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Abstract

In this dissertation, we explore two particular themes in connection with the study

of games and general economic interactions: bounded resources and rationality. The

rapidly maturing field of algorithmic game theory concerns itself with looking at the

computational limits and effects when agents in such an interaction make choices in

their “self-interest.” The solution concepts that have been studied in this regard,

and which we shall focus on in this dissertation, assume that agents are capable of

randomizing over their set of choices. We posit that agents are randomness-limited

in addition to being computationally bounded, and determine how this affects their

equilibrium strategies in different scenarios.

In particular, we study three interpretations of what it means for agents to be

randomness-limited, and offer results on finding (approximately) optimal strategies

that are randomness-efficient:

• One-shot games with access to the support of the optimal strategies: for this

case, our results are obtained by sampling strategies from the optimal support

by performing a random walk on an expander graph.

• Multiple-round games where agents have no a priori knowledge of their payoffs:

we significantly improve the randomness-efficiency of known online algorithms

for such games by utilizing distributions based on almost pairwise independent

random variables.

• Low-rank games: for games in which agents’ payoff matrices have low rank, we

devise “fixed-parameter” algorithms that compute strategies yielding approxi-

mately optimal payoffs for agents, and are polynomial-time in the size of the
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input and the rank of the payoff tensors.

In regard to rationality, we look at some computational questions in a related

line of work known as revealed preference theory, with the purpose of understanding

the computational limits of inferring agents’ payoffs and motives when they reveal

their preferences by way of how they act. We investigate two problem settings as

applications of this theory and obtain results about their intractability:

• Rationalizability of matchings: we consider the problem of rationalizing a given

collection of bipartite matchings and show that it is NP-hard to determine agent

preferences for which matchings would be stable. Further, we show, assuming

P 6= NP , that this problem does not admit polynomial-time approximation

schemes under two suitably defined notions of optimization.

• Rationalizability of network formation games: in the case of network formation

games, we take up a particular model of connections known as the Jackson-

Wolinsky model in which nodes in a graph have valuations for each other and

take their valuations into consideration when they choose to build edges. We

show that under a notion of stability, known as pairwise stability, the problem

of finding valuations that rationalize a collection of networks as pairwise stable

is NP-hard. More significantly, we show that this problem is hard even to

approximate to within a factor 1/2 and that this is tight.

Our results on hardness and inapproximability of these problems use well-known tech-

niques from complexity theory, and particularly in the case of the inapproximability

of rationalizing network formation games, PCPs for the problem of satisfying the

optimal number of linear equations in Z+, building on recent results of Guruswami

and Raghavendra [GR07].
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Chapter 1

Introduction

We didn’t lose the game; we just ran out of time.

– Vince Lombardi.

1.1 Rationality and games

In this chapter, we introduce several key concepts and outline a platform that the

rest of this dissertation will be based on. We also briefly preview our results and

establish how they are related with the themes of bounded resources and rationality

in economics.

Any kind of economic interaction between self-interested agents involves them

choosing from a (possibly infinite) set of actions, or strategies, and deriving a value

from a play of every agent’s strategies. This value, or utility, is in turn based on a

set of preferences the agents may have among the set of strategies. The interactions,

also referred to as games, are best understood in an axiomatic framework in which

we are able to express a relationship between the choices agents make when playing

their strategies and the consequent utility they perceive by doing so.

Traditionally in economics, there are two schools of thought [MCWG95] in con-

nection with the appropriate axiomatic framework to opt for: a preference-based

approach wherein agents are assumed to have a partial order of preferences over the

set of strategies they can choose from, or a choice-based approach where the observ-

able quantity of interest is the actual choice behavior of the agents, i.e., the strategies

they play in the interaction. In the former case, we would need to make the assump-



2

tion that the preference relations of the agents satisfy some set of rationality axioms,

whereas in the latter case we assume that the choices satisfy some consistency axioms.

1.1.1 Rationality and self-interest

As such, the utility that an agent derives from choosing her action in response to

the other agents’ actions in the game is intrinsic to the agent and is by no means

determined solely by how she is impacted by the interaction. This means that, for

example, the agent’s utility is a non-decreasing function of both her own well-being

and that of other agents participating in the interaction, i.e., the agent is altruistic. Or

perhaps, the agent is malicious and therefore her utility is a non-increasing function

of other agents in the interaction.

We say that agents are self-interested if their utility is solely determined with

respect to their own well-being and not dependent on the utilities of other agents.

Rationality and self-interest in agents are closely inter-connected; we think of a ra-

tional agent as one whose objective is to choose actions that would maximize her

individual utility, i.e., a rational agent is interested in optimizing her own welfare.

In this dissertation, we make the important assumption that we are always working

with self-interested agents.

1.1.2 Solution concepts to reason about playing games

Fundamentally, given a game with knowledge of the agents’ preferences (and in some

cases, consequently their utility functions), and their available strategy space, we are

interested in what strategies are feasible for each agent that would ensure the “best

outcome” possible, holding down the assumption that agents are rational and, fur-

thermore that every agent has complete knowledge of the utility functions of all other

agents in addition to being guaranteed of their rational behavior. It is important to

note here that when we refer to an agent choosing a strategy from her set of strate-

gies, we are not restricting her to choose deterministically; the agent can choose to

randomize over her strategy-set and sample a strategy that is drawn from some prob-
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ability distribution over the set of all available strategies. We call such a randomized

strategy a mixed strategy.

In this respect, there have been various solution concepts that have been widely

investigated in the economics and game theory literature [FT91, Osb03]. In this

dissertation, we will principally focus on the solution concept that is most widely

used and is known as Nash equilibrium after John F. Nash [Nas51] who proposed

it. Put simply, the Nash equilibrium in a game refers to the strategy each agent

would play that would be her best response to the strategies played by all the other

agents participating in the game. In other words, any deviation from the agent’s

Nash equilibrium strategy will at best result in no increase in her utility. This notion

of no incentive for unilateral deviation is extremely powerful and is one of the many

arguments in favor of considering the Nash equilibrium because it embodies other

features like “expected” rational behavior in light of complete information of the

game1 and convergence of response to established social norms. However, what is

even more remarkable is the assertion by Nash that in every game where agents have

a finite set of strategies (i.e., finite games), there is always such an equilibrium present.

Nash’s proof for this result is based on some beautiful mathematical arguments flowing

from the existence of Brouwer fixed-point theorems in analysis [Nas51].

1.2 Computational issues in game theory

A very natural question then arises: do efficient algorithms exist for finding Nash

equilibria? It is worth observing here that for any such algorithm, there are at

least two aspects of efficiency that are of interest from a theoretical computer science

perspective: the running time of the algorithm, and the amount of randomness that is

used in order to sample the (mixed) strategies of agents. The existence of a tractable

algorithm would be of enormous significance since it would imply the ability for

computers to model rational agents and determine equilibrium behavior efficiently. At

1Bayesian game theory which concerns itself with the study of games with incomplete information
is beyond the scope of this work.
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the same time and since randomness can also be considered a bounded computational

resource, it is desirable that such algorithms use very little or no randomness.

We stress here that there is a distinction between the two aspects of efficiency:

while the former pertaining to the tractability of finding Nash equilibria speaks to the

hardness inherent in the problem, the latter implicitly assumes that the equilibrium

mixed strategy is already available, albeit over a large support and therefore requiring

to be optimized in terms of randomness.

1.2.1 PPAD completeness of finding Nash equilibria

Given the importance of time-efficiency in algorithms, it would not be unreasonable to

assert that the complexity of Nash equilibria has been one of the pivotal questions that

has fueled the growth of algorithmic game theory as a separate field of study within

theoretical computer science over the last decade. There is an important distinction

however; the class of NP is not the appropriate class to use in looking at the complexity

of finding Nash equilibria, exactly because a Nash equilibrium always exists in finite

games. To this end, Papadimitriou [Pap94] introduced a class of problems called

Polynomial Parity Argument (Directed), abbreviated to PPAD, which captures the

specific properties of the solution space of Nash equilibrium problems. An instance

of the canonical problem in the PPAD class consists of an input which is a directed

graph on an exponentially large set of vertices V (succinctly encoded in n bits) such

that each vertex has in-degree and out-degree at most 1, and there is at least one

vertex with out-degree 1. We call such a vertex that has in-degree 0 a source and

correspondingly a vertex that has out-degree 0 a sink. A solution to this instance is

to find a vertex that has in-degree 1. Note that a simple graph-theoretic property –

a directed graph with a source must also have a sink – implies that such a vertex is

guaranteed to exist.

This is the correct class of problems to be considering Nash equilibria complexity

questions for other reasons as well; Papadimitriou [Pap94] showed that the problem of

finding a Brouwer fixed point of a function on a compact set is complete for the PPAD
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class. This was followed by a string of results [DP05a, GP06, DGP06] ultimately

culminating with Chen and Deng [CD05] showing that even in the case of 2-player

games, finding a Nash equilibrium is PPAD-complete. To be sure, conjecturing that

PPAD 6= P is a much weaker statement than P 6= NP. Nonetheless, it does not diminish

the significance of the results above which say that finding a Nash equilibrium, even

in two-player games, is as hard as finding a Brouwer fixed-point (notably, the latter

problem has evaded a positive resolution thus far).

1.2.2 Approximate Nash equilibria

This leads us to ask how hard it is to find approximate Nash equilibria. We define

an ε-approximate Nash equilibrium strategy in the additive sense (Our discussion

of approximate equilibria in this dissertation is confined to additive equilibria, and

subsequently, for this definition to work we assume that payoff matrices of players

have values in [−1, 1]) to be one that, when played by an agent in response to the

ε-approximate Nash equilibrium strategies of all other agents, achieves a pay-off that

is at most ε away from the Nash equilibrium pay-off.2

Chen et al. [CDT06] showed that finding ε-approximate Nash equilibria is also

PPAD-complete for ε inverse-polynomial in n. Tsaknakis and Spirakis [TS07] showed

an algorithm that produced a 0.34-approximate Nash equilibrium, but the question

of whether there is some ε such that finding approximate Nash equilibria for any

fixed ε′ < ε is PPAD-hard (or conversely, whether there is a PTAS for finding Nash

equilibria) remains a fascinating open problem in need of resolution.

1.2.3 Randomness as a computational resource

Randomness has been widely studied within theoretical computer science, alongside

time and space, as a computational resource that is limited in availability. This carries

over to game theory as well; agents in implementing their mixed strategies must rely

on a random sample from their pure strategy-space.

2This is a weaker notion of approximate Nash equilibrium.
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One motivation for studying the time-efficiency of finding Nash equilibria was be-

cause we could envision computers simulating agents in these economic interactions,

and therefore a handle on the tractability of algorithms that are used was necessary.

For that same reason, and given the fact that pure randomness as a computational

resource is limited, exploring issues concerning randomness-efficiency of these algo-

rithms assumes commensurate significance.

The study of the power (or lack thereof) of randomness in algorithms is a richly

mined field with many important results and we refer the interested reader to a survey

of the same [Tre06]. Indeed, this additionally motivates the need to understand and

determine if many of the powerful tools and techniques from derandomization can

carry over mutatis mutandis into the domain of algorithmic game theory.

In this dissertation, we embark on a study of randomness as a computational

resource to be optimized in playing games. We provide some interpretations of what

it means to play games when agents are constrained in their use of randomness and

subsequently give algorithms for finding (approximate) equilibrium strategies with

these limits in place.

1.2.4 Computational issues in revealed preference theory

The discussion on limited randomness in playing games constitutes the first part

of this dissertation, and is premised on assumptions about rationality and explicit

knowledge of agents’ preferences. In the second part of the dissertation, we look at

the computational questions pertaining to when we no longer have access to these

preferences and are only privy to their implications by way of the choices they make

and strategies they play.

Revealed preference theory has been well-studied within economics [Sam48, Afr67,

Die73, Var82, FST04]. Our contribution in this part is towards investigating revealed

preference theory from a computational perspective and we refer to this as com-

putational revealed preference theory. The broad theme that underpins this is the

following: given a dataset of observations made of agents’ choices (strategies played),
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how hard is it computationally to:

1. infer and explicitly construct the underlying preferences that guide them to

make these choices?

2. invalidate agents’ choices as inconsistent with any preference relation?

1.2.4.1 Two perspectives from computer science.

There are at least two perspectives from theoretical computer science that we can

suggest as components of computational revealed preference theory. We can think

of the problem described above as a decision problem: do there exist preferences

(utility functions) for all agents consistent with the choices observed in the given

input? We say that such a preference relation, if it exists, rationalizes3 the given set

of observations. Outside of a natural interest for computer scientists to study them,

there is motivation within economics also to study the complexity-theoretic questions

relating to revealed preference problems. Deb [Deb08], in looking at the efficiency of

rationalizability problems in a collective-household model, argues that determining

the computational complexity of problems in revealed preference theory is of great

value to empirical economists who design the experiments yielding data on consumer

behavior.

At the same time, this is also a learning problem: we are interested in learning

the preferences of agents that would be implied from a dataset of choices if agents

were assumed to make those choices rationally and with the objective of maximizing

their utility. Beigman and Vohra [BV06] looked into the PAC-learnability of revealed

preferences in general. While we focus only on the complexity-theoretic approach to

understanding revealed preference in this dissertation, we believe that the machine-

learning angle is equally relevant and important to provide a better and more complete

picture of ‘rational’ behavior in an economic setting.

We note here that some classes of data cannot always be explained, or rational-

ized by simple (say, linear) utility functions, or even any other “reasonable” class

3Note that our use of the term rationalizability is different from the standard game-theoretic
notion (cf. pp. 50, [FT91]).
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of utility functions. Such settings are interesting to economists, because it be-

comes possible then, in principle, to “test” various assumptions (e.g., that the play-

ers are maximizing a linear utility function). Several (classical and recent) results

[Afr67, Var82, FST04, Ech08] in the economic literature establish criteria for when

data is always rationalizable, thus delineating the limits of the “testable implications”

of such data.

There is an important role for theoretical computer science in these questions, as

the feasibility of performing such tests depends on being able to answer the rational-

izability question efficiently. In other words, given a type of economic data, and a

target form for an “explanation” (preference profile, a class of utility functions, etc.),

we wish to understand the complexity of deciding whether the data can be rationalized

by an explanation of the prescribed form. To our knowledge these sort of problems

have not been studied before. Polynomial-time algorithms to infer preferences for

choices made at equilibrium would imply that the process of learning and predict-

ing rational behavior as defined for such settings is itself an efficiently computable

phenomenon. This could have consequences, for instance, in problems where we are

given a dataset about observed choices and are required to use it to predict future

choices that agents would make given a different environment.

We will briefly describe below a few problems in computational revealed preference

theory that we make contributions to in this dissertation. Broadly, any such problem

will have the following attributes: a dataset that is a record of a number of interactions

where agents have expressed a choice (strategy) in each such interaction, a particular

solution concept (notion of stability) that is assumed to be in play in each interaction,

and an unobservable quantity (typically, the utility function of the agents). We are

required to infer this unobservable quantity that rationalizes the dataset.

In certain classical settings [Afr67], rationalization amounts to solving a linear

program, and so it is immediately seen to be easy. Other settings have a more

combinatorial feel, such as rationalizing matchings or network formation games, both

of which we study in this dissertation.

In the remaining sections in this chapter, we will describe briefly our results per-



9

taining to the topics discussed above. In Section 1.3, we describe our results on

algorithms for agents playing games with restricted access to randomness. In Section

1.4, we look at the problem of rationalizability of matchings and in Section 1.5, we

continue our analysis of computational revealed preference theory into the problem

of rationalizability of network formation games.

1.3 Results on games with randomness-limited agents

As mentioned earlier, the trend of results in algorithmic game theory has been on

investigating the limitations of the time-efficiency of algorithms for finding Nash equi-

libria and, with the possible exception of work by Lipton et al. [LMM03], there has

not been a concerted effort to understand their randomness-efficiency. We offer some

results in this direction in three separate settings.

1.3.1 Games with sparse-support strategies

In the first case where agents are playing a mixed strategy by sampling strategies

from a probability distribution over their pure strategy set, e.g., by tossing a fair

coin, we seek to reduce the randomness required. We consider the model of repeated

zero-sum two-player games which are games played by agents over multiple rounds.

In these games, players are not aware of their optimal strategies (e.g., games with

incomplete information where players have limited access to their payoff matrices) and

are required to learn them as they play strategies iteratively. This is an extremely

powerful framework and is used most frequently to discuss online algorithms.

For these games, the amount of randomness that is required to play strategies at

each round is at a premium. Freund and Schapire [FS99] proposed a multiplicative-

weight adaptive algorithm for the case of two-player zero-sum repeated games that

achieves an expected pay-off at most O(
√

logn
T

) away from that of the optimal mixed

strategy over T rounds and n strategies. From a randomness-efficiency perspective,

this algorithm is sub-optimal because it involves sampling strategies from the entire

set of n strategies for each round, leading to O(T log n) random bits used. Applying
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insights from pseudorandomness, we show that using almost-pairwise independent

random variables in lieu of fully independent random variables suffices for a small

tradeoff in the expected payoff. Indeed, we show that we can make do with O(log n+

log log T + log(1/ε)) purely random bits in order to obtain a strategy whose payoffs

is at most O(ε) away from that of the Freund-Schapire strategy.

For a restricted class of two-player single-round games known as zero-sum games,

where the pay-offs for any pair of agents’ strategies sum to zero, Lipton and Young

[LY94] showed that for an agent with n strategies a random sampling of O(log n/ε2)

strategies from a given Nash equilibrium strategy sufficed to obtain an ε-Nash equi-

librium. Lipton et al. [LMM03] subsequently relaxed the assumption on the pay-off

structure for the agents. In this dissertation, we improve these results in two ways:

firstly, we completely derandomize the algorithm by giving a deterministic sparsifi-

cation procedure. We do so by using the well-known technique in pseudorandomness

of performing a random walk on an expander graph. We are also able to extend

our result easily to games with more than two agents and show a similar sparsifica-

tion procedure that obtains an approximate Nash equilibrium strategy with support

O(` log n/ε2) for a game with ` players.

The significance of our improvements to these two problems lies in the fact that

they can be used orthogonally to each other and therefore allow us to optimize on the

use of randomness further. Therefore, in a scenario where agents are looking to play

sparse strategies in a repeated game and are given access to the Nash equilibrium

support in each round, we can use our first result to optimize on randomness used

across rounds and our second result to optimize on randomness used within a single

round.

1.3.2 Unbalanced games

In the second setting, we consider what happens when agents have asymmetrically

populated pure strategy sets. We call such games unbalanced. For example, imagine a

game where one player has access to n strategies whereas the other player’s strategy
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set is k << n. In a sense, we can think of the latter player as perhaps being prevented

from choosing large-support strategies because of limited access to randomness. How

does this affect the other agents? Lipton et al. [LMM03] showed that for two-player

games in which one player has only k << n strategies to choose from while the other

has access to a full complement of n strategies, there exists an exact equilibrium

strategy for the latter player in at most (k+ 1) strategies. This means that while one

player needs log k random bits to play her strategy, the other would need log(k + 1)

random bits to play his.

We improve on this slight asymmetrical bias and show using similar techniques

(involving application of a constructive version of Carathéodory’s theorem) that given

an equilibrium strategy for the player, there exists a deterministic polynomial-time

algorithm to compute another equilibrium mixed strategy with support size k. While

this result is perceivably less significant than our other results, it does lend insight

on the role that randomness plays in agents choosing their equilibrium strategies.

1.3.3 Games of small rank

In the third setting in which we look at limited randomness in games, we consider

low-rank games which we define to be games where the payoff matrices (can be

higher-dimensional tensors) have small rank, say k << n. This manifestation of

limited randomness is perhaps less explicit than in the other two frameworks we in-

vestigated above; intuitively, games with low-rank payoff matrices are a generalization

of the other games we have seen before where the strategy spaces were sparse, and

subsequently the payoff matrices had small rank.

Kannan and Theobald [KT07] considered another variant of low-rank games, in

which the sum of the payoff matrices of the two players has small rank. In this setting,

they gave an algorithm for computing approximate equilibria that is polynomial in

the number of strategies and payoff range as long as the rank is fixed. However,

their approach does not scale easily when the rank is specified as an input parameter

to the algorithm. Specifically, the running-time of their algorithm is polynomial in
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nk, 1/ε, B where B translates to the number of bits of precision required to capture

all the payoff values in the input matrices.

Our algorithm requires some ground assumptions that are not hard to justify. In

particular, we assume that the payoff matrices of rank k are given in their decomposed

form, where each decomposed matrix has entries lying within some range parameters

[−B,B]. We contend that this is a setting common enough to capture a large class

of games that model real-life scenarios, and we demonstrate by way of an example

that some congestion games can be represented in this manner.

In this framework, we realize a “fixed-parameter” algorithm to compute approx-

imate equilibria, i.e., polynomial in the number of strategies and some function of

the rank and B in the worst case. We extend this to the general `-player game and

derive approximate equilibria that are also “fixed-parameter” in the sense as before.4

To the best of our knowledge, our result is the first-ever that achieves this notion

of tractability in this particular model. We believe that our approach in obtaining

these results has the potential to be replicated even in general games with the view

to finding strategies for approximate equilibria.

1.4 Results on rationalizability of matchings

Among rationalization problems, one can identify at least two broad classes of prob-

lems. Some, such as inferring utility functions from consumption data, are rather

easily solved efficiently using linear programming [Afr67, Var82]. Others are more

combinatorial in nature, and their complexity is not at all obvious. One recent exam-

ple is the problem of inferring costs from observations of spanning trees being formed

to distribute some service, say power [Özs06].

Among the combinatorial-type rationalization problems, one of the most natural

is the matchings problem that we study in this dissertation. Here we are given a

set of bipartite matchings, and we wish to determine if there are preferences for the

4Kannan and Theobald’s result, by nature of the algorithm they use, appears to be confined to
work only for the two-player setting.
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nodes under which all of the given matchings are stable. Matchings, or more precisely

“two-sided matching markets,” are a central abstraction in economics, investigated in

relation to the similar “marriage models” in auction and labor markets [RS90, Fle03,

EO04, EY07] and from the point of view of mechanism design [Sön96] and related

strategic issues [STT01]. At the same time, they are also a fundamental combinatorial

abstraction from the computational perspective.

The simplest setting is the one-to-one model in which we are given two sets of

agents, denoted “men” and “women.” A matching then is a pairing between an agent

from the set of men and an agent from the set of women. Each agent has an ordering

that dictates his/her preferred partners. Given these orderings for all agents, the

stable marriages problem is to find a pairing of all agents such that for every pair of

agents not matched to each other, at least one of the agents in the pair prefers their

current partner over the other agent (we refer to such pairs as non-blocking pairs).

The revealed preference problem mentioned above was first investigated by Eche-

nique [Ech08] who asked if it was possible to characterize what preference orderings

can be implied by a given dataset of matchings between men and women. Echenique

gave necessary and sufficient conditions that would need to be satisfied by preference

orders that rationalize a set of matchings.

Our contribution in this dissertation is to show that the problem of inferring

rationalizable preference profiles is NP-complete. We also take up the hardness of

approximation question for this class of problems, when no set of preferences exists

that rationalizes all the matchings. Here, two competing notions of optimality for

rationalizing a collection of matchings present themselves. In the first instance, our

objective is to maximize the number of matchings whereas in the second instance,

we are interested in maximizing the number of non-blocking pairs. We show that in

either case, the problem is hard to approximate to within a constant factor. By way

of an upper bound, we give a trivial 3/4-factor algorithm for the case of maximizing

the number of non-blocking pairs.
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1.5 Results on rationalizing network formation games

We turn our attention next to the rationalizability of network formation games. Net-

work formation games have been extensively studied [WF94, Jac08] and there have

been many solution concepts proposed [Chw94, DM97, JW96, DJ00, HM02, Jac03,

Dem04, CAI04, Fer07]. These games are meant to capture a number of real-world

scenarios such as the World Wide Web, social networks (e.g., Facebook, MySpace,

LinkedIn), the Internet topology and so on.

Jackson and Wolinsky [JW96] proposed a “symmetric connections” model of net-

work formation in which agents wish to form “connections” with other agents and

must pay a price for each direct edge they choose to build. The choice of edges an

agent builds constitutes her strategy. Any path between two agents has an associated

latency. The requirement is that the resulting graph be connected, so that there is

a path between any two agents. In addition, each agent, say Alice, has an “intrinsic

value” for every other agent, say Bob, in the game which maps how important a path

to Bob is for Alice. The utility accruing to an agent from the network formed takes

into consideration the intrinsic values of all other agents in the network weighted by

some measure of the latency of the respective paths, as well as the prices the agent

must pay for building edges in her strategy.

The allied notion of stability for this game is pairwise stability wherein an edge

present in the network is stable if the marginal utilities of the vertices involved in

the edge are both non-negative, and an edge absent in the network is stable if the

marginal utility of at least one of the vertices involved is non-positive.

There is considerable motivation to be looking at this class of problems from

a sociological and economic perspective. These networks are common in day-to-

day life among groups of people who ascribe a certain value (‘friendship’) to one

another but establish connections with only those that they perceive to be most

intrinsically valuable to them. If, for instance, everybody in the group was in close

physical proximity to one another (they all went to the same high school or college)

then the cost of connecting to any one person is insignificant compared to the value
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derived in return, no matter how small that may be. This would result in a clique

as a stable network. However, once this group becomes geographically spread out,

the network formed in ‘equilibrium’ can become sparser, such as a star network,

where all connections are made to a single person since the cost of building mutual

connections outweighs the utility. This illustrates that, holding the intrinsic value

people in such a group have for one another to be invariant, temporal and spatial

dynamics significantly affect the manner of how social networks coalesce and stabilize.

In this setting the observer cannot be expected to have access to the actual intrinsic

value of each of the individuals in this group which are privately held beliefs. We are

then confined to being able to observe the choices they make in who they choose to

form connections with. Suppose we are given a series of snapshots taken over time of

a single social network of individuals (when they are in equilibrium), it is therefore

natural to ask whether it is possible to infer the valuations of individuals on the basis

of their choices.

1.5.1 Results on rationalizing Jackson-Wolinsky network for-

mation games

The prologue above sets us up for considering two different revealed preference prob-

lems that surface in connection with the Jackson-Wolinsky games. In the first case,

denoted stable-prices, we assume that we do not have access to the prices agents

must pay for the edges they choose to build and must infer a set of prices for all

edges such that each edge is stable for the given dataset. The motivating rationale

for this scenario is the setting of truthful mechanisms where the agents reveal their

valuations by bidding them but it is not known what prices they are paying for the

edges they build at equilibrium. Incidentally, for network formation games that we

consider, this turns out to be an easy quantity to infer (when there exists a consistent

set of edge-prices); each edge-price is determined exclusively by the two agents that

the edge connects and therefore can be ascertained independently of one another.

In the second case, denoted stable-values, we have no access to the intrinsic
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values agents have for one another and are required to infer them based on the

observed dataset of networks formed. We show that stable-values is NP-complete.

The reduction for this problem is from a variant of inequality-satisfiability problems

originally formulated by Hochbaum and Moreno-Centeno [HMC08], that we call i-

sat∗ (we show by a reduction from 3-sat that i-sat∗ is NP-complete). An instance

of the inequality-satisfiability problem comprises a conjunction of inequality-clauses

where each inequality-clause is a disjunction of linear inequalities over unknowns

x1, . . . , xn drawn from the reals. The i-sat∗ problem instance satisfies two additional

constraints: (1) all of the coefficients in the inequalities are non-negative (and we are

seeking a solution only in the non-negative reals), and (2) there is a partition of the

variables into two sets S, T such that every inequality-clause is either the disjunction

of two ≤ inequalities, one supported in S and one supported in T , or a conjunction

of two ≥ inequalities, one supported in S and one in T .

