
Algorithms and Techniques for Conquering
Extreme Physical Variation in Bottom-Up

Nanoscale Systems

Thesis by

Benjamin Gojman

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2010

(Submitted April 5, 2010)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Theses and Dissertations

https://core.ac.uk/display/11814624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2010

Benjamin Gojman

All Rights Reserved

ii

Acknowledgements

This work would not have been possible without the constant support and motivation from my advisor,

André DeHon. His patience and guidance are invaluable to me. André, it is because of your dedication that

I successfully completed this work. Thank you for all your help.

Raphael Rubin and Nikil Mehta were instrumental in the development of this thesis. Rafi, I am grateful

for both the insightful discussions we had about the technical aspects of this work as well as the uncountable

amount of infrastructure support you provided. Nick, without your in-depth knowledge, I would have been

lost trying to understand all the low level details of the NanoPLA. I also want to thank the other members of

the IC Group, Nachiket Kapre, Michael deLorimier and Corey Waxman, for their advice and encouragement.

Emily Traver has been with me through this whole process, delighting in the ups and never failing to be

there when things got rough. I am grateful that you were with me every step of the way.

Finally, I want to thank my family Marcos and Karen, Mauricio and Monica Gojman for their love and

constant support and Dita for always believing that this project would come to a successful end.

This research was funded in part by National Science Foundation grant CCF-0726602 and CCF-0904577.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science Foundation.

iii

Abstract

Nanowire building blocks provide a promising path to small feature size and thus the ability to more densely

pack logic. However, the small feature size and novel, bottom-up manufacturing process will exhibit extreme

variation and produce many devices that operate outside acceptable operating ranges. One-mapping-fits-all,

prefabrication assignment of logical functions to physical transistors that exhibit high threshold variation

will not work—combining the wide range of physical variation in transistor threshold voltage with the wide

range of fanouts in the design produces an unworkably large composite range of possible delays. Nonetheless,

by carefully matching the fanout of each net to the physical threshold voltages of devices after fabrication, it

is possible to reduce the net range of path delays sufficiently to achieve high system yield. Characterization

of the complete threshold voltage distribution present in the system can be measured at a rate of 108

resources per second by augmenting the system with voltage comparison mechanisms. By adding a modest

amount of extra resources, we achieve 100% yield for systems built out of devices with 38% variation, the

ITRS prediction for threshold variation in 5 nm transistors. Moreover, for these systems, we maintain delay,

energy and area close to the variation-free nominal case. What’s more, there is only a 10% overhead when

the measurement precision is limited to ten discrete threshold voltage values.

iv

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Overview . 1

2 Background 3

2.1 Technology: Nanowires . 3

2.2 Architecture: NanoPLA . 4

2.3 Source of Variation . 6

3 System Model 7

3.1 Evaluation Model . 7

3.2 Defect Model . 7

3.3 Timing Model . 8

3.4 NanoPLA CAD Flow . 9

4 Device Specific Mapping 11

4.1 Variation-Oblivious Mapper . 11

4.2 Primary Sources of Variation . 11

4.3 Defect-Avoiding Algorithm . 13

4.4 Logical Variation: Variation in Fanout . 14

4.5 VMATCH: NanoPLA Mapping Algorithm . 15

4.5.1 Algorithm Details . 17

5 Device Characterization 26

5.1 Overview of measurement steps . 29

5.2 Circuit Model . 31

v

5.3 Upper Resistance: NanoPLA Plane Resistance . 32

5.3.1 Understanding Vlow . 32

5.3.2 Defining Vhigh and Setting VstrongOff . 34

5.4 Lower Resistance: Rref . 36

5.5 Algorithm to Characterize the NanoPLA Resources . 40

5.6 Measurement Precision . 42

6 Results 45

6.1 Experimental Setup . 45

6.2 Achievable Yield . 45

6.3 Delay, Energy and Area . 46

6.4 Measurement Precision . 51

7 Conclusion 54

8 Future Work 55

Bibliography 56

vi

Chapter 1

Introduction

As device feature sizes scale below optical wave length scales, manufacturing reliable systems using litho-

graphic technologies is increasingly challenging. As a consequence, researchers have been exploring bottom-

up manufacturing methods that avoid lithography for defining the smallest feature size. Though still in its

infancy, one such technology is catalyst-grown nanowires. Researchers have demonstrated components built

out of nanowires with diode and FET-like behaviors [1, 2, 3]. Others have proposed how to build integrated

reconfigurable systems using these components [4, 5, 6]. While encouraging, this bottom-up technology is not

without its challenges; high among them is extreme levels of random variation in the nanoscale components.

Variation in these systems comes both from the independent manufacturing of each component and

the stochastic assembly process this technology requires. Components are built out of individually grown

wires, and although scientist have demonstrated impressive control of this growth process [7, 8], atomic-scale

dimensions mean that small differences among wires manifests as greatly varying component characteristics.

Due to threshold voltage variation of 5 nm length transistors, transistor on current (Ion) will range an

order of magnitude above and one below its nominal value, and transistor off current (Ioff) will range five

orders of magnitude below and five above its nominal value. Unmitigated, this variation will produce highly

defective, “inherently irreproducible” [6] devices, and both fixed and programmable systems built out of

nanowires will be inoperable.

1.1 Overview

We present VMATCH, an algorithm that takes advantage of post-fabrication characterization of devices

along with the reconfigurable nature of the NanoPLA, to use highly varying devices more effectively. It

successfully maps designs by exploiting the fanout-variation introduced by the architecture and logical netlist

to counteract physical variation of the threshold voltage, Vth, in the transistors. We show that our algorithm

solves the problem of mapping to systems with extreme variation while maintaining yield, performance,

1

energy and area close to variation-free systems. We present an efficient technique to measure the physical

variation and show that although it can provide high precision results, VMATCH only requires moderate

precision measurements. This leads to reproducible systems built out of irreproducible devices, resulting in

a more efficient variant of Von Neumann’s vision of reliable systems built out of unreliable components [9].

The next chapter reviews the bottom-up technology that enables the manufacturing of the NanoPLA

(Section 2.1) along with its architecture (Section 2.2) as introduced in [10]. The chapter concludes by

considering the sources of the variation present in the NanoPLA (Section 2.3).

Chapter 3 explains how the NanoPLA functions as well as how it is used. In particular, it introduces the

defect model (Section 3.2) which enables, in later chapters, the discussion of why and how the NanoPLA

fails due to variation.

In Chapter 4, we motivate and introduce VMATCH, our algorithm to mitigate the negative effects of

variation. Specifically, we first recognize that ignoring variation invariably leads to failure (Section 4.1).

A partial understanding of the variation in the NanoPLA (Section 4.2), leads to an expensive solution

(Section 4.3). Finally, full insight on the variation in the system (Section 4.4), naturally leads to VMATCH

(Section 4.5).

VMATCH requires knowledge of the electrical characteristics of the underlying devices in the NanoPLA.

Chapter 5 explores how these measurements can be obtained and how the NanoPLA is suited for measuring

specifically the characteristics required by VMATCH. After analyzing the circuit model (Section 5.2) we

explain how to configure the NanoPLA to make these measurements (Sections 5.3) and how long it takes

to characterize a full NanoPLA (Section 5.4). The details of the measurement algorithm are then presented

(Section 5.5). We finish with an analysis of the effect of limited measurement precision (Section 5.6).

Chapter 6 provides experimental results that demonstrate the effectiveness of VMATCH by comparing

it to other algorithms and to a hypothetical variation free case. This chapter also considers the amount of

measurement precision need to provide enough information for VMATCH to produce a successful mapping.

Finally, conclusions are drawn in Chapter 7.

The novel contributions of this work are:

• Introduction of VMATCH, a post-fabrication mapping algorithm that matches the fanout of logical

nets with physical transistor threshold voltages to effectively exploit nanoscale transistors with extreme

Vth variation.

• Quantification for the Toronto 20 benchmark set [11] of the impact of: (a) ignoring variation, (b)

treating variation as defects, and (c) using VMATCH to mitigate variation.

• Measurement technique to efficiently characterize the resources in the NanoPLA.

• Quantification of the measurement precision required to extract enough information for VMATCH to

successfully map a design.

2

Chapter 2

Background

The NanoPLA is fabricated through a novel bottom-up process where nanowires are first grown or otherwise

manufactured and assembled into regular crossbar arrays. In this chapter we review this bottom-up technol-

ogy along with the architecture of the NanoPLA itself. Understanding this construction, we examine why it

leads to structures with high variation, and how it manifests in the electrical properties of the NanoPLA.

2.1 Technology: Nanowires

Nanowires are the main building block of the NanoPLA. These can be grown out of many different materials

including doped Si [7], GaAS, GaN [12], and Au [13]. These wires can be microns long [14] and their diameters

can be precisely controlled using seed catalysts [7]. Moreover, during the growth process the doping of the

nanowire can be varied along its length [15, 16] allowing components such as field-effect transistors to be

embedded in the wire. Finally, insulating core shells can be radially grown over the entire length of the wire

creating a separation between conducting wires as well as between gate and control wires in a FET [17, 18].

Due to their small features and limited assembly techniques, regular structures are easier to build out

of these components than arbitrary topologies. Langmuir-Blodgett (LB) flow techniques are used to align

nanowires into large-scale parallel arrays [19, 20]. By using nanowires with insulating shells, the LB technique

can tightly pack nanowires without shorting them. These shells can later be selectively etched away [20].

What’s more, to reduce the resistivity of the wires, they can be nickel silicide in the region where they do

not interact with other wires [21]. When repeated, this process allows for two orthogonal layers to form a

densely packed nanowire crossbar [19, 22].

Furthermore, chemist have demonstrated a number of techniques for placing hysteretic switches into

the crosspoints between orthogonal nanowire layers. These include layers of bi-stable molecules [23, 24],

amorphous silicon nanowire coatings [25], and nanowires made of switchable species [1]. Some of these

programmable switches have diode-like rectification allowing the crossbars to be directional, only letting

3

Figure 2.1: NanoPLA Block Tiling

charge flow from the vertical wires to the horizontal wires. This property is essential for correct operation

because it allows the crosspoints to implement wired-or gates, part of the basic unit of computation in the

NanoPLA.

2.2 Architecture: NanoPLA

The NanoPLA is organized as shown in Figure 2.1. It consists of tiled logic blocks with overlapping nanowires

that enable Manhattan routing while maintaining direct nanoscale-density interconnect among blocks. It

is based on the local inversion design presented in [10] and uses amorphous Si switches [25] to improve

performance and energy over the design in [4]

The NanoPLA block is composed of three logic stages. As in a conventional PLA, the first stage or input

stage is used to selectively invert the inputs y1 . Stage two and three behave like the and y2 and or y3
planes respectively (Figure 2.2). The benefit of having an initial inverting phase is that it avoids the need

for non-inverting restoration which [10] shows is a costly design choice, reducing performance and increasing

total energy.

4

Wired OR

Stochastic

Inverter

AND Plane

Selective Inversion

OR Plane

1

2

3

ProgrammableProgrammable

Wired OR

Stochastic

Inverter

Selective Inversion

AND Plane

OR Plane

(a) Logical representation

Programmable
diode

crosspoints
(OR Planes)

Stochastic
Inversion

Array

Stochastic
Inversion

Array

Nanowires
Lightly doped
control region

Ohmic contacts to
Low Supply Voltage

/precharge

Ohmic contacts to
High Supply Voltage

/eval

Lightly doped
control region

Nanowires

Programmable
diode

crosspoints
(OR Planes)

Stochastic
Inversion

Array

1

2

3

(b) Physical nanowire implementation

Figure 2.2: NanoPLA Block

Figure 2.2b shows a physical view of a NanoPLA block. Using the bottom-up assembly discussed above,

small diameter nanowires are arranged into tight-pitch parallel arrays. Though logically each plane performs

a different function (Invert, and and or), physically all three planes are identical and are made up of a

diode-programmable, wired-or stage built using the switches previously described, followed by an inversion

stage where lightly doped regions of the nanowire behave like field-effect gates and provide restoration.

During assembly, etching is used to differentiate the three stages. Decoders built into the nanowires (See

Figure 5.1) are used to program the diode-like switches. They are built as described in [4] and demonstrated

in [16].

The NanoPLA is similar to conventional FPGAs. Both use Manhattan routing to connect discrete clusters

of logic. However, routing in the NanoPLA is done through the blocks rather than using an independent

switching network. In order to allow signal routing, the output of the or-plane of every block connects to

itself and four neighboring blocks. These connections can be seen in Figure 2.1 as multiple wires passing

over a few blocks.

5

2.3 Source of Variation

Unlike today’s technology where region-based and systematic variation dominate, in the NanoPLA random

variation dominates due to the bottom-up manufacturing process. Along with the variation that affects even

today’s technology (e.g. Local oxide thickness variation [26], statistical dopant variation [27] and dopant

placement, line-edge roughness [28], channel length variation [29]) the NanoPLA faces additional sources of

random variation.

