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Abstract

This thesis describes new ways of operating high-frequency nanomechanical resonators and using

them for sensor applications.

The first part of the thesis is devoted to the techniques of detecting, actuating, and tuning

the resonance motion of nanomechanical resonators. First, I consider piezoresistive detection using

integrated thin-film piezoresistors made of doped semiconductors or metals. I describe the piezore-

sistive downmixing technique, which typically results in better performance than the conventional

DC biasing technique. I then proceed to the possible ways of actuating the motion of nanomechan-

ical resonators. After describing the challenges of applying the piezoshaker actuation technique to

high-frequency resonators, I consider two alternatives: permanent-magnet magnetomotive actuation

and Joule-heat-driven thermoelastic actuation. I demonstrate that the combination of thermoe-

lastic actuation and piezoresistive detection can be used to efficiently detect multiple modes of

nanomechanical resonators. Finally, I consider two ways of tuning the frequency of nanomechanical

resonators: electrostatic tuning and absorptive tuning.

The second part of the thesis is devoted to applications of nanoscale resonators to spin sensing,

studies of dissipation of mechanical motion, and gas sensing. I consider possible ways of observing

the coupling between mechanical motion and spins, describe our experimental results, and explore

the analogy between coupled the spin–resonator system and the quantum-optical model of a laser.

I then describe the results of quality-factor measurements in vacuum and air for doubly clamped

beams and other resonator geometries. Finally, I describe a way to build better gas sensors by using

arrays of nanomechanical resonators and present the preliminary gas-sensing data.
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Introduction

Like sportsmen, researchers are often motivated by the possibility of setting a new record and beating

the competition. Practically every day there is news that scientists or engineers have developed a

device that is faster, or slower, or bigger, or smaller, or darker, or brighter, or hotter, or colder,

et cetera, et cetera, than ever before. Apart from the bragging rights for their inventors, many

of these devices eventually result in real-life applications because these record-breaking properties

allow people to do something useful better than before.

One general trend that has produced many such records and applications over the last several

decades is miniaturization. The most obvious example of this trend is the amazing progress of elec-

tronic devices, which by now have permeated every aspect of modern life. The scaling of transistors

from the initial few centimeters to the current few tens of a nanometer has not only miniaturized the

radios of the 1940s, but has also produced thousands of new kinds of devices that could not even be

imagined at the time (think iPods or cell phones). In the last couple of decades, the miniaturization

of electronic devices has entered the nanoscale and engendered the new fields of nanoscience and

nanotechnology, which now encompass not only electronic but many other types of devices. These

nano-enabled devices promise to revolutionize many more areas of modern life, from materials to

energy technology to medicine.

Over the last two decades, the fabrication techniques developed by the semiconductor industry

have been applied to creating miniaturized devices with moving parts. Since electrical signals were

usually used to actuate or detect the motion of these devices, they acquired the name microelec-

tromechanical systems or MEMS [1, 2]. Since their appearance, MEMS have enabled many devices

with record properties such as inkjet printers, optical switchers, displays, electronic filters, and all

1



kinds of sensors.

Microelectromechanical systems are now passing the baton of miniaturization to nanoelectrome-

chanical systems (NEMS), which generally feature at least two characteristic dimensions of less than

one micrometer. In particular, nanomechanical resonators promise to revolutionize many sensor ap-

plications. Their small size and the new properties emerging at the nanoscale have resulted in new

records of sensitivity in charge [3], mass [4, 6, 5], force [7], and spin [8, 9] measurements. The detec-

tion sensitivity at cryogenic temperatures has now reached the range where a number of quantum

effects can be observed using nanomechanical resonators [10, 11, 12].

In this thesis, I explore new types of nanomechanical resonators and the applications they enable.

One of the continuing challenges in the field of nanomechanical resonators is finding new efficient

ways to control the motion of the ever-shrinking nanomechanical devices. A large part of my graduate

studies was devoted to finding new ways to actuate, detect, and tune the motion of nanomechanical

resonators. Another large part of my graduate studies was devoted to developing new types of

sensors that would use these types of resonators.

The six chapters of this thesis are arranged in a roughly chronological order. During the first

few years of my studies, my main goal was to perform mechanical detection of nuclear magnetic

resonance at the Larmor frequency, i. e., to realize the situation when the resonance frequency of the

nanomechanical resonator and the frequency of magnetic resonance are the same and observe some

form of interaction between the mechanical and spin systems. Working toward this goal required

a lot of preparatory work. The first problem we needed to solve was developing a new method

of motion detection for silicon piezoresistive cantilevers that would work at frequencies of tens of

megahertz—the typical resonance frequency range of nuclear magnetic resonance. The solution

was to use AC biasing of piezoresistive devices, and downmix the signal to low frequencies where

measurements were much simpler. Chapter 1 describes piezoresistive detection and the piezoresistive

downmixing technique in more detail.

The next issue we needed to address was actuation of nanomechanical resonators in the same

frequency range of tens of megahertz. The two methods widely used in our group to actuate nanome-
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chanical devices at the time—piezoshaker and magnetomotive actuation—proved inadequate for our

purposes. Magnetomotive actuation requires a strong magnetic field, which makes it very incon-

venient for studying magnetic resonances, where independent control of magnetic field is needed.

The piezoshaker actuation turned out to be impractical also because the piezoshaker drive has a

strong and arbitrary frequency dependence, especially at high frequencies and low temperatures.

The solution we have developed involved the use of thermoelastic actuation, which suited the needs

of Larmor-frequency measurement and, in addition, allowed us to use multiple modes of the nanome-

chanical resonators. Chapter 2 provides the details on piezoshaker, magnetomotive, and thermoe-

lastic actuation techniques.

Another prerequisite for magnetic resonance experiments was the ability to tune the resonance

frequency of nanomechanical resonators. The most common way to perform such tuning in MEMS

devices is by using capacitive or electrostatic tuning. I was involved in the experiments that suc-

cessfully applied this technique to nanomechanical resonators. However, the small dimensions of

nanomechanical resonators limited the tuning range in these experiments and also often resulted in

the destruction of the device due to electrostatic snap-in or dielectric breakdown. This motivated

me to develop the adsorptive frequency tuning technique for nanomechanical resonators. This tech-

nique operates at liquid-helium temperatures and relies on adsorption of inert gas molecules on the

device, which mass loads the device and tunes the frequency down. The technique allows controlled

tuning of frequency by more than 15%, does not interfere with electrical measurements, and has

never resulted in the destruction of a device. Chapter 3 describes the experimental results obtained

using both capacitive and absorptive tuning of nanomechanical resonators.

After developing the necessary experimental techniques for the actuation, detection, and tuning

of mechanical resonances, we were finally ready to try detecting the interaction between mechanical

resonators and nuclear spins. I start Chapter 4 by describing two possible mechanisms of coupling

between mechanical motion and spins. I then proceed to describe the experiments we have performed

in attempt to detect the signature of the interaction between mechanical resonators and nuclear

spins. I conclude the chapter by exploring theoretically the analogies between coupled resonator–
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spins system and similar systems in quantum optics, in particular, the laser.

The experimental techniques developed for studying mechanical-spin interaction also proved

useful for other applications. The first problem I could easily address was the study of quality factors

of nanomechanical resonators in both vacuum and air. The combination of thermoelastic actuation

and piezoresistive detection allowed me to perform systematic measurements of quality factors for

multiple modes of doubly clamped beams. The results of these measurement also suggested ways

to achieve high quality factors in fluids by using alternative designs of nanomechanical resonators.

Chapter 5 describes the results of quality factor measurement in beams and other types of resonators.

Another promising application for thermoelastic actuation and piezoresistive detection is the de-

tection of arrays of mechanical resonators. Building electrically connected arrays of nanomechanical

resonators is the simplest way to improve the sensitivity of NEMS gas sensors. However, success-

ful detection of resonances from entire arrays requires that the resonance frequency and drive are

uniform across the array. We were able to achieve both using thermoelastic actuation with the

arrays fabricated by our collaborators at LETI (Grenoble, France). These measurements allowed

us to detect resonances of arrays with a much higher signal-to-noise ratio than those of individual

cantilevers. We have also performed preliminary gas sensing measurements that demonstrated the

feasibility of functionalizing entire arrays and using them for gas sensing inside a commercial gas

chromatography system. Chapter 6 describes the the theoretical and experimental results relating

to the measurements of electrically connected arrays.

I conclude the thesis with the summary of the obtained results and a description of possible

future experiments.
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Chapter 1

Piezoresistive detection of resonant
motion of nanomechanical
resonators

There are many ways to detect the resonant motion of nanomechanical devices. Some of these ways

are adaptations of detection methods originally developed for microscale devices, while others are

unique to nanoscale devices.

In the domain of MEMS [2], which are much larger than NEMS, the most popular detection

techniques are optical, capacitive, piezoelectric, piezoresistive, and magnetic. All of these techniques

can be adapted to work with nanoscale devices, albeit with some limitations. For example, optical

detection works best if the spot size of a focused beam is smaller than the length and the width of

the mechanical resonator. Since the minimum size of an optical beam is limited by the wavelength

of the used light, most optical techniques become less effective as the dimensions of the resonator

are reduced below 1 micron, i. e., enter the nanoscale.1 Another common drawback of optical

detection is the need for macroscopic optical components and careful alignment. Nevertheless,

optical and, in particular, interferometric optical detection are widely used because they provide a

large measurement bandwidth and displacement sensitivities down to ∼ 100 fm/Hz1/2 in nanoscale

resonators [8, 13].

Capacitive detection, also called electrostatic detection, is very popular in microscale devices since

it is easy to integrate into a microfabricated device, consumes little power, and in addition, provides
1Recently, an alternative technique of local optical detection has been demonstrated [14]. It is based on the coupling

between evanescent fields of parallel optical waveguides and is therefore not limited by the laser spot size.
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(a) (b)
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PD LASER

Vdc
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V

B

B Ω
Figure 1.1: Popular detection schemes for nanoscale devices. (a) Schematic side view of a typical
laser optical detection technique. The cantilever motion can be detected either though the resulting
angular deflection of the reflected beam or through the variation of reflected power due to interference
of light reflected from the beam itself and the underlying substrate. (b) Schematic top view of the
capacitive detection technique. Periodic motion of the beam resonator changes the capacitance
between the beam and the DC-biased side electrode, resulting in detectable AC current flowing
through the ammeter. (c) Schematic top view of the magnetomotive detection technique. Periodic
motion of the beam resonator changes the magnetic flux through the conducting loop formed by the
beam and the outside wires, resulting in AC voltage that is detected by the voltmeter. (d) Schematic
view of the piezoresistive detection technique. The motion of the cantilever strains the piezoresistor
loop on the top surface of the cantilever. The resulting changes in the resistance can be detected by
a number of measurement techniques.
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a way to actuate the device at the same time [2]. Scaling capacitive detection and actuation to

nanoscale dimensions, however, is challenged by the increasing importance of parasitic capacitances

and their deleterious effects.2 Still, capacitive detection can achieve high displacement sensitivity

and can work at a very wide range of temperatures, down to the milliKelvin range of dilution

refrigerators.

Magnetic detection of the motion of microscale structures is typically based on the Faraday

effect, i. e., generation of a voltage in a loop with a changing magnetic flux. A variety of microcoil

structures have been used in microscale devices for detection of motion [2]. In comparison, nanoscale

magnetic sensing structures are typically very simple. One popular magnetic sensing technique,

called magnetomotive detection, simply uses the Faraday effect of a nanoscale wire moving in a

strong field of a magnetic source [16]. The main drawback of the magnetomotive technique is the

need for a large magnetic field, which is usually created by a superconducting solenoid. Nevertheless,

magnetomotive detection and its associated actuation technique are simple to use, feature low power

consumption, and have been demonstrated to work at frequencies above 1 GHz [17].

The piezoresistive effect in doped silicon and metals forms the basis of another popular detection

technique in microscale devices [2]. Semiconductor piezoresistive devices, usually made of doped

silicon, offer very high sensitivity, but are more difficult to fabricate. The sensitivity of metal

piezoresistors is lower, but this is compensated by the simplicity of fabrication and ease of impedance

matching at high frequencies due to their intrinsically lower resistance. Importantly for nanoscale

devices, piezoresistive detection in general and piezoresistive detection using metal piezoresistors in

particular, scale very favorably to smaller dimensions. In addition, piezoresistive NEMS have the

advantages of being fully integrated sensors that operate from room temperature down to at least

4 K and do not require a magnetic field. The main drawback of piezoresistive detection lies in its

relatively high power consumption, which limits the usefulness of piezoresistive devices at cryogenic

temperatures.

Figure 1.1 shows the schematics of the four popular detection schemes described above. Ad-
2 One way to address this challenge is by doing careful on-chip impedance matching [15], tuning the detection

circuit to the particular frequency range of the detected resonator.
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ditional techniques of detecting nanoscale motion are based on motional changes in the tunneling

barrier of a quantum point contact [18], the gate voltage of a single electron transistor [10, 11, 12],

and the conductivity of individual nanotubes [19, 20]. As of this writing, these techniques primarily

address niche applications and are not as widespread. In this chapter I will focus on piezoresistive

detection and its downmixing variant, which we have developed for measuring high-frequency NEMS

devices.

1.1 Piezoresistive detection using semiconductors and metals

When a resistor is deformed by applying an external stress, its resistance generally changes, a phe-

nomenon known as the piezoresistive effect. The effectiveness of this strain-resistance transduction

mechanism is characterized by the gauge factor of the piezoresistor, defined as G = ∆R/R
ε , where

∆R/R is the relative change in the device’s resistance and ε is the strain component of interest. The

change in piezoresistor’s resistance is caused by two mechanisms: a change in its shape and a change

in the resistivity of piezoresistor’s material. Correspondingly, the gauge factor can be written as

G = (1 + 2µ) + (∂ρ/∂ε), (1.1)

where µ is the piezoresistive material’s Poisson ratio and ρ is its resistivity.

For metals, the geometrical contribution usually dominates and the change in resistivity can be

neglected, which leads to G = (1 + 2µ) ∼ 2. Conversely, in doped semiconductors, the changes in

resistivity plays the dominant role and the geometric contribution can be neglected. In semicon-

ductors, the changes in resistivity are caused by the carrier transfer mechanism and changes in the

effective mass of carriers, both a consequence of the deformation of the band-gap structure [21]. The

typical gauge factors of doped semiconductor materials used in piezoresistive gauges vary between

a few dozen to over one hundred.

Piezoresistive strain sensors have been previously integrated directly into microscale cantilevers [22,

23] and have been used, for example, in atomic force microscopy [22], data storage [24, 25], and
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(a) (b)

(c) (d)

Figure 1.2: Typical geometries of piezoresistive devices. (a) Silicon cantilever with integrated
piezoresistor. Only the top p-doped layer conducts electricity. (b) Gold piezoresistor on one side of
a suspended silicon-carbide doubly clamped beam. (c) Suspended silicon cantilever with integrated
metal piezoresistor, made of Al0.96Si0.04 alloy (fabricated at LETI, Grenoble, France). (d) Patterned
multiple-loop piezoresistor for integration in plate-type resonators.

biosensing [26, 27]. These devices achieved great strain sensitivity by using semiconductor-based

piezoresistors, primarily doped Si [21] or AlGaAs [28]. Resonance detection of cantilevers up to 9

MHz has been previously achieved using doped Si piezoresistors [24].

A typical piezoresistive detector consists of a single conducting loop or multiple loops preferen-

tially oriented in the direction of the detected strain, usually along the length of the resonator. In

our experiments, we used both metal and semiconductor piezoresistors. Figure 1.2 shows the geome-

tries we used. The use of metal rather than semiconductor piezoresistors in nanoscale resonators

has been recently pioneered in the Roukes group [5, 29]. While semiconductors often boast a gauge

factor of over one hundred, gauge factors of metal piezoresistors are much lower, typically about

two. Nevertheless, metal piezoresistors can overcome this large handicap in gauge factor by offering

a number of other advantages. One such advantage is the ease of fabrication. Patterned thin metal
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films are among the simplest nanostructures to fabricate. In addition, films of inert metals, such as

gold or palladium, are generally very robust with respect to necessary additional fabrication steps,

such as lithography and etching.

Another important advantage of metal piezoresistors is their low resistance—no more than a few

hundred Ohm in our experiments, compared to 5–100 kΩ or more for semiconductor piezoresistors.

The high resistance of semiconductor devices not only results in large Johnson noise but also leads to

frequency-dependent signal attenuation at MHz frequencies if the conventional direct-current (DC)

biasing is used. The piezoresistive downmixing technique described in the next section alleviates

this problem of signal attenuation, but using low-resistance metal piezoresistors allows one to avoid

it altogether.

The final argument in favor of metal piezoresistors is the significant reduction in 1/f noise. In

resistors, including piezoresistors, the spectral density of the resistance fluctuations usually obeys

Hooge’s relation, S1/f (f) = R2ζ
Nf , where R is the resistance, f is the frequency, N is the total number

of mobile charge carriers, and the parameter ζ characterizes the resistor material [30]. The parameter

ζ is of the same order of magnitude in metals and semiconductors [31], but the number of carriers in

metals is larger by several orders of magnitude. As a result, the 1/f noise in piezoresistors becomes

important only at frequencies below the corner frequency of ∼ 10 Hz [32], far below the typical

resonance frequencies of nanomechanical resonators.

1.2 Piezoresistive downmixing3

Figure 1.3 shows the conventional low-frequency circuit for measuring piezoresistive devices. The

piezoresistor Rc is placed in a bridge or half-bridge configuration with a fixed dummy resistor Rd;

for simplicity we will assume Rc = Rd = R when the NEMS is at rest. The ends of the resistors

are oppositely DC-biased at +Vb/2 and −Vb/2, so that the voltage at the bridge point is zero when

the NEMS is not moving. When the NEMS is driven at a frequency ωd, Rc gains a time-dependent

component: Rc = R +∆R cos(ωdt+φ); typically ∆R/R ≤ 10−5. This resistance variation produces

3Measurements described in this section were performed in collaboration with E.B. Myers.
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Figure 1.3: Direct-current piezoresistive readout schematic. A DC bias Vb is applied to the NEMS
resistor Rc and dummy resistor Rd. The parasitic capacitance Cpar across the amplifier input,
combined with the resistors, filter the AC output voltage at high frequencies.

the standard resistance-bridge voltage Vout ≈ Vb(∆R/4R) cos(ωdt + φ) at the bridge point.

To measure Vout the bridge output must be connected in some way to a circuit, e.g., the input of

a high-input-impedance preamplifier. At moderately high frequencies (< 30 MHz), this introduces

capacitances Cpar to ground in parallel with the cantilever and dummy, effectively forming a low-pass

filter with a cut-off frequency of (πRCpar)−1. With typical amplifier-input and cable capacitances

Cpar ≥ 50 pF, and R ≥ 10 kΩ, the AC output is strongly attenuated at ωd/2π > 400 kHz. At very

high frequencies (> 30 MHz), the measurements are further complicated by cable resonances. The

conventional direct-current technique is, therefore, not suitable for measurements of NEMS devices,

whose frequencies are in the MHz or even GHz range.

To address these difficulties, we have developed the piezoresistive downmixing scheme. Our

technique utilizes AC biasing and the intrinsic properties of the piezoresistor to perform heterodyne

downmixing of the signal to a much lower frequency, which can then be detected by standard

circuitry without significant signal loss. Not only does this increase the detected signal, it also

greatly reduces unwanted background from the cross-talk between the detector and actuator circuits.

As proof of principle, we have applied this downmixing scheme to the detection of cantilever NEMS

with fundamental mode frequencies of 5–25 MHz. We achieve thermal noise-limited detection of

mechanical resonances in these devices at room temperature, demonstrating the ultimate sensitivity

of downmixed piezoresistive signal detection in resonant high-frequency NEMS applications.

Our circuit, depicted in Figure 1.4, uses the piezoresistor to downmix the displacement signal
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Figure 1.4: Diagram of downmixing circuit. The NEMS (within the dotted lines) is actuated by an
AC source at frequency ωd. A second AC source at frequency ωb is used to apply balanced biasing
to the resistors. The resulting downmixed output is sent through a low-pass filter (LPF), amplified,
and fed into a lock-in amplifier. Power splitters (PS) and a commercial mixer are used to create a
downmixed reference for the lock-in.

to a lower frequency. This is achieved by applying an AC voltage Vb(t) = Vb0 cos(ωbt) across the

resistors at a frequency ωb, offset from the drive frequency by an amount ∆ω ≡ ωd − ωb. Using a

180◦ power splitter (PS), the voltage is applied oppositely to the ends of the resistors, to null the bias

voltage at the bridge point [33]. The bias produces an AC current I(t) = Vb0 cos(ωbt)/(Rd + Rc); to

leading order in ∆R/R, Vout then becomes

Vout(t) ≈ Vb0 cos(ωbt)
4R

(∆R cos(ωdt + φ))

= Vb0
∆R

8R
[cos(∆ωt + φ) + cos ((2ωd −∆ω)t + φ)] .

Thus the output signal at the bridge point contains two frequency components, at the sum and

difference of the drive and bias frequencies. With ∆ω sufficiently small (< 100 kHz), the downmixed

frequency component is attenuated minimally by the parallel capacitances. The output is then sent

through a low-pass filter (LPF) to remove the upper sideband and any residual carrier, amplified,

and finally fed into a lock-in amplifier for detection. The lock-in reference is generated by splitting

off the bias and drive voltages with power splitters and sending the voltages into a commercial mixer,
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which generates a downmixed signal in parallel with the NEMS.

This electromechanical downmixing effect, while functionally similar to that of commercial diode-

based mixers, is a fully linear property of the piezoresistor. Unlike regular mixers, where a minimum

threshold signal is required to access the nonlinear response, the piezoresistor downconverts any

signal to an amplitude half that of the signal that would be generated with a DC bias of the same

magnitude. In contrast, any parasitic cross-talk signal from the actuation circuit would need to pass

through an element with a nonlinear I–V response in order to mix with the bias voltage down to the

frequency ∆ω. We have found that the I–V nonlinearity of our piezoresistors is quite small, so that

even extremely weak displacement signals can be downmixed and extracted from the device with

minimal attenuation and background.

We have tested this downmixing scheme using high-frequency piezoresistive cantilevers as the

NEMS device. The cantilevers are fabricated from silicon-on-insulator (SOI) wafers, where the top

Si layer consists of 80 nm Si plus a 30 nm layer of boron-doped p-Si to act as the piezoresistive

strain sensor. The cantilevers were fabricated in a manner similar to that of Harley and Kenny [23],

where a backside KOH etch suspends the top Si layer as a membrane, and a combination of electron

beam lithography, liftoff, and fluorine/chlorine-based plasma etching steps forms the cantilever from

the membrane. The particular details of the fabrication method are described in an earlier publi-

cation [27]. A typical cantilever is shown in Figure 1.5(a); lengths ranged from 2–3 µm and widths

were approximately 700 nm. As shown in Figure (1.5)(b), the dummy resistor was fabricated on-chip

using the same p-Si material that provides the cantilever strain sensor, in order to minimize parallel

capacitances. The cantilever and dummy resistances varied from device to device, and were in the

range of 50–150 kΩ. The cantilever chip was mounted onto a piezoelectric ceramic actuator disk

with a thickness of approximately 80 µm, corresponding to a thickness-mode resonance frequency of

about 25 MHz. This assembly was in turn mounted onto a circuit board and placed into a vacuum

chamber for measurements at room temperature.

Figure 1.6(a) displays a resonance curve for a 1.7-µm-long cantilever using our downmixing

method. Here Vb0 = 3 V, ∆ω/2π = 100 kHz, and a peak-to-peak voltage of 1.9 V is applied to

13



Figure 1.5: (a) Scanning electron micrograph of a cantilever of dimensions 3.2 µm long x 700 nm
wide x 110 nm thick. (b) optical micrograph of a cantilever and dummy resistor. Three gold leads
at the bottom of the image connect the resistors to the rest of the circuit.

the piezo actuator. The resonance is approximately fc = 24.4 MHz, close to but somewhat below

the theoretically predicted fundamental-mode resonance frequency of 27 MHz. The square of the

voltage signal is proportional to the energy in the cantilever; fitting this quantity to a Lorentzian

yields a width of 18.2 kHz, implying a quality factor of Q ≈ 1300. For comparison, Figure 1.6(b)

shows the same cantilever resonance measured in the standard DC half-bridge configuration [22],

using a DC bias of 5 V across Rc and Rd and a 50 Ohm, high-frequency network analyzer for

drive (approximately 1 Vpp) and detection. In both measurements no impedance matching had been

performed, and the signal was normalized by the drive and bias levels. The resonant signal in the

downmixing scheme is approximately 1000 times larger than in the direct measurement scheme. In

addition, the relative magnitude of the background, caused by parasitic coupling of the drive signal

to the detection circuit, is nearly three orders of magnitude smaller in the downmixing case. As a

result, the downmixed resonance is essentially Lorentzian, while the network analyzer resonance is

highly distorted.