1.5.2 Hardness of approximation

Turning to the hardness of approximation for rationalizing network formation games,

we first take up the stable-prices problem when no consistent set of edge-prices

exists to rationalize all the matchings in the dataset. The objective would be to

maximize the number of edges that are stable with respect to the given dataset. This

optimization problem is also tractable and the algorithm follows along the lines of

the one used to solve the stable-prices problem.

The optimization problem for stable-values however is more intricate to reason

about. The notion of optimality here is to maximize the number of stable edges/non-

edges across all graphs given. We show that this problem is hard to approximate

beyond (1/2 + ε) (and this is tight). Our proof for this result is based on showing

a hardness of approximation result for the problem max-linR+ (and subsequently

i-sat∗). Given a collection of linear equations over a set of unknowns and with

co-efficients drawn from R+, the max-linR+ problem asks to maximize the number

of equations that can be satisfied with the solutions over R+. For this, we must
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rely on sophisticated techniques inspired from similar inapproximability results for

max-linFp (H̊astad [H̊as01]) and max-linR (Guruswami and Raghavendra [GR07]).

Our hardness results for stable-values offer an interesting and potentially pow-

erful connection between revealed preference problems and inequality-satisfiability

problems. We contend that inequality-satisfiability problems are the abstract com-

putational class that captures rationalization problems more generally; the “stability

conditions” arising in a rationalization problem can be expressed by a finite Boolean

formula whose inputs are inequalities in the (real) quantities being inferred. This

is true, for instance, also for the matchings problem (the quantities being inferred

are the values each “man” has for each “woman,” and the stability condition for a

non-blocking pair can be expressed as the disjunction of two inequalities involving

these quantities).

1.6 Outline

We give an outline of the rest of this dissertation. Chapter 2 provides the background

and context for the results discussed in this dissertation. Briefly, it goes over previous

work in algorithms for playing games with small strategies, and introduces both

an economics and a computational perspective to topics and questions in revealed

preference theory.

Chapter 3 covers our results on playing equilibrium strategies for randomness-

limited agents. We look at three specific settings in which these constraints are

imposed and provide algorithms in each setting for obtaining approximate equilibria.

The contents of Chapter 3 are largely based on work done with Umans [KU07].

Our foray into computational revealed preference theory begins with Chapter 4

in which we look into the complexity of rationalizability of matchings. We discuss

our results both in terms of hardness and inapproximability of the problems. We

first start by reviewing rationalizability as a topic deserving of further investigation,

and subsequently review Echenique’s work [Ech08] on which we base our results. The

contents of this chapter are based on work done with Umans [KU08].
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In Chapter 5, we continue with looking at these issues in the context of network

formation games. We review in detail the Jackson-Wolinsky model and introduce

the notion of pairwise stability. We consider the two revealed preference problems

mentioned above and provide positive and negative results for the two problems re-

spectively. The contents of this chapter are based on a paper with Umans [?].
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Chapter 2

Background

In this chapter, we will establish the background necessary for discussing our

results in this dissertation.

2.1 Computational issues in game theory

2.1.1 Nash equilibrium and the PPAD class

Game theory, ever since its inception in the 50s by Morgenstern and von Neumann

[MvN44], and the result on existence of equilibria in finite games by Nash [Nas51],

has played a seminal role in the formalization of economics. The following definition

of a game is well-known and is borrowed from Fudenberg and Tirole [FT91]:

Definition 2.1.1 Game: A game G in strategic form has three elements: a set of

players labeled P = (1, . . . , `), a pure strategy space Si for i ∈ P, and payoff functions

ui : ×jSj → R that give the utility ui(s) for player i when a strategy profile, i.e., an

`-tuple s = (s1, . . . , s`) is observed to have been played with si played by player i.

For this dissertation, we will restrict our focus only to games in which Si are

discrete sets. Before we introduce Nash equilibria and Nash’s result on their existence,

we must define mixed strategies:

Definition 2.1.2 Mixed strategy: Given a pure strategy space Si for player i, a

mixed strategy σi is a probability distribution over Si.
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In other words, a mixed strategy is a randomization over pure strategies in Si

(and trivially, a pure strategy is a mixed strategy with support of size 1). For the rest

of this section, wherever it is clear, we will assume that a strategy refers by default

to a mixed strategy. We denote ∆(Si) to be the set of all strategies σi with support

in Si. The payoff for a mixed strategy σi is then simply the expected payoff over the

joint distribution of the σi for each Si. Given a strategy profile σ = (σ1, . . . , σ`), we

will use the shorthand σ = (σi, σ−i) where σ−i denotes the profile of strategies over

players j 6= i. We define a Nash equilibrium as follows.

Definition 2.1.3 Nash equilibrium: For a game G, a strategy profile σ∗ is a Nash

equilibrium if, for all i ∈ P:

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ
∗
−i) for all σ′i ∈ ∆(Si)

For a player i, given a strategy profile σ−i we will call a strategy σi i’s best response

to σ−i if:

ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ′i ∈ ∆(Si)

.

The following characterization is useful for some results we obtain in Chapter 3.

Theorem 2.1.4 For any player i, given a mixed strategy profile σ−i, a mixed strategy

σi is a best response to σ−i if and only if all pure strategies in the support of σi are

each a best response to σ−i.

Proof. Let σi be a best response to σ−i. This implies that there is at least one pure

strategy that is a best response to σ−i since the payoff on playing σi is nothing but

an expectation over the distribution of pure strategies in the support of σi (holding

down σ−i). Suppose now that there is some strategy s in the support of σi which is

not a best response to σ−i. Then, the strategy obtained by shifting the probability

weight from s to a pure strategy that is a best response to σ−i is strictly better than

σi against σ−i which contradicts the assumption that σi is a best response.
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To show the converse, suppose every pure strategy in the support of σi is a best

response to σ−i. Let σ′i be an arbitrary best response to σ−i. Since each pure strategy

s in the support of σi is a best response to σ−i,

ui(s, σ−i) = ui(σ
′
i, σ−i)

for all s in the support of σi. Therefore, σi, which is a positive convex combination of

terms in the left-hand side of the above equation is also a best response to σ−i.

Theorem 2.1.5 (Nash [Nas51]) Every finite strategic-form game has a Nash equi-

librium.

As mentioned earlier, Theorem 2.1.5 is a seminal result and laid the foundations

of game theory and its proof uses arguments flowing from existence of Brouwer fixed-

point theorems, which is beyond the scope of this dissertation.

With the existence established, we are ready to look at the computational issues

connected with Nash equilibria. Megiddo and Papadimitriou [MP91] argued easily

that NP is not the correct complexity class to look at in considering the problem of

finding a Nash equilibrium, denoted Nash. In general, by virtue of guaranteed exis-

tence of an equilibrium in finite games, Nash falls under the realm of an “umbrella-

class” called TFNP, or Total Function Nondeterministic Polynomial-time which we

define as the class of function problems that, for an input x and a polynomial-time

computable predicate P (x, y), output a y satisfying P (x, y). Such a y is guaranteed

to exist for all inputs x.

Papadimitriou [Pap94] defined a subclass of problems in TFNP, Polynomial Parity

Argument Directed (or simply PPAD), which is informally defined as the set of all

total functions for whom the existence is guaranteed by the following graph property:

in a directed graph in which all vertices have indegree and outdegree at most 1, if there

is a source (i.e., vertex with indegree 0) then there must exist a sink (i.e., vertex with

outdegree 0). Daskalakis [Das08] provides a more formal circuit-based description for
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PPAD; it is the set of all function problems that are polynomial-time reducible to the

following canonical problem:

end of the line: Given two circuits S and P each with n input bits and n output

bits, such that P (0n) = 0n;S(0n) 6= 0n, find an input x ∈ {0, 1}n such that

P (S(x)) 6= x or S(P (x)) 6= x and x 6= 0n.

Papadimitriou [Pap94] first showed that a number of function problems involv-

ing finding topological fixed points such as Brouwer, Sperner, etc. are PPAD-

complete and conjectured that Nash was also PPAD-complete (at least for greater

than 2 players). A string of results due to Daskalakis, Goldberg and Papadimitriou

[DP05b, DGP06] established that 3-Nash, i.e., finding a Nash equilibrium in 3-player

games, was PPAD-complete. This hardness result was subsequently strengthened to

2-Nash, or simply Nash, being PPAD-complete by Chen and Deng [CD05].

2.1.2 Finding approximate Nash equilibria

Given the results above, and assuming PPAD 6= P, the next best thing we can hope

for is efficient algorithms for finding approximate Nash equilibria. The most standard

notion is that of additive approximate Nash equilibria, and unless explicitly men-

tioned, all the approximate Nash equilibria that we describe in this dissertation are

by default additive Nash equilibria. We will also assume that the payoff functions are

scaled to lie in [0, 1]:

Definition 2.1.6 ε-approximate Nash equilibrium: For a game G among `

players all of whose payoff functions take values in [0, 1], a mixed-strategy profile

(σ∗1, . . . , σ
∗
` ) is an ε-approximate Nash equilibrium if for every i:

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i)− ε for all σi ∈ ∆(Si).

We could hope for a polynomial-time approximation algorithm for finding Nash

equilibria for arbitrary ε, but Chen et al. [CDT06] showed that finding ε-approximate
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Nash equilibria remains PPAD-hard for ε inverse-polynomial in the number of strate-

gies n. Whereas a number of positive and negative results are known for fixed ε,

the question of whether there exists an ε∗ such that finding an ε-approximate Nash

equilibrium is hard for all ε ≤ ε∗ remains open. That is, the existence of a PTAS for

finding Nash equilibria remains an open problem.

2.2 A brief overview of revealed preference theory

2.2.1 Historical context

The origins of revealed preference theory in economics are in consumer behavior

theory. Revealed preference theory was originally proposed as a mathematical model

in economics by Samuelson. In his Economica paper [Sam48], Samuelson gives a

pithy description of the theory:

The central notion underlying the theory of revealed preference, and in-

deed the whole modern economic theory of index numbers, is very simple.

Through any observed equilibrium point, A, draw the budget-equation

straight line with arithmetical slope given by the observed price ratio.

Then all combinations of goods on or within the budget line could have

been bought in preference to what was actually bought. But they weren’t.

Hence, they are all “revealed” to be inferior to A. No other line of reason-

ing is needed.

In other words, in a two-goods economy where a particular equilibrium is observed

characterized by a pair P of goods consumed in quantities x1, x2 and at prices p1, p2

respectively, it must be the case that such a pair must be ‘preferred’ to any other pair

P ′ of goods at the same price that cost at most the same as (p1x1 +p2x2). We denote

this by P � P ′ where the binary relation � is called a preference relation. By dint of

choosing goods at equilibrium point (x1, x2) at prices (p1, p2) respectively therefore,

the consumer is revealing such a preference for P over P ′ even though acquiring P ′



24

would also satisfy the budget. This is expressed mathematically as the Weak Axiom

of Revealed Preference:

Definition 2.2.1 Weak Axiom of Revealed Preference: Given a set of m goods

and two consumption vectors x = (x1, . . . , xm),y = (y1, . . . , ym) consumed at price

vectors p = (p1, . . . , pm) and p′ = (p′1, . . . , p
′
m) respectively, if x � y then

∑
piyi ≤

∑
pixi ⇒

∑
p′iyi <

∑
p′ixi

Informally, the Weak Axiom of Revealed Preference postulates that if a bundle of

goods x is preferred to y, then if y was affordable at the price vector p it cannot be

the case that x was affordable at the price vector p′. If it was, then x would have

been consumed at p′ because it is preferred to y.

This axiom however only relates to the case when it is known that x � y, i.e.,

when the ordered pair (x,y) is in the relation �. The Strong Axiom of Revealed

Preference relates to the transitive closure of a preference relation �, denoted �S. To

wit, for two bundles of goods x,y, we say that x �S y if there exist some intermediate

bundles t1, . . . , tn such that x � t1, t1 � t2, . . . , tn � y.

Definition 2.2.2 Strong Axiom of Revealed Preference: Given two vectors

x = (x1, . . . , xm),y = (y1, . . . , ym) each of m goods consumed at price vectors p =

(p1, . . . , pm) and p′ = (p′1, . . . , p
′
m), if x �S y then

∑
piyi ≤

∑
pixi ⇒

∑
p′iyi <

∑
p′ixi

Note that under both such axioms, the consumer is expressing a preference im-

plicitly for one bundle of goods over another even though the latter may be within her

budget constraints. Therefore, revealed preference gives a partial description of the

choice function the consumer is using to maximize her (unobservable) private utility

function.

Subsequent work in revealed preference theory followed on Samuelson’s ideas to

generalize them even further. In particular, Houthakker [Hou50], Richter [Ric66]
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and Uzawa [Uza60] established deep connections between revealed preference theory

and general consumer demand theory, and Hurwicz and Richter [HR71] showed that

preference relations and choice functions could interchangeably be constructed from

one another as long as they satisfied a set of axioms.

Samuelson [Sam47] showed that given a choice function that satisfied the Weak

Axiom of Revealed Preference in addition to some other continuity properties, it is

possible to construct a continuous, quasiconcave utility function that the consumer

is assumed to maximize. Houthakker [Hou50] extended this result to construct a

utility function when the demand function satisfied the Strong Axiom of Revealed

Preference.

2.2.2 Preference relations and utility maximization

Having introduced the axioms of revealed preference and preference relations in the

previous section, and having briefly touched on rationality earlier in Chapter 1, we

now seek to tie the two concepts together. The following definition of rationality of

preference relations is standard and is quoted from Mas-Colell et al. [MCWG95].

Definition 2.2.3 Rationality: A preference relation � on a set of choices S is

rational if it is:

• complete: for all s, t ∈ S s � t or t � s or both.

• transitive: for all s, t, v ∈ S if s � t and t � v, then s � v.

Note that by assuming both completeness and transitivity as properties that must

be satisfied by a rational preference relation, we are tacitly working under the Strong

Axiom of Revealed Preference as defined in Definition 2.2.2.

Knowledge of an agent’s preference relation, while handy, is unwieldy in reason-

ing about her choices. However, if the preference relation is “well-defined” on the

choice set, then it can be shown that the preference relation corresponds to a payoff

function for the agent that is also “well-behaved”. By way of example, the following
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theorem due to Rader [Rad63] states conditions for the existence of a utility function

corresponding to a preference relation over a choice set X:

Theorem 2.2.4 (Rader [Rad63]) Let X be a separable metric space, and � a com-

plete preference relation on X that is upper semicontinuous.1 Then there exists a

function u : X → [0, 1] such that for any x, y ∈ X, x � y ⇐⇒ u(x) ≥ u(y).

Rader’s theorem sets up the corresponding utility maximization problem given a

set of observations of consumer choices. This is a cardinal precept for our discussion

on computational revealed preference theory, since it allows us continue our discussion

by focusing on the utility function when convenient and avoid having to argue about

preference relations.

2.2.3 Studying revealed preferences in the absence of access

to consumer demand function

These results however pertain to the case when the continuous demand function is

explicitly given to the observer (in other words, we are given access to an oracle who

we can query infinitely often to obtain information about the consumer’s demand).

Afriat [Afr67] showed that given a finite set of observations, each observation being

a price vector over all goods and the corresponding quantities of goods purchased at

that price, it was possible to construct a piecewise linear, concave utility function

that rationalized the observations. This was more explicitly set down by Diewert

[Die73], and Varian [Var06] who observed that Afriat’s approach was tantamount to

using linear programming techniques to solve for the utility function. Fostel et al.

[FST04] further explicitly addressed the complexity of determining whether the given

observations were consistent with a utility function that consumers are seeking to

maximize. They showed that the LP in Varian’s algorithm to construct the piecewise

linear utility function had a worst-case runtime of O(n3) where n is the number of

1� is upper semicontinuous on X if the set L�(x) = {y ∈ X|x � y, y 6� x} is an open subset of
X for each x ∈ X.
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observations made, and simplified this further to give an algorithm with O(n2) worst-

case runtime.

2.2.4 Testable implications and refutability.

An important distinction between the economics approach to revealed preference the-

ory and the computational approach pertains to the notion of testable implications

and refutability. Specifically, in economics, if for a given dataset, there exists no

consistent set of preference relations that would rationalize the data then the under-

lying assumptions governing the choices can be refuted. This is done by testing the

implications of these assumptions on the choices observed in the dataset.

On the other hand, if a dataset of observed choices always has consistent pref-

erences then any inferences drawn about the rationality of consumer behavior are

rendered meaningless since every possible set of choices would have a plausible ex-

planation. This is especially true for studies in empirical economics. In the compu-

tational approach to revealed preference theory however, we are mainly interested in

studying the existence question from a computational tractability perspective. This

means that even in the instance when every dataset has a plausible explanation in

the form of consistent preferences, the computational interest persists in constructing

efficient algorithms to find these preferences.

2.3 Computational perspectives on revealed pref-

erence theory

Theoretical computer science offers at least two different perspectives to revealed

preference theory.

2.3.1 Learning-theoretic approach.

It is easy to see that the problem of constructing a utility function that is consistent

with a set of observations and satisfying a set of revealed preference axioms is essen-
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tially a learning problem. This was first explored by Kalai [Kal03] who looked into

the PAC-learnability of classes of choice functions. Beigman and Vohra [BV06] looked

into learning from revealed preference datasets specifically. They cast out a learning-

theoretic interpretation of Afriat’s theorem and constructed a learning algorithm with

zero error on the sample set of price-demand observations and returned a piecewise

utility function. In addition, they use this learning algorithm to construct a fore-

casting algorithm which predicts consumer demand when the prices are unobserved.

Finally, they shed light on the PAC-learnability of the class of demand functions in

a supervised learning framework by giving lower and upper bounds on the sample

complexity of any learning algorithm for different classes of demand functions. They

show that for the general class of demand functions, the sample complexity is infinity

but when the class of demand functions is more well-behaved (i.e., income-Lipschitz),

the sample complexity is polynomially bounded.

2.3.2 Complexity-theoretic approach to revealed preference.

There has been some previous work on the question of the computational hardness

of finding utility functions/preference relations that are consistent with a given set

of observations of consumer choice. Galambos [Gal05] asked if it was possible to find

transitive preferences over a set of observed choices under assumptions on the repre-

sentation of the dataset such that each of the observations were pure Nash equilibrium

strategies played by the agents. The assumptions in this model are key; the obser-

vations are assumed to be subsets of choices each agent makes so that the dataset

includes every tuple in which strategies for each agent are chosen from the corre-

sponding observed set. In this restricted model, Galambos showed that the problem

of constructing preference relations consistent with the dataset is NP-complete.

A clearer and more direct connection between theoretical computer science and

revealed preference theory from within the economics literature was recently investi-

gated by Deb [Deb08]. In it, he explored a model in which the aggregate consump-

tion behavior of a k-person household is observed and individual consumption is not
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known, and seeks to find k utility functions that rationalize the observed aggregate

household consumption dataset. Deb showed that this problem is NP-complete.

2.3.3 Proving hardness of approximation results

The techniques used to show hardness of approximation for optimization problems

are part of a seminal body of work in complexity theory covering drawing on elegant

results from a diverse array of fields such as probabilistically checkable proof systems,

algorithmic coding theory, algebraic and Fourier analysis methods. Below, we at-

tempt to provide the barest minimum, self-contained introduction to this immensely

sophisticated theory in the hope that our own results on hardness of approximation

for the rationalizability problems described above are better understood. We harbor

no illusion that this treatment is exhaustive and refer the interested reader to online

coursework [Sud99, Tre06] and survey material [AL96, Aro98] for a more full-fledged

and elaborate discussion of these techniques. The definitions we provide below are

based on those provided in [AL96].

For an instance I of any optimization problem, we denote the optimal value

OPT (I) to be the value of the optimal solution to an instance of the optimization

problem.

Definition 2.3.1 Approximation ratio: Let P be an optimization problem and I

an instance of P with size n and optimal value OPT (I). An algorithm for P achieves

an approximation ratio α = α(n) if it produces a solution at least α ·OPT (I) if P is

a maximization problem, or at most OPT (I)/α if P is a minimization problem.

We say that a problem P has hardness of approximation factor α, or is inap-

proximable to within α, if it is NP -hard to achieve an approximation ratio of α for

P .

The core idea behind proving inapproximability results is analogous to how we

go about proving hardness results: we start with an instance of a problem P that is

hard to approximate and produce an instance of the target problem P ′ that we are

attempting to show is inapproximable. The one important property we require of
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this reduction is that it should be gap-preserving. This means, that if, say, both P, P ′

are maximization problems, then the reduction should ensure that for the respective

instances I, I ′:

OPT (I) ≥ c⇒ OPT (I ′) ≥ c′

OPT (I) ≤ ρ · c⇒ OPT (I ′) ≤ ρ′ · c′

where ρ, c, and ρ′, c′ are respectively parameters of the instances I, I ′. Naturally, this

means that the better parameters we can obtain in a gap-preserving reduction, the

better the hardness of approximation factor would be. However, this assumes that

we already have a problem with a known inapproximability result to begin with. The

rest of this subsection explores obtaining these prototypical inapproximability results.

As mentioned at the beginning of the section, there is a deep connection between

inapproximability and probabilistically checkable proof systems which we illuminate

below, after a few preliminary definitions. Let r, q : N → N be some functions over

the set of natural numbers.

Definition 2.3.2 Verifier: Given a language L, an (r, q) verifier V is a probabilis-

tic polynomial-time Turing machine which takes as input a string x of length n. V

further has access to a proof string that it queries in q(n) locations which are com-

puted from the input string x and a set of r(n) random bits. Finally, V accepts or

rejects x after evaluating in polynomial time some function that takes as input x, the

r(n) random bits and the q(n) query results.

Definition 2.3.3 Probabilistically checkable proof system: Let L be a lan-

guage. An (r, q) probabilistically checkable proof system for L with completeness c

and soundness s comprises an (r, q) verifier V with the following properties:

• for every input x in L, there exists a proof string Πx for which V with input x

and access to Πx accepts with probability at least c,

• for an input x not in L, and every proof string Πx, V with input x and access

to Πx will accept with probability at most s.
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We say that the language L is in PCP (r, q) if there is an (r, q) probabilistically

checkable proof system for L with some completeness c and soundness s bounded away

from 0 and 1 respectively, and with c > s. The crucial result that heralded a new

and influential approach to inapproximability was that NP was in PCP (log n, 1),

and was a culmination of results due to Arora and Safra [AS98], and Arora et al.

[ALM+98]:

Theorem 2.3.4 (Arora and Safra [AS98], Arora et al. [ALM+98])

NP = PCP (log n,O(1)).

As an immediate consequence to the theorem above, known as the PCP theorem, the

problem of maximizing the number of satisfiable 3sat clauses, max-3sat, was shown

in [ALM+98] to be inapproximable to within 1−ε for some fixed ε. Inapproximability

results for other problems such as max-cut, max-clique, label-cover can all be

shown based on the PCP theorem and devising PCP systems with the appropriate

parameters. We refer the interested reader to other sources [AL96] for a more detailed

treatment.
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Chapter 3

Algorithms for playing games with
limited randomness

Dennis “Cutty” Wise: The game done changed.

Slim Pierce: The game’s the same. Just got more fierce.

– The Wire, Season 3.

3.1 Background

The concept of randomness plays a central role in game theory and economics. For a

Nash equilibrium to exist in a finite game, we crucially must rely on the fact that the

strategies in consideration also include mixed strategies, i.e., probability distributions

over the set of pure strategies.

There are different interpretations of what constitutes a mixed strategy. At its

simplest, we can think of a mixed strategy as exactly a probability distribution over

the set of strategies played in a one-shot game, with the pay-off then tabulated in

expectation. In another characterization due to Rosenthal [Ros79] and Rosenthal

and Landau [RL79], each player is thought of as coming from a population and the

probability weight attached to each pure strategy is the fraction of the population that

will play that pure strategy. The interaction then is between players drawn uniformly

at random from their respective populations, playing out their corresponding pure

strategy. In the entirety of this chapter, we concern ourselves with only the first

interpretation.
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3.1.1 Finding sparse-support equilibrium strategies

As stated in the introductory chapter, our treatment of randomness in this disserta-

tion is two-fold. In the first case, we are looking at reducing the randomness required

for players to play their equilibrium strategies. For two-player zero-sum games, Lipton

and Young [LY94] showed that it was sufficient for players to play a random sample of

O(log n/ε2) pure strategies drawn from their respective equilibrium mixed strategies

to obtain a pay-off that was ε away from the value of the game. This was subse-

quently generalized to non-zero sum two-player games by Lipton et al. [LMM03],

who gave a randomized procedure that produces small-support strategies for an ε-

approximate Nash equilibrium given a Nash equilibrium with larger support using

a simple algorithm: sample uniformly from the given equilibrium strategy. Their

analysis applies Chernoff bounds to show that the sampled strategies present the op-

posing players with approximately (within ε) the same payoffs, and hence constitute

an ε-equilibrium.

In fact, their result should be seen in the broader context of the quest for effi-

cient algorithms that find approximate Nash equilibria. By showing the existence

of ε-approximate Nash equilibrium strategies with support O(log n/ε2), Lipton et al.

effectively proved an upper-bound of O(nlogn/ε2) on the time-complexity of finding

approximate equilibria. There has been extensive work on finding efficient algorithms

for approximate equilibria [Alt94, DMP06, BBM07, FNS07, DMP07, TS07, PNS08]

and many of them center around finding strategies with small support. Daskalakis et

al. [DMP06] showed the existence of a simple algorithm to find a 2-support strategy

that was a 1/2-approximate Nash equilibrium. Feder et al. [FNS07] showed that this

was asymptotically optimal when only considering O(log n)-support strategies.

3.1.2 Low-rank games

In addition to addressing the question of finding efficient algorithms for approximate

Nash equilibria, [LMM03] gave sufficient conditions for existence of small-support

exact Nash equilibria in two-player games when the payoff matrices have low rank.
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They use this observation to show that games with pay-off matrices that can be

approximated by low-rank matrices have approximate equilibria with small support.

Kannan and Theobald [KT07] approached the problem of low-rank games slightly

differently. In their work, a low-rank game is defined as a generalization of zero-sum

two-player games. Specifically, they require that the sum of the payoff matrices of the

two players has small rank. In this setting, with n strategies for both players and the

matrix sum having rank k, they give an algorithm that computes an ε-approximate

Nash equilibrium and runs in time polynomial in nk, 1/ε, B where B is the bit-length

parameter determining the number of bits of precision to which the matrices (over

reals) are represented.

Stein et al. [SOP08] consider low-rank games in the domain of continuous games.

These are games where each agent’s strategies are drawn from compact sets as opposed

to discrete sets and the payoffs are given by continuous functions defined over these

spaces. They define a subclass of continuous games called separable games in which

the payoffs can be expressed as a sum-of-products so that a term in each product is

dependent only on the strategy space of the corresponding agent. In the special case

when the strategy spaces are subsets of R and the terms are monomials, the game is

called a polynomial game. For separable games over n agents in general, the notion of

rank as defined in [SOP08] is analogous to that defined when the strategies are over

discrete sets and involves concepts in measure theory that are beyond the scope of

this dissertation. It suffices to mention their observation that separable games have

bounded rank. Furthermore, for the special class of two-player polynomial games,

they show that an ε-approximate Nash equilibrium can be found in time polynomial

in 1/ε for fixed rank.