• Nanowire geometries and features (e.g. length of doped regions, core shell thickness) will vary inde-

pendently since each nanowire will be individually fabricated.

• Statistical alignment techniques [30] during assembly cause the geometry of the field-effect regions to

vary from device to device [31].

• Each programmable diode region will be composed of a small number of elements or bonds, giving

them large, random variation from crosspoint to crosspoint.

These sources of variation manifest as differences in the nanowire resistances and capacitances, the diode

resistances, and the threshold voltages (Vth) for the field-effect restore nanowires. Note that [29] calculates

that the 5 nm long transistors we are considering are nearly impossible to manufacture reproducibly. We

assume independent Gaussian distributions for these values consistent with the models and experimental

results from the literature (e.g. [29, 28, 26, 27]).

P (x) =
(

1
σ
√

2π

)
e

„
− (x−x)2

2σ2

«
(2.1)

Throughout this work we express the amount of variation as a percentage equal to σ/µ; we will refer to this

simply as σ. Though other works also report variation as a percent it is worth noting that many, including

the ITRS [32], tend to report 3σ variation while we label our variation points by σ. Hence our σ = 38%

cases corresponds to the 3σ = 112% cases ITRS predicts for 5 nm physical gate lengths (13 nm half-pitch

technology) as shown in the DESN9b table in [32].

6

Chapter 3

System Model

3.1 Evaluation Model

The nand-term is the smallest unit of computation of a plane in the NanoPLA. Physically it is composed of a

set of inverting, restoring wires followed by a wired-or section thus computing invert-or or, by DeMorgan’s

laws, nand. Figure 3.1 shows the physical nanowire implementation and an equivalent circuit-level diagram

of a nand-term in a plane of the NanoPLA block. Each plane is composed of many of these nand-terms

together in parallel.

Within each plane, computation is done in a precharge fashion by first pre-discharging the nanowires

and then evaluating the inputs. Since each block is composed of three planes, as shown in Figure 2.2,

the evaluation scheme demands that we use a three-phased clock to sequence logic in the NanoPLA. At

the level of the PLA block, one clock cycle is defined as the time to evaluate all three planes once, τcycle =

τphase1 +τphase2 +τphase3 . Since interconnect is routed through the NanoPLA blocks, it is effectively pipelined

(e.g. [33]), allowing for high throughput.

3.2 Defect Model

The time it takes for a plane in the NanoPLA block to switch during the evaluate phase, τswitch, is defined

as the time it takes the slowest used nand-term to switch. Similarly the precharge leak time, τleak, is the

time it takes the leakiest used nand-term to lose its precharge value. As the NanoPLA is pipelined to the

level of a plane, we can bound permissible phase times by the slowest plane and worst-case leakage by the

fastest leaking plane:

max
planes

(τswitch) ≤ τphase ≤ min
planes

(τleak)

To provide adequate noise margins we demand at least two orders of magnitude separation between the

worst case τswitch and τleak. This guarantees leakage will charge the output to less than 1% of Vdd and

7

Ohmic contact to
High Supply Voltage

/Evaluate

/Precharge

Ohmic contact to
Low Supply Voltage

R
in

W
ir

e
C

in
W

ir
e

/i
n

}
F
a
n

o
u

tO
th

e
r

In
p

u
ts

Rdiode

/Evaluate

Ohmic contact to
High Supply Voltage

/Precharge

Ohmic contact to
Low Supply Voltage

Input
RFET

R
in

W
ir

e
C

in
W

ir
e

/i
n O

th
e
r

In
p

u
ts

Output RoutWireRoutWire
CoutWire

(a) Physical Implementations

Pre-discharge

Output

Programmable
Diodes}

}Fanout

R
FE

T
R
co
n
ta
ct

/Precharge

Input
/Input

Other
Input

R
di
od
e

/Evaluate

R
in
W
ir
e

C
in
W
ir
e

R
o
u
tW

ir
e

C
o
u
tW

ir
e

(b) Circuit Diagram

Figure 3.1: NanoPLA nand-term

therefore leakage current will be less than 1% of drive current across all blocks for a functional NanoPLA.

We can state this constraint as:

100 · max
planes

(τswitch) ≤ min
planes

(τleak) (3.1)

If a NanoPLA does not meet this constraint, the NanoPLA does not yield and is called defective. In other

words, to compute correctly, all planes must hold charge long enough to allow all computations to complete.

3.3 Timing Model

We use the following Elmore Delay models as a conservative estimate of nand-term switching and leakage:

τswitch = (Rcontact +RonFET +
1
2
RinWire)× (CinWire +

∑
fanout

CoutWire) (3.2)

+(Rdiode +
1
2
RoutWire) · CoutWire

8

τleak = (Rcontact +RoffFET +
1
2
RinWire)× (CinWire +

∑
fanout

CoutWire) (3.3)

+(Rdiode +
1
2
RoutWire) · CoutWire

Each term in the equation maps to a physical section of the nand-term as shown in Figure 3.1. Since

the input wire may be connected to many outputs, we include the effect of this fanout as the sum of the

downstream capacitance,
∑
fanout CoutWire.

Variation of the resistances and capacitances of the wires and diodes are directly modeled as Gaussian

distributions (Equation 2.1). Also modeled as a Gaussian distribution is Vth variation which is used in

Equations 4.1 and 4.2 to calculate the variation of the on and off resistance of the transistor, RonFET and

RoffFET . Since the dominate variation is random (Section 2.3), we assume independent distributions in this

paper.

3.4 NanoPLA CAD Flow

Here we review how logic is mapped on the NanoPLA. Covering and clustering [34] is followed by a block-

level placement computed using VPR 4.3 [35]. Global routing and detailed placement and routing are done

by our custom NanoPLA place and route tool, NPR. The architecture of the NanoPLA does not provide a

separate switching network but rather uses the connections provided by the blocks themselves to perform

routing. Conventional FPGA routing algorithms such as Pathfinder [36] perform this block-level routing or

global route. As shown in Figure 3.2, at this point each block has logic functions assigned to it by VPR’s

placement and route-throughs defining what nets route through the block, computed by the global route.

The global route stage also determines the minimum number of wires needed for the design to route. MinC,

the minimum channel width, is marked in Figure 3.2.

Detailed place and route then performs the final mapping. It first decomposes the functions and route-

throughs assigned to each block into three sets of logical nand-terms, one for each of the three planes in

the NanoPLA block. Then, one plane at a time, each logical nand-term is mapped to a physical nand-

term. Without post-fabrication knowledge, however, the mapper is unable to distinguish between physical

nand-terms and must treat them all as having identical characteristics when performing the mapping. It

produces a single mapping that is applied obliviously to all chips. The next chapter explains why this

variation-oblivious mapping produces defective chips and introduces a solution.

9

Figure 3.2: NanoPLA After Placement and Global Route: Function and Route-Troughs assigned to Blocks.
Minimum Channel Width, MinC, Calculated.

10

Chapter 4

Device Specific Mapping

In this chapter, we illustrate why the mapper must consider the physical variation (Section 4.1). We examine

how variation affects τswitch and τleak (Section 4.2) and introduce a naive solution that satisfied Equation 3.1

but at a high cost (Section 4.3). In Section 4.4 we investigate how to improve on the naive solution. Finally

we introduce VMATCH, our algorithm that considers the effects the mapping has on τswitch and τleak

(Section 4.5).

4.1 Variation-Oblivious Mapper

At high levels of variation, the distribution of τswitch and τleak is such that, when mapping a design oblivious

to the variation in the system, the probability of meeting the constraint set by Equation 3.1 is almost zero.

Figure 4.1 shows the distribution of 100× τswitch and of τleak that results from such an oblivious mapping.

Since the curves overlap, it is immediately apparent that Equation 3.1 does not hold.

4.2 Primary Sources of Variation

Before exploring how to modify the mapping algorithm, we first look at which sources of variation in τswitch

and τleak are primarily responsible for this yield problem. From Equation 3.1 we observe that, for a particular

nand-term to be defect free it must be the case that 100 · τswitch ≤ τleak. Since the only difference between

τswitch and τleak is the state of the transistor being on and off respectively (see Equation 3.2 and 3.3), for

correct operation RoffFET must be the dominant term in τleak. If this were not the case and one of the

other terms in Equation 3.3 dominated, there would be nearly no difference between τswitch and τleak and,

as such, correct operation would be impossible regardless of how the design is mapped.

The difference betweenRoffFET andRonFET comes from the fact thatRoffFET is the apparent resistance

of the transistor in the sub-threshold region or RoffFET = Vdd/Isub (Equation 4.2). In the on state, the

transistor operates in saturation, and we define the value of RonFET as Vdd/Isat (Equation 4.1). Since the

11

 0

 200

 400

 600

 800

 1000

10-10 10-8 10-6 10-4 10-2 100 102

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Figure 4.1: Distribution of τleak and 100×τswitch of a delay oblivious-mapping. Benchmark spla at σ = 38%

nanowires are still Silicon, we use short-channel P-type MOSFET current equations [37, 38]:

Isat = WvsatCox (Vth − Vgs − 0.5 · Vd,sat) (4.1)

Isub =
W

L
µCox(n− 1) · vT 2e

Vth − Vgs
nvT (1− e−Vds·vT

−1
) (4.2)

We see that saturation current is linear in Vth and Vgs and that sub-threshold current is exponential in Vth

and Vgs. Thus a small change due to the variation in Vth will cause a linear change in the value of RonFET

and an exponential change in the value of RoffFET . Consider that, at Vth = 295mV and Vdd = 0.7V, the

mean value for RonFET is 7.0 × 104Ω and for RoffFET is 1.1 × 1012Ω. At σ = 38%, the 3σ Vth variation

point gives a range for RonFET from 3.2× 104Ω to 7.1× 106Ω. For RoffFET the range is from 1.8× 107Ω to

7.0 × 1016Ω. While the −3σ RoffFET value is larger than the +3σ RonFET , they are less than a factor of

two apart and hence do not satisfy Equation 3.1. Figure 4.2 shows the full ±3σ range. Given that all other

parameters in Equations 3.2 and 3.3 vary linearly based on Gaussian distributions, RoffFET varies over the

greatest range and therefore is the dominating variation in the system. A successful mapping algorithm

must first focus on reducing the range over which RoffFET varies to create the separation required by

Equation 3.1.

12

Figure 4.2: RonFET and RoffFET ranges over ±3σ of nominal Vth.

4.3 Defect-Avoiding Algorithm

The oblivious algorithm fails because it uses nand-terms that leak faster than some resources can switch.

The Defect-Avoiding algorithm tries to solve this problem by not using the leakiest resources, essentially

marking them as defective. Mapping to the remaining resources is arbitrary. The idea of mapping around

defective resources has been well studied by many, including [5, 39, 40], and is generally accepted as necessary

for nanoscale systems.

A nanowire is marked defective if its off resistance is too low. We determine a conservative threshold for

this resistance using Equation 3.3 and assuming the wire is driving a single, variation-free output nanowire

(i.e. fanout of one). Additional fanout will only increase τleak, so the fanout one case serves as the worst-case

possible assignment.

By avoiding resources in the fast tail of the distribution, the τswitch and τleak distribution essentially

shift towards higher delays. This helps creates the required two orders of magnitude separation because the

τswitch distribution shifts by a linear amount while τleak’s distribution shifts exponentially towards a higher

delay.

Figure 4.3 shows the result of mapping the same chip shown in Figure 4.1. Though the separation

between τswitch and τleak is great, this mapping required 167% extra resources above MinC and marked 48%

of all nand-terms as defective; that is, it discards the fraction of the τleak distribution (Figure 4.1) that is

below 6× 10−5s. In Chapter 6 we show that this defect-avoidance algorithm, on average, needs 193% more

resources than the variation-free case.

13

 0

 500

 1000

 1500

 2000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Figure 4.3: Distribution of τleak and 100 × τswitch of a Defect-Avoidance mapping. Benchmark spla at
σ = 38%

4.4 Logical Variation: Variation in Fanout

Though the defect-avoiding algorithm works, it is too conservative and thus loses some of the scaling benefits

this sub-lithographic technology affords. A review of Equation 3.3, however, shows that physical variation

is not the only variation that determines the range of the τleak distribution. Along with the physical

parameters, there is a fanout parameter whose value comes directly from the logical netlist and varies over a

significant range. Fanout in the NanoPLA comes from the fact that a nand-term has non-restoring, diode-

like connections (Figure 3.1). If a signal on an input wire is needed by multiple output wires, the input wire

must have the associated diodes programmed to connect to the required output wires, and it must charge up

all connected wires. Consider an example: When mapping the logical function AB + ACD + BE + AF to

a block in the NanoPLA, three terms in the and-plane will use input signal A (AB, ACD, and AF), while

signal F is only used once by AF . Even without physical variation, this means that signal A’s nand-term

will see three times the CoutWire capacitance that F ’s will.

The maximum fanout of a nand-term is determined by the architecture of the NanoPLA. Each PLA

in an array of PLAs, like the NanoPLA, will have a maximum number of inputs, and-terms and outputs.

