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Abstract

This thesis investigates the use of neural networks and nonlinear estimation in robotic

motor learning.

It ‘presents a detailed experimental investigation of the performance and para-
metric sensitivity of resource-allocating neural networks along with a new learning
algorithm that offers rapid adaptation and excellent accuracy. It also includes an

appendix that relates feedforward neural networks to familiar mathematical ideas.

In addition, it presents two learning hand-eye calibration systems, one based on |
neural networks and the other on nonlinear estimation. The network-based system
learns to correct robot positioning errors arising from the use of nominal system kine-
matics, while the estimation-based system identifies the robot’s kinematic parameters.
Both systems employ the same two-link robot with stereo vision, and include noise
and various other error sources. The network-based system is robust to all error
sources considered, though noise naturally limits perfoi‘mance. The estimation-based
system has significantly better performance when the robot and vision systems are

well modeled, but is extremely sensitive to unmodeled error sources and noise.

Finally, it presents a robot control system based on neural networks that learns
- to catch balls perfectly without requiring explicit programming or convenfional con-
trollers. It uses only feedforward pursuit motions learned through practice, and is
initially incapable of even moving its arm in response to external stimuli. It learns to

identify and control its pursuit movements, to identify and predict ball behavior, and,



with the aid of advice from a critic, to modify its movement commands to improve
catching success. The system, which incorporates information from visual, arm state,
and drive force sensors, characterizes control situations using input/response pairs.
This allows it to learn and respond to plant variations without requiring paramet-
ric models or parameter identification. It achieves robust execution by compa,ring
predicted and observed behavior, using inconsistencies to trigger learning and behav-
ioral change. The architectural approach, which involves both declarative and analog
knowledge as well as short- and long-term memory, can be extended to learning other
sensor—motof skills like mechanical assembly and synchronizing motor actions with

external processes.
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Chapter 1

Introduction

1.1 Objectives and Motivation

In recent years there has been an explosion of interest in the computational aspects

of behavior: How do organisms acquire, represent and process the information nec-

essary to control and regu‘la.te their activities, and how do they learn to modify their(
‘ behavior to improve or maintain perfox_‘mance in response to internal and external

changes? This interest hé,s been stimulated in part by scientific curiosity and in part

by a widespread desire to improve the performance of robots and other automated

systems [Churchland (1986), Sejnowski, Koch and Churchland (1988), Arbib (1987),

Churchland and Sejnowski (1988), Lisberger (1988), Wise and Desimone (1988),

Pomerleau (1990)]. '

Since it is generally held that biological computation is accomplished primarily



in animals’ nervous systems,! there is great interest in exploring and modeling this
computational activity at various levels of detail. There has been particular inter-
est in the computational, dynamical, and learning properties of networks of simpli-
fied neurons [Grossberg (1982), Denker (1986), Rumelhart and McClelland (1986),
Cronin (1987), Amit (1989), Koch and Segev (1989), Touretzky (1989)]. These are
often called connectionist models because they consist of interconnected networks
of relatively simple computing elements. They have promising capabilifies, and a
theoretical understanding of their properties is developing rapidly. Investigators
have begun implefnenting neural networks in hardware [Mead (1989)], and have
explored their application to a variety of problems in motor learning, including
robot hand-eye coordination and the learning of simple skills [Kuperstein (1987b),
- Kuperstein (1988), Miller (1987), Goldberg and Pearlmutter (19.88), Mel (1989)].

The overall objective of this research, part of a long-term investigé,tion into
roboticé, is to explore robotic motor learning and control using computational and
control elements based on neural networks and other biological ideas. It is motivated
by a personal fascination with motor learning mechanisms and the desire to build
robots that can learn to exhibit interesting, skilled behavior. It is inspired by bi-
ological models of motor learning and neural function. The intent is to explore a
framework that will allow robots to learn and maintain motor skills automatically

without requiring that they be explicitly programmed.

Specific objectives of this work are to design, simulate, and test a robot hand-eye
coordination system that learns to correct kinematic positioning errors, and to design
and simulate a robot control system capable of learning primitive behaviors as well as

sensor-motor tasks, evaluating its performance using ball catching as a model task.

In hand-eye coordination the problem is to be able to use visual information to

ISystemic biochemistry is also involved, establishing a context for neural computation.



generate accurate feedforward commands that position the chosen point on a robot
hand at the point of visual attention. This is a nontrivial problem because of errors
and nonlinearities in the robot, the vision system, and the camera pan-tilt mechanism
that are functions of loading, temperature, and machine wear. It has historic}ally been
an irritating issue in robot applications [Ruoff (1980); Gennery et al (1987)]. On-line
learning algorithms have shown great promise in addressing this issue because, by
their nature, they generate corrections basedvon actual performance errors, and they

can accommodate slow drifts in system characteristics.

In motor skill learning, the problem is to learn to perform primitive motor behav-
iors (pursue, track, push, pull, comply, etc.) and to learn to generate the sequences
of motor commands e}nd expected sensdry events (sensor-motor sequences) necessary
to accomplish particular tasks. Learning and executing a motor skill involves: learn-
ing to recognize, verify, and predict significant events and the behavior of external
objects; synchronizing internal and external activity; recognizing task situations so
the appropriate sequences are invoked; and correcting command sequences and their

timing so the task is accomplished.

In addition to being scientifically interesting, the study of motor learning has
important practical applications. Giving robots and other man-made systems such a
capability can significantly improve their cap'a.city for autonomous operation, enabling
a much wider variety of applications than is now possible. It has the potential to
improve the currently rather poor performance of robots in dynamic situations, and
to allow compensating for drifts in system characteristics. Motor skill learning can
also make robots substantially easier to use since the programming burden can be

reduced.

This work has involved developing neural representations and computational

mechanisms for sensing, memory, and control elements; investigating the structure



and performance of feedforward neural networks and learning algorithms; and devel-

oping detailed simulations of realistic physical plants.

An attempt has been made to develop learning and control structures that have
some biological plausibility. The understanding of brain and neural function is still
limited, however, and since the main objective of this work is to investigate mech-
anisms that can improve the performance of man-made systems, serial and connec-

tionist computational paradigms have been freely mixed.

1.2 Results and Contributions of This Thesis

The principal contributions of this thesis are:

1. A detailed experimental investigation of the structure, performance and para-
métric sensitivity of feedforward resource-allocating neural networks, the de-
velopment of a new learning algorithm that offers rapid adaptation and can
be implemented relatively easily in hardWare, and a description of feedforward

neural networks that relates their capabilities to familiar mathematical ideas.

2. The design, simulation and evaluation of two learning hand-eye calibration sys-
tems, one based on neural networks and the otﬁer on nonlinear estimation,
that can form the basis for practical hand-eye calibration in real robots. The
neural system learns to correct robot positioning errors that result from using
the nominal system kinematics, while the system based on nonlinear estimation
identifies the robot’s kinematic parameters. System simulations involving a
two-link robot with stereo vision included the effects of parameter drifts, visual
measurement noise, kinematic parameter errors, encoder offsets, and nonlinear-

ities. The neural system is robust to all of the error sources considered, though



noise naturally limits performance. The estimator-based system is faster and
significantly more accurate than the neural system where the robot and vision
system are well modeled, but is extremely sensitive to unmodeled error sources

and noise.

3. The design, simulation, and evaluation of a robot motor learning system that
is extremely successful at learning to catch balls without requiring explicit pro-
gramming or conventional controllers. It learns to identify and control its
pursuit movements, to identify and predict ball behavior, and to modify its
movement commands through trial and error to improve catching success. The
system, which employs realistic, detailed physical models of the arm, the ball,
and their physical interaétion, employs an architectural approach involving both
declarative and a,né,log knowledge as well as short- and long-term memory that
can be extended to learning sensor-motor skills like mechanical assembly and
synchronizing motor actions with external processes. The short-term memory, -
which stores both predictions and observations, is temporally ordered. The sys-
tem characterizes control situations using input/response pairs, which allows it
to learn and respbnd to plant variations without requiring parametric models
and parameter identification. It achieves robust execution by comparing pre-

“dicted and observed behavior, using inconsistencies to trigger learning and, as

a consequence, behavioral change.

1.3 Previous Work

Previous work on robot hand-eye calibration has focused eithier on learning the en-

tire hand-eye map, or on learning the geometrical coordinate transformation from

visual to manipulator coordinates. Learning the entire hand-eye map is computation-



ally intensive and requires many learning cycles to achieve reasonable performance
[Kuperstein v(1987b), Kuperstein (1988), Mel (1989)]. Learning a linear transforma-
tion matrix is relatively easy to implément, but does not handle local anomalies. The
approaches reported here learn to correct deviatioﬁs from nominal robot kinematics,
which is known from the structure of the robot. They therefore start with reasonable

positioning accuracy and improve as the robot system operates.

Much of the previous work on robot motor learning has addressed the
problem of learning to compensate for manvipulator dynamics  [Albus (1972),
Albus (1975b), Albus (1975a), Atkeson (1986), Goldberg and Pearlmutter (1988),
Miller (1987), Raibert (1977), Raibert and Horn (1978)). More recent work
has sought to extend learning from motion control to the task domain
[Handelman, Lane and Gelfand (1989)]. lTha.t work has also used declarative knowl-
edge to guide the learning process, and has tended to focus on particular motions and
on well-defined repetitivé events such as learning to hit a ball that is dropped on a

particular point.

The research reported here investigates a more global framework for sensory per-
ception and motor learning, based, in part, on learning by trial and error, that can
be used for a variety of sensor-motor tasks including those in which the system must
interact with external objects. It includes a memory of the motor commands and
observed behavior in the current training episode and can learn to identify, predict,
and respond to control situations, and the behavior of external objects. Basic design
principles are that robustness is achieved by comparing prédicted with observed be-
havior and that, at least from‘ a motor control standpoint, a system comprehends a

situation when it can reliably predict how it will evolve.



1.4 Thesis Overview

Chapter 2 addresses the motivation for learning motor control, describing current
robotic capabilities and limitations as well as general features needed by competent
robotic systems. It introduces the motor learning problem and describes the detailed

scope of this research along with the approach taken to learning control.

Chapters 3 and 4 address hand-eye calibration and robot motor learning respec-
tively. They describe the learning approach, representations, controllers, system ar-

chitecture, and other system elements and evaluate system performance.

Chapter 5 concludes by comparing this work with previous work, drawing technical

conclusions, and identifying extensions and future work.

Appendices A and B respectively give a brief introduction to neural networks
and discuss the VLSI implementation of adaptation algorithms studied in this work.
Appendix A also provides an intuitive motivation for feedforward neural networks,

relating them to familiar mathematical ideas.

1.5 Notation

In this thesis vectors are in bold-faced type and vector magnitudes are in plain type.

Vector components are indicated in plain type with subscripts.



Chapter 2
Background

2.1 Introduction

This chapter discusses learning control in robotics. The motivation for learning con-
trol and a more biologically-inspired approach to robotics is outlined, followed by a

description of the motor learning and control problem.

2.2 Robotics

Robotics is becoming increasingly important in automating the production of goods
and services and as an enabling technology for activities such as unmanned planetary
surface exploration and operations in hazardous environments [Varsi et al (1992)].

Robotics is also extremely important as a military technology [Ruoff (1984)], and



has an enormous potential consumer market.

Industrial robots are extremely effective at repetitive manufacturing tasks involv-
ing positioning tools and wofkpieces. As a consequence, thousands ére in daily use
worldwide performing tasks like stuffing circuit boards and welding automobile bod-
ies. If properly programmed, they can respond to inputs from various types of sensors
including limit switches, force sensors, and computer vision systems, but they offer
little in the way of graceful force and fine motion control or the ability to sense and
adapt to unexpected circumstances. They are therefore limited to well-structured
situations, and perform poorly on dynamic tasks unless both the control system and

task are carefully engineered |[Andersson (1988)].

A signiﬁc;int body of recent research has been devoted to improving.
robotic intelligence [Wa,ldvrop (1988), Laird et al (1991)], planning capabili-
ties [Hutchinson and Kak (1990), Popplestone, Liu and Weiss (1990)], and control
[Slotine and Li (1986), Craig (1986a), Larkin (1993)]. This research has had positive
results, yet robot performance remains limited, and setting up a robot to perform
a task is an elaborate process involving designing and fabricating tools and fixtures,
configuring the robot and its work environment, calibrating the robot and sensor

systems, and programming [Engelberger (1980)].

Configuring a robot and its work envil:onment requires positioning tools and
fixtures, calibrating the robot sensor systems, and so on. Vision calibration, for
example, generates the hand-eye transformations that are necessary to compute
arm coordinates corresponding to the positions of objects in the visual field and
vicg-vérsa. Generating these transformations involves positioning an object held
in the robot hand at several, perhaps many, positions that can be seen by the vi-
sion system, and calculating both the visual and arm coordinates of the object at

each position. These coordinates are used to generate the required transformations
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[Ruoff (1980), Hayati (1990), Gennery et al (1987)]. This process, which usually re-
quires an accurate or precalibrated arm and fixtures of various sorts, is cumbersome
and yields transformations that may have local inaccuracies due to nonlinearities
in the vision system aﬁd other elements. It is also difficult to make work well in
systems that have kinematically complex camera.platforms and arrhs. Finally, cali-
bration parameters are sensitive to thermal and mechanical drift, requiring frequent

recalibration.

Task programming is usually done in one of the following ways:

1. The robot is led through the task sequence, which is recorded and then repeated
slavishly with, perhaps, some coordinate adjustment. This approach is called
teach by showing. It is not suited for robots that must respond to changing

circumstances and will not be discussed further.

2. The robot program, including branch points, calculations, sensor input requests,
and control parameters, is explicitly coded using macros, subroutines, aqd
other constructs, perhaps using the arm itself to acquire necessary coordinate
frames [Ruoff (1980), Backes and Tso (1990), Backes (1991), Backes (1992a),
Backes {(1992b)]. Programs at this level usually involve sequences of commands
that invoke pre-coded primitive robot behaviors like “push” and “move.” Robots
programmed in this way can perform useful tasks reliably, but explicit coding
can be awkward, since robust explicit programs, that must necessarily involve

extensive sensing and force control, can be extremely complex.

3. The robot program is generated using interactive planning programs that con-
catenate known primitive behaviors and routines, including sensor and per-
ception routines, into task sequences. This is a powerful approach, used in
the JPL Telerobot Testbed,A that allows for very high-level task specification

[Wilcox et al (1989)]. Planners, however, do not yet model dynamic or contact
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interactions well, so detailed tuning of the resulting program is.required, and
low-level sensor and arm calibration must still be performed. In some cases, a
robot system can generate its own plans if it can adequately identify the task
situation. Autonomous vehicles such as Mars rovers are programmed in this
way [Wilcox and Gennery (1987)]. High-level commands such as position tar-
gets are given; the system decomposes them in to motion commandé that avoid

sensed obstacles and other hazards.

After configuration and programming are complete, the robot application must be de-
bugged and tuned. This involves modifying the program to accommodate unforeseen
problems or modeling errors and adjusting control parameters, including étiﬁnesses
and forces, for the various steps; If the program involves dynamic interactions such as
tracking and capturing objects, tuning can be time consuming because it is necessary

to ensure that the robot motion is synchronized with the moving object.

The setup process just outlined is cumbersome. It can be tolerated in manufac-
turing situations where setup costs can be amortized over large production runs, but
it is unacceptable in situations such as maintenance, where runs are small 01; highly
variable. It is totélly unsuitable for situations, such as exploring rough natural terrain
or making emergency repairs, where the ability to comprehend and respond quickly

and adroitly to situations is critical.

In addition to being cumbersome to program and set up, robots also perform
rather awkwardly, both at dynamic tasks like tracking and capturing moving objects,
And in tasks involving dexterous manipulation and the gentle application of forces.
Robots have been programmed to perform dynamic tasks like tracking and capturing
spinning satellites [Wilcox et al (1989)] and playing ping-pong [Andersson (1988)],
but there are significant constraints, the programs are not really robust, and they

cannot be easily generalized. Current robots simply lack the agility, grace, and adapt-
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ability required for versatile robust behavior in novel and dynamic situations. This
stems largely from an inability to perform the perceptual and control computations
necessary to comprehend new situations and to generate and apply good real-time

dynamic models.

As a consequence, most of the work in robotics to date has assumed stiff quasi-
static environments, and has relied on geometrical precision and kinematic positioning
accﬁracy. Relying on kinematic precision is appropriate for creating geometfy and for
handling rigid manufactured objects, but it is a limited strategy. It is very difficult,
for example, using geometrical and mechanical models, to predict and control the
motion of an oddly-shapeci object accurately as it is manipulated within multiple
compliant fingers. Current robots are, in fact, primarily programmable positioning
devices, and are very much like machine tools. To achieve positioning accuracy and
stability with the simple fixed-gain controllers tha,t'are typically employed, robots

must be stiff. Hence they are massive as well.

Aniﬁals have apparently approached the control problem in a very different way.
Instead of relying on kinematic precision, which would surely be an irrelevant and
disastrous survival strategy, evolution has traded off preci.sion for speed and agility
and have evolved the ability to process large ‘amounts of sensory and control in-
formation. They rely upon being able to make quick situation assessménts while
rapidly modifying their behavior in response. The ability to learn about situations
and predict behavior is critical for this. Rather than employing fixed gains, animals
employ variable stiffnesses carefully matched to the situation [Brooks (1986)], and
use muscle-tendon actuation which is backdrivable. This means they are less sus- |
ceptible to collision damage and can use their limbs and extremities as fasf, active
sensing devices. Stiffnesses and other control parameters are learned and maintained
automatically by low-level systems [Brooks (1986)]. Since they process a great deal

of sensory information and must have some kinematic precision because of the need
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to locate stimuli in space, animals also must deal with the sensor and limb calibration
problem. They do so, however, with on-line adaptive systems that perform calibra-
tion automatically in a background mode as the animal behaves [Brooks (1986)]. It
would be extremely useful to develop robot control systems that have similar capa-
bilities for automatically acquiring primitive behaviors, maintaining their own sensor
calibration, automatically learning motor tasks given high-level instructions, an_dbgen-

eralizing previously learned capabilities to new situations.

2.3 Hand-Eye Calibration

Hand-eye calibration! is the process of determining the feedforward? arm axis posi-
tion commands® that correspond to a robot’s (or animal’s) positioning its hand at
(accessible) points it observes visually in its workspace. Accurate feedforward posi-
tion commands are important in static tasks like grasping and for dynamic tasks like
catching objects. This is true even when the hand position loop is closed using visual
and tactile feedback because system bandWidth limitations may make it impossible

to achieve adequate performance if feedforward position commands are inaccurate.

1Limb-eye or appendage-eye coordination might be more appropriate terms because the same
process must occur for all appendages that must be positioned to visually-perceived locations in
space. _ , ,
2Here the term feedforward means that the hand is positioned by position servos without modi-
fying the position command with visual, tactile, or force feedback. It does not imply that arm axis
position feedback is not used in the axis position servo loops.

3Position commands are input to an axis position control system to cause the axis to assume the
commanded position as measured by an axis position transducer.
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Figure 2.1: Robot hand positioning. In a) the robot hand is not positioned correctly
relative to the cylindrical object. Positioning is correct in b) because the tool and
target frames coincide.

2.3.1 The Hand-Eye Calibration Problem

Positioning a hand with respect to an object is equivalent to bringing a coordinate
frame, fixed with respect to the hand (called the tool frame in robotics), into (or
near) coincidence with a coordinate frame (the target frame) fixed with respect to

the object. This is illustrated in figure 2.1.

Actually bringing the frames into coincidence can be accomplished by uléing accu-
rate feedforward axis position servo commands or by closing a position command gen-
eration loop using a combination of visual, tactile, and force feedback. Feedforward
positioh commands provide faster response, but their generation requires accurate
knowledge of positions and kinematic parameters. Accurate feedforwardvcommands
impro&e performance even when feedback is used during the terminal phases of mo-

- tions because uncertainty zones can be reduced.

Generating the axis position commands that bring the tool and target frames
into coincidence involves transforming the position description of the target frame

into a position description relative to the arm base frame and then applying the
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arm’s inverse kinematics [Ruoff (1980), Paul (1981), Craig (1986b)] to obtain the
arm axis positions in a kinematically idealized joint space representation. The actual
servo position commands are obtained from the idealized representation by includ-
ing the effects of encoder offsets, scaling, and other characteristics. Positioning is
then effected by sending the position commands as reference inputs to the position

servos. Animals must accomplish something similar, but the details are not known

[Brooks (1986)).

If a robot is reaching for a target on an object it sees rather than one for which
the position is known, obtaining the target frame relative to the arm base frame will
involve a (possibly nonlinear) transformation from visual coordinates. Since the visual
frame is attached to the vision system, and the vision system is attéched, in turn, to
the vision pointing system, transforming object locations from visual coordinates to
the arm base frame will involve the pointing system’s kinematics and its geometrical
relationship to fhe arm base frame. If the arm is redundant or has multiple solutions,
the control system must provide an input that selects the appropriate solution. Noise

arising from retinal image quantization is involved as well.

Position and kinematic errors seriously degrade robot performance since visual -
servoing or long guarded moves* are then required to avoid unexpected collisions and

to reach target positions with sufficient accuracy.

In order to minimize feedforward position command errors, robot systems are
calibrated both kinematically and visually. Kinematic calibration makes it possible
for the arm to reach commmanded positions in épace accurately, while visual cal-
ibration ensures that visual range and position estimates are accurate. Hand-eye
calibration establishes the transformation from vision coordinates to the arm base

frame. Together, the three types of calibration ensure that a robot can accurately

4Guarded moves are regions of slow compliant motion [Craig (1986b)].
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reach accessible coordinate frames that it observes visually.

In current practice, robot hand-eye calibration is aﬁ off-line parameter iden-
tification technique that requires special fixturing [Ruoff (1980), Hayati (1990),
Gennery et al (1987)]. It does not handle unmodeled local distortions like astigma-
tism, and it cannot accommodate system drifts due to wear, mechanical stress, and
temperature changes unless the system is.reca,librated, which involves taking it off-
line. It has also beeﬁ found to have limitations where active vision pointing platforms
are employed because it is difficult to handle the entire kinematic chain from the
visual system through the vision platform and the arm base to the tool frame. This

forces the use of pre-stored and calibrated vision positions [Hayati (1990)].

It would be useful, then, to develop an on-line calibration system that observes
the behavior of the hand-eye system during operation and learns to generate accurate

feedforward axis position commands
0 =0(s,t,p,v), (2.1)

for s, the particular arm solution class, ¢, the relevant tool frame, p, the vision pointing
system configuration, and v, the observed target frame in visual coordinates. An on-
line hand-eye calibration system should be able to handle the kinds of robot system

drifts mentioned above without being taken off-line.

Two related, but distinct, problems are 1) predicting the vision pointing coor-
dinates corresponding to a location in space and 2) estimating an object’s size and
Cartesian coordinates. These are important problems that involve the internal repre-
sentation of space and its relationship to motor comma,nd. generation. The approaches

described in this work can be applied to these problems as well, but they are not ad-

dressed here.
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2.4 Motor Learning and Control

How do we learn to do things, and what happens when we do so? What is involved,
for example, in learning to do things that are not obvious, like wiggling our ears?
How does a young violinist learn to turn early screeches into mellow tones? How do

we learn to touch an object that we can see?

Typically, when we desire to learn a particular task, we have an idea of what
conétitutés doing it successfully and what performance improvements are, but we
don’t know exactly what steps to také or what commands to issue. That is, we
have some mental model of the task [Norman (1982)]. If we already know some
related skills, we try them and we watch how they work. If things look good, we vary
the commands we already know and refnember them, continuing to do so until we
are successful at performing the task. If we don’t know related skills, or if nothing
seems to work, we may resort to flailing, or trying random things until wé notice that
something we tried almost worked. We then try variations of that repeatedly‘until it
works or until we decide it is hopeless. This kind of learning is conscious: We think
about what we’re doing and how to improve 1t In effect, we become our own internal
teacher or coach, watching and modifying our performance. Learning is much the
same even if we have an actual coach. A coach makes thing easier by pointing 6ut
deficiencies and suggesting improvements, but we have to learn to incorporate the .

suggestions ourselves.

In learning to catch balls, for example, we usu‘-aily already know how to reach for .
objects, what it means to catch something, how to modify position and timing of
body commands to arrive earlier or later or at different places, and so on. A ball is
thrown, we estimate its trajectory, generate an interception point, and move to try

to catch it. If we miss, next time we start earlier or move to a slightly different point,
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or make a better estimate of the ball’s behavior. If the ball is not actively trying
to evade us, and we are reasonably adept, this procedure will converge to a stable,

robust skill if we are persistent.

If we do not already know how to perform basic or primitive behaviors, like reach-
ing for objects, it is necessary to learn them. Developmentally, of course, learning
basic behaviors occurs before learning complex ones. This learning, which is a form of
adaptation, occurs automatically, that is, without conscious effort, as we move about
in our normal activities [Brooks (1986)]. Hand- eye coordination and the vestibulo-
ocular reflex, which causes head motion to be subtracted from eye motion so eye
pointing is maintained under head disturbances are examples. Internal mechanisms

always strive to keep these processes trimmed.

This work addresses the problem of learning basic motor skills of which large tasks,
like building cities or spacé stations, are ultimately composed. Learning is considered
here to be a relatively permanent change in system behavior leading to performance
that is improved in some sense. Learning implies using previous experience to improve
future performance in similar situations. In this context, improved motor skills will be
taken to be [Norman (1982), Brooks (1986)] motor skills that are smoother, faster,

and more precise, with less irrelevant activity.

2.4.1 Motor ’fasks

A motor task is a hierarchical collection of actions that can be accomplished by
invoking primitive skills. Invoking skills means accessing them, which means, in turn

that the skills must have internal names or addresses.

If the world can be broken down into recognizable elements or situations, then
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once a context is established, performing a task involves recognizing situations and

applying the named skills.

Events and behaviors have measurable effects. It is the occurrence of these effects
that comprises the occurrence of the event or behavior. If a task is proceeding as
expected, or an external agent is behaving as expected, the effects will be as predicted.
If not, the situation has changed, and the robot’s behavior and knowledge niust be

adjusfed accordingly.

Knowing how to do a sensor-motor task involves knowing, at a reflexive level:

1. what information is needed;

2. how to associate information with the task in the correct way (parameter bind-
ing);

3. where and when to look for the information during task execution;

4. what commands to issue;

5. how to associate and phase commands with the situation;

6. how the task is expected to evolve;

7. when it is impossible.

A real motor task is a concatenation of skills. Transitions between skills are skills

themselves.

Learning motor skills requires trying [Brooks (1986)]. Trying is needed to build

the association between the situation and the appropriate action.
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2.5 Scope of This Work

This work is concerned with the problem of learning and executing motor behavior
sequences in a rich sensory environment within the context established by higher-level
systems. More specifically, it is concerned with learning and maintaining primitive
behaviors and learning and performing motor task segments once the need for learning
or performing a particular segment has been identified by a higher-level system such
as a planner. It is not concerned with high-level planning itself, nor with identifying
the task to be performed. This work considers the generation, synchronization and
control of particular primitive motions, not how the motion contributes to a global

plan.

This work addresses motor learning as opposed to declarative learning. The dis-
tinction is somewhat fuzzy,h but here motor learning entails learning how to perform
actual movements and other motor behaviors that synchronize correctly with inter-
" nal and external processes, while declarative learning is the learning of specific rules
or facts. Motor learning involves learning analog values for control parameters and

learning about the behavior of external systems. It also involves learning about events.