3.1.3 Our results

In this chapter, we study algorithms for finding equilibria and playing games randomness-

efficiently. By “playing a game” we mean the actions a player must take to actually

sample and play a strategy from a mixed strategy profile, which necessarily entails
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randomness. There is an immense body of literature in theoretical computer science

devoted to addressing computational issues when limited or no randomness is avail-

able, and for the same reasons it makes sense to study games whose players have

limited access to randomness. Moreover, as we will see below, limited randomness

in games motivates some special classes of games that have arisen in other contexts

thereby providing a viewpoint that we believe is helpful.

3.1.3.1 Sparse strategies in single-round games

We first look at single-round games. For the case of zero-sum games where both

players have n available strategies, Lipton and Young [LY94] showed that a random

sample of O( logn
ε2

) strategies was sufficient to approximate the value of the game

by ε. Lipton et al. [LMM03] extended this to ε-equilibria for two-player nonzero-

sum games. Indeed, they gave a randomized procedure that produced small-support

strategies for an ε-equilibrium when given a Nash equilibrium with possibly large

support. In the following theorem, we derandomize this procedure by using random

walks on expander graphs:

Theorem 3.1.1 Let G = (R,C, n) be a two-player game, and let (p∗, q∗) be a Nash

equilibrium for G. For every ε > 0, there is a deterministic procedure P running

in time poly(|G|)1/ε2 such that the pair (P (G, p∗, 1), P (G, q∗, 2)) is an O( logn
ε2

)-sparse

4ε-equilibrium for G.

This can be viewed as a deterministic “sparsification” procedure for ε-equilibria

in general two player games. In zero-sum games one can find optimal strategies

efficiently, and as a result, we obtain a deterministic polynomial time algorithm to

find sparse ε-equilibria for zero-sum games:

Corollary 3.1.2 Let G = (R,C, n) be a two-player zero-sum game. For every ε > 0,

there is a deterministic procedure running in time poly(|G|)1/ε2 that outputs a pair

(p∗, q∗) that an O( logn
ε2

)-sparse ε-equilibrium for G.
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We point out that Freund and Schapire [FS96] obtained a similar result using an

adaptive multiplicative-weight algorithm (discussed below) with poly(|G|, 1/ε) run-

ning time. We obtain the corollary above using a very different proof technique that

flows from well-known derandomization techniques.

3.1.3.2 Reusing randomness in multiple round games

In single-round games a randomness-limited player requires sparse strategies, but in

multiple-round games, we would like to be able to “reuse” randomness across rounds.

This is an orthogonal concern to that of reducing randomness within a single round.

Freund and Schapire [FS99] proposed an adaptive online algorithm for a T -round

two-player zero-sum game with n strategies available to each. Executing the mixed

strategies produced by their algorithm uses Ω(T log n) bits of randomness over T

rounds, in the worst case. By making use of almost-pairwise independence, we show

how to reuse randomness across rounds: it is possible to make do with just O(log n+

log log T + log(1/ε)) bits and achieve close to the same quality of approximation as

in [FS99].

Theorem 3.1.3 Let M be the n×n-payoff matrix for a two-player zero-sum T -round

game with entries in {0, 1}. For any ε < 1/2 and constant δ, there exists an online

randomized algorithm R using O(log n + log log T + log(1/ε)) random bits with the

following property: for any arbitrary sequence Q1, . . . , QT of mixed strategies played

(adaptively) by the column player over T rounds, R produces a sequence of strategies

S1, . . . , ST such that with probability at least 1− δ:

1

T

T∑
i=1

M(Si, Qi) ≤
1

T
min
P

T∑
i=1

M(P,Qi) +O

(√
log n

T
+ ε

)

3.1.3.3 Games with sparse equilibria

As we have discussed, players with limited access to randomness can only achieve

equilibria that are sparse. We saw before that in the general setting, we are able to

deterministically “sparsify” if we are willing to settle for ε-equilibria. The sparseness
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cannot in general be less than log n, though, so we are motivated to consider broad

classes of games in which even sparser equilibria are guaranteed to exist.

Perhaps the simplest example is a 2-player games in which one player has only

k available strategies, while the other player has n � k available strategies. The

results in the work of Lipton et al. [LMM03] imply there is a Nash equilibrium

in this game with support size k + 1. This is somewhat unsatisfying — it means

that in a two-player game one player may need to choose from less-sparse strategies

than his opponent (i.e., requiring slightly more randomness) to achieve equilibrium.

Theorem 3.1.4 rectifies this asymmetry by showing that k-sparse strategies suffice for

the opposing player.

Theorem 3.1.4 Let G = (R,C, k, n) be a two-player game. Given p∗ for which there

exists a q∗ such that (p∗, q∗) is a Nash equilibrium, we can compute in deterministic

polynomial time q′ for which (p∗, q′) is a Nash equilibrium and |supp(q′)| ≤ k.

We also give a deterministic polynomial time algorithm to compute such a limited-

support strategy for one player, given the k-sparse strategy of the other. We extend

this further to the multiplayer case and show that for an `-player game where players

1 through ` − 1 have k1, . . . , k`−1 pure strategies, respectively, the `-th player need

only play a (
∏
ki)-sparse strategy to achieve equilibrium:

Corollary 3.1.5 Let G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) be an `-player game where∏`−1
i=1 ki < n. Given G, p∗1, . . . , p

∗
`−1 there exists a deterministic polynomial-time pro-

cedure to compute p̂` such that (p∗1, p
∗
2, . . . , p

∗
`−1, p̂`) is a Nash equilibrium for G and

|supp(p̂`)| ≤ k =
∏`−1

i=1 ki.

These bounds are tight.

3.1.3.4 Games of small rank

Perhaps the most significant technical contribution in this chapter pertains to a gen-

eralization of the “unbalanced” games that we saw above, namely, games of small
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rank. This is a broad class of games (encompassing some natural examples – see

Section 3.6.3) for which sparse equilibria are known to exist.

For 2-player games with rank-k payoff matrices, Lipton et al. describe an enu-

meration algorithm that finds (k + 1)-sparse strategies in O(nk+1) time. We improve

dramatically on this bound but we must relax the problem in two ways: first, we

compute an ε-equilibrium rather than an exact one; second we require that the payoff

matrices be presented as a low-rank decomposition, with entries up to precision B

(limited precision makes sense since we are only considering ε-equilibria).

Theorem 3.1.6 Let G = (R,C, n) be a two player game such that R and C have

rank at most k. Furthermore, let R = R1R2, C = C1C2 be a decomposition of R,C

with R1, R2, C1, C2 containing integer entries in [−B,B]. Then, for every ε > 0,

there is a deterministic procedure P running in time (4B2k/ε)2kpoly(|G|) that returns

a 4ε-Nash equilibrium (p, q) with |supp(p)|, |supp(q)| ≤ k + 1.

To the best of our knowledge, Theorem 3.1.6 provides the first efficient “fixed-

parameter” algorithm to this problem in the sense that the running time is polynomial

in the input size n and some function f(k, 1/ε, B). The closest parallel to our result

is by Kannan and Theobald [KT07] who consider a somewhat different definition of

“rank” for two-player games: in their definition, the sum of the payoff matrices is

required to have small rank. In that case, they present an algorithm that finds an

ε-equilibrium in a rank k 2-player game in O(n2k+o(1)B2) time. Their algorithm relies

on results of Vavasis for solving indefinite quadratic programs [Vav92] and does not

seem to generalize to ` > 2 players.

Our algorithm is (arguably) simpler, and moreover, it easily generalizes to ` > 2

players, where small rank games still are guaranteed to have sparse equilibria. In the `-

player setting, we give an O(((2B)`k`/ε)k`(`−1))poly(n`) time deterministic procedure

that computes such a sparse ε-equilibrium, when the payoff tensors are presented as

a rank-k decomposition with entries up to precision B.

All of the algorithms for low-rank games rely on enumerating potential equilibria

distributions in a basis dictated by the small rank decomposition. This seems like
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a technique that may be useful for algorithmic questions regarding low-rank games

beyond those we have considered in this chapter.

The rest of the chapter is structured as follows. Section 4.2 goes over some prelimi-

nary definitions and lemmas. Section 3.3 presents algorithms for finding small-support

strategies for single-round games, obtaining approximate Nash equilibria. In Section

3.4, we look at the multiple-round case and present a randomness-efficient variant of

the adaptive online algorithm of Freund and Schapire. Games in which some players

have very few strategies are discussed in Section 3.5 while our new algorithms for

ε-equilibria in games with small rank are described in Section 3.6.

3.2 Preliminaries

Definition 3.2.1 For a finite strategy set S the support of a mixed strategy p ∈

∆(S) is the set supp(p) given by supp(p) = {s ∈ S|ps > 0}. A mixed strategy p is

k-sparse if |supp(p)| = k.

In this chapter, we will concern ourselves with games that can be specified by

payoff matrices (or tensors) whose entries denote the payoff upon playing the corre-

sponding strategy tuple. We will also assume, unless otherwise specified, that these

entries are bounded and can be scaled to lie in [−1, 1]. With this in mind, we give

below an equivalent and more useful definition for a game.

Definition 3.2.2 An `-player finite game G is a tuple (T1, . . . , T`, n1, n2, . . . , n`)

where Ti is the (n1× . . .×n`) `-dimensional payoff tensor with Ti(s1, . . . , s`) denoting

the payoff to player i when the pure strategy `-tuple (s1, . . . , s`) is played in the game.

For ease of presentation, in the rest of this chapter we will often restrict ourselves to

`-player games where n1 = n2 = . . . = n` = n, which we denote by G = (T1, . . . , T`, n).

We often refer to players by their payoff tensors. For example, for the two-player game

G = (R,C, n) we will refer to the row player as R and the column player as C. All

vectors are thought of as row vectors.
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Definition 3.2.3 In an `-player game G = (T1, T2, . . . , T`, n1, n2, . . . , n`), we denote

by Ti(p1, . . . , p`) the payoff to the i-th player when the ` players play mixed strategies

p1, . . . , p`, i.e.,

Ti(p1, . . . , p`) =
∑

i1∈[n1],...,i`∈[n`]

pi1pi2 . . . pi`Ti(i1, i2, . . . , i`).

If we substitute some a ∈ [nj] for pj we understand that to denote the distribution

that places weight 1 on a and 0 everywhere else.

For a mixed strategy p with rational weights, we can alternatively represent it as

a weighted multi-set Sp ⊆ S with the multiplicity of an element s ∈ Sp being directly

proportional to the weight of s in p so that playing a mixed strategy p is equivalent

to playing the uniform distribution over the corresponding multi-set. In this chapter

we restrict our attention to mixed strategies that can be expressed in this manner (as

the uniform distribution over a multiset).

Let G be an `-player game. It is well-known that given the supports of the `

different p∗i in a Nash equilibrium, one can find the actual distributions by linear

programming. We will use a similar fact repeatedly:

Lemma 3.2.4 Let G = (T1, T2, . . . , T`, n) be an `-player game, and let (p∗1, p
∗
2, . . . , p

∗
`)

be a Nash equilibrium. Given G and p∗1, p
∗
2, . . . , p

∗
`−1 one can find a distribution q in

deterministic polynomial time for which (p∗1, p
∗
2, . . . , p

∗
`−1, q) is also a Nash equilibrium.

Proof. Once we know the distributions p∗1, . . . , p
∗
`−1 in order to find a Nash equilibrium

strategy q for player T`, we first determine the Nash equilibrium support for T` by

considering the set

T = {r | ∀r′, T`(p∗1, . . . , p∗`−1, r) ≥ T`(p
∗
1, . . . , p

∗
`−1, r

′)}
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We now find q satisfying the following linear program:

∑n
i=1 qi = 1

qi ≥ 0; i = 1, . . . , n

qi = 0; i /∈ T

T`(p
∗
1, . . . , p

∗
j−1, i, p

∗
j+1, . . . , p

∗
`−1, q) ≥ T`(p

∗
1, . . . , p

∗
j−1, i

′, p∗j+1, . . . , p
∗
`−1, q);

i | p∗j i > 0;

j = 1, . . . , `− 1;

i′ = 1, . . . , n

From Nash’s result [Nas51], we know that a solution to this linear program exists and

this is the desired q.

3.3 Sparsifying Nash equilibria deterministically

In this section we give deterministic algorithms for “sparsifying” Nash equilibria (in

the process turning them into ε-equilibria). In this way, a player with limited access to

randomness, but who has access to an equilibrium mixed strategy, is able to produce

a small strategy that can then be played.1

3.3.1 Two-players

Lipton et al. proved:

Theorem 3.3.1 (Lipton et al. [LMM03]) Let G = (R,C, n) be a two-player

game, and let (p∗, q∗) be a Nash equilibrium for G. There is a polynomial-time ran-

domized procedure P such that with probability at least 1/2, the pair (P (G, p∗), P (G, q∗))

is an O(log n/ε2)-sparse ε-equilibrium for G.

1The question of how the player may obtain an equilibrium mixed strategy is a separate and
well-studied topic, but not the focus of this work.
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The algorithm P is very simple: it amounts to sampling uniformly from the given

equilibrium strategy. The analysis applies Chernoff bounds to show that the sam-

pled strategies present the opposing players with approximately (within ε) the same

weighted row- and column- sums, and hence constitute an ε-equilibrium. In our set-

ting, since the players have limited randomness they cannot afford the above sampling

(it requires at least as much randomness as simply playing (p∗, q∗)), so we derandomize

the algorithm using an expander walk.

Theorem 3.1.1 (restated). Let G = (R,C, n) be a two-player game, and let

(p∗, q∗) be a Nash equilibrium for G. For every ε > 0, there is a deterministic proce-

dure P running in time poly(|G|)1/ε2 such that the pair (P (G, p∗, 1), P (G, q∗, 2)) is an

O(log n/ε2)-sparse 4ε-equilibrium for G.

Before proving the theorem we will give a convenient characterization of ε-equilibrium:

Lemma 3.3.2 Let G = (R,C, n) be a 2-player game. Define

Tp = {i|(pC)i ≥ max
r

(pC)r − ε}

Sq = {j|(RqT )j ≥ max
t

(RqT )t − ε}.

If supp(p) ⊆ Sq and supp(q) ⊆ Tp, then (p, q) is an ε-approximate Nash equilibrium

for G.

Proof. Consider an arbitrary p′ ∈ ∆([n]). Since p′RqT is a convex combination of the

(Rq)j, it is at most maxj(Rq)j. And, since p is a convex combination of the (Rq)j,

with supp(p) ⊆ Sq, we have pRqT ≥ maxj(Rq)j−ε. Thus p′RqT ≤ pRqT+ε. Similarly,

for an arbitrary q′ ∈ ∆([n]), we have pCq
′T ≤ maxi(pC)i, and pCqT ≥ maxi(pC)i− ε

since supp(q) ⊆ Tp. Thus pCq
′T ≤ pCqT + ε. These two conditions guarantee that

(p, q) is an ε-approximate Nash equilibrium.

We will use the Chernoff bound for random walks on an expander:

Theorem 3.3.3 (Gillman [Gil93]) Let H be an expander graph with second largest

eigenvalue λ and vertex set V , and let f : V → [−1, 1] be arbitrary with E[f ] = µ.
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Let X1, X2, . . . , Xt be the random variables induced by first picking X1 uniformly in

V and X2, . . . , Xt by taking a random walk in H from X1. Then

Pr

[∣∣∣∣∣1t∑
i

f(Xi)− µ

∣∣∣∣∣ > δ

]
< e−O((1−λ)δ2t).

Proof. [Proof of Theorem 3.1.1] When we are given G and p∗, we perform the fol-

lowing steps.

First, construct a multiset S of [n] for which uniformly sampling from S approx-

imates p∗ to within ε/n. This can be done with |S| ≤ O(n/ε). Denote by p̃ the

distribution induced by sampling uniformly from S. We identify S with the vertices

of a constant-degree expander H, and we can sample S ′ ⊆ S by taking a walk of length

t = O(log n/ε2) steps in H. Note that this requires O(log |S| + O(t)) = O(log n/ε2)

random bits. Let p′ be the probability distribution induced by sampling uniformly

from S ′. By Theorem 3.3.3 (and using the fact that C has entries in [−1, 1]), for each

fixed i,

Pr[|(p′C)i − (p̃C)i| ≥ ε] ≤ e−O(ε2t) < 1/n. (3.1)

By a union bound |(p′C)i − (p̃C)i| ≤ ε for all i with non-zero probability. This

condition can be checked given G, p∗, and so we can derandomize the procedure

completely by trying all choices of the random bits used in the expander walk.

When we are given G and q∗, we perform essentially the same procedure (with

respect to R and q∗), and in the end we output a pair p′, q′ for which:

|(p′C)i − (p̃C)i| ≤ ε ∀i

|(Rq′T )j − (Rq̃T )j| ≤ ε ∀j

We claim that any such (p′, q′) is an 4ε-equilibrium, assuming (p∗, q∗) are an equilib-

rium. Using the fact that C,R have entries in [−1, 1], and the fact that our multiset
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approximations to p∗, q∗ have error at most ε/n in each coordinate, we obtain:

|(p̃C)i − (p∗C)i| ≤ ε ∀i

|(Rq̃T )j − (Rq∗T )j| ≤ ε ∀j

Define (as in Lemma 3.3.2):

Tp′ = {i|(p′C)i ≥ max
i

(p′C)i − 4ε}

Sq′ = {j|(Rq′T )j ≥ max
j

(Rq
′T )j − 4ε}.

Now, w ∈ supp(p′) implies w ∈ supp(p∗) which implies (Rq∗T )w = maxj(Rq
∗T )j

(since (p∗, q∗) is a Nash equilibrium). From above we have that maxj(Rq
′T )j ≤

maxj(Rq
∗T )j + 2ε and that (Rq′T )w ≥ (Rq∗T )w − 2ε. So (Rq′T )w ≥ maxj(Rq

′T )j − 4ε,

and hence w is in Sq′ . We conclude that supp(p′) ⊆ Sq′ . A symmetric argument

shows that supp(q′) ⊆ Tp′ . Applying Lemma 3.3.2, we conclude that (p′, q′) is a

4ε-equilibrium as required.

Since an equilibrium can be found efficiently by Linear Programming in the two

player zero-sum case, we obtain as a corollary:

Corollary 3.1.2 (restated). Let G = (R,C, n) be a two-player zero-sum game.

For every ε > 0, there is a deterministic procedure running in time poly(|G|)1/ε2 that

outputs a pair (p∗, q∗) that an O(log n/ε2)-sparse ε-equilibrium for G.

3.3.2 Three or more players

We extend the algorithm above to make it work for games involving three or more

players.

Theorem 3.3.4 Let G = (T1, T2, . . . , T`, n) be an `-player game, and let (p∗1, p
∗
2, . . . , p

∗
`)

be a Nash equilibrium for G. For every ε > 0, there is a deterministic procedure P run-

ning in time poly(|G|)1/ε2, such that the tuple (P (G, p∗1, 1), P (G, p∗2, 2), . . . , P (G, p∗` , `))

is an O((` log n)/ε2)-sparse 4ε-equilibrium for G.
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Proof. The proof is almost identical to that of Theorem 3.1.1. When given (G, p∗1, 1)

P samples t = O(((` − 1) log n + log `)/ε2) strategies from player 1’s multiset of

strategies after identifying it with a constant-degree expander H and doing a t-step

random walk on it. Let p̃1 be the distribution obtained by sampling uniformly from

the original multiset of strategies and p̂1 the distribution induced by sampling from

the t strategies picked from the random walk. For some fixing of (i2, . . . , i`) and j the

Chernoff bound in (3.1) now becomes

Pr[|Tj(p̂1, i2, . . . , i`)− Tj(p̃1, i2, . . . , i`)| ≥ ε] ≤ e−O(ε2t) < 1/(`n`−1)

By a union bound on all `n`−1 possible fixings for (i2, . . . , i`) and all j,

|Tj(p̂1, i2, . . . , i`)− Tj(p̃1, i2, . . . , i`)| < ε

with positive probability. As before, we can derandomize the procedure completely

by trying all choices of the random bits used in the expander walk.

Essentially the same procedure gives us p̂2, p̂3, . . . , p̂`. We will first need a gener-

alization of Lemma 3.3.2.

Lemma 3.3.5 Let G = (T1, . . . , T`, n) be an `-player game, and (p1, . . . , p`) an arbi-

trary mixed strategy. Define, for each i,

Si = {j|Ti(p1, . . . , pi−1, j, pi+1, . . . , p`) ≥ max
r
Ti(p1, . . . , pi−1, r, pi+1, . . . , p`)− ε}

If supp(pi) ⊆ Si for all i = 1, . . . , `, then (p1, . . . , p`) is an ε-approximate Nash equi-

librium for G. In particular, (p1, . . . , p`) is a Nash equilibrium if it is a 0-approximate

Nash equilibrium for G.

Proof. As before, for some player Ti we consider an arbitrary p′ ∈ ∆([n]). Note that

Ti(p1, . . . , pi−1, p
′, pi+1, . . . , p`) is a convex combination of the n terms

Ti(p1, . . . , pi−1, j, pi+1, . . . , p`)
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where j = 1, . . . , n. Therefore,

Ti(p1, . . . , pi−1, p
′, pi+1, . . . , p`) ≤ max

r
Ti(p1, . . . , pi−1, r, pi+1, . . . , p`) (3.2)

pi is also a convex combination of the n terms above, with supp(pi) ⊆ Si, and so:

Ti(p1, . . . , pi−1, pi, pi+1, . . . , p`) ≥ max
r
Ti(p1, . . . , pi−1, r, pi+1, . . . , p`)− ε (3.3)

Combining (3.2) and (3.3), we have:

Ti(p1, . . . , pi−1, p
′, pi+1, . . . , p`) ≤ Ti(p1, . . . , p`) + ε.

Applying an identical argument for all ` players, we have that (p1, . . . , p`) is an ε-

approximate Nash equilibrium.

To show that (p̂1, . . . , p̂`) constitute a 4ε-equilibrium, consider the set S1 = {i |

T1(i, p̂2, . . . , p̂`) ≥ maxi T1(i, p̂2, . . . , p̂`) − 4ε}. Define Sj analogously with respect to

Tj. Given Lemma 3.3.5, it suffices to show that supp(p̂j) ⊆ Sj for all j. We sketch

the argument for p̂1; symmetric arguments hold with respect to p̂j for all j.

By the same thread of reasoning as in the two-player case, for any w ∈ supp(p̂1),

T1(w, p̂2, . . . , p̂`) ≥ T1(w, p∗2, . . . , p
∗
`)− 2ε and since supp(p̂1) ⊆ supp(p∗1),

T1(w, p∗2, . . . , p
∗
`) = max

i
T1(i, p∗2, . . . , p

∗
l ) ≥ max

i
T1(i, p̂2, . . . , p̂`)− 2ε.

Combining the two inequalities, we get T1(w, p̂2, . . . , p̂`) ≥ maxi T1(i, p̂2, . . . , p̂`)− 4ε.

3.4 Limited randomness in repeated games

So far we have looked at optimizing the amount of randomness needed in single-

round games where players execute their strategies only once. In this section, we



47

investigate multiple-round games and in particular, the adaptive multiplicative weight

algorithm of Freund and Schapire [FS99] for which we describe randomness-efficient

modifications. In particular, we show that by using almost-pairwise independent

random variables it is possible to achieve close to the same quality of approximation

as in [FS99].

Note that we make crucial use of the full power of [FS99] – i.e., their guarantee on

the performance of the row player’s strategy (captured ahead in Lemma ) still holds if

the column player changes his play in response to the particular randomness-efficient

sampling being employed by the row player:

Theorem 3.1.3 (restated). Let M be the n × n-payoff matrix for a two-player

zero-sum T -round game with entries in {0, 1}. For any ε < 1/2 and constant δ,

there exists an online randomized algorithm R using O(log n + log log T + log(1/ε))

random bits with the following property: for any arbitrary sequence Q1, . . . , QT of

mixed strategies played (adaptively) by the column player over T rounds, R produces

a sequence of strategies S1, . . . , ST such that with probability at least 1− δ:

1

T

T∑
i=1

M(Si, Qi) ≤
1

T
min
P

T∑
i=1

M(P,Qi) +O

(√
log n

T
+ ε

)

Proof. Our randomized online algorithm R is a modification of Freund and Schapire’s

multiplicative-weight adaptive algorithm [FS99]. For a game with payoff matrix M

where both players have n strategies belonging to a strategy-set S, and for a sequence

of mixed strategies (P1, P2, . . . , PT ) over T rounds for the first player described by

Pi+1(s) =

(
βM(s,Qt)∑

s pi(s)β
M(s,Qt)

)
pi(s) (3.4)

where β = 1/(1 +
√

2 log n/T ), the Freund-Schapire algorithm offers the following

guarantee on the expected payoff over T rounds:
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Lemma 3.4.1 (Freund & Schapire [FS99])

1

T

T∑
t=1

M(Pt, Qt) ≤ min
P

1

T

T∑
t=1

M(P,Qt) +O

(√
log n

T

)
(3.5)

Running the Freund-Schapire algorithm requires Ω(T log n) random bits in order to

select a strategy from each distribution but we can optimize on this by using almost

pairwise independent random variables.

As we did in the proof of Theorem 3.1.1 in Section 3.3.1, we can approximate any

distribution Pt by a uniform distribution St drawn from a multiset of size O(n/ε) that

approximates Pt to within ε/n and suffer at most O(ε) error. Therefore, under the

uniform distribution over vertices s ∈ Si for all i = 1, . . . , T :

M(Pi, Qi)−O(ε) ≤ E[M(S,Qi)] ≤M(Pi, Qi) +O(ε)

Definition 3.4.2 (Alon et al. [AGHP92]) Let Zn ⊆ {0, 1}n be a sample space and

X = x1 . . . xn be chosen uniformly from Zn. Zn is (ρ, k)-independent if for any

positions i1 < i2 < . . . < ik and any k-bit string t1 . . . tk, we have

∣∣∣Pr
X

[xi1xi2 . . . xik = t1 . . . tk]− 2−k
∣∣∣ ≤ ρ

Alon et al. [AGHP92] give efficient constructions of (ρ, k)-independent random vari-

ables over {0, 1}n that we can suitably adapt to obtain T (ρ, 2)-independent random

variables S1, . . . , ST over a larger alphabet of size O(n/ε) using O(log n+ log(1/ρ) +

log(1/ε) + log log T ) random bits.

The following lemma is key to the remainder of the proof and a proof of the lemma

follows immediately afterwards.

Lemma 3.4.3 Let S1, . . . , ST be (ρ, 2)-independent random variables. Then, for any

δ:

Pr
S1,...,ST

[
1

T

T∑
i=1

M(Si, Qi) ≥
1

T
E

[
T∑
i=1

M(Si, Qi)

]
+

√
1

δ

(
1

T
+

2ρn2

ε2

)]
≤ δ
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Setting ρ = O(δε6/n2) in Lemma 3.4.3 gives us:

Pr
S1,...,ST

[
1

T

T∑
i=1

M(Si, Qi) ≥
1

T
E

[
T∑
i=1

M(Si, Qi)

]
+ ε

]
≤ δ (3.6)

Therefore with probability at least 1− δ over the choice of randomness of S1, . . . , ST

1

T

T∑
i=1

M(Si, Qi) ≤
1

T
E

[
T∑
i=1

M(Si, Qi)

]
+ ε ≤ 1

T

T∑
i=1

M(Pi, Qi) +O(ε)

Finally by application of Lemma 3.4.1 we have with probability at least 1− δ

1

T

T∑
i=1

M(Si, Qi) ≤
1

T
min
P

T∑
i=1

M(P,Qi) +O

(√
log n

T

)
+O(ε) (3.7)

Note that by our choice of ρ, we require O(log n+ log log T + log(1/ε)) random bits.