This will have a direct effect on the number of output wires each input wire can potentially connect to,

and consequently, the maximum fanout a nand-term can have. For our mappings, we use PLAs with at

most 64 and-terms and 16 inputs that may need inversion; as shown in Figure 2.1 routing nanowires are

exposed to two and-planes and two inversion planes. This means the worst-case fanout for a nanowire is

(16+64)×2 = 160. In practice, the maximum fanout is lower. Figure 4.4 shows a typical distribution with a

14

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30

Lo
gi

ca
l N

A
N

D
-T

er
m

 C
ou

nt

Fanout
Figure 4.4: Fanout distribution. Benchmark spla

maximum fanout of 34. While there are a few high fanout nets, note that most of the nets have fanout one.

Mapped obliviously, this adds another two orders of magnitude to the range of the τleak distribution; this

makes fanout the second-most significant source of variation in Equations 3.2 and 3.3. In the next section

we explain how we use this logical variation to counteract the physical variation of RoffFET to map designs

that maintain acceptable performance, energy and area.

We could architect smaller arrays with fewer inputs and and-terms to reduce the fanout but only at the

expense of increasing the total energy, area, and evaluation latency. Figure 4.5 shows the trade-offs between

delay and area. Multiple points in the space were explored. The figure highlights the number of inputs

but each point represents a unique combination of inputs, and-terms and outputs. It shows that the best

trade-off occurs when the inputs are 16. [10] fully explores this space for the variation free mapping.

While smaller arrays can reduce the clock cycle (τcycle), they increase the number of blocks in a logical

evaluation path. For each benchmark, our design point was chosen from the results presented in [10] so that

the overall evaluation time and area are both close to minimum across the array shape parameter space.

4.5 VMATCH: NanoPLA Mapping Algorithm

VMATCH is our variation-aware mapping algorithm. It takes advantage of the fanout variation to counteract

the variation in RoffFET by carefully matching a high-fanout term with a low RoffFET nand-term and

vice versa, achieving a mapping that yields while maintaining performance, energy and area close to the

15

Figure 4.5: Delay-Area trade-off highlighting inputs parameter. Each point represents a unique (inputs,
and-terms, outputs) tuple. Benchmark spla variation free

variation-free case. A limited version of VMATCH was first introduced in [41]. Here we present a more

robust version of the algorithm.

We can understand why this works by examining how the τleak distribution changes based on how each

of the three algorithms uses the RoffFET and fanout variation. In the variation-oblivious mapping, the two

orders of magnitude fanout variation (Figure 4.4) essentially gets multiplied by the ten orders of magnitude

of RoffFET variation leading to the twelve orders of magnitude range of τleak in Figure 4.1. The defect

avoiding algorithm limits τleak’s range by directly limiting the range of RoffFET values used, but this must

discard almost half of the resources. VMATCH, on the other hand, is able to divide the magnitude of

physical RoffFET variation by that of the logical fanout variation, reducing the total range of τleak while

using many of the resources the defect avoiding algorithm discarded. Figure 4.6 shows a simplified version

of the problem where we clearly see the result of applying the three algorithms, variation oblivious, defect

avoiding and VMATCH, to the same problem. As explained, the oblivious algorithm worsens the variation.

Avoiding leaky resources helps reduce the spread of τleak but only slightly. To nearly eliminate all variation

in τleak, we need to use VMATCH.

To perform this variation-aware post-fabrication mapping it is necessary to measure the nanowire transis-

tor threshold voltages. What follows assumes knowledge of these measurements, and explains how VMATCH

takes advantage these measurements. Chapter 5 details one way in which these measurements can be made.

16

(a) Oblivious Algorithm (b) Defect-Avoiding Algorithm (c) VMATCH Algorithm

Figure 4.6: Simple example showing predicted Tleak for the three algorithms applied to the same problem.

4.5.1 Algorithm Details

In order to reduce max(τswitch) and maintain performance, we attempt to map every function (logical nand-

term) to the fastest (lowest RoffFET) resource (physical nand-term) that will not violate Equation 3.1.

Before mapping, the slowest functions will be those with high fanout as Equation 3.2 implies. Thus, we

make sure to map functions in order of highest to lowest fanout so that the high fanout functions can take

advantage of the fastest resources and counteract their high fanout.

The success of the algorithm depends on two conditions. First, within a plane the lowest τleak must be

greater than the highest τswitch. However, it is not enough for every plane to have the required separation

between min(τleak) and max(τswitch), this separation must also exist over all planes. The lowest τleak over

all planes must be two orders of magnitude above the highest τswitch over all planes.

VMATCH, therefore, is a two step algorithm that first coordinates over all planes to find the slowest

feasible on delay, τswitchFeasible. It then iterates over each plane matching functions to resources with the goal

of bettering, if not at least meeting, this target so that the plane’s max(τswitch) is at or below τswitchFeasible

and its min(τleak) is at or above 100 times this target. If all planes meet this condition, the mapping is

successful and achieves a delay at least equal to τswitchFeasible or better. It is later explained why if a plane

fails to meet this target, the overall mapping fails.

τswitchFeasible determines the slowest possible delay for a successful mapping. It is calculated by first

finding the slowest mapping for each plane and then choosing the slowest max(τswitch) over these slow

mappings. Within a plane, the slowest mapping is computed by assigning the function with the lowest

fanout to the slowest resource, the second lowest fanout function to the second slowest resource and so on.

17

Figure 4.7: τswitch and τleak ranges over ±3σ of nominal Vth for high fanout and low fanout functions.
Two resources highlighted at ±2σ. Green points show the result of mapping high fanout functions to fast
resources and low fanout functions to slow resources. Red points show the opposite result, high fanout to
slow resources and low fanout to fast resources. Green’s separation is over two orders of magnitude while
there is no separation for red since max(τswitch) is above min(τleak).

The reason for assigning functions in this order instead of assigning the highest fanout function to the slowest

resource (which would give a slower τswitch for the first mapping, Equation 3.2) is so that the mapping does

not violate the two orders of magnitude separation required.

To explain this, consider the extreme example shown in Figure 4.7. Here, the plane has two functions,

one with MaxFanout and one with MinFanout. Also, there are only two resources a fast resource with

Vth at +2σ and a slow resources with Vth at −2σ. The green points show the τswitch and τleak achieved

for mapping the high fanout function to the fast resource and the low fanout function to the slow resource.

On the right side we see that the separation between min(τleak) and max(τswitch) is over two orders of

magnitude, this would be a successful mapping. On the other hand, consider what happens when we map

the high fanout function to the slow resource and the low fanout function the fast resource. The red points

show this results. Again, looking at the Maximum Separation, we see that there is no separation whatsoever

since max(τswitch) is above min(τleak). Therefore, even though mapping a high fanout function to a slow

resource gives the highest τswitch, when the remaining low fanout functions use fast resources, the separation

actually diminishes. As such, all mappings on the NanoPLA need to occur in a “high fanout function to fast

resource” fashion.

Once τswitchFeasible is computed, each plane can independently compute its mapping. The mapping from

18

functions to resources is done by creating a bipartite graph between functions and resources where a function

is assigned to a resource if and only if the result of mapping the function to that resource is one where the

resulting τswitch ≤ τswitchFeasible and τleak ≥ 100 × τswitchFeasible. A mapping on the plane is given by a

bipartite matching that assigns each function to a unique resource. One way to solve for this matching is

by computing the maximum correspondence maximum weight bipartite matching where the edges between

functions and resources are given a weight equal to the negative of τswitch that would resulting from applying

the mapping defined by the edge. By assigning negative τswitch as the weights of the edges, we guarantee that

the maximum correspondence maximum weight solution returns a mapping with the fastest max(τswitch) for

the functions in that plane. Efficient solutions to the maximum correspondence maximum weight problem are

presented in [42]. Nevertheless, we present a more efficient greedy heuristic that produces results comparable

to the matching produced by the maximum correspondence maximum weight solution.

The greedy algorithm works by assigning the function with the highest fanout to the fastest resource

it can map to as marked in the bipartite graph. Once this mapping has been assigned, any other edge

incident to that resource node is removed. Then the second highest fanout function is assigned the mapping

to the fastest resource it can use based on the remaining edges in the graph. The process repeats until

all functions are assigned to a resource. This greedy heuristic is guaranteed to find a solution because of

the way τswitchFeasible is defined. Since τswitchFeasible is the slowest τswitch from the slowest mapping over

every plane, the algorithm is guaranteed to always at least find this solution. However, by assigning fastest

resources first, we can get a solution that is significantly faster than τswitchFeasible while still maintaining

the two orders of magnitude separation.

A further optimization is possible where construction of the bipartite graph is not necessary. By ordering

all resources from fastest to slowest, starting with the function with the largest fanout, we iterate over

the ordered resources until a resource is found that maintains τswitch ≤ τswitchFeasible and τleak ≥ 100 ×

τswitchFeasible or until the number of resources remaining equals the number of functions not yet mapped.

Then, the function is assigned to the resource and the algorithm continues searching through the remaining

resources with the next highest fanout function. Thus, by ordering the resources and considering each only

once, we can find the best possible matching for the given τswitchFeasible.

The reason why all remaining resources do not have to be considered for every function is because once

a resource is rejected by a function with fanout f , it will be rejected by any function with fanout ≤ f since

τleak will be even faster for a resource with lower fanout. We can see this in Figure 4.8. Assuming now

that we have more than 2 resources, distributed over ±3σ, and that only one of the two function has been

mapped, the MaxFanout function to the resource at +2σ. The second function has a fanout of MinFanout.

If the second function were to use a resource at or above +2σ, the separation that the fist resource achieved

would be reduced. In fact, as highlighted, for a function with MinFanout, any resource above +1σ will

19

Figure 4.8: τswitch and τleak ranges over ±3σ of nominal Vth for high fanout and low fanout functions. One
resources highlighted at +2σ, one at +1σ and one at −2.7σ. Green points show the result of mapping one
high fanout function to a fast resources.

reduce min(τleak) and as a consequence, the separation. Thus all the resources the first function had rejected

will clearly also not work for a function with a lower fanout. In general, by sorting resources from fastest to

slowest and starting with the highest fanout function, we know that if a function rejected a resource, all the

functions that still need mapping will also reject that resource. However, observe that if we use a resource

that is too slow, we can also reduce the separation. As highlighted in Figure 4.8, if that second function

uses a resource below approximately −2.7σ, max(τswitch) will increase, which is one reason why we map

functions to the fastest remaining resource. Finally, by forcing a mapping when the number of resources

remaining equals the number of function remaining, we guarantee that at least we find the slowest solution

as was computed for finding τswitchFeasible initially.

This heuristic is guaranteed to find the fastest matching. The delay of a mapping is determined by the

slowest τswitch. Figure 4.9 shows what τswitch is for a high fanout function and a low fanout function over

±3σ range. Faster resources are those towards the right of the graph and become monotonically slower

towards lower σ. The heuristic above makes sure to always give the fastest resource available to the largest

fanout function. To understand why this leads to the fastest mapping, examine the following example.

Assume two resources, one at +2σ and one at −1σ as highlighted in the figure. Let us consider that instead

20

Figure 4.9: τswitch range over ±3σ of nominal Vth for high fanout and low fanout functions.

of following the heuristic, the high fanout is not assigned to the fast resource but instead a function with

lower fanout is mapped to this fastest resource. Since the delay increases for slower resources, this mapping

will indeed give that function its fastest possible delay. This, however, forces the largest fanout function

to the slower resource. Compounded by the large fanout, this leads to a very high delay (Red point in the

figure). Following VMATCH leads to mapping the high fanout on the fast resource, which gives a lower

delay for that function (Green point). The lower fanout function, when mapped to the slow resource, does

not change the maximum delay. At the extreme case, where we have one resource at +3σ and one at −3σ, it

is possible that a lower fanout function could be forced to use a very slow delay and cause the overall delay to

worsen. In this second example, the MinFanout function would force to use the −3σ resource. Nevertheless,

consider the alternative of allowing it to use the fast resource. Again, this would force the high fanout to this

extremely slow resource, which would result in an even worse delay. Therefore, assigning the fast resources

to the high fanout functions grantees that the overall mapping is fastest.

Algorithm 4.1 shows VMATCH in detail. First τswitchFeasible is calculated in upperBound(). Then,

for each plane, mapP lane() computes a mapping based on τswitchFeasible. For each plane, upperBound()

computes the slowest feasible mapping by mapping the slowest unused resource to the lowest fanout function

21

until all function have been assigned to a resource. Then the slowest overall τswitch from these mappings

is assigned to τswitchFeasible. Within a plane, mapP lane() then tries to find a mapping that meets the

τswitchFeasible boundary requirements. Starting with the highest fanout function, it iterates over the resources

from fastest to slowest. It assigns the function to the first resource that meets the if condition and continues

with the next highest fanout function, considering the next resource.