This technique is sensitive enough to detect the thermomechanical fluctuations of the cantilever

when it is not driven externally. This is done by applying only a bias voltage and, while sweeping

the bias, detecting narrowband noise at the offset frequency ∆ω. Figure 1.7 shows the thermome-

chanical noise for a 2.6-µm-long cantilever with fundamental mode frequency fc = 11.9 MHz, using

∆ω/2π = 50 kHz. The noise appears as two peaks spaced 100 kHz apart because the noise in the
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Figure 1.6: (a) Signal amplitude (solid line) and phase (dotted line) of resonance of first vibration
mode of a 1.7-µm-long cantilever, as measured using downconversion, using an offset frequency
∆ω/2π = 100 kHz. The amplitude is normalized to the drive and bias levels. (b) Signal amplitude
and phase as measured directly with a network analyzer.
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Figure 1.7: Thermomechanical noise peaks from the fundamental vibration mode of a 2.6-µm-long
cantilever. Inset: One of the thermomechanical noise peaks from the second vibration mode of the
same cantilever.

cantilever at the resonance frequency is mixed to the 50 kHz reference when the bias is either 50 kHz

above or below the cantilever resonance. The peak noise amplitude agrees with the theoretical es-

timate based on the previously measured piezoresistive gauge factor of similar cantilever devices

[27]. Note that the thermal conduction calculations predict the cantilever to be approximately 20

K hotter than the room-temperature environment due to Joule heating of the piezoresistor in this

experiment. The off-resonance noise floor of 110 nV/
√

Hz is approximately twice that expected

from a combination of thermomechanical noise and Johnson noise (the preamplifier input noise, at

0.6 nV/
√

Hz, is negligible). The precise origin of this excess noise is unclear; however, we have

found that we can reduce the noise floor to the expected Johnson noise level (∼ 60 nV/
√

Hz) by

increasing the offset frequency and decreasing the bias voltage, while still maintaining the visibility

of the thermomechanical noise peak on resonance. We note by comparison that our network ana-

lyzer measurement has input-referred noise amplitude of about 7 nV/
√

Hz. The thermomechanical

noise peak, attenuated by more than three orders of magnitude because of the low 50 Ohm input

impedance of the network analyzer, would be nearly undetectable against this background.
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The fact that the peak noise amplitude in Figure 1.7 is about twice larger than the off-resonant

noise floor allows us to conclude that the thermal excitation is the main source of noise in resonant

experiments with this device. The corresponding force sensitivity can be calculated [34] by using a

value of the spring constant k ≈ 0.5 N/m determined from the device dimensions and the elastic

properties of Si [22]; when Johnson noise is included, the overall resonant force sensitivity at 11.9

MHz is FN ≈ 350 aN/
√

Hz at room temperature, comparable to the lower-frequency cantilever

devices studied previously [23].

The thermomechanical noise peak remains visible in the downmixed scheme at even higher fre-

quencies, as demonstrated by detection of the thermal noise peak from the second vibration mode of

the 11.9 MHz cantilever (inset to Figure 1.7), whose driven resonance we have detected at approx-

imately 71 MHz. This demonstrates that the technique as presented here is viable for even smaller

NEMS whose fundamental modes lie in the VHF range.
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Chapter 2

Actuation techniques for
nanomechanical resonators

As with detection, there are a number of techniques for actuating nanoscale mechanical resonators,

each with its own advantages and disadvantages. In the field of MEMS, the most popular actuation

techniques are capacitive, thermoelastic, piezoelectric, and magnetic. All of these techniques—in

adapted form—have been used in nanoscale devices.

Piezoelectric actuation of nanoscale oscillators can take two forms: inertial actuation using a

macroscopic piezoshaker; and direct piezoelectric actuation using an integrated micro- or nanoscale

piezoelectric actuator. Piezoshaker actuation is often the easiest actuation mechanism to implement

and is widely used for lower-frequency devices. Integrated piezoelectric actuation of multilayer

GaAs cantilevers and beams, which uses the piezoelectric properties of GaAs itself, has recently

been demonstrated in Ref. [36]. Integrating bimorph piezoelectric actuators into other types of

resonators remains challenging, but holds the promise of highly efficient low-power actuation for

nanoscale resonators in the high-frequency range and above.

Capacitive actuation uses the attractive force existing between two electrodes of a charged ca-

pacitor. If the attractive force is modulated by applying an AC voltage to the opposing electrodes,

this force can be effectively used to drive the motion of a nanoscale resonator. Capacitive actuation

is relatively simple to realize and has the advantage of low power dissipation. It has been demon-

strated for both semiconductor-material NEMS devices [15] and more exotic mechanical oscillators

like carbon nanotubes [19, 20].
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Figure 2.1: Common actuation schemes for nanoscale devices. (a) Schematic side view of a typical
inertial piezoshaker actuation setup. AC voltage applied to the piezoshaker induces the motion of
the entire cantilever chip. In the moving frame of the cantilever chip, a periodic inertial force acts
on the cantilever’s center of mass and drives its motion. Both in-plane and out-of-plane cantilever
motion can be excited in this way. The range of motion of the cantilever tip typically exceeds that
of the cantilever base by a factor on the order of Q, the resonator’s quality factor. (b) Schematic top
view of the capacitive actuation technique. The beam and the side gate form the opposing electrodes
of a capacitor. The electrostatic attractive force between these electrodes can be modulated by the
applied AC voltage which drives the in-plane motion of the cantilever. (c) Schematic top view of
the magnetomotive detection technique. Applied AC voltage drives periodic current i through the
beam, which leads to a periodic Lorentz force in the external magnetic field B. Depending on the
orientation of the static magnetic field, both in-plane and out-of-plane cantilever motion can be
driven this way. (d) Schematic view of the electrothermal actuation technique. The Joule heating
due to applied AC voltage induces periodic changes in the temperature of the cantilever base. The
difference in the temperature coefficient of linear expansion causes the bilayer structure to flex,
driving the periodic motion of the cantilever.
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Magnetomotive actuation uses the Lorentz force acting on a conducting wire with a current

in a static magnetic field. This technique usually employs a superconducting solenoid at cryogenic

temperatures [16] and is often combined with magnetomotive detection, i. e., the measurement of the

Faraday voltage generated by a moving loop in a static magnetic field. This combined magnetomotive

actuation-detection scheme has been been used to detect mechanical resonances at frequencies up

to 1 GHz [17], but it becomes increasingly difficult to push this actuation technique to even higher

frequencies. Although most magnetomotive actuation and detection experiments have been done at

cryogenic temperatures, this technique has been shown to work in the field of a permanent magnet

at room temperature as well [37, 38].

Thermoelastic actuation uses the difference in the coefficients of linear expansion of different

materials, and, similarly to macro-scale applications, usually employs a bimorph structure. The

heating needed for thermoelastic actuation can be provided by intense light, which is known as

photothermal actuation, or electricity, known as electrothermal actuation. Photothermal actuation

has been successfully used in both micro- and nanoscale devices [39, 40, 41], usually in combination

with optical detection. Electrothermal actuation has been used extensively in microscale devices

[2, 42, 43] but not in nanoscale devices prior to the work described in this thesis.

Figure 2.1 shows the schematics of the four popular actuation schemes described above. In my

studies, I used three of them: inertial actuation with a piezoshaker, magnetomotive actuation in the

field of a permanent magnet, and electrothermal actuation. They will be considered in more detail

in the following sections.

2.1 Piezoshaker actuation

Conceptually, piezoshaker actuation is probably the simplest actuation technique: the NEMS chip

is physically shaken by applying periodic voltage to a piezoelectric actuator (piezoshaker). Fig-

ure 2.1(a) shows a typical setup using piezoshaker actuation. In the moving frame of the chip,

inertial forces act on the center of mass of the cantilever, creating a periodic drive that excites

the resonance. If the quality factor of the resonator is large, Q À 1, the amplitude of motion on
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resonance is given by

ares = Q
Fin

keff
= Q

meffzsω
2
R

meffω2
R

= Qzs,

where Fin is the inertial force acting on the center of mass of the cantilever, keff is its effective

spring constant, meff is its effective mass, ωR is its resonance frequency, and zs is the amplitude of

motion of the substrate surface at the clamping point of the resonator.

Depending on the parameters of the resonator, a piezoshaker may or may not be convenient to

use in practice. Generally, piezoshaker actuation is very convenient for low resonance frequencies,

typically below 1 MHz. At these frequencies, the piezoshaker motion is usually quasi-static, i. e.,

the displacement amplitude for a given applied voltage is uniform across the shaker surface and is

equal to the static displacement for this voltage. Above a certain characteristic frequency, however,

acoustic resonances of the piezoshaker element and the NEMS chip itself become important. This

characteristic frequency is determined by the typical dimensions of used silicon chips and piezoshaker

(a few millimeters) and the typical speed of sound in solid materials (a few kilometers per second),

resulting in the typical acoustic resonance frequencies of ∼ 1 MHz.1 Above these frequencies, the

dynamics of piezoshaker displacement is no longer quasi-static. In order to understand it, it is more

appropriate to think of ultrasound waves propagating inside the shaker and the substrate. These

ultrasound waves will undergo multiple reflections and refractions inside the piezoactuator, the

NEMS chip, and the glue between them. The interference of these waves will result in a complicated

spatial and frequency dependence of the amplitude zs of the periodic vertical motion on the chip

surface.

As a result of multiple-wave ultrasound interference, the drive zs will vary as a function of fre-

quency on some characteristic scale ∆ωch. If the width of the measured resonance ωR/Q is smaller

than this characteristic scale, ∆ωch, the drive zs may be approximately constant over the narrow

range of frequencies used to measure the resonance. The resonance curve will then look like a well-

behaved Lorentzian. Conversely, if the width of the resonance is larger than the characteristic scale,
1In our experiments, we tried to maximize this frequency by using the smallest available piezoshaker actuators,

manufactured by TRS Technologies, Inc (State College, PA). The typical actuators we used were single-crystal discs
a few millimeters in diameter and approximately 100 microns thick.
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Figure 2.2: Resonance curves of the first (a) and second (b) mode of a 4-µm-long silicon cantilever
(device no. 27-7) obtained using piezoshaker actuation. The measurements were done in vacuum at
room (300 K), liquid nitrogen (77 K), and liquid helium temperatures (10 K).

the resonance curve will be severely distorted. Figures 2.2 illustrate these situations using the reso-

nance curves of a 4-µm-long silicon piezoresistive cantilever. The room-temperature resonance curve

of the fundamental mode in Figure 2.2(a) looks more or less like a normal Lorentzian peak because it

is narrow enough that we can ignore the frequency dependence of the drive. However, the same does

not apply to the second mode of the device shown in Figure 2.2(b). The peak becomes distorted as

it is modulated by the varying amplitude of the drive. These distortions become even more obvious

at cryogenic temperatures even though the width of the mechanical resonances generally becomes

smaller at low temperatures (due to increasing quality factor). Evidently, the frequency dependence

of the piezoshaker drive amplitude features even more rapid variations at cryogenic temperatures

than at room temperature. This is probably due to the fact that acoustic resonances inside the

piezoshaker and the resonator chip have higher quality factors at low temperatures, which results in

a sharper dependence of drive on frequency.

We obtained additional information about the frequency dependence of the piezoshaker drive by

tuning the frequency of the mechanical resonance. Absorptive tuning at liquid helium temperatures,

described in Section 3.2, was the most convenient way to perform these measurements. The typical

results are shown in Figure 2.3 in the form of a a density plot and a 3D plot. Both plots are simply

collections of resonance curves taken one after the other as the frequency of the cantilever resonance
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Figure 2.3: Density (a) and 3D (b) plots of cantilever resonance signal (device no. 23B8) obtained
using piezoshaker actuation at a temperature of 10 K. Brighter points in the density plot correspond
to higher cantilever amplitudes. The resonance curve was measured repeatedly as the frequency
of the cantilever resonance was slowly tuned down using absorptive frequency tuning technique
(Section 3.2). The red arrows indicate frequencies at which the piezoshaker drive apparently vanishes.

was continuously tuned down by the added mass of physisorbed nitrogen molecules. The broad

bright streak in the density plot (Figure 2.3(a)) traces the resonance frequency of the cantilever as

it monotonically decreased in time. The rate of frequency tuning was slow at the beginning, then

was manually increased to a much larger value, and then continuously decreased due to natural

adsorption-desorption dynamics.

It is clear that the resonance response of the cantilever does not follow a simple Lorentzian re-

sponse but rather is modulated by the frequency-dependent amplitude of the drive zs. In particular,

at some frequencies the drive vanishes completely. Some of these frequencies are indicated by red

arrows in Figure 2.3(a) and are also obvious in Figure 2.3(b). In between the frequencies of van-

ishing drive, the drive amplitude is not constant either, which can be seen from the varying height

of peaks in Figure 2.3(b). Overall, these measurements support the explanation that the measured

response is a product of the simple Lorentzian function and a rapidly varying function describing

the frequency dependence of the piezoshaker drive zs.

An illustration of the spatial variation of the piezoshaker drive was provided by another experi-

ment in which I measured two nominally identical resonators situated approximately 200 µm away

form each other on the same chip. The cantilevers were designed for studying in-plane modes and
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Figure 2.4: Parametric plots of X and Y quadratures obtained simultaneously from two in-plane
resonators (devices nos. A1D1 and A1D3) using piezoshaker (a) and thermoelastic (b) actuation.

are described in more detail in Section 5.3. Even though the two resonators were nominally identical,

their resonance frequencies were slightly different, 20.5 and 20.7 MHz. This difference in frequencies

allowed us to measure the two devices in parallel while still observing a separate resonance peak for

each resonator. Figure 2.4(a) shows the parametric plot of the measured X and Y quadratures of

the signal obtained using piezoshaker actuation. For each resonance, such a parametric plot nor-

mally forms a circle (see Appendix A for more detail), and in fact there are two circles visible in

Figure 2.4(a). However, the two circles have different diameters and are rotated with respect to

each other, which means that the amplitudes and relative phases of the two resonances are quite

different. This will happen if the phase and amplitude of the piezoshaker drive are different for the

two resonators. In addition, the plots feature additional arc-like features on the right side of the

plot which can be attributed to the acoustic resonances that produce frequency dependence of the

piezoshaker drive.

There is an alternative explanation for the observed difference in the phase and amplitudes of the

detected resonances: a difference in the properties of the resonators themselves. In other words, even

though the two resonators were nominally identical, they could still produce different piezoresistive

signals because of fabrication-related imperfections. Differences in the piezoresistor geometry may

indeed introduce small differences in the amplitudes of the detected resonances, even if the drive is
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the same, but it is difficult to imagine how these imperfections would affect the phase of the detected

resonance.

I have also measured these devices using thermoelastic actuation (Section 2.3), with the results

shown in Figure 2.4(b). In contrast to piezoshaker actuation, thermoelastic actuation is expected to

be spatially phase-uniform. Accordingly, there is no noticeable differences in the phases of the two

circles, nor are there any additional arc-like features in these parametric plots. The two circles have

slightly different amplitudes, probably due to the fabrication imperfections. These measurements

therefore support the hypothesis that the piezoshaker drive is highly non-uniform in both frequency

and space in the typical frequency ranges of NEMS devices.

In summary, the piezoshaker drive is simple to realize but has many shortcomings, which limits its

usefulness in high-frequency sensor applications, especially at low temperatures and for devices with

low quality factors. This has motivated us to look for alternative methods of actuation described in

the following sections.

2.2 Room-temperature magnetomotive actuation2

In the course of looking for alternatives to piezoshaker actuation, we have briefly studied room-

temperature magnetomotive actuation. Magnetomotive actuation has been used extensively at liquid

helium temperatures (see, for example, Refs. [4, 17, 16, 33]) and less often at room temperature

[37, 38]. Typically, magnetomotive actuation is combined with magnetomotive detection so that the

measurement can be done using a simple network analyzer. However, magnetomotive detection of

nanoscale resonators usually requires a magnetic field B0 ≥ 1 Tesla, which is achieved either with a

superconducting solenoid at cryogenic temperatures or with a carefully designed permanent-magnet

system at room temperature. Such large fields are required because the magnetomotive detection

voltage scales as Vm ∼ B0l∆xωR, where l is the length of the resonator beam, ∆x is its maximum

displacement, and ωR is the resonance frequency. As the resonator gets smaller, the decreases in

the length l and maximum displacement ∆x typically dominate the increase in ωR. As a result, a
2Measurements described in this section were performed in collaboration with I. Kozinsky.
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Figure 2.5: (a) Schematic of a magnetomotive actuation setup inside a room-temperature vacuum
chamber. The bright circle in the center of the image is the permanent magnet. (b) Resonance
signal of the fundamental in-plane mode obtained using magnetomotive actuation and piezoresistive
detection. (c) Schematic of the setup using magnetomotive actuation and piezoresistive detection.

larger magnetic field is required to maintain the same voltage level of the signal.

Magnetomotive actuation of nanoscale resonators does not require such large magnetic fields

because the actuating Lorentz force is given by FL = B0Il, where I is the actuating current.

Therefore, we can simply increase the current flowing through the device to compensate for a smaller

length or field. Combining magnetomotive actuation with piezoresistive detection allowed us to use

a compact cobalt-samarium permanent magnet with the saturation magnetization of 1 Tesla and

magnetic field of ∼ 0.1 Tesla at the location of the resonator.

The photograph in Figure 2.5(a) shows the circuit board with the resonator chip mounted upside

down inside a room-temperature vacuum chamber. A cobalt-samarium permanent magnet was fixed

on top of the circuit board with vacuum scotch tape. The position of the permanent magnet was

deliberately off-center in order to create an in-plane field component at the location of the chip,
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estimated to be approximately 0.1 Tesla (1 kilogauss).

Figure 2.5(c) shows the schematic of the electrical circuit used in these measurements. We used

doubly clamped beams made of 100-nm-thick silicon carbide (SiC) structural layer with a 50-nm-

thick gold-palladium film on top of the structural layer. The beams were similar to those used for

magnetomotive measurements [45, 46] but had patterned legs on both ends of the beam, which

allowed piezoresistive detection. The “bias” and “drive” currents were combined together using a

power combiner and passed though the length of the beam. The Lorentz force acting on the resulting

current in the external magnetic field induced out-of-plane motion of beams, which was detected

using piezoresistive downmixing (Section 1.2).

Figure 2.5(b) shows the resonant peaks corresponding to the fundamental in-plane resonance

of an 8.5-µm-long, 400-nm-wide beam. There are two peaks in the graph because the roles of

the drive and AC bias are interchangeable in this setup. Therefore, a peak is observed when the

resonance frequency equals either the drive frequency ωd or the bias frequency ωb = ωd −∆ωd. In

agreement with this explanation, the two peaks in Figure 2.5(b) are separated by the offset frequency,

∆ωd ≈ 120 kHz.

The combination of room-temperature magnetomotive actuation and piezoresistive detection

described above was relatively easy to realize and does not require cryogenic temperatures or special

permanent magnet setups. However, the need to mount a permanent magnet and the fact that each

mechanical resonance produces two closely spaced peaks in this scheme is not always convenient.

This motivated us to search for new, fully integrated ways of actuating nanomechanical resonators.

2.3 Thermoelastic actuation3

Thermoelastic actuation of bilayer structures has long been employed, for example, in thermostats [47],

and relies on the fact that the coefficient of linear thermal expansion varies for different materials.

For example, αAu ≈ 12 × 10−6 K−1 and αSiC ≈ 4.8 × 10−6 K−1 for gold and silicon carbide,

respectively. Local heating of gold–silicon carbide bilayer that is integrated into a nanomechanical
3Measurements described in this section were performed in collaboration with I. Kozinsky.
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Figure 2.6: (a) Scanning electron micrograph of one of the devices used in the experiments (oblique
view). The insets show top-view closeup images of the detection (left) and drive (right) metal loops.
(b) Schematic of the experimental setup.

resonator therefore results in nonuniform expansion and thermal stresses that can flex the resonator.

If the temperature changes periodically at the resonance frequency of one of the mechanical modes

of the resonator, the amplitude of deflection will be greatly enhanced due to the large quality factors

of nanomechanical resonators. The thermoelastic mechanism has been used previously to actuate

microscale resonators by local Joule heating [42, 43] as well as NEMS resonators by local laser

heating [39, 40, 41]. Most of these studies used optical detection. In contrast, we use piezore-

sistive downmixing detection, described earlier in Section 1.2, and thermoelastic actuation due to

localized Joule heating of a metallic resistor. Our technique therefore offers the convenience of

fully integrated, purely electronic actuation and detection, as well as the ability to detect dozens of

vibrational resonances of the same NEMS structure, as shown below.

Figure 2.6(a) shows one of the doubly-clamped beam resonators used in the experiments. The
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beams were made from a single-crystal silicon carbon (3C-SiC) thin film by multiple aligned steps

of e-beam lithography, thin film evaporation, liftoff, and reactive plasma etching [45]. They had

nominal lengths between 4 and 24 µm, a width of 400 nm, and a thickness of 80 nm. Two different

thin metal film loops were patterned near the two ends of the beam. The 80-nm-thick, 100-nm-

wide loop was patterned from thermally evaporated gold and formed a part of the thermoelastic

bilayer actuator (right inset of Figure 2.6(a)). The thinner piezoresistor loop was patterned from

a 30-nm-thick metal layer created by evaporating a 60%–40% gold-palladium alloy. It consisted of

250-nm-long, 50-nm-wide legs connected by a larger pad (left inset of Figure 2.6(a)). A 2-nm-thick

chromium adhesion layer was used in both cases. Typical resistances of metal loops were 30 Ω for

the actuation loop, and 300 Ω for the detection loop.

Figure 2.6(b) shows a schematic of the experimental setup. Periodic temperature variations

at drive frequency, ωd, are induced by applying a drive voltage at half the frequency, ωd/2, to

the actuation loop. An AC bias voltage of frequency ωd − ∆ω is applied to the detection loop

on the other end of the beam. The downmixed signal voltage at frequency ∆ω generated in the

piezoresistor [44] is then amplified by a high-input-impedance preamplifier and detected with a lock-

in amplifier. Fractions of the drive and bias signals are split off with directional couplers (DC)

and fed to a broadband frequency doubler (FD) and mixer to produce the reference signal for the

lock-in amplifier. Commercial 3 MHz high-pass filters (HPF), followed by 10 dB attenuators (not

shown), are inserted in the bias and drive channels to reduce the parasitic background and noise in

the detected signal.

Figure 2.7 shows the magnitude of the raw signal from a 16-µm-long beam detected as both the

drive and bias voltages are swept over a very wide range of frequencies while keeping the downmixed

frequency constant at 95 kHz. The large peaks correspond to the first eight out-of-plane flexural

modes of the beam. The small peak near the second large peak corresponds to the first in-plane

mode. On resonance, both quadratures of the lock-in signal fit the Lorentzian curve shape very

well (inset of Figure 2.7). The noise floor of ≈ 3 nV/Hz1/2 is largely due to the Johnson noise

of the piezoresistor. The small background signal originates from the parasitic coupling between
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Figure 2.7: Raw signal, referred to the preamplifier input, from a 16-µm-long beam. The root-
mean-square amplitudes of the drive and bias voltages are 22 mV and 118 mV, respectively. Inset
shows both quadratures of the resonant response of the tenth out-of-plane mode (not shown in main
panel) and the almost indistinguishable Lorentzian fit to the data.

bias, drive, and detection channels, and the slight nonlinearity of the piezoresistor and preamplifier

response.

Table 2.1 lists the frequencies of the first seventeen vibrational modes of the 16-µm-long device

predicted from FEMLAB finite element simulations, and also shows their measured frequencies

and quality factors determined from Lorentzian fits. Discrepancies between predicted and observed

frequencies do not exceed a few percent for all modes if the intrinsic strain, which presumably arises

during fabrication of multilayer structures, is taken into account. The agreement is excellent for

the lower modes and deteriorates slightly only for the highest modes. We attribute this to the

difficulty of realistically modeling the imperfect clamping of our beams at their ends. We observe

many more resonance peaks above the resonance frequency of the twelfth out-of-plane mode, up to

a resonance at 1.094 GHz; however, these resonance peaks become progressively smaller and some

of them overlap, which makes it difficult to identify the nature of the corresponding modes and fit

the resonance peaks to Lorentzian curves.

As discussed in Section 1.1, the amplitude of the downmixed piezoresistive signal is approximately

Vs ≈ Vb∆R/(2R) = Vbg 〈εxx〉 /2, where Vb is the amplitude of the applied AC bias voltage, g

is the effective gauge factor of the piezoresistor, and 〈εxx〉 is the average longitudinal strain in
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Mode fsim fexp Qexp

1st out 9.48 9.42 12000
2nd out 20.0 20.0 7750
1st in 20.7 20.8 3110
3rd out 32.3 32.3 5570
4th out 46.9 46.8 4410
2nd in 54.3 54.4 2630
5th out 64.1 63.9 3620
6th out 83.8 83.5 3220
3rd in 103 103 2210
7th out 106 107 2950
8th out 131 132 2700
9th out 158 160 2510
4th in 166 167 1740
10th out 187 190 2190
11th out 219 223 1970
5th in 244 243 1760
12th out 252 258 1660

Table 2.1: Predicted, fpred, and experimental, fexp, resonance frequencies, as well as quality factors
in vacuum, Qexp, for the lowest twelve out-of-plane (out) modes and lowest five in-plane (in) modes
of a 16-µm-long beam E7A3. In simulations, we assume the following material properties for the SiC
layer: Young’s modulus 430 GPa, Poisson ratio 0.3, mass density 3.2 g/cm3 [42], and intrinsic tensile
strain 2.8×10−4. The strain value was varied to obtain the best fit to the experimental frequencies.
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the displacement transducer. If the temperature variations induced by the actuation voltage are

sinusoidal and resonant with the vibrational mode n at frequency ωn, the strain distribution in the

piezoresistor is mostly determined by the corresponding mode shape, u(n)(r), which specifies the

vector displacement u of the infinitesimal volume element located at radius vector r. The amplitude

of motion in steady state can then be deduced from the condition of balance between the energy

dissipated by the nanomechanical resonator due to its finite quality factor and the mechanical work

done by the time-varying thermal stresses induced in the drive loop4:

cnω2
n

Qn

∫
ρ(r)u(n)(r)2dr =

∫ ∑

i,j

σth
ji (r)

∂u(n)
i (r)
∂rj

dr. (2.1)

Here the summation is over all spatial coordinates and the integrals are over the volume of the bilayer

resonator, cn is the normalized mode amplitude, ρ(r) the local mass density, and σth
ji (r) the amplitude

of the thermal stress tensor. If we assume, for simplicity, that gold and silicon carbide components

are elastically isotropic, then σth
ii (r) ≈ 3α(r)∆T (r)B(r), where α(r) is the thermal coefficient of

linear expansion, ∆T (r) is the amplitude of temperature change, and B(r) is the bulk modulus.