We are considering learning by systems that have a significant amount of internal
structure and already have some competence. That is, they understand space in the
sense that they understand distance ordei‘ings, how to rno;re to targets, how to move to
correct position errors, and how to reCognize correct behavior at a high level, though
not necessarily at the sensory level. This work models learning by trial and erroxl with
an internal teacher: The system already knows about learning to some extent, and
has been told by higher-level systems what task is to be considered. Tasks involve
primitive motor behaviors and synchronizing with the behavior of external objects.

In analogy with a human teaching himself or herself a task, the teacher does not
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know explicitly the precise motor commands necessary to accomplish the task, but
recognizes good and improved behavior. The teacher can also give advice on the types

of behavior to try and whether to perform an action more or less intensely or earlier

or later, but does not know explicitly what should be done.

In order to concentrate on basic issues without the distraction of to6 much com-
plexity, simple robots are used. Positioning commands for smooth motions are learned
and executed, but no posture, stance, stiffness or force learning is considered. The
work is extensible, however, to those regimes. Because processing time delays can be
significant in versatile robots, emphasis in this work is on feedforward control at the
primitive level. Feedback is incorporated at the cognitive level: If the feedforward
command is inappropriate the cognitive system adjusts it. This is consistent with

motor control in animals [Brooks (1986)].

Motor control and perceptual elements are modeled as learning neural networks.
Control networks generate input voltages for amplifiers that drive conventional dc
servomotors. The only conventional controller employed is the default damper that

slows the arm when it has no active command.
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Chapter 3

Learning and Maintaining

Hand-Eye Calibration Corrections

3.1 Introduction

This chapter describes and compares two approaches to the hand-eye calibration
problem introduced in chapters 1 and 2. One is based on resource-allocating neural
networks; the other, which serves as a comparison, is based on conventional nonlin-
ear (Levenberg-Marquardt) estimation. Both approaches have been implemented as
computer simulations and consider the effects of kinematic errors and arm solution
degeneracy. In addition, thermal/mechanical drift, visual rﬁeasurement noise, and
nonlinear visual and drive system perturbations are considered for the system based
on neural networks. A new virtual-neuron learning algorithm for networks with a

single layer of adaptable processing units, or neurons, is presented, and it is shown
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that the step and frequency-response of such networks is surprisingly linear, making

it possible to predict their plant-tracking performance.

3.2 Previous Work

A number of workers have addressed issues relating to hand-eye calibration. Ruoff
[Ruoff (1980)] discussed off-line hand-eye calibration for an industrial robot that was
assumed to be kinematically accurate. To effect calibration, the robot repeatedly
placed a disc on a vision stage at known increments along a user-designated line
segmént and used a least-squares fit to identify the vision magnification factor and
the vision coordinate frame with respect to the manipulator base frame. Since the
manipulator was calibrated, and therefore provided a distance scale, the system could
return both Cartesian coordinates and rﬁetrical information. The system was capable
of accuracies approaching 0.5 mm, but, as is typical of industrial robots, was subject

to thermal drifts that forced recalibration as the ambient temperature varied during

the day.

Génnery and co-workers [Gennery et él (1987)] use off-line nonliﬁea,r estimation
to calculate best-fit vision calibration parameters for laboratory robots under devél-
opment for the United States space program. Their procedure uses a large, accurately
machined and located fixture consisting of a regular array of light discs machined in
a dark anodized background. The manipulator itself is‘ calibrated separately. The
procedure involves visually observing the disc pattern and inserting a special locating
probe, accurately held by the manipulator, into precisely machined holes at each disc
location. The known relationship between each disc position and the corresponding
position of the locating probe allows the model parameters for each camera and their

relationship to the manipulator base frame to be estimated in an overall least-squares
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sense. This procedure leaves residual errors that may amount to several centimeters

at some locations.

Lokshin and Kan implemented a system for accommodating these residual errors
interactively [Lokshin (1990)]. An operator designates correspondingiactual and
computed feature locations in a stereo visual display. The system uses this informa- .
tion to calculate a local frame correction that is applied to nearby robot motions.
Motions corrected in this way are usually sufficiently accurate that robot tasks caﬁ

be completed if terminal motion force feedback and control are employed.

The systems just described assume a Cartesian internal representation, and visual
and arm computations are done in that context. Kuperstein [Kuperstein (1987b),
Kuperstein (1988)] and Mel [Mel (1989)] have addressed the issue of hand-eye cali-
bration from a biologically-inspired perspective. They have considered the problem
of reaching visible targets and have not attempted to provide explicit metrical in-
formation. The approaches they employ are based on idealized neural architectures
thla,t associate visual target position representations and arm position representations.
The mappings are locally rather than globally optimized, and do not explicitly employ

kinematics.

Kuperstein [Kuperstein (1987b)] has developed a simulated hand-éye system that
generates feedforward commands for positioning an arm to a visually-sensed target by
learning to map camera pointing information into appropriate arm axis commands.
His system, which assumes no a priori kinematic information, employs a three DOF
revolute arm and two cameras. Each camera is capable of independently pointing
to the visual target. The system borrows heavily from anatomiéal models, using
pairs of sirﬁplified antagonistic “muscles” to position each arm axis and three pairs of
equally-spaced antagonistic “muscles” to point each camera. Antagonistic pairs are

used since muscles are unidirectional and because antagonistic processing is thought
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to be important in biology.

The coordinates of a unit vector lying along each camera’s optical axis are calcu-
lated from its six muscle activation values. Each camera position is then transformed
into a unimodal activity distribution in a two-dimensional matrix of 20 x 20 overlap- _
ping neural processing units. A disparity map, which represents the disparity between
the right and left camera positions, is generated from the two position matrices. The
disparity map is also a 20 x 20 matrix, and the activity of each unit is calculated from

the corresponding units of the left and right camera position matrices.

Arm positions corresponding to camera positions are generated by using the cam-
era position and disparity matrices to calculate the activation of each arm muscle,
which is a weighted sum of the activities of each unit in the two camera position

arrays and the disparity map. Learning is accomplished by adjusting these weights.

The system first operates in a learning mode in which muscle activation commands
corresponding to target positions are associated with camera position and disparity
signals corresponding to the target positions. After learning has converged, the system
enters the execution mode. In the execution mode the target is positioned and the
system responds by generating the muscle activation commands appropriate for the

target position.

In the learning mode, the arm, with the target attached, is positioned by randomly
activating its muscles (this is akin to an infant’s babbling [Mel (1989)]). Once the
arm is positioned, each camera is pointed to the target’s visual contrast center by an
independent control system that is not modeled. Pointing causes activation of the
- three antagonistic muscle pairs that point each camera. This causes activity in the
camera position and disparity mapé described a,bove‘. This activity, in turn, is used

to generate the weighted sums that correspond to arm muscle activations.
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Learning is accomplished by adjusting the weights using an incremental learning
rule that minimizes the error between the randémly-commanded activations and the
weighted sums. Learning converges in three to five thousand trials, de.pending upon
the learning rate, with an accuracy of about two percent [Kuperstein (1987a)]. Accu-
racy is taken to be the_average difference between the randomly-excited and generated
activations over all arm axes as a percentage of the activation range. Given that there
are three arm axes, each with two opposing muscles, and three 20 x 20 matrices, there

are 7200 wéights.

In more recent work, Kuperstein [Kuperstein (1988)] uses an arm with five DOF
to address the problem of learning to generate feedforward commands for grasping a
randomly positioned and oriented cylindrical object. This work requires processing
stereo retinal images because of the need to determine the orientation of the cylinder’s
axis. Muscle activations are weighted sums of eye pointing and retinal matrix units.
Again, the system learns the correct arm response by associating sensory signals with

arm muscle commands.

Kuperstein’s work employs a number of signal transformations thought to mimic
processes found in animals, but it uses just a single layer of adjustable weights. Noise

and arm degeneracy are not considered.

The hand-eye calibration system embedded in MURPHY [Mél (1989)] also learns
to reach for objects by associating visual stimuli with arm positions. Instead of
learning the joint angles corresponding to grasp positions, however, MURPHY learns
to direct its arm to a target by learning forwérd kinematic and inverse differential
kinematic maps. The forward kinematic map is retinotopic, mapping the joint angles
to a virtual image of the arm joints, hand and fingers (which are bright dots) on the -
image plane, which is a representation of the space accessible to the arm. By mentally

trying different arm positions, MURPHY can determine if a set of joint angles will
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make the arm collide with visible obstacles (which form real images on the image

plane).

The inverse kinematic map generates a set of incremental joint angles correspond-
ing to an incremental movement by associating the arm joint angle conﬁgufation
and the desired hand motion increment in polar coordinates. Each arm angle or an-
gle increment is represented in a separate coarsely- cc;ded (Gaussian) population of
overlapping neural processing units in which the order of a unit in the population cor-
responds to the joint angle rangé it dominantly represents, and the unit’s activation

peak corresponds to the center of its range.

Reaching is effected either by flailing toward the target in a search strategy using
the forward kinematic map or by making incremental movements toward the tar-
get based on the current arm configuration and the target position. Desired hand

movement increments are determined by an external serial controller.

This approach, rather than the straightforward association of target positions with
joint angles, was taken to allow exploring reaching in the presence of obstacles. It
involves visual servoing, however, since the hand is guided to the target by calculating

incremental positions in a loop.

MURPHY has a three DOF arm that moves in a plane in the view of a camera
system. MURPHY s architecture, which employs many sigma-pi (conjunctive) neural
processing units with coarsely-coded inputs and many connections, is similar to table
lookup. In effect, an inpuf vector becomes an address code that activates the appro-
priate units for computing the result, which is generated by thresholding a weighted
sum of the outputs of the active units. Associations are learned using a Hebbian ap-
proach in which connections are formed for all input-output pairs that are sufficiently

active. This allows the forming of associations in just one trial. Because the units use
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coarse coding and are consequently able to interpolate, MURPHY requires just one

uniformly-subsampled pass to learn its forward kinematic map. This pass, however,

requires several hours, and generates over two million connections.

The inverse differential kinematic map is learned by randomly moving the arm
through small increments and associating the resulfing hand position increments and
the active neural processing units representing the arm joint angles with the observed

joint angle increments.

MURPHY, which has actually been implemented in hardware (the neural pro-
cessing is simulated on a serial computer), is kinematically redundant because it has
three DOF, but is restricted to move in a plane. The issue of redundancy is finessed
by learning the “averaée” inverse differential kinematic map. MURPHY, as imple-
mented, cannot easily deal with drifting plants since there is no gradual way to modify

connection strengths.

3.3 An Engineering Approach to Hand-Eye Cal-

ibration

The biological approaches of Mel and Kuperstein descriBed above attempt to model
the style of computation thought to exist in animals. They assume little is known ab
" initio about system kinvematics. In contrast, both of the approaches described here
have an engineering flavor, even though one employs a neural network as the adaptive

element.

It is assumed that the nominal kinematic structure and parameters of the system

are known, and that the actual system deviates somewhat from the nominal system
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because of manufacturing variations and system drifts. Tt is therefore possible, using
nominal system kinematics, to calculate reasonably accurate feedforward joint angles

corresponding to the locations of visually-sensed targets.

The approach based on neural networks performs hand-eye calibration by learn-
ing to correct the feedforward position commands generated by the nominal system
kinematics. A resource-allocating neural network (RANN) [Platt (1990)] learns the
correction either by adding neurons or by modifying the neurons that already exist
as described in section 3.5.1 and appendix A. Actual command angles are generated
by summing the nominal angles and the corrections. It is simpler, faster, and more
accurate to learn a correction than to learn the entire kinematic map, as will be seen

belo'w in section 3.5.9.

The approach based on nonlinear estimation identifies the kinematic parameters
using the nominal parameters as initial values. Feedforward angles are generated by

the system’s kinematics routines using the parameters identified by the estimator.

~ In both cases, initial performance is good because of the explicit use of engineering
knowledge. This is in contrast to the more biologically-oriented approaches that
perform poorly at first. Arm solution degeneracy is also incorporated in a natural way.

This work addresses hand-eye calibration for direct reaching using visual information.

Tactile sensing is not considered.

The remainder of this chapter describes the hand-eye system, including the arm,
stereo vision system, and.error sources, and devélops the neural-network and nonlin-
eé.r estimation approaches to hand-eye calibration. It examines the effects of noise on
resource-allocating neural networks‘ and explores the performance of neuron allocation
and adaptation algorithms. Those with the best perfofmance are selected for further

tests. These tests include evaluating the ability of networks with the selected algo-



30

rithms to track step and periodic plant variations, compensate for kinematic errors,
and learn hand-eye mappings without using knowledge about the kinematic structure
of the system. The mathematical relationships required for nonlinear estimation are
given and, where possible, the performance of the estimator-based system is exam-
ined in the same situations as the system based on neural networks. Finally, the

performance of the network-based and estimation-based approaches is compared.

3.4 The Hand-Eye System

This section describes the hand-eye system, which is used for both the neural network-

based and estimation-based calibration approaches.

3.4.1 System Layout and Kinematics

The system layout is shown in ﬂguré 3.1. The underlying system geometry and
operation are identical for both the neural and estimation approaches. The system,
which is planar, includes an arm, a stereo vision system, and a vision pointing system.

The vision and pointing system origins coincide.

The arm has two angular degrees of freedom, o and 3, and links a and b, which
are represented by vectors as shown. The angle of link a relative to the base frame
z-axis is «, while § is the angle of link b with respect to link a. Both a and A
can be indépendently given arbitrary values within their individual ranges of motion.
The stereo vision system measures the range r of objects from the vision origin, and
their angular eccen’tricity, €, from the visual pointing axis P, which is aimed by the

pointing system. The pointing system has one degree of freedom, v, the angle of
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Figure 3.1: Hand-eye system layout. Small circles indicate the datum from which an
angle is measured. Angles increase counterclockwise.

P with respect to the z-axis of the pointing system base frame, which is nominally
parallel to the arm base frame. The vector v is the location of the vision pointing
system base relative to the arm base frame. The angular positions of the arm and

visual pointing axes are measured by encoders.

Encoders are assumed to give exact readings and to have stable offsets except when
mechanical or thermal drifts are involved (see section 3.5.7). This is a reasonable
assumption given the quality of encoders available commercially, though position
quantization will cause a small amount of uncertainty in actual systems. An encoder’s
offset is the Ad‘iﬂ‘erence between the actual axis angle and the encoder reading when

the axis is at a defined standard position, which is taken to be zero. The relationships
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between encoder readings and axis angles are not assumed to be linear, however, as

described below.

~ Because of the various error sources, the actual angles and the angles measured
by the encoders will differ. The relationships between measured and actual quantities

are defined as follows:

Qact = Qmeas + Os + b (3.1)
Bact = Bmeas+Op+ 88 (3.2)
Ymeas = Yact — Oy + 67 5 (3.3)
€meas = €act+Oe+n. - (34)
Tmeas = Tact + 67+ 1, (3.5)

where meas and act mean measured and actual, respectively; O,, Og, and O., are
the respective encoder offsets; da, 63, and §v are respective errors due to nonlinear
~ perturbations (see section 3.4.4); and n, and n, are normally-distributed visual noise

‘sources with zero mean that will be discussed below.

The z and y coordinates of t, the tip of the arm, are nominally given in terms of

the joint angles by

t: = acos(a) + beos(a + B) (3.6)

ty = asin(a) + bsin(a + ). | (3.7)

\

The tip position relative to the vision base is given by

Ty = tz— v, (3.8)

Ty = 1y — vy, (3.9)
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and the angle of the tip as a function of the pointing angle and angular eccentricity

is given by
0 =v+e (3.10)

The tip position relative to the arm base is given in terms of the vision angles by:

t. = rcos(f)+ v, =rcos(y+¢€)+ vy (3.11)

t, = rsin(8) + v, = rsin(y + €) + vy, (3.12)
while the tip polar angle, (, is given in terms of the tip position by
¢ = arctan(ty,t;). (3.13)

Since a + b = t, we have, taking the dot product of each side with itself and solving

for 3,

12— a? — b

= . 3.14
B = arccos( 57 ) (3.14)
Similarly, since b = t — a, we have
t2 _+_ a2 _ b2
=a B s 1
¢ = arccos( 57 ) (3.15)

The elbow can be either to the left or the right of t, so the arm solution is not unique.

From the fact that a, b, and t are sides of a triangle and figure 3.1 we see that

sgn(¢) = —sgn(p) (3.16)

a = (+é. (3.17)
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Figure 3.2: Schematic representation of stereo vision processing with error sources.
The system measures the range and eccentricity, subjecting the measurements to
additive noise, nonlinear perturbations, and range scale factor errors. Object or arm
tip recognition and location commands are supplied by an unmodeled external system.

3.4.2 The Stereo Vision System

The vision system, which is not modeled in detail, is illustrated in figures 3.2 and 3.3.
It is assumed to use two separated cameras, each with a regular array of constant-size
pixels. As described above, it measures the range and angular eccentricity of features

within its visual field.

The vision system is assumed to be pre-calibrated in the sense that it returns
accurate range and angular values. This seems like a strong assumption, but we will
see below and in section 3.5.8 that range scale factor errors, angular deviations, and
kinematic errors are naturally corrected in the same way. Range scale errors, which
might result from camera misalignments and lens focal length errors, just establish
a different distance scale that is incorrect, but is rendered internally consistent. for
hand-eye pbsitioning by the lea.rnihg or estimation process. As shown in figure 3.2,
the range and eccentricity measurements are assumed to be corrupted by independent
additive zero-mean Gaussian noise, by nonlinear perturbations, and by the systematic

range scale factor error just mentioned. The visual noise sources are assumed to apply
LY
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Figure 3.3: Schematic representation of vision system geometry. The visual target is
located at point t, which has Cartesian coordinates z,y and polar coordinates r,e,
where € is the angular eccentricity. The cameras are separated by 2h. The eccentricity
measured by camera one is ¢;; that measured by camera two is ;.

wherever the image point falls on the retina. That is, effects due to the locations

of pixels in space are not modeled. Noise standard deviations are estimated using

uniform distributions as described below.

In addition, the visual pointing system is subject to a constant angular offset
that models encoder positioning errors, and to nonlinear perturbations similar to
those that are often present in gear and traction drive systems. Nonlinearities are

described below in section 3.4.4.

For purposes of estimating the noise source standard deviations, the cameras are
assumed to have a uniform pixel spacing, p, of 0.0275 mm, a focal length, f, of 8.0
mm, and a sixty-degree field of view. They are assumed to be separated by 50 cm.

The range measurement noise standard deviation is estimated as follows: Referring
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to figure 3.3, and defining

mi ¥ tan(e) = (y—h)/=z (3.18)
my ¥ tan(e) = (y + h)/z, (3.19)
we find that v
h
- 2
r=—— VA + (my 4 m)2. (3.20)

Then, linearizing to find the change in r due to small changes in m; and my, we

obtain

2 cos(¢) . 7% cos(€)

dr = ( 5, + rcos(e€) sin(e))dm, + (r cos(e) sin(e) — 5T, ydms,. (3.21)

We assume that the angles ¢; and ¢, are uniformly distributed over the camera’s field
of view. Since p, the pixel width, is very much smaller than the focal length of the
cameras, and the field of view is just sixty degrees, it is reasonable to consider the
corresponding small changes in slope, dm; and dm;, as random variables that are
uniformly distributed over the pixel width. This implies that (dm;) = (dmj) = 0,
where the angle brackets () indicate the average, or mean, value. The standard

deviations, o(dm;) and o(dm,), are given by:

o(dmy) = o(dmsy) = \%? | (3.22)

Using this result and letting n, correspond to dr, the mean, (n,), and the standard

deviation, o(n,), of n, are given by:

2 cos(€)

(n,) = ( 5T + r cos(e€) sin(e) ) (dmq) +

2 cos(¢)

(r cos(€) sin(€) — oh }dmg) =0 | (3.23)
= —_,.2 cos(€) s r2 cos?(€) sin®(e 2_P_
o(n) = (P +r%cord()sin’ ()1 (3.24)
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Similarly, noting that
(my + m2)/2 = tan(e) ¥ m, (3.25)

we verify that the eccentricity measurement noise mean, (n.), is zero, and calculate

its standard deviation, o(n,):

(n) = (de) = (d(arctan(m))) = (-1-—%’1”‘"7

2

ond = (deR) = < fiamet) + (am3). (3.27)

)

=0 (3.26)

= cos’(e)

Assuming that (dm?) = (dm2), this becomes:

cos()£
26 f

cos?(e)

V2

cos?(e)

o(ne) = 7

—=—0o(dm) = (3.28)

(dm2) =

The expression for o(dm) is given by equation 3.22.

3.4.3 System Operation

Hand-eye calibration is achieved by randomly’ positioning the arm? at many different
locations and using the discrepancy between the measured and calculated arm joint
angles to drive the 'learning—ba,sed or identification-based adaptation processes. This
is represented schematically in figure 3.4a. In the neural network-based adaptation
process, shown in figure 3.5, the stereo vision system, which is mounted on the point-
ing system, observes the arm tip (the tool frame), measuring its range r relative to
the pointing system base, and angular eccentricity e relative to the optical axis p, as

shown in ﬁgure 3.1. The range and eccentricity are used along with the measured

1A grid could also be used.
2The visual eccentricity € may be selected as well. See below.
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Figure 3.4: Hand-eye calibration. In a) the adaptation process is embedded in a
program specifically designed to perform hand-eye calibration. In b) the adaptation
process is run in the background to maintain hand-eye calibration during normal

operation.

pointing angle 4.5, and the nominal system kinematics to calculate the nominal
arm angles anom and Brom. The nominal arm angles, the measured pointing angle,
and the measured vision parameters Tmeqs and €005 are gsed by the neural -network
to generate the arm angle corrections Aa and ‘Af. These are added to the nominal
arm angles to predict the arm angles. These predicted angles are compared with
the angles measured by the arm joint encoders. Discrepancies are used to drive the
network learning procedure to improve the arm angle corrections. Depending upon

the error size and the availability of neurons, the learning procedure either adjusts
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Figure 3.5: Neural network-based adaptation process.

the network parameters using a adaptation algorithm (see section 3.5.3), or allocates
an additional neuron to reduce the error as describéd below iﬁ section 3.5.1. The
estimation-based adaptation process, which is shown in figure 3.50, is similar except
that the kinematics calculations use the current kinematic parameter estimates rather
than the nominal kinematic parameters and the estimator replaces the neural network
and learning algorithms. Either adaptation process can be run in the backgrouhd ofa
robot control system to maintain calibration during operation as illustrated in figure
3.4b. Doing so just requires that the arm be visually observed at appropriate times -

and that the relevant data be made available.

The stereo vision pointing system may be commanded either to foveate on the arm
tip (align its pointing axis p with vector r in figure 3.1) or to point to the vicinity
of the tip so the target lies within the angle (¢) from the pointing axis. The latter
case simulates the current practice in robotics, which typically employs cameras that
lack the high-resolution foveas found in vertebrate eyes, and does not attempt to
keep objects centered in the visual field. Vision system pointing is hahdled by an

unmodeled servo system represented schematically in figure 3.6.
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Figure 3.6: Vision pointing system with error sources. When.the switch is in the lower
position, the cameras are aimed to a specified angle, as when looking for an object.
The pointing loop is closed around the 4 position encoder. When the switch is in the
upper position, cameras are aimed at a visually-sensed object, and the pointing loop
is closed around vision system output.

Arm positions are generated by selecting joint angle commands within the ranges
of joint motion. Joint angle travel limits may be set to allow both elbow-left and
elbow-right solutions,® thereby introducing arm solution degeneracies. Actual arm

positioning is handled by an unmodeled servo system represented schematically, along

with sources of error, in figure 3.7.

It is assumed that.t‘he measurements of range, eccentricity, pointing angle, and
arm -éngles corresponding to a particular arm position are effectively simultaneous. It
is also assumed that each of the axes a, 8,7, incorporatés a position control loop that
is closed around an axis position encoder, and that the position loop is capable of
~ asymptotically perfect postioning performance with respect to the encoder. That is,
that the position command and the encoder reading (e.g., @command and Qmeqs) will
asymptotically coincide. Instead, it could be assumed that the commanded rather

than the encoder axis position is measured, but that approach has not been taken here.

3The elbow may be either to the left or right of the radial line drawn from the robot base to the
arm tip. ' .
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Figure 3.7: Arm positioning system with error sources.

In that case compénsation for poor (but consistent) servo positioning performance
would be included in the learned angle command correction and deviations from

consistency would be noise sources.

Finally, it is assumed that the hand-eye system is embedded in a higher-level
control system that provides crucial planning, sequencing, and timing functions that
are not addressed in this work. The‘higher-level control system determines which
of the multiple‘a.rrn solutions to use in a particular instance, when the position has

stabilized, when and how to use visual information, when to issue commands, and so

on.

3.4.4 Kinematic Parameters and Modelling Errors

Kinematic parameters

Nominal and actual values of the kinematic parameters, the link lengths, pointing

system position, and encoder offsets, are given in table 3.1. Refer also to figure 3.1.

Each of these kinematic parameters is assumed to be in error except for the o
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Parameter | Nominal Value | Actual Value
llal| 1.00 Meter | 1.005 Meter
|Ib]| 1.00 Meter | 1.003 Meter
Vg -1.00 Meter -1.01 Meter
vy 0.00 Meter -0.02 Meter
Oq 0.00 Radian | 0.00 Radian
Os | 0.00 Radian | 0.018 Radian
0, 0.00 Radian | 0.035 Radian

Table 3.1: Nominal and actual kinematic parameters.

encoder offset, O,, which is fixed at zero for convenience. This amounts to defining
the z-axis as corresponding to the angle @ = 0. Other values could have been used
as well. Setting a = 0 is reasonable because a base z-axis has to be defined in some
way. In manufacturing practice this is typically accomplished by positioning the arm
at a sténdard, physically-deﬁned position corresponding to a desired encoder reading.
The observed difference (offset) between the desired and actual encoder readings is

recorded. This offset is then added to subsequent observed readings as a correction.

It is not necessary to fix O,, the alpha encoder offset, but it simplifies debug-
ging to do so. Both the network and nonlinear estimation approaches are able to
generate internally-consistent kinematics when O, is estimated along with the other

parameters.

The nominal arm joint travel limits are (in radians):

—0.87 < a <0.87 _ o (3.29)

08T < B <087 (3.30)

The B range permits multiple arm solutions. Because of solution singularities and

associated computational problems that occur when the arm is completely extended
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(8 = 0), the region around § = 0 is excluded by restricting 3 to the regions:

—0.87 < B < —0.1x (3.31)

0.17 < B < 0.8 (3.32)

This reduces the accessible radius by less that two percent, and the accessible work

area by less than three percent over the nominal region.

Nonlinear Perturbations

The hand-eye system includes nonlinear position perturbations for the vision point-
ing system, the arm, and the stereo .vision system itself. These perturbations, which
model manufacturing, positioning, and alignment errors, can be independently se-
lected. Parameters were chosen to cause a maximum tangential perturbation of about
one centimeter at a radius of two meters for each angular degree of fx‘éedom selected
and a maximum radial perturbation of two centimeters at a radius of three meters.
These were selected as being representative of significant errors that might be en-

countered in actual robot systems.

