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A human being is part of the whole called by us “universe”, a part limited in 

time and space. We experience ourselves, our thoughts and feelings as 

something separate from the rest... a kind of optical delusion of 

consciousness. This delusion is a kind of prison for us, restricting us to our 

personal desires and to affection for a few persons nearest to us. Our task 

must be to free ourselves from the prison by widening our circle of 

compassion to embrace all living creatures and the whole of nature in its 

beauty. The true value of a human being is determined by the measure and 

the sense in which they have obtained liberation from the self. We shall 

require a substantially new manner of thinking if humanity is to survive. 

(Albert Einstein, 1954)  
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Abstract 
 

 
During synaptic transmission in the central nervous system, neuroreceptors 

transduce a chemical signal into an electrical signal, a process that is mediated by both 

ligand-gated ion channels (LGICs) and G-protein coupled receptors (GPCRs). The work 

in this thesis examines structure-function relationships within these receptors, with a 

focus on elucidating the mechanism of molecular recognition during ligand binding.  We 

utilize conventional and unnatural amino acid mutagenesis, structural derivatives of 

agonists, and homology models to identify specific interactions and the role of binding 

site residues in ligand binding and receptor activation. The technique of unnatural amino 

acid mutagenesis allows us to study these processes in greater detail than would 

otherwise be possible, even at the scale of a chemical bond. 

 

Chapter 2 covers structure-function investigations of a ligand-gated ion channel, 

the 5-HT3 receptor, with a goal of understanding agonist binding and receptor activation.  

The project examines residues in close proximity to the ligand-binding site and focuses 

on polar interactions with hydrophilic residues.   We identify 5-fluorotryptamine (5-FT) 

as a partial agonist of the 5-HT3 receptors and show that size and electronegativity are 

important at the 5’ position for efficient channel opening. Our investigation of the 

compound 1-OT revealed it to be an agonist of equal potency to the native agonist (5-

HT), demonstrating that the indolic proton of serotonin is not essential to its activation of 

the receptor. A study focusing on loop A residues led us to refine our homology model 

and propose that Glu129 faces into the binding pocket, where, through its ability to 
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hydrogen bond, it plays a critical role in ligand binding. Further studies of binding site 

residues identified an ionic interaction that likely participates in the conformational 

changes associated with receptor gating and characterized several other residues that play 

critical roles in receptor activation.  Finally, we compare and contrast the behaviors of 

two structurally distinct agonist classes, 5-HT and its related structures, and m-

chlorophenylbiguanide (mCPBG) and identify several residues that play critical roles in 

modulating agonist binding and gating in response to these agonists.  

 

Chapter 3 describes a study examining the binding site and the mechanism of 

agonist activation of a GPCR, the D2 dopamine receptor. A number of aromatic amino 

acids thought to be near the agonist binding site were evaluated. Incorporation of a series 

of fluorinated tryptophan derivatives at a conserved tryptophan of the D2 receptor 

establishes a cation-π interaction between the agonist dopamine and this residue (W6.48), 

suggesting a reorientation of W6.48 on agonist binding, consistent with proposed 

“rotamer switch” models.  

 

Finally, chapter 4 describes a project that seeks to extend the nonsense 

suppression methodology to include mammalian expression systems.  Progress is made 

developing techniques for efficient transfection of cells in culture. 
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Chapter 1 

Introduction 

Chemical-Scale Neuroscience  

 

 The human brain is arguably the most complex structure in nature.    It is 

composed of approximately 1012 neurons, and each of these form an average of 103 

connections or synapses. Overwhelming evidence coming from the field of neuroscience 

suggests that all that we know of an experience arises as a result of the activity of this 

vast network containing ~1015 connections. With the development of sophisticated 

biochemical and imaging technologies, the last decade has seen unprecedented advances 

in neuroscience at both the molecular and systems level. Even with such advances, there 

still remains much more that we do not understand. Neurons function by transmitting 

electrical signals, but the communication between neurons most often involves chemical 

signals. When the electrical signal in a neuron reaches a synapse, it induces the release of 

neurotransmitters stored in synaptic vesicles. These molecules rapidly diffuse across the 

synaptic cleft and bind to receptors embedded in the membrane of the postsynaptic cell 

(figure 1.1).  
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Receptors in the nervous system fall into two main classes, the ligand-gated ion 

channels (LGICs) and the G-protein coupled receptors (GPCRs). LGICs mediate fast 

synaptic transmission. In these receptors, the binding event causes a conformational 

change in the receptor that opens a pore (gating), and permits the flow of ions through the 

channel down their electrochemical gradient. The flow of ions changes the potential 

across the postsynaptic membrane, and this voltage shift is summed with the inputs from 

other synapses. The sum of inputs (excitatory and inhibitory) determines the electrical 

Figure 1.1  Ion channels (a) Ion 
channels in the context of the central 
nervous system. (b) Ion channel gating 
upon binding neurotransmitter. 

a 

b 
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signal that will be passed on to the postsynaptic neurons of this cell. Thus the chemical 

signal of the neurotransmitter is converted back into an electrical signal. This process 

takes place on the millisecond timescale in LGICs, and is the basis of most information 

processing in the central nervous system(1). GPCRs also play a critical role in neuronal 

function, but their activation does not always result in the direct transmission of electrical 

signals. These receptors are also vitally important for many other biological processes 

such as vision, olfaction, autonomic function, and immune function. Because they act 

through second messenger pathways, their modulatory effect on cellular activity is on a 

longer timescale.     

 

The goal of our chemical-scale studies is to understand the mechanism of 

molecular recognition during ligand binding as well the structure-function relationships 

during the process of receptor activation. Our primary method for studying receptors 

involves the mutation of one or more amino acids in the peptide sequence with the goal 

of changing the receptor’s function. The determination of which mutations will be 

studied in the receptor is usually guided homology models constructed from crystal 

structures of closely related proteins. These models allow us to come up with hypotheses 

about receptor function at scales as small as the functional group of the amino acid side 

chain. Such hypotheses can be tested using electrophysiology to characterize functional 

changes resulting from induced mutations. Site-directed mutagenesis is a useful tool to 

explore and sometimes answer these questions, but the relatively small number of twenty 

naturally occurring amino acids imposes significant limitations on the structural and 

chemical diversity available with this method.     
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1.1  Unnatural Amino Acid Mutagenesis 

Unnatural amino acid mutagenesis (“unnaturals”) is a powerful tool that vastly 

expands the potential changes we can make to protein structure, and allows us to study 

LGICs at the chemical level. Potential amino acids to be incorporated are limited only by 

synthetic feasibility and ability to pass through a cell’s translation machinery (figure 1.2).  

Figure 1.2 illustrating unnatural amino acid structures was adapted from England P.M., 

2004 (2).  The studies described in this work utilize unnatural amino acids that differ in 

subtle ways from natural amino acids. For example, incorporation of O-methylthreonine 

in the place of threonine removes the ability of the side chain to donate a hydrogen bond, 

while retaining its general shape and its ability to accept a hydrogen bond. Structure-

function studies using conventional mutagenesis can provide us with information about 

which parts of a protein are important for function, but the use of unnaturals allows us to 

probe structure with much greater precision.     
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1.2  The Cation-π Interaction 

The utility of unnatural amino acids is effectively illustrated by our studies of 

cation-π interactions within receptor binding sites. The cation-π interaction is an 

important and common interaction in biological systems. An analysis of protein data 

bank structures revealed that one in 77 amino acids is involved in a cation-π interaction 

and it is frequently found in the binding site of aminergic ligands (3,4).  

 

Cations bind to the electron-rich π face of an aromatic ring through strong 

electrostatic interactions (3,5,6) (figure 1.3a). Studies of this interaction using 

conventional mutagenesis are hindered by a limited selection of residues for substitution.    

Figure 1.2  Unnatural Amino Acids. Significant diversity of structures available using 
unnatural methodology. Shown are many of the amino and hydroxy acids that have been 
successfully incorporated into proteins using nonsense suppression. 
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For example if investigating a tryptophan site, the experimenter could substitute a 

different aromatic residue such as phenylalanine and also a nonaromatic hydrophobic 

residue such as leucine. If Phe caused little change in function, but Leu led to a large 

effect, these results would be consistent with the importance of aromaticity at this site.    

However, they would not be conclusive and there are alternative explanations. For 

example, the significant structural difference between Leu and Phe and not the loss of 

aromaticity may be the cause of the functional change.  

 

                                                 

                                     

 

 

 

 

Unnatural amino acids provide a means to modulate the cation-π interaction 

without significantly altering the amino acid structure. This is accomplished by 

substituting the aromatic residue with fluorinated derivatives (figure 1.3b). The 

Figure 1.3.  The cation-π  interaction (a) A cation interacting with benzene.  (b) Electrostatic 
potential surfaces of the fluorinated tryptophan series calculated using Spartan.   
 

a 

b 
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electronegativity of fluorine shifts the partial negative charge present on the face of the 

aromatic ring towards the outside of the ring. The substitution of additional fluorines 

reduces the negative potential on the face of the ring in a stepwise manner and leads to a 

corresponding reduction of the cation-π binding ability. This reduced binding is 

illustrated by a change in the electrostatic potential surface from red (more favorable) to 

green (less favorable) (figure 1.3b). Thus, if we incorporate a series of fluorinated 

aromatic residues into a protein and observe a corresponding stepwise decrease in 

function, we have strong evidence for the presence of a cation-π interaction. 

 

Our studies of the D2 dopamine receptor focus on identifying a cation-π 

interaction, but unnatural amino acids can be used to investigate a diverse set of 

interactions. For example our studies of the 5-HT3 binding site used a different group of 

unnatural amino acids to investigate polar interactions such as hydrogen bonds. In 

general, substitution of unnatural amino acids provides more conclusive results about 

specific interactions than would be possible using conventional mutagenesis.      

 
 
1.3  Nonsense Suppression 

Nonsense suppression is an effective methodology developed to site-specifically 

incorporate unnatural amino acids into proteins (figure 1.4)(7-10). Using site-directed 

mutagenesis, an amber stop codon (TAG) is incorporated into the gene at the position 

coding for the amino acid of interest. mRNA is transcribed from the mutatant DNA in 

vitro and contains the corresponding UAG stop codon. A specially designed suppressor 

tRNA (tRNACUA) that recognizes the UAG codon is prepared separately and chemically 
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acylated with the desired unnatural amino acid. A solution containing both the mRNA 

and this acylated tRNA (aa-tRNACUA) is then introduced into a cell. In the absence of this 

specially designed aa-tRNA, translation of the mRNA would stop when the ribosome 

reaches the inserted stop codon, producing a “nonsense” protein. In this system, however, 

the aa-tRNACUA recognizes the stop codon and suppresses the termination of translation.    

The ribosome incorporates the unnatural amino acid just as it would a natural aa-tRNA, 

and translation continues, producing a full-length protein with an unnatural amino acid at 

the intended specific site. 
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Expression of the protein containing the unnatural amino acid begins with 

injection of a solution of the mRNA and tRNA into an oocyte using a micropipette. The 

techniques used to transfect cells in culture are described in chapter 4. Cells are incubated 

for ~1−2 days. During this time the protein is translated as described above, folded, and 

transported to the cell surface (figure 1.5). At this point electrophysiology can be used to 

characterize the effect on ion channel function that the structural perturbation of the 

unnatural amino acid has caused. Electrophysiology is an extremely sensitive technique, 

and this makes it an ideal assay to for our studies using unnatural amino acids. This is 

Figure 1.4.  Unnatural amino acid mutagenesis by nonsense supression.  Suppressor tRNA 
recognizes the UAG stop codon and the attached unnatural amino acid is incorporated at the site of 
interest by the ribosome. 
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because the aa-tRNA is a stoichiometric reagent, and the amount of mutant protein 

expressed in each cell is relatively small. Electrophysiology allows us to accurately 

record very small currents and thus measure changes in ion channel function even when 

very few channels are expressed. 

 

 

 
 
 

1.4      Data Acquisition  

 One of the primary means used to obtain data regarding the effect of a mutation 

on receptor function is via a dose-response assay applied to cells using two-electrode 

Figure 1.5  In vivo nonsense suppression in oocytes.  mRNA with the stop codon and 
aminoacyl suppressor tRNA are injected into Xenopus oocytes.  Cells are incubated 1-2 days and 
then assayed using electrophysiology. 
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voltage clamp (TEVC). In TEVC, the voltage electrode measures the potential difference 

across the cell membrane while the current electrode connected via a feedback circuit 

applies a current to maintain the membrane potential at the value that is set by the 

experimenter. Application of agonist to the cell results in the opening of ion channels, 

which allows ions to flow across the cell membrane down their electrochemical gradient 

(figure 1.1b). To maintain the membrane potential at the predetermined value, the current 

electrode must inject current equal in magnitude to the current passing through the open 

ion channels. In this way we are able to precisely measure the current resulting from the 

open ion channels.  

 

 A dose-response relationship is measured by measuring the current induced by the 

application of varying concentrations of agonist (figure 1.6a). Normalized current 

response values are plotted with the agonist concentration on the x-axis (in logarithmic 

scale). Dose-response relations are most often characterized by their EC50, which is 

defined as the concentration of agonist at which half-maximal response is elicited (figure 

1.6b). EC50 is a composite value, measuring both ligand binding and channel gating, and 

should not be confused with Kd, which is a direct measure of ligand affinity.  
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Figure 1.6  Electrophysiology assay.  (a) Example current responses. Increasing concentrations 
of agonist leads to a greater number of open channels and an increase in measured current.   
(b) Currents are normalized and plotted agonist concentration (log scale).  The EC50 is the 
concentration of agonist that elicits a half-maximal response.  Mutations that make agonist 
binding or channel activation less favorable shift the curve to the right (increase EC50).  
Mutations that are favorable to function shift the curve to the left (lower EC50) 

a b 
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1.5      Dissertation Summary 

The following work is divided into three different chapters, each describing a 

project that focuses on a different membrane receptor. Chapter 2 covers structure-

function investigations of the ligand-gated ion channel 5-HT3 using both conventional 

and unnatural amino acid mutagenesis. The aim of this study is the elucidation of the 

mechanism of receptor activation by serotonin as well as several non-native agonists.    

The project probes the role that residues in close proximity to the ligand-binding site play 

in agonist binding and receptor activation and focuses on polar interactions with 

hydrophilic residues. Chapter 3 describes a study examines the mechanism of agonist 

activation the D2 dopamine receptor which is a GPCR. This project has a more specific 

aim of utilizing derivatives of aromatic residues to search for a presumed cation-π 

interaction between dopamine and one of the aromatic residues that make up the agonist-

binding cleft. Finally, chapter 4 describes a project that seeks to extend the nonsense 

suppression methodology to include mammalian expression systems.  

 

These studies utilize both conventional and unnatural amino acid mutagenesis, but 

the most compelling results often come from the use of unnaturals. With this technique 

we have been able to alter protein structure on the chemical scale and by looking at the 

effect that this change has on receptor function, identify specific interactions within the 

receptor or between the receptor and its ligand. The broad goal of these studies is to 

contribute to our basic understanding of receptor function and neuroscience, and we 

expect that these results will be of practical importance in the development of 

therapeutics that target these neuroreceptors.  
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2.1  Introduction 
 

The 5-HT3 receptor is a cation-selective Cys-loop receptor and has the 

endogenous agonist 5-hydroxytryptamine (5-HT) or serotonin. The Cys-loop family of 

ligand-gated ion channels is named for a conserved Cys-Xaa13-Cys sequence, which 

forms a disulfide bond and thus a “loop” in the N-terminal domain (1). This family also 

includes the nicotinic acetylcholine (nACh), gamma-amino butyric acid (GABA), and 

glycine (Gly) receptors (1-6). Cys-loop receptors function as a pentameric arrangement of 

subunits, with each subunit having a large extracellular N-terminal region, four 

transmembrane helices (M1-M4) and an intracellular loop between M3 and M4 (figure 

2.1). The binding site is located at the interface of two adjacent subunits and is formed by 

the convergence of three loops (A-C) from the principal subunit and another three loops 

(D-F) from the complementary subunit (7).  

      

Figure 2.1. The 5-HT3  receptor (a) The 5-HT3 receptor like all cys-loop receptors has five 
homologous subunits.  (b) Each subunit contains four transmembrane segments and an intracellular 
domain, which contains the ligand binding site.  

a b 
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Molecular details of the binding pocket have been extrapolated from the structure 

of the acetylcholine binding protein (AChBP), which is homologous to the extracellular 

domain of Cys-loop receptors, and a range of amino acid residues that are important for 

agonist and antagonist binding have been identified (8,9). Previous studies have 

established an important role for aromatic residues that are conserved across the Cys-loop 

family (Figure 2.2b), including a cation-π interaction between the positive charge of 5-

HT and the side chain of Trp183 on loop B of the principal subunit (10). 

 

The availability of the high-resolution structure of the acetylcholine binding 

protein (AChBP) has enabled the construction of a series of homology models of the 

extracellular domains of several Cys-loop receptors, including nACh, GABAA and 5-HT3 

receptors (9,11-16) (Figure 2.2). While there are no crystal structures of the 

transmembrane region of Cys-loop receptors, cryoelectron microscopy data has been 

used to construct a refined 4 Å structure of the nAChR (17). This study provides valuable 

information regarding how subunits and domains are put together as well as the most 

detailed view to date of the transmembrane region. These models, especially of the 

extracellular domain, are supported by experimental data and by the recent structure 

determination of the extracellular domain of a nACh receptor α subunit (18). However, 

as homology models are inherently speculative, experimental validation of predictions 

based on these models are invaluable to the elucidation of the actual binding interactions 

between 5-HT and its receptor.  
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The relevance of 5-HT3 receptor investigations 

The 5-HT3 receptor is an important model system for the study of structure-

function relationships in the Cys-loop family of receptors and also holds direct medical 

significance. Because there is significant homology within the Cys-loop family (25%-

30% conservation in amino acid sequence identity), studies on any receptor are 

informative about the function of the entire family (19). However, the 5-HT3R has 

Figure 2.2.  (a) Homology model of the 5-HT3  receptor.  The extracellular domain is based on the 
crystal structure of the acetylcholine binding protein (AChBP).  (b) The ligand binding site is located 
at the interface of two subunits and formed by loops A-F.  Within the ligand binding site is a core of 
conserved aromatic residues (Aromatic Box).  

a b 
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particular relevance as a model system because it is a relatively early ancestor within this 

family (20,21). These receptors have maintained significant conservation of the ligand 

binding residues, especially considering the structural differences between 5-HT and the 

native agonists of other receptors. Two of the six residues on the principal face involved 

in ACh binding are completely conserved in the 5-HT3R (7). In fact, many nAChR 

ligands including nicotine and ACh competitively antagonize 5-HT3R currents (22).  

Similarly, 5-HT can interact with nACh, GABAA, and glycine receptors (23-25). This 

pharmacological overlap reinforces the relevance that 5-HT3 studies have to the 

understanding of other Cys-loop receptors. This fact, combined with the receptor’s 

ancestry and ability to yield functional homomeric channels, makes a strong argument for 

use of the 5-HT3 receptor as a model system for the elucidation of Cys loop receptor 

function (7). 

 

The importance of 5-HT3 receptors to medicine offers additional relevance to their 

investigation, especially studies relating to the understanding of ligand-receptor 

interactions. Peripheral 5-HT3 receptors are thought to modulate pain as well as intestinal 

and cardiovascular functions (26). In the central nervous system, 5-HT3Rs are important 

targets for the control of emesis induced post-operatively by chemotherapy and 

radiotherapy and in the palliative care of patients with multiple sclerosis (27). 5-HT 

acting through 5-HT3 receptors may contribute to the mediation of inflammatory pain.  

Also, 5-HT3 receptor antagonists have been shown to reduce secretion and motility in the 

gut and thus can be useful treatments for irritable bowel syndrome or other visceral pain 

disorders. Antagonists are also currently being investigated as possible treatments for 
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fibromyalgia and other rheumatic diseases (28). Study of the 5-HT3 receptor can have 

relevance for the treatments for many diseases, including Alzheimer’s disease, 

Parkinson’s disease, ADHD, epilepsy, emesis associated with chemotherapy, nicotine 

addiction, schizophrenia, and anxiety (1). 

 

 

Receptor-ligand interactions 

 Due to the difficulty acquiring such data, structural details of receptor-ligand 

interactions at the molecular level have only recently begun to emerge. The structure of 

AChBP has allowed the definition of the ligand binding domain of the 5-HT3R in greater 

detail than had been possible before. Some important clues about the ligand interactions 

and orientation can be obtained from modeling studies such as that by Reeves and 

Lummit (7). In this study, a homology model of the 5-HT3R binding site was created 

based upon the AChBP structure and then the agonist 5-HT was docked computationally. 

Such models offer insights into potential ligand-receptor interactions, though we 

recognize the importance of combining the insights that are obtained from homology and 

docking studies with experimental studies.  

5-HT 
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While many other small molecule 

neurotransmitters contain only two 

potential sites that can form hydrogen 

bonds, serotonin has three positions that 

have the potential to form hydrogen 

bonds with the ligand binding site (figure 

2.3). The primary ammonium cation 

and the indolic amine group can act as 

hydrogen bond donors, and the hydroxyl group can act as both a hydrogen donor and an 

acceptor. A determination of the functional groups that hydrogen bond to 5-HT should 

help to fix the orientation of this agonist in the binding site with relative precision.  This 

in turn could reveal information about other non-covalent interactions in the binding site. 