Solving Eqn. (2.1) for the mode amplitude cn allows us to find the spatially averaged longitudinal

strain in the piezoresistor 〈εxx〉 = cn

〈
∂u(n)

x (r)
∂x

〉
, and hence the corresponding downmixed voltage

signal.

For the higher flexural out-of-plane modes, the strain may change sign within the length of the

actuation or detection loop (Figure 2.8, inset), resulting in partial cancellation of the r.h.s. integral

in Eqn. (2.1) and the detected strain average. To study these cancellation effects, we can introduce

an empirical efficiency of the combined electrothermal drive and piezoresistive detection. Since the

resonance amplitude a is normally proportional to the bias voltage Vb, drive voltage squared V 2
d ,

and the quality factor Q, we will define the efficiency as η = a/(QV 2
d Vb) to cancel out these trivial

dependencies. Defined in this way, the efficiency η depends only on the strain and temperature

distributions in the resonator. Figure 2.8 shows that this efficiency η generally decreases with the

mode number and, in this device, dips sharply for the 11th out-of-plane mode due to almost complete
4See Appendix C for more detail.
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Figure 2.8: Efficiency of electrothermal drive and piezoresistive detection, normalized to that of
the fundamental mode, for the first 12 out-of-plane modes of the 16-µm-long beam. The stars
show experimental data, while the connected symbols show the results of finite element simulations
excluding (circles) and including (squares) the effect of 40 MHz thermal rolloff. Inset shows the
predicted shape of the 11th out-of-plane mode.

cancellation of drive integral in Eqn. (2.1). Note that for in-plane modes, the drive integral should

cancel completely due to symmetry, and the efficiency η should, in principle, be zero. In practice,

real devices are never perfectly symmetric, and we find that the in-plane modes are easily detectable

with increased drive voltages. However, the measured efficiencies for in-plane modes are typically

1–2 orders of magnitude smaller than the efficiencies of out-of-plane modes of similar frequencies.

The efficiency η additionally decreases with frequency because of the delayed response of the

temperature to Joule heating. In order to be most effective, the temperature must follow the

drive voltage (squared) instantaneously, but in reality it takes a thermal time constant, τth, for the

temperature to equilibrate. Therefore, above a certain drive frequency, the induced temperature

variations will roll off since the device acts as a thermal low-pass filter, and the efficiency of thermal

drive will decrease accordingly. The thermal time constant estimated from fitting finite-element

simulations for efficiency to the experimental data is τth = (2π · 40MHz)−1 ≈ 4 ns (Figure 2.8).

This number agrees with the theoretical estimate for τth we derive by directly considering the heat

conduction dynamics in the bilayer actuator.
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Electrothermal actuation and piezoresistive detection with large voltages can excessively heat

the device. This becomes especially important for electrothermal drive above the thermal cutoff

frequency, since only a fraction of the applied time-varying Joule heating power then results in

useful periodic temperatures changes; the remainder simply raises the average temperature of the

beam. While it is difficult to measure the temperature distribution of the beam directly, we can

estimate the average temperature increase of the beam from the observed changes in resonance

shapes at high applied voltages using separately determined temperature dependencies of resonance

frequencies and Q factors. These measurements indicate that the devices are approximately one

tenth of a degree Kelvin hotter than the environment for every microwatt of dissipated Joule power.

The majority of data collected in this experiment was thus taken with the beams only a few degrees

Kelvin hotter than the environment.

The combination of electrothermal actuation and piezoresistive detection thus provides a conve-

nient and efficient all-electronic measurement technique for NEMS devices and will be beneficial in

applications such as mass sensing, where obtaining data from multiple modes can improve the ac-

curacy and speed of measurements. Both thermal actuation and piezoresistive detection scale more

favorably with the device dimensions than many alternative techniques, allowing future experiments

with even smaller nanomechanical devices.
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Chapter 3

Frequency tuning techniques for
nanomechanical resonators

In many experiments, we need to tune the frequency of the nanomechanical resonator. The necessary

tuning may be small, as when we try to compensate for the variation in resonance frequencies due

to fabrication imperfection, contamination, or aging. The needed tuning may also be large, as when

we need to observe the changes in resonance parameters over a wide range of frequencies. Since

the resonance frequency of a nanomechanical resonator is determined by its effective mass and the

effective spring constant, there are two basic methods of tuning the frequency: changing the effective

mass and changing the effective spring constant of the resonator.

Both of these approaches have been explored in microelectromechanical resonators. One popular

way to reversibly tune the restoring force is to add electrostatic terms to the equations of motion

of the resonator, usually done by applying a DC voltage to a nearby gate. The electrostatic tuning

mechanism (also known as capacitive tuning) has been demonstrated for many different types of

MEMS resonators (see, for, example Refs. [49, 50, 51, 52]). The restoring force of MEMS resonators

has also been reversibly tuned using thermally induced stresses [53]. The mass of MEMS resonators

has been tuned by focused-ion-beam deposition [54] and laser ablation [55]. These methods of mass

tuning produce permanent frequency changes and cannot be easily reversed.

Many of these techniques have been demonstrated for nanomechanical resonators as well. Elec-

trostatic tuning has been demonstrated for carbon nanotube resonators [56]. Electrothermal tuning

has been demonstrated for nanoscale doubly clamped beams [38]. The mass of nanomechanical
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resonators has been irreversibly tuned in situ by metal deposition [57]. Nanomechanical resonators

have also been reversibly tuned by bending the substrate [58] and changing the clamping conditions

with a scanning tunneling microscope [59].

In our experiments, we have used two frequency tuning techniques: electrostatic tuning using

a side gate; and reversible gas-adsorption tuning at low temperatures. They are described in more

detail in the following sections.

3.1 Electrostatic tuning1

In microscale devices, capacitive tuning can be realized with electrodes of many different geometries.

However, in nanoscale devices, the possible geometries are limited by the available nanofabrication

techniques. One way to realize electrostatic tuning is to use the chip substrate itself as a tuning

electrode. This approach has been taken in the nanotube resonator experiments [56]. In this section,

we describe an alternative approach, in which the tuning electrode is lithographically defined using

the same fabrication techniques as for the resonator itself. In our experiments, we were able to study

the effect of in-plane gate voltage on the properties of both out-of-plane and in-plane fundamental

modes of a doubly clamped beam.

Figures 3.1(a) and 3.2(a) show two scanning electron micrographs of the resonator used in

these experiments. The beam is made out of 100-nm-thick silicon carbide with a 40-nm-thick gold-

palladium metal film on top. The beam was 150 nm wide, 15 µm long, and positioned 300 nm

away from the in-plane gate electrode. The beam resonances were measured using magnetomotive

actuation and detection in a 7 Tesla magnetic field created by a superconducting solenoid. The

fundamental in-plane and out-of-plane modes have resonance frequencies of 7.60 MHz and 8.78 MHz,

respectively.

There are two basic mechanisms by which the electrostatic forces between the beam and the

tuning gate can alter the resonance frequency the of beam. First, the attraction between the beam

and the nearby gate can stretch the beam and create additional tension that will increase the
1Measurements described in this section were performed in collaboration with I. Kozinsky.
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Figure 3.1: (a) Scanning electron micrograph of the SiC doubly clamped beam used in the tuning
experiments. The red arrow indicates the direction of motion for the out-of-plane resonance. (b)
Frequency of the fundamental out-of-plane mode versus applied gate voltage. The inset shows the
mechanical losses versus the tuning voltage.

resonance frequency. Second, the dependence of the electrostatic attraction on the distance between

the beam and the gate can change the effective restoring force for the beam, which can tune the

frequency down. The detailed theory of the capacitive tuning in this system was developed by Inna

Kozinsky [46, 60], and here I will only discuss qualitative aspects of the theory.

These two mechanisms affect the out-of-plane and in-plane modes differently. The out-of-plane

mode is primarily affected by the stretching of the beam. The spatial dependence of the attractive

force does not affect its frequency because the distance between the beam and the gate is nearly

unchanged during out-of-plane oscillation. As a result, the frequency of the out-of-plane mode

increases with increasing tuning gate voltage. Figure 3.1(b) shows that the frequency of the out-

of-plane mode depends on the voltage applied to the tuning gate. The inset shows that the tuning

does not noticeably affect the mechanical quality factor.

For the in-plane mode, the spatial dependence of the attractive force between the beam and the

gate is the dominant effect. As a result, the frequency of the beam decreases with increasing gate

voltage. At high applied voltages, the gate voltage also significantly reduces the quality factor of

the resonance. This is because the changing distance between the beam and the gate modulates the

capacitance between them and therefore the charge accumulated on the beam. The modulation of

charge induces additional currents in the beam that produce a Lorentz force that provides additional
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Figure 3.2: Same as Figure 3.1 for the fundamental in-plane mode. The blue curve in (b) is the
prediction of the theoretical model for the capacitive frequency tuning.
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Figure 3.3: Resonance curves of the in-plane mechanical mode for a tuning voltage of zero (a) and
28 V (b). Both quadratures of the signal are shown. The amplitude of the resonance peak is smaller
in (b) because of the reduced quality factor.

damping. At the highest applied tuning voltages, the quality factor was less than half the quality

factor without any tuning voltage. The broadband electrical noise also depended on the applied

voltage, increasing by approximately a factor of five as the tuning voltage increased from 0 V to

28 V (Figure 3.3). Although the reasons for the increase in the broadband noise are not entirely

clear at this point, they are most likely related to the parasitic leakage currents between the the

gate and the beam at high tuning voltages.

The maximum change in frequency we have observed with capacitive tuning is approximately

+4% for the out-of-plane mode and −6% for the in-plane mode. These changes in frequency occurred
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when DC voltage of approximately 28 V was applied to the tuning gate. Gate voltages higher than

35 V typically destroyed similar devices either because of snap-in of the beam into the tuning

electrode or because of dielectric breakdown. Thus, electrostatic tuning can produce significant

changes in resonance frequencies of a doubly clamped beam but has some important limitations. In

particular, the in-plane mode suffers from a decrease in the quality factor, and both modes suffer

from an increase in broadband electrical noise at high tuning voltages.

The capacitive tuning also becomes less effective for resonators of higher frequencies, as these

resonators are stiffer and need larger forces to change the spring constant by the same percentage.

To illustrate this, we have theoretically modeled the response of a beam that is three times shorter

than the one described above, i. e., 5 µm long, and has all other dimensions the same. According to

these calculations, the resonance frequency of the in-plane mode would change from 47.12 MHz at

zero tuning voltage to 47.02 MHz at 30 V tuning voltage—a tuning range of only 0.2%. This tuning

range can be increased by proportionally reducing the gap between the beam and the electrode.

For example, if we reduce the gap from 300 nm to 100 nm, the same 5-µm long device will tune

from 47.12 MHz to 45.18 MHz—a tuning range of 4%, which is comparable to the tuning range

demonstrated above. Scaling capacitive tuning to even shorter beams and higher frequencies is

problematic, however, as it would require electrode gaps of less than 100 nm, which would be

difficult to fabricate using the present e-beam lithography techniques.

3.2 Adsorption tuning

As discussed in previous section, capacitive frequency tuning becomes less effective at higher fre-

quencies. It is also difficult to engineer appropriate electrodes for tuning of higher flexural modes

since the electrode geometry most effective for one flexural mode may be completely ineffective for

another. For these applications, it is easier to perform frequency tuning by changing the effective

mass of the resonator.

In this section, I describe a mass tuning mechanism based on adsorption of inert gas molecules

at low temperatures. If a resonator is kept at typical liquid helium temperatures (T < 30 K),
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Figure 3.4: Schematic of the adsorptive tuning setup

a large variety of nonreactive gases will readily physisorb, i. e., freeze onto its surface, thereby

increasing its mass. In my experiments, I have used nitrogen, argon, carbon dioxide, and xenon

gases. These gases were chosen because their melting temperatures were significantly higher than the

estimated temperature of the resonator, but lower than room temperature. Under such conditions,

the spontaneous evaporation of adsorbent gas from the resonator was negligible at low temperatures,

but the adsorbed molecules could be easily removed by a quick local heating of the resonators.

Figure 3.4 shows a schematic of the relevant part of the experimental setup. The cryogenic dipper

consists of a low-temperature end, a room-temperature end, and a 6-foot stainless steel tube that

connects the two. The nanomechanical resonator is mounted on a temperature-controlled sample

stage inside the low-temperature end. The low-temperature part of the dipper can be lowered into

a dewar with liquid helium, bringing the temperature of the sample stage to less than 10 K.

The room-temperature end houses the feedthroughs necessary for resonance measurements and

temperature control, a pressure gauge, and a variable leak valve (MDC Vacuum Products Corp.,

Hayward, CA), which can deliver steady flows from 7.5 × 10−3 to 7.5 × 10−8 Torr·l/s. The tube

connecting the two ends of the dipper is straight and provides a clear line of sight between the

mounted resonator and the room-temperature end of the dipper. The cables used for measurements

and temperature control were positioned to prevent them from blocking this line of sight.

Figure 3.5 shows the resonance curves of the seventh out-of-plane mode of a doubly clamped
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Figure 3.5: Results of adsorption tuning for the seventh out-of-plane mode of a SiC doubly clamped
beam (device no. E7D1) using argon gas. Panels (a)–(e) show both quadratures of the resonance
response at various stages of the tuning process.

beam obtained by continuously leaking argon gas into the dipper. In these experiments, I used a

10-µm-long silicon-carbide beam similar to the devices described in Section (2.3). The typical rate

of frequency tuning I used was a few hundred Hertz per second, corresponding to a tuning by 1

percent in 3 hours. Due to time constraints, I stopped taking data when the frequency was tuned

down by approximately 14%, although the tuning process could be continued further.

As can be seen from Figure 3.5, there are significant changes in the background in both quadra-

tures during the tuning, but the resonance curves themselves do not change much. The broadband

electrical noise increased from approximately 3 nV/
√

Hz at the beginning of the tuning process

(Figure 3.5(a)) to approximately 6 nV/
√

Hz at the end (Figure 3.5(b)). This twofold increase in

noise is much smaller than the fivefold increase in the case of capacitive tuning, but the reasons for

the increase in noise are not clear in this case either.

As the frequency of the resonance was tuned down, the quality factor of the resonance generally

decreased, as shown in Figure 3.6. In the case of argon, the quality factor apparently increased

slightly at the beginning of the tuning process, but then decreased as with other adsorbents. For

xenon tuning, the quality factor changed from approximately 3600 to approximately 2500 as the

frequency was tuned down by more than 16%, which compares favorably to the results of capacitive

tuning of the in-plane mode. For large tunings, the decrease in the quality factor depended on the

chosen adsorbate, with xenon producing the smallest relative decrease in quality factor and carbon

41



190 200 210 220 230

2000

2500

3000

3500  CO2 adsorption
 Ar adsorprion

Q

Frequency, MHz
150 160 170 180 190

2500

3000

3500

4000

 Xe adsorption

Q

Frequency, MHz

(b)(a)

Figure 3.6: The quality factor of the tuned resonance as a function of resonance frequency for the
experiments using carbon dioxide, argon, and xenon. Panel (a) shows results for the 7th out-of-plane
mode of a 10-µm-long silicon-carbide beam (device no. E7D1). Panel (b) shows results for the 7th
out-of-plane mode of a 10-µm-long silicon-nitride beam (device no. N3C1). The quality factor was
obtained by fitting the resonance curves like those shown in Figure 3.5. The uncertainty in the fitted
quality factor was approximately 3%.

dioxide, the largest.

As mentioned before, the results of adsorption tuning are easily reversible. All that is necessary to

reset the experiment is to briefly heat the sample stage to a temperature above the boiling tempera-

ture of the particular gas used. This procedure results in quick desorption of all gas molecules, which

restores the original frequency and quality factor of the resonator. This can be seen in Figure 3.6,

where I first tuned the frequency down using carbon dioxide, then briefly heated the sample to

220 K, and then repeated the experiment using argon as the adsorbate. After heating, the frequency

and the quality factor returned to the original values.

Because of time constraints, the maximum demonstrated range of frequency tuning in these

experiments was approximately 15%.2 However, the decrease in frequency can become saturated

much earlier if the resonator is not sufficiently cold. Generally, the temperature of the resonator

was determined by the temperature of the sample stage, typically kept at 8 K, and the temperature

increase due to Joule heat dissipation inside the resonator itself. Some amount of Joule heat dissi-

pation is necessary for the thermoelastic actuation and piezoresistive detection. In the majority of
2I chose this maximum value of 15% because it would be sufficient for the spin-sensing experiments described in

Chapter 4.
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Figure 3.7: Saturation of xenon adsorption tuning for the 7th mode of a 10-µm-long doubly clamped
beam (device no. N3C1). The panels show density (a) and 3D (b) plots of the amplitude of the
resonance response. Brighter points in the density plot correspond to higher amplitudes. The
resonance curves were measured repeatedly as the frequency of the resonance was slowly tuned
down.

the experiments, I kept the estimated temperature increase due to Joule heating to less than 10 K,

meaning that the temperature of the resonator was less than 20 K. However, in some experiments, I

increased the bias and drive voltages to the point where the estimated temperature of the resonator

reached approximately 50 K. At such high temperatures, the maximum amount of tuning I could

obtain was typically limited to less than 1%.

Figure 3.7 shows the saturation of frequency tuning using xenon gas and a resonator at an

estimated temperature of 50 K. The maximum tuning of frequency in this case is only about 0.3%.

This amount of frequency tuning corresponds to mass loading by approximately one monolayer of

xenon atoms. This data suggests that the first monolayer readily adsorbs to the resonator even at

these high temperatures, but the subsequent monolayers do not.

It must be noted that, even at low temperatures, not all incident gas molecules stick to the

surface of the resonator. According to our experimental estimates, only about 1% of the incident

molecules do. The reason why the sticking coefficient was so low is not clear, but the fact that the

incident molecules have an average thermal speed corresponding to room temperature (300 K) may

play a role in the explanation. From the perspective of the low-temperature resonator, its surface

is bombarded by molecules with a high kinetic energy, which may produce some sputtering of the

already adsorbed gas molecules and a reduction of the overall sticking coefficient.
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In summary, adsorption tuning of nanomechanical resonators works well at low temperatures,

regardless of the resonance frequency and the mode used. The best results are obtained with noble

gases like argon or xenon, although other gases with high melting points may be used also. During

the tuning process, the temperature of the resonator must be kept low to avoid saturation of mass

loading at approximately one monolayer coverage.
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Chapter 4

Nanomechanical sensing of spin
systems

Since its discovery in 1938 [61], magnetic resonance of spin systems has been one of the most

important tools in studying properties of matter [62]. Nuclear magnetic resonance (NMR) has

been used to elucidate the chemical structure of many molecules—most recently proteins and other

complex biomolecules. NMR has also been used in manufacturing control, nondestructive testing

and identification of samples, and gave rise to magnetic resonance imaging (MRI), with its own

myriad of technical and medical applications. Electron spin resonance (ESR), although less famous

than its nuclear cousin, is a powerful tool for studying free radicals and paramagnetic centers and has

also found many applications in chemistry, physics, and biology. Finally, ferromagnetic resonance

(FMR) has been used to study ferromagnetic materials and devices and thus has played a role in

the development of magnetic storage media.

Despite the continuing progress in the sensitivity of magnetic resonance instruments, conventional

magnetic resonance essentially remains a bulk technique, i. e., it is normally used to study a sample of

macroscopic dimensions. Extending magnetic resonance techniques to the micro- or even nanoscale

would open the possibility of studying the magnetic, chemical, and structural properties of individual

nanoscale objects or even individual molecules. In 1991, John Sidles proposed to do exactly that by

detecting magnetic resonance with microscale mechanical resonators rather than conventional RF

coils [63]. The resulting system combined the essential features of MRI and atomic force microscopy

(AFM) and therefore acquired the name magnetic resonance force microcopy (MRFM).
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Figure 4.1: Schematics of the longitudinal (a) and transverse (b) MRFM configurations. Both
schemes use the dynamics of magnetization M0 in the external field B0. The time-dependent mag-
netization creates a force F on the magnetic tip that affects the motion of the cantilever. In the
longitudinal case, the magnetization is modulated with the help of the RF field created by an external
coil.

Shortly after the proposal, the first MRFM experiments were performed, detecting magnetic

resonance of electron [64] and nuclear [65] spins. The sensitivity of MRFM experiments has been

steadily progressing since, improving by a factor of more than one million by now. Recently, Rugar

and coworkers demonstrated detection of a single electron spin [8] and nuclear magnetic resonance

imaging with 90 nm resolution [9]. Experimenters are now closer than ever to the single-nuclear-spin

sensitivity and the holy grail of MRFM—three-dimensional imaging of individual biomolecules and

other nanoscale objects with atomic resolution. The progress towards this goal over almost two

decades has been reviewed early in Ref. [66] and more recently in Ref. [67].

Fundamentally, MRFM experiments can be done in two different ways [68]: the motion of the

mechanical resonator can be coupled to either longitudinal or transverse part of the magnetization

of spins (see Figure 4.1). The main difference between them stems from the fact that, for spins in a

strong magnetic field B0, the longitudinal component of the magnetization evolves slowly, whereas

the transverse component performs fast precession at the Larmor frequency ωL = γsB0/~, where γs

is the gyromagnetic ratio of the spin [62]. Correspondingly, longitudinal MRFM uses low-frequency

resonators, typically in the kilohertz range. Transverse MRFM should use resonators that resonate

at the Larmor frequency, which is typically in the megahertz range or higher.

In practice, all MRFM experiments published so far have used the longitudinal scheme. In these
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experiments, the longitudinal magnetization is typically modulated at the resonance frequency of

the cantilever with the help of an external source of electromagnetic field. The resulting time-

dependent longitudinal magnetization exerts a periodic force on the magnetic tip of the cantilever,

which measurably affects the motion of the resonator.

Experiments using transverse magnetization proved much more difficult. One reason is that

transverse MRFM requires resonators that have high resonance frequencies and, at the same, are

compliant enough to detect the tiny forces produced by spins. These two requirements conflict

with each other because the frequency of a resonator is given by ωR =
√

keff/meff , where keff

is the effective spring constant and meff is the effective mass of the resonator. For a resonator of

a given mass, the resonance frequency can only be increased by making the resonator stiffer (less

compliant). Looking at the same expression another way, we obtain meff = keff/ω2
R, which means

that achieving a high resonance frequency and a small spring constant (high compliance) at the

same time can only be done by minimizing the effective mass. Since nanomechanical resonators are

currently the smallest and lightest mechanical resonators available, they are a natural choice in this

situation, but even with nanoscale resonators transverse MRFM remains extremely challenging.

In this chapter I describe our work towards demonstrating a system in which the motion of

a nanomechanical resonator is coupled to the transverse rather than longitudinal component of

magnetization of nuclear spins.1 In the following sections, I analyze in more detail the transverse

MRFM system as well as other physical systems in which such coupling may be realized and describe

our attempts to detect the signatures of such coupling in experiment. I conclude the chapter by

exploring the theoretical analogy between the coupled spin-resonator system and the quantum optical

model of a laser.
1I focused on nuclear spins because it is currently possible to fabricate devices that resonate at nuclear Larmor

frequencies, which are typically in the range of 1–100 MHz for an external field of a few Tesla. For electron spin
resonance, the Larmor frequencies would be 30 GHz or higher, which far exceeds the frequency range of the currently
feasible nanomechanical resonators.
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4.1 Mechanisms of coupling between spins and mechanical

motion

One way to make a mechanical resonator interact with transverse magnetization of nuclear spins in

a nearby sample is to attach a permanent magnet to a cantilever, as shown in Figure 4.2(a). This

is basically the transverse MRFM (T-MRFM) system [68]. Note that in this case the ferromagnet

on the cantilever tip creates a constant magnetic field of its own, which can be approximated as the

field of a magnetic dipole. When superposed on the uniform external field B0 , this field modifies

the total magnetic field seen by the spins and, therefore, their Larmor frequency. As a result, only a

certain slice of the sample, known as the sensitive slice, will have the Larmor frequency equal to the

resonance frequency of the cantilever. The position of this resonant slice will generally depend on

the value of the external field B0 , and at some values of the field, the resonant slice may be outside

the sample or not exist at all.

In this case of Larmor-frequency resonators, there are two aspects to the interaction between the

spins and the resonator. First, the rotating transverse component of nuclear magnetization exerts

a magnetostatic force on the ferromagnetic tip, which can drive or otherwise affect cantilever oscil-

lations. Secondly, a moving ferromagnet creates an AC magnetic field, oscillating at the frequency

of the cantilever motion, inside the nearby sample. At a point characterized by the radius vector ~r,

this RF field is given by A∂B⊥(~r)
∂x , where A is the amplitude of cantilever motion and ∂B⊥(~r)

∂x is the

derivative of the transverse component of the ferromagnetic tip’s magnetic field with respect to the

direction of the cantilever motion x (see Figure 4.2(a)). We can therefore use the cantilever itself to

create the RF field that will drive transitions between Zeeman levels of nuclear spins, obviating the

need for an RF coil that is used in the longitudinal MRFM experiments.2

In principle, we could still use an external RF coil to control the magnetic spins, similar to the

case of longitudinal MRFM, and use the cantilever only to detect the spin dynamics. However,

because the RF field created by the coil would oscillate at the Larmor frequency, this field will
2This method of producing local RF was used in Ref. [69], where a cantilever with a magnetic tip was used to

create an RF field inside a small volume of a cell containing cesium vapor. This RF field then affected the populations
of Zeeman levels of cesium atoms, which was detected optically.
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Figure 4.2: (a) Schematic of the transverse MRFM experiment. (b) Schematic of experiments with
quadrupole-spin and ferromagnetic materials. A thin film of these materials can be deposited on the
surface of the resonator during the fabrication process.

inevitably produce parasitic forces and moments acting on the magnetic tip of the cantilever. This

will produce a large parasitic motion of the cantilever that has nothing to do with the spin dynamics.