In the following s., s,, and s, are selection pa,ra,meters‘for the vision pointing
system, the arm, and the stereo vision system, respectively. A selection parameter
equals one if the corresponding nonlinearity is selected and is zero otherwise. In what
follows, the subscript meas means the measured value, while the subscript act means

the actual value as before.
The vision pointing perturbation é+ is given by

6 = scvysin(3y + 0.7), (3.33)
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where
Ymeas = Yact + 67 - 07, (334)

v is an adjustable parameter, and O, is the vision pointing system encoder offset
defined above. This form was chosen to mimic periodic and scale factor errors that
can result from using gears and traction drives. A value of v = 0.002 gives a maximum

perturbation of 1 cm at a radius of 2 meters.

Arm angle perturbations éa and 68 are given by

ba = $.€0meas SIN(Opens + 2) (3.35)
5ﬂ = Sanﬂmeas Sin(ﬂmeas - 1)a . (336)
where, as defined before,
Qaet = Qmegs T ba +‘Oa (337)
Bact = Pmeas + 66+ Op, (3.38)

¢ and k, are adjustabie parameters and O,, Op are the a and 3 encoder offsets
respectively. { = —0.0017 and x = 0.0018 yield the desired maximum perturbations

of about 1 centimeter at 2 meters for their respective axes.

Recalling that € and r are the angular eccentricity from the visual axis and the
range from the origin of the vision pointing system base frame respectively, the stereo

vision system perturbations are defined to be

S¢ = 5,75in%(€)(Tact + 2/Taet + 1) (3.39)

br = 8,0(8€+ (ract — 1)%, | (3.40)
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Parameter Value

Vision Perturbation Parameters

n 1.5 x 10~2

¢ 5.0 x 1073
Vision Pointing Perturbation Parameter

v 2.0 x 10°3

Arm Perturbation Parameters

¢ -1.7x 1073

K 1.8 x 1073

Table 3.2: Nonlinear perturbation parameters.

where, ignoring noise for the moment,

€meas = €Egct + O€ (3.41)

Tmeas = ract+67'- . (342)

"The’ effect of the eccentricity perturbation is to model astigmatism by compressing
angular measurements to the left of the visual axis while expanding them on the right.
With the assumed sixty-degree field of view, a range of 2 meters, and' n = 0.015, the
pertufbation moves a point at the left edge of the nominal field of view one centimeter
toward the visual axis, while a point at the right edge of the field of view is moved
one centimeter away. A plot of distorted and undistorted circles with n = 0.015 is
shown in ﬁgurev 3.8. With ¢ = 0.005, the maximum range perturbation is 2 cm at
an actual range of 3 meters. Perturbation parameters are summarized in table 3.2.

Perturbations for the given parameter values are plotted in figure 3.9.

The effect of these perturbations on system performance is shown in section 3.5.8.
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Figure 3.8: Nonlinear visual angular eccentricity perturbation. One circle in each of
the plotted circle pairs is distorted by the eccentricity perturbation. The other is not.
In the left half plane the distorted circle is closer to the origin, while in the right half
plane it is farther away. The distortion is zero on the y-axis. Units are in radians.

- 3.4.5 System Implementation

As part of this research, the hand-eye calibration system has been implemented as
a simulation written in “C.” The program is table-driven to allow easy parameter
modification. It includes routines that handle the neural networks and identification
routines as well as intermediate disc storage and system parameter management.

Experiments were run under UNICOS on the JPL Cray X-MP/18 and under UNIX

on Sun Sparcstations.
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Figure 3.9: Plots of the éa, 68, év, d¢, and ér perturbations over their accessible
domains. Offsets O,, Op, and O., are added to the éa, 63, and §v plots respectively.
Angular units are radians; linear units are meters. Note that in all cases > 0. Axes
and scale are identical with those of figure 3.47 to allow comparison.

3.4.6 Performance Testing

Performance testing involves alternating sets of training and measurement trials. The
system is first initialized with the nominal kinematic parameters.? In neural network
learning, this means the network initially has no neurons, and hence that the angle

corrections Aa and Af are exactly zero. In nonlinear estimation, the initial kinematic

4The parameter values are defined in figure 3.3 and in tables 3.1 and 3.2. See also the plots in
figure 3.9. '
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parameter estimates are set to the nominal parameter values.

After initialization, learning or estimation is enabled, and the system begins a
set of training trials as described in section 3.4.3. Each new arm position cycle is

considered a trial.

When a set number of training trials is completed, learning or estimation is dis-
abled and position error data are gathered over a fixed number ¢ of testing trials
for each iteration. When the ¢ testing trials are complete, learning or estimation is
re-enabled and the training trials continue. This process repeats until a preset total

number of training and measurement trials is completed.

When the training and measurement trials are finished, performance statistics are
computed for each set of ¢ testing trials and plotted as a function of the number of
training trials. These statistics include the average length of the positioning error
vector (6p), the sample standard deviation [Alexander (1961)] of the length of the

. positioning error vector, and the number of neurons.

The average Euclidean length ép; of the error vectors 8p; is defined as

69) =3 Iyl (3.43)

J=1

and the sample standard deviation is defined as:

25=1(8p; — (6p))?
Tsp,sample = \/ = 7 _J_ 1 . (3.44)

Accuracy is evaluated with position error because it is more meaningful for robotic

applications than joint angular error.

For many of the tests, networks were restricted to 200 neurons. Using more
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neurons in noisy situations gives minimal accuracy improvement as discussed below.
In selected tests more neurons were used, and in some the number of neurons was not
limited. Performance evaluation runs typically involved running 1000 testing trials

after every 100 learning trials.

As initial tests to verify system function, both the neural network and nonlinear
estimation approaches were evaluated with perfect kinematics® and without nonlinear
" perturbations or additive noise. In these tests, the neural network remained empty®
(no neurons were allocated) and kinematic parameter values computed by the esti-
mation approach were either exactly the nominal values or were within 10~! of the
nominal valué. Exact values were obtained when an error threshold was used to in-
voke the estimator. With exact kinematics, there was no error and the estimator was
never invoked. The 107! error was a numericﬂ artifact that arose when the error

threshold was set to zero to force using the estimator.

3.5 Hand-Eye Calibration Correction Using

Resource-Allocating Neural Networks

This section discusses the design, implementation and performance of the hand-eye
calibration system that employs resource-allocating neural networks (RANN’s) as .
learning elements. Such networks learn an input-output mapping either by allocating
additional neurons or by adjusting7 the parameters of those that already exist. The

network implementation is described and its calibration performance using different

5Nominal and actual values of kinematic parameters coincided.
6Recall from section 3.3 that in this work the network learns a correction either by allocating
additional neurons or by adjusting the parameters of those that already exist. This is discussed in

appendix A and section 3.5.1.
7In the present work, the parameter adjustment process is called adaptation.
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neuron allocation and adaptation schemes in noisy and noise-free situations is ana-
lyzed and evaluated. Based on the performance tests, preferred network allocation

and adaptation schemes are selected.

3.5.1 The Resource-Allocating Neural Network

Resource-allocating neural networks [Platt (1990)] are described in appendix A.
Through suitable choices of the neuron response function, receptive field widths, and
neuron allocation and adaptation algorithms, a RANN is capable of rapid learning
and excellent performance, and can generalize (interpolate) to input vectors that have

not been observed.

Neurons, or Processing Units

The neurons principally used in this work have Gaussian response functions,® though

cosine and parabolic units are considered as well (see section 3.5.9). A neuron’s

response is a function of the Euclidean 'distance; d = \/ (X%, (e — x:)?), of the n-
dimensional real input véctor x from c, the center of the unit’s receptive field. The
respohse functions are radially symmetric, and take their maximum value of one at the
centers of their receptive fields. In the current context processing units are equivalent

to the radial basis functions of approximation theofy [Poggio and Girosi (1989)].

Each neuron has the following adjustable parameters:

ci, the n components of the vector c that positions the center of the neuron’s

8A neuron’s response function specifies its (scalar) output, or response, as a function of its input.
Response functions are also called activation functions, in which case the response is called the

actvaiion or activity.
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receptive field in the input space.

R, the radial width parameter that controls the size of the neuron’s receptive
field. This is the fraction of the distance to the nearest neighbor at which

the neuron’s output drops to one-half.

wy, the m weights that couple the neuron’s output to the components of the

network output vector.

. These parameters are given initial values when the neuron is.allocated. They may be

modified during operation by the adaptation algorithms discussed in section 3.5.3.
If we let z = d* = (L, (¢; — z;)?), the Gaussian response function is given by:

o=e*R (3.45)

where o is the output or response for the input z, and R is the width parameter.
The response drops to 1/e at a distance of v/R from the maximum. The Gaussian

response function is nonzero for all finite arguments.

Network Inputs

Network (neuron) inputs in this work, except as noted, afe analog values representing
the two nominal arm angles a and £, the visual pointing angle v, the visual radius,
R, and the visual eccentricity €. All neurons are connected to the same inputé. Input
representation is an issue, as discussed in appendix A, and hard.wa,re network imple-
mentations will involve mechanisms, such as multiple input lines and decodefs, to
compensate for limited available dynamic ranges. In a possible input representation,

not all neurons would be connected to the same inputs. Instead, different input lines

would correspond to different neighborhoods of the input space, and would map, in a
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topology-preserving manner, onto corresponding sets of contiguous neurons. Analog
voltage values would be used within the sets for input distance calculations. Similar

representations are ubiquitous in biology.

3.5.2 Unit Allocation

The performance of a RANN in a particular application depends critically upon both
the algorithm for allocating new neurons and initializing their parameters as well as
the way that training examples are presented. As described above, a new neuron is
allocatéd if the network error for an input vector exceeds a given error threshold 8, and
the distance from the current input vector to the center of the nearest receptive field
is greater than a distance threshold ;. The new neuron’s receptive field is centered
at the input vector. The weights wj; new coupling the output of the new neuron to the
network output components Oy are chosen so the new neuron’s contribution 'to each
" network output component for the current input is equal to the output component’s

current error:
wrnew = (Tt —O0r) 1 <k<m. (3.46)

Since the new neuron’s activity (output) is identically one for the current input vector,
adding the new neuron completely corrects the network output error for the current -

input.

The new neuron’s width parameter, R, is chosen so the neuron’s oufpﬁt drops to
one-half at a prescribed fraction, .h, (the half-maximum fraction) of the distance to
the center of the nearest existing neuron’s receptive field. The fraction k critically
affects the ability of the network to generalize. If h is too large, the effect of the

new neuron will not be localized; if % is too small network output will be lumpy and
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the network will not interpolate well between neurons, as described further in section

3.5.6 below.

The error threshold, 6., can be given a priori to establish a desired network
accuracy. The distance threshold, 8,, is more subtle. According to the Platt algorithm
[Platt (1990)], 8, usually decreases according to some schedule in an apparent effort .
to force the network to learn large-scale structure before committing its resources to
fine structure. This can be important to conserve resources in situations in which the
hand-eye domain is initially sampled only locally during learning, but if §; decreases
too slowly, the network will learn sluggishly. Furthermore, a lower bound on 8, (> 0)
and constraints on the number of neurons limit the network’s ability to learn fine

structure.

Using identical setups, several allocation algorithms were tried to assess their
effects on network performance. These algorithms, which are functions of ¢, the

number of training trials, included:

0, = kD/t (3.47)
0; = kb/ﬂ (3.48)
6. = kD/2? (3.49)
6. = De=*IX (3.50)
0. = kD/Vi (3.51)
s = kD/ln(t+1) (3.52)
8, = kD/(t)mess (3.53)
6. = 0.0 (3.54)
0, = 0.1 (3.55)

s = 0.5, (3.56)
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where k is a constant fraction (0.5), D is the diameter (diagonal) of the network input
space (treated as a Euclidean space), and n.ss is the effective dimension (5 in this

case) of the network input space. In eq 3.50, x, the Gaussian width constant, is 1000.

Arm angles and visual eccentricities for both learning and accuracy asséssment
were selected randomly from a uniform distribution over the input region formed by
the Cartesian product of the visual field and accessible arm angles, except that the
singtﬂar region around 8 = 0 was excluded as descfibed in section 3.4.4. Assessment
runs included the noﬁlinear perturbations and kinematic errors as well as visual noise,
but did not include parameter adaptation. The sequence of learning and evaluation
inputs was the same in all runs, and the a,veragé uncorrected bosition error was about
4.8 cm. The half-maximum fraction, k, used in determining neuron 1'ecepti§e field

width was set to 0.8.

The position error performance and neuron count for threshold allocation algo-
. rithms 3.47-3.51 in the presence of visual noise are plotted in figures 3.10 and 3.11
respectively, while the position error performance and neuron count of algorithms

- 3.52-3.56 with noise, again respectively, are plotted in figures 3.12 and 3.13.

The figures show that the accuracy of the networks, as a function of the nﬁmber
of trials, varies widely, and that 11 mm average positioning error seems to be a lower
bound. From the plots of neuron counts, hdwever, it is apparent that some networks
have far fewer neurons than others, and that accuracy is correlated with the number of
neurons allocated, as we might expect. Figure 3.14, which plots the position error as a
function of the number of neurons rather than the number of trials shows the striking
result that, for uniform random input presentations, ‘accuracy depends predominantly
upon the number of neurons, not upon the way the allocation threshold is varied. The
figures also show that the most responsive, or fastest-learning, allocation algorithms,

those of eqs. 3.47, 3.48, 3.49, 3.54, and 3.55, have nearly identical pérformance and
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Figure 3.10: Positioning error for allocation algorithms of eqs. 3.47-3.51 in the pres-
ence of visual noise. Graphs are labeled (a)-(e), with (a) corresponding to 3.47, (b)
to 3.48, (c) to 3.49, (d) to 3.50, and (e) to 3.51. Graphs (a), (b), and (c) largely
overlap. The Gaussian (graph d) allocates no neurons for nearly 800 trials due to the
slowly decreasing allocation threshold.

are liberal at allocating neurons.

Grid-Based Allocation

Experiments in which neurons were allocated at grid points rather than at random
locations were also performed. These included fixed-resolution grids with neurons
spaced equally along the axes, as well as variable-resolution grids composed of a
sum of successively finer subgrids in which subgrid ¢ + 1 had twice as many grid
points per axis (and therefore 2" many neurons) as sﬁbgrid 2. The motivation was

to force the network to learn large-sca.le'behavior before allowing the input space to
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Figure 3.11: Neuron counts for allocation algorithms of eqs. 3.47-3.51 in the presence
of visual noise. The graphs are labeled (a)—(e), with (a) corresponding to 3.47, (b) to
3.48, (c) to 3.49, (d) to 3.50, and (e) to 3.51. Graphs (a) and (c) overlap.

become fragmented. As can be seen in figure 3.15 which used a 568-neuron virtual
neuron network, random allocation had the best performance, but variable-resolution
grids also performed relatively well. In the noisy case, however, performance of the
three approaches was comparable. This indicates that using electroni.c neural network
components in which neuron locations are pre—allocated Willrnot seriously degrade
performance in real situations. Initial learning as portrayed in the plots for the
variable- and fixed-resolution grid cases does not correctly represent network learning
capabilities since network evaluation trials were only conducted upon grid or subgrid
completion. The number 568 is the number of neurons that is actually allocated
in a variable-resolution grid with four subgrids. Not all grid points receive neurons

because singular points are rejected. All three allocation approaches used 568-neuron
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Figure 3.12: Positioning error for allocation algorithms of egs. 3.52-3.56 in the pres-
ence of visual noise. Graphs are labeled (a)-(e), with (a) corresponding to 3.52, (b)
to 3.53, (c) to 3.54, (d) to 3.55, and (e) to 3.56. Graphs (c) and (d) overlap.

networks to ensure fair comparison. Extra neurons necessary in the case of the fixed-

resolution network were allocated randomly.

3.5.3 Adaptation

When network accuracy is not acceptable, but it is impossible or undesirable to
allocate new neurons, adaptation algorithms are employed in an attempt to improve
accuracy by adjustingvneuron parameteré. Adaptation also smooths errors induced
by noise during allocation. Even though neuron éllbca,tion is important in terms of

setup and initial learning speed, only a finite number of neurons can be allocated, and
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Figure 3.13: Neuron counts for allocation algorithms of eqs. 3.52-3.56 in the presence
of visual noise. The graphs are labeled (a)-(e), with (a) corresponding to 3.52, (b) to
3.53, (c) to 3.54, (d) to 3.55, and (e) to 3.56. Graphs (c) and (d) nearly overlap.

adaptation algorithms play the most important role in long-term system performance.

Three adaptation approaches are described here. The first is based on gradient
descent. It adjusts the output weights, the neuron center locations, and the neuron
width parameters. ’The second is a novel learning algorithm that adjusts the weights
of the curréntly active neurons according to the activity of a virtual neuron at the sites
of the active neurons. The virtual neuron is centered at the input pattern. The last is
an implementation of the CMAC learning algorithm [Albus (1975b), Albus (1975a),
Albus (1981), Miller (1987)]. It also adjusts just the output weights. CMAC itself is
based on a model of the cerebellum [Albus (1972)]. |
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Figure 3.14: Positioning error as a function of neuron count for allocation algorithms
of egs. 3.47-3.56 with visual noise. Noisy behavior at low neuron counts is caused by
error fluctuations arising from random position sampling while the neuron count for
some allocation algorithms is changing slowly. Labels are omitted for clarity.

Gradient Descent Adaptation
The network output, hence the output error, is a known function of the network ’
weights and neuron parameters. In gradient descent adaptation, the gradient descent

method [Ralston and Rabinowitz (1978), Press et al (1988)] is applied to reduce the

output error by adjusting the network weights and parameters.

If, for an input vector x, an “energy,” E, is defined as

1 & :
E= 5 S (T — Ok)?, (3.57)
k=1
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Figure 3.15: Error-correction performance of networks allocating neurons at random
locations and at grid points. Plots (a), (b), and (c) are for random, variable-resolution
grid, and fixed-grid neuron locations, respectively, in the presence of noise. Plots (d),
(e), and (f) are for the same respective neuron location approaches except that noise

is absent. .

with T the desired or target m-dimensional network output vector and O the observed

output vector with components given by

Ok = Z (wklol), ) (358)

all neurons [

then the (additive) paraméter adjustments for neuron ] are obtained by using the

chain rule:
' OE < .
Awg; = —A o = 20;(2;)(Tk — Ok) . (3.59)
OF m
ACJ',' = —A—= —2/\0;-(21‘)(37,' — Cj,') Z wkj(Tk — OL) . (360)

dcji P
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AR, = -\ OF _ a"f z’) Z we; (T — Ok). (3.61)
8Rj
Here 0;(z;) is the response of neuron j to z; = ||x —c;||?, which is the squared distance

of the input vector x from its receptive field center c;; 0}(2;) is the derivative of neuron
J’s response to z;; wyg; is the weight coupling the response of neuron j to component
k of the network output vector O; ¢;; is component ¢ of c;; R; is the receptive field

width parameter for neuron j; X is the learning rate.

The factors 0}(2;) and do;(z;)/0R; are specific to the particular neuron response

function. For the Gaussian we have:

’ 1 ~z; [R; .
oi(z) = — g i/ R (3.62)
7
90i(z) _ zi _.yg
= ZieulRy 3.63
dR; R?° (3.63)

In operation, parameter changes are made to the network after each trial. Waiting
for many trials to update the network tends to make the network unstable, but

empirically there is little difference between small waiting intervals.

Network performance is sensitive to the learning rate \: too low a rate causes
slow convergence while too high a rate causes the network to tend toward instability.
A learning rate of A = 0.02 gave the best performance. System error correction
performance with various learning rates for a 200-neuron network initialized to small

output weights is shown in figure 3.16.
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Figure 3.16: Error correction performance of gradient descent adaptation for different
learning rates. The learning rates are 1.0, 0.1, 0.06, and 0.01 in plots (a) through
(e) respectively. The network was limited to 200 randomly-positioned neurons. All
output weights were initialized to 0.001.

Virtual Neuron Adaptation

In virtual neuron adaptation, which is novel to this work, network accuracy is im-
proved at each trial by adjusting the output weights, wg;, of the active® neurons j in
such a way that the network outpﬁt error for the input is reduced and the effect of the
‘cha.nges is localized to a region around the input. Receptive field widths and neuron
center locations are not adjusted. This is reminiscent of the Platt neuron allocation

scheme and is similar to the CMAC learning algorithm discussed below.

Weight adjustments are computed by centering a virtual neuron, with width pa-

9A neuron is active for an input if its activity is above a specified threshold.
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Figure 3.17: Adaptation using virtual neurons.

. ‘.

rameter as described below, at the current input vector. The change in the output
weight, Awy; coupling active neuron j to network outpuf component k is proportional
to the output error of the component and to the activity of the virtual neuron due to
an input centered at the location of neuron j. This is shown schematically in figure
3.17. Since neuron activation functions are locali_zed, the effect of changes is localized.
Neiquns near the input vector have the largest weight changes, while weight changes
become smaller as the neurons become more distant. Adopting the notation used in
the gradient descent above, and writing dwyy for the change in weight wy; necessary

(with the changes in the other weights) to correct €, completely, and letting A be the
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set of active neurons, we can write

Ty = Z(wkl + 5wk1)01, (364)
leA

where o; is the output of neuron ! due to the input vector X, so that

€ = Z 6wk101. ' (365)
leA

If a virtual neuron V with width parameter Ry is centered at X, and if dwy; is made
proportional to V(¢; — x; Rv),v the virtual neuron’s activity at c;, the location of

neuron j, then dwy; becomes
5wkj = CkV(Cj - X Rv)‘, (366)
where C}. is a constant for network output component k. Then solving for ¢,

€ = Z CeV(c; — x; Rv)ol, (3.67)
leA .

SO

€L :
Cr = . 3.68
g 2iea V(e —x; Ry)o (3.68)

Then, letting Awkj = Aéwy;, with X the learning rate,

N
2iea V(e — x; Ry)oy

]CkV(Cj — X5 Rv) (369)

Awg; = ACLV(c; — x; RV) = [

The term in square brackets is a constant for all active neurons and for all components
of the output vector, so it has to be computed only once per learning trial. For non-
negative virtual neuron activation functions with sufficient width, the denominator is

positive if there are active neurons. The virtual neuron width parameter Ry can be
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selected in various ways, including fixing its value at the outset. In this work, virtual
neuron width parafneters are selected in the same way as in neuron allocation: the
width is chosen so the activation drops to one-half at a fracfion h of the distance
from the input vector x to the nearest active neuron. In addition, the virtual neuron
activation function was chosen to have the same form as the network neurons. This
means that the response of the virtual neuron at the site of neuron j can be‘calcu-
lated by neuron j if its width is temporarily set to that of the virtual neuron. This

is possible because of the radial symmetry of the response functions considered here.

Again, algorithm performance is sensitive to the learning rate. Error-correction
performance with various learning rates is shown in figure 3.18. The network uses

200 randomly-positioned neurons initialized to small output weights

Cerebellar Model Articulation Controller (CMAC) Adaptation

As discussed in appendix A, in the CMAC adaptation algorithm [Albus (1975b),
Albus (1975a)] the output weights of all neurons activated by the input and connected
to the same (vector) component of the output are adjusted by the same amount, which

is proportional to the output error for the component.®

This is shown schematically in figure 3.19. If we let V be a constant function over

the set of active neurons A, then, absorbing V into Ck, eq. 3.66 becomes:

dwy; = Ck, (3.70)

101t is the CMAC adaptation algorithm that is being evaluated here. CMAC itself is implemented
using linear discriminant functions rather than Gaussian neurons, and so has somewhat different
interpolation properties.
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Figure 3.18: Calibration error correction performance of the virtual neuron adaptation
algorithm for different learning rates. The learning rates are 1.0, 0.1, 0.06, and 0.01
‘in plots (a) through (e) respectively. The network was limited to 200 randomly-
positioned neurons. All output weights were initialized to 0.001.

where C}. is a constant as before. - Then

'. € = E(kalol = Ckzol, . . (3.71)

leA leA
so that
€k
Ciy = . 3.72
S v (3:72)

Then, letting Awkj = Adwy;, with X again the learning rate,

A

=l | (3.73)

Awkj = [
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output adjustment identical for each active output error
neuron. proportional to error

desired network output
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Figure 3.19: CMAC adaptation.

Again, the term in square brackets is a constant for all active neurons and all output
components, so it need to be computed just once per learning trial. The denominator

is nonzero if any neurons are above threshold.

The CMAC learning algorithm is the most sensitive of the three to large learning

rates, as can be seen in figure 3.20, which shows calibration error performance for

several values of ).

 Adaptation Algorithin Performance Comparison

The virtual neuron algorithm outperformed both gradient descent and the CMAC
learning algorithms in simulations, although in their best runs (shown in figure 3.21)
the errors were all within a millimeter or so of each other. Issues associated with

implementing the adaptation algorithms in analog VLSI are discussed in appendix B.
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Figure 3.20: Calibration error correction performance of CMAC adaptation for differ-
ent learning rates. The learning rates are 1.0, 0.1, 0.06, and 0.01 in plots (a) through
(e) respectively. The network was limited to 200 randomly-positioned neurons. All
output weights were initialized to 0.001. ' ’

3.5.4 The Preferred Network

Based on the results of the allocation and adaptation tests, the network selected for
the remainder of this work uses virtual neuron adaptation and the allocation algo-
rithm of eq. 3.54, in which the allocation threshold is just set to zero. The algorithm
bf 3.54 is the simplest and, in the noisy case, learns as fast and as accurately as the

others.!! It effectively eliminates the threshold from consideration, thereby reducing

11The algorithms of egs. 3.47 and 3.48 have slightly better performance in the noise-free case.
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Figure 3.21: Best error-correction performance of the gradient descent (plot (a)),
virtual neuron (plot (b)), and CMAC (plot (c)) adaptation algorithms. Learning
rates were 0.02, 0.06, and 0.02 respectively. In each case networks were limited to
200 randomly-allocated neurons, and output weights were initialized to 0.001. The
virtual neuron algorithm has the best performance. |

the complexity of neuron allocation and simplifying its potential realization in hard-

ware. Virtual neuron adaptation was selected because it has the best performance.

Preferred Network Parameters

Principal network parameters included the half rﬁaximum fraction, h, which deter-
mines tuning width, the neuron on-threshold §,, the learning rate A, the learning error
threshold §,, the first neuron tuning width R;, and the number of neurons. A neuron
is considered on, or active, by the virtual neuron and CMAC adaptation algorithms if

its output is > 8,. Similarly, learning or adaptation is enabled whenever the network
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output error norm is greater than 8;, which was set to 0.001. The value of §; should

probably be determined by the noise magnitude, but that was not pursued.

Network parameter values giving the best performance were b = 1.2, 6, = 0.1,
and A = 0.06. The first neuron tuning width, R;, was set to 0.12D, where D is
the diameter (the diagonal) of the input space. The initial width matters since it
sets the scale for the range over which adaptation changes will have an effect. A
large initial neuron will be above threshold for nearly any input and hence changes
in its output weights will have an effect over a significant portion of the input space.
. Empirically, this makes it more difficult for the network to stabilize. Networks in noisy
situations were usually'limited to 200 neurons, which gave adequate performance.
Adding neurons gave little improvement in performance. In noise-free situations,

adding neurons was beneficial.

The Preferred Network’s Performance

Figure 3.22 shows the positioning performance of the selected network structure with
and without neuron limits and with and without noise. Figure 3.23 shows the posi-.
tioning error sample standard deviations for the plots in figure 3.22. Performance is
shown over 5000 trial_s.. Arm and visual eccentricity values were selected randomly
during both training and testing. After each 100 training trials, system performance

was evaluated over 1000 randomly-selected positions.

3.5.5 Visual Noise

The presence of visual noise has a profound effect upon vision calibration performance.