 

Heteromeric 5-HT3  Receptors 

To date, two 5-HT3R subunits have been investigated in detail; 5-HT3A, and 5-

HT3B, and additional subunits have been proposed (7,19,29-31). The 5-HT3A subunit 

forms functional homooligomeric receptors, whereas 5-HT3B subunits are retained in the 

ER unless coexpressed with 5-HT3A subunits (32). The subunit stoichiometry for hetero-

oligomeric 5-HT3A/B receptors has recently been revealed by atomic force microscopy to 

be 2A:3B in the arrangement B-B-A-B-A (33). The conductance of the heterooligomeric 

receptors is ~15 pS, whereas that of the homooligomeric complex is 30× smaller 

Figure 2.3.  5-HT chemical structure. Serotonin 
(5-HT) contains three sites with the potential to form 
hydrogen bonds. 



 
22  

(~0.5 pS). Thus, the incorporation of B subunits results in some changes in the 

biophysical characteristics of the receptor, but yet has little effect on the pharmacological 

profile (34-36). 

 

Summary 

We are interested in understanding the molecular details of ligand-receptor 

interactions in the 5-HT3R. Homology models provide a useful starting point for 

structure-function studies. To confirm specific interactions, one must identify the 

particular residue that participates in an interaction and in addition show that the ligand 

and not another amino acid is the interacting partner. Conventional mutagenesis can 

provide useful information and help determine whether or not a residue is critical for 

ligand binding or other aspects of binding-site function. However, conventional 

mutagenesis often cannot address questions at the level of detail we are interested in. The 

goal of these studies is the elucidation of residues important for ligand binding and 

receptor activation, but more precisely we would like to determine the specific functional 

groups that participate in the ligand-receptor as well as intrareceptor interactions. One 

effective approach we utilize is the forward and reverse pharmacology method. This 

method complements the subtle modifications possible using unnatural amino acid 

mutagenesis with the use of a number of structural analogues of receptor ligands. Our 

results identify several important interactions and lead to a more complete and accurate 

model of agonist binding and activation the 5-HT3 receptor. 
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2.2    5-Fluorotryptamine is a partial agonist at 5-HT3 receptors 

Reproduced in part from (37). 

 

2.2.1 Results 

5-HT3 receptor antagonists have been suggested as potentially useful in treating 

inflammatory pain, anxiety, depression, schizophrenia, and drug abuse (26), and are 

currently in clinical practice for the treatment of irritable bowel syndrome and emesis 

(38-40). It is therefore not surprising that many 5-HT3 receptor antagonists have been 

developed. There are, however, fewer 5-HT3 selective agonists. 2-Me-5-HT and mCBPG 

have been widely used, and some novel compounds have been developed more recently 

such as benzoxazoles (41) and pyrroloquinoxaline-related compounds (42). Here we 

explore the agonist properties of a compound closely related to 5-HT, 5-fluorotryptamine 

(5-FT), at both 5-HT3A and 5-HT3AB receptors, and compare them to the properties of 5-

HT, mCBPG and tryptamine (figure 2.4). We also explore several other 5-substituted 

tryptamine derivatives. 

 

Effects of agonists on 5-HT3 receptor mediated currents 

Application of 5-HT to Xenopus oocytes expressing 5-HT3A or 5-HT3AB receptors 

produced concentration-dependent, rapidly activating, inward currents that desensitized 

over the time course of the application (figure 2.5a-b). Plotting current amplitude against a 

series of 5-HT concentrations revealed EC50s of 1.4 µM and 3.2 µM with Hill slopes of 2.5 

and 1.4 respectively (table 2.1).  
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 pEC50 EC50 
(µM)  

nH 

A 5-HT 5.85 + 0.10 1.4 2.5 + 0.4 
AB 5-HT 5.49 + 0.03 3.2 1.4 + 0.4 
    
A 5-FT 4.80 +    0.05 16 2.4 + 0.5 
AB 5-FT 4.57 +    0.08 27 1.4 + 0.3 
    
A mCPBG 6.29 + 0.04 0.5 2.3 + 0.4 
AB mCPBG 5.96 + 0.06 1.1 1.6 + 0.4 
    
A Tryptamine 3.91 + .03 113 2.5 + 0.5 
AB Tryptamine 4.22 + .09  61 1.8 + 0.5 
    
    
 

 5-FT 
 

mCPBG Tryptamine 

A 0.64 +    0.03 0.74 +    0.07 0.15 +    0.06 
AB 0.45 +    0.04 0.92 +    0.09 0.14 +    0.02 
    

 

 

Figure 2.4  Structures of 5-HT agonists used in this study. 

Table 2.1.   Functional parameters of A and AB receptors  
Data = mean + SEM, n=4-6 
 

Table 2.2.   Relative efficacy of partial agonists of A and AB receptors. 
Data = mean + SEM, n=5-9 
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Application of 5-FT to Xenopus oocytes expressing 5-HT3A  or 5-HT3AB receptors  

also produced concentration-dependent, rapidly activating, inward currents,  with EC50s of   

16  µM and  27  µM and Hill slopes of 2.4 and 1.4 respectively. A maximal concentration 

of 5-FT, however, did not elicit the same maximal currents as those obtained from 5-HT 

application in the same oocyte, indicating a partial agonist; 5-FT had a Rmax (Imax drug / Imax 

5-HT) of 0.64 + 0.03 for 5-HT3A receptors and Rmax of 0.45 + 0.04 for 5-HT3AB receptors 

(table 2.2).  

 

Application of mCPBG produced concentration-dependent, rapidly activating, 

inward currents, with EC50s of 0.5 µM and 1.1 µM and Hill slopes of 2.3 and 1.6 for 5-

HT3A or 5-HT3AB receptors, respectively. This compound had an Rmax of 0.74 + 0.07 for 5-

HT3A receptors and 0.92 + 0.09 for 5-HT3AB receptors.  

 

Application of tryptamine produced concentration-dependent, rapidly activating, 

inward currents, but here there was little desensitization over the time course of the 

application (figure 2.5a). Plotting current amplitude against a series of tryptamine 

concentrations revealed EC50s of 113 µM and 61 µM with Hill slopes of 2.5  and 1.8 for 

5-HT3A and 5-HT3AB receptors respectively. Tryptamine had an Rmax of 0.15 + 0.06 for 5-

HT3A receptors and an Rmax of 0.14 + 0.03 for 5-HT3AB receptors. 
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5-Chlorotryptamine (5-ClT) was a very weak partial agonist of 5-HT3A receptors, 

with an Rmax of 0.0037; the size of the responses precluded data from 5-HT3AB receptors.  

Despite its low Rmax, 5-ClT had an EC50 (8.1 + 0.3 µM, n=11) that was lower than that of 

5-FT (16 µM). 

Figure 2.5. Properties of 5-HT3A and 5-HT3AB receptors expressed in Xenopus oocytes. Typical 
responses to maximal concentrations of 5-HT, mCPBG, 5-FT and tryptamine in (a) 5-HT3A and (b) 5-
HT3AB receptors;  (c) concentration-response curves in 5-HT3A receptors; (d) relative efficacies (Rmax) of 
agonists compared to 5-HT. 

a b 

c 
d 
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  5-Methyltryptamine (5-MeT) was also a very weak partial agonist at 5-HT3A 

receptors with an Rmax of 0.0023. Dose-response curves yielded an EC50 of 60 + 3 µM 

(n=3) indicating it was slightly more potent than tryptamine (EC50 = 113 µM).  

 

  5-Methoxytryptamine (5-MeOT) was unable to activate 5-HT3 receptors at 

concentrations up to 10 mM.  

 

 [3H]granisetron binding studies 

Saturation binding studies revealed no significant difference in the affinity (Kd) of 

[3H]granisetron between 5-HT3A and 5-HT3AB receptors (0.42 + 0.15 and 0.62 + 0.21nM 

respectively, n=3). Competition binding studies using [3H]granisetron revealed 

displacement of specific binding in a concentration dependent manner by all the ligands.  

Kis (Table 2.3) revealed that 5-HT, mCPBG, 5FT and tryptamine did not substantially 

distinguish between 5-HT3A and 5-HT3AB receptors.  

 

[3H]granisetron competition studies using 5-ClT, 5-MeT and 5-MeOT on 

membranes from cells expressing 5-HT3A receptors revealed 5-ClT had a similar Ki to 5-

FT, which was ~10-fold more than the Ki for 5-HT. Values for tryptamine, 5-MeT and 5-

MeOT were ~50-, 100- and 300-fold greater than 5-HT respectively (table 2.3).  

 

Competition radioligand binding studies on the mutant receptors N128A, T181A 

and E236A, revealed no significant changes in Ki values compared to WT receptors for 
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either 5-FT or 5-HT (table 2.4).  E129A and T179A mutant receptors had either no 

specific radioligand binding, or levels were too low to obtain accurate data as previously 

reported (43). 

 

  
 A  (Ki, µM) AB (Ki, µM) 
5-HT 0.11 ± 0.02 0.11± 0.03 
mCPBG 0.010 ± 0.003 0.012 ± 0.004 
5-FT 0.83 ± 0.17 1.8 ± 0.4 
Tryptamine 4.8 ± 0.9  15.5 ± 3.5  
5-Cl-tryptamine 2.7 ± 0.7 3.1 ± 1.1 
5-Me-tryptamine 11.0 ± 0.9 7.7 ± 1.1 
5-MeO-tryptamine 34.9 ± 3.0 21.7 ± 2.1 

 

 5-HT  (Ki, µM) 5-FT (Ki, µM) 
WT 0.11 ± 0.02 0.83 ± 0.17 
N128A 0.21 ± 0.05 2.43 ± 0.47 
T181A 0.19 ± 0.04 1.02 ± 0.34 
E236A 0.20 ± 0.05 1.62 ± 0.41 

Table 2.3. Inhibition constants derived from [3H] granisetron binding to 
5-HT3A and 5-HT3AB receptors. Data = mean + SEM, n=3-6. 

Table 2.4. Mutant inhibition constants derived from [3H] granisetron 
binding to mutant 5-HT3A receptors. Data = mean + SEM, n=3-6. 
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2.2.2 Discussion 
 

 The data described here show that 5-FT is a partial agonist at both 5-HT3A and 5-

HT3AB receptors, with an Rmax close to 0.5 and an EC50 about 10-fold higher than 5-HT.  

Similarly, tryptamine is a partial agonist at both types of receptor, as previously reported 

for various native and recombinant 5-HT3 receptors, including those natively expressed in 

N1E-115 cells, which may possess both 5-HT3A and 5-HT3B receptor subunits (44).  

Tryptamine has a lower potency than both 5-HT and 5-FT (EC50 10−100-fold higher) and 

a lower Rmax, indicating the importance of the group at the 5 position of 5-HT. Further 

studies on other 5-substituted tryptamine derivatives confirm this hypothesis, and also 

reveal the importance of size and electronegativity at this location for efficient channel 

opening.  

 

Subtle differences between 5-HT3A and 5-HT3AB receptors have been reported by a 

number of authors, and were also observed in the current study. Compared to the 5-HT3A 

receptor, responses from 5-HT3AB receptors are smaller and desensitize more rapidly; 

EC50 and Kd values differ by ~2-fold and there is an ~2-fold decrease in the Hill slope of 

the dose-response curves. There is also a difference in the efficacy of mCPBG, which acts 

as a partial agonist at 5-HT3A receptors, but a full agonist at 5-HT3AB receptors. This 

indicates gating characteristics of the two receptors are different, and indeed it has been 

established that the channel conductance is greatly increased in 5-HT3AB receptors (34). 

 

Previous functional studies have revealed only small differences in the affinities 

(EC50 and IC50s) of A and AB receptors for a range of 5-HT3 selective ligands (36), and 



 
30  

we observed a similar absence of selectivity for 5-HT, mCPBG, 5-FT and tryptamine in 

this study. These results are somewhat surprising, given that a recent study has suggested 

that in the heterologously expressed 5-HT3AB receptors the subunits are in the order 

BABBA (33), and, as agonist binding sites in Cys-loop receptors are constituted from 

two adjacent subunits, these data imply that binding interfaces would either be AB (most 

likely), BA, or BB (Figure 2.6a). Based on the sequence alignment (figure 2.6b), one 

would expect significant structural differences due to the different residues that would 

contribute to AA (required for the homopentameric 5-HT3A receptor) compared to 

AB/BA or BB binding sites. At present, we cannot explain why there are not larger 

changes in pharmacological characteristics of the AB receptor. 
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Figure 2.6. Subunit arrangement and sequence 

alignment for 5-HT3AB receptors. (a) Subunit 

arrangement of 5-HT3AB receptors with agonist 

shown in the presumed binding locations. (b) 

Alignment of 5-HT3A and 5-HT3B subunit 

sequences. Residues that have similar chemical 

properties are shown in grey. The binding loops that 

constitute the binding site are underlined. 

 
 

a 

b 
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The new data reveal some interesting features of the binding pocket.    

Tryptamine is ~100-fold less potent and much less efficacious than 5-HT (Rmax = ~0.15), 

establishing the importance of the hydroxyl group. However 5-FT can significantly 

compensate for the lack of a hydroxyl; it is only 10-fold less potent than 5-HT and Rmax = 

~0.5. In our model of the binding pocket (8), the hydroxyl of 5-HT is located in a 

hydrophilic pocket constituted of Asn128, Glu129, Thr179, Thr181 and Glu236, and it 

has the potential to hydrogen bond with at least one of these residues (figure 2.7). 

Mutation of Asn128, Thr181 and Glu236 to Ala results in no significant changes to the 5-

HT Ki, suggesting that Glu129 and Thr179 are the most likely residues to contribute to 

hydrogen bonds. However as these mutant receptors express poorly we could not prove 

this hypothesis. 5-FT can be located in a similar location to 5-HT, but we believe it is 

unlikely that F also forms hydrogen bonds here. Fluorine is the most electronegative 

element, and as such it is reluctant to donate a lone pair of electrons to a hydrogen bond 

donor. As a result, organic fluorine (fluorine bonded to a carbon) hardly ever accepts a 

hydrogen bond (45). Even without a hydrogen bond, however, it appears that an 

electronegative atom is more favorable than no substituent at all at this location.   
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To further explore this region of the binding site, we examined 5-ClT, 5-MeT and 

5-MeOT in 5-HT3A receptors. 5-ClT was of similar potency to 5-FT in the functional 

assays (EC50= 8 µM) but was much less effective in opening the channel (Rmax = 0.0037). 

5-ClT and 5-FT bind to the receptor with similar affinities (Kis are not significantly 

different), demonstrating there is no relationship between Ki or EC50 and Rmax. Thus it 

appears that the atom at the 5 position of tryptamine plays a critical role in the 

conformational changes that result in channel opening. Since both 5-FT and 5-ClT 

present a relatively electronegative atom at this position, we propose that the increased 

steric size of Cl versus F contributes to decreased efficacy of 5-ClT. Sterics also 

rationalize the inefficacy of 5-MeOT, which has an electronegative element in the 5 

position but is apparently too large. The data from 5-MeT also support the hypothesis that 

Figure 2.7.  5-HT docked into a homology of the 5-HT3 receptor (Reeves et al. 2002).  (a) Two 

subunits of the 5-HT3 receptor showing the location of the binding pocket (boxed) at their interface; 

(b) Enlarged image of the binding site showing the proximity of the hydroxyl group to the hydrophilic 

residues Asn128, Glu129 Thr179, Thr181 and Glu236. 

 

a b 
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size and polarity are important; Me is a similar size to Cl, but is nonpolar, and 5-MeT is 

less effective at opening the channel. 

 

The data also show that for most agonists there is a direct relationship between 

EC50 and Ki, with EC50s 13−50-fold higher than Ki. This is expected, as Ki values are 

considered to represent binding to a high affinity desensitized state. However, for 5-ClT 

and 5-MeT, which have very low efficacy, EC50 is less than 5-fold higher than Ki. This 

suggests that if agonist binding does not result in significant channel opening (Rmax less 

than 0.01), then there may be no significant entry of receptors into a high-affinity state.  

 

Partial agonists are increasingly being used to distinguish between binding and 

gating events at Cys-loop receptors, and 5-FT, with an Rmax of ~0.5 will be a useful 

addition to the more usually used mCBPG (Rmax = ~0.8) and 2-Methyl-5-HT (Rmax =  

~0.2). Partial agonists are also potentially useful as therapeutic agents. The most well-

established role of 5-HT3 receptors is in regulating gastrointestinal motility and the 

vomiting reflex, although they may play a role in many other neuronal functions. 

Currently, 5-HT3 receptor antagonists are used clinically as antiemetics, and to treat 

irritable bowel syndrome (38-40). However, there is some evidence that these compounds 

also cause side effects in many patients, by inhibiting normal lower bowel function (46). 

Thus there has been an increased interest in 5-HT3 receptor partial agonists, which might 

control gastroenteric motility without completely blocking 5-HT3-sensitized nerve 

function (47,48).  5-HT3 receptor agonists also have a potential therapeutic role through 

their modulation of acetylcholine release in vivo (49), making these compounds of 
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interest for the treatment of neurodegenerative and neuropsychiatric disorders in which 

cholinergic neurons are affected.  Full 5-HT3 receptor agonists, however, cause nausea 

and vomiting; thus partial agonists are potentially more useful for therapeutic 

applications in this area. Recently developed compounds, e. g., those described by 

Yoshida et al. (2004) are probably potentially more useful as therapeutics than 5-FT, but 

a comparison of their actions compared to 5-FT may clarify details of their mode(s) of 

action.  

 

In conclusion we have shown that 5-FT is a partial agonist at both homomeric 5-

HT3A and heteromultimeric 5-HT3AB receptors. The data have also revealed that the atom 

in the 5’ location of 5-HT plays an important role both in receptor binding and in 

subsequent channel gating.  
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2.3  1-oxo-5-hydroxytryptamine and Fluorinated 5-HT Analogues 

2.3.1  1-OT Results and Discussion  

Reproduced in part from (50). 

 

While it is quite clear that the 5’ hydroxyl plays an important role in agonist 

binding an activation, very little is known about the role of the protic indole nitrogen of 

5-HT. As part of our efforts to map out the binding of 5-HT we became curious as to 

whether the protic indole nitrogen of 5-HT forms a hydrogen bond with the receptor as 

part of its binding interaction. A valuable probe of this putative interaction would be the 

benzofuran analog of 5-HT, in which an aprotic oxygen replaces the indole nitrogen. 

 

This molecule, which we name 1-OT (1-oxo-5-hydroxytryptamine) (figure 2.7), 

has been synthesized once before (51), but it has never been explicitly tested on any of 

the known 5-HT receptors (52). In considering this molecule for our own studies, we felt 

that the published synthesis (10 steps and <3% yield) was cumbersome, and we chose to 

pursue a novel synthetic strategy that could provide more ready access to 1-OT. A 

successful synthetic strategy was developed and carried out by Sean Kedrowski, and the 

details of this synthesis have been published (50). 

 

The pharmacology of 1-OT on the 5-HT3 receptor proved very interesting, as its 

EC50 value is nearly idential to that of the native agonist, (1.7 versus 1.2 µM, 

respectively; figures 2.8 and 2.9). Furthermore, 1-OT is essentially a full agonist, with an 
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efficacy that is 94 ± 4% of 5-HT. Surprisingly, the indole NH is not required for effective 

receptor activation. This result was unexpected because there is the potential for this 

group to be used to make a specific interaction that could distinguish 5-HT from other 

similar molecules. As was made clear in section 2.2, removing hydrogen bonding 

function at the 5’ position has large effects on agonist EC50 and relative efficacy.  The 

varient with the smallest effect (5-FT) still had an EC50 that shifted more than 10-fold and 

an efficacy 30% that of 5-HT.  

 

 

Figure 2.8.  Dose-response 
curves for 5-HT and 1-OT 
with sample current traces 
inset. 

Figure 2.9.  Plots 
illustrating relatively 
small EC50 shift of 
1-OT. 
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In conclusion, we have established an efficient new route to 1-oxo-5-

hydroxytryptamine, the benzofuran analog of serotonin. We have further shown that this 

molecule is a competent agonist of the 5-HT3 receptor, suggesting that the indole nitrogen 

of 5-HT does not donate a hydrogen bond to the receptor. The increased availability of 1-

OT afforded by the synthetic route developed in this study will enable similar 

investigations to elucidate agonist binding in the other six classes of 5-HT receptors. In 

addition, this route should be easily modifiable to synthesize more substituted 1-OT 

derivatives for further elucidation of 5-HT receptor binding sites. 

 

2.3.2 Fluorinated 5-HT Analogues  

As part of our study exploring the mechanism of 5-HT activation of the 5-HT3 R, 

we examined two 5-HT analogues with fluorine replacing hydrogen at either the 6 or the 

4 and 6 positions (figure 2.10). Because of the electron-withdrawing effect of fluorine, 

the hydroxyl group on these compounds is more electron deficient and has a lower pKa.  

This should make the group a better hydrogen bond donor, and might be expected to 

lower the EC50 value. Furthermore, characterization of a series of 5-HT derivatives with 

zero, one, and two fluorines might reveal a stepwise shift in EC50 that could be used to 

identify a specific interaction with the 5-HT hydroxyl.  

5-HT
pKa 10.7

6-Fluoro-serotonin
pKa 9.1

4,6-Fluoro-serotonin
pKa 8.0

NF

O

H

NH3
H

N

F

F

O

H

NH3

H

N
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NH3

 

Figure 2.10.  
Structures of the 5-HT 
and two fluorinated 
analogues used in our 
studies. 
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The dose-response relationships of both fluorinated 5-HT compounds were 

measured using wild-type 5-HT3. The EC50 of 6-fluoro-serotonin (1.1 ± 0.1µM) is not 

significantly different from that of serotonin, while the EC50 of 4,6-fluoro-5-HT (2.1 ± 0.1 

µM) is two-fold larger than serotonin. This is a shift in the opposite direction from what 

is predicted based upon changes to the hydrogen bond donating ability of the hydroxyl 

group. Because fluorine is almost isosteric with hydrogen, it is most likely that this effect 

is a result of differences in electrostatics.   