Algorithm 4.1: VMATCH
VMATCH()

τswitchFeasible = upperBound(Planes)
clearAllMappings()
foreach Plane P ∈ Planes do

P.mapP lane(τswitchFeasible)
end

upperBound(Planes)
foreach Plane P ∈ Planes do

for i← 1 to P.numFunctions() do /* Compute Slowest Mapping */
function = P.nextLowestFanoutFunction()
resource = P.nextSlowestResource()
P.map(function, resource)

end
end
τswitchFeasible =Max(τswitch(Planes)) ; /* Find Slowest τswitch */
return τswitchFeasible

mapP lane(τswitchFeasible)
function = highestFanoutFunction()
foreach resource ∈ OrderedResources do /* Ordered from fastest to slowest */

τswitch = onDelay(function, resource)
τleak = offDelay(function, resource)
if (τswitch ≤ τswitchFeasible and τleak ≥ 100× τswitchFeasible)

or (numRemainingResource() == numRemainingFunctions()) then
map(function, resource)
function = nextHighestFanoutFunction()

end
if allFunctionsMapped() then

return Success
end

end
return Failure

The run time for VMATCH is O(r log(r)) where r is the total number of resources in the NanoPLA.

For convenience, let f be the total number of functions that will be mapped. upperBound() orders all

resources and function and then iterates over every function that will be mapped, to find τswitchFeasible.

This takes O(r log(r) + f log(f)) to sort functions and resources and O(f) for the mapping. At worst, every

resource is explored once in mapP lane(). Since resources and function are also ordered mapP lane() takes

22

O(r log(r) + f log(f) + r). Overall this means that VMATCH takes O(r log(r) + f log(f) + r+ f). However,

the number of resources must be greater than or equal to the number of functions, else there would not be

enough resources to map all functions. Therefore VMATCH runs in O(r log(r)).

A mapping can be not feasible in two ways, both of which can be detected during the first phase of

the algorithm. In a similar way to how we reasoned about why the greedy mapping produces the fastest

mapping, we can argue that the slowest mapping, as used to calculate τswitchFeasible, produces a mapping

with the widest separation between τswitch and τleak. Figure 4.10 has three highlighted resources and two

functions. It shows the two possible mappings that could happen by mapping slow resource to low fanout

functions first. One is represented by the green points and the other one, by the blue points. It is clear that

the widest separation is given by the green mapping. This is also the slowest possible mapping. Although

max(τswitch) is faster for the blue mapping, the linear vs exponential nature of τswitch Vs. τleak means that

loosing a small amount of separation due to a slower max(τswitch) translates into gaining an exponential

increase in separation due to the higher min(τleak). Thus, slower resource can sacrifice a slower τswitch for

a significantly larger τleak. The result of using the slowest resources, means that the separation will be

greatest. Therefore, the slow mappings computed by upperBound() will be the mapping with the largest

separation. If this separation is less than two orders of magnitude, then there is no mapping that will produce

the required separation, since any other mapping would have to use faster resources and Figure 4.10 shows

that faster resources have smaller separations. Thus the mapping will not be feasible if the slowest mapping

of any plane does not have the required separation.

Even if every plane has at least one mapping that achieves a separation of 100, it might still be impossible

to map the design as placed and global-routed. This occurs when, between two planes, regardless of the

mapping used in each, it is never the case that when considered together, min(τleak) ≥ 100×max(τswitch).

Detecting this kind of problem requires only a little more work than what mapP lane() is already doing.

τswitchFeasible is defined as the slowest achievable τswitch when every plane is mapped to the slowest resources

as previously explained. In a similar way we can define τleakFeasible, the fastest τleak when every plane is

mapped to the slowest resources. This can be computed along side τswitchFeasible by augmenting mapP lane()

to also compute τleakFeasible =Min(τleak(Planes)). For the same reason that within a plane the slowest

mapping gives the widest separation, the widest separation between all planes is given by the separation

between τleakFeasible and τswitchFeasible. If this separation is less than 100, then there are at least two planes

that are incompatible and will not allow a mapping to occur.

Both within plane failures and between plane failures can be overcome using the same two techniques.

The first technique is simply to widen the minimum channel width, MinC, calculated by the global route

(Figure 3.2), by adding more resources to every plane. By increasing the number of resources, we increase

the probability that the mapping will be able to use resources that lead to a solution. This approach is

23

Figure 4.10: τswitch and τleak ranges over ±3σ of nominal Vth for high fanout and low fanout functions.
Three resources highlighted. Green points show the result of the slowest mapping. The only other possible
mapping that respects the low fanout to slow resource constraint is shown with blue points.

not without a downside. Adding resources forces the nanowires to be longer so that the crossbars are still

complete. Longer wires lead to more area, energy and most importantly longer wire delays. If we add too

many wires, the general separation between τswitch and τleak will decrease. Therefore it is best to add a

modest amount of resources, enough to improve the probability of a successful mapping.

The second method involves running higher level CAD tools to reduce the burden on the failing planes by

re-placing and/or re-routing functions. Moving functions away from a plane has a positive effect similar to

the first technique. In essence, the remaining functions have more resources to choose from. This mechanism

does not increase the area but, depending on the way functions are moved, the total energy and delay may

change. In this work we focus on the first technique by adding more resources until we reach 100% yield. As

shown in Chapter 6, VMATCH only needs a modest amount of extra resources, and this minimally affects

the delay energy and area. A full probabilistic analysis of how many resources should be added, as well as

the re-placement method of dealing with failures is left as future work.

Figure 4.11 shows the results of using VMATCH to map the same chip shown in Figure 4.1. Clearly

Equation 3.1 holds and the mapping is defect free. However, unlike the conservative mapping (Figure 4.3),

this mapping achieves a lower max(τswitch) and only requires 3% extra resources over MinC.

To build intuition for this success, Figure 4.12 presents the distribution of the used RoffFET s for each of

the three algorithms. For the oblivious algorithm, the distribution spans a very wide range as previously noted

24

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

N
A

N
D

-T
er

m
 C

ou
nt

Time (s, log scale)

TLeak

100×TSwitch

Figure 4.11: Distribution of τleak and 100× τswitch of VMATCH mapping. Benchmark spla at σ = 38%

 0

 200

 400

 600

 800

 1000

104 106 108 1010 1012 1014 1016

U
se

d
T

ra
ns

is
to

r
C

ou
nt

Resistance (Ω, log scale)

Oblivious
Defect
VMATCH

Figure 4.12: Used RoffFET distribution for Oblivious, Defect and VMATCH algorithms. Benchmark spla
at σ = 38%

(Figure 4.1). The defect-avoiding algorithm chooses resources that are above the conservative threshold.

Figure 4.3 shows that this is too cautious and forces the use of slower resources. The distribution of

transistors used by VMATCH includes most of the resources that the defect-avoiding algorithm found to be

too leaky. By correctly pairing fast resources with high fanout nets, we are able to use faster resources as

Figures 4.11 and 4.12 demonstrate.

25

Chapter 5

Device Characterization

VMATCH depends on the ability to characterize RFET of the transistors. In this chapter we present a testing

technique that allows us to perform these measurements. Essentially, we take advantage of the NanoPLA

architecture to configure voltage dividers between each input or restore wire and a reference resistance to

estimate the restore wire’s resistance and in turn the transistor’s resistance.

All restore wires are connected to source and ground voltage terminals. (Source Voltage and Measurement

Voltage in Figure 5.2). During operation, these columns are used as a restoration mechanism; however, by

connecting a reference resistance to the bottom terminal we can create a voltage divider between the restore

wire, including the transistor, and the reference resistance. Isolating each restore wire would allow us to

measure the resistance of each wire and transistor, giving us all the information needed to run VMATCH.

An examination of Figure 5.2, however, shows that since all restore wires in a plane are connected to the

same Source and Measurement terminals, it is not obvious how to fully isolate a restore wire in order to

measure its resistance without measuring the resistance of other wires in the column as well.

Though direct isolation of the restore wires is not possible, it is possible to select one restore wire

since programing diodes requires the ability to select the restore and output or compute wires connected to

the diode being programmed. The mechanism that allows individual wire selection is the Address Decoder

(Figure 5.2). Compute wires are encoded with a k-hot code [31] that allows the decoder to isolate a particular

compute wire. These, in turn, gate the transistor in the restore wires (one of t1 through t4, Figure 5.2). We

can turn all restore transistors off by selecting all compute wires at once and applying a high voltage through

them. The charge used to turn off the transistors can be stored by isolating it between the decoder on one

end and the precharge transistor on the opposite end (Figure 5.2). Using the decoder we can then select

one compute wire and charge it so that it turns the corresponding transistor on. If there was no variation,

turning all transistors except one off would successfully isolate one restore wire. Unfortunately there are

two problems with this idea. First as we have seen in Section 3.2, under certain variation conditions, an off

transistor can leak faster than an on transistor can switch. Second, the nanowires have high resistance. When

26

Measurement Voltage

/precharge

Source Voltage

/evaluate
Nanowire Address

Address Decoder

Test
Voltage

precharge

Ground

Reference
Resistance

1

2

3

Output or
Compute Wires

In
p

u
t

o
r

R
e
s
to

re
 W

ir
e
s

Figure 5.1: NanoPLA Block with Address Decoder

27

Figure 5.2: NanoPLA Inversion Array Circuit with Address Decoder

the transistor is switched on, the wire resistance RinWire will dominate the transistor resistance RonFET .

Thus, it is possible that either a highly leaky wire will charge the measurement terminal of the voltage

divider before the restore wire we are interested in measuring does, or we will measure the restore wire’s

resistance and not the transistor’s resistance. Both are results that do not provide the information we need

for VMATCH.

To deal with the first problem, we strongly turn off all transistors. Equation 4.2 shows that by using a

voltage that is significantly greater than the operating voltage, we can counter the expected Vth variation

and can guarantee that leakage is not a problem. Measuring the transistor resistance, RFET , rather than

RinWire requires more work. Once all transistors are strongly off, we use the address decoder to select a

wire to test. Performing a binary search on the Test Voltage terminal (Figure 5.2) reveals the test voltage

that charges the output to a predefined percent of the source voltage. This value has a direct relationship

to the actual Vth of the transistor, producing the sufficient information for VMATCH.

Section 5.1 gives a high level overview of how this measurement technique works. Section 5.2 formally

explains the circuit model. We examine how to correctly configure a plane in the NanoPLA in Section 5.3.

This leads to a discussion on how to set the reference resistance and the time it takes to perform this testing

(Section 5.4). The details of the measurement algorithm are explained in Section 5.5. The impact of limited

measurement precision is examined in Section 5.6.

28

Transistor
Dominates

Others
Dominate

Wire
Dominates

Figure 5.3: Expected Rnano as a function of Vtest showing where RFET dominates and where RinWire

dominates

5.1 Overview of measurement steps

Measuring each restore wire requires a series of initialization steps at the plane level followed by a set of

measurements on the individual wire. These initialization and measurement steps are repeated for each wire

that must be measured.

Using the decoder, we first select all compute wires at once by setting the reserved all zero nanowire

address. This address enables conduction through all the compute nanowires. Then we apply a higher than

normal voltage Vtest = VstrongOff so that the transistors on the restore wires are strongly turned off. The

charge is then isolate between the precharge transistors and the decoder so that the wires remain strongly

turned off during the following measurement step. Section 5.3.2 explains how to choose VstrongOff so that it

is sufficiently high that it can disable even nanowires with the highest thresholds the variation allows across

a chip.

Once this initialization is done, we select one compute wire and perform a set of measurements on the

corresponding restore wire. We address the compute wire with the decoder, and use the test voltage terminal

to search for the value of Vtest that causes Vmeasure(Vtest) to reach a predefined percent of Vdd. This occurs

at Rnano(Vtest = Vsettled), where Vsettled is defined as the aforementioned Vtest. Section 5.5 explains how

once Vsettled is determined, we can directly find the Vth of the transistor.

Rnano(Vsetteld) will be composed of three resistances. The series combination of the actual wire resistance,

29

Figure 5.4: Details of the NanoPLA Voltage Divider Measurement Circuit

RinWire and the transistor resistance, RFET (either on or off, depending on the value of Vtest) in parallel

with the parallel resistance of all the other wires not being tested, Rrest (Figure 5.4).

1
Rrest

=
∑

i 6=test wire

(
1

Rnanoi (VstrongOff)

)
(5.1)

Equation 5.2 shows the composition of Rnano, the series resistances of the wire followed by the transistor all

together in parallel with the resistance of the other wires.

1
Rnano(Vtest)

=
1

RFET (Vtest) +RinWire
+

1
Rrest

(5.2)

Plotting the measured Rnano as a function of Vtest would look similar to Figure 5.3. At Vtest = VstrongOff

the leakage from the other wires may dominate. As Vtest decreases, the transistor resistance dominates Rnano

by becoming small compared to Rrest while still dominating RinWire. Eventually, however, Vtest decreases

enough that the wire resistance, RinWire, dominates Rnano. The value of Vsetlled is guaranteed to be in the

section of Figure 5.3 where the transistor dominates, which is why it can be used to estimate Vth.