This completes the proof of the theorem.

Proof. (Of Lemma 3.4.3) The proof is essentially a variation of the Chebyshev tail

inequality for (δ, 2) independent random variables. Let Z =
∑

iM(Si, Qi). Then,

Pr

[
1

T
Z ≥ 1

T
EZ + λ

]
≤ Pr

[∣∣∣∣ 1

T
Z − 1

T
EZ

∣∣∣∣ ≥ λ

]
= Pr

[
1

T 2
(Z − E[Z])2 ≥ λ2

]
≤ 1

T 2

σ2(Z)

λ2
(3.8)
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We bound σ2(Z) as follows:

σ2 = E

(∑
T

M(Si, Qi)− E[M(Si, Qi)]

)2


=
∑
T

σ2 (M(Si, Qi)) + 2
∑
i,j∈[T ]

(E [M(Si, Qi)M(Sj, Qj)]

−E [M(Si, Qi)] · E [M(Sj, Qj)])

=
∑
T

σ2 (M(Si, Qi)) +

2
∑
i,j∈[T ]

∑
si∈Si,sj∈Sj

M(si, Qi)M(sj, Qj) Pr[Si = si, Sj = sj]

−E [M(si, Qi)] · E [M(sj, Qj)]

≤
∑
T

σ2 (M(Si, Qi)) +

2
∑
i,j∈[T ]

∑
si∈Si,sj∈Sj

M(si, Qi)M(sj, Qj)(Pr[Si = si] Pr[Sj = sj] + δ)

−E [M(Si, Qi)] · E [M(Sj, Qj)]

(By virtue of (δ, 2)-independence of Si, Sj)

≤
∑
T

σ2 (M(Si, Qi)) + 2
∑
i,j∈[T ]

δn2/ε2 + E [M(Si, Qi)] · E [M(Sj, Qj)]

−E [M(Si, Qi)]E [M(Sj, Qj)]

(There are at most (n/ε) possible strategies in the multisets Si, Sj)

≤ T max
j
σ2
j + 2δn2T 2/ε2

Let σ0 = maxj σj. Then,

σ2(Z) ≤ Tσ2
0 + 2δT 2n2/ε2 ≤ T + 2δT 2n2/ε2 (3.9)

Substituting in (3.8) and setting λ =
√

1
α

(
1
T

+ 2δn2

ε2

)
we get the desired inequality.
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3.5 Unbalanced games

In this section we will look at what happens when one of the players (perhaps as a

consequence of having limited randomness) is known to have very few – k – available

strategies, while the other player has n� k available strategies. In such a game does

there exist a k-sparse strategy for the second player? We prove that this is indeed the

case. The main technical tool we will need is Carathéodory’s Theorem. Since many

of the results we obtain depend on the constructive feature of the theorem we record

below such a proof.

Theorem 3.5.1 (Carathéodory’s Theorem, constructive version) Let v1, . . . , vn

be vectors in a k-dimensional subspace of Rm where n ≥ k + 1, and suppose

v =
n∑
i=1

αivi with
∑
i

αi = 1 and αi ≥ 0 for all i (3.10)

Then there exist α′1, . . . , α
′
n for which v =

∑n
i=1 α

′
ivi with

∑
i α
′
i = 1 and α′i ≥ 0 for

all i, and |{i : α′i > 0}| ≤ k + 1. Moreover the α′i can be found in polynomial time,

given the αi and the vi.

Proof. We write a linear combination involving the n−1 ≥ k vectors (v1−vn), . . . , (vn−1−

vn) as follows

n−1∑
j=1

tβj(vj − vn) = 0 (3.11)

for some arbitrary t that we shall define later. Let βl = −
∑n−1

j=1 βj. Adding (3.10),

(3.11) we get

n∑
j=1

(αj + tβj)vj = v (3.12)
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Now, we set t = minj −αj/βj, say without loss of generality −α1/β1. Rewriting

(3.12),

n∑
j=2

(αj − α1βj/β1)vj = v (3.13)

Furthermore, (αj − α1βj/β1) > 0 for all j = 2, . . . , l and
∑n

j=2(αj − α1βj/β1) =

1. Hence, we have expressed v as a convex combination in (n − 1) vectors from

{v1, . . . , vn}. We proceed in this manner, until we are no longer able to write a linear

combination in k vectors as was done in (3.11). This procedure takes poly(n) time.

The main theorem in this section is below. We state it for two players for sim-

plicity, and extend it to ` players later.

Theorem 3.1.4 (restated). Let G = (R,C, k, n) be a two-player game. Given

p∗ for which there exists a q∗ such that (p∗, q∗) is a Nash equilibrium, we can com-

pute in deterministic polynomial time q′ for which (p∗, q′) is a Nash equilibrium and

|supp(q′)| ≤ k.

Proof. We would like to apply Carathéodory’s Theorem as was done to obtain a simi-

lar result in [LMM03] but we will need to modify our application since Carathéodory’s

Theorem applies to linear subspaces whereas the Nash equilibrium strategies define

an affine subspace. By Lemma 3.2.4 given G, p∗ we can construct a q such that (p∗, q)

is also a Nash equilibrium. Consider the column vector u given by

u = RqT =
n∑
i=1

qimi

where mi is the i-th column vector in R. Since R is a k×n matrix, u is in the span of

column vectors m1, . . . ,mn that lie in a k-dimensional subspace of Rk. Since (p∗, q)

is a Nash-equilibrium, for all i ∈ supp(q):

p∗mi = max
j
p∗mj = w∗



53

This is an additional linear constraint on the mis and hence m1, . . . ,mn lie in a

(k − 1)-dimensional affine subspace A. Since u is a convex combination of the mi’s,

p∗u = p∗

(
n∑
i=1

qimi

)
=

n∑
i=1

qi(p
∗mi) = w∗

∑
qi>0

qi = w∗

and hence u also lies in A. Define m′i = mi − w∗1k, where 1k is the all-ones column

vector. Then for all i ∈ supp(q), p∗m′i = 0. Therefore

u′ = u− w∗1k =
∑
qi>0

qim
′
i

lies in a (k−1)-dimensional subspace of Rk. Applying Carathéodory’s theorem 3.5.1,

u′ can thus be rewritten as a convex combination:

u′ =
∑
i

q′im
′
i

where |supp(q′)| ≤ k. It follows that

u = u′ + w∗1k =
∑
i

q′im
′
i + w∗1k =

∑
i

q′i(m
′
i + w∗1k) =

∑
i

q′imi

We claim that (p∗, q′) is the desired Nash equilibrium. This is true because supp(q′) ⊆

supp(q∗), and for each j ∈ supp(p∗), R(q′)T = RqT and hence supp(p∗) ⊆ {j :

(R(q′)T )j = maxs(R(q′)T )s}.

The following theorem extends the result above to the general `-player game where

`− 1 players play sparse strategies.

Corollary 3.1.5 (restated). Let G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) be an `-

player game where
∏`−1

i=1 ki < n. Given G, p∗1, . . . , p
∗
`−1 there exists a deterministic

polynomial-time procedure to compute p̂` such that (p∗1, p
∗
2, . . . , p

∗
`−1, p̂`) is a Nash

equilibrium for G and |supp(p̂`)| ≤ k =
∏`−1

i=1 ki.
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Proof. The proof is similar to that of Theorem 3.1.4. Applying Lemma 3.2.4, we

obtain p` such that (p∗1, . . . , p
∗
`−1, p`) is a Nash equilibrium for G. Consider the k × n

matrix T−` formed by choosing each of T1, . . . , T`−1’s strategies. T−` is of rank at most

k < n. As in proving Theorem 3.1.4, we observe that the column vector u = T−`p
′
`

is in the span of column vectors m−`1 , . . . ,m−`n that lie in a (k− 1)-dimensional affine

subspace following the same line of argument with respect to (p∗1, . . . , p
∗
`−1) imposing

a constraint on the mi’s. Translating back and forth between the linear and affine

subspace and applying Carathéodory’s Theorem we get p′`, supp(p′`) ≤ k the Nash

equilibrium strategy for T`. The algorithm runs in time polynomial in n`.

In Theorem 3.5.2, we show that these bounds are tight (for small values of k) in the

case when T`’s strategy is constrained to be a uniform probability distribution over

the support. That is, we show examples of games for which there exist Nash equilibria

where the `-th player requires support k =
∏`−1

i=1 ki if her strategy is constrained to

be uniformly distributed.

Theorem 3.5.2 For every n, ` ≥ 2, and k1, . . . k`−1 such that k =
∏`−1

i=1 ki < n, one

can construct an `-player game G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) for which there

exists, for each i, 1 ≤ i ≤ `− 1, a strategy p∗i with |supp(p∗i )| = ki such that:

1. (p∗1, p
∗
2, . . . , p

∗
`) is a Nash equilibrium where p∗` is a strategy with support k < n.

2. There is no strategy p` with uniform distribution over a support of size |supp(p`)| <∏`−1
i=1 ki = k such that (p∗1, p

∗
2, . . . , p

∗
`−1, p`) is a Nash equilibrium.

Proof. For each Ti; i = 1, . . . , ` we set values as follows. For some arbitrary ordering

of J = {(v1, . . . , v`−1) | 1 ≤ vr ≤ kr; 1 ≤ r ≤ `− 1} given by α1, α2, . . . , αk we set for

all 1 ≤ i ≤ `:

Ti(v1, . . . , v`−1, αj) =

1 αj = (v1, . . . , v`−1); 1 ≤ j ≤ k,

0 otherwise.

(3.14)
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Let (p∗1, p
∗
2, . . . , p

∗
`) be the mixed strategy `-tuple where for each i = 1, . . . , ` − 1

p∗i is the uniform distribution on the set of strategies {vi | 1 ≤ vi ≤ ki} and p∗` be

the uniform distribution on the set of strategies {αj | 1 ≤ j ≤ k}. Then, (p∗1, . . . , p
∗
`)

specifies a Nash equilibrium for G. This is since the payoff to Ti upon playing p∗i

in response to (p∗1, . . . , p
∗
i−1, p

∗
i+1, . . . , p

∗
`) is 1/k for i = 1, . . . , ` and 0 for any other

strategy. Hence, Ti has no incentive to deviate unilaterally to any other strategy.

Since this holds true for all i = 1, . . . , ` (p∗1, . . . , p
∗
`) is a Nash equilibrium.

For any of the (` − 1) players T1, . . . , T`−1, say Ti who plays pure strategy s, the

payoff for the strategy tuple given by (p∗1, . . . , p
∗
i−1, s, p

∗
i+1, . . . , p

∗
`−1, p`) is

Ti(p
∗
1, . . . , p

∗
i−1, s, p

∗
i+1, . . . , p

∗
`−1, p`) =

∑
a1,...,a`

Pr[a1, . . . , ai−1, ai+1, . . . , a`]×

Ti(a1, . . . , ai−1, s, ai+1, . . . , a`−1, a`)

where Pr[a1, . . . , ai−1, ai+1, . . . , a`] is the probability that Tj plays aj for all j 6= i. Note

that given the choice of Ti, the above sum is only over tuples (a1, . . . , ai−1, s, ai+1, . . . , a`)

where a` = (a1, . . . , ai−1, s, ai+1, . . . , a`−1).

Suppose that T` decides to play a strategy p` with uniform distribution over sup-

port S` of size, say k′ < k. Without loss of generality, we may assume that k′ = k−1.

This implies that there is some strategy, α = (s1, . . . , s`−1) say, which is not in S`.

For s 6= si, we compute the payoff to player Ti using the expression above and the fact

that all the mixed strategies are uniform distributions over their respective supports,

and so we have:

Ti(p
∗
1, . . . , p

∗
i−1, s, p

∗
i+1, . . . , p

∗
`−1, p`) =

1

k1k2 . . . ki−1ki+1 . . . k`−1

× 1

k − 1
×

(k1k2 . . . ki−1ki+1 . . . k`−1)

= 1/(k − 1)
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However, for s = si, since T` never plays the strategy (s1, . . . , s`−1), the payoff to

player Ti is:

Ti(p
∗
1, . . . , p

∗
i−1, s, p

∗
i+1, . . . , p

∗
`−1, p`) =

1

k1k2 . . . ki−1ki+1 . . . k`−1

× 1

k − 1
×

(k1k2 . . . ki−1ki+1 . . . k`−1 − 1)

= 1/(k − 1)− ki/k(k − 1)

By Lemma 3.3.5 therefore, si cannot be in Ti’s equilibrium strategy support. Hence,

(p∗1, p
∗
2, . . . , p

∗
`−1, p`) is not a Nash equilibrium.

3.6 Finding sparse ε-equilibria in low-rank games

We now consider games of rank k, which is a significant generalization of the “unbal-

anced” games in the previous section. Indeed, rank k games are perhaps the most

general class of games for which sparse equilibria are guaranteed to exist. In this

section we give algorithms to compute sparse ε-equilibria in this setting.

3.6.1 Two player case

Since we are computing ε-equilibria, we only expect the game specification to be given

up to some fixed precision. We will be working with rank k matrices M expressed as

M1M2 (where M1 is a n× k matrix and M2 is a k×n matrix). Such a decomposition

can be found efficiently via basic linear algebra. In the following theorem we take

M1 and M2, specified up to fixed precision, as our starting point.2 As the example in

§3.6.3 illustrates, such a decomposition is already available for many natural games.

Our convention for expressing fixed precision entries will be to require them to be

integers in the range [−B,B] for a bound B.

2We note that computing M1, M2 of fixed precision such that M1M2 approximates M is not
necessarily always possible or straightforward. We state our theorem in this way to avoid these
complications, a detailed discussion of which would be beyond the scope of this dissertation.
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Theorem 3.1.6 (restated). Let G = (R,C, n) be a two player game such that R

and C have rank at most k. Furthermore, let R = R1R2, C = C1C2 be a decomposition

of R,C with R1, R2, C1, C2 containing integer entries in [−B,B]. Then, for every

ε > 0, there is a deterministic procedure P running in time (4B2k/ε)2kpoly(|G|) that

returns a 4ε-Nash equilibrium (p, q) with |supp(p)|, |supp(q)| ≤ k + 1.

Lipton et al. showed that there exist (k+ 1)-sparse Nash equilibria in this setting

and this implies an enumeration algorithm to find an equilibrium in time approx-

imately nk+1poly(|G|). Our algorithm shows that the problem is “fixed parameter

tractable” [Ces05, DF99, DFS97] where ε, the rank k and precision B are the param-

eters.

Proof. Note that the payoff to the row-player when (p, q) is the strategy tuple for

the game which is given by pRqT can now be written as pR1R2q
T and likewise for the

column player. The first step in our algorithm is to “guess” a collection of vectors

to within δ = ε/(2Bk) precision. We describe the “correct” guess relative to an

(arbitrary) Nash equilibrium (p∗, q∗) for G. Let p∗
′

= p∗C1, q
∗′ = R2q

∗T . Note that

from our choice of C1, R2 it holds that p∗
′
, q∗

′
satisfy −B ≤ p∗

′
i , q

∗′
i ≤ B; i = 1, . . . , k.

The algorithm is as follows:

1. Guess a p̃′ such that for all i = 1, . . . , k |p∗′i − p̃′i| ≤ δ. Similarly, guess q̃′ such

that for all i = 1, . . . , k |q∗′i − q̃′i| ≤ δ.

2. Let αs = (p̃′C2)s and βt = (R1q̃
′T )t. Set S = {s|maxr αr − 2ε ≤ αs ≤ maxr αr}

and T = {t|maxr βr − 2ε ≤ βt ≤ maxr βr}.

3. Find a feasible solution p̄ to the following linear program

|(p̄C1)j − p̃′j| ≤ δ; j = 1, . . . , k (3.15)

p̄i ≥ 0; i = 1, . . . , n (3.16)

p̄i = 0; i /∈ T (3.17)
n∑
i=1

p̄i = 1 (3.18)
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and a feasible solution q̄ to the analogous linear program in which the first set

of constraints is

|(R2q̄
T )j − q̃′j| ≤ δ; j = 1, . . . , k.

4. v = p̄C1 is a convex combination of the rows of C1, all of which lie in a k-

dimensional subspace. From Carathéodory’s Theorem (Theorem 3.5.1), we can

find p̂ with supp(p̂) ⊆ supp(p) for which |supp(p̂)| ≤ k + 1 and v = p̂C1.

5. Similarly u = R2q̄
T is a convex combination of the columns of R2, all of which

lie in a k-dimensional subspace. Applying Carathéodory’s Theorem again, we

find q̂ with supp(q̂) ⊆ supp(q) for which |supp(q̂)| ≤ k + 1 and u = R2q̂
T .

6. Return p̂, q̂.

Correctness follows from the next two claims:

Claim 3.6.1 A feasible solution to the linear programs formulated in step 3 of the

algorithm exists.

Proof. (Of Claim 3.6.1) We claim that if (p∗, q∗) is a Nash equilibrium for G then

p̄ = p∗ is a feasible solution to the first LP and q̄ = q∗ is a feasible solution to the

second LP.

Assume p̃′ and q̃′ are the correct guesses. We need to show that supp(p∗) ⊆ T and

supp(q∗) ⊆ S. Since p̃′ is a correct guess, p∗
′
= p∗C1 satisfies |p∗′j − p̃′j| ≤ δ. Therefore,

p∗ satisfies (3.15). Similarly for q̃′ we have |q∗′j − q̃′j| ≤ δ and so q∗ satisfies (3.15) in

the LP for q.

Consider r ∈ supp(p∗) and (R1q̃
′T )r. Since |q̃′j−q∗

′
j | ≤ ε/(2Bk) for all j = 1, . . . , k,

we get

(R1q
∗′T )r − ε ≤ (R1q̃

′T )r ≤ (R1q
∗′T )r + ε (3.19)

Moreover p∗ is a Nash equilibrium strategy and r ∈ supp(p∗). Therefore,

max
t

(R1q̃
′T )t − ε ≤ (R1q

∗′T )r = maxt(R1q
∗′T )t ≤ max

t
(R1q̃

′T )t + ε (3.20)
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Combining (3.19) and (3.20),

max
t

(R1q̃
′T )t − 2ε ≤ (R1q̃

′T )r ≤ max
t

(R1q̃
′T )t + 2ε

and the right hand side can be simplified to yield:

max
t

(R1q̃
′T )t − 2ε ≤ (R1q̃

′T )r ≤ max
t

(R1q̃
′T )t.

Hence r ∈ T and supp(p∗) ⊆ T . Similarly, we can show that supp(q∗) ⊆ S.

Claim 3.6.2 (p̂, q̂) as returned by the algorithm is a 4ε-equilibrium.

Proof. (Of Claim 3.6.2) We need to show that for any p′, q′, (p̂, q̂) satisfy

p̂Rq̂T ≥ p′Rq̂T − 4ε,

p̂Cq̂T ≥ p̂Cq′T − 4ε

Now,

p̂Cq̂T = ((p̂C1)C2) q̂T

By our choice of p̂ in step 4. of the algorithm, p̂C1 = p̄C1. So,

p̂Cq̂T = (p̄C1)C2q̂
T

≥ (p̃′ − δ1k)C2q̂
T from (3.15)

= p̃′C2q̂
T − δ1kC2q̂

T

≥ p̃′C2q̂
T − ε (3.21)

Since supp(q̂) ⊆ supp(q̄) and supp(q̄) contains only s for which (p̃′C2)s ≥ maxr(p̃
′C2)r−
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2ε we obtain

p̃′C2q̂
T ≥ max

r
(p̃′C2)r − 2ε

≥ max
r

((p̄C1 − δ1k)C2)r − 2ε from (3.15)

≥ max
r

(p̂C1C2)r − 3ε

≥ p̂Cq
′T − 3ε for any q′ (3.22)

Combining (3.21) and (3.22),

p̂Cq̂T ≥ p̂Cq′T − 4ε

Similarly, p̂Rq̂T ≥ p′Rq̂T − 4ε for any p′.

We analyze the run-time for the algorithm above in terms of the support parameter

k and number of strategies n, and B. The first step of the algorithm where we “guess”

p̃′ requires exhaustively going through all possible choices for each component of

p̃′ in the interval [−B,B] in steps of δ, and similarly for guessing q̃′. This takes

time (2B/δ)2k = (4B2k/ε)2k. For each choice of (p̃′, q̃′), we will need to solve the

linear program above which takes poly(|G|) time. The applications of Carathéodory’s

Theorem also take poly(|G|) and so the running time is as claimed and this completes

the proof of the theorem.

3.6.2 Three or more players

In this section, we will look at obtaining approximate Nash equilibria for low-rank

games with three or more players. This direction does not seem to have been studied

before, and the previously known algorithms for low-rank games [KT07] don’t seem

to extend to more than 2 players.

We begin by stating some definitions related to tensor rank.

Definition 3.6.3 An arity-l tensor T with dimension n has a p-decomposition if
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it can be expressed as: T =
∑p

i=1 t
(i)
1 ⊗ t

(i)
2 ⊗ . . .⊗ t

(i)
l where each t

(i)
j is an n×1 vector

(i.e. it is the sum of p pure tensors).

It will be convenient to aggregate the information in a p-decomposition of such

a tensor T into a `-tuple (Ci1, Ci2, . . . , Ci`) where each Cij is an n× p matrix whose

columns are given by
(
t
(1)
ij , . . . , t

(p)
ij

)
. We will refer to the r-th row of a matrix Cij as

Cij(r). We will also define � to be the component-wise product of vectors:

Definition 3.6.4 For two vectors v, w ∈ Rn, define (v � w) to be the vector

(v1w1, . . . , vnwn) ∈ Rn.

The following inequality will be useful in obtaining a result for the extension to

three or more players.

Lemma 3.6.5 Let x1, x2, . . . , x`, x̃1, x̃2, . . . , x̃` ∈ Rk be vectors satisfying |xi− x̃i| ≤ δ

and furthermore, let |x̃i| ≤ B for all i = 1, . . . , `. Then,

〈x1, (x̃2 � . . .� x̃`)〉 − δ`k(B + δ)`−1 ≤ 〈x1, (x2 � x3 � . . .� x`)〉 ≤

〈x1, (x̃2 � . . .� x̃`)〉+

δ`k(B + δ)`−1

Proof.

〈x1, (x2 � x3 � . . .� x`)〉 ≥ 〈x1, (x̃2 − δ1k)� x3 � . . .� x`〉

≥ 〈x1, x̃2 � x3 � . . .� x`〉 − δ(B + δ)`−2〈x1, 1k〉

≥ 〈x1, x̃2 � x3 � . . .� x`〉 − δk(B + δ)`−1

...

≥ 〈x1, x̃2 � . . .� x̃`〉 − (`− 1)δk(B + δ)`−1

≥ 〈x1, x̃2 � . . .� x̃`〉 − δ`k(B + δ)`−1

The other side of the inequality can be similarly shown.
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We begin by generalizing Lipton et al. [LMM03] to the multiplayer case. The

following theorem shows that low rank games in the multiplayer case have sparse

Nash equilibria; in the next section we give nontrivial algorithms to find approximate

equilibria with this sparsity.

Corollary 3.6.6 Let G = (T1, . . . , T`, n) be an `-player game, and suppose Ti has

rank ki. Then there exists a Nash equilibrium (p∗1, . . . , p
∗
`) with |supp(p∗i )| ≤ 1 +∑`

j=1 kj for all i.

Proof. Let (q1, . . . , q`) be a Nash equilibrium for G and let (Ci,1, . . . , Ci,`) be the

tensor decomposition for Ti. Given q1, . . . , q`, we can define vectors in Rn:

w1 = (C1,1( q2C1,2 � q3C1,3 � · · · � q`C1,` )T )

w2 = (C2,2(q1C2,1 � q3C2,3 � · · · � q`C2,` )T )

w3 = (C3,3(q1C3,1 � q2C3,2 � · · · � q`C3,` )T )
...

w` = (C`,`(q1C`,1 � q2C`,2 � · · · � q`−1C`,`−1 )T )

(3.23)

By the definition of a Nash equilibrium, the following conditions are satisfied:

supp(q1) ⊆ {v : (w1)v = max
u

(w1)u}

supp(q2) ⊆ {v : (w2)v = max
u

(w2)u}
...

supp(q`) ⊆ {v : (w`)v = max
u

(w`)u}.

And indeed any (q̂1, . . . , q̂`) satisfying these conditions (when the wi are defined rel-

ative the the q̂i) is a Nash equilibrium.

Set s =
∑`

j=1 kj. Now, by Carathéodory’s Theorem there exists q̂1 ∈ Rn with

supp(q̂1) ⊆ supp(q1) and |supp(q̂1)| ≤ s+ 1 for which:

q̂1 (C2,1|C3,1|C4,1| · · · |C`,1) = q1 (C2,1|C3,1| · · · |C`,1) ,
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since the right-hand-side is a convex combination of vectors in Rs′ for s′ ≤ s. Similarly,

there exists q̂2 ∈ Rn with supp(q̂2) ⊆ supp(q2) and |supp(q̂2)| ≤ s+ 1 for which:

q̂2 (C1,2|C3,2|C4,2| · · · |C`,2) = q2 (C1,2|C3,2|C4,2| · · · |C`,2) ,

since the right-hand-side is a convex combination of vectors in Rs′ for s′ ≤ s.

A symmetric argument gives us a sparse q̂i from each qi. Moreover, these q̂i

produce precisely the same vectors w1, w2, . . . , w` via (3.23). And, since supp(q̂i) ⊆

supp(qi) for all i, the strategies q̂i satisfy the above conditions for being a Nash

equilibrium, assuming the original qi did.

We now turn to algorithms for finding sparse approximate equilibria, with three

or more players. We first consider the case when the tensor decomposition is known.

This is not an unnatural assumption: in §3.6.3, we describe a class of games for which

the tensor decomposition is naturally given by the description of the payoff functions.

Theorem 3.6.7 Let G = (T1, . . . , T`, n) be an `-player game, and suppose we are

given a k-decomposition of Ti = (Ci1, . . . , Ci`) where each of the Cij is an n × k

matrix with integer values in [−B,B] for i, j = 1, . . . , `. Then for every ε > 0, there

is a deterministic procedure P running in time

(
(2B)`k`/ε

)k(`−1)`
poly(|G|)

that returns a 4ε-Nash equilibrium (p1, p2, . . . , p`) with |supp(pi)| ≤ 1 + `k for all i.

Proof. As in the two player case, our first step is to “guess” a collection of vectors

to within δ = ε
k`(2B)`−1 precision. We describe the “correct” guess relative to an

(arbitrary) Nash equilibrium (p1, . . . , p`) for G.