 

The orientation and binding mode of 5-HT offer at least one explanation for the 

rightward shift in EC50. In the docked model, the “4” position is on the side of serotonin 

involved in the majority of interactions, while the “6” position is left free and exposed to 

solvent (figure 2.11).  If this model is correct, the higher EC50 observed in the 4,6-fluoro-

serotonin (4,6-F-5HT) could be due to a repulsive interaction between the fluorine at the 

‘4’ position and one of the residues on this face of the binding pocket. Experiments with 

4-fluoro-serotonin would be an informative test of this hypothesis.   
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4’

6’

5-HT

 

 

While the differences in EC50 between different fluorinated analogues were subtle, 

the measured difference in receptor kinetics were much more pronounced. The 

desensitization resulting from the application of 4,6-F-5HT was 10-fold faster than that 

from the application of either 5-HT or 6-F-5HT (figure 2.12). (The equation used to 

determine  τ is, Ae^(-t/τ) + C). These results indicate that the fluorine at the 4’ position 

interacts with the receptor directly and are consistent with the unexpected rightward shift 

in EC50 for 4,6-F-5HT. They also indicate that the residue participating in this interaction 

could be linked closely to the mechanism of receptor desensitization. Our results are 

particularly interesting because such effects on desensitization are rarely, if ever, induced 

by agonists (53).  

Figure 2.11.   The homology model 
displayed in ‘spacefill’ illustrates one 
possible explanation for the unexpected 
higher EC50 observed from 4,6 fluroro-5-
HT compared to 6-fluroro-5-HT. The 4’ 
position appears much more likely to 
interact with the residues in the binding 
site (and thus to affect EC50). 
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Figure 2.12.   Differences in activation and desensitization kinetics induced by serotonin and several 
analogues.  This data suggest that the presence of fluorine at the 4’ position leads to changes in gating, 
either directly or indirectly. 
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2.4  A Hydrogen Bond in Loop A Is Critical for Binding and 
Function of the 5-HT3 Receptor. 

 
Reproduced in part from (54). 
 

2.4.1  Loop A Introduction 

Studies in nACh, GABAA, and 5-HT3 receptors indicate that loop A makes an 

important contribution to receptor function (43,55-58).  The loop A residues Asn128, 

Glu129, and Phe130 are conserved in all known 5-HT3A and 5-HT3B receptor subunits 

(Figure 2.13), and it is therefore likely that these residues are important for receptor 

binding and/or gating. The structure of AChBP indicates that only a single loop A residue 

contributes to the binding pocket, but determining the precise 5-HT3 receptor residue in 

the equivalent location is not straightforward, as loop A exemplifies a region where the 

alignment of subunit residues with AChBP is difficult. A model of the 5-HT3 receptor 

binding pocket predicts that the side chain of Asn128 faces into the binding pocket and 

interacts with 5-HT via a hydrogen bond (15), but a later study indicates that Asn128 

does not participate in ligand binding (43).  This study suggested a new orientation with 

Glu129 replacing Asn128 in the binding pocket, but did not provide any experimental 

evidence from Glu129 mutant receptors to support this hypothesis. Phe130 has also been 

previously proposed as a ligand binding residue, as its substitution with Asn created 

receptors that respond to ACh (58); however a more recent study (43) indicates that this 

is unlikely as substitutions at this site create receptors that are more sensitive both to 5-

HT and non-specific agonists such as ACh, which will activate 5-HT3 receptors at high 

concentrations (>1 mM). In this study we have therefore concentrated on Asn128 and 

Glu129, substituting them with a range of natural and unnatural amino acids (figure 2.14) 
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to probe potential interactions with 5-HT. The data suggest that Glu129 is directly 

involved in ligand binding by participating in a critical hydrogen bond with the hydroxyl 

group of 5-HT, thus providing the first direct evidence that the revised model may be 

correct.  
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Figure 2.13. (a) Model of two adjacent subunits of the 5-HT3 receptor based on Reeves et. al., 2003 
showing the positions of loop A (in yellow) and residues Asn128 and Glu129 (space fill). (b) Alignment 
of the binding loop A region from various 5-HT3A and 5-HT3B receptor subunits, the Torpedo nACh 
receptor α1 subunit and AChBP. Binding loop A was originally defined as equivalent to W121-N128 
(Joshi et. al., 2006), but recent data suggest it may be longer (present study and Shapira et. al., 2003). 
Residues with similar chemical properties are in grey. The Asn, Glu and Phe residues conserved in all 5-
HT3 receptor subunits are boxed.  Numbering is from the mouse 5-HT3A receptor subunit. 

a 

b 

  ACh α1 
  AChBP 
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2.4.2    Results 

Wild-type (WT) 5-HT3A  receptors displayed large, rapidly activating and 

desensitizing currents (figure 2.15) with an EC50 of 1.2 µM for 5-HT (pEC50 = 5.93 ± 

0.01, n=10). Only homomeric 5-HT3A  receptors were examined in this study. The partial 

agonists m-chlorophenylbiguanide (mCPBG), 5-FT and tryptamine had EC50s of 0.47, 18 

and 120 µM respectively (tables 2.4-2.5, figure 2.16). mCPBG was almost as efficacious 

as 5-HT at these receptors, with an Rmax of 0.81 ± 0.02 (n= 14). The Rmax for 5-FT was 

0.44 ± 0.02 (n=19).  However, for tryptamine the Rmax was only 0.09 ± 0.01 (n=8); these 

small currents precluded systematic data recording in a number of experiments.     

Figure 2.14. (a) Structures of the side chains of the natural and unnatural amino acids used in these 
studies.  Akp = 2-amino-4-ketopentanoic acid; Nha = nitrohomoalanine. 
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Figure 2.15. Examples of current traces. (a) Typical responses to maximal concentrations of 5-HT, 
mCPBG, 5-FT and tryptamine from the same oocyte expressing WT 5-HT3 receptors; (b) typical 5-HT 
responses of oocytes expressing Asn128 mutant receptors; [5-HT] = 22 µM, except N128Q (200 µM) and 
N128-Nha (48 µM); (c) typical 5-HT and mCPBG responses from oocytes expressing Glu129 mutant 
receptors.  
 

b a 
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Receptor  5-HT pEC50 
5-HT EC50, 

µM nH mCPBG pEC50 
mCPBG 

EC50, µM nH 

WT 5.93 ± 0.01 1.2 2.54 ± 0.15 6.33 ± 0.02 0.47 2.03 ± 0.23 
N128A 5.44 ± 0.03 3.6 1.34 ± 0.13* 5.95 ± 0.02 1.1 1.33 ± 0.08 
N128D 5.51 ± 0.01 3.1 1.63 ± 0.08* 6.56 ± 0.03 0.27 1.54 ± 0.15 
N128E 5.68 ± 0.04 2.1 1.48 ± 0.18* 6.56    ± 0.03 0.28 1.81 ± .019 
N128Q 4.64 ± 0.03* 23 2.11 ± 0.29 5.52 ± 0.18* 3.0  2.41 ± 0.16 
N128R SR SR SR 5.14 ± 0.02* 7.3 1.93 ± 0.16 
N128K 4.47 ± 0.03* 34 2.13 ± 0.38 5.41 ± 0.03* 3.9 1.43 ± 0.16 
N128V 7.04 ± 0.02* 0.091 3.18 ± 0.60 7.13 ± 0.02* 0.074 5.07 ± 0.85* 

N128-Akp 5.33 ± 0.01* 4.6 1.49 ± 0.06* ND ND ND 
N128-Nha SR SR SR 5.55 ± 0.02* 2.8 2.18 ± 0.23 

E129A NR NR NR NR NR NR 
E129D 5.73 ± 0.03 1.9 1.81 ± 0.16* 6.60 ± 0.10 0.25 1.19 ± 0.31 
E129G NR NR NR NR NR NR 
E129H 4.85 ± 0.09* 14 1.07 ± 0.24* 6.43 ± 0.04 0.37 1.63 ± 0.20 
E129K NR NR NR NR NR NR 
E129N 4.25 ± 0.02* 56 1.17 ± 0.07* 6.21 ± 0.05 0.62 1.25 ± 0.19 
E129Q 3.93 ± 0.01* 120 1.55 ± 0.07* NR NR NR 

E129-Nha 5.45 ± 0.04 3.5 1.18 ± 0.12* 6.25 ± 0.07 0.56 1.91 ± 0.60 
 

 
 

Receptor  5-FT  
pEC50  

EC50,  
µM 

nH Tryptamine  
pEC50  

EC50,  
µM nH 

WT 4.75 ± 0.02 18 2.71 ± 0.24 3.93 ± 0.01 120 2.86 ± 0.14 
N128A 5.00 ± 0.06 10 2.34 ± 0.75 4.04 ± 0.03 91 2.90 ± 0.68 
N128D 4.75 ± 0.02 18 2.61 ± 0.28 SR - - 
N128E 4.86 ± 0.02 14 1.97 ± 0.18 4.23 ± 0.03 59 2.90 ± 0.53 
N128Q 4.03 ± 0.05* 94 2.38 ± 0.58 3.62 ± 0.02 240 3.10 ± 0.39 
E129D 5.08 ± 0.04 8.3 1.95 ± 0.30 SR - - 
E129N 4.93 ± 0.04 12 1.25 ± 0.13* SR - - 

 

 

Table 2.6. 5-FT and tryptamine EC50 values and Hill coefficients for N128 and E129 mutant receptors. 
Data = Mean + SEM, n = 3-13. SR = small (<100 nA) responses. * Significant difference p < 0.05, and for 
EC50 >3-fold different to WT. 
 
 

Table 2.5. 5-HT and mCPBG EC50 values and Hill coefficients for N128 and E129 mutant receptors 
Data = Mean + SEM, n = 3-16.  NR = no response; SR = small (<100 nA) responses, ND = not 
determined; * Significant difference p < 0.05 and for pEC50 > 3-fold different to WT.  
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Figure 2.16 a-d. Concentration-response data for wild-type (WT) and mutant 5-HT3 
receptors.  Data = mean + SEM. Parameters of the fitted curves are shown in Tables 2.5 
and 2.6. 
 
 

a 

b 

c 

d 
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Asn128 mutants 

Replacement of Asn128 with Asp, Glu, Ala and the unnatural amino acid Akp 

resulted in no or small changes in 5-HT, mCPBG and 5-FT EC50 values, although Hill 

coefficients for 5-HT were reduced (tables 2.4-2.5, figure 2.16). In contrast, replacement 

with Gln or Lys resulted in significant increases in EC50 values for 5-HT, mCPBG and 5-

FT, while replacement with Val significantly decreased the EC50. There were no changes 

in Hill coefficients for these 3 mutants (tables 2.4−2.5). For the N128R mutant the 

efficacy of 5-HT appeared significantly reduced (Figure 2.17a), but responses to 5-HT 

were too small to allow a determination of EC50. Most of the mutations (all except Ala 

and Val) also resulted in changes to mCPBG Rmax values; these were increased 2-19-fold 

compared to WT (figure 2.17). There were also changes in the current profile for some 

mutants: N128V and N128Q substitution resulted in an apparent slower activation rate 

Figure 2.17. Relative efficacy (Rmax) of mCBPG at WT and (a) N128 and (b) E129 
mutant receptors. Data = mean + SEM, n > 3. Note the substantial change in the range 
of efficacies in Part B versus Part A. * = significantly different to WT, p < 0.05. 
 

a b 
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and no obvious desensitization in the continued presence of 5-HT (figure 2.15b).  A 

detailed kinetic analysis of these changes would require single channel analyses, which 

are not possible with these receptors ( <1pS conductance), but the clear changes in the 

macroscopic data between WT and mutant receptors are consistent with changes to 

receptor activation and desensitization.  

 

Glu129 mutants 

          E129D, E129N and E129Q showed robust responses to 5-HT (figure 2.15c). 

E129H responses were small and only measurable if recorded >72 h post-injection.  

E129G and E129K mutants failed to respond to high concentrations (100 µM) of either 5-

HT or mCPBG. The unnatural amino acid Nha, which is isoelectronic and isosteric to 

Glu, but which lacks charge, had an EC50 for 5-HT similar to WT, as did E129D. Overall 

EC50 values for 5-HT were in the rank order WT < E129D < Nha < E129H < E129N < 

E129Q (figure 2.16b).  Hill coefficients of all the functional mutants were reduced 

compared to WT (tables 2.4-2.5).  Interestingly, E129Q mutant receptors failed to be 

activated by mCPBG; instead mCPBG acted as an antagonist and was able to block 5-

HT-induced currents, as previously reported (55).  In our study, mCPBG blocked 100 µM 

5-HT-induced currents with an IC50 of 0.63 µM (pIC50 = 6.20 ± 0.04 M, n=5; figure 2.18). 

Furthermore, 5-FT, another partial agonist of 5-HT3 receptors (37) also became an 

antagonist, blocking 100 µM 5-HT-induced currents with an IC50 of 13 µM (pIC50 = 5.26 

± 0.06, n=3; figure 2.18).  Like mCPBG, this compound failed to activate E129Q mutant 

receptors on its own. 
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mCPBG

5-FT

 

We also tested whether granisetron could inhibit 5-HT-induced responses from 

these mutant receptors. At E129D receptors, 10 nM granisetron was able to block 80 + 

5% (n=3) of the response to an EC50 concentration of 5-HT, and 96 + 3% at 100 nM, and 

recovery from granisetron block was complete in < 3 min, compared with > 15 min at 

WT receptors.  Granisetron was less potent at E129N receptors, where 100 nM 

granisetron did not block the response to an EC50 concentration of 5-HT. 

 

 

Binding data 

Both Asn128 and Glu129 mutant receptors have been previously examined 

Figure 2.18. mCPBG and 5-FT are 
antagonists at E129Q receptors. 
Concentration response data 
showing inhibition of the 100 µM 5-
HT-induced response. Each agonist 
was co-applied with 5-HT. 
Responses are normalized to the 
response to 5-HT alone. Data = 
mean + SEM, n = 3-6.  
 

Figure 2.19. Antagonist 
binding to 5-HT3 receptors 
expressed in oocytes. 
Specific binding of 0.5 nM 
[3H]granisetron to oocyte 
membrane samples. Data = 
mean + SEM, n = 4. 
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expressed in HEK cells (43). For Asn128 mutant receptors there was no significant 

differences in [3H]granisetron binding affinity for any substitution studied, while no 

specific binding was observed for any Glu129 mutant receptor, at concentrations up to 20 

nM. In the current study we examined single point [3H]granisetron binding to solubilized 

oocyte preparations.  No specific radioligand binding was observed at 0.5 nM 

[3H]granisetron for E129A, E129G and E129K mutant receptors, while levels of binding 

in Asn128 receptors were similar to WT receptors (figure 2.19). These data suggest that 

Glu129 substitutions ablate high affinity antagonist binding, but at least some 

substitutions permit agonist binding, as large (> 5 µA) responses to 5-HT and mCPBG 

were observed for E129D and E129N receptors. 

 

2.4.3  Discussion 

The data described here support a modified 5-HT3 receptor homology model (43), 

in which Glu129, rather than Asn128, faces into the binding pocket.  The data indicate a 

critical hydrogen bond between Glu129 and the hydroxyl of 5-HT, which places this 

residue firmly in the binding pocket.  Asn128 may play a role in receptor gating, but the 

data show that it is not directly involved in binding ligands, as previously proposed (15). 

 

Loop A was identified as a region that contributes to ligand binding in nACh 

receptors many years ago; affinity labeling with [3H]ACh mustard indicated the positive 

charge of ACh was positioned near the loop A residue Tyr93 (59). There was also 

evidence for a contribution from neighboring Asn94 (60), and a detailed functional 

analysis of Asp97 has led to the proposal that loop A could be compared to a latch, which 
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holds the channel closed in the absence of agonists, and reduces the probability of 

channel opening (57). More recent studies, in particular the high resolution structure 

determination of AChBP, confirm the importance of the loop A Tyr at position 89, 

(equivalent to Tyr93 in nAChR) which is in close contact with bound ligands (61). The 

aligned Tyr is also important in GABAA receptors; Tyr97 in the β2 subunit has recently 

been shown to make a cation-π interaction with GABA (62). It was therefore not 

surprising that the aligning residue in the 5-HT3 receptor, Asn128, was considered to be 

important. Homology modeling identified it as the only loop A residue in the binding 

pocket, and predicted a hydrogen bond between Asn128 and 5-HT (15). However, 

experimental studies have cast some doubt on this conclusion, as changing Asn128 did 

not affect [3H]granisetron binding affinity (43).  

 

Our new data, incorporating both natural and unnatural amino acids at this 

position, provide a detailed analysis of the role of Asn128, and strongly suggest that 

Asn128 has its most significant role in the conformational change that results in receptor 

gating. All Asn128 mutant receptors showed changes in their functional characteristics 

(figure 2.15b), but these were particularly evident in N128Q receptors. Gln has similar 

chemical properties to Asn, yet this mutation markedly slows apparent current activation, 

increases the relative efficacy (Rmax) of the partial agonist mCPBG, and eliminates 

receptor desensitization (figures 2.15 and 2.17).  Changes in current activation and Rmax 

strongly suggest effects on receptor opening, and, while desensitization is not well 

understood, it is known to be influenced by channel opening and closing rates, and the 

rates of conformational changes to and from the desensitized state. These observations 
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therefore all suggest that Asn128 has a role in facilitating transitions between 

conformational states rather than direct effects on ligand binding. In the new model this 

residue is close to loop B, especially Thr179, and both these residue contribute to a 

complex network of hydrogen bonds that could potentially be involved in the 

conformational change that results in receptor gating.  

 

Receptors with substitutions at Glu129 have, in the past, been insufficiently 

characterized due to problems with low expression (43,55).  In this study, these problems 

have been largely overcome by the use of Xenopus oocytes as expression hosts. Large 

responses to 5-HT and the partial agonists mCPBG and 5-FT were measured with 

mutants of Glu129 that did not previously display measurable currents when expressed in 

HEK293 cells.  Interestingly, only the Glu129 mutant receptors where Glu was replaced 

with residues that have the ability to accept a hydrogen bond responded robustly to 5-HT 

application, suggesting that this property is critical for 5-HT binding. Previous ligand 

docking data has indicated that the hydroxyl of 5-HT is located in this region of the 

binding pocket, and in the new model this hydroxyl would donate a hydrogen bond to 

Glu129; more specifically one of the side chain oxygens (Os) of Glu129 would interact 

with the hydrogen of the 5-HT 5-hydroxyl (figure 2.20).  Note that an ionic interaction 

involving Glu129 is not supported by our data with the unnatural amino acid Nha. This 

amino acid is structurally similar to Glu: the nitro group is planar, like the carboxylate, 

and the two N-O bonds are of equal length, as are the C-O bonds in carboxylate. Two 

resonance structures are possible (as with carboxylate) but in a nitro group the nitrogen 

(N) carries a positive charge and the Os share a negative charge—thus overall the group 
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is neutral, in contrast to the negative charge on a carboxylate; a nitro group could 

therefore not contribute to an ionic bond. As there was no significant increase in EC50 

when Nha was substituted for Glu, it shows that an ionic bond is not formed here. Nha 

could, however, still form a hydrogen bond as each O in the nitro group has two lone 

pairs of electrons (as does the carboxylate), which can serve as hydrogen bond acceptors.  

                           

 

Interestingly, mutations at Glu129 have no effect on the EC50s of the partial 

agonists mCPBG or 5-FT (figure 2.21).  This might be expected with mCBPG, which has 

a distinct structure to 5-HT and is unlikely to interact with identical binding site residues, 

but the only difference between 5-HT and 5-FT is the group at the 5 position.  The OH of 

Figure 2.20. The new model of 5-HT3 receptor binding site, showing 5-HT hydrogen bonded to 
Glu129.  This model is that described by Sullivan et al. 2006, where a single amino acid gap was 
inserted into the 5-HT3A receptor subunit sequence (accession number: Q6J1J7) following V131 
(WVPDILINEFV-DVG). The new model of the complete mouse 5-HT3A receptor extracellular 
domain was then built using L. stagnalis AChBP (accession number P58154, PDB ID 1I9B) as a 
template. The locations of Asn128, Glu129 and Trp183 relative to 5-HT are shown.  The proposed H-
bond between Glu129 and the hydroxyl group of 5-HT is shown in green.  
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5-HT is a good hydrogen bond donor and a moderately good hydrogen bond acceptor; 

however the F of 5-FT cannot donate a hydrogen bond and is a very poor hydrogen bond 

acceptor.  Thus if 5-FT binding in the same orientation as 5-HT, which seems likely, it is 

probable that there is no hydrogen bond here with Glu129, a hypothesis that is supported 

by the data.  The lack of this bond may be the reason why 5-FT only acts as a partial 

agonist.  