Compare figures 3.10 and 3.12, which show the error correction performance of the
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Figure 3.22: Hand-eye system positioning accuracy using virtual neuron networks of
the preferred structure. Plot (a) is for a network restricted to 200 neurons with noise.
Plot (b) is for a network restricted to 200 neurons but without noise. Plot(c) is for
- a network with no restriction on the number of neurons, with noise, and plot (d) is
for an unrestricted network without noise. Network parameters were identical in all
cases. Neurons were allocated at random locations subject to threshold constraints.
The network of plot (c) allocated 4770 neurons while that of plot (d) allocated 3771

neurons.
different neuron allocation algorithms in the presence of visual noise, with figures 3.24
and 3.25, which show performance of the same algorithms in the absence of noise,
and figure 3.26, which shows the adaptation performance of the 200-neuron network

with and without visual noise.

In the noise-free case, any of the neuron allocation algorithms approximates the
target angle correction vector function T(x) perfectly at the points where neurons
are allocated, so there is no average position error over those points. In the noisy

case, however, there will be an error at each allocation point due to errors in visually
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Figure 3.23: Hand-eye system positioning error sample standard deviations for the
plots shown in figure 3.22. The order of the plots in the two figures is identical.

determining the position of the arm tip. These errors will manifesf themselves as an
‘inpu_t error to the network, since the actual target angle vector will not correspond
to the target input vector because of the noise. The network will learn the correct
target, but fér a slightly incorrect position, meaning that the network output vector
for the correct input vector will be in error (this depends upon tvhe target function
being learned) by some amount e. Over i:he set of n target, or training, inputs, then,

there will be an average expected recall error of

n

T3t = 2 (eiad (i) (3.74)

7=1 j=1

where (e;) is the expected angle vector error for target j, and (e;q), (ej3) are its



73

0.1

Position_Error

109_3 NN AT TS AU BT A U A U S A N S A S N VT SN T N A N O U W AT SO SO S VT GO U O VT Y U U W T WY

0.000 . 1000.000 2000.000 3000.000 4000.000 5000.000

Trials

Figure 3.24: Positioning error for allocation algorithms of eqs. 3.47-3.51 without
visual noise. Graphs are labeled (a)—(e), with (a) corresponding to 3.47, (b) to 3.48,
(c) to 3.49, (d) to 3.50, and (e) to 3.51. Graphs (a), (b), and (c) largely overlap.
The Gaussian (graph d) allocates no neurons for over 900 trials due to the slowly
decreasing allocation threshold.

components. The average root mean square position error is

% i Vil = ;1; i V{ela) + (€f)- (3.75)

=1 =1

The recall error will tend to average to zero over the trair_ﬁng inputs, but the root mean
square position error, being always nonnegative, will not. General analysis for points-
not in the training set is more complicated and is not addressed here. In addition to
limiting attainable accuracy, noise limits the efficiency of representation by uselessly
increasing the number of neurons. Accuracy without noise plotted as a function of
the number of neurons (figure 3.27) shows clearly that in the noise-free case, different

allocation algorithms do have different representational efficiencies. This is not true
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Figure 3.25: Positioning error for allocation algorithms of egs. 3.52-3.56 without
visual noise. Graphs are labeled (a)-(e), with (a) corresponding to 3.52, (b) to 3.53,
(c) to 3.54, (d) to 3.55, and (e) to 3.56. Graphs (c) and (d) overlap.

in the noisy case because the error due to noise, being random and above the learning

threshold, triggers neuron allocation even where it is unnecessary, ultimately flooding

the network with neurons that can provide no accuracy improvement.

Noise and Error-Free Kinematics

Consider a hand-eye system with no kinem#tic errors or perturbations that employs a
virtual neuron network with 200 neurons. In the noise-free case, the system will have
no position errors, while in the hoisy case position errors will reflect only ‘the effects of
noise. The average positioning error over 5000 trials for both cases is shown in figure

3.28. In the noisy case the network allocated its full complement of 200 neurons and
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Figure 3.26: System allocation and adaptation behavior with and without noise using
a virtual neuron network with 200 neurons. Plot (a) is with noise; plot (b) is without.

had an average position error of about 9 mm; in the noise-free case there was no error

and no neurons were allocated.

A Simplified Noisy Adaptation Model

To help understand network adaptation behavior, consider the simplified problem of
learning to generate a fixed butput vector o equal to a fixed target vector T that

éorresponds to a fixed but noisy network input vector x. That is, each network input

is of the form

i=x+uv, (3.76)
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Figure 3.27: Positioning error as a function of neuron count for allocation algorithms
of egs. 3.47-3.56 without visual noise. Noisy behavior at low neuron counts is caused
by error fluctuations arising from random position sampling while the neuron count
for some allocation algorithms is changing slowly. Graphs are labeled (a)-(j), with
(a) corresponding to 3.47, (b) to 3.48, (c) to 3.49, (d) to 3.50, (e) to 3.51, (f) to
3.52, (g) to 3.53, (h) to 3.54, (i) to 3.55, and (j) to 3.56. Allocation algorithm 3.50,
corresponding to graph (d), has the most efficient representation.

where 1 1s ﬁhe network input and v is additive noisé. As described above, noise appears
as a network access error. In the current situation this corresponds to repeatedly
positioning the arm at a fixed location, sensing its position using a noisy vision
sensor, and using the noisy vision output as network input to generate (and learn)
the arm position angle corrections. These corrections will then be added to the angles
calculafed using the nominal kinematics to generate arm command angles. Noise will
cause the command angles so calculated to deviate from the actual angles. Since we
are interested in the network’s long-term behavior, and allocation is a finite transient

that is active only until all the neurons have been allocated, we assume that a network
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Figure 3.28: Average corrected position error in a hand-eye calibration system with no
kinematic errors. Plot (a) shows positioning error in the presence of noise. Plot (b),
which lies close to the bottom of the graph, shows positioning error without noise.
In both cases the network employed 200 neurons and the virtual neuron learning

algorithm.

already exists and consider the way it adapts to the noisy inputs.

Letting A be the learning rate, and considering a single component of the output,
" from the virtual neuron learning algorithm we can write (exactly) the component

output at x + 8x; for iteration j + 1 in terms of the output for iteration j as

0541 (X + 5:1:]) = Oj(X + 5XJ') + /\(T — Oj(x + 5)()) (377)

Assuming that the errors 6x; are small relative to the scale of the arm kinematics,'?

we can expand each component of the position error as a power series around the

12This is reasonable in our case since the rms vision distance error is on the order of a centimeter.
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input vector x and write, keeping first-order terms
0j41(X + 6x) ~ (1 — X)(0j(x) + Vo;(x) - bx;) + AT. (3.78)

But 0;41(x + 6x;j) can also be expanded around x and combined with the expression

above yielding
0j41(x) 2 (1 = A)(0(x) + (Vo;j(x) — Voj11(x)) - 6%j — A(T — Voj;(x) - 6x;). (3.79)

The difference of gradient term is a sum of terms over all neurons. Each neuron’s term
is proportional to the weight increment between iterations j and j + 1 coupling the
neuron to the output. From the virtual neuron learning algorithm, this is proportional
to A and the error as well as the neurons’s output and the output of the virtual neuron
at the neuron’s center. Since these terms are small, they will be neglected. Setting

Vo;(x) - 6x; =‘Vj, a noise term, we obtain the recursion -
0541(%) = (1 = Noy(x) + (T = 15). - (380)

Starting at iteration zero, and noting that the target T is a constant, we obtain after

summing the geometric series involving T

7-1

0s(3) = (1= Woo(x) + (1 = (1= W)T = (L= 2P m). (381)

k=0

If we can assume that the noise terms are independent and essentially identically

distributed, the expected output becomes:

(0 (x)) = (1 = M) {o0(x)) + (1 = (1 = A T) ~ (ve) J}_:(l = 2)). (3.82)

=0



79

Summing the geometric series and letting j become large, this becomes:
(0j(x)) =T — (ve), (3.83)

where v, is the common expectation of the noise terms. We have used 0 < A < 1. In

a particular instance, the sequence of noise terms will induce a net error called ey

below.

In this simplified analysis, network output converges to the target value plus the
expected value of the noise term. The contribution of the initial state vanishes. A
more thorough analysis would include the effects of adaptation at other sites on the
network behavior at x as well as the average error over the space accessible to the

robot.

The error for an output component due to reading a trained net with a noisy input

is, using an expansion again:

T —o(x+ v6x) =T — (o(x) + Vo(x) - éx) (3.84)

=T —(o(x)+e)=T — (T — €net) + €& = €net — €, (3.85)

where e,.; is the net error due to training by noisy inputs and e, is the error due
to the noisy reading vector. This is a reasonable result because training a net with
a constant input vector offset and reading it with an input vector having the same

. offset will result in zero error.

In the hand-eye system we are considering, arm position commands are generated
by calculating the nominal angles from visua1> input and adding a correction Af gen-
erated by a neural network A that uses the nominal angles 0, as input. Writing 6
for 8,,,, and letting K and J be the forward kinematics and forward Jacobian respec-

" tively, and X~ ! and J~! be the inverse kinematics and inverse Jacobian respectivel
Y, P Ys
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the Cartesian position error e, between an actual arm tip position t and the tip po-
sition calculated from t + 6t, a noisy visual measurement of t, is given approximately

by:

e, = t—K(0+A0) (3.86)
t — K(K7Ht + 6t) + M(K7'(t + 6t))) (3.87)

t — K(K7Xt) + T71(6)6t + N(KTH(t) + T~1(9)6t)). (3.88)

Noting that K(x + éx) ~ K(x) + J(8)éx, this becomes:

e = t—K(KT(t)) — J(O)T 1 (O)6t + N(K(t) + T (0)8t))  (3.89)
—6t — T(ON(KY(t) + T 1)) (3.90)

In the case of perfect kinematics, the neural network’s target correction vector is zero,
and so, going to the vector form, writing e, out explicitly, including the net error,

and letting Z be the unit matrix, we obtain:

e, = —bt—J(0)V(o(t)T ()6t — ener) (3.91)
= —(T+TO)(V(o(t)T(8))6t + T (6)enes. (3.92)

Since the operators are all linear, the expected value of e, is
(&) = —(6t) — (T (O)(V(o(t))T " (6))(6t) + T (6)((enet))- (3.93)

If the system is trained and evaluated on vectors ét drawn from the same population,

then

(enet) = (V(o(t))T 7 (0))(6t), | (3.94)
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and the expected error is just
(ep) = —(6¢). (3.95)

To illustrate these ideas, the vision pdinting angle v was fixed at zero and the arm
position was fixed at z = 1,y = 0, which corresponds to arm angles of @ = —60° and
B = 120°, and to a visual radius of two meters. The system was trained and tested
using the visual noise‘ parameters o(n,) = 8.957 x 1072 and o(n,) = 1.112 x 1073
defined in eqs. 3.24 and 3.28 and evaluated for the arm position. The root mean

position error 6t for this cohﬁguration is

o2(n,) + 02(nc) = 9.0267 x 1072 (3.96)

Figure 3.29 shows the magnitude of noisy visual measurements (the length of ét)
over 100 trials, while figure 3.30 shows the resulting average error magnitude over
5000 trials (about 8 mm). The predicted root mean square error compares well with
the observed visual error and the observed network learning error of 9 mm shown in
the upper graph of ‘ﬁgure 3.28. Systems that do not have perfect kinematics will
be more complex in that there will be errors due to fundamental representational

accuracy limitations in addition to noise errors.

3.5.6 Tuhing, or Receptive Field Width

System performance depends critically upon the tuning, or receptive field, widths of
the neurons. Figure 3.31 shows the position error correction performance for identical
200-neuron virtual neuron networks with different values of k, the tuning width half-

maximum fraction. Noise was omitted to avoid masking differences in performance.



82

0.040
-
[
C
3
0.030 L
- E}
e : (
w 3
c 5
S -
e 0020 | .
a
g H
]
2
3 Q
0.010
0.000 [ EFEEAT ST WS RS R U IO S S W AU S W U OIS O U s daa L b g o by g1
0.000 20.000 40.000 60.000 80.000 100.000
Trials

Figure 3.29: Visual measurement error magnitude over 100 trials.

" Both narrow and broad receptive.fields have poor performance. A sparse net-
work with narrow receptive fields'® can represent functions well at neuron locations,
but generalizes (interpolates) poorly at locations between neurons [Mel (1989)]. In
fdct, very narrow receptive fields (h < 0.2) were unstable in simulations. Increasing
the width up to a lirﬁit is intuitively appealing, and half-maximum fractions in the
range of 0.4 < h < 2.0 had good performance. Broad receptive fields (A > 2.0) per-
formed poorly in simulations. This seems reasonable since using neurons with wide,
overlapping, receptive fields would seem to reduce the specificity of the network. In-
terestingly, performance did not become increasingly bad with large values of 4. In
simulations, networks with h = 100 performed about as well as networks with » = 10,

which may indicate that large receptive fields have useful properties. Baldi and Heili-

13Narrow with respect to the interneuron spacing and hence essentially non-overlapping.
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Figure 3.30: Average visual measurement error magnitude over 5000 trials. Averages
were calculated every 100 trials, and were based on 1000 samples.

genberg [Baldi and Heiligenberg (1988)] have analyzed a network similar to the one
employed here'® in which increasing the receptive field width to large values with
fixed neuron spacing increased resolution, accuracy, and gain for simple functional

approximations.

3.5.7 Network Step and Frequency Respon’sés (Tracking a
Drifting Plant)

The ability of a network to maintain hand-eye calibration corrections in the

presence of plant variations depends fundamentally upon its step and fre-

14Neurons are located on a lattice rather than being randomly allocated. -
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Figure 3.31: Hand-eye system positioning error correction performance for different
values of the neuron tuning width parameter, h. Values are .4, .6, .8, 1.0, 1.2, 1.5,
2.0, 4.0, 10.0, and 100.0 in plots (a)-(j) respectively. Visual noise was not present.

quency responses. While a neural network is not a linear system, it is
shown below that the ability of the networks constructed above to track
plant variations exhibits surprisingly linear behavior in terms of phase lag
and bode plot rolloff [Franklin, Powell and Emami-Naeini (1986), Dorf (1983),
Distefano, Stubberud and Williams (1967)]. This means that once the step response
and steady-state error are obtained experimentélly, network tracking behavior cank
be predicted. Visual noise is present in all the step and frequency-response results
presented here. Results for the noise-free case are nearly identical except for greater

accuracy.

Referring to figure 3.1, drifts due to mechanical and thermal effects are simulated

by systematically varying the lengths, a and b, of the arm links, the components of
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the vector v that locates the vision pointing system, the arm and vision pointing
system encoder offsets O,, O, and O, and the vision range scale factor. Modify-
ing the encoder offsets simulates link bending due to both differential heating and
to yield resulting from collisions or slippa,ge in the manipulator power transmission

mechanisms.

Step Response

A maximum offset of two degrees, a value typical of those observed in practice, was
assumed for yield due to collisions and transmission slippage. Yield was si‘mulated
by training a network for 5000 trials using a particular manipulator kinematic con-
| figuration, making a step change in a single encoder offset (taken here to be O,, and
running another 5000 training trials. The network had 200 neurons and employed the
virtual neuron learning algorithm. Figure 3.32 shows the system behavior during the
initial training trials while figure 3.33 shows the system position error step response. -
During initial training the system began with an average position error of 4.8 cm and
stabilized at an average position error of 1.3 cm, allocating 200 neurons in the process.
. During its step response the position error decayed from an initial value of 5.4 cm to
1.3 cm. From figure 3.33 the time constant is seen to be about 120 trials. In figure
3.34 the system step response is displayed along with an ideal step response having

the same amplitude and offset and a time constant of 120 trials for comparison.

The network error-correction behavior is closely approxirnatéd by that of a first-
order linear system with a decay constant of 120 trials. The trials involved randomly-
selected positions uniformly distributed over the accessible input space. If the robot
operates only in a small number of localized regions, as around parts acquisition and

assembly sites, the time constant will be much smaller because less of the input space

must be corrected.
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Figure 3.32: System network behavior during initial training trials. The network had
200 neurons and used the virtual neuron learning algorithm. Visual noise was present.
Plots show corrected position error magnitude, uncorrected position error magnitude,
neuron count, the ratio of the corrected to the uncorrected position error magnitudes,
and the corrected position error magnitude standard deviation. The verical axis is
the number of neurons in the case of the neuron count plot; it is meters for the other
plots.

Response to Periodic Drift

System position error frequency response was investigated in the context of periodic

differential heating, which simulates many thermal drift problems. 1®

~ 15For example, daily temperature changes in factories and the differential heating experienced by
orbiting spacecraft can cause thermal drifts that are roughly periodic.
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Figure 3.33: System positioning error step response for a 200-neuron virtual neuron
network with visual noise. The system has a time constant.of about 120 trials.

In differential heating, the arm links are assumed to bend so as to move the
elbow and tip in the direction of increasing a and S respectively (counterclockwise)
and the strut supi)orting the camera pointing system is assumed to bend so the
camera pointing base rotates clockwise slightly around the arm base frame. As the
camera pointing base rotates, it carries the vision encoder with it, inducing a change
in the effective vision encoder offset. Bending due to differential heating increases
the effective arm encoder offsets and decreases the effective vision encoder offset,
and is intended to simulate radiant heating of the arm and vision system from the
same direction. A maximum angular offset of one degree is assumed, including the
orientation of the vector v. The vision scale factor is assumed to change as well. The

maximum vision range scale factor error is .02, which induces a two-centimeter error

at a radius of one meter.
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Figure 3.34: System position error step response and ideal step response. Plot a is
the step response of a 200-neuron virtual neuron network with visual noise. Plot b is
an ideal first-order system step response with a time constant of 120 trials.

In operation, the changeable parameters are varied as a function of the number of
trials by adding periodically-varying increments to their actual values. For lengths, a

mgltiplicative expansion factor f is calculated so that:
Loy = Flees, (3.97)
where
JARE esin(2r5.), (3.98)

and ! stands for a, b, v, or v,. The subscripts ezp and ref indicate the respective

expanded and reference lengths, € is the expansion amplitude, n is the trial number,
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and N is the number of trials in a period. The expansion amplitude, e, is the product
of the thermal expansion coefficient of aluminum, 26 x 107/ deg C, and the tem-
perature amplitude, which is assumed to be 50deg C. Similarly, the encoder offsets,
vision range scale factor, and the location of the y—component of the camera pointing

system base are given by
Oezp = Ores + TSin(Qﬂ'-]%), (3.99)

 where O represents any of the encoder offsets, the vision range scale factor, or the
y— component of the camera pointing system base, and the amplitude, 7, is one
degree for arm encoder offsets, minus one degree for the vision encoder offset, 0.02 for
the vision range scale factor, and, for the camera pointing system base, is the linear
displa.cément (1.745 cm) corresponding to the rotation of the base location by one

degree clockwise around the arm base frame.

While the basic excitation function is a pure sinusoid, the periodic change in
" the uncorrected positioning error is not, because of the complex interplay between
kinematic parameters and accuracy. It is approximately sinusoidal, however, as can

be seen in the line labeled “uncor pos error” in figure 3.35. -

A Simple Frequency Response Model

Since the adaptation algorithms used here make output corrections that are propor-
tional to output error, it is natural to consider a first-order mode] for the system
response. We will construct a model that predicts the (nonnegative) position error

by taking the absolute values of the output of a model that has a signed response.

The neural network will have an inherent steady-state positioning error €t > 0

due to its intrinsic structure. If we consider o to be the signed scalar output of the
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Figure 3.35: System response as a function of the number of trials to a periodic
thermal distortion with a period of 500 trials. The error induced by the thermal
excitation function is the line labeled “uncor pos error.” The thermal excitation
sinusoid is indicated with A’s. A constant offset of 2 has been added to it to prevent
logarithmic plotting problems. The verical axis is the number of neurons in the case
of the neuron count plot and is just real numbers for the sinusoid; it is meters for the
other plots.

network, and output corrections are taken to be proportional to the difference between

the target scalar output T and the network output o, then we have, approximately,

d
2 k(T o), (3-100)

where k is a constant and ¢ represents time. If T = Asin(wt), then the steady-state
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solution for the network output is

k% sin(wt) — kw cos(wt) + kwe™*

o(t) = A( 1ot

)+ eole ™™ — 1)+ Ce™™,  (3.101)

with C a constant. The network error ¢ = T — o is, then,

sin(wt) — kw cos(wt) + kwe ™kt
k? + w? )=
eofe™™ —1) — Ce™™, (3.102)

e = Asin(wt)— A(

If the network has been trained to a steady-state error with a constant plant so that
€ = ¢ at t = 0, then C = —¢p, and, after the transients die out,

A
€

&= (W sin(wt) + wk cos(wt) + éo. (3.103)

Placing this in the form € = p(w) sin(wt + @), with p(w) the amplitude function and

¢ the phase a.ngle, yields:

p(w) = -Aw/\/wz + k2 (3.104)
tan(¢) = kfw, " (3.105)

so that finally, taking the absolute value of the temporal term,
€ = p(w)|sin{wt + @)| + €o. (3.106) .

For high frequencies (w > %) these results predict ¢ ~ 0 and p ~ 1. That is, the
network cannot correct positioning errors for the constantly changing plant. For low

frequencies (w < k) these results predict a phase lead of ¢ ~ 7 /2 along with p ~ 0.
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System Frequency Response

The 200-neuron system’s response to excitation periods of 100, 200, 500, 1000, 2500,
and 5000 trials is shown in figure 3.36. Periods of 10000 and 20000 trials were run
as well, but the responses were too low for meaningful estimation. Bode plots of the
amplftude response and phase shift, which were constructed from measurements of
the graphical output, are plotted in figures 3.37 and 3.38 respectively. To constuct
the plots, the amplitude of the network error in each period was taken as the differ-
ence between the average maximum and average minimum errors, and the error input
amplitude was taken as 5.3 cm, the difference between the maximum and initial uncor-
rected position error. Phase shifts were estimated from the i)ositions of the input and
response peaks. The corner frequency [Distefano, Stubberud and Williams (1967)]
i Weorner = k = 1/7, where tau iys the step response time constant. This implies that

Neorner = 27, where N opner 18 the period corresponding to weorner-

For periods less than N qer the bode amplitude approaches 0 db, and it rolls off
at 20 db per decade asymptotiéally for periods above Ncomer.v The phase lead asymp-
totically approaches zero degrees for periods less than Nisner, and becomes larger for
periods greater than N,,rn.r. Corner periods estimated from the step response and

bode plots are quite cohsistent, lying in the range from 600-800 trials.

The .systém’s step responses to the (fixed) extreme values of position errors are
shown in figure 3.39. These plots were generated by training the network for 5000
trials as before, fixing the thermal excitation driver phase at 180 degrees, 21.6 degrees,
and 90 degrees, locations of the position error extrema, and letting the network evolve
to reduce the error. These values are meaningful because they establish the minimum
error the system can achieve for the given kinematic configurations. For very long
periods these errors will dominate the system error response in the appropriate phase

region because they represent intrinsic network accuracy limits for the configuration.



93

0.10

0.00

0.10

0.00

0.10

0.00

0.10

0.00

0.10

0.00

0.10

0.00

o - 1000 2000 3000 4000 5000

Trials

Figure 3.36: Hand-eye system positioning error response for sinusoidal expansion in-
puts with periods of 100, 200, 500, 1000, 2500, and 5000 trials, respectively, beginning
at the top. Vertical axis units are meters.

These plots show again that the system error response time constant is about 120

trials.
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Figure 3.37: Bode amplitude plot of the system position error for periods from 100
to 5000 trials. The corner period estimated from the plot is about 600 trials.

Adaptation Algorithn Effects on the System Time Constant

The 200-neuron virtual neuron network used in the frequency and step response inves-
tigations was chosen because of the simplified nature of thé learning algorithm and its
good learning and accuracy performance. Increasing the number of neurons in such
a network (with fixed input dimension) improves positioning accuracy performance,
but degrades the network step response. This is due to the fact that the width of
the virtual neuron used to allocate weight corrections among the active neurons is
determined by its nearest neighbor. Increasing the number of neurons decreases the
distance between them, decreasing the range of influence of the virtual neuron and
hence of corrections based upon it. This is a complex issue, of course, because for

complex mappings (ones with a great deal of structure), restricting the range of cor-
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Figure 3.38: Bode phase angle plot of the system position error for periods from 100
~ to 5000 trials. The system error has a phase lead. The corner period estimated from
the plot is about 700 trials.

rections is important so that the accuracy at distant points is not appreciably affected

by local modifications.

In networks employing the gradient descent adaptation procedure, the correction
range is not limited by nearest neighbors since virtual neurons are not employed.
Figure 3.40 shows the step responses of the system with virtual neuron networks
containing from 200 through 3000 neurons. The network time constant increases
monotonically with the number of neurons. As pointed out in sections 3.5.2 and
3.5.5, the extra neurons do not improve accuracy because of noise. Figure 3.41,
which plots the step responses of the system with gradient descent networks contain-
ing 200, 1000, and 3000 neurons, clearly shows that the time constant is minimally

affected as the number of neurons increases. For both figures, networks were trained
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Figure 3.39: Hand-eye system error response to step inputs corresponding f;o distor-
tions caused by fixing the thermal excitation driver phase at (a) 180 degrees, (b) 21.6
. degrees, and (c) 90 degrees.

for 5000 trials using a constant plant, were subjected to the same step input used in
section 3.5.7 for mechanical drift, and were trained for another 5000 trials to allow
the networks to adapt. We can conclude that ﬁetwork error rejection characteris-
tics for high-frequency (short-period) disturbances, at least for the smooth mappings
considered in kinematic error compensation, can be predicted using linear first-order
models if the system step response can be empirically determined. Error rejection
characteristics for low- frequency (long-period) disturbances will be dominated by the
intrinsic network accuracies associated with the kinematics. We also conclude that

good error response may require employing gradient descent adaptation rather than -

virtual neuron adaptation.
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Figure 3.40: System position error step response using virtual neuron networks with
(a) 200, (b) 500, (c) 1000, (d) 1500, (e) 2000, (f) 2500, (g) 3000 neurons in the
presence of visual noise. The input space dimensionality for each network. is the
same. The output dimensionality for each network is identical as well. The time
constant increases monotonically with the number of neurons.

3.5.8 Effects of the Various Error Sources on System Per-

formance

This section describes the effects of various inaccuracies, or modeling errors, on system

performance.

Effects of Nonlinear Perturbations

Noise-free system error-correction performance with and without the nonlinear per-

turbations is shown in figure 3.42. The two upper plots are for a virtual neuron
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Figure 3.41: System position error step response using gradient descent networks
with (a) 200, (b) 1000, (c) 3000 neurons in the presence of visual noise. The input
space dimensionality for each network. is the same. The output dimensionality for
each network is identical as well. The time constant is essentially unaffected by the

number of neurons.

_ network with 200 neurons; the bottom plots are for the same virtual neuron net-
work except that the number of neurons was not limited. Removing perturbations
enhances performance by a few mm, and reduces the number of neurons allocated by
the unconstrained networks from 3771 to 3229. The nonlinear perturbations do not

appreciably affect the uncorrected error; they increase the complexity of the hand-eye

map.
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Figure 3.42: Noise-free error-correction performance with and without nonlinear per-
turbations. Plots (a) and (b) are for a 200-neuron network; Plots (c) and (d) are for
the same network with no constraints on the number of neurons. Plots (a) and (c)
are without perturbations.