30

Figure 5.5: NanoPLA Voltage Divider Circuit Diagram

5.2 Circuit Model

Once all wires have been strongly turned off, we can take measurements at multiple Vtest. To better frame the

discussion of how this technique gives us the measurement information needed, we take a formal look at what

the test circuit looks like. Figure 5.5 shows the equivalent circuit diagram for the proposed NanoPLA test

circuit. As shown, we let Rnano(Vtest) be the equivalent resistance of the nanowire components, including

RFET , RinWire and Rrest. In order to solve for Vmeasure(Vtest, tmeasure), we set up the following linear

circuit equation:

inano = iref + iCinWire

Vdd − Vmeasure(Vtest)
Rnano(Vtest)

=
Vmeasure(Vtest)

Rref
+ CinWire ·

d

dt
Vmeasure(Vtest)

Solving this equation yields an answer for Vmeasure(Vtest, tmeasure) shown in Equation 5.3

Vmeasure(Vtest, tmeasure) =
Rref

Rnano +Rref
· Vdd(1− e−

tmeasure
RC) (5.3)

where RC is defined as

RC =
Rnano ·Rref · CinWire

Rnano +Rref
(5.4)

31

and Rnano is

Rnano(Vtest) =
(RFET (Vtest) +RinWire) ·Rrest
RFET (Vtest) +RinWire +Rrest

(5.5)

To fully grasp what these equations imply, we will first focus on the resistance of the voltage divider

connected to the source voltage, i.e. the resistance from the nanowires being measured. That analysis will

then help determine what the reference resistance, Rref , should be.

5.3 Upper Resistance: NanoPLA Plane Resistance

Our goal is to measure RFET (Vtest) and from that, compute what the transistor’s Vth is. From Figure 5.5 it

is evident that if Rrest can be significantly greater than RFET (Vtest)+RinWire, then RFET (Vtest)+RinWire

will be the dominant resistance. Furthermore, choosing a Vtest that causes RFET (Vtest) to be greater than

RinWire, but still less than Rrest, results in RFET dominating Rnano and thus a measurement of Rnano will

be nearly equal to measuring RFET . This sets the following constraints on the values RFET should take in

order for it to dominate Rnano.

Rrest ≥ RFET (Vtest) > RinWire (5.6)

The region where RFET dominates is bounded by Vtest = Vlow, defined by the boundary between the

wire dominating and the transistor dominating, and Vtest = Vhigh, above which the other wires start to

dominate (Figure 5.3). We are free to define what Vhigh is since Rrest can be adjusted by raising or lowering

VstrongOff . Vlow however, is fixed for each resource and determined completely by the variation in that

resource. Since Vlow cannot be controlled, we first explain what Vlow is and then focus on how to define

Vhigh and set VstrongOff so that there is a wide region over which RFET dominates.

5.3.1 Understanding Vlow

WhenRFET (Vtest) > RinWire in Equation 5.5, the transistor’s resistance dominates, and whenRFET (Vtest) <

RinWire, the wire dominates. Thus Vlow will be the value of Vtest that makes RFET (Vtest) = RinWire. This

can happen when the transistor is in the subthreshold region or when it is in the saturation region, thus we

need to consider both cases.

RinWire =

Vdd

Isat(Vtest)
Transistor in saturation region

Vdd
Isub(Vtest)

Transistor in subthreshold region

(5.7)

32

To simplify the analysis, we rewrite the saturation and subthreshold current equations for P-type tran-

sistors (Equations 4.1 and 4.2) as follows:

Isat = I0 · (Vth − Vgs)− I1 (5.8)

Isub = I2 · 10
Vth − Vgs

S (5.9)

Substituting Equations 5.8 and 5.9 into Equation 5.7,

RinWire =

Vdd
I0 · (Vth − Vtest)− I1

Transistor in saturation region

Vdd

I2 · 10

0@Vth − Vtest
S

1A Transistor in subthreshold region
(5.10)

and solving for Vtest leads to:

Vtest =

Vth −

Vdd
I0 ·RinWire

− I1
I0

Transistor in saturation region

Vth + S · log
(

Vdd
I2 ·RinWire

)
Transistor in subthreshold region

(5.11)

When the wire’s resistance is comparable to the resistance of the transistor when the transistor is in the

saturation region, then, the Vtest at which this occurs will be strictly less than the threshold voltage Vth of

the transistor, as shown in Equation 5.11. Thus, for the saturation case, Vlow is bounded by Vth. This is

consistent with the definition of saturation for a PMOS transistor.

If on the other hand, the wire resistance equals the transistor resistance when Vtest causes the transistor

to be in the subthreshold region, then, Equation 5.11, again in accordance with the definition, shows that

Vtest will be greater than Vth. To be able to bound Vlow by Vth, RinWire must be less than or equal to

RFET (Vth). This only happens when the resistance of the wire is on the order of the resistance of the

transistor in the saturation region.

For the technology being considered, RFET (Vth) = 2MΩ, thus as long as RinWire ≤ 2MΩ then Vlow

will be bounded by Vth. The value of RinWire is defined, as shown in Equation 5.12, by the length and

cross-sectional area of the wire, l and a, the resistivity, ρ, of the material, and the variation of that wire

nRinWire
· σRinWire

.

RinWire =
l · ρ
a

+ nRinWire
· σRinWire

(5.12)

33

As explained in section 2.1, we examine a technology where the wire is nickel silicide in the regions where

it does not interact with perpendicular wires and silicon otherwise. This means that ρ changes throughout

the length of the wire. The length is determined by the architecture and channel width, a conservatively

long wire is on the order of 30µm. The cross-sectional area is that of a wire with a diameter of 5nm. Finally,

we consider σRinWire
= 38%µRinWwire

, i.e. 38% of the mean wire resistance. These parameters lead to a

nominal µRinWire
= 54kΩ. From this and Equation 5.12, we conclude that in order for the wire resistance

to dominate the transistor resistance when Vtest = Vth, the wire must be 95 standard deviations above the

mean. The probability of this event is so infinitesimal that, for this technology, we can safely bound Vlow

by the threshold voltage Vth of the transistor we are trying to measure. Equation 5.13 formally defines Vlow

in terms of the nominal Vth, the amount of Vth variation of the transistor, nwire, and σVth , the standard

deviation of the Vth distribution.

Vlow = Vthnominal + nwire · σVth (5.13)

From Equation 5.13, it is clear that although we can bound Vlow, since Vth varies from transistor to

transistor, Vlow will be different for every wire. Fundamentally, this still leaves the original challenge of

measuring Vth. However, it does helps frame the discussion below.

5.3.2 Defining Vhigh and Setting VstrongOff

Vhigh defines the boundary above which the other wires in the NanoPLA plane dominate and below which

the transistor of the wire being measured dominates (Figure 5.3). VstrongOff can be used to control where

this boundary lays. To make sure we can measure most of the transistors, VstrongOff must be high enough

so that Rrest(VstrongOff) is large even for a transistor with a Vth that is n sigma below the nominal Vth.

It should still be the case that its Vhigh satisfies the constraint Rrest(VstrongOff) ≥ R−nσFET (Vhigh). In

fact, it is the case that for the lowest Vhigh expected over all transistors, VstrongOff should be set so that

Rrest(VstrongOff) equals R−nσFET (Vhigh). The value of VstrongOff comes directly from this relationship,

but first we must determine what the lowest expected Vhigh will be.

The lowest expected Vhigh will occur in the wire with the lowest expected Vth which will be a wire that

has a Vth n sigma below the nominal Vth. In the previous section we conservatively defined Vlow to be equal

to the Vth being measured, this implies that for the transistor with the lowest expected Vhigh, its Vlow will

equal VthNominal − n · σVth . Since the transistor dominates Equation 5.5 between Vlow and Vhigh, the lowest

expected Vhigh has to be greater than VthNominal − n · σVth ; however, it is not immediately clear how much

greater. The fact that we are trying to measure RoffFET will help clarify how much greater. RoffFET is

equivalent to the value of the transistor when Vtest = Vdd. Thus, the transistor does not have to dominate

Equation 5.5 when Vtest is above Vdd and we can define Vhigh for the transistor n sigma below nominal to

34

be Vdd.

With the lowest expected Vhigh established, we can calculate what VstrongOff is. Remember that Rrest

is the parallel sum of all wires not being measured, with their transistors strongly turned off. If Rrest is

composed of m wires, then we can bound the value of Rrest below by the value of the leakiest resource in

Rrest divided by m and above, simply by the leakiest resource. The leakiest resource will be the resource

with the transistor that is n sigma above the nominal Vth. Equation 5.14 formally shows this bound for

measuring wire j.

1
R+nσFET (VstrongOff)

≤
m∑
i6=j

1
RFETi(VstrongOff)

≤ m

R+nσFET (VstrongOff)
(5.14)

Combining this bound with the fact that the Vhigh of the wire with the transistor n sigma below nominal is

Vdd, we can now solve for VstrongOff .

R+nσFET (VstrongOff) ≥ R−nσFET (Vtest = Vdd) ≥
R+nσFET (VstrongOff)

m
(5.15)

Since both Vhigh and VstrongOff will be greater than Vth, we can substitute the subthreshold Equation 5.9

I2 ·10
(Vth + nσVth)− VstrongOff

S ≤ I2 ·10
(Vth − nσVth)− Vdd

S ≤ m·I2 ·10
(Vth + nσVth)− VstrongOff

S (5.16)

Which gives a value for VstrongOff

2 · nσVth + Vdd ≤ VstrongOff ≤ 2 · nσVth + Vdd + S log(m) (5.17)

Meaning that in order to guarantee that a transistor that is n sigma above the mean Vth in another wire

will not dominate a transistor that is n sigma below nominal when Vtest ≤ Vdd, VstrongOff needs to be at

least 2n times the variation of Vth plus Vdd but does not need to be greater than that value plus S log(m)

where S is the subthreshold decay per decade and m is the number of wires composing Rrest. In practice m

is less than that since only a handful of wires per plane are expected to be very leaky and dominate Rrest.

Having VstrongOff , we can now calculate what Vhigh is for any wire. As defined, Vhigh is the value of Vtest

where RFET (Vtest = Vhigh) = Rrest(VstrongOff). Both Vhigh and VstrongOff are greater than Vth, therefore,

we can substitute the subthreshold current equation to get:

I2 · 10
(Vth + nwireσVth)− Vhigh

S = I2 · 10
(Vth + nσVth)− VstrongOff

S (5.18)

Solving for Vhigh yields:

Vhigh = VstrongOff + (nwire − n) · σVth (5.19)

35

Equations 5.13, 5.19 and 5.17 describe the values for Vlow, Vhigh and VstrongOff respectively. Together,

they completely define the behavior of Rnano in terms of the Vth variation of the transistor, nwire, and

the most extreme variation expected at ±nσVth . They guarantee that we can isolate one transistor and

define the size of the Vtest range over which the transistor dominates Rnano as Vhigh − Vlow which is equal

to VstrongOff − Vthnominal − n · σVth . Understanding how Rnano operates helps to direct how the reference

resistance Rref should be set, as explained in the following section.

5.4 Lower Resistance: Rref

For VMATCH to work, every transistor in the NanoPLA must be characterized. Although the NanoPLA

provides the ability to measure multiple transistors in parallel, the discussion above exposed the fact that

within a NanoPLA plane, wires are individually measured. Thus, we want to perform an individual measure-

ment as quickly as possible. The time to measure a wire is determined by the time it takes Vmeasure(Vtest)

to settle and this is determined by the value of RC in Equation 5.3. RC is defined in Equation 5.4 which is

re-written here in a way that will simplify the discussion.

RC =
1

1
Rnano

+
1

Rref

· CinWire (5.20)

Since the settling time of Vmeasure(Vtest) is determined by RC, we want to consider setting Rref so that

RC is minimized. Equation 5.20 shows that RC is minimized when Rref is significantly smaller than Rnano.

In fact, if it is small enough, RC will approach Rref ·CinWire. Having a small Rref with respect to Rnano has

two advantages but one significant problem. The first advantage is clear, the settling time will be small and

thus the measurement of the NanoPLA will be fast. Furthermore, the settling time is nearly independent

of the value of Rnano, it will not change regardless of what wire we are measuring nor what Vtest is set to.

The disadvantage is seen in the values that Vmeasure(Vtest) can take as a function of Vdd. If Vmeasure(Vtest)

is allowed to settle, Equation 5.3 behaves essentially like Equation 5.21.

Vmeasure(Vtest, tmeasure) =
Rref

Rnano +Rref
· Vdd (5.21)

In this case, the voltage measured is a fraction of the source voltage. This fraction is set by the value

of Rref and Rnano. Constraining Rref to be small compared to Rnano, implies that the largest value

Vmeasure(Vtest) can take is below
1
2
Vdd, since it is a half when Rref equals Rnano. The largest value for

Rref that is less than or equal to any expected Rnano is Rnano(Vlow). Therefore, if Rref = Rnano(Vlow),

Vmeasure(Vtest) will only reach half of Vdd when Vtest ≤ Vlow at which point the transistor no longer dominates

36

Rnano and the measurement is pointless.