 

If Glu129 interacts directly with 5-HT, then it must face into the binding site and 

could interact with antagonists. Our, and previous, data support this proposal: there is no 

specific [3H]granisetron binding to Glu129 mutant receptors in either HEK cells or 

oocyte membranes in the usual subnanomolar range (13). Interestingly, though, 

granisetron does appears to be able to bind to E129D mutant receptors at higher 

concentrations, as 10 nM granisetron inhibited ~80% of 5-HT-induced currents ( WT IC50 

= 0.2 nM; (63)). Combined with the fact that E129D mutant receptors recover more 

quickly than WT receptors from granisetron inhibition, these data suggest that E129D 

mutant receptors have a higher dissociation rate constant for granisetron. Such an 

explanation is consistent with previous equilibrium radioligand binding studies, where an  

Figure 2.21. Comparison 
between agonists on the 
effect of mutation at Glu 
129.  mCPBG and 5-FT, 
which lack hydroxyl groups 

show little change in EC50.    
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~100-fold decrease in the granisetron Kd was reported (9). 

 

Our data also reveal small but significant changes in relative efficacies for 

mCPBG at functional Glu129 mutant receptors, indicating there may also be a role for 

this residue in the conformational changes leading to receptor gating.  These changes are 

opposite to those we observed with Asn128. We do not yet understand what this implies, 

although it may be related to the different roles of the 2 residues and/or distinct 

mechanisms of action or critical binding residues used by different agonists. In support of 

this latter hypothesis, a similar study on a series of loop C residues, which are also 

proposed to play a role in binding and/or gating, revealed increases in mCPBG efficacy 

but decreases in the efficacy of another partial agonist, 2-methyl-5-HT, in the same 

mutant receptors (64).  In our study, the conversion of mCPBG from a partial agonist to 

an antagonist at E129Q mutant receptors could reflect a change in affinity of mCPBG for 

certain conformational states of the receptor only (e.g., a reduction in affinity of the open 

state but not the closed state).  This would correspond to the ‘K’ phenotype of allosteric 

receptor mutants described by Galzi et al. (65). 

 

The importance of Glu129 suggests it may be equivalent to Tyr93 in the nACh 

receptor, which has also been proposed to play a role in both binding and function. 

Mutating Tyr93 results in a rightward shift of the dose-response curve (66), mainly 

because of slower ligand-association and channel-opening rate constants (67). Similarly, 

the equivalent residue in the GABAA receptor, β2Tyr97, which directly contacts GABA 

through a cation-π interaction (62), may also be involved in gating; mutation to Cys 
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causes spontaneous activation (56). Aligning Glu129 and Tyr93 requires that a space be 

inserted in the conserved WxPDxxxN domain in loop A of the nACh receptor. This 

sequence is critical for locating the B loop in the nACh receptor through interactions 

involving Asp89 (68). More recent data, however, show that in non-ACh receptors the 

xxxN portion of this region may not be critical; in the GABAA receptor,  for example, 

two amino acid ‘spaces’ must be inserted in the ‘xxx’ tract to allow β2Tyr97 to contribute 

to the binding pocket. We therefore propose that Glu129 is equivalent to Tyr93, and faces 

into the binding pocket, where it forms a hydrogen bond with the 5-OH group of 5-HT.  

 



 
59  

2.5 Structure-function Studies on the 5-HT3 Receptor Ligand 
binding Site Reveal Polar Residues Critical for Receptor 

Activation and Identify an Intersubunit Salt Bridge 
 

2.5.1 Polar Residues Introduction 
 

Here, we investigate the function of polar residues in the ligand binding region of 

the 5-HT3 receptor using a recently refined homology model to guide the effort (54). The 

polar residues that are the focus of this study are located in the region adjacent to and just 

outside of the highly conserved aromatic box (figure 2.22b). Previous data have shown 

that many of these residues modulate the binding of 5-HT and the gating of the receptor 

(e.g., Arg92, Glu129, Asp229, Glu236, and Thr181) (43,54,55,69-71). Recently, we 

found that mutations to Glu129 that eliminated its ability to act as a hydrogen bond 

acceptor increased the EC50 of the 5-HT3 receptor by as much as 100-fold for 5-HT but 

not 5-HT analogs that could not act as hydrogen bond donors (54). In this study, we 

expanded our investigation to other polar residues in the 5-HT3 binding site with the goal 

of elucidating the specific roles that these other residues play in agonist binding and 

receptor activation.  
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As in earlier studies, we utilize both conventional and unnatural mutagenesis so as 

to make use of the full range potential changes to amino acid functionality that are 

Figure 2.22. Homology model of the 5-HT3 receptor. (a) The ligand binding 
site is formed by loops (various colors) at the interface of two adjacent 
subunits shown in blue and green.  (b) The ligand binding site showing the 
side chains of residues examined in this study. 

a 

b 
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available. Most unnaturals used in this study introduce subtle changes to amino acid 

structure and facilitate our understanding of the contributions of an amino acid with 

greater precision (figure 2.23c).  Using these tools, we have been able to characterize the 

role of several polar residues in close proximity to the agonist-binding site.  In particular, 

we identify an ionic interaction that likely participates in conformational changes 

associated with receptor gating. We also characterize several other residues that play 

critical roles in receptor activation. Last, we have compared and contrasted the behaviors 

of two structurally distinct agonist classes, serotonin (5-HT) and its related structures, and 

m-chlorophenylbiguanide (mCPBG) (figure 2.23a, b) and identified several residues that 

play critical roles in modulating agonist binding and gating in response to these agonists.  

 

2.5.2 Results 

 Application of 5-HT to Xenopus oocytes expressing wild-type (WT) 5-HT3A 

receptors resulted in rapidly activating inward currents with an EC50 of 1.2 µM and a Hill 

coefficient of 2.5. Only homomeric 5-HT3A  receptors were examined in this study. The 

recently characterized partial agonist 5-FT (5-fluorotryptamine) is an analogue of 5-HT 

in which the OH of the indole ring is replaced with F(37) (figure 2.23b). 5-FT had an 

EC50 of 16 µM with a Hill coefficient of 2.4 for WT 5-HT3. The relative efficacy (ε) of an 

agonist is defined as the ratio of the maximum response of that agonist to that of 5-HT.  

The efficacy (relative to 5-HT) of 5-FT is 0.44. The partial agonists mCPBG and m-

chlorophenylguanide (mCPG) induced kinetically similar responses with EC50s of 0.62 

µΜ and 3.7 µM and Hill coefficients of 2.3 and 1.8, respectively. mCPBG has a relative 
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efficacy close to that of 5-HT in WT receptors (ε = 0.81) while mCPG is somewhat less 

efficacious (ε =  0.55).  

 

                           
5-hydroxytryptamine    5-fluorotryptamine     m-chlorophenylbiguanide     m-chlorophenylguanide 

 
 

             
 

              

Figure 2.23. (a) Structures of agonists used in this study. (b) Electrostatic potential 
surface representations of 5-HT mCPBG illustrating the more diffuse positive charge 
of the biguanide moiety. (c) Side chains of conventional and unnatural mutations. 

b 

a 

c 
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Asp229•••Arg92  

In the homology model (figure 2.22b), the side chain of Asp 229 extends from the 

end of loop C and is in close proximity to Arg 92 on loop D of the adjacent subunit. To 

test for the importance of a potential ionic interaction, a classical charge-reversal 

experiment was performed. Using 5-HT as an agonist, some charge-reversal mutations 

gave nonfunctional receptors, but all mutants gave significant responses to mCPBG. The 

D229R mutation led to a 138-fold increase in EC50 compared to wild type; R92D led to a 

35-fold increase. The EC50 of the double mutant D229R/R92D, however, increased EC50 

only 24-fold. A standard mutant cycle analysis gives a coupling parameter, Ω, of 0.005, 

and a coupling interaction energy, ∆∆Gint = RTln(Ω) of -3.1 kcal/mol.   

 

The charge-conserving substitution D229E produced receptors with WT EC50s 

and no shift in the relative efficacy of the partial agonists mCPBG or 5-FT (figure 2.24d). 

Substitution with nitrohomoalanine (Nha), which is isoelectronic and isosteric with 

glutamate but has a neutral charge, produced an 8-fold increase in EC50. D229A and 

D229N were the most disruptive, increasing the EC50 26-fold and 75-fold respectively, 

while D229Q raised EC50 only 4-fold. Smaller shifts in EC50 were observed for the partial 

agonists mCPBG and 5-FT than were observed for 5-HT, though the trends were the 

same.    

The relative efficacy of mCPBG remained unchanged with the Glu, Gln, and Nha 

mutations but increased for D229A and D229N (to 1.4 and 4.6 respectively). These shifts 

may reflect a decrease in function for 5-HT rather than an increase for mCPBG. The 
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relative efficacy of 5-FT for charge-neutralizing mutations showed an opposite trend 

from that of mCPBG. D229Q and D229Nha showed a reduction in efficacy from 0.44 to 

0.08 and 0.05, respectively. D229N and D229A did not give measureable responses to 

high concentrations (up to 2 mM) 5-FT.  

 

 

 

 

 
 

Figure 2.24. Relative efficacies of mCPBG, calculated by dividing the maximum current induced 
by mCPBG by the maximum current induced by 5-HT applied to the same cell.  N=5−15 

a b c d 
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Receptor 
5-HT EC50 

(µM) nH   
mCPBG EC50 

(µM) nH   Imax mCPBG/5-HT 
 

Imax 5-FT/5-HT 
WT  1.2 ± 0.1 2.5 ± 0.1   0.62 ± 0.02 2.3 ± 0.1   0.81 ± 0.02 0.44 ± 0.04 

                 T179-aThr 7.0 ± 0.3 2.0 ± 0.1   0.43 ± 0.02 3.1 ± 0.2   0.73 ± 0.03 - 
T179S 2.4 ± 0.3 0.98 ± 0.1   0.66 ± 0.04 1.5 ± 0.1   1.1 ± 0.1 - 

T179-Omt 1.1 ± 0.2 1.3 ± 0.2   - -   - - 
T179A 2.1 ± 0.2 1.6 ± 0.2   1.1 ± 0.1 1.4 ± 0.1   0.15 ± 0.04 - 
T179V 19 ± 1 1.7 ± 0.1   NR -   - - 

                 T181-aThr 5.3 ± 0.2 2.5 ± 0.2   8.5 ± 0.3 1.7 ± 0.1   0.34 ± 0.02 0.052 ± 0.006 
T181S 14 ± 2.0 1.4 ± 0.2   1.1 ± 0.1 1.6 ± 0.1   0.01 ± 0.01 < 0.002 

T181-Omt 58 ± 4 2.7 ± 0.1   17 ± 2 1.8 ± 0.2   0.13 ± 0.02 - 
T181A 25 ± 2 1.8 ± 0.1   2.4 ± 0.1 1.8 ± 0.1   0.01 ± 0.01 < 0.002 
T181V 29 ± 3 1.8 ± 0.3   54 ± 5 2.9 ± 0.7   0.18 ± 0.02 0.021 ± 0.004 
T181C 43 ± 5 1.8 ± 0.3   - -   0.21 ± 0.02 - 

                 E236V NR -   14 ± 1 2.2 ± 0.2   -  
E236D 15 ± 1 1.7 ± 0.2   0.48 ± 0.05 1.4 ± 0.2   1.7 ± 0.1 0.09 ± 0.02 

E236-Nha 29 ± 2 1.2 ± 0.1   3.3 ± 0.2 1.7 ± 0.1   0.03 ± 0.01 NR 
E236L 42 ± 3 2.1 ± 0.1   65 ± 5 2.1 ± 0.1   0.04 ± 0.01 NR 
E236Q 100 ± 5 2.4 ± 0.2   61 ± 2 2.4 ± 0.1   0.17 ± 0.02 NR 
E236N NR -   9.6 ± 0.5 2.0 ± 0.2   - - 
E236A NR -   NR -   - - 

                 D229E 1.1 ± 0.1 2.4 ± 0.3   0.22 ± 0.02 2.1 ± 0.2   0.72 ± 0.02 0.69 ± 0.06 
D229Q 4.2 ± 0.2 2.4 ± 0.2   1.8 ± 0.1 1.8 ± 0.2   0.86 ± 0.08 0.079 ± 0.008 

D229-Nha 9.5 ± 0.3 1.8 ± 0.1   2.0 ± 0.1 1.9 ± 0.1   0.81 ± 0.04 0.054 ± 0.007 
D229N 90 ± 4 1.9 ± 0.2   6.3 ± 0.3 1.9 ± 0.2   4.6 ± 0.5 NR 
D229A 31 ± 1 2.0 ± 0.1   2.4 ± 0.1 2.3 ± 0.1   1.4 ± 0.1 NR 
D229R > 1000 -   86 ± 1 3.2 ± 0.2   - - 

                 
R92A 11 ± 1 2.3 ± 0.2   - -   - 0.15 ± 0.05 
R92D > 500 -   22 ± 1 2.9 ± 0.2   - - 
Y153F 27 ± 1 3.0 ± 0.2   1.8 ± 0.1 2.3 ± 0.2   0.42 ± 0.03 0.005 ± 0.002 

Y153-4FPhe 28 ± 2 1.6 ± 0.1   0.52 ± 0.03 1.5 ± 0.1   2.6 ± 0.4 NR 
D229A-R92A 77 ± 2 2.1 ± 0.1   0.84 ± 0.02 2.1 ± 0.1   2.1 ± 0.1 NR 
D229A/Y153F 240 ± 10 2.2 ± 0.2   NR -   34 ± 4 NR 
R92A/Y153F 57 ± 2 2.0 ± 0.1   0.7 ± 0.03 1.9 ± 0.1   1.3 ± 0.1 NR 
R92D/D229R NR -   15 ± 1 1.9 ± 0.1   - NR 

                 W183-4FW 3.6 ± 0.1 2.4 ± 0.2   0.47 ± 0.03 1.5 ± 0.1   0.11 ± 0.01 - 
W183-5FW 5.9 ± 0.4 1.5 ± 0.2   5.8 ± 0.1 2.1 ± 0.1   - - 

W183-5BrW 73 ± 2 1.8 ± 0.1   20 ± 2 2.5 ± 4   0.65 ± 0.03 - 
W183-F2W 19 ± 2 2.5 ± 0.2   2.8 ± 0.1 1.9 ± 0.1   0.39 ± 0.02 - 
W183-F3W 240 ± 10 ND   9.7 ± 0.3 2.4 ± 0.1   0.51 ± 0.09 - 
W183-F4W - -   7.3 ± 0.3 2.1 ± 0.2   - - 

 
 

Table 2.7. 5-HT and mCPBG EC50 values and Hill coefficients for the majority of residues 
examined in this study. Data = mean + SEM, n = 4−18. NR = no response detected.  
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Thr 181 

Substitution of Thr by allo-threonine (aThr), where the stereochemistry at the 

beta-carbon is reversed by exchanging the positions of the OH and CH3 groups (Fig 

2.23c), increased the EC50 ~5-fold for 5-HT (Table 2.6). Mutation to Ser, which removes 

the CH3 group but retains the hydroxyl, caused an 11-fold increase in the EC50.  When 

Thr was substituted with O-methylthreonine (Omt), we observed a 48-fold increase in 

EC50.  Incorporation of Omt results in replacement of the OH group with OCH3, so the 

ability to accept a hydrogen bond is retained while the ability to donate a hydrogen bond 

is eliminated. A study of 5-HT3 expressed in HEK cells showed T181A led to a 6-fold 

increase in 5-HT EC50(71). We observed a more substantial shift of 21-fold for this 

mutation and similar shifts for T181V, and T181C (24-, and 36-fold respectively). 

 

Mutations at Thr181 were more deleterious to activation of the receptor by 

mCPBG, compared to 5-HT.  For this agonist, substitution by aThr and Omt led to 14- 

and 27-fold increases in EC50, respectively. Val, which is sterically similar to Thr, 

increased the EC50 87-fold. When the conventional mutants, T181A and T181S, were 

exposed to mCPBG, almost no activity was observed. However, the IC50 of mCPBG for 

either conventional mutant was similar to its EC50 for the WT receptor, suggesting that 

mCPBG essentially acted as a competitive antagonist. When the mutant receptors are 

expressed at very high levels (on the order of 100 µA of current in response to saturating 

5-HT rather than the usual 2-10 µA), a small amount of receptor activation can be 

observed, and these mCPBG-induced currents have a relative efficacy of <0.01 as 
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compared to 5-HT (figure 2.24b). The EC50 values measured from the mCPBG-induced 

currents were close to that of WT receptors.  

 

Application of 1 mM 5-FT to T181A and T181S mutants yielded a response less 

than 0.2% of that of 5-HT.  Co-application of 5-FT was able to block 5-HT responses 

with an IC50 similar to the 5-FT EC50 indicating that, like mCPBG, 5-FT also acts as a 

competitive antagonist at these two mutant receptors. The more subtle aThr mutation 

diminished the relative efficacies of mCPBG and 5-FT to 0.34 and 0.05, respectively, 

levels that would be considered indicative of functional receptors.  

 

Thr179   

Overall, Thr179 is less sensitive to mutation than Thr181. The T179A, T179S, 

and T179Omt mutants display negligible shifts in EC50 (table 2.6).  However, the Ala and 

Ser mutants displayed significantly slower kinetics of channel activation and an absence 

of desensitization (figure 2.25).  

 

Figure 2.25. Example traces 
illustrating the slow kinetics of 
activation and lack of desensitization 
observed in the T179A and T179S 
mutants. 
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The relative efficacy of mCPBG for the T179A mutant was diminished to 0.15 

(figure 2.24a).  Mutation to aThr produces a 6-fold increase in EC50 for 5-HT but has no 

effect on mCPBG activation. T179V, which essentially replaces the hydroxyl with a 

methyl group, causes a 16-fold increase in 5-HT EC50 and a complete lack of response 

from mCPBG; mCPBG acts as a competitive antagonist for the T179V mutant.  

 

Glu236   

Receptor function was significantly compromised by any substitution at Glu236.  

The conventional mutations E236D and E236Q led to EC50 increases of 12- and 83-fold 

respectively. The substitution of the neutral but isosteric Nha, produced a 24-fold 

increase in EC50.  

 

mCPBG was less sensitive than 5-HT to changes at Glu236.  E236D had a WT 

EC50 for mCPBG while the charge neutralizing E236Nha resulted in only a 5-fold 

increase in EC50.  The relative efficacy of mCPBG for E236D was unaffected while it 

diminished to 0.03 for E236Nha (figure 2.24c). The mutations E236N and E236V 

showed robust responses to mCPBG, but were not activated by high (2 mM) 

concentrations of 5-HT. 

 

Tyr153  

Previous studies have identified Tyr153 as playing a role in activation by 5-HT, 

serving as a hydrogen bond acceptor(72). As observed previously, we saw a 4-fold 
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reduction in the rate of receptor activation and large increases in 5-HT EC50 for the 

mutation Y153-4F-Phe and Y153F (23- and 24-fold respectively).     

 

mCPBG was not as sensitive to mutations at this position. Y153-4F-Phe had a 

WT EC50 and a relative efficacy of 3.0 compared to 5-HT. Y153F led to a 3-fold increase 

in EC50 and a relative efficacy of 0.5. This mutation also gave a 3-fold increase in 5-FT 

EC50 but the relative efficacy was reduced to less than 0.01 that of 5-HT.     

 

In the homology model, this residue is in close proximity to R92 so double mutant 

cycle analysis was performed on the two positions. The R92A mutation caused a 10-fold 

shift in EC50, while the double mutant R92A/Y153F caused a 48-fold shift. For this 

mutant cycle, Ω = 0.23, and the coupling interaction energy, ∆∆Gint = RTln(Ω) = -0.9 

kcal/mol. 

 

Trp183 

Previous studies showed that progressive fluorination of Trp183 led to a 

systematic increase in 5-HT EC50, establishing a cation-π interaction between the 

ammonium of 5-HT and the aromatic side chain of Trp183(10).  Interestingly, we now 

find that fluorination of Trp183 did not produce any clear trend in mCPBG EC50.  

Introduction of fluorine at the 5 position increased the EC50 by 10-fold but fluorination at 

additional positions did not produce a continued increasing trend in EC50.  To better 

understand the cause of the shift from 5-F-Trp, we tested the effect of moving the 
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fluorine to the 4 position.  The EC50 for 4-F-Trp was close to the WT value.  To test the 

effect of steric differences we incorporated Trp with the larger substituent Br at the 5 

position.  This mutation led to a 32-fold increase in EC50. The smaller agonist mCPG is 

less responsive to subtle changes at Trp183, but the difference between substitution at the 

5 position vs. the 4 position persisted.  

 
The efficacies of both mCPBG  and mCPG are influenced by substitutions on the 

indole ring.  There is some indication that, again, the 5 position is more perturbing than 

the 4 position, but the trend is not as clear as with the EC50 values.  

 

Other Residues 

Several other residues in the proximity of the binding site were examined and 

were found to be insensitive to mutation. Minor effects on receptor function were 

observed for the mutants Y73F (5-fold increase), P155V (no shift), K224M (3-fold 

increase), N232A (no shift), and K238M (2-fold increase).     

 

 

2.5.3 Discussion 

In the present work, we have performed mutational analysis at several sites in and 

around the putative ligand binding site of the 5-HT3 receptor, using the agonist 5-HT and 

three partial agonist—5-FT, mCPBG, and mCPG. Our structure-function investigation 

found several polar residues that were very sensitive to subtle perturbations in structure.  
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For several mutations, the effects on receptor function differed between agonists.  In 

particular, it appears that each of these residues plays an important role in receptor 

function, but that their roles often differ between 5-HT and mCPBG. 

 

Salt Bridge between Asp 229 and Arg92   

Previous studies have suggested that Asp229 plays an agonist-specific role in  

5-HT3 activation (64). To elucidate the role of Asp 229 and the differing effects that 

mutations at this position have on particular agonists, we characterized the substitutions 

Glu, Gln, Asn, and Nha.  Mutation of D229 to Glu has only minor effects on the EC50 and 

relative efficacy of the three agonists examined in this study (table 2.6, figure 2.24d).  