In order to avoid this problem, we will instead consider the situation when both aspects of the

interaction between the spins and the resonator are used: The cantilever is used to generate the local

RF field that drives the cantilever dynamics, and the same cantilever is used to detect the dynamics

of the spins. This situation is very similar to the standard NMR setup, with the RF cantilever playing

the role of an RF coil. Because of this similarity, we can perform an analog of the early continuous-

wave NMR experiments [62], in which the cantilever is always driven at resonance while the external

magnetic field is swept through the value at which the Larmor frequency of the spins equals the

resonance frequency of the cantilever. When the resonance condition is realized, the dynamics of

the cantilever will be affected by the interaction with the spins. In particular, the amplitude of

the cantilever motion will decrease because the excited magnetic spins will dissipate energy due to

spin relaxation processes. This energy has to be replenished by the cantilever, which means that its

effective quality factor and, correspondingly, its amplitude will decrease. The resonance frequency

of the cantilever will also be changed slightly by the magnetostatic forces produced by the spins.

Similar to the case of continuous-wave NMR, we can write the modified complex amplitude of

cantilever motion as

A = A0/(1 + χ),
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where A0 is the cantilever amplitude in the case when there are no spins and χ is the complex

susceptibility of the spin system. The real part of the susceptibility describes the reduction in

cantilever amplitude of motion due to the reduced quality factor and the imaginary part describes

the the change in the phase of the cantilever response due to the modification of its resonance

frequency.3 Naturally, the susceptibility depends on the external magnetic field B0 and the other

parameters of the coupled cantilever–spin system.

Using the analogy to the coil-based NMR systems, we have derived the following formula for the

susceptibility

χ =
∫∫∫

Qr

(
∂B⊥
∂x

)2 ~2γ3
nBs(~r)n(~r)

8krkBT
[
Γ⊥ + i(γnBs(~r)− ωr) + γ2

n

(
∂B⊥
∂x

)2 |A|2/(4Γ‖)
] d~r, (4.1)

where the integration is over the volume of the spin sample. Here ωr, kr, and Qr are the natural

resonance frequency, spring constant, and quality factor of the cantilever; γn, Γ⊥ = 1/T2, Γ‖ = 1/T1,

and n(~r) are the gyromagnetic ratio, transverse relaxation rate, longitudinal relaxation rate, and the

local concentration of the nuclear spins; Bs(~r) is the static part of the magnetic field, which is the sum

of the external field B0 and the time-independent part of the field created by the ferromagnetic tip; kB

and T are the Boltzmann constant and the temperature of the nuclear spins. The temperature enters

the expression because the equilibrium magnetization of nuclear spins decreases with increasing

temperature according to the Curie law [62]. We have assumed spin-1/2 nuclei for simplicity, which

means that γn~
2 is the magnetic moment of one nuclear spin. The last term in the square brackets

of the denominator in Eqn. (4.1) describes field saturation of the spin response.

In order to estimate whether we could actually detect the relative changes in the cantilever

amplitude given by Eqn. (4.1), I have numerically calculated the susceptibility for the T-MRFM

geometry shown in Figure 4.2(a) using the following realistic parameters: a cantilever with a reso-

nance frequency ωr = 2π× 20 MHz, a spring constant kr = 1 N/m, and a quality factor Qr = 1000;

a cobalt ferromagnetic tip with saturation magnetization of 1.6 Tesla and a radius of 150 nm; and
3Note that this meaning of real and imaginary parts of χ is different from the case of electric and magnetic

susceptibilities, where the imaginary part describes adsorption and the real part describes dispersion.

50



5 10 15 20

0.5

1.0

1.5

2.0

Cantilever amplitude, nm

×10-5

S
us

ce
pt

ib
ili

ty
, R

e(

χ)
0 0.5 1.0 1.5

0.5

1.0

1.5

2.0 ×10-5

S
us

ce
pt

ib
ili

ty
, R

e(

χ)
External field B0, T (b)(a)

Figure 4.3: (a) Real part of the susceptibility versus external magnetic field. (b) Real part of
susceptibility at resonance versus cantilever amplitude.

a temperature T = 4.2 K. For the spin sample, I modeled thallium metal, which has a large gyro-

magnetic ratio of γn = 2π × 25 MHz/T, a transverse relaxation time T2 = 5 µs and a very short

longitudinal relaxation time of T1 = 500 µs at 4.2 K. Fast longitudinal relaxation is important in

this case because the faster the spins can dissipate energy to the lattice, the more energy they can

suck out of the cantilever without getting saturated. As a result, thallium is expected to give the

strongest signal for any elemental spin-1/2 system. Finally, I assumed a distance of 10 nm between

the magnetic tip and the surface of the sample.

Substituting the parameters above, I have numerically integrated Eqn. 4.1 using the Mathematica

software package. The results of the simulation are shown in Figure 4.3. The largest fractional change

in the amplitude of the cantilever we can expect for these parameters is approximately 2 × 10−5,

which happens when the external field is given by B0 = ωr/γn = 0.8 T.4 The saturation of spin

response starts at cantilever amplitudes of approximately Asat ≈ 2 nm. The maximum change in the

cantilever amplitude is therefore approximately Asat × Re(χ) ≈ 4× 10−14 m. This expected signal

should be compared to the amplitude of thermomechanical noise of
√

4kBTQ
krωr

≈ 4.5×10−14 m/
√

Hz,

which means that the simulated change in the amplitude is just barely detectable.

In practice, the signal-to-noise ratio would be affected by many other sources of noise. In our

measurements of silicon cantilever resonances, Johnson noise and other types of broadband excess

noise were often significantly larger than the thermomechanical noise. Also, the stability of the
4Figure 4.3(a) shows only the real part of the susceptibility, but the maximum value of the imaginary part of the

susceptibility is approximately the same.
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cantilever amplitude, measured piezoresistively, was usually on the order of 10−4, effectively pre-

venting us from measuring relative changes in the amplitude on the order of 10−5. Finally, thallium

is an extremely toxic metal and would require extensive safety precautions. Other, safer materials

generally resulted in an expected signal significantly smaller than that calculated above.

Thus, the prospects of detecting a transverse MRFM signal using the setup shown in Figure 4.2(a)

looked grim and did not merit the required experimental effort. The main culprit was the relatively

weak coupling between the spins and the cantilever that is provided by the ferromagnetic tip. We

therefore turned our attention to alternative ways of coupling the mechanical motion and spin

dynamics.

The first possibility we considered was to use the coupling between the spins and strains. Such

coupling is not present in all materials, but some nuclei with a total spin of more than one half

possess a significant quadrupole electric moment which couples the spin to the local gradient of the

electric field [70]. The Hamiltonian of this interaction is given by

Ĥ =
∑

i,j

∂Ei

∂xj

eq

6I(2I − 1)

[
3
2

(
Îj Îi + ÎiÎj

)
− I(I + 1)δij

]
, (4.2)

where ∂Ei

∂xj
is the electric field gradient tensor, Îi are the components of the spin operators for the

nucleus, e is elementary charge, q is the quadruple moment of the spin, and δij equals 1 if i = j

and 0 otherwise. Because the electric field at the site of a given nucleus is created by nearby electrons

and other nuclei, the gradients of electric field change when the material is deformed:

∂Ei

∂xj
=

∑

kl

εkl Sijkl, (4.3)

where εkl are the components of the local strain tensor and the tensor Sijkl depends on the crystalline

structure and other properties of the chosen material. The magnitudes of the tensor components

Sijkl vary widely in different materials, and reach some of the largest values in tantalum and niobium

(on the order of 5× 1022 V/m2) [70].
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Because the spin dynamics couples directly to strain, nuclear magnetic resonance can be detected

using acoustic waves in these materials. This technique is called nuclear acoustic resonance (NAR)

and has been demonstrated for a large number of materials [70]. The experiments typically measured

the response of an ultrasound acoustic resonator that incorporated a centimeter-sized single crystal

of tantalum, niobium, or other quadrupole-active material. It is easy to imagine generalizing this

scheme to nanomechanical instead of acoustic resonators, since nanomechanical resonators can easily

produce large strains at RF frequencies as well.

Figure 4.2(b) shows a setup that could be used for such an experiment. A thin film of a

quadrupole-active material is deposited on the nanomechanical resonator (cantilever or doubly

clamped beam) during the fabrication process. The motion of such a cantilever then produces

stresses and strains in the thin film of the quadrupole-active material, which drives the dynamics of

the nuclear spins. Similar to the case of transverse MRFM, we can describe the effect of the nuclear

acoustic resonance on the cantilever motion with the susceptibility χ. At resonance, all spins inside

the thin film will participate in the resonance, producing a total fractional change in the resonator

amplitude on the order of

χ ∼ NQrI(I + 1)(Schqe)2ωc

8kBTYrVrΓ⊥
, (4.4)

where N is the total number of active quadrupole spins, Sch is the characteristic value of the coupling

tensor in the used quadrupole-active material, Yr is the Young’s modulus of the resonator material,

and Vr is the volume of the resonator.

For a 50-nm-thick film of tantalum on 100-nm-thick silicon resonator, I estimated the maximum

fractional change of the resonator amplitude to be χ ≈ 1/∆B[Gauss], where ∆B[Gauss] is the

expected width of the resonance, expressed in units of magnetic field. In many nuclear acoustic

resonance experiments, the width of resonance was on the order of 100 Gauss [70], which would

produce an easily measurable 1% change in the amplitude of the resonator response.

In practice, the width of the resonance is likely to be much larger in our experiments because of

inhomogeneous broadening. Nuclear acoustic resonance experiments typically used carefully grown

single crystals of pure tantalum, whereas in our case, the deposited thin film would be polycrystalline
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and full of impurities. Compared to a single crystal of tantalum, this will create large and spatially

variable static electric field gradients that will modify the local nuclear resonance frequencies. Based

on the measured magnitude of the S tensor, the width of the magnetic resonance of a thin film of

tantalum could be broadened to 1000 Gauss or more with nonuniform static strains on the order of

10−3.

Our efforts to pursue this experiment soon faced a serious practical problem: we were not able

to fabricate a resonator with a high-quality thin film of tantalum on it. Tantalum films sputtered on

silicon and silicon nitride substrates turned out to be under a large compressive stress. As a result,

when we deposited tantalum on fully fabricated cantilevers, the cantilevers curled up. When we

sputtered tantalum on a flat piece of a wafer, the film delaminated and buckled up in some places.

Our efforts to perform lift-off patterning of such films were also unsuccessful. We decided not to

pursue niobium films because the expected signal from them is approximately 30 times smaller than

for tantalum.

The final coupling mechanism we studied involved thin ferromagnetic films and was more suc-

cessful from a fabrication point of view. This experiment used the same geometry as for quadrupole

coupling (Figure 4.2(b)), but the nature of the expected coupling between the motion of the can-

tilever and the spins inside the ferromagnetic film is completely different, due to the unique properties

of ferromagnetic materials.

One distinctive feature of ferromagnetic materials is that the frequency of nuclear magnetic

resonance in such materials is almost independent of the external magnetic field. Instead, the NMR

frequency is primarily determined by the effective internal magnetic field, which is determined by

the hyperfine interaction in ferromagnets and is usually on the order of 10 Tesla. Another distinctive

feature of ferromagnetic materials is the formation of domains of uniform magnetization. The domain

size is usually on the order of 1 micron, but depends strongly on the material and the geometry of

the magnetic film.

The first NMR measurements of ferromagnetic samples were done in late 1950s using cobalt
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powder samples [71]. The surprising result of these measurements was that the cobalt sample ab-

sorbed far more power from the coil than expected. The magnetic resonance occurred at frequencies

between 212 MHz and 227 MHz depending on the temperature, and the signal was 5 × 105 larger

than expected. Subsequent studies attributed this signal enhancement to the motion of magnetic

domain walls in the ferromagnetic sample.

When an external RF field HRF is applied to a ferromagnetic sample, it creates forces on domain

walls and drives their motion. The motion of the domain walls due to the external field is very

small, on the order of xd = D × HRF /Ha, where D is the domain size and Ha is the anisotropy

field. However, a nucleus in the vicinity of a domain wall will see a change in the magnetic field on

the order of xd ×Hhf/d, where d is the width of the domain wall and Hhf is the effective hyperfine

field. The nucleus will therefore see an oscillating field that is larger than the external RF field by

a factor of (HhfD)/(Had). For cobalt, this field enhancement factor works out be on the order of

1000. Since energy absorption scales as applied field squared, it is not surprising that the energy

absorption was almost six orders of magnitude larger than expected.

If a static external field B0 is applied during NMR experiments with ferromagnetic samples, it

has only a very small effect on the frequency of the resonance because the frequency is determined

by the much larger hyperfine field. However, a strong external field can affect the magnitude of the

of the NMR signal. In particular, as the external field approaches the saturation magnetization,

all domains will align parallel to the external field B0 and the domain walls will disappear. The

field enhancement mechanism described above will then disappear also, decreasing the NMR signal

dramatically. Early NMR experiments have shown that the maximum field that can be applied to a

ferromagnetic sample without significantly reducing the signal is approximately 0.1 Tesla [71], which

is significantly smaller than the cobalt saturation magnetization of 1.6 Tesla.

The large enhancement of the NMR signal in ferromagnets seemed really promising for our

Larmor-frequency experiments. The necessary setup can be similar to the one considered for the

quadrupole case: a thin film of ferromagnetic material on top of a nanomechanical oscillator (Fig-

ure 4.2(a)). The coupling between the mechanical motion and the nuclear spins can be mediated by
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Figure 4.4: Effective in-plane magnetic field appearing during oscillations for the second out-of-plane
mode of a nanomechanical oscillator.

two mechanisms. First, since the ferromagnetic film will be stressed during oscillation, the magne-

tostrictive effect will cause rotation of magnetization inside domains and domain wall motion. This

changing magnetization can then drive the nuclear spins directly or through domain wall motion,

similar to the case of external RF excitation described above.

Second, if we apply a moderate magnetic field (≤ 0.1 Tesla) perpendicular to the beam shown

in Figure 4.2(a), the motion of the cantilever will create an effective RF field acting on the domain

walls. During oscillations, different parts of the beam change their angle α with respect to the

external field B0 (see Figure 4.4). As a result, in the rotated frame of the ferromagnetic film (x′, y′),

the external magnetic field will appear to tilt periodically by the same angle α. For small angles,

the in-plane projection of this external field is given by Be = αB0, and the situation is equivalent

to having a local RF magnetic field of the same amplitude. The effective field Be will oscillate at

the same frequency as the resonator and drive the magnetic domain walls in the ferromagnetic film,

thereby coupling the mechanical motion to the spin dynamics.

Like in the case of transverse MRFM of quadrupole coupling mechanisms, we can detect the

nuclear magnetic resonance in the ferromagnetic film by the effect this resonance would have on

the motion of the resonator. The changes in the resonator’s motion can again be described by the

complex susceptibility χ. It is difficult to estimate χ for the case of the magnetostrictive coupling

mechanism because we do not know enough about the magnetostrictive properties of thin cobalt

films. For the second mechanism described above, which relies on the tilting of the resonator during
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oscillation, we derived

χ ∼ N~2ωrQr

4kBTYrVrΓ⊥

(
γnlrB0Cenh

YrVrnmtr

)2

, (4.5)

where N is the total number of active nuclear spins, lr and tr are the length and thickness of the

resonator, nm is the number of the used out-of-plane mode, and Cenh is the enhancement factor due

to the domain wall motion.

Consider a 50-nm-thick cobalt film on top of 100-nm-thick, 10-µm-long SiC or SiN resonator,

and assume that we will use the eighth out-of-plane mode with a resonance frequency of 230 MHz

at a temperature of 4.2 K (these parameters correspond to actual devices we fabricated). If we

also assume an NMR resonance width of 5 MHz and enhancement factor of 1000 [72, 73, 74], the

susceptibility works out to be on the order of 10−2, which should be detectable. Note that this

estimate is very uncertain as there is only limited data on the resonance width or enhancement

factor in thin cobalt films at low temperatures [72, 73, 74]. Nevertheless, we decided to go ahead

and try to detect this signal.

4.2 Experimental results5

In this section, I describe our experiments using doubly clamped beams with deposited cobalt films.

We chose to use cobalt because, of all ferromagnetic elements, cobalt gives the largest estimated

susceptibility χ. However, cobalt was not easy to work with from a fabrication point of view.

Evaporated cobalt films did not adhere well to silicon carbide substrates, so we switched to silicon

nitride substrates instead. In addition, some of the patterned cobalt films slowly oxidized in air,

changing shape and appearance under a microscope. We found that oxidation can be prevented by

capping the cobalt layer with a thin layer of copper. We made the devices by first patterning the

cobalt film and then fabricating the rest of the resonator using the methods described in Section 2.3.

Figure 4.5 shows two representative resonators with ferromagnetic films.

Because the frequency of nuclear magnetic resonance in cobalt cannot be tuned by changing the
5Measurements described in this section were performed in collaboration with E.B. Myers and I. Kozinsky.
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(b)(a)

Figure 4.5: Scanning electron micrographs of doubly clamped beams with integrated ferromagnetic
films, devices no. N1A3 (a) and N1B3 (b). The beams were nominally 10 µm long, 400 nm wide, and
100 nm thick. The metal loops at the two ends of the devices were used for thermoelastic actuation
and piezoresistive detection. The brighter rectangles in the middles of the beams are the patterned
ferromagnetic films, consisting of a 40-nm-thick cobalt layer and 20-nm-thick capping copper layer.
The large irregular feature in the bottom left of panel (a) resulted from poor liftoff, but did not
interfere with the operation of the device.

external magnetic field, we needed to fabricate devices with a mechanical resonance matching the

cobalt NMR frequency, which is about between 215 and 225 MHz at low temperatures, depending

on the crystalline phase. Basically, there were two ways to accomplish this goal: use a short beam

with the fundamental resonance near 220 MHz or a longer beam with some higher out-of-plane mode

near 220 MHz. The latter option was more attractive for two reasons. First, our experience with

beams of varying lengths has shown that, for a given resonance frequency, higher modes of longer

beams generally have higher quality factors than lower modes of shorter beams. Second, having

multiple modes available for measurement allowed us to compare the properties of the mode that

was resonant with the spins to the properties of other modes.

In these experiments, we used silicon-nitride beams that were nominally 400 nm wide and 10 µm

long (Figure 4.5). The fundamental out-of-plane modes of these beams had resonance frequencies

around 15 MHz and their eighth out-of-plane modes, around 225 MHz, close to the expected NMR

frequency. The length of 10 µm was a reasonable choice, as significantly shorter beams had lower

quality factors (see Section 5.1) and significantly longer beams had much smaller frequency spacing

between different modes near 225 MHz, making the mode spectrum too complicated.

Even though the eighth out-of-plane modes of these devices were close to the expected NMR
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Figure 4.6: The frequency (a) and quality factor (b) of the eighth mode of the N1B3 beam versus
the perpendicular magnetic field.

frequencies, we still needed a way to tune the mechanical resonance frequencies through the expected

NMR frequency. The absorptive tuning technique was a convenient way to do that. Typically, we

used argon gas as the adsorbate because it is much cheaper than xenon. The tuning range of 15%

demonstrated in Section 3.2 was sufficient to change the resonance frequency of the eighth mode

from 225 MHz to less than 200 MHz, thereby tuning this mode out of resonance with the nuclear

spins.

Before trying NMR measurements, we first needed to verify that the deposited cobalt film was

actually ferromagnetic. We did this by measuring the frequencies and quality factors of the mechan-

ical modes as a function of the uniform perpendicular magnetic field B0 (see Figure 4.2(b) for the

geometry). Figures 4.6 show the results of these measurements for the eighth mode of the beam

N1B3. The response of the resonance frequency and quality factor is rather complicated: as the

field increased from zero to 3 Tesla, the frequency and quality factor first decreased as the magne-

tization in the magnetic domains started to rotate toward the direction of the external field, and

then increased as the entire sample became saturated by the external field. Similar dependence of

the resonance frequency on the magnetic field was previously observed in magnetically capped can-

tilevers [75]. Figures 4.6 also demonstrate noticeable hysteresis in the response, with the upward and

downward field sweeps giving different results. Other modes of the beam produced similar-looking

graphs. We could therefore conclude that the cobalt film on the resonator was indeed ferromagnetic.
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Figure 4.7: Changes in quality factor during adsorptive tuning of a beam with ferromagnetic film
(device no. N1B3).

Next, we needed a way to measure the expected small change in the resonator amplitude and

quality factor due to interaction with spins. In principle, we could tune the frequency of the res-

onator through the expected NMR frequency and observe a dip in the resonator’s quality factor on

resonance. Unfortunately, the uncertainty in fitted values of the quality factor was typically a few

percent, of the same order of magnitude as the expected change in quality factor due to spin interac-

tion. In addition, the quality factor generally decreased during absorptive tuning, which would mask

the changes in quality factor due to NMR resonance. Indeed, we did not observe any anomalous

changes in quality factor during tuning, as shown in Figure 4.7. At zero magnetic field, the quality

factor decreased slightly over the 6 MHz tuning range, just like in the case of non-magnetic samples.

At 1.1 Tesla perpendicular magnetic film, the quality factor was lower (see Figure 4.6), but it also

did not display any anomalous behavior over the small tuning range we studied.

Given the difficulty of detecting a small change in quality factor, we tried another method of

detecting the spin-resonator interaction that used time-domain measurements. If nuclear spins are

driven hard enough with an RF filed, they can become saturated and the amplitude of their response

can decrease substantially [62]. If the drive is removed, the spins will eventually de-saturate and
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Figure 4.8: Time-domain response of resonator to a pulse drive for the eighth mode of device
no. N1B3. Both quadratures of the response, X and Y, are shown. The curves are the result of
averaging of 10 thousand pulses with a 5 Hz repetition rate. The insets zoom in on the relevant
parts of the graph.

come back to thermal equilibrium. Both saturation and de-saturation occur over a time comparable

to the longitudinal relaxation time T1 = 1/Γ‖. For cobalt samples, the experimentally determined

longitudinal relaxation time varied between 0.2 and 17 ms [76]. By comparison, the relaxation time

of resonator motion is Q/ωr ≈ 3000/(2π × 225 MHz) ≈ 2 µs for the eighth mode of the beam

considered above. Therefore, the resonator dynamics are much faster than the saturation dynamics

of spins, and we can use a mechanical resonance to both drive and probe the saturation of spins.

One way to detect saturation is to look at the response of the beam to a rectangular drive pulse.

After the first few microseconds of the transient response of the resonator, its amplitude will reach

a steady state whose amplitude will depend on the state of the spins. If the amplitude of the beam

motion is not sufficient to saturate the spins, the steady-state amplitude will remain the same as

long as the drive is maintained. On the other hand, if the beam motion creates enough local RF

field in the ferromagnetic film to saturate the spins, the steady-state amplitude will increase on the

time scale of T1 as spins become saturated.
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We have performed these measurements for the eighth mode of the beam N1B3 at 223.5 MHz

and the results are shown in Figure 4.8. The resonator response does have some relaxation-like

features with a relative change in resonator amplitude of 2% and a characteristic time scale of

approximately 5 ms. The changes were in both quadratures of the signal, corresponding to an

increase in the amplitude and a simultaneous decrease in resonance frequency. However, these

features were completely independent of the magnetic field. We also observed the same features

when we tuned the resonator frequency to 219 MHz and in the response of the 7th mode of the

resonator at 190 MHz. All of this suggested that these features were unrelated to spin dynamics.

One possibility is that they were caused by the changing temperature of the resonator as it responded

to the heating pulses of thermoelastic drive.

Thus our attempts to find signatures of coupling between the motion of a nanomechanical me-

chanical did not yield positive results and we can only speculate about the reasons. It is possible

that the enhancement factor in evaporated films is much lower than in powder samples. It is equally

possible that the nuclear magnetic resonance in these samples was too broad or occurred at a sig-

nificantly lower frequency.6 Given these negative initial results and the substantial effort needed

to fabricate new resonators of the kind shown in Figure 4.5 and troubleshooting the problems, we

decided to pursue other experiments.

Despite our results, I remain confident that experiments of this kind will become feasible in the

future. Future increases in the quality factor of resonators as well as their further miniaturiza-

tion should increase the signal associated with coupling between resonator motion and transverse

magnetization of spins, eventually making them detectable. These future advances may also al-

low experimental realization of new types of spin-resonator dynamics such as the laser-like system

proposed in the next section.
6We have annealed some devices with ferromagnetic films in a reducing atmosphere, since annealing has been

shown to narrow the width of NMR in sputtered films of cobalt [74]; however, the resulting films were non-magnetic.
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4.3 Analogy to quantum optics: Cantilaser

In the previous sections, I discussed the physics of the interaction between spins and a nanome-

chanical resonator. In this section, I will consider the same physics from a different perspective by

drawing analogies to quantum-optical systems. In particular, I will consider the analogy between a

coupled spin-resonator system and the quantum-optical model of a laser.

