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Abstract

For any element A of the modular group PSL(2,Z), it follows from work of Bavard [Bav91]

that scl(A) ≥ rot(A)/2, where scl denotes stable commutator length and rot denotes the

rotation quasimorphism. Sometimes this bound is sharp, and sometimes it is not. We

study for which elements A ∈ PSL(2,Z) the rotation quasimorphism is extremal in the

sense that scl(A) = rot(A)/2. First, we explain how to compute stable commutator length

in the modular group, which allows us to experimentally determine whether the rotation

quasimorphism is extremal for a given A. Then we describe some experimental results based

on data from these computations.

Our main theorem is the following: for any element of the modular group, the product

of this element with a sufficiently large power of a parabolic element is an element for which

the rotation quasimorphism is extremal. We prove this theorem using a geometric approach.

It follows from work of Calegari [Cal09a] that the rotation quasimorphism is extremal for a

hyperbolic element of the modular group if and only if the corresponding geodesic on the

modular surface virtually bounds an immersed surface. We explicitly construct immersed

orbifolds in the modular surface, thereby verifying this geometric condition for appropriate

geodesics. Our results generalize to the 3-strand braid group and to arbitrary Hecke triangle

groups.
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Chapter 1

Introduction

This thesis studies the relationship between two topics of recent interest, stable commutator

length [Cal08] and quasimorphisms [Kot04]. A fundamental connection between these

concepts was first discovered by Bavard [Bav91]; his result implies that every homogeneous

quasimorphism gives a lower bound on stable commutator length. We are interested in

determining when these bounds are sharp, in which case the quasimorphism is said to be

extremal. Although extremal quasimorphisms are known to exist, only a few examples of

them have been found, such as those quasimorphisms recently constructed by Calegari–

Walker [CWa] on free groups. The difficulty in finding extremal quasimorphisms is due

both to the fact that stable commutator length can presently be computed in relatively few

groups and to the fact that the space of all homogeneous quasimorphisms on a group is

often poorly understood.

We focus on the modular group PSL(2,Z), a group that is important in many areas

of mathematics, including algebra, geometry, and number theory. We study a particular

quasimorphism, the rotation quasimorphism, that arises in many contexts. It may be

regarded as the homogenization of the classical Rademacher function, which has numerous

interpretations and has been extensively studied by number theorists.

We explain how to compute stable commutator length in the modular group PSL(2,Z)

by giving an algorithm for reducing the problem to that of computing stable commutator

length in the free group F2, which can be done using the computer program scallop [CWb].

We have written a program that implements our algorithm and have used it to generate a
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significant amount of data about when the rotation quasimorphism is and is not extremal.

We present some experimental results based on this data.

We also present some theoretical results. Our main result is the following stability

theorem.

Theorem. For every element of the modular group PSL(2,Z), the product of this element

with a sufficiently large power of a parabolic element is an element for which the rotation

quasimorphism is extremal.

The proof of this theorem is independent of our algorithm for computing stable commuta-

tor length and thus gives an alternate way to determine stable commutator length for certain

families of elements of the modular group. Such an approach is a promising way to study

stable commutator length in groups in which it is difficult to compute directly. Our proof

is primarily geometric, and we obtain the above result as a consequence of another result

about corresponding geodesics on the modular surface H2/PSL(2,Z) bounding immersed

orbifolds. Specifically, we show the following.

Theorem. For every hyperbolic element of the modular group PSL(2,Z), the product of this

element with a sufficiently large power of a parabolic element corresponds to a geodesic on

the modular surface H2/PSL(2,Z) that bounds an immersed orbifold.

This second result is also of independent interest. Recently there has been significant

interest in immersing surfaces in various spaces, for example in the celebrated work of

Kahn–Markovic [KM] on the Surface Subgroup Theorem.

We now briefly describe the organization of this thesis. Chapters 2 and 3 introduce

the general topics of study. In Chapter 2, we define stable commutator length and discuss

some of its properties. In Chapter 3, we define the notion of quasimorphism and give some

examples. We also state the fundamental relationship between stable commutator length

and quasimorphisms and discuss several general questions arising from this.

Chapters 4 and 5 introduce the particular objects of study in this thesis. In Chapter 4,

we introduce the modular group and discuss several fundamental properties of its action on

the hyperbolic plane. In Chapter 5, we define the rotation quasimorphism, explain how to

compute it, and discuss its relationship with other well-known functions.
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Chapters 6 and 7 are devoted to the computational analysis of the extremality of the

rotation quasimorphism on the modular group. In Chapter 6, we explain how to compute

stable commutator length in the modular group. This gives us a way to experimentally test

when the rotation quasimorphism is extremal. In Chapter 7, we discuss several experimental

observations based on our data. Some of the data referenced in Chapter 7 is presented in

Appendix A.

Chapters 8 and 9 form the theoretical heart of this thesis. Chapter 8 presents the main

stability theorem stated above and discusses how it follows from the second theorem about

immersed orbifolds in the modular surface. In Chapter 9, we explicitly describe how to

construct such immersed orbifolds, thus proving the second theorem.

Finally, Chapter 10 explains how to generalize our results to the 3-strand braid group

and to Hecke triangle groups. We conclude with a brief discussion of possible further

generalizations.
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Chapter 2

Stable commutator length

Stable commutator length, a kind of relative Gromov–Thurston norm, has been the subject of

much recent interest, especially by Calegari and his collaborators. In this chapter, we define

stable commutator length and discuss some of its properties. For much more information

about this concept, we refer the reader to the excellent monograph [Cal09b].

2.1 Commutator length

Let G be any group. The commutator subgroup of G, denoted [G,G], is the subgroup

generated by commutators, i.e. elements of the form [b, c] := bcb−1c−1 for b, c ∈ G. The

commutator length of an element a ∈ [G,G], denoted cl(a), is the word length of a with

respect to this generating set. More explicitly, this means cl(a) is the smallest integer g

such that a =
∏g
i=1[bi, ci] for some elements bi, ci ∈ G. If a /∈ [G,G], we use the convention

that cl(a) =∞. Define the commutator width of G to be cw(G) := supa∈[G,G] cl(a). If this

supremum does not exist, we say that cw(G) =∞.

The commutator length of an element is sometimes referred to as the genus of that

element, for the following topological reason. Suppose X is a topological space with

π1(X) = G and α is a loop representing an element a ∈ G. Let Σg,1 be an oriented surface

of genus g with one boundary component. One can construct a continuous map Σg,1 → X

taking ∂Σg,1 to α exactly when a can be written as a product of g commutators. This can be

most easily seen by thinking of Σg,1 as formed from an identification space with 4g+ 1 edges,

where 4g edges are labeled according to the letters seen in a product of g commutators.



5

This means the commutator length of a is the smallest g for which there exists a continuous

map Σg,1 → X taking ∂Σg,1 to α. Note that, if α bounds an oriented surface in X, then it

must be trivial when regarded as an element of H1(X;Z) = G/[G,G]. One may think of

cl(a) as measuring the complexity of this triviality in homology.

From this topological perspective, it is reasonable to also consider finite collections of

loops in X and to allow surfaces with multiple boundary components. Let α1, . . . , αm be

loops in X, and let a1, . . . , am be the corresponding elements of G. Then the commutator

length of the formal sum of the ai is the smallest genus of a surface Σg,m with m boundary

components such that there is a map Σg,m → X taking the boundary components of Σg,m

to the αi. This can also be stated algebraically, by defining

cl

( m∑
i=1

ai

)
= min

ti∈G
cl

( m∏
i=1

tiait
−1
i

)
.

If such a surface does not exist, i.e. if the product of the ai is not in [G,G], we say that

cl
(∑m

i=1 ai
)

=∞.

Commutator length is a notoriously difficult quantity to compute in general, even for

finite groups. For example, Ore [Ore51] conjectured that every element of a finite nonabelian

simple group is a commutator, a result that was only proven recently [LOST10] after receiving

much attention. Free groups are one of the few classes of groups in which commutator length

can be computed. Edmunds [Edm75, Edm79] found an effective procedure for computing

commutator length in free groups using cancellation arguments. Culler [Cul81] later showed

how to compute commutator length in free groups using a geometric approach.

Even in free groups, understanding the general behavior of commutator length is dif-

ficult. There are many identities, such as [b, c]3 = [bcb−1, c−1bcb−2][c−1bc, c2], which may

be surprising at first, and these contribute to the complexity of the study of commutator

length. There are, however, a few families of elements on which commutator length is well

understood. For example, Culler [Cul81] shows that, in the free group F2 on two generators

b and c, cl([b, c]n) =
⌊
n
2

⌋
+ 1.
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2.2 Stable commutator length

Because of the difficulty of computing commutator length, we focus instead on the related

notion of stable commutator length, which, roughly speaking, measures the part of com-

mutator length that is preserved under taking powers. Stable commutator length turns

out to be both more tractable and a richer notion than commutator length, due largely to

connections with subjects such as hyperbolic geometry and bounded cohomology. One of

these connections, with the theory of quasimorphisms, will be discussed in Section 3.4.

For a ∈ [G,G], define the stable commutator length of a to be

scl(a) = lim
n→∞

cl(an)

n
.

The sequence cl(an) is subadditive, which implies, by Fekete’s lemma, that this limit always

exists. If a /∈ [G,G], but an ∈ [G,G] for some n ∈ N, instead define scl(a) = scl(an)/n. If

an /∈ [G,G] for any n ∈ N, we use the convention that scl(a) =∞.

Stable commutator length was extended to finite formal sums of elements by Calegari

(see [Cal09b]). For a finite collection of elements ai ∈ G whose product is in [G,G], define

scl

( m∑
i=1

ai

)
= lim

n→∞

cl
(∑m

i=1 a
n
i

)
n

.

If a1 · · · am /∈ [G,G], but an1 · · · anm ∈ [G,G] for some n ∈ N, define

scl

( m∑
i=1

ai

)
=

scl
(∑m

i=1 a
n
i

)
n

.

If an1 · · · anm /∈ [G,G] for any n ∈ N, we use the convention that scl
(∑m

i=1 ai
)

=∞.

As an example, in a finite group, or any group with finite commutator width, stable

commutator length is identically 0 on the commutator subgroup since there is a uniform

bound on commutator length. In the free group F2 generated by b and c, the result of Culler

stated at the end of Section 2.1 implies that

scl([b, c]) = lim
n→∞

⌊
n
2

⌋
+ 1

n
=

1

2
.
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Using the geometric interpretation of commutator length given in Section 2.1, one can

understand stable commutator length in terms of the genus of surfaces Σ with one boundary

component whose boundary wraps multiple times around a loop α : S1 → X corresponding

to a. More precisely, scl(a) is the infimum of genus(Σ)/n(Σ) over all maps Σ→ X taking

∂Σ to a degree n(Σ) cover of α. A deficiency in this approach is that this infimum will never

be achieved, because genus(Σ)/n(Σ) can always be made arbitrarily close to −χ(Σ)/2n(Σ)

by passing to finite covers, where χ(Σ) denotes the Euler characteristic of Σ.