This might be expected, as Glu is the residue common at this site in other species. 

Mutations that neutralize charge such as Gln, Asn, or Nha all diminish receptor function 

but have a greater effect on the EC50 of 5-HT than that of mCPBG.  The wild type 

behavior of the Glu mutant allows a more meaningful interpretation of the unnatural 

amino acid Nha, which is isosteric and isoelectronic to Glu (figure 2.23c). The substantial 

increase in EC50 seen with Nha indicates a clear role for charge at this position.    

 

In the homology model, Asp229 is positioned at the most distal portion of loop C 

and is in close proximity (3.2 Å) to Arg92 on the opposite subunit. The possibility of a 

salt bridge has been proposed previously(71). To investigate the possibility of this salt 

bridge between these residues, we performed a charge-reversal experiment. The double 

mutant D229R/R92D did indeed recover function compared to either of the single 
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mutations, and mutant cycle analysis revealed an interaction energy of 3.1 kcal/mol.  This 

value is within the predicted range for an ionic interaction and strongly supports the 

presence of an ion pair as suggested in the homology model.  We propose that this ionic 

interaction plays an important role in the transition between closed and open states in the 

5-HT3R.  The model used in this study is based on the structure of AChBP, which is 

proposed to be similar to the open or desensitized state of the nAChR(73). A recent study 

of the closed state (agonist unbound) of the nAChR found that Loop C points away from 

the center of the receptor(17).  It is thought that subsequent to ligand binding, the C-loop 

closes over the binding pocket, a movement that may initiate receptor gating (figure 

2.26). Because Asp229 is located at the end of loop C, it is expected that this residue 

would move significantly during the transition between closed and open states of the 

receptor. The increase in EC50 observed in Asp229 mutants is consistent with a 

destabilization of an ionic interaction present in the open state of the receptor. While 

mCPBG was somewhat less affected by the charge reversal mutations, the EC50 shifts of 

the E, Q, Nha, N, and R mutations follow the same trends.  Thus, while the salt bridge 

may play a less significant role in the gating pathway of mCPBG, our results suggest that 

the formation of the ion pair is a general mechanism of receptor activation.  
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For each of the charge-reversal mutations, the response to agonists showed 

desensitization rates ~10-fold faster than wild type (figure 2.27). This observation is 

consistent with a destabilization of the open state in the mutant receptors, because this 

change would shift the equilibrium toward the desensitized state.  While this shift could 

also be observed from a stabilization of the desensitized state, the large increases in EC50 

in these mutations argues that a change in the open state is much more likely.  

Figure 2.26. Model of 5-HT and 
 the proposed movement of loop C 
during receptor gating.  
(a) Light blue: Ligand unbound 
structure based on nAChR with loop C 
positioned a greater distance from the 
binding site.  Yellow: Ligand bound 
structure based on AChBP with loop C 
positioned close to binding site and the 
other subunit. Adapted from Jackson 
et. al., 1995. 
   
(b) Movements proposed in (a) 
imposed upon our homology model 
illustrating the potential importance of 
interaction between D229 and R92 
during the gating transition. 

a 

b 
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Thr181 Plays an Essential Role in the Activation by Both 5-HT and mCPBG  

Thr181 is located between Trp183 and β-strand 7 on loop B, which has been 

shown to be critical for 5-HT3  receptor function. The side chain two residues in the C-

terminal direction (Trp 183) plays a critical role in binding 5-HT through a cation-π 

interaction, and it could initiate the structural changes that are transmitted via β-strand 7 

to the transmembrane domain in response to agonist binding (71).  

 

Our results support a vital role for Thr181 in the activation by both 5-HT and 

mCPBG. Introduction of Omt, which retains only the ability to accept a hydrogen bond, 

causes 20−30 fold increases in the EC50 of both agonists (table 2.6). This indicates that 

the side chain of Thr181 likely acts as a hydrogen bond donor. Not only must the OH of 

Thr181 be present, but also it must be positioned properly.  Swapping the OH and CH3 

groups of the side chain (aThr) increased EC50, while deleting the CH3 entirely (Ser) 

increased EC50 further. This could indicate that the increased rotational flexibility 

associated with the Ser side chain is deleterious to receptor function.   

Figure 2.27. Example traces 
illustrating the 10-fold increase in 
apparent desensitization rate 
observed from charge reversal 
mutations. 
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Taken together, the results suggest that Thr181 is a critical site that is sensitive to 

mutation.  The OH is essential and likely involved in donating a hydrogen bond.  In 

considering the homology model (figure 2.22b), the OH of 5-HT is, in principle, a 

potential hydrogen-bonding partner for Thr181.  However, the significant effects on EC50 

for mCPBG (which cannot accept a hydrogen bond) on activation kinetics, and on 

relative efficacies in general suggest an important role in gating rather than direct binding 

to agonist.  Possible binding partners include the carboxylate of Glu236 and the backbone 

carbonyl of Ala235. Both of these potential interacting partners are on loop C, and the 

fact that this loop is believed to move significantly during the gating process is consistent 

with a role for Thr181 in gating. 

 

A nearby threonine, Thr179, is conserved in all 5-HT3 subunits, but not in the 

Cys-loop family as a whole. This residue aligns with Lys145 in nAChR, which is 

believed to play a role in coupling binding to gating interactions in the binding site (74).  

 

It would appear that polarity is a key factor for Thr179.  Hydrogen bond donation 

is ruled out by the near wild-type behavior of Omt. The increase that aThr causes for 5-

HT, but not mCPBG EC50, suggests that mispositioning the polar OH group of Thr179 is 

deleterious for 5-HT more so than for mCPBG. The strong effect of the T179V mutation, 

both in raising EC50 for 5-HT and in converting mCPBG into an antagonist, further shows 

that polar character at this site is essential for proper receptor function. Substitution with 
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residues of smaller volume at Thr179 causes a significant slowing in 5-HT activation 

kinetics (figure 2.25), but does not significantly change the EC50 of either 5-HT or 

mCPBG. This suggests that both the opening and closing rate constants are slowed (larger 

activation barrier), and that this residue is involved in the transition between open and 

closed states.  

 

Tyr153 MayPparticipate in the Ion-pair Interaction   

In the homology model, the side chain of Tyr153 is located on Loop E and is 

positioned close to both Asp229 and Arg92 (figure 2.22b).  It was previously suggested 

that Tyr153 either accepts a hydrogen bond from the indole nitrogen of 5-HT, or from 

Arg92(72).  However, we have recently shown that the indole nitrogen is not important 

for activation of the receptor(50). Mutant cycle analysis of the Y153A and R92A 

mutations gives a coupling parameter of 0.23, and a coupling interaction energy of -0.9 

kcal/mol, suggestive of a modest interaction between these two residues. Considering 

previous evidence that Tyr153 acts as a hydrogen bond acceptor, it seems likely that 

Tyr153 accepts a hydrogen bond from Arg92, and participates in its role in receptor 

gating. Tyr153 mutations cause relatively large shifts in 5-HT EC50 and 5-FT efficacy 

while producing only small shifts in EC50 and efficacy of mCPBG.  These results suggest 

that this residue plays a role in receptor activation that is specific to tryptamine agonists.  
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Glu236 is a Gating Residue   

Glu236 aligns with Asp200 in the α subunit of the nAChR, which has been 

proposed to play an important role in gating (74).  Previous studies of Glu236 in the 5-

HT3 receptor suggested that the residue interacts with bound ligand and is important for  

receptor function (69).  The large effect of the Nha mutation on 5-HT EC50 indicates that 

charge plays a critical role at this position.  Glutamine is the conventional neutralizing 

mutation used to study the role of charge, but along with neutralizing the charge, these 

mutations replace a hydrogen bond accepting O with an NH2 group, and this introduces 

the potential for an electrostatic clash.  This is the likely explanation for the further 

increase in EC50 of Gln compared to Nha.  The smaller but still substantial 12-fold shift 

of E236D suggests that correct positioning of the carboxylic moiety is also important.   

 

The charge neutralizing mutations E236Nha and E236Q decrease the relative 

efficacy of mCPBG, while the hydrophobic mutation E236V decreases the relative 

efficacy of 5-HT, essentially turning it into a competitive antagonist.  Charge-neutralizing 

mutations also cause 5-FT to become a competitive antagonist, with IC50 values similar to 

the EC50 in wild-type receptors.  For the wild-type receptor 5-FT has an EC50 of 16 µM.  

These changes in the relative efficacy of partial agonists, as well as slower activation 

kinetics, indicate that mutations at E236 profoundly affect gating, while modestly 

perturbing affinity. 
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Large shifts in efficacy are evident for several agonists and several mutations at 

Glu236.  Moreover, since, for a receptor that is activated by two molecules of agonist, 

EC50 tracks roughly with the square root of efficacy, much (if not all) of the changes seen 

in EC50 with Glu236 mutants can be ascribed to large changes in efficacy.  We conclude 

that Glu236 plays an important role in receptor gating. 

 

Trp183 Does Not Make a Cation-π Interaction to mCPBG 

Previous studies established a cation-π interaction between the ammonium group 

of 5-HT and the indole ring of Trp183 (10). Here we have evaluated whether a 

comparable cation-π interaction contributes to the binding of mCPBG through 

incorporation of a series of fluorinated tryptophan residues.  The lack of any clear trend 

in EC50 strongly suggests that there is no cation-π interaction with this residue. This 

result is particularly interesting because a cation-π interaction is critical for activation by 

5-HT, and begs the question: What are the critical interactions between mCPBG and the 

5-HT3 receptor?  

 

Comparison of 5-F-Trp and 4-F-Trp provides further evidence that mCPBG does 

not participate in a cation-π interaction with Trp183. These residues are essentially 

identical in their cation-π binding ability, and while they give the same 5-HT EC50 

values, they show an almost 10-fold difference in mCPBG EC50. All the fluorinated 

residues used in this study have fluorine at the 5 position except 4-F-Trp, and show a 
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~10-fold shift in EC50.  We conclude that mCPBG is sensitive to steric interactions at the 

5 position of the indole ring of Trp183. 

 

Differences among Agonists 

The majority of mutations that produced a shift in the EC50 of mCPBG also led to 

shifts in its efficacy relative to 5-HT, helping to confirm that the residues investigated 

play at least some part in the gating pathway. For the partial agonist 5-FT, we did not 

observe a shift in the EC50 greater than 4-fold, however, the relative efficacy often 

decreased significantly more than mCPBG and sometimes became so inefficacious it 

behaved as a competitive antagonist.  5-FT is a less efficacious partial agonist than 

mCPBG (Rmax < 0.5), and large EC50 shifts from gating are not expected for agonists with 

a gating equilibrium constant close to 1 (75).  Comparing the mutations at Thr181, the 

pattern of relative efficacy shifts for mCPBG mirrors that of 5-FT, suggesting that this 

residue plays a general role in receptor gating.  This is in contrast to the relative efficacy 

shifts observed at Asp229, where the two patterns differed significantly and suggest that 

this residue plays a more vital role in the activation of tryptamine-like agonists.  

 

Almost invariably, mutations to the sites examined in this study led to increases in 

the EC50 of both 5-HT and mCPBG, but the magnitude of the effect often differed 

between these two agonists. This is most apparent with Trp183, which we determined 

does not participate in a cation-π with mCPBG as has been demonstrated previously with 

5-HT.  In addition to Trp183, 5-HT was also more sensitive to changes at Glu236, Y153, 
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and Asp229, while mCPBG was more sensitive to changes at Thr181.  Such differences 

could be the result of the residues being in direct contact with agonists of differing 

structure, but our results, especially the large shifts in relative efficacy, argue that these 

residues (excluding Trp183) are involved in the gating pathway. We conclude that the 

observed differences between the two agonists results from the existence of two 

substantially different gating mechanisms that utilize the residues in the binding site 

vicinity in qualitatively different ways.  

 

2.5.4 Conclusions 

Our investigations of the 5-HT3 receptor binding site were guided by a homology 

model that assisted the formulation of testable hypotheses regarding the role of specific 

residues in receptor function. Utilizing a combined approach of conventional 

mutagenesis, unnatural amino acid mutagenesis, and a variety of ligand derivatives, we 

were able to gain important insights into the mechanism of agonist binding and receptor 

activation.  Some experimental results confirmed elements of the initial homology model, 

while other results were used to refine the model. The structure-function investigations 

guided changes to the sequence alignment and agonist orientation as well as sidechain 

and agonist conformations. The model proposed in section 2.5 (figure 2.22) is well 

supported by our experimental evidence as well as previous studies on the 5-HT3R and 

other homologous receptors.  Our results illustrate the important and sometimes critical 

roles that many of the proximal binding site residues play in agonist activation of the  

5-HT3 receptor and offer evidence for several specific interactions within the receptor and 

between the receptor and agonist. The agonist-specific effects of the binding site 
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mutations provide further evidence that different gating pathways are utilized by 5-HT 

and mCPBG.  Information about agonist differences provides useful guidance for the 

development of small molecule therapies that target the 5-HT3 receptor, and the studies of 

key binding site residues will also further the understanding of other members Cys-loop 

receptor family.  
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2.6 Materials and Methods 

 

Materials 

All cell culture reagents were obtained from Gibco BRL (Paisley, U.K.), except 

fetal calf serum, which was from Labtech International (Ringmer, U.K.). [3H]granisetron 

(63.5 Ci mmol-1) was from PerkinElmer (Boston, Massachusetts, USA). 5-FT, 5-

chlorotryptamine (5-ClT), 5-methyltryptamine (5-MeT), 5-methoxytryptamine (5-MeT) 

and tryptamine were from Sigma-Aldrich (Poole, Dorset, U.K.). All other reagents were 

of the highest obtainable grade.  

 

Cell culture and Oocyte Maintenance  

Human embryonic kidney (HEK) 293 cells were maintained in DMEM:F12 

(Dulbecco’s Modified Eagle Medium : Nutrient Mix F12 (1:1)) with GlutaMAX 

containing 10% fetal calf serum at 37°C and 7% CO2 in a humidified atmosphere. 

Xenopus laevis oocyte positive females were purchased from NASCO (Fort Atkinson, 

Wisconsin, USA) and maintained according to standard methods (76). Harvested stage 

V-VI Xenopus oocytes were washed in six changes of ND96 (96 mM NaCl, 2 mM KCl, 1 

mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.5), defolliculated in 1.5 mg mL-1 

collagenase Type 1A for approximately 2 h. Enzyme treatment was terminated by 

washing in six changes of ND96 and oocytes were stored in ND96 containing 2.5 mM 

sodium pyruvate, 50 mM gentamicin and 0.7 mM theophylline.  
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Mutagenesis and Receptor Expression  

Mouse 5-HT3A (accession number: AY605711) or 5-HT3B (kindly provided by 

Ewen Kirkness) subunit cDNAs were cloned into pGEMHE for oocyte expression (77). 

Mutagenesis reactions were performed using the Kunkel method and confirmed by DNA 

sequencing. cRNA was in vitro transcribed from linearised (NheI) plasmid cDNA 

template using the mMessage mMachine T7 kit (Ambion, Austin, Texas, USA). Stage V 

and VI oocytes were injected with 50–100 ng cRNA, and recorded from 1 to 4 days post-

injection. The unnatural amino acids nitrohomoalanine (Nha), 2-amino-4-ketopentanoic 

acid (Akp), allothreonine (aThr), O-methoxythreonine (Omt), and all substituted 

analogues of Trp and Phe were incorporated using nonsense suppression as previously 

described  (72). For expression in HEK 293 cells, 5-HT3 receptor subunit cDNAs were 

cloned into pcDNA3.1 (Invitrogen, Paisley, UK.). Mutagenesis reactions were performed 

using the Kunkel method and confirmed by DNA sequencing. Cells were transfected 

using calcium phosphate precipitation at 80%–90% confluency (78). Following 

transfection, cells were incubated for 3–4 days before assay. 

 
 
Synthesis of tRNA and dCA Amino Acids 

This was as described previously (72). Briefly, unnatural amino acids were 

chemically synthesized as nitroveratryloxycarbonyl (NVOC)-protected cyanomethyl 

esters and coupled to the dinucleotide dCA, which was then enzymatically ligated to 74-

mer THG73 tRNACUA as detailed previously (79). Immediately prior to coinjection with 

cRNA, aminoacyl tRNA was deprotected by photolysis (80). Typically 5 ng total cRNA 

was injected with 25 ng of tRNA-aa in a total volume of 50 nl. For a control cRNA was 
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injected with THG 74-mer tRNA (no unnatural amino acid attached) and with THG 74-

mer ligated to dCA. 

 

Characterization of Mutant Receptors 

Agonist-induced currents were recorded at 22–25 oC from individual oocytes 

either using conventional two-electrode voltage clamp electrophysiology or the higher-

throughput automated OpusXpress system (MDS Axon Instruments) (figure 2.28); these 

two systems gave the same results. 5-HT, m-chlorophenylbiguanide (mCPBG), 5-

fluorotryptamine (5-FT) and tryptamine were stored as 20-100 mM aliquots at -20 oC, 

diluted in Ca-free ND96 buffer (96 mM NaCl, 2 mM KCl, 1 mM MgCl2,, 5 mM HEPES, 

pH 7.5). Glass microelectrodes were backfilled with 3 M KCl and had a resistance of ~1 

MΩ. The holding potential was -60 mV.  
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Data obtained from dose-response experiments were normalized by dividing the 

peak current at each concentration by the largest peak current observed for a particular 

oocyte.  Normalized data were then plotted as a dose-response curve with the agonist 

concentration on the x-axis plotted on a logarithmic scale. To determine EC50 values, 

concentration-response data were fitted to the four-parameter logistic equation, I = Imin + 

(Imax – Imin)/(1+10(log(EC50-[A])nH), where Imax is the maximal response plateau, Imin is the 

minimum response plateau, [A] is the log concentration of agonist and nH is the Hill 

coefficient, using PRISM v4.03 software (GraphPad, San Diego, CA). The value ‘n’ is 

Figure 2.28. The Opus Express system used for most experiments requiring two-
electrode voltage clamp electrophysiology. 
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the Hill coefficient.  This parameter gives information about the cooperativity of binding.  

In Cys-loop receptors, which have at least two agonist binding sites, the Hill coefficient is 

usually greater than one, indicating cooperative binding. 

 

Relative efficacies of the partial agonists mCPBG, 5-FT and tryptamine are 

reported as Rmax = Imaxdrug/Imax5-HT. One-way ANOVAs were performed with Dunnett’s 

post test to determine statistical significance.  Data are quoted as mean + SEM (n) unless 

otherwise stated. 

 

Drug Dilutions 

 All drug dilutions were prepared in the appropriate buffer from stock solutions 

(figure 2.29).  For dose-response experiments, 1 ml of each drug solution was applied to 

the cells in a total of 30 seconds.  Between 9 and 14 concentrations of agonist were used 

for dose-response experiments depending upon several factors including previous 

information about EC50, the required accuracy of measurement, and oocyte health.   
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[3H]granisetron Binding to Oocytes 

For single point radioligand binding assays, 20-40 oocytes were homogenized in 

200 µl 10 mM HEPES (pH 7.4) containing protease inhibitors (1 mM EDTA, 50 µg/ml 

soybean trypsin inhibitor, 50 µg/ml bacitracin, 0.1 mM PMSF) and 1% Triton X-100.  

Following a 10 min incubation at room temperature, oocyte yolk proteins were pelleted 

by centrifugation at 13,000 g for 10 min.  The supernatant was retained, avoiding the 

uppermost lipid layer.  Single point assays were performed in 500 µl 10 mM HEPES pH 

7.4 containing 25 µl oocyte preparation and 0.5 nM [3H]granisetron (63.5 Ci/mmol; 

Perkin Elmer).  Non-specific binding was determined using 10 µM quipazine (Tocris).  

Tubes were incubated at 4°C for 1 h before bound radioligand was harvested by rapid 

Figure 2.29.  Dilution protocol used to make drug solutions for dose-response experiments. 
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filtration onto GF/B filters pre-soaked in 0.3% polyethylenemine.  Filters were then 

washed with two 3 ml washes of ice-cold HEPES buffer and left in 3 ml scintillation fluid 

(Ecoscint A; National Diagnostics) for at least 4 h before scintillation counting to 

determine amounts of membrane-bound radioligand.   

 

Radioligand Binding in HEK 293 Cells 

Radioligand binding was undertaken in HEK 293 cells which provide an 

established and robust method of studying ligand binding. Methods were as previously 

described (81), with minor modifications. Briefly, transfected HEK 293 cells were 

washed twice with phosphate buffered saline (PBS) at room temperature and scraped into 

1 ml of ice-cold HEPES buffer (10 mM, pH 7.4) containing the following proteinase 

inhibitors (PI): 1 mM EDTA, 50 µg ml-1 soybean trypsin inhibitor, 50 µg/ml bacitracin 

and 0.1 mM phenylmethylsulphonyl fluoride. After thawing, they were washed with 

HEPES buffer, resuspended, and 50 µg of cell membranes incubated in 0.5 ml HEPES 

buffer containing 0.5 nM [3H]granisetron (a concentration approximately equivalent to 

the Kd); non-specific binding was determined using 10 µM quipazine. Competition 

binding was performed using ligand concentrations from 0.1 µM to 10 mM. Reactions 

were incubated for at least 1 h at 4°C and terminated by vacuum filtration using a 

Brandel cell harvester onto GF/B filters pre-soaked in 0.3% polyethyleneimine. 