The invention of masers and lasers in the middle of the twentieth century [77] has engendered

whole new fields of science and myriads of applications. Regardless of the frequency range and other

details of a practical implementation, all laser-like devices involve one or more quantum-mechanical

oscillators resonantly interacting with a continuously pumped multilevel quantum system. In the

ubiquitous optical laser, the oscillator is realized by a mode of a high-Q electromagnetic cavity,

a mode resonant with optical transitions of bound electrons in the active medium. Masers use

microwave transitions of gas molecules or electron spins of a paramagnetic solid in a strong magnetic

field. Finally, the active medium of a free-electron laser is a relativistic electron beam, whose energy

levels can be defined by a specially configured magnetic field [78].

This relative diversity of possible realizations of the active medium is not, however, matched

by the demonstrated realizations of the other essential part of a lasing system, the oscillator. We

are aware of only one laser-like device that used an oscillator different from a field mode of an

electromagnetic cavity—the nuclear-magnetic-resonance (NMR) laser [79]. In that device, nuclear

spins of a solid sample were inductively coupled to a resonant LC circuit. Although many properties

of an LC circuit are strikingly different from those of a cavity resonator, one can argue that the

underlying physics in the two cases is the same: The oscillations correspond to normal modes of a

complex electromagnetic system, whether it consists of an electromagnetic field confined by reflecting

walls or of coupled electric and magnetic fields of capacitive and inductive elements.

Here, we propose a laser-like device in which the oscillator is realized by a fundamentally different

kind of a device—a nanomechanical resonator, e.g., a nanoscale cantilever or doubly clamped beam.

High resonance frequencies, high quality factors, and low noise of nanomechanical resonators make

it possible to use their long-term coherent response in a laser-like device. Similarly to the case of the
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NMR laser and solid-state masers, we propose to use nuclear or electron spins in a strong external

magnetic field as the active medium of a “mechanical laser”. A nanomechanical oscillator can be

effectively coupled to the magnetic moments of such spins by incorporating a small ferromagnetic

tip on its surface. At microscopic distances between the cantilever and the sample, the coupling

between the tip and the spins is essentially magnetostatic.

Systems consisting of a micro- or nanomechanical cantilever coupled to resonant magnetic spins

of a solid sample have been extensively studied in the context of magnetic resonance force microscopy

(MRFM) [66]. However, in all MRFM experiments performed so far, the fundamental frequency of

the cantilever was orders of magnitude below the Larmor frequency of the magnetic spins. Resonant

transfer of energy quanta from spins to the mechanical oscillator is impossible in this case. Instead, an

RF or microwave field is used to modulate the sample magnetization at the cantilever frequency [66].

For the device proposed here, it is essential that the motion of the mechanical oscillator be

resonantly coupled to the free precession of magnetic spins, which means that the frequency of the

used mechanical mode must be close to the Larmor frequency of the sample [68]. For conventional

experiments with external magnetic fields of a few Tesla, the Larmor frequencies are on the order of

tens of megahertz and tens of gigahertz for nuclear and electron magnetic resonance, respectively [62].

Given that the highest fundamental-mode frequency of lithographically defined nanomechanical

oscillators measured so far is slightly above 1 GHz [17], resonant coupling between mechanical

oscillators and electron spins in strong magnetic fields seems unfeasible at this time. Operation in

low magnetic fields, on the other hand, would prevent complete polarization of electrons and make

the system more sensitive to ambient magnetic fields. We will therefore focus on the case of nuclear

spins.

Figure 4.9 shows a schematic of the proposed device. A nanomechanical oscillator—a cantilever

in this case—is positioned near a sample that contains precessing nuclear spins, some of which are

shown schematically in the figure. A ferromagnet on the cantilever tip creates a magnetic field,

which can be approximated as the field of a magnetic dipole. When superimposed on the uniform

external field B0, this field modifies the total magnetic field seen by nuclear spins and, therefore,
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Figure 4.9: Schematic of a mechanical laser device.

their Larmor frequency. As a result, only a certain slice of the sample, known as the sensitive slice,

will have the Larmor frequency resonant with the frequency of the used mode of the cantilever [66].

As we discussed in the previous section, the rotating transverse component of nuclear magne-

tization couples to the ferromagnetic tip via dipolar magnetostatic interaction, with the resulting

force driving cantilever oscillations. Conversely, a moving ferromagnet creates an AC magnetic field

that can drive transitions between Zeeman levels of nuclear spins—stimulated transitions in the

language of standard rate-equation laser theory. The resulting coupled interaction—spins driving

the cantilever and the cantilever, in turn, driving the spins—leads to a kind of positive feedback

that arises in all laser-like systems.

Although a variety of nanomechanical devices could be used—involving, for example, torsional or

flexural modes—we focus here on nanocantilevers, which are especially convenient for scanning with

small tip-sample separations. The device we propose can then be aptly termed a “cantilaser”. To

provide a concrete example, we will assume the following parameters for the cantilever: fundamental-

mode frequency ωc/2π = 20 MHz, effective spring constant kc = 0.1 N/m, quality factor Q = 105,

the transverse magnetic field gradient (due to the ferromagnetic tip) ∂B⊥(r)
∂x = 1 G/Å= 106 T/m

within the sensitive slice. This magnetic field gradient can be created by a rare-earth-metal magnet

at a distance of about 1 micron [9, 81]. At such relatively large distances, one can usually neglect

all nonmagnetic interactions between the cantilever and the sample. Note also that the intrinsic Q

factor of a nanomechanical oscillator can be effectively increased by a few orders of magnitude using
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positive feedback [82] or parametric pumping [83].

For the parameters of the nuclear spin subsystem, we will take values representative of crystalline

materials [62]: transverse relaxation time T2 = 50 µs and nuclear gyromagnetic ratio γn = 2π ×

10 MHz/T. The bulk of the sample material will be resonant with the cantilever oscillations in an

external field of B0 = ωc/γn = 2 T.

In order to observe lasing in any system, one must introduce a pumping mechanism to com-

pensate for the energy dissipated in both the oscillator and the active medium. For nuclear spins,

such pumping can be produced by dynamic nuclear polarization (DNP) [62]. In this mechanism,

microwave or optical radiation is used to saturate an electron transition, causing them to preferen-

tially absorb photons of only one circular polarization. Some of the absorbed angular momentum

is then transferred from the electrons to the nuclei of the sample through various equilibration pro-

cesses. This technique has been successfully employed to pump the NMR laser at the liquid helium

temperature (4.2 K) using a microwave source as in Figure 4.9, with the effective pumping time as

low as Tp = 0.2 s [79]. We will use this pumping rate and the equilibrium longitudinal polarization

Meq = −0.3 that is achievable in a 2-Tesla external field.

The dynamics of the cantilaser can be described by the Hamiltonian

Ĥ = ~ωcâ
†â + ~γn

∑

i

Bi · Ŝi + ~(â† + â)
∑

i

2gi · Ŝi + Ĥr,

where a† and a are the creation and annihilation operators of the cantilever mode, Ŝi is the spin

operator of ith nucleus, B̂i is the the external field at the site of the ith spin, gi = γn

2
∂B(ri)

∂x

√
~ωc

2kc

is the vector constant of the coupling between the ith spin and the cantilever, and Ĥr describes

relaxation-inducing couplings to the environment. This Hamiltonian was first considered by Jaynes

and Cummings, who used it describe quantum behavior of masers [84]. In the same paper, they also

showed that the corresponding dynamics can usually be described by semiclassical equations, which

treat the resonator classically and the spins quantum mechanically.

Considering the nuclear spins in their respective rotating frames (as defined by the local field
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Bi and field gradient ∂B(ri)
∂x [68]) and using the slowly varying amplitude approximation for the

cantilever, we can write such semiclassical equations in the form

Ȧ + κA = −gNM−,

Ṁ− + Γ⊥M− = gMzA,

Ṁz + Γ‖(Mz −Meq) = −g(M−A∗ + M∗
−A)/2,

(4.6)

where A is the (generally complex) amplitude of cantilever oscillations, normalized by the amplitude,

√
~ωc/(2kc) ≈ 2.6 · 10−13 m, of zero-energy quantum motion, κ = ωc/2Q ≈ 630 s−1 is the cantilever

decay rate, N is the number of resonant spins in the sensitive slice, M− and Mz are the normalized

(|M−|2 + M2
z ≤ 1) transverse and longitudinal (with respect to B0) components of nuclear polar-

ization, Γ⊥ = T−1
2 = 20 · 103 s−1 and Γ‖ = T−1

p = 5 s−1 are the effective transverse and longitudinal

polarization relaxation rates, and g = γn

2

∣∣∣∂B⊥(r)
∂z

∣∣∣
√
~ωc

2kc
≈ 8.0 s−1 is the scalar coupling constant of

the interaction between the cantilever and the nuclear spins.

In Eqns. (4.6) we implicitly assumed that all resonant nuclei in the sensitive slice are spin-half

and that they all see the same strength and gradient of the magnetic field. The latter is an obvious

simplification since in MRFM experiments, the magnetic-resonance frequency and coupling strength

varies continuously over the sensitive slice [80]. However, the same problem of inhomogeneous

broadening and nonuniform coupling arises in most quantum optics and laser setups [85], and it was

found experimentally [86, 87] that equations of the form (4.6) still correctly reproduce most features

of the coupled spin–oscillator dynamics. We will therefore restrict our analysis to the simplest model

of Eqns. (4.6)

It is easy to find the steady-state solutions of Eqns. (4.6). The nontrivial lasing solution may exist

only in the case of population inversion, Meq < 0, and is given by Acw =
√

(N |Meq| −Nt)Γ‖/κ,

where Nt = κΓ⊥/g2 is the threshold population inversion. Substituting Meq = −0.3 and other

parameter values given above, we find that in order to support continuous-wave (cw) lasing, the

number of atoms in the sensitive slice should be N > Ncw = Nt/|Meq| ≈ 0.65 · 106. This may

seem like a large number; however, even an atomically thin sensitive slice of a homogeneous sample
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contains on the order of 107 nuclei if the diameter of the sensitive slice is just 1 µm. Much larger

sensitive slices have been used in nuclear MRFM experiments so far, so exceeding the lasing threshold

seems quite feasible.

One of the more interesting transient phenomena predicted by the Jaynes–Cummings model

is the coherent oscillation of population between the oscillator and spins [84], an effect similar to

the oscillations of energy between two weakly coupled classical harmonic oscillators. Also known as

ringing superradiance, this phenomenon has been observed in different quantum-optical systems [86,

87]. In order for the energy oscillations to be observable in a cantilaser, the effective frequency of

the oscillations, equal to
√|Meq|Ng [84], should be larger than the fastest relaxation rate of the

system, Γ⊥. We can therefore roughly estimate the minimum number of atoms necessary to observe

the oscillations as Nsr = Γ2
⊥/(|Meq|g2) ≈ 20 · 106. As we show below, our numerical simulations

support the validity of this estimate.

Another interesting transient predicted by the Jaynes-Cummings model is a solitary pulse that

irreversibly depletes the energy stored in the active medium. Known as giant pulses in the standard

laser theory [85], these transients can appear if Γ⊥ > |Meq|Ng2/Γ⊥ > κ, which implies Nsr >

N > Ncw. Such a giant pulse reduces the population inversion to zero and therefore consumes

one half of the total potential energy of the active medium (i. e., the sensitive slice, which can in

principle be adjusted to encompass most of the sample [80]). This is in contrast to the case of ringing

superradiance, where all of the available energy oscillates back and forth between the cantilever and

spins.

Figure 4.10 shows three characteristic transient outputs of a cantilaser, obtained by numerical

integration of Eqns. (4.6) using the Mathematica software package. As the number of resonant nuclei

in the sensitive slice decreases from N = 200 · 106 À Nsr to N = 5 · 106 ¿ Nsr, the frequency and

amplitude of energy oscillations decreases until just one “giant” pulse is observed. If one further

keeps decreasing the number of atoms, the single pulse becomes longer and smaller in amplitude until

it disappears completely as the number of atoms goes below the cw lasing threshold Ncw. Note that

the tails of the output transients always decay at the time scale of κ−1 because cantilever decay is
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Figure 4.10: Characteristic transients of a cantilaser for different number of resonant nuclei within
the sensitive slice: (A) N = 200 · 106 , (B) 15 · 106, and (C) 5 · 106. The main panel shows
the normalized amplitude of cantilever oscillations, A(t), the inset shows the longitudinal nuclear
polarization, Mz(t). The initial conditions are A(0) = 94, M−(0) = 0, Mz(0) = −0.3.

the dominant mechanism of energy dissipation here. In contrast, the coherent oscillations, if present

at all, decay at the time scale of Γ−1
⊥ = T2 since spin-spin relaxation is the dominant mechanism for

the loss of coherence.

The initial conditions for pulsed transients used in the simulations of Figure 4.10 can be produced

by a Q-switching technique [85]. Note that the initial nuclear polarization, M−(0) = 0, Mz(0) =

Meq, is simply the equilibrium polarization achieved in the presence of dynamic nuclear pumping

and negligible interaction with the cantilever. Also, the initial normalized cantilever amplitude

corresponds to thermal vibrations of the cantilever at the temperature T = 4.2 K: A(0) = Ath =

√
2kBT/(~ωc) ≈ 94, where kB is the Boltzmann constant.

Since a cantilaser shares so much in its design and principles of operation with MRFM setups, it

is natural to consider whether the effects described above can be used to improve the sensitivity of

nuclear MRFM. The single-shot sensitivity of the first nuclear MRFM experiment [65] was approx-

imately 1013 thermally polarized nuclear spins at room temperature or about 1011 nuclear spins at

4.2 K (nuclear polarizability is inversely proportional to temperature). Since then, the sensitivity of

MRFM experiments has been improved to 1 Bohr magneton [8], a magnetic moment that is created
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by roughly 106 nuclear spins at 4.2 K. The closest competing technology—scanning SQUID-based

magnetometry—has so far demonstrated a sensitivity of 105 Bohr magnetons [88], or 1011 nuclear

spins at 4.2 K.

To consider the MRFM sensitivity of a cantilaser, we will calculate the ratio of power spectral

density of lasing outputs to the power spectral density of thermomechanical noise. Since the resonant

frequency of the cantilever and the Zeeman transition frequency of spins coincide, we can express all

energy quantities in terms of the number of energy quanta ~ωc. The power of the thermomechanical

noise is then proportional to nth = A2
th/2 = kBT/(~ωc) ≈ 4400, and its bandwidth is ∆ωth = κ. Well

above the lasing threshold, the power of the cw lasing signal is ncw = A2
cw/2 ≈ Γ‖N |Meq|/(2κ) ≈

N/840, and its bandwidth is ∆ωcw ≈ κ(nth + 1/2)/ncw [85]. The signal-to-noise ratio for the cw

output is then SNRcw = ncw/∆ωcw

nth/∆ωth
≈ (ncw/nth)2 ≈ (

N/3.7 · 106
)2. The quadratic increase in

SNRcw with the number of atoms reflects the spectral narrowing of the cw signal at high output

power, a fact that is well known and used in optical lasers [85].

For both kinds of pulsed outputs we considered (ringing superradiance and single pulses), the

efficiency of the energy transfer from spins to the cantilever mode is on the order of unity. The peak

cantilever amplitude of a pulse in both cases then corresponds to mode population of about npulse =

N |Meq|/2. Since all pulsed outputs eventually decay at the time scale of κ−1, their bandwidth can be

taken to be ∆ωpulse ≈ κ. Proceeding as above, we find SNRpulse = N |Meq|/(2nth) ≈ N/29000. A

cantilaser operating in the pulsed mode would therefore have a single-shot sensitivity of about 3 ·104

nuclear spins at 4.2 K. A large part of this improvement derives from the hyperpolarization of nuclei

by DNP processes, but the near-unity efficiency of energy transfer between spins and cantilever in

pulsed transients is also significant.

We conclude by considering different possible perspectives upon mechanical lasing—from the

standpoints of quantum optics, NMR spectroscopy, and MRFM. From the perspective of quantum

optics, the cantilaser is very similar to a cavity QED system [89], albeit one with weak coupling

strength, g ∼ Γ‖ ¿ (Γ⊥, κ), and high thermal population, nth À 1. Since such combinations of

parameters are not available in quantum optical systems or NMR laser, this opens up new possibilities
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for studying coherent quantum phenomena in coupled oscillator–atom systems.

In conventional NMR studies, the possibility of a positive feedback between the sample and

the detecting resonance circuit has been long recognized. Bloembergen first considered the back

action of the detecting coil on the sample almost 50 years ago [90]. Unfortunately, such back action

tends to shorten the signal pulses and therefore broaden spectral features. This explains why this

positive-feedback effect, known to NMR practitioners as radiative damping, is generally undesirable

in high-resolution NMR spectroscopy. In contrast, MRFM experimentalists are not interested in

fine details of NMR spectra. Since the ultimate goal of MRFM is atom-by-atom 3D mapping of

nanoscopic objects, the required spectral resolution should only be sufficient to distinguish between

different nuclear species. MRFM practitioners are therefore willing to trade fine spectral resolution

for signal strength and spatial resolution. This is exactly what a mechanical laser provides, by fully

exploiting the positive feedback in the coupled oscillator–spin system.
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Chapter 5

Studies of quality factors of
nanomechanical resonators

The sensitivity of NEMS sensors depends on the mechanical quality factor of the resonator, with

higher quality factors generally resulting in higher sensitivities. The quality factor characterizes the

loss of mechanical energy in the mechanical resonator due to friction or other dissipation mechanisms:

Q ≡ ωR

γ
≡ ωREres

Pdiss
, (5.1)

where ωR is the resonance frequency, γ ≡ Pdiss/Eres is the energy loss rate, Pdiss is the average

power dissipated by the resonator, and Eres is total energy stored in the resonator. Devices with

higher quality factors feature low mechanical loss, which makes them more sensitive to external

perturbations. For example, the thermomechanical noise floor of a nanomechanical force sensor is

given by
√

4kBTkr

Qωr
, where kB is the Boltzmann constant, kr is the effective spring constant of the

resonator, ωr is the resonance frequency, and Q is the quality factor. Similarly, the mass sensitivity

of a nanomechanical resonator scales as
√

SN

2QA , where SN is the spectral density of displacement noise

and A is the amplitude of the displacement signal. Despite the importance of quality factors in

sensing applications, we have only limited understanding of the physical processes that determine

quality factors of nanomechanical resonators in either vacuum or viscous environments like air.

A number of physical mechanisms have been studied in an effort to explain the observed qual-

ity factors of resonators in vacuum. Thermoelastic losses [91] are caused by the motion-induced
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compression, which leads to heating and irreversible heat flow between different parts of the res-

onator. In microscale resonators, thermoelastic losses sometimes do explain the experimental quality

factors [92]. However, in nanoscale resonators, the predicted damping rates due to thermoelastic

damping are generally much smaller than those observed experimentally [91], suggesting that other

mechanisms limit the quality factors in practice.

Clamping losses, also called support or anchor losses, are another mechanism that has been

studied to explain the observed quality factors of micro- and nanoscale resonators [93, 94, 95, 96].

Clamping losses appear because the points where oscillators are attached to the substrate are never

perfectly motionless. Instead, real resonators slightly deform the substrate near the clamping points,

which produces sounds waves radiating away from the clamping point through the substrate. The

energy of these sound waves is generally dissipated in the substrate, which means that the resonator

loses energy due to this process.

The magnitude of clamping losses is determined purely by the geometry and elastic properties of

the resonator and the substrate. However, calculating the clamping losses is generally not a simple

task. Analytical formulas for the clamping losses of doubly clamped beams and cantilevers have been

derived for some special cases of the substrates [93, 94, 95]. For more complicated geometries, the

calculations of clamping losses can be done numerically [97]. However, the predictions of these models

for the quality factor are generally either too large or too small compared with the experimentally

observed values. In addition, most experiments report a clear dependence of the quality factors on

the temperature, which is inconsistent with the clamping loss model. All of this suggests that still

other mechanisms limit the quality factors in practice.

For the majority of nanomechanical resonators, surface-related losses appear to be the domi-

nant source of mechanical losses. This widely held hypothesis is supported by the fact that the

quality factor of nanomechanical resonators generally decreases with decreasing thickness and other

resonator dimensions, i. e., increasing surface-to-volume ratio [98, 99, 100, 103]. In addition, the

quality factors of nanomechanical resonators have been shown to change after annealing [104] or

exposure to ion adsorbates[105]—processes that affect the surface of the resonator.
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However, it is presently not known what physical process are responsible for the surface-related

losses. Many such processes have been hypothesized, including excitation of adsorbed molecules,

movement of lattice defects, and configurational rearrangement. It is likely that the dominant

mechanisms of surface-related loss are completely different for resonators of different geometries and

material properties. In addition, the dominant loss mechanisms may be different for measurements

at room temperature and at cryogenic temperatures.

In other words, the origins of mechanical losses in nanoscale resonators remain something of a

mystery. The theoretical work has been sparse and mostly focused on the quantum model of a

resonator interacting with a bath of two-level systems [106, 107]. This model predicts a realistic

dependence of the quality factor on temperature at low temperatures [106], but does not directly

apply to room-temperature measurements. Experimental data is available for a variety of resonator

materials, geometries, and temperatures [58, 98, 99, 100, 101, 102, 104, 105, 103], but is difficult to

generalize.

In contrast to the case of vacuum, the dominant mechanism of mechanical losses in fluids is clear:

it is the damping effect of the surrounding viscous fluid itself. However, the physics describing the

relevant fluid dynamics can be very complicated. For example, in gas environments, the traditional

continuum model of viscous fluids breaks down when the mean free path of gas molecules becomes

comparable to the resonator dimensions [108]. In such cases, it becomes more appropriate to use

the free molecular flow model, which generally predicts higher quality factors than the continu-

ous model [108]. This improved quality factor of narrow nanoscale resonators has been observed

experimentally [5, 109].

In the case of liquids, where the continuous model is generally adequate, Sader and coworkers

have developed semi-analytical models to predict the frequencies and quality factors of out-of-plane

and torsional modes [111, 112]. Experimental measurement of microscale cantilevers have borne out

such predictions [110]. Using numerical simulations, Cross and coworkers have considered damping

and the associated noise spectra in liquids [113]. Paul and coworkers have also considered additional

damping mechanisms that appear when a resonator is situated close to a solid wall [114]. For
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nanoscale resonators, there is a need for theoretical work modeling the quality factors of in-plane

beam modes and other mode types, such as plate resonator modes.

In this chapter, I describe our measurements of quality factors of nanomechanical resonators

in both vacuum and air. Using thermoelastic actuation and piezoresistive detection, we have been

able to measure the quality factors of multiple out-of-plane and in-plane modes of doubly clamped

beams. These measurements also suggested alternative resonator designs that would feature reduced

mechanical losses in fluids; I present preliminary designs and measurements of such resonators as

well.

5.1 Quality factors of flexural modes of beams in vacuum1

A number of experimental studies have reported measurements of quality factors for resonators of

different geometries [98, 99, 100, 101, 103]. The majority of these measurements were done for

the fundamental out-of-plane modes of cantilevers or doubly clamped beams, with each resonator

providing just one data point. As a result, fabrication imperfections, which are usually different

for each device, introduce additional scatter into the observed dependence of the quality factor on

geometric parameters.

In this section, I describe series of measurements of multiple modes of the doubly clamped beams

in high vacuum (p ¿ 1 mTorr). These measurements may provide more reliable clues about the

causes of mechanical loss in nanomechanical resonators because each resonator provides multiple data

points. In this configuration, any fabrication imperfection would systematically affect all measured

modes.

Figure 5.1 shows the measured vacuum quality factor versus frequency for the in-plane and out-

of-plane modes of the doubly clamped beams that we have studied the most: a 16-µm-long SiC

beam (E7A3) and an 8-µm-long SiC beam (E5C2). We measured many more modes than shown

in Figure 5.1—at even higher frequencies—but we could not clearly identify them as in-plane our

out-of-plane. We identified modes using the results of finite element simulations and the amplitude
1Measurements described in this section were performed in collaboration with I. Kozinsky.
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Figure 5.1: Measured quality factors versus frequency for the in-plane and out-of-plane modes of a
16-µm-long SiC beam (E7A3) and a 8-µm-long SiC beam (E5C2).

of measured response (in-plane modes generally produce a smaller amplitude of piezoresistive signal

for the geometries we used—see section 2.3). The modes we could not identify were probably of a

mixed nature, resulting from the mechanical interaction between an in-plane and an out-of-plane

mode or between a torsional mode and out-of-plane mode.

The first thing that stands out in Figure 5.1 that the quality factor scales with respect to

frequency differently for in-plane and out-of-plane modes. The quality factor of the out-of-plane

scales roughly as Q ∝ f−0.6. We do not have enough data points to fit a scaling relationship for

in-plane modes, but the exponent would clearly have to be smaller. As a result, the quality factors

of in-plane modes are generally lower than those of out-of-plane modes at low frequencies, but the

situation reverses for the high-frequency modes. Second, the quality factors depend on more than

just frequency. The sequences of data points for the 16-µm-long and 8-µm-long devices are clearly

offset from each other, despite the fact that they have identical geometries except for the lengths. At

the same simlar frequencies, the quality factors of the longer device are approximately 30% larger.

This means that these quality factors cannot be explained by a surface loss model that depends

purely on the frequency.
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Figure 5.2: Quality factor of the out-of-plane and unclassified modes of multiple SiC beams: 24-
µm-long E7A1, 16-µm-long E7A3, 8-µm-long E5A2, 8-µm-long E5C1, 8-µm-long E5C2, 8-µm-long
E5C3 (before and after annealing), and 4-µm-long 6D2.