Since Euler characteristic is multiplicative under taking covers, however, it is more

natural to consider χ(Σ) rather than genus(Σ). Call a map f : Σ→ X admissible if there is

a commutative diagram

∂Σ
ι−−−−→ Σ

∂f

y f

y
S1 −−−−→

α
X

Let n(Σ) denote the degree of the map ∂f : ∂Σ→ S1. Define χ−(Σ) = min(χ(Σ), 0). Using

the relationship χ(Σ) = 2− 2 genus(Σ), one obtains that

scl(a) = inf
Σ

−χ−(Σ)

2n(Σ)
,

where the infimum is taken over all admissible maps. This infimum may or may not be

achieved, but when it is achieved surfaces achieving it are of particular interest. An admissible

map f : Σ → X that achieves the above infimum is said to give an extremal surface for

α. We remark that extremal surfaces are always π1-injective, meaning the induced map

f∗ : π1(Σ)→ G is injective whenever f gives an extremal surface.

For a finite collection of loops αi : S
1 → X, say that a map f : Σ→ X is admissible if

there is a commutative diagram

∂Σ
ι−−−−→ Σ

∂f

y f

y∐m
i=1 S

1 −−−−−→∐m
i=1 αi

X

such that the map ∂f : ∂Σ→
∐m
i=1 S

1 is a covering map. Let n(Σ) denote the degree of this
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cover. Then, if ai is the element of G corresponding to the loop αi, one has that

scl

( m∑
i=1

ai

)
= inf

Σ

−χ−(Σ)

2n(Σ)
,

where the infimum is again taken over all admissible maps. Surfaces realizing this infimum

are also called extremal.

Stable commutator length may be extended by linearity to B1(G;Q), the space of rational

chains of elements of G that are trivial in H1(G;Q). It is subadditive on this space, and

therefore extends continuously to B1(G;R), the space of real chains of elements of G that

are trivial in H1(G,R). Stable commutator length gives a pseudo-norm on B1(G;R). Since

it always vanishes on elements of the form a− bab−1 and an − na for a, b ∈ G and n ∈ Z,

we form the subspace H(G) ⊆ B1(G;R) generated by elements of the form a− bab−1 and

an − na and consider the quotient BH
1 (G;R) := B1(G;R)/H(G). Stable commutator length

descends to again give a pseudo-norm on BH
1 (G;R). The advantage of doing this is that in

some groups, such as hyperbolic groups, stable commutator length is a genuine norm on

BH
1 (G;R); see [CF10b].

2.3 Stable commutator length in free groups

Stable commutator length can be computed in relatively few groups, but Calegari [Cal09c]

has an algorithm for computing it in free groups. Specifically, he considers the unit ball of

BH
1 (Fn;R) with respect to the stable commutator length norm, namely

{C ∈ BH
1 (Fn;R) : scl(C) = 1}.

Calegari shows that this ball is a rational polyhedron, meaning that its vertices are elements

of BH
1 (Fn;Q). He proves this by showing how to explicitly construct extremal surfaces

bounding chains in B1(Fn;Z). A consequence of this result is that stable commutator length

is a piecewise linear rational function on finite dimensional rational subspaces of BH
1 (Fn;R),

which implies that stable commutator length takes only rational values on BH
1 (Fn;Q). In

the course of the proof, Calegari obtains a polynomial-time algorithm for computing stable
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commutator length in free groups. This algorithm has been implemented in the computer

program scallop [CWb].
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Chapter 3

Quasimorphisms

In this chapter, we introduce the notion of quasimorphism and give some examples. Then

we discuss a relationship between the theory of homogeneous quasimorphisms and stable

commutator length, first discovered by Bavard [Bav91], that is fundamental to our work.

3.1 Definitions

A quasimorphism is a real-valued function on a group that fails to be a homomorphism by a

bounded amount. More precisely, a function φ : G→ R is a quasimorphism if it satisfies the

property that

|φ(ab)− φ(a)− φ(b)| ≤ D

for some constant D that is independent of the choice of a, b ∈ G. Choose the smallest

such D and denote it by D(φ), referred to as the defect of φ. One may think of D(φ) as

measuring the amount by which φ fails to be a homomorphism.

We will primarily be concerned with homogeneous quasimorphisms. A quasimorphism φ

is called homogeneous if it is a homomorphism on cyclic subgroups, i.e. if φ(an) = nφ(a)

for all a ∈ G,n ∈ Z. As many naturally occurring quasimorphisms are not homogeneous,

it is useful to note that any quasimorphism φ may be homogenized to give a homogeneous

quasimorphism φ̃ defined by

φ̃(a) = lim
n→∞

φ(an)

n
.

A homogeneous quasimorphism is a class function, i.e. is constant on conjugacy classes.

Homogeneous quasimorphisms also have the property that their defect is equal to the largest
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value taken on a commutator. More precisely, whenever φ is a homogeneous quasimorphism,

sup
b,c∈G

|φ([b, c])| = D(φ).

Let Q(G) denote the vector space of homogeneous quasimorphisms on G. The defect

gives a pseudo-norm on Q(G), vanishing on the space H1(G;R) of homomorphisms G→ R.

It gives a norm on the quotient space Q(G)/H1(G;R). Observe that homomorphisms G→ R

always take the value 0 on commutators. This means that, if φ : G→ R is a homomorphism,

we must have φ(a) = 0 for all a satisfying an ∈ [G,G] for some n ∈ Z. As a result, an

equivalence class in Q(G)/H1(G;R) takes a well-defined value on a whenever an ∈ [G,G]

for some n ∈ Z.

Note that a quasimorphism φ on G can be extended by linearity to B1(G;R). In other

words, one simply defines

φ

( m∑
i=1

tiai

)
:=

m∑
i=1

tiφ(ai).

Since (extensions of) elements of H1(G;R) take the value 0 on chains in B1(G;R), we

also have that equivalence classes in Q(G)/H1(G;R) take well-defined values on chains in

B1(G;R).

3.2 Rotation number

Poincaré [Poi81, Poi82] defined perhaps the first example of a quasimorphism in his study of

homeomorphisms of the circle. Given an element of Homeo+(S1), the group of orientation-

preserving homeomorphisms of the circle, one can try to define how much this homeomorphism

rotates the circle, though this can only be defined up to adding an integer value. In order to

avoid this ambiguity, instead consider

H̃omeo
+

(S1) := {f ∈ Homeo+(R) : f(x+ 1) = f(x) for all x ∈ R}.

Regarding S1 as the unit interval [0, 1] with endpoints identified, the natural projection

R→ S1 makes H̃omeo
+

(S1) into a central extension of Homeo+(S1), i.e. there is an exact
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sequence

0→ Z→ H̃omeo
+

(S1)→ Homeo+(S1)→ 1,

where Z is generated by unit translation of R.

We define rot : H̃omeo
+

(S1)→ R by setting

rot(f) = lim
n→∞

fn(0)

n
.

This is a homogeneous quasimorphism with defect 1. Given an element h ∈ Homeo+(S1),

choose an arbitrary lift h̃ ∈ H̃omeo
+

(S1). Then the rotation number of h is rot
(
h̃
)
∈ R/Z.

This construction can also be used to define quasimorphisms on several other groups, and

some of these generalizations are discussed in Chapter 5.

3.3 Counting quasimorphisms

Other basic examples of quasimorphisms are the counting quasimorphisms introduced by

Rhemtulla [Rhe68] and Brooks [Bro81]. Consider the free group Fn on n letters, and fix a

reduced word w in these letters (and their inverses). Define a function Cw : Fn → Z, called

a big counting function, by setting Cw(a) equal to the number of (possibly overlapping)

copies of w in the reduced representative of a. While Cw is not a quasimorphism, one can

make it into a quasimorphism by also taking into account appearances of w−1 in a. Define

another function Hw : Fn → Z by setting Hw(a) = Cw(a) − Cw−1(a). Then Hw defines a

quasimorphism on Fn, called a big counting quasimorphism.

A slight variant of this construction was introduced by Epstein–Fujiwara [EF97]. Define

another function cw : Fn → Z, called a small counting function, by setting cw(a) equal

to the maximal number of disjoint copies of w in the reduced representative of a. Then

define another quasimorphism hw : Fn → Z, known as a small counting quasimorphism, by

the formula hw(a) = cw(a) − cw−1(a). Epstein–Fujiwara also generalized little counting

quasimorphisms to arbitrary hyperbolic groups. This construction was further generalized

to mapping class groups by Bestvina–Feighn [BF02, BF07], and more recently to outer

automorphism groups of free groups by Hamenstädt [Ham].
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3.4 Bavard duality

A fundamental connection between the theory of quasimorphisms and stable commutator

length is due to Bavard [Bav91]. He showed that, for all a ∈ [G,G],

scl(a) = sup
φ∈Q(G)/H1(G;R)

D(φ)6=0

φ(a)

2D(φ)
,

a result we refer to as Bavard duality. Moreover, it is known that this supremum is always

achieved (see [Cal09b]). Therefore it is of interest to find homogeneous quasimorphisms that

achieve this supremum. A homogeneous quasimorphism φ that achieves this supremum for

some a, i.e. satisfies scl(a) = φ(a)/2D(φ), is said to be extremal for a.

Bavard duality was extended to B1(G;R) by Calegari (see [Cal09b]). Given an element∑m
i=1 tiai ∈ B1(G;R), he shows that

scl

( m∑
i=1

tiai

)
= sup

φ∈Q(G)/H1(G;R)
D(φ)6=0

∑m
i=1 tiφ(ai)

2D(φ)
.

A homogeneous quasimorphism that achieves this supremum is said to be extremal for the

chain
∑m

i=1 tiai, and extremal quasimorphisms are known to exist for all chains in B1(G;R).

3.5 Questions

In attempting to study stable commutator length and quasimorphisms in a particular group,

one can ask the following two complementary questions.

Question 1. Given a chain in B1(G;R), which homogeneous quasimorphisms are extremal

for it?

As mentioned in Section 3.4, extremal quasimorphisms always exist, and therefore the

space of homogeneous quasimorphisms extremal for a given chain in B1(G;R) is always

nonempty. However, the size of this space is not well understood. When is there a unique

extremal quasimorphism in Q(G)/H1(G;R)? When are there infinitely many linearly

independent extremal quasimorphisms?
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Question 2. Given a homogeneous quasimorphism, for which chains in B1(G;R) is it

extremal?

In general, a homogeneous quasimorphism need not be extremal for any chains in

B1(G;R). If, however, a homogeneous quasimorphism φ realizes its defect, i.e. there are

elements a, b ∈ G such that φ(ab)− φ(a)− φ(b) = D(φ), then φ is extremal for an integral

chain. This is because the quantity

φ(ab)− φ(a)− φ(b)

2D(φ)

can never exceed 1/2, and therefore when it equals 1/2 one has that scl(ab− a− b) = 1/2

and φ is extremal for the integral chain ab− a− b. This happens, for example, when φ takes

discrete values, which is the case for many known constructions of quasimorphisms.