In the region where the transistor dominates, Rnano will range almost exactly between RFET (Vlow) and

RFET (Vhigh), a region exclusively in the subthreshold region of the transistor since Vlow is bounded by Vth. As

explained in Section 4.2, in this region, the resistance will be exponential in Vtest. Thus as we linearly sweep

Vtest from Vlow to Vhigh, the fraction of Vdd that will be measured at Vmeasure will exponentially decrease. As

previously stated, for the technology being explored here, RFET (Vlow) will be 2×106Ω. Setting VstrongOff as

explained in Section 5.3.2, with Vdd = 0.7V , Vth = 295mV and assuming 100 wires and n = 3, RFET (Vhigh)

will be 7 × 1018Ω. Using Equations 5.13 and 5.19, we can calculate that at the midpoint between Vlow

and Vhigh, Vmid = nwire · σVth + VstrongOff+Vthnominal−nσVth
2 . At this point Rnano(Vmid) = 3.6 × 1012Ω, if

Rref = 2 × 104Ω, a value below the lowest expected Rnano, then the maximum value that Vmeasure can

achieve is approximately 5.5×10−7% of Vdd which is 3.8×10−9V . As such, half of all voltage measurements

between Vlow and Vhigh will be at or below 3.8 × 10−9V . These are unreasonably small voltages which we

don’t expect to be able to accurately detect or measure. Therefore, as appealing as a low settling time is,

setting Rref low is not a feasible solution.

Let us consider the opposite case, setting Rref higher than the highest expected Rnano (when Vtest =

Vhigh). Vmeasure(Vtest) will be on the order of Vdd since
Rref

Rnano +Rref
now approaches one and is never less

than 1
2 which makes detecting the voltage easier. However, now RC is approximately equal to Rnano ·CinWire.

As such, the settling time will be determined by the worst case RC which is when R is equal to the highest

expected Rnano. Considering the parameters of the NanoPLA as stated above, and assuming CinWire =

3.6× 10−16F , the worst case expected settling delay is 3.6× 10−16F · 7× 1018Ω = 2520s. Characterizing a

whole NanoPLA when one measurement takes 2520s might appear to also makes this solution not feasible.

However, careful consideration of what happens when a measurement is done before the worst case settling

time, reveals that this is a reasonable solution since we do not need to measure at the highest expected

resistance and can therefore measure a resource in a fraction of the time.

As long as we can detect a settled voltage somewhere above Vtest = Vlow, then we can calculate the

Vth of the transistor. It is this fact that makes setting Rref equal to or greater than the highest expected

Rnano a good solution. First, consider what happens when Vmeasure is sampled before it has had time to

settle. As expressed in Equation 5.3, the voltage will reach s% of saturation after a time tmeasure equal to

−RC · ln(1− s). When tmeasure = RC, the voltage will reach 63% of its settling value. The Vtest that causes

RC to equal tmeasure is Vsettled. That is to say, for a chosen measure time tmeasure, when Vtest is below

Vsettled, the value of Vmeasure will be at or above 63% of settled. Since the settled value will never be less

than 1
2Vdd, when measuring at Vsettled, the lowest possible Vmeasure will be 63%× 1

2Vdd. When Vtest is above

Vsettled, Vmeasure will not be settled and will be orders of magnitude less than Vdd. Figure 5.6 demonstrates

the result of measuring the output voltage when Vtest is above and below Vsettled. Above, Vmeasure is orders

37

10-5

10-4

10-3

10-2

10-1

100

-200 0 200 400 600 800 1000 1200 1400

Figure 5.6: Effect on Vmeasure when tmeasure is too small (Actual) and when tmeasure is “large enough”
(Settled)

of magnitude lower than the voltage it will eventually settle to. While, as expected, measuring below Vsettled

gives a value that is at least 63% of the fully settled voltage and approaches the fully settled voltage as Vtest

gets lower. For clarity of discussion, from now on, when talking of a settled value, we refer to a value that

is at least 63% from the fully settled voltage.

The result above that calculated tmeasure to be 2520s incorrectly assumed that to measure Vth we need

to be able to measure a settled Vmeasure(Vtest) when Vtest is anywhere in the range between Vlow and Vhigh.

It arrived at 2520s by estimating what the highest possible RFET is when Vtest is between Vlow and Vhigh

and concluded that it is when Vtest = Vhigh. This assumption is flawed because as long as Vtest is within

the range of Vlow to Vhigh, only one settled measurement of Vmeasure(Vtest) is needed to calculate Vth. We

present the intuition of why one measurement suffices here and leave the full development for the next

section where the measurement algorithm is detailed. Figure 5.7 shows Vmeasure(Vtest) for two resources,

one with a nominal Vth and one where the Vth is 3σ above nominal. The time at which a measurement is

taken, tmeasure, is significantly less than the previously calculated 2520s but for every single measurement,

it is the same. Vsettled for both resources is highlighted. The figure clearly illustrates the fact that as long

as tmeasure remains constant, two resources with different Vths have different Vsettled. It is this fact that

allows one measurement to suffice in order to calculate Vth. If we can find the Vtest at which Vmeasure(Vtest)

is 63% of Vdd (i.e. find Vsettled) we can determine what Vth is for that resource. Vsettled is defined by

38

10-5

10-4

10-3

10-2

10-1

100

-200 0 200 400 600 800 1000 1200 1400

Figure 5.7: Actual Vmeasure for two resources, one with a transistor at nominal Vth and one with a transistor
3σ above nominal Vth. Time tmeasure is constant over all measurements.

Equation 5.22. Section 5.5 exposes the full relationship between tmeasure and Vsettled but it is clear that as

tmeasure decreases, R(Vsettled) must decrease which occurs when Vsettled also decreases. Therefore, making

tmeasure smaller will move Vsettled towards Vlow. Since we only care about finding where Vsettled is when

measuring a resource, we can safely decrease tmeasure and still be able to calculate Vth with the technique

explained above.

R(Vsettled) · C = tmeasure (5.22)

tmeasure cannot be made arbitrarily fast, however. Lowering tmeasure drives Vsetteled towards Vlow. If

tmeasure is too fast, then Vsettled will be below Vlow and therefore no longer useful to calculate Vth. Thus,

the fastest tmeasure will be equal to the value RC takes when Vtest = Vlow. Since the R of RC is dominated

by Rnano then R = Rnano(Vlow) = 2× 106Ω. Using the previously defined value of CinWire = 3.6× 10−16F

leads to a minimum tmeasure = RC = 7.2× 10−10s. We can round this to 1ns, which is a significantly more

appealing measurement time than 2050s.

Potentially, we could measure a transistor in 1.0ns. However, before characterizing a transistor, we need

to strongly turn off all other wires in the plane. The resistance of these strongly turned off wires will, by

39

definition, be greater then that of any being measured. If we demand that these wires settle before taking a

measurement, the settling time will be greater than that of the worst case resistance of a transistor which was

previously calculated to have a settling time of 2520s. However, this is not a problem because we can take

advantage of the fact that if we do not allow them to settle, the apparent resistance of Rrest is significantly

greater which has the positive effect of having the transistor being measured dominating Rnano even more.

Therefore, we can conservatively bound the measurement time of one resource by 5ns which means that

in one second we can serially measure on the order of 108 resources or if we are even more conservative,

approximately 50,000 NanoPLA blocks per second.

As discussed, we no longer need to make sure that Vmeasure is settled for the highest possible resistance, it

only needs to be settled for any value of Vmeasure when Vtest ≤ Vsettled. Therefore, Rref no longer needs to be

larger than the largest possible RFET . It simply needs to be equal to or slightly larger than RFET (Vsettled).

Thus, as long as we are willing to measure at or above tmin, we can set Rref equal to RFET (Vsettled). For

the expected parameters of the NanoPLA, this sets Rref = 2.5MΩ.

5.5 Algorithm to Characterize the NanoPLA Resources

With the value of Rref and VstrongOff determined, and the minimum time to measure a wire calculated,

we can focus on the measurement algorithm. A possible algorithm is as follows: After the initial setup of

turning all resources in the plane strongly off, we can measure one resource by selecting it with the address

decoder (Figure 5.2), charging the gate to Vtest and measuring the voltage at the output of the voltage

divider, Vmeasure. Assuming this measurement was taken after the voltage settled, we can use Equation 5.21

to calculate what Rnano is. Further assuming that Vtest is in the region where RFET dominates Rnano,

with the value of Vtest and the calculated Rnano, we can use the subthreshold Equation 5.9 to work out the

threshold voltage for this transistor. Finally, once we know Vth, we can calculate RoffFET .

Although the steps suggested above will give the desired result of discovering RoffFET , this is not a

practical algorithm for many reasons. First, it depends on being able to measure Vmeasure very precisely.

Even though we know that Vmeasure will be on the order of Vdd, we still need a highly accurate measure

to calculate Vth. The second problem is the assumption that Vtest and tmeasure are such that Vmeasure was

settled when recorded. Since we don’t know what Vth is, there is nothing to guide what Vtest should be.

For the same reason, we cannot assume that Vtest will be in the region where the transistor’s resistance

dominates. Instead, consider the following algorithm which does a binary search over an interval of Vtest to

determine what Vsetteld is and from that, what Vth is.

The measurement algorithm works by doing a search over Vtest to find the Vtest at which Vmeasure =

63%Vdd. Then it can directly calculate what Vth is based on this Vtest. The reason why this works is the fact

that when tmeasure = RC in Equation 5.3, Vmeasure will be 63% of Vdd. If the measurement time tmeasure is

40

Figure 5.8: Vtest Interval where Vmeasure ≥ 63% Vdd. 7 intervals, one for each resource from 3 sigma below
nominal Vth to 3 sigma above nominal Vth.

held constant, then RC will be different for each wire and consequently the Vtest that causes tmeasure = RC

will be different depending on the variation of that transistor. As previously defined, the Vtest that causes

this is Vsettled. Figure 5.8 shows the Vtest interval over which Vmeasure ≥ 63%Vdd for a constant tmeasure. The

highest Vtest of the interval is Vsettled, a different Vtest for each wire. In fact, it is apparent from Figure 5.8

that we can directly map a value of Vsettled to the corresponding Vth as long as tmeasure does not change for

each measurement. The following formally develop this correspondence.

Vsettled occurs when RC = tmeasure, therefore from Equations 5.3 and 5.4, Rnano(Vsettled) is:

Rnano(Vsettled) =
Rref · tmeasure

CinWireRref − tmeasure

Substituting the subthreshold equation and solving for Vsettled:

Vsettled = VthNominal + nwireσVth − S log
(
CinWire · Vdd
I2 · tmeasure

− Vdd
I2 ·Rref

)
(5.23)

Finally, solving for the variation of the wire, nwire:

nwire =
Vsettled − VthNominal + S log

(
CinWire · Vdd
I2 · tmeasure

− Vdd
I2 ·Rref

)
σVth

(5.24)

If we have Vsettled, by using Equation 5.24, we can directly calculate, for the transistor being measured, what

its Vth variation is relative to nominal Vth. The measurement no longer requires high precision on the value

of Vmeasure but a simple comparator between Vmeasure and Vdd. As long as every measurement is compared

41

to 63% of Vdd after the same amount of time tmeasure, this technique will give a unique answer for each

variation level. However, this still requires that we find Vsettled. Comparing Vmeasure to Vdd at multiple

Vtest will help find Vsettled. The precision to which Vsettled can be determined will thus be set by the degree

of precision we have over Vtest as well as the number of measurements we are willing to make to find one

Vsettled.

Comparing to 63% of Vdd is a simplifying convention that comes from Equation 5.3 when tmeasure = RC.

However, there is no reason why Vsettled has to be defined at 63%. If we define Vsettled to be the value of

Vtest that causes tmeasure = 10RC, Vsettled will occur when Vmeasure is at 99% of Vdd. In fact, as long as the

value of Vmeasure is high enough for a comparator to detect, we can compare to any percent of Vdd as long

as every single measurement is compared to exactly the same percent. In Figure 5.7 we see that increasing

or decreasing the percent of Vdd to which Vsetled is defined will shift Vsettled equally for both resources.

Thus, changing the percent of Vdd being compared will have a constant linear shift on the boundary where

a resource is above that percent and where it is below, but it will have no effect on the relative separation

between this boundary for two resources and consequently no ill effect on the measurement algorithm.