Visual Range Scale Factor Errors

It isnot nec’essar& to employ a pre-éalibrated vision system in order to obtain adequate
positioning performance. The system can accommodate visual scale factor errors in
the same way that it accommodates errors of other types. Figure 3.43 shows noise-free
system performance with visual scale factors of 0.5, 0.9, and, for referencg, 1.0. Plots
(a) and (c) are for a scale factor of 0.5, which implies a position error of one meter
at a radius of two meters due to the vision scale factor alone. The virtual neuron
network of plot (a) was limited to 200 neurons, while that of plot (b) allocated a total
of 4999 in 5000 trials. Plots (b) and (d) are for a scale factor of 0.9, which implies

a visual position error of 20 cm at a radius of two meters due to the vision scale
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Figure 3.43: Noise-free positioning performance with visual scale factor errors. plots
(a), (b) and (e) are for a 200-neuron network; the others are for a network with no
constraints on the number of neurons. Plots (a) and (c) have a visual scale factor of
0.5, while plots (b) and (d) have a scale factor of 0.9. Plots (e) and (f) have a scale
factor of 1.0 ‘

factor. Plot (b) is for a network limited to 200 neurons, while the network of plot
(d) allocated a total of 4805 neurons in 5000 trials. It required 1878 neurons to equal
the accuracy of the 200 neuron network with scale factor of 1.0 shown in plot (e).
Plot (f) is for an unconstrained network with scale factor of 1.0. It allocated 3771
neurons over 5000 trials. The plant was the same for all plots, and included nonlinear
perturbations. The scale factor errors employed in these simulations are significant,

and yet the system is able to achieve reasonable performance. In the presence of more

moderate errors, neural network performance should be entirely adequate.
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3.5.9 Additional System Tests

This section describes additional hand-eye calibration system tests. The tests include
the effects of foveation, or aligning the optical axis with the visually-sensed target,
hand-eye calibration without using kinematic information, hand-eye calibration with

large kinematic errors, and system performance with non-gaussian neurons.

Foveation

As mentioned in section 3.4.3, the vision pointing system used in the present re-
search does not align the vision system’s optical axis with visual stimuli (does not
foveate on the stimuli) in order to calculate arm angle corrections; the vision system
is merely pointed in their general direction. Because of visual eccentricity pertur-
bations (astigmatism), this approach increases the dimensionality and compléxity of
the hand-eye correction map since it is necessary to map eccentricity values into arm

angle corrections and to correct for errors induced by eccentricity perturbations.

If a robot system were to point directly at visual stimuli rather than in their
general direction, it should be possible to reduce the correction map’s dimensionality‘
and complexity since eccentricity would no longer be a required input and eccentricity
perturbations would no longer be sources of error. Pointing directly at stimuli, then,

- should manifest itself in improved system accuracy and reduced neuron count.

Figure 3.44 shows system performance with and without foveation. The uppet
plots include visual noise; the lower plots do not. In all cases the plants were identical
except for fo?eation‘, and employed a virtual neuron network with an unconstrained
number of neurons. Plots (a) and (c) employ foveation; the networks they employ do

not provide an eccentricity input. Plots (b) and (d) do not employ foveation and do
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Figure 3.44: System positioning error performance with and without foveation. The
upper plots include visual noise; the lower plots do not. In all cases the plants
were identical except for foveation, and employed a virtual neuron network with an
unconstrained number of neurons. Plots (a) and (c) employ foveation; the networks
they employ do not provide an eccentricity input. Plots (b) and (d) do not employ
foveation and do provide eccentricity inputs.

provide eccentricity inputs. In the noisy case performance was essentially identical;
both plants had the same positioning accuracy and both networks allocated over

4500 neurons. In the noise-free case foveation provided somewhat improved accuracy

(slightly over 1 mm), and reduced the total neuron count from 3771 to 2886 over 5000

" trials.

Foveation improves noise-free system performance at the expense of a fast vision
pointing system. In the noisy case, it provides no accuracy performance improvement

at all, but does reduce the number of neurons.
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Learning Hand-Eye Calibration Without Kinematics

To compare the performance of learning a hand-eye correction map with learning .
the entire hand-eye map, the system was run with and without nominal kinematics.
Without nominal kinematics, the system has no a priori algorithm for estimating

the joint angles that correspond to visual stimuli, and must learn to associate visual
| inputs with the appropriate arm angles. This is a much more difficult problem than

learning corrections, as figure 3.45 illustrates.

The ﬁgurev compares a virtual neuron network learning the entire map with a
virtual neuron network learning hand-eye map corrections for the same plant. Com-
parisons are made with and without visual noise. Networks, which did not constrain
the number of neurons, were identical except for their inputs. Network inputs for
learning the entire map are the visual radius R, the visual pointing angle v, the vi-
sual eccentricity €, and the arm solution flag (elbow up or down), which is necessary
because there is no kinematic package to determine angle estimates. Network inputs
for correction learning are described in section 3.5.1. Entire map léa,rning reduces the
average error from over two meters to about six cm after 5000 trials, with essentiallyb
no difference between the noisy and noise-free cases, which allocated 5000 and 4997
neurons, respectively. Correction map Ieaming reduced the error from about 4.8 cm

to 1.2 cm in the noisy case and from 4.8 cm to 0.3 cm in the noise-free case.

The figure shows that learning the entire map takes far longer and requires many
more neurons than learning a correction map. Since A 200-neuron network gives
- adequate speed and accuracy for learning corrections, especially when accuracy is
limited by noise, we can conclude that exploiting engineerihg knowledge signiﬁcé,ntly

improves the performance of neural networks in adaptive hand-eye calibration.
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Figure 3.45: Entire map learning compared with correction learning with and without
visual noise. Plot (a) shows the position error performance of entire map learning
without noise; plot (c) shows the position error performance with visual noise. Plots
(b) and (d) are noisy and noise-free correction learning respectively.

Network Performance With Large Kinematic Errors

Kinematic and nonlinear perturbation parameters were modified to test calibration
system performance in the presence of large parameter errors. This is similar to learn-
ing the entire map in that the initial kinematic errors are significant. The difference
is that the system still employs nominal kinematics to obtain an initial arm angle

estimate. Thus the system learns a correction map rather than an entire map.

Kinematic parameters were increased from those in table 3.1 to those in table 3.3.
Nonlinear perturbation parameters were changed from those in table 3.2 to those in

3.4, which increased maximum tangential perturbations from one to five cm at two
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Parameter | Nominal Value | Actual Value
fall 1.00 Meter 1.05 Meter
IIb]| 1.00 Meter 0.96 Meter
Vi -1.00 Meter -1.08 Meter
Vy 0.00 Meter 0.10 Meter
Oo 0.00 Radian | 0.00 Radian
O 0.00 Radian | 0.10 Radian
Oy 0.00 Radian | 0.20 Radian

Table 3.3: Nominal and actual kinematic parameters for the case of large kinematic
parameter errors.

Parameter - Value
Vision Perturbation Parameters
n 7.500 x 10~?
¢ 1.250 x 1072
Vision Pointing Perturbation Parameter
v 1.000 x 102
Arm Perturbation Parameters
4 A —~8.686 x 10~3
K 9.143 x 1073

Table 3.4: Nonlinear perturbation parameters for the case of large kinematic param-
eter errors.

meters for each angular vdegree of freedom and, the maximuin radial perturbation from
two to five cm at three meters. Five centimeters was selected as being representative
of fairly large errors. Other than scaling, the basic form of the perturbations was
unchanged. Plots of the visual distortion and perturbations are shown in figures 3.46

and 3.47 respectively. Noise parameters were not modified.

Plots of system position error performance are shown in figure 3.48 for the large-
error case. Plots of the unchanged system’s error performance are also shown for
comparison. The virtual neuron network with no constraints on the number of neurons

was used in all cases. The network was able to reduce the average error from 40 cm
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Figure 3.46: Large nonlinear visual angular eccenﬁricity perturbation. One circle in
each of the plotted circle pairs is distorted by the eccentricity perturbation. The other
is not. In the left half plane the distorted circle is closer to the origin, while in the
right half plane it is farther away. The distortion is zero on the y-axis. Units are in
radians. '

to 4.5 cm in 1000 trials in the noisy case, allocating 999 neurons in the process.
After 5000 trials, error had decreased to about 3 cm and the system had allocated

4982 neurons. Noise-free performance was just a few mm better with nearly as many

neurons allocated.
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Figure 3.47: Plots of the éa, 64, §v, d¢, and ér perturbations over their accessible
domains for the case of large errors. Offsets O,, Og, and O. are added to the éa, 64,
and 67 plots respectively. Angular units are radians; linear units are meters. Note

that in all cases r > 0.

Non-Gaussian Neurons

Networks using non-Gaussian neurons were explored by constructing neurons with
response functions composed of parabolic and cosine segments and evaluating them

with the plant and network structures already employed for Gaussian neurons.

The cosine response function is just one-half period of a scaled cosine plus a
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Figure 3.48: Positioning error performance for large kinematic parameter errors. Plots
(a) and (b) show position error performance in the noisy and noise-free cases, respec-
tively. For reference, plots (c) and (d) respectively show noisy and noise-free position
error performance for the unchanged system.

constant offset:

1(1- 4)) ifd<R
o 4 2 Feos(r)) ifd< (3.107)

0 -otherwise.
Here the radius of the receptive field is R.

The parabolic response function is composed of parabolic segments with upward
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and downward concavities that are joined so the first derivative is continuous:

1-2(d/R)*? if0<d<R/2
0=14 2(1-(d/R))? ifR/2<d<R - (3.108)

0 otherwise.

Again, the radius of the receptive field is R.

The cosine and parabolic response functions are identically zero outside their

receptive fields.

For the cosine response function, gradient descent parameters of section 3.5.3 are:

—7sin(nd;/R;)/4R;d; ifd; < R;
oi(z) = | (ndif B) 4 Rsds 3t d; < By (3.109)
0 : otherwise
acg(zj) _ wd;sin(nd;/R;)/2R? if d; < R; (3.110)
R; 0 ' otherwise, .
and for the parabolic response function we have:
—Q/R? if dj < R_,/2
0i(z;) = { —2(R; — d;)/(d; R?) if R;/2 < d; < R; (3.111)
0 ‘otherwise
4d?/R? ifd; < R;/2
00j(z;) )
—(’):—le_ =\ 4R;—d;)d;/R} ifRj/2<d; <R; (3.112)
0 otherwise.

Since Gaussian neurons decay from a value of 0.0625 for distances > R, while the
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outputs of the cosine and parabolic neurons vanish at distances > R, learning ad-
justments in networks based on the non-Gaussian neurons are somewhat more highly
localized. This is manifest in a greater sensitivity to the half-maximum fraction, . In
simulations using 200-neuron virtual néuron networks, both ﬁon-Gaussian networks
were unstable for A < 0.8. In contrast, Gaussian networks, were unstable for A < 0.2.
Figure 3.49 shows the results of these simulations for the parabolic neurons in the
noise-free case. The best accuracy performance was inferior, but by only about one
mm, to that of the Gaussian networks shown in figure 3.31, and followed the same
trends. Large values of h were stable, but were less accurate than smaller values.
Performance of the cosine neurons was virtually identical to that of the parabolic

neurons and is not shown.

The non-Gaussian neurons investigated here are quite similar to Gaussian neurons,
and have similar performance. The choice of neuron used in applications should be
dictated by the ease of irﬁplementation. The use of neurons with other activation
functions is also possible. Baldi and Heiligenberg [Baldi and Heiligenberg (1988)]
have used neurons with triangular activation functions with some success in studies

of hyperresolution.

3.6 Hand-Eye Calibration Using Nonlinear Esti-

mation

A calibration correction system using nonlinear estimation was implemented to pro-
vide a comparison with the neural network approach. The adaptation process based
on nonlinear estimation is shown in figure 3.50. It is similar to the process based on

neural networks shown in figure 3.5, except that instead of learning a correction to
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Figure 3.49: System positioning error performance using a 200-neuron network with
parabolic neurons. Plots (a)-(d) have h = 1.0, 1.5, 2.0, and 4.0 respectively.

the nomiﬁally-calculated arm angles, the system uses the difference between calcu-
lated and observed kinematic behavior to identify the arm’s actual kinematic model
parameters, which are initially set to their nominal values. System performance is
- thus intimately tied to model sophistication. Once identified, the parameters are
available for all kinematic computations, both forward and reverse. Both processes

are described in section 3.4.3.
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Figure 3.50: Adaptation process based on nonlinear estimation. Reverse Marquardt
is shown. '

3.6.1 Nonlinear Estimation Approach

To identify parameters in the Levenberg-Marquardt method, a merit function x?

defined [Press et al (1988)]:

Z[ y(z:) = (””"a)], (3.113)

=1

where y(z;) are observed, or measured, values at the points z;, y(zi;p) are values
calculated at the points z; using the parameter estimates in the parameter vector p,
and o; is the standard deviation of the measurement at point ¢, which is set to one

in all cases.

x? as a function of p is minimized to determine the best parameter vector p.
Minimization is by gradient descent far from the minimum, and by the inverse Hessian

method as the minimum is approached. The inverse Hessian method is given by:
ép = H™' - [-Vx*(pcurr)), (3.114)

where the subscript curr means the current value, and H is approximately the Hes-

sian, the matrix of second partial derivatives of x? Wlth respect to the components of



113

p. H is given by

N 1 8y(zyp) Oy(zi;p)
Hy = Z; _0-_'2 apk apl ] (3.115)

Continuous switching between the two methods is accomplished by defining a matrix

M [Press et al (1988), Ralston and Rabinowitz (1978)]:
"My = Hyy + Ao Hu, (3.116)

which captures both the gradient descent (diagonal matrix proportional to \) and the
inverse Hessian algorithms. The factor & is the Kronecker delta. The estimation al-
gorithm controls A, which is large far from the minimum and small near the minimum.

- This switches between the two matrices and hence between the two algorithms.

Using the algorithm requires providing the functions that calculate y(z;; p) and -
their partial derivatives with respect to the components of p at the points z;, and

providing corresponding data measurements y(z;) at the same points for calculating

X2

The kinematic model was identical to the one used in the neural network system.
Kinematic variables were the arm link lengths a = ||a|| and b = ||b||, the two com-
ponents of the vector locating the vision system v, and v,, and the three encoder

offsets O, O, and O.,. No attempt was made to model the nonlinear perturbations.

3.6.2 Calibration Using Forward Marquardt Estimation

To avoid problems with arm singularitieé when 8 = 0, the function y was defined

in terms of the arm tip radius r and visual angle 6 relative to the vision system
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base frame. These can be calculated from joint angles without worrying about elbow
singularities, and thus correspond to forward kinematics; hence the name. Measured
values of these quantities are available at each training trial. The y(z;;p) are given

by:
y=r’+6*=r+ rz + (arctan(ry,rz) — Op)>. (3"117)
Defining @ = ameas + Oalphas B = Bmeas + Op, the components of r are;

r, = acos(a)+ beos(a+ f+)— v, - (3.118)

r, = asin(a)+ bsin(a + f+) — v,. (3.119)

The subscript meas indicates the measured value. Using the normal type face for
vector magnitudes and components and defining 6 = €e05 + Ymeas — O~ in accordance

with our earlier kinematic definitions, the expressions for the partial derivatives are

given by:
% = 2(r, cos(d) + rysin(a)) + —27‘—3(7'2 sin(a) — r, cos(a)) (3.120)
%% = 2(rycos(a + B) + rysin(a+ B)) + i—f(nc sin(a + 8) — |
ry cos(a + f) (3.121)
oy 5 or,
S = == ) (3.122)
0 ’ Ore
b‘% = —2(r, + _7;‘,_) | (3.123)
aaoya = —2ry — % (asin(a) + bsin(a + B)) +
2(ry + '%)(a cos(a) + beos(a + 3)) (3.124)
0 0 : | Or,
a_gﬁ = —9r, — %)(bsm(a +B)) +2(ry + T%)(bﬁcos(a +8) (3.125)
Jy |

= —26. (3.126)
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A reverse Marquardt approach, based on defining y = o? + 5% was also implemented.
In most cases it gave similar results except for the problems with singularities men-
tioned above. The one exception was that it achieved significantly greater accuracy

than forward Marcjuardt in handling vision scale factor errors.

Estimation Performance on Normal Plant.

The so-called normal plant uées the kinematic parameters defined in table 3.1 and -
the joint angle limits defined in eqs. 3.29 and 3.30. In trials without visual noise or
nonlinear perturbations, the estimator-based calibration system was able to identify
these parameters to within = 0.001%, achieving an average positioning accuracy of
two microns after ten trials. This performa.hce is far better than that of a system
employing a 500-neuron virtual neuron network, which was run on the same pla,nt'
for comparison. The neural network-based systefn was able to achieve an accuracy of
about four mm after 500 trials. The uncorrected positioning error in both cases was

about 4.6 cm. Performance of the two systems is plotted in figure 3.51.

- Estimation Performance with Large Kinematic Errors

The actual kinematic parameters were changed from those in table 3.1 to those in table
3.3, increasing the kinematic parameter errors and increasing the average uncorrected
positioning error to over 0.4 meter. The éstimator-based calibration system was able
to identify the parameters to within ~ 0.001%, and to obtain an average positioning
error of less than .02 mm. The network-based calibration system, in contrast, was
able to obtain an average positioning error of about five cm, allocating all 500 neurons

in the process. Again, no nonlinear perturbations or noise were present. Performance

of the two systems is plotted in figure 3.52.
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Figure 3.51: Error-correction performance of 500-neuron virtual neuron network and
nonlinear estimator in hand-eye calibration. Plot (a) is the neural network. Plot (b)
is the estimator. Noise and nonlinear perturbations were not present.

Estimation Performance in Localized Regions

In the absence of noise and unmodeled pefturbations estimator performance is excel-
lent When the region accessible to the manipulator is sampled at 'boints with sufficient
separation. In aﬁplications, however, a manipulator may work in localized regions for
protracted periods, creating numerical problems that must be addressed in deéiding
when the estimator should be invoked. To assess the effects of localization on accuracy,
the region accessible to the normal plant was restricted to the region a=—-3 +0.1
radians and 8 = %” +0.1 radians. This defines a small, roughly parallelogram-shaped,
region with sides about 20 cm in length that is nominally located two meters from

the vision base and one meter from the arm base along the positive z — azxis. The
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Figure 3.52: Error-correction performance of a 500-neuron virtual neuron network
_ and the nonlinear estimator in hand-eye calibration with large kinematic errors. Plot

(a) is the neural network. Plot (b) is the estimator. Noise and nonlinear perturbations
were not present.

elbow is below the axis. In addition, the vision eccentricity limits were reduced to
+0.05 radian around the optical axis. In this situation, which had an average uncor-
rected positioning error of 4.2 cm, the neural network outperformed the estimator,
using 205 neurons to achieve an average positioning accuracy of about 0.4 mm in
the region, compared to the estimator’s average positioning accuracy of 0.6 cm. The
estimator was able to identify the kinematic parameters only to within about one

percent. Performance of both systems is shown in figure 3.53.
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Figure 3.53: Calibration error-correction performance of a 205-neuron virtual neuron
network and nonlinear estimator in a localized region. Plot (a) is the neural network.
Plot (b) is the estimator. Noise and nonlinear perturbations were not present.

The Effects of Unmodeled Structure on Estimator Performance

Nonlinear estimation performed well in the above tests, in which nonlinear pertur-
bations and noise were not present. Except for visual range scale factor errors (not
shown), however, where average positioning error with the normal plant and a vision
range scale factor of 0.9 was six microns,'® estimation was unable to cope with noise,
nonlinear perturbations, and plant drift until the magnitude of the disturbances was
reduced nearly to zero. The reason for this, which will be the éub ject of further work,
is the so-called large residual problem which _arisés when unmodeled effects cause x? to

have large values. Possible remedies include increasing the sophistication, and hence

16Reverse Marquardt result.
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the complexity, of the model, which will involve identifying more parameters, and
modifying the estimator to use a better algorithm for calculating A, which switches

between the gradient descent and inverse Hessian matrices in equation 3.116.

3.7 Discussion

This section compares the neural network- and estimation-based approaches to hand-

eye calibration, and discusses issues relating to hand-eye mappings.

3.7.1 Comparison of The Network and Estimation Ap-

proaches to Calibration

These main points emerged from this work:

1. Platt networks coupled with virtual neuron adaptation give good noise-limited
“ performance and handle nonlinear perturbations. They do not need parametric
plant models, but have many parameters that must be adjusted to obtain the

best performance.

2. Plant description information is held implicitly in a neural network, and so is
inaccessible unless the network is designed explicitly to identify parameters. A

separate network is required for reverse kinematics.

3. The neural networks employed in this work adapt relatively slowly to plant

changes, because the network must sample the entire space. Architectural

changes, a subject for future work, may be able to ameliorate this.
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4. Nonlinear estimation has outstanding performance when it works, but it requires
a parametric model, and was not able to accommodate noise and perturbations
in these tests, probably due to the algorithm employed. Perturbations could
possibly be accommodated by developing an approximate model and estimat-
ing the parameters. Performance could also be improved by estimating vision

parameters.

5. Nonlinear estimation provides information that is globally useful in a convenient
form (formulas in this context are compact)..In particular, the information is
useful for both forward and reverse kinematics and thus is useful for planning,

measurement, and other robot activities.

6. Nonlinear estimation adapts quickly, in principle, to plant variations because it

is not necessary to sample the entire space.

3.7.2 Efficient Neural Representations and Hand-Eye Map-

pings

In the hand-eye system described in this thesis ﬁve inputs, the range, angular eccen-
tricity, pointing angle and the two nominally-calculated joint angles, are required to
calculate arm joint angle corrections. This is inefficient because the corrections for
visual errors must be learned for all joint angle pairs, and in multi-arm systems they

would have to be separately learned for each arm.

Assuming each of the five input degrees of freedom requires n neurons, a hand-eye
map would require n® neurons to generate the two joint angle corrections. All the
" inputs are required because of the assumed visual and kinematic perturbations. If an

intermediate representation of spatial coordinates were used instead of going directly
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from visual stimuli to joint angles, the mappings would require fewer neurons and
could be used by all arms (and other kinematic degrees of freedom). In particular,
if the range, angular eccentricity, and pointing angle values were to map into a com-
mon two-dimensional representation of the spatial location of the visual stimulus and
this was mapped, in turn, into the joint angles, n® + n? neurons would be required,
assuming again that n are required per degree of freedom. For n > 1 it is always true

that n3 4+ n? < n®.

A common internal spatial representation is also important for the integration of
menta.i And observational processes.!” Some positioning targets, for example, may not -
be visible because of occlusions and some, like an intermediate position in front of an
object, either are not visible or can be confounded with the background because they
have no material reality. The positions 6f such targets must be derived indirectly,
either from memory, or by applying known coordinate transforms to nearby objects
that can be seen. Reaching for targets that are not visible or are not being observed
thus involves using an indirectly-derived representation of the target’s position rather

than a representation resulting from direct visual observation.

In addition to using neurons suboptimally, the ‘hand-eye representations of the
type employed in this work are slow to adapt to plant changes. This is because
adaptation can occur only where there has been hand-eye experience. Correcting
drifts over the entire space means that the entire space must be scanned. | Animals
probably implement hand-eye coordination differently because they appear to Be able

to shift entire maps quickly.

Assuming that animals possess structures that facilitate learning things important
to their survival, and that such an approach would be useful in artificial systems,

modifying the network architecture to calculate specific parameters with broad (as

17This is true for both neural network- and estimation-based systems.
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opposed to local) relevance, such as offsets and scale factors, could significantly im-
prove system response to plant drifts. In that case large-_scale behavior modification
could be based on local experience and adaptation to certain classes of drifts could oc-
cur quickly. Calculatiﬁg specific parameters requires developing specialized circuitry
adapted to identifying the parameters in question, and combining that circuitry with
normal learning circuitry in a consistent way. Quickly identifjing image scale factors
and pointing offsets, for example, would be beneficial for maintaining an accurate
internal spatial representation, because once identified from a few observations, they

could be globally applied without requiring exhaustive sampling.
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Chapter 4

Learning and Executing Hand-Eye
Motor Skills

4.1 Introduction

This chapter details the learning robot motor control system introduced in chapters 1
and 2. It describes objectives, previous work, the overall approach and implementa-
tion, and system performance. It closes by comparing the performance of the learning

control system with that of a conventional linear controller at ball catching.
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4.1.1 Objectives

The overall objective is to investigate learning hand-eye robot motor control in simple
motor tasks. More specifically, the objective is to design and simulate a system that

can, without being explicitly programmed:

1. Learn to recognize arm responses and control simple arm behaviors, compen-

sating for changes in mass.
2. Learn to recognize and predict simple behavior of external objects.

3. Learn to interact with external objects to satisfy simple goals.

In the context of ball catching, which is the task considered here, the éystem
should be able to learn to catch different“. balls that follow a variety of trajectories
using an arm with variable physical parameters. The system should not require being
specifically programmed and should not require the design of a specific controller. It
must learn to recognize and predict arm and ball behavior, and learn how to control
the arm so the ball is caught. Predicting the behavior of an object means predicting

the way its state will evolve in time.

4.2 Previous Work

As mentionedvinv chapter 1, a great deal of the previous work on robot motor learning
has addressed the problem of compensating for manipulator dynamics [Albus (1972),
“Albus (1975b), Albus (1975a), Atkeson (1986), Goldberg and Pearlmutter (1988),
‘Miller (1987), Raibert (1977), Raibert and Horn (1978)]. This problem has
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also been addressed by control theorists [Craig (1986a), Slotine and Li (1986),
Slotine and Li (1991)], and on-line adaptive compensation algorithms employing pa-
rameter estimation are now being commercially applied to improve the tracking ac-

curacy of high-performance industrial robots [Larkin (1993)].

More recent motor learning work addresses learning in the task do-
main. Noting that a system must experience its own control situations
to learn to issue appropriate control commands, Handelman and co-workers
[Handelman, Lane and Gelfand (1989)] use declarative knowledge in the form of an
internal critic to guide the motor learning process. They have focused on particu-
lar motions and on well-defined repetitive events such as learning to swing a tennis
racket. Using a human supervisor, Pomerleau has trained a neural network to steer

a robotic vehicle [Pomerleau (1990)].

The research reported here addresses a more global framework for sensory per-
ception and motor learning that can be extended to a wide variety of sensor-motor
tasks inclﬁding those in which the system must interact with external objects. The
framework is based upon both learning by trial and error and the use of declarative
knowledg (rules), which are applied by an internal critic, called th; mentor. The
mentor makes specific recommendations for improving motor performance which are

learned by the system.

4.3 Approach to Robot Motor Learning and Con-

trol

The system draws deeply upon biological ideas. Basic design principles are that

accurate task execution is achieved by comparing predicted with observed behavior
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and that, at least from a motor control standpoint, a system comprehends a situation
when it can reliably predict how it will evolve. Surprise, or deviation from prediction,
triggers learning if the unexpected situation is not known, and/or invoking a different

behavior if the situation is known.

The system includes a temporally-ordered memory of the motor command, sen-
sor observation, and sensor prediction! streams in the current training or execution
episode, along with a comparator that determines whether experience matches pre-
dictions. Comparison of predicted and observed behavior is thought to be important
in biological motor control [Brooks (1986)]. Neural networks learn to recognize and
predict internal and external (arm and ball, respectrively)behaviors and to issue motor

commands (voltages) appropriate to the control situation.

The system mimics the observed hierarchical behavior of animals, in which low-
level processes in understood, low-complexity situations are nearly automatic, while
confusion or misunderstanding requires conscious attention,? and may cause a change

in behavior as well as learning.

Learning, which is taken here to mean improving performance according to
some metric, requires the ability to recognize and reinforce better performance
[Brooks (1986)]. Learning capabilities may be nearly automatic, as in learning to
walk or control arm movements, or they may require conscious attention, as in learn-

ing to play a musical instrument.

Learning effectiveness can be improved if specific knowledge rather than random

~ 1This is inspired by the efference copy, or corollary discharge, of biological motor control in which
copies of efferent, or outgoing, motor commands are relayed to higher motor control centers to allow
comparison of commanded and actual behavior [Brooks (1986)].

2Driving on a smooth highway in light traffic is an example of an understood, low complexity
situation which is nearly automatic. The sudden appearance of an oncoming car in your traffic lane

requires conscious attention.
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trials is used to suggest performance improvements. The role of the mentor is to
suggest specific ways to improve performance at a functional level (e.g;, move farther
next time). These suggestions are transformed into behavior modifications by a low-
level process that trains networks to invoke pursuit motor commands that satisfy the
‘mentor’s suggestiohs in particular control situations. A mentor, of course, may be

internal or external to a particular system.

The learning system considered here has no closed-loop arm controller, no initial
arm or external object models and no explicit program describing how to catch balls.
It does have a great deal of internal structure, along with innate motivation, thaf
allows it to observe the behavior of itself and external agents, to correlate its actions
with their observed effects, and makes it want to move its arm, catch balls, or perform
other tasks. It also has innate structures that cause it to issue randomly directed, but
structured, pursuit commands [Brooks (1986)], that lead ultimately to its capability

for purposive movement. As we shall see it learns very accurate and stable behavior.

To make the learning problem tractable, capabilities are learned in isolation and
order, again as in learning to play an instrument. The system first learns, much
like an infant, to perform controlled pursuit movements by exercising its arm a great
deal and observing its response to the movement commands. Arm movements are
random, but they have a stereotypical form mimicking pursuit movements observed
in animals® [Brooks (1986)]. Since arms have different behaviors if they are loa,déd or
unloaded, that is, whether they are or are not carrying objects, different arm masses
are used. After the system has learned to control its arm movements, it observes
the behavior of simple external objects,? learning to identify different objects and to

predict their behavior. Once the system knows how to perform pursuit movements

3Relying on a stereotypical form, which could arise innately, is important to simplify the learning
problem for simple movements. There are an infinite number of ways to move to a location.
4Light and heavy balls in this case, which have very different behaviors due to aerodynamic drag.
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and can recognize and predict ball motion, it learns to catch balls with the advice of

the mentor.

Since a sense of time ordering is essential, the existence of a system clock has been
assumed, along with the ability to perform implicit time stamping.® In the present
system, the clock, which drives the shift memory (see below), operates at a fixed

frequency of 40 Hz.

While the overall approach, with augmentations, is believed to be extensible to
more complex situations, such as recognizing and learning the behavior of complex
plants, the system here deals with smooth motions, simple tasks, and uncluttered
environments. The system, however, is able to detect anomalies, such as the ball’s
colliding with the ground or the arm because the comparator notes the inconsistency

between the predicted and observed sensory streams.

4.4 The Motor Learning System

The overall system considered in this work consists 6f the robot, which has one linear
degrée of freedom, with its sensor and control systems, and the external agents which
are light and heavy balls. The main robot elements are the light and heavy arm and
its sensor system, the visual system, and the controller. During both learning and
execution the controller relies heavily upon a temporally-ordered memory, which is
modeled as a multistream shift register. Values stored in the shift register during a

trial are used to construct the recognition, prediction, and control networks during

5There is debate on the neural representations of time. The olivary structures in the brain are
known to oscillate stably, which may have some significance to motor learning and control. The sense
of time associated with an active system clock, however, which is used in regulation and coordination,
is distinct from the sense of time associated with high-resolution temporal discrimination processes
like echlocation, which uses neural delay lines and coincidence detectors.
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Figure 4.1: Catching layout. Dimensions are in meters.

Iearning and as network inputs during execution to generate behavior predictions and
arm commands. The shift register memory stores both the observed and predicted
sensor values as well as the instantaneous identity of the arm and the external object,

if they are active, along with the output arm commands, which are voltage values.

The ball and the robot are simulated in some physical detail, including the effects
of viscous and frictional damping, rebound, back motor emf, control nonlinearities,
and so on. See figure 4.1 for a geometrical description of the robot, its environment,

and the arm and ball travel limits. The overall robot control system structure is

shown in figure 4.2.
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Figure 4.2: Learning control system structure showing principal information flow.
The mentor and other learning functions, which are discussed in section 4.4.2, reside
in the block labeled learning. For clarity, logic is not shown in detail.

4.4.1 System Elements

The system is made up of several elements. The arms, balls, comparators, mentor,

neural networks, shift register memory, and vision system are briefly described here.
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Arms. The two arms, which differ only in mass, each have one horizontal degree of
freedom, which positions the cup that is used for catching. The different arm
masses simulate changes in dynamics, as when grasping or releasing objects.
The cup, which is 20 cm in diameter and 8 cm high, can be positioned anywhere
within limits shown in figure 4.1. The inner cup surface is bounce-absorbent,®
mganing that objects rebound from an inner surface with their velocity com-
ponents normal to the surface essentially zero. The outer surface is hard, so
objects rebound according to their elastic properties and the cup velocity. All
the cup surfaces are taken as frictionless, so there is no change in a colliding
object’s tangential velocity component during a collision. Thus balls, because
of their symmetry, undergo no changes in rotational energy when they collide

with the cup. Arm motion is assumed to be unaffected by collisions.

The light arm mass is 0.1 kg, while that of the heavy arm is 0.5 kg. The arm
is driven by a motor coupled to a traction transmission, which is a wheel of
radius a = 8 cm on the motor shaft. The linear arm velocity, a, is thus given
by @, = ow, where w is the angular velocity of the armafure shaft. Damping
is assumed to be proportional to arm velocity, with the damping force f given
by f = ba,. It is assumed that b = pgM + vdh, where g = v = 0.1., g is the
acceleration of gravity, M is the arm mass, d is the cup diameter, é,nd h is the
cup heighﬁ. The vdh term makes the viscous damping force dependent upon the
cup size. The motor terminal resistance, R, is 3.3 ohms, and the motor torque
constant k,, is 0.125 newton-meters/amp; the mass of the motor armature is

absorbed into the arm mass. With 20 volts across the motor, the arm’s terminal

velocity is 9.6 m/sec.

6The ball-surface interaction is modeled as a highly overdamped second-order system.
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Making the conventional assumption that armature inductance is negligible, the

arm’s voltage-position transfer function is given by:

Gg(s) _ (km7)/(aRM)

- = 4.1
V(s) s(rs+1) (4.1)
The motor time constant, 7, is given by:
. ! (42)
" b/M + K2, [a?RM’ )

The motor amplifier is nonlinear, and can be saturated. The output is given
by:
Vim = Atanh(G;V;). (4.3)

V. is the voltage applied to the motor windings, A = 20 is the amplifier gain,
G; = 4.0 is the input voltage gain, and V, is the command voltage. Arm sensors
include position (of the cup centerline), velocity, and drive force. The drive

force sensor sees the inertia of the entire system.

Balls. The light ball has a density of .03 kg/m?3, giving it the behavior of a beach
ball, while the heavy ball has a density of 500 kg/m3, giving it the behavior of
a child’s small rubber ball. Both balls are six cm in diameter. Ball behavior in
simulation is calculated using exact formulas for damped ballistic motion and
either underdamped or overdamped rebound, dépending upon the surface with
which the ball collides. The ground and exterior cup surfaces are hard, and the
ball rebounds from them in an underdamped manner. The ball rebounds from
the interior cup surfaces in a highly overdamped manner as discussed above
under Arms. The ball is assumed to be subject to a viscous drag force, f, given
by |

f = —nbrrv, (4.4)
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where 7 = 1.81 x 10~% kg/meter-sec., the coefficient of viscosity, r = 0.03 meter

is the ball radius, and v is the ball velocity.

A ball’s position is taken as that of its center of mass. Balls are constrained to
move in the z — z plane. Light and heavy ball trajectories are shown in figures

4.3 and 4.4. respectively.

Comparators. The comparators compare predicted and observed sensory signatures
for both the aétive ball and the active arm. They operate on information stored
in t;he' shift register memory, subtracting sampled observed values from the
corresponding sampled predicted values over the ten most récent time steps. If
the difference is below a predetermined threshold, the predicted and observed

streams are taken to agree.

Mentor. As mentioned above, the mentor is an internal critic or advisor th;a.t helps
the system improve its ability to catch. The mentor observes the éystem’s
performance and uses rules to determine how to correct inputs to the motor
command network to improve catching success. Mentor output is used to train
a network t6 emit the corrections, which are added to the motor command

network inputs. The mentor is described further in sections 4.4.2 and 4.7.

Neural Networks. The system uses feedforward resource-allocating neural net-
works, with the virtual ‘neuron adaptation algorithm and the distance allocation
threshold set to zero, as described in section 3.5.4. The tuning width is set so

* the (Gaussian) response function of a newly-allocated neuron drops to one-half
at a distance fraction, k, of 0.8. Resource-allocating networks are used because
they oﬁer rapid learning. There is no restriction on the number of neurons that

can be allocated in each network.

For each ball there is a state prediction network and a crossing state prediction

network. For each arm there is a state prediction network, a motor command
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network, and a catch correction network. The catch correction network is cre-
ated under the tutelage of the mentor as described in section 4.4.2. In addition,
there is a ball récognition network that recognizes which ball is .being observed,
and an arm recognition network that recognizes which arm is being used. The
recognition values are used to select the appropriate prediction and motor con-
trol networks. The individual networks are described more completely in seétion

4.4.2. Network inputs and outputs are summarized in tables 4.1 and 4.2.

Shift Register Memory. The shift register memory, which is cycled by the cléck,
holds the predicted and observed sensory traces, the motor commands, and the
ball and arm identities. Information from the memory is used by the compara-
tors and by the learning algorithms. It is also used as input to the networks
that generate motor commands and behavior (state) predictions and recognize
the arm and ball identities. Sensory memory is old because of perceptual time
delay and shifting, but relative phé,sing is still valid because delay times are

consistent. Delayed perception can thus be used for motor learning.

Vision. The vision system is monocular with a square retinal visual field that lies
in the (vertical) motion plane. The optical axis is pointed in a fixed direction
perpendicular to the motion plane, and passes through the center of the visual

 field. The vision projection is orthogonal and the visual scale is constant. The
vision system is assumed to provide position and velocity infornllatioﬁ for objects
of interest. The system has position aﬁd velocity (x,y) sensors that return analog
values corresponding to the x and z positions and velocities of objects (centroids)
in the visual field. The velocity sensors are linear and have signed output. It
is assumed here that the vision and arm subsystems are calibrated, meaning
that accurate feedforward position commands to visually-observed points can

be generated.
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Figure 4.3: Typical light ball trajectory with a bounce.

4.4.2 System Operation

The system initially has no motor knowledge of itself or external objects. It has
an arm learning mode, a ball learning mode, a catching mode, and a catch training
mode, mediated by the mentor, in which catching performance is improved. The arm
and ball learning modes are independent. Catching cannot be successfully performed
or improved until the system is capable of controlling its arm and recognizing and

predicting ball behavior. The modes are described in the following subsections.
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Figure 4.4: Typical heavy ball trajectory with a bounce.

Arm Learning

In the arm learning mode, either the light or heavy arm is selected and stereotypical
pursuit movements, which are generated with the help of a random /number generator,
are executed by the arm. Each movement accelerates, decelerates, and stops the
arm by issuing bang-bang voltage cormhands’of fixed magnitude and a polarit); that
depends upon the di;ection.of travel. The random number generator selects initial
and target arm positions from within the arm travel limits along with a maximum
Qoltage amplitude in the range [¢,1], where ¢ > 0 is set high enough to prevent
glacially slow movements and provide good sensor excitation. The arm moves under
the initial voltage until it crosses the midpoint between the initial and final positions,
where the polarity reverses. When the arm étops, the voltage is set to zero. Because

of damping, sampling, and nonlinear amplifier effects, the arm does not necessarily
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stop at the position selected by the random number generator. This»does not matter,
since the system only needs to associate commands with observed behavior. During
the movement, the behavior (succession of states) of the arm as sensed by the arm
sensors, including the arm drive force sensor, is recorded in the shift register memory,

along with the command inputs (voltages).

At the conclusion of the movement, the motof command nétwork for the current
arm is trained, for every time step in the movement, to emit the movement’s command
voltage, with the appropriate sign, in response to the arm state (velocity) at the time
step, the displacement of the final arm position from the current arm state, and
the time remaining from the current time until the arm comes to rest (its arrival
time). In this way the system learns to command the cofrect voltages necessary to
reach desired pursuit objectives (stop at a specified position at a specified time) from
a given arm state. Arm state and target position information are stored in relative
form” to eliminate the need to learn arm behavior separately for all positions in space.
This is reasonable given the prismatic nature of the arm being used. It would not
be acceptable for revolute arms. Arm network inputs and outputs are summarized in

table 4.1.

The arm recognition and state prediction nets are also trained using information

“in the shift register memory. The current arm’s state prediction net learns to predict
the arm state and drive force at the next time step given the current arm state

(velocity) and command voltage. The arm recognition net learns to associate the

current arm identity with command voltages, observed arm behavior, and arm drive

force sensor readings over recent time steps. It does this by setting an output line

high. Thus observed arm behavior can be used to invoke the appropriate control and

recognition nets when necessary. In operation, the output line for each arm will have

"Relative to the current arm position.
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some activity, so the line with the highest activity is chosen, providing the activity of

at least one is above a threshold.

Recognition in this context is not the same as system identification, although it
has the same goal of accurate control. In the current work, we determine which arm
is- active so the appropfiate networks can be used to generate control commands.
In system identification [Ljung and Soderstrom (1987)], system response is observed
and the parameters, such as masses, damping factors, etc., that describe the system
(plant) according to a system model are determined. These parameters are then used

by the control system to generate accurate control commands.

Ball Learning

Ih the ball learning mode, the light or heavy ball is selected, the control system is
informed of the ball choice, ball trajectory parameters are selected, and the ball is
tossed. Ball trajectory parameters, which are unknown to the control system, are
randomly chosen so the ball will cross the i)lane z = 0 in the region specified in
figure 4.1 and will have a maximum height between 1.25 and 1.5 meters as shown in
the figure. Trajectory limits are imposed to limit problem complexity (hence neuron
count) and to assure that all balls can be caught® by the arm using simple pursuit

movements.

A trial begins when the ball is launched and ends when it crosses the plane z = 0.°

During ball learning the arm is moved out of the way so no arm-ball collisions can

-8In all cases it is physically possible for the arm (the center of the cup) to reach the position
where the ball crosses the plane z = r, with r the ball radius, by the time the ball arrives. Because
of the finite cup size and complex ball-cup collision dynamics, this is a sufficient, not a necessary,
condition.

9The event of the ball’s descending through the plane z = 0 is called zero crossing or just crossing.
The ball’s state at that time is called the crossing state.
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Inputs Outputs
Arm Recognition Net
V(t — At) enables arm id gate
V(t — 6At)
a(t)
az(t — 5At)
az(t) — az(t — At)
ax(t) — az(t — 6At)
f(t) |
f(t — 6At)
Arm State Prediction Net
V(t) az(t + At) — ay(t)
az(t) az(t + At)
f(t+ At)
Motor Command Net
az(t) - . V(t + At)
Azs — ax(t)
t, —1
, Catch Correction Net
a(t) oz
bee — az(t) ot
t.—1 : '

Table 4.1: Arm Neural Networks. As discussed in the text, ¢ is the current time,
At is the clock time increment, a, is the arm position, f is the drive force, V is the
control voltage, a,s and t, are respectively the position and time the arm comes to
- rest, by, is the ball crossing location, ¢, is the ball crossing time, 6z is the catching
position correction, and 6t is the catching time correction. Inputs shown are used
for both training and execution except as follows: During execution a, is replaced
by bsep(t) + 6z(t), and i, is replaced by t(t) + 6t(t), where b;cp(t) is the current
predicted ball crossing location and t.,(t) is the current predicted ball crossing time.
For catching, the ball crossing location and time correspond to the arm stopping
location and time, since simple catching involves the arm’s being at rest at the crossing
location ‘when crossing occurs. The éz and 6t values, which are learned with the help
of the mentor, correct the position and time, and make the arm arrive 0.1 second

before the ball.
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occur.

During the trial, ball state variables, its horizontal aﬁd vertical velocities and po-
sitiohs, are stored in separate streams in the shift register.memory. At the conclusion
of the trial, the ball state variable memory trace is used to train the state predic-
tion net and the croésing state prediction net for the current ball, as well as the ball
recognition net. The state prediction net associates the ball’s velocity and position
displacement (from its current position) at the next time step with the (vector) ball
velocity at the current time step and the ball’s present distance'from its position two
time steps earlier. The state predictof, which, like the arm, uses a relative position
representation, thus predicts future behavior based on past behavior. Ball network

inputs and outputs are summarized in table 4.2.

The crossing state predictor associates the time remaining from the current step
until ball crossing, the ball’s horizontal velocity at crossing, and the horizontal dis-
tance from the current ball location to the croésing state with the (vector) ball velocity
at the current time step; the ball’s present height; and the ball’s present distance from
its position twb time steps earlier. That fs, the crossing state predictor net predicts,

relative to the ball’s current position and the current time, when and where the ball

will cross the z-axis, and how fast it will be going.

The ball recognition net learns to identify the ball based upon its current velocity
and its position displacement from its states one, three, and five time steps earlier. In
the current implementation, it indicates recognition by setting an oﬁtput line high.
In operation, the output line for each ball will have some activity, so selection is made
by choosing the line with the highest value (above a threshold), as is done for the

ari.
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Inputs Outputs
_ Ball Recognition Net
b(t) enables ball id gate

b(2)
bo(t) — ba(t — At)

bo(t) — by(t — At)

ba(t) — by(t — 3A1)
b.(t) — b,(t — 3At)
bo(t) — by(t — 5AL)
b.(t) — ba(t — 5AL)

Ball State Prediction Net

by (t) by(t + At) — by(t)
b,(t) b(t + At) — b.(t)
ba(t) — ba(t — 2A1) Bt + At)
b(t) — by(t — 2AAt) Ht+ At)
Ball Crossing State Predictor Net

bo(t) b(t.)
b,(t) to—1
by(t) — by(t — 2A1) boe — by (t)
ba(t) — b,(t — 2A%)

b.(t)

Table 4.2: Ball Neural Networks. In the table, ¢ is the current time, At is the clock
time increment, b, and b, are the z- and z-components of the ball position, b, is the
~ z-component of the ball’s crossing position, and . is the ball crossing time.
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Catching

When the system is in catching mode, a trial begins when a light or heavy ball is
randomly tossed and the light or heavy arm is enabled. The trial ends at ball zero
crossing, or when the ball is ¢caught or knocked out of bounds. Since the system is

memory-based, it must know which arm and ball are in use so it can access the correct

prediction and command networks.

Considering the balls for the moment, if the system knows, or believes it knows,
the ball identity, it enables the associated state prediction nets. Using the net cor-
responding to the ball identity, the system begins predicting ball behavior. When
enough data have accumulated in the shift register, the ball comparator begins com-
paring the predicted behavior with the observed behavior. If they are not sufficiently
close, the system disables the prediction net, and enables the ball recognition net,
which tries to identify the ball based upon its observed behavior. This can happen
even in mid-trial. If ball recognition is successful, fhe appropriate state prediction
net is enabled, the recognition net is disabled, and the ball comparator again begins
comparing predicted and observed behavior; The ball recognition net continues to

attempt recognition until it is successful or until the trial is over.

If the predicted and observed ball behavior are sufficiently close, the system sets a
ball comprehension flag high and the motor command net begins to generate voltage
commands based upon the arm state, the predicted ball zero-crossing state, and
the output of the catch correction net, which will be described below. If the ball

comprehension flag is not high, the systéem puts the arm into a damped safe state.

Now consider the arms. Whenever an arm is active, the system continuously
predicts its behavior using the identity of the arm it believes is active. As the arm

moves under the influence of the voltage commands generated by the motor command
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net, the comparator will, as in the ball case, compare observed and predicted -behavior,
keeping an arm comprehension flag high and storing the comprehended arm identity

in the shift register memory as long as the behaviors are sufficiently close.

If they are not clése, the arm state prediction net is disabled and the system
attempts to identify the arm using the recognition net. The arm, however is not
disabled, since to do so would make it impossible to gather the data necessary for its
recognition.!® Instead, the arm is excited using voltage commands generated by the
(apparently) incorrect motor command net. As in the ball case, the arm recognition

net a,tteinpts to recognize the arm until it is successful or until the trial is over.

If the arm and ball are both recognized, the situation is considered to be com-
prehended and the system continues to geherate and issue arm voltage commands
until the trial is over, or until the situation is no longer comprehended. The voltage
commands are designed to bring the arm to rest at the ball crossing point slightly
befqre ball crossing. If this is done with sufficient accuracy, the system will catch the

ball.

Iﬁ addition to catching using single pursuits, which terminate with the arm at rest
(and possibly missing the ba;ll), there is a somewhat more adaptive mode in which,
at the completion of one pursuit motion, the system is allowed to initiate another.
Since the ball is closer to crossing and therefore its crossing state estimates should be
better, this improves performance, often markedly so, in cases where the arm is not

fully trained. This is not surprising, as the mode is a form of loop closure.

10Arms are recognized kinesthetically by exciting them and observing the response.
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Catch Training

Once the system has learned to control its arm and predict ball behavior, it can
catch balls with a high degree of accuracy and success, as will be seen below. The
mentor improves catching performance by observing catching behavior, suggesting
specific corrections, and training a network (the catch correction network) to emit the
corrections appropriate for control situations. The corrections, which compensate for

arm control and ball crossing state estimation errors, are added to the motor command

"network inpufs.

In catch training trials, randomly-selected balls are thrown one at a time. The
objective is to to catch or intercept each ball before it hits the ground. . Allowable
arm and ball initial conditions are such that it is possible for the arm to catch all the
balls. At the completion of a trial, the mentor observes the catching performance,
noting the improvement needed in both temporal and positioning performance by the

arm in question.

Temporal performance improvement is needed if the arm is not yet at rest, or has
been at rest too long at ball crossing. If the arm is not at rest at ball crossing, it
is not exerting enough effort; if it has been at rest too long, it is exerting too much
effort. Position performance improvernént is needed if the arm rest position does
not coincide with the ball crossing position, wheré the correct position is defined as

having the ball centered in the cup at crossing.

The qualitative learning rule, or heuristic, is that the arm should arrive at the
crossing location one-tenth of a second before the ball. In this implementation this

heuristic is transformed into definite position and time adjustments éx and ét accord-
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ing to the following rules:

bz = by — ags (4.5)

§t = t,—t,—0.1 (4.6)

where b, is the ball’s horizontal position at crossing, a. is the arm’s final position,
P g

t. 1s the time of crossing, and i, is the time the arm arrives at its rest position.

-Since it is the effective va,rm pursuit behavior we wish to modify, for each time
step the position and time adjustments are associated, in the catch correction net,
with the same input information used by the arm control nets, namely the arm state
(velocity) at the time step, the displacement of the final arm position from the current
arm state, and the time remaining from the current time until the arm comes to rest.

This is shown in figure 4.5.

Given this information, then, the catch correction net generates a target position
correction and an arrival time correction. When the system is attempting to catch
a ball, these increments are added to the arm target increment and arrival time

increment inputs to the motor command net as shown in figure 4.6.

In this way the primitive behavior, the pursuit, becomes the basis for a skill,
catching, without being itself modified. The catch correction net inputs and outputs

are summarized in table 4.1. Performance is described is section 4.7.

In cases where the ball hits the arm and is therefore deflected from its normal
crossing state, the mentor predicts the crossing state based upon the ball state im-

mediately prior to the collision.
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Figure 4.5: Schematic diagram of mentor operation. The mentor observes catching
performance and trains the catch correction network to emit corrections éz and ét to
the target catching location and arrival time. The catch correction network is trained
for each time step in the trial using observed crossing information and arm state
information as well as arm state information recorded in the shift register memory.
In the diagram, b, is the ball crossing location, a, is the arm location, a,; is the arm
stop position, ¢ is the current time step, ¢, is the crossing time, and ¢, is the time the
arm stops (the arrival time).

4.4.3 System Implementation

The system has been implemented as a “C” program. Simulations were run on Sun
Sparcstat;ions. For physical plausibility the implementation includes detailed mod-
els of the arm and ball behavior and their interactions. Recognition, control, and
prediction neural networks were 'implemented in software. No attempt was made to
simulate other systems, such as the shift register memory and the vision system, using

neural elements. -
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Figure 4.6: Catching control diagram. When the system attampts to catch a ball,
the target position and arrival time corrections, éz and ét, generated by the catch
correction network, are added to the motor command network inputs to improve
catching performance. Inthe figure, a is the arm position, b, and ., are respectively
the predicted ball crossing location and crossing time as generated by the ball crossing
state network, and V(¢ + At) is the command voltage for the next time step.

4.5 Ball Behavior Recognition and Prediction

Performance

This section describes the system’s performance at learning to recognize and predict

ball behavior.

Each ball was tossed two hundred tifnes subject to the trajectory constraints il-
lustrated in figure 41 After the two hundred trials the recognition network had
allocated 2047 neurons; the light and heavy ball state prediction n'ets had allocated
3600 and 1736 neurons respectively; and the light and heavy ball crossing state pre-
diction fxets had respectively allocated 1242 and 3007 neurons. The system was able
" to learn to estimate ball crossing position and grossing times very accurately in both -
cases. Figure 4.7 shows the heavy ball crossing position prediction error for a typical

ball flight as a function of time. The system cannot make accurate predictions until it
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has gathered ehough observations. When it has done so, accuracy increases markedly,
decreasing after the ball bounces. Results for the light ball are similar. Figure 4.8
shows the crossing time prediction error for the light ball, again as a function of flight
time. These are also very good. Crossing time prediction results for the heavy ball

are similar.

Recbgnition performance for each ball was tested over twenty trials with the ball
identity initially unknown to the system. In all cases, the trained nets were able
to determine the correct ball identity. Furthermore, when recognition performance
was tested over twenty trials in the context of well-trained catching as discussed in
section 4.7, the system was able to determine the ball identity quickly enough to
achieve perfect catching success with an rms position error of slightly more that 2
cm. This was also the case when the ball identity, instead of being unspecified, was
initialized to be that of the other ball. From this we can infer that the comparators

were working well, though their performance was not investigated in detail.

4.6 Arm Control, Behavior Prediction, and

Recognition Performance

As described above, the system learns about the arm by exercising it, which is the
same basic idea used in the hand-eye calibration system of chapter 3. During training,
the arm is excited with antisymmetric square pulses as illustrated in figure 4.9. The

response of the heavy arm to this voltage profile is shown in figure 4.10.

The heavy arm was trained over 1000 pursuit learning trials, while the light arm
was trained over 500. In these trials the heavy and light arm motor command nets

allocated 13245 and 3256 neurons respectively; the heavy and light arm state pre-
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Figure 4.7: Crossing position prediction error as a function of flight time for the heavy
ball. The decrease in accuracy beginning at about 1.1 seconds is due to software
artifacts associated with the end of the trial and the system’s latency in predicting
ball behavior after the ball bounces.

diction nets allocated 8862 and 2186 neurons respectively; the arm recognition net
allocated 1681 neurons. After 10, 100, 500, and 1000 training trials the heavy arm’s
performance was tested over a fixed set of twenty non-learning catching trials, in
which the arm position error (the difference between the arm and target positions) at
the instant of ball crossing was noted. The rms position error over these testing trials
is shown in figure 4.11 as a function of the number of training trials. The arm clearly
gets better at perforrriing pursuit movements as the number of trials increases. The

ball catching probability over the twenty testing trials as a function of the number of

training trials is shown in figure 4.14. The catching success is excellent.

The vo]tage command proﬁ]es_and the ball trajectory relative to the arm for
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Figure 4.8: Crossing time prediction error as a function of flight time for the light
ball. The decrease in accuracy beginning at about 1.2 seconds is due to software
artifacts associated with the end of the trial and the system’s latency in predicting
ball behavior after the ball bounces.

identical initial conditions are shown in figures 4.12 and 4.13 after 10, 100, 500, and

1000 training trials. The voltage commands are spiky, but they are clearly becoming

more controlled with increasing training.

In addition to the pursuit and catching trials, the system’s arm recognition capa-
bilitieé were tested by initializing the systém with the incorrect arm identity. It was
not set to unknown identity because, as described above, the system must excite the
arm in order to identify it. vFor both the light and the heavy arm the system iden-
t‘ified the correct arm in each of the twenty testing trials. In the case of initia,livzing
the heavy-arm system with the the identity of the light arm, the only case tested, the

system was able to identify the correct arm and recover quickly enough to achieve
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Figure 4.9: Pursuit training command voltage profile.

perfect catching success'! over the twenty testing trials with an rms position error of

slightly less than 4 cm.

4.7 Improving Catching Success with Help From

the Mentor

At this point the system knows how to identify and predict ball and arm behavior,
and how to command pursuit movements that will cause the arm (the cup) to reach a

desired position at a specified time. If a pursuit motion is invoked using the predicted

1The system had been trained by the mentor as described in section 4.7.
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Figure 4.10: Response of heavy arm to training voltage profile.

ball crossing time and state, the system will attempt to get the hand to the ball
crossing location at the time of ball crossing. The system is capable of excellent
catching performance using pursuits‘ by themselves. As discussed in section 4.4.2,
however, its performance can be improved if it invokes pursuit motions that have
slightly modified arrival times and, possibly, target positions. The mentor helps the

system learn to make the necessary modifications.

For the high balls studied here, which do not require synchronizing the arm with
the ball motion at crossing, it is sensible to arrive early, which gives time for some
position adjustrhent if that is necessary. The mentor has a simple learning rule: Select
a pursuit motioﬁ that will arrive 0.1 second early at the correct crossing location. If
the arm ends up at the wrong location, adjust the target position increment generated

by the catch correction net by the appropriate amount. Do the same for the time
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Figure 4.11: ‘Rms pursuit position error over twenty trials as a function of the number
of training trials. ‘

increment generated by the catch correction net if arm arrival time is too late or too

early.

The system, using the heavy arm and heavy ball, was trained to modify pursuit
arrival times and targets with the help of the mentor for 100 trials. At the conclusion
“of the training trials, ca,tching'success, crossing error, and arrival time were evaluated
using the twenty-trial testing se.quence described in section 4.6. In these trials the rms
position error was reduced from slightly more thah 4.5 cm with a catching probability
of 0.95 to an rms positioning error of slightly less than 2.9 ém with a catching prob-
ability of 1.0.12 The catch correction net allocated 2952 neurons. Figures 4.15 and

4.16 show time plots of system performance with pursuit-only and mentor-trained

12These values are those reported above for pursuit-only catching after 1000 arm training trials.
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Figure 4.12: Arm output voltage profiles for identical ball initial conditions. (a), (b),
(c), (d) are after 1000, 500, 100, and 10 training trials, respectively. :

catching respectively. These figures clearly show that with mentor training, the arm
arrives earlier, by about a tenth of a second, as it was coached to do. Terminal control -

and precision are also better. Similar results were obtained with the light arm.

4.8 Ball Catching Using a Conventional Linear
Controller
As we have seen, the learning control system can acquire excellent catching skill.

The learning control system is complex, however, and requires training, so from an

engineering standpoint it is useful to compare learning controller performance with
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Figure 4.13: Ball trajectories relative to the heavy arm. (a), (b), (c), (d) are after
1000, 500, 100, and 10 training trials, respectively. (c) and (d) show the ball bouncing
off the cup. (a) and (b) show it sliding along the bottom.

that of conventional closed-loop control, which can be implemented relatively simply.

4.8.1 Closed-Loop Control System Design

As with learning control, the control objective is to get the cup to the crossing point
in time to catch the ball. In the limiting case of zero drag, the ball’s horizontal motion
is a ramp. For macroscopic drag the ball exhibits damped motion'® that approaches
a finite horizontal position limit C / a. The ball crossing point by itself is a horizontal

step for any value of drag.

13Damped ball motion is of the form b(t) = (C/a)(1 — e~**), with C and a constants, a > 0, and
t time. The Laplace transform is C(1/s — 1/(s + a)). '
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Figure 4.14: Heavy arm ball catching probability using pursuit movements as a func-
tion of the number of training trials. Probability is calculated over twenty trials.

If the system can asymptotically track ramps, it can necessarily asymptotically
track damped ball motion and steps, so if transient tracking errors are small, it should
be able to catch lightly or heavily damped balls using only the horizontal ball position
as a command reference input. If ball crossing position estimates are available, the

system only needs adequate step response.

A PID controller with unit feedback [Franklin, Powell and Emami-Naeini (1986)] -

was chosen for the closed-loop system. Such a controller has the form:
c(s) = kp(1 + Tus + 1/T;s). | (4.7

Here &,, T4, and T; are the proportional gain, the derivative time, and integral time,

respectively. The system block diagram is shown in 'ﬁgure 4.17. The command
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Figure 4.15: Heavy arm temporal response without coaching after 1000 pursuit learn-
ing trials.
reference input, b, is either the horizontal ball position or an estimate of its crossing

locétion; the controlled output is the arm position, a,.

The controller was parameterized using the Internal Model Control (IMC) design
approach developed by Morari and co-workers [Morari (1989)]. In our case IMC
specifies control parameters in terms of a single adjustable parameter, A, which is
essentially the system time constant. A single-parameter controller was selected be-
cause it is simpler to tune and is itself a good candidate for a learning control system.
In that case, the learning control system would learn to generate values of A appro-

priate for particular control situations. Different values of ) are necessary because a
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v Kmt/uRM a,
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Figure 4.17: Block diagram of closed-loop ball catching system using conventional
PID controller.

fixed value is not optimum for all cases as will be seen below.
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For ramp inputs and the given arm,!* the IMC controller parameters are given

by:
9\ +raRM '
Kkp = SV (4.8)
T, = 2X+71 (4.9)
2AT
= X 4.10
Ta 220471 ( )

The arm time constant 7 is specified in eq. 4.2. The controller is then given by:

aRM
ols) = Ak, T

(2/\+T+2/\Ts+%), (4.11)

and the corresponding closed-loop arm response is:

2+ 7+ 2A1s+1/s

6(s) = bo(s) MN(s(rs+ 1)+ 22+ 742 rs+1/s’ (4.12)

A

where, again, b,(s) is the horizontal ball position, é,(s) is the arm position, and A is

the adjustable time constant. The error is given by:

-~ A 2 »
(s) = by — iy = b2 ST+ 1)

“Xs(1s+ 1)+ 20+ 7+ 2275+ 1/s” (413)

Applying the final-value theorem  [Franklin, Powell and Emami-Naeini (1986)]:
lim f(¢) = limsf(s), (414)

it is easy to verify that the system asymptotically tracks ramps, steps, and damped

motion with zero error.

The system with the parameterized controller is shown in figure 4.18.

14The amplifier was assumed linear for the conventional controller tests.
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Figure 4.18: Block diagram of closed-loop ball catching system showing controller
parameterized using the Internal Model Control design formalism.

4.8.2 System Implem.entation'

The closed-loop system with the heavy arm was simulated in the time domain using
Euler’s method [Ralston and Rabinowitz (1978)]. It was embedded in the tesfing

and control structure used for the learning control system, and used the same 40 Hz

clock rate.

4.8.3 Closed-Loop Catching Performance

Catching performance was tested in both ball-tracking and crossing position modes
~ using the same sequence of twenty testing trials used in section 4.6 for the learning
controller. In ball tracking mode the command reference input is the ball position; .
in crossing position mode it is the predictéd horizontal ball crossing position. For
simplicity in the controller tests the ball crossing position was calculated by the ball-

tossing subroutine rather than using an estimator.

In the ball-tracking mode, with A = 0.6 second, the closed-ioop system had perfect
ball catching success with the heavy ball, along with an rms catching position error
of slightly more than 4 cm and an average position error of —0.2 cm. These errors
indicate that the arm sometimes led and sometimes lagged the ball at crossing. With

= 0.6 second, however, the system was too sluggish for the light ball and had no
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catching success. The average and rms catching position errors were nearly equal at
0.51 meters, indicating that the arm severely lagged the ball at crossing. Decreasing
) increased catching probability for the light ball, but decreased catching probability
for the heavy ball. Decreasing ) increases ramp overshoot. This causes the arm to

be ahead of the heavy ball position at crossing.:

With A = 0.1 second, the system was unable to catch the heavy ball, but was
able to catch the light ball with perfect success and an rms position error of only 1.5
cm. The average position error in this case was —1.4 cm, indicating that the arm

consistently, but only slightly, lagged the ball at crossing.

With A = 0.018 second, the best case for both the light and heavy balls together,
the system had perfect catching success with the light ball and a catching probability
of 0.7 for the heavy ball. The corresponding rms catching position errors for the light

and heavy balls were 5.8 cm and 7.7 cm, respectively.

In the crossing position mode, with A = .018 second, the system was able to catch
both the light and heavy balls with perfect success. This is a simpler control situation
that just requires good step response. The system does, however, require a means for

estimating the crossing position.

4.9 Catching Performance Discussion

The learning control system outperforms the closed-loop system, being able to achieve
perfect catching success for both the light and heavy balls simultaneously. This
perfbrmance, however, comes at the cost of significantly greater complexity and the

need for training. The closed-loop syst.em is simpler and performs reasonably well,
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but requires tuning. In addition, the crossing position mode requires implementing a

capability for predicting the crossing position.

~ Since the closed-loop system is capable of perfect catching success for both balls if
‘the value of A appropriate for the particular ball is used, its performance can obviously
be improved by selecting A according to the observed arm and ball behavior. This
is just gain scheduling. Gain scheduling, of course, requires tuning to determine the
gains and requires a scheduling algorithm. Closed-loop controller performance could
also be improved by independently selecting «,, T;, and Ty. Again, vtuning would be
required, and tuning PID controllers is difficult [Morari (1989)]. Finally, closed-loop
system performance could be improved by ihcreasing the clock rate, but so could that

of the learning controller.

A self-tuning controller [Goodwin and Sin (1984)] could be employed. This would
be similar in spirit to the learning controller, except that the learning controller
requires no initial model of the arm or the ball. Furthermore, self-tuning controllers

are significantly more complex than simple linear controllers.

We can conclude that achieving good ball-catching performance with variable or
unknown plants requires a relatively cbrnplex control sj’stem, whether the control
| system employs gain scheduling, is adaptive in the traditional sense; or is a learning
control system based on neural networks. The learning control system described in
this work needs no initial model, but needs speciali‘zed computing resources (hardware
neural networks). Traditional adaptive control systems require an initial analytical
model, but can use conventional computational resources and may adapt more quickly.

The choice will depend upon the application.
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Chapter 5

Condusions and Future Work

5.1 Conclusions

5.1.1 Hand-Eye Calibration Conclusibns

1. Resource-allocating _neura,l networks coupled with virtual neuron adaptation
have credible performance in hand-eye calibration that is far better than that
of conventional multilayer back-error propagation networks. Experiments with
multilayer back-error propagation networks gave unsatisfactory results and were
not-pursued. They required many tens of thousands of training trials to stabilize

and achieved only poor performance.

2. Exploiting engineering knowledge and learning a hand-eye map correction is
a practicable approach that has much better performance than 'iearning the

entire hand-eye map as has been done in previous work. ‘The network learns
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to approximate the map rather than identifying parameters, hence does not
require a detailed parametric model. Many neurons, however, are required for
complex maps and networks have many parameters that must be adjusted to

get the best performance.

. The choice of network basis functions is not too critical. Gaussian and non-

Gaussian neurons perform about equally well.

. The neural system reported here is able to learn the global hand-eye mapping
only by sampling the entire space. Modifying the approach so key parameters,
‘such as scale factors and offsets, are identified explicitly and only unmodeled
perturbations involve sampling the entire spacé would make it possible to track
systematic plant parameter drifts with just a few observations. Assuming that
the unmodeled perturbations change slowly, this would significantly improve

system performance.

. Noise decisively limits network and estimator performance. This has not re-
ceived much attention in previous neural network research in robotics. Noise

sets a limit to attainable accuracy, and can cause useless neuron allocation.

. Both the estimation- and neural network-based approaches can develop inter-
nally consistent hand-eye maps even when kinematic parameters are in error
because they minimize an energy function. Obtaining accurate metrical infor-
m‘ation requires special procedures like explicitly forcing the system to learn

distance scales.

. Real arms have much greater input complexity than the model explored here,

and consequently will need far more neurons or much more complex estimator

models.

. Within the limits of its model, the estimator-based system significantly out-

performs the network-based system. If nonlinearities and noise are small, esti-
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mation may be the best approach unless fast neural hardware is available. If
nonlinearities and noise are significant, the need for a complex model may limit
its attractiveness. In principle, the estimator can respond to plant changes well

and quickly, but this needs to be demonstrated.

5.1.2 Motor Learning Conclusions

1. Learning controllers based on neural networks can, with a reasonable amount of
training, learn extremely effective feedforward motor control. In these simula-
tions, learning controllers, which required no initial plan models, outperformed
the conventionai controllers in terms of positioning accuracy, temporal response,

and ball catching.

2. Learning feedforward controllers outperform fixed-gain closed-loop controllers
when there is significant plant variation because they can switch control gener-
ation nets. A direct compariso_n,»h'owever, is complicated by the fact that the
neural system is inherently adapfive, while the closed-loop system used in this
work is not. Closed-loop controllers, of course, can be made to be adaptive as

well, but at the cost of significant effort.

3. In this work, the antisymmetric motor drive profiles were used to train the
motor command networks to emit the appropriate voltage at each time step.
This resulted in spiky voltage profiles. A bétter approach would be to train
the motor command networks to enable the antisymmetric motor drive profile
generator, which would, in turn, generate the command voltage at each time
step. vThis would smooth voltage profiles. The profile generator exists since it

is used in arm training,.

4. Resource-allocating neural networks are very effective in this situation since
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they essentially provide real time learning with generalization. They do this at
the expense of an efficient representation, however. Once allocation networks
are trained, they might be used by a background process to train networks using
more efficient representations. It is interesting to speculate on potential parallels
with short- and long- term memory in biological systems. The robot, which was
initially unable even to move its arm in response to tossed balls, learned nearly
perfect catching success in only 1000 training trials. After another 100 training
trials with the Mentor, its catching success was perfect and it exhibited direct,

precise arm motion.

5. Monitoring progress by comparing predicted and observed behavior is a good
approach to assuring robust task execution and recognizing when the control

regime has changed.

6. Training a neural network to emit the plant identity in response to samples of
the time course of plant inputs and responses is an effective way to perforrh
implicit plant identification. If the learning loops are always active, inputs and
responses will stay correlated with each other and with the plant identity even

if there are gradual sensor and plant drifts.

7. The use of an internal or external critic (the mentor in this work) can sig-
nificantly improve system performance. It allows skills to be constructed by
invoking the appropriate primitive motions. The primitive motions remain un-

changed and are therefore available for other tasks.

8. The shift register memory is an effective way to deal with real- time information
that must be processed in a pipeline fashion. It handily solves the time stamping

problem, and can be extended to deal with significant processing delays.

Based on this work, it appears that learning control systems are extremely promis-

ing. Once the basic architectural structures and hardware are in place, they may be
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able to provide excellent, adaptive, control capabilities in a wide variety of situa-
tions without the need for laborious control system tuning or the need for developing

detailed plant models.

5.2 Future Work

As usually happens in research, this work raised a host of questions. I would like
to extend the work in the following directions with the dual aims of understanding
how to engineer more effective robotic hand-eye systems and understanding the way

hand-eye systems are organized in animals.

5.2.1 Future Work in Hand-Eye Calibration

1. Extend nonlinear estimation to handle noise and modeling errors that result in
large residuals. This can be dealt with by acquiring and implementing more

sophisticated nonlinear estimation software.

- 2. Extend nonlinear estimator model complexity to include visual parameters as

well as basic distortions such as actuator scale factors.

3. Extend both neural and estimation approaches to tool frames and arbitrary

points on arm links as well as redundant arms.
4. Implement learning algorithms in analog VLSI hardware.

5. Investigate dedicated adaptation architectures and internal spatial representa-

tions for improving system adaptation accuracy and response.
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6. Investigate the role of contact and other non-visual information in developing

hand-eye maps and internal spatial representations and a sense of spatial scale.

7. Apply both the neural and estimation approaches to real robot arms including

multiple arm systems.

8. Investigate the use of contact information to estimate the location of the tool

frame.

9. Investigate the formation and maintenance of hand-eye maps in human sub-
jects using virtual reality and telerobot technology. By allowing the subject to
view only computer-generated representations of his own limbs and to feel only
computer-generated tactile stimuli, visual input and tactile cues could be dis-
torted and delayed in time. This should make it possible to introduce artificial
hand-eye errors and to distort causality, thereby helping to identify mechanisms

for the acquisition and maintenance of hand-eye maps.

5.2.2 Future Work in Motor Learning

The robot system and behaviors investigated here are actually extremely idealized,
and are not yet suitable for real robots. The following work is proposed with the aim

of creating robot systems that are more like animals in their grace and adaptability.

1. Extend the motor learning results to realistic arms, especially to arms that have
variable physical stiffnesses, and to robots that have multiple arms and a richer

sensor suite. Learn to set stiffnesses for grasps and contact events.

2. Investigate neural representations that are biologically more realistic, such as
using a series of active lines to represent values (place coding) and local pop-

ulations to represent drive intensity. The learning control system considered
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here used analog values, which is probably not realistic, especially for visual

information.

Learn to deal with continuous rather than discrete variations in ball and arm

masses.
Learn to anticipate and recognize events such as catching and collisions.

Learn to recognize and follow external agents that are more complex than balls,
and investigate more complex control tasks, such as learning to catch a ball in
a cup that is at the top of an inverted pendulum. This means the system must

learn to schedule reaction forces to avoid being knocked over.

Extend the repertoire of available control modes and apply learning control
to realistic sensor-motor tasks, such as assembly, that are composed of many
primitive elements and involve many smooth transitions. Learn to recognize

failure precursors.

Investigate structures that will allow the system to learn whether a particular
control task is beyond its competence, e.g., that the ball is moving too fast or

will impact too far away to be caught.

Investigate hierarchical task representations so large tasks can be composed of
smaller ones and so low-level skill improvements are manifested through overall

motor behavior, even for previously-learned tasks.

Consider noise and longer processing delays. The current delay is one clock

tick, but complex processing may require longer delays.

Use the behavior prediction nets to estimate future states even though the
elements in question may not be under observation. A possible approach is to

gate net output back into the input. Errors would accumulate, but estimates

might be reasonable.
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11. Learn to regulate playback speed in response to temporally-distorted input.
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Appendix A

Neural Networks

A.1 Introduction

This appendix introduces biological and artificial neural networks. It gives some
basic biological details, briefly describes recurrent networks, and outlines the aspects
of feedforward networks and learning algorithms that are used in this thesis. It closes

with a section that relates feedforward neural networks to familiar mathematical

ideas.
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A.2 Biological Neural Networks

Biological nervous systems, which are composed of networks of interconnected cells
éalled neuron.s, are remarkably complex computational mechanisms.! They are the
primary reason that animals, at least multicellular animals, can sense and respond to
their environments, learn, find food, maintain postural stability, find mates, and so
- on. Far from being unstructured, as in the old tabula rasa models, nervous systems are
highly organized, with specialized anatomical and organizational features and spatial
regibns devoted to particular types of computations [Shepherd (1979), Brooks (1986),
Kent (1981)].

Signals in biological neural networks are encoded using both place and value codes
[Kent (1981)]. In place codes, the particular line that carries the signal is meaning-
ful. In value codes, it is the intensity of the signal on a line that is meaningful. An
example of a place code is activating the output line from a particular photoreceptor
if the photoreceptor is being illuminated. The intensity of the signal on the output
line is a value code. Clearly both can be combined. If there are many photorecep-
tors, examining the lines to determine which is the most active will determine which
photoreceptor is being illuminated with the greatest light intensity. Place and value
codes are very importa,ﬁt in biology, and there are many such mappings. The retina,
for example, is mapped in a topology-preserving manner onto the visual cortex us-
ing place coding. Similarly, spatial derivatives can be estimated by subtracting the
value codes on place-coded lines that originate in a sensbry area. See figure A.3. The

extensive use of place codes provides for the massive computational parallelism of

biological systems.

1Computational in the sense that inputs are transformed into outputs through some process.
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Figure A.1: Schematic biological neuron and activation function.

A.3 Biological Neurons |

~ Neurons are a specialized cell type, schematically represented in figure A.1. They
are active computational elements that are able to receive input signals and generate
output signals in response. Input, or afferent, signals may come from other neurons
or from sensory cells, such as photoreceptors.? Output, or efferent, signals are trans-
mitted, in turn, to other neurons or, perhaps, to specialized tissues such as muscles or
glands, where they can elicit physical responses [Katz ( 1966)]. Neurons may receive
inputs from (fan-in) and send outputs to (fan-out) many tens of thousands, and,
in some cases, hundreds of thousands, of other neurons. There are many types of

neurons adapted for particular computational tasks.

2Qther inputs, of a longer- term nature, are variations in circulating chemicals within the body
that affect neurons’ physical properties.
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From a computational standpoint, a neuron’s main features are the dendritic
tree, the cell body, or soma, the axon hillock, and the axon. The dendritic
tree receives inputs at sites called synapses,®> of which there are many types
[Mead (1989), Shepherd (1978), Shepherd (1979)]. Inputs may be excitatory, which
tend to increase the neuron’s level of activity, thereby increasing the strength of its
output, or inhibitory, which tend to decrease the neuron’s level of activity, decreasing
the strength of its output. These inputs diffuse toward the soma, or cell body. The
net input is essentially the sum of the excitatory and inhibitory inputs integrated over
a small time interval.* When net input at the axon hillock, the conical region joining
the axon to the cell body, exceeds a thfeshold, a so-called action potential, a voltage
spike, is generated with a definite probability [Amit (1989), Mead (1989)], and the
cell is said to be active. Action potentials, which are traveling electrochemical waves,
have a stereotypical form. They propagate stably down the axon and its branches,
connecting with neurons and other specialized cells. It is believed that a particular
neuron makes only excitatory or inhibitory connections with other neurons (Dale’s

law) [Amit (1989), Shepherd (1979)].

If the net input is maintained above threshold, the neuron will remain éctive,
firing a train of action potentials at some rate, known as the firing rate. A neuron’s
firing rate (its response, or activation) is a sigmoidal function of its net input, varying
from a low (resting) value up to a maximum as shown in figure A.1. The gain is the
slope of the response curve near the thfeshold. In the high-gain limit, the response
curve becomes a step function and the neuron is either on, firing at its maximum

rate, or off, firing at its resting rate.

A signal due to an action potential is propagated across the synapse to the tar-

3Sometimes synapses are on the cell body itself.
4The details are complex due to the capacitance of the cell membrane and metabolic processes

that tend to maintain the resting cell potential. See [Mead (1989)] and [Koch and Segev (1989)).
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get neuron by chemicals called neurotransmitters that are released into the synaptic
cleft, the small gap between the neurons at the site of the synapse. Neurotransmitters
are released in definite quanta [Katz (1966)]. After release, the molecules of neuro-
transmitter diffuse toward the target neuron. Upon arrival, they initiate a series of
chemical events that are either excitatory or inhibitory, depending upon the nature

of the synapse.

Neurons affect other neurons primarily through action potentials, but a great deal
of computation is done at the analog level within the dendritic tree that does not

necessarily result in action potentials [Mead (1989)].

Many neurons are responsive to (they detect) specific stimuli, such as a light
spot at a particular location in the visual field, the strength of their responses to a
particular input® being related to how exactly the input matches the specific stimulus
in question. The neuron’s receptive field is the ’region in its input space over Which
the neuron has appreciable activity to the stimulus it detects, the activity being
effectively zero (resting) outside the region and maximum where inputs match the
- specific stimulus precisely. The neuron’s response function over its input space® is
called its tuning curve (for that space). Neurons with wide receptive fields are termed
broadly-tuned; those with narrow receptive fields are termed narrowly-tuned. Tuning
- has a profound effect on network function, since it affects the ability of a network to

interpolate and/or locate stimuli. See [Hinton, McClelland and Rumelhart (1986),
Mel (1989), Kent (1981)] and section 3.5.6 in this thesis.

Since a neuron’s response is a sigmoidal function of its net excitation, tuning

curves for particular input spaces must arise as a computational result of the neuron’s

5An input may be composed of very many individual elements.

6The input space is not necessarily the same as the net input at the axon hillock. Since a neuron
receives inputs from a network with a large number of neurons and potentially a great deal of
specialized processing, it may have many input spaces.
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Figure A.2: Idealized neuron. The neuron shown is neuron “j”. The o,’s are the
afferent inputs, which are weighted by the corresponding input weights, the w;,’s,
and summed, along with the threshold, §;, to yield the net excitation, e;. Letting f;
be the activation function, the neuron output is o; = f;(e;). The output is coupled
to the target neurons through the wg;’s, which are the output weights.

response function combined with prior neural processing, dendritic computation, and

the effects of propagation on input signals.

A.4 Artificial Neurons

As we have seen, an active physical neuron emits voltage spikes at a rate interfnediate
between its resting and maximum firing rates. While some neural network research,
especially that which addresses mechanisms of biological information processing and
‘control, is concerned with detailed neural fnodels that include spiking behavior and
dendritic computation,’ a simplified neural model is often used. In_this simplified
model, which is shown in figure A.2, neural inputs are represented as firing rates
averaged over a small time interval rather than as individual spikes, the firing rate of
each input being that of the afferent neuron from which it originates. The neuron’s
net input is a weighted sum of its individual inputs; its net excitation is the net

input minus the threshold, §.28 Excitatory and inhibitory connections are handled

7See, for example, [Mead (1989)] and [Koch and Segev (1989)].
8Thresholds can be considered weights associated with input neurons that are always on (always

have unit output). -
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by respectively assigning positive and negative signs to the Weights, with a weight’s
magnitude representing the connection strength. The threshold, which is equivalent
to an inhibitory input, has the effect of shifting the location of fhe response curve
along the net input axis. The neural response, which is scaled to represent the fraction
of the neuron’s maximum firing rate, is modeled as a sigmoidal function of the net

excitation. Thus a resting neuron has zero output while a fully active neuron’s output

1s one.

‘The sigmoid is commonly taken to be a hyperbolic tangent. In feedforward nets
(described below) the hyperbolic tangent is shifted and scaled so the saturation limits
(the asymptotes) are zero and one. The neuron’s output response, o, to its net

excitation, e, is then given by:

o = %(1 + tanh(ae)) (A1)
= %(1 + ta.nh(i: wja;) — ), | (A.2)

where the a’s are the separate inputs, the w’s are the weights, n is the number of

inputs, « is the gain (the slope of the tanh in the linear region), and 6 is the threshold.

In recurrent nets (described below) the saturation limits are often taken as -1 and
+1, which represent minimum and maximum firing rates, respectively. A neuron’s

output response in that case is given by:

o= tanh(a((3" a;) — 8)), (A.3)

i=1

where o, a, w, n, and 8 are as before. As noted previously, the sigmoid becomes a step
function in the high-gain limit. Step functions are known in neural network research
as linear threshold functions. By suitable choice of gains, connection strengths, and

gating inputs, neurons can be made to exhibit linear behavior over specified regions
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as well.

The influence of a neuron’s output (which is always a ﬁonnegative firing rate) on a
neuron to which it is connected can be controlled by varying the connection strength.
The sign of the influence can be controlled by using excitatory (positive) or inhibitory
(negative) synapses. In biological systems the connection strength corresponds to the

number and strength of the synapses the afferent neuron makes on the target neuron.

Other simplifications are that a given neuron may make both excitatory and in-
hibitory connections wifh other neurons,® and that dendritic computation is modeled
through connection typés and connection strengths. Connection types commonly
used are the direct excitatory and inhibitory connections already mentioned, where
the total input is a weighted sum of the individual inputs, and so-called sigma-pi
(¥ —TI) connections [Rumelhart and McClelland (1986), Mel (1989)] in which each
individual inpu‘t.is a product of outputs from different neurons and the total input,

I, is a weighted sum of the individual inputs:

I= Zw;a; = zn:’w,' ﬁ Oik. (A4)
k=1 .

=1 i=1

Here the a’s are the individual inputs, n is the number of inputs, w are the weights,
and the o’s are the m outputs from the different afferent neurons that contribute to
the sth individual input a;. Sigma-pi connections are useful when it is necessary to

use the output of one or more neurons to gate that of another.

%Dale’s law is ignored.
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A.4.1 Gaussian Neurons

Many neurons have tuning curves that are approximately Gaussian, and some bi-
ological visual processing employs tuning curves that are closely approximated by
differences of Gaussians [Kent (1981), Marr (1982)]. Furthermore, since Gaussians
have convenient mathematical properties,!® they are attractive for neural modeling.
It was pointed out above that, since a neuron’s response is actually a sigmoid function
of its net input, tuﬁing curves must arise from déndritic and network computations.
We will see below in section A.6.6 how sigmoids can be paired in such a way that
good approximations to sinusoid and Gaussian tuning curves can be obtained. Such
pairs are really composite neurons, but they are considered to be single neurons with

sinusoid or Gaussian, rather than sigmoidal, response curves in this work.

A.5 Learning

Learning in biological systems is thought to involve both physical changes that modify

synaptic strengths as well as connectivity changes in which new neural connections

are formed [Shepherd (1979)].

Learning in artificial neural systems is principally effected by modifying neuron
gains and thresholds, changing neuron connectivity, adding and deleting neurons,
and changing connection strengths and signs. Modifications are made using learning

algorithms as will be discussed below.

10pProducts of Gaussians are Gaussian, for example, making it possible to compose multidimen-
‘sional Gaussians from one-dimensional Gaussians, and making sums of Gaussians an algebra.
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Figure A.3: Neural networks. The direction of signal flow is indicated by the arrows.
The network labeled a) is a Hopfield network. It is recurrent since each neuron is
connected to every other neuron except itself. The large dots indicate connections.
The network labeled b) is a feedforward network that calculates, at each output, a
value proportlonal to the approximate spatial derivative at the input point.

A.6 Artificial Neural Networks

Artificial neural networks are sets of interconnected artificial neurons, and so are
often termed connectionist networks. Neural networks can be used for pei‘forming
- computations and are capable of learniﬁg. A neural network has a set of input
neurons and a set of output neurons, and may, dependihg upon its architecture, have
layers of internal (hidden) neurons. If the input to any neuron in the network is a
function of its output, the network is termed recurrent. Otherwise it is a feedforward
network. Feedforward networks are closely related to combinational circuits studied
in electronics. Feedforward and recurrent networks are illustrated schematically in
figure A.3. Networks may naturally have subnetworks of both types. The temporal
behavior of a computation is determined by the network inputs and the network
state, which is the aggregate of the individual neuron states. Impbrtant issues for

neural networks are architecture, which is determined by network connectivity and
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neuron types, network state evolution and stability, storage capacity, representational
efficiency, the effects of noise, spurious states, and learning. The number of neurons
their type, and connectivity is usually, but not always, selected in advance (see section

A.6.2 below).

Time delays are also important [Amit (1989)]. In recurrent networks they can
significantly affect network behavior. They are necessary in feedforward networks
for operations such as computing temporal derivatives, which can be performed in

the analog domain by subtracting a delayed value of a signal from its current value

[Mead (1989)].

Some networks are used to calculate Boolean functions of binary strings, in
which case neuron inputs and outputs are considered to be either zero or one.
In this confext, neural networks can be shown to be capable of computing any
computable function, even though the complexity of the network may be high
[Abu-Mostafa (1986), Abu-Mostafa (1989), Judd (1990)]. Other networks are used in
analog (real valued) calculations, so their inputs are e R*. Networks consisting of a sin-
gle layer of Gaussian neurons are ca.pable_ of uﬁiformly approximating any continuous
real-valued function [Hartman, Keeler and Kowalski (1990)], hence are able to ap-
proximate any real-valued function that has a finite number of finite discontinuities.!?
Since each component of a real vector-valued function is itself a real- valued function,

Gaussian networks can calculate real vector-valued functions as well.

Because of noise and neurons’ limited dynamic range, input representation is a
critical issue for analog networks, often demanding clever use of place and value
coding. Boolean (digital) representations of analog values are possible, but can lead

to excessive network complexity. In the Boolean case it is often necessary to threshold

1This is easy to see. Determine the Fourier series for the function in question and then approxi-
mate a suitable number of its harmonics using Gaussian networks.
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the outputs to be in the set {0,1} unless the output neurons are linear discriminant
(step) functions. This is because the sigmoids may not be saturated. Recurrent
networks are useful in Boolean computations as the feedback can be used to saturate

the (nonlinear) neurons, driving them into either the —1 or +1 state.

The bounded honlinearity of neurons is essential both for providing saturation
a,nd for calculating arbitrary functions. Saturation correspondé logically to making a
decision. A feedforward network composed of linear neurons with additive connections
will give a linear response in all cases.’? In the linear case, the activation function of
the jth neuron will just be a constaﬁt a;. The neuron’s output o; will be a; times

the total excitation, which is a weighted sum of its afferent inputs'® as we have seen:

0; = qj ijkok, (A.5)
k

where the w;;, are the weighté, and the o, are the afferent inputs. But each afferent
input oy is, itself, either an output of the same form from another neuron or a network
input. This is true of all neurons in the network. Thus, writing Wj = a;w;; for all
neurons j and inputs k, we have, for the ith output neuron and the network inputs
ak,: |

"

0; — ; VVikl kz Wk1k2 e ; Wkn—lkna’kh’ » (A.ﬁ)
1 2 n .

This is just a linear matrix product, which can be written in the form:
o= Wa (A

W is the matrix product of the W’s. This shows that an arbitrary network of linear

neurons with additive connections is equivalent to a single layer of linear neurons.

12This is not necessarily true if sigma-pi connections are used. Multiplying an input by itself, for
example, will give a parabolic response. .
13Thresholds are considered as weights here.
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Thus nonlinearities are essential for calculating more general functions.

A.6.1 Recurrent Neural Networks

Highly interconnected recurrent networks with many neurons are high-order coupled
nonlinear systems in which system dynamics due t'o factors such as signal propagation
delays, resistance, capacitance, and gain must be considered. As a consequence,
they have rich behavior, and are the subject of much current study. Techniques
from theoretical physics including statistical mechanics and spin glasses are being
fruitfully applied to investigate their properties [Amit (1989)]. The basic idea is that -
the network will evolve (flow) downwards in energy space towards an attracting state

or limit cycle.

Hopfield and others have investigated fully interconnected networks (each neuron
is connected to each other neuron except itself) with symmetric and nonsymmetric in-
terconnection matrices [Hopfield (1982), Hopfield (1984), Amit (1989)]. In Hopfield
networks, the interconnection matrices are constructed from the sum of the outer
products of the memories stored in the netwbrk. Hopfield networks with symmet-
ric interconnection matrices can be shown to be stable. Introducing asymmetry in
the connection matrix can, under the right conditions, force the network to generate

prescribed sequences and enter limit cycles.

Other interesting behavior, such as finding global and local extrema of func-
tions, is possible as well. Creating networks that mimic computational functions
observed in biological systems is an active area of research [Koch and Segev (1989),

Mead (1989)]. Recurrent networks are being used to generate and recognize
sequences, remove noise, recall complete items from only partial inputs, gen-

erate commands for walking machines, etc. [Amit (1989), Hopfield (1982),
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Hopfield (1984), Rumelhart and McClelland (1986), Beer, Chiel and Sterling (1991),
Chiel, Quinn and Espenscheid (1992)).

In analytical models of Hopfield networks, neurons are modeled as nonlinear am-
plifiers that generate currents propdrtiona.l to their activities, and the cell body is
modeled as a capacitor that sums incoming currents, creating a voltage that drives

the amplifier. Connection strengths are conductances.

A.6.2 Leai‘ning With Feedforward Neural Networks

The interest in feedforward neural networks arises primarily from their ability to learn
functional approximations. In feedforward networks that have stable, simple neurons
of the type described above, dynamics is not an issue except as it relates to-network
settling time. For each steady input, there is asymptotically a unique, steady output.
In the high-gain limit, sigmoids become linear discriminant functions and feedforward
networks become multilayer networks called perceptrons [Minsky and Papert (1969),

Duda and Hart (1973)].

The best-known learning algorithm for feedforward networks is Back Error Propa-
gation (BEP),! which is an application of the well-known gradient descent procedure
[Rumelhart and McClelland (1986)]. After the network architecture has been fixed,
learning proceeds by presenting the network with an input, noting the error in its
output vector, O, and recursively adjusting the weights to reduce the error. It re-
quires a teacher, or supervisor, that knows what T, the desired, or target, output
vector should be. Hence it is an example of supervised learning. Thresholds can also

be learned if they are considered to be weights for an afferent neuron with output

14The name comes from the fact corrections are made by recursively propagating errors back from
the output layer.
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that is fixed at 1. Training sessions are usually started by initializing the weights to

random small numbers.

If an energy E is defined by summing the squares of the components of the output

error over the m output components (neurons):

E=

N =

Ii_n:m _oy, (A8)

then, with n the learning rate, f; the activation function of neuron j, e; the total
excitation of neuron j, o the output of neuron k, and dw;; the change in wj, the

weight coupling the output of neuron & to neuron j, the back propagation algorithm

is given by:
: OFE
bwjx = -7 v (A.9)
BE Bej
= —p— Al
nae,- a'w]'k ( O)
BE aOJ'
= -ﬂ‘a—oj‘agok (A-u)
oFE "
If neuron j’ is an output neuron, this becomes:
dwjk = nox fi(e;)(T; — O;). (A.13)
If neuron j is not an output neuron, then we have:
OE
Swj = —OOka‘(ej)prja—e- (A.14)
P 4

The sum over p is a sum over the neurons which have their inputs connected to the

output of neuron j. It is recursive, starting with the output layer.
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In some cases, as in learning to control an unknown plant with a neural network,
for example, it is necessary to propagate errors backward across the plant. Assuming
that the plant has summing inputs ¢; = ¥, w;xor and outputs O, equation A.10

becomes:

oF

bwjr, = —nawjk (A.15)
_ 8E Baj
= —"aajawjk (A.16)
oF
= -——'I?Ok—a-:z—J - (A.17)
. 00
= nokZ(T,—o,)-a——i. (A.18)
i a;

The partial  derivatives 00;/0a; can be  empirically determined

[Psaltis, Sideris and Yamamura (1987)].

Multilayer BEP networks work well in some cases, but often require an excessive
number of training trials, and are subject to becoming stuck in false minima. Errors
do not propagate past high-gain or saturated/resting neurons because in those cases
the derivative f’ is foo close to zero. There is also the design problem of determining
how many layers to use in a network and how to connect them. Single-layer vnetworks

with more initial structure succéssfully address many of these problems, as described

beloW in section A.6.6.

Another learning approach is a version of Hebbian learning [Hebb (1948)] in which
a sigma-pi connection is established between a target neuron and a set of afferent
neurons if the afferent neurons are active and it is desired to have the target neuron
active. Mel [Mel (1989)] has used this approach in learning hand-eye coordination.
It corresponds to table lookup, and is an example of learning in which connectivity
is not set in advance. Learning is very fast, as connections are created in one pass

as needed. As in all table lookup schemes, however, the number of units required to
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Figure A.4: Resource-allocating neural network. The network, which is a feedforward
network, generates its response by superposing the responses of its individual neurons.
The network is shown with Gaussian neurons, but other types may be used.

learn a mapping can become excessive.

A.6.3 Resource-Allocating Neural Networks

Resource-allocating neural networks [Platt (1990)], which rﬁap n-dimensional real
spaces into m-dimensional real spaces, are also a version of table lookup. They em-
ploy avsingle layer of radially-symmetric Gaussian, or other unimodal neurons rather
tha,ﬁ sigmoidal neurons. The neurons are equivalent to the radial basis functions of
approximation theory [Poggio and Girosi (1989)], and, as allocated during training,
are related to Parzen windows that are used in estimating statistical distributions
[Duda and Hart (1973)]. There is one input line for each degree of freedom in the

input space. Every neuron is connected to all the input lines.

Each component of the output vector is generated by superposing the (weighted)

responses of the network’s neurons to the input vector as shown in figure A.4. Each
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neuron calculates its distance from the input vector'® and, based on the width of its
response function, calculates its response as a function of the distance. The weighted
responses are summed to get the output. Since the network response is generated

from a finite set of neurons it is usually an approximation to a desired mapping.

In the normal case, a resource-allocating network initially has no neurons. The
network is trained by selecting a set of input vectors that covers the domain of the
desired function. Each vector is presented to the network in a separate trial and the
error between the actual, of observed, network response and the desired, or target,
response is noted. Then, if necessary, either a new neuron is allocated to eliminate
the output error for that input completely, or the parameters of the existing neurons
are adjusted to reduce the error. The parameters are the width of the response
function (the tuning width in this case), the output weights that couple the neuron’s
output to the output component’s summing junction, and the location of neuron’s
receptive field. Learning vector-valued mappings is simplified by the fact that the
output components are independent of oné another and depend upon separate output

weights. More specifically:

1. If the error is acceptable, no action is taken.

2. A new neuron is allocated if the absolute error is above an error threshold, 6.,
additional neurons are available, and the current input vector is greater than
a distance threshold, 6;, from the center of the nearest existing neuron. Its
parameters are chosen to make the network output exact for the current input
vector, and the width of its response function is chosen so network output is

disturbed only locally.

3. An adaptive algorithm adjusts network parameters to reduce error if: the error

is too large to ignore but is below the allocation error threshold 6., or the input

15The distance from input vector to the center of the neuron’s response function.
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Figure A.5: Learning by allocating neurons.

vector is less than 6 from the center of the nearest existing neuron, or no

‘additional neurons are available.

Learning by allocating neurons is illustrated in figure A.5.

The dista.nce threshold, 6, is usually allowed to decrease according to some sched-
ule to ,.prevent fragmentation of the input space and to improve representational ef-
ficiency. Network performance depends critically upon the error thresholds and the
algorithm for varying the distance threshold and determining the width of the neuron

response functions.

Since resource-allocating networks have a single layer of neurons and compute
good approximations because of the way neurons are allocated, parameter adjustment
algorithms give good results, converge quickly, and tend not to become stuck in false

minima. They also perform well at tracking drifting plants.

Resource-allocating networks using Gaussians are mathematically justified

by the fact that Gaussians are universal approximators as mentioned above



190

[Hartman, Keeler and Kowalski (1990)].

A.6.4 The Cerebellar Model Articulation Controller

Resource-allocating networks are closely related to the Cerebellar Model Articu-
lation Controller (CMAC) of Albus [Albus (1972), Albus (1975b), Albus (1975a),
Albus (1981)]. In CMAC, which is based on a model of the cerebellum, a set of so-
called association cells (neurons) is activated for each input according to a predefined
mapping from the input sensory cells to the association cells. ‘The total number of
association cells is typically much larger than the number active for any particular
~input. The output of an active association cell is one because both the sensory and
association cells are linear discriminant functions. Every active association cell has
one weight coupling i.t to each output component. Each output component, then, is
the sum of the weights of the association cells active for the input. The network can
generalize because the predefined input mapping from the sensory cells to the aséo—

ciation cells is constructed so nearby inputs activate many of the same association

cells.

The network is taught by presenting example inputs and noting, for each input,
the difference between the target output 7; and the observed output O, for each
component of I. The weights for that component associated with the neurons that

are active for the input are all adjusted by the amount:

T, - O

6 ==, (A.19)

where N is the number of active neurons and 0 < n < 1 is the learning rate. Con-
trollers based on CMAC are able to learn smooth mappings of the type found in robot

control quickly and accurately [Miller (1987)]. Ellison has shown that multidimen-
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sional CMAC’s learn by converging to well-defined limit cycles [Ellison (1991)].

A.6.5 Network Updating in Simulations

In simulating neural network behavior, the choice of network update scheme (the
~manner in which neurons are selected for state updating) is critical. Synchronous
update (all neurons updated simultaneously) is unsatisfactory in recurrent networks
because it can significantly affect network behavior, inducing spurious limit cycles
[Amit (1989)] and affecting energy minimization [Hopfield (1982), Hopfield (1984)].
Synchronous updating is acceptable in vfeedforward networks because nétwork dynam-

ics is not an issue.

A.6.6 Intuitive Motivation for Feedforward Neural Net-

works

The relationship of networks of sigmoidal neurons to practical computing can initially
seem obscure, if not magical. Feedforward neural networks, however, are relatively
easy to motivate intuitively in a way that is closely related to familiar mathematical

ideas. The key is in considering pairs of neurons.

Consider, first, the sum of paired sigmoids in the high-gain limit', separated as in
figure A.6 by a,n‘ interval A > 0. The sigmoids have equal and opposite gains and
A points from the positive gain step to the negative gain step.'® The result is a
one-dimensional pulse of height two, which can be scaled to yield a unit pulse. Steps

with range from -1 to +1 are shown in the figure. The use of steps with range 0

16Negative gains can be effected with negative input weights.
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Figure A.6: Paired high-gain sigmoids. The sum of the high-gain sigmoids, which are
step functions with opposite gains and thresholds separated by A, is a pulse of height
two. The functions are shifted slightly for clarity.

to 1 will result in one plus a unit pulse. This can be shifted with a constant offset
to yield a unit pulse. A unit pulse has value one inside its region éf support and is
zero elsewhere, so if its output is multiplied by the appropriate weight (the average
functional value in the region selected by the pulse, for example) it can be an element
of a functional approximation table. The elements would be like those making up a
Riemann sum in integral calculus. Other neural circuitry, based on expanding and
gating the linear regions of lower-gain sigmoids; could be added as well to interpolate

between adjacent functional values.

Consider, now, lower gain sigmoids. It can be seen from figure A.7 that the sum
of paired hyperbolic tangents which have opposite gains and thresholds separated by
A=, is a reasonable approxima.tion to a segment of 1 + sin(z — r) over the region
—r < ¢ —r < 7, providing the conditions on A are as above. The sum is close
to zero outside the region. The sum of a pair of hyperbolic tangents with an offset
of —1 therefore forms a computational module that generates an approximation to
a segment of a sine. Such a module is illustrated in figure A.8a. By adjusting the

thresholds of the component hyperbolic tangents, module domains may be shifted
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tanh(-(x-(r+x))) 1+sin(x-r) tanh(x-r)
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Figure A.7: Paired hyperbolic tangents. The sum of paired hyperbolic tangents with
opposite gains and thresholds separated by = is approximately 1 + sin(z —r) over the
region — < z — r < 7, and is approximately zero elsewhere.

to cover adjacent regions. Concatenating several appropriately shifted modules will
yield longer segments of a sine or a cosine over an interval. Higher harmonics may
be created by increasing the magnitudes of the input weights (hence the gains of the
hyperbolic tangents) in integral steps. If the interval is 2L, the input weights may be
scaled by 7 /L to fit.

If sufficient modules of the proper harmonics required to cover the desired spa-
tial ba,nd frequency ranges are concatenated, and the output Weights from the sine
.and cosine modules are the appropriate Fourier coeflicients, the network will give
an approximation to the function corresponding to the Fourier coeflicients. This is
illustrated in figure A.8b. Such a network is basically composed of a single layer of
sigmoidal neurons. The constant offsets of -1 can, in principle, be absorbed in the
constant Fourier term. We know a Fourier series ;:an be used to approximate any

real-valued function with a finite number of finite discontinuities.

In a similar way, paired sigmoids approximate a Gaussian, and from the theorem
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{ ~sin(x-r) T<X-r<m

~0 elsewhere

threshold=r+n

sufficient shifted
modules to cover
range for each
harmonic

x — L -

f(X)=ag+

Za sin(nrx/L)+
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Figure A.8: Approximate Fourier series. The top figure, a), shows a computational
module that approximates a segment of a sine. Concatenating several such modules by
shifting thresholds will yield an approximation of sin(x) over an interval. Cosines can
be obtained by shifting and concatenation as well. Different harmonics are obtained
by adjusting the input weights in integral steps. The bottom figure, b), shows modules
of different harmonics combined to approximate a function. The input is scaled to fit
the interval in question. The thresholds and constant -1 offsets for the modules are

not shown.

quoted above, we know that any real continuous function can be approximated with

a single layer of Gaussian units.

In preliminary investigations, combining sinusoid modules into approximate
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Fourier series was compared with randomly structured networks!” in learning var-
jous functions such as triangles, pulses, and polynomials. The learning algorithm was
back error propagation, and all input and output weights, including the thresholds,
associated with each sigmoid were allowed to vary. Fourier coefficients were initially
set at 1/n, with n the order of the term. In these investigatiéns, the structured
approach converged much more rapidly a_nd had significantly greater accuracy. This
was also the case with resource-allocating networks using both Gaussian and other -

unimodal neurons as discussed in chapter 3.

The important thing to reali‘ze from this discussion is that considering opposing
~ pairs of sigmoidal functions leads naturally to approximations of functions that appear
in functional approximation schemes. This shows that sigmoidal neurons can be
combined to yiéld reasonable functional approximations. It does not show that a

given network will necessarily learn a good approximation.

The above discussion has considered functions over the real line. In higher di-
mensions, sigmoids can be composed multiplicatively to yield multidimensional unit
pulses or multidimensional Gaussians. Sinusoidal eigenfunctions could also be com-
posed multiplic#tively if desired. Composition can be done with limited range ampli-
fiers because sigmoid output can be scaled to be €[0,1]. Multiplicative connections

. require imposing a greater degreé of initial structure on the network. This struc-
ture will improve network p'erforma,nce since unstructured back error propagation

networks perform poorly compared to more structured networks.

Finally, it is apparent that what feedforward networks actually do is functional
interpolation. A network is taught with a finite set of training examples and is
intended to provide good approximations for inputs that have not appeared in the

training set. This is essentially interpolation [Poggio and Girosi (1989)].

17Networks with small random initial weights.
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Appendix B

Implementing the CMAC and
Virtual Neuron Learning

Algorithms in Analog VLSI

This appendix explores, in a very high-level sense, implementing the adaptation al-

gorithms of chapter 3 in a;nalog VLSI hardware.

Gradient descent is difficult to implement because of the derivative computations
- and will not be discussed further. The CMAC and virtual neuron algorithms, on the
other hand, require no derivatives and would be much simpler to implement, with

CMAC being the simplest.

Calculating the common CMAC active neuron weight change Aw requires just
that the componentwise output error ¢ be multiplied by the quotient of the learning

rate A and the sum of the active neuron outputs. The sum and componentwise error
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can be calculated in parallel, and once the computations have stabilized, the quotient
of A and the sum can be calculated, followed by multiplication by the e;. Multiplying
the €’s can all be performed in parallel since the quotient is common to all weight

changes.

With the exception of division, and perhaps weight adjustment, analog VLSI
circuit elements exist for all the operations that must be performed [Mead (1989)].
Since the factors é.re all positive, division can probably be handled using multipliers
amplifiers, and feedback. Selecting the neurons and weights for modification can
be accomplished by gating using thresholded neural outputs for the (latched) input.
Signals for enabling and disabling learning would probably be provided externally

since the network would be part of a larger system.

Implementing virtual neuron learning in hardware will be more complex. Cal-
culating the weight changes involves determining the width of the virtual neuron,
calculating its respbnse at the site of each active neuron, determining the sum of the
products of the virtual neuron response at each neuron and the neuron’s response
to x, calculating the quotient, calculating the errors €, and generating the weight

change. This will require phased chip activity driven by timing or state mechanisms.

Active neurons are first selected by gating those with outputs over the threshold.
The virtual neuron width is determined by selecting the neuron nearest the input
vector X, actively controlling its width (the original must be retained) with feedback
till its response is 0.5, and multiplying the resulting width by A, the half-maximum
fraction (which is an input), to yield the virtual neuron width. The nearest neuron
is selected by temporarily setting the widths of all active neurons to the same value

and selecting (latching) the one with the highest response to x.

The virtual neuron width is then gated to all active neurons to determine each
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neuron’s response to x as if it were the virtual neuron. This determines the virtual
neuron response at the site of each neuron. The product of each neuron’s original
output (which has to be stored locally along with the original) by the virtual neu-
ron’s response at its location is calculated and all such products are summed, thus
determining the (positive) denominator of the quotient. The quotient of A and the
denominator sum can be computed using feedback as before. The quotient is then
multiplieci by the virtual neuron’s response at each neuron site and the ¢, in parallel

to determine the Awy;.

The necessity for storing original output and width at each neuron site can be
eliminated by making each neuron a matched pair. One is used to calculate net
outputs and retains its original width. The other has variable width and is used to
determine the nearest neuron, the virtual neuron response at the neuron site, etc. The
matched pair can share the same distance computation, and so should be relatively
cheap to implement, especially if Gaussian neurons are used. Using paired neurons

will also simplify chip timing and gating and improve parallelism.

If neurons have been allocated in a regular grid, as they might be on a chip, the
virtual neuron width parameter might profitably be consbidered fixed and need not
be determined. This would further simplify chip implementation. Random neuron
locations could be handled by prbviding adaptable gates in the input lines to each
neuron. These could be set when: the neuron was allocated. It is apparent from
figures 3.16, 3.18, and 3.20, however, that even when neurons are allocated without
setting the output weights to eliminate output error at the allocation site, adaptation
performance is quite good. That is, acceptable long-term network performance does
not require the Platt allocation/correction algorithm, though it speeds up initial

learning.

As in the case of CMAC, which requires the same kinds of operations, basic
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analog VLSI tools exist for implementing the circuits discussed here, with the possible
exception of division and weight adjustment. Division can conceptually be handled
by variable-gain amplifiers and feedback. Weight adjustment via floating gates and

other mechanisms is an active research topic.

We can conclude from this discussion that implementing the CMAC and virtual

neuron learning algorithms in parallel analog VLSI hardware appears to be feasible.
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