Note that in this case φ is extremal for an integral chain, rather than simply for a chain

in B1(G;R). Whenever a homogeneous quasimorphism is extremal for a chain in B1(G;Q),

it must be extremal for a integral chain, simply by multiplying through by a constant to

clear denominators. However, it is an interesting question to ask when a homogeneous

quasimorphism is extremal for a rational/integral chain.

Question 3. If a homogeneous quasimorphism is extremal for some chain in B1(G;R),

must it be extremal for a chain in B1(G;Q)?

As explained above, the answer to this question is yes for a homogeneous quasimorphism

that achieves its defect. The answer is also yes if G is a virtually free group and φ is a

homogeneous quasimorphism that is extremal for a chain C ∈ B1(G;R). This is because

C is contained in a finite dimensional rational subspace V ⊆ BH
1 (G;R). The restriction of

stable commutator length to V is a piecewise linear rational function (see [Cal09c]), and

φ restricted to V is a linear function. The condition that φ is extremal for C implies that

some level set φ = 2D(φ) contains a face of the unit stable commutator length ball in V

containing C/ scl(C), and this face also contains rational chains.

In this thesis, we study Question 2 for the modular group PSL(2,Z) and the rotation

quasimorphism.
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Chapter 4

The modular group

In the following chapters, we restrict attention to a particular group of interest in many

areas of mathematics, the modular group PSL(2,Z). In this chapter, we discuss several

fundamental properties of the modular group and its action on the hyperbolic plane.

4.1 Definitions

Let H2 be the hyperbolic plane. We will typically think of H2 in terms of the Poincaré

upper half-plane model, consisting of the points {z ∈ C : Im(z) > 0} together with the

metric ds2 = (dx2 + dy2)/y2, where z = x + iy. Geodesics in H2 consist of circular arcs

perpendicular to the real axis and of vertical lines. Orientation-preserving isometries of H2

are Möbius transformations of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ R and ad − bc = 1. Such a transformation can also be thought of as a

pair of matrices ±
(
a b
c d

)
, and composition of Möbius transformations corresponds to matrix

multiplication. Therefore the group of orientation-preserving isometries of H2 is

PSL(2,R) ∼=


a b

c d

 : a, b, c, d ∈ R, ad− bc = 1

 /{±I}.

We will interchangeably use A ∈ PSL(2,R) to refer either to a Möbius transformation or to

a matrix, with the understanding that as a matrix A is equivalent to −A.
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The modular group PSL(2,Z) is the discrete subgroup of PSL(2,R) consisting of those

elements of PSL(2,R) with a, b, c, d ∈ Z. In other words,

PSL(2,Z) ∼=


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 /{±I}.

There are many possible generating sets for PSL(2,Z), but we prefer the generators S =(
0 −1
1 0

)
and U =

(
0 −1
1 1

)
. The element S acts on H2 by a rotation of angle π about the point

corresponding to the complex number i, and the element U acts on H2 by a rotation of

angle −2π/3 about the point (−1 +
√

3i)/2. The relations S2 = I and U3 = I generate all

relations between S and U , meaning PSL(2,Z) has presentation

〈S,U | S2 = U3 = 1〉.

Therefore PSL(2,Z) is isomorphic to Z/2Z ∗ Z/3Z, the free product of the group of order 2

and the group of order 3.

4.2 Classification of elements of the modular group

Elements of the modular group may be classified into various types, based either on algebraic

information (their trace) or geometric information (fixed points in their action on H2). There

are three distinct types of nonidentity elements A ∈ PSL(2,Z): finite order, parabolic, and

hyperbolic. The type of an element may be determined as follows:

1. Finite order elements are those with |tr(A)| < 2. These elements are characterized by

the property that they fix a point in the interior of H2.

2. Parabolic elements are those with |tr(A)| = 2. These elements are characterized by

the property that they fix exactly one point on the boundary of H2.

3. Hyperbolic elements are those with |tr(A)| > 2. These elements are characterized by

the property that they fix exactly two points on the boundary of H2.
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In terms of this classification, one can describe the way an element of the modular group

acts on H2:

1. Finite order elements act by rotation about their fixed point.

2. Parabolic elements act by a “limit rotation” about the fixed point on the boundary.

3. Hyperbolic elements act by translation along the geodesic determined by the two fixed

points on the boundary.

4.3 The modular surface

x

iy

1
2−1

2

i

−1
2 +

√
3i
2

1
2 +

√
3i
2

Figure 4.1: A fundamental domain for the action of PSL(2,Z) on H2

A fundamental domain of the action of PSL(2,Z) on H2 consists of the region

{
z ∈ C : |z| ≥ 1, |Re z| ≤ 1

2

}
,

shown in Figure 4.1. Under the action of PSL(2,Z), the vertical lines on the left and right

of this region are identified with each other under the translation z 7→ z + 1, and the

circular arc at the bottom of the region is identified with itself under the transformation

z 7→ −1/z. The quotient of H2 by the action of PSL(2,Z) is a triangle orbifold of type

(2, 3,∞), traditionally referred to as the modular surface, and shown in Figure 4.2. The cone

point of order 2 corresponds to the point i in the fundamental domain, and the cone point
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σ2 3

cusp

Figure 4.2: The modular surface H2/PSL(2,Z)

of order 3 corresponds to the points (±1 +
√

3i)/2 in the fundamental domain, which are

identified in the quotient.

This allows one to realize PSL(2,Z) as the orbifold fundamental group of the modular

surface in a natural way. Here we think of the orbifold fundamental group as the ordinary

fundamental group of the thrice punctured sphere with the specification that a loop around

the order 2 cone point has order 2 and a loop around the order 3 cone point has order 3.

Examining the action of the elements S and U on H2, one sees that S corresponds to a loop

around the order 2 cone point and U corresponds to a clockwise loop around the order 3

cone point. Since S and U generate PSL(2,Z), one can appropriately concatenate these

loops to obtain a loop corresponding to any element of the modular group. For a hyperbolic

element A ∈ PSL(2,Z), one can also obtain a representative of the corresponding homotopy

class by projecting the translation axis of A to the modular surface. We typically prefer

this second construction because it gives a geodesic representative of the homotopy class.

Closed geodesics on the modular surface have been extensively studied; see Series [Ser85]

and Katok–Ugarcovici [KU07].

4.4 The Farey graph

The action of the modular group PSL(2,Z) on the hyperbolic plane can be understood

combinatorially in terms of the induced action on the Farey graph. Let σ be the geodesic in

the modular surface between the order 2 and order 3 cone points, as labeled in Figure 4.2.

The Farey graph is σ̃, the total preimage of σ in H2. It consists of the arc between the

points (−1 +
√

3i)/2 and (1 +
√

3i)/2 along the boundary of the fundamental domain shown
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Figure 4.3: The Farey graph

in Figure 4.1 as well as all its translates under the action of PSL(2,Z). The Farey graph is

a regular 3-valent tree, shown in Figure 4.3.

The Farey graph is dual to the Farey tessellation of the hyperbolic plane. Consider the

ideal triangle in H2 with vertices 0, 1, and ∞. The tiles of the Farey tessellation consist of

all translates of this triangle under the action of elements of PSL(2,Z). More explicitly, the

ideal vertices of the Farey tessellation are all points Q ∪ {∞}. Two points p/q and p′/q′ (in

lowest terms) are joined by a geodesic edge if and only if |pq′ − qp′| = 1, where we regard

1/0 as the representative of the point ∞ and consider an edge from a point to infinity to be

a vertical line from that point.
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Chapter 5

The rotation quasimorphism

In the following chapters, we restrict attention to a particular homogeneous quasimorphism

on the modular group, the rotation quasimorphism. This quasimorphism can be defined in

several equivalent ways, including as the homogenization of the Rademacher function, which

has been widely studied in number theory and itself has numerous interpretations.

5.1 Definitions

The rotation number on H̃omeo
+

(S1) defined in Section 3.2 may be extended to (central

extensions of) other groups that act on S1. The action of an element of PSL(2,R) on the

hyperbolic plane H2 induces an orientation-preserving homeomorphism of the boundary S1
∞

of H2. This defines an injective homomorphism PSL(2,R)→ Homeo+(S1), and so we regard

PSL(2,R) as a subgroup of Homeo+(S1). Let P̃SL(2,R) be the preimage of PSL(2,R) under

the projection H̃omeo
+

(S1)→ Homeo+(S1). We get the following commutative diagram.

1 −−−−→ Z −−−−→ P̃SL(2,R) −−−−→ PSL(2,R) −−−−→ 1

∼=
y y y

1 −−−−→ Z −−−−→ H̃omeo
+

(S1) −−−−→ Homeo+(S1) −−−−→ 1

By precomposing with the map P̃SL(2,R)→ H̃omeo
+

(S1), Poincaré’s rotation number

extends to the group P̃SL(2,R), and we call the resulting quasimorphism a rotation quasi-

morphism. It restricts to give a quasimorphism on (central extensions of) subgroups of

PSL(2,R), such as P̃SL(2,Z).
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In view of Bavard’s duality theorem, discussed in Section 3.4, Calegari [Cal09a] gives a

far more general definition of rotation quasimorphism. For (virtually) free groups, he studies

the unit ball of the stable commutator length norm on the space BH
1 (G;R). He shows that

codimension 1 faces of this ball correspond to realizations of G as the fundamental group of a

surface (or orbifold). Bavard’s duality theorem then says that there is a unique homogeneous

quasimorphism of defect 1 in Q(G)/H1(G;R) dual to each such realization. The modular

group PSL(2,Z) may be naturally identified with the orbifold fundamental group of the

modular surface, and we call the unique homogeneous quasimorphism of defect 1 dual to

this realization the rotation quasimorphism.

5.2 Significance of the rotation quasimorphism

The rotation quasimorphism is a natural one to study, for the following reason. Let G be a

(virtually) free group, and let X be a space with π1(X) = G. Let C ∈ B1(G;Q) be a rational

chain. Suppose φ is a homogeneous quasimorphism that is extremal for C, and suppose C

admits an extremal surface Σ. Then the map Σ→ X induces a map π∗ : π1(Σ)→ G. The

composition φ ◦ π∗ : π1(Σ)→ R defines a homogeneous quasimorphism on π1(Σ), and such

a quasimorphism is always an extension of a rotation quasimorphism. This special role of

rotation quasimorphisms is why we choose to study them. The rotation quasimorphism on

the modular group PSL(2,Z) is also important because of its connection with several other

functions, and some of these connections will be discussed in Section 5.4.