Radioactivity was determined by scintillation counting using a Beckman LS6000SC 

(Fullerton, California, USA). Competition binding data were analyzed by iterative curve 

fitting (GraphPad Prism v3.02, GraphPad Software, San Diego, California, USA), 

according to the equation: 
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, 

where Bmin is the lowest total binding, Bmax is the maximum specific binding at 

equilibrium, [L] is the concentration of competing ligand, and IC50 is the concentration of 

competing ligand that blocks half of the specific bound radioligand. Ki values were 

estimated from IC50 values using the Cheng-Prusoff equation: 

 

, 

where Ki is the equilibrium dissociation constant for binding of the unlabeled antagonist, 

[L] is the concentration of radioligand, and Kd is the equilibrium dissociation constant of 

the radioligand.  

 

Modeling 

The modeling was performed as described previously (43). Briefly, an alignment 

of the mouse 5-HT3A receptor extracellular domain (accession number: Q6J1J7) with the 

Lymnaea stagnalis AChBP (accession number P58154) was performed using ClustalX 

and then modified by the insertion of a single amino acid gap in the AChBP sequence 

following D85 (WVPD-LAAYNAISKP) and a single amino acid gap in the 5-HT3 

receptor subunit sequence following V131 (WVPDILINEFV-DVG).  The new model of 

the 5-HT3 receptor extracellular domain based on the AChBP structure (PDB ID 1I9B) 

was then built using MODELLER 6v2 (82) as described previously (15).  
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Chapter 3 
 

Probing the Binding Sites of GPCRs Using Unnatural 

Amino Acids:  The Role of the Cation-π Interaction 

Reproduced in part from (1) 



 

 

96 
 

3.1 Introduction 

G-protein-coupled receptors (GPCRs) represent the largest family of 

transmembrane receptor proteins in the human genome and constitute a prominent class 

of targets for the pharmaceutical industry(2-4).  These receptors share a topology 

consisting of seven transmembrane helices.  In 2007, of 324 molecular drug targets, 25% 

of approved pharmaceuticals targeted GPCRs(5).  This large proportion is due in part to 

the number and diversity of cellular pathways linked to GPCR activation.  These 

receptors can be activated by a diverse array of stimuli such as neurotransmitters, 

peptides, odorants, proteins, lipids, and photons.  The signaling pathways activated are 

involved in processes such as vision, olfaction, taste, memory, drug addiction, and the 

regulation of cardiac function (3, 6, 7). Accordingly, they have been studied extensively 

throughout academia and industry, utilizing the full range of chemical, biochemical, and 

biophysical techniques. 

 

GPCR signaling begins with an extracellular stimulus such as ligand binding.  

The binding of ligand induces a conformational change in the transmembrane helices and 

shifts the equilibrium from the inactive to the active receptor conformation. In the active 

conformation, the intracellular face of the receptor binds heterotrimeric G-proteins (α, β, 

and γ subunits)(8).  The binding of G-protein facilitates the exchange of GDP for GTP in 

the Gα subunit and dissociation from the Gβγ subunits.  The dissociated Gα and Gβγ 

subunits can then each act on numerous different cellular pathways.  There are several 

different Gα subfamilies, and each one acts on different effectors.  Gs activates adenyl 
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cyclase, Gi inhibits adenyl cyclase (AC), Gq modulates phospholipase C (PLCβ), G12/13 

mediates Rho GTPase activity, and Gi/o gates G-protein activated inward rectifying 

potassium channels (GIRKs) and inhibits AC (9).  Hydrolysis of GTP within the Gα 

subunit leads to reassociation of the Gα and Gβγ subunits and the termination of G 

protein signaling (figure 3.1). 

 

Figure 3.1. GPCR signaling  (figure courtesy of Dr. Michael Torrice). 

The aminergic class of GPCRs respond to the monoamine neurotransmitters, such 

as epinephrine, acetylcholine, serotonin, and dopamine.  These receptors belong to class 

A, which also includes rhodopsin and the olfactory receptors.  In recent years the field 

has been energized by several high-resolution crystal structures of mammalian GPCRs 
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that build on the earlier, highly informative structural studies of rhodopsin and 

bacteriorhodopsin (10-15).  

The ligand binding site of aminergic GPCRs is a crevice formed between the 

seven transmembrane helices (16, 17) (figure 3.2).  Key elements of this site include a 

cluster of conserved aromatic residues and a highly conserved Asp on TM3, D3.32. This 

numbering uses the one-letter amino acid code, the helix number (1-7), and a residue 

index number.  To index each residue of a helix, the most conserved residue in the helix 

is denoted as 50 and all other residues are numbered N-terminal to C-terminal 

accordingly.  For example, D3.32 refers to an Asp residue on TM3, 18 residues in the N-

terminal direction from the highly conserved Arg residue, R3.50. It is generally accepted 

that the negative charge of D3.32 interacts with the positively charged amine group of the 

aminergic ligands. Indeed, the 3 crystal structures of adrenergic receptors show the ligand 

interacting directly with D3.32(12-14). 

 

Figure 3.2. Structure of the β2AR.  
TM helices are labeled I through 
VIII. Bound inverse agonist 
Carazolol shown in red. 

 



 

 

99 
In receptors that bind catechol-containing agonists (dopamine and epinephrine) 

there is a set of conserved Ser residues on TM5 (S5.46 and S5.43).  The hydroxyls of 

these serines are proposed to hydrogen bond with the two hydroxyls of the catechol 

moiety. 

   

The structural snapshots provided by crystallography greatly enhance our 

understanding of specific receptors, but also raise many new issues.  Key among these is 

the extent to which the information from available structures can be extrapolated to the 

hundreds of other GPCRs. In addition, a key goal in the study of GPCRs—and all 

receptors—is a description of the interconversions among several structural states that 

underlie the protein’s biological function. It can be a challenging task to deduce a 

signaling mechanism from static images. As such, structure-function studies, guided by 

the new structural advances, will remain an important tool in evaluating GPCR function 

and the nature of drug-receptor interactions in this family. 

 

In recent years, unnatural amino acid mutagenesis on ion channels and receptors 

expressed in Xenopus oocytes has provided a powerful tool for uncovering crucial drug-

receptor interactions and signaling mechanisms (18, 19). The method has been especially 

successful in highlighting the distinctions among related members of a receptor family 

and in providing insights into the extent to which structural studies of model systems 

directly apply to related receptors. GPCRs present an especially attractive target for 

unnatural amino acid mutagenesis, given the importance of the family, the significant 
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pharmacological variations among closely related family members, and the central role of 

structural rearrangements in their biological function.   

Incorporating unnatural amino acids into GPCRs, however, presents unique 

challenges. Most unnatural amino acid mutagenesis studies in eukaryotic cells have 

focused on ion channels. These studies exploit the exquisite sensitivity of 

electrophysiology, which allows for detailed characterization even when only small 

quantities of protein are produced, as is often the case with unnatural amino acid 

mutagenesis. Because GPCRs are not ion channels and instead produce downstream 

signals though second messenger systems, a direct readout of GPCR activation during an 

unnatural amino acid experiment is not possible. 

 

This chapter describes the first general strategy for chemical-scale studies of 

GPCRs using unnatural amino acid incorporation in a vertebrate cell. Electrophysiology 

again provides the functional readout, through downstream activation of a K+ channel.  

Utilizing this system we investigated several key aromatic amino acids in the agonist-

binding region of the D2 dopamine receptor and M2 muscarinic acetylcholine (ACh) 

receptor.  We find that W6.48, a residue long postulated to play an important role in 

signaling, makes a cation-π interaction to dopamine in the active state of the D2 receptor.  

Interestingly, ACh does not make the same interaction to the conserved W6.48 of the M2 

receptor.  We also identify F6.51 and F6.52 as critical residues in the activation of the D2 

receptor by dopamine. 
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3.2 Results 

Optimization of a GPCR Readout System 

We have developed a robust assay for studying GPCRs containing unnatural 

amino acids expressed in Xenopus oocytes. A large portion of the work on assay 

optimization was done by Dr. Michael Torrice. Key issues are described here; full details 

can be found elsewhere (20). 

 

We began with an established readout system based on a G-protein-coupled, 

inward-rectifying K+ channel (GIRK). Upon activation of a Gi/o-coupled receptor, Gβγ 

subunits dissociate from the GPCR, bind to, and activate the GIRK channel; Gα subunits 

also alter channel activation (21-24).  This is the least complex known pathway from a 

GPCR to a channel, providing, in principle, a straightforward electrophysiological assay 

for GPCR activation.   

 

Figure 3.3 illustrates the basic procedure we used in our GPCR-GIRK1/4 assays.  

The basal K+ current (IK,Basal) results primarily from the presence of free intracellular 

Gβγ(25,26).  The agonist-induced current (IK,Agonist) is measured relative to this basal  K+  

current. Because GIRKs do not pass significant currents under our standard conditions 

(ND96 with 2mM KCl), we use a ringer solution with a high (24 mM) potassium 

concentration.  This shifts the equilibrium to favor passage of K+ ions into the cell, with 
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current magnitudes sufficient for measurement by voltage-clamp electrophysiology at a 

modest holding potential (-60 mV). 

 

 

The challenge in implementing this system was to ensure that agonist dose-

response relationships provided direct assays of GPCR activation.  To yield reproducible 

data, the assay system was first optimized in experiments expressing M2 receptors, and 

the findings then accommodated into the D2 receptor system.   

 

RGS4 and Current Trace Kinetics 

In order to minimize dose-response variability, we sought uniform current traces 

that reached a maximum IK,Agonist level quickly (~1s). In previous studies, RGS proteins 

Figure 3.3. Example current traces during a GPCR voltage-clamp experiment in a Xenopus oocyte. 
The GIRK1/4 heterotetrameric channel is chosen because it displays relatively low basal activity.  The 
holding potential is -60 mV throughout.  ND96 solution at (a) has 2 mM K+. Introduction of a 24 mM 
K+ Ringer solution shifts the ionic equilibrium to favor inward GIRK channel currents (b).  10 mM 
dopamine (“agonist”) is applied to expressed D2 dopamine receptors in the presence of the high- K+ 
Ringer, yielding a steady-state current at (c). IK, Basal is defined as the current difference between 
(b)and (a); subtraction of (b) from (c) yields IK, Agonist 
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were shown to accelerate the deactivation kinetics of GIRK currents via Gα-mediated 

GTP hydrolysis, while also increasing the activation rates of GIRK currents (26-28). In 

addition, it has been proposed that RGS4 not only acts as a GAP, but also serves as 

scaffolding for a signaling complex between the GPCR, G-protein, and GIRK channel. 

This scaffolding could also accelerate activation kinetics by maintaining the signaling 

partners in close proximity. In the D2 receptor system, adding RGS4 does indeed result in 

faster activation kinetics in IK,Agonist traces (figure 3.4). Injection of 10 ng of RGS4 

increased activation rates 2.4-fold. Though the faster activation may help in creating 

reproducible dose-response curves, RGS4 was not included in the injection protocol 

because it decreased the already low expression of the D2 receptors. 

 

 

Variability and Expression Levels  

Lower levels of expression are often observed using the nonsense suppression 

methodology. This was a particular problem when attempting to use this method to 

express the D2 dopamine receptor, and we often observed agonist-induced GIRK1/4 

Figure 3.4. RGS4 increases the activation kinetics of dopamine–induced currents.  (a) 0ng 
RGS4 mRNA. (b)10 ng RGS4 mRNA. 
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currents that were too small to measure accurate EC50 values. To increase expression 

levels of the D2 dopamine receptor, we employed two injections of suppressor tRNA. 

The first injection occurred 48 h prior to recording and included the aminoacyl tRNA, 

along with the D2 receptor and GIRK mRNAs. The second tRNA-only injection, 

occurred 24 h before the assay. We evaluated this protocol using nonsense suppression at 

several sites, including F5.47 and W6.48. In both cases we observed significant increases 

in IK,Agonist levels with the second tRNA injection. 

 

Considerable variability was seen from oocyte to oocyte in single-cell EC50 values 

(cEC50), as quantified by the coefficient of variation (CV), defined as the ratio of the 

standard deviation to the mean of a population. Optimization using M2 receptor system 

revealed that CV is affected by the ratio of mutant receptor to GIRK1/4 mRNAs used, 

with smaller ratios producing smaller CVs. At mRNA ratios below 1, expression 

efficiency of the receptor was quite low and irregular. In the D2 receptor system IK,Agonist 

levels were consistently lower than those for the M2 receptor, prompting the use of a 

different mRNA ratio. Adequate expression in the D2 system was achieved by increasing 

the amount of D2 receptor mRNA and suppressor tRNA 4-fold. Perhaps because of the 

lower expression levels, including RGS4 affected response waveforms only weakly. 

Thus, conditions used for D2 receptor experiments were: 40 ng of stop codon mutant D2 

receptor mRNA, 10 ng each of GIRK1 and GIRK4 mRNA, and 100 ng of suppressor 

tRNA 48h prior to recording. Twenty-four hours later, we inject an additional 100 ng of 

aminoacyl tRNA. These conditions resulted in adequate GIRK currents and cell-to-cell 
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CVs ranging from 0.21 to 0.46, which are adequate for meaningfully interpreting 

variations (>3-fold) in EC50 among mutants (figure 3.5). 

 

 

Probing the Aromatic Cluster using Nonsense Expression  

The binding region of class A GPCRs such as the M2 and D2 receptors is rich in 

aromatic amino acids (figure 3.6) (10-14, 29). Both acetylcholine (ACh) and dopamine 

have charged ammonium groups, suggesting the possibility of a cation-π interaction (30, 

31).  In the Cys-loop family of ligand-gated ion channels, ACh and serotonin (which 

bears structural similarities to dopamine) make cation-π interactions to a conserved Trp in 

the nicotinic (32, 33) and the 5-HT3 receptors (34), respectively.   

Figure 3.5. Cell-to-cell variability of D2 dopamine receptor suppression data. (left) cEC50 values 
normalized to the mean EC50 for the condition. (right) Bar chart showing the CV values for the Trp 
fluorination series and the F1Phe and F3Phe substitutions at F6.51.  
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a 

B2 107 (3.26) EFWTSIDVLC VTASIETLCV IAVDRY (3.51) 
M2 97         DLWLALDYVV SNASVMNLLI ISFDRY 
D2 108        DIFVTLDVMM CTASILNLCA ISIDRY        
 
B2 196 (5.35) NQAYAIASSI VSFYVPLVIM VFVYS (5.59) 
M2 183        NAAVTFGTAI AAFYLPVIIM TVLYW 
D2 186        NPAFVVYSSI VSFYVPFIVT LLVYI 
 
 
B2 274 (6.36) TLGIIMGTFT LCWLPFFIVN IV    (6.57) 
M2 388        TILAILLAFI ITWAPYNVMV LI 
D2 374        MLAIVLGVFI ICWLPFFITH IL 
 
B2 306 (7.33) EVYILLNWIG YVNSGFNPLI YCRS  (7.56) 
M2 420        TVWTIGYWLC YINSTINPAC YALC 
D2 406        VLYSAFTWLG YVNSAVNPII YTTF 
 
 
b 
 

 
 

Figure 3.6.  (a) Alignment of 
β2AR, M2AChR, and D2DR 
binding site sequences.  Residues 
within 5 Å of the ligand in the 
β2AR crystal structure are 
underlined. Aromatic residues 
examined in this study are 
highlighted. 

(b) An image of the β2AR 
structure with the residues 
considered here highlighted. The 
antagonist carazolol is shown as 
a ball-and-stick model. 
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The nonsense suppression protocol for identifying a cation-π interaction is well 

established. Progressive fluorination of an aromatic amino acid reduces the electron 

density in the center of the aromatic ring in a stepwise manner. If a cation-π interaction 

between the agonist and the particular aromatic is critical to binding, progressive 

fluorination steadily diminishes the affinity of the drug for the binding site. To probe a 

potential cation-π interaction at a Trp site, the series of unnatural amino acids; 5-F-Trp 

(F1Trp), 5,7-F2-Trp (F2Trp), 5,6,7-F3-Trp (F3Trp), 4,5,6,7-F4-Trp (F4Trp), and 1-

napthylalanine (Nap) are used (figure 3.7). At a Phe site, the appropriate analogues are 4-

F-Phe (F1Phe), 3,5-F-Phe (F2Phe), 3,4,5-F-Phe (F3Phe), 4-methyl-Phe (MePhe), 4-cyano-

Phe (CNPhe), 4-bromo-Phe (BrPhe), 3,5-dimethyl-Phe (Me2Phe), and cyclohexylalanine 

(Cha). 

 

 a,b,c,d = H Trp a,b = H Phe                    Nap                          Cha 
 b = F F1Trp b = F F1Phe 
 b,c = F F2Trp a = F F2Phe 
 a,b,c = F F3Trp a,b = F F3Phe 
 a,b,c,d = F F4Trp b = CH3 MePhe 
   b = CN CNPhe 
   b = Br BrPhe 
   a = CH3 Me2Phe 
      

 
Figure 3.7.  Structures of unnatural amino acids used in this study. 
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In the M2 receptor, three Trp residues were studied: W3.28, W6.48, and W7.40 

(figure 3.6). At W6.48 and W7.40, fluorination studies produce no consistent trends 

(table 3.1, figure 3.8a). Most importantly, F3Trp produced an EC50 value very near that of 

wild type at both W6.48 and W7.40. These data strongly indicate that no cation-π 

interaction exists at these two sites.   
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Mutation EC50
 nH

* N Mutation EC50
 nH

* N 
WT 59 ± 3 1.06 ± 0.02 44     

F3.28    F6.52    
Phe (WT)  55 ± 1 1.13 ± 0.04 5 Phe (WT) 45 ± 3 1.04 ± 0.11 6 

F1Phe 140 ± 10 0.84 ± 0.03 4 F1Phe 41 ± 2 1.01 ± 0.11 7 
F2Phe         36 ± 1 1.0 ± 0.1 3 F2Phe 1700 ± 100 1.14 ± 0.03 8 
F3Phe 140 ± 10 0.89 ± 0.14 3 F3Phe 5500 ± 400 1.09 ± 0.03 7 

Cha   97 ± 2 1.03 ± 0.04 5 4-CNPhe 240 ± 30 1.06 ± 0.05 5 
F5.47    4-BrPhe 1500 ± 100 1.02 ± 0.04 4 

Cha 78 ± 1 1.30 ± 0.14 7 4-MePhe 91 ± 6 1.00 ± 0.05 5 
W6.48    3,5-Me2Phe 33,000 ± 

3000 
1.11 ± 0.10 7 

Trp (WT) 42 ± 4 0.96 ± 0.05 15 Conventional    
F1Trp 120 ± 10 0.98 ± 0.05 14 T7.39V 100 ± 20 0.89 ± 0.12 4 
F2Trp 290 ± 30 0.95 ± 0.06 11 D3.32E 50,000 ± 

4000 
1.07 ± 0.08 9 

F3Trp 840 ± 60 0.85 ± 0.05 13 D3.32N 140,000 ± 
10,000 

1.12 ± 0.03 6 

F4Trp 1800 ± 300 0.84 ± 0.06 16 D3.32S 730,000 ± 
60,000 

1.13 ± 0.09 5 

Nap 190 ± 20 1.12 ± 0.06 8 
F6.51    

Phe (WT) 65 ± 4 1.03 ± 0.04 6 
F1Phe 76 ± 6 0.98 ± 0.03 12 
F2Phe 4200 ± 350 0.97 ± 0.04 7 
F3Phe 6200 ± 400 0.095 ± 0.03 18 

Cha 55,000 ± 
4000 

0.87 ± 0.06 4 

4-CNPhe 1340 ± 160 0.94 ± 0.06 4 
4-MePhe 690 ± 40 1.01 ± 0.02 6 

3,5-Me2Phe 75,000 ± 
5000 

0.89 ± 0.05 6 

    
aEC50 (nM) and nH values are ± SEM. 

 

Table 3.1.  EC50 values (µM), with SEM values in parentheses.  Hill coefficients 
generally range from 0.9 to 1.1; number of cells is generally >7.   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Studies of W3.28 in the M2 receptor were problematic. When we injected mutant 

mRNA and full-length tRNA without an appended amino acid, we observed IK,Agonist 

values that were substantially larger than is typically seen in this essential control 

experiment. As such, W3.28 is presently an uninformative site for studies using nonsense 

suppression with the amber suppressor THG73 tRNA. We were able to determine an 

EC50 value of 1900 nM for currents created in this experiment, a 10-fold increase over 

wild type. 

 

Five different aromatic amino acids were evaluated in the D2 receptor (table 1). 

F3.28 and F5.47 were quite tolerant of substitution. The largest structural perturbation 

introduced—Cha—gave essentially wild-type behavior. In sharp contrast, F6.51 and 

F6.52 were very sensitive to substitution.  The primary factor appears to be sterics, with 

larger substituents producing larger effects. 

 

Incorporation of fluorinated tryptophans at W6.48 resulted in systematic increases 

in EC50, with 2.8-, 6.9-, 20-, and 43-fold shifts in the series from one to four fluorines. 