5.6 Measurement Precision

To significantly reduce the number of measurements, we use a binary search between the smallest and largest

Vtest expected. If the comparator says that Vmeasure is too small, we try a lower Vtest. On the other hand,

when the comparator finds that Vmeasure is greater than or equal to the established percent of Vdd, a higher

Vtest is used on the next measurement. The range over which Vtest will have to be searched can easily be

calculated. The lowest expected Vtest will be the lowest expected Vlow i.e. a Vth that is n sigma below the

nominal Vth. The highest Vsettled will determine the maximum Vtest. This will occur for a wire that is n

sigma above the nominal Vth and is calculated as shown in Equation 5.23 when nwire = +n. By knowing the

maximum interval over which Vtest should be explored, Range(Vtest), and combining it with the degree of

precision to which Vtest can be controlled, Precision(Vtest), we can calculate the number of measurements

needed to get Vsettled to the highest precision achievable.

measurments =
⌈

log2

(
Range(Vtest)

Precision(Vtest)

)⌉
(5.25)

This number is minimized when tmeasure is the minimum time interval since the largest Vsettled will be

minimized when tmeasure is minimized. For the parameters expected for the NanoPLA, when the maxi-

mum and minimum wires expected are within 3σ (n = 3) and tmeasure is minimum, the range for Vtest

will be 750mV . If Vtest can be controlled to within 1mV , finding Vsettled to within 1mV will require 10

42

Figure 5.9: Region where Vmeasure ≥ 63% Vdd as a function of Vtest and time tmeasure. 7 regions, one for
each resource from 3 sigma below nominal Vth to 3 sigma above nominal Vth.

measurements, each taking 5ns (as we conservatively estimated before).

If the precision over Vtest is not adequate, we can increase it by using precision in time. To explain this,

consider what happens to nwire (Equation 5.24) when we hold everything, including Vtest constant but vary

tmeasure. nwire will linearly decrease as tmeasure increases exponentially. Therefore, by comparing Vmeasure

to Vdd at multiple points in time, we can increase the precision with which we can measure Vth; however,

this comes at a cost of slowing down the whole measurement processes. Figure 5.9 shows the space where for

a given Vtest and time tmeasure, Vmeasure will be at or above 63% of Vdd (63% at the strongly marked edge,

above in the shaded region). We see that the region is smallest for a transistor with a Vth 3σ below nominal

and largest for one at +3σ. If Vtest is held constant at 400mV , after 1ns, a transistor with a Vth variation

of +1σVth will have reached a Vmeasure greater than 63%Vdd but one with −1σVth variation will only reach

63%Vdd after approximately 100ns. Hence, we can calculate nwire by either changing Vtest or tmeasure. If

neither of these dimensions provides the required precision, we can increase the overall measurement precision

by jointly changing Vtest and tmeasure. Figure 5.10 shows the precision with which nwire can be measured

as a function of Vtest precision and tmeasure precision. Even though we can get high precision at the cost

of time, in fact, high precision is not necessary for VMATCH to function. Section 6.4 shows that at 10%

overhead, we can maintain 100% yield even when the measurement precision of Vth is 45mV.

Reduced precision has the effect of discretizing the Vths into a handful of distinct values and the advantage

43

Figure 5.10: Precision of nwire as a function of available Vtest and Time precision.

that fewer measurements are needed per resource. There are two ways to reduce precision. First, we can

directly reduce the precision by reducing the precision over Vtest. Reducing the number of measurements

done during the binary search also reduces the apparent precision. Both techniques however, have the same

effect of linearly discretizing the values of Vth. Since we limit the range over which Vtest needs to be search,

any resource that “lands” above or below this region is qualitatively marked as being extremely leaky or

extremely slow. This discretization of Vth has the effect of exponentially discretizing RoffFET since RoffFET

is exponential in Vth (Equation 5.9).

In conclusion, by correctly configuring the NanoPLA, in a reasonable amount of time, we can completely

characterize the variation of every transistor in the system. Furthermore, we can carefully adjust the precision

of these measurements by adjusting the precision of the test voltage and measurement time.

44

Chapter 6

Results

6.1 Experimental Setup

We simulated a NanoPLA using 5 nm pitch wires with crosspoints implemented in Amorphous-Si technology

[25] and transistors with 5 nm channel lengths and 295mV nominal Vth. We ran our simulation using 0.7V

Vdd which produced an effective mean on and off transistor resistance of 51kΩ and 30GΩ respectively. Mean

wire resistance and capacitance vary based on design and NanoPLA route channel width but are of the

order of 50kΩ and 45fF for the input wires, and 1MΩ and 50fF for the output wires. Mean crosspoint on

resistance, Rdiode, is 100kΩ and microscale contact resistance, Rcontact, is 10kΩ.

We implemented VMATCH as well as the Defect-Avoiding (Defect) and Variation-Oblivious (Oblivious)

algorithms in our custom NanoPLA router and used them to characterize the benefits VMATCH provides.

We routed the Toronto 20 benchmark set [11] on 100 Monte Carlo generated chips; this means we can be

90% confident that the results estimated as 100% yield at least exceed 97.5% yield. Finally, we simulated the

effects the measurement technique presented in Chapter 5 has on VMATCH as we decreased the measurement

precision. Variation on all components was modeled as independent Gaussian distributions as previously

defined in Section 2.3.

6.2 Achievable Yield

Figure 6.1 shows how yield drops as a function of percent variation in the system. We explored the effect

of providing extra resources by routing on both the minimum channel width (MinC), calculated by the

global route, and 30% extra channels on top of MinC (MinC + 30%). Yield is based on Equation 3.1. The

Oblivious algorithm achieves near 100% yield up to 9% variation but drops to no yield by 15% variation.

This is true even with extra channels since the Oblivious case makes a fixed mapping to channels that is not

affected by the actual characteristics of each wire; the chance of selecting unusable wires is the same even

45

0

20

40

60

80

100

Y
ie
ld
 (
%
)

Variation (%)
0 5 10 15 20 25 30 35

0

20

40

60

80

100

Y
ie
ld
 (
%
)

0 5 10 15 20 25 30 35
Variation (%)

VMATCH. MinC + 30%

VMATCH. MinC

Oblivious MinC + 30%

Oblivious MinC

Defect MinC + 30%

Defect MinC

Figure 6.1: Yield curves for Oblivious, Defect and VMATCH mapping. Benchmark spla 100 chips

when selecting from a larger resource pool (i.e., more channels). The Defect case does not yield because it

discards too many nand-terms as defective and is unable to fit the design on the remaining resources. It

can yield with additional resources as noted in the following section.

The last two curves are for VMATCH at minimum channel width and 30% extra channels. Both maintain

100% yield well past the point where Oblivious fails. For the case with extra channels, because the algorithm

carefully chooses what resources to use it can take advantage of the modest increase in channel width and

maintain 100% yield up to 35% variation, and it stays above 90% yield at extreme variation.

Table 6.1 reports the highest percent variation that achieves 100% yield for both Oblivious and VMATCH

assignment at 30% extra channels. On average the Oblivious router maintains 100% yield up to 10% variation

compared to VMATCH at 30%.

6.3 Delay, Energy and Area

Both VMATCH and Defect routing can exploit extra resources; as noted above, Oblivious cannot. In this

section we explore the effects extra resources have on delay, energy and area only for the Defect and VMATCH

cases.

Adding extra resources increases the probability that, after the Defect algorithm marks the defective

resources, there are enough acceptable resources left to map the design. For VMATCH, extra resources

allow it to choose more of the resources that are faster and improve overall delay. For both cases it increases

46

Highest Variation That Achieves
100% Yield at 30% Extra Channels

Net Oblivious VMATCH
alu4 10% 32%

apex2 11% 25%
apex4 11% 32%

bigkey 12% 33%
clma 10% 29%

des 9% 30%
diffeq 12% 29%

dsip 12% 32%
elliptic 10% 29%
ex1010 11% 26%

ex5p 10% 35%
frisc 10% 26%

misex3 10% 28%
pdc 9% 32%

s298 9% 28%
s38417 8% 29%

s38584.1 11% 30%
seq 9% 34%

spla 8% 35%
tseng 12% 29%
Mean 10% 30%

Table 6.1: Tolerable Variation for Toronto 20 Benchmark Set With 30% Wider Channel Over the Minimum
Channel Width. Unlimited Measurement Precision.

47

 0

 30

 60

 90

 120

 150

 180

 0 5 10 15 20 25 30 35 38

P
er

ce
nt

 O
ve

rh
ea

d
C

ha
nn

el
s

Variation (%)

VMATCH

Defect

Figure 6.2: Average minimum number of channels required to get 100% yield. Benchmark spla 100 chips

the probability of the design yielding. The disadvantage of extra resources is that, a wider route channel

forces longer wires; this increases wire resistance and capacitance, increasing nominal wire delay, total energy,

and total area. Therefore, the goal is to use the minimum number of extra channels so that the design yields.

For the 100 Monte Carlo experiments, Figure 6.2 shows the average of the minimum number of extra

channels, as a percent of the minimum channel width, needed to make the chip yield the design. At low

variation VMATCH needs no extra channels, even at 38% variation it only requires 15% extra channels. In

contrast, Defect needs 130% extra at very low variation and it only increases.

Figure 6.3 shows how these channel widths (Figure 6.2) affect the total delay, energy and area. The

curves shown are a ratio to the variation free Nominal case. Even at 38% variation VMATCH is within 70%

of the Nominal delay and within 20% of the Nominal energy and area. Defect is a factor of 5.1 slower, 3.8

larger and uses 2.6 times as much energy as Nominal.

Tables 6.2 and 6.3 show the mean and standard deviation for delay, energy and area ratios as well as

number of extra channels required for the benchmark set to achieve 100% yield at 38% variation. On average,

VMATCH uses 24% more channels than Nominal, and aggregate characteristics stays within 90% of Nominal

for delay, 30% for energy and 40% for area, while multiple factors over Nominal are needed for Defect to

work. By matching the fanout of the logical nand-term to the RoffFET variation of the physical nand-term,

VMATCH is able to produce a mapping that not only yields but is close to the efficiency of the variation-free

case.

48

Defect at 38% σ and 100% Yield
% Extra Ratio to Nominal
Channels Delay Energy Area

Net Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.
alu4 174 19 4.3 0.73 2.4 0.16 3.3 0.35

apex2 192 14 6.5 0.75 2.6 0.13 4.0 0.31
apex4 192 25 4.5 0.62 2.4 0.19 3.6 0.47
bigkey 164 14 8.5 1.2 2.5 0.15 4.2 0.44

clma 183 15 7.5 0.80 2.7 0.15 4.9 0.46
des 178 14 7.7 19 2.6 0.14 4.5 0.41

diffeq 241 24 7.5 1.3 2.6 0.15 3.5 0.31
dsip 202 17 9.9 1.3 2.8 0.15 4.3 0.43

elliptic 162 12 6.7 0.79 2.6 0.14 4.6 0.42
ex1010 260 24 6.4 0.80 2.8 0.17 4.2 0.41

ex5p 167 39 4.0 0.87 2.2 0.30 3.2 0.70
frisc 214 12 7.2 0.77 2.8 0.11 4.6 0.31

misex3 204 27 4.4 0.61 2.6 0.21 4.0 0.56
pdc 191 12 5.9 0.43 2.7 0.11 4.2 0.31

s298 165 12 9.8 1.1 2.6 0.13 4.4 0.39
s38417 184 22 7.3 1.3 2.8 0.24 4.9 0.77

s38584.1 228 13 6.6 0.59 2.7 0.11 4.2 0.24
seq 168 13 5.0 0.74 2.5 0.13 4.1 0.38

spla 177 21 5.1 0.59 2.6 0.19 3.8 0.45
tseng 260 29 6.8 0.95 2.6 0.18 3.5 0.37
Mean 193 17 6.4 0.96 2.6 0.18 4.1 0.41

Table 6.2: Overheads Required to Maintain 100% Yield When Mapping the Toronto 20 Benchmark Set at
σ = 38% Using the Defect-Avoiding Algorithm. Unlimited Measurement Precision.

49

VMATCH at 38% σ and 100% Yield
% Extra Ratio to Nominal
Channels Delay Energy Area

Net Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.
alu4 17 12 1.5 0.20 1.2 0.10 1.2 0.12

apex2 26 21 1.9 0.50 1.3 0.17 1.3 0.29
apex4 17 13 1.6 0.35 1.2 0.09 1.3 0.13
bigkey 17 13 2.0 0.47 1.2 0.12 1.3 0.23

clma 34 5.9 2.1 0.11 1.3 0.04 1.5 0.10
des 26 18 1.9 0.51 1.2 0.15 1.4 0.30

diffeq 23 21 2.0 0.41 1.2 0.13 1.3 0.18
dsip 28 16 2.3 0.56 1.3 0.13 1.3 0.23

elliptic 27 26 1.9 0.79 1.3 0.24 1.5 0.51
ex1010 43 22 2.0 0.39 1.4 0.15 1.4 0.24

ex5p 6.7 12 1.4 0.14 1.1 0.07 1.2 0.14
frisc 42 17 2.0 0.39 1.4 0.13 1.5 0.24

misex3 26 11 1.4 0.21 1.2 0.09 1.4 0.10
pdc 30 16 1.9 0.3 1.3 0.13 1.4 0.21

s298 23 32 2.4 1.4 1.3 0.29 1.5 0.62
s38417 26 5.1 1.9 0.19 1.3 0.04 1.4 0.08

s38584.1 33 6.4 1.9 0.31 1.3 0.05 1.4 0.07
seq 24 14 1.6 0.26 1.2 0.12 1.3 0.21

spla 15 9.0 1.7 0.16 1.2 0.08 1.2 0.10
tseng 24 11 1.9 0.61 1.2 0.06 1.3 0.08
Mean 24 17 1.9 0.34 1.3 0.10 1.4 0.20

Table 6.3: Overheads Required to Maintain 100% Yield When Mapping the Toronto 20 Benchmark Set at
σ = 38% Using VMATCH. Unlimited Measurement Precision.