We have performed quality factor measurements on many other silicon-carbon beams, but were

not always able to properly classify as many modes as for devices E7A3 and E5C2. For low-

numbered out-of-plane modes, we generally observed the same scaling of quality factor Q ∝ f−0.6,

as illustrated by Figure 5.2. Note that this graph also includes the data from devices E7A3 and

E5C2, both the out-of-plane modes and the unclassified higher-frequency modes. One interesting set

of measurements was provided by the device E5C3, which we measured after fabrication and again

after in-situ annealing, which was done by passing DC current through both loops of the device in

vacuum and therefore heating the device by an estimated 200 K. After annealing, the frequencies

of the out-of-plane modes we measured shifted up by a few percent, probably due to a decrease in

mass of surface adsorbates. The quality factors of the measured mechanical modes increased by

15% on average, but the scaling of the quality factor with frequency remained the same. Again, this

suggests that the main mechanism of mechanical losses for the out-of-plane modes is related to the

surface of the device and possibly the adsorbates on the surface.

Another prominent feature of Figure 5.2 is the apparent knee of the curves occurring at a fre-

quency of approximately 400 MHz. Beyond this frequency, the quality factor seem to decrease with
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frequency much faster than Q ∝ f−0.6. Unfortunately, we were not able to classify most of these

high-frequency modes: Some of them are high-numbered out-of-plane modes, but others may be

in-plane modes, torsional modes, or modes of mixed nature. Nevertheless, the quality factors of all

these high-frequency modes seem to follow a different frequency scaling relationship and are possibly

determined by a different physical process than the low-frequency modes.

One candidate for this high-frequency dissipation process is clamping loss. The theoretical pre-

diction for the quality factors of the out-of-plane modes of a doubly clamped beam that is connected

to two semi-infinite volumes of bulk material is approximately given by [95, 116],

Q ≈ 10× l5

wt4π4(n + 1/2)4
(5.2)

where l, w, and t are the length, width, and thickness of the beam, n is the mode number, and the

derivation assumes that the beam has no tension. This formula predicts unrealistically high quality

factors (Q > 106) for the fundamental and other low-numbered modes of the beams we studied,

suggesting that other loss mechanisms are dominant for these modes. However, for high-numbered

modes, n > 10, the predictions become much closer to the quality factors we observe in practice.

For example, if we assume w = 400 nm and t = 80 nm, the fifteenth mode of an 8-µm-long beam

is predicted to have a quality factor of approximately 3800. If we assume t = 160 nm, which better

describes the combined thickness of the beam itself and the metal loops on the beam ends, the

predicted quality factor drops to approximately 240, which is very close to the values we observed.

In addition, since for high flexural modes, ωn ∝ n2, this formula predicts that the quality factor

should scale as Q ∝ ω−2. This dependence seems to fit the data in Figure 5.2, although the number

of data points is not large enough to make any definite conclusions.

Of course, the assumptions used to derive Eqn. (5.2) are not very realistic for the beams we

studied. Rather than being connected to an infinite semispace of the same material, the ends of

the beam are connected to an approximately 400-nm-long SiC ledge—a membrane that results from

the underetching during the suspension stage of the fabrication process. Beyond the ledge, the
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Figure 5.3: (a) Measured quality factors versus frequency for the first eight out-of-plane modes of
an 8-µm-long SiC beam with cobalt film (E7D1) at various temperatures. (b) Same for the first four
out-of-plane modes of 4-µm-long SiC beam without cobalt film (E6D2).

SiC layer is fixed to the bulk of the silicon chip, whose elastic properties are different from those

of silicon carbide. We should therefore use any prediction of Eqn. (5.2) with caution. Still, it is

encouraging that the quality factors predicted for high-numbered modes give values comparable to

the experimental values.

In addition to plain silicon-carbide devices, we have also measured the quality factors of beams

with deposited cobalt films, described in Chapter 4. Figure 5.3(a) shows the measured quality factor

of one such beam at three different temperatures. At room temperature, the measured quality factors

are approximately twice smaller than those of devices with no cobalt film, but surprisingly, they seem

to follow the same scaling law Q ∝ f−0.6, albeit with more scatter. The same scaling law persists

at low temperatures, with the quality factors of low-numbered out-of-plane mode shifting more or

less in parallel. This suggests that the same physical mechanism limits the quality factors of low-

numbered out-of-plane modes at both room and cryogenic temperatures for devices with and without

cobalt films. The strong temperature dependence again contradicts the hypothesis that the quality

factor of these low-numbered modes is limited by the clamping loss mechanism.2 Note, however,
2As mentioned in the introduction to this chapter, clamping loss depends only on the geometry and the material

properties of the resonator and the substrate. Therefore, clamping loss can exhibit a temperature dependence only
to the extent that the geometry and the material properties change with temperature. Both in theory and in prac-
tice, these changes in geometry and material properties are quite small—no more than a few percent in the entire
temperature range from from 300 K down to 10 K.
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that the temperature dependence is less pronounced for the highest detected modes. Going from

300 K to 79 K, the quality factor of these higher modes increases by approximately a factor of two,

compared to a factor of four for the low-numbered modes. We also observed similar behavior for the

modes of a 4-µm-long SiC beam (Figure 5.3(b)), although it is not as clear because of fewer data

points. For both beams, this behavior is consistent with the hypothesis that the quality factors of

the high-frequency modes are limited by a temperature-independent mechanism, such as clamping

loss.

Overall, the data we collected from beams in vacuum supports the hypothesis that the quality

factor of low-numbered out-of-plane modes (≤ 400 MHz) is limited by a surface-related loss mech-

anism, whereas the quality factor of high-numbered modes (≥ 400 MHz) may be limited by the

clamping loss mechanism. However, the surface-related loss mechanism depends on more than just

the resonance frequency of the mode: Devices of different lengths have noticeably different quality

factors at the same frequencies. We and other members of the Roukes group have also observed

that, in order to maximize the quality factor of the fundamental mode, the ledge resulting from

underetching should be minimized—larger underetch generally results in lower quality factors. The

importance of the clamping conditions was also demonstrated in Ref. [101], where the measured

quality factor of a free-free beam was more than twice larger than that of a doubly clamped beam

of similar resonance frequency. At the same time, the authors of Ref. [101] argued that the surface

roughness strongly affects the observed quality factors of doubly clamped beams. All of this indi-

cates that typical high-aspect-ratio devices fabricated in our group have their quality factors limited

by a surface-related loss mechanism that depends on the clamping conditions, but unlike the regular

clamping-loss mechanism, is not fully determined by the clamping conditions.

It is not yet clear what physical processes may underlie such a surface-related, clamping-sensitive

loss mechanism. However, it is easy to see why such a mechanism is likely to exist. Whatever micro-

scopic physical process leads to mechanical loss (e.g., motion of defects, motion of surface adsorbates,

surface reconfiguration, etc.), the dissipated energy must be transported by phonons away from the

beam to the bulk of the substrate. The probability with which these energy-carrying phonons can
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escape from the resonator to the outside bulk substrate generally depends on the clamping conditions

of the resonator. More rigid clamping conditions generally suppress the transmission of phonons,

whereas softer clamping allows phonons to pass through more easily. Therefore, the clamping con-

ditions may easily affect the mechanical loss due to, for example, surface adsorbates because the

clamping conditions determine the spectrum of thermal phonons that the surface adsorbates are

exposed to. To the best of my knowledge, the thermal spectrum of phonons inside a nanomechanical

resonator has not been calculated before, although the phonon density of states (DOS) has been cal-

culated for a nanoparticle weakly coupled to a substrate [115]. A calculation of the thermal phonon

spectrum for a cantilever or a beam may shed new light on the problem of surface-related losses in

nanomechanical resonators in vacuum.

5.2 Quality factors of flexural modes of beams in air3

Apart from measurements of multiple beams in vacuum, we have also systematically measured the

quality factors of two SiC beams in ambient air: the 8-µm-long beam E5C2 and 16-µm-long beam

E7A3. Tables 5.1 and 5.2 list the results of these measurements. In air, mechanical losses occur due

to the same mechanisms as in vacuum and, additionally, the viscous damping of the air. If we assume

that the surface-related losses are similar in air and in vacuum4, we can calculate the contribution to

the mechanical losses due to air friction alone. The corresponding viscous-damping-limited quality

factor can be calculated using the formula

Qvisc =
1

Q−1
air −Q−1

vac

, (5.3)

where Qair and Qvac are the measured quality factors of the mode in air and in vacuum, respectively.

The viscous-damping-limited quality factor, Qvisc, is the expected quality factor of a beam with no

loss mechanisms other than air friction. For the low numbered modes, we have Qvac À Qair and
3Measurements described in this section were performed in collaboration with I. Kozinsky.
4The vacuum measurements described earlier in the section were not performed in ultrahigh vacuum and we did

not normally anneal the devices. Therefore, the surfaces of nanomechanical resonators were likely to have similar
adsorbates in both air and vacuum.
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Mode fvac Qvac fair Qair Qvisc Qtheor

1st out 9.42 12000 9.35 37 37 42
2nd out 20.0 7750 19.7 67 68 77
1st in 20.8 3110 20.7 130 — —
3rd out 32.3 5570 32.0 106 108 105
4th out 46.8 4410 46.7 141 146 148
2nd in 54.4 2630 54.3 300 — —
5th out 63.9 3620 63.8 173 182 181
6th out 83.5 3220 83.4 201 214 215
3rd in 103 2210 103 430 — —
7th out 107 2950 106 231 250 254
8th out 132 2700 131 263 291 303
9th out 160 2510 159 298 338 366
4th in 167 1740 166 550 — —
10th out 190 2190 190 330 389 400
11th out 223 1970 222 360 440 437
5th in 243 1760 243 700 — —
12th out 258 1660 257 375 484 477
13th out — — 296 412 — 530

Table 5.1: Experimental resonance frequencies and quality factors in vacuum, fvac, Qvac, and air,
fair, Qair, as well as the viscous-damping-limited quality factor calculated from experimental data,
Qvisc, and theoretically, Qtheor, using the theory of Ref. [112]. Data are presented for the lowest
thirteen out-of-plane (out) modes and the lowest five in-plane (in) modes of a 16-µm-long beam
(device no. E7A3). We could not measure the quality factor of the 13th out-of-plane mode in
vacuum because its resonance curve overlapped with the resonance curve of another mode—most
likely a torsional mode—of the resonator.

therefore Qvisc ≈ Qair. However, for high numbered modes, Qvac and Qair become comparable and

Qvisc provides a better picture of the viscous-damping mechanism than Qair by itself.

Figure 5.4 shows the calculated values of Qvisc as a function of the resonance frequency in air.

The quality factors of both in-plane and out-of-plane modes scale with frequency approximately

as Qvisc ∝ f 0.8. The curves formed by the quality factors of the out-of-plane modes more or less

overlap for the two beams. In contrast, the two curves of the in-plane modes are significantly higher

than those of the out-of-plane modes. The two in-plane curves are also noticeably different from

each other, with the quality factors of the longer beam (E7A3) 20–30% higher than the quality

factors of the shorter beam (E5C2) at the same frequencies. For the highest modes, the viscous-

damping-limited quality factors reach values on the order of several hundred and one thousand for

the out-of-plane and in-plane mode, respectively. However, the same high-numbered modes have
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Mode fvac Qvac fair Qair Qvisc Qtheor

1st out 23.25 4500 23.1 70 71 84
2nd out 50.4 3000 49.7 130 136 168
1st in 56.3 2220 56.2 220 — —
3rd out 84.2 2280 83.4 180 195 217
4th out 124.4 1900 123.6 230 262 293
2nd in 145.2 1510 144.9 410 — —
5th out 172.3 1750 171.4 280 333 387
6th out 226.1 1430 225.2 350 463 453
3rd in 272.1 1400 271.6 570 — —
7th out 285.3 1110 284.5 400 625 521
8th out 356.6 920 355.7 340 539 609
9th out 435.4 760 434.6 370 721 719
4th in 520.6 400 520.2 320 — —

Table 5.2: Same as Table 5.1 for the lowest 9 out-of-plane (out) modes and the lowest 4 in-plane
(in) modes of a 8-µm-long beam (device no. E5C2).
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Figure 5.4: Calculated quality factors Qvisc due viscous damping in air for various modes of the
8-µm-long beam E5C2 and 16-µm-long beam E7A3.
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relatively low quality factors in vacuum, which limits the maximum available quality factor in air,

Qair, to approximately 400 and 550, respectively.

Apart from experimental data, Tables 5.1 and 5.2 also show the theoretically calculated viscous-

damping-limited quality factors for the out-of-plane modes. For these calculations we used the theory

of Sader and coworkers [111, 112], which was originally developed for cantilever resonators, but can

be easily generalized to doubly clamped beams. The agreement between theory and experiment

is generally good, especially for the higher modes. The theoretical predictions for the lowest out

of plane modes deviate from the experimental values by 10-20%. There are a number of possible

explanations for this discrepancy. First, the existence of the nearby substrate may play a role in

experiment, especially at the lowest frequencies, where the viscous penetration depth is largest. In

contrast, the theory of Sader and coworkers was derived for a beam in an empty space. Second,

the continuous fluid approximation used by Sader and coworkers is not strictly applicable to our

beams, because the mean free path of approximately 70 nm in air at normal pressure is comparable

to the dimensions of our beams. Other mechanisms my play a role too, and further theoretical and

experimental study is needed to clarify the cause of the discrepancy.

Interestingly, the theory of Sader and coworkers predicts that resonators of different length but

identical thicknesses and widths should have similar quality factors of out-of-plane modes at similar

resonance frequencies. This is indeed the case for the out-of-plane modes in our experiments, as can

be seen from the overlapping curves in Figure 5.4. In contrast, the quality factors of the in-plane

modes do not overlap, but rather are offset from each other by an approximately constant factor. At

this point, we do not yet have reliable theoretical predictions of quality factors for in-plane modes,

so it is difficult to pinpoint the likely reason for this offset.5 The development of such a theory in

the future will allow us to optimize the geometries of in-plane resonators for high quality factors in

air.
5John Sader and his student Doug Brumley are currently developing a theory of viscous damping for in-plane

flexural modes.

84



(b)(a)

20.5 20.6 20.7 20.8 20.9

0.0

0.1

0.2

0.3
 Vacuum
 Air

Lo
ck

-in
 s

ig
na

l, 
m

V

Frequency, MHz

Figure 5.5: (a) Finite element simulation of the in-plane mode of a center-supported SiN beam
resonator. The color codes the extensional strain along the length of the beam. The arrows indicate
the primary direction of the deflection. The red dotted lines show the current paths used for detection
and actuation. Inset shows a scanning electron micrograph of the actual device A1D1. (b) Resonance
curves of the in-plane resonance in vacuum and air.

5.3 Alternative resonator designs for high quality factors in

fluids

The quality factor studies of the previous section can be used to determine the design principles

for resonant sensors with high quality factors in viscous environments, which would enable high-

sensitivity measurements in air or liquid. Such devices would be very useful, for example, in gas

sensing applications (Chapter 5.7). Some of the in-plane mode resonances described in the previous

section featured viscous-damping quality factors Qvisc on the order of one thousand. However,

all of these modes were difficult to measure because we designed the thermoelastic actuators and

the piezoresistive detectors of these beams for measuring out-of-plane rather than in-plane modes.

As a result, these modes required high drive and bias voltages to produce a measurable resonance

response. This motivated me to look for alternative resonator geometries that would feature viscous-

damping-limited quality factors of over 1000 in air and would still be easy to measure.

Figure 5.5(a) shows the first geometry I have studied. This type of a resonator is essentially

a beam that is supported in the center rather than at the ends. Alternatively, it can be viewed

as two cantilevers joined together. The central support prevents the existence of tension, which

can significantly modify the frequency of doubly clamped beams. In addition, according to finite
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element simulations, this geometry is much less sensitive to the depth of the underetch that appears

during the suspension stage of the fabrication. The non-existence of tension and the low sensitivity to

underetch should minimize the variations in the resonance frequency of such device due to fabrication

imperfections. Such resonators should therefore be particularly useful as elements of resonator arrays,

described in Chapter 6.

The resonances of such devices can be detected using the two-port measurement scheme described

in Appendix B. The electric currents used for piezoresistive detection and thermoelastic actuation

enter the resonator through one side at the clamping point, flow away from the center of the beam

in opposite directions, then come back towards the center and exit the beam on the other side.

The slit in the middle of the beam, which creates the two diverging current paths, is intentionally

off-center. The asymmetry concentrates both the Joule heat used for actuation and the strain used

for detection in the narrower part of the current path. As a result, I could effectively actuate and

detect the fundamental in-plane mode of the beam, shown in Figure 5.5(a).

I fabricated these resonators from 100-nm-thick silicon nitride (SiN) covered with a 60-nm-thick

gold film. The inset of Figure 5.5(a) shows an SEM image of a device that was 20 µm long and 2 µm

wide. Figure 5.5(b) shows the experimentally measured resonance curves of this device in vacuum

and air. The experimentally measured resonance frequency in vacuum was approximately 20.6 MHz,

which agrees reasonably well with the resonance frequency of approximately 21.3 MHz predicted by

the finite element simulations. One possible source of the discrepancy is the fact that the silicon

nitride layer was partially etched during the suspension stage of the fabrication. The fitted quality

factors in air and in vacuum were Qair ≈ 440 and Qvac ≈ 1400, corresponding to Qvisc ≈ 650.

Surprisingly, the resonance frequency was larger in air than in vacuum. This behavior differs from

what we observed for all the in-plane modes of doubly clamped beams, and I do not currently have

a good explanation for it.

I have also studied the extensional mode of the center-supported beams, shown in Figure 5.6(a).6

I have measured these modes in SiN-gold bilayer devices and in devices made of only a 60-nm-thick
6The extensional mode of a ZnO-SiN resonator was recently demonstrated to be effective for gas sensing [117].
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Figure 5.6: (a) Finite element simulation of the extensional mode of a center-supported gold beam
resonator. Inset shows a scanning electron micrograph of the device. (b) Resonance curves of the
extensional resonance in vacuum and air.

gold film. The gold devices do not suffer from partial etch of the silicon-nitride layer and are

therefore easier to model. The inset of Figure 5.6(a) shows an SEM image of a 10-µm-long, 1-µm-

wide gold device. Figure 5.6(b) shows the measured resonance curves of this device in vacuum and

air. In vacuum, the measured resonance frequency was approximately 132 MHz, which agrees with

predicted frequency of 133 MHz. The fitted quality factors in air and in vacuum were Qvac ≈ 540

and Qvac ≈ 680, corresponding to Qvisc ≈ 2500. Again, the resonance frequency was larger in air

than in vacuum.

For both in-plane flexural and the extensional modes of the center-supported beams, the viscous-

damping-limited quality factors, Qvisc, were quite large. However, the actual quality factors in air

were lower because other loss mechanisms, described by Qvac, were significant for these devices.

In the case of the SiN-gold resonator, the low quality factor in vacuum was probably due to the

partial etching of the SiN layer, which made the bottom surface of the resonator very rough. In

the case of the gold resonator, its quality factor in vacuum was expected to be low because metal-

based resonators generally exhibit lower quality factors than semiconductor-based ones. I expect the

vacuum quality factors to be significantly larger for well-processed semiconductor center-supported

beams. Such resonators should have Qair ≈ Qvisc and therefore provide better sensitivity, for

example, in gas-sensing applications in air.
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Figure 5.7: (a) Scanning electron microscope of a 10-µm-side plate resonator (before being sus-
pended) and a schematic of the connections to the drive, bias, and detection circuitry. The brighter
colors in the SEM image correspond to the metal electrodes and the serpentine metal piezoresistor
made out of 50-nm-thick AlSi film. (b) Finite-element simulation of the Lamé mode of a 10-µm-side
plate. The color codes extensional strain in the direction in the horizontal interaction. The predicted
resonance frequency is approximately 325 MHz.

The final resonator geometry we have considered but not yet measured is that of a plate resonator,

shown in Figure 5.7. In particular, we are interested in the in-plane plate modes, such as extensional

(breathing) mode, wineglass and Lamé plate modes. Compared to out-of-plane and in-plane flexural

resonators, in-plane modes of plate resonators of the same thickness and length have much higher

resonance frequencies and often higher quality factors, which makes them particularly attractive

for gas sensing applications. For example, a microfabricated square-plate silicon resonator with a

thickness of 25 µm and a side length of 2 mm, had an extensional resonance frequency of 2.18 MHz

and a quality factor of 1.16× 106 and 15000 in vacuum and air, respectively [118]. Even with such

large thickness, this resonator had a surface mass sensitivity of approximately 125 pg/cm2 at a

pressure of few milliTorr, about an order of magnitude better than the areal mass sensitivity of a

quartz crystal microbalance.

Scaling the thickness of plate resonators to the sub-micron dimensions should allow us to in-

crease these sensitivities by many orders of magnitude. Together with our collaborators from LETI

(Grenoble, France), we have modeled and started the fabrication of square plate resonators with a

thickness of 360 nm and a variety of side lengths from 50 µm down to 5 µm. The expected reso-

nance frequencies of the Lamé modes (Figure 5.7(b)) of these resonators range from 65 to 650 MHz,

depending on the side length. Traditionally, such plate resonators have been detected using electro-
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static (capacitive) actuation and detection. However, as discussed in Chapter 1, capacitive detection

becomes much less effective at the nano scale. Therefore, we designed plate resonators that could use

electrostatic actuation and piezoresistive downmixing detection. Figure 5.7(a) shows the geometry

of such a plate resonator and the necessary connections to the drive, bias, and detection circuitry.

For the Lamé mode, the capacitive drive can be realized by applying a voltage across a small

gap on two opposite sides of the plates. The resulting resonant motion can be detected using a

serpentine piezoresistor, which can be aligned along either side of the plate (see Figure 5.7(a)). To

estimate the piezoresistive signal, let us consider a plate resonator with thickness t, side length l,

and capacitive gap g. The force generated on the opposite sides of the plate by the electrostatic

drive will have an amplitude of

Fd ≈ ε0ltVdVdc

g2
, (5.4)

where ε0 is the electric permittivity of vacuum, Vdc and Vd are the DC voltage and the amplitude of

the ac drive voltage on the capacitive electrodes (see Figure 5.7(a)). On resonance, the drive forces

will result in the longitudinal strain with an amplitude of approximately ε = QFd/(Y lt), where Q

is the quality factor of the resonance and Y is the Young’s modulus of the plate material. The

amplitude of the detected piezoresistive signal will be given by

Vs ≈ 1
2
εVb =

ε0VbVdVdc

2Y g2
, (5.5)

where Vb is the amplitude of the ac bias signal. Assuming Vdc = 10 V, Vd = Vb = 1 V, Y =

150 GPa, g = 100 nm, and a realistic quality factor of Q = 1000 in air, the expected piezoresistive

signal is approximately 50 µV, which is comparable to the piezoresistive signals produced by out-

of-plane cantilever and beam resonators. Assuming Johnson noise of Vn = 5 nV/
√

Hz, which

corresponds to the piezoresistor’s resistance of 5 kOhm, the expected relative frequency stability is

σf = Vn/(2QVs) ≈ 5 · 10−8 Hz−1/2. The expected areal mass sensitivity is then given by 2ρtσf ≈

8 pg/cm2, where t = 360 nm and ρ = 2330 kg/m3 is the thickness and density of the silicon plate.

For comparison, one adsorbed monolayer of water creates an areal mass load of approximately
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40 ng/cm2—more than three orders of magnitude larger. Achieving higher quality factors in air,

using a higher dc voltage, Vdc, or thinner resonators can potentially improve this sensitivity even

further. Devices with such record-setting areal mass sensitivities in air would open new possibilities

in, for example, gas sensing applications.
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Chapter 6

Nanomechanical resonator arrays
for gas sensing applications

Individual nanoscale resonators have been used to establish record sensitivities in force [7], posi-

tion [11], mass [4], and gas concentration [119]. The small size of nanoscale resonators clearly makes

them particularly sensitive to external perturbations. However, it also limits the power these devices

can use and the magnitude of signal they can produce. A simple way to increase the functionality

of nanoscale devices is to combine such devices into arrays.

There are a number of ways arrays can leverage the sensitivity of individual devices. For example,

different devices within the array can be used as sensors of different chemical compounds. Such arrays

have been fabricated using both microscale cantilever resonators [120] and nanowire resonators [121].

Alternatively, one can engineer the mechanical coupling between individual resonators to produce a

collective mode of oscillation that inherits the positive characteristics of individual resonators, such

as high frequency and quality factor, but is able to handle more power [122]. Such collective modes

can then be further optimized to produce the desired overall response, such as that of a bandpass

filter [123].

In this chapter I describe a simple way of creating arrays of nominally identical devices by

connecting them electrically in such a way that the signals of individual resonators add together.1

As I show below, such arrays are simple to fabricate, can handle more power and produce more

signal than individual resonators, but also place stringent requirements on the actuation methods
1The initial design, analysis, and measurements of electrically connected resonator arrays were done by J.S. Aldridge

and E.B. Myers.

91



(a) (b)

1 2              …        n

1

2

m

Figure 6.1: (a) Schematic of an electrically connected array of piezoresistors in the combined parallel-
series configuration. (b) Fragment of an array of piezoresistive cantilevers fabricated at LETI
(Grenoble, France). Each cantilever in the array is 2.8 µm long and 800 nm wide and consists
of a 160-nm-thick structural silicon layer and 50-nm-thick AlSi metal layer.

and the fabrication tolerances.