5.3 Computing the rotation quasimorphism

Despite the apparent difficulty of computing values of the rotation quasimorphism from the

definition given in Section 5.1, it has a simple formula in the modular group PSL(2,Z), as

we explain in this section. We use both the generators S and U given in Chapter 4 and the

generators L = SU =
(

1 1
0 1

)
and R = SU−1 =

(
1 0
1 1

)
. The elements L and R are so denoted

because they correspond to left and right turns in the action of PSL(2,Z) on the Farey

graph. Specifically, if W is a positive word in L and R, then the path from the complex

number i to W (i) in the Farey graph turns left and right according to the appearances of L
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and R. For example, the path from i to L2RL(i) in the Farey graph turns left, left, right,

and left.

Using the presentation of PSL(2,Z) given in Chapter 4, any element A ∈ PSL(2,Z) may

be written uniquely in the form

SδiU ε1SU ε2 · · ·SU εmSδ2 ,

where each δi is either 0 or 1 and each εi is either −1 or 1. Given an element of PSL(2,Z),

there is a standard way to obtain its expression in this form, as we now explain. Let

A =
(
a b
c d

)
∈ PSL(2,Z). Observe that left multiplication by L, L−1, R, and R−1 corresponds

to doing row operations on A and that left multiplication by S interchanges the rows of

A (and multiplies one of them by −1). If c = 0, then ad = 1, and so a = d = ±1. This

means A = Lba/|a|. If c 6= 0, do row operations so as to perform the Euclidean algorithm on

a and c until c = 0, keeping track of the corresponding matrices. In terms of the entries

of the reduced matrix, the result of performing the Euclidean algorithm is Lba/|a|. Solving

for A then gives an expression for it in terms of L, L−1, R, R−1, and S. Using L = SU ,

L−1 = U−1S, R = SU−1, and R−1 = US expresses A in terms of S, U , and U−1.

Define a function φ : PSL(2,Z)→ Z by setting

φ(A) =

m∑
n=1

εi.

This defines a quasimorphism on PSL(2,Z), and its homogenization is (up to a scalar

multiple) the rotation quasimorphism.

The homogenization of this function can be understood more easily by conjugating

elements of PSL(2,Z) to a standard form. All homogeneous quasimorphisms take the

value 0 on finite order elements, so we consider only infinite order elements. Every infinite

order element of PSL(2,Z) is conjugate to a positive word in L and R, and this is unique

up to cyclic permutation, as we now explain. Suppose we have an infinite order element

A = Sδ1U ε1SU ε2 · · ·SU εmSδ2 . We show that A is conjugate to a word of this form with

δ1 = 1 and δ2 = 0. If δ2 = 1, conjugate by S and simplify using SS = I. If δ1 = δ2 = 0 and
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ε1 = 1, conjugate by U−1. If δ1 = δ2 = 0 and ε1 = −1, conjugate by U . Then simplify as

much as possible using UU−1 = U−1U = I, UU = U−1, and U−1U−1 = U . Repeat these

steps until δ1 = 1 and δ2 = 0. For every word of length at least 2 that is not already of the

desired form, each pass through this algorithm either puts it in the correct form or shortens

the length of the word, and therefore this process must terminate. We cannot be left with a

single letter S, U , or U−1 since in this case A would have had finite order, which we assumed

was not the case. Once we have δ1 = 1 and δ2 = 0, replace occurrences of SU with L and

occurrences of SU−1 with R to get a positive word in L and R.

Let φ̃ denote the homogenization of φ. If W is a positive word in L and R, then φ(Wn) =

nφ(W ) for all n ∈ N, and hence φ̃(W ) = φ(W ). Since homogeneous quasimorphisms are

constant on conjugacy classes, we may choose representatives of this form on which to

compute φ̃. Given an arbitrary element A ∈ PSL(2,Z) of infinite order, conjugate A to

get a word W in L and R. Then we have φ̃(A) = φ(W ). It turns out φ̃ has defect 6, and

rot(A) = −φ̃(A)/6. Thus one may think of rot as counting the number of right turns minus

the number of left turns in the action of an element on the Farey graph, appropriately scaled

to make the defect 1.

5.4 The Rademacher function

The rotation quasimorphism is (up to a constant) the homogenization of the classical

Rademacher function (see [KM94]). In number theory, the Rademacher function is often

defined in terms of the Dedekind η-function, as follows. The Dedekind η-function is defined

on H2 by

η(τ) = eπiτ/12
∞∏
n=1

(1− e2πinτ ).

The 24th power of η is a modular form of weight 12, meaning that

η24

(
aτ + b

cτ + d

)
= η24(τ)(cτ + d)12

for all matrices A =
(
a b
c d

)
∈ PSL(2,Z).
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Taking logarithms, we obtain

24(log η)

(
aτ + b

cτ + d

)
= 24(log η)(τ) + 6 log(−(cτ + d)2) + 2πiψ(A)

for some integer ψ(A). Thus we obtain a function ψ : PSL(2,Z) → Z, and this is the

Rademacher function. This function also arises in many other contexts, and Atiyah [Ati87]

proves the equivalence of seven different definitions of it.

Yet another equivalent definition of the Rademacher function is given by Ghys [Ghy07].

Consider the quotient PSL(2,R)/PSL(2,Z), which is homeomorphic to the complement

of the trefoil knot in the 3-sphere. It may also be seen as the unit tangent bundle of the

modular surface. There is a bijection between hyperbolic conjugacy classes of PSL(2,Z) and

periodic orbits of the geodesic flow of the modular surface. Such a periodic orbit defines a

knot in the complement of the trefoil knot, and the linking number of this knot with the

trefoil knot is the value of the Rademacher function.
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Chapter 6

Stable commutator length in the
modular group

In this chapter, we explain how to compute stable commutator length in the modular group

PSL(2,Z). We use a relationship between stable commutator length in a group and a finite

index subgroup to reduce the problem to that of computing stable commutator length in

the free group of rank 2, which allows us to use the algorithm mentioned in Section 2.3.

6.1 Stable commutator length in finite index subgroups

There is a relationship between stable commutator length in a group and a finite index

subgroup, explained in [Cal09b]. Suppose H is a finite index subgroup of G. Let X be a

topological space with π1(X) = G. Then H corresponds to a finite degree cover p : X̃ → X.

Let a1, . . . , an be elements of G whose formal sum is in B1(G,Q). Regard ai as an element

of π1(X), and let αi be a loop in X representing this element. Let β1, . . . , βk be the total

preimage of α1, . . . , αn in X̃, and let hi be the element of H = π1(X̃) corresponding to βi.

Then

sclG

( n∑
i=1

ai

)
=

1

[G : H]
sclH

( k∑
i=1

hi

)
.

This can be shown using the definition of stable commutator length in terms of admissible

maps. If there is an admissible map d : Σ→ X̃ taking ∂Σ to ∪iβi, then the composition p ◦d

maps Σ to X, taking ∂Σ to ∪iαi with degree [G : H]. This shows that the left-hand side is

less than or equal to the right-hand side. In the other direction, if there is an admissible

map f : Σ → X taking ∂Σ to ∪iαi, we construct an appropriate admissible map to X̃ as
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follows. Let K be a finite index subgroup of H that is normal in G. The map f induces

a map f∗ : π1(Σ) → π1(X) = G, and composing this with the quotient map gives a map

π1(Σ)→ G/K. Let π : Σ̃→ Σ be the regular cover corresponding to the kernel of this map.

Then the composition f ◦ π : Σ̃ → X lifts to an admissible map f̃ : Σ̃ → X̃ taking ∂Σ̃ to

∪iβi and satisfying p ◦ f̃ = f ◦ π, as desired.

Since stable commutator length takes only rational values on free groups (see Section 2.3),

this relationship implies that stable commutator length also takes only rational values on

groups that are virtually free, i.e. those with a finite index free subgroup.

6.2 Principal congruence subgroups

The modular group PSL(2,Z) has many finite index subgroups, and perhaps first among

these are the principal congruence subgroups. Let n be a positive integer, and consider the

map

PSL(2,Z)→ PSL(2,Z/nZ)

given by reducing each matrix entry modulo n. The kernel of this map is denoted Γ(n)

and called the principal congruence subgroup of level n. These subgroups of PSL(2,Z) have

been much studied by number theorists. We are interested in Γ(2), the principal congruence

subgroup of level 2. Since PSL(2,Z/2Z) has order 6, Γ(2) is an index 6 subgroup of PSL(2,Z).

A fundamental domain for its action on H2 consists of six copies of a fundamental domain

for the action of PSL(2,Z) on H2, as shown in Figure 6.1.

Pairs of edges of this fundamental domain going to the same point at infinity are identified

under the action of Γ(2), and the quotient H2/Γ(2) is a thrice-punctured sphere. Since the

fundamental group of a thrice-punctured sphere is F2, the free group of rank 2, we have that

Γ(2) ∼= F2. By computing the elements of PSL(2,Z) needed to identify corresponding edges

in the fundamental domain of the action of Γ(2) on H2, one finds that free generators of

Γ(2) are
(

1 2
0 1

)
and

(
1 0
2 1

)
.

We use the relationship between stable commutator length in a group and a finite index

subgroup given in the previous section to turn the problem of computing stable commutator
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Figure 6.1: A fundamental domain for the action of Γ(2) on H2

length in PSL(2,Z) into one of computing it in Γ(2) ∼= F2. Here, this relationship says that

sclPSL(2,Z)(A) =
1

6
sclΓ(2)

( k∑
i=1

hi

)
,

where the elements hi come from taking the total preimage of a loop corresponding to A in a

degree 6 cover of the modular surface H2/PSL(2,Z) by the thrice-punctured sphere H2/Γ(2).

Since stable commutator length in F2 can be computed using the program scallop [CWb],

the problem of computing stable commutator length in PSL(2,Z) is thus reduced to finding

a systematic way to determine the hi.

6.3 The algorithm

In this section, we give an algorithm for explicitly determining the elements hi ∈ F2

corresponding to a given A ∈ PSL(2,Z). Recall that this involves finding the total preimage

of a loop in the modular surface under a degree 6 cover by the thrice-punctured sphere.

Fix a basepoint p on the geodesic σ between the order 2 and order 3 cone points of

the modular orbifold. In the fundamental domain for the action of PSL(2,Z) on H2, this

corresponds to a pair of points on the unit circle that are identified by the order 2 element

S, as shown in Figure 6.2, where the points in the pair are labeled p and p′.
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Figure 6.2: A basepoint in the fundamental domain for the action of PSL(2,Z)

First consider how loops based at p corresponding to the elements S and U of PSL(2,Z)

look in this fundamental domain. The element S acts on H2 by a rotation of angle π about

i, and therefore the corresponding loop is formed by taking a simple arc from p′ to p in

the fundamental domain, where p and p′ are identified. The element U acts by a rotation

of angle −2π/3 about the point (−1 +
√

3i)/2. Therefore the loop corresponding to U is

formed by taking an arc that starts at p′, crosses the right vertical edge of the fundamental

domain (thereby moving to the left vertical edge of the fundamental domain), and ends at p.

