibility of the

water and structure. It is also seen that the shock speeds are greatly reduced by even a tiny void
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Figure 6.1: Steady shock speeds (left) and shock Mach numbers (right) as a function of initial void
fraction in bubbly water with ηl = 6.14 (FSI) and ηl = 0 (no FSI). The curves are parameterized by
shock pressure plH/pl0 = 1, 2.5, 5, 10 where pl0 = 101 kPa.

fraction. Moreover, unless the void fraction is extremely small, the finite shock strength yields a

significant deviation from the linear wave speed due to the nonlinearity associated with the gas-

phase compressibility. As a result, the shock Mach number increases as the void fraction increases

as seen in figure 6.1 (right). We note that the shock Mach numbers are only slightly greater than

1 for the case of water alone (α0 = 0) since the pressure perturbations (in water) up to several

hundred atmospheres remain very weak (Thompson, 1972). This fact was experimentally confirmed

by Nagayama et al. (2002) and Inaba & Shepherd (2010).

To quantify the effect of the gas-phase nonlinearity, we further examine the steady shock relations.

For the case of infinitesimal shock strength (∆pl = plH − pl0 ≪ pl0), the shock speed (6.16) can be

approximated by

Us ≈ cJ

(

1 +
∆pl

K̂

)

, (6.18)

where K̂ is defined as

K̂ = cJ

(

dUs

d∆pl

∣
∣
∣
∣
∆pl=0+

)−1

. (6.19)

In the limits of α0 → 0 (pure liquid) and η → 0 (no FSI), we find K̂ → 4Kl/(γ + 1). Thus, K̂ may

be called the modified bulk modulus. It follows from equation (6.18) that the linear theory (where
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the relation Us = cJ holds) is effectively valid under the condition K̂ ≫ ∆pl. Hence, the modified

bulk modulus, K̂, of the mixture can be regarded as a measure of the nonlinearity in the sense that

larger values of K̂ make the linear theory applicable to a broader range of the shock pressures. The

modified bulk moduli of bubbly water (with and without FSI) are plotted as a function of α0 in

figure 6.2. It turns out that even a small void fraction yields a several-orders-of-magnitude reduction

in the value of K̂. This implies that the applicability of the linear theory is limited in the case of

bubbly mixtures. To verify this observation, in figure 6.3 we plot the steady shock speeds (6.16) and

(4.9) for the shock strength ∆pl ranging from 0 to 5pl0. It is obvious that the shocks in pure water

(α0 = 0) propagate essentially with clJ for the FSI case (or cl for the no-FSI case) in this pressure

range due to the fact that the modified bulk moduli are much larger than the shock strength. In

other words, the linear theory is sufficient to predict the shock speeds for both FSI and no-FSI

cases. However, for the case of bubbly water, the shock speeds deviate from the sonic speeds of the

mixtures as the shock strength increases. Since the bulk moduli of the mixtures are comparable

to the shock strength, the term ∆pl/K̂ in equation (6.18) cannot be ignored. In such cases, the

gas-phase nonlinearity comes into play and the shock theory is needed to accurately predict the wave

speeds.

6.3 Water-hammer experiments

6.3.1 Experimental setup

Experiments were conducted in order to investigate the steady shock theory. The experimental

apparatus depicted in figure 6.4 is similar to that of Inaba & Shepherd (2010), and consists of a

vertical polycarbonate tube (PCT0021.25, San Diego Plastics; E = 2.13 GPa, ρs = 1200 kg/m3,

a0 = 3h = 19.1 mm) filled with an air/water mixture. A barrel is mounted above the tube and a

1.50-kg cylindrical steel projectile falls under gravity, g. The free-falling projectile (with drop height

Hp = 2 m or 0.5 m) impacts a 0.42-kg polycarbonate buffer inserted into the top of the tube rather

than directly hitting the bubbly liquid surface. Stress waves in the tube are measured using six
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Figure 6.4: Schematic of the experimental setup. The apparatus was constructed by K. Inaba and
J. E. Shepherd; the bubble generator was created based on the idea of T. Sanada.

strain gauges (SR-4, Vishay; denoted by g1 to g6 in figure 6.4) placed at intervals of 100 mm along

the tube and oriented in the hoop direction; the signals are processed using a signal conditioning

amplifier (2300 System, Vishay), and are stored in a digital recorder (NI 6133, National Instruments;

sampling rate 2.5 MHz). Strain detection at the strain gauge location g2 triggers the recording at

time t = 0.

6.3.2 The method of bubble generation

The bubbles are created using a bubble generator consisting of an aluminum plate and capillary tubes

(TSP020150, Polymicro Technologies; inner diameter 20 µm) as shown in figure 6.4; the intent is to

create small bubbles and as homogeneous a mixture as possible. Up to an initial void fraction of

α0 = 0.0056, 91 capillary tubes are used; for higher void fractions, the number increases to 217. The

capillary tubes are located in the drilled holes of the plate and are fastened with epoxy. One side
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5 mm 

t 

Figure 6.5: Evolution of the compression wave that propagates downward through an air/water
mixture for Hp = 2 m and α0 = 0.0081. The white lines denote the estimated wave front position.
The frame rate is 20000 frames per second (fps). The bubble visualization was conducted with the
help of J. S. Damazo and R. Porowski.

of the plate is tightly covered with a chamber. The chamber is pressurized, and the air is injected,

due to the pressure head, into the fluid column. The injected bubbles rise upward to the column

surface, and eventually escape from an air outlet in the buffer.

Distilled water is used for the case of no air injection; otherwise, tap water is used. Note that the

number of tiny bubbles present in tap water is negligible compared to that of the injected air. The

water temperature is kept at 23 ◦C so that the vapor pressure is much smaller than one atmosphere.

Images of the bubbles are captured by a high-speed video camera (Phantom v7.3, Vision Re-

search). A white LED lamp (Model 900445, Visual Instrumentation Corporation) is used for back-

lighting. A water jacket is attached outside the tube to minimize image distortion. The evolution

of the compression wave for the case of Hp = 2 m and α0 = 0.0081 is shown in figure 6.5 where

the wave front position is also estimated from the measured wave speed (Us = 355 m/s) that is

computed in section 6.3.5. It follows that the predicted wave position generally corresponds to

where the bubbles are collapsing. Moreover, the bubble size is found to be broadly distributed (i.e.,

the mixture is polydisperse), and the mixture is nearly homogeneous. The detailed images of the
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Figure 6.6: Examples of the images of bubble fission (left) and re-entrant jets (right). The frame
rates are 25000 fps and 79000 fps, respectively.

compressed bubbles are presented in figure 6.6. The bubble fission in figure 6.6 (left) may be due

to a Rayleigh-Taylor-type instability (Brennen, 2002). The re-entrant jets in figure 6.6 (right) are

induced by interaction with the shock wave (Johnsen & Colonius, 2009).

The initial void fraction (up to one percent) is estimated based on the difference in the column

height with and without the air injection. Uncertainty in this measurement is ±0.1 mm except

for the case of the highest void fraction, α0 = 0.01, in which the column surface waves increase

the uncertainty to ± 0.5 mm. In the water-hammer experiments, the following void fractions were

tested: α0 = 0 (no air injection), 0.0013± 0.0001, 0.0024± 0.0001, 0.0056± 0.0001, 0.0081± 0.0001

and 0.010 ± 0.001.