6.1 Response of electrically connected arrays: Theory

Figure 6.1(a) shows a schematic of an electrically connected array of piezoresistors in the combined

parallel-series configuration. Figure 6.1(b) shows one realization of such an array consisting of

nominally identical piezoresistive cantilevers.

If we assume that at rest all piezoresistors have identical resistances R0, the resistance of the

entire array at rest is given by Rarr = R0×n/m, where is m is the number of rows in the array, and n

is the number of columns. If the resonators are excited into motion, the resistance of a piezoresistor

in row i and column j will become Rij = R0(1+δij), where δij is the relative change in its resistance

due to the motion-related deformation. The resistance of the entire array in this case is given by

Rarr =
n∑

j=1

1∑m
i=1

1
R0(1+δij)

≈ R0
n

m


1 +

1
mn

m,n∑

i=1,j=1

δij


 ,

where the Taylor expansion is justified because the relative changes in the resistance of piezoresistors

are generally small, δij ¿ 1. When using piezoresistive downmixing, the signal is proportional to
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the applied bias voltage Vb:

Varr =
1
2
Vb

∆Rarr

Rarr
=

1
2
Vb

1
mn

m,n∑

i=1,j=1

δij . (6.1)

If all resonators respond in exactly identical ways, δij = δ0, the formula for the array signal reduces

to that of an individual resonator:

Varr =
1
2
Vb

1
mn

m,n∑

i=1,j=1

δ0 =
1
2
Vbδ0. (6.2)

The maximum drive that can be applied to an individual piezoresistive resonator is limited

either by the nonlinearity of mechanical response or the maximum tolerable level of heating. In

experiments, the maximum tolerable temperature increase due to heating was typically on the order

of 100 K, corresponding to maximum dissipated power on the order of Pmax ∼ 100 µW for an

individual resonator. If this maximum power is applied to each resonator in the array, the total

dissipated power will naturally scale as the number of array elements, N = nm. In contrast, the

bias signal, Vb, and the maximum signal that can be obtained from the array, Varr, will scale as the

number of columns, n.

It would seem then that an array consisting of just one row would be the most economical way

to leverage the signal of individual resonators. However, having an array of just one row would

mean that the array resistance scales linearly with the number of array elements, Rarr = R0 × N ,

and may reach excessively large values for arrays of thousands of resonators. In experiments, it is

often desirable to keep the resistance of the total array close to some fixed value, usually 50 Ohm for

high-frequency applications. In addition, a single-row array is very vulnerable to electrical defects

since the breaking of the conducting path in just one piezoresistor would render the entire array

inoperable. As a result, it is preferable to scale the number of rows proportionally to the number

of columns, so that the arrays remain robust with respect to defective individual resonators and

have approximately constant resistance. In this case, the piezoresistive signal scales proportionally

to both n and m, and therefore proportionally to the square root of the total number of array
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elements,
√

N . At the same time, the fundamental sources of noise in such measurement—Johnson

noise and thermoelastic noise—do not depend on N at all. The signal-to-noise ratio then also scales

as the square root of the number of elements,
√

N , and, of the total dissipated power,
√

Npmax.

The situation when the signal-to-noise ratio increases proportionally to the square root of the total

dissipated power is very common in electrical engineering.

Note, however, that the scaling of signal as
√

N is the best-case scenario. In reality, different

resonators will not respond to the drive in identical ways for a number of reasons. The first issue to

consider is that the phase and amplitude of the drive may not be the same for all resonators. For

example, in the case of piezoshaker drive (Section 2.1), the phases and amplitudes of the surface

motion will vary due to the interference of ultrasound waves inside the bulk of the resonator chip.

The length scale of such variations is on the order of the bulk acoustic wavelength corresponding to

the resonator’s frequency, ∼ 350 µm for a 25 MHz resonator on silicon substrate, which is smaller

than the dimensions of the typical arrays we used in our experiments.

If we assume, for the sake of argument, that the drives for different resonators of the array have

completely random phases ϕd but the same amplitude, then Eqn. (6.1) will take the form

Varr =
1
2
Vb

1
mn

m,n∑

i=1,j=1

δije
iϕd .

The expected magnitude of this signal is2

〈|Varr|〉 =
1
2
Vb

√
mn

mn
δ0 =

1
2
Vb

1√
N

δ0.

Since the bias signal Vb normally scales as
√

N , the use of arrays does not offer any advantages

with respect to the use of an individual device in this case. It is therefore crucial to keep the

drive phase the same for all the resonators in the array. Maintaining such phase coherence of the

drive is difficult with piezoshaker drive but is much easier with integrated actuators, such as the

thermoelastic actuators described in Section 2.3.
2The addition of signals with random phase is equivalent to a random walk in the complex plane, which implies

that the magnitude of the sum
∑m,n

i=1,j=1 δijeiϕd will scale as the square root of the total number of terms in the sum.
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Even if the drives of all resonators in the array are perfectly in sync, the response of individual

resonators may not be the same because they all have slightly different mechanical properties, in

particular different resonance frequencies. The finite resolution of e-beam and optical lithography

introduces slight variations in the dimensions of the fabricated resonators and hence their frequencies.

A simple way to judge whether this dispersion in resonance frequency is significant is to compare it

to the natural width of the resonance under typical operating conditions. For example, nanoscale

resonators shown in Figure 6.1 have a typical quality factor on the order of 100 at atmospheric

pressure in air, corresponding to a resonance width that is 1% of the resonance frequency. Therefore,

if the dispersion of resonance frequency is much smaller than 1%, the individual resonance curves

will strongly overlap and the Lorentzian-response terms δij appearing in Eqn. (6.1) may be treated

as the same, leading to Eqn. (6.2). Conversely, if the dispersion of the frequencies is much larger than

1%, the sum of the individual Lorentzian response curves will be much broader than an individual

resonance, and the peak array signal will be much reduced with respect to the maximum possible

signal given by Eqn. (6.2).

In order to quantify this qualitative argument, we need to consider the problem of adding up

many Lorentzian resonance curves with randomly distributed resonance frequencies. The normal or

Gaussian probability distribution is a common choice in such simulations; however, I have found that

in reality the distribution of resonance frequencies has long and “fat” tails, i. e., the probability of

finding resonance frequencies far off the mean is much larger than would be expected in a Gaussian

distribution.3 I have therefore chosen to use the Cauchy distribution, which has the probability

density distribution similar to the Lorentzian:

p(ωR) =
Qdistr/(2πω0)

1 +
(

ωR−ω0
2ω0/Qdistr

)2 , (6.3)

where ω0 is the center frequency of the distribution and Qdistr characterizes the width of the dis-

tribution, similarly to the way that a quality factor characterizes the width of a Lorentzian curve.

The Cauchy distribution describes more accurately the long tails of the frequency distribution that
3The large number of outliers is illustrated by the data shown Figs. 6.5–6.7 below.
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we observe in practice and has the added advantage that the expected form of the array response

can be calculated analytically, as shown below.

The response of a forced, damped harmonic oscillator is given by

s(ω) = A
ω2

R/Q

ω2
R − ω2

D + iωRωD

Q

,

where A is the amplitude of the resonance signal, ωR is its resonance frequency, Q is its quality

factor, and ωD is the frequency of the drive. If the quality factor of an individual resonator is large,

Q À 1, the response near the resonance can be approximated by a complex Lorentzian

s(ω) ≈ A
ωR/2Q

ωR − ωD + iωR

2Q

.

The expected signal from one array cantilever with a randomly distributed resonance frequency is

then a convolution of the complex Lorentzian response with the Cauchy distribution:

〈s(ω)〉 ≈
∫ ∞

−∞

AωR/2Q

ωR − ωD + iωR

2Q

× Qdistr/(2πω0)

1 +
(

ω−ω0
2ω0/Qdistr

)2 dωR =
Aω0/2Q

ω0 − ωD + iω0
2 (1/Q + 1/Qdistr)

,

which is simply the complex Lorentzian response with a new effective quality factor Qeff = 1/(Q−1+

Q−1
distr) and a new effective amplitude Aeff = Qeff/Q. The expected signal of the entire array will

have the same form, since it is essentially the sum of the expected signals of individual cantilevers and

we assume all cantilevers in the array to be described by the same Cauchy distribution. In addition,

for a large array, the typical response generally will not deviate far from the expected response

as the random variations introduced by individual resonances will largely average out. Therefore,

the frequency dispersion has the same result as an additional source of damping, corresponding

to a quality factor Qdistr, reducing the effective quality factor of the array from Q to Qeff =

1/(Q−1 + Q−1
distr).

To illustrate this effect of the resonance frequency dispersion on the shape of the array response,

I have performed numerical simulations for an array consisting of 2800 elements. The results are
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Figure 6.2: X and Y quadratures of the simulated response of an array of 2800 cantilevers with
Q = 100 and Qdistr of 400, 100, and 25. The effective quality factors Qeff in these cases are
1/(400−1 + 100−1) ≈ 80, 1/(100−1 + 100−1) ≈ 50, and 1/(25−1 + 100−1) ≈ 20, respectively.
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Figure 6.3: X and Y quadratures of the simulated response of an array of 2800 cantilevers with
Qdistr = 100 and Q = 100 and 1000. The effective quality factors Qeff in these cases are 1/(100−1 +
1000−1) ≈ 90 and 1/(100−1 + 100−1) ≈ 50, respectively.

shown in Figure 6.2. In the simulations, all resonators were assumed to have a quality factor of

100, and the width of the Cauchy distribution was varied, starting from a distribution width much

smaller than the natural width of the resonance, Qdistr À Q, and ending with a distribution width

much larger than the natural width of the resonance, Qdistr ¿ Q. As expected, increasing the

width of the frequency distribution broadens the resonance peak of the entire array and reduces its

amplitude.

In Figure 6.2, the simulated response curves do not deviate significantly from the perfect Lorentzian

curves due to the large number of the elements in the array and their relatively low quality factors.

However, the fact that the overall response curves of the array consist of many narrow lines corre-

sponding to individual resonators becomes evident if the quality factors Q of individual resonances
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are high enough, as shown in Figure 6.3. These two curves simulate the response of the actual array

shown in Figure 6.1(b) in air and vacuum. The frequency distribution width of the typical arrays I

have worked with were on the order of 1%, corresponding to Qdistr ≈ 100, and the quality factors

of individual resonances were on the order of 100 and 1000 in air and vacuum, respectively. As a

result, the experimental curves in air were much smoother than those in vacuum, and the effective

quality factor of the array response was approximately 100 in vacuum and 50 in air, as illustrated

by Figure 6.3.

The differences between different resonators in the array are, of course, not limited to the vari-

ations in the drive phase and resonance frequencies. The quality factors and and the amplitudes of

response of individual resonators will also vary. However, we have found in our experiments that

these variations are relatively insignificant and have a negligible effect on the overall response of the

arrays.

6.2 Response of electrically connected arrays: Experiment

I have measured a number of electrically connected arrays fabricated by our collaborators at LETI

(Grenoble, France) (see Figure 6.1(b)). The cantilevers forming the arrays were bilayer structures

consisting of a 160-nm-thick structural silicon layer and a 50-nm-thick Al0.96Si0.04 metal layer, similar

to the one shown in Figure 1.2(c). The lengths of the arrays varied between 1.6 and 5 µm depending

on the particular array design, and the width of the cantilevers was either 800 nm or 1.2 µm. The

majority of the arrays I have measured consisted of 20 rows and 140 columns for a total of 2800

array elements. The pitch between the array elements was either 6.5 µm or 10 µm depending on

the design.

I measured the arrays using the two-port measurement scheme described in detail in the Ap-

pendix B. The main idea is to use a single metal loop of a resonator for both thermoelastic actuation

and piezoresistive detection. This measurement scheme works in the same way for arrays as for indi-

vidual cantilevers, the only difference being the need to supply more RF power in the case of arrays.

The setup for measuring arrays is shown schematically in Figure 6.4(a). The power amplifier (Am-
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Figure 6.4: (a) Schematic of two-port measurements of arrays using thermoelastic actuation and
piezoresistive detection. DC is the directional coupler, FD is the frequency doubler, HPF is the
high-pass filter, LPF is the low-pass filter, and PA is the power amplifier. (b) Schematic of bridge
measurement of two arrays. PS is the 180-degree power splitter.

plifier Research model 25A250A) was rated at 25 W maximum output power, but in our experiments

the maximum power supplied to the arrays typically did not exceed 1 Watt per array.

Figures 6.5 and 6.6 show typical results of a two-port measurement of an array. Both mea-

surements are of the “double” type, as described in the Appendix B. The background in these

measurements was large, 10 to 100 times larger than the amplitude of the array resonance peak.

Consistent with the simulations of the previous section, the vacuum response curves feature many

sharp features corresponding to resonances of individual high-Q cantilevers. The air curves are

generally smoother and the sharp features in them, where present, are due to noise spikes.

In order to obtain more information about the dispersion of frequencies in the arrays, we have

also done measurements using thermoelastic actuation and optical detection.4 The optical detection

setup was a simple reflection interferometer with a spot size of approximately 10 µm. The results are
4I thank Rassul Karabalin for his help in using the optical detection setup.
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Figure 6.5: Resonant response of the CK-A array in vacuum (a) and air (b). Both quadratures of
the lock-in response, X and Y , are shown. The blue dots are the experimental data, the red lines are
best complex Lorentzian fits. In vacuum, the fitted frequency is 24.0 MHz and the effective quality
factor is 80. In air, the fitted frequency is 24.1 MHz and the effective quality factor is 40.
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Figure 6.6: Resonant response of the A3A8 array in vacuum (a) and air (b). Both quadratures of
the lock-in response, X and Y , are shown. The blue dots are the experimental data, the red lines are
best complex Lorentzian fits. In vacuum, the fitted frequency is 18.4 MHz and the effective quality
factor is 100. In air, the fitted frequency is 18.4 MHz and the effective quality factor is 50.

101



Frequency, MHz

Position, µm

Signal, 
mV

(a)

(b)

Figure 6.7: (a) Optically detected spectrum of cantilevers in array A3A9 for different positions of the
laser spot. (b) Top-view schematic of the 140×20 array of cantilevers (device no. A3A9). Individual
cantilevers are not visible in this image. The dotted red line schematically shows the positions of
the laser spot used to acquire the spectra.

shown in Figure 6.7(a), where I plot the interferometer signal of array versus excitation frequency

and the position of the beam spot. The position of the beam spot was swept across the width of the

array A3A9 with a step of 5 µm (see Figure 6.7(b)).

The small size of the optical spot allows us to detect a small number of cantilevers within the

beam spot instead of the entire array of 2800 cantilevers. As a result it is often possible to resolve

the resonance peaks of individual cantilevers in these spectra. The majority of individual resonances

are situated near the central frequency of 18.6 MHz, and these resonances form the main peak of the

array response. However, there are also a large number of “outliers”, especially at frequencies above

the central peak. Some of these resonances are sufficiently well resolved to be fitted individually.

The quality factor of such individual resonances in vacuum was approximately 1000.

We did not have individual devices with geometries identical to those of array cantilevers, but
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Name Length Width fav Qeff (vac) Qeff (air)
A3A6 5.0 µm 1.2 µm 5.88 MHz 130 12
A3A5 2.8 µm 0.8 µm 16.5 MHz 120 50
A3A7 2.8 µm 0.8 µm 18.4 MHz 100 50
A3A8 2.8 µm 0.8 µm 18.4 MHz 100 50
CK-A 2.1 µm 0.8 µm 24.1 MHz 80 40
CK-2-A 2.1 µm 1.2 µm 24.8 MHz 100 60
A3A4 1.6 µm 0.8 µm ≈65 MHz n/a n/a

Table 6.1: Fitted parameters of the resonance peaks of arrays of cantilevers of different dimensions.
All arrays consisted of 20 rows and 140 columns of individual cantilevers. The cantilevers consisted
of 160-nm-thick Si structural layer and a 50-nm-thick AlSi metal layer. The difference between
arrays A3A5, A3A7, and A3A8 was in the row and column pitches of the arrays.

we had many cantilevers with similar geometries. The quality factors of these cantilevers in vacuum

were also on the order of 1000. This leads to the conclusion that the effective quality factor of

the entire array observed in vacuum is determined by Qdistr ≈ 100. In air, the quality factor of

individual devices was on the order of 100, resulting in the effective quality factor of the array of

1/(1/100 + 1/100) = 50, in accordance with the fitted quality factors of Figs. 6.5 and 6.6.

Table 6.2 summarizes the fitted parameters for various measured arrays. The effective quality

factor in vacuum is on the order of 100, which means that the characteristic frequency spread is

approximately 1%. In general, the frequency spread increases as the dimensions decrease because

the same lithographic imperfections have a proportionately larger effect on smaller structures. Con-

versely, the quality factor of individual cantilevers in air generally decreases as their length increases

because longer cantilevers have lower resonance frequencies, which reduces their quality factors in

air [111, 112]. The effective quality factor of the array in air, therefore, does not have a simple

dependence on the dimensions. The results of Table 6.2 and our prior measurements of similar

cantilevers suggest that there is a “sweet spot” of dimensions that optimize the effective quality

factor of the entire array. For out-of-plane fundamental resonances considered here, the cantilever

length corresponding to this sweet spot is between 2 and 3 µm. Cantilevers much longer than 3 µm

tend to have very low quality factors in air, whereas arrays of cantilevers much shorter than 2 and 3

µm tend to have too much frequency dispersion. The effective quality factor of 50 to 60 is therefore

close to the practical maximum for the out-of-plane cantilevers of this thickness.
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In can be seen from the Figs. 6.5 and 6.6 that the background is quite large in the array measure-

ments. The background amplitude was larger than the resonance response amplitude by a factor

of between 15 and 100 for different arrays. This relatively large background is a general feature of

two-port measurements and is due to the temperature dependence of resistivity (See Appendix B

for details), but in the case of arrays the situation is aggravated by the fact that the effective quality

factor of the array is smaller than that of individual cantilevers, which reduces the amplitude of the

resonance response. This large background creates a number of problems in measuring the response

of arrays. First, it places additional requirements on the dynamic range of the detection equipment.

For example, if the lock-in amplifier has a 4-digit analog-to-digital converter, the minimum measur-

able relative change is 10−4 of the full-scale sensitivity. If the background is 50 times larger than the

resonance signal, the minimum measurable relative change of the signal will be 10−4 × 50 = 0.5%,

significantly worse than lock-in amplifier’s intrinsic limitations. Second, from our experience, large

background can increase noise in the system because background is never perfectly stable. The

background in these measurements is caused by parasitic conductances and nonlinearities in circuit

components in general and the chip substrate in particular. The parasitic conductances tend to

fluctuate in time, occasionally producing the noise spikes seen, for example, in Figure 6.5(b).

In view of these problems it is generally advantageous to null the background signal, for example,

by performing a balanced detection of two arrays simultaneously as shown in Figure 6.4(b). The

two arrays in the balanced detection typically have similar but not identical dimensions, so that

the average resonance frequencies of the two arrays are well resolved. The similarity of dimensions

ensures that the background signals due to the two arrays cancel each other out, but the resonance

peaks do not cancel out because they occur at different frequencies.

Figure 6.8 shows the result of a balanced measurement of two arrays CK-2-A and CK-2-B in

vacuum. The response now features two resonance peaks, the lower corresponding to the array

CK-2-A and the upper to CK-2-B. The background is now indeed much smaller and is of the same

order of magnitude as the resonant signal. Because this measurement is done in vacuum, both

quadratures have a “fine structure” of rapid variations attributed to the resonances of individual
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Figure 6.8: Balanced detection of the arrays CK-2-A and CK-2-B in vacuum. Both quadratures of
the lock-in response, X and Y , are shown. The inset zooms in on a fragment of the X quadrature
curve to show the rapid variations attributed to resonances of individual cantilevers. The noise level
in these measurements was approximately 1.7 µVrms, which is more than an order of magnitude
smaller than the amplitude of the rapid variations.
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Figure 6.9: Balanced detection of the arrays CK-2-A and CK-2-B in air. Both quadratures of the
lock-in response, X and Y , are shown. Much larger drive voltages are used here than in Figure 6.8.
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cantilevers of the array. These variations are reproducible and are much larger than the amplitude

of measurement noise. The amplitude of these variations also agrees with the expected amplitude

of the individual resonances in this measurement scheme:

Aarray
Q

NQeff
≈ 20 mV

1000
2800× 100

≈ 70 µV,

where Aarray is the amplitude of the array response.

In air, these variations are smoothed out and the response looks like Figure 6.9. The fits of

the two array resonance peak yield quality factors of approximately 60. The signal-to-noise ratio

(SNR) is approximately 7500 with 1 millisecond time constant, which corresponds to approximately

100 Hz bandwidth. The calculated frequency noise for this setup is σ = (SNR × 2Qeff )−1 =

(7500× 2× 60)−1 ≈ 1.1 ppm with 100 Hz bandwidth or 0.11 ppm with 1 Hz bandwidth.

6.3 Preliminary gas sensing data5

The primary goal of developing cantilever arrays is to create sensors with higher sensitivity than

individual devices. In order to realize this goal, we need to integrate the sensor arrays with the rest

of the gas sensing system. One way of doing it involves the fabrication of a microfluidic flow cell

that can be mounted on top of the nanomechanical sensor and is directly connected to an external

gas delivery system, such as a commercial gas chromatography (GC) system [32]. This way, the

nanoscale resonator is only exposed to the analytes and carrier gas and remains isolated from the

air of the environment. In addition, the volume of the cell and, therefore, the diffusion time, which

often limits the speed of gas chromatography analysis, can be minimized with proper design [119].

In our preliminary experiments with arrays, we did not use a microfluidic cell. Instead, we

operated the arrays in ambient air atmosphere and used a micropositioner to move the end of

the 90-cm-long column of the gas-chromatography system immediately above the sensor array (see

Figure 6.10). Prior to this, the array was coated with the DKAP polymer, developed at Sandia

5Measurements described in this section were performed in collaboration with E.B. Myers.
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ArrayColumn

Injector Heating wire

Figure 6.10: Integration of the array sensors into a commercial Hewlett Packard 5890 gas chro-
matography system. The photograph shows the inner chamber of the GC system with the injector,
column, and column heating wires as well as the printed circuit board with the sensor arrays and a
micropositioner. The inset shows schematically how the lower end of the column is positioned above
the array and how the effluent flows from the column.

National Laboratory for detection of phosphonate gas molecules—precursors and simulants of nerve

gas agents. A droplet of DKAP solution was put on the array chip surface and left to dry in air,

leaving a thin film of polymer on the array cantilevers [32].

Functionalization of the array did not have a measurable effect on the frequency or the effective

quality factor of the array response.6 However, the quality factor was noticeably affected by the

flow of the hydrogen carrier gas through the column. When the GC system was in operation,

the hydrogen carrier gas was forced out of the bottom end of the column at the rate of 1–2 sccm

(standard cubic centimeters per minute) and largely displaced the air in the immediate vicinity of

the array (see inset of Figure 6.10). Because the viscosity of hydrogen is much lower than that of

6In previous experiments [32], the frequency of resonators typically decreased by less than 0.1% after functional-
ization due to the mass loading by the polymer. A change of 0.1% in frequency is easily measurable for an individual
resonator with a quality factor of ∼1000 in vacuum, but much less noticeable for an array with an effective quality
factor of only 100 in vacuum and 50 in air.
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Figure 6.11: Gas chromatogram obtained with an array sensor in the bridge configuration without
additional heating of the column (a) and with 10 Watt resistive heating of the column (b). In the
case of resistive heating, the expected temperature increase of the column is a few tens of degrees.

air, this increased the quality factor of individual resonances, Q, and therefore the effective quality

factor of the entire array in accordance with the formula Qeff = 1/(Q−1 + Q−1
distr). The increase in

quality factor was typically 20%, from Qeff ∼ 50 to Qeff ∼ 60.

In order to test the gas sensing functionality of the arrays, we have performed open-loop measure-

ments of frequency shift of the array CK-2-A after injecting a solution of diisopropyl methylphos-

phonate (DIMP), a nerve gas simulant, in CS2 solvent. The open-loop frequency measurements of

frequency shift are done by monitoring the dispersive quadrature of the Lorentzian response (see, for

example, curve Y in Figure 6.9). If the drive and bias frequencies remain constant and the central

peak frequency of the arrays changes by ∆ωR, the dispersive components of the resonance signal

will change by

∆Y ≈ dY

dωR
∆ωR ≈ 2QeffAarr

ωR
∆ωR,

where Aarr is the amplitude of the resonance peak. Therefore, there is a direct correspondence

between changes in the resonance frequency and the measured changes in the dispersive quadrature

of the signal.

Figure 6.11 shows the resulting chromatograms. The narrow solvent peak happens immediately

after injection of analyte into the column. The analyte peaks appear a few seconds later because of
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their affinity to the special coating on the inside surface of the column. There are two discernible

analyte peaks in both chromatograms. The later, smaller peak is most likely coming from partial

contamination of the injected solution with diethyl methylphosphonate (DEMP)—another nerve

gas simulant we used in these experiments. The timing and the widths of the peaks depended on

the temperature of the column. The two panels of Figure 6.11 show the difference between the

chromatograms obtained with and without additional heating of the column. In the heated case,

the peaks appear sooner than in the non-heated case, consistent with the measurements done with

individual cantilevers [32].

Taking into account amplification, a change of one volt in the dispersive component corresponds

to the resonance peak shifting by approximately 8 kHz, or 8 kHz/24.5 MHz = 330 ppm. The

best frequency sensitivity we could obtain in experiment was approximately 6 ppm with 1 ms time

constant of the lock-in (corresponding to approximately 150 Hz bandwidth). This sensitivity is

approximately an order of magnitude worse than the value calculated in the previous section, but

still slightly better than the results obtained with individual cantilevers [32]. The sensitivity is worse

because the noise measured inside the GC system was approximately an order of magnitude higher

than in the experiments described in the previous section. At this point we have identified and

eliminated some of the sources of excess noise, but more work needs to be done to achieve better

sensitivity.