Now consider how these loops lift to the thrice-punctured sphere under the degree 6

covering described in the previous section. Observe that the basepoint p on the modular

surface has 6 preimages in the thrice-punctured sphere. These points are labeled p1, . . . , p6

in the fundamental domain for the action of F2 shown in Figure 6.3. Let A be an element of

PSL(2,Z), and let γ be a corresponding curve on the modular surface, based at p. Choosing

pi as basepoint, γ lifts to a curve beginning at pi and ending at a (likely different) pj . In

this way, a loop A induces a permutation of the points pi. The length of a cycle in this

permutation corresponds to a power to which γ needs to be raised in order for this lift to be

a closed loop βi in the thrice-punctured sphere. The number of cycles in this permutation

corresponds to the number of closed loops βi in the total preimage of γ.

To get an explicit algorithm for finding the total preimage of a loop on the modular

surface, we first consider what happens for the elements S and U . The loop corresponding
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Figure 6.3: A fundamental domain for F2 with lifts of a basepoint

to S lifts to curves from p1 to p2, from p2 to p1, from p3 to p4, from p4 to p3, from p5 to p6,

and from p6 to p5. Hence S induces the permutation (12)(34)(56) on the lifts of p. The loop

corresponding to U lifts to curves from p1 to p3, from p3 to p5, from p5 to p1, from p2 to

p6, from p4 to p2, and from p6 to p4. Hence U induces the permutation (135)(264) on the

lifts of p. Since S and U generate PSL(2,Z), this is enough information to determine the

permutation on the pi induced by any element of PSL(2,Z).

To determine the elements hi ∈ F2 corresponding to the βi, we identify F2 = 〈b, c〉 with

the fundamental group of the thrice-punctured sphere by denoting by b the curve that loops

once in the counterclockwise direction around the puncture corresponding to the point −1

in Figure 6.3 and denoting by c the curve that loops once in the counterclockwise direction

around the puncture corresponding to the point 0. The loop in the counterclockwise direction

around the puncture corresponding to the point ∞ in Figure 6.3 is then equal to c−1b−1.

To determine the element of F2 corresponding to a closed loop in the thrice-punctured

sphere based at a point pi, one only needs to keep track of the punctures that are encircled,

which can be done by recording the times one of the edges going to −1, 0, or∞ in Figure 6.3

is crossed. For a path that has been decomposed into paths corresponding to S, U , and
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Figure 6.4: A diagram for computing elements of F2

U−1, these edges are crossed exactly when traveling between p2 and p4, between p4 and

p6, or between p6 and p2. This is depicted in Figure 6.4, where a point pi is replaced by

a node i and lifts corresponding to S and U are shown as edges. By following the edges

corresponding to the letters in an appropriate power of a word and recording the labels in b

and c when traversing an outside edge, one obtains an element hi ∈ F2.

We have written a program that implements this algorithm to compute the elements

hi ∈ F2 corresponding to a given element of PSL(2,Z). The stable commutator length of

the formal sum of these elements can then be computed using scallop [CWb], allowing us

to compute stable commutator length in PSL(2,Z). In the next chapter, we discuss some

experimental observations based on our calculations.
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Chapter 7

Experimental results

We use the algorithm described in the previous chapter to compute the stable commutator

length of many elements of the modular group PSL(2,Z). Comparing these results with

values of the rotation quasimorphism (computed as described in Chapter 5), we obtain

experimental data about when the rotation quasimorphism is and is not extremal. In this

chapter, we discuss several observations based on this data. Some graphs related to the

material of Section 7.3 are presented in Appendix A.

7.1 How often is the rotation quasimorphism extremal?

Since the rotation quasimorphism has defect 1, it is extremal for an element A ∈ PSL(2,Z)

exactly when scl(A) = rot(A)/2. Therefore, by computing values of rot as described in

Chapter 5 and computing values of scl as described in Chapter 6, one can test when rot is

extremal. If A has finite order, we have scl(A) = rot(A) = 0, and so we focus on infinite

order elements. Since scl and rot are both class functions, i.e. are constant on conjugacy

classes, it is only necessary to check one element of each conjugacy class of PSL(2,Z). As

explained in Chapter 5, every infinite order element of PSL(2,Z) is conjugate to a positive

word in the letters L and R, and therefore we test only elements of this form.

Recall from Chapter 5 that the value of the rotation quasimorphism on a word of the

form Ra1Lb1 · · ·RanLbn , ai, bi ≥ 0, is

1

6

( n∑
i=1

ai −
n∑
i=1

bi

)
.
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Extremal

Length Number Number Fraction

1 2 2 1.000
2 4 4 1.000
3 8 8 1.000
4 16 16 1.000
5 32 32 1.000
6 64 64 1.000
7 128 128 1.000
8 256 208 0.813
9 512 458 0.895

10 1024 744 0.727
11 2048 1718 0.839
12 4096 2560 0.625
13 8192 6216 0.759
14 16384 8908 0.544
15 32768 22537 0.688
16 65536 33968 0.518

Table 7.1: Fraction of words for which either rot or − rot is extremal

As stable commutator length is always nonnegative, this immediately shows that the rotation

quasimorphism cannot be extremal for words for which the total exponent of L is greater

than the total exponent of R, since in this case rot would be negative. However, it is possible

that − rot could instead be extremal for such an element. Therefore, in attempting to

determine how frequently the rotation quasimorphism is extremal, we count the number of

words for which either rot or − rot is extremal.

We find that, for short words in L and R, it is almost always the case that either rot or

− rot is extremal, but that, for longer words in L and R, rot and − rot are less frequently

extremal. More specifically, for all words of length at most 7 in L and R, either rot or − rot

is extremal. However, for longer words, there are many instances when neither rot nor − rot

is extremal. For example, the element R4L2RL has stable commutator length 5/24, whereas

the bound given by rot is 1/6. Since the bound given by rot is always a multiple of 1/12, it

is clear that neither rot nor − rot can be extremal for any element whose stable commutator

length is not a multiple of 1/12. Having stable commutator length a multiple of 1/12 is not

enough to ensure that either rot or − rot is extremal, however. For example, the element

R3L2RL2 has stable commutator length 1/6, whereas the bound given by rot is 0. Table 7.1
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shows how frequently either rot or − rot is extremal for words of length less than or equal

to 16 in L and R.

It is interesting to observe from this data that either rot or − rot seems to be extremal

more frequently for words of odd length in L and R than for words of even length. We

do not know the reason for this phenomenon, but suspect it is the result of a parity issue

when trying to construct surfaces with a prescribed boundary. In Chapter 8, we discuss a

geometric characterization of when rot is extremal in terms of curves virtually bounding an

immersed surface. Apparently such immersed surfaces are easier to construct for words of

odd length in L and R than for words of even length, though we do not know the reason for

this.

7.2 Statistical expectations

Another observation based on the above data is that the proportion of words for which rot or

− rot is extremal generally decreases as word length increases. This is not surprising in light

of other results, and in fact we believe that, for a generic element of PSL(2,Z), neither rot

nor − rot should be extremal. This expectation implies that the numbers in the rightmost

column of Table 7.1 should go to 0 as word length increases.

Our expectation is based on comparing results about the behavior of scl and rot on

generic words of long length. Calegari–Maher [CM] have shown that, in any hyperbolic

group, generic rationally nullhomologous words of length m have scl ∼ logm/m. On the

other hand, Calegari–Fujiwara [CF10a] have shown that any bicombable quasimorphism

on a word-hyperbolic group satisfies a central limit theorem. (Björklund–Hartnick [BH]

have also recently shown that arbitrary quasimorphisms along random walks on countable

groups satisfy a central limit theorem.) This result implies that rot ∼
√
m for generic words

of length m. These differing rates of growth of scl and rot show that rot should not be

extremal for a generic element of PSL(2,Z).
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7.3 The function n(W )

Despite the fact that rot and − rot are typically not extremal, we have been able to prove

a stability theorem about elements for which rot is extremal. Our main theorem (see

Chapter 8) shows that multiplying any word W in L and R by a sufficiently large power

of R ensures that the rotation quasimorphism will be extremal for the resulting element.

In light of this theorem, if rot is not extremal for W , it is natural to wonder how large a

natural number n is needed to make rot extremal for RnW . One might think of this as

giving a measure of “how far” rot is from being extremal for W . On the other hand, if rot

is extremal for W , it will fail to be extremal for some LmW simply because rot(LmW ) will

be negative for sufficiently large m. The exponent needed here gives some measure of how

“strongly” extremal rot is for W .

To make this more precise, for every word W in L and R we define an integer n(W ) as

follows. If rot is not extremal for W , then n(W ) is the smallest natural number for which rot

is extremal for RnW . If rot is extremal for W , then n(W ) is −m, where m is the smallest

natural number for which the rotation quasimorphism is extremal for LmW but not for

Lm+1W .

If rot were extremal exactly when it is nonnegative, n(W ) would follow a binomial

distribution for words of a fixed length. This is true for words of length 1, 2, 3, and 4, but is

not true in general since rot is often not extremal even when it is nonnegative. For example,

n(L2RL2) could be as small as 3, but it is actually 6. One begins to see irregularity in the

distribution of n(W ) for words W of length 5, as shown in Figure A.1, and this becomes

more pronounced for longer words. The distributions of n(W ) for words of length 6, 7, 8,

and 9 are shown in Figures A.2, A.3, A.4, and A.5. Especially in the last figure, one has

the impression that the distribution of n(W ) is not centered about 0 but rather is skewed

toward positive values. It would be interesting to study the behavior of the distribution of

n(W ) for long words.
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7.4 Stuttering

Word

RRRLRLL
RRRLLRL
RRLRLLR
RRLLRLR
RLRLLRR
RLLRLRR
LRRRRLL
LRLLRRR
LLRRRRL
LLRLRRR

Table 7.2: All examples of 1-stuttering for words of length 7

Word

RRLRLLRL
RLRLRRLL
RLRLLRLR
RLLRRLRL
LRRRLRLL
LRRLLRRL
LRLRRLLR
LRLLRLRR
LLRRRRLL
LLRRLRLR
LLRLRRRL

Table 7.3: All examples of 1-stuttering for words of length 8

Given that we will show in Chapter 8 that rot is extremal for RnW for sufficiently large

n, one might expect that if rot is extremal for RnW then it is also extremal for Rn+1W .

However, this is not necessarily the case. Our theorem only shows that there is some N such

that, whenever n ≥ N , rot is extremal for RnW . We do not have any control over what

happens when n < N , and indeed we have found examples of various types of behavior. If rot

is extremal for W but not for RW ,. . . ,RmW , we say that W is an example of m-stuttering.

The first examples of 1-stuttering occur for words of length 7. There are exactly ten such

examples among the words of length 7 in L and R, and these are listed in Table 7.2. For

words of length 8, there are exactly eleven such examples, and these are listed in Table 7.3.
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The number of examples of 1-stuttering seems to continue to grow as longer words are

considered.