1. Let (p′11, . . . , p
′
1`) = (p1C11, p2C12, . . . , p`C1`) be an `-tuple of 1×k vectors. Note

that since all entries in (C11, C12, . . . , C1`) lie in [−B,B], entries in (p′11, . . . , p
′
1`)

also lie in [−B,B].
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2. Guess an (`− 1)-tuple (p̃′12, . . . , p̃
′
1`) such that

|(p′1i)j − (̃p′1i)j| ≤ δ i = 2, . . . , `; j = 1 . . . , k

3. For C11(r), the r-th row in C11 let

αr =

(
C11

(
p̃′12 � p̃′13 � . . .� p̃′1`

)T)
r

; r = 1, . . . , n

S1 =
{
r|max

t
αt − 2ε ≤ αr ≤ max

t
αt

}

4. By repeating steps 1 through 3 on T2, . . . , T` we can similarly obtain S2, . . . ,S`.

5. Find (p̄1, . . . , p̄`) satisfying the following linear program

|(p̄jCmj)r − (p̃mj)r| ≤ δ r = 1, . . . , k; j = 1 . . . , `;

m = 1, . . . , j − 1, j + 1, . . . , ` (3.24)

(p̄j)i ≥ 0; i = 1, . . . , n; j = 1, . . . , ` (3.25)
n∑
i=1

(p̄j)i = 1; j = 1, . . . , ` (3.26)

(p̄j)i = 0; i /∈ Sj; j = 1, . . . , ` (3.27)

6. Let Di = (C1,i | C2,i | . . . | Ci−1,i | Ci+1,i | . . . | C`,i) for i = 1, . . . , `. v = p̄iDi

is a convex combination of column vectors in Di that are in an `k-dimensional

subspace. Apply Carathéodory’s Theorem (Theorem 3.5.1) to obtain p̂i such

that v = p̂iDi for i = 1, . . . , ` and supp(p̂i) ≤ `k + 1.

7. Return (p̂1, . . . , p̂`).

As before, in order to prove the correctness of the above algorithm we postulate the

following claims:

Claim 3.6.8 A feasible solution to the linear program formulated in step 5 of the

algorithm exists.
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Proof. (Of Claim 3.6.8) We will show that (p̄1 = p∗1, p̄2, . . . , p̄` = p∗`), the Nash

equilibrium strategies for T1, . . . , T` satisfy the linear program. Since p∗
′
i = p∗iC11

satisfies |p∗′i [j]− p̃′mi[j]| ≤ δ for j = 1, . . . , k and for m = [`]− {i}, p∗i satisfies (3.24).

(3.25) and (3.26) follow from p̄i being a probability distribution. So, it suffices to

show that p∗1, . . . , p
∗
` satisfy (3.27), i.e., for any r ∈ supp(p∗i ), r ∈ supp(Si). We will

show this to be true for i = 1; it symmetrically follows for i = 2, . . . , `. Note that

|p̃′1i| ≤ B and |p∗iC1i − p̃′1iC1i| ≤ δ. Then, applying Lemma 3.6.5 gives us

(
C11(p∗2C12 � . . .� p∗`C1`)

T
)
r
− ε ≤

(
C11(p̃′12 � . . .� p̃′1`)T

)
r

≤
(
C11(p∗2C12 � . . .� p∗`C1`)

T
)
r

+ ε

and likewise,

max
t

(
C11(p̃′12 � . . .� p̃′1`)

T
)
t
− ε ≤

(
C11(p∗2C12 � . . .� p∗`C1`)

T
)
r

≤ maxt

(
C11(p̃′12 � . . .� p̃′1`)T

)
t
+ ε

Combining these two equations,

max
t

(
C11(p̃′12 � . . .� p̃′1`)

T
)
t
− 2ε ≤

(
C11(p̃′12 � . . .� p̃′1`)

T
)
r

≤ max
t

(
C11(p̃′12 � . . .� p̃′1`)

T
)
t

Hence r ∈ S1.

Claim 3.6.9 (p̂1, . . . , p̂`) as returned by the algorithm is a 4ε-equilibrium.

Proof. (Of Claim 3.6.9) For the strategy tuple (p1, . . . , p`) and given a decomposition

of Ti = (Ci1, . . . , Ci`), the payoff to player i given by Ti(p1, . . . , p`) may be expressed

as

Ti(p1, . . . , p`) = piCii
(
p1Ci1 � p2Ci2 � . . .� pi−1Ci(i−1) � pi+1Ci(i+1) � . . . p`Ci`

)T
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Put this way, we need to show that for any (p′1, . . . , p
′
`), p̂1, . . . , p̂l returned by the

algorithm satisfy

p̂iCii (p̂1Ci1 � . . . p̂i−1Ci,i−1 � p̂i+1Ci,i+1 . . .� p̂`Ci`)T ≥ p′iCii (p̂1Ci1 � . . .� p̂`Ci`)T − ε

for i = 1, . . . , `. We will prove this for i = 1, the proof follows symmetrically for

i = 2, . . . , `. First, we note that from the application of Carathéodory’s theorem in

step 6,

p̂1C11 (p̂2C12 � . . .� p̂`C1`)
T = p̂1C11 (p̄2C12 � . . .� p̄`C1`)

T (3.28)

Then, applying Lemma 3.6.5

p̂1C11 (p̄2C12 � . . .� p̄`C1`)
T ≥ p̂1C11

(
p̃′12 � . . .� p̃′1`

)T
− ε (3.29)

By the same argument as before, since we picked only those r in supp(p̂1) ⊆ S1 such

that (
C11

(
p̃′12 � . . .� p̃′1`

)T)
r

≥ max
r

(
C11

(
p̃′12 � . . .� p̃′1`

)T)
r

− 2ε

we get

p̂1C11

(
p̃′12 � . . .� p̃′1`

)T
≥ max

r
C11(r)

(
p̃′12 � . . .� p̃′1`

)T
− 2ε (3.30)

Applying Lemma 3.6.5 and from Carathéodory’s Theorem,

max
r

(
C11

(
p̃′12 � . . .� p̃′1`

)T)
r

≥ max
r

(
C11 (p̄2C12 � . . .� p̄`C1`)

T
)
r
− ε

= max
r

(
C11 (p̂2C12 � . . .� p̂`C1`)

T
)
r
− ε

≥ p′1C11 (p̂2C12 � . . .� p̂`C1`)
T − ε (3.31)

for any p′1
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Combining (3.28)–(3.31),

p̂1C11 (p̂2C12 � . . .� p̂`C1`)
T ≥ p′1C11 (p̂2C12 � . . .� p̂`C1`)

T − 4ε for any p′1

The total number of guesses made in step 2. of the procedure is k(` − 1)` (k

guesses for each component of the (`− 1) different vectors in step 2, repeated ` times

in step 4.). Each component is within [−B,B] and is guessed to δ accuracy, so the

guessing takes time

(2B/δ)k(`−1)` = (2B(k`(2B)`−1)/ε)k(`−1)` =
(
(2B)`k`/ε

)k(`−1)`

For each guess, we solve a linear program, taking time poly(|G|), for a total running

time as claimed. This completes the proof of the theorem.

3.6.3 An example of games with known low-rank tensor de-

composition

Many natural games are specified implicitly (rather than by explicitly giving the

tensors) by describing the payoff function, which itself is often quite simple. In such

cases, the tensor ranks may be significantly smaller than n, and moreover, a low-rank

decomposition into components with bounded entries can often be derived from the

payoff functions.

One prominent example is simple `-player congestion games as described in [FPT04,

Pap05]. Such a game is based on a graph G(V,E) with n vertices and m edges.

Each player’s strategy set corresponds to a subset Sp ⊆ 2E, the set of all sub-

sets of edges. We define the payoff accruing to some strategy l-tuple (s1, . . . , s`)

as U(s1, . . . , s`) = −
∑

e ce(s1, . . . , s`) where ce(s1, . . . , s`) = |{i|e ∈ si, 1 ≤ i ≤ `}| is

thought of as the congestion on paths s1, . . . , s`. Let G = (T1, . . . , T`, N = 2m) be

the game corresponding to the situation described above where for i = 1, . . . , ` and
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strategy tuple (s1, . . . , s`), Ti(s1, . . . , s`) = −
∑

e ce(s1, . . . , s`).

Theorem 3.6.10 For i = 1, . . . , ` Ti as defined above is of rank at most `m. Fur-

thermore, an explicit `m-decomposition (Ci1, Ci2, . . . , Ci`) for Ti exists where Cij are

n× k matrices with entries in {−1, 0, 1}.

Proof. In order to give an `m-decomposition of T1 say, we need to construct (C1, . . . , C`)

where Ci, i = 1, . . . , ` are n× (`m) matrices. Consider the tensors {Ti,j}i=1,...,`,j=1,...,m

that are described as follows: fix some si to be the strategy for player i. For all

ej ∈ E(G), j = 1, . . . ,m such that ej ∈ si let

Ti,j(s
′
1, . . . , s

′
i−1, si, s

′
i+1, . . . , s

′
`) = −1

where s′1, . . . , s
′
i−1, s

′
i+1, . . . , s

′
` ∈ 2E. Then, T1 =

∑`
i=1

∑m
j=1 Ti,j. This follows easily

since each tuple (s1, . . . , s`) in some Ti,j contributes −1 to T1(s1, . . . , s`) iff ej ∈

si. Summing over all Ti,j for i = 1, . . . , `, ej contributes exactly −cej(s1, . . . , s`)

to T1(s1, . . . , s`) from the definition of cej(s1, . . . , s`) above. Summing over all j =

1, . . . ,m we obtain the total contribution from all the edges. Next, we claim that

each Ti,j is a rank-1 tensor. Indeed, Ti,j = v1,j⊗ . . .⊗ v`,j where vk,j = 1N the all-ones

N × 1 column vector for k = 1, . . . , i − 1, i + 1, . . . , ` and vi,j is the N × 1 column

vector given by:

vi,j[k] =

−1 ej ∈ sk;

0 otherwise.

for k = 1, . . . , N .

3.7 Conclusions

There are many other interesting questions that are raised by viewing game theory

through the lens of requiring players to be randomness-efficient. In this chapter,
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we have framed some of the initial questions that arise and have provided answers

to several of them. In particular, we have exploited the extensive body of work in

derandomization to construct deterministic algorithms for finding sparse ε-equilibria

(which can be played with limited randomness), and for playing repeated games

while reusing randomness across rounds. The efficient fixed-parameter algorithms we

describe for finding ε-equilibria in games of small rank significantly improve over the

standard enumeration algorithm, and to the best of our knowledge, they are the first

such results for games of small rank.

The notion of resource-limited players has been an extremely useful one in game

theory, and we think that it is an interesting and natural question in this context to

consider the case in which the limited computational resource is randomness. These

considerations expose a rich and largely untapped area straddling complexity theory

and game theory.
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Chapter 4

Rationalizability of matchings

To economize is to choose.

– Marcel K. Richter.

4.1 Background

In this chapter, we focus on one of the specific problems in rationalizability men-

tioned earlier. Matchings in economics have been studied from the viewpoint of

understanding labor markets, best exemplified by the canonical hospital-intern as-

signment problem. The problem was first1 studied by Gale and Shapley [GS62] who

looked at the one-one matchings between two disjoint sets, say men and women.

A matching is said to be Gale-Shapley stable if there was no man-woman (m, f)

such that m, f are not married to each other and neither would prefer the other to

their current partners. For this model, Gale and Shapley proposed a simple algo-

rithm and Fleiner [Fle03]. that runs in O(n2) time and constructs a matching that

is Gale-Shapley stable. Fleiner [Fle03] pointed out interesting connections between

stable matchings and lattice fixed-point theorems, and used them to develop further

matroid-based generalizations of the stable matchings model which are perhaps even

more of interest to theoretical computer scientists. Further extensions to matchings

include looking at many-to-one matchings in connection with the college admissions

problem [Rot85], finding core matchings by fixed-point methods [EO04] and finding

1The exact historical beginnings of investigations into matchings are somewhat open to interpre-
tation. See Roth [Rot82].
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core matchings when preferences are expressed [EY07]. Roth and Sotomayor [RS90]

give an exhaustive survey of two-sided matchings.

4.1.1 Revealed preference theory and matchings

Echenique [Ech08] looked into the problem of finding preferences that rationalize a

collection of one-to-one matchings. Echenique specifically asked about the testable

implications of matchings, and showed that the theory is falsifiable (in other words,

there exist collections of matchings that are not rationalizable by any preference

profile). More significantly, he showed necessary and sufficient conditions that must be

satisfied for a collection of matchings to be rationalized by a set of preference profiles.

Broadly, these conditions involve the so-called coincidence/opposition property that

need to be satisfied amongst any pair of agents belonging to one set and matched to

one common agent in the other set in at least one matching. This property stipulates

that the preferences of such a pair will be in lockstep in the set of matchings in

which they were matched to one agent in common. Correspondingly, for the agents

belonging to the other set, the preferences are in opposition to those of the former

pair.

This particular setting does not extend to situations where there are monetary

transfers involved, such as housing markets. In some recent work, Chambers and

Echenique [CE08] look at the rationalizability of assignment games which are two-

sided markets with monetary transfers and obtain similar characterizations for the

testable implications of the observed data.

4.1.2 Stable matchings and preference profiles

Given two sets of nodes, M (“men”) and W (“women”), together with preferences for

each node, the famous algorithm of Gale and Shapley [GS62] obtains a stable match-

ing. We will be interested in the “reverse” question: given a set of matchings, are

there preferences under which they are simultaneously stable? One may wonder why

we should be given a collection of matchings instead of a single instance of a matching
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between the set of men and women. Indeed, we think of the men (and women) as

representing instances of different types or populations that are matched differently

in each matching and we are interested in determining the preference profiles that

define these types based on the observed set of matchings. Before stating our results,

we formalize the problem and introduce some terminology.

Definition 4.1.1 Let M,W be disjoint sets of equal cardinality. A one-one match-

ing µ is a bijection µ : M ∪W → M ∪W , such that for all m ∈ M , µ(m) ∈ W , for

all w ∈ W , µ(w) ∈M , and for all m ∈M,w ∈ W , µ(m) = w ⇔ µ(w) = m.

In the problems we consider, we will be seeking preferences for the elements of M

and W , which are expressed as follows:

Definition 4.1.2 A preference order for m ∈ M (resp. w ∈ W ) is a linear

ordering of W (resp. M). We write m : w > w′ to mean that w occurs before w′ in

the preference order for m. A preference profile is a collection of preference orders

for each m ∈M and w ∈ W .

The “stability” of a matching with respect to a preference profile depends on the

crucial notion of blocking pair:

Definition 4.1.3 A blocking pair with respect to a matching µ and a preference

profile P is a pair (m,w) : m ∈M,w ∈ W such that µ(m) 6= w and

m : w > µ(m) and w : m > µ(w).

Matching µ is stable with respect to P if there is no blocking pair with respect to µ

and P.

In other words, in a blocking pair (m,w) with respect to µ and P , both people are

“unhappy” with their current partner in µ and would instead prefer to be matched

to each other.
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4.1.3 Our results

Our first result is that rationalizing matchings is hard.

Theorem 4.1.4 Given a collection of one-one matchings H on the sets M and W ,

it is NP-complete to determine if there exists a preference profile P such that every

µ ∈ H is stable with respect to P.

We call such a preference profile a rationalization of the matchings H. The main

gadget we use in the reduction is distilled from some fairly involved necessary and

sufficient conditions for a preference profile to be a rationalization, discovered by

Echenique [Ech08]. We describe the full conditions in Section 4.2. Our gadget is a

configuration across two matchings, that looks like this:

A preference profile P rationalizes the matchings containing this configuration

only if either m : w > w′ and m′ : z > w, or m : w′ > w and m′ : w > z.

Conversely, if these conditions hold (together with additional conditions concerning

the remainder of the matchings) then P rationalizes the set of matchings. We use

this gadget fundamentally as a Boolean choice gadget (either m prefers w over w′ or

w′ over w), and as part of a scheme to ensure consistency (since the choice of m is

tied to the choice of m′).

Having ascertained that rationalizing a collection of matchings is NP-complete,

we would next want to know how hard it is to solve the problem approximately. In

this context, we first need to decide what exactly we mean by ‘approximate’ ratio-

nalization. Two notions are of particular interest: on the one hand, we can think of

identifying a preference profile that rationalizes the maximum number of matchings.
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Problem 1 (max-stable-matchings) Given a collection of matchings H on sets

M,W , find a preference profile P that maximizes the number of matchings in H that

are simultaneously rationalized by P .

This problem is hard to approximate to within some constant factor:

Theorem 4.1.5 There is a constant ε > 0 for which it is NP-hard to approximate

max-stable-matchings to within a factor of (1− ε).

A second natural notion of approximation attempts to maximize “stability” among

the given set of matchings at a more fine-grained level, by maximizing the number of

non-blocking pairs across all matchings.

Some effort is required to make this notion of approximation meaningful. In a

typical instance there will be many pairs (m,w) for which m is not matched to w

in any of the given matchings. We say such a pair is non-active and pairs that are

matched in some matching are active. It is easy to ensure that all non-active pairs are

non-blocking pairs with respect to any matching, by requiring the preference profile

to be valid:

Definition 4.1.6 A preference profile P is valid with respect to a collection of match-

ings H if for every m ∈ M , m : w > w′ if (m,w) is active and (m,w′) is not active,

and for every w ∈ W , w : m > m′ if (m,w) is active and (m′, w) is not active.

In other words, each man m prefers women that he is matched to in some matching

over women that he is never matched to, and similarly for each women w. We argue

that to have a meaningful notion of maximizing non-blocking pairs, one should con-

sider only valid preference profiles, and therefore attempt to maximize the number of

non-blocking pairs among the active pairs (since a valid preference profile automat-

ically takes care of all of the non-active pairs). We are led to define the following

optimization problem:
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Problem 2 (max-stability) Given a collection of matchings H on sets M,W , find

a valid preference profile P for M,W that maximizes:

|{(m,w, µ) : (m,w) is active

and is not a blocking pair with respect to µ, P}|.

This problem is also hard to approximate to within some constant factor:

Theorem 4.1.7 There is a constant ε > 0 for which it is NP-hard to approximate

max-stability to within a factor of (1− ε).

Our proof uses the overall structure of the reduction used to prove Theorem 4.1.4

together with an explicit constant-degree expander to make aspects of the reduction

robust enough to be gap-preserving.

An approximation of 3/4 is achievable (in expectation) for this problem by a simple

randomized assignment of preferences. Derandomizing via the method of conditional

expectations yields:

Theorem 4.1.8 There is a deterministic, polynomial-time approximation algorithm

for max-stability that achieves an approximation factor of 3/4.

Finally, we turn to a generalization of the one-one matchings we have been con-

sidering:

Definition 4.1.9 Let F,W be disjoint sets. A one-many matching is a pair of

functions (µ, τ) with µ : F → 2W , and τ : W → F for which

∀w ∈ µ(f), τ(w) = f and ∀w ∈ W,w ∈ µ(τ(w)).

Typically in economics literature, one-to-many matchings are spoken of in refer-

ence to firms and workers (or, similarly, hospitals and interns) and hence the notation

of F,W is more prevalent. However, since this problem is so closely tied in with our
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discussion of one-to-one matchings we will continue to use the notation of “men” M

and “women” W when we mention one-to-many matchings in the rest of the paper.

One-many matching models have been widely studied [Rot82, Rot85]. In a one-

many matching, preference order and preference profile are defined in the same way

as for one-one matchings, except that each m has a linear ordering of 2W instead of

just W . Also analogous to the blocking pair for one-to-one matchings, we can define

a blocking set and a notion of stability [EO04] for one-to-many matchings:

Definition 4.1.10 A blocking set with respect to a one-many matching (µ, τ) and

a preference profile P is a pair (m,B) : m ∈M,B ⊆ W such that µ(m) ∩B = ∅ and

∃A ⊆ µ(m) such that

m : A ∪B > µ(m) and ∀w ∈ B w : m > τ(w).

Matching (µ, τ) is stable∗ with respect to P if there is no blocking set with respect to

(µ, τ) and P.

The rationalization problem for one-many matchings is not likely to even be in

NP, because a witness (preference profile) entails listing preference over 2W , which is

exponentially large. We are then led to consider a restricted version of the problem

in which we only allow m ∈ M to be matched to a set of cardinality at most some

constant parameter `. We call such matchings one-` matchings.

The resulting rationalization problem is in NP and, we show, NP-complete:

Theorem 4.1.11 For every fixed `, given a collection of one-` matchings H on the

sets M and W , it is NP-complete to determine if there exists a preference profile P

such that every µ ∈ H is stable∗ with respect to P.

We can define the notion of an active pair (m,B) for one-` matchings in analogy

with active pairs, and also valid preference profiles as in Definition 4.1.6.

The two approximation problems arising with respect to one-` matchings are hard

to approximate to within some constant factor, just as in the one-one case:
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Theorem 4.1.12 There is a constant ε > 0 for which it is NP-hard to approximate

max-stable-one-`-matchings to within a factor of (1− ε).

Theorem 4.1.13 There is a constant ε > 0 for which it is NP-hard to approximate

max-one-`-stability to within a factor of (1− ε).

4.2 Preliminaries

In this section, we encapsulate the working of the result for one-one matchings due to

Echenique [Ech08] and provide the necessary and sufficient conditions for the existence

of a preference profile that rationalizes a given collection of matchings. We start with

some definitions and notations.

Definition 4.2.1 For any two matchings µ, µ′ ∈ H, a (µ, µ′)-pivot is a w ∈ W such

that there exist some mk,m` ∈M such that µ(mk) = µ′(m`) = w.

The key to proving Theorem 4.1.4 is a result due to Echenique [Ech08] which we

encapsulate in Lemma 4.2.3 which sets down necessary and sufficient conditions for

the existence of a preference profile that rationalizes a given collection of matchings.

We first introduce some notation that will be necessary to describe Lemma 4.2.3.

Consider the directed graph Gij with M as vertex set and Eij as edge-set where

(m,m′) ∈ Eij if µi(m) = µj(m
′). Let C(µi, µj) denote the set of all connected

components of Gij. We will denote the analogous graph obtained by considering as

vertex set W as Hij. The following proposition now follows from our notation and

establishes a correspondence between Gij and Hij.

Proposition 4.2.2 (Echenique [Ech08]) C is a connected component of Gij iff µi(C)

is a connected component of Hij. Furthermore, µi(C) = µj(C).

Echenique [Ech08] showed the following lemma to be true.

Lemma 4.2.3 (Echenique [Ech08]) Let H = {µ1, . . . , µ`} be rationalized by prefer-

ence profile P. Consider, for all µi, µj ∈ H the graph Gij and all C ∈ Cij. Then,
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exactly one of (4.1) or (4.2) must be true:

m : µi(m) > µj(m) for all m ∈ C and

w : µj(w) > µi(w) for all w ∈ µi(C) (4.1)

m : µi(m) < µj(m) for all m ∈ C and

w : µj(w) < µi(w) for all w ∈ µi(C) (4.2)

Conversely, if P is a preference profile such that for all µi, µj ∈ H and C ∈ C(µi, µj),

exactly one of (4.1) or (4.2) holds, then P rationalizes H.

4.3 Hardness of rationalizability of matchings

We are given two sets M,W with |M | = |W | = N and a set H of s matchings

µ1, . . . , µs : M → W . We show that the problem of determining whether there exists

a preference profile that rationalizes H is NP-complete by reducing from nae-3sat.

4.3.1 Proof outline

We give below a broad overview of the reduction used to prove Lemma 4.3.2. Our

objective is to start with a set of clauses and construct matchings corresponding to

them in such a way that the all-equal assignment to variables in a clause would lead

to a conflicting preference relation for some element in the set of matchings. With

this in mind, we build ‘matching gadgets’ corresponding to a given Boolean formula.

By way of example, consider a single clause C1 = (x1 ∨ x̄2 ∨ x̄3). We associate

with each variable xi, the elements m1i ∈ M1, w1i, w
′
1i ∈ W1. We will subsequently

pad M1 with dummy elements to ensure that |M1| = |W1|. For such a clause, we look

up Table 4.4 to construct 10 partial matchings µ1, . . . , µ10 involving M1 = {m1i|i =

1, 2, 3} ∪ {u1} and W1 = {w1i, w
′
1i|i = 1, 2, 3} ∪ {y1, z1}. Our encoding of the truth

assignment to a variable xi in clause C1 will then correspond to m1i preferring w′1i

over w1i, i.e. m1i : w′1i > w1i iff xi = 1. The claim below gives a flavor of how the
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entire reduction works.

Claim 4.3.1 There exists a rationalizable preference profile for M1,W1 for the match-

ings described in Table 4.4 iff there exists a not-all-equal satisfying assignment for C1.

Proof. (Sketch) Suppose there exists a not-all-equal satisfiable assignment to C1.

Then, in order to show that the corresponding preference profile obtained is rational-

izable, we will show that it satisfies the conditions in Lemma 4.2.3. We fix the pref-

erence for each m1i between w1i and w′1i based on the assignment to xi for i = 1, 2, 3.

We set m1i : w′1i > w1i if xi = 1 and m1i : w1i > w′1i otherwise. Note that since

an assignment (0, 1, 1) or (1, 0, 0) to (x1, x2, x3) is ruled out, the matchings in Table

4.4 ensure that there will be no “cycles” in the preference orders of m11,m12,m13.

Furthermore, an assignment to x1, x2, x3 only fixes a preference order for all m ∈M1

and so we can fix a preference order for w ∈ W1 so that there is no conflict in the

preference orders for all m,w and that the conditions in Lemma 4.2.3 are satisfied.

The converse is immediate because for a rationalizable preference profile for m ∈

M1, w ∈ W1, Lemma 4.2.3 holds and hence an all-equal assignment to C1 is not

allowed. For instance, suppose (x1, x2, x3) were assigned (0, 1, 1) then using Lemma

4.2.3 to draw up all the preference relations we would obtain a conflict, i.e. m11 :

w12 > w′11 (applying Lemma 4.2.3 to µ11, . . . , µ18) and m11 : w12 < w′11 (applying

Lemma 4.2.3 to µ19, µ110). Therefore, setting each of the xi to the values obtained

depending on the preference relation for m1i between w1i and w′1i as delineated above

is a not-all-equal satisfying assignment. An identical argument goes through when

(x1, x2, x3) is assigned each of the other 7 Boolean assignments.

In a Boolean formula with m clauses, we repeat the exercise above but use disjoint

sets M`,W` for each clause C` to avoid conflicting preference orders across clauses.

This makes it necessary for us to enforce consistency between the preference relations

for m`i and w`i, w
′
`i for all ` = 1, . . . ,m and the assignment to xi. To this end, we

use additional matching gadgets from Table 4.5 and an auxiliary element vi. Again

applying Lemma 4.2.3, we see that for x1 occurring in clauses C1, C2 say, we must

have that m11 : w′11 > w11 ⇐⇒ m21 : w′21 > w21.
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Note that in the manner our construction of matching gadgets is set up, it is

necessary for our purposes to reduce from nae-3sat as opposed to 3sat because,

if an all-false assignment to a clause were to lead to a conflict in preference relation

for some m,w,w′, then by symmetry an all-true assignment would also lead to a

contradictory preference relation.

4.3.2 Proof of Theorem 4.1.4.

The proof for Theorem 4.1.4 automatically follows from Lemma 4.3.2 which we for-

mally state and prove below.

Lemma 4.3.2 Let Z be an instance of nae-3sat over n variables x1, . . . , xn and m

clauses C0, . . . , Cm−1. Then, there exists an instance Z ′ of O(m) matchings between

sets M and W , |M | = |W | = O(m+ n) such that there exists a rationalizable prefer-

ence profile for all m ∈M,w ∈ W iff there exists a not-all-equal satisfiable assignment

to x1, . . . , xn. Furthermore, these matchings can be constructed in polynomial time.