50

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30 35 38

R
at

io
 to

 N
om

in
al

Variation (%)

VMATCH Delay
VMATCH Energy
VMATCH Area
Defect Delay
Defect Energy
Defect Area

Figure 6.3: Ratio to variation free Nominal of delay, energy and area at 100% yield. Benchmark spla 100
chips

6.4 Measurement Precision

VMATCH needs to know the value of RoffFET for each transistor in order to produce a good mapping.

Chapter 5 shows how to measure this information and explains how the precision of the measurement

affects the RoffFET distribution. We simulated this measurement technique and assigned a value of positive

(negative) infinity to the RoffFET of any resource that was above (below) the measurement boundaries as

defined in Section 5.6.

Figure 6.4 shows the number of extra channels needed to maintain 100% yield as precision decreases.

Precision is marked on the lower axis in mV and refers to the smallest precision at which the voltage can

be measured. The upper axis shows the number of unique values of Vth the precision produces. From this

graph, it is clear that as long as we add enough resources, we can maintain 100% yield at very low precision.

Adding extra resources has a cost, the total delay, energy and area increases. Figure 6.5 shows how the

extra channels needed to maintain 100% yield alter these values as compared to the infinite precision case.

It is interesting to note that even when the precision is limited to 40mV , there is nearly no negative effect on

the total delay, energy and area. This is equivalent to only having 10 discrete values for Vth as the upper axis

shows. Table 6.4 shows the lowest precision required to maintain the parameters to within 10% of infinite

precision for the Toronto 20 Benchmarks. On average at 10% overhead we only need 45mV precision.

51

Figure 6.4: Percent Extra Channels Needed for VMATCH to Maintain 100% Yield as Precision (Number of
Discrete Vth Levels) Decreases. Benchmark spla at σ = 38% 100 Chips

Figure 6.5: Effect of Precision (Number of Discrete Vth Levels) on Delay, Energy and Area as a Ratio to
Infinite Precision. VMATCH, Benchmark spla at σ = 38% 100 Chips

52

Minimum Precision (mV)
Net Delay Energy Area
alu4 40 80 40

apex2 20 80 40
apex4 40 40 40
bigkey 20 160 40

clma 40 40 40
des 40 80 80

diffeq 20 160 40
dsip 80 160 160

elliptic 40 80 80
ex1010 40 40 40

ex5p 80 80 80
frisc 80 80 80

misex3 40 80 40
pdc 40 40 40

s298 20 80 40
s38417 40 80 40

s38584.1 40 80 20
seq 40 80 40

spla 40 40 40
tseng 20 160 160
Mean 34 70 46

Table 6.4: Minimum Precision Required to Maintain Parameters within 10% of Unlimited Precision Values
at 100% Yield When Mapping the Toronto 20 Benchmark Set at σ = 38%

53

Chapter 7

Conclusion

We introduced VMATCH, an algorithm for the NanoPLA that can successfully deal with extreme variation.

By matching the dominant physical variation to the logical fanout variation we get high yield where an

oblivious mapping fails. We can trade a modest amount of extra resources to get performance, energy and

area close to what a variation-free device could achieve. Furthermore, we explain how to characterize the

transistor in the NanoPLA and observe that limited measurement precision does not affect the quality of

the results achieved by VMATCH. This shows that “nanoscale field-effect transistors which are inherently

irreproducible” [6] (footnote 7) need not prevent the construction of field-programmable components that

deliver reproducible design mappings with reasonable energy, delay, and area metrics. Our results also show

that, for variation above 10%, component-specific mapping is required to obtain acceptable yield levels.

54

Chapter 8

Future Work

Although our results are encouraging, there are still many questions left unanswered and techniques un-

explored. One important area to understand further is the effects different technology assumptions have

on VMATCH. Also, we believe that we can improve performance and reduce power if we can engineer the

fanout of the net being mapped to match the variation in the NanoPLA. Finally, despite the fact that we

have shown how to characterize the full NanoPLA, a technique that works well with only partial knowledge

of the variation would go a long way to extending the lifetime of the NanoPLA.

VMATCH depends on RoffFET being the only dominating source of variation. Our technology assump-

tions follow the current literature; nevertheless, since the field of sub-lithographic circuits is still young, it

is important to understand if and how VMATCH can cope with technologies that might arise with different

variation properties than the ones we are currently exploring. It is possible that some technology might exist

that prevents VMATCH from achieving good results; still, we believe that using one type of variation to

reduce another will be applicable under many circumstances.

VMATCH performs well considering the extreme variation it has to deal with. However, if we could

better shape the logical variation to match the physical variation, our results would improve even further.

There are many ways this can be done, in particular functions within a NanoPLA plane can be duplicated

or moved to another plane, thus readjusting the fanout of the function. Also, it is not clear how the size

of the NanoPLA blocks, i.e. number of inputs, and-terms and outputs, can be adjusted to better fit the

expected variation. [10] characterized this for the variation free case, but the question still remains as to

how variation changes their results.

Finally, we are also interested in techniques that avoid the need for full knowledge of the physical variation

but rather allows for a process of variation discovery only as necessary. Being able to incrementally fix a

mapping would be beneficial for both the initial mapping and for its lifetime operation.

55

Bibliography

[1] Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, and J. G. Lu, “Structures and electrical properties

for Ag-tetracyanoquinodimetheane organometallic nanowires,” IEEE Trans. Nanotechnol., vol. 4, no. 2,

pp. 238–241, March 2005.

[2] J. Brault, M. Saitoh, and T. Hiramoto, “Channel width and length dependence Si nanocrystal memories

with ultra-nanoscale channel,” IEEE Trans. Nanotechnol., vol. 4, no. 3, pp. 349–354, 2005.

[3] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber, “Logic gates and computation from

assembled nanowire building blocks,” Science, vol. 294, pp. 1313–1317, November 9 2001.

[4] A. DeHon, “Nanowire-Based Programmable Architectures,” ACM J. Emerg. Technol. Comput. Syst.,

vol. 1, no. 2, pp. 109–162, 2005.

[5] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like logic in defective, nanoscale crossbars,” Nan-

otechnology, vol. 15, pp. 881–891, June 2004.

[6] D. B. Strukov and K. K. Likahrev, “A reconfigurable architecture for hybrid CMOS/nanodevice cir-

cuits,” in FPGA, 2006, pp. 131–140.

[7] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, “Diameter-controlled synthesis of

single crystal silicon nanowires,” Appl. Phys. Let., vol. 78, no. 15, pp. 2214–2216, 2001.

[8] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-

density nanowire lattices and circuits,” Science, vol. 300, pp. 112–115, April 4 2003.

[9] J. V. Neumann, “Probabilistic logic and the synthesis of reliable organisms from unreliable components,”

in Automata Studies, C. Shannon and J. McCarthy, Eds. Princeton University Press, 1956.

[10] B. Gojman, H. Manem, G. S. Rose, and A. DeHon, “Inversion Schemes for Sublithographic Pro-

grammable Logic Arrays,” IET CDT, vol. 3, no. 6, pp. 625–642, November 2009.

[11] V. Betz and J. Rose, “FPGA Place-and-Route Challenge,” <http://www.eecg.toronto.edu/∼vaughn/

challenge/challenge.html>, 1999.

56

[12] P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “General syntehsis of

manganese-doped II-VI and III-V semiconductor nanowires,” Nanoletters, vol. 5, no. 7, pp. 1407–1411,

2005.

[13] C. Wang, Y. Hu, C. M. Lieber, and S. Sun, “Ultrathin Au nanowires and their transport properties,”

J. Am. Chem. Soc., vol. 130, pp. 8902–8903, 2008.

[14] M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the diameter and length of semicon-

ductor nanowires,” J. of Phys. Chem. B, vol. 105, pp. 4062–4064, 2001.

[15] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice

structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617–620, February 7 2002.

[16] C. Yang, Z. Zhong, and C. M. Lieber, “Encoding electronic properties by synthesis of axial modulation-

doped silicon nanowires,” Science, vol. 310, pp. 1304–1307, November 25 2005.

[17] L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multi-shell

nanowire heterostructures,” Nature, vol. 420, pp. 57–61, 2002.

[18] M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annual Review Ma-

terial Science, vol. 34, pp. 83–122, August 2004.

[19] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures

into functional networks,” Science, vol. 291, pp. 630–633, January 26 2001.

[20] D. Whang, S. Jin, and C. M. Lieber, “Nanolithography using hierarchically assembled nanowire masks,”

Nanoletters, vol. 3, no. 7, pp. 951–954, July 9 2003.

[21] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and

metal/semiconductor nanowire heterostructures,” Nature, vol. 430, pp. 61–64, July 1 2004.

[22] D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays

for integrated nanosystems,” Nanoletters, vol. 3, no. 9, pp. 1255–1259, September 2003.

[23] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F.

Stoddart, D. L. Olynick, and E. Anderson, “Nanoscale molecular-switch devices fabricated by imprint

lithography,” Appl. Phys. Let., vol. 82, no. 10, pp. 1610–1612, 2003.

[24] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F.

Stoddart, and R. S. Williams, “Nanoscale molecular-switch crossbar circuits,” Nanotechnology, vol. 14,

pp. 462–468, 2003.

57

[25] Y. Dong, G. Yu, M. C. McAlpine, W. Lu, and C. M. Lieber, “Si/a-Si core/shell nanowires as nonvolatile

crossbar switches,” Nanoletters, vol. 8, no. 2, pp. 386–391, 2008.

[26] A. Asenov, “Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness

variation,” IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 112–119, January 2002.

[27] ——, “Random dopant induced threshold voltage lowering and fluctuations in sub-0.1µm MOSFET’s:

A 3-D “atomistic” simulation study,” IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2505–2513,

December 1998.

[28] A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs

introduced by gate line edge roughness,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1254–1260,

May 2003.

[29] V. A. Sverdlov, T. J. Walls, and K. K. Likharev, “Nanoscale silicon MOSFETs: A theoretical study,”

IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1926–1933, September 2003.

[30] G. Yu, A. Cao, and C. M. Lieber, “Large-area blown bubble films of aligned nanowires and carbon

nanotubes,” Nature Nanotechnology, vol. 2, no. 6, pp. 372–377, Jun 2007.

[31] A. DeHon, P. Lincoln, and J. Savage, “Stochastic Assembly of Sublithographic Nanoscale Interfaces,”

IEEE Trans. Nanotechnol., vol. 2, no. 3, pp. 165–174, 2003.

[32] “International technology roadmap for semiconductors,” <http://www.itrs.net/Links/2008ITRS/

Home2008.htm>, 2008.

[33] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George, J. Wawrzynek, and

A. DeHon, “HSRA: High-Speed, Hierarchical Synchronous Reconfigurable Array,” in FPGA, February

1999, pp. 125–134.

[34] D. Chen, J. Cong, M. Ercegovac, and Z. Huang, “Performance-driven mapping for CPLD architectures,”

IEEE Trans. Computer-Aided Design, vol. 22, no. 10, pp. 1424–1431, October 2003.

[35] V. Betz, “VPR and T-VPack: Versatile Packing, Placement and Routing for FPGAs,” <http://www.

eecg.toronto.edu/∼vaughn/vpr/vpr.html>, March 27 1999, version 4.30.

[36] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router for FP-

GAs,” in FPGA. ACM, February 1995, pp. 111–117.

[37] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd ed. Prentice Hall,

1999.

58

[38] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das, W. Haensch, E. J. Nowak,

and D. M. Sylvester, “Ultralow-voltage, minimum-energy CMOS,” IBM J. Res. and Dev., vol. 50, no.

4–5, pp. 469–490, July/September 2006.

[39] A. DeHon and H. Naeimi, “Seven Strategies for Tolerating Highly Defective Fabrication,” IEEE Des.

Test. Comput., vol. 22, no. 4, pp. 306–315, July–August 2005.

[40] D. B. Strukov and K. K. Likharev, “CMOL FPGA: a reconfigurable architecture for hybrid digital

circuits with two-terminal nanodevices,” Nanotechnology, vol. 16, no. 6, pp. 888–900, June 2005.

[41] B. Gojman and A. DeHon, “VMATCH: Using Logical Variation to Counteract Physical Variation in

Bottom-Up, Nanoscale Systems,” in ICFPT. IEEE, December 2009, pp. 78–87.

[42] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” ACM Computing Surveys,

vol. 18, no. 1, pp. 23–38, 1986.

59