The standard plot of the calculated gas-phase cation-π binding energies against the log 

EC50 gave the hallmark linear relationship of a cation-π interaction (figure 3.8b-d). 
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Figure 3.8. (a) FnTrp data for the M2 receptor analyzed in terms of gas phase cation-π binding 
energies of fluorinated indole rings versus the log of the ratio of the FnTrp EC50 and wild-type 
EC50. Black = W7.40, Red = W6.48. Leftmost point is F4-Trp; rightmost is wild-type Trp.  
(b) Fluorination of W6.48 in the D2 receptor. Dopamine dose-response relations and fits to the 
Hill equation. Left to right: D2 receptor suppressed with Trp, F-Trp, F2-Trp, F3-Trp, F4-Trp  
(c) Fluorination plot for W6.48 in D2 receptor. log[EC50/EC50(wt)] versus calculated cation-π 
binding ability for the series of fluorinated Trp derivatives). Dopamine data fit the line y = 
2.97–0.92x. The correlation for the linear fit is r = 0.9987 (d) Electrostatic potential surfaces 
of the fluorinated tryptophan series calculated using Spartan. Calculated binding energies are 
included below each molecule. 

 

(a) 

(c) (b) 

(d) 
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The electron-withdrawing ability of a fluorine attached to an indole ring would 

also be expected to diminish the hydrogen bonding ability of the indole NH. If a 

hydrogen bond to this indole NH were essential to receptor function, a linear fluorination 

plot could also arise. To test for a hydrogen-binding effect, we removed any possibility of 

such a hydrogen bond by incorporating the unnatural amino acid Nap, which is sterically 

very similar to Trp but lacks the NH. The modest shift caused by the Nap mutation  

(table 3.1) rules out an essential hydrogen bonding role for the indole NH of W6.48, 

especially in contrast with the much larger 43-fold shift for F4Trp, which has the indole 

NH.  Note that Nap is a weaker cation-π donor than Trp (32), consistent with the modest 

rise in EC50.   

 

3.3 Discussion 

The studies described in his chapter develop a general protocol to prepare and 

functionally characterize GPCRs containing unnatural amino acids.  Much of the early 

work of developing this system was done by Dr. Michael Torrice using the M2 ACh 

receptor. These protocols were then further optimized for D2 dopamine receptor.  In this 

initial study, we have identified a distinctive cation-π interaction between dopamine and 

W6.48, a residue that has been proposed to play a key role in receptor function. In 

addition, we have probed the function of several other aromatic residues in proximity to 

the agonist binding site.  
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Unnatural Amino-Acid Mutagenesis at GPCRs 

Given the broad range of structures and activities for GPCRs, and their 

pharmaceutical importance, it has been appreciated for some time that unnatural amino 

acids could provide a valuable probe of this essential class of membrane receptors. An 

early study incorporated the fluorescent unnatural amino acid NBD-Dap into the NK2 

receptor, and showed that exposure to tachykinin did produce measurable 

electrophysiological currents in Xenopus oocytes (due to opening of Ca2+-activated Cl– 

channels that are endogenous to the oocyte) (35). A very recent study used an orthogonal 

tRNA-synthetase pair to incorporate a benzophenone-containing unnatural amino acid 

into the Ste2p GPCR (36) and the CCR5 receptor (37). Certainly, extensive conventional 

mutagenesis studies on GPCRs have provided a wealth of valuable information about 

which residues are important to receptor function (17). However, the more subtle 

variations that are possible with the unnatural amino acid methodology can provide 

additional insights into the precise role of a given residue. 

 

Here we describe the first general application of nonsense suppression 

methodology to GPCRs, incorporating 13 different unnatural amino acids and developing 

a reliable readout system that can be used in chemical-scale studies of many GPCRs. Our 

initial focus has been on the M2 muscarinic ACh receptor and the D2 dopamine receptor. 

These are class A GPCRs, a group that also includes adrenergic, serotonin, ordorant, 

peptide, and glycoprotein hormone receptors. The binding site in this class lies within a 

crevice formed by several of the transmembrane helices and includes the highly 
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conserved Asp 3.32 (figure 3.9). In addition, it has long been appreciated that a cluster of 

aromatic amino acids shapes much of the binding crevice, and recent structural studies 

position many of them in locations that could be expected to contribute to agonist and 

antagonist binding.   

 

We chose the M2 and D2 receptors for this initial study partly because they both 

couple to the Gi/o pathway, which gates G-protein-activated inward rectifying potassium 

(GIRK) channels, along with inhibiting adenylate cyclase. GIRK channels provide a 

sensitive readout of GPCR activation, a critical feature given the often-small quantities of 

protein made by nonsense suppression. However, the use of a downstream signal added 

significant complications to the process compared to our previous nonsense suppression 

studies on ion channels. We can readily control the expression levels of some of these 

proteins, such as GIRK, but it is less straightforward to control others, such as the G-

protein and the GPCR itself when incorporating unnatural amino acids. In addition, other 

cellular pathways can intersect with the desired signaling pathway in unanticipated ways. 

Figure 3.9. Dopamine placed 
into the binding site of the β2AR 
structure (2RH1). 
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Fortunately we found conditions to minimize this variability; variations in EC50 reported 

in this study are meaningful to a confidence level of  >99%(20). 

 

After controlling for adequate expression efficiencies and consistent dose-

response relationships, we arrived at optimum conditions for the M2 and D2 receptor 

systems. RGS4 expression provided faster electrophysiological responses from both 

receptors, but it was not included in the protocol for the D2 experiments. In addition, 

relatively low M2:GIRK1/4 mRNA ratios were necessary. We consider these ratios low, 

because the typical expression efficiency of the nonsense suppression methodology is 

roughly 10% that of conventional expression. Thus a 1:1 ratio of M2:GIRK1/4 mRNA 

could be considered to be effectively an 0.1:1 ratio of proteins. Presumably the rather low 

GPCR expression levels minimize the possibility that receptor activation saturates G-

proteins, GIRK channels, or other downstream elements in the signaling pathway, which 

would distort the dose-response relations. Injecting cells with wild-type recovery 

conditions alongside cells with mutant conditions provided an additional means to assess 

and control for the variability between batches of cells. 

 

Interactions at GPCR Binding Sites 

This initial study focused on several aromatic amino acids in or near the agonist-

binding site. W(F)3.28 was chosen due to its position four amino acids—approximately 

one turn of an α-helix—above the highly conserved D3.32. If the cationic moiety of the 

agonist makes an electrostatic (ion pair) interaction with D3.32, then W(F)3.28 could be 
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well positioned to augment agonist binding. W6.48 is highly conserved throughout the 

class A GPCRs and has been proposed to be in close proximity to the agonist binding site 

and to play a central role in receptor activation (15, 38). In particular, binding-induced 

changes in the rotameric state of W6.48 are thought to act as part of a “switch” that is 

critical to receptor function (10, 15, 38-41) (42). W7.40 is the next most highly conserved 

residue associated with the aminergic class of GPCRs (43). F6.51 and F6.52 were chosen 

because the rhodopsin and β2AR structures place them in close proximity to the agonist. 

Previous studies on the D2 receptor and other aminergic GPCRs have shown that 

mutations to these helix 6 residues have substantial effects on agonist affinity (17, 44).  

 

The most compelling results are seen for W6.48 of the D2 receptor.  A clear linear 

correlation is seen in the “fluorination plot” (figure 3.8c), establishing a cation-π 

interaction. Using the β2 structure as a guide (11, 13), one finds no cationic residues 

(Lys/Arg) within 8 Å of W6.48. Thus we propose that dopamine contains the cationic 

moiety forming the cation-π interaction with W6.48. This establishes an energetically 

significant cation-π interaction between dopamine and W6.48 of the D2 receptor.  

 

The fluorination strategy employed here has been used previously to identify 

cation-π interactions in eight different Cys-loop receptors for four different monoamine 

neurotransmitters (18). These studies have led to the conclusion that the slope of a 

fluorination plot is related to the energy of the cation-π interaction. Primary ammonium 

ions (RNH3
+), such as in serotonin and GABA, produce larger slopes than the quaternary 
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ammonium ion (RN(CH3)3

+) of ACh. Studies have established that a cation-π interaction 

is intrinsically stronger for the smaller, higher-density charge of primary ammonium ions 

vs. quaternary ammonium ions (45, 46).  

 

In the D2 receptor, the fluorination plot for W6.48 has a slope of 0.092, which is 

smaller than would be expected for an agonist with a primary ammonium group. For 

example, the primary ammonium of serotonin interacts with Trp183 in the 5-HT3 

receptor with a fluorination slope of 0.17 (34). The value for dopamine is much closer to 

that measured for the interaction between the quaternary ammonium of ACh and a Trp of 

the nAChR (0.096) (32). This suggested an alternative type of cation-π interaction for 

dopamine. Despite the typically employed symbolism (R4N+), the positive charge of an 

alkylated ammonium group is not focused on the nitrogen, but rather on the directly 

attached hydrogens or alkyl groups. The CH2 group adjacent to the ammonium of 

dopamine (the β-methylene carbon) carries a significant partial positive charge; one that 

is similar to that of the methyl groups on the quaternary ammonium of ACh (figure 3.10). 

Based on the similarity of the slopes for the fluorination plots for dopamine and ACh (in 

the nAChR), we propose that it is the β-methylene group rather than the ammonium 

group on dopamine that forms a cation-π interaction with W6.48. Such a cation-π 

interaction is, in fact, quite common. In a previous survey of cation-π interactions that 

stabilize protein secondary structure, for energetically significant cation-π interactions 

involving lysine (i.e., Lys•••[Phe,Tyr,Trp]), most structures involved the ε carbon of 

lysine contacting the face of the aromatic ring (47). 
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A binding orientation in which the β-methylene carbon of dopamine forms a 

cation-π interaction would leave the ammonium group free to hydrogen bond/ion pair 

with the highly conserved D3.32.  A geometry such as that of figure 3.11 seems quite 

plausible. A prominent role in binding for D3.32 is well established in several GPCRs 

(17, 48), and in the present work we find that D3.32E and D3.32N produced 1000- and 

3000-fold shifts in dopamine EC50, respectively. Our data thus suggest that helices 3 and 

6 jointly interact with the –CH2–NH3
+ group of dopamine.  

                               

Figure 3.10. Calculated electrostatic potential surfaces (EPS) for ACh and dopamine. 
Color represents relative electrostatic potential, with red as most negative (limit: 13 
kcal/mol) and blue as most positive (limit:178 kcal/mol). Also shown are the 
structures of each molecule, and arrows from a carbon attached to the ammonium N to 
the corresponding carbon in the eps, showing the similarities in charge. 

 



 

 

119 
 

         

 

Implications for the “Rotamer Switch” Mechanism at W6.48 

The joint interaction of the –CH2–NH3
+ group with helices 3 and 6 agrees with the 

contemporary model for receptor activation that has the extracellular portion of helix 6 

moving toward helix 3.  This movement of helix 6 is part of a “rotamer switch” activation 

mechanism (10, 15, 38-42). A key component of this model is a reorientation of the side 

chain indole of W6.48, from a perpendicular to a parallel orientation, relative to the plane 

of the membrane, as the receptor transitions from the inactive to active state. This 

conformational change is associated with straightening of a proline kink in helix 6 and 

movement of the extracellular portion of helix 6 toward helix 3 (figure 3.12). 

Figure 3.11. A hypothetical docking mode for dopamine in the D2 receptor. Shown are W6.48 (lower 
left), dopamine (center), and D3.32 (upper right). The view is very similar to that of Figure 3.2b, 
except the side chain of W6.48 has been rotated as discussed in text. The inverse agonist carazolol 
from the β2AR structure has been replaced with dopamine, which has been positioned to allow the 
hydrogen bond/ion pair interaction between the dopamine ammonium ion (blue) and D3.32 and the 
cation-π between the dopamine β CH2 (grey) and W6.48.in an orientation consistent with mutagenesis 
studies of the D2 receptor. This docking also retains the possibility of hydrogen bonding between the 
catechol hydroxyls of dopamine and the conserved serines S5.42, S5.43, and S5.46. 
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In a simple docking of dopamine into the β2 receptor structure, it is not possible 

to make the ion pair interaction to D3.32 and the cation-π interaction to W6.48 

simultaneously. In this structure, a presumed inactive form of the receptor (13), the indole 

side chain is in the perpendicular orientation (figure 3.12). We find that rotation of the 

indole side chain, with no further relaxation of the structure, does allow formation of both 

the ion pair and the cation-π interaction, as shown in figure 3.11. Thus, we propose that a 

key component of the rotamer switch mechanism in the D2 receptor is a reorientation of 

the side chain of W6.48 so that a cation-π interaction can form to the β carbon on 

dopamine. This is consistent with the fact that successive fluorination shifts dose-

response relationships for receptor function to higher agonist concentrations, suggesting 

that dopamine and W6.48 interact more strongly while the receptor is in the active, 

functional state than in the inactive state. 

 

Figure 3.12. Movements 
of TM helix VI and 
W6.48 consistent with 
the ‘toggle switch 
mechanism.’ 
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Other Residues 

The present data show that two other aromatic amino acids of the D2 receptor—

F6.51 and F6.52—do not make a cation-π interaction but are very sensitive to substitution 

(figure 3.13a-b). Data from the monosubstituted Phe derivatives suggests the sensitivity 

is at least in part due to a steric interaction more than an electronic effect. For F6.51, 

F1Phe is essentially wild type, but MePhe is significantly perturbed. Methyl is sterically 

larger than fluorine but has essentially no electronic impact when compared to the 

electron-withdrawing fluorine. For F6.52, an electronic effect can be ruled out, because 

the magnitude of the EC50 shift for the Br analog is larger than that of the cyano analog, 

which is the reverse of their electron-withdrawing effects. For both F6.51 and F6.52, 

substitution of fluorine at the 4 position had no significant effect on EC50, but adding 

fluorine to the 3 and 5 positions resulted in ~100-fold increases. The substitution of 

methyl groups led to almost 1000-fold increases. Recent structural data for the β-

adrenergic receptor are consistent with the steric sensitivity of F6.51 and F6.52: these 

residues contact each other with a specific geometry (figure 3.12).  The high sensitivity to 

the 3,5 substitutions suggests that these residues participate in an edge-to-face interaction 

and/or that rotation is highly restricted. 
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Figure 3.13. (a) Electric potential surfaces for selected Phe analogues. (b) Comparison of 
fold-shift changes to dopamine EC50 induced by incorporation of substituted Phe analogues at 
F6.51 and F6.52. 
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A completely different pattern is seen with F3.28 and F5.47 in the D2 receptor. At 

both sites cyclohexylalanine, Cha, is only minimally different from wild type. Clearly, 

aromaticity is not a critical feature of the side chains at these sites. Instead, 

hydrophobicity is probably the key determinant. 

 

Given that a large number of ACh and R-N(CH3)3
+ binding sites employ cation-π 

interactions (30, 49, 50) and the fact that position 6.48 of the M2 receptor is also a Trp, 

one might have expected to find a cation-π interaction at W6.48 of the M2 receptor. 

However, that is clearly not the case. The data of table 3.1 and figure 3.8a do not support 

a straightforward cation-π interaction at this site. Mutations at W7.40, another aromatic 

that is thought to be near the agonist binding site, produced similar data. Given the 

unusual nature of the “fluorination plots” of Figure 3.8a, we hesitate to ascribe a specific 

role to these residues.   
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3.4 Materials and Methods 

Molecular Biology  

In these experiments, the cDNA for GαoA was in a pCI plasmid, GIRK1 and 

GIRK4 were in pBSMXT plasmids, D2 receptor (human long form) and RGS4 were in 

the pcDNA3.1 plasmid, and the human M2 receptor was in the pGEM3 plasmid. Plasmids 

were linearized with the appropriate restriction enzymes (GαoA with ClaI, the GIRK 

plasmids with SalI, D2DR with XhoI, RGS4 with StuI, and the M2AChR with HindIII).  

mRNA was prepared by in vitro runoff transcription using the Ambion (Austin, TX) T7 

mMessage mMachine kit for all of the constructs except for GIRK1 and GIRK4, which 

required the T3 kits. For unnatural amino acid mutants, the site of interest was mutated to 

the TAG stop codon by standard means, verified by sequencing through both strands. 

 

Oocyte Preparation and RNA Injection (51)  

Stage V-VI oocytes of Xenopus laevis were harvested and injected with RNAs as 

described in text. Typical oocyte injection volumes were 50 nL per cell for M2 receptor 

and 100 nL for D2 receptor experiments; doubly injected oocytes received 50 and 100 nL 

injections respectively at each injection session. Synthetic amino acids, which were 

conjugated to the dinucleotide dCA and ligated to truncated 74 nt tRNA as previously 

described, were deprotected via a 1 kW xenon lamp for 5 minutes, using WG-335 and 

UG-11 filters to remove the NVOC protecting group. Injection mixture concentrations 

were typically made such that a 1:1 combination of an mRNA mixture solution and a 

volume of deprotected tRNA yielded the appropriate concentrations. Wild-type recovery 
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conditions (injecting tRNA with the native amino acid) were injected alongside mutant 

conditions to control for data variability. Misacylation was assessed at every site of 

unnatural amino acid incorporation through the injection of 74 nt THG73 ligated to dCA 

(THG73-dCA). 

 

Electrophysiology  

Oocyte recordings were made in two-electrode voltage clamp mode using the 

OpusXpress 6000A (Axon Instruments, Union City, California). Recording buffers were 

ND96 (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, 1.8 mM CaCl2, pH 7.5) 

and high K ringer (96 mM NaCl, 24 mM KCl, 1 mM MgCl2, 5 mM HEPES, 1.8 mM 

CaCl2, pH 7.5).  Solution flow rates without drugs were 2 ml/min; drug application flow 

rates were 4 ml/min for the M2 receptor and 2.5 ml/min for the D2 receptor experiments. 

Initial holding potential was -60 mV.  Data were sampled at 125 Hz and filtered at 50 Hz.  

The ND96 pre-wash lasted 10 s; the high K application for basal currents lasted 50 s; 

drug applications were 15 s in duration for the M2 receptor and 25 s for the D2 receptor; 

the high potassium and ND96 washings were 45 and 90 s in duration, respectively.  

Acetylcholine chloride and dopamine were purchased from Sigma/Aldrich/RBI. All 

drugs were prepared in sterile double distilled water for dilution into high-K ringer.  

Dose-response relations were fitted to the Hill equation, INorm = 1/(1+(EC50/A))^nH, 

where INorm is the normalized current peak at [agonist] = A, EC50 is the concentration of 

agonist that elicits a half-maximum response, and nH is the Hill coefficient.  cEC50 values 

were obtained by fitting a single cell’s INorm data to the Hill equation, while EC50 values 

were obtained by averaging the INorm values for each cell at a given dose and fitting those 
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average INorm data to the Hill equation. Statistical calculations were performed using 

Origin 7.0 (Origin Lab, Northhampton, MA), MiniTab (MiniTab, State College, PA), or 

Excel (Microsoft). 
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Developing Methods for Unnatural Amino Acid 

Mutagenesis in Mammalian Cells 
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4.1  Introduction 

Unnatural amino acid incorporation into proteins by nonsense suppression has 

been proven as a valuable tool for the study of ion channel structure-function (1-3). The 

in vivo nonsense suppression methodology (4) is particularly useful for the study of ion 

channels, but until recently, these studies have been limited to the Xenopus oocyte 

heterologous expression system. While the Xenopus system is robust, easy to work with, 

and a useful tool for many studies, there are clear benefits to expanding this technology to 

a mammalian expression system. In general such a system would provide a more relevant 

environment for many of the proteins we study, because many of them are of mammalian 

origin.  More specifically, when we wish to study receptor biology, we will be looking at 

processes such as signal transduction pathways, which are cell specific and must be 

studied in a mammalian system.   

 

Methods have now been developed that can successfully incorporate unnatural 

amino acids into channels expressed in mammalian cells (5). While this was important 

progress, they use relatively large amounts of precious reagents compared to the Xenopus 

system, and the methods are not yet robust enough for many studies we would like to 

pursue. This chapter describes efforts to further develop these methods and use them to 

study the function of NMDA receptors in mammalian cells.  

 

The NMDA Receptor 

The NMDA receptor (NMDAR) is a ligand gated ion channel gated by the 

simultaneous binding of both glutamate and glycine (6). Because the physiological 
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concentration of glycine is thought to be sufficient such that the glycine site remains 

occupied, this co-agonist will be ignored for the time being.  

 

Glutamate is a major excitatory neurotransmitter in the central nervous system, 

and its function is critical in learning and memory. Two different glutamate receptors, 

NMDA and AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid) receptors 

are often found side by side in the synapse. AMPA receptors have fast kinetics and a 

greater ability to depolarize the post-synaptic membrane.  Thus they are responsible for 

most of the excitatory post-synaptic potential (EPSP) and for the depolarization that may 

sum and trigger an action potential in the post-synaptic cell (7). NMDA receptors have 

slower kinetics and do not contribute as significantly to the electrical changes in the 

synapse, but do serve a very important function. 

 

One of the key aspects of NMDAR function is related to its ability to conduct 

Ca2+, which in turn facilitates dynamic changes in synaptic characteristics. While this 

regulated movement of Ca2+ is a key aspect of NMDAR function in learning and 

memory, excessive levels of Ca2+ are cytotoxic. There are numerous diseases that are 

believed to involve excitotoxicity and to have an underlying mechanism involving 

NMDARs (figure 4.1). 
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Stroke is one of the most common diseases associated with NMDAR function.  

During a stroke, a block in blood flow causes nerve cells to be deprived of oxygen.  

Without a way to produce ATP, these cells can no longer maintain their ion concentration 

gradients, and the membrane begins to depolarize. This depolarization increases the firing 

rate of action potentials, which causes a subsequent release of excessive glutamate at the 

axon terminals. Glutamate release activates NMDARs in postsynaptic neurons, and this 

leads to excessive calcium influx in these cells. The presence of excessive calcium in a 

cell for an extended period of time is toxic, and leads eventually to the death of the cell. 