Proof. Consider a clause C` involving xi, xj, xk. For C`, we consider the following sets

of men and women: M` = M`∪M ′
`∪B`∪U`∪V`∪T`,W` = W`∪W ′

` ∪G`∪Y`∪V ′` ∪

Z`. Each of M`,W` comprises 3 men and women {m`i,m`j,m`k} and {w`i, w`j, w`k}

respectively. The remaining sets are similarly constructed with each containing 3

elements. We then look up the corresponding table from Tables 4.1 through 4.4 and

construct 10 partial matchings. In addition, we consider the singleton element v`

which is used in matchings in Table 4.5. Note that each m ∈ M` corresponds to a

variable occurring in C`. We will use v`i to match, say, m`i ∈M` for consistency in the

assignment made to the variable xi occurring in the first clause Cr, r > `. This gives

rise to 4 matchings for each clause. Let M = ∪m`=1M`,W = ∪m`=1W`. Furthermore,

we will denote R(C`) to be the set of all matchings µ associated with clause C` as

described above.

We now describe in detail the complete set of matchings between M` and W`.

The idea is to make sure that every element m ∈M` not already matched according

to the tables is matched to some w ∈ W`. We use the following rules:
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Table 4.1: For C` = (xi + xj + xk), (x̄i + x̄j + x̄k):
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)
µ`3: (mj, w

′
j) (mk, wj)

µ`4: (mj, wj) (mk, z`)
µ`5: (mk, w

′
k) (u`, wk)

µ`6: (mk, wk) (u`, wj)
µ`7: (u`, wk) (mi, wj)
µ`8: (u`, wj) (mi, w

′
i)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, wi)

Table 4.2: C` = (xi + xj + x̄k), (x̄i + x̄j + xk)
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)
µ`3: (mj, w

′
j) (mk, wj)

µ`4: (mj, wj) (mk, z`)
µ`5: (mk, w

′
k) (u`, wk)

µ`6: (mk, wk) (u`, w
′
i)

µ`7: (u`, wk) (mi, w
′
i)

µ`8: (u`, w
′
i) (mi, wk)

µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, wi)

1. For m`i, µ(m`i) = φ, we match m`i to g`i ∈ G` and w`i to b`i ∈ B`.

2. For m`′i, `
′ 6= ` match m`′i to g`′i ∈ G`′ and w`′i to b`′i ∈ B`′ . Match m′`′i ∈M′

`′

to w′`′i ∈ W ′`′ . Match u`′i to y`′i, v`′i to v′`′i and t`′i to z`′i.

3. Let B′` = {b`k|µ(b`k) = φ}, G′` = {g`r|µ(g`r) = φ}. Note that by the structure

of our matching rules in Tables 4.1 through 4.4, 1 ≤ |B′`| ≤ |G′`| ≤ 2. For each

b`k ∈ B` we match to g`r ∈ G` in ascending order of k, r.

4. If after (3), there is some g`r ∈ G`, µ(g`r) = φmatch the firstm′`k ∈M ′
`, µ(m′`k) =

φ to g`r.

5. For all m′`i ∈ M ′
`, µ(m′`i) = φ, match m′`i to the first w′`j, µ(w′`j) = φ. Similarly

with u`i, t`i and z`i, y`i.
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Table 4.3: For C` = (xi + x̄j + xk), (x̄i + xj + x̄k)
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)
µ`3: (mj, w

′
j) (mk, wj)

µ`4: (mj, wj) (mk, z`)
µ`5: (mk, w

′
k) (u`, wk)

µ`6: (mk, wk) (u`, wi)
µ`7: (u`, wi) (mi, wk)
µ`8: (u`, wk) (mi, wi)
µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, w

′
i)

Table 4.4: For C` = (xi + x̄j + x̄k), (x̄i + xj + xk):
µ`1: (mi, w

′
i) (mj, wi)

µ`2: (mi, wi) (mj, y`)
µ`3: (mj, w

′
j) (mk, wj)

µ`4: (mj, wj) (mk, z`)
µ`5: (mk, w

′
k) (u`, wk)

µ`6: (mk, wk) (u`, wj)
µ`7: (u`, wk) (mi, wj)
µ`8: (u`, wj) (mi, wi)
µ`9: (mk, z`) (mi, wj)
µ`10: (mk, wj) (mi, w

′
i)

Table 4.5: Consistency matching for xp occurring in clauses Ci, Cj:
µ′p1: (mip, w

′
ip) (vip, wip)

µ′p2: (mip, wip) (vip, w
′
jp)

µ′p3: (vip, wip) (mjp, w
′
jp)

µ′p4: (vip, w
′
jp) (mjp, wjp)
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6. Finally, for all v`i, µ(v`i) = φ match v`i to v′`i.

This specifies a complete matching µ : M → W . We have 10 such matchings

for each clause, and at most 4 matchings for each variable in a clause to ensure

consistency of assignment. Therefore, the total number of matchings is at most 22m.

The claims below demonstrate how our reduction works.

Claim 4.3.3 Suppose there exists a not-all-equal satisfying assignment to an instance

in m clauses C1, . . . , Cm and n variables x1, . . . , xn. Then, there exists a rationalizing

preference profile H for the corresponding instance of matchings between M and W .

Proof.

We construct a valid preference profile and hence will only consider active pairs.

Note that by the structure of our reduction setting up the matchings, each m ∈

M`, w ∈ W` has at most five elements that it is matched to. In order to satisfy

conditions in Lemma 4.2.3 we will construct these preference orders so that for every

active pair, one of (4.1) or (4.2) holds.

Note that the only connected components possible in any graph Gµ1µ2 constructed

from matchings µ1, µ2 are either a cycle or a self-loop (when an element m is matched

to the same w in both µ1 and µ2).

Consider the variable xj and the set of matchings µ, µ′ where m`j is matched to w`j

and w′`j respectively. Note that by consequence of our construction of the matchings,

for any element m ∈ M` (resp. w ∈ W`) m (resp. w) occurs in a cycle in only those

graphs involving at least one of µ, µ′. For all other such pairs of matchings, m occurs

in a self-loop because m is connected to the same element in both such matchings.

We look at the graph Gµµ′ .

For a cycle C in Gµµ′ involving m`j, the preference order is dictated by xj’s

assignment: xj = 1 ⇔ m`j : w′`j > w`j. To satisfy Lemma 4.2.3, we will ensure in

the preference order for all elements m occurring in C that m : µ′(m) > µ(m) and

similarly, for all elements w occurring in µ(C) in the graph Hµµ′ that w : µ(w) >

µ′(w).
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A preference order constructed as above will lead to a conflict in two possible

ways. Firstly, there may exist a blocking pair (m,w) for some µ. Since our preference

profile is a valid preference profile, there must exist some µ′ such that µ′(m) = w.

Then, w is a (µ, µ′)-pivot for m and µ(w) = m′ say. But we ensured that for such a

pair of matchings (µ, µ′) either m : w > µ(m) and w : µ′(w) > m or m : µ(m) > w

and w : m > µ′(w) and hence (m,w) cannot be a blocking pair.

Secondly, there may exist some m ∈M` (resp. w ∈ W`) for which some preference

is contradictory, i.e. for instance when m : w > w′ and m : w′ > w. For a not-all-

equal satisfiable assignment to any clause C` containing xj, it is easy to check given

Tables 4.1 through 4.5 exhaustively amongst all w that m can be matched to that

this is not the case. Furthermore, since each clause C` has a different set of M`,W`

from which the matchings are constructed, no contradictory preference order exists

across any two clauses.

Finally, we remark since we wish to construct a valid preference profile, for all

elements w for which (m,w) is not active, our preference order for m will have m :

w′ > w for all w′ such that (m,w′) is active. This completes the proof of the claim.

Claim 4.3.4 Let H be a rationalizing preference profile for the above instance of

matchings. Then, the assignment

xi =

1 ∀`,m`i : w′`i > w`i

0 otherwise.

for all i is a not-all-equal satisfying assignment.

Proof. We first point out that the consistency matchings involving v` and m`i, i =

1, . . . , n ensure that any rationalizing preference profile H must satisfy either (m`i :

w′`i > w`i) or (m`i : w`i > w′`i) for all ` = 1, . . . ,m. This means that a truth

assignment to x1, . . . , xn will be consistent in all clauses C1, . . . , Cm.
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Consider an arbitrary clause C`. We show that if H is a rationalizing preference

profile, then it is not possible to have an all-equal assignment made to variables in

some C`. Suppose, by way of contradiction that there existed such an assignment.

Depending on the order and number of variables that appear negated in C`, we look

up one of Tables 4.1 through 4.4. Then, as illustrated in Claim 4.3.1, we would obtain

a conflict in preference orders for some m thereby giving a contradiction.

This completes the proof of the Lemma.

4.4 Hardness of approximate rationalizability of

matchings

Our next step in exploring the computational aspects of rationalizability of matchings

will be to look at the complexity of ‘approximate’ rationalizability.

4.4.1 Maximizing the number of rationalizable matchings

In the first setting, we wish to maximize the number of matchings that can be com-

pletely rationalized as stable by a preference profile. Theorem 4.1.5 states that this

is hard to approximate within a constant factor.

Theorem 4.1.5 (restated). There is a constant ε > 0 for which it is NP-hard to

approximate max-stable-matchings to within a factor of (1− ε).

To prove the theorem we show that it is NP-hard to rationalize any fixed set of

matchings as captured in the lemma below.

Lemma 4.4.1 Given a collection of matchings H = {µ1, . . . , µk} between M and W

where k is some fixed constant, it is NP-hard to determine if there exists preferences

for m ∈M,w ∈ W for which each of µ ∈ H is a stable matching.

In order to prove Lemma 4.4.1 we proceed as before by reducing from nae-3sat

but we will use a special variant of the nae-3sat problem: nae-3sat(k′) which has
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the property that every variable in the Boolean formula occurs in exactly k′ clauses

where k′ ≥ 29 is a constant. Lemma 4.4.2 below captures this reduction.

Lemma 4.4.2 Let Z be an instance of nae-3sat(k′) over n variables x1, . . . , xn and

m clauses C0, . . . , Cm−1 where k′ is some fixed constant. Then, there exists an instance

Z ′ of (10 + k′) matchings between sets M and W , |M | = |W | = O(m+ n) such that

there exists a rationalizable preference profile for all m ∈M,w ∈ W iff there exists a

not-all-equal satisfiable assignment to x1, . . . , xn. Furthermore, these matchings can

be constructed in polynomial time.

The following claim is key to proving Lemma 4.4.2.

Claim 4.4.3 Let M1, . . . ,Mk;W1, . . . ,Wk be respectively k disjoint sets of men and

women and µ1, . . . , µk a collection of matchings with µi : Mi ∪ Wi → Mi ∪ Wi.

There exists a set of preference orders P for Mi,Wi for i = 1, . . . , k that rationalizes

µ1, . . . , µk iff there exists a set of preference orders P ′ that rationalizes µ, where

µ : M1 ∪ . . .Mk ∪W1 ∪ . . .Wk →M1 ∪ . . .Mk ∪W1 ∪ . . .Wk is the matching obtained

by setting µ(m) = µi(m) for all m ∈Mi; i = 1, . . . , k.

Proof. Suppose there exists a preference profile P for µ1, . . . , µk. Then, for µ we

construct P ′ by assigning for m ∈ Mi as sub-ordering over Wi, the corresponding

preference order for m in P . We complete the preference order for m by ranking all

other w ∈ W1∪ . . .Wi−1∪Wi+1 . . .Wk below the sub-ordering for w ∈ Wi. Conversely,

for every preference order corresponding to some m ∈Mi in a rationalizing preference

profile P ′ for µ, we obtain a preference order in P for µi by restricting the order over

only Wi.

Proof. (Of Lemma 4.4.2) The proof essentially follows the same technique as that

of Lemma 4.3.2 except that we need to be careful in our reduction to maintain the

number of matchings at a constant. To this end, we revisit the matchings shown

in Tables 4.1-4.4. Note that in our previous reduction, we required disjoint sets of

M`,W` to correspond with each clause C`. Furthermore, each clause corresponds
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to 10 matchings (not counting those required to ensure consistency). The following

proposition allows us to maintain the overall number of matchings at a constant by

merging each of the 10 matchings across all the clauses C0, . . . , Cm−1.

Claim 4.4.3 tells us that we can merge all µ11, µ21, . . . , µm1 into one single matching

µ′1. We repeat this for all matchings µ`i, ` = 1, . . . ,m; i = 2, . . . , 10 to obtain 10 new

matchings µ′1, . . . , µ
′
10.

We now focus on the consistency matchings. We will exploit the fact that each

variable xi in Z occurs in at most k′ clauses. Therefore, each xi will correspond to

at most 2k′ matchings. Appealing once again to Claim 4.4.3, we can merge each of

these matchings into a collection of 2k′ matchings because each xi is associated to a

disjoint set of ‘linking’ elements vi1, . . . , vik′ . Claims 4.3.3 and 4.3.4 go through with

their proofs unchanged. This completes the proof for Lemma 4.4.2, and consequently

Lemma 4.4.1.

From Lemma 4.4.1 it follows that it is NP-hard to approximate max-stable-

matchings for H to within a factor of (1− ε) where ε = 1/(k + 1).

Note that given a collection H of any two matchings, it is trivial to construct a

(valid) preference profile that rationalizes H by arbitrarily assigning a preference for

each element in M matched to W in one matching over the other and correspondingly

assigning the reverse preference for elements in W .

4.4.2 Maximizing the number of non-blocking pairs

We look at the max-stability problem. The motivation in considering this problem

as a notion of approximate rationalizability is that we are now striving to ensure

that given a collection of matchings between two sets M and W , there are optimally

many different pairs (m,w) for which at least one of them is happy with their current

partner and has no incentive to be matched to the other.

As a preliminary exercise, we ask how well would a simple randomized assignment

of preferences to m ∈ M,w ∈ W perform. It turns out that this would achieve a

3/4-approximate solution. This is the content of Theorem 4.1.8.
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Theorem 4.1.8 (restated). There is a deterministic, polynomial-time approxi-

mation algorithm for max-stability that achieves an approximation factor of 3/4.

Proof. Note that since we are only interested in finding valid preference profiles, we

will automatically accord the least preference for all w ∈ W that m ∈ M is not

matched with in any of the matchings. Subsequently, each such (m,w) is by default

a stable pair and is excluded from our estimation. Let P denote the total number of

all remaining pairs for which no preference has been allocated as yet.

We start with an equivalent formulation of the problem. We are given sets

M,W such that |M | = |W | = n, and a collection H of ` matchings µ1, . . . , µ`.

For some m (similarly, w), we associate a ‘rank’ function rm : W → [n] (simi-

larly, rw : M → [n]) which would completely describe m’s (similarly w’s) prefer-

ence order with rm(w) < rm(w′) implying that m : w > w′. A pair (m,w) then

is stable for some µ if either rm(w) > rm(µ(m)) or rw(m) > rw(µ(w)) is true. Let

S = {(m,w, µ)|(m,w) is a stable pair for µ}. Our objective then is to maximize |S|.

Consider the following scheme: for each m ∈ M,w ∈ W we construct the rank

function by assigning ranks uniformly at random to all w′ ∈ W and m′ ∈ W re-

spectively. The probability that a pair (m,w) is stable for µ is 3/4 and hence, the

expected number of stable pairs denoted by E[|S|] is 3P/4. Furthermore, we can

easily derandomize this scheme by the method of conditional expectations. At every

step when a value is to be assigned to rm(w), we can efficiently calculate the con-

ditional expectation of the number of non-blocking pairs given the previous values

assigned to all w ∈ W and all other rank functions rm′ (there are only a polynomial

number of w ∈ W and rank functions rm′ to consider) and fix rm(w) to be the value

that maximizes the conditional expectation.

It suffices to mention here that a simple randomized preference order for all m ∈

M,w ∈ W achieves the 3/4-approximation factor in expectation and can subsequently

be derandomized. How much better can we do than just a random assignment of

preferences? Theorem 4.1.7 tells us that a constant-factor approximation is all we
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can hope for.

Theorem 4.1.7 (restated). There is a constant ε > 0 for which it is NP-hard to

approximate max-stability to within a factor of (1− ε).

To prove the theorem, we once again construct matchings corresponding to each

clause in max-nae-3sat instance Z. Recall that in proving Lemma 4.3.2 we needed

to construct auxiliary matchings to ensure consistency of assignment to the variables

in accordance with the preferences of the corresponding elements in the matchings. To

prove hardness of approximation, we will need to establish a gap-preserving reduction

by boosting the robustness of these consistency gadgets. We do so by augmenting the

number of matchings corresponding to the consistency and argue subsequently that

if there exists a preference profile that achieves at least a (1 − ε′) fraction of stable

pairs, then there exists an assignment that would satisfy at least a (1− ε) fraction of

the clauses. Theorem 4.1.7 then follows from the following Lemma:

Lemma 4.4.4 Let Z be an instance of max-nae-3sat over n variables x1, . . . , xn

and m clauses C0, . . . , Cm−1 where k′ is some fixed constant. Then, there exists a

ε′ < 1 and a polynomial time reduction to an instance Z ′ of max-stability of

matchings between sets M and W , |M | = |W | = O(m) such that the following is

true:

opt(Z) = 1 =⇒ opt(Z ′) = 1 (4.3)

opt(Z) < 1− ε =⇒ opt(Z ′) < 1− ε′ (4.4)

Proof. The reduction is similar to what we used to prove Lemma 4.3.2. We set

up matchings corresponding to the clauses C0, . . . , Cm−1 as before, but now we need

to work harder to boost the robustness of the consistency gadgets. Previously, we

used Table 4.5 to construct additional matchings using auxiliary elements to ‘link’

different copies of mji; j = 1, . . . ,m corresponding to a single variable xi. It will help

to conceptualize this as a graph.

For a variable xi which occurs in some t clauses Cj1 , . . . , Cjt , we associate elements
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from M,mj1i, . . . ,mjti and define the consistency graph for xi, Gi to comprise vertex

set Vi = {mj1i, . . . ,mjti}. An edge exists between any two vertices (mjpi,mjqi) if they

are ‘linked’ together by an auxiliary element.

Then, the consistency matchings described above in Lemma 4.3.2 correspond to

a path in Gi. In order to boost the robustness, we will now replace the path in

Gi by a constant-degree expander graph on t vertices. We make use of the edge

expansion notion to define an expander graph: an (n, d, λ) expander graph is a d-

regular graph on n vertices with the property that |∂(Y )|/|Y | ≥ d(1 − λ)/2 where

Y ⊆ Vi, |Y | ≤ |Vi|/2, ∂(Y ) is the set of all edges with exactly one end-point in Y

and λ is the spectral expansion parameter of the graph. In particular, the following

lemma will be useful (the proof can be found in [DH05]):

Lemma 4.4.5 For a (t, d, λ) expander graph G and all δ ≤ (1−λ)/12, upon removing

2δt vertices from G, there exists a connected component of size at least

(
1− 4δ

1− λ

)
t

Note that the total number of occurrences of variables in all the clauses is at

most 3m, and further, that in each clause a variable corresponds to an element m

matched to at most an O(1) elements in W . Therefore, the total number of pairs

for which a matching exists is at most O(m). Since we only consider valid preference

profiles, this means that the number of active pairs under consideration is also O(m)

say. Additionally, the total number of auxiliary elements required to construct the

expander graphs in the consistency gadgets is also at most O(m) and hence |M | =

O(m).

Claim 4.3.3 from earlier goes through unchanged since our reduction is unchanged

in how a satisfying assignment will correspond to a rationalizing preference profile

(and hence, all stable pairs). It remains to show that (4.4) holds.

We shall show that if there is a valid preference profile for Z ′ such that there are

at most an ε′ fraction of blocking pairs, then there exists an assignment that fails to

satisfy at most ε fraction of clauses in Z.
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Suppose that there is a valid preference profile that allows at most ε′m blocking

pairs. Note that if a pair (m,w) is a blocking pair for some matching µ, then Lemma

4.2.3 breaks down for µ. Since each matching in Z ′ can be identified with a clause, a

blocking pair could result in the clause being unsatisfied.

For a blocking pair (m,w) for some matching µ in our reduction, we evaluate how

many clauses are affected. Suppose µ corresponds to one of the matchings for clause

C`. If m ∈M` then m must be associated with some variable xi occurring in C`, and

we will label C` unsatisfiable. Otherwise, (m,w) has no effect on the satisfiability of

C`.

Suppose µ corresponds to a matching constructed to ensure consistency. Ifm ∈M`

for some clause C` and xi, then we delete the node m`i in Gi and as before label C`

as unsatisfiable. However, now we also need to argue that (m,w) does not cause too

many other clauses to be labeled unsatisfiable.

From Lemma 4.4.5 we know that deleting at most a constant fraction of vertices

from Gi will result in a connected component of size at least (1− 4δ
(1−λ)

)t. Taking the

aggregate for every variable xi and after deleting at most ε′m vertices from all the

consistency graphs Gi together, the total sum of the largest connected components

amongst all Gi will be some (1 − ε)m where ε is determined by ε′, λ and the total

number of occurrences of all variables in all the clauses. Therefore, at most εm of these

occurrences in clauses will be discarded and the corresponding εm clauses labeled as

unsatisfiable.

max-nae-3sat is known to be apx-complete [PY91] and not approximable to

within 0.917 [Zwi98].

4.5 Rationalizing one-many matchings

For the generalized instance of rationalizing one-many matchings, the problem seems

considerably harder. To begin with, since the preference order for any m ∈M is over
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2W , given sets of length n, expressing the preference order alone takes exponential

time.

However, for a specific restriction of the problem where we allow m ∈ M to be

matched with at most ` elements w ∈ W the problem is in NP and, in fact, NP-

complete.

Theorem 4.1.11 (restated). For every fixed `, given a collection of one-` match-

ings H on the sets M and W , it is NP-complete to determine if there exists a prefer-

ence profile P such that every µ ∈ H is stable∗ with respect to P.

Proof. Let Z be an instance of a collectionHZ = {µ1, . . . , µr} of one-to-one matchings

between MZ and WZ . We need to construct an instance Z ′ of many-to-one matchings

such that a stable preference profile for Z exists iff a stable* preference profile exists

for Z ′. Indeed, we show that Z ′ = Z is itself such an instance. In other words,

MZ′ = MZ ;WZ′ = WZ ;HZ′ = HZ .

Claim 4.5.1 Suppose there exists a stable preference profile for Z, then there exists

a stable* preference profile for Z ′.

Proof. A stable preference profile for Z gives preference orders for all m ∈ MZ

(w ∈ WZ) over w ∈ WZ (m ∈ MZ). Consider the following preference profile for Z ′:

for each m ∈MZ′ , we construct a preference order over all B ⊆ WZ′ where |B| ≤ ` as

follows: we look at all singleton sets B ⊆ WZ′ and affix preferences identical to the

preference order for m ∈MZ over w ∈ WZ . Therefore, for m ∈ Z ′, m : w1 > w2 ⇔ for

m ∈ Z, m : {w1} > {w2}. We fix preference for all other subsets B ⊆ WZ′ below the

singleton sets and in some consistent order (say lexicographic). It is not hard to see

that by virtue of our construction, the preference profile outlined above for m ∈MZ′

is stable* if the corresponding preference profile for m ∈MZ is stable.

Claim 4.5.2 If there exists a stable* preference profile for Z ′, then there exists a

stable preference profile for Z.
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Proof. We construct the preference order for m ∈MZ as follows: we look at the pref-

erence order of the corresponding m ∈ MZ′ and extract the partial order comprising

m’s preference for all {w} ⊆ WZ′ . Suppose that there is a blocking pair (m′, w′) in Z.

Then, this would imply that (m′, {w′}) is a blocking set in Z ′ which is a contradiction.

Claims 4.5.1 and 4.5.2 give us Theorem 4.1.11.

Given how the two problems of rationalizability are so naturally related, it is not

surprising then to observe that the one-` matchings problem would have a similar

hardness of approximation performance with respect to both analogs of the optimiza-

tion problem in the case of the one-one matchings.

Theorem 4.1.12 (restated). There is a constant ε > 0 for which it is NP-hard to

approximate max-stable-one-`-matchings to within a factor of (1− ε).

The proof follows immediately by combining Lemma 4.4.1 and Theorem 4.1.11.

Theorem 4.1.13 (restated). There is a constant ε > 0 for which it is NP-hard to

approximate max-one-`-stability to within a factor of (1− ε).

The theorem follows from the lemma below.

Lemma 4.5.3 Let Z be an instance of the max-stability problem for a collection

of matchings. Then, there exists an ε < 1 and a polynomial-time reduction to an

instance Z ′ of max-one-`-stability of one-` matchings such that the following is

true:

opt(Z) = 1 =⇒ opt(Z ′) = 1

opt(Z) < 1− ε =⇒ opt(Z ′) < 1− ε

Proof. As in proving Theorem 4.1.11, we will use exactly Z as our instance for the

max-one-`-stability problem. This means automatically that

opt(Z) = 1 =⇒ opt(Z ′) = 1
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Note that we are looking at valid preference profiles. Since Z ′ matches all m ∈

M exclusively to singleton elements in 2W , these singleton elements are assigned

preference over subsets B ⊆ W, |B| ≥ 2. Hence, our estimate of the optimal number

of stable sets will only include the pairs (m, {w}) which is the same as the optimal

number of stable pairs in Z.

Suppose there exists a valid preference profile for Z ′ for which there are at most ε

fraction of blocking sets. Then, each of these blocking sets also corresponds exactly

to a blocking pair in Z and there cannot be any blocking pair in Z that does not have

an equivalent blocking set in Z ′ for the same reasons as mentioned above in proving

Theorem 4.1.11. Therefore, there are at most ε fraction of blocking pairs in Z hence

giving us a contradiction and completing the proof to the lemma and the theorem.

4.6 Conclusions and Future work

There are many interesting opportunities for extensions to our work on the ratio-

nalization problem for matchings. It would be interesting to tighten the constant

factor in Lemma 4.4.1: is it hard even to rationalize three matchings? It would also

be satisfying to tighten the hardness of approximation result in Theorem 4.1.7. We

can additionally look at other (restricted) variants of the matchings problem such as

many-many matchings and pose the related complexity questions.
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Chapter 5

Rationalizability of network
formation games

5.1 Introduction

The rationale for understanding how social networks form is motivated by the preva-

lence of such networks in society. These are groups that can form and disband on

an ad-hoc basis, or over a sustained time period, with the broad purpose of informa-

tion exchange. Such an exchange of information can be unidirectional via a process

of diffusion and dissemination, where information is propagated from a source (e.g.,

adoption of a new product), or bidirectional with everybody communicating with

each other (e.g., online communities such as Facebook and MySpace). One way to

study the structure of these networks is to make assumptions on the growth processes

underlying how the networks are formed. Not surprisingly, this relies crucially on lit-

erature covering random graphs and spectral graph theory. The interested reader

is referred to Jackson [Jac08], and Wasserman and Faust [WF94] for an extensive

overview and coverage of social and economic networks, and methods used to analyze

them.

5.1.1 Algorithmic game theoretic perspective

Network formation games have also been extensively studied from within algorithmic

game theory in connection with the broader goal for understanding the efficiency of



96

equilibria. There are two contrasting frameworks that have been investigated. In

the first setup, called the global connection game and proposed by Anshelevich et al.

[ADK+08], there are k agents each of whom has a corresponding source-sink pair that

they wish to connect. To this end, they can build edges anywhere in the network.

Each edge however has a cost associated in order for it to get built. With a cost-

sharing mechanism in place, this price is split up among the agents whose strategy

sets include the edge. For example, in the case of the Shapley or fair cost-sharing

mechanism, the price is evenly divvied up among the associated agents.

In the other variant proposed by Fabrikant et al. [FLM+03], known as the local

connection game, the nature of network formation is more organic. Agents wish to

form connections with each other and in order to do so, they choose as their strategies

neighbors that they unilaterally build edges to. The ambiguity that can arise here is

when both agents choose to build edges unilaterally to one another. In such a case,

ties are assumed to be broken arbitrarily.