The first examples of 2-stuttering occur for words of length 8, where there are exactly four

such examples: R2LRL2RL, RLRL2RLR, LRL2RLR2, and L2R4L2. The first examples of

3-stuttering occur among words of length 14, and RLR2L2RLRL2R2L is such an example.

Although we have not found examples of m-stuttering for m ≥ 4, we have no reason to

believe that m-stuttering cannot happen for larger m. It would be interesting to study

whether m-stuttering can occur for arbitrarily large m.
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Chapter 8

Main theorem

In this chapter, we state our main stability theorem about elements of the modular group

PSL(2,Z) for which the rotation quasimorphism is extremal. We separately consider the

cases of finite order, parabolic, and hyperbolic elements, reducing to consideration of elements

of a particular form. Our theorem then follows from another theorem about when closed

geodesics on the modular surface bound immersed orbifolds, and we prove this second

theorem in Chapter 9.

Theorem. For every element A ∈ PSL(2,Z), there exists a parabolic element P ∈ PSL(2,Z)

and an integer N ∈ Z such that, whenever n ≥ N , the rotation quasimorphism is extremal

for the element PnA.

8.1 Parabolic elements

As explained in Chapter 5, every infinite order element A ∈ PSL(2,Z) is conjugate to a

positive word in L and R. We first consider the case when A is conjugate to Ra, a > 0,

or to Lb, b > 0. (This corresponds to the case when A is parabolic.) Observe that

SLbS = S(SU)bS = (US)b = R−b. This shows that every element conjugate to Ra or

Lb is in fact conjugate to Ra for some (possibly negative) a. Suppose A = BRaB−1,

and let P = BRB−1. Then PnA = BRnB−1BRaB−1 = BRa+nB−1. We compute that

scl(R) = 1/12 and rot(R) = 1/6, which implies that scl(Rm) = rot(Rm)/2 = m/12 for all

m ∈ N. Choosing N ≥ −a, we get that rot is extremal for Ra+n. Since scl and rot are both

class functions, it follows that rot is also extremal for BRa+nB−1 = PnA.
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8.2 Hyperbolic elements

We next consider the case when A is conjugate to a positive word in L and R but not to Ra

or Lb. (This corresponds to the case when A is hyperbolic.) In this case, A is conjugate

to an element of the form W = Ra1Lb1 · · ·RakLbk , where ai, bi > 0. Suppose A = BWB−1,

and let P = BRB−1. Then PnA = BRnB−1BWB−1 = BRnWB−1. This means that, in

order to show rot is extremal for PnA, it suffices to show it is extremal for RnW . Note

that RnW = Ra1+nLb1 · · ·RanLbn , which is again a positive word in L and R. Therefore it

suffices to only consider words of this standard form. In Section 8.4 and following, we will

show that, for every element of the form Ra1Lb1 · · ·RakLbk , ai, bi > 0, making a1 sufficiently

large is enough to ensure that rot is extremal for this element.

8.3 Finite order elements

If A is of finite order, it is conjugate to S, U , or U−1. We consider these three cases

separately.

1. Suppose A = BSB−1. Let P = BRB−1. Then, when n ≥ 2,

PnA = BRnSB−1

= B(SU−1)nSB−1

= (BSU−1)(SU−1)n−2SU−1SSU−1(USB)

= (BSU−1)(SU−1)n−2SU(BSU−1)−1

= (BSU−1)Rn−2L(BSU−1)−1.

Therefore it suffices to show that rot is extremal for Rn−2L for sufficiently large n.

This fits the standard form of hyperbolic elements to be considered in Section 8.4 and

following.
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2. Suppose A = BUB−1. Let P = BRB−1. Then, when n ≥ 3,

PnA = BRnUB−1

= B(SU−1)nUB−1

= B(SU−1)n−1SB−1

= (BSU−1)(SU−1)n−3SU−1SSU−1(USB)

= (BSU−1)(SU−1)n−3SU(BSU−1)−1

= (BSU−1)Rn−3L(BSU−1)−1.

Therefore it suffices to show that rot is extremal for Rn−3L for sufficiently large n.

This fits the standard form of hyperbolic elements to be considered in Section 8.4 and

following.

3. Suppose A = BU−1B−1. Let P = BRB−1. Then, when n ≥ 1,

PnA = BRnU−1B−1

= B(SU−1)nU−1B−1

= B(SU−1)n−1SUB−1

= BRn−1LB−1.

Therefore it suffices to show that rot is extremal for Rn−1L for sufficiently large n.

This fits the standard form of hyperbolic elements to be considered in Section 8.4 and

following.

8.4 The geometric approach

It remains to show that the rotation quasimorphism is extremal for a hyperbolic element of

the form Ra1Lb1 · · ·RakLbk , ai, bi > 0, whenever a1 is sufficiently large. It follows from work

of Calegari [Cal09a] that rot is extremal for a hyperbolic element of PSL(2,Z) exactly when

the corresponding geodesic on the modular surface virtually bounds an immersed surface.
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We use this geometric condition to finish the proof of our main theorem. First, we explain

what it means for a curve to virtually bound an immersed surface.

Recall that a differentiable map between differentiable manifolds is an immersion if its

derivative at every point is injective. When immersing surfaces in 2-dimensional orbifolds,

we require that, around any point on the surface that maps to an order n cone point, the

map factors through the quotient by a rotation of angle 2π/n. We say that an immersed

curve c in a differentiable manifold X bounds an immersed surface if there is an immersion

Σ → X mapping ∂Σ to c in an orientation-preserving way. An immersed curve c in X

virtually bounds an immersed surface if there is an immersion Σ → X mapping ∂Σ to a

cover of c in an orientation-preserving way.

We want to show that, for a hyperbolic element of the form Ra1Lb1 · · ·RakLbk , ai, bi > 0,

the corresponding geodesic on the modular surface virtually bounds an immersed surface

whenever a1 is sufficiently large. The proof of this result occupies Section 8.5 and Chapter 9.

It was observed experimentally that a similar result seems to hold in the free group F2,

namely that for any word w the curve on the once-punctured torus corresponding to w[a, b]n

virtually bounds an immersed surface for all sufficiently large n. Thus our result may be

regarded as an analogue of Conjecture 3.16 from [Cal09a].

8.5 Cone points

In Chapter 9, we show that a hyperbolic element Ra1Lb1 · · ·RakLbk , ai, bi > 0, corresponds

to a geodesic that bounds an immersed orbifold whenever a1 is sufficiently large. In this

section, we explain how this result implies that such a geodesic also virtually bounds an

immersed surface.

We say that an immersed curve c in a 2-dimensional orbifold X bounds an immersed

orbifold if there is an immersion Σ→ X of a 2-dimensional orbifold Σ that takes ∂Σ to c in

an orientation-preserving way. If an order m cone point maps to an order n cone point, we

require that m | n and that around the order m cone point the map factors through the

quotient by an order n/m rotation.
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Figure 8.1: Eliminating cone points

If a curve γ bounds an immersed orbifold, we construct an immersed surface that it

virtually bounds as follows. Suppose such an immersed orbifold has k cone points, and

let the orders of these cone points be n1, . . . , nk. For each cone point of the immersed

orbifold, cut along an arc from the cone point to the boundary (which maps to γ), as

depicted in Figure 8.1. The k arcs along which cuts are made should be disjoint. Now

take lcm(n1, . . . , nk) copies of the resulting orbifold. For the ith cone point, divide the

lcm(n1, . . . , nk) copies of the orbifold into lcm(n1, . . . , nk)/ni groups of ni each. Within each

group of ni copies, glue up the cuts to the ith cone point by gluing the left side of the cut

on the jth copy to the right side of the cut on the (j + 1)st copy for all 1 ≤ j ≤ ni − 1,

as well as the left side of the cut on the nith copy to the right side of the cut on the first

copy. Doing this for all cone points, we create an immersed surface with no cone points

whose boundary maps to a degree lcm(n1, . . . , nk) cover of γ. Thus γ virtually bounds an

immersed surface.

To prove our main theorem, it therefore remains only to show that appropriate geodesics

on the modular surface bound immersed orbifolds. This is shown in the next chapter.



42

Chapter 9

Immersed orbifolds in the modular
surface

As explained in Chapter 8, our main theorem follows from a stability theorem about when

certain geodesics on the modular surface bound immersed orbifolds. In this chapter, we

state and prove this theorem. The material of this chapter is largely taken from [CL11].

Theorem. Consider a hyperbolic conjugacy class in PSL(2,Z), represented by a word W

of the form Ra1Lb1 · · ·RakLbk for ai, bi > 0. If a1 is sufficiently large, the corresponding

geodesic on the modular surface bounds an immersed orbifold.

The requirement that a1 be sufficiently large means explicitly that a1 ≥
∑k

i=2 ai +∑k
i=1 bi + 11k + 7. This is simply what is needed to ensure that our proof will work; it is

certainly not a necessary condition. Note that if a1 is sufficiently large for a word W , it will

also be sufficiently large for all RmW , m ∈ N, which is why we call this a stability theorem.

The remainder of this chapter is devoted to the proof of this theorem.

9.1 Decomposing the geodesic

Fix a hyperbolic conjugacy class in PSL(2,Z), represented by a word W = Ra1Lb1 · · ·RakLbk ,

ai, bi > 0, and let γ be the corresponding closed geodesic on the modular surface. We first

show how to divide γ into arcs corresponding roughly to the terms Rai and Lbi . As in

Section 4.4, let σ be the geodesic on the modular surface between the order 2 and order 3

cone points. Recall that the total preimage of σ in H2, denoted σ̃, is the Farey graph, shown

in Figure 4.3. Let V denote the region of H2 above σ̃, as shown in Figure 9.1.
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Figure 9.1: The region V

For each term Rai , let Fi be a bi-infinite path in σ̃ that makes left and right turns

according to the appearances of the letters L and R in W , chosen so it makes ai consecutive

right turns along ∂V . An example of such a path is shown in Figure 9.2. The endpoints of

this path are fixed points for the action of a conjugate of W on ∂H2. Let γ̃ be the lift of γ

with these fixed points as endpoints. Then let αi be the projection of γ̃ ∩ V to the modular

surface. (If ai = 1, it is possible this intersection could be empty, in which case αi does not

exist.) Similarly, for each term Lbi , let Gi be a bi-infinite path corresponding to W that

makes bi consecutive left turns along ∂V . The endpoints of this path determine a lift γ̃ of

γ, and we denote the projection of γ̃ ∩ V to the modular surface by βi (which might not

exist if bi = 1). Thus we have decomposed the closed geodesic γ into arcs αi and βi, each of

which travel between consecutive intersection points of γ with σ.