Figure 4.1.  Mechanism of NMDAR excitotoxicity during acute CNS trauma. 
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As the cell begins to die, excessive glutamate release is triggered and activates 

downstream nerve cells. Thus a cascade occurs that can spread from the original site of 

damage and injure areas of the brain not deprived of oxygen (reviewed in (8,9)). 

 

Treatment of these conditions by targeting the NMDAR is challenging, because it 

is an endogenous protein with critical functions in the CNS. The most effective drugs 

targeting this receptor will be those that act very specifically to modulate its function.  

Thus, developing these therapies will require an understanding of subtle aspects of 

NMDAR structure and function. 

 

The particularly unique characteristic of this receptor is the third condition that 

must be met before ions can pass through the channel. At resting membrane potentials 

Mg2+ ions sit in the channel pore and block the flow of ions. Ion conduction is blocked 

even if both agonists are bound to the receptor. Removal of this blockade requires a 

depolarizing shift in the membrane potential (figure 4.2) (10)  
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Mg2+

+  -  +

-  +  - +  -  +

-  +  --  -  -

+  +  + +  +  +

-  -  -

Membrane depolarization,
release of Mg2+ block, and flow of

Ca2+ through the receptor.

Agonists bound, with membrane
potential close to resting: Mg2+

blocks flow of ions.  

The NMDA receptor is permeable to sodium, potassium, and calcium, but it is 

calcium that plays the most important role in the function of this receptor. The Ca2+ 

permeability is quite high, approximately 10-fold higher than the permeability of the 

monovalent ions. Thus, even though the physiological concentration of Ca2+ is ~100-fold 

lower than Na+, it is responsible for about 10% of the current passing through the 

channel.  

 

The NMDA receptor is essential for many aspects of learning and memory, and 

some of the characteristics described above relate directly to this function. First, the 

necessity for both agonist binding and membrane depolarization makes this receptor a 

coincidence detector (11,12). The first condition that must be met is the presence of 

glutamate, which is released from the presynaptic cell. This condition is the result of 

activity at the local synapse. The second requirement of membrane depolarization 

 
 
 
 
Figure 4.2.  
Mechanism  of 
Mg2+ block in the 
NMDA receptor.   
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however, provides a means for the receptor to detect the activity of the neuron as a whole. 

This is because it is sensitive to depolarization, which results both from the opening of 

other channels such as AMPAR, but also from back-propagating action potentials (13).  

 

The resulting influx of Ca2+ leads to the localized activation of kinases, and alters 

numerous cellular processes including the activity of AMPA receptors. These changes are 

the basis of long-term potentiation (LTP), which is a strengthening of the synaptic 

connections as a result of simultaneous firing of the pre and post synapse (14,15). LTP is 

thought to be a key step in memory formation. Figure 4.3 is a scaled cartoon that 

illustrates some of the components that are associated with this system. 

     
M. B. Kennedy

                

 

Figure 4.3. Cartoon illustration of some of the components involved in NMDA regulation and LTP. 
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NMDAR Structure 

In the presently accepted structural model, the NMDA receptor is composed of 

two NR1, and two NR2 subunits.  Each subunit of this tetramer has three transmembrane 

domains and a reentrant loop, M2, which is reminiscent of the P-loop in voltage-gated 

channels (figure 4.4) (14,15). Mutagenesis studies have revealed that several residues on 

this loop are important for Mg binding (16).  S1 and S2 form the ligand-binding domain 

S1S2.  

                    

 

The soluble S1S2 domain of the NR1 subunit (glycine binding domain) has been 

recently crystallized (17). This structure is a great source of information from which to 

begin studies of specific ligand-binding interactions. 

 

Figure 4.4.  Subunit topology of the NMDA receptor. 
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The Mg2+ binding site is interesting, from a chemical perspective, because unlike 

all other known Mg2+ binding sites, which have a highly negative character, this site is 

made of hydrophobic and polar amino acids. One can see how this would facilitate easy 

unblocking with a simple voltage shift.  The binding site is within the voltage field and is 

directly voltage dependant so block is stronger at hyperpolarized voltages. Mg2+ is able to 

move past the block site and, especially at very hyperpolarized voltages, will pass 

through the channel (15).   

 

A study by Williams et al. in 1998 (16) suggested that the block site may be 

formed by tryptophan 607, and these findings were the rational for the choice of this site 

as the subject of our initial investigations. They had shown that substitution of non-

aromatic hydrophobic residues such as leucine at tryptophan 607 increased the IC50 from 

19 µM to greater than 300 µM (16). IC50 is the concentration at half-maximal inhibition, 

therefore a larger value means that a higher concentration of Mg2+ is required to cause the 

same degree of inhibition. If the tryptophan is replaced with another aromatic residue 

such as tyrosine, the change in Mg2+ binding was minimal (16). This suggests that the 

tryptophan may bind to the Mg2+ through a cation-π interaction. In this type of 

interaction, a cation favorably interacts with the electrons from the delocalized π system 

of an aromatic ring. 

 

The most conclusive way we have to identify this putative cation-π interaction is 

through the incorporation of a series of fluorinated tryptophan unnaturals. If Mg2+ 

interacts with the π electrons of the aromatic ring, it should be possible to attenuate the 
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strength of binding by reducing the availability of these electrons. Decreasing the 

electron availability in the π system can be done using fluorinated tryptophan analogues 

as discussed in section 1.2 (figure 1.3). 

 

It was expected that incorporation of this fluorinated tryptophan series at Trp 607 

would be an ideal means to verify the success of unnatural amino acid incorporation into 

the NMDA receptor. Subsequent studies however have indicated that there is not a 

cation-π interaction at this position (18), so a different site will need to be selected if this 

project is continued.  

 

Unnatural Amino Acid Incorporation in Mammalian Cells 

We are interested in understanding structure-function relationships in ion 

channels, and the powerful tool we have to study this is unnatural amino acid 

mutagenesis. This technique allows us probe the structures of the channels with 

chemical-scale precision, and to make more subtle changes than is possible with 

traditional mutagenesis. We are interested in extending this method for use in a 

mammalian cell culture system for several reasons.   

 

There are many interesting questions regarding receptor biology that unnatural 

amino acid mutagenesis is well suited to address. However, to study a process such as a 

cell-specific signal transduction pathway, we must work within a compatible system that 

contains the relevant components and regulatory elements. For example, some of the 

most interesting questions about the NMDAR and memory involve its interaction with 
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other cellular proteins, many of which do not function in an oocyte. Many of the 

receptors we are interested in are mammalian in origin, therefore our projects would 

benefit from an ability to study receptor function in a more relevant biological context.   

There are also receptors that we would like to study, but which do not express well in 

Xenopus oocytes.  It is likely mammalian cells will also facilitate better expression of at 

least some of these difficult receptors. 

 

Important progress has been made toward our goal of expressing unnaturals in 

mammalian cells.  The first demonstration of unnatural expression was in the Nicotinic 

Acetylcholine receptor (5). This was an exciting and promising development, but the 

NMDAR was a more appropriate choice for the project. Earlier work by Sarah Monahan 

(5) demonstrated wild-type recovery nonsense suppression of the NMDAR channels in 

mammalian cells. Another study used a serine amber suppressor tRNA to recover wild-

type function in a hERG channel (19). Such accomplishments demonstrated that we are 

able to use this methodology in mammalian cells. What remained was to expand the 

method to include more cell types, and receptors, and to make the procedures more 

efficient and robust.  

 

4.2 Methods 

 

Molecular Biology 

 The genes for NR1a, NR2A, and NR2B were subcloned from pBluescript into 

pcDNA3.1 to facilitate expression in a mammalian system.  Primers were designed to 
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include sequences complimentary to the 5’ and 3’ ends of each gene, as well as overhang 

regions containing the appropriate restriction site. The NR1a and NR2A contain HindIII 

and BamHI restriction sites, while NR2B contains NheI and BamHI.  These primers were 

used to amplify the coding sequence using the gene in pBluescript as a template.  The 

PCR products were then cut with appropriate enzymes and subsequently ligated into the 

pcDNA3.1 vector (figure 4.5). The 5’ region of each gene was sequenced, and restriction 

tests performed to confirm correct incorporation. 

 

Quikchange mutagenesis (Stratagene) was used to incorporate a TAG stop codon 

at the Trp607 position in NR2B. To help with expression of the NR1a construct 

quickchange was also used to insert a Kozak sequence immediately upstream of the 

translation start site.  Because it was determined sufficient to transfect cells with DNA, 

mRNA transcription was unnecessary.  Thus, DNA was simply purified and quantitated, 

and the circular plasmid used for transfection. 

 

General Method for Nonsense Suppression in Mammalian Cells 

Mammalian cells use similar translation machinery as oocytes, and the molecular 

mechanism is basically the same, so figure 1.4 accurately describes both systems. The 

 
 
Figure 4.5.   Maps of 
two NMDAR constructs.   
NR1a and NR2B were  
placed in pcDNA3.1 to  
enhance expression in a 
mammalian system. 
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methods used to express channels in mammalian cells are different than those used in 

oocytes, but they are conceptually similar. Figure 4.6 illustrates the process in 

mammalian cells.  Along with the gene of interest and charged tRNA, a small amount of 

plasmid containing EGFP is included in the transfection mix.  This reporter gene allows 

the identification of cells that have been successfully transfected.  mRNA is included in 

the figure, but when using mammalian cells, it is sometimes sufficient to transfect DNA 

and allow the cell to transcribe its own mRNA.  

 

 

Figure 4.6.  Method of nonsense suppression in mammalian cells.  The process is similar to that in 
oocytes. Some differences include transfection via electroporation, use of GFP reporter gene, 
recording done using patch-clamp setup.  
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Several transfection techniques were investigated in our lab, and it was 

determined that electroporation was the most effective method. This now published 

method was developed by Sarah May (5). Using a custom-made microelectroporator, 

brief pulses of 120V are applied to adherent cells bathed in a concentrated mix of nucleic 

acid. Transfection efficiency is about 80% (figure 4.7), and it can deliver amounts of 

tRNA into the cells that are sufficient for our suppression experiments and single-cell 

recording.  

 

 

 

Figure 4.7. (left) 
Microelectroporator used to 
transfect adherent mammalian cells.   
(right top) Phase contrast image of 
transfected cells.  (right bottom)  
EGFP fluorescence same field of 
view. Comparison of the two images 
can estimate the transfection 
efficiency (~80%). 
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Variations in Transfection Protocols 

 

• Withdraw pipette piston when over cells. 

 

Toward More Efficiency 

• Transfect with smaller volume (just more efficient). 

• Repeat use of reagents. 

 

 

Spot, Transfect, and Split Protocol 

 

Day 1: Passage and Spot 

• Allow CHO cells to reach 90% confluency in a 25 cm2 flask. 

• Passage as usual, leaving all harvested cells in a final volume of 2 ml of F-12 

media. 

• Use remainder to make dilution(s) for spotting. 

•  On dishes intended for newly plated cells, mark a dashed circle to indicate 

approximate area to be covered by media.  

• Dilute harvested cells in media and spot ~200 µl onto the marked area of each dish, 

utilizing surface tension to minimize the spread of solution.    

• If transfection will be done in ~24 hours dilute cells to 1:8.  

• If transfection will be done in ~48 hours dilute cells to 1:16. 
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Note: To maximize humidity and minimize evaporation from the droplet, it may be 

helpful to place other drops of fresh media around the edge of the dish. 

• Carefully place dishes in incubator and wait 60-90 minutes to allow cells to adhere to 

the bottom of the dish. 

• Gently add ~2 ml of pre-warmed F-12 media to each dish. 

 

Day 2:  Transfect Cells 

• Transfect as normal, being sure to center foot of electroporator over the marked area 

where cells are present. 

•  Allow cells to recover for 2 hours in the incubator. 

Split Transfected Cells to Multiple Dishes 

• On dishes intended for split cells, mark a dashed circle to indicate approximate area 

to be covered by media.  

• Treat the spot of transfected cells with PBS and a 20 sec application of trypsin. 

• You should be able to see the opaque spot cleared away. 

•  Suspend the spot of cells in 800 µl of F-12 media. 

• Leave dish at an angle so that media drains to one side (this minimizes 

evaporation and maximizes amount of solution recovered). 

• Spot 180 µl cells onto each of 4 dishes.  

• Place dishes in incubator for 60-90 minutes to allow cells to adhere.  

• Add 2.5 mL warm F-12. 

 

Day 3:  Record 

• Replace media on the morning of recording. 
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Tissue Culture 

 CHO cells were grown in Ham’s F12 media enriched with glutamine, 10% fetal 

bovine serum, penicillin, and streptomycin. The incubator was held at 37°C and 5% CO2.  

1 to 2 days prior to electroporation, cells were plated onto culture dishes such that 

confluency was 30%–50% at the time of transfection. 

 

 

Figure 4.8.  Protocol developed to help minimize the quantity of valuable reagents used 
for each nonsense suppression experiment in mammalian cells.  The number of dishes 
each transfection is split into can be varied.   
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To minimize NMDAR-induced cytotoxicity after transfection: 

   • Antagonist and channel blocker were added to culture media: 

1 mM APV 
2 mM Mg2+. 

   • Transfections were also optimized with reduced concentrations of NR2B. 

 

Electrophysiology 

Whole-cell recordings were performed on EGFP-expressing cells using an 

Axopatch 1-D amplifier.  Cells were visualized using an inverted microscope and a GFP 

filter set with an excitation band pass of 450 to 490 nm, and an emission band pass of 500 

to 550 nm.  The setup is shown in figure 4.9.  A patch-clamp pipette technique is used to 

gain electrical access to the cell.  Patch electrodes were pulled to give a final resistance of 

2-4 MΩ. The membrane potential was held at -60 mV.  Once the correct compensation 

has been carried out, whole cell currents are recorded in voltage-clamp mode.  
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Perfusion 
Pipet

Recording
Electrode Transfected

Cell
 

 

 

Solutions of glutamate, glycine and Mg2+ were delivered using a two-barrel glass 

theta tube connected to a peizoelectric translator. Each barrel is connected to a 12-way 

manifold, which allows up to 12 different solutions to be fed into either barrel. Agonists 

were usually applied for 1 second.  

 

 

Figure 4.9.  Setup for electrophysiology recoding of mammalian cells.  Cells are patched with the 
recording electrode.  The double-barreled perfusion pipette continuously passes solution over the cell.  
Brief movement of this pipette exposes the cell to the solution flowing from the other barrel, usually the 
solution containing agonist. 
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4.3 Results and Discussion 

 

Optimization of NMDAR Expression 

The goal of this project was to work towards the optimization of the nonsense 

suppression methodology in mammalian cells, and more specifically, to develop such 

methods using the NMDA receptor. To make this method accessible to our experiments, 

it must develop to the point where it is dependable, efficient, and minimizes tedium.   

 

After a handle was gained on the technique of patch-clamp electrophysiology, we 

were able to observe glutamate-induced NMDAR currents in CHO cells, as well as the  

10 µM Glu/Gly

10 µM Glu/Gly + 300 µM Mg2+

(1 sec)

 

Figure 4.10.  Mg2+ block 
recorded in CHO cells.  
Currents were ~200 pA, 
which is relatively low 
for our purposes.  
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effect of Mg2+ block (Figure 4.10).  This was encouraging, but additional steps are needed 

to demonstrate efficient incorporation of unnatural amino acids. One difficulty we 

experienced working with this channel is its toxicity to cells. Figure 4.11 illustrates 

differences in cell health under different conditions and levels of NMDAR expression. 

We found that even in the presence of antagonist, high expression levels of this receptor 

caused cell death. Some of this is due to the receptor’s permeability to calcium, and some 

of it seems to be due to the presence of the receptor itself. To reduce this toxicity, cells 

were incubated in high concentrations of Mg2+ and antagonist, and lower concentration of 

DNA were used in the transfection mix. 

    

    

          

Figure 4.11.  Transfection with smaller quantities of NMDAR DNA reduced cell toxicity 
and is notable by the higher percentage of surviving transfected cells.  Bottom panels are 
the same field as upper panel but image GFP fluorescence. Left 2 panels: 4 µg NR1a/2B.  
Right 2 panels: 0.5 mg NR1a/2B.  
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Efficiency Optimization 

One of the significant issues we would like to address is the excessive 

consumption of reagents. Aminoacylated tRNA is a stoichiometric reagent, and its 

production requires substantial investment of both time and money. When used for 

nonsense suppression in mammalian cells, this cost becomes a more significant 

consideration because transfection consumes up to 100 times more tRNA per recordable 

cell produced.  

 

One source of this inefficiency is the nature of the transfection device and cell 

recording setup. Each electroporation performed on a dish of cells actually transfects 

more than 100 cells at the same time, but because the cells are adherent, they all remain 

on the dish during recording. Due to requirements of the experimental setup, the cells 

other than the one being recorded are unavoidably exposed to the agonist for an extended 

period and become unusable. 

 

To address this issue, methods were explored that divided the population of 

transfected cells so that recording could be performed on multiple cells originating from 

the same transfection event. The method we developed that was most effective used 

special plating techniques to divide the transfected cells, but kept them at sufficient 

density to remain healthy and easy to detect and record from. This method is outlined 

above as the “Spot, Transfect, and Split Protocol” (figure 4.8). 
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The large difference in delivery efficiency between oocytes and mammalian cells 

is due to the completely different method used to deliver nucleic acid to the cells. While 

oocytes are injected with the nucleic acid mix directly, mammalian cells are subjected to 

electroporation while bathed in a solution of concentrated nucleic acid. Only a small 

fraction of the nucleic acid actually enters the cells during the electroporation step and the 

majority of the reagents are wasted. 

 

This loss of reagent is difficult to address, while adhering to the standard 

electroporation device, but one method change was tested. We found that if the 

micropipette was aspirated very carefully, it could recover a significant amount of the 

nucleic acid solution, which could then be used in further transfections. Reuse of the 

solution produced visible fluorescence of the GFP marker in cells that had been 

transfected with solution that had been used in as many as four rounds of transfection.  

This suggests that significant quantities of DNA are carried over during subsequent 

transfections. However, GFP fluorescence is not a quantitative assay of transfection 

efficiency, so further studies would be useful to determine the effectiveness when using a 

stoichiometric reagent such as tRNA.  
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4.4 Conclusions and Future Directions 

 

This report describes the development of techniques that successfully conserve 

the precious reagents used for nonsense suppression. While electroporation was found to 

be effective, improvements can still be made if we wish to approach the efficiency of the 

oocyte method. Other methods of transfection are also being considered that may further 

enhance the efficiency of our mammalian transfections.   

 

Single cell electroporation is probably the most efficient method available 

because a very small volume of reagent is needed for each cell and little is wasted. The 

other advantage is the minimal disruption to the cell health and integrity.  Electroporation 

is performed on adherent cells, which are robust. Additionally, only a small section of the 

membrane is exposed to the electric field. The disadvantage of this method is the tedious 

nature of the method, which requires working under a microscope and maneuvering the 

pipette to the cells one at a time. 

 

Use of microfluidics is another method that could possibly be used effectively for 

transfection. This technique would allow cells and reagents to be mixed in small volumes 

before electroporation. Alternatively the system could be set up to allow for the 

electroporation of one cell at a time. If such a system could be implemented successfully, 

it has the potential to be the ideal solution. 
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Though improvements were made in the transfection and expression of NMDA 

receptors in CHO cells, robust and reproducible incorporation of unnatural amino acids 

was not demonstrated. In principle, this should be achievable once technical obstacles are 

overcome. Because recent work in oocytes has ruled out a cation-π at Trp 607, another 

site will need to be selected that can conclusively demonstrate unnatural incorporation in 

mammalian cells. 

 

Possible Directions for the NMDA Receptor 

There is now sufficient molecular data available to study agonist binding sites, 

channel gating, phosphorylation, Zn2+ inhibition, redox modulation, and nitric oxide 

modulation (14,15). Unnatural amino acid mutagenesis will be a very useful tool for 

these types of studies. 

 

One powerful demonstration of unnatural amino acid utility would be the 

incorporation of photosensitive caged compounds that can undergo deprotection of the 

caged group to unmask a phosphate or a phosphorylation site. Such compounds would 

facilitate precise control of the phosphorylation state of the NMDAR, which is believed 

to be a significant modulatory mechanism of this receptor. These receptors have long 

intracellular C-termini, especially in NR2 subunits (15), and this domain is involved in 

linking intracellular signaling pathways to NMDA receptors by harboring kinase 

phosphorylation sites (15).  

 

  Using traditional biochemical methods, it would not be easy to isolate the effects 
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of each of the many phosphorylation states of these domains, but the caged molecules 

would give us a powerful tool with which to do this. They will allow us to control the 

phosphorylation state of specific sites on the receptor, and will also allow control over the 

time at which the phosphorylation and dephosphorylation events occur, giving us a t = 0.  

We can insert a caged phospho-amino acid, decage it using visible light, and measure the 

resulting change in activity or surface expression.  Alternatively, we could begin with an 

amino acid protected from phosphorylation, decage it, and see if it is then phosphorylated 

by a kinase, and what effects this has on the system.  

 

 

 

These experiments would require the use of a mammalian expression system, 

because the effects measured would be the result of cell-specific interactions. By not 

being limited to using the Xenopus oocyte system, we will be able to expand the study of 

structure-function relationships of proteins in cell-specific signaling cascades.  Once fully 

developed, the techniques will permit the investigation of many more neuronal receptors, 

and we will be able to study them in the context of a more native environment.  

 

Figure 4.12.  
Photocleavable 
caged serine and 
phosphoserine.  
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