Regardless of the source of the noise, one way to improve the sensitivity of frequency measure-

ments in he future is to use arrays with higher effective quality factors, Qeff . In order to obtain

better quality factors, we need to improve both the width frequency distribution, described by

Qdistr, and the quality factor of individual resonators in air, Q. Both goals can be achieved by

using in-plane modes or extensional modes, such as those described in Section 5.3. For cantilevers

(and beams without tension), the resonance frequencies of out-of-plane, in-plane, and extensional

resonances generally obey the following scaling laws:

fout ∼ t

l2
, fin ∼ w

l2
, fext ∼ 1

l
. (6.4)
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where l, w, and t are the cantilever’s length, width, and thickness, respectively.

For a given resonance geometry, the in-plane and extensional resonance frequencies are larger

than the out-of-plane resonance frequency by a factor of w/t and l/t, respectively. This means that

in-plane or extensional resonators can be made much larger than out-of-plane ones and still achieve

the same high resonance frequency as out-of-plane resonators. For larger structures, the effect of

fabrication imperfections should be proportionally smaller and we can expect the width of frequency

distribution to be smaller as well.

As discussed in Chapter 5, in-plane resonators can also have dramatically higher quality factors

in air because of reduced viscous damping. It is realistic to expect effective quality factors on

the order of 500 from arrays of in-plane or extensional resonators. Such arrays should achieve

frequency resolution approximately one order of magnitude better than the arrays described in this

chapter, which would result in record concentration sensitivity in NEMS-based gas chromatography

measurements.
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Concluding remarks

In this thesis, I have described new ways to operate nanomechanical resonators and to use them in

sensor applications. Of all the available detection techniques, we focused on piezoresistive detection

and, in particular, the piezoresistive downmixing technique. Using downmixing allowed us to avoid

the problem of parasitic capacitances and therefore to use high-impedance semiconductor piezore-

sistors at high frequencies. Downmixing also dramatically reduced the effect of parasitic electric

feedthrough in piezoresistive measurements, allowing us to measure resonance response with low

levels of interfering background.

We have also considered a number of actuation techniques for nanomechanical resonators. The

traditional piezoshaker actuation was shown to be highly non-uniform in both space and frequency,

especially at high frequencies and low temperatures. We therefore turned our attention to other

actuation techniques, out of which thermoelastic actuation turned out be very effective for nanoscale

resonators. Combined with piezoresistive detection, thermoelastic actuation enabled us to detect

multiple modes of nanoscale doubly clamped beams and other types of resonators.

In addition to actuation and detection techniques, we have studied methods of tuning the reso-

nance frequencies of nanomechanical resonators. We showed that the electrostatic tuning mechanism

is effective for the fundamental modes of nanoscale beam resonators with resonance frequencies in

the single-digit-megahertz range. However, electrostatic tuning becomes less effective as the fre-

quency increases and is also very difficult for higher flexural modes of beam resonators. In contrast,

the adsorptive tuning mechanism can be easily used to tune the resonances of arbitrary modes and

frequencies as long as the temperature of the resonator is low enough. At liquid helium tempera-

tures, we have tuned the resonance frequencies multiple modes of beam resonators by more than
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15% using the additional mass of adsorbed inert gas molecules.

These new detection, actuation, and tuning techniques allowed us to study systems in which

the coupling between the mechanical motion of a nanoscale resonator and the dynamics of nuclear

spins could potentially be strong enough to be detectable. We have considered a number of such

systems, including the traditional transverse MRFM setup, a system using a thin film containing

nuclear spins with large quadrupole moments, and a system using a thin ferromagnetic film with

magnetically active nuclei. Of these, the system using a thin ferromagnetic film was expected to

produce the largest signal. However, our efforts to detect signatures of spin–resonator interaction in

this system did not yield any conclusive results.

Apart from spin sensing, we could apply the same methods of actuation and detection to other

problems related to nanomechanical sensors. In particular, the measurement of multiple modes of

nanomechanical oscillators allowed us to study the frequency, temperature, and geometry dependence

of quality factors of nanomechanical resonators in more detail than ever before. Our data indicated

that, in vacuum, the quality factors of low-numbered flexural modes are limited by the same surface-

related, clamping-sensitive loss mechanism at both room temperature and cryogenic temperatures.

Our data also suggested that the quality factors of high-numbered flexural modes are limited by a

temperature-independent loss mechanism—possibly, clamping losses. In air, our data showed that

the quality factor generally increases with frequency and mode number. For some in-plane modes

of the nanomechanical resonators, the viscous-damping-limited quality factors were on the order

of 1000. These high quality factors of in-plane modes have motivated us to study a number of

alternative resonator geometries, which also feature high qualify factors in air.

Finally, we have applied the same methods of thermoelastic actuation and piezoresistive detection

to arrays of electrically connected cantilevers. We have shown that the maximum signal that can

be obtained from arrays can scale as the square root of the number of array elements. However, in

order to benefit from this scaling, the resonators of the array must be highly uniform in frequency.

We have demonstrated that arrays of nanoscale cantilevers can be successfully functionalized and

used in gas sensing experiments.
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The experiments described in this thesis can be continued in a number of promising directions

in the future. For example, detection of multiple modes of nanomechanical resonators can be used

to improve the resolution of NEMS-based mass spectroscopy of biomolecules, currently pursued

by Akshay Naik and Mehmet Selim Hanay in our group. In these experiments, the frequency

shift produced by one macromolecule depends on two variables: the mass of the molecule and the

exact position where it attaches itself to the resonator. Measuring the frequency shift of just the

fundamental mode does not allow one to solve for both of the unknowns. However, simultaneous

measurement of the frequency shift of two or more flexural modes of the beam should allow one to

solve for both the position of the attached molecule and its mass—a necessary step towards building

a real NEMS mass spectroscopy system.

Development of high quality factor resonators using the Lamé modes of plate resonators holds a

promise of having unprecedented areal mass sensitivity in vacuum and air. The experimental work is

currently underway in collaboration with our colleagues from LETI. High-Q plate resonators could

also be used for biological molecule detection in liquid environments, where the lack of high quality

factor devices has prevented us from conducting NEMS experiments so far. In order to realize the

best geometries for sensing, it is essential to develop a theory for the loss mechanisms in air and

liquid for plate resonators and other types of in-plane resonators.

Finally, arrays of center-supported beam resonators that employ in-plane flexural or extensional

modes can be used to achieve record concentration sensitivity in gas sensing applications. Center-

supported beam resonators benefit from high quality factors and the minimal dependence of their

frequencies on the etching-related variation of the support geometry. As a result, arrays of such

resonators can feature high effective quality factors and take full advantage of increased sensitivity

offered by arrays. Development of ultra-sensitive resonator arrays will also be the first step toward

future large-scale-integrated (LSI) nanomechanical systems, able to deliver dramatically better sen-

sor performance for addressing real-world problems.
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Appendix A

Phase relationships in
piezoresistive downmixing

When using piezoresistive downmixing (Section 1.2), the bias frequency can be lower than the drive

frequency, ∆ω > 0, or higher, ∆ω < 0. Both approaches can be used to detect the resonance at the

downmixed frequency, |∆ω|, but the phase behavior of the resonance signal depends of the sign of

∆ω in a subtle way.

Normally, the response of a forced damped harmonic oscillator is described by the complex

Lorentzian

s = A
ω2

R/Q

ω2
R − ω2

D + iωRωD

Q

, (A.1)

where ωR is the resonance frequency, ωD is the drive frequency, A is the amplitude of the resonance

signal, and Q is its quality factor. If the quality factor is large, Q À 1, the real and imaginary

components of this signal, X and Y , plotted parametrically as a function of the drive frequency, will

form a circle (see Figure A.1). As the frequency increases, the point corresponding to the amplitude

components X and Y will move clockwise along the circle, as indicated by arrows in Figure A.1. The

amplitude of the complex signal is largest at the resonance, ωD = ωR, when X = 0 and Y = −A.

In a typical experimental setup, there is some parasitic background in the system, so that the

circle begins and ends not at the origin but at some arbitrary point corresponding to the complex

amplitude of the parasitic background. In addition, various phase shifts that exist in the system due

to cables and other RF components may rotate the circle by an arbitrary angle in the XY plane.
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Figure A.1: Parametric plot of the real, X, and imaginary, Y , parts of the harmonic resonance
response (A.1) with the drive frequency varying from 0 to infinity.

As a result, a typical parametric plot of detected X and Y quadratures will look as in Figs. A.2.

The overall circular shape is preserved but it is subject to an arbitrary translation and rotation in

the XY plane. For very high and low frequencies, the experimental points deviate from the fitted

circle because the background varies slightly with frequency.

The two graphs A.2(a) and A.2(b) differ in the sign of the downmixed frequency ∆ω. As a result,

the points on the parametric plots move in opposite directions in these graphs: clockwise in Figure

A.2(a) and counterclockwise in Figure A.2(b). This difference in behavior can be understood by con-

sidering the phases of the voltages involved in downmixing. Generally, the change in piezoresistor’s

resistance follows the harmonic response and is in addition proportional to the intensity of drive,

which in turn is proportional to the drive voltage Vd in the case of piezoshaker drive (Section 2.1),

and the square of the drive voltage in the case of thermoelastic drive (Section 2.3).
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Figure A.2: Parametric plot of the real, X, and imaginary, Y , parts of the resonance response of
a 37-MHz beam resonator. The circles are not complete because the drive frequency was varied
approximately in the range ωR−ωR/Q ≤ ωd ≤ ωR +ωR/Q in both figures. The left panel (a) shows
the response for ∆ω = +110 kHz; the right panel (b), for ∆ω = −110 kHz. Note that the circles in
panels (a) and (b) are rotated by similar, but not identical angles with respect to the “canonical”
orientation in Figure A.1. With increasing frequency, the points move clockwise in panel (a) and
counterclockwise in panel (b), as indicated by arrows.

Considering the shaker case for definiteness, the change in piezoresistor’s resistance is given by

∆R = gVd cos(ωdt + φd + ϕres)|s|, (A.2)

where g is the effective gauge factor of the piezoresistor, φd describes the phase delay of the drive

with respect to the drive voltage due to cable delays, propagation delay of ultrasound in the silicon

chip, and other factors; and ϕres = Arg(s) is the phase and |s| the amplitude of the resonant response

(A.1) itself. When mixed with the bias voltage Vb cos((ωd − ∆ω)t + φb), the resulting downmixed

signal is proportional to

Vs ∝ VdVb cos(ωdt + φd + ϕres − (ωd −∆ω)t− φb)|s| (A.3)

= VdVb cos(∆ωt + φd − φb + ϕres)|s| (A.4)

≡ VdVb cos(−∆ωt− φd + φb − ϕres)|s|, (A.5)
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where I use the fact that cosine is an even function of its argument.

If the frequency offset is positive ∆ω > 0, the downmixed electrical signal has the same phase

delay ϕres as the harmonic response (A.1). Accordingly, the point moves clockwise along the circle

in the parametric plot of Figure A.2(a). Conversely, if frequency offset is negative ∆ω < 0, the phase

of the signal voltage has the opposite delay to that of the harmonic response (A.1) and as a result,

the point moves counterclockwise in Figure A.2(b). Therefore, in order to preserve the proper phase

response of the downmixed signal, the frequency offset should preferably be kept positive, i. e., the

bias frequency should be lower than the drive frequency.

Note that the same counterclockwise motion as in Figure A.2(b) would be observed for the

harmonic response (A.1) if we flipped the sign of the quality factor (i. e., made it negative) since it

would flip the phase of the response as well. Accordingly, the data-fitting program developed by Inna

Kozinsky and myself [60] produces fits with either positive or negative quality factors, depending

on the sign of the frequency offset. This ability of the fitting program to produce fits with both

positive and negative Q factors also helped us to identify resonances in the two-port thermoelastic

drive measurements, described in the next section.
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Appendix B

Two-port measurements using
piezoresistive downmixing and
thermoelastic actuation

The combination of thermoelastic actuation and piezoresistive downmixing described in Section 2.3

uses two separate metal loops for actuation and detection. In principle, the same combination of

thermoelastic actuation and piezoresistive downmixing can be used when only one loop is available,

as for example in the case of a simple two-legged cantilever (see Figs. 1.2(a) and 1.2(c)). Figure B.1

shows the schematic of the measurement setup in this case. Both the drive and bias voltages are

combined and sent into the metal loop. On the other side of the loop, a relatively large RF capacitor

CRF = 6 nF is connected to ground and therefore creates a virtual ground at high frequencies,

f À 1/(2π · 50 Ω · 6 nF) ≈ 500 kHz. This ensures that both the drive and bias voltages primarily

drop across the metal loop of the resonator rather than elsewhere in the circuit. A low-pass filter

removes the remaining RF voltages, transmitting only the downmixed signal at frequency ∆ω, which

is typically 100 kHz or less.

One difference between the four-port measurement described in Section 2.3 and the two-port

measurement is the existence of a significant background in the two-port case. This background arises

because the resistance of the piezoresistor depends not only on strain but also on the temperature.

Since thermoelastic actuation relies on temperature variations to drive the cantilever, we cannot

easily avoid this type of background. This effect produces a background signal at the downmixed

frequency because the variations in resistance due to changing temperature and those due to the
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Figure B.1: Schematic of two-port measurement using thermoelastic actuation and piezoresistive
detection. DC is the directional coupler, FD is the frequency doubler, HPF is the high-pass filter,
LPF is the low-pass filter.

cantilever motion happen at the same frequency, and therefore mix down to the same frequency

∆ω. The magnitude of the background signal can be estimated as Vb ∼ Vb/2αR∆T , where αR is

the temperature coefficient of resistance (on the order of 4 × 10−3 K−1 for most pure metals) and

∆T is the amplitude of temperature variations. In practice, this background and the resonant signal

were roughly of the same order of magnitude for resonators with quality factors on the order of one

thousand. As a result, the two-port measurement is relatively easy to use for vacuum measurements,

where the signal is usually comparable to the background, and more difficult in air, where the quality

factor can be as low as ten and signal can be orders of magnitude smaller than the background.

One way to reduce this type of background would be to fabricate the loop from specialty alloys

like nichrome, constantan, or manganine, which are designed to have temperature coefficients of

resistance up to two orders of magnitude smaller than those of pure metals. We have not yet

explored this possibility due to the associated difficulties in fabrication. Another way to reduce

this background is to use two separate, thermally isolated loops for actuation and detection. For

the two-loop beam configuration described in Section 2.3, the thermal isolation is not perfect and

heating one loop still affects the temperature of the other, but the separation between loops is large

enough and the resulting isolation is good enough to make the background insignificant in practice.

Two-port measurement also differs from four-port measurements in that each mechanical reso-

nance produces not one but two peaks during wide frequency sweeps of the kind shown in Figure
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Figure B.2: Wide frequency sweep for a two-port measurement of a 1.6-µm long cantilever with
the fundamental out-of-plane resonance frequency of 62.11 MHz. The sweep exhibits one resonance
peak at the expected resonance frequency and another at roughly twice the expected frequency.
Lorentzian fits of these two peaks produce resonance frequencies of 62.11 MHz and 124.32 MHz,
quality factors of +1000 and −1000, and amplitudes of 0.75 mV and 1.45 mV, respectively. The
frequency offset was 44 kHz for this measurement.
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2.7. The first one appears at the expected position where the voltages are applied at the frequencies

ω1 = ωd/2 = ωR/2 and ω2 = ωb = ωR −∆ω. The second peak appears when one voltage is applied

at the frequency ω1 = ωR + ∆ω and another at ω2 = 2ωR + ∆ω. To understand how this peak

forms, note that when we apply both of these voltages to the same loop, they will mix and produce

temperature variations at the difference frequency ω2−ω1 = (2ωR + ∆ω)− (ωR + ∆ω) = ωR, there-

fore driving the resonance. The resistance variations at frequency ωR can now mix with the applied

voltage at frequency ω1 = ωR + ∆ω to produce a signal at the expected downmixed frequency ∆ω.

The net result is that another peak appears in the graph at roughly twice the frequency of the ex-

pected peak. Figure B.2 shows a typical two-port frequency sweep showing a peak at the expected

frequency and an additional peak at roughly twice the expected frequency.

Surprisingly, the amplitude of the additional peak is twice bigger than that of the expected

peak. This can be explained by considering the algebraic relationships of the various voltage-mixing

processes involved. If we apply a sum of two voltages of frequencies ω1 and ω2 = 2ω1 − ∆ω, the

heating is proportional to the square of total voltage:

∆T ∝ (V1 cosω1t + V2 cosω2t)2 = V 2
1 cos2 ω1t + 2V1V2 cosω1t cos ω2t + V 2

2 cos2 ω2t (B.1)

=
1
2
V 2

1 cos 2ω1t + V1V2 cos(ω2 − ω1)t +
1
2
V 2

2 cos 2ω2t + . . . . (B.2)

Therefore, the temperature variations at frequency (ω2−ω1) are twice as big than those at frequency

2ω1, and therefore drive the cantilever motion twice harder. The additional mixing process that

produces the downmixed signal at frequency ∆ω does not change that conclusion: the amplitude of

“double-frequency” peak is twice that of the “regular” peak.

In addition to the twofold difference in amplitude, the phase of the resonance response of the

additional peak is flipped with respect to that of the expected peak for reasons similar to those

described as in the preceding section. As a result, the regular peaks are fitted with positive quality

factors, while additional “double-frequency” peaks, with negative. This turns out to be helpful

when analyzing data from wide measurement sweeps that contain peaks from multiple mechanical
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resonances: if the fitted Q is positive, then there is indeed a mechanical resonance at the expected

frequency ωe = 2ω1 = ω2 + ∆ω; however, if the fitted Q is negative, the real mechanical resonance

happens at the frequency ωe/2 −∆ω. In sensing applications, it is often more convenient to work

with this “double-frequency” resonance peak since its signal-to-noise ratio is usually twice better for

the same amount of heating.
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Appendix C

Simulation of thermoelastic drive
and piezoresistive detection

In Section 2.3, I described electrothermal actuation and piezoresistive detection of NEMS, which is

effective at frequencies up to several hundred megahertz. Since the effectiveness of both electrother-

mal actuation and piezoresistive detection depends on the particular mode shape of the resonance,

it makes sense to evaluate the combined efficiency of this actuation–detection scheme. In this ap-

pendix, I describe in more detail how one can theoretically estimate the response of this scheme

using analytical calculations and finite-element simulations.

As described in Section 1.2, piezoresistive detection of motion uses the variation ∆R in the

resistance R of the conducting loop, which in metals is mainly caused by the changes in the shape

of the conductor [5]. The amplitude of the downmixed piezoresistive signal is approximately Vs ≈

Vb∆R/(2R) = Vbg 〈εxx〉 /2, where Vb is the amplitude of the applied AC bias voltage, g is the effective

gauge factor of the piezoresistor, and 〈εxx〉 is the average longitudinal strain in the displacement

transducer (coordinate axes are shown in the inset to Figure 2.8). The gauge factor of most thin

metal films is on the order of two [5], and measurements of thermomechanical noise in our devices

are consistent with this estimate. The longitudinal strain is determined by the mode shape, u(n)(r),

which specifies the vector displacement u of the infinitesimal volume element located at radius

vector r for the considered mode number n. The mode shape produced by finite element simulation

software will generally have an arbitrary amplitude, and to compensate for this fact, we will introduce

a dimensionless drive-dependent mode amplitude cn, so that the actual displacement field for a given
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drive will be cnu(n)(r). The average longitudinal strain is then given by εxx = cn

〈
∂u

(n)
x (r)/∂x

〉
,

where the averaging is over the volume of the piezoresistor (for example, the 50-nm-wide detection

legs on the left inset of Figure 2.6).

In order to determine the drive-dependent mode amplitude cn, we will make a number of approx-

imations that make the problem more tractable. In particular, we will assume that the temperature

variations induced by the actuation voltage are sinusoidal, which is to be expected from sinusoidal

actuation voltage. We will also assume that the quality factor of the considered mode is large enough

that, on resonance, we can neglect the excitation of all other modes of the NEMS structure.

At the resonance frequency ωn, the power continuously dissipated by the structure due to the

finite mechanical quality factor of the system is the product of the energy loss rate multiplied by

the maximum kinetic energy of the mode:

Pdiss =
ωn

Qn
× c2

nω2
n

2

∫
ρ(r)u(n)(r)2dr ≡ c2

nω3
n

2Qn

∫
ρ(r)u(n)(r)2dr, (C.1)

where ρ(r) the local mass density and the integration is over the volume of the entire simulated

device. In the steady state, the dissipated power is compensated by the mechanical work done by

the time-varying stresses induced by the drive. Note that the total stress tensor inside consists of

three parts: the thermal stresses, the purely elastic stresses associated with the resonant motion,

and the inelastic stresses associated with the dissipation mechanisms. The work of the inelastic

(loss) stresses is negative, and its absolute value is given by Eqn. C.1. The work of the purely elastic

stresses averages to zero over the full period. This leaves us with the thermal stresses, which actually

drive the motion of the device.

Averaged over one oscillation amplitude, the mechanical power produced by the thermal stresses

is given by

Ptherm = cn
ωn

2

∫ ∑

i,j

σji(r)
∂u(n)

i (r)
∂rj

dr. (C.2)

Here the summation is over all spatial coordinates and the integrals are over the volume of the

bilayer resonator and σji(r) the amplitude of the thermal stress tensor. If we assume, for simplicity,
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that gold and silicon carbide are elastically isotropic then σii(r) ≈ 3α(r)∆T (r)B(r), where α(r) is

the thermal coefficient of linear expansion, ∆T (r) is the amplitude of temperature change, and B(r)

is the bulk modulus.

Equating expressions C.1 and C.2 allows us to solve for the mode amplitude

cn =
Qn

ω2
n

∫
3α(r)∆T (r)B(r)

∑
i

∂u
(n)
i (r)

∂ri
dr∫

ρ(r)u(n)(r)2dr
. (C.3)

The amplitude of the corresponding downmixed voltage signal is then given by

a = Vbg 〈εxx〉 /2 = Vb
gQn

2ω2
n

〈
∂u

(n)
x (r)/∂x

〉
× ∫

3α(r)∆T (r)B(r)
∑

i
∂u

(n)
i (r)

∂ri
dr

∫
ρ(r)u(n)(r)2dr

. (C.4)

In the expression above, the resonance frequency, ωn, and the mode shape, u(n)(r), along with

its spatial derivatives, can be found from finite-element simulations. The only term that presents

further difficulty is the spatial distribution of the temperature variation ∆T (r). Note that this is

the amplitude of temperature oscillations at the frequency of the considered mode rather than the

total temperature increase due to Joule heating with drive voltage Vd.

In principle, the temperature variations can again be found using finite-element simulations,

although in practice it can be quite laborious since it is a dynamic (rather than static) problem

involving direct-current electrostatics and thermal conductance. An additional complication is that

for NEMS devices, some of the structural dimensions often approach the mean free path of elec-

trons and/or phonons in the material, making boundary scattering significant and thus making the

standard bulk analysis of thermal and electrical conductance inappropriate [124].

If the dimensions of the actuation loop are fixed, one can make a number of assumptions that

simplify the analysis significantly. In particular, since most of the temperature variation due to

Joule heating happens inside the drive loop and the thermal expansion coefficient of gold (and most

other metals) is much larger than that of substrate semiconductors, we can limit the integration

in the numerator of Eqn. (C.4) to the volume of the conductor loop. Furthermore, we found from

numerical simulations that, for excitation frequencies below the inverse thermal time constant of
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the drive loop, the amplitude of temperature variations is spatially roughly constant throughout the

drive loop, which allows us to move the temperature dependence outside integral:

a = Vb
gQn

2ω2
n

3αGold∆TGoldBGold

〈
∂u

(n)
x (r)/∂x

〉
× ∫ ∑

i
∂u

(n)
i (r)

∂ri
dr

∫
ρ(r)u(n)(r)2dr

, (C.5)

where the averaging in the numerator is over the legs of the detection loop, the integral in the

numerator is over the volume of the drive loop, and the integral in the denominator is over the

volume of the entire device. In this approximation, the amplitude of detected signal depends largely

on the frequency and shape of the considered mode.

The analysis above can most easily be applied to the analysis of multiple modes of the same

device, as was done in Section 2.3 but can also, to some extent, guide the design of new devices,

especially if the geometry of the drive loop remains fixed. In this latter case, the amplitude of

temperature variations inside the drive loop will remain roughly constant even as the geometry of

the rest of the device varies, and the combined efficiency of the actuation and excitation primary

depends on the shape of the mechanical modes.

In our experiments, the optimal shape of the excitation loop was found largely through trial

and error. In general, the best results were obtained when the thickness of the excitation loop and

the structural substrate were approximately the same. If multiple modes are to be measured, it is

beneficial to keep the excitation and detection loop as short as possible as this prevents cancellation

of the integral and average in the numerator of Eqn. (C.5) for higher modes and keeps the thermal

time constant as short as possible. If only one mode is to be measured in the experiment, the length

of the actuation loop can be extended to approximately the first inflection point of the considered

mode in order to maximize the integrals in Eqn. (C.5). Note, however, that for operation at high

frequencies, this increase in the drive integral can be offset by an increase in the thermal time

constant of the device, which will reduce the amplitude of useful temperature variations in the drive

loop and instead increase the average temperature of the device.
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