5.1.2 The network formation model and two rationalization

problems

In this chapter, we consider the rationalization problem for network formation games.

We study two variants of a seminal network formation model due to Jackson and

Wolinsky [JW96] that describes how selfish parties (the vertices) produce a graph

by making individual decisions to form or not form incident edges. The model is

equipped with a notion of stability (or equilibrium), and we observe a set of “snap-

shots” of graphs that are assumed to be stable. From this we would like to infer some

unobserved data about the system: in one variant we are interested in edge prices; in

the other, we are interested in how much each vertex values short paths to each other

vertex. Both variants resemble the settings in which the rationalization problem can

be solved using linear programming (in the sense that the equilibrium conditions can

be expressed as linear inequalities), and yet they have a combinatorial component

because the participants’ total utility depends on the length of various shortest paths
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in the network.

We show an interesting contrast: inferring “per-edge” quantities (i.e., prices) is

easy, while inferring “end-to-end” quantities (i.e., the value each vertex u assigns to

having a short path to each other vertex v) is hard. In the latter case we show a

tight (1/2 + δ) inapproximability result (and this is our most technically significant

contribution). The 1/2 ratio implies that the trivial approximation algorithm that

sets everyone’s valuations to infinity (which rationalizes all the edges present in the

input graphs) or to zero (which rationalizes all the non-edges present in the input

graphs) is the best possible assuming P 6= NP.

In the Jackson-Wolinsky model, there are n vertices, and each pair (u, v) (“po-

tential edge”) has an associated price and a distance. The strategy of each player

(vertex) is a subset of incident edges which should be thought of as the edges it

wants to form. The graph that arises given the vertex strategies has an edge (u, v)

iff at least it appears in u’s or v’s subset. The utility that accrues to each vertex

v depends on two additional features of the model: (1) a non-increasing function f

from distances to the non-negative reals (think of f(d) as representing the value of

having a connection of length d), and (2) “intrinsic values” of vertex u by v for each

u 6= v. The utility realized by vertex v is then the aggregate distance minus the price

of the edges in v’s subset, where the aggregate distance is the sum over vertices u of

v’s intrinsic value of u times f applied to the shortest path length in G to each u.

We remark that the equilibrium concept here is not a Nash equilibrium1, but

rather a simpler notion of pairwise stability; the vertex strategies are stable if (1)

for each edge (u, v) in G, both v’s and u’s marginal utility of forming edge (u, v) is

non-negative, and (2) for each non-edge (u, v) in G either u’s or v’s marginal utility

of forming edge (u, v) is non-positive.

We consider two rationalization problems arising in this network formation model.

In the first, which we call stable-prices, we are trying to infer edge prices, and we

assume the other data (distances, the function f , and the pairwise “intrinsic values”)

1This is because we only consider unilateral deviations of a player to an adjacent strategy – one
in which a single edge has been added or removed – instead of to any alternative strategy.
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are fixed or given. Specifically, we are given a collection of distance-weighted graphs

G1, G2, . . . , Gm on the same underlying vertex set, that arise from equilibrium play.

In addition, we are given the function f (as a circuit computing it), and the pairwise

intrinsic values (which are the same across the different graphs). We do not observe

the (potential) edge prices (which are the same across the different graphs). We

are interested in determining edge prices that rationalize G1, G2, . . . , Gm; i.e., for

which there exist vertex strategies for each i that give rise to the graph Gi, and that

constitute an equilibrium in the above sense.

In the second rationalization problem under consideration, which we call stable-

values, we are trying to infer the pairwise “intrinsic values,” and we assume the

other data (latencies, the function f , and the edge prices) are given. Specifically, as

above, we are given a collection of distance-weighted graphs G1, G2, . . . , Gm on the

same underlying vertex set, that arise from equilibrium play. In addition, we are

given the function f (as a circuit2), and the edge prices (which are the same across

the different graphs); we do not observe the pairwise “intrinsic values” (which are the

same across the different graphs). We are interested in determining pairwise intrinsic

values that rationalize G1, G2, . . . , Gm; i.e., for which there exist vertex strategies for

each i that give rise to the graph Gi, and that constitute an equilibrium.

For concreteness, we briefly describe an example scenario in which this rational-

ization problem naturally arises. Social networks are formed among groups of people

who ascribe a certain value (“friendship”) to one another but establish connections

with only those that they perceive to be most intrinsically valuable to them. If,

for instance, everybody in the group was in close physical proximity to one another

(they all went to the same high school or college) then the price of connecting to any

one person is insignificant compared to the value derived in return, no matter how

small that may be. This would result in a clique as a stable network. However, once

this group becomes geographically spread out, the network formed in equilibrium can

become sparser, such as a star network, where all connections are made to a single

2This permits un-natural functions f , but note that all of our reductions produce instances with
very simple piecewise linear and non-increasing f that one can easily envision occurring in the real
world.
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person since the cost of building mutual connections outweighs the utility gained.

This illustrates that (when holding the intrinsic value people in such a group have

for one another to be invariant) temporal and spatial dynamics affect the manner

of how social networks coalesce and stabilize. While prices and distances might be

readily observable, the intrinsic value each individual has for each other individual

is generally private. The problem stable-values in this chapter asks to infer these

values given (say) a series of snapshots taken over time of a single social network of

individuals.

5.1.3 Hardness of approximation

We also consider an optimization version of stable-values. In it, we are seeking

pairwise “intrinsic values” that maximize the number of stable edges/non-edges across

all m input graphs among active pairs. We deem a pair (u, v) active unless (1) it is

an edge in all of the input graphs, with price zero (which means effectively that edge

(u, v) is present and fixed no matter how the other quantities are varied) or (2) it

is a non-edge in all of the input graphs, with price infinity (which means effectively

that edge (u, v) is permanently absent regardless of the other relevant quantities).

Non-active pairs are “part of the landscape” and intuitively do not contribute to the

stability of the system. After this consideration, our optimization problem is to infer

intrinsic values with the maximum explanatory power (and note that edges/non-edges

are counted separately for each graph in which they appear).

5.1.4 Rationalization problems and i-sat

As mentioned above, we show that stable-prices is easy, while stable-values is

hard. Our hardness result is based on a reduction from a variant of the Inequality

Satisfiability problem (abbreviated as i-sat) introduced recently by Hochbaum and

Moreno-Centeno [HMC08]. An instance of i-sat is a conjunction of inequality-clauses,

where each inequality-clause is a disjunction of linear inequalities over n real variables

x1, x2, . . . , xn. The instance is a “yes” instance iff there exists an assignment of
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real values to the variables simultaneously satisfying all of the inequality-clauses.

Hochbaum and Moreno-Centeno showed by a simple reduction from 3-sat that this

class of problems is NP-complete even in the case when each inequality-clause is a

disjunction of only two inequalities.

The variant of i-sat that we need for our reduction satisfies two additional con-

straints: (1) all of the coefficients are non-negative (and we a seeking a solution only

in the non-negative reals), and (2) there is a partition of the variables into two sets

S, T such that every inequality-clause is either the disjunction of two ≤ inequalities,

one supported in S and one supported in T , or a conjunction of two ≥ inequalities,

one supported in S and one in T . We call this variant i-sat∗.

To achieve our main hardness results, we show that i-sat∗ is NP-complete, and

that the optimization version (maximize the number of inequality-clauses simultane-

ously satisfied) is NP-hard to approximate to within (1/2 + δ). Note that, just as it

is trivial to achieve approximation ratio 1/2 in the rationalization problem to which

we reduce, it is trivial to achieve approximation ratio 1/2 here by either setting all

variables to zero (satisfying all the inequality-clauses of the first type) or setting all

variables sufficiently large (satisfying all the inequality-clauses of the second type).

The ease of translating between these problems brings us to an important obser-

vation. Not only is i-sat useful as a starting point for reductions involving the hard

rationalization problem in this chapter, but we contend it is the abstract computa-

tional problem that captures rationalization problems more generally. It is common

for the “stability conditions” arising in a rationalization problem to be expressible by

a finite Boolean formula whose inputs are inequalities in the (real) quantities being

inferred. This is true, e.g., for the bipartite matchings problem studied in [KU08] (the

quantities being inferred are the values each left node has for each right node, and the

familiar stability condition for stable matchings is expressible as the disjunction of two

inequalities involving these quantities), and for the rationalization problems studied

here, and those mentioned in the introduction. Even the positivity constraint we add

arises naturally in many such settings, as utilities, prices, etc. are often assumed to

be non-negative.
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Thus we expect that a more complete understanding of the approximability of

i-sat (which to our knowledge has not been studied prior to this chapter) can serve

as a useful starting point for understanding the approximability of rationalization

problems more generally, and we view this as an important contribution of this chap-

ter.

5.1.5 Hardness of approximating i-sat∗ via Max-LinR+

An instance of the Max-LinR problem is a collection of linear equations over the

reals with the solution being an assignment that maximizes the number of equations

satisfied. For the general i-sat problem, there is an easy reduction from Max-LinR.

Namely, for each equation
∑

i aixi = b, we produce the pair of i-sat clauses
∑

i aixi ≤

b and
∑

i aixi ≥ b.

Max-LinR was (only recently) shown to have a PCP system with (1 − ε) com-

pleteness and γ soundness [GR07] (with ε, γ close to 0), which gives rise to (1/2 + δ)-

inapproximability for the general i-sat problem via this reduction (although, the

non-perfect completeness means this gap is between unsatisfiable instances, which is

a minor drawback).

We need a similar hardness result for our variant, i-sat∗, which crucially entails

a positivity constraint. In the [GR07] inapproximability result (and similar inap-

proximability results using the basic framework of Hastad [H̊as01]), the equations all

have the form xi + xj − xk = 0 since they arise from linearity tests performed by the

verifier in the PCP system. Thus, they are not suitable for proving inapproximability

for i-sat∗. Simple transformations like translating the origin do not work, and the

natural idea of introducing new variables x′i and the constraints xi + x′i = 0 (and

using x′i in place of −xi to remove the negative coefficients) does not preserve the

inapproximability.

It is also important to note that while Hastad’s inapproximability results for

Max-LinFp can be easily transformed into similar inapproximability results for Max-LinZ,

this transformation introduces large coefficients (of magnitude p), which prohibit the
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clever trick in [GR07] that is used to argue that the inapproximability carries over to

the reals.

So our hands are somewhat tied: to obtain the (1/2 + δ) inapproximability for

i-sat∗, we really need an exact analog of [GR07], but one that produces equations

with positive coefficients. In Section 5.5, we give such a result for Max-LinR+ ,

showing that it is NP-hard to distinguish between an instance with a (1− ε) fraction

satisfiable assignment and one with at most δ fraction satisfiable, and in turn a

(1/2+δ) inapproximability result for i-sat∗. Doing so requires more than a superficial

modification of the proof in [GR07]. In stating our results, we abstract properties of

the distribution used for the verifier’s queries that are sufficient for the general proof

strategy of [GR07] to work, and then utilize a different distribution (and some minor

changes in the Fourier analysis) to eventually produce equations with all coefficients

+1. This result is our most significant technical contribution.

5.1.6 Related work

Rationalizability has been well-studied under the domain of revealed preference theory

and social choice theory by economists [Sam48, Var82, Spr00, FST04, BV06, Var06,

Ech08]. Traditionally, the questions have been connected with characterizing the

implications of various solution concepts to games and market settings, and whether

these implications can be tested based on data obtained from consumer choices.

In connection with studying network formation games, while the question of un-

derstanding the properties and limitations of equilibria is not new [JW96, DM97,

JW01, DJ03, FLM+03], to the best of our knowledge there is no previous work done

with respect to either the rationalizability question for these games in general, or the

Jackson-Wolinsky model of network formation in particular.

5.1.7 Outline

In Section 5.3 we formally define stable-prices, and observe that it is easy (and

even the optimization variant is easy to solve exactly). In Section 5.4 we define
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stable-values and give a reduction from i-sat∗ to it. We then show that i-sat∗

is NP-complete (this is not subsumed by our eventual inapproximability result, since

this reduction has perfect completeness). In Section 5.5 we state an approximation

preserving reduction from Max-LinR+ to i-sat∗, and we then describe the PCP sys-

tem (based on a non-trivial modification of [GR07]) that implies ε inapproximability

for it. This yields the tight (1/2 + δ) inapproximability for stable-values.

5.2 Jackson-Wolinsky model for network forma-

tion games

We describe formally the seminal model for network formation games as formulated

by Jackson and Wolinsky [JW96]. The model comprises:

• n agents V

• pairwise distance function d : V × V → R+

• pairwise intrinsic value function w : V × V → R+

• a function f : R+ → R that defines the contribution of a path of length d

• price profile c : V × V → R+

The strategy for agent i ∈ V is a set Γ(i) ⊆ V of agents that she wishes to build edges

to. Given a strategy for each agent i, the graph formed is G = ∪i,j∈Γ(i)(i, j). For a

graph G and any two i, j ∈ V , we define dG(i, j) to be the distance of the shortest

path P (i, j) from i to j given by
∑

(u,v)∈P (i,j) d(u, v). The utility agent i derives from

the graph formed, ui(G) is given by:

ui(G) =
∑
j∈V

f(dG(i, j))w(i, j)−
∑
k∈Γ(i)

c(i, k)

Definition 5.2.1 For a collection of n agents V , a set of strategies (Γ(1), . . . ,Γ(n)),

is said to be pairwise stable with respect to d, w, f, c if in the ensuing graph G that is

formed:
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1. for all i, j ∈ V such that (i, j) ∈ G,

ui(G) ≥ ui(G− (i, j)) and uj(G) ≥ uj(G− (i, j))

2. for all i, j ∈ V such that (i, j) /∈ G,

ui(G) ≥ ui(G+ (i, j)) or uj(G) ≥ uj(G+ (i, j))

For the sake of convenience, we have an equivalent definition for pairwise stability

with respect to the graph G formed, that we will use for the rest of the chapter.

Definition 5.2.2 A graph G formed from a set of strategies (Γ(1), . . . ,Γ(n)) is said

to be pairwise stable with respect to d, w, f, c if (Γ(1), . . . ,Γ(n)) is pairwise stable with

respect to d, w, f, c.

Note that we can use this abuse of notation and claim that a graph is pairwise

stable because given a set of strategies (Γ(1), . . . ,Γ(n)) that is pairwise stable, we can

construct the corresponding graph where we assign edges as being built by exactly

one of the end-points (breaking ties arbitrarily when an edge belongs to the strategies

of both).

5.3 Finding stable prices when intrinsic values are

known

In the first rationalization problem that we will call stable-prices, we consider a

scenario where the intrinsic values are known but the edge-prices are not. We are

given a collection of undirected graphs G1, . . . , Gm all of which are formed over a

common set of vertices V . In addition, we are given the pairwise distance functions

for each Gi, di : V × V → R+. The rationalizability question entails inferring the

prices that players in each of the network graphs would have to pay given that the

graphs are in pairwise equilibrium.
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Problem 1. stable-prices

Given: Collection of graphs G1, . . . , Gm over common set of vertices V
Pairwise distance functions di : V × V → R+ for i = 1, . . . ,m
Intrinsic value function w : V × V → R+

Path distance contribution function f : R+ → R.

Find: Price profile c that rationalizes G1, . . . , Gm, i.e. for which Gi is stable
w.r.t. di, w, f, c for all i, if it exists.

Here, we assume that f is given to us in the form of a circuit that takes as input

numbers represented with some number of bits of precision that is polynomial in the

size of the rest of the input. This precision is sufficient to exactly express the shortest

path distance to which f is applied.

Theorem 5.3.1 There is a polynomial-time algorithm for stable-prices.

Proof. The algorithm is based on the simple intuition that for any edge to exist

between two vertices v, w it must be the case that the marginal utility that v derives

by building that edge must at least be equal to the price v pays to build the edge.

Claim 5.3.2 For any e = (v, w), the cost for building the edge c(v, w) must satisfy:

∑
x∈V

(
f(dGi(v, x))−

∑
x∈V

f(dGi−e(v, x))

)
· w(v, x) ≥ c(e) and∑

x∈V

f(dGi(w, x))−
∑
x∈V

(f(dGi−e(w, x))) · w(v, x) ≥ c(e) (5.1)

for i : e ∈ Ei where Gi − e = (V,Ei − e), and

∑
x∈V

(
f(dGj+e(v, x))−

∑
x∈V

f(dGj(v, x))

)
· w(v, x) ≤ c(e) or

∑
x∈V

(
f(dGj+e(w, x))−

∑
x∈V

f(dGj(w, x))

)
· w(v, x) ≤ c(e) (5.2)

for j : e 6∈ Ej and Gj + e = (V,Ej + e).
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Proof. Let w ∈ ΓGi(v) for some Gi in M . For any e ∈ G, it must satisfy:

uv(Gi) ≥ uv(Gi − e) and uw(Gi) ≥ uw(Gi − e)

Expanding terms for the case of v alone,

∑
x∈V

f(dGi(v, x))·w(v, x)−
∑

y∈Γv(Gi)

c(v, y) ≥
∑
x∈V

f(dGi−e(v, x))·w(v, x)−
∑

y∈Γv(Gi−e)

c(v, y)

Therefore,

∑
x∈V

(
f(dGi(v, x))−

∑
x∈V

f(dGi−e(v, x))

)
· w(v, x) ≥ c(e)

Similarly, ∑
x∈V

(
f(dGi(w, x))−

∑
x∈V

f(dGi−e(w, x))

)
· w(v, x) ≥ c(e)

Applying the pairwise stability conditions for a graph Gj not containing e, we would

get: (∑
x∈V

(
f(dGj+e(v, x))−

∑
x∈V

f(dGj(v, x))

)
· w(v, x) ≤ c(e)

)
or(∑

x∈V

(
f(dGj+e(w, x))−

∑
x∈V

f(dGj(w, x))

)
· w(v, x) ≤ c(e)

)
(5.3)

Clearly, as long as the greatest lower bound on c(e) over all graphs as shown in

(5.2) is less than the least upper bound as in (5.1), e can be priced in such a way

as to rationalize all the graphs in the collection. Setting up these constraints and

solving them for the prices for each pair of vertices gives us the entire price profile in

polynomial-time.
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We think of a price profile c as rationalizing a pair (u, v) in Gi if the conditions in

Definition 5.2.1 hold for (u, v). An optimization version of the stable-prices prob-

lem is to find, given a collection of graphs G1, . . . , Gm, a price profile that rationalizes

the maximum number of ((u, v), Gi). It is easy to see that the same algorithm de-

scribed above will also work to find a price profile that would satisfy the optimization

problem for stable-prices exactly.

Corollary 5.3.3 Given an instance of stable-prices there exists a polynomial-time

algorithm to construct a price profile c that rationalizes the maximum number of pairs

((u, v), G).

5.4 Finding stable intrinsic values when prices are

known

In the problem of stable-values, we consider the scenario where the edge-prices

are known but the intrinsic values function w is unknown. We define stable-values

below. We show that stable-values is NP-complete via a reduction from a variant

Problem 2. stable-values

Given: Collection of graphs G1, . . . , Gm over common set of vertices V
Pairwise distance functions di : V × V → R+ for i = 1, . . . ,m
Path distance contribution function f : R+ → R where f is non-increasing
Price profile for building edges c : V × V → R+

Find: Intrinsic values function w : V × V → R+ that rationalizes G1, . . . , Gm, i.e. for which
Gi is pairwise stable w.r.t. di, w, f, c for all i, if it exists.

of i-sat that we call i-sat∗ defined below.

Lemma 5.4.1 i-sat∗ is NP-complete.

Proof. We give a reduction from 3-SAT. Consider an instance of 3-SAT given by

n variables x1, . . . , xn and m clauses C1, . . . , Cm. For each variable xi our instance

of i-sat∗ has two variables zti , z
f
i and for each clause Cj, we have three auxiliary
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Problem 3. i-sat∗

Given: n variables x1, . . . , xn, and a partition S ∪ T of [n].

m clauses that are either of type 1:
(∑

i∈S aixi ≤ 1
)
or

(∑
j∈T cjxj ≤ 1

)
or of type 2:

(∑
i∈S a

′
ixi ≥ 1

)
and

(∑
j∈T c

′
jxj ≥ 1

)
,

where all ai, cj, a
′
i, c
′
j ≥ 0.

Find: An assignment for x1, . . . , xn ∈ R+ that satisfies all m clauses

variables aj, bj, cj. In total, we will have 2n + 3m unknowns in our i-sat∗ instance

and we partition this into S = {zti , z
f
i |i = 1, . . . , n} and T = {aj, bj, cj|j = 1, . . . , 3m}.

Suppose Cj = (xp+ x̄q +xr) by way of example. To correspond with each variable

xp, xq, xr in the 3-SAT instance, we have a clause:

(
zti
3

+
zfi
3
≥ 1

)
and

(
aj
4

+
bj
4

+
cj
4
≥ 1

)

and to correspond to Cj, we have the following three type 1 clauses

(
ztp ≤ 1

)
or (aj ≤ 1)

(zfq ≤ 1) or (bj ≤ 1)(
ztr ≤ 1

)
or (cj ≤ 1)

Suppose that there exists a satisfiable assignment for the 3-SAT instance. Then, for

each xi that is true in this assignment we let zti = 1, zfi = 2 and conversely for xi

that is false, we let zti = 2, zfi = 1. These assignments to zti , z
f
i will satisfy their

corresponding type 2 clause (5.4) in the i-sat∗ instance. For a clause Cj as depicted

above, since there is always at least one true literal say xp, we will let aj = 2. For

false literals x̄q, xr we let bj = cj = 1. This ensures that all the corresponding clauses

are satisfied.

Conversely, let there be an assignment to variables zti , z
f
i , aj, bj, cj for i = 1, . . . , n; j =

1, . . . ,m. Note that for any zti , z
f
i , if the original boolean variable xi appears in some

clause, then it must be true that exactly one of them is at most 1 and the other is at
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least 2. We let xi to be true if zti ≤ 1 and false if zti ≥ 2.

Since aj + bj + cj ≥ 4, aj, bj, cj cannot all be simultaneously ≤ 1. Suppose bj > 1

in the clause Cj above. But this means that zfq ≤ 1 and ztq ≥ 2. By our assignment

to the boolean variables therefore, xq is false and hence Cj is satisfied.

Theorem 5.4.2 stable-values is NP-complete.

Proof.

Our proof is by reduction from i-sat∗. Suppose we are given an instance of i-sat∗

with m clauses C1, . . . , Cm over n unknowns x1, . . . , xn where each clause Ci is of type

1: (∑
i∈S

aixi ≤ 1

)
or

(∑
j∈T

cjxj ≤ 1

)

or of type 2 (∑
i∈S

a′ixi ≥ 1

)
and

(∑
j∈T

c′jxj ≥ 1

)

and all ai, cj, a
′
i, c
′
j ≥ 0 and S ∪ T is a partition of [n].

We construct m edge-weighted graphs G1, . . . , Gm on (n + 3) vertices labeled

v1, . . . , vn, u, s, t.Fix L to be some suitably large number such that L > maxi,j{ai, cj, a′i, c′j}.

We crucially use the special structure of the i-sat∗ problem. Consider a type 1 clause,

say C. For any i ∈ S, G contains (s, vi) with weight d(s, vi) = L + ai and (t, vi)

with weight d(t, vi) = L. Similarly for any j ∈ T , G contains (s, vj) with weight

d(s, vj) = L, and the edge (t, vj) with weight d(t, vj) = L+cj. Finally, we build edges

(s, u), (u, t) with weights d(s, u) = d(t, u) = L/2.We set the cost of an edge from s to

t denoted by c(s, t) to be c(s, t) = 1. For any pair of vertices (p, q) other than (s, t),

we set c(p, q) =∞ if (p, q) /∈ G and c(p, q) = 0 if (p, q) ∈ G.

Suppose C is of type 2. We repeat the construction as before, i.e. all the edges

continue to exist but with different weights for each edge. This is captured in Table

5.3: (s, vi) has weight d(s, vi) = L+a′i for i ∈ S and (s, vj) has weight d(s, vj) = L for

j ∈ T . (t, vj) has weight d(t, vj) = L+ c′j for j ∈ T and (t, vi) has weight d(t, vi) = L

for i ∈ S.
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Crucially, the main distinction between the two constructions described above is

that for a type 2 clause,the graph will have the edge (s, t) with weight 0.

Finally, we define the piecewise-linear function f as follows:

f(x) =

−L 0 ≤ x ≤ L

−x x > L

Figure 5.1: G from clause of type 1 Figure 5.2: G from clause of type 2

Claim 5.4.3 Solution to i-sat∗ ⇒ Solution to stable-values

Proof. Suppose there is a solution to the unknowns x1, . . . , xn in the i-sat∗ instance.

We set the intrinsic valuations as shown in Table 5.1.

Table 5.1: Intrinsic valuations

(p, q) w(p, q) w(q, p)
(s, i) i ∈ S xi 0
(t, j) j ∈ T xj 0

any other pair 0 0

Note that we have set up our instance in such a way as to render all stability

conditions not involving (s, t) to be trivially satisfied. For any other pair (p, q) if the

edge (p, q) is present in Gi then it is stable since the cost c(p, q) = 0 and therefore both

p and q are indifferent to keeping the edge. Considering the case where (p, q) ∈ Gi, we

look at the stability criteria for p, without loss of generality. Again, since we set the
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price c(p, q) to be infinity, both p and q are indifferent to building the edge. Hence,

such a pair (p, q) is also stable given the intrinsic valuations. Therefore, we need only

focus on the stability conditions for (s, t).

We denote, for any graph G, edge e and pair of vertices u, v,

∆f+e(u, v) = f(dG+e(u, v))− f(dG(u, v))

to be the marginal utility contribution by adding e to the graph G for u and v.

Similarly, we use

∆f−e(u, v) = f(dG(u, v))− f(dG−e(u, v))

for the marginal utility contribution by deleting e from the graph G for u and v. Let

us suppose that the edge is not present in Gi. For Ci the pairwise stability conditions

are:

us(Gi + (s, t)) ≤ us(Gi) Or ut(Gi + (s, t)) ≤ ut(Gi).

Expanding and rearranging terms, this becomes:

∑
v

∆f+(s,t)(s, v) · w(s, v) ≤ c(s, t) or
∑
v

∆f+(s,t)(t, v) · w(t, v) ≤ c(s, t)

From Table 5.1 above, we observe that for all v = vj, j ∈ T and v = u, w(s, v) = 0

and similarly for all v = vi, i ∈ S and v = u, w(t, v) = 0. This allows us to further

simplify the expression we must satisfy:

∑
i∈S

∆f+(s,t)(s, vi) · w(s, vi) ≤ 1 or
∑
j∈T

∆f+(s,t)(t, vj) · w(t, vj) ≤ 1

Substituting terms from Table 5.2 that correspond to the coefficients of w(s, .), w(t, .),

and setting w(s, vi) = xi for i ∈ S and w(t, vj) = xj for j ∈ T , we have exactly the

clause C which is satisfied by the solution to x1, . . . , xn.