6.3.3 The buffer dynamics

In the present experiments, the liquid pressure is unknown. Hence, the buffer velocity ẋb (or the

piston velocity uH in the shock theory) is critical to estimate to validate the shock theory. Three

experimental runs were conducted for each case of Hp and α0. For every run, the buffer position

xb (represented by the two lines with a 10-mm separation seen in figure 6.4) was recorded using

the high-speed camera with recording rate of 32000 frames per second, and the position history was

extracted from the movies with MATLAB image processing. Strain detection at the strain gauge g2

triggers the recording with delay 0.3 ms. As an example, in figure 6.7 we exhibit the evolution of
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Figure 6.7: Evolution of the buffer position for Hp = 2 m and α0 = 0.

the buffer position for the case of Hp = 2 m and α0 = 0. The projectile impacts the buffer at time

t1; the projectile and the buffer separate after the collision. The buffer then impacts the top of the

fluid column at time t2. The projectile again impacts the buffer at time t3. It should be pointed out

that the buffer motion from t1 to t2 compresses the air in the gap between the column surface and

the bottom of the buffer. The wave that results from the air compression thus propagates through

the fluid column before the buffer collides directly with the column surface. However, the air inertia

is negligible compared to the buffer inertia, so that the resulting wave will have smaller energy than

that generated by the direct impact of the buffer.

The buffer dynamics from t2 to t3 may be described by Newton’s second law (Dashpande et al.,

2006; Shepherd & Inaba, 2009). For simplicity, the buffer is treated as a rigid body and wall friction

is neglected. The equation of motion of the buffer is then given by

mbẍb = −∆plA0, (6.20)

where mb is the mass of the buffer and the right-hand side represents the pressure force acting on

the bottom of the buffer. In the linear case, this pressure force may be approximated by ∆plA0 =

ρ0cJ ẋbA0 as can be derived from equations (6.12) and (6.13). Integrating equation (6.20) once and
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specifying the initial condition at time t2, we get a solution of the form,

ẋb = ẋb(t2) exp

(

− t− t2
τ

)

, (6.21)

where τ is the relaxation time for the exponential decay:

τ =
mb

ρ0cJA0
. (6.22)

Thus, the evolution of the buffer position is expressed by an exponential function.

The measured buffer positions between t2 and t3 were fitted to an exponential by the least-

squares method. In addition, the time t2 was determined by observing the still images taken from

the high-speed camera. The resulting buffer velocity ẋb(t2) and relaxation time τ are presented in

figure 6.8. We find that the buffer velocity ẋb(t2) is only weakly dependent on the void fraction and

therefore seems to depend only on the drop height Hp; it is 7.9 ± 0.5 m/s and 2.9 ± 0.2 m/s for

Hp = 2 m and 0.5 m, respectively, where the error bounds represent the standard deviation of all

the runs. It follows from figure 6.8 (right) that the linear theory (6.22) is in qualitative agreement

with the experimental data and is particularly good for the case of no air injection. Moreover, the
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Figure 6.9: An example of the evolution of hoop strains without FSI (left) and the locations of the
wave fronts (right). The dotted lines (in the left plot) denote the threshold values used to determine
the wave fronts for the right plot.

relaxation time decreases as the initial buffer velocity increases. Since a stronger shock leads to a

more violent bubble collapse, the buffer momentum may decay more rapidly due to bubble-dynamic

energy dissipation. Note that if the relaxation time is longer than the time required for the shock

to reach the last strain gauge (g6), the piston velocity will not change within the measurement

period. In section 6.3.5, the shock speeds are calculated from the hoop strain measurements, and

are compared to the predicted values (6.16) from the steady shock theory.

6.3.4 Precursory wave speeds

In order to verify the physical properties of the tube material, stress waves were generated by

hammering the top of the tube and, with no water in the tube, wave speeds were computed. The

evolution of the hoop strains and the calculated wave speeds are presented in figure 6.9. For compar-

ative purposes, three threshold strain values (30, 40 and 50 percent of the maximum strain measured

at the strain gauge g1) are used to determine the position of the wave front. Then, the wave speed

was obtained from the slope of a linear least-squares fit to the wave front positions; the standard

deviation of the slope was also computed. It transpires that the wave speed is fairly constant and

the dispersion resulting from the thresholding is very small. Furthermore, the computed wave speed

is found to agree with the theoretical value of cs = 1430 m/s discussed in section 6.2.1. We also
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Figure 6.10: An example of the evolution of hoop strains with FSI (left) and the locations of the
precursory wave fronts (right) for Hp = 2 m and α0 = 0. The dotted lines (in the left plot) denote
the threshold values used to determine the wave fronts for the right plot.

note that within the measurement period, the error associated with the sampling rate (±0.4 µs) or

the inter-gauge distance (±1 mm) is negligible compared to that of the thresholding.

We now examine the precursory waves for the tube filled with water. Figure 6.10 shows the

precursory wave evolution and the wave front location for Hp = 2 m and α0 = 0. The thresholding

is again based on 30, 40 and 50 percent of the minimum strain measured at g1. It is seen that the

precursory waves travel slightly faster than the sonic speed, cs, of the tube material and are followed

by the primary waves. The wave structure becomes more oscillatory as time progresses. Wave

dispersion results from structural oscillations in which the tube inertia comes into play (Skalak,

1956). It should be pointed out that the precursory wave front leads to contraction in the hoop

direction as illustrated in figure 6.11. Behind the shock front, the shock pressure expands the tube

in the radial direction. As a result of mass (or volume) conservation, the section in front of the shock

needs to elongate in the axial direction. The resulting stresses propagate with a precursory wave

speed that is close to the sonic speed of the tube material. Since the precursor propagates faster

than the shock, the separation between the precursory and shock fronts expands and the dispersion

grows as the waves evolve (see figure 6.10). In the early stage of this evolution, the dispersive effect

may be ignored, and the elongation in the axial direction simply results in contraction because of

the Poisson effect (in both the radial and hoop directions).
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Figure 6.11: Illustration of the tube deformation (top) and the corresponding x–t diagram showing
the relation of the precursory and primary waves (bottom).

6.3.5 Primary wave speeds

Here, we examine the shock (or primary) waves, which produce larger-amplitude hoop strains than

the precursory waves. These water-hammer experiments are characterized by the drop height Hp

and the initial void fraction α0. To confirm repeatability in the measurements, three experimental

runs were conducted for each case of Hp and α0 as mentioned in section 6.3.3. In what follows, we

choose some particular cases, and investigate the wave structures and the propagation speeds.

The evolution of the hoop strains for the case of Hp = 2 m and α0 = 0 is shown in figure 6.12

(left). Every strain gauge records the primary wave following a small-amplitude precursor. It also

records a wave reflected from the tube bottom, and significant wave dispersion as seen in figure 6.10

(left). Moreover, the primary wave noticeably decays within the measurement period; thus the decay

time is comparable to the relaxation time of the piston velocity computed in figure 6.8. Consequently,

the unsteadiness of the buffer dynamics cannot be ignored.

In figure 6.12 (right), the primary wave speeds are computed as described in section 6.3.4. To

determine the positions of the wave fronts, three different threshold strain levels are chosen (30,
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Figure 6.12: An example of the evolution of hoop strains with FSI (left) and the locations of the
primary wave fronts (right) for Hp = 2 m and α0 = 0. The dotted lines (in the left plot) denote the
threshold values used to determine the wave fronts for the right plot.
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Figure 6.13: As figure 6.12, but with Hp = 2 m and α0 = 0.0081.
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Figure 6.14: As figure 6.12, but with Hp = 0.5 m and α0 = 0.0081.
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αmean
0 0 0.0013 0.0024 0.0056 0.0081 0.010

∆α0 ≪ 1 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.001
521 ± 5 502 ± 1 459 ± 2 404 ± 2 353 ± 4 313 ± 2

Hp = 2 m 524 ± 2 499 ± 3 458 ± 1 386 ± 2 356 ± 2 329 ± 2
524 ± 3 492 ± 2 475 ± 3 388 ± 1 356 ± 1 321 ± 2

508 ± 4 477 ± 5 421 ± 13 259 ± 3 200 ± 8 168 ± 5
Hp = 0.5 m 524 ± 4 440 ± 9 385 ± 3 242 ± 4 201 ± 13 170 ± 5

515 ± 5 446 ± 13 368 ± 3 257 ± 2 200 ± 10 183 ± 2

Table 6.1: Primary wave speeds [m/s] for various Hp and α0. The error bounds in the wave speeds
are standard deviations.

40 and 50 percent of the maximum strain measured at the strain gauge g1 before the reflected

wave is observed). The computed speed (521 m/s) is in reasonable agreement with the Korteweg–

Joukowsky wave speed (clJ = 553 m/s), and the the dispersion due to the thresholding is very small.

This suggests that the linear theory is effectively valid for the case of pure water, even though the

wave is dispersive and unsteady.

The bubbly water case (Hp = 2 m, α0 = 0.0081) is presented in figure 6.13. Now that the

bubble dynamics play a role, the structural response manifests more complex structures than in

the pure liquid case. The comparison of the figures 6.12 and 6.13 (left) reveals that the bubbles

reduce the tube deformation. This is due to the fact that some fraction of the potential energy of

the projectile is absorbed as bubble-dynamic work. Moreover, the wave speed is reduced by the

bubbles. To further see the effect of the bubbles, the case of the lower drop height (Hp = 0.5 m,

α0 = 0.0081) is presented in figure 6.14. In this case, the wave propagation is evidently unsteady.

As pointed out in section 6.3.3, the wave due to the air compression propagates before the primary

wave; the larger-amplitude primary wave catches up the preceding wave so that the wave front

steepens as it evolves. The unsteadiness may also result from the fact that the relaxation time for

the piston velocity and the measurement time are comparable. As a result of the unsteadiness,

the threshold value becomes more critical, and the standard deviation in the computed wave speed

becomes larger. We should note that the lower piston velocity reduces the wave speed. This is the

effect of the gas-phase nonlinearity as pointed out in section 6.2.3.

The wave speeds are computed for each run, and are organized in table 6.1. The difference in
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Figure 6.15: Estimated shock pressure as a function of α0.

the wave speeds among the three runs is small. As expected, the wave speed decreases as the void

fraction increases. Furthermore, for the cases with air injection, a reduction in the drop height of

the projectile slows down the wave propagation.

We now compare the steady shock theory to the experimental data. Despite the unsteady buffer

dynamics, we use the buffer velocity ẋb(t2) = 7.9 m/s (or 2.9 m/s) for Hp = 2 m (or 0.5 m) to

complete the steady shock relations in section 6.2.2. Since vapor pressure at the room temperature

is negligible compared to the atmospheric pressure and surface tension may not be very important

for the bubble sizes in the experiments, we neglect the vapor pressure and the surface tension (i.e.,

pv = 0, Υ = 0) in computing the shock relations. The theoretical shock pressure is presented in

figure 6.15. The structural compressibility reduces the shock pressure because a part of the impact

energy is absorbed into tube deformation. The bubble compressibility also dissipates energy so that

the shock pressure decreases as the void fraction increases. Figure 6.16 compares the measured

wave speeds to the theory including both the sonic and shock speeds. The error bars documented

in table 6.1 are small and omitted for clarity. The measured speeds for the cases with air injection

clearly show differences from the sonic speeds, and those for Hp = 2 m are larger than those for

Hp = 0.5 m. These indicate the effect of the gas-phase nonlinearity on the wave speeds. The shock

theory with FSI is found to more accurately capture the trend with increasing α0 than the shock
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Figure 6.16: Theoretical and measured wave speeds as a function of α0.

theory without FSI and the linear theory. It is therefore concluded that both FSI and the nonlinear

effect need to be considered to accurately estimate the propagation speeds of finite-amplitude waves

in mixture-filled pipes. However, the agreement between the present theory and the experiments is

qualitative rather than quantitative.

Because the buffer (or piston) velocity considerably changes within the measurement period, it

may be irrelevant to directly compare the measured wave speeds to the theoretical predictions with

the assumption of constant piston velocities. Nonetheless, the differences between the measured wave

speeds and the sonic speeds clearly indicate the need to take into account the gas-phase nonlinearity.

We can say that the present FSI shock theory is the first step to include the nonlinear effect. The

model limitations are discussed below to try to account for the discrepancy between the present

theory and the experiments.



91

6.4 Model limitations

One of the most obvious limitations in the theory is related to the assumption of steady wave prop-

agation. The strain evolution in figures 6.12 to 6.14 (left) demonstrates unsteady wave propagation

in the sense that the piston velocity decays during the measurement period. Hence, the unsteadiness

will degrade the model validity. If one quantifies the decay rate in the relaxation process, both the

structural and the bubble-dynamic damping need to be included in the thoery. The viscoelasticity

of the polycarbonate may affect the wave speed and damping (Meißner & Frank, 1977; Gally et al.,

1979; Suo & Wylie, 1990; Covas et al., 2004). The unsteady wall friction may also have some im-

pact on the relaxation (Bergant, 2001). If bubble fission occurs after passage of the shock (as in

figure 6.6), the fission damping needs to be included in bubble-dynamic modeling (Brennen, 2002).

Moreover, because polydispersity results in different frequency responses for different-sized bubbles,

phase cancellations can cause an additional damping of the wave propagation.

Other limitations are the neglect of the tube inertia and the quasi-one-dimensional assumption.

Since the waves are dispersive (due to the tube inertia) and of finite wave length, the wave speed as

a function of the wave length cannot be accurately predicted by the current model. To quantify the

effect of the tube inertia, a four-equation model describing both the fluid and the tube dynamics

could be calculated (see for example Tijsseling, 1996).

6.5 Summary

A quasi-one-dimensional conservation law governing continuum bubbly flows in a deformable cylin-

drical tube was formulated based on the ensemble-averaged equations, and the steady shock relations

were derived. The Korteweg–Joukowsky wave speed for the case of bubbly liquids was introduced,

and the shock Mach number was formally defined. The modified bulk modulus of the mixture was

introduced to reveal the importance of the gas-phase nonlinearity to shock propagation. The present

FSI shock theory is found to be in better agreement with the measured wave speeds than the linear

theory or the shock theory without FSI. This suggests that both FSI and the gas-phase nonlinearity



92

need to be taken into account to accurately predict the propagation speeds of finite-amplitude waves

in bubbly-liquid-filled pipes.
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Chapter 7

Concluding remarks

7.1 Summary and conclusions

The dynamics of bubbly flows with a distribution of equilibrium bubble sizes have been explored

based on the continuum approach in order to quantify the effects of polydispersity on the average

mixture dynamics. Fluid-structure interaction problems have also been considered to examine the

coupling effects on the dynamics of cavitation clouds and shock propagation through a mixture-filled,

deformable tube. The contributions and findings of this work can be summarized as follows.

The continuum bubbly flow equations incorporating nuclei size distributions were derived based

on the ensemble-averaging technique. The single-bubble-dynamic model that includes the effects

of thermal, viscous and acoustic damping was also introduced to close the continuum model. It

was confirmed based on the ergodic hypothesis that the volume averages will be equivalent to the

ensemble-averaged quantities if one appropriately chooses averaging volume under the scale sepa-

ration assumption. One-way-coupling flow computations suggested that the different-sized bubbles

oscillate with different frequencies and the phase cancellations can be regarded as an apparent

damping of the averaged dynamics of polydisperse mixtures.

The high-order-accurate FV method and the time-marching scheme with the time-step splitting

technique were developed and shown to accurately resolve wave dispersion and stiffness in continuum

bubbly flows. For the present computations, the fifth-order monotonicity-preserving FV-WENO

reconstruction is implemented in the characteristic space and the HLLC Riemann solver is used to
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compute the numerical flux.

Numerical simulations of one-dimensional shock propagation in bubbly liquids were conducted.

The steady shock relations were derived and used as the initial conditions. The comparison to the

experiment of Kameda et al. (1998) demonstrated that the present model can accurately predict

the oscillatory shock structure that appears in the monodisperse case. The numerical experiments

showed that the averaged shock structure becomes less oscillatory as the bubble size distribution

broadens. If the distribution is sufficiently broad, the shock profile is practically monotonic as

experimentally identified by Beylich & Gülhan (1990). Because the different-sized bubbles can

oscillate with different frequencies, phase cancellations in a polydisperse mixture occur locally. For

the broad distribution case, the polydisperse cloud does not oscillate in volume due to the phase

cancellations and can be regarded to behave quasistatically, regardless of single bubble dynamics.

In this case, the effect of polydispersity dominates over the single-bubble-dynamic damping.

The dynamics of cavitation clouds caused by the structural interaction with an underwater shock

were considered using the classical theories of Cole (1948) and Taylor (1950). Computations of one-

dimensional cloud cavitation with monodisperse nuclei were performed to examine the inception

and cloud collapse. The cavitation inception is shown to be sensitive to the rate of change in liquid

pressure to negative values. If the decay time of the tension wave is sufficiently large, the inception

can occur immediately after the pressure falls below the vapor pressure. It also transpires that the

one-dimensional cloud collapse leads to oscillatory shock structures in the averaged liquid field but

is not violent enough to produce strong shocks that can account for structural damage from the

cavitation reloading. The case with polydipserse nuclei reveals that the phase cancellations with

broad nuclei size distributions can eliminate violent collapse in the averaged dynamics.

The quasi-one-dimensional conservation law governing continuum bubbly flows in a deformable

cylindrical tube was formulated, and the steady shock relations were derived. The modified bulk

modulus of the mixture was introduced, and the nonlinear effect due to the gas-phase compressibility

was shown to be important for finite-amplitude wave propagation. The present FSI shock theory

was found to be in better agreement with the measured wave speeds than the linear theory or
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the shock theory without FSI. This suggests that both FSI and the gas-phase nonlinearity need to

be taken into account to accurately estimate the propagation speeds of finite-amplitude waves in

bubbly-liquid-filled pipes.

7.2 Suggestions for future work

The present method has been shown to accurately capture the averaged dynamics of dilute bubbly

flows in which direct interactions among the bubbles are negligible. The continuum bubbly flow

model assumes cold liquids, indicating that the vapor pressure is small compared to the atmospheric

pressure and the bubbles are inertially controlled (Brennen, 1995). The spherical-bubble assumption

that implies no fission and coalescence of the bubbles is also employed for computational efficiency.

However, these simplifications may be invalid in practice. The applicability of the continuum model

needs to be extended for more accurate computations.

If a flow regime is disperse, the continuum approach may be applicable even to flows with

high void fractions. One of the challenges is to take into account mutual interactions between the

neighboring bubbles where local scattering due to the dynamics of individual bubbles can directly

affect their neighbors. In this situation, there would be a need to modify a Rayleigh-Plesset-type

equation to include the local scattering effect.

In the case of hot liquids (close to the boiling point), the liquid-phase thermodynamics will

come into play, and the mixture-averaged energy equation needs to be solved. It is also necessary to

develop a computational technique to efficiently and properly predict the damping of the dynamics of

thermally controlled bubbles for practical purposes. This extension will be of significant importance

to cavitating flow computations in rocket engines.

The fission of collapsing bubbles often occurs in many situations. Once the fission is permitted

in the modeling, the bubble number conservation does not hold. For engineering applications, a

simple model for the fission damping may be needed in the framework of Rayleigh-Plesset-type

computations (Brennen, 2002).
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Appendix A

Derivation of mixture-averaged

equations

In this appendix, the ensemble-averaged technique of Zhang & Prosperetti (1994) is reviewed in

sections A.1 and A.2, and the derivation of the mixture-averaged equations for polydisperse bubbly

flows with a model closure is presented in section A.3.

A.1 Preliminaries

A.1.1 Probability function

Consider an ensemble of N spherical bubbles in polydisperse bubbly flows arranged in a time-

dependent configuration, CN , that is defined as a set of quantities sufficient to uniquely specify the

dynamical state of the system at time t. The configuration may be defined as

a set of bubble centers y(i), (current) radiusR(i), equilibrium radiusR
(i)
0 , particle velocity

w(i) and bubble wall velocity Ṙ(i) where i = 1, 2, . . . , N .

Because the ensemble consists of a large number of realizations, it is convenient to introduce a

probability function, P(CN ; t) ≡ P(N ; t), to specify each realization. Specifically,

P(N ; t) dCN ≡ P(N ; t) d3y(1) dR(1) dR
(1)
0 d3w(1) dṘ(1)

× · · ·d3y(N) dR(N) dR
(N)
0 d3w(N) dṘ(N) (A.1)
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represents the probability of finding, at time t, a realization in which the state of the first bubble

is within d3y(1) of y(1), etc. Provided that fission and coalescence of the bubbles do not occur, the

probability function is conserved in time:

∂P
∂t

+

N∑

i=1

[

∇
y(i) ·

(

w(i)P
)

+
∂

∂R(i)

(

Ṙ(i)P
)

+ ∇
w(i) ·

(

ẇ(i)P
)

+
∂

∂Ṙ(i)

(

R̈(i)P
)]

= 0, (A.2)

where the dot denotes the substantial derivative. Note that the term associated with R
(i)
0 drops out

due to the insoluble gas assumption. A convenient normalization is

∫

dCN P(N ; t) = N !, (A.3)

with the integration over the complete range for each variable.

The reduced probability in which the configuration of the first K bubbles is prescribed is

P(K; t) =
1

(N −K)!

∫

dCN−K P(N ; t), (A.4)

where the integration is taken over the configuration of the last N − K bubbles. It follows from

equation (A.3) that
∫

dCK P(K; t) =
N !

(N −K)!
. (A.5)

Especially, the one-bubble probability function, P(1; t) ≡ P(y, R,R0,w, Ṙ; t), satisfies

∫

d3y dRdR0 d
3w dṘP(1; t) = N, (A.6)

so that the bubble number density per unit volume of the mixture is formally defined as

n(y, t) =

∫

dRdR0 d
3w dṘP(1; t). (A.7)
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The conditional probability of having the last N −K bubbles in a certain configuration, given that

the configuration of the first K bubbles is specified, is defined as

P(N −K|K; t) =
P(N ; t)

P(K; t)
, (A.8)

and is subject to the normalization,

∫

dCN−K P(N −K|K; t) = (N −K)!, (A.9)

in consequence of equations (A.3), (A.5) and (A.8).

By averaging equation (A.2) over the configuration of the last N −K bubbles, we find

∂P(K; t)

∂t
+

K∑

i=1

[

∇
y(i) ·

(

w(i)P(K; t)
)

+
∂

∂R(i)

(

Ṙ(i)P(K; t)
)

+ ∇
w(i) ·

(〈〈
ẇ(i)

〉〉

K
P(K; t)

)

+
∂

∂Ṙ(i)

(〈〈
R̈(i)

〉〉

K
P(K; t)

)]

= 0, (A.10)

where 〈〈·〉〉K is defined as

〈〈
ẇ(i)

〉〉

K
=

1

(N −K)!

∫

dCN−K P(N −K|K; t) ẇ(i), (A.11)

〈〈
R̈(i)

〉〉

K
=

1

(N −K)!

∫

dCN−K P(N −K|K; t) R̈(i). (A.12)

Assumimg that P vanishes in the integration limits, we can derive the bubble number density

conservation with the aid of equations (A.7) and (A.10):

∂n

∂t
+ ∇y · (nw) = 0, (A.13)

where the mean particle velocity, w, is

w(y, t) =
1

n(y, t)

∫

dR dR0 d
3w dṘP(1; t)w. (A.14)
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A.1.2 Volume fractions

To formally define volume fractions of each phase, we introduce the indicator function of the disperse

phase:

ζD(x;N) =
N∑

i=1

H
(

R(i) −
∣
∣
∣x − y(i)

∣
∣
∣

)

. (A.15)

The indicator function of the continuous phase is then given by ζC(x;N) = 1− ζD(x;N). Note that

ζD and ζC are geometrical entities that depend on time only indirectly through the time evolution

of the configuration. For future reference, the gradients of ζC are written as

∇ζC =

N∑

i=1

δ
(

R(i) −
∣
∣
∣x − y(i)

∣
∣
∣

) x − y(i)

R(i)
, (A.16)

∇
y(i)ζC = −δ

(

R(i) −
∣
∣
∣x− y(i)

∣
∣
∣

) x − y(i)

R(i)
, (A.17)

∂ζC
∂R(i)

= −δ
(

R(i) −
∣
∣
∣x− y(i)

∣
∣
∣

)

, (A.18)

where ∇ ≡ ∇x = (∂/∂x1, ∂/∂x2, ∂/∂x3)
T .

The volume fractions of the phases are defined as averages of the indicator functions over the

probability P(N ; t):

αC(x, t) =
1

N !

∫

dCN P(N ; t) ζC(x;N), (A.19)

αD(x, t) =
1

N !

∫

dCN P(N ; t) ζD(x;N). (A.20)

The definition (A.20) with the indicator function (A.15) gives

αD(x, t) = 1 − αC(x, t) =

∫

dR

∫

|x−y|≤R

d3y

∫

dR0 d
3w dṘP(1; t). (A.21)

The volume fraction of the disperse phase, αD, is generally called void fraction.
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A.2 Ensemble phase averaging

A.2.1 Continuous-phase averaging

Averages of field quantities pertaining to the continuus phase are defined as

〈fC〉(x, t) =
1

N !αC

∫

dCN P(N ; t) ζC(x;N) fC(x, t;N). (A.22)

The conditional averages with K bubbles fixed are

〈fC〉K(x, t|K) =
1

(N −K)!αC,K

∫

dCN−K P(N −K|K; t) ζC(x;N) fC(x, t;N). (A.23)

We first derive the expression for the gradient of 〈fC〉. From equation (A.16), we find

∇
(
αC〈fC〉

)
=

1

N !

∫

dCN P(N ; t)
[
ζC∇fC + fC∇ζC

]

= αC〈∇fC〉 +
1

N !

∫

dCN P(N ; t) fC

N∑

i=1

δ
(

R(i) −
∣
∣
∣x − y(i)

∣
∣
∣

) x− y(i)

R(i)
. (A.24)

Assuming that each term of the summation in equation (A.24) gives the same contribution and using

the conditional probability (A.8) with K = 1, equation (A.24) becomes

∇
(
αC〈fC〉

)
= αC〈∇fC〉 +

1

(N − 1)!

∫

dCN P(N ; t) fC δ
(

R(1) −
∣
∣
∣x− y(1)

∣
∣
∣

) x − y(1)

R(1)

= αC〈∇fC〉 +

∫

dC(1) P(1; t) δ
(

R(1) −
∣
∣
∣x − y(1)

∣
∣
∣

) x − y(1)

R(1)

×
∫

dCN−1 P(N − 1|1; t) fC . (A.25)

Noting that in evaluating the delta function, x must be taken on the bubble wall in the continuous

phase (ζC = 1, αC,1 = 1) and using the definition (A.23) with K = 1, equation (A.25) can be written
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as

∇
(
αC〈fC〉

)
= αC〈∇fC〉 +

∫

dR

∫

|x−y|=R

dSy ny

∫

dR0 d
3w dṘP(1; t) 〈fC〉1(x, t|1), (A.26)

where ny is the unit normal directed out of the bubble. Note that the integration in the above

equation is taken over all the bubbles that touch the fixed point x. If taking fC = 1, then we obtain

∇αC =

∫

dR

∫

|x−y|=R

dSy ny

∫

dR0 d
3w dṘP(1; t) =

∫

dR

∫

|x−y|=R

dSy ny n(y, t). (A.27)

From equation (A.27), equation (A.26) is equivalently written as

∇〈fC〉 = 〈∇fC〉

+
1

αC

∫

dR

∫

|x−y|=R

dSy ny

∫

dR0 d
3w dṘP(1; t)

[
〈fC〉1(x, t|1) − 〈fC〉(x, t)

]
. (A.28)

This relation shows that averaging and spatial differentiation do not commute.

We also derive the expression for the time derivative of 〈fC〉. From the definition (A.22),

∂

∂t

(
αC〈fC〉

)
=

1

N !

∫

dCN

[

P(N ; t)
∂̂fC

∂̂t
+ fC

∂P(N ; t)

∂t

]

ζC(x;N), (A.29)

where ∂̂/∂̂t is the partial time derivative with fixed x and CN . Substitution of equation (A.2) and

integration by parts yield

∂

∂t

(
αC〈fC〉

)
= αC

〈
∂fC

∂t

〉

+
1

N !

∫

dCN P(N ; t) fC

N∑

i=1

(

w(i) · ∇
y(i)ζC + Ṙ(i) ∂ζC

∂R(i)

)

. (A.30)

Substituting equations (A.17) and (A.18) into equation (A.30), we obtain

∂

∂t

(
αC〈fC〉

)
= αC

〈
∂fC

∂t

〉

−
∫

dR

∫

|x−y|=R

dSy

∫

dR0 d
3w dṘ

(

w · ny + Ṙ
)

P(1; t)〈fC〉1. (A.31)
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For fC = 1, the above equation reduces to

∂αC

∂t
= −

∫

dR

∫

|x−y|=R

dSy

∫

dR0 d
3w dṘ

(

w · ny + Ṙ
)

P(1; t), (A.32)

so that equation (A.31) can be rewritten as

∂〈fC〉
∂t

=

〈
∂fC

∂t

〉

− 1

αC

∫

dR

∫

|x−y|=R

dSy

∫

dR0 d
3w dṘ

(

w · ny + Ṙ
)

P(1; t)
[
〈fC〉1 − 〈fC〉

]
. (A.33)

This suggests that averaging and time differentiation do not commute.

At this stage, we can derive a transport theorem that applies for the derivation of the mixture-

averaged equations. Let uC be the velocity of the continuous phase. From equations (A.26) and

(A.31), we find

∂

∂t

(
αC〈fC〉

)
+ ∇ ·

(
αC〈fCuC〉

)
= αC

〈
∂fC

∂t
+ ∇ · (fCuC)

〉

−
∫

dR

∫

|x−y|=R

dSy

×
∫

dR0 d
3w dṘP(1; t)

[(

w · ny + Ṙ
)

〈fC〉1 − ny · 〈fCuC〉1
]

. (A.34)

At the bubble interfaces, the velocity field must satisfy the kinematic boundary condition,

w · ny + Ṙ = ny · uC(x, t;N). (A.35)

It follows from definition (A.23) that

(

w · ny + Ṙ
)

〈fC〉1 =
〈(

w · ny + Ṙ
)

fC

〉

1
, (A.36)

ny · 〈fCuC〉1 = 〈fCny · uC〉1 . (A.37)
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As a result, the integral term in equation (A.34) identically vanishes; namely

∂

∂t

(
αC〈fC〉

)
+ ∇ ·

(
αC〈fCuC〉

)
= αC

〈
∂fC

∂t
+ ∇ · (fCuC)

〉

. (A.38)

A special case, fC = 1, gives the evolution equation for αC :

∂αC

∂t
+ ∇ ·

(
αC〈uC〉

)
= αC〈∇ · uC〉. (A.39)

A.2.2 Disperse-phase averaging

When it comes to dealing with the disperse phase, we introduce particle averaging for quantities

associated with the bubbles, such as particle velocity, bubble radius and bubble wall velocity. Let

ϕ(i)(N ; t) be such quantities where the notation implies that the value of ϕ for the bubble i generally

depends on the entire configuration. We define the ensemble average for ϕ:

nϕ(x, t) =
1

N !

∫

dCN P(N ; t)
N∑

i=1

δ
(

x − y(i)
)

ϕ(i)(N ; t). (A.40)

Assuming that each bubble has the same contribution to the summation, the above relation reduces

to

ϕ(x, t) =
1

n

1

(N − 1)!

∫

dC1 P(1; t)δ
(

x − y(1)
) ∫

dCN−1 P(N − 1|1; t)ϕ(1)(N ; t). (A.41)

Suppose that ϕ(1) does not depend explicitly on the configuration of the other bubbles (i 6= 1), we

find

ϕ(x, t) =
1

n

∫

dR(1) dR
(1)
0 d3w(1) dṘ(1) P(1; t)ϕ(1)(1; t). (A.42)

According to the property of the delta function in equation (A.40), P and ϕ(1) are functions of x,

not y. Notice that the mean particle velocity, w, defined in equation (A.14) is a special case for this
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definition. We also define the average associated with bubbles of radius R,

ϕR(x, t) =
1

nR

∫

dR
(1)
0 d3w(1) dṘ(1) P(1; t)ϕ(1)(1; t), (A.43)

where nR is the number density of bubbles of radius R,

nR(y, R, t) =

∫

dR
(1)
0 d3w(1) dṘ(1) P(1; t). (A.44)

Note that according to this definition, RR = R. Also note that ϕ and ϕR are related by

nϕ(x, t) =

∫

dR(1) nR ϕR(x, R, t). (A.45)

From definition (A.43), we calculate the partial time derivative of nRϕR as

∂

∂t
(nRϕR) =

∫

dR
(1)
0 d3w(1) dṘ(1)

[

P(1; t)
∂̂ϕ(1)

∂̂t
+ ϕ(1) ∂P(1; t)

∂t

]

= nR

(

∂̂ϕ(1)

∂̂t

)

R

−
∫

dR
(1)
0 d3w(1) dṘ(1) ϕ(1)

[

∇ ·
(

w(1)P(1; t)
)

+
∂Ṙ(1)P(1; t)

∂R(1)
+ ∇

w(1) ·
(〈〈

ẇ(1)
〉〉

1
P(1; t)

)

+
∂
〈〈
R̈(1)

〉〉

1
P(1; t)

∂Ṙ(1)

]

. (A.46)

Because we assume that ẇ(1) and R̈(1) do not depend explicitly on the configuration of the other

bubbles (i 6= 1), the relations,
〈〈

ẇ(1)
〉〉

1
= ẇ(1) and

〈〈
R̈(1)

〉〉

1
= R̈(1), hold. Integration by parts

leads to

∂

∂t
(nRϕR) + ∇ ·

(

nR(ϕw)R

)

+
∂

∂R

(

nR

(

ϕṘ
)

R

)

= nR

(
∂ϕ(1)

∂t

)

R

, (A.47)

where ∂ϕ(1)/∂t is given by

∂ϕ(1)

∂t
=
∂̂ϕ(1)

∂̂t
+ w(1) · ∇ϕ(1) + Ṙ(1) ∂ϕ

(1)

∂R(1)
+ ẇ(1) · ∇

w(1)ϕ(1) + R̈(1) ∂ϕ
(1)

∂Ṙ(1)
. (A.48)
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By integrating equation (A.47) over R from 0 to ∞, we finally find

∂

∂t
(nϕ) + ∇ · (nϕw) = n

(
∂ϕ(1)

∂t

)

. (A.49)

A.3 Ensemble-averaged equations

A.3.1 Continuity and momentum equations

In order to derive the ensemble-averaged Euler equations for dilute bubbly flows, mixture density

and momentum are defined as

〈ρ〉 = αC〈ρC〉, (A.50)

〈ρu〉 = αC〈ρCuC〉. (A.51)

Substitution of fC = ρC and ρCuC into equation (A.38) yields

∂〈ρ〉
∂t

+ ∇ · 〈ρu〉 = 0, (A.52)

∂〈ρu〉
∂t

+ ∇ · 〈ρuu〉 = −∇
(
αC〈pC〉

)
+ αCAC , (A.53)

where αCAC is given by equation (A.26):

αCAC =

∫

dR

∫

|x−y|=R

dSy ny

∫

dR0 d
3w dṘP(1; t)〈pC〉1. (A.54)

The correlations such as 〈ρu〉 and 〈ρuu〉 in equations (A.52) and (A.53) need to be expressed in

terms of 〈ρ〉 and 〈u〉. Because the velocity fluctuations caused by the bubble dynamics concentrate

in the vicinity of the bubbles, where the liquid is effectively incompressible (Prosperetti & Lezzi,
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1986), the density and velocity fluctuations can be assumed uncorrelated:

〈ρu〉 = αC〈ρC〉
︸ ︷︷ ︸

〈ρ〉

〈uC〉 = 〈ρ〉〈u〉, (A.55)

where 〈u〉 = 〈uC〉. Moreover, we introduce the kinematic Reynolds stress tensor,

MC = 〈uC〉〈uC〉 − 〈uCuC〉 = −
〈(

uC − 〈uC〉
)(

uC − 〈uC〉
)〉

. (A.56)

As a direct consequence, the continuity and momentum equations are rewritten as

∂〈ρ〉
∂t

+ ∇ ·
(
〈ρ〉〈u〉

)
= 0, (A.57)

∂〈ρ〉〈u〉
∂t

+ ∇ ·
(
〈ρ〉〈u〉〈u〉 + αC〈pC〉I

)
= αCAC + ∇ ·

(
〈ρ〉MC

)
, (A.58)

where I is an identity tensor.

When computing the vector quantity αCAC , we need to evaluate the integration over all the bub-

bles that touch the fixed point x. For convenience, we prefer to use the integration over the surface

of a fixed bubble (Zhang & Prosperetti, 1997) rather than directly use the exact definition (A.54).

Let r = x − y and we introduce

F(r,y) ≡ P(1; t)〈pC〉1(y + r, t|1), (A.59)

where the argument 1 denotes configuration (y, R, R0, w, Ṙ). Assuming that the probability

function and the ensemble-averaged continuous-phase pressure do not show a rapid change in space,

F may be expanded using Taylor’s theorem centered at x:

F(r,y) = F(r,x) − r · ∇F(r,x − h). (A.60)

Here, we employ the Lagrange form of the remainder with |h| < R. If the bubble sizes are suffi-
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ciently small compared to typical wavelengths in the averaged field, we can reasonably take h = 0.

Substitution of equation (A.60) into equation (A.54) gives

αCAC = αDA[pC ] −∇ ·
(
αDL[pC ]

)
, (A.61)

where A and L are given by

αDA[pC ] =

∫

dR0 d
3w dṘ

∫

dRP(1; t)

∫

|z−x|=R

dSz nz〈pC〉1(z, t|1), (A.62)

αDL[pC ] =

∫

dR0 d
3w dṘ

∫

dRP(1; t)R

∫

|z−x|=R

dSz nz nz〈pC〉1(z, t|1). (A.63)

Here, the argument 1 denotes configuration (x, R, R0, w, Ṙ). It is now clear that the integration

for αDA and αDL is taken over the surface of a bubble centered at x.

The pressure in the continuous phase, pC , is generally a function of the configurations of the N

bubbles. However, in the dilute limit, direct interactions among the bubbles may be minimized and

the bubble wall pressure (pbw = pC ||z−x|=R+) may depend only on the configuration of a bubble

centered at x. As a result, we find

〈pC〉1(z, t|1)
∣
∣
|z−x|=R+ = pbw(z, t|1). (A.64)

Since the bubbles are spherical, the bubble wall pressure must be uniform; namely

∫

|z−x|=R

dSz nz pbw(z, t|1) = 0, (A.65)

so that

αDA[pC ] = 0. (A.66)
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Also, the term αDL can be computed as

αDL[pC ] =
1

3
I

∫

dR0 d
3w dṘ

∫

dRP(1; t)Rpbw(t|1)

4πR2

︷ ︸︸ ︷∫

|z−x|=R

dSz =
4π

3
nR3pbw I. (A.67)

The last quantity to be determined is the kinetic Reynolds stress tensor (A.56). In the dilute

limit, this may be approximated by

MC ≈ −
〈(

〈uC〉1 − 〈uC〉
)(
〈uC〉1 − 〈uC〉

)〉

1

= −
∫

dR dR0 d
3w dṘ

∫

|x−y|≥R

d3yP(1; t)
(
〈uC〉1 − 〈uC〉

)(
〈uC〉1 − 〈uC〉

)
. (A.68)

If relative motion between the two phases is negligible, the velocity fluctuation due to the oscillations

of a bubble centered at y is

〈uC〉1 − 〈uC〉 ≈ ṘR2 x − y

r3
, (A.69)

where r = |x−y|. Substituting equation (A.69) into equation (A.68) and changing the bubble center

from y to x by Taylor’s theorem, we find

MC ≈ −4π

3
nR3Ṙ2 I. (A.70)

With equations (A.66), (A.67) and (A.70), the momentum equation (A.58) is written as

∂〈ρ〉〈u〉
∂t

+ ∇ ·
(
〈ρ〉〈u〉〈u〉 + αC〈pC〉I

)
= −∇

[
4π

3
n
(

R3pbw + 〈ρ〉R3Ṙ2
)]

. (A.71)

Furthermore, suppose that we can find bubbles equally in space, the void fraction can be expressed

by

αD(x, t) =

∫

dR dR0 d
3w dṘP(1; t)

∫

|x−y|≤R

d3y =
4π

3
nR3. (A.72)
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The momentum equation finally becomes

∂〈ρ〉〈u〉
∂t

+ ∇ ·
(
〈ρ〉〈u〉〈u〉 + αC〈pC〉I

)
= −∇

[

αD

(

R3pbw

R3
+ 〈ρ〉R

3Ṙ2

R3

)]

. (A.73)

For simplicity, we omit the angular brackets for the ensemble-averaged quantities. Moreover, we

replace the subscript C by l that denotes the liquid phase, and simply use α instead of αD. The

continuity (A.57) and the momentum equation (A.73) are then rewritten as

∂ρ

∂t
+ ∇ · (ρu) = 0, (A.74)

∂ρu

∂t
+ ∇ · (ρuu + plI) = ∇

[

α

(

pl −
R3pbw

R3
− ρ

R3Ṙ2

R3

)

︸ ︷︷ ︸

p̃

]

, (A.75)

where p̃ vanishes in the equilibrium state.

A.3.2 Bubble number conservation

Substituting ϕ(1) = 1 into equation (A.47), we find the conservation equation for the number density

of bubbles of radius R,

∂nR

∂t
+ ∇ · (nRwR) +

∂

∂R

(

nRṘR

)

= 0. (A.76)

From equation (A.49), the total bubble number density requires

∂n

∂t
+ ∇ · (nw) = 0. (A.77)

Due to the no-slip assumption, we may replace w with u, so that

∂n

∂t
+ ∇ · (nu) = 0. (A.78)
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Hence, the total bubble number density is conserved in time. The evolution equation for the void

fraction (A.72) is then described by

∂α

∂t
+ ∇ · (αu) = 3α

R2Ṙ

R3
. (A.79)

From equation (A.77), general transport theorem (A.49) becomes

∂ϕ

∂t
+ w · ∇ϕ− 1

n
∇ · [n (ϕw − ϕw)] =

(
∂ϕ(1)

∂t

)

. (A.80)

Specifically, for ϕ(1) = R and Ṙ, we find

Ṙ =
∂R

∂t
+ w · ∇R− 1

n
∇ ·
[
n
(
Rw −Rw

)]
, (A.81)

R̈ =
∂Ṙ

∂t
+ w · ∇Ṙ− 1

n
∇ ·
[

n
(

Ṙw − Ṙw
)]

. (A.82)

It follows from Zhang & Prosperetti (1994) that an ensemble-averaged Reyleigh-Plesset-type equa-

tion can be derived by directly averaging the equation of motion of the individual bubbles.

A.3.3 Model closure

To close the mixture model, there is a need to evaluate particle averaging ϕ(x, t) where ϕ represents

any of R3pbw, R3Ṙ2, R3 or R2Ṙ. For computational efficiency, we should consider the probability

function that is narrowly peaked around average values (R̂, ŵ, ˆ̇R) that are parameterized by R0:

P(1; t) ∝ δ
(

R− R̂(x, t;R0)
)

δ
(

w − ŵ(x, t;R0)
)

δ
(

Ṙ − ˆ̇R(x, t;R0)
)

f(R0). (A.83)

Here, the distribution of equilibrium radius, f(R0), is assumed uniform both in space and in time.

This assumption is validated by the no-slip assumption. The narrowly peaked probability function

implies that the bubble dynamics in the neighborhood of x coincide if the equilibrium radius is the

same. This implication suggests that wavelengths in the averaged flow are larger than the mean
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bubble spacing.

It follows from the narrow-peaked probability (A.83) that the particle-averaged quantity is com-

puted by

ϕ(x, t) =

∫ ∞

0

ϕ(x, t;R0)f(R0)dR0, (A.84)

where f(R0) satisfies
∫∞

0 f(R0)dR0 = 1.
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Appendix B

Dimensionless bubble-dynamic

equations

This appendix presents the normalization of the single-bubble-dynamic equations including the

reduced-order model of Preston et al. (2007). For clarity, the superscript asterisk that denotes

dimensionless variables is omitted in sections B.2 and B.3.

B.1 Nondimensional parameters

The single-bubble-dynamic time scale can be characterized by the natural frequency of bubble os-

cillations that depends on the equilibrium sizes (Brennen, 1995):

ωN =
1

R0

√

3κ
pl0 − pv

ρl0
+ (3κ− 1)

2Υ

ρl0R0
. (B.1)

The inverse of ωN may be approximated by R0

√

ρl0/pl0. Time is normalized by the time scale,

Rref
0

√

ρl0/pl0, for the probable size Rref
0 among polydisperse mixtures. All length scales are nor-

malized by Rref
0 . Nondimensional parameters governing the single bubble dynamics are a cavitation

number Ca, a Reynolds number Re, a Weber number Υ̂, and Peclet numbers Pe for heat and mass

transfers:

Ca =
pl0 − pv

pl0
, Re =

√
pl0

ρl0

Rref
0

νl
, Υ̂ =

pl0R
ref
0

Υ
, PeT =

√
pl0

ρl0

Rref
0

αT
, Peχ =

√
pl0

ρl0

Rref
0

D ,



113

Rref
0 [µm] 1 10 100 1000

Rref
0

√

ρl0/pl0 [s] 10−7 10−6 10−5 10−4

2π/ωN(Rref
0 ) [s] 2.59 × 10−7 3.48 × 10−6 3.63 × 10−5 3.64 × 10−4

Re 10.0 100 1000 10000

Υ̂ 1.39 13.9 139 1390
PeT 1.16 5.50 48.8 482
Peχ 0.416 4.16 41.6 416

Table B.1: Time scales and nondimensional parameters for air bubbles of different equilibrium radii
in water at STP. The air is assumed to behave isothermally (κ = 1). For bubbles of any size,
Ca = 0.977.

where νl is the kinematic viscosity of the liquid and αT is the heat diffusivity of the bubble contents.

The dimensionless natural frequency ω∗
N is now written as

ω∗
N =

1

R∗
0

√

3κCa +
2(3κ− 1)

Υ̂R∗
0

, (B.2)

where R∗
0 = R0/R

ref
0 (the asterisk denotes dimensionless quantities). We also introduce the normal-

ized radial coordinate (measured from the bubble center) and the pressure coefficients:

y =
r

R
, Cbw =

pbw − pl0

pl0
, Cp =

pl − pl0

pl0
.

For reference, table B.1 gives dimensional values of the time scale, Rref
0

√

ρl0/pl0, and the natural

period, 2π/ωN , for air/vapor bubbles in water at STP, and the nondimensional parameters.

B.2 The Gilmore equation

The dimensionless Gilmore equation is

RR̈

(

1 − Ṙ

C

)

+
3

2
Ṙ2

(

1 − Ṙ

3C

)

= H

(

1 +
Ṙ

C

)

+
RḢ

C

(

1 − Ṙ

C

)

. (B.3)
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Here, the enthalpy H and sonic speed C at the bubble wall are written as

H =
γ(pl0 +B)

γ − 1

[(
Cbw

pl0 +B
+ 1

)γ−1
γ

−
(

Cp

pl0 +B
+ 1

) γ−1
γ

]

, (B.4)

C =

√

γ(pl0 +B)

(
Cp

pl0 +B
+ 1

) γ−1
γ

+ (γ − 1)H, (B.5)

where the bubble wall pressure coefficient is given by

Cbw = pb − pl0 −
4

Re

Ṙ

R
− 2

Υ̂R
. (B.6)

In the incompressible limit (i.e., γ → ∞), it is readily shown that H → Cbw −Cp and C → ∞. As a

result, the Gilmore equation (B.3) reduces to the well-known Rayleigh–Plesset equation (Rayleigh,

1917),

RR̈+
3

2
Ṙ2 = Cbw − Cp. (B.7)

It is instructive to provide the computation of Ḣ in the Gilmore equation (B.3). From equa-

tion (B.4), we find

Ḣ =

(
Cbw

pl0 +B
+ 1

)− 1
γ

Ċbw −
(

Cp

pl0 +B
+ 1

)− 1
γ

Ċp, (B.8)

where Ċp is given and Ċbw is

Ċbw = ṗb +

(

4Ṙ

Re
+

2

Υ̂

)

Ṙ

R2
− 4

Re

R̈

R
. (B.9)

Substituting equations (B.8) and (B.9) into equation (B.3) and collecting terms involving R̈ on the

left-hand side, we finally obtain

RR̈

(

1 − Ṙ

C

)[

1 +
4

ReCR

(
Cbw

pl0 +B
+ 1

)− 1
γ

]

+
3

2
Ṙ2

(

1 − Ṙ

3C

)

= H

(

1 +
Ṙ

C

)

+
RḢrhs

C

(

1 − Ṙ

C

)

, (B.10)
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where Ḣrhs is given by

Ḣrhs =

(
Cbw

pl0 +B
+ 1

)− 1
γ

[

ṗb +

(

4Ṙ

Re
+

2

Υ̂

)

Ṙ

R2

]

−
(

Cp

pl0 +B
+ 1

)− 1
γ

Ċp. (B.11)

In two-way-coupled bubbly flows, the rate of change of the liquid pressure is given by

Ċp = ρc̃2l

(

3α
R3Ṙ2

R3
−∇ · u

)

, (B.12)

which is obtained from equations (2.1) and (2.3).

B.3 Equations for bubble contents

The evolution of the internal bubble pressure is now written as

ṗb =
3γb

R

(

−Ṙpb + RvTwṁ
′′
v + pb0

kbw

PeTR

∂T

∂y

∣
∣
∣
∣
w

)

, (B.13)

where pb0 is the internal bubble pressure in the equilibrium state, and the vapor flux at the bubble

wall is governed by

ṁ′′
v =

ρbw

Peχ(1 − χvw)R

∂χv

∂y

∣
∣
∣
∣
w

. (B.14)

In order to estimate the temperature and concentration gradients at the bubble wall, we use the

reduced-order model of Preston et al. (2007) that has been shown to be accurate for bubbles of small

Peclet numbers:

∂T

∂y

∣
∣
∣
∣
w

≈ −ΘT

(
T̄ − Tw

)
, (B.15)

∂χv

∂y

∣
∣
∣
∣
w

≈ −Θχ (χ̄v − χvw) , (B.16)
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where the volume-averaged quantities are approximated by

χ̄v ≈ mv

mg0 +mv
, T̄ ≈ pb

pb0

R3

R3
0

mg0 +mv0

mg0 +mv
. (B.17)

Here, the subscript 0 denotes the undisturbed values, m is mass, and the mass of vapor is updated

by solving

ṁv = 4πR2ṁ′′
v . (B.18)

The constant transfer coefficients in equations (B.15) and (B.16) are approximated by

Θ ≈ ℜ







[(√

jPeR2
0 ωN |κ=1 coth

√

jPeR2
0 ωN |κ=1 − 1

)−1

− 3

jPeR2
0 ωN |κ=1

]−1





, (B.19)

where j is the imaginary unit, ωN |κ=1 is the isothermal natural frequency, and PeT and Peχ are used

for ΘT and Θχ, respectively. In the linear scenario, Preston’s model is exact as the Peclet numbers

approach zero.
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Appendix C

Computation of phase velocity and

attenuation

Consider a wave of form, exp[j(2πft−kx)], where j is the imaginary unit, f is the temporal frequency

and k is the complex wave number (= kr − jki). Following Commander & Prosperetti (1989), the

phase velocity cph and attenuation aatt (in decibels per unit length) are defined as

cph =
2πf

kr
, aatt = 20(log10 e)ki. (C.1)

The real and imaginary parts of the complex wave number can be determined based on the time

history of the computed liquid pressure as follows. The evolution of the normalized liquid pressure,

p′ = (pl − pl0)/(ǫpl0), is sampled at ∆t at two different locations (say x1 and x2), and its discrete

Fourier transform is then computed. The Fourier coefficients p̂′ for the (discrete) frequency f can

be written as

p̂′(x, f) = p̂′0 exp
[
− ki(f)x

]
exp

[
− jkr(f)x

]
. (C.2)

Given the complex ratio P1,2 = p̂′(x1, f)/p̂′(x2, f), the complex wave number is computed as

kr =
1

∆x1,2
cos−1

[
ℜ{P1,2} exp(− ln |P1,2|)

]
, ki =

1

∆x1,2
ln |P1,2|, (C.3)

where ∆x1,2 = x2 − x1.
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