Figure 9.2: A bi-infinite path in σ̃ corresponding to the term R7 of the word R7L2RL

The lengths of the arcs αi and βi correspond roughly to the exponents ai and bi, as we

now explain. Consider the path in σ̃ corresponding to the bi-infinite word L̇RaiL̇ that makes

ai right turns in the same places Fi does, where L̇ indicates an infinite sequence of Ls. The

endpoints of this path are inside the endpoints of Fi, and hence the geodesic connecting

them is below γ̃. Also consider the path corresponding to ṘLRaiLṘ that makes ai right

turns in the same places Fi does. The endpoints of this path are outside the endpoints of

Fi, and hence the geodesic connecting them is above γ̃. These two geodesics constrain the

length of γ̃ ∩ V , as shown in Figure 9.3. For terms Lbi , we similarly consider the paths in σ̃

corresponding to ṘLbiṘ and L̇RLbiRL̇ that make bi left turns in the same places Gi does.
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Figure 9.3: An example of the constraints on γ̃ ∩ V

The geodesics connecting the endpoints of these paths are below and above the original

geodesic, and hence constrain the length of γ̃ ∩ V .

These paths in σ̃ beginning and ending in L̇ or Ṙ have endpoints on integer values along

the real axis, and hence the geodesics bounding γ̃ have centers at half-integer points and

half-integer radii. One can thus compute how long these geodesics stay in V . If there are

m unintersected segments of ∂V between those segments intersected by a geodesic, we say

that this geodesic uses m+ 2 segments of ∂V . One finds that the geodesic corresponding

to L̇RaiL̇ uses at least ai − 1 segments of ∂V and the geodesic corresponding to ṘLRaiLṘ

uses at most ai + 1 segments of ∂V . Thus we conclude that the γ̃ corresponding to Rai uses

between ai−1 and ai+ 1 segments of ∂V . In particular, this shows αi is nonempty whenever

ai ≥ 2. One also finds that the geodesic corresponding to ṘLbiṘ involves at least bi − 1

segments of ∂V and the geodesic corresponding to L̇RLbiRL̇ involves at most bi+1 segments

of ∂V , meaning the γ̃ corresponding to Lbi uses between bi − 1 and bi + 1 segments of ∂V .

The most important point is that the numbers ai and bi control the number of segments of

∂V used by lifts of αi and βi to V . Since we assumed that a1 is very large relative to the bi

and the other ai, we know that lifts of α1 to V will use many more segments of ∂V than

lifts of any of the βi or the other αi.

9.2 Choosing appropriate lifts

We choose lifts α̃i of αi and β̃i of βi to V in a particular way. Roughly speaking, we want

the lifts α̃i and β̃i to be as shown in Figure 9.4. Such an arrangement is needed to ensure
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α̃3α̃2

α̃1

β̃2
β̃1long

Figure 9.4: An example of how to lift to α̃i and β̃i

that the subsequent steps of the proof will work. More specifically, we choose α̃i and β̃i

satisfying the following conditions.

1. None of the α̃i or β̃i intersect each other.

2. No segment of ∂V is intersected by more than one of the α̃i or β̃i.

3. None of the α̃i are nested inside each other.

4. None of the β̃i are nested inside each other.

5. All the β̃i are under α̃1.

6. There are exactly five segments of ∂V between segments where the β̃i intersect ∂V .

7. There are exactly five segments of ∂V between the rightmost segment of ∂V intersected

by a β̃i and the rightmost segment of ∂V intersected by α̃1.

The most important consequence of this arrangement is that there is a long sequence of

unintersected segments of ∂V between the leftmost segment ∂V intersected by of α̃1 and

the leftmost segment of ∂V intersected by β̃i.

9.3 Arranging the surface to be glued

We have arranged the curves α̃i and β̃i in this way so that we can construct an immersed

orbifold from the pieces of V they bound. Consider the portion of V to the left of the α̃i and

β̃i, as shown in Figure 9.5. Observe that, when these pieces are projected to the modular
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α̃3α̃2

α̃1

β̃2
β̃1long

Figure 9.5: The pieces of V that will be glued together

surface, their boundary consists of all of the curves αi and βi, plus a number of whole or

partial segments of ∂V . We attempt to glue together these segments of ∂V to obtain an

orbifold whose boundary maps to only of the αi and βi.

Observe that γ traverses the arcs αi and βi in a certain order. Therefore, in gluing

together pieces of V to construct an orbifold whose boundary maps to γ, we want the curves

α̃i and β̃i to be arranged in the corresponding way on the boundary. This gives a natural

way to glue the (partial) segments of ∂V that are intersected by one of the α̃i or β̃i, and

we do this gluing. If γ passes through the order 2 cone point of the modular surface, the

corresponding segments of ∂V can be glued to each other as usual. If γ passes through

the order 3 cone point, we cannot glue the corresponding segments of ∂V to each other

directly as this would create a cone point on the boundary of the orbifold we are constructing.

Rather, we need to glue another piece with angle 2π/3 between these segments. There are

many suitable pieces along the long sequence of unintersected segments of ∂V . We use a

pair of segments near the end of this sequence for this purpose, resolving the issue of γ

passing through the order 3 cone point. For each αi that intersects adjacent segments of

∂V , there is a point about which there are three corners of angle 2π/3, and this forces us to

glue an additional pair of segments, which we do. There are then no additional points with

three corners of angle 2π/3, due to the space that was left between the β̃i.

We are left with a surface with several boundary components, such as the one shown in

Figure 9.6. One of these components consists only of the curves α̃i and β̃i, traversed in the

order corresponding to γ. This component maps to γ under the map to the modular surface
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γ

Figure 9.6: The result after gluing several segments of ∂V

induced by the projection H2 → H2/PSL(2,Z), and so we label it by γ in Figure 9.6. The

other boundary components contain several points that are preimages of the order 3 cone

point in the modular surface; these are indicated by dots in Figure 9.6. The angle between

segments meeting at these points is either 2π/3, if no gluing has yet occurred at this point,

or 4π/3, if a pair of edges has already been glued at this point.

9.4 Reducing to the case of one component

In trying to construct an orbifold that immerses in the modular surface and whose boundary

maps to γ, we want to glue up these other boundary components entirely, so that the

boundary segment labeled by γ is the only one remaining. In doing this, edges must either

be glued in pairs or folded in half about a preimage of the order 2 cone point. About points

labeled by dots the total angle must be either 2π or 2π/3, since these points map to the

order 3 cone point. This is a completely combinatorial problem, and we explain how to

solve it under the hypotheses of our theorem. To simplify the diagrams, we label dots about

which the angle is 2π/3 by 1 and dots about which the angle is 4π/3 by 2.

We need to glue several components, such as those shown in Figure 9.7. Based on the

way the curves α̃i and β̃i were chosen in Section 9.2, we can say several things about points

on these components. First, every component contains at least part of one of the sequences

of five segments of ∂V left between two of the β̃i or between a β̃i and α̃1. The first and

last of these five segments might have already been identified with other segments, but the

middle three segments remain unglued. Therefore the angle about the two points in the

middle of the sequence of five segments is still 2π/3, which means each component to be
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1s
1 1 1 1 1 1

Figure 9.7: The components to be glued, one with a long sequence of 1s

glued must contain a pair of adjacent 1s. We also know that the long sequence of segments

of ∂V between the leftmost endpoint of α̃1 and the leftmost endpoint of a β̃i must have a

long sequence of unidentified edges, and therefore one of the components in Figure 9.7 must

have a long sequence of 1s. We call this component the primary component and all other

components secondary components. We now show how to use this long sequence of 1s to

glue up all the components.

1

1

1

1

2

2

Figure 9.8: Gluing two 11 segments

Observe that we can glue a pair of 11 segments as shown in Figure 9.8, joining pairs of

points labeled by 1 to give points labeled by 2. For each secondary component, we use this

move to identify a 11 sequence with a 11 sequence near the end of the long string of 1s on

the primary component. In this way, all secondary components are joined to the primary

component, and the primary component still has a long sequence of 1s. Therefore we have

reduced to the problem of showing that a single component with a long sequence of 1s can

be glued up.

9.5 Reducing to the case of one 2

We have a single component with a long sequence of 1s and some other sequence of numbers

v, as indicated in Figure 9.9. The main use of the long sequence of 1s is to create the
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v

1s

Figure 9.9: The remaining component to be glued, with a long sequence of 1s

complimentary sequence vc to v, in order that v can be glued up. By complementary

sequence, we mean that if v consists of points labeled by a, b, c we create the sequence

labeled by 3− c, 3− b, 3− a. (We reverse the order so that vc can be glued to v.) To create

a complementary sequence, we must be able to create points labeled by 2 wherever we wish

in the long sequence of 1s. This can be done simply by gluing an edge to itself, folding

about the point that maps to the order 2 cone point in the modular surface, as shown in

Figure 9.10.

1

1

2×

order 2
cone point

Figure 9.10: Folding a 11 segment

Now we use this to create the compliment vc of v somewhere in the middle of the sequence

of 1s. We then glue vc to v, as shown in Figure 9.11.

v

vc

1s

1s

Figure 9.11: Gluing a sequence to its complement
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2

1s

Figure 9.12: A component with a single 2

After doing this gluing, there are two remaining boundary components, each consisting

of part of the long sequence of 1s not used in creating vc. A 1 next to v is identified with

a 1 next to vc, so therefore these remaining components have a single point labeled 2 and

all other points labeled 1. (We choose the placement of vc to ensure that each resulting

component has at least one 1.) It turns out each of these components can be glued up

separately, and therefore we reduce to the case of considering a single component with

exactly one 2, as depicted in Figure 9.12.

9.6 Reducing to special cases

1

2

1

1

2×

order 2
cone point

Figure 9.13: Folding a 1211 sequence

If the component we are considering has four or more 1s, we can fold a 1211 sequence as

shown in Figure 9.13, identifying a pair of edges and folding the middle edge in half about a

point mapping to the order 2 point in the modular surface. This has the effect of converting

the 1211 sequence to a single 2 point, thus reducing the number of 1s by three. We do this

repeatedly until we are left with only one, two, or three 1s.
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9.7 Special cases

It remains to show how to glue up three special cases, a 21 circle, a 211 circle, and a 2111

circle. Each of these is explained below.

1. In the case of one 2 and one 1, fold along the line intersecting the midpoints of the

edges, as shown in Figure 9.14. This produces two cone points of order 2, both of

which map to the order 2 cone point of the modular surface.

2

1

×

order 2
cone point

×

order 2
cone point

Figure 9.14: Folding up a 21 circle

2. In the case of one 2 and two 1s, fold along the line intersecting the midpoint of a 21

edge and the other 1 point, as shown in Figure 9.15. This produces one order 2 cone

point, which maps to the order 2 cone point of the modular surface, and one order 3

cone point, which maps to the order 3 cone point of the modular surface.

1

2

1

× ×

order 2
cone point

order 3
cone point

Figure 9.15: Folding up a 211 circle

3. In the case of one 2 and three 1s, fold along the line intersecting the two opposite 1

points, as shown in Figure 9.16. This produces two order 3 cone points, both of which

map to the order 3 cone point of the modular surface.
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1

2

1

1

×

order 3
cone point

×

order 3
cone point

Figure 9.16: Folding up a 2111 circle

This completes the proof of the theorem stated at the beginning of this chapter. This

result implies our main theorem, as explained in Chapter 8.
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Chapter 10

Generalizations

One reason for studying the modular group PSL(2,Z) is that it is a prototype for several

classes of groups. One can therefore hope to generalize results about the modular group to

groups such as braid groups, mapping class groups, or other lattices in PSL(2,R). In this

chapter, we discuss two generalizations of our results, one to the 3-strand braid group and

the other to Hecke triangle groups.