Suppose now that the edge is present and G corresponds to an inequality of type

2.
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Table 5.2: Shortest path distance for G constructed from a type 1 clause

(p, q) dG(p, q) dG+(s,t)(p, q) ∆f+(s,t)(p, q)
(s, vi) i ∈ S L+ ai L ai
(t, vi) i ∈ S L L 0
(s, vj) j ∈ T L L 0
(t, vj) j ∈ T L+ cj L cj

(s, t) L 0 0
(s, u), (t, u) L/2 L/2 0

Table 5.3: Shortest path distance for G constructed from a type 2 clause

(p, q) dG−(s,t)(p, q) dG(p, q) ∆f−(s,t)(p, q)
(s, vi) i ∈ S L+ a′i L a′i
(t, vi) i ∈ S L L 0
(t, vj) j ∈ T L+ c′j L c′j
(s, vj) j ∈ T L L 0

(s, t) L 0 0
(s, u), (t, u) L/2 L/2 0

We would need to satisfy the stability conditions:

us(G− (s, t)) ≥ us(G) and ut(G− (s, t)) ≥ ut(G).

As before, this becomes:

∑
v

∆f−(s,t)(s, v) · w(s, v) ≥ c(s, t) and
∑
v

∆f−(s,t)(t, v) · w(t, v) ≥ c(s, t)

and after eliminating terms that do not contribute to the total marginal utility in the

case of v = vj, j ∈ T, t, u for s and v = vi, i ∈ S, s, u for t, we will have:

∑
i∈S

∆f−(s,t)(s, vi) · w(s, vi) ≥ c(s, t) and
∑
j∈T

∆f−(s,t)(t, vj) · w(t, vj) ≥ c(s, t)
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Again, looking at terms in Tables 5.1 and 5.3 we have:(∑
i∈S

a′ixi ≥ 1

)
and

(∑
j∈T

c′jxj ≥ 1

)

which is exactly the original clause we started out assuming was true.

Claim 5.4.4 Solution to stable-values ⇒ solution to i-sat∗.

Proof. Suppose there is a solution to the stable-values instance. If the intrinsic

valuations for s, t are such that w(s, p) = w(t, p) = 0 for p /∈ [n], then the pairwise

stability conditions would correspond to what we obtained in the completeness case

and reciprocally setting xi = w(s, i) for i ∈ S and xj = w(t, j) for j ∈ T would be a

feasible assignment satisfying all the clauses.

Suppose this were not the case. Note however from Tables 5.2 and 5.3, that the

marginal utility contribution for (s, p) to w(s, p) would be 0 for all p /∈ [n] and so

the total contribution would still vanish leaving behind the same inequality as in the

original clause Ci and returning us to the case above.

This completes the proof of Theorem 5.4.2.

After this warmup to establish the basic problems and their complexity, we get

to the meat of the chapter, where we give a tight inapproximability result for an

optimization version of stable-values.

5.5 A tight inapproximability result for stable-

values

Before defining the optimization version of stable-values, we need to define the

notion of active pairs:
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Definition 5.5.1 Given an instance of stable-values containing a collection of

graphs G1, . . . , Gm all over a set of vertices V and a price profile c : V × V → R+, a

pair (u, v) ∈ V × V is said to be an active pair if it is not the case that i) (u, v) ∈ Gi

for all i AND c(u, v) = 0, or ii) (u, v) /∈ Gi for any i AND c(u, v) =∞.

As explained in the introduction, a pair (u, v) that is not an active pair effectively

“comes for free” since regardless of what the intrinsic values for u, v are, the pairwise

stability conditions are trivially satisfied because the c(u, v) = 0 if (u, v) ∈ Gi for all

i and c(u, v) =∞ if (u, v) /∈ Gi for any i. We observed in the introduction that there

is a trivial 1/2-factor approximation algorithm. We prove in this section that this is

tight assuming P 6= NP .

As before, we think of an intrinsic values function w as rationalizing an active pair

(u, v) in Gi if the stability conditions in Definition 5.2.1 hold for (u, v). Then, the

max-stable-values problem is to seek intrinsic values that rationalize the maximum

number of active pairs (u, v), counted separately for each Gi.

To our end of showing a hardness result for max-stable-values we show an

inapproximability result for max-linZ+ , which is the main technical contribution of

this chapter. Although max-stable-values is actually defined over the reals and

would admittedly require us to show a hardness result for max-linR+ , we are able

to employ a clever trick shown in [GR07] that makes it sufficient for us to work with

max-linZ+ and then carry the result over to the reals as long as we can ensure that

the co-efficients in the max-linZ+ instance we obtain are bounded and the equations

have sparse support.

Problem 4. max-linZ+

Given: n variables x1, . . . , xn
m equations, each of which is of the type∑

i aixi = b
where ai, b ∈ Z+ for all i = 1, . . . , n

Find: An assignment for x1, . . . , xn ∈ Z+ that satisfies the maximum
number of equations.
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Theorem 5.5.2 Given an instance of Max-LinZ+, for all positive constants ε, δ it

is NP-hard to distinguish between the following two cases:

• There exists a solution satisfying at least a (1−ε) fraction of the linear equations

in the instance.

• Every solution satisfies at most a δ fraction of the linear equations.

The above promise problem will be referred to as Max-LinZ+(1− ε, δ). Our proof

follows the outline of the proof for Theorem 3.4 in [GR07]. In the remainder of this

section, we go through the proof of Theorem 5.5.2, pointing out the crucial points

where our proof needs to differ from [GR07]. We define the Label-Cover problem

below.

Definition 5.5.3 An instance of the Label-Cover(c, s) problem comprises a bipar-

tite graph H = (A,B, E), a set of labels Σ and a set of projection mappings πe : Σ→ Σ

for each edge e ∈ E. An assignment A : (A ∪ B) → Σ is a mapping from the set of

vertices onto the set of labels and is legal for an edge e = (u, v) if πe(A(u)) = A(v).

We wish to ascertain for this instance of the problem if

• there exists an assignment A that is legal for at least a c fraction of edges, or

• every assignment is legal for at most an s fraction of the edges.

The following theorem due to H̊astad [H̊as01] gives a hardness of approximation

result for Label-Cover.

Theorem 5.5.4 ([H̊as01]) It is NP-hard to distinguish between an instance of Label-

Cover that has an assignment legal for all edges and one for which every assignment

is legal for at most 1/|Σ|γ fraction of edges.

As we noted in Section 1.3, there doesn’t seem to be an easy reduction from

max-linZ (shown to be hard to approximate in [GR07]) or from max-linFp (shown

to be hard to approximate in [H̊as01]). Both those results are obtained by reductions



116

from Label-Cover and involve constructing equations of the form x + y − z = c.

Most of our effort in our proof is spent on giving an alternative reduction that gives

rise to equations with coefficients in Z+. Specifically, our proof abstracts properties

of the verifier query distribution that are sufficient for main steps of the [GR07] proof.

We then specify a different distribution than the one in [GR07] that satisfies these

properties, as well as an additional symmetry property that is key to our final PCP

system for max-linZ+ .

5.5.1 Proof of Theorem 5.5.2

This subsection is devoted to the proof of Theorem 5.5.2. Consider an instance of

the Label-Cover(1, δ) problem comprising the bipartite graph G(U, V,E) over n

vertices and m edges, a set of labels Σ and constraint relations πe : Σ → Σ. We

assume that the finite set of labels Σ = {`1, . . . , `h} can also be interchangeably

represented as a set of integers {1, . . . , h}.

In our PCP system, the proof comprises the labels for all vertices encoded using

the Long code we define below.

Definition 5.5.5 [GR07] For a label r ∈ [h], the codeword C(r) is an evaluation of

the projection function fr : Zh
+ → Z+ given by fr((z1, . . . , zh)) = zr over Zh

+. In other

words, C(r)[x] = xr.

In other words, the proof is given to the verifier as a sequence (C(A(v1)), . . . , C(A(vn)))

where A is the purported legal assignment. The verifier makes queries to the proof

at three locations. These locations are chosen based on probability distributions

P1, P2, Q where P1, P2 will have the following two properties:

Definition 5.5.6 P is said to be (M, δ)-heavy if

∑
x∈[M ]h

P (x) ≥ (1− δ)
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Definition 5.5.7 P is said to be (δ, L)-decay-resilient if for all x ∈ [L]h and any

y ∈ Zh
+

P (y + x)

P (y)
≥ δ.

We note that Property 5.5.7 is the crucial property which must be satisfied by a prob-

ability distribution P the verifier uses to query the proof, in order for the soundness

analysis to go through. We are now ready to define P1, P2.

Definition 5.5.8 Fix some prime p. For j = 1, 2 we define the probability distribu-

tions Pj over Zh
+ to be

Pj((x1, . . . , xh)) = Γj

h∏
i=1

e−cj |xi−p/2|

where Γ1,Γ2 are normalization constants.

Our choice for P1, P2 is dictated by the following useful proposition that is easy to

verify.

Proposition 5.5.9 There exist constants Γ1,Γ2, c1, c2 and some large integer M =

M(h, δ) for which P1 and P2 are (M, δ)-heavy.

Let X1, X2 denote random variables drawn from Zh using some probability dis-

tributions to be specified later. We will use some suitably large integer M as a

parameter of our reduction that is obtained from Proposition 5.5.9. We fix a prime

p >> 3M and denote p = (p, . . . , p). We use x ◦ πe to denote a permutation of πe

applied to the co-ordinates of x ∈ Zh. In other words (x ◦ πe)i = xπe(i). We denote µ

to be some random noise generated by picking each co-ordinate to be 0 with proba-

bility (1 − ε) and some integer k chosen randomly from [t] with probability ε where

t > h2/δ. We denote Q to be the induced probability distribution with which µ is

chosen. Where necessary, we will use the shorthand X3 to denote the random vari-

able p− (X1 ◦ πe +X2 + µ). Finally, for any two x, y ∈ Zh we denote 〈x, y〉 to mean

the inner product: 〈x, y〉 =
∑h

i=1 xiyi. The verifier picks X1, X2 using probability
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distributions P1, P2 respectively. The test that the verifier checks is:

C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3] = p (5.4)

Lemma 5.5.10 The PCP system for Max-LinZ+ described above has (1 − ε) com-

pleteness.

Proof. Suppose A is indeed a legal assignment for all edges e ∈ E(G). This means

that for any edge e = (u, v), πe(A(v)) = A(u). Therefore,

C(A(u))[X1] + C(A(v))[X2] + C(A(v))[X3] = (X1)A(u) + (X2)A(v) + pA(v)

− (X1 ◦ πe +X2 + µ)A(v)

= (X1)A(u) + (X2)A(v) + p

− (X1)πe(A(v)) − (X2)A(v) − µA(v)

= p− µA(v)

Recalling how we picked µ, we know that µA(v) is 0 with probability exactly (1 − ε)

and hence, (5.4) is satisfied with probability (1− ε).

Lemma 5.5.11 The PCP system for Max-LinZ+ described above has 19δ soundness

error.

Proof. To argue for soundness, suppose A is an assignment that causes the verifier to

accept with probability at least δ′ = 19δ. This means that over all e = (u, v) chosen

uniformly at random from E(G), and x1,x2, µ chosen according to their respective

probability distributions P1, P2, Q from Zh
+:

Pr
e,X1,X2,µ

[C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p− (X1 ◦ πe +X2 + µ)] = p] ≥ 19δ

The following fact is handy:
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Fact 5.5.12 Let P be a (1/4, (M + t))-decay-resilient probability distribution over

Zh
+. Then, for any y ∈ [M + t]h and all x ∈ Zh

+:

P (x) ≤ 2
√
P (x+ y) · P (x)

Proof. Since P is (1/4, (M + t))-decay-resilient and symmetric around (p/2, . . . , p/2)

it satisfies the following inequality:

P (x) ≤ 4P (x+ y)

≤ 2
√
P (x+ y) · P (x)

The following lemma is based on the first step of the proof technique used in [GR07]

applied to our setting:

Lemma 5.5.13 Let P1, P2 be probability distributions over Zh
+ and Q be a probability

distribution over [t]h such that P1, P2, Q satisfy the following properties:

1. P1, P2 are (M, δ)-heavy.

2. P2 is (1/4,M + t)-decay-resilient.

3. P1, P2, Q are (p/3, δ)-heavy.

4. P2 is symmetric around (p/2, . . . , p/2), i.e. P2(x) = P2(p− x)

Suppose that with X1, X2, µ chosen respectively from distributions P1, P2, Q and e =

(u, v) chosen uniformly at random:

Pr
e,X1,X2,µ

[C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p− (X1 ◦ πe +X2 + µ)] = p] ≥ 19δ

Let Υ
(u,v)
p (X1, X2, µ) be the indicator variable for the event

C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p− (X1 ◦ πe +X2 + µ)] = 0 mod p
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Then,

E(u,v)

 ∑
x1,x2,x3∈[p]h

P1(x1)
√
P2 (x2) · P2(x3)Q(µ)Υ(u,v)

p (x1, x2, µ)

 ≥ 8δ

Proof. Since P1 was chosen to be (M, δ)-heavy and µ is by default chosen from [t]h,

with probability at most δ our choice of X1 will lie outside [M ]h and so:

Pr
e,X1,X2,µ

[C(A(u))[X1] + C(A(v))[X2] + C(A(v))[p− (X1 ◦ πe +X2 + µ)]

is equal to p|X1 ∈ [M ]h] ≥ 18δ

Denoting Υe(x1, x2, µ) to be the indicator variable for the event:

C(A(u))[x1] + C(A(v))[x2] + C(A(v))[p− (x1 ◦ πe + x2 + µ)] = p

we can rewrite the left-hand side above in terms of an expectation over all edges

e(u, v):

Ee

 ∑
x1∈[M ]h,x2∈Zh+,µ∈[t]h

P1(x1)P2(x2)Q(µ)Υ(u,v)(x1, x2, µ)

 ≥ 18δ (5.5)

Combining (5.5) with Property 2 and Fact 5.5.12, we get:

Ee

 ∑
x1∈[M ]h,x2∈Zh+,µ∈[t]h

P1(x1)
√
P2 (x2) · P2(x2 + x1 ◦ πe + µ)Q(µ)Υ(u,v)(x1, x2, µ)

 ≥ 9δ

Since P2 is symmetric around (p/2, . . . , p/2), P2(x2+x1◦π+µ) = P2(p−(x2+x1◦π+µ))

and hence the above inequality becomes:

Ee[
∑

x1∈[M ]h,x2∈Zh+,µ∈[t]h

P1(x1)
√
P2 (x2) · P2(p− (x1 ◦ πe + x2 + µ))Q(µ)Υ(u,v)(x1, x2, µ)] ≥ 9δ
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Observing that Υ
(u,v)
p (x1, x2, µ) ≥ Υ(u,v)(x1, x2, µ), we have:

Ee[
∑

x1∈[M ]h,x2∈Zh+,µ∈[t]h

P1(x1)
√
P2 (x2) · P2(p− (x1 ◦ πe + x2 + µ))·

Q(µ)Υ(u,v)
p (x1, x2, µ)] ≥ 9δ

Since P1, P2, Q are (p/3, δ)-heavy:

E(u,v)[
∑

x1,x2,µ∈[p/3]h

P1(x1)
√
P2 (x2) · P2(p− (x1 ◦ πe + x2 + µ))·

Q(µ)Υ(u,v)
p (x1, x2, µ)] ≥ 8δ (5.6)

For the rest of the proof, we will use the shorthand x3 = p − (x1 ◦ πe + x2 + µ) as

shorthand for simplicity of representation. Note that the function Υ
(u,v)
p : [p]3h →

{0, 1} is given by

Υ(u,v)
p (x1, x2, µ) =

1 C(A(u))[x1] + C(A(v))[x2] + C(A(v))[x3] = 0 mod p,

0 otherwise.

Υ
(u,v)
p can equivalently be written as below:

Υ(u,v)
p (x1, x2, µ) =

1

p

p−1∑
k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

Substituting this in (5.6), and using x3 = p − (x1 ◦ πe + x2 + µ) as shorthand, the

left-hand side becomes:

E(u,v)

1

p

∑
x1,x2,µ∈[ p

3
]h

P1(x1)
√
P2 (x2) · P2(x3)Q(µ)

(
p−1∑
k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

)
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We further simplify the term within the expectation:

1

p

∑
x1,x2,µ∈[ p

3
]h

P1(x1)
√
P2 (x2) · P2(x3)Q(µ)

(
p−1∑
k=0

e
2πik
p

(C(A(u))[x1]+C(A(v))[x2]+C(A(v))[x3])

)

=
1

p

p−1∑
k=0

∑
x1,x2,µ∈[ p

3
]h

Q(µ)
(
P1(x1)e

2πik
p
C(A(u))[x1]

)(√
P2 (x2)e

2πik
p
C(A(v))[x2]

)
· (5.7)

(√
P2(x3)e

2πik
p
C(A(v))[x3]

)
Setting U(x) = P1(x)e

2πik
p
C(A(u))[x] and V(x) =

√
P2(x)e

2πik
p
C(A(v))[x], (5.6) now simpli-

fies to:

E(u,v)

1

p

p−1∑
k=0

∑
x1,x2,µ∈[ p

3
]h

Q(µ)U(x1)V(x2)V(x3)

 ≥ 8δ (5.8)

This is where our proof technique has a crucial point of departure from that used in

[GR07]. Since our test has only positive co-efficients, we do not have the luxury to

make the substitution √
P2(x′)e−

2πik
p
C(A(v))[x′] = V(x′)

that is made in [GR07] which simplifies their analysis.

Consider the Fourier expansion for U described below:

U(x) =
∑
w∈[p]h

Û(w)e
2πi
p
〈w,x〉

where

Û(w) =
1

ph

∑
x∈[p]h

U(x)e−
2πi
p
〈w,x〉

We substitute this and a similar Fourier expansion for V back in (5.8):

E(u,v)[
1

p

p−1∑
k=0

∑
x1,x2,µ

Q(µ)
∑
w1

Û(w1)e
2πi
p
〈w1,x1〉

∑
w2

V̂(w2)e
2πi
p
〈w2,x2〉· (5.9)∑

w3

V̂(w3)e
2πi
p
〈w3,x3〉] ≥ 8δ
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Substituting x3 = (p− (x1 ◦ πe + x2 + µ)) the left-hand side becomes:

E(u,v)[
1

p

p−1∑
k=0

∑
x1,x2,µ

Q(µ)
∑
w1

Û(w1)e
2πi
p
〈w1,x1〉

∑
w2

V̂(w2)e
2πi
p
〈w2,x2〉 ·∑

w3

V̂(w3)e
2πi
p
〈w3,(p−(x1◦πe+x2+µ))〉]

= E(u,v)[
1

p

p−1∑
k=0

∑
x1,x2,µ

Q(µ)
∑
w1

Û(w1)e
2πi
p
〈w1,x1〉

∑
w2

V̂(w2)e
2πi
p
〈w2,x2〉 ·∑

w3

V̂(w3)e−
2πi
p
〈w3,(x1◦πe+x2+µ)〉]

= E(u,v)[
1

p

p−1∑
k=0

∑
w1,w2,w3

Û(w1)V̂(w2)V̂(w3)
∑
x1

e
2πi
p
〈(w1−w3◦π−1

e ),x1〉
∑
x2

e
2πi
p
〈(w2−w3),x2〉 ·∑

µ

Q(µ)e−
2πi
p
〈w3,µ〉]

where w3 ◦ π−1
e denotes the vector obtained by setting (w3 ◦ π−1

e )i =
∑

j∈π−1
e (i) w3j for

i = 1, . . . , h. Note that for w1 6= w3 ◦ π−1
e ,

∑
x1
e

2πi
p
〈(w1−w3◦π−1

e ),x1〉 = 0 and similarly,

for w2 6= w3,
∑

x2
e

2πi
p
〈(w2−w3),x2〉 = 0. Setting w = w3, the overall inequality simplifies

to:

E(u,v)

[
1

p

p−1∑
k=0

∑
w

(
phÛ(w ◦ π−1

e )
)(

phV̂(w)2
)∑

µ

Q(µ)e−
2πi
p
〈w,µ〉

]
≥ 8δ (5.10)

Also, note that |V̂(w)2| =

√(
V̂(w)2 · V̂(w)2

)
=

√(
V̂(w) · V̂(w)

)2

= |V̂(w)|2 using

the simple identity that z2 · z2 = (z · z)2 for any complex number z.

Substituting back in (5.10), we obtain:

E(u,v)

[
1

p

p−1∑
k=0

∑
ω

(
phÛ(w ◦ π−1

e )
)(
|phV̂(w)|2

)∑
µ

Q(µ)e−
2πi
p
〈w,µ〉

]
≥ 8δ(5.11)

We are now ready to use the following lemma, again from [GR07] concerning

probability distributions P1, P2, Q and some assignment A of labels to vertices in G

satisfying (5.11).
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Lemma 5.5.14 ([GR07]) Let P1, P2, Q : Zh
+ → [0, 1] be probability distributions and

A : V (G) → [h] some assignment of labels to vertices in G satisfying (5.11). Then,

there exists a constant C such that

Pr
(u,v)

[A is legal for (u, v)] ≥ δ4/96C2

By choosing our original instance of Label-Cover(1, δ) to be such that h is large

enough, we can ensure that δ4/96C2 ≥ 1/hγ. This gives us a soundness of 19δ as

required.

5.5.2 Tying it all together

Theorem 5.5.15 For all constants ε, δ > 0, the problem Max-LinR+(1 − ε, δ) is

NP-hard.

Proof. We just need the following argument from [GR07]:

Theorem 5.5.16 (Theorem 3.5, [GR07]) For all constants ε, δ > 0, the problem

Max-LinR(1− ε, δ) is NP-hard.

We give a reduction from Max-LinZ+(1 − ε, δ/8). Note that our reduction in

proving that this problem was hard produced an instance of Max-LinZ+ where each

equation consists of three variables:

xi + xj + xk = c

where xi, xj, xk, c ∈ Z+. The Max-LinR+ instance we construct will have exactly the

same set of these equations:

x′i + x′j + x′k = c

with x′i, x
′
j, x
′
k chosen from R+. A solution in integers to the original Max-LinZ+

instance is automatically a solution to the Max-LinR+ instance.
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Suppose that with probability at least δ over the choice of equations in the in-

stance, a solution is feasible. Then, for any such equation:

x′i + x′j + x′k = c

by choosing each variable xs to be either bx′sc or dx′se uniformly at random for s =

i, j, k we will have satisfied the equation in the corresponding Max-LinZ+ instance

with probability at least δ/8 thereby contradicting the hardness assumption we made

for the instance.

Theorem 5.5.17 For all ε, δ > 0, the problem i-sat∗(1− ε, 1/2 + 76δ) is NP-hard

Proof. The proof is by reduction from Max-LinR+(1−ε, 19δ) over a set of unknowns

x1, . . . , xn. Our i-sat∗ instance will have variables y1, . . . , yn; y′1, . . . , y
′
n. We define a

partition S ∪ T where S = {yi|i = 1, . . . , n} and T = {y′j|j = 1, . . . , n}. For each

equation over the reals
∑

i aixi = b in an instance of Max-LinR+ , we construct the

i-sat∗ clauses: 
∑

i∈S aiyi ≤ b

or∑
j∈T ajy

′
j ≤ b

 ,


∑

i∈S aiyi ≥ b

and∑
j∈T ajy

′
j ≥ b

 (5.12)

Let x1, . . . , xn be a solution for Max-LinZ+ . We set yi = y′i = xi for all i = 1, . . . , n.

A solution satisfying at least a (1 − ε) fraction of the equations in the Max-LinR+

instance will satisfy at least a (1− ε) fraction of the inequality-clauses in the i-sat∗

instance. Conversely, suppose there exists a solution satisfying at least a (1/2 + 76δ)

fraction of the inequality-clauses. Then there is at least a 38δ fraction of inequality-

clause pairs of type (5.12) which must be satisfied. For each such pair, the type 2

clause implies that both (
∑

i∈S aiyi ≥ b) and (
∑

j∈T ajy
′
j ≥ b) and the type 1 clause

implies that one of
∑

i∈S aiyi ≤ b and
∑

j∈T ajy
′
j ≥ b must hold. Therefore, for each

such pair one of
∑

i∈S aiyi = b or
∑

i∈T aiy
′
i = b must hold. Setting xi to be yi for

all i if there are more pairs for which
∑

i∈S aiyi ≤ b and y′i otherwise, guarantees
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that at least a 19δ fraction of equations
∑

i aixi = b must be satisfied in the original

Max-LinZ+ instance thereby giving us the necessary gap reduction. This completes

the proof of the theorem.

Corollary 5.5.18 For all ε, δ > 0 the problem max-stable-values(1− ε, 1/2 + δ)

is NP-hard.

Proof. We argue that the reduction from i-sat∗ shown in the proof of Theorem 5.4.2

is also a gap-preserving reduction and reduce from i-sat∗(1 − ε, 1/2 + δ). Arguing

first for (1−ε) completeness, we note that if a clause in the i-sat∗ instance is satisfied

then the corresponding pairwise stability condition is also satisfied.

Suppose now, that (1/2+δ) fraction of the stability conditions for the active pairs

are satisfied. But each such condition exactly corresponds to a clause being satisfied

in the original i-sat∗ instance thereby giving us the required (1/2 + δ) soundness for

stable-values.
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Epilogue

In this dissertation we looked at questions concerning two aspects of any game: ran-

domness and rationality. In the former case, we considered various scenarios in which

agents are constrained in their access to randomness and must perforce play strategies

that must make do with little or no randomness. We investigated three interesting

instances of such a framework and offered insight into how techniques from pseudo-

randomness can be brought to bear upon problems in algorithmic game theory. Our

results can also be viewed in the larger context of the ongoing attempts to find PTAS

for Nash equilibria. We believe that our algorithm for efficiently finding approximate

equilibria in low-rank games (even in the multi-player case) can serve as a reference

point for future analyses of Nash equilibria in games where agents have sparse payoff

matrices.

In the latter case, we argued for a computational approach to investigating prob-

lems in revealed preference theory. We believe that this would be of mutual interest

to both theoretical computer scientists as well as economists. There are several prob-

lems in microeconomic theory that have the combinatorial structure that lends itself

to investigation through a theoretical computer scientific lens and opens yet another

front in the fast maturing field of algorithmic game theory. Results on intractabil-

ity as well as finding feasible algorithms for constructing utility functions that are

consistent with consumer choice would be of immense benefit to studies and field

experiments in empirical economics.

It is hoped that the two problems in connection with rationalizability of matchings

and network formation games that we looked into in this dissertation clarify the

outlines of computational revealed preference theory. Needless to say, these are only
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two of a large cachet of possible problem settings in this area. Moreover, we believe

that there is a deep and fundamental connection between a large body of problems

in revealed preference theory and the class of inequality-satisfiability problems. We

demonstrated this connection in both the settings that we considered. It would be

heartening to see if this line of enquiry is pursued further and a stronger nexus can

be established between two seemingly disparate classes of problems originating from

economics and theoretical computer science respectively.

The complexity-theoretic perspective to revealed preference theory we offered in

this dissertation is but one dimension. Yet another dimension concerns applying tech-

niques from statistical learning theory to understand and model the learnability of

consumer choice functions, and using them to set up forecasting models that predict

consumer demand in the face of different choice-sets or budget constraints. We re-

viewed some results that are currently known in this regard, but we believe again that

there is scope for more interesting research that can fully exploit what is known from

machine-learning and deploy that machinery towards problems in revealed preference

theory and econometrics.

In addition to computational revealed preference theory, we believe that another

subject within economics that is ripe for theoretical computer science to contribute

to is that of bounded rationality. Indeed, if anything, the notion of bounded rational-

ity offers an even more direct connection since the assumptions underlying bounded

rationality concern the limited computational power (both time and space) of agents

when they play their optimal strategies. In one sense, it can be argued that re-

vealed preference theory is intended to capture an ex-post facto analysis of bounded

rationality since the theory argues and rationalizes consumer choices after the fact.

We believe that there are significant and exciting questions to be looked into and

answered in this regard.
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