10.1 The 3-strand braid group

The study of stable commutator length in the modular group is closely related to the study

of stable commutator length in the 3-strand braid group. The n-strand braid group Bn has

presentation 〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1

σiσj = σjσi when |i− j| ≥ 2

〉
,

where geometrically one thinks of σi as consisting of n vertical strands where the ith strand

crosses under the (i + 1)st strand. The abelianization of Bn is obtained by adding the

commutativity relations σiσi+1 = σi+1σi to the above presentation. Combined with the

braid relations, these show exactly that all generators σi are equal in the abelianization, so

hence Bn/[Bn, Bn] ∼= Z.

Consider the surjective homomorphism lkn : Bn → Z that maps each generator σi

to 1. Thus lkn counts the “total exponent” of a word in the braid generators, and is

well defined since this quantity is preserved by the braid relations. Any element of the

commutator subgroup must have total exponent 0, so it is clear that [Bn, Bn] E ker lkn. By
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the isomorphism theorems,

Z ∼= Bn/ ker lkn ∼= (Bn/[Bn, Bn])/(ker lkn /[Bn, Bn]) ∼= Z/(ker lkn /[Bn, Bn]).

Since Z can only be a quotient of itself by the trivial subgroup, this shows that [Bn, Bn] =

ker lkn, i.e. that the commutator subgroup of Bn consists of exactly those braids with total

exponent 0.

The center of Bn is the infinite cyclic subgroup generated by the “full twist” (σ1 · · ·σn−1)n.

In the case n = 3, B3/Z(B3) ∼= PSL(2,Z), which allows the use of techniques not available

for higher-strand braid groups. The quotient (anti-)homomorphism φ : B3 → PSL(2,Z)

takes σ1 to L−1 and σ2 to R. It turns out that commutator length and stable commutator

length in B3 are completely determined by commutator length and stable commutator length

in the modular group, for the following reason. Let β ∈ [B3, B3]. If β =
∏g
i=1[δi, γi], then

φ(β) = φ
(∏g

i=1[δi, γi]
)

=
∏g
i=1[φ(δi), φ(γi)]. Conversely, if φ(β) =

∏g
i=1[Bi, Ci], choose any

preimages δi ∈ φ−1(Bi) and γi ∈ φ−1(Ci). Since β and
∏g
i=1[δi, γi] have the same image

under φ, they are equal in B3 up to a power of the full twist. But the full twist has total

exponent 6, whereas β and
∏g
i=1[δi, γi] both have total exponent 0. Thus we must in fact have

β =
∏g
i=1[δi, γi]. This shows that, for all β ∈ [B3, B3], we have clB3(β) = clPSL(2,Z)(φ(β)),

and hence sclB3(β) = sclPSL(2,Z)(φ(β)).

The rotation quasimorphism may also be extended from PSL(2,Z) to B3. In the following,

we use rot to denote the rotation quasimorphism on PSL(2,Z) and rotB3 to denote the

corresponding quasimorphism that we define on the 3-strand braid group. Given β ∈ B3,

set rotB3(β) = rot(φ(β)). Then

|rotB3(βδ)− rotB3(β)− rotB3(δ)| = |rot(φ(βδ))− rot(φ(β))− rot(φ(δ))|

= |rot(φ(β)φ(δ))− rot(φ(β))− rot(φ(δ))|

≤ D(rot),

so rotB3 is a quasimorphism. This also shows that D(rotB3) ≤ D(rot). To show that
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D(rotB3) ≥ D(rot), choose elements B,C ∈ PSL(2,Z) such that

|rot(BC)− rot(B)− rot(C)|+ ε > D(rot).

Then for any β ∈ φ−1(B) and δ ∈ φ−1(C), we have

|rotB3(βδ)− rotB3(β)− rotB3(δ)|+ ε = |rot(BC)− rot(B)− rot(C)|+ ε

> D(rot).

Thus D(rotB3) = D(rot).

Since for β ∈ [B3, B3] we have that scl(β) = scl(φ(β)) and rotB3(β) = rot(φ(β)), it

follows that rotB3 is extremal for β ∈ [B3, B3] exactly when rot is extremal for φ(β). As

[B3, B3] is not a finite index subgroup of B3, the analogue of our main theorem must be

stated in such a way as to ensure that the braids under consideration are trivial in rational

homology. We accomplish this by multiplying by a power of the full twist (σ1σ2)3 (which

projects to the identity in PSL(2,Z)) to ensure that the braids under consideration have

total exponent 0. Then our main theorem implies the following result.

Theorem. Let β ∈ [B3, B3] be a positive word in σ−1
1 and σ2. Then rotB3 is extremal for

σ6n
2 β(σ1σ2)−3n for all sufficiently large n ∈ N.

10.2 Hecke triangle groups

The modular group also generalizes to the Hecke triangle groups, originally introduced by

Hecke [Hec36]. The Hecke triangle group Gq, q ≥ 3, is the discrete subgroup of PSL(2,Z)

generated by S =
(

0 −1
1 0

)
and U =

( 0 −1
1 2 cos(π/q)

)
. The element S has order 2 and the element

U has order q, and in fact Gq ∼= 〈S,U | S2 = U q = 1〉. The quotient H2/Gq is an orbifold

with an order 2 cone point, an order q cone point, and a cusp, known as a Hecke triangle

surface. When q = 3, this is just the ordinary modular group and modular surface.

As is the case for the modular group, the Hecke group Gq is naturally identified with

the orbifold fundamental group of H2/Gq. Let P be the element of Gq corresponding to a



56

negative loop around the cusp of H2/Gq. Then the theorem of Chapter 9 generalizes to the

following result.

Theorem. Let A be a hyperbolic element of the Hecke triangle group Gq. For all sufficiently

large n, the geodesic on the Hecke triangle surface H2/Gq corresponding to the element PnA

bounds an immersed orbifold.

We now outline how the argument given in Chapter 9 can be used to prove this theorem.

Let σq be the geodesic segment between the order 2 and order q cone points of H2/Gq. The

total preimage of σq in H2, denoted σ̃q, is a regular q-valent tree. Let Vq be the component

of H2 \ σ̃q stabilized by the translation
(

1 2 cos(π/q)
0 1

)
. The boundary ∂Vq consists of circular

arcs meeting at angles 2π/q.

As in Section 9.1, a hyperbolic conjugacy class in Gq is represented by a geodesic γ in the

Hecke triangle surface, and we again decompose γ into arcs between successive intersection

points with σq. We denote by αi those arcs whose lifts to Vq travel left and by βi those arcs

whose lifts to Vq travel right.

When n is sufficiently large, the geodesic γ corresponding to PnA contains an arc α1

that is very long compared to the other αi and the βi. As in Section 9.2, we choose lifts α̃i

of αi and β̃i of βi such that none of the α̃i are under α̃1 and all of the β̃i are under α̃1 with

five segments between them.

Partially gluing segments of Vq that are to the left of the α̃i and β̃i as determined by the

way γ was cut up, we obtain a surface with one boundary component mapping to γ and

several other boundary components mapping onto σ. These other boundary components

contain points around which the angle is some multiple of 2π/q. Labeling these points with

integers from 1 to p−1 (corresponding to the multiple of 2π/q), we reduce to a combinatorial

gluing problem, as in Section 9.3.

We again know that each component contains a 11 sequence and that one component

contains a long sequence of 1s. Therefore we glue a 11 sequence from each component to the

end of the long sequence of 1s to reduce to the case of one component to be glued. Let v

denote the resulting sequence of numbers not in the long sequence of 1s. The complement

vc of v is a sequence that has the number q − k across from where v has the number k. By
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folding in half the appropriate number of consecutive segments in the long sequence of 1s, we

can form any number we wish, and we use this method to create V c from the long sequence

of 1s. Gluing v to vc, we reduce to the case of all 1s except for one 2.

We may still assume the sequence of 1s is as long as necessary. We reduce its length using

two moves: folding edges in half and gluing adjacent edges. Folding an edge in half turns a

1a edge into a point labeled by a+ 1, creating an order 2 cone point from the midpoint of

the edge. Gluing adjacent edges is only allowed if the middle point is labeled by 1, and this

move turns a 11a edge into a point labeled by a+ 1, creating an order q cone point from

the middle 1. In the case a = q − 1, these moves also force us to glue adjacent segments,

creating a point labeled by 2. Notice that folding an edge does not change the sum of the

labels on the vertices modulo q, whereas gluing adjacent edges reduces the sum of the labels

on the vertices by 1. We first glue adjacent edges repeatedly, until the sum of the labels

on the vertices is congruent to 0 modulo q. We then repeatedly fold edges involving the

point not labeled by 1. Eventually we reach the case where there are only two points, one

labeled by 1 and the other labeled by q − 1. We then fold both edges in half, gluing the

point labeled by 1 to the point labeled by q − 1 and creating two order 2 cone points. This

establishes our result for arbitrary Hecke triangle surfaces H2/Gq.

10.3 Further directions

One might try to generalize our results to other triangle orbifolds or to higher-strand braid

groups. It seems plausible that the statement of Section 10.2 could be true for triangle

orbifolds of type (p, q,∞), p, q ∈ N, rather than simply for triangle orbifolds of type (2, q,∞),

and it would be interesting to try to modify our proof to work in this case.

Gambaudo–Ghys [GG05] used symplectic geometry to construct families of quasimor-

phisms on braid groups Bn that generalize the rotation quasimorphism, and it would also

be interesting to study when these quasimorphisms are extremal. Since there is no known

algorithm for computing stable commutator length in higher-strand braid groups, statements

about the extremality of these quasimorphisms would give an indirect method for computing

the stable commutator length of higher-strand braids.
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Appendix A

Distribution of n(W )

In Section 7.3, we defined a function n(W ) to measure how “strongly” extremal or not

extremal rot is for W . In particular, if rot is not extremal for W then n(W ) is the smallest

power of R by which W needs to be multiplied in order to make rot extremal for the resulting

element. If rot is extremal for W then n(W ) is nonpositive and measures the power of L by

which W needs to be multiplied in order to make rot not extremal for the resulting element.

In this appendix, we provide graphs of the distribution of n(W ) for words W of length 5, 6,

7, 8, and 9.
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Figure A.1: Distribution of n(W ) for words of length 5
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Figure A.2: Distribution of n(W ) for words of length 6
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Figure A.3: Distribution of n(W ) for words of length 7
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Figure A.4: Distribution of n(W ) for words of length 8
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Figure A.5: Distribution of n(W ) for words of